Science.gov

Sample records for mixed-integer dynamic optimization

  1. Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm

    NASA Astrophysics Data System (ADS)

    Kania, Adhe; Sidarto, Kuntjoro Adji

    2016-02-01

    Many engineering and practical problem can be modeled by mixed integer nonlinear programming. This paper proposes to solve the problem with modified spiral dynamics inspired optimization method of Tamura and Yasuda. Four test cases have been examined, including problem in engineering and sport. This method succeeds in obtaining the optimal result in all test cases.

  2. Mixed integer evolution strategies for parameter optimization.

    PubMed

    Li, Rui; Emmerich, Michael T M; Eggermont, Jeroen; Bäck, Thomas; Schütz, M; Dijkstra, J; Reiber, J H C

    2013-01-01

    Evolution strategies (ESs) are powerful probabilistic search and optimization algorithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the parameters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed integer optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized mutation operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems. PMID:22122384

  3. Reverse engineering of logic-based differential equation models using a mixed-integer dynamic optimization approach

    PubMed Central

    Henriques, David; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R.

    2015-01-01

    Motivation: Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters. Results: In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cells. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: julio@iim.csic.es or saezrodriguez@ebi.ac.uk PMID:26002881

  4. Mixed integer simulation optimization for optimal hydraulic fracturing and production of shale gas fields

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Gong, B.; Wang, H. G.

    2016-08-01

    Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.

  5. Toward the development of a Trust-Tech-based methodology for solving mixed integer nonlinear optimization

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Chiang, Hsiao-Dong

    Many applications of smart grid can be formulated as constrained optimization problems. Because of the discrete controls involved in power systems, these problems are essentially mixed-integer nonlinear programs. In this paper, we review the Trust-Tech-based methodology for solving mixed-integer nonlinear optimization. Specifically, we have developed a two-stage Trust-Tech-based methodology to systematically compute all the local optimal solutions for constrained mixed-integer nonlinear programming (MINLP) problems. In the first stage, for a given MINLP problem this methodology starts with the construction of a new, continuous, unconstrained problem through relaxation and the penalty function method. A corresponding dynamical system is then constructed to search for a set of local optimal solutions for the unconstrained problem. In the second stage, a reduced constrained NLP is defined for each local optimal solution by determining and fixing the values of integral variables of the MINLP problem. The Trust-Tech-based method is used to compute a set of local optimal solutions for these reduced NLP problems, from which the optimal solution of the original MINLP problem is determined. A numerical simulation of several testing problems is provided to illustrate the effectiveness of our proposed method.

  6. Mixed integer model for optimizing equipment scheduling and overburden transport in a surface coal mining operation

    SciTech Connect

    Goodman, G.V.R.

    1987-01-01

    The lack of available techniques prompted the development of a mixed integer model to optimize the scheduling of equipment and the distribution of overburden in a typical mountaintop removal operation. Using this format, a (0-1) integer model and transportation model were constructed to determine the optimal equipment schedule and optimal overburden distribution, respectively. To solve this mixed integer program, the model was partitioned into its binary and real-valued components. Each problem was successively solved and their values added to form estimates of the value of the mixed integer program. Optimal convergence was indicated when the difference between two successive estimates satisfied some pre-specific accuracy value. The performance of the mixed integer model was tested against actual field data to determine its practical applications. To provide the necessary input information, production data was obtained from a single seam, mountaintop removal operation located in the Appalachian coal field. As a means of analyzing the resultant equipment schedule, the total idle time was calculated for each machine type and each lift location. Also, the final overburden assignments were analyzed by determining the distribution of spoil material for various overburden removal productivities. Subsequent validation of the mixed integer model was conducted in two distinct areas. The first dealt with changes in algorithmic data and their effects on the optimality of the model. The second area concerned variations in problem structure, specifically those dealing with changes in problem size and other user-inputed values such as equipment productivities or required reclamation.

  7. Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach

    NASA Astrophysics Data System (ADS)

    Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin

    2014-09-01

    Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.

  8. Comparison of penalty functions on a penalty approach to mixed-integer optimization

    NASA Astrophysics Data System (ADS)

    Francisco, Rogério B.; Costa, M. Fernanda P.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.

    2016-06-01

    In this paper, we present a comparative study involving several penalty functions that can be used in a penalty approach for globally solving bound mixed-integer nonlinear programming (bMIMLP) problems. The penalty approach relies on a continuous reformulation of the bMINLP problem by adding a particular penalty term to the objective function. A penalty function based on the `erf' function is proposed. The continuous nonlinear optimization problems are sequentially solved by the population-based firefly algorithm. Preliminary numerical experiments are carried out in order to analyze the quality of the produced solutions, when compared with other penalty functions available in the literature.

  9. Optimization of a wood dryer kiln using the mixed integer programming technique: A case study

    SciTech Connect

    Gustafsson, S.I.

    1999-07-01

    When wood is to be utilized as a raw material for furniture, buildings, etc., it must be dried from approximately 100% to 6% moisture content. This is achieved at least partly in a drying kiln. Heat for this purpose is provided by electrical means, or by steam from boilers fired with wood chips or oil. By making a close examination of monitored values from an actual drying kiln it has been possible to optimize the use of steam and electricity using the so called mixed integer programming technique. Owing to the operating schedule for the drying kiln it has been necessary to divide the drying process in very short time intervals, i.e., a number of minutes. Since a drying cycle takes about two or three weeks, a considerable mathematical problem is presented and this has to be solved.

  10. A Mixed-Integer Optimization Framework for De Novo Peptide Identification

    PubMed Central

    DiMaggio, Peter A.

    2009-01-01

    A novel methodology for the de novo identification of peptides by mixed-integer optimization and tandem mass spectrometry is presented in this article. The various features of the mathematical model are presented and examples are used to illustrate the key concepts of the proposed approach. Several problems are examined to illustrate the proposed method's ability to address (1) residue-dependent fragmentation properties and (2) the variability of resolution in different mass analyzers. A preprocessing algorithm is used to identify important m/z values in the tandem mass spectrum. Missing peaks, resulting from residue-dependent fragmentation characteristics, are dealt with using a two-stage algorithmic framework. A cross-correlation approach is used to resolve missing amino acid assignments and to identify the most probable peptide by comparing the theoretical spectra of the candidate sequences that were generated from the MILP sequencing stages with the experimental tandem mass spectrum. PMID:19412358

  11. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear Optimization and Robust Mixed Integer Linear Optimization

    PubMed Central

    Li, Zukui; Ding, Ran; Floudas, Christodoulos A.

    2011-01-01

    Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263

  12. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear Optimization and Robust Mixed Integer Linear Optimization.

    PubMed

    Li, Zukui; Ding, Ran; Floudas, Christodoulos A

    2011-09-21

    Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented.

  13. Incorporation of Fixed Installation Costs into Optimization of Groundwater Remediation with a New Efficient Surrogate Nonlinear Mixed Integer Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Shoemaker, Christine; Wan, Ying

    2016-04-01

    Optimization of nonlinear water resources management issues which have a mixture of fixed (e.g. construction cost for a well) and variable (e.g. cost per gallon of water pumped) costs has been not well addressed because prior algorithms for the resulting nonlinear mixed integer problems have required many groundwater simulations (with different configurations of decision variable), especially when the solution space is multimodal. In particular heuristic methods like genetic algorithms have often been used in the water resources area, but they require so many groundwater simulations that only small systems have been solved. Hence there is a need to have a method that reduces the number of expensive groundwater simulations. A recently published algorithm for nonlinear mixed integer programming using surrogates was shown in this study to greatly reduce the computational effort for obtaining accurate answers to problems involving fixed costs for well construction as well as variable costs for pumping because of a substantial reduction in the number of groundwater simulations required to obtain an accurate answer. Results are presented for a US EPA hazardous waste site. The nonlinear mixed integer surrogate algorithm is general and can be used on other problems arising in hydrology with open source codes in Matlab and python ("pySOT" in Bitbucket).

  14. Beam orientation optimization for intensity-modulated radiation therapy using mixed integer programming.

    PubMed

    Yang, Ruijie; Dai, Jianrong; Yang, Yong; Hu, Yimin

    2006-08-01

    The purpose of this study is to extend an algorithm proposed for beam orientation optimization in classical conformal radiotherapy to intensity-modulated radiation therapy (IMRT) and to evaluate the algorithm's performance in IMRT scenarios. In addition, the effect of the candidate pool of beam orientations, in terms of beam orientation resolution and starting orientation, on the optimized beam configuration, plan quality and optimization time is also explored. The algorithm is based on the technique of mixed integer linear programming in which binary and positive float variables are employed to represent candidates for beam orientation and beamlet weights in beam intensity maps. Both beam orientations and beam intensity maps are simultaneously optimized in the algorithm with a deterministic method. Several different clinical cases were used to test the algorithm and the results show that both target coverage and critical structures sparing were significantly improved for the plans with optimized beam orientations compared to those with equi-spaced beam orientations. The calculation time was less than an hour for the cases with 36 binary variables on a PC with a Pentium IV 2.66 GHz processor. It is also found that decreasing beam orientation resolution to 10 degrees greatly reduced the size of the candidate pool of beam orientations without significant influence on the optimized beam configuration and plan quality, while selecting different starting orientations had large influence. Our study demonstrates that the algorithm can be applied to IMRT scenarios, and better beam orientation configurations can be obtained using this algorithm. Furthermore, the optimization efficiency can be greatly increased through proper selection of beam orientation resolution and starting beam orientation while guaranteeing the optimized beam configurations and plan quality.

  15. Mixed integer programming improves comprehensibility and plan quality in inverse optimization of prostate HDR brachytherapy.

    PubMed

    Gorissen, Bram L; den Hertog, Dick; Hoffmann, Aswin L

    2013-02-21

    Current inverse treatment planning methods that optimize both catheter positions and dwell times in prostate HDR brachytherapy use surrogate linear or quadratic objective functions that have no direct interpretation in terms of dose-volume histogram (DVH) criteria, do not result in an optimum or have long solution times. We decrease the solution time of the existing linear and quadratic dose-based programming models (LP and QP, respectively) to allow optimizing over potential catheter positions using mixed integer programming. An additional average speed-up of 75% can be obtained by stopping the solver at an early stage, without deterioration of the plan quality. For a fixed catheter configuration, the dwell time optimization model LP solves to optimality in less than 15 s, which confirms earlier results. We propose an iterative procedure for QP that allows us to prescribe the target dose as an interval, while retaining independence between the solution time and the number of dose calculation points. This iterative procedure is comparable in speed to the LP model and produces better plans than the non-iterative QP. We formulate a new dose-volume-based model that maximizes V(100%) while satisfying pre-set DVH criteria. This model optimizes both catheter positions and dwell times within a few minutes depending on prostate volume and number of catheters, optimizes dwell times within 35 s and gives better DVH statistics than dose-based models. The solutions suggest that the correlation between the objective value and the clinical plan quality is weak in the existing dose-based models. PMID:23363622

  16. Industrial waste recycling strategies optimization problem: mixed integer programming model and heuristics

    NASA Astrophysics Data System (ADS)

    Tang, Jiafu; Liu, Yang; Fung, Richard; Luo, Xinggang

    2008-12-01

    Manufacturers have a legal accountability to deal with industrial waste generated from their production processes in order to avoid pollution. Along with advances in waste recovery techniques, manufacturers may adopt various recycling strategies in dealing with industrial waste. With reuse strategies and technologies, byproducts or wastes will be returned to production processes in the iron and steel industry, and some waste can be recycled back to base material for reuse in other industries. This article focuses on a recovery strategies optimization problem for a typical class of industrial waste recycling process in order to maximize profit. There are multiple strategies for waste recycling available to generate multiple byproducts; these byproducts are then further transformed into several types of chemical products via different production patterns. A mixed integer programming model is developed to determine which recycling strategy and which production pattern should be selected with what quantity of chemical products corresponding to this strategy and pattern in order to yield maximum marginal profits. The sales profits of chemical products and the set-up costs of these strategies, patterns and operation costs of production are considered. A simulated annealing (SA) based heuristic algorithm is developed to solve the problem. Finally, an experiment is designed to verify the effectiveness and feasibility of the proposed method. By comparing a single strategy to multiple strategies in an example, it is shown that the total sales profit of chemical products can be increased by around 25% through the simultaneous use of multiple strategies. This illustrates the superiority of combinatorial multiple strategies. Furthermore, the effects of the model parameters on profit are discussed to help manufacturers organize their waste recycling network.

  17. Mixed integer programming model for optimizing the layout of an ICU vehicle

    PubMed Central

    2009-01-01

    Background This paper presents a Mixed Integer Programming (MIP) model for designing the layout of the Intensive Care Units' (ICUs) patient care space. In particular, this MIP model was developed for optimizing the layout for materials to be used in interventions. This work was developed within the framework of a joint project between the Madrid Technical Unverstity and the Medical Emergency Services of the Madrid Regional Government (SUMMA 112). Methods The first task was to identify the relevant information to define the characteristics of the new vehicles and, in particular, to obtain a satisfactory interior layout to locate all the necessary materials. This information was gathered from health workers related to ICUs. With that information an optimization model was developed in order to obtain a solution. From the MIP model, a first solution was obtained, consisting of a grid to locate the different materials needed for the ICUs. The outcome from the MIP model was discussed with health workers to tune the solution, and after slightly altering that solution to meet some requirements that had not been included in the mathematical model, the eventual solution was approved by the persons responsible for specifying the characteristics of the new vehicles. According to the opinion stated by the SUMMA 112's medical group responsible for improving the ambulances (the so-called "coaching group"), the outcome was highly satisfactory. Indeed, the final design served as a basis to draw up the requirements of a public tender. Results As a result from solving the Optimization model, a grid was obtained to locate the different necessary materials for the ICUs. This grid had to be slightly altered to meet some requirements that had not been included in the mathematical model. The results were discussed with the persons responsible for specifying the characteristics of the new vehicles. Conclusion The outcome was highly satisfactory. Indeed, the final design served as a basis

  18. Piece-wise mixed integer programming for optimal sizing of surge control devices in water distribution systems

    NASA Astrophysics Data System (ADS)

    Skulovich, Olya; Bent, Russell; Judi, David; Perelman, Lina Sela; Ostfeld, Avi

    2015-06-01

    Despite their potential catastrophic impact, transients are often ignored or presented ad hoc when designing water distribution systems. To address this problem, we introduce a new piece-wise function fitting model that is integrated with mixed integer programming to optimally place and size surge tanks for transient control. The key features of the algorithm are a model-driven discretization of the search space, a linear approximation nonsmooth system response surface to transients, and a mixed integer linear programming optimization. Results indicate that high quality solutions can be obtained within a reasonable number of function evaluations and demonstrate the computational effectiveness of the approach through two case studies. The work investigates one type of surge control devices (closed surge tank) for a specified set of transient events. The performance of the algorithm relies on the assumption that there exists a smooth relationship between the objective function and tank size. Results indicate the potential of the approach for the optimal surge control design in water systems.

  19. Optimal fleetwide emissions reductions for passenger ferries: an application of a mixed-integer nonlinear programming model for the New York-New Jersey Harbor.

    PubMed

    Winebrake, James J; Corbett, James J; Wang, Chengfeng; Farrell, Alexander E; Woods, Pippa

    2005-04-01

    Emissions from passenger ferries operating in urban harbors may contribute significantly to emissions inventories and commuter exposure to air pollution. In particular, ferries are problematic because of high emissions of oxides of nitrogen (NOx) and particulate matter (PM) from primarily unregulated diesel engines. This paper explores technical solutions to reduce pollution from passenger ferries operating in the New York-New Jersey Harbor. The paper discusses and demonstrates a mixed-integer, non-linear programming model used to identify optimal control strategies for meeting NOx and PM reduction targets for 45 privately owned commuter ferries in the harbor. Results from the model can be used by policy-makers to craft programs aimed at achieving least-cost reduction targets.

  20. Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Lee, Charles H.

    2012-01-01

    We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.

  1. Optimal planning of co-firing alternative fuels with coal in a power plant by grey nonlinear mixed integer programming model.

    PubMed

    Ko, Andi Setiady; Chang, Ni-Bin

    2008-07-01

    Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO(2)) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To ease the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time.

  2. Mixed Integer Programming and Heuristic Scheduling for Space Communication

    NASA Technical Reports Server (NTRS)

    Lee, Charles H.; Cheung, Kar-Ming

    2013-01-01

    Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.

  3. Constrained spacecraft reorientation using mixed integer convex programming

    NASA Astrophysics Data System (ADS)

    Tam, Margaret; Glenn Lightsey, E.

    2016-10-01

    A constrained attitude guidance (CAG) system is developed using convex optimization to autonomously achieve spacecraft pointing objectives while meeting the constraints imposed by on-board hardware. These constraints include bounds on the control input and slew rate, as well as pointing constraints imposed by the sensors. The pointing constraints consist of inclusion and exclusion cones that dictate permissible orientations of the spacecraft in order to keep objects in or out of the field of view of the sensors. The optimization scheme drives a body vector towards a target inertial vector along a trajectory that consists solely of permissible orientations in order to achieve the desired attitude for a given mission mode. The non-convex rotational kinematics are handled by discretization, which also ensures that the quaternion stays unity norm. In order to guarantee an admissible path, the pointing constraints are relaxed. Depending on how strict the pointing constraints are, the degree of relaxation is tuneable. The use of binary variables permits the inclusion of logical expressions in the pointing constraints in the case that a set of sensors has redundancies. The resulting mixed integer convex programming (MICP) formulation generates a steering law that can be easily integrated into an attitude determination and control (ADC) system. A sample simulation of the system is performed for the Bevo-2 satellite, including disturbance torques and actuator dynamics which are not modeled by the controller. Simulation results demonstrate the robustness of the system to disturbances while meeting the mission requirements with desirable performance characteristics.

  4. Mixed-Integer Formulations for Constellation Scheduling

    NASA Astrophysics Data System (ADS)

    Valicka, C.; Hart, W.; Rintoul, M.

    Remote sensing systems have expanded the set of capabilities available for and critical to national security. Cooperating, high-fidelity sensing systems and growing mission applications have exponentially increased the set of potential schedules. A definitive lack of advanced tools places an increased burden on operators, as planning and scheduling remain largely manual tasks. This is particularly true in time-critical planning activities where operators aim to accomplish a large number of missions through optimal utilization of single or multiple sensor systems. Automated scheduling through identification and comparison of alternative schedules remains a challenging problem applicable across all remote sensing systems. Previous approaches focused on a subset of sensor missions and do not consider ad-hoc tasking. We have begun development of a robust framework that leverages the Pyomo optimization modeling language for the design of a tool to assist sensor operators planning under the constraints of multiple concurrent missions and uncertainty. Our scheduling models have been formulated to address the stochastic nature of ad-hoc tasks inserted under a variety of scenarios. Operator experience is being leveraged to select appropriate model objectives. Successful development of the framework will include iterative development of high-fidelity mission models that consider and expose various schedule performance metrics. Creating this tool will aid time-critical scheduling by increasing planning efficiency, clarifying the value of alternative modalities uniquely provided by multi-sensor systems, and by presenting both sets of organized information to operators. Such a tool will help operators more quickly and fully utilize sensing systems, a high interest objective within the current remote sensing operations community. Preliminary results for mixed-integer programming formulations of a sensor scheduling problem will be presented. Assumptions regarding sensor geometry

  5. Optimized oral cholera vaccine distribution strategies to minimize disease incidence: A mixed integer programming model and analysis of a Bangladesh scenario.

    PubMed

    Smalley, Hannah K; Keskinocak, Pinar; Swann, Julie; Hinman, Alan

    2015-11-17

    In addition to improved sanitation, hygiene, and better access to safe water, oral cholera vaccines can help to control the spread of cholera in the short term. However, there is currently no systematic method for determining the best allocation of oral cholera vaccines to minimize disease incidence in a population where the disease is endemic and resources are limited. We present a mathematical model for optimally allocating vaccines in a region under varying levels of demographic and incidence data availability. The model addresses the questions of where, when, and how many doses of vaccines to send. Considering vaccine efficacies (which may vary based on age and the number of years since vaccination), we analyze distribution strategies which allocate vaccines over multiple years. Results indicate that, given appropriate surveillance data, targeting age groups and regions with the highest disease incidence should be the first priority, followed by other groups primarily in order of disease incidence, as this approach is the most life-saving and cost-effective. A lack of detailed incidence data results in distribution strategies which are not cost-effective and can lead to thousands more deaths from the disease. The mathematical model allows for what-if analysis for various vaccine distribution strategies by providing the ability to easily vary parameters such as numbers and sizes of regions and age groups, risk levels, vaccine price, vaccine efficacy, production capacity and budget.

  6. Inexact fuzzy-stochastic mixed-integer programming approach for long-term planning of waste management--Part A: methodology.

    PubMed

    Guo, P; Huang, G H

    2009-01-01

    In this study, an inexact fuzzy chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is proposed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing inexact two-stage programming and mixed-integer linear programming techniques by incorporating uncertainties expressed as multiple uncertainties of intervals and dual probability distributions within a general optimization framework. The developed method can provide an effective linkage between the predefined environmental policies and the associated economic implications. Four special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it provides a linkage to predefined policies that have to be respected when a modeling effort is undertaken; secondly, it is useful for tackling uncertainties presented as intervals, probabilities, fuzzy sets and their incorporation; thirdly, it facilitates dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period, multi-level, and multi-option context; fourthly, the penalties are exercised with recourse against any infeasibility, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised solid waste-generation rates are violated. In a companion paper, the developed method is applied to a real case for the long-term planning of waste management in the City of Regina, Canada. PMID:19800164

  7. Inexact fuzzy-stochastic mixed-integer programming approach for long-term planning of waste management--Part A: methodology.

    PubMed

    Guo, P; Huang, G H

    2009-01-01

    In this study, an inexact fuzzy chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is proposed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing inexact two-stage programming and mixed-integer linear programming techniques by incorporating uncertainties expressed as multiple uncertainties of intervals and dual probability distributions within a general optimization framework. The developed method can provide an effective linkage between the predefined environmental policies and the associated economic implications. Four special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it provides a linkage to predefined policies that have to be respected when a modeling effort is undertaken; secondly, it is useful for tackling uncertainties presented as intervals, probabilities, fuzzy sets and their incorporation; thirdly, it facilitates dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period, multi-level, and multi-option context; fourthly, the penalties are exercised with recourse against any infeasibility, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised solid waste-generation rates are violated. In a companion paper, the developed method is applied to a real case for the long-term planning of waste management in the City of Regina, Canada.

  8. PySP : modeling and solving stochastic mixed-integer programs in Python.

    SciTech Connect

    Woodruff, David L.; Watson, Jean-Paul

    2010-08-01

    Although stochastic programming is a powerful tool for modeling decision-making under uncertainty, various impediments have historically prevented its widespread use. One key factor involves the ability of non-specialists to easily express stochastic programming problems as extensions of deterministic models, which are often formulated first. A second key factor relates to the difficulty of solving stochastic programming models, particularly the general mixed-integer, multi-stage case. Intricate, configurable, and parallel decomposition strategies are frequently required to achieve tractable run-times. We simultaneously address both of these factors in our PySP software package, which is part of the COIN-OR Coopr open-source Python project for optimization. To formulate a stochastic program in PySP, the user specifies both the deterministic base model and the scenario tree with associated uncertain parameters in the Pyomo open-source algebraic modeling language. Given these two models, PySP provides two paths for solution of the corresponding stochastic program. The first alternative involves writing the extensive form and invoking a standard deterministic (mixed-integer) solver. For more complex stochastic programs, we provide an implementation of Rockafellar and Wets Progressive Hedging algorithm. Our particular focus is on the use of Progressive Hedging as an effective heuristic for approximating general multi-stage, mixed-integer stochastic programs. By leveraging the combination of a high-level programming language (Python) and the embedding of the base deterministic model in that language (Pyomo), we are able to provide completely generic and highly configurable solver implementations. PySP has been used by a number of research groups, including our own, to rapidly prototype and solve difficult stochastic programming problems.

  9. PIPS-SBB: A Parallel Distributed-Memory Branch-and-Bound Algorithm for Stochastic Mixed-Integer Programs

    DOE PAGES

    Munguia, Lluis-Miquel; Oxberry, Geoffrey; Rajan, Deepak

    2016-05-01

    Stochastic mixed-integer programs (SMIPs) deal with optimization under uncertainty at many levels of the decision-making process. When solved as extensive formulation mixed- integer programs, problem instances can exceed available memory on a single workstation. In order to overcome this limitation, we present PIPS-SBB: a distributed-memory parallel stochastic MIP solver that takes advantage of parallelism at multiple levels of the optimization process. We also show promising results on the SIPLIB benchmark by combining methods known for accelerating Branch and Bound (B&B) methods with new ideas that leverage the structure of SMIPs. Finally, we expect the performance of PIPS-SBB to improve furthermore » as more functionality is added in the future.« less

  10. Item Pool Construction Using Mixed Integer Quadratic Programming (MIQP). GMAC® Research Report RR-14-01

    ERIC Educational Resources Information Center

    Han, Kyung T.; Rudner, Lawrence M.

    2014-01-01

    This study uses mixed integer quadratic programming (MIQP) to construct multiple highly equivalent item pools simultaneously, and compares the results from mixed integer programming (MIP). Three different MIP/MIQP models were implemented and evaluated using real CAT item pool data with 23 different content areas and a goal of equal information…

  11. Final Report---Next-Generation Solvers for Mixed-Integer Nonlinear Programs: Structure, Search, and Implementation

    SciTech Connect

    Linderoth, Jeff T.; Luedtke, James R.

    2013-05-30

    The mathematical modeling of systems often requires the use of both nonlinear and discrete components. Problems involving both discrete and nonlinear components are known as mixed-integer nonlinear programs (MINLPs) and are among the most challenging computational optimization problems. This research project added to the understanding of this area by making a number of fundamental advances. First, the work demonstrated many novel, strong, tractable relaxations designed to deal with non-convexities arising in mathematical formulation. Second, the research implemented the ideas in software that is available to the public. Finally, the work demonstrated the importance of these ideas on practical applications and disseminated the work through scholarly journals, survey publications, and conference presentations.

  12. Learning oncogenetic networks by reducing to mixed integer linear programming.

    PubMed

    Shahrabi Farahani, Hossein; Lagergren, Jens

    2013-01-01

    Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.

  13. Diet planning for humans using mixed-integer linear programming.

    PubMed

    Sklan, D; Dariel, I

    1993-07-01

    Human diet planning is generally carried out by selecting the food items or groups of food items to be used in the diet and then calculating the composition. If nutrient quantities do not reach the desired nutritional requirements, foods are exchanged or quantities altered and the composition recalculated. Iterations are repeated until a suitable diet is obtained. This procedure is cumbersome and slow and often leads to compromises in composition of the final diets. A computerized model, planning diets for humans at minimum cost while supplying all nutritional requirements, maintaining nutrient relationships and preserving eating practices is presented. This is based on a mixed-integer linear-programming algorithm. Linear equations were prepared for each nutritional requirement. To produce linear equations for relationships between nutrients, linear transformations were performed. Logical definitions for interactions such as the frequency of use of foods, relationships between exchange groups and the energy content of different meals were defined, and linear equations for these associations were written. Food items generally eaten in whole units were defined as integers. The use of this program is demonstrated for planning diets using a large selection of basic foods and for clinical situations where nutritional intervention is desirable. The system presented begins from a definition of the nutritional requirements and then plans the foods accordingly, and at minimum cost. This provides an accurate, efficient and versatile method of diet formulation.

  14. Automatic design of synthetic gene circuits through mixed integer non-linear programming.

    PubMed

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398

  15. Automatic design of synthetic gene circuits through mixed integer non-linear programming.

    PubMed

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits.

  16. A Mixed Integer Linear Program for Airport Departure Scheduling

    NASA Technical Reports Server (NTRS)

    Gupta, Gautam; Jung, Yoon Chul

    2009-01-01

    Aircraft departing from an airport are subject to numerous constraints while scheduling departure times. These constraints include wake-separation constraints for successive departures, miles-in-trail separation for aircraft bound for the same departure fixes, and time-window or prioritization constraints for individual flights. Besides these, emissions as well as increased fuel consumption due to inefficient scheduling need to be included. Addressing all the above constraints in a single framework while allowing for resequencing of the aircraft using runway queues is critical to the implementation of the Next Generation Air Transport System (NextGen) concepts. Prior work on airport departure scheduling has addressed some of the above. However, existing methods use pre-determined runway queues, and schedule aircraft from these departure queues. The source of such pre-determined queues is not explicit, and could potentially be a subjective controller input. Determining runway queues and scheduling within the same framework would potentially result in better scheduling. This paper presents a mixed integer linear program (MILP) for the departure-scheduling problem. The program takes as input the incoming sequence of aircraft for departure from a runway, along with their earliest departure times and an optional prioritization scheme based on time-window of departure for each aircraft. The program then assigns these aircraft to the available departure queues and schedules departure times, explicitly considering wake separation and departure fix restrictions to minimize total delay for all aircraft. The approach is generalized and can be used in a variety of situations, and allows for aircraft prioritization based on operational as well as environmental considerations. We present the MILP in the paper, along with benefits over the first-come-first-serve (FCFS) scheme for numerous randomized problems based on real-world settings. The MILP results in substantially reduced

  17. A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem

    NASA Technical Reports Server (NTRS)

    Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad

    2010-01-01

    Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.

  18. Dynamic Optimization

    NASA Technical Reports Server (NTRS)

    Laird, Philip

    1992-01-01

    We distinguish static and dynamic optimization of programs: whereas static optimization modifies a program before runtime and is based only on its syntactical structure, dynamic optimization is based on the statistical properties of the input source and examples of program execution. Explanation-based generalization is a commonly used dynamic optimization method, but its effectiveness as a speedup-learning method is limited, in part because it fails to separate the learning process from the program transformation process. This paper describes a dynamic optimization technique called a learn-optimize cycle that first uses a learning element to uncover predictable patterns in the program execution and then uses an optimization algorithm to map these patterns into beneficial transformations. The technique has been used successfully for dynamic optimization of pure Prolog.

  19. A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao

    A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.

  20. Synchronic interval Gaussian mixed-integer programming for air quality management.

    PubMed

    Cheng, Guanhui; Huang, Guohe Gordon; Dong, Cong

    2015-12-15

    To reveal the synchronism of interval uncertainties, the tradeoff between system optimality and security, the discreteness of facility-expansion options, the uncertainty of pollutant dispersion processes, and the seasonality of wind features in air quality management (AQM) systems, a synchronic interval Gaussian mixed-integer programming (SIGMIP) approach is proposed in this study. A robust interval Gaussian dispersion model is developed for approaching the pollutant dispersion process under interval uncertainties and seasonal variations. The reflection of synchronic effects of interval uncertainties in the programming objective is enabled through introducing interval functions. The proposition of constraint violation degrees helps quantify the tradeoff between system optimality and constraint violation under interval uncertainties. The overall optimality of system profits of an SIGMIP model is achieved based on the definition of an integrally optimal solution. Integer variables in the SIGMIP model are resolved by the existing cutting-plane method. Combining these efforts leads to an effective algorithm for the SIGMIP model. An application to an AQM problem in a region in Shandong Province, China, reveals that the proposed SIGMIP model can facilitate identifying the desired scheme for AQM. The enhancement of the robustness of optimization exercises may be helpful for increasing the reliability of suggested schemes for AQM under these complexities. The interrelated tradeoffs among control measures, emission sources, flow processes, receptors, influencing factors, and economic and environmental goals are effectively balanced. Interests of many stakeholders are reasonably coordinated. The harmony between economic development and air quality control is enabled. Results also indicate that the constraint violation degree is effective at reflecting the compromise relationship between constraint-violation risks and system optimality under interval uncertainties. This can

  1. Synchronic interval Gaussian mixed-integer programming for air quality management.

    PubMed

    Cheng, Guanhui; Huang, Guohe Gordon; Dong, Cong

    2015-12-15

    To reveal the synchronism of interval uncertainties, the tradeoff between system optimality and security, the discreteness of facility-expansion options, the uncertainty of pollutant dispersion processes, and the seasonality of wind features in air quality management (AQM) systems, a synchronic interval Gaussian mixed-integer programming (SIGMIP) approach is proposed in this study. A robust interval Gaussian dispersion model is developed for approaching the pollutant dispersion process under interval uncertainties and seasonal variations. The reflection of synchronic effects of interval uncertainties in the programming objective is enabled through introducing interval functions. The proposition of constraint violation degrees helps quantify the tradeoff between system optimality and constraint violation under interval uncertainties. The overall optimality of system profits of an SIGMIP model is achieved based on the definition of an integrally optimal solution. Integer variables in the SIGMIP model are resolved by the existing cutting-plane method. Combining these efforts leads to an effective algorithm for the SIGMIP model. An application to an AQM problem in a region in Shandong Province, China, reveals that the proposed SIGMIP model can facilitate identifying the desired scheme for AQM. The enhancement of the robustness of optimization exercises may be helpful for increasing the reliability of suggested schemes for AQM under these complexities. The interrelated tradeoffs among control measures, emission sources, flow processes, receptors, influencing factors, and economic and environmental goals are effectively balanced. Interests of many stakeholders are reasonably coordinated. The harmony between economic development and air quality control is enabled. Results also indicate that the constraint violation degree is effective at reflecting the compromise relationship between constraint-violation risks and system optimality under interval uncertainties. This can

  2. An inexact two-stage mixed integer linear programming method for solid waste management in the City of Regina.

    PubMed

    Li, Y P; Huang, G H

    2006-11-01

    In this study, an interval-parameter two-stage mixed integer linear programming (ITMILP) model is developed for supporting long-term planning of waste management activities in the City of Regina. In the ITMILP, both two-stage stochastic programming and interval linear programming are introduced into a general mixed integer linear programming framework. Uncertainties expressed as not only probability density functions but also discrete intervals can be reflected. The model can help tackle the dynamic, interactive and uncertain characteristics of the solid waste management system in the City, and can address issues concerning plans for cost-effective waste diversion and landfill prolongation. Three scenarios are considered based on different waste management policies. The results indicate that reasonable solutions have been generated. They are valuable for supporting the adjustment or justification of the existing waste flow allocation patterns, the long-term capacity planning of the City's waste management system, and the formulation of local policies and regulations regarding waste generation and management. PMID:16678336

  3. Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Lee, Charles H.; Cheung, Kar-Ming

    2012-01-01

    In this paper, we propose to solve the constrained optimization problem in two phases. The first phase uses heuristic methods such as the ant colony method, particle swarming optimization, and genetic algorithm to seek a near optimal solution among a list of feasible initial populations. The final optimal solution can be found by using the solution of the first phase as the initial condition to the SQP algorithm. We demonstrate the above problem formulation and optimization schemes with a large-scale network that includes the DSN ground stations and a number of spacecraft of deep space missions.

  4. Solution of Mixed-Integer Programming Problems on the XT5

    SciTech Connect

    Hartman-Baker, Rebecca J; Busch, Ingrid Karin; Hilliard, Michael R; Middleton, Richard S; Schultze, Michael

    2009-01-01

    In this paper, we describe our experience with solving difficult mixed-integer linear programming problems (MILPs) on the petaflop Cray XT5 system at the National Center for Computational Sciences at Oak Ridge National Laboratory. We describe the algorithmic, software, and hardware needs for solving MILPs and present the results of using PICO, an open-source, parallel, mixed-integer linear programming solver developed at Sandia National Laboratories, to solve canonical MILPs as well as problems of interest arising from the logistics and supply chain management field.

  5. An inexact fuzzy-chance-constrained two-stage mixed-integer linear programming approach for flood diversion planning under multiple uncertainties

    NASA Astrophysics Data System (ADS)

    Guo, P.; Huang, G. H.; Li, Y. P.

    2010-01-01

    In this study, an inexact fuzzy-chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is developed for flood diversion planning under multiple uncertainties. A concept of the distribution with fuzzy boundary interval probability is defined to address multiple uncertainties expressed as integration of intervals, fuzzy sets and probability distributions. IFCTIP integrates the inexact programming, two-stage stochastic programming, integer programming and fuzzy-stochastic programming within a general optimization framework. IFCTIP incorporates the pre-regulated water-diversion policies directly into its optimization process to analyze various policy scenarios; each scenario has different economic penalty when the promised targets are violated. More importantly, it can facilitate dynamic programming for decisions of capacity-expansion planning under fuzzy-stochastic conditions. IFCTIP is applied to a flood management system. Solutions from IFCTIP provide desired flood diversion plans with a minimized system cost and a maximized safety level. The results indicate that reasonable solutions are generated for objective function values and decision variables, thus a number of decision alternatives can be generated under different levels of flood flows.

  6. Interval-parameter semi-infinite fuzzy-stochastic mixed-integer programming approach for environmental management under multiple uncertainties.

    PubMed

    Guo, P; Huang, G H

    2010-03-01

    In this study, an interval-parameter semi-infinite fuzzy-chance-constrained mixed-integer linear programming (ISIFCIP) approach is developed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing interval-parameter semi-infinite programming (ISIP) and fuzzy-chance-constrained programming (FCCP) by incorporating uncertainties expressed as dual uncertainties of functional intervals and multiple uncertainties of distributions with fuzzy-interval admissible probability of violating constraint within a general optimization framework. The binary-variable solutions represent the decisions of waste-management-facility expansion, and the continuous ones are related to decisions of waste-flow allocation. The interval solutions can help decision-makers to obtain multiple decision alternatives, as well as provide bases for further analyses of tradeoffs between waste-management cost and system-failure risk. In the application to the City of Regina, Canada, two scenarios are considered. In Scenario 1, the City's waste-management practices would be based on the existing policy over the next 25 years. The total diversion rate for the residential waste would be approximately 14%. Scenario 2 is associated with a policy for waste minimization and diversion, where 35% diversion of residential waste should be achieved within 15 years, and 50% diversion over 25 years. In this scenario, not only landfill would be expanded, but also CF and MRF would be expanded. Through the scenario analyses, useful decision support for the City's solid-waste managers and decision-makers has been generated. Three special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it is useful for tackling multiple uncertainties expressed as intervals, functional intervals, probability distributions, fuzzy sets, and their

  7. Interval-parameter semi-infinite fuzzy-stochastic mixed-integer programming approach for environmental management under multiple uncertainties

    SciTech Connect

    Guo, P.; Huang, G.H.

    2010-03-15

    In this study, an interval-parameter semi-infinite fuzzy-chance-constrained mixed-integer linear programming (ISIFCIP) approach is developed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing interval-parameter semi-infinite programming (ISIP) and fuzzy-chance-constrained programming (FCCP) by incorporating uncertainties expressed as dual uncertainties of functional intervals and multiple uncertainties of distributions with fuzzy-interval admissible probability of violating constraint within a general optimization framework. The binary-variable solutions represent the decisions of waste-management-facility expansion, and the continuous ones are related to decisions of waste-flow allocation. The interval solutions can help decision-makers to obtain multiple decision alternatives, as well as provide bases for further analyses of tradeoffs between waste-management cost and system-failure risk. In the application to the City of Regina, Canada, two scenarios are considered. In Scenario 1, the City's waste-management practices would be based on the existing policy over the next 25 years. The total diversion rate for the residential waste would be approximately 14%. Scenario 2 is associated with a policy for waste minimization and diversion, where 35% diversion of residential waste should be achieved within 15 years, and 50% diversion over 25 years. In this scenario, not only landfill would be expanded, but also CF and MRF would be expanded. Through the scenario analyses, useful decision support for the City's solid-waste managers and decision-makers has been generated. Three special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it is useful for tackling multiple uncertainties expressed as intervals, functional intervals, probability distributions, fuzzy sets, and their

  8. Combinatorial therapy discovery using mixed integer linear programming

    PubMed Central

    Pang, Kaifang; Wan, Ying-Wooi; Choi, William T.; Donehower, Lawrence A.; Sun, Jingchun; Pant, Dhruv; Liu, Zhandong

    2014-01-01

    Motivation: Combinatorial therapies play increasingly important roles in combating complex diseases. Owing to the huge cost associated with experimental methods in identifying optimal drug combinations, computational approaches can provide a guide to limit the search space and reduce cost. However, few computational approaches have been developed for this purpose, and thus there is a great need of new algorithms for drug combination prediction. Results: Here we proposed to formulate the optimal combinatorial therapy problem into two complementary mathematical algorithms, Balanced Target Set Cover (BTSC) and Minimum Off-Target Set Cover (MOTSC). Given a disease gene set, BTSC seeks a balanced solution that maximizes the coverage on the disease genes and minimizes the off-target hits at the same time. MOTSC seeks a full coverage on the disease gene set while minimizing the off-target set. Through simulation, both BTSC and MOTSC demonstrated a much faster running time over exhaustive search with the same accuracy. When applied to real disease gene sets, our algorithms not only identified known drug combinations, but also predicted novel drug combinations that are worth further testing. In addition, we developed a web-based tool to allow users to iteratively search for optimal drug combinations given a user-defined gene set. Availability: Our tool is freely available for noncommercial use at http://www.drug.liuzlab.org/. Contact: zhandong.liu@bcm.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24463180

  9. Mixed integer linear programming for maximum-parsimony phylogeny inference.

    PubMed

    Sridhar, Srinath; Lam, Fumei; Blelloch, Guy E; Ravi, R; Schwartz, Russell

    2008-01-01

    Reconstruction of phylogenetic trees is a fundamental problem in computational biology. While excellent heuristic methods are available for many variants of this problem, new advances in phylogeny inference will be required if we are to be able to continue to make effective use of the rapidly growing stores of variation data now being gathered. In this paper, we present two integer linear programming (ILP) formulations to find the most parsimonious phylogenetic tree from a set of binary variation data. One method uses a flow-based formulation that can produce exponential numbers of variables and constraints in the worst case. The method has, however, proven extremely efficient in practice on datasets that are well beyond the reach of the available provably efficient methods, solving several large mtDNA and Y-chromosome instances within a few seconds and giving provably optimal results in times competitive with fast heuristics than cannot guarantee optimality. An alternative formulation establishes that the problem can be solved with a polynomial-sized ILP. We further present a web server developed based on the exponential-sized ILP that performs fast maximum parsimony inferences and serves as a front end to a database of precomputed phylogenies spanning the human genome.

  10. Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs

    DOE PAGES

    Gade, Dinakar; Hackebeil, Gabriel; Ryan, Sarah M.; Watson, Jean -Paul; Wets, Roger J.-B.; Woodruff, David L.

    2016-04-02

    We present a method for computing lower bounds in the progressive hedging algorithm (PHA) for two-stage and multi-stage stochastic mixed-integer programs. Computing lower bounds in the PHA allows one to assess the quality of the solutions generated by the algorithm contemporaneously. The lower bounds can be computed in any iteration of the algorithm by using dual prices that are calculated during execution of the standard PHA. In conclusion, we report computational results on stochastic unit commitment and stochastic server location problem instances, and explore the relationship between key PHA parameters and the quality of the resulting lower bounds.

  11. Minimum-time control of systems with Coloumb friction: Near global optima via mixed integer linear programming

    SciTech Connect

    DRIESSEN,BRIAN; SADEGH,NADER

    2000-04-25

    This work presents a method of finding near global optima to minimum-time trajectory generation problem for systems that would be linear if it were not for the presence of Coloumb friction. The required final state of the system is assumed to be maintainable by the system, and the input bounds are assumed to be large enough so that they can overcome the maximum static Coloumb friction force. Other than the previous work for generating minimum-time trajectories for non redundant robotic manipulators for which the path in joint space is already specified, this work represents, to the best of the authors' knowledge, the first approach for generating near global optima for minimum-time problems involving a nonlinear class of dynamic systems. The reason the optima generated are near global optima instead of exactly global optima is due to a discrete-time approximation of the system (which is usually used anyway to simulate such a system numerically). The method closely resembles previous methods for generating minimum-time trajectories for linear systems, where the core operation is the solution of a Phase I linear programming problem. For the nonlinear systems considered herein, the core operation is instead the solution of a mixed integer linear programming problem.

  12. Modern tools for the time-discrete dynamics and optimization of gene-environment networks

    NASA Astrophysics Data System (ADS)

    Defterli, Ozlem; Fügenschuh, Armin; Weber, Gerhard Wilhelm

    2011-12-01

    In this study, we discuss the models of genetic regulatory systems, so-called gene-environment networks. The dynamics of such kind of systems are described by a class of time-continuous ordinary differential equations having a general form E˙=M(E)E, where E is a vector of gene-expression levels and environmental factors and M(E) is the matrix having functional entries containing unknown parameters to be optimized. Accordingly, time-discrete versions of that model class are studied and improved by introducing 3rd-order Heun's method and 4th-order classical Runge-Kutta method. The corresponding iteration formulas are derived and their matrix algebras are obtained. After that, we use nonlinear mixed-integer programming for the parameter estimation in the considered model and present the solution of a constrained and regularized given mixed-integer problem as an example. By using this solution and applying both the new and existing discretization schemes, we generate corresponding time-series of gene-expressions for each method. The comparison of the experimental data and the calculated approximate results is additionally done with the help of the figures to exercise the performance of the numerical schemes on this example.

  13. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.

    PubMed

    Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A

    2016-03-01

    In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/. PMID:26756402

  14. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.

    PubMed

    Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A

    2016-03-01

    In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/.

  15. Mixed integer nonlinear programming model of wireless pricing scheme with QoS attribute of bandwidth and end-to-end delay

    NASA Astrophysics Data System (ADS)

    Irmeilyana, Puspita, Fitri Maya; Indrawati

    2016-02-01

    The pricing for wireless networks is developed by considering linearity factors, elasticity price and price factors. Mixed Integer Nonlinear Programming of wireless pricing model is proposed as the nonlinear programming problem that can be solved optimally using LINGO 13.0. The solutions are expected to give some information about the connections between the acceptance factor and the price. Previous model worked on the model that focuses on bandwidth as the QoS attribute. The models attempt to maximize the total price for a connection based on QoS parameter. The QoS attributes used will be the bandwidth and the end to end delay that affect the traffic. The maximum goal to maximum price is achieved when the provider determine the requirement for the increment or decrement of price change due to QoS change and amount of QoS value.

  16. A mixed integer bi-level DEA model for bank branch performance evaluation by Stackelberg approach

    NASA Astrophysics Data System (ADS)

    Shafiee, Morteza; Lotfi, Farhad Hosseinzadeh; Saleh, Hilda; Ghaderi, Mehdi

    2016-11-01

    One of the most complicated decision making problems for managers is the evaluation of bank performance, which involves various criteria. There are many studies about bank efficiency evaluation by network DEA in the literature review. These studies do not focus on multi-level network. Wu (Eur J Oper Res 207:856-864, 2010) proposed a bi-level structure for cost efficiency at the first time. In this model, multi-level programming and cost efficiency were used. He used a nonlinear programming to solve the model. In this paper, we have focused on multi-level structure and proposed a bi-level DEA model. We then used a liner programming to solve our model. In other hand, we significantly improved the way to achieve the optimum solution in comparison with the work by Wu (2010) by converting the NP-hard nonlinear programing into a mixed integer linear programming. This study uses a bi-level programming data envelopment analysis model that embodies internal structure with Stackelberg-game relationships to evaluate the performance of banking chain. The perspective of decentralized decisions is taken in this paper to cope with complex interactions in banking chain. The results derived from bi-level programming DEA can provide valuable insights and detailed information for managers to help them evaluate the performance of the banking chain as a whole using Stackelberg-game relationships. Finally, this model was applied in the Iranian bank to evaluate cost efficiency.

  17. Mixed Integer Linear Programming based machine learning approach identifies regulators of telomerase in yeast.

    PubMed

    Poos, Alexandra M; Maicher, André; Dieckmann, Anna K; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer

    2016-06-01

    Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. PMID:26908654

  18. Mixed Integer Linear Programming based machine learning approach identifies regulators of telomerase in yeast

    PubMed Central

    Poos, Alexandra M.; Maicher, André; Dieckmann, Anna K.; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer

    2016-01-01

    Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. PMID:26908654

  19. Mixed-integer programming methods for transportation and power generation problems

    NASA Astrophysics Data System (ADS)

    Damci Kurt, Pelin

    This dissertation conducts theoretical and computational research to solve challenging problems in application areas such as supply chain and power systems. The first part of the dissertation studies a transportation problem with market choice (TPMC) which is a variant of the classical transportation problem in which suppliers with limited capacities have a choice of which demands (markets) to satisfy. We show that TPMC is strongly NP-complete. We consider a version of the problem with a service level constraint on the maximum number of markets that can be rejected and show that if the original problem is polynomial, its cardinality-constrained version is also polynomial. We propose valid inequalities for mixed-integer cover and knapsack sets with variable upper bound constraints, which appear as substructures of TPMC and use them in a branch-and-cut algorithm to solve this problem. The second part of this dissertation studies a unit commitment (UC) problem in which the goal is to minimize the operational cost of power generators over a time period subject to physical constraints while satisfying demand. We provide several exponential classes of multi-period ramping and multi-period variable upper bound inequalities. We prove the strength of these inequalities and describe polynomial-time separation algorithms. Computational results show the effectiveness of the proposed inequalities when used as cuts in a branch-and-cut algorithm to solve the UC problem. The last part of this dissertation investigates the effects of uncertain wind power on the UC problem. A two-stage robust model and a three-stage stochastic program are compared.

  20. Multi-objective Mixed Integer Programming approach for facility layout design by considering closeness ratings, material handling, and re-layout cost

    NASA Astrophysics Data System (ADS)

    Purnomo, Muhammad Ridwan Andi; Satrio Wiwoho, Yoga

    2016-01-01

    Facility layout becomes one of production system factor that should be managed well, as it is designated for the location of production. In managing the layout, designing the layout by considering the optimal layout condition that supports the work condition is essential. One of the method for facility layout optimization is Mixed Integer Programming (MIP). In this study, the MIP is solved using Lingo 9.0 software and considering quantitative and qualitative objectives to be achieved simultaneously: minimizing material handling cost, maximizing closeness rating, and minimizing re-layout cost. The research took place in Rekayasa Wangdi as a make to order company, focusing on the making of concrete brick dough stirring machine with 10 departments involved. The result shows an improvement in the new layout for 333,72 points of objective value compared with the initial layout. As the conclusion, the proposed MIP is proven to be used to model facility layout problem under multi objective consideration for a more realistic look.

  1. Optimal sequencing of development for hydropower stations in cascade

    SciTech Connect

    Wan, Y. ); Huang ); Marino, M.A. . Dept. of Water Science and Engineering)

    1989-05-01

    The sequencing problem for hydropower station development is a multidimensional problem involving space-time decisions. In this paper, a mathematical model that uses a combination of dynamic programming and mixed-integer programming is developed, and an efficient algorithm for its use in optimal sequencing problems is presented. This model is applied to the preliminary planning of hydropower stations on the Wujiang River in the southwestern region of China, and the results are described.

  2. A two-stage mixed-integer fuzzy programming with interval-valued membership functions approach for flood-diversion planning.

    PubMed

    Wang, S; Huang, G H

    2013-03-15

    Flood disasters have been extremely severe in recent decades, and they account for about one third of all natural catastrophes throughout the world. In this study, a two-stage mixed-integer fuzzy programming with interval-valued membership functions (TMFP-IMF) approach is developed for flood-diversion planning under uncertainty. TMFP-IMF integrates the fuzzy flexible programming, two-stage stochastic programming, and integer programming within a general framework. A concept of interval-valued fuzzy membership function is introduced to address complexities of system uncertainties. TMFP-IMF can not only deal with uncertainties expressed as fuzzy sets and probability distributions, but also incorporate pre-regulated water-diversion policies directly into its optimization process. TMFP-IMF is applied to a hypothetical case study of flood-diversion planning for demonstrating its applicability. Results indicate that reasonable solutions can be generated for binary and continuous variables. A variety of flood-diversion and capacity-expansion schemes can be obtained under four scenarios, which enable decision makers (DMs) to identify the most desired one based on their perceptions and attitudes towards the objective-function value and constraints.

  3. DOTcvpSB, a software toolbox for dynamic optimization in systems biology

    PubMed Central

    Hirmajer, Tomáš; Balsa-Canto, Eva; Banga, Julio R

    2009-01-01

    Background Mathematical optimization aims to make a system or design as effective or functional as possible, computing the quality of the different alternatives using a mathematical model. Most models in systems biology have a dynamic nature, usually described by sets of differential equations. Dynamic optimization addresses this class of systems, seeking the computation of the optimal time-varying conditions (control variables) to minimize or maximize a certain performance index. Dynamic optimization can solve many important problems in systems biology, including optimal control for obtaining a desired biological performance, the analysis of network designs and computer aided design of biological units. Results Here, we present a software toolbox, DOTcvpSB, which uses a rich ensemble of state-of-the-art numerical methods for solving continuous and mixed-integer dynamic optimization (MIDO) problems. The toolbox has been written in MATLAB and provides an easy and user friendly environment, including a graphical user interface, while ensuring a good numerical performance. Problems are easily stated thanks to the compact input definition. The toolbox also offers the possibility of importing SBML models, thus enabling it as a powerful optimization companion to modelling packages in systems biology. It serves as a means of handling generic black-box models as well. Conclusion Here we illustrate the capabilities and performance of DOTcvpSB by solving several challenging optimization problems related with bioreactor optimization, optimal drug infusion to a patient and the minimization of intracellular oscillations. The results illustrate how the suite of solvers available allows the efficient solution of a wide class of dynamic optimization problems, including challenging multimodal ones. The toolbox is freely available for academic use. PMID:19558728

  4. Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software

    SciTech Connect

    Jeff Linderoth

    2011-11-06

    the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.

  5. A solution procedure for mixed-integer nonlinear programming formulation of supply chain planning with quantity discounts under demand uncertainty

    NASA Astrophysics Data System (ADS)

    Yin, Sisi; Nishi, Tatsushi

    2014-11-01

    Quantity discount policy is decision-making for trade-off prices between suppliers and manufacturers while production is changeable due to demand fluctuations in a real market. In this paper, quantity discount models which consider selection of contract suppliers, production quantity and inventory simultaneously are addressed. The supply chain planning problem with quantity discounts under demand uncertainty is formulated as a mixed-integer nonlinear programming problem (MINLP) with integral terms. We apply an outer-approximation method to solve MINLP problems. In order to improve the efficiency of the proposed method, the problem is reformulated as a stochastic model replacing the integral terms by using a normalisation technique. We present numerical examples to demonstrate the efficiency of the proposed method.

  6. Optimization techniques in molecular structure and function elucidation.

    PubMed

    Sahinidis, Nikolaos V

    2009-12-01

    This paper discusses recent optimization approaches to the protein side-chain prediction problem, protein structural alignment, and molecular structure determination from X-ray diffraction measurements. The machinery employed to solve these problems has included algorithms from linear programming, dynamic programming, combinatorial optimization, and mixed-integer nonlinear programming. Many of these problems are purely continuous in nature. Yet, to this date, they have been approached mostly via combinatorial optimization algorithms that are applied to discrete approximations. The main purpose of the paper is to offer an introduction and motivate further systems approaches to these problems. PMID:20160866

  7. Robust optimization of a mathematical model to design a dynamic cell formation problem considering labor utilization

    NASA Astrophysics Data System (ADS)

    Vafaeinezhad, Moghadaseh; Kia, Reza; Shahnazari-Shahrezaei, Parisa

    2016-11-01

    Cell formation (CF) problem is one of the most important decision problems in designing a cellular manufacturing system includes grouping machines into machine cells and parts into part families. Several factors should be considered in a cell formation problem. In this work, robust optimization of a mathematical model of a dynamic cell formation problem integrating CF, production planning and worker assignment is implemented with uncertain scenario-based data. The robust approach is used to reduce the effects of fluctuations of the uncertain parameters with regards to all possible future scenarios. In this research, miscellaneous cost parameters of the cell formation and demand fluctuations are subject to uncertainty and a mixed-integer nonlinear programming model is developed to formulate the related robust dynamic cell formation problem. The objective function seeks to minimize total costs including machine constant, machine procurement, machine relocation, machine operation, inter-cell and intra-cell movement, overtime, shifting labors between cells and inventory holding. Finally, a case study is carried out to display the robustness and effectiveness of the proposed model. The tradeoff between solution robustness and model robustness is also analyzed in the obtained results.

  8. A DSN optimal spacecraft scheduling model

    NASA Technical Reports Server (NTRS)

    Webb, W. A.

    1982-01-01

    A computer model is described which uses mixed-integer linear programming to provide optimal DSN spacecraft schedules given a mission set and specified scheduling requirements. A solution technique is proposed which uses Bender's Method and a heuristic starting algorithm.

  9. Adaptive critics for dynamic optimization.

    PubMed

    Kulkarni, Raghavendra V; Venayagamoorthy, Ganesh Kumar

    2010-06-01

    A novel action-dependent adaptive critic design (ACD) is developed for dynamic optimization. The proposed combination of a particle swarm optimization-based actor and a neural network critic is demonstrated through dynamic sleep scheduling of wireless sensor motes for wildlife monitoring. The objective of the sleep scheduler is to dynamically adapt the sleep duration to node's battery capacity and movement pattern of animals in its environment in order to obtain snapshots of the animal on its trajectory uniformly. Simulation results show that the sleep time of the node determined by the actor critic yields superior quality of sensory data acquisition and enhanced node longevity. PMID:20223635

  10. Comparison of two non-convex mixed-integer nonlinear programming algorithms applied to autoregressive moving average model structure and parameter estimation

    NASA Astrophysics Data System (ADS)

    Uilhoorn, F. E.

    2016-10-01

    In this article, the stochastic modelling approach proposed by Box and Jenkins is treated as a mixed-integer nonlinear programming (MINLP) problem solved with a mesh adaptive direct search and a real-coded genetic class of algorithms. The aim is to estimate the real-valued parameters and non-negative integer, correlated structure of stationary autoregressive moving average (ARMA) processes. The maximum likelihood function of the stationary ARMA process is embedded in Akaike's information criterion and the Bayesian information criterion, whereas the estimation procedure is based on Kalman filter recursions. The constraints imposed on the objective function enforce stability and invertibility. The best ARMA model is regarded as the global minimum of the non-convex MINLP problem. The robustness and computational performance of the MINLP solvers are compared with brute-force enumeration. Numerical experiments are done for existing time series and one new data set.

  11. Optimal dynamic detection of explosives

    SciTech Connect

    Moore, David Steven; Mcgrane, Shawn D; Greenfield, Margo T; Scharff, R J; Rabitz, Herschel A; Roslund, J

    2009-01-01

    The detection of explosives is a notoriously difficult problem, especially at stand-off distances, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring optimal dynamic detection to exploit the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity of explosives signatures while reducing the influence of noise and the signals from background interferents in the field (increase selectivity). These goals are being addressed by operating in an optimal nonlinear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe sub-pulses. With sufficient bandwidth, the technique is capable of intrinsically providing orthogonal broad spectral information for data fusion, all from a single optimal pulse.

  12. An optimal spacecraft scheduling model for the NASA deep space network

    NASA Technical Reports Server (NTRS)

    Webb, W. A.

    1985-01-01

    A computer model is described which uses mixed-integer linear programming to provide optimal DSN spacecraft schedules given a mission set and specified scheduling requirements. A solution technique is proposed which uses Bender's method and a heuristic starting algorithm.

  13. New numerical methods for open-loop and feedback solutions to dynamic optimization problems

    NASA Astrophysics Data System (ADS)

    Ghosh, Pradipto

    The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development

  14. Final Report-Optimization Under Uncertainty and Nonconvexity: Algorithms and Software

    SciTech Connect

    Jeff Linderoth

    2008-10-10

    The goal of this research was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems.

  15. Optimal inference with chaotic dynamics

    NASA Technical Reports Server (NTRS)

    Harger, R. O.

    1983-01-01

    Nonlinear mappings that exhibit chaotic, seemingly random, evolution have appeal as models of dynamic systems. Their deterministic evolution, vis-a-vis Markov evolutions, results in much simpler optimal detection and estimation algorithms. The variation of a chaotic parameter (mu) results in diverse evolutions, suggesting a simple but rich source of model variations. For the specific mapping examined, this latter possibility is problematic due to the extreme sensitivity on mu of the evolution in the chaotic regime.

  16. TRACKING CODE DEVELOPMENT FOR BEAM DYNAMICS OPTIMIZATION

    SciTech Connect

    Yang, L.

    2011-03-28

    Dynamic aperture (DA) optimization with direct particle tracking is a straight forward approach when the computing power is permitted. It can have various realistic errors included and is more close than theoretical estimations. In this approach, a fast and parallel tracking code could be very helpful. In this presentation, we describe an implementation of storage ring particle tracking code TESLA for beam dynamics optimization. It supports MPI based parallel computing and is robust as DA calculation engine. This code has been used in the NSLS-II dynamics optimizations and obtained promising performance.

  17. Semiclassical guided optimal control of molecular dynamics

    SciTech Connect

    Kondorskiy, A.; Mil'nikov, G.; Nakamura, H.

    2005-10-15

    An efficient semiclassical optimal control theory applicable to multidimensional systems is formulated for controlling wave packet dynamics on a single adiabatic potential energy surface. The approach combines advantages of different formulations of optimal control theory: quantum and classical on one hand and global and local on the other. Numerical applications to the control of HCN-CNH isomerization demonstrate that this theory can provide an efficient tool to manipulate molecular dynamics of many degrees of freedom by laser pulses.

  18. Two Characterizations of Optimality in Dynamic Programming

    SciTech Connect

    Karatzas, Ioannis; Sudderth, William D.

    2010-06-15

    It holds in great generality that a plan is optimal for a dynamic programming problem, if and only if it is 'thrifty' and 'equalizing.' An alternative characterization of an optimal plan, that applies in many economic models, is that the plan must satisfy an appropriate Euler equation and a transversality condition. Here we explore the connections between these two characterizations.

  19. Multicriterial approach to beam dynamics optimization problem

    NASA Astrophysics Data System (ADS)

    Vladimirova, L. V.

    2016-09-01

    The problem of optimization of particle beam dynamics in accelerating system is considered in the case when control process quality is estimated by several functionals. Multicriterial approach is used. When there are two criteria, compromise curve may be obtained. If the number of criteria is three or more, one can select some criteria to be main and impose the constraints on the remaining criteria. The optimization result is the set of efficient controls; a user has an opportunity to select the most appropriate control among them. The paper presents the results of multicriteria optimization of beam dynamics in linear accelerator LEA-15-M.

  20. Dynamic optimization and adaptive controller design

    NASA Astrophysics Data System (ADS)

    Inamdar, S. R.

    2010-10-01

    In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.

  1. Optimizing Dynamical Network Structure for Pinning Control.

    PubMed

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-04-12

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.

  2. Optimizing Dynamical Network Structure for Pinning Control

    NASA Astrophysics Data System (ADS)

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-04-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.

  3. Efficient dynamic optimization of logic programs

    NASA Technical Reports Server (NTRS)

    Laird, Phil

    1992-01-01

    A summary is given of the dynamic optimization approach to speed up learning for logic programs. The problem is to restructure a recursive program into an equivalent program whose expected performance is optimal for an unknown but fixed population of problem instances. We define the term 'optimal' relative to the source of input instances and sketch an algorithm that can come within a logarithmic factor of optimal with high probability. Finally, we show that finding high-utility unfolding operations (such as EBG) can be reduced to clause reordering.

  4. Dynamic optimization case studies in DYNOPT tool

    NASA Astrophysics Data System (ADS)

    Ozana, Stepan; Pies, Martin; Docekal, Tomas

    2016-06-01

    Dynamic programming is typically applied to optimization problems. As the analytical solutions are generally very difficult, chosen software tools are used widely. These software packages are often third-party products bound for standard simulation software tools on the market. As typical examples of such tools, TOMLAB and DYNOPT could be effectively applied for solution of problems of dynamic programming. DYNOPT will be presented in this paper due to its licensing policy (free product under GPL) and simplicity of use. DYNOPT is a set of MATLAB functions for determination of optimal control trajectory by given description of the process, the cost to be minimized, subject to equality and inequality constraints, using orthogonal collocation on finite elements method. The actual optimal control problem is solved by complete parameterization both the control and the state profile vector. It is assumed, that the optimized dynamic model may be described by a set of ordinary differential equations (ODEs) or differential-algebraic equations (DAEs). This collection of functions extends the capability of the MATLAB Optimization Tool-box. The paper will introduce use of DYNOPT in the field of dynamic optimization problems by means of case studies regarding chosen laboratory physical educational models.

  5. Optimizing dissolution dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Bornet, Aurélien; Jannin, Sami

    2016-03-01

    This article is a short review of some of our recent developments in dissolution dynamic nuclear polarization (d-DNP). We present the basic principles of d-DNP, and motivate our choice to step away from conventional approaches. We then introduce a modified d-DNP recipe that can be summed up as follows: Using broad line polarizing agents to efficiently polarize 1H spins. Increasing the magnetic field to 6.7 T and above. Applying microwave frequency modulation. Applying 1H-13C cross polarization. Transferring hyperpolarized solution through a magnetic tunnel.

  6. Dynamic programming in applied optimization problems

    NASA Astrophysics Data System (ADS)

    Zavalishchin, Dmitry

    2015-11-01

    Features of the use dynamic programming in applied problems are investigated. In practice such problems as finding the critical paths in network planning and control, finding the optimal supply plan in transportation problem, objects territorial distribution are traditionally solved by special methods of operations research. It should be noted that the dynamic programming is not provided computational advantages, but facilitates changes and modifications of tasks. This follows from the Bellman's optimality principle. The features of the multistage decision processes construction in applied problems are provided.

  7. Role of controllability in optimizing quantum dynamics

    SciTech Connect

    Wu Rebing; Hsieh, Michael A.; Rabitz, Herschel

    2011-06-15

    This paper reveals an important role that controllability plays in the complexity of optimizing quantum control dynamics. We show that the loss of controllability generally leads to multiple locally suboptimal controls when gate fidelity in a quantum control system is maximized, which does not happen if the system is controllable. Such local suboptimal controls may attract an optimization algorithm into a local trap when a global optimal solution is sought, even if the target gate can be perfectly realized. This conclusion results from an analysis of the critical topology of the corresponding quantum control landscape, which refers to the gate fidelity objective as a functional of the control fields. For uncontrollable systems, due to SU(2) and SU(3) dynamical symmetries, the control landscape corresponding to an implementable target gate is proven to possess multiple locally optimal critical points, and its ruggedness can be further increased if the target gate is not realizable. These results imply that the optimization of quantum dynamics can be seriously impeded when operating with local search algorithms under these conditions, and thus full controllability is demanded.

  8. Optimal BLS: Optimizing transit-signal detection for Keplerian dynamics

    NASA Astrophysics Data System (ADS)

    Ofir, Aviv

    2015-08-01

    Transit surveys, both ground- and space-based, have already accumulated a large number of light curves that span several years. We optimize the search for transit signals for both detection and computational efficiencies by assuming that the searched systems can be described by Keplerian, and propagating the effects of different system parameters to the detection parameters. Importnantly, we mainly consider the information content of the transit signal and not any specific algorithm - and use BLS (Kovács, Zucker, & Mazeh 2002) just as a specific example.We show that the frequency information content of the light curve is primarily determined by the duty cycle of the transit signal, and thus the optimal frequency sampling is found to be cubic and not linear. Further optimization is achieved by considering duty-cycle dependent binning of the phased light curve. By using the (standard) BLS, one is either fairly insensitive to long-period planets or less sensitive to short-period planets and computationally slower by a significant factor of ~330 (for a 3 yr long dataset). We also show how the physical system parameters, such as the host star's size and mass, directly affect transit detection. This understanding can then be used to optimize the search for every star individually.By considering Keplerian dynamics explicitly rather than implicitly one can optimally search the transit signal parameter space. The presented Optimal BLS enhances the detectability of both very short and very long period planets, while allowing such searches to be done with much reduced resources and time. The Matlab/Octave source code for Optimal BLS is made available.

  9. Modeling the dynamics of ant colony optimization.

    PubMed

    Merkle, Daniel; Middendorf, Martin

    2002-01-01

    The dynamics of Ant Colony Optimization (ACO) algorithms is studied using a deterministic model that assumes an average expected behavior of the algorithms. The ACO optimization metaheuristic is an iterative approach, where in every iteration, artificial ants construct solutions randomly but guided by pheromone information stemming from former ants that found good solutions. The behavior of ACO algorithms and the ACO model are analyzed for certain types of permutation problems. It is shown analytically that the decisions of an ant are influenced in an intriguing way by the use of the pheromone information and the properties of the pheromone matrix. This explains why ACO algorithms can show a complex dynamic behavior even when there is only one ant per iteration and no competition occurs. The ACO model is used to describe the algorithm behavior as a combination of situations with different degrees of competition between the ants. This helps to better understand the dynamics of the algorithm when there are several ants per iteration as is always the case when using ACO algorithms for optimization. Simulations are done to compare the behavior of the ACO model with the ACO algorithm. Results show that the deterministic model describes essential features of the dynamics of ACO algorithms quite accurately, while other aspects of the algorithms behavior cannot be found in the model. PMID:12227995

  10. Optimizing Motion Planning for Hyper Dynamic Manipulator

    NASA Astrophysics Data System (ADS)

    Aboura, Souhila; Omari, Abdelhafid; Meguenni, Kadda Zemalache

    2012-01-01

    This paper investigates the optimal motion planning for an hyper dynamic manipulator. As case study, we consider a golf swing robot which is consisting with two actuated joint and a mechanical stoppers. Genetic Algorithm (GA) technique is proposed to solve the optimal golf swing motion which is generated by Fourier series approximation. The objective function for GA approach is to minimizing the intermediate and final state, minimizing the robot's energy consummation and maximizing the robot's speed. Obtained simulation results show the effectiveness of the proposed scheme.

  11. Pareto optimization in algebraic dynamic programming.

    PubMed

    Saule, Cédric; Giegerich, Robert

    2015-01-01

    Pareto optimization combines independent objectives by computing the Pareto front of its search space, defined as the set of all solutions for which no other candidate solution scores better under all objectives. This gives, in a precise sense, better information than an artificial amalgamation of different scores into a single objective, but is more costly to compute. Pareto optimization naturally occurs with genetic algorithms, albeit in a heuristic fashion. Non-heuristic Pareto optimization so far has been used only with a few applications in bioinformatics. We study exact Pareto optimization for two objectives in a dynamic programming framework. We define a binary Pareto product operator [Formula: see text] on arbitrary scoring schemes. Independent of a particular algorithm, we prove that for two scoring schemes A and B used in dynamic programming, the scoring scheme [Formula: see text] correctly performs Pareto optimization over the same search space. We study different implementations of the Pareto operator with respect to their asymptotic and empirical efficiency. Without artificial amalgamation of objectives, and with no heuristics involved, Pareto optimization is faster than computing the same number of answers separately for each objective. For RNA structure prediction under the minimum free energy versus the maximum expected accuracy model, we show that the empirical size of the Pareto front remains within reasonable bounds. Pareto optimization lends itself to the comparative investigation of the behavior of two alternative scoring schemes for the same purpose. For the above scoring schemes, we observe that the Pareto front can be seen as a composition of a few macrostates, each consisting of several microstates that differ in the same limited way. We also study the relationship between abstract shape analysis and the Pareto front, and find that they extract information of a different nature from the folding space and can be meaningfully combined.

  12. Application of optimal prediction to molecular dynamics

    SciTech Connect

    Barber, IV, John Letherman

    2004-12-01

    Optimal prediction is a general system reduction technique for large sets of differential equations. In this method, which was devised by Chorin, Hald, Kast, Kupferman, and Levy, a projection operator formalism is used to construct a smaller system of equations governing the dynamics of a subset of the original degrees of freedom. This reduced system consists of an effective Hamiltonian dynamics, augmented by an integral memory term and a random noise term. Molecular dynamics is a method for simulating large systems of interacting fluid particles. In this thesis, I construct a formalism for applying optimal prediction to molecular dynamics, producing reduced systems from which the properties of the original system can be recovered. These reduced systems require significantly less computational time than the original system. I initially consider first-order optimal prediction, in which the memory and noise terms are neglected. I construct a pair approximation to the renormalized potential, and ignore three-particle and higher interactions. This produces a reduced system that correctly reproduces static properties of the original system, such as energy and pressure, at low-to-moderate densities. However, it fails to capture dynamical quantities, such as autocorrelation functions. I next derive a short-memory approximation, in which the memory term is represented as a linear frictional force with configuration-dependent coefficients. This allows the use of a Fokker-Planck equation to show that, in this regime, the noise is δ-correlated in time. This linear friction model reproduces not only the static properties of the original system, but also the autocorrelation functions of dynamical variables.

  13. Rigorous bounds for optimal dynamical decoupling

    SciTech Connect

    Uhrig, Goetz S.; Lidar, Daniel A.

    2010-07-15

    We present rigorous performance bounds for the optimal dynamical decoupling pulse sequence protecting a quantum bit (qubit) against pure dephasing. Our bounds apply under the assumption of instantaneous pulses and of bounded perturbing environment and qubit-environment Hamiltonians such as those realized by baths of nuclear spins in quantum dots. We show that if the total sequence time is fixed the optimal sequence can be used to make the distance between the protected and unperturbed qubit states arbitrarily small in the number of applied pulses. If, on the other hand, the minimum pulse interval is fixed and the total sequence time is allowed to scale with the number of pulses, then longer sequences need not always be advantageous. The rigorous bound may serve as a testbed for approximate treatments of optimal decoupling in bounded models of decoherence.

  14. Direct Optimal Control of Duffing Dynamics

    NASA Technical Reports Server (NTRS)

    Oz, Hayrani; Ramsey, John K.

    2002-01-01

    The "direct control method" is a novel concept that is an attractive alternative and competitor to the differential-equation-based methods. The direct method is equally well applicable to nonlinear, linear, time-varying, and time-invariant systems. For all such systems, the method yields explicit closed-form control laws based on minimization of a quadratic control performance measure. We present an application of the direct method to the dynamics and optimal control of the Duffing system where the control performance measure is not restricted to a quadratic form and hence may include a quartic energy term. The results we present in this report also constitute further generalizations of our earlier work in "direct optimal control methodology." The approach is demonstrated for the optimal control of the Duffing equation with a softening nonlinear stiffness.

  15. Optimality and soil water-vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Schymanski, S. J.

    2007-12-01

    Soil moisture is an important factor for nearly all hydrological and biogeochemical processes. Antecedent soil moisture impacts on infiltration and runoff generation, the soil moisture distribution within the soil together with other factors determines the soil carbon and nutrient cycling and the amount of soil moisture within the rooting zone often constitutes a major constraint for plant growth and evapo-transpiration. The main processes determining soil moisture dynamics are infiltration, percolation, evaporation and root water uptake. Therefore, modelling soil moisture dynamics requires an interdisciplinary approach that links hydrological and biological processes. Previous approaches treat either root water uptake rates or root distributions and transpiration rates as a given, and calculate the soil moisture dynamics based on the theory of flow in unsaturated media. The present study introduces a different approach to linking soil water and vegetation dynamics, based on optimality. Assuming that plants aim at minimising the costs related to the maintenance of the root system while meeting their demand for water, a model was formulated that dynamically adjusts the vertical root distribution in the soil profile to meet this objective. The model was used to compute the soil moisture dynamics in a tropical savanna over 12 months, which showed a better resemblance with the observed time series of surface soil moisture than models based on fixed root distributions. The optimality-based approach to modelling soil-vegetation interactions requires a new level of interdisciplinary synthesis, as biological and hydrological knowledge needs to be combined to derive the very basis of the model, namely the costs and benefits of different root properties. On the other hand, this approach has the potential to reduce the number of unknowns in a model (e.g. the vertical root distribution), which makes it a valuable alternative to more empirically-based approaches.

  16. Particle Swarm Optimization with Dynamic Step Length

    NASA Astrophysics Data System (ADS)

    Cui, Zhihua; Cai, Xingjuan; Zeng, Jianchao; Sun, Guoji

    Particle swarm optimization (PSO) is a robust swarm intelligent technique inspired from birds flocking and fish schooling. Though many effective improvements have been proposed, however, the premature convergence is still its main problem. Because each particle's movement is a continuous process and can be modelled with differential equation groups, a new variant, particle swarm optimization with dynamic step length (PSO-DSL), with additional control coefficient- step length, is introduced. Then the absolute stability theory is introduced to analyze the stability character of the standard PSO, the theoretical result indicates the PSO with constant step length can not always be stable, this may be one of the reason for premature convergence. Simulation results show the PSO-DSL is effective.

  17. Robust optimization with transiently chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Sumi, R.; Molnár, B.; Ercsey-Ravasz, M.

    2014-05-01

    Efficiently solving hard optimization problems has been a strong motivation for progress in analog computing. In a recent study we presented a continuous-time dynamical system for solving the NP-complete Boolean satisfiability (SAT) problem, with a one-to-one correspondence between its stable attractors and the SAT solutions. While physical implementations could offer great efficiency, the transiently chaotic dynamics raises the question of operability in the presence of noise, unavoidable on analog devices. Here we show that the probability of finding solutions is robust to noise intensities well above those present on real hardware. We also developed a cellular neural network model realizable with analog circuits, which tolerates even larger noise intensities. These methods represent an opportunity for robust and efficient physical implementations.

  18. Optimal Dynamics of Intermittent Water Supply

    NASA Astrophysics Data System (ADS)

    Lieb, Anna; Wilkening, Jon; Rycroft, Chris

    2014-11-01

    In many urban areas of the developing world, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability.

  19. Deriving statistical closure from dynamical optimization

    NASA Astrophysics Data System (ADS)

    Turkington, Bruce

    2015-11-01

    Turbulence theorists have traditionally deduced statistical models by generating a hierarchy of moment equations and invoking some closure rules to truncate the hierarchy. In this talk a conceptually different approach to model reduction and statistical closure will be presented, and its implications for coarse-graining fluid turbulence will be indicated. The author has developed this method in the context of nonequilibrium statistical descriptions of Hamiltonian systems with many degrees of freedom. With respect to a chosen parametric statistical model, the lack-of-fit of model paths to the full dynamics is minimized in a time-integrated, mean-squared sense. This optimal closure method is applied to coarse-grain spectrally-truncated inviscid dynamics, including the Burgers-Hopf equation and incompressible two-dimensional flow, using the means and/or variances of low modes as resolved variables. The derived reduced dynamics for these test cases contain (1) scale-dependent dissipation which is not a local eddy viscosity, (2) modified nonlinear interactions between resolved modes, and (3) coupling between the mean and variance of each resolved mode. These predictions are validated against direct numerical simulations of ensembles for the fully resolved dynamics.

  20. Structural optimization for nonlinear dynamic response.

    PubMed

    Dou, Suguang; Strachan, B Scott; Shaw, Steven W; Jensen, Jakob S

    2015-09-28

    Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance condition, thereby providing a means for tailoring its nonlinear response. The method is applied to the fundamental nonlinear resonance of a clamped-clamped beam and to the coupled mode response of a frame structure, and the results show that one can modify essential normal form coefficients by an order of magnitude by relatively simple changes in the shape of these elements. We expect the proposed approach, and its extensions, to be useful for the design of systems used for fundamental studies of nonlinear behaviour as well as for the development of commercial devices that exploit nonlinear behaviour.

  1. Chaotic dynamics in optimal monetary policy

    NASA Astrophysics Data System (ADS)

    Gomes, O.; Mendes, V. M.; Mendes, D. A.; Sousa Ramos, J.

    2007-05-01

    There is by now a large consensus in modern monetary policy. This consensus has been built upon a dynamic general equilibrium model of optimal monetary policy as developed by, e.g., Goodfriend and King [ NBER Macroeconomics Annual 1997 edited by B. Bernanke and J. Rotemberg (Cambridge, Mass.: MIT Press, 1997), pp. 231 282], Clarida et al. [J. Econ. Lit. 37, 1661 (1999)], Svensson [J. Mon. Econ. 43, 607 (1999)] and Woodford [ Interest and Prices: Foundations of a Theory of Monetary Policy (Princeton, New Jersey, Princeton University Press, 2003)]. In this paper we extend the standard optimal monetary policy model by introducing nonlinearity into the Phillips curve. Under the specific form of nonlinearity proposed in our paper (which allows for convexity and concavity and secures closed form solutions), we show that the introduction of a nonlinear Phillips curve into the structure of the standard model in a discrete time and deterministic framework produces radical changes to the major conclusions regarding stability and the efficiency of monetary policy. We emphasize the following main results: (i) instead of a unique fixed point we end up with multiple equilibria; (ii) instead of saddle-path stability, for different sets of parameter values we may have saddle stability, totally unstable equilibria and chaotic attractors; (iii) for certain degrees of convexity and/or concavity of the Phillips curve, where endogenous fluctuations arise, one is able to encounter various results that seem intuitively correct. Firstly, when the Central Bank pays attention essentially to inflation targeting, the inflation rate has a lower mean and is less volatile; secondly, when the degree of price stickiness is high, the inflation rate displays a larger mean and higher volatility (but this is sensitive to the values given to the parameters of the model); and thirdly, the higher the target value of the output gap chosen by the Central Bank, the higher is the inflation rate and its

  2. Decentralized optimal control of dynamical systems under uncertainty

    NASA Astrophysics Data System (ADS)

    Gabasov, R.; Dmitruk, N. M.; Kirillova, F. M.

    2011-07-01

    The problem of optimal control of a group of interconnected dynamical objects under uncertainty is considered. The cases are examined in which the centralized control of the group of objects is impossible due to delay in the channel for information exchange between the group members. Optimal self-control algorithms in real time for each dynamical object are proposed. Various types of a priori and current information about the behavior of the group members and about uncertainties in the system are examined. The proposed methods supplement the earlier developed optimal control methods for an individual dynamical system and the methods of decentralized optimal control of deterministic objects. The results are illustrated with examples.

  3. Optimal control of HIV/AIDS dynamic: Education and treatment

    NASA Astrophysics Data System (ADS)

    Sule, Amiru; Abdullah, Farah Aini

    2014-07-01

    A mathematical model which describes the transmission dynamics of HIV/AIDS is developed. The optimal control representing education and treatment for this model is explored. The existence of optimal Control is established analytically by the use of optimal control theory. Numerical simulations suggest that education and treatment for the infected has a positive impact on HIV/AIDS control.

  4. Optimal asymptotic learning rate: Macroscopic versus microscopic dynamics

    NASA Astrophysics Data System (ADS)

    Leen, Todd K.; Schottky, Bernhard; Saad, David

    1999-01-01

    We investigate the asymptotic dynamics of on-line learning for neural networks, and provide an exact solution to the network dynamics at late times under various annealing schedules. The dynamics is solved using two different frameworks: the master equation and order parameter dynamics, which concentrate on microscopic and macroscopic parameters, respectively. The two approaches provide complementary descriptions of the dynamics. Optimal annealing rates and the corresponding prefactors are derived for soft committee machine networks with hidden layers of arbitrary size.

  5. Dynamic systems of regional economy management optimization

    NASA Astrophysics Data System (ADS)

    Trofimov, S.; Kudzh, S.

    directions of an industrial policy of region. The situational-analytical centers (SAC) of regional administration The major component of SAC is dynamic modeling, analysis, forecasting and optimization systems, based on modern intellectual information technologies. Spheres of SAC are not only financial streams management and investments optimization, but also strategic forecasting functions, which provide an optimum choice, "aiming", search of optimum ways of regional development and corresponding investments. It is expedient to consider an opportunity of formation of the uniform organizational-methodical center of an industrial policy of region. This organization can be directly connected to the scheduled-analytical services of the largest economic structures, local authorities, the ministries and departments. Such "direct communication" is capable to provide an effective regional development strategic management. Anyway, the output on foreign markets demands concentration of resources and support of authorities. Offered measures are capable to provide a necessary coordination of efforts of a various level economic structures. For maintenance of a regional industrial policy an attraction of all newest methods of strategic planning and management is necessary. Their activity should be constructed on the basis of modern approaches of economic systems management, cause the essence of an industrial policy is finally reduced to an effective regional and corporate economic activities control centers formation. Opportunities of optimum regional economy planning and management as uniform system Approaches to planning regional economic systems can be different. We will consider some most effective methods of planning and control over a regional facilities condition. All of them are compact and evident, that allows to put them into the group of average complexity technologies. At the decision of problems of a regional resource management is rather perspective the so

  6. Review of Optimization Methods in Groundwater Modeling and Management

    NASA Astrophysics Data System (ADS)

    Yeh, W. W.

    2001-12-01

    This paper surveys nonlinear optimization methods developed for groundwater modeling and management. The first part reviews algorithms used for model calibration, that is, the inverse problem of parameter estimation. In recent years, groundwater models are combined with optimization models to identify the best management alternatives. Once the objectives and constraints are specified, most problems lend themselves to solution techniques developed in operations research, optimal control, and combinatorial optimization. The second part reviews methods developed for groundwater management. Algorithms and methods reviewed include quadratic programming, differential dynamic programming, nonlinear programming, mixed integer programming, stochastic programming, and non-gradient-based search algorithms. Advantages and drawbacks associated with each approach are discussed. A recent tendency has been toward combining the gradient-based algorithms with the non-gradient-based search algorithms, in that, a non-gradient-based search algorithm is used to identify a near optimum solution and a gradient-based algorithm uses the near optimum solution as its initial estimate for rapid convergence.

  7. Dynamic optimization identifies optimal programmes for pathway regulation in prokaryotes.

    PubMed

    Bartl, Martin; Kötzing, Martin; Schuster, Stefan; Li, Pu; Kaleta, Christoph

    2013-01-01

    To survive in fluctuating environmental conditions, microorganisms must be able to quickly react to environmental challenges by upregulating the expression of genes encoding metabolic pathways. Here we show that protein abundance and protein synthesis capacity are key factors that determine the optimal strategy for the activation of a metabolic pathway. If protein abundance relative to protein synthesis capacity increases, the strategies shift from the simultaneous activation of all enzymes to the sequential activation of groups of enzymes and finally to a sequential activation of individual enzymes along the pathway. In the case of pathways with large differences in protein abundance, even more complex pathway activation strategies with a delayed activation of low abundance enzymes and an accelerated activation of high abundance enzymes are optimal. We confirm the existence of these pathway activation strategies as well as their dependence on our proposed constraints for a large number of metabolic pathways in several hundred prokaryotes.

  8. Dynamic systems of regional economy management optimization

    NASA Astrophysics Data System (ADS)

    Trofimov, S.; Kudzh, S.

    directions of an industrial policy of region. The situational-analytical centers (SAC) of regional administration The major component of SAC is dynamic modeling, analysis, forecasting and optimization systems, based on modern intellectual information technologies. Spheres of SAC are not only financial streams management and investments optimization, but also strategic forecasting functions, which provide an optimum choice, "aiming", search of optimum ways of regional development and corresponding investments. It is expedient to consider an opportunity of formation of the uniform organizational-methodical center of an industrial policy of region. This organization can be directly connected to the scheduled-analytical services of the largest economic structures, local authorities, the ministries and departments. Such "direct communication" is capable to provide an effective regional development strategic management. Anyway, the output on foreign markets demands concentration of resources and support of authorities. Offered measures are capable to provide a necessary coordination of efforts of a various level economic structures. For maintenance of a regional industrial policy an attraction of all newest methods of strategic planning and management is necessary. Their activity should be constructed on the basis of modern approaches of economic systems management, cause the essence of an industrial policy is finally reduced to an effective regional and corporate economic activities control centers formation. Opportunities of optimum regional economy planning and management as uniform system Approaches to planning regional economic systems can be different. We will consider some most effective methods of planning and control over a regional facilities condition. All of them are compact and evident, that allows to put them into the group of average complexity technologies. At the decision of problems of a regional resource management is rather perspective the so

  9. Method to describe stochastic dynamics using an optimal coordinate.

    PubMed

    Krivov, Sergei V

    2013-12-01

    A general method to describe the stochastic dynamics of Markov processes is suggested. The method aims to solve three related problems: the determination of an optimal coordinate for the description of stochastic dynamics; the reconstruction of time from an ensemble of stochastic trajectories; and the decomposition of stationary stochastic dynamics into eigenmodes which do not decay exponentially with time. The problems are solved by introducing additive eigenvectors which are transformed by a stochastic matrix in a simple way - every component is translated by a constant distance. Such solutions have peculiar properties. For example, an optimal coordinate for stochastic dynamics with detailed balance is a multivalued function. An optimal coordinate for a random walk on a line corresponds to the conventional eigenvector of the one-dimensional Dirac equation. The equation for the optimal coordinate in a slowly varying potential reduces to the Hamilton-Jacobi equation for the action function. PMID:24483410

  10. Optimal birth control of population dynamics.

    PubMed

    Chan, W L; Guo, B Z

    1989-11-01

    The authors studied optimal birth control policies for an age-structured population of McKendrick type which is a distributed parameter system involving 1st order partial differential equations with nonlocal bilinear boundary control. The functional analytic approach of Dubovitskii and Milyutin is adopted in the investigation. Maximum principles for problems with a free end condition and fixed final horizon are developed, and the time optimal control problems, the problem with target sets, and infinite planning horizon case are investigated.

  11. An Optimization Framework for Dynamic, Distributed Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Eckert, Klaus; Juedes, David; Welch, Lonnie; Chelberg, David; Bruggerman, Carl; Drews, Frank; Fleeman, David; Parrott, David; Pfarr, Barbara

    2003-01-01

    Abstract. This paper presents a model that is useful for developing resource allocation algorithms for distributed real-time systems .that operate in dynamic environments. Interesting aspects of the model include dynamic environments, utility and service levels, which provide a means for graceful degradation in resource-constrained situations and support optimization of the allocation of resources. The paper also provides an allocation algorithm that illustrates how to use the model for producing feasible, optimal resource allocations.

  12. Static and dynamic collaborative optimization of ship hull structure

    NASA Astrophysics Data System (ADS)

    Huang, Hai-Yan; Wang, De-Yu

    2009-03-01

    The goal of this effort was to provide a static and dynamic collaborative optimization (CO) model for the design of ship hull structure. The CO model integrated with static, mode and dynamic analyses. In the system-level optimization model, a new objective function was advised, integrating all the subsystem-levels’ objective functions, so as to eliminate the effects of dimensions and magnitude order. The proposed CO architecture enabled multi-objectives of the system and subsystem-level to be considered at both levels during optimization. A bi-level optimization strategy was advised, using the multi-island genetic algorithm. The proposed model was demonstrated with a deck optimization problem of container ship stern. The analysis progress and results of example show that the CO strategy is not only feasible and reliable, but also well suited for use in actual optimization problems of ship design.

  13. An Optimization Framework for Dynamic Hybrid Energy Systems

    SciTech Connect

    Wenbo Du; Humberto E Garcia; Christiaan J.J. Paredis

    2014-03-01

    A computational framework for the efficient analysis and optimization of dynamic hybrid energy systems (HES) is developed. A microgrid system with multiple inputs and multiple outputs (MIMO) is modeled using the Modelica language in the Dymola environment. The optimization loop is implemented in MATLAB, with the FMI Toolbox serving as the interface between the computational platforms. Two characteristic optimization problems are selected to demonstrate the methodology and gain insight into the system performance. The first is an unconstrained optimization problem that optimizes the dynamic properties of the battery, reactor and generator to minimize variability in the HES. The second problem takes operating and capital costs into consideration by imposing linear and nonlinear constraints on the design variables. The preliminary optimization results obtained in this study provide an essential step towards the development of a comprehensive framework for designing HES.

  14. Dynamics systems vs. optimal control--a unifying view.

    PubMed

    Schaal, Stefan; Mohajerian, Peyman; Ijspeert, Auke

    2007-01-01

    In the past, computational motor control has been approached from at least two major frameworks: the dynamic systems approach and the viewpoint of optimal control. The dynamic system approach emphasizes motor control as a process of self-organization between an animal and its environment. Nonlinear differential equations that can model entrainment and synchronization behavior are among the most favorable tools of dynamic systems modelers. In contrast, optimal control approaches view motor control as the evolutionary or development result of a nervous system that tries to optimize rather general organizational principles, e.g., energy consumption or accurate task achievement. Optimal control theory is usually employed to develop appropriate theories. Interestingly, there is rather little interaction between dynamic systems and optimal control modelers as the two approaches follow rather different philosophies and are often viewed as diametrically opposing. In this paper, we develop a computational approach to motor control that offers a unifying modeling framework for both dynamic systems and optimal control approaches. In discussions of several behavioral experiments and some theoretical and robotics studies, we demonstrate how our computational ideas allow both the representation of self-organizing processes and the optimization of movement based on reward criteria. Our modeling framework is rather simple and general, and opens opportunities to revisit many previous modeling results from this novel unifying view.

  15. Review of dynamic optimization methods in renewable natural resource management

    USGS Publications Warehouse

    Williams, B.K.

    1989-01-01

    In recent years, the applications of dynamic optimization procedures in natural resource management have proliferated. A systematic review of these applications is given in terms of a number of optimization methodologies and natural resource systems. The applicability of the methods to renewable natural resource systems are compared in terms of system complexity, system size, and precision of the optimal solutions. Recommendations are made concerning the appropriate methods for certain kinds of biological resource problems.

  16. First principles molecular dynamics without self-consistent field optimization

    SciTech Connect

    Souvatzis, Petros; Niklasson, Anders M. N.

    2014-01-28

    We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations.

  17. Wind Farm Turbine Type and Placement Optimization

    NASA Astrophysics Data System (ADS)

    Graf, Peter; Dykes, Katherine; Scott, George; Fields, Jason; Lunacek, Monte; Quick, Julian; Rethore, Pierre-Elouan

    2016-09-01

    The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. This document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.

  18. Integrated Network Decompositions and Dynamic Programming for Graph Optimization (INDDGO)

    SciTech Connect

    2012-05-31

    The INDDGO software package offers a set of tools for finding exact solutions to graph optimization problems via tree decompositions and dynamic programming algorithms. Currently the framework offers serial and parallel (distributed memory) algorithms for finding tree decompositions and solving the maximum weighted independent set problem. The parallel dynamic programming algorithm is implemented on top of the MADNESS task-based runtime.

  19. Dynamic positioning configuration and its first-order optimization

    NASA Astrophysics Data System (ADS)

    Xue, Shuqiang; Yang, Yuanxi; Dang, Yamin; Chen, Wu

    2014-02-01

    Traditional geodetic network optimization deals with static and discrete control points. The modern space geodetic network is, on the other hand, composed of moving control points in space (satellites) and on the Earth (ground stations). The network configuration composed of these facilities is essentially dynamic and continuous. Moreover, besides the position parameter which needs to be estimated, other geophysical information or signals can also be extracted from the continuous observations. The dynamic (continuous) configuration of the space network determines whether a particular frequency of signals can be identified by this system. In this paper, we employ the functional analysis and graph theory to study the dynamic configuration of space geodetic networks, and mainly focus on the optimal estimation of the position and clock-offset parameters. The principle of the D-optimization is introduced in the Hilbert space after the concept of the traditional discrete configuration is generalized from the finite space to the infinite space. It shows that the D-optimization developed in the discrete optimization is still valid in the dynamic configuration optimization, and this is attributed to the natural generalization of least squares from the Euclidean space to the Hilbert space. Then, we introduce the principle of D-optimality invariance under the combination operation and rotation operation, and propose some D-optimal simplex dynamic configurations: (1) (Semi) circular configuration in 2-dimensional space; (2) the D-optimal cone configuration and D-optimal helical configuration which is close to the GPS constellation in 3-dimensional space. The initial design of GPS constellation can be approximately treated as a combination of 24 D-optimal helixes by properly adjusting the ascending node of different satellites to realize a so-called Walker constellation. In the case of estimating the receiver clock-offset parameter, we show that the circular configuration, the

  20. Optimal control of molecular motion expressed through quantum fluid dynamics

    NASA Astrophysics Data System (ADS)

    Dey, Bijoy K.; Rabitz, Herschel; Askar, Attila

    2000-04-01

    A quantum fluid-dynamic (QFD) control formulation is presented for optimally manipulating atomic and molecular systems. In QFD the control quantum system is expressed in terms of the probability density ρ and the quantum current j. This choice of variables is motivated by the generally expected slowly varying spatial-temporal dependence of the fluid-dynamical variables. The QFD approach is illustrated for manipulation of the ground electronic state dynamics of HCl induced by an external electric field.

  1. Solving Optimal Control Problems by Exploiting Inherent Dynamical Systems Structures

    NASA Astrophysics Data System (ADS)

    Flaßkamp, Kathrin; Ober-Blöbaum, Sina; Kobilarov, Marin

    2012-08-01

    Computing globally efficient solutions is a major challenge in optimal control of nonlinear dynamical systems. This work proposes a method combining local optimization and motion planning techniques based on exploiting inherent dynamical systems structures, such as symmetries and invariant manifolds. Prior to the optimal control, the dynamical system is analyzed for structural properties that can be used to compute pieces of trajectories that are stored in a motion planning library. In the context of mechanical systems, these motion planning candidates, termed primitives, are given by relative equilibria induced by symmetries and motions on stable or unstable manifolds of e.g. fixed points in the natural dynamics. The existence of controlled relative equilibria is studied through Lagrangian mechanics and symmetry reduction techniques. The proposed framework can be used to solve boundary value problems by performing a search in the space of sequences of motion primitives connected using optimized maneuvers. The optimal sequence can be used as an admissible initial guess for a post-optimization. The approach is illustrated by two numerical examples, the single and the double spherical pendula, which demonstrates its benefit compared to standard local optimization techniques.

  2. Bridging developmental systems theory and evolutionary psychology using dynamic optimization.

    PubMed

    Frankenhuis, Willem E; Panchanathan, Karthik; Clark Barrett, H

    2013-07-01

    Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic optimization integrates developmental systems theorists' focus on dynamics and contingency with the 'design stance' of evolutionary psychology. It provides a theoretical framework as well as a set of tools for exploring the properties of developmental systems that natural selection might favor, given particular evolutionary ecologies. We also discuss limitations of the approach.

  3. Practical synchronization on complex dynamical networks via optimal pinning control.

    PubMed

    Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu

    2015-07-01

    We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications. PMID:26274112

  4. Dynamic optimization of metabolic networks coupled with gene expression.

    PubMed

    Waldherr, Steffen; Oyarzún, Diego A; Bockmayr, Alexander

    2015-01-21

    The regulation of metabolic activity by tuning enzyme expression levels is crucial to sustain cellular growth in changing environments. Metabolic networks are often studied at steady state using constraint-based models and optimization techniques. However, metabolic adaptations driven by changes in gene expression cannot be analyzed by steady state models, as these do not account for temporal changes in biomass composition. Here we present a dynamic optimization framework that integrates the metabolic network with the dynamics of biomass production and composition. An approximation by a timescale separation leads to a coupled model of quasi-steady state constraints on the metabolic reactions, and differential equations for the substrate concentrations and biomass composition. We propose a dynamic optimization approach to determine reaction fluxes for this model, explicitly taking into account enzyme production costs and enzymatic capacity. In contrast to the established dynamic flux balance analysis, our approach allows predicting dynamic changes in both the metabolic fluxes and the biomass composition during metabolic adaptations. Discretization of the optimization problems leads to a linear program that can be efficiently solved. We applied our algorithm in two case studies: a minimal nutrient uptake network, and an abstraction of core metabolic processes in bacteria. In the minimal model, we show that the optimized uptake rates reproduce the empirical Monod growth for bacterial cultures. For the network of core metabolic processes, the dynamic optimization algorithm predicted commonly observed metabolic adaptations, such as a diauxic switch with a preference ranking for different nutrients, re-utilization of waste products after depletion of the original substrate, and metabolic adaptation to an impending nutrient depletion. These examples illustrate how dynamic adaptations of enzyme expression can be predicted solely from an optimization principle.

  5. Optimal dynamic remapping of parallel computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Reynolds, Paul F., Jr.

    1987-01-01

    A large class of computations are characterized by a sequence of phases, with phase changes occurring unpredictably. The decision problem was considered regarding the remapping of workload to processors in a parallel computation when the utility of remapping and the future behavior of the workload is uncertain, and phases exhibit stable execution requirements during a given phase, but requirements may change radically between phases. For these problems a workload assignment generated for one phase may hinder performance during the next phase. This problem is treated formally for a probabilistic model of computation with at most two phases. The fundamental problem of balancing the expected remapping performance gain against the delay cost was addressed. Stochastic dynamic programming is used to show that the remapping decision policy minimizing the expected running time of the computation has an extremely simple structure. Because the gain may not be predictable, the performance of a heuristic policy that does not require estimnation of the gain is examined. The heuristic method's feasibility is demonstrated by its use on an adaptive fluid dynamics code on a multiprocessor. The results suggest that except in extreme cases, the remapping decision problem is essentially that of dynamically determining whether gain can be achieved by remapping after a phase change. The results also suggest that this heuristic is applicable to computations with more than two phases.

  6. Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization

    NASA Astrophysics Data System (ADS)

    Subramani, Deepak N.; Lermusiaux, Pierre F. J.

    2016-04-01

    A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. Based on partial differential equations, the methodology rigorously leverages the level-set equation that governs time-optimal reachability fronts for a given relative vehicle-speed function. To set up the energy optimization, the relative vehicle-speed and headings are considered to be stochastic and new stochastic Dynamically Orthogonal (DO) level-set equations are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. Numerical schemes to solve the reduced stochastic DO level-set equations are obtained, and accuracy and efficiency considerations are discussed. These reduced equations are first shown to be efficient at solving the governing stochastic level-sets, in part by comparisons with direct Monte Carlo simulations. To validate the methodology and illustrate its accuracy, comparisons with semi-analytical energy-optimal path solutions are then completed. In particular, we consider the energy-optimal crossing of a canonical steady front and set up its semi-analytical solution using a energy-time nested nonlinear double-optimization scheme. We then showcase the inner workings and nuances of the energy-optimal path planning, considering different mission scenarios. Finally, we study and discuss results of energy-optimal missions in a wind-driven barotropic quasi-geostrophic double-gyre ocean circulation.

  7. Dynamic optimization of district energy grid

    NASA Astrophysics Data System (ADS)

    Salsbery, Scott

    The University of Iowa Power Plant operates utility generation and distribution for campus facilities, including electricity, steam, and chilled water. It is desirable to evaluate the optimal load combination of boilers, engines and chillers to meet the demand at minimal cost, particularly for future demand scenarios. An algorithm has been developed which takes into account the performance of individual units as part of the mix which ultimately supplies the campus and determine the degree that each should be operating to most efficiently meet demand. The algorithm is part of an integrated simulation tool which is specifically designed to apply traditional optimization techniques for a given (both current and possible) circumstance. The second component is to couple the algorithm with accurate estimates and historical data through which expected demand could be predicted. The simulation tool can account for any theoretical circumstance, which will be highly beneficial for strategic planning. As part of the process it is also necessary to determine the unique operating characteristics of the system components. The algorithms rely upon performance curves of individual system components (boiler, chiller, etc.) and those must be developed and refined when possible from experimental testing and commissioning or manufacturer supplied data.

  8. Aerospace applications of integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in solving combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on a large space structure and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  9. Aerospace Applications of Integer and Combinatorial Optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  10. Aerospace applications on integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem. for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  11. Optimal motor control may mask sensory dynamics

    PubMed Central

    Kiemel, Tim; Cowan, Noah J.; Jeka, John J.

    2009-01-01

    Properties of neural controllers for closed-loop sensorimotor behavior can be inferred with system identification. Under the standard paradigm, the closed-loop system is perturbed (input), measurements are taken (output), and the relationship between input and output reveals features of the system under study. Here we show that under common assumptions made about such systems (e.g. the system implements optimal control with a penalty on mechanical, but not sensory, states) important aspects of the neural controller (its zeros mask the modes of the sensors) remain hidden from standard system identification techniques. Only by perturbing or measuring the closed-loop system “between” the sensor and the control can these features be exposed with closed-loop system identification methods; while uncommon, there exist noninvasive techniques such as galvanic vestibular stimulation that perturb between sensor and controller in this way. PMID:19408009

  12. Particle swarm optimization with recombination and dynamic linkage discovery.

    PubMed

    Chen, Ying-Ping; Peng, Wen-Chih; Jian, Ming-Chung

    2007-12-01

    In this paper, we try to improve the performance of the particle swarm optimizer by incorporating the linkage concept, which is an essential mechanism in genetic algorithms, and design a new linkage identification technique called dynamic linkage discovery to address the linkage problem in real-parameter optimization problems. Dynamic linkage discovery is a costless and effective linkage recognition technique that adapts the linkage configuration by employing only the selection operator without extra judging criteria irrelevant to the objective function. Moreover, a recombination operator that utilizes the discovered linkage configuration to promote the cooperation of particle swarm optimizer and dynamic linkage discovery is accordingly developed. By integrating the particle swarm optimizer, dynamic linkage discovery, and recombination operator, we propose a new hybridization of optimization methodologies called particle swarm optimization with recombination and dynamic linkage discovery (PSO-RDL). In order to study the capability of PSO-RDL, numerical experiments were conducted on a set of benchmark functions as well as on an important real-world application. The benchmark functions used in this paper were proposed in the 2005 Institute of Electrical and Electronics Engineers Congress on Evolutionary Computation. The experimental results on the benchmark functions indicate that PSO-RDL can provide a level of performance comparable to that given by other advanced optimization techniques. In addition to the benchmark, PSO-RDL was also used to solve the economic dispatch (ED) problem for power systems, which is a real-world problem and highly constrained. The results indicate that PSO-RDL can successfully solve the ED problem for the three-unit power system and obtain the currently known best solution for the 40-unit system. PMID:18179066

  13. Experimental Testing of Dynamically Optimized Photoelectron Beams

    NASA Astrophysics Data System (ADS)

    Rosenzweig, J. B.; Cook, A. M.; Dunning, M.; England, R. J.; Musumeci, P.; Bellaveglia, M.; Boscolo, M.; Catani, L.; Cianchi, A.; Di Pirro, G.; Ferrario, M.; Fillipetto, D.; Gatti, G.; Palumbo, L.; Serafini, L.; Vicario, C.; Jones, S.

    2006-11-01

    We discuss the design of and initial results from an experiment in space-charge dominated beam dynamics which explores a new regime of high-brightness electron beam generation at the SPARC photoinjector. The scheme under study employs the tendency of intense electron beams to rearrange to produce uniform density, giving a nearly ideal beam from the viewpoint of space charge-induced emittance. The experiments are aimed at testing the marriage of this idea with a related concept, emittance compensation. We show that this new regime of operating photoinjector may be the preferred method of obtaining highest brightness beams with lower energy spread. We discuss the design of the experiment, including developing of a novel time-dependent, aerogel-based imaging system. This system has been installed at SPARC, and first evidence for nearly uniformly filled ellipsoidal charge distributions recorded.

  14. Experimental Testing of Dynamically Optimized Photoelectron Beams

    SciTech Connect

    Rosenzweig, J. B.; Cook, A. M.; Dunning, M.; England, R. J.; Musumeci, P.; Bellaveglia, M.; Boscolo, M.; Catani, L.; Cianchi, A.; Di Pirro, G.; Ferrario, M.; Fillipetto, D.; Gatti, G.; Palumbo, L.; Vicario, C.; Serafini, L.; Jones, S.

    2006-11-27

    We discuss the design of and initial results from an experiment in space-charge dominated beam dynamics which explores a new regime of high-brightness electron beam generation at the SPARC photoinjector. The scheme under study employs the tendency of intense electron beams to rearrange to produce uniform density, giving a nearly ideal beam from the viewpoint of space charge-induced emittance. The experiments are aimed at testing the marriage of this idea with a related concept, emittance compensation. We show that this new regime of operating photoinjector may be the preferred method of obtaining highest brightness beams with lower energy spread. We discuss the design of the experiment, including developing of a novel time-dependent, aerogel-based imaging system. This system has been installed at SPARC, and first evidence for nearly uniformly filled ellipsoidal charge distributions recorded.

  15. Optimizing Laboratory Experiments for Dynamic Astrophysical Phenomena

    SciTech Connect

    Ryutov, D; Remington, B

    2005-09-13

    To make a laboratory experiment an efficient tool for the studying the dynamical astrophysical phenomena, it is desirable to perform them in such a way as to observe the scaling invariance with respect to the astrophysical system under study. Several examples are presented of such scalings in the area of magnetohydrodynamic phenomena, where a number of scaled experiments have been performed. A difficult issue of the effect of fine-scale dissipative structures on the global scale dissipation-free flow is discussed. The second part of the paper is concerned with much less developed area of the scalings relevant to the interaction of an ultra-intense laser pulse with a pre-formed plasma. The use of the symmetry arguments in such experiments is also considered.

  16. Recursive multibody dynamics and discrete-time optimal control

    NASA Technical Reports Server (NTRS)

    Deleuterio, G. M. T.; Damaren, C. J.

    1989-01-01

    A recursive algorithm is developed for the solution of the simulation dynamics problem for a chain of rigid bodies. Arbitrary joint constraints are permitted, that is, joints may allow translational and/or rotational degrees of freedom. The recursive procedure is shown to be identical to that encountered in a discrete-time optimal control problem. For each relevant quantity in the multibody dynamics problem, there exists an analog in the context of optimal control. The performance index that is minimized in the control problem is identified as Gibbs' function for the chain of bodies.

  17. Optimization of Conformational Dynamics in an Epistatic Evolutionary Trajectory.

    PubMed

    González, Mariano M; Abriata, Luciano A; Tomatis, Pablo E; Vila, Alejandro J

    2016-07-01

    The understanding of protein evolution depends on the ability to relate the impact of mutations on molecular traits to organismal fitness. Biological activity and robustness have been regarded as important features in shaping protein evolutionary landscapes. Conformational dynamics, which is essential for protein function, has received little attention in the context of evolutionary analyses. Here we employ NMR spectroscopy, the chief experimental tool to describe protein dynamics at atomic level in solution at room temperature, to study the intrinsic dynamic features of a metallo- Β: -lactamase enzyme and three variants identified during a directed evolution experiment that led to an expanded substrate profile. We show that conformational dynamics in the catalytically relevant microsecond to millisecond timescale is optimized along the favored evolutionary trajectory. In addition, we observe that the effects of mutations on dynamics are epistatic. Mutation Gly262Ser introduces slow dynamics on several residues that surround the active site when introduced in the wild-type enzyme. Mutation Asn70Ser removes the slow dynamics observed for few residues of the wild-type enzyme, but increases the number of residues that undergo slow dynamics when introduced in the Gly262Ser mutant. These effects on dynamics correlate with the epistatic interaction between these two mutations on the bacterial phenotype. These findings indicate that conformational dynamics is an evolvable trait, and that proteins endowed with more dynamic active sites also display a larger potential for promoting evolution.

  18. An adaptive immune optimization algorithm with dynamic lattice searching operation for fast optimization of atomic clusters

    NASA Astrophysics Data System (ADS)

    Wu, Xia; Wu, Genhua

    2014-08-01

    Geometrical optimization of atomic clusters is performed by a development of adaptive immune optimization algorithm (AIOA) with dynamic lattice searching (DLS) operation (AIOA-DLS method). By a cycle of construction and searching of the dynamic lattice (DL), DLS algorithm rapidly makes the clusters more regular and greatly reduces the potential energy. DLS can thus be used as an operation acting on the new individuals after mutation operation in AIOA to improve the performance of the AIOA. The AIOA-DLS method combines the merit of evolutionary algorithm and idea of dynamic lattice. The performance of the proposed method is investigated in the optimization of Lennard-Jones clusters within 250 atoms and silver clusters described by many-body Gupta potential within 150 atoms. Results reported in the literature are reproduced, and the motif of Ag61 cluster is found to be stacking-fault face-centered cubic, whose energy is lower than that of previously obtained icosahedron.

  19. Aerodynamic design optimization with sensitivity analysis and computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1995-01-01

    An investigation was conducted from October 1, 1990 to May 31, 1994 on the development of methodologies to improve the designs (more specifically, the shape) of aerodynamic surfaces of coupling optimization algorithms (OA) with Computational Fluid Dynamics (CFD) algorithms via sensitivity analyses (SA). The study produced several promising methodologies and their proof-of-concept cases, which have been reported in the open literature.

  20. Bridging Developmental Systems Theory and Evolutionary Psychology Using Dynamic Optimization

    ERIC Educational Resources Information Center

    Frankenhuis, Willem E.; Panchanathan, Karthik; Clark Barrett, H.

    2013-01-01

    Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic…

  1. Optimal Dynamic Discrimination in Tryptophan-Containing Dipeptides

    NASA Astrophysics Data System (ADS)

    Afonina, S.; Nenadl, O.; Rondi, A.; Kiselev, D.; Extermann, J.; Bonacina, L.; Wolf, J.-P.

    2013-03-01

    Optimal Dynamic Discrimination based on the phase-shaping of deep ultraviolet femtosecond pulses was applied to selectively modulate the time-resolved fluorescence depletion of pairs of tryptophan-containing dipeptides. Our results indicate that phase-sensitive excitation allows their differential identification, beyond the limits of linear and time-resolved spectroscopy.

  2. Voronoi Diagram Based Optimization of Dynamic Reactive Power Sources

    SciTech Connect

    Huang, Weihong; Sun, Kai; Qi, Junjian; Xu, Yan

    2015-01-01

    Dynamic var sources can effectively mitigate fault-induced delayed voltage recovery (FIDVR) issues or even voltage collapse. This paper proposes a new approach to optimization of the sizes of dynamic var sources at candidate locations by a Voronoi diagram based algorithm. It first disperses sample points of potential solutions in a searching space, evaluates a cost function at each point by barycentric interpolation for the subspaces around the point, and then constructs a Voronoi diagram about cost function values over the entire space. Accordingly, the final optimal solution can be obtained. Case studies on the WSCC 9-bus system and NPCC 140-bus system have validated that the new approach can quickly identify the boundary of feasible solutions in searching space and converge to the global optimal solution.

  3. A dynamic optimization model for solid waste recycling.

    PubMed

    Anghinolfi, Davide; Paolucci, Massimo; Robba, Michela; Taramasso, Angela Celeste

    2013-02-01

    Recycling is an important part of waste management (that includes different kinds of issues: environmental, technological, economic, legislative, social, etc.). Differently from many works in literature, this paper is focused on recycling management and on the dynamic optimization of materials collection. The developed dynamic decision model is characterized by state variables, corresponding to the quantity of waste in each bin per each day, and control variables determining the quantity of material that is collected in the area each day and the routes for collecting vehicles. The objective function minimizes the sum of costs minus benefits. The developed decision model is integrated in a GIS-based Decision Support System (DSS). A case study related to the Cogoleto municipality is presented to show the effectiveness of the proposed model. From optimal results, it has been found that the net benefits of the optimized collection are about 2.5 times greater than the estimated current policy.

  4. Multiobjective Optimization of Low-Energy Trajectories Using Optimal Control on Dynamical Channels

    NASA Technical Reports Server (NTRS)

    Coffee, Thomas M.; Anderson, Rodney L.; Lo, Martin W.

    2011-01-01

    We introduce a computational method to design efficient low-energy trajectories by extracting initial solutions from dynamical channels formed by invariant manifolds, and improving these solutions through variational optimal control. We consider trajectories connecting two unstable periodic orbits in the circular restricted 3-body problem (CR3BP). Our method leverages dynamical channels to generate a range of solutions, and approximates the areto front for impulse and time of flight through a multiobjective optimization of these solutions based on primer vector theory. We demonstrate the application of our method to a libration orbit transfer in the Earth-Moon system.

  5. Optimal control analysis of the dynamic growth behavior of microorganisms.

    PubMed

    Mandli, Aravinda R; Modak, Jayant M

    2014-12-01

    Understanding the growth behavior of microorganisms using modeling and optimization techniques is an active area of research in the fields of biochemical engineering and systems biology. In this paper, we propose a general modeling framework, based on Monod model, to model the growth of microorganisms. Utilizing the general framework, we formulate an optimal control problem with the objective of maximizing a long-term cellular goal and solve it analytically under various constraints for the growth of microorganisms in a two substrate batch environment. We investigate the relation between long term and short term cellular goals and show that the objective of maximizing cellular concentration at a fixed final time is equivalent to maximization of instantaneous growth rate. We then establish the mathematical connection between the generalized framework and optimal and cybernetic modeling frameworks and derive generalized governing dynamic equations for optimal and cybernetic models. We finally illustrate the influence of various constraints in the cybernetic modeling framework on the optimal growth behavior of microorganisms by solving several dynamic optimization problems using genetic algorithms.

  6. Dynamics and linear quadratic optimal control of flexible multibody systems

    NASA Astrophysics Data System (ADS)

    Tung, Chin-Wei

    1994-12-01

    An efficient algorithm for the modeling, dynamic analysis, and optimal control of flexible multibody systems (FMBS) is presented. The cantilevered Bernoulli-Euler beam model and the assumed mode method are used to represent flexibility of elastic bodies in 3D vibration problems. Centrifugal stiffening effects are introduced to correctly represent the dynamic response. The governing equations of motion are based on Kane's equations, adopting a recursive formulation and strategic positioning of the generalized coordinates. The linear quadratic optimization scheme is employed to formulate the vibration control problem. The solutions to the Riccati equation and the use of Kalman gain as optimal control feedbacks to the control of flexibility are also introduced. Based on the optimal control theory and the property of the built-in redundancy for flexible multibody systems, the performance index measure in the optimization control of such systems can be classified into two manifolds: (1) using the extra degrees of freedom resulting from redundancy as control inputs and choosing an integral-type performance index which results in a global optimization scheme and (2) using the joint forces and torques as control inputs and allowing the system output state to keep close track to a reference state while the performance index is kept minimum. Several numerical examples are presented to demonstrate the effectiveness of the methodologies developed.

  7. Successive linear optimization approach to the dynamic traffic assignment problem

    SciTech Connect

    Ho, J.K.

    1980-11-01

    A dynamic model for the optimal control of traffic flow over a network is considered. The model, which treats congestion explicitly in the flow equations, gives rise to nonlinear, nonconvex mathematical programming problems. It has been shown for a piecewise linear version of this model that a global optimum is contained in the set of optimal solutions of a certain linear program. A sufficient condition for optimality which implies that a global optimum can be obtained by successively optimizing at most N + 1 objective functions for the linear program, where N is the number of time periods in the planning horizon is presented. Computational results are reported to indicate the efficiency of this approach.

  8. Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    2015-07-01

    In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.

  9. Optimization Research of Generation Investment Based on Linear Programming Model

    NASA Astrophysics Data System (ADS)

    Wu, Juan; Ge, Xueqian

    Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.

  10. Optimizing legacy molecular dynamics software with directive-based offload

    NASA Astrophysics Data System (ADS)

    Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.

    2015-10-01

    Directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In this paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMPS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel® Xeon Phi™ coprocessors and NVIDIA GPUs. The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS.

  11. Optimizing legacy molecular dynamics software with directive-based offload

    SciTech Connect

    Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.

    2015-05-14

    The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.

  12. Optimizing legacy molecular dynamics software with directive-based offload

    DOE PAGES

    Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.

    2015-05-14

    The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also resultmore » in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.« less

  13. Optimization of the dynamic inducer wind turbine system

    NASA Astrophysics Data System (ADS)

    Lissaman, P. B. S.; Zalay, A. D.; Hibbs, B.

    The dynamic inducer, essentially a horizontal axis wind turbine (HAWT) rotor with small vanes at the tips is a promising, advanced technology wind turbine concept. By adding small vanes to the tip of the conventional rotor, significant increases in power can be obtained with the dynamic inducer system. The development of the system is reviewed, including past theoretical and experimental programs. Recent tow tests and wind tunnel tests established the predicted augmentation power. A new optimization program is outlined, based on advanced theory back by extensive wind tunnel testing, aimed at developing an advanced dynamic inducer system for a state-of-the art high performance, two-bladed rotor system. It is estimated that the dynamic inducer rotor is about 20% more cost-effective than a conventional system.

  14. Rethinking design parameters in the search for optimal dynamic seating.

    PubMed

    Pynt, Jennifer

    2015-04-01

    Dynamic seating design purports to lessen damage incurred during sedentary occupations by increasing sitter movement while modifying muscle activity. Dynamic sitting is currently defined by O'Sullivan et al. ( 2013a) as relating to 'the increased motion in sitting which is facilitated by the use of specific chairs or equipment' (p. 628). Yet the evidence is conflicting that dynamic seating creates variation in the sitter's lumbar posture or muscle activity with the overall consensus being that current dynamic seating design fails to fulfill its goals. Research is needed to determine if a new generation of chairs requiring active sitter involvement fulfills the goals of dynamic seating and aids cardio/metabolic health. This paper summarises the pursuit of knowledge regarding optimal seated spinal posture and seating design. Four new forms of dynamic seating encouraging active sitting are discussed. These are 1) The Core-flex with a split seatpan to facilitate a walking action while seated 2) the Duo balans requiring body action to create rocking 3) the Back App and 4) Locus pedestal stools both using the sitter's legs to drive movement. Unsubstantiated claims made by the designers of these new forms of dynamic seating are outlined. Avenues of research are suggested to validate designer claims and investigate whether these designs fulfill the goals of dynamic seating and assist cardio/metabolic health. Should these claims be efficacious then a new definition of dynamic sitting is suggested; 'Sitting in which the action is provided by the sitter, while the dynamic mechanism of the chair accommodates that action'.

  15. Rethinking design parameters in the search for optimal dynamic seating.

    PubMed

    Pynt, Jennifer

    2015-04-01

    Dynamic seating design purports to lessen damage incurred during sedentary occupations by increasing sitter movement while modifying muscle activity. Dynamic sitting is currently defined by O'Sullivan et al. ( 2013a) as relating to 'the increased motion in sitting which is facilitated by the use of specific chairs or equipment' (p. 628). Yet the evidence is conflicting that dynamic seating creates variation in the sitter's lumbar posture or muscle activity with the overall consensus being that current dynamic seating design fails to fulfill its goals. Research is needed to determine if a new generation of chairs requiring active sitter involvement fulfills the goals of dynamic seating and aids cardio/metabolic health. This paper summarises the pursuit of knowledge regarding optimal seated spinal posture and seating design. Four new forms of dynamic seating encouraging active sitting are discussed. These are 1) The Core-flex with a split seatpan to facilitate a walking action while seated 2) the Duo balans requiring body action to create rocking 3) the Back App and 4) Locus pedestal stools both using the sitter's legs to drive movement. Unsubstantiated claims made by the designers of these new forms of dynamic seating are outlined. Avenues of research are suggested to validate designer claims and investigate whether these designs fulfill the goals of dynamic seating and assist cardio/metabolic health. Should these claims be efficacious then a new definition of dynamic sitting is suggested; 'Sitting in which the action is provided by the sitter, while the dynamic mechanism of the chair accommodates that action'. PMID:25892386

  16. A Dynamically Optimized SSVEP Brain-Computer Interface (BCI) Speller.

    PubMed

    Yin, Erwei; Zhou, Zongtan; Jiang, Jun; Yu, Yang; Hu, Dewen

    2015-06-01

    The aim of this study was to design a dynamically optimized steady-state visually evoked potential (SSVEP) brain-computer interface (BCI) system with enhanced performance relative to previous SSVEP BCIs in terms of the number of items selectable on the interface, accuracy, and speed. In this approach, the row/column (RC) paradigm was employed in a SSVEP speller to increase the number of items. The target is detected by subsequently determining the row and column coordinates. To improve spelling accuracy, we added a posterior processing after the canonical correlation analysis (CCA) approach to reduce the interfrequency variation between different subjects and named the new signal processing method CCA-RV, and designed a real-time biofeedback mechanism to increase attention on the visual stimuli. To achieve reasonable online spelling speed, both fixed and dynamic approaches for setting the optimal stimulus duration were implemented and compared. Experimental results for 11 subjects suggest that the CCA-RV method and the real-time biofeedback effectively increased accuracy compared with CCA and the absence of real-time feedback, respectively. In addition, both optimization approaches for setting stimulus duration achieved reasonable online spelling performance. However, the dynamic optimization approach yielded a higher practical information transfer rate (PITR) than the fixed optimization approach. The average online PITR achieved by the proposed adaptive SSVEP speller, including the time required for breaks between selections and error correction, was 41.08 bit/min. These results indicate that our BCI speller is promising for use in SSVEP-based BCI applications.

  17. Topology optimization for nonlinear dynamic problems: Considerations for automotive crashworthiness

    NASA Astrophysics Data System (ADS)

    Kaushik, Anshul; Ramani, Anand

    2014-04-01

    Crashworthiness of automotive structures is most often engineered after an optimal topology has been arrived at using other design considerations. This study is an attempt to incorporate crashworthiness requirements upfront in the topology synthesis process using a mathematically consistent framework. It proposes the use of equivalent linear systems from the nonlinear dynamic simulation in conjunction with a discrete-material topology optimizer. Velocity and acceleration constraints are consistently incorporated in the optimization set-up. Issues specific to crash problems due to the explicit solution methodology employed, nature of the boundary conditions imposed on the structure, etc. are discussed and possible resolutions are proposed. A demonstration of the methodology on two-dimensional problems that address some of the structural requirements and the types of loading typical of frontal and side impact is provided in order to show that this methodology has the potential for topology synthesis incorporating crashworthiness requirements.

  18. Optimal Control of a Parabolic Equation with Dynamic Boundary Condition

    SciTech Connect

    Hoemberg, D. Krumbiegel, K.; Rehberg, J.

    2013-02-15

    We investigate a control problem for the heat equation. The goal is to find an optimal heat transfer coefficient in the dynamic boundary condition such that a desired temperature distribution at the boundary is adhered. To this end we consider a function space setting in which the heat flux across the boundary is forced to be an L{sup p} function with respect to the surface measure, which in turn implies higher regularity for the time derivative of temperature. We show that the corresponding elliptic operator generates a strongly continuous semigroup of contractions and apply the concept of maximal parabolic regularity. This allows to show the existence of an optimal control and the derivation of necessary and sufficient optimality conditions.

  19. Optimization of Individualized Dynamic Treatment Regimes for Recurrent Diseases

    PubMed Central

    Huang, Xuelin; Ning, Jing; Wahed, Abdus S.

    2014-01-01

    Patients with cancer or other recurrent diseases may undergo a long process of initial treatment, disease recurrences and salvage treatments. It is important to optimize the multi-stage treatment sequence in this process to maximally prolong patients’ survival. Comparing disease-free survival for each treatment stage over-penalizes disease recurrences but under-penalizes treatment-related mortalities. Moreover, treatment regimes used in practice are dynamic, i.e., the choice of next treatment depends on a patient’s responses to previous therapies. In this article, using accelerated failure time models, we develop a method to optimize such dynamic treatment regimes (DTRs). This method utilizes all the longitudinal data collected during the multi-stage process of disease recurrences and treatments, and identifies the optimal DTR for each individual patient by maximizing his/her expected overall survival. The application of this method is illustrated using data from a study of acute myeloid leukemia. The optimal treatment strategies for different patient subgroups are identified. PMID:24510534

  20. Coarse-graining two-dimensional turbulence via dynamical optimization

    NASA Astrophysics Data System (ADS)

    Turkington, Bruce; Chen, Qian-Yong; Thalabard, Simon

    2016-10-01

    A model reduction technique based on an optimization principle is employed to coarse-grain inviscid, incompressible fluid dynamics in two dimensions. In this reduction the spectrally-truncated vorticity equation defines the microdynamics, while the macroscopic state space consists of quasi-equilibrium trial probability densities on the microscopic phase space, which are parameterized by the means and variances of the low modes of the vorticity. A macroscopic path therefore represents a coarse-grained approximation to the evolution of a nonequilibrium ensemble of microscopic solutions. Closure in terms of the vector of resolved variables, namely, the means and variances of the low modes, is achieved by minimizing over all feasible paths the time integral of their mean-squared residual with respect to the Liouville equation. The equations governing the optimal path are deduced from Hamilton-Jacobi theory. The coarse-grained dynamics derived by this optimization technique contains a scale-dependent eddy viscosity, modified nonlinear interactions between the low mode means, and a nonlinear coupling between the mean and variance of each low mode. The predictive skill of this optimal closure is validated quantitatively by comparing it against direct numerical simulations. These tests show that good agreement is achieved without adjusting any closure parameters.

  1. Confronting dynamics and uncertainty in optimal decision making for conservation

    NASA Astrophysics Data System (ADS)

    Williams, Byron K.; Johnson, Fred A.

    2013-06-01

    The effectiveness of conservation efforts ultimately depends on the recognition that decision making, and the systems that it is designed to affect, are inherently dynamic and characterized by multiple sources of uncertainty. To cope with these challenges, conservation planners are increasingly turning to the tools of decision analysis, especially dynamic optimization methods. Here we provide a general framework for optimal, dynamic conservation and then explore its capacity for coping with various sources and degrees of uncertainty. In broadest terms, the dynamic optimization problem in conservation is choosing among a set of decision options at periodic intervals so as to maximize some conservation objective over the planning horizon. Planners must account for immediate objective returns, as well as the effect of current decisions on future resource conditions and, thus, on future decisions. Undermining the effectiveness of such a planning process are uncertainties concerning extant resource conditions (partial observability), the immediate consequences of decision choices (partial controllability), the outcomes of uncontrolled, environmental drivers (environmental variation), and the processes structuring resource dynamics (structural uncertainty). Where outcomes from these sources of uncertainty can be described in terms of probability distributions, a focus on maximizing the expected objective return, while taking state-specific actions, is an effective mechanism for coping with uncertainty. When such probability distributions are unavailable or deemed unreliable, a focus on maximizing robustness is likely to be the preferred approach. Here the idea is to choose an action (or state-dependent policy) that achieves at least some minimum level of performance regardless of the (uncertain) outcomes. We provide some examples of how the dynamic optimization problem can be framed for problems involving management of habitat for an imperiled species, conservation of a

  2. Confronting dynamics and uncertainty in optimal decision making for conservation

    USGS Publications Warehouse

    Williams, Byron K.; Johnson, Fred A.

    2013-01-01

    The effectiveness of conservation efforts ultimately depends on the recognition that decision making, and the systems that it is designed to affect, are inherently dynamic and characterized by multiple sources of uncertainty. To cope with these challenges, conservation planners are increasingly turning to the tools of decision analysis, especially dynamic optimization methods. Here we provide a general framework for optimal, dynamic conservation and then explore its capacity for coping with various sources and degrees of uncertainty. In broadest terms, the dynamic optimization problem in conservation is choosing among a set of decision options at periodic intervals so as to maximize some conservation objective over the planning horizon. Planners must account for immediate objective returns, as well as the effect of current decisions on future resource conditions and, thus, on future decisions. Undermining the effectiveness of such a planning process are uncertainties concerning extant resource conditions (partial observability), the immediate consequences of decision choices (partial controllability), the outcomes of uncontrolled, environmental drivers (environmental variation), and the processes structuring resource dynamics (structural uncertainty). Where outcomes from these sources of uncertainty can be described in terms of probability distributions, a focus on maximizing the expected objective return, while taking state-specific actions, is an effective mechanism for coping with uncertainty. When such probability distributions are unavailable or deemed unreliable, a focus on maximizing robustness is likely to be the preferred approach. Here the idea is to choose an action (or state-dependent policy) that achieves at least some minimum level of performance regardless of the (uncertain) outcomes. We provide some examples of how the dynamic optimization problem can be framed for problems involving management of habitat for an imperiled species, conservation of a

  3. Human opinion dynamics: an inspiration to solve complex optimization problems.

    PubMed

    Kaur, Rishemjit; Kumar, Ritesh; Bhondekar, Amol P; Kapur, Pawan

    2013-01-01

    Human interactions give rise to the formation of different kinds of opinions in a society. The study of formations and dynamics of opinions has been one of the most important areas in social physics. The opinion dynamics and associated social structure leads to decision making or so called opinion consensus. Opinion formation is a process of collective intelligence evolving from the integrative tendencies of social influence with the disintegrative effects of individualisation, and therefore could be exploited for developing search strategies. Here, we demonstrate that human opinion dynamics can be utilised to solve complex mathematical optimization problems. The results have been compared with a standard algorithm inspired from bird flocking behaviour and the comparison proves the efficacy of the proposed approach in general. Our investigation may open new avenues towards understanding the collective decision making. PMID:24141795

  4. Human opinion dynamics: An inspiration to solve complex optimization problems

    PubMed Central

    Kaur, Rishemjit; Kumar, Ritesh; Bhondekar, Amol P.; Kapur, Pawan

    2013-01-01

    Human interactions give rise to the formation of different kinds of opinions in a society. The study of formations and dynamics of opinions has been one of the most important areas in social physics. The opinion dynamics and associated social structure leads to decision making or so called opinion consensus. Opinion formation is a process of collective intelligence evolving from the integrative tendencies of social influence with the disintegrative effects of individualisation, and therefore could be exploited for developing search strategies. Here, we demonstrate that human opinion dynamics can be utilised to solve complex mathematical optimization problems. The results have been compared with a standard algorithm inspired from bird flocking behaviour and the comparison proves the efficacy of the proposed approach in general. Our investigation may open new avenues towards understanding the collective decision making. PMID:24141795

  5. Human opinion dynamics: An inspiration to solve complex optimization problems

    NASA Astrophysics Data System (ADS)

    Kaur, Rishemjit; Kumar, Ritesh; Bhondekar, Amol P.; Kapur, Pawan

    2013-10-01

    Human interactions give rise to the formation of different kinds of opinions in a society. The study of formations and dynamics of opinions has been one of the most important areas in social physics. The opinion dynamics and associated social structure leads to decision making or so called opinion consensus. Opinion formation is a process of collective intelligence evolving from the integrative tendencies of social influence with the disintegrative effects of individualisation, and therefore could be exploited for developing search strategies. Here, we demonstrate that human opinion dynamics can be utilised to solve complex mathematical optimization problems. The results have been compared with a standard algorithm inspired from bird flocking behaviour and the comparison proves the efficacy of the proposed approach in general. Our investigation may open new avenues towards understanding the collective decision making.

  6. Optimized Uncertainty Quantification Algorithm Within a Dynamic Event Tree Framework

    SciTech Connect

    J. W. Nielsen; Akira Tokuhiro; Robert Hiromoto

    2014-06-01

    Methods for developing Phenomenological Identification and Ranking Tables (PIRT) for nuclear power plants have been a useful tool in providing insight into modelling aspects that are important to safety. These methods have involved expert knowledge with regards to reactor plant transients and thermal-hydraulic codes to identify are of highest importance. Quantified PIRT provides for rigorous method for quantifying the phenomena that can have the greatest impact. The transients that are evaluated and the timing of those events are typically developed in collaboration with the Probabilistic Risk Analysis. Though quite effective in evaluating risk, traditional PRA methods lack the capability to evaluate complex dynamic systems where end states may vary as a function of transition time from physical state to physical state . Dynamic PRA (DPRA) methods provide a more rigorous analysis of complex dynamic systems. A limitation of DPRA is its potential for state or combinatorial explosion that grows as a function of the number of components; as well as, the sampling of transition times from state-to-state of the entire system. This paper presents a method for performing QPIRT within a dynamic event tree framework such that timing events which result in the highest probabilities of failure are captured and a QPIRT is performed simultaneously while performing a discrete dynamic event tree evaluation. The resulting simulation results in a formal QPIRT for each end state. The use of dynamic event trees results in state explosion as the number of possible component states increases. This paper utilizes a branch and bound algorithm to optimize the solution of the dynamic event trees. The paper summarizes the methods used to implement the branch-and-bound algorithm in solving the discrete dynamic event trees.

  7. Designing Area Optimized Application-Specific Network-On-Chip Architectures while Providing Hard QoS Guarantees

    PubMed Central

    Khawaja, Sajid Gul; Mushtaq, Mian Hamza; Khan, Shoab A.; Akram, M. Usman; Jamal, Habib ullah

    2015-01-01

    With the increase of transistors' density, popularity of System on Chip (SoC) has increased exponentially. As a communication module for SoC, Network on Chip (NoC) framework has been adapted as its backbone. In this paper, we propose a methodology for designing area-optimized application specific NoC while providing hard Quality of Service (QoS) guarantees for real time flows. The novelty of the proposed system lies in derivation of a Mixed Integer Linear Programming model which is then used to generate a resource optimal Network on Chip (NoC) topology and architecture while considering traffic and QoS requirements. We also present the micro-architectural design features used for enabling traffic and latency guarantees and discuss how the solution adapts for dynamic variations in the application traffic. The paper highlights the effectiveness of proposed method by generating resource efficient NoC solutions for both industrial and benchmark applications. The area-optimized results are generated in few seconds by proposed technique, without resorting to heuristics, even for an application with 48 traffic flows. PMID:25898016

  8. Optimizing spread dynamics on graphs by message passing

    NASA Astrophysics Data System (ADS)

    Altarelli, F.; Braunstein, A.; Dall'Asta, L.; Zecchina, R.

    2013-09-01

    Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to describe cascades in a large variety of contexts. Over the past decades, much effort has been devoted to understanding the typical behavior of the cascades arising from initial conditions extracted at random from some given ensemble. However, the problem of optimizing the trajectory of the system, i.e. of identifying appropriate initial conditions to maximize (or minimize) the final number of active nodes, is still considered to be practically intractable, with the only exception being models that satisfy a sort of diminishing returns property called submodularity. Submodular models can be approximately solved by means of greedy strategies, but by definition they lack cooperative characteristics which are fundamental in many real systems. Here we introduce an efficient algorithm based on statistical physics for the optimization of trajectories in cascade processes on graphs. We show that for a wide class of irreversible dynamics, even in the absence of submodularity, the spread optimization problem can be solved efficiently on large networks. Analytic and algorithmic results on random graphs are complemented by the solution of the spread maximization problem on a real-world network (the Epinions consumer reviews network).

  9. Set-valued dynamic treatment regimes for competing outcomes.

    PubMed

    Laber, Eric B; Lizotte, Daniel J; Ferguson, Bradley

    2014-03-01

    Dynamic treatment regimes (DTRs) operationalize the clinical decision process as a sequence of functions, one for each clinical decision, where each function maps up-to-date patient information to a single recommended treatment. Current methods for estimating optimal DTRs, for example Q-learning, require the specification of a single outcome by which the "goodness" of competing dynamic treatment regimes is measured. However, this is an over-simplification of the goal of clinical decision making, which aims to balance several potentially competing outcomes, for example, symptom relief and side-effect burden. When there are competing outcomes and patients do not know or cannot communicate their preferences, formation of a single composite outcome that correctly balances the competing outcomes is not possible. This problem also occurs when patient preferences evolve over time. We propose a method for constructing DTRs that accommodates competing outcomes by recommending sets of treatments at each decision point. Formally, we construct a sequence of set-valued functions that take as input up-to-date patient information and give as output a recommended subset of the possible treatments. For a given patient history, the recommended set of treatments contains all treatments that produce non-inferior outcome vectors. Constructing these set-valued functions requires solving a non-trivial enumeration problem. We offer an exact enumeration algorithm by recasting the problem as a linear mixed integer program. The proposed methods are illustrated using data from the CATIE schizophrenia study.

  10. Exposure time optimization for highly dynamic star trackers.

    PubMed

    Wei, Xinguo; Tan, Wei; Li, Jian; Zhang, Guangjun

    2014-03-11

    Under highly dynamic conditions, the star-spots on the image sensor of a star tracker move across many pixels during the exposure time, which will reduce star detection sensitivity and increase star location errors. However, this kind of effect can be compensated well by setting an appropriate exposure time. This paper focuses on how exposure time affects the star tracker under highly dynamic conditions and how to determine the most appropriate exposure time for this case. Firstly, the effect of exposure time on star detection sensitivity is analyzed by establishing the dynamic star-spot imaging model. Then the star location error is deduced based on the error analysis of the sub-pixel centroiding algorithm. Combining these analyses, the effect of exposure time on attitude accuracy is finally determined. Some simulations are carried out to validate these effects, and the results show that there are different optimal exposure times for different angular velocities of a star tracker with a given configuration. In addition, the results of night sky experiments using a real star tracker agree with the simulation results. The summarized regularities in this paper should prove helpful in the system design and dynamic performance evaluation of the highly dynamic star trackers.

  11. Dynamic imaging model and parameter optimization for a star tracker.

    PubMed

    Yan, Jinyun; Jiang, Jie; Zhang, Guangjun

    2016-03-21

    Under dynamic conditions, star spots move across the image plane of a star tracker and form a smeared star image. This smearing effect increases errors in star position estimation and degrades attitude accuracy. First, an analytical energy distribution model of a smeared star spot is established based on a line segment spread function because the dynamic imaging process of a star tracker is equivalent to the static imaging process of linear light sources. The proposed model, which has a clear physical meaning, explicitly reflects the key parameters of the imaging process, including incident flux, exposure time, velocity of a star spot in an image plane, and Gaussian radius. Furthermore, an analytical expression of the centroiding error of the smeared star spot is derived using the proposed model. An accurate and comprehensive evaluation of centroiding accuracy is obtained based on the expression. Moreover, analytical solutions of the optimal parameters are derived to achieve the best performance in centroid estimation. Finally, we perform numerical simulations and a night sky experiment to validate the correctness of the dynamic imaging model, the centroiding error expression, and the optimal parameters.

  12. Optimization of replica exchange molecular dynamics by fast mimicking.

    PubMed

    Hritz, Jozef; Oostenbrink, Chris

    2007-11-28

    We present an approach to mimic replica exchange molecular dynamics simulations (REMD) on a microsecond time scale within a few minutes rather than the years, which would be required for real REMD. The speed of mimicked REMD makes it a useful tool for "testing" the efficiency of different settings for REMD and then to select those settings, that give the highest efficiency. We present an optimization approach with the example of Hamiltonian REMD using soft-core interactions on two model systems, GTP and 8-Br-GTP. The optimization process using REMD mimicking is very fast. Optimization of Hamiltonian-REMD settings of GTP in explicit water took us less than one week. In our study we focus not only on finding the optimal distances between neighboring replicas, but also on finding the proper placement of the highest level of softness. In addition we suggest different REMD simulation settings at this softness level. We allow several replicas to be simulated at the same Hamiltonian simultaneously and reduce the frequency of switching attempts between them. This approach allows for more efficient conversions from one stable conformation to the other.

  13. A mathematical programming approach to stochastic and dynamic optimization problems

    SciTech Connect

    Bertsimas, D.

    1994-12-31

    We propose three ideas for constructing optimal or near-optimal policies: (1) for systems for which we have an exact characterization of the performance space we outline an adaptive greedy algorithm that gives rise to indexing policies (we illustrate this technique in the context of indexable systems); (2) we use integer programming to construct policies from the underlying descriptions of the performance space (we illustrate this technique in the context of polling systems); (3) we use linear control over polyhedral regions to solve deterministic versions for this class of problems. This approach gives interesting insights for the structure of the optimal policy (we illustrate this idea in the context of multiclass queueing networks). The unifying theme in the paper is the thesis that better formulations lead to deeper understanding and better solution methods. Overall the proposed approach for stochastic and dynamic optimization parallels efforts of the mathematical programming community in the last fifteen years to develop sharper formulations (polyhedral combinatorics and more recently nonlinear relaxations) and leads to new insights ranging from a complete characterization and new algorithms for indexable systems to tight lower bounds and new algorithms with provable a posteriori guarantees for their suboptimality for polling systems, multiclass queueing and loss networks.

  14. Optimal dynamic control of invasions: applying a systematic conservation approach.

    PubMed

    Adams, Vanessa M; Setterfield, Samantha A

    2015-06-01

    The social, economic, and environmental impacts of invasive plants are well recognized. However, these variable impacts are rarely accounted for in the spatial prioritization of funding for weed management. We examine how current spatially explicit prioritization methods can be extended to identify optimal budget allocations to both eradication and control measures of invasive species to minimize the costs and likelihood of invasion. Our framework extends recent approaches to systematic prioritization of weed management to account for multiple values that are threatened by weed invasions with a multi-year dynamic prioritization approach. We apply our method to the northern portion of the Daly catchment in the Northern Territory, which has significant conservation values that are threatened by gamba grass (Andropogon gayanus), a highly invasive species recognized by the Australian government as a Weed of National Significance (WONS). We interface Marxan, a widely applied conservation planning tool, with a dynamic biophysical model of gamba grass to optimally allocate funds to eradication and control programs under two budget scenarios comparing maximizing gain (MaxGain) and minimizing loss (MinLoss) optimization approaches. The prioritizations support previous findings that a MinLoss approach is a better strategy when threats are more spatially variable than conservation values. Over a 10-year simulation period, we find that a MinLoss approach reduces future infestations by ~8% compared to MaxGain in the constrained budget scenarios and ~12% in the unlimited budget scenarios. We find that due to the extensive current invasion and rapid rate of spread, allocating the annual budget to control efforts is more efficient than funding eradication efforts when there is a constrained budget. Under a constrained budget, applying the most efficient optimization scenario (control, minloss) reduces spread by ~27% compared to no control. Conversely, if the budget is unlimited it

  15. Technique for the optimization of the powerhead configuration and performance of liquid rocket engines

    NASA Astrophysics Data System (ADS)

    St. Germain, Brad David

    The development and optimization of liquid rocket engines is an integral part of space vehicle design, since most Earth-to-orbit launch vehicles to date have used liquid rockets as their main propulsion system. Rocket engine design tools range in fidelity from very simple conceptual level tools to full computational fluid dynamics (CFD) simulations. The level of fidelity of interest in this research is a design tool that determines engine thrust and specific impulse as well as models the powerhead of the engine. This is the highest level of fidelity applicable to a conceptual level design environment where faster running analyses are desired. The optimization of liquid rocket engines using a powerhead analysis tool is a difficult problem, because it involves both continuous and discrete inputs as well as a nonlinear design space. Example continuous inputs are the main combustion chamber pressure, nozzle area ratio, engine mixture ratio, and desired thrust. Example discrete variable inputs are the engine cycle (staged-combustion, gas generator, etc.), fuel/oxidizer combination, and engine material choices. Nonlinear optimization problems involving both continuous and discrete inputs are referred to as Mixed-Integer Nonlinear Programming (MINLP) problems. Many methods exist in literature for solving MINLP problems; however none are applicable for this research. All of the existing MINLP methods require the relaxation of the discrete variables as part of their analysis procedure. This means that the discrete choices must be evaluated at non-discrete values. This is not possible with an engine powerhead design code. Therefore, a new optimization method was developed that uses modified response surface equations to provide lower bounds of the continuous design space for each unique discrete variable combination. These lower bounds are then used to efficiently solve the optimization problem. The new optimization procedure was used to find optimal rocket engine designs

  16. Optimized dynamical decoupling for power-law noise spectra

    SciTech Connect

    Pasini, S.; Uhrig, G. S.

    2010-01-15

    We analyze the suppression of decoherence by means of dynamical decoupling in the pure-dephasing spin-boson model for baths with power law spectra. The sequence of ideal pi pulses is optimized according to the power of the bath. We expand the decoherence function and separate the canceling divergences from the relevant terms. The proposed sequence is chosen to be the one minimizing the decoherence function. By construction, it provides the best performance. We analytically derive the conditions that must be satisfied. The resulting equations are solved numerically. The solutions are very close to the Carr-Purcell-Meiboom-Gill sequence for a soft cutoff of the bath while they approach the Uhrig dynamical-decoupling sequence as the cutoff becomes harder.

  17. Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems

    SciTech Connect

    Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz

    2009-07-31

    This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.

  18. Clustering Molecular Dynamics Trajectories for Optimizing Docking Experiments

    PubMed Central

    De Paris, Renata; Quevedo, Christian V.; Ruiz, Duncan D.; Norberto de Souza, Osmar; Barros, Rodrigo C.

    2015-01-01

    Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand. PMID:25873944

  19. Clustering molecular dynamics trajectories for optimizing docking experiments.

    PubMed

    De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D; Norberto de Souza, Osmar; Barros, Rodrigo C

    2015-01-01

    Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand.

  20. Clustering molecular dynamics trajectories for optimizing docking experiments.

    PubMed

    De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D; Norberto de Souza, Osmar; Barros, Rodrigo C

    2015-01-01

    Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand. PMID:25873944

  1. Aircraft path planning for optimal imaging using dynamic cost functions

    NASA Astrophysics Data System (ADS)

    Christie, Gordon; Chaudhry, Haseeb; Kochersberger, Kevin

    2015-05-01

    Unmanned aircraft development has accelerated with recent technological improvements in sensing and communications, which has resulted in an "applications lag" for how these aircraft can best be utilized. The aircraft are becoming smaller, more maneuverable and have longer endurance to perform sensing and sampling missions, but operating them aggressively to exploit these capabilities has not been a primary focus in unmanned systems development. This paper addresses a means of aerial vehicle path planning to provide a realistic optimal path in acquiring imagery for structure from motion (SfM) reconstructions and performing radiation surveys. This method will allow SfM reconstructions to occur accurately and with minimal flight time so that the reconstructions can be executed efficiently. An assumption is made that we have 3D point cloud data available prior to the flight. A discrete set of scan lines are proposed for the given area that are scored based on visibility of the scene. Our approach finds a time-efficient path and calculates trajectories between scan lines and over obstacles encountered along those scan lines. Aircraft dynamics are incorporated into the path planning algorithm as dynamic cost functions to create optimal imaging paths in minimum time. Simulations of the path planning algorithm are shown for an urban environment. We also present our approach for image-based terrain mapping, which is able to efficiently perform a 3D reconstruction of a large area without the use of GPS data.

  2. Optimization of dynamic measurement of receptor kinetics by wavelet denoising.

    PubMed

    Alpert, Nathaniel M; Reilhac, Anthonin; Chio, Tat C; Selesnick, Ivan

    2006-04-01

    The most important technical limitation affecting dynamic measurements with PET is low signal-to-noise ratio (SNR). Several reports have suggested that wavelet processing of receptor kinetic data in the human brain can improve the SNR of parametric images of binding potential (BP). However, it is difficult to fully assess these reports because objective standards have not been developed to measure the tradeoff between accuracy (e.g. degradation of resolution) and precision. This paper employs a realistic simulation method that includes all major elements affecting image formation. The simulation was used to derive an ensemble of dynamic PET ligand (11C-raclopride) experiments that was subjected to wavelet processing. A method for optimizing wavelet denoising is presented and used to analyze the simulated experiments. Using optimized wavelet denoising, SNR of the four-dimensional PET data increased by about a factor of two and SNR of three-dimensional BP maps increased by about a factor of 1.5. Analysis of the difference between the processed and unprocessed means for the 4D concentration data showed that more than 80% of voxels in the ensemble mean of the wavelet processed data deviated by less than 3%. These results show that a 1.5x increase in SNR can be achieved with little degradation of resolution. This corresponds to injecting about twice the radioactivity, a maneuver that is not possible in human studies without saturating the PET camera and/or exposing the subject to more than permitted radioactivity.

  3. Data-driven optimization of dynamic reconfigurable systems of systems.

    SciTech Connect

    Tucker, Conrad S.; Eddy, John P.

    2010-11-01

    This report documents the results of a Strategic Partnership (aka University Collaboration) LDRD program between Sandia National Laboratories and the University of Illinois at Urbana-Champagne. The project is titled 'Data-Driven Optimization of Dynamic Reconfigurable Systems of Systems' and was conducted during FY 2009 and FY 2010. The purpose of this study was to determine and implement ways to incorporate real-time data mining and information discovery into existing Systems of Systems (SoS) modeling capabilities. Current SoS modeling is typically conducted in an iterative manner in which replications are carried out in order to quantify variation in the simulation results. The expense of many replications for large simulations, especially when considering the need for optimization, sensitivity analysis, and uncertainty quantification, can be prohibitive. In addition, extracting useful information from the resulting large datasets is a challenging task. This work demonstrates methods of identifying trends and other forms of information in datasets that can be used on a wide range of applications such as quantifying the strength of various inputs on outputs, identifying the sources of variation in the simulation, and potentially steering an optimization process for improved efficiency.

  4. Optimal control and cold war dynamics between plant and herbivore.

    PubMed

    Low, Candace; Ellner, Stephen P; Holden, Matthew H

    2013-08-01

    Herbivores eat the leaves that a plant needs for photosynthesis. However, the degree of antagonism between plant and herbivore may depend critically on the timing of their interactions and the intrinsic value of a leaf. We present a model that investigates whether and when the timing of plant defense and herbivore feeding activity can be optimized by evolution so that their interactions can move from antagonistic to neutral. We assume that temporal changes in environmental conditions will affect intrinsic leaf value, measured as potential carbon gain. Using optimal-control theory, we model herbivore evolution, first in response to fixed plant strategies and then under coevolutionary dynamics in which the plant also evolves in response to the herbivore. In the latter case, we solve for the evolutionarily stable strategies of plant defense induction and herbivore hatching rate under different ecological conditions. Our results suggest that the optimal strategies for both plant and herbivore are to avoid direct conflict. As long as the plant has the capability for moderately lethal defense, the herbivore will modify its hatching rate to avoid plant defenses, and the plant will never have to use them. Insights from this model offer a possible solution to the paradox of sublethal defenses and provide a mechanism for stable plant-herbivore interactions without the need for natural enemy control.

  5. Optimal control and cold war dynamics between plant and herbivore.

    PubMed

    Low, Candace; Ellner, Stephen P; Holden, Matthew H

    2013-08-01

    Herbivores eat the leaves that a plant needs for photosynthesis. However, the degree of antagonism between plant and herbivore may depend critically on the timing of their interactions and the intrinsic value of a leaf. We present a model that investigates whether and when the timing of plant defense and herbivore feeding activity can be optimized by evolution so that their interactions can move from antagonistic to neutral. We assume that temporal changes in environmental conditions will affect intrinsic leaf value, measured as potential carbon gain. Using optimal-control theory, we model herbivore evolution, first in response to fixed plant strategies and then under coevolutionary dynamics in which the plant also evolves in response to the herbivore. In the latter case, we solve for the evolutionarily stable strategies of plant defense induction and herbivore hatching rate under different ecological conditions. Our results suggest that the optimal strategies for both plant and herbivore are to avoid direct conflict. As long as the plant has the capability for moderately lethal defense, the herbivore will modify its hatching rate to avoid plant defenses, and the plant will never have to use them. Insights from this model offer a possible solution to the paradox of sublethal defenses and provide a mechanism for stable plant-herbivore interactions without the need for natural enemy control. PMID:23852361

  6. An optimal strategy for functional mapping of dynamic trait loci.

    PubMed

    Jin, Tianbo; Li, Jiahan; Guo, Ying; Zhou, Xiaojing; Yang, Runqing; Wu, Rongling

    2010-02-01

    As an emerging powerful approach for mapping quantitative trait loci (QTLs) responsible for dynamic traits, functional mapping models the time-dependent mean vector with biologically meaningful equations and are likely to generate biologically relevant and interpretable results. Given the autocorrelation nature of a dynamic trait, functional mapping needs the implementation of the models for the structure of the covariance matrix. In this article, we have provided a comprehensive set of approaches for modelling the covariance structure and incorporated each of these approaches into the framework of functional mapping. The Bayesian information criterion (BIC) values are used as a model selection criterion to choose the optimal combination of the submodels for the mean vector and covariance structure. In an example for leaf age growth from a rice molecular genetic project, the best submodel combination was found between the Gaussian model for the correlation structure, power equation of order 1 for the variance and the power curve for the mean vector. Under this combination, several significant QTLs for leaf age growth trajectories were detected on different chromosomes. Our model can be well used to study the genetic architecture of dynamic traits of agricultural values. PMID:20196894

  7. A Formal Approach to Empirical Dynamic Model Optimization and Validation

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G; Morelli, Eugene A.; Kenny, Sean P.; Giesy, Daniel P.

    2014-01-01

    A framework was developed for the optimization and validation of empirical dynamic models subject to an arbitrary set of validation criteria. The validation requirements imposed upon the model, which may involve several sets of input-output data and arbitrary specifications in time and frequency domains, are used to determine if model predictions are within admissible error limits. The parameters of the empirical model are estimated by finding the parameter realization for which the smallest of the margins of requirement compliance is as large as possible. The uncertainty in the value of this estimate is characterized by studying the set of model parameters yielding predictions that comply with all the requirements. Strategies are presented for bounding this set, studying its dependence on admissible prediction error set by the analyst, and evaluating the sensitivity of the model predictions to parameter variations. This information is instrumental in characterizing uncertainty models used for evaluating the dynamic model at operating conditions differing from those used for its identification and validation. A practical example based on the short period dynamics of the F-16 is used for illustration.

  8. Performance Study and Dynamic Optimization Design for Thread Pool Systems

    SciTech Connect

    Dongping Xu

    2004-12-19

    Thread pools have been widely used by many multithreaded applications. However, the determination of the pool size according to the application behavior still remains problematic. To automate this process, in this thesis we have developed a set of performance metrics for quantitatively analyzing thread pool performance. For our experiments, we built a thread pool system which provides a general framework for thread pool research. Based on this simulation environment, we studied the performance impact brought by the thread pool on different multithreaded applications. Additionally, the correlations between internal characterizations of thread pools and their throughput were also examined. We then proposed and evaluated a heuristic algorithm to dynamically determine the optimal thread pool size. The simulation results show that this approach is effective in improving overall application performance.

  9. A relaxed reduced space SQP strategy for dynamic optimization problems.

    SciTech Connect

    Logsdon, J. S.; Biegler, L. T.; Carnegie-Mellon Univ.

    1993-01-01

    Recently, strategies have been developed to solve dynamic simulation and optimization problems in a simultaneous manner by applying orthogonal collocation on finite elements and solving the nonlinear program (NLP) with a reduced space successive quadratic programming (SQP) approach. We develop a relaxed simultaneous approach that leads to faster performance. The method operates in the reduced space of the control variables and solves the collocation equations inexactly at each SQP iteration. Unlike previous simultaneous formulations, it is able to consider the state variables one element at a time. Also, this approach is compared on two process examples to the reduced gradient, feasible path approach outlined in Logsdon and Biegler. Nonlinear programs with up to 5500 variables are solved with only 40% of the effort. Finally, a theoretical analysis of this approach is provided.

  10. Fast engineering optimization: A novel highly effective control parameterization approach for industrial dynamic processes.

    PubMed

    Liu, Ping; Li, Guodong; Liu, Xinggao

    2015-09-01

    Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes.

  11. Neural dynamic optimization for autonomous aerial vehicle trajectory design

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Verma, Ajay; Mayer, Richard J.

    2007-04-01

    Online aerial vehicle trajectory design and reshaping are crucial for a class of autonomous aerial vehicles such as reusable launch vehicles in order to achieve flexibility in real-time flying operations. An aerial vehicle is modeled as a nonlinear multi-input-multi-output (MIMO) system. The inputs include the control parameters and current system states that include velocity and position coordinates of the vehicle. The outputs are the new system states. An ideal trajectory control design system generates a series of control commands to achieve a desired trajectory under various disturbances and vehicle model uncertainties including aerodynamic perturbations caused by geometric damage to the vehicle. Conventional approaches suffer from the nonlinearity of the MIMO system, and the high-dimensionality of the system state space. In this paper, we apply a Neural Dynamic Optimization (NDO) based approach to overcome these difficulties. The core of an NDO model is a multilayer perceptron (MLP) neural network, which generates the control parameters online. The inputs of the MLP are the time-variant states of the MIMO systems. The outputs of the MLP and the control parameters will be used by the MIMO to generate new system states. By such a formulation, an NDO model approximates the time-varying optimal feedback solution.

  12. Geometry optimization for micro-pressure sensor considering dynamic interference.

    PubMed

    Yu, Zhongliang; Zhao, Yulong; Li, Lili; Tian, Bian; Li, Cun

    2014-09-01

    Presented is the geometry optimization for piezoresistive absolute micro-pressure sensor. A figure of merit called the performance factor (PF) is defined as a quantitative index to describe the comprehensive performances of a sensor including sensitivity, resonant frequency, and acceleration interference. Three geometries are proposed through introducing islands and sensitive beams into typical flat diaphragm. The stress distributions of sensitive elements are analyzed by finite element method. Multivariate fittings based on ANSYS simulation results are performed to establish the equations about surface stress, deflection, and resonant frequency. Optimization by MATLAB is carried out to determine the dimensions of the geometries. Convex corner undercutting is evaluated. Each PF of the three geometries with the determined dimensions is calculated and compared. Silicon bulk micromachining is utilized to fabricate the prototypes of the sensors. The outputs of the sensors under both static and dynamic conditions are tested. Experimental results demonstrate the rationality of the defined performance factor and reveal that the geometry with quad islands presents the highest PF of 210.947 Hz(1/4). The favorable overall performances enable the sensor more suitable for altimetry.

  13. Geometry optimization for micro-pressure sensor considering dynamic interference

    SciTech Connect

    Yu, Zhongliang; Zhao, Yulong Li, Lili; Tian, Bian; Li, Cun

    2014-09-15

    Presented is the geometry optimization for piezoresistive absolute micro-pressure sensor. A figure of merit called the performance factor (PF) is defined as a quantitative index to describe the comprehensive performances of a sensor including sensitivity, resonant frequency, and acceleration interference. Three geometries are proposed through introducing islands and sensitive beams into typical flat diaphragm. The stress distributions of sensitive elements are analyzed by finite element method. Multivariate fittings based on ANSYS simulation results are performed to establish the equations about surface stress, deflection, and resonant frequency. Optimization by MATLAB is carried out to determine the dimensions of the geometries. Convex corner undercutting is evaluated. Each PF of the three geometries with the determined dimensions is calculated and compared. Silicon bulk micromachining is utilized to fabricate the prototypes of the sensors. The outputs of the sensors under both static and dynamic conditions are tested. Experimental results demonstrate the rationality of the defined performance factor and reveal that the geometry with quad islands presents the highest PF of 210.947 Hz{sup 1/4}. The favorable overall performances enable the sensor more suitable for altimetry.

  14. Prediction uncertainty and optimal experimental design for learning dynamical systems

    NASA Astrophysics Data System (ADS)

    Letham, Benjamin; Letham, Portia A.; Rudin, Cynthia; Browne, Edward P.

    2016-06-01

    Dynamical systems are frequently used to model biological systems. When these models are fit to data, it is necessary to ascertain the uncertainty in the model fit. Here, we present prediction deviation, a metric of uncertainty that determines the extent to which observed data have constrained the model's predictions. This is accomplished by solving an optimization problem that searches for a pair of models that each provides a good fit for the observed data, yet has maximally different predictions. We develop a method for estimating a priori the impact that additional experiments would have on the prediction deviation, allowing the experimenter to design a set of experiments that would most reduce uncertainty. We use prediction deviation to assess uncertainty in a model of interferon-alpha inhibition of viral infection, and to select a sequence of experiments that reduces this uncertainty. Finally, we prove a theoretical result which shows that prediction deviation provides bounds on the trajectories of the underlying true model. These results show that prediction deviation is a meaningful metric of uncertainty that can be used for optimal experimental design.

  15. Campaign-level dynamic network modelling for spaceflight logistics for the flexible path concept

    NASA Astrophysics Data System (ADS)

    Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert

    2016-06-01

    This paper develops a network optimization formulation for dynamic campaign-level space mission planning. Although many past space missions have been designed mainly from a mission-level perspective, a campaign-level perspective will be important for future space exploration. In order to find the optimal campaign-level space transportation architecture, a mixed-integer linear programming (MILP) formulation with a generalized multi-commodity flow and a time-expanded network is developed. Particularly, a new heuristics-based method, a partially static time-expanded network, is developed to provide a solution quickly. The developed method is applied to a case study containing human exploration of a near-Earth object (NEO) and Mars, related to the concept of the Flexible Path. The numerical results show that using the specific combinations of propulsion technologies, in-situ resource utilization (ISRU), and other space infrastructure elements can reduce the initial mass in low-Earth orbit (IMLEO) significantly. In addition, the case study results also show that we can achieve large IMLEO reduction by designing NEO and Mars missions together as a campaign compared with designing them separately owing to their common space infrastructure pre-deployment. This research will be an important step toward efficient and flexible campaign-level space mission planning.

  16. Dynamic Range Size Analysis of Territorial Animals: An Optimality Approach.

    PubMed

    Tao, Yun; Börger, Luca; Hastings, Alan

    2016-10-01

    Home range sizes of territorial animals are often observed to vary periodically in response to seasonal changes in foraging opportunities. Here we develop the first mechanistic model focused on the temporal dynamics of home range expansion and contraction in territorial animals. We demonstrate how simple movement principles can lead to a rich suite of range size dynamics, by balancing foraging activity with defensive requirements and incorporating optimal behavioral rules into mechanistic home range analysis. Our heuristic model predicts three general temporal patterns that have been observed in empirical studies across multiple taxa. First, a positive correlation between age and territory quality promotes shrinking home ranges over an individual's lifetime, with maximal range size variability shortly before the adult stage. Second, poor sensory information, low population density, and large resource heterogeneity may all independently facilitate range size instability. Finally, aggregation behavior toward forage-rich areas helps produce divergent home range responses between individuals from different age classes. This model has broad applications for addressing important unknowns in animal space use, with potential applications also in conservation and health management strategies. PMID:27622879

  17. 4500 V SPT+ IGBT optimization on static and dynamic losses

    NASA Astrophysics Data System (ADS)

    Qingyun, Dai; Xiaoli, Tian; Wenliang, Zhang; Shuojin, Lu; Yangjun, Zhu

    2015-09-01

    This paper concerns the need for improving the static and dynamic performance of the high voltage insulated gate bipolar transistor (HV IGBTs). A novel structure with a carrier stored layer on the cathode side, known as an enhanced planar IGBT of the 4500 V voltage class is investigated. With the adoption of a soft punch through (SPT) concept as the vertical structure and an enhanced planar concept as the top structure, signed as SPT+ IGBT, the simulation results indicate the turn-off switching waveform of the 4500 V SPT+ IGBT is soft and also realizes an improved trade-off relationship between on-state voltage drop (Von) and turn-off loss (Eoff) in comparison with the SPT IGBT. Attention is also paid to the influences caused by different carrier stored layer doping dose on static and dynamic performances, to optimize on-state and switching losses of SPT+ IGBT. Project supported by the National Major Science and Technology Special Project of China (No. 2011ZX02504-002).

  18. Optimal estimation of dynamically consistent kinematics and kinetics for forward dynamic simulation of gait.

    PubMed

    Remy, C David; Thelen, Darryl G

    2009-03-01

    Forward dynamic simulation provides a powerful framework for characterizing internal loads and for predicting changes in movement due to injury, impairment or surgical intervention. However, the computational challenge of generating simulations has greatly limited the use and application of forward dynamic models for simulating human gait. In this study, we introduce an optimal estimation approach to efficiently solve for generalized accelerations that satisfy the overall equations of motion and best agree with measured kinematics and ground reaction forces. The estimated accelerations are numerically integrated to enforce dynamic consistency over time, resulting in a forward dynamic simulation. Numerical optimization is then used to determine a set of initial generalized coordinates and speeds that produce a simulation that is most consistent with the measured motion over a full cycle of gait. The proposed method was evaluated with synthetically created kinematics and force plate data in which both random noise and bias errors were introduced. We also applied the method to experimental gait data collected from five young healthy adults walking at a preferred speed. We show that the proposed residual elimination algorithm (REA) converges to an accurate solution, reduces the detrimental effects of kinematic measurement errors on joint moments, and eliminates the need for residual forces that arise in standard inverse dynamics. The greatest improvements in joint kinetics were observed proximally, with the algorithm reducing joint moment errors due to marker noise by over 20% at the hip and over 50% at the low back. Simulated joint angles were generally within 1 deg of recorded values when REA was used to generate a simulation from experimental gait data. REA can thus be used as a basis for generating accurate simulations of subject-specific gait dynamics.

  19. An inverse dynamics approach to trajectory optimization and guidance for an aerospace plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1992-01-01

    The optimal ascent problem for an aerospace planes is formulated as an optimal inverse dynamic problem. Both minimum-fuel and minimax type of performance indices are considered. Some important features of the optimal trajectory and controls are used to construct a nonlinear feedback midcourse controller, which not only greatly simplifies the difficult constrained optimization problem and yields improved solutions, but is also suited for onboard implementation. Robust ascent guidance is obtained by using combination of feedback compensation and onboard generation of control through the inverse dynamics approach. Accurate orbital insertion can be achieved with near-optimal control of the rocket through inverse dynamics even in the presence of disturbances.

  20. A two-stage support-vector-regression optimization model for municipal solid waste management - a case study of Beijing, China.

    PubMed

    Dai, C; Li, Y P; Huang, G H

    2011-12-01

    In this study, a two-stage support-vector-regression optimization model (TSOM) is developed for the planning of municipal solid waste (MSW) management in the urban districts of Beijing, China. It represents a new effort to enhance the analysis accuracy in optimizing the MSW management system through coupling the support-vector-regression (SVR) model with an interval-parameter mixed integer linear programming (IMILP). The developed TSOM can not only predict the city's future waste generation amount, but also reflect dynamic, interactive, and uncertain characteristics of the MSW management system. Four kernel functions such as linear kernel, polynomial kernel, radial basis function, and multi-layer perception kernel are chosen based on three quantitative simulation performance criteria [i.e. prediction accuracy (PA), fitting accuracy (FA) and over all accuracy (OA)]. The SVR with polynomial kernel has accurate prediction performance for MSW generation rate, with all of the three quantitative simulation performance criteria being over 96%. Two cases are considered based on different waste management policies. The results are valuable for supporting the adjustment of the existing waste-allocation patterns to raise the city's waste diversion rate, as well as the capacity planning of waste management system to satisfy the city's increasing waste treatment/disposal demands.

  1. Optimal foot shape for a passive dynamic biped.

    PubMed

    Kwan, Maxine; Hubbard, Mont

    2007-09-21

    Passive walking dynamics describe the motion of a biped that is able to "walk" down a shallow slope without any actuation or control. Instead, the walker relies on gravitational and inertial effects to propel itself forward, exhibiting a gait quite similar to that of humans. These purely passive models depend on potential energy to overcome the energy lost when the foot impacts the ground. Previous research has demonstrated that energy loss at heel-strike can vary widely for a given speed, depending on the nature of the collision. The point of foot contact with the ground (relative to the hip) can have a significant effect: semi-circular (round) feet soften the impact, resulting in much smaller losses than point-foot walkers. Collisional losses are also lower if a single impulse is broken up into a series of smaller impulses that gradually redirect the velocity of the center of mass rather than a single abrupt impulse. Using this principle, a model was created where foot-strike occurs over two impulses, "heel-strike" and "toe-strike," representative of the initial impact of the heel and the following impact as the ball of the foot strikes the ground. Having two collisions with the flat-foot model did improve efficiency over the point-foot model. Representation of the flat-foot walker as a rimless wheel helped to explain the optimal flat-foot shape, driven by symmetry of the virtual spoke angles. The optimal long period foot shape of the simple passive walking model was not very representative of the human foot shape, although a reasonably anthropometric foot shape was predicted by the short period solution.

  2. An optimization model for energy generation and distribution in a dynamic facility

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1981-01-01

    An analytical model is described using linear programming for the optimum generation and distribution of energy demands among competing energy resources and different economic criteria. The model, which will be used as a general engineering tool in the analysis of the Deep Space Network ground facility, considers several essential decisions for better design and operation. The decisions sought for the particular energy application include: the optimum time to build an assembly of elements, inclusion of a storage medium of some type, and the size or capacity of the elements that will minimize the total life-cycle cost over a given number of years. The model, which is structured in multiple time divisions, employ the decomposition principle for large-size matrices, the branch-and-bound method in mixed-integer programming, and the revised simplex technique for efficient and economic computer use.

  3. Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report

    SciTech Connect

    Ellis, P; Flom, Z; Heinselman, K; Nguyen, T; Tung, S; Haskell, R; Reed, B W; LaGrange, T

    2011-08-04

    The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.

  4. Information Bounds and Optimal Analysis of Dynamic Single Molecule Measurements

    PubMed Central

    Watkins, Lucas P.; Yang, Haw

    2004-01-01

    Time-resolved single molecule fluorescence measurements may be used to probe the conformational dynamics of biological macromolecules. The best time resolution in such techniques will only be achieved by measuring the arrival times of individual photons at the detector. A general approach to the estimation of molecular parameters based on individual photon arrival times is presented. The amount of information present in a data set is quantified by the Fisher information, thereby providing a guide to deriving the basic equations relating measurement uncertainties and time resolution. Based on these information-theoretical considerations, a data analysis algorithm is presented that details the optimal analysis of single-molecule data. This method natively accounts and corrects for background photons and cross talk, and can scale to an arbitrary number of channels. By construction, and with corroboration from computer simulations, we show that this algorithm reaches the theoretical limit, extracting the maximal information out of the data. The bias inherent in the algorithm is considered and its implications for experimental design are discussed. The ideas underlying this approach are general and are expected to be applicable to any information-limited measurement. PMID:15189897

  5. Conceptualizing a Tool to Optimize Therapy Based on Dynamic Heterogeneity

    PubMed Central

    Liao, David; Estévez-Salmerón, Luis; Tlsty, Thea D.

    2012-01-01

    Complex biological systems often display a randomness paralleled in processes studied in fundamental physics. This simple stochasticity emerges owing to the complexity of the system and underlies a fundamental aspect of biology called phenotypic stochasticity. Ongoing stochastic fluctuations in phenotype at the single-unit level can contribute to two emergent population phenotypes. Phenotypic stochasticity not only generates heterogeneity within a cell population, but also allows reversible transitions back and forth between multiple states. This phenotypic interconversion tends to restore a population to a previous composition after that population has been depleted of specific members. We call this tendency homeostatic heterogeneity. These concepts of dynamic heterogeneity can be applied to populations composed of molecules, cells, individuals, etc. Here we discuss the concept that phenotypic stochasticity both underlies the generation of heterogeneity within a cell population and can be used to control population composition, contributing, in particular, to both the ongoing emergence of drug resistance and an opportunity for depleting drug-resistant cells. Using notions of both “large” and “small” numbers of biomolecular components, we rationalize our use of Markov processes to model the generation and eradication of drug-resistant cells. Using these insights, we have developed a graphical tool, called a metronomogram, that we propose will allow us to optimize dosing frequencies and total course durations for clinical benefit. PMID:23197078

  6. Optimization of conventional water treatment plant using dynamic programming.

    PubMed

    Mostafa, Khezri Seyed; Bahareh, Ghafari; Elahe, Dadvar; Pegah, Dadras

    2015-12-01

    In this research, the mathematical models, indicating the capability of various units, such as rapid mixing, coagulation and flocculation, sedimentation, and the rapid sand filtration are used. Moreover, cost functions were used for the formulation of conventional water and wastewater treatment plant by applying Clark's formula (Clark, 1982). Also, by applying dynamic programming algorithm, it is easy to design a conventional treatment system with minimal cost. The application of the model for a case reduced the annual cost. This reduction was approximately in the range of 4.5-9.5% considering variable limitations. Sensitivity analysis and prediction of system's feedbacks were performed for different alterations in proportion from parameters optimized amounts. The results indicated (1) that the objective function is more sensitive to design flow rate (Q), (2) the variations in the alum dosage (A), and (3) the sand filter head loss (H). Increasing the inflow by 20%, the total annual cost would increase to about 12.6%, while 20% reduction in inflow leads to 15.2% decrease in the total annual cost. Similarly, 20% increase in alum dosage causes 7.1% increase in the total annual cost, while 20% decrease results in 7.9% decrease in the total annual cost. Furthermore, the pressure decrease causes 2.95 and 3.39% increase and decrease in total annual cost of treatment plants.

  7. BDO-RFQ Program Complex of Modelling and Optimization of Charged Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, D. A.; Ovsyannikov, A. D.; Antropov, I. V.; Kozynchenko, V. A.

    2016-09-01

    The article is dedicated to BDO Code program complex used for modelling and optimization of charged particle dynamics with consideration of interaction in RFQ accelerating structures. The structure of the program complex and its functionality are described; mathematical models of charged particle dynamics, interaction models and methods of optimization are given.

  8. One-Dimensional Infinite Horizon Nonconcave Optimal Control Problems Arising in Economic Dynamics

    SciTech Connect

    Zaslavski, Alexander J.

    2011-12-15

    We study the existence of optimal solutions for a class of infinite horizon nonconvex autonomous discrete-time optimal control problems. This class contains optimal control problems without discounting arising in economic dynamics which describe a model with a nonconcave utility function.

  9. Metamodeling and the Critic-based approach to multi-level optimization.

    PubMed

    Werbos, Ludmilla; Kozma, Robert; Silva-Lugo, Rodrigo; Pazienza, Giovanni E; Werbos, Paul J

    2012-08-01

    Large-scale networks with hundreds of thousands of variables and constraints are becoming more and more common in logistics, communications, and distribution domains. Traditionally, the utility functions defined on such networks are optimized using some variation of Linear Programming, such as Mixed Integer Programming (MIP). Despite enormous progress both in hardware (multiprocessor systems and specialized processors) and software (Gurobi) we are reaching the limits of what these tools can handle in real time. Modern logistic problems, for example, call for expanding the problem both vertically (from one day up to several days) and horizontally (combining separate solution stages into an integrated model). The complexity of such integrated models calls for alternative methods of solution, such as Approximate Dynamic Programming (ADP), which provide a further increase in the performance necessary for the daily operation. In this paper, we present the theoretical basis and related experiments for solving the multistage decision problems based on the results obtained for shorter periods, as building blocks for the models and the solution, via Critic-Model-Action cycles, where various types of neural networks are combined with traditional MIP models in a unified optimization system. In this system architecture, fast and simple feed-forward networks are trained to reasonably initialize more complicated recurrent networks, which serve as approximators of the value function (Critic). The combination of interrelated neural networks and optimization modules allows for multiple queries for the same system, providing flexibility and optimizing performance for large-scale real-life problems. A MATLAB implementation of our solution procedure for a realistic set of data and constraints shows promising results, compared to the iterative MIP approach. PMID:22386785

  10. Metamodeling and the Critic-based approach to multi-level optimization.

    PubMed

    Werbos, Ludmilla; Kozma, Robert; Silva-Lugo, Rodrigo; Pazienza, Giovanni E; Werbos, Paul J

    2012-08-01

    Large-scale networks with hundreds of thousands of variables and constraints are becoming more and more common in logistics, communications, and distribution domains. Traditionally, the utility functions defined on such networks are optimized using some variation of Linear Programming, such as Mixed Integer Programming (MIP). Despite enormous progress both in hardware (multiprocessor systems and specialized processors) and software (Gurobi) we are reaching the limits of what these tools can handle in real time. Modern logistic problems, for example, call for expanding the problem both vertically (from one day up to several days) and horizontally (combining separate solution stages into an integrated model). The complexity of such integrated models calls for alternative methods of solution, such as Approximate Dynamic Programming (ADP), which provide a further increase in the performance necessary for the daily operation. In this paper, we present the theoretical basis and related experiments for solving the multistage decision problems based on the results obtained for shorter periods, as building blocks for the models and the solution, via Critic-Model-Action cycles, where various types of neural networks are combined with traditional MIP models in a unified optimization system. In this system architecture, fast and simple feed-forward networks are trained to reasonably initialize more complicated recurrent networks, which serve as approximators of the value function (Critic). The combination of interrelated neural networks and optimization modules allows for multiple queries for the same system, providing flexibility and optimizing performance for large-scale real-life problems. A MATLAB implementation of our solution procedure for a realistic set of data and constraints shows promising results, compared to the iterative MIP approach.

  11. An optimal operational advisory system for a brewery's energy supply plant

    SciTech Connect

    Ito, K.; Shiba, T.; Yokoyama, R. . Dept. of Energy Systems Engineering); Sakashita, S. . Mayekawa Energy Management Research Center)

    1994-03-01

    An optimal operational advisory system is proposed to operate rationally a brewery's energy supply plant from the economical viewpoint. A mixed-integer linear programming problem is formulated so as to minimize the daily operational cost subject to constraints such as equipment performance characteristics, energy supply-demand relations, and some practical operational restrictions. This problem includes lots of unknown variables and a hierarchical approach is adopted to derive numerical solutions. The optimal solution obtained by this methods is indicated to the plant operators so as to support their decision making. Through the numerical study for a real brewery plant, the possibility of saving operational cost is ascertained.

  12. Operational optimization of large-scale parallel-unit SWRO desalination plant using differential evolution algorithm.

    PubMed

    Wang, Jian; Wang, Xiaolong; Jiang, Aipeng; Jiangzhou, Shu; Li, Ping

    2014-01-01

    A large-scale parallel-unit seawater reverse osmosis desalination plant contains many reverse osmosis (RO) units. If the operating conditions change, these RO units will not work at the optimal design points which are computed before the plant is built. The operational optimization problem (OOP) of the plant is to find out a scheduling of operation to minimize the total running cost when the change happens. In this paper, the OOP is modelled as a mixed-integer nonlinear programming problem. A two-stage differential evolution algorithm is proposed to solve this OOP. Experimental results show that the proposed method is satisfactory in solution quality. PMID:24701180

  13. Operational Optimization of Large-Scale Parallel-Unit SWRO Desalination Plant Using Differential Evolution Algorithm

    PubMed Central

    Wang, Xiaolong; Jiang, Aipeng; Jiangzhou, Shu; Li, Ping

    2014-01-01

    A large-scale parallel-unit seawater reverse osmosis desalination plant contains many reverse osmosis (RO) units. If the operating conditions change, these RO units will not work at the optimal design points which are computed before the plant is built. The operational optimization problem (OOP) of the plant is to find out a scheduling of operation to minimize the total running cost when the change happens. In this paper, the OOP is modelled as a mixed-integer nonlinear programming problem. A two-stage differential evolution algorithm is proposed to solve this OOP. Experimental results show that the proposed method is satisfactory in solution quality. PMID:24701180

  14. Operational optimization of large-scale parallel-unit SWRO desalination plant using differential evolution algorithm.

    PubMed

    Wang, Jian; Wang, Xiaolong; Jiang, Aipeng; Jiangzhou, Shu; Li, Ping

    2014-01-01

    A large-scale parallel-unit seawater reverse osmosis desalination plant contains many reverse osmosis (RO) units. If the operating conditions change, these RO units will not work at the optimal design points which are computed before the plant is built. The operational optimization problem (OOP) of the plant is to find out a scheduling of operation to minimize the total running cost when the change happens. In this paper, the OOP is modelled as a mixed-integer nonlinear programming problem. A two-stage differential evolution algorithm is proposed to solve this OOP. Experimental results show that the proposed method is satisfactory in solution quality.

  15. A MILP-Based Distribution Optimal Power Flow Model for Microgrid Operation

    SciTech Connect

    Liu, Guodong; Starke, Michael R; Zhang, Xiaohu; Tomsovic, Kevin

    2016-01-01

    This paper proposes a distribution optimal power flow (D-OPF) model for the operation of microgrids. The proposed model minimizes not only the operating cost, including fuel cost, purchasing cost and demand charge, but also several performance indices, including voltage deviation, network power loss and power factor. It co-optimizes the real and reactive power form distributed generators (DGs) and batteries considering their capacity and power factor limits. The D-OPF is formulated as a mixed-integer linear programming (MILP). Numerical simulation results show the effectiveness of the proposed model.

  16. Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, Part II: proofs of results.

    PubMed

    Orellana, Liliana; Rotnitzky, Andrea; Robins, James M

    2010-03-03

    In this companion article to "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content" [Orellana, Rotnitzky and Robins (2010), IJB, Vol. 6, Iss. 2, Art. 7] we present (i) proofs of the claims in that paper, (ii) a proposal for the computation of a confidence set for the optimal index when this lies in a finite set, and (iii) an example to aid the interpretation of the positivity assumption.

  17. Optimal Strategy for Integrated Dynamic Inventory Control and Supplier Selection in Unknown Environment via Stochastic Dynamic Programming

    NASA Astrophysics Data System (ADS)

    Sutrisno; Widowati; Solikhin

    2016-06-01

    In this paper, we propose a mathematical model in stochastic dynamic optimization form to determine the optimal strategy for an integrated single product inventory control problem and supplier selection problem where the demand and purchasing cost parameters are random. For each time period, by using the proposed model, we decide the optimal supplier and calculate the optimal product volume purchased from the optimal supplier so that the inventory level will be located at some point as close as possible to the reference point with minimal cost. We use stochastic dynamic programming to solve this problem and give several numerical experiments to evaluate the model. From the results, for each time period, the proposed model was generated the optimal supplier and the inventory level was tracked the reference point well.

  18. Simultaneous model discrimination and parameter estimation in dynamic models of cellular systems

    PubMed Central

    2013-01-01

    Background Model development is a key task in systems biology, which typically starts from an initial model candidate and, involving an iterative cycle of hypotheses-driven model modifications, leads to new experimentation and subsequent model identification steps. The final product of this cycle is a satisfactory refined model of the biological phenomena under study. During such iterative model development, researchers frequently propose a set of model candidates from which the best alternative must be selected. Here we consider this problem of model selection and formulate it as a simultaneous model selection and parameter identification problem. More precisely, we consider a general mixed-integer nonlinear programming (MINLP) formulation for model selection and identification, with emphasis on dynamic models consisting of sets of either ODEs (ordinary differential equations) or DAEs (differential algebraic equations). Results We solved the MINLP formulation for model selection and identification using an algorithm based on Scatter Search (SS). We illustrate the capabilities and efficiency of the proposed strategy with a case study considering the KdpD/KdpE system regulating potassium homeostasis in Escherichia coli. The proposed approach resulted in a final model that presents a better fit to the in silico generated experimental data. Conclusions The presented MINLP-based optimization approach for nested-model selection and identification is a powerful methodology for model development in systems biology. This strategy can be used to perform model selection and parameter estimation in one single step, thus greatly reducing the number of experiments and computations of traditional modeling approaches. PMID:23938131

  19. An archived multi-objective simulated annealing for a dynamic cellular manufacturing system

    NASA Astrophysics Data System (ADS)

    Shirazi, Hossein; Kia, Reza; Javadian, Nikbakhsh; Tavakkoli-Moghaddam, Reza

    2014-05-01

    To design a group layout of a cellular manufacturing system (CMS) in a dynamic environment, a multi-objective mixed-integer non-linear programming model is developed. The model integrates cell formation, group layout and production planning (PP) as three interrelated decisions involved in the design of a CMS. This paper provides an extensive coverage of important manufacturing features used in the design of CMSs and enhances the flexibility of an existing model in handling the fluctuations of part demands more economically by adding machine depot and PP decisions. Two conflicting objectives to be minimized are the total costs and the imbalance of workload among cells. As the considered objectives in this model are in conflict with each other, an archived multi-objective simulated annealing (AMOSA) algorithm is designed to find Pareto-optimal solutions. Matrix-based solution representation, a heuristic procedure generating an initial and feasible solution and efficient mutation operators are the advantages of the designed AMOSA. To demonstrate the efficiency of the proposed algorithm, the performance of AMOSA is compared with an exact algorithm (i.e., ∈-constraint method) solved by the GAMS software and a well-known evolutionary algorithm, namely NSGA-II for some randomly generated problems based on some comparison metrics. The obtained results show that the designed AMOSA can obtain satisfactory solutions for the multi-objective model.

  20. Application of numerical optimization techniques to control system design for nonlinear dynamic models of aircraft

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Ge, Fuying

    1989-01-01

    Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.

  1. Evacuation dynamic and exit optimization of a supermarket based on particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Li, Lin; Yu, Zhonghai; Chen, Yang

    2014-12-01

    A modified particle swarm optimization algorithm is proposed in this paper to investigate the dynamic of pedestrian evacuation from a fire in a public building-a supermarket with multiple exits and configurations of counters. Two distinctive evacuation behaviours featured by the shortest-path strategy and the following-up strategy are simulated in the model, accounting for different categories of age and sex of the pedestrians along with the impact of the fire, including gases, heat and smoke. To examine the relationship among the progress of the overall evacuation and the layout and configuration of the site, a series of simulations are conducted in various settings: without a fire and with a fire at different locations. Those experiments reveal a general pattern of two-phase evacuation, i.e., a steep section and a flat section, in addition to the impact of the presence of multiple exits on the evacuation along with the geographic locations of the exits. For the study site, our simulations indicated the deficiency of the configuration and the current layout of this site in the process of evacuation and verified the availability of proposed solutions to resolve the deficiency. More specifically, for improvement of the effectiveness of the evacuation from the site, adding an exit between Exit 6 and Exit 7 and expanding the corridor at the right side of Exit 7 would significantly reduce the evacuation time.

  2. Optimal GENCO bidding strategy

    NASA Astrophysics Data System (ADS)

    Gao, Feng

    Electricity industries worldwide are undergoing a period of profound upheaval. The conventional vertically integrated mechanism is being replaced by a competitive market environment. Generation companies have incentives to apply novel technologies to lower production costs, for example: Combined Cycle units. Economic dispatch with Combined Cycle units becomes a non-convex optimization problem, which is difficult if not impossible to solve by conventional methods. Several techniques are proposed here: Mixed Integer Linear Programming, a hybrid method, as well as Evolutionary Algorithms. Evolutionary Algorithms share a common mechanism, stochastic searching per generation. The stochastic property makes evolutionary algorithms robust and adaptive enough to solve a non-convex optimization problem. This research implements GA, EP, and PS algorithms for economic dispatch with Combined Cycle units, and makes a comparison with classical Mixed Integer Linear Programming. The electricity market equilibrium model not only helps Independent System Operator/Regulator analyze market performance and market power, but also provides Market Participants the ability to build optimal bidding strategies based on Microeconomics analysis. Supply Function Equilibrium (SFE) is attractive compared to traditional models. This research identifies a proper SFE model, which can be applied to a multiple period situation. The equilibrium condition using discrete time optimal control is then developed for fuel resource constraints. Finally, the research discusses the issues of multiple equilibria and mixed strategies, which are caused by the transmission network. Additionally, an advantage of the proposed model for merchant transmission planning is discussed. A market simulator is a valuable training and evaluation tool to assist sellers, buyers, and regulators to understand market performance and make better decisions. A traditional optimization model may not be enough to consider the distributed

  3. The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model

    NASA Astrophysics Data System (ADS)

    Yang, Lu-Xing; Draief, Moez; Yang, Xiaofan

    2016-05-01

    Dynamic immunizations, under which the state of the propagation network of electronic viruses can be changed by adjusting the control measures, are regarded as an alternative to static immunizations. This paper addresses the optimal dynamical immunization under the widely accepted SIRS assumption. First, based on a controlled heterogeneous node-based SIRS model, an optimal control problem capturing the optimal dynamical immunization is formulated. Second, the existence of an optimal dynamical immunization scheme is shown, and the corresponding optimality system is derived. Next, some numerical examples are given to show that an optimal immunization strategy can be worked out by numerically solving the optimality system, from which it is found that the network topology has a complex impact on the optimal immunization strategy. Finally, the difference between a payoff and the minimum payoff is estimated in terms of the deviation of the corresponding immunization strategy from the optimal immunization strategy. The proposed optimal immunization scheme is justified, because it can achieve a low level of infections at a low cost.

  4. Optimal Campaign Strategies in Fractional-Order Smoking Dynamics

    NASA Astrophysics Data System (ADS)

    Zeb, Anwar; Zaman, Gul; Jung, Il Hyo; Khan, Madad

    2014-06-01

    This paper deals with the optimal control problem in the giving up smoking model of fractional order. For the eradication of smoking in a community, we introduce three control variables in the form of education campaign, anti-smoking gum, and anti-nicotive drugs/medicine in the proposed fractional order model. We discuss the necessary conditions for the optimality of a general fractional optimal control problem whose fractional derivative is described in the Caputo sense. In order to do this, we minimize the number of potential and occasional smokers and maximize the number of ex-smokers. We use Pontryagin's maximum principle to characterize the optimal levels of the three controls. The resulting optimality system is solved numerically by MATLAB.

  5. Computing the optimal path in stochastic dynamical systems.

    PubMed

    Bauver, Martha; Forgoston, Eric; Billings, Lora

    2016-08-01

    In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensional system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces.

  6. Computing the optimal path in stochastic dynamical systems

    NASA Astrophysics Data System (ADS)

    Bauver, Martha; Forgoston, Eric; Billings, Lora

    2016-08-01

    In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensional system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces.

  7. Computing the optimal path in stochastic dynamical systems.

    PubMed

    Bauver, Martha; Forgoston, Eric; Billings, Lora

    2016-08-01

    In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensional system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces. PMID:27586597

  8. A multilevel optimization of large-scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.; Sundareshan, M. K.

    1976-01-01

    A multilevel feedback control scheme is proposed for optimization of large-scale systems composed of a number of (not necessarily weakly coupled) subsystems. Local controllers are used to optimize each subsystem, ignoring the interconnections. Then, a global controller may be applied to minimize the effect of interconnections and improve the performance of the overall system. At the cost of suboptimal performance, this optimization strategy ensures invariance of suboptimality and stability of the systems under structural perturbations whereby subsystems are disconnected and again connected during operation.

  9. Waste management with recourse: an inexact dynamic programming model containing fuzzy boundary intervals in objectives and constraints.

    PubMed

    Tan, Q; Huang, G H; Cai, Y P

    2010-09-01

    The existing inexact optimization methods based on interval-parameter linear programming can hardly address problems where coefficients in objective functions are subject to dual uncertainties. In this study, a superiority-inferiority-based inexact fuzzy two-stage mixed-integer linear programming (SI-IFTMILP) model was developed for supporting municipal solid waste management under uncertainty. The developed SI-IFTMILP approach is capable of tackling dual uncertainties presented as fuzzy boundary intervals (FuBIs) in not only constraints, but also objective functions. Uncertainties expressed as a combination of intervals and random variables could also be explicitly reflected. An algorithm with high computational efficiency was provided to solve SI-IFTMILP. SI-IFTMILP was then applied to a long-term waste management case to demonstrate its applicability. Useful interval solutions were obtained. SI-IFTMILP could help generate dynamic facility-expansion and waste-allocation plans, as well as provide corrective actions when anticipated waste management plans are violated. It could also greatly reduce system-violation risk and enhance system robustness through examining two sets of penalties resulting from variations in fuzziness and randomness. Moreover, four possible alternative models were formulated to solve the same problem; solutions from them were then compared with those from SI-IFTMILP. The results indicate that SI-IFTMILP could provide more reliable solutions than the alternatives. PMID:20580864

  10. Waste management with recourse: an inexact dynamic programming model containing fuzzy boundary intervals in objectives and constraints.

    PubMed

    Tan, Q; Huang, G H; Cai, Y P

    2010-09-01

    The existing inexact optimization methods based on interval-parameter linear programming can hardly address problems where coefficients in objective functions are subject to dual uncertainties. In this study, a superiority-inferiority-based inexact fuzzy two-stage mixed-integer linear programming (SI-IFTMILP) model was developed for supporting municipal solid waste management under uncertainty. The developed SI-IFTMILP approach is capable of tackling dual uncertainties presented as fuzzy boundary intervals (FuBIs) in not only constraints, but also objective functions. Uncertainties expressed as a combination of intervals and random variables could also be explicitly reflected. An algorithm with high computational efficiency was provided to solve SI-IFTMILP. SI-IFTMILP was then applied to a long-term waste management case to demonstrate its applicability. Useful interval solutions were obtained. SI-IFTMILP could help generate dynamic facility-expansion and waste-allocation plans, as well as provide corrective actions when anticipated waste management plans are violated. It could also greatly reduce system-violation risk and enhance system robustness through examining two sets of penalties resulting from variations in fuzziness and randomness. Moreover, four possible alternative models were formulated to solve the same problem; solutions from them were then compared with those from SI-IFTMILP. The results indicate that SI-IFTMILP could provide more reliable solutions than the alternatives.

  11. Optimized dynamic framing for PET-based myocardial blood flow estimation

    NASA Astrophysics Data System (ADS)

    Kolthammer, Jeffrey A.; Muzic, Raymond F.

    2013-08-01

    An optimal experiment design methodology was developed to select the framing schedule to be used in dynamic positron emission tomography (PET) for estimation of myocardial blood flow using 82Rb. A compartment model and an arterial input function based on measured data were used to calculate a D-optimality criterion for a wide range of candidate framing schedules. To validate the optimality calculation, noisy time-activity curves were simulated, from which parameter values were estimated using an efficient and robust decomposition of the estimation problem. D-optimized schedules improved estimate precision compared to non-optimized schedules, including previously published schedules. To assess robustness, a range of physiologic conditions were simulated. Schedules that were optimal for one condition were nearly-optimal for others. The effect of infusion duration was investigated. Optimality was better for shorter than for longer tracer infusion durations, with the optimal schedule for the shortest infusion duration being nearly optimal for other durations. Together this suggests that a framing schedule optimized for one set of conditions will also work well for others and it is not necessary to use different schedules for different infusion durations or for rest and stress studies. The method for optimizing schedules is general and could be applied in other dynamic PET imaging studies.

  12. Incorporation of inexact dynamic optimization with fuzzy relation analysis for integrated climate change impact study

    SciTech Connect

    Huang, G.H.; Cohen, S.J.; Yin, Y.Y.; Bass, B. |

    1996-09-01

    A climatic change impact assessment was performed for agricultural and timbering activities. An inexact dynamic optimization model was utilized that can reflect complex system features and a related fuzzy system relation analysis method for comprehensive impact patterns assessment.

  13. An integrative and practical evolutionary optimization for a complex, dynamic model of biological networks.

    PubMed

    Maeda, Kazuhiro; Fukano, Yuya; Yamamichi, Shunsuke; Nitta, Daichi; Kurata, Hiroyuki

    2011-05-01

    Computer simulation is an important technique to capture the dynamics of biochemical networks. Numerical optimization is the key to estimate the values of kinetic parameters so that the dynamic model reproduces the behaviors of the existing experimental data. It is required to develop general strategies for the optimization of complex biochemical networks with a huge space of search parameters, under the condition that kinetic and quantitative data are hardly available. We propose an integrative and practical strategy for optimizing a complex dynamic model by using qualitative and incomplete experimental data. The key technologies are the divide and conquer method for reducing the search space, handling of multiple objective functions representing different types of biological behaviors, and design of rule-based objective functions that are suitable for qualitative and error-prone experimental data. This strategy is applied to optimizing a dynamic model of the yeast cell cycle to demonstrate the feasibility of it.

  14. Optimization of the Dynamic Aperture for SPEAR3 Low-Emittance Upgrade

    SciTech Connect

    Wang, Lanfa; Huang, Xiaobiao; Nosochkov, Yuri; Safranek, James A.; Borland, Michael; /Argonne

    2012-05-30

    A low emittance upgrade is planned for SPEAR3. As the first phase, the emittance is reduced from 10nm to 7nm without additional magnets. A further upgrade with even lower emittance will require a damping wiggler. There is a smaller dynamic aperture for the lower emittance optics due to a stronger nonlinearity. Elegant based Multi-Objective Genetic Algorithm (MOGA) is used to maximize the dynamic aperture. Both the dynamic aperture and beam lifetime are optimized simultaneously. Various configurations of the sextupole magnets have been studied in order to find the best configuration. The betatron tune also can be optimized to minimize resonance effects. The optimized dynamic aperture increases more than 15% from the nominal case and the lifetime increases from 14 hours to 17 hours. It is important that the increase of the dynamic aperture is mainly in the beam injection direction. Therefore the injection efficiency will benefit from this improvement.

  15. An inverse dynamics approach to trajectory optimization for an aerospace plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1992-01-01

    An inverse dynamics approach for trajectory optimization is proposed. This technique can be useful in many difficult trajectory optimization and control problems. The application of the approach is exemplified by ascent trajectory optimization for an aerospace plane. Both minimum-fuel and minimax types of performance indices are considered. When rocket augmentation is available for ascent, it is shown that accurate orbital insertion can be achieved through the inverse control of the rocket in the presence of disturbances.

  16. Time-limited optimal dynamics beyond the quantum speed limit

    NASA Astrophysics Data System (ADS)

    Gajdacz, Miroslav; Das, Kunal K.; Arlt, Jan; Sherson, Jacob F.; Opatrný, Tomáš

    2015-12-01

    The quantum speed limit sets the minimum time required to transfer a quantum system completely into a given target state. At shorter times the higher operation speed results in a loss of fidelity. Here we quantify the trade-off between the fidelity and the duration in a system driven by a time-varying control. The problem is addressed in the framework of Hilbert space geometry offering an intuitive interpretation of optimal control algorithms. This approach leads to a necessary criterion for control optimality applicable as a measure of algorithm convergence. The time fidelity trade-off expressed in terms of the direct Hilbert velocity provides a robust prediction of the quantum speed limit and allows one to adapt the control optimization such that it yields a predefined fidelity. The results are verified numerically in a multilevel system with a constrained Hamiltonian and a classification scheme for the control sequences is proposed based on their optimizability.

  17. Optimal dynamic pricing for deteriorating items with reference-price effects

    NASA Astrophysics Data System (ADS)

    Xue, Musen; Tang, Wansheng; Zhang, Jianxiong

    2016-07-01

    In this paper, a dynamic pricing problem for deteriorating items with the consumers' reference-price effect is studied. An optimal control model is established to maximise the total profit, where the demand not only depends on the current price, but also is sensitive to the historical price. The continuous-time dynamic optimal pricing strategy with reference-price effect is obtained through solving the optimal control model on the basis of Pontryagin's maximum principle. In addition, numerical simulations and sensitivity analysis are carried out. Finally, some managerial suggestions that firm may adopt to formulate its pricing policy are proposed.

  18. Achieving Optimal Self-Adaptivity for Dynamic Tuning of Organic Semiconductors through Resonance Engineering.

    PubMed

    Tao, Ye; Xu, Lijia; Zhang, Zhen; Chen, Runfeng; Li, Huanhuan; Xu, Hui; Zheng, Chao; Huang, Wei

    2016-08-01

    Current static-state explorations of organic semiconductors for optimal material properties and device performance are hindered by limited insights into the dynamically changed molecular states and charge transport and energy transfer processes upon device operation. Here, we propose a simple yet successful strategy, resonance variation-based dynamic adaptation (RVDA), to realize optimized self-adaptive properties in donor-resonance-acceptor molecules by engineering the resonance variation for dynamic tuning of organic semiconductors. Organic light-emitting diodes hosted by these RVDA materials exhibit remarkably high performance, with external quantum efficiencies up to 21.7% and favorable device stability. Our approach, which supports simultaneous realization of dynamically adapted and selectively enhanced properties via resonance engineering, illustrates a feasible design map for the preparation of smart organic semiconductors capable of dynamic structure and property modulations, promoting the studies of organic electronics from static to dynamic. PMID:27403886

  19. Was Your Glass Left Half Full? Family Dynamics and Optimism

    ERIC Educational Resources Information Center

    Buri, John R.; Gunty, Amy

    2008-01-01

    Students' levels of a frequently studied adaptive schema (optimism) as a function of parenting variables (parental authority, family intrusiveness, parental overprotection, parentification, parental psychological control, and parental nurturance) were investigated. Results revealed that positive parenting styles were positively related to the…

  20. INDDGO: Integrated Network Decomposition & Dynamic programming for Graph Optimization

    SciTech Connect

    Groer, Christopher S; Sullivan, Blair D; Weerapurage, Dinesh P

    2012-10-01

    It is well-known that dynamic programming algorithms can utilize tree decompositions to provide a way to solve some \\emph{NP}-hard problems on graphs where the complexity is polynomial in the number of nodes and edges in the graph, but exponential in the width of the underlying tree decomposition. However, there has been relatively little computational work done to determine the practical utility of such dynamic programming algorithms. We have developed software to construct tree decompositions using various heuristics and have created a fast, memory-efficient dynamic programming implementation for solving maximum weighted independent set. We describe our software and the algorithms we have implemented, focusing on memory saving techniques for the dynamic programming. We compare the running time and memory usage of our implementation with other techniques for solving maximum weighted independent set, including a commercial integer programming solver and a semi-definite programming solver. Our results indicate that it is possible to solve some instances where the underlying decomposition has width much larger than suggested by the literature. For certain types of problems, our dynamic programming code runs several times faster than these other methods.

  1. Application of the dynamic ant colony algorithm on the optimal operation of cascade reservoirs

    NASA Astrophysics Data System (ADS)

    Tong, X. X.; Xu, W. S.; Wang, Y. F.; Zhang, Y. W.; Zhang, P. C.

    2016-08-01

    Due to the lack of dynamic adjustments between global searches and local optimization, it is difficult to maintain high diversity and overcome local optimum problems for Ant Colony Algorithms (ACA). Therefore, this paper proposes an improved ACA, Dynamic Ant Colony Algorithm (DACA). DACA applies dynamic adjustments on heuristic factor changes to balance global searches and local optimization in ACA, which decreases cosines. At the same time, by utilizing the randomness and ergodicity of the chaotic search, DACA implements the chaos disturbance on the path found in each ACA iteration to improve the algorithm's ability to jump out of the local optimum and avoid premature convergence. We conducted a case study with DACA for optimal joint operation of the Dadu River cascade reservoirs. The simulation results were compared with the results of the gradual optimization method and the standard ACA, which demonstrated the advantages of DACA in speed and precision.

  2. A comparison of static and dynamic optimization muscle force predictions during wheelchair propulsion.

    PubMed

    Morrow, Melissa M; Rankin, Jeffery W; Neptune, Richard R; Kaufman, Kenton R

    2014-11-01

    The primary purpose of this study was to compare static and dynamic optimization muscle force and work predictions during the push phase of wheelchair propulsion. A secondary purpose was to compare the differences in predicted shoulder and elbow kinetics and kinematics and handrim forces. The forward dynamics simulation minimized differences between simulated and experimental data (obtained from 10 manual wheelchair users) and muscle co-contraction. For direct comparison between models, the shoulder and elbow muscle moment arms and net joint moments from the dynamic optimization were used as inputs into the static optimization routine. RMS errors between model predictions were calculated to quantify model agreement. There was a wide range of individual muscle force agreement that spanned from poor (26.4% Fmax error in the middle deltoid) to good (6.4% Fmax error in the anterior deltoid) in the prime movers of the shoulder. The predicted muscle forces from the static optimization were sufficient to create the appropriate motion and joint moments at the shoulder for the push phase of wheelchair propulsion, but showed deviations in the elbow moment, pronation-supination motion and hand rim forces. These results suggest the static approach does not produce results similar enough to be a replacement for forward dynamics simulations, and care should be taken in choosing the appropriate method for a specific task and set of constraints. Dynamic optimization modeling approaches may be required for motions that are greatly influenced by muscle activation dynamics or that require significant co-contraction. PMID:25282075

  3. A comparison of static and dynamic optimization muscle force predictions during wheelchair propulsion.

    PubMed

    Morrow, Melissa M; Rankin, Jeffery W; Neptune, Richard R; Kaufman, Kenton R

    2014-11-01

    The primary purpose of this study was to compare static and dynamic optimization muscle force and work predictions during the push phase of wheelchair propulsion. A secondary purpose was to compare the differences in predicted shoulder and elbow kinetics and kinematics and handrim forces. The forward dynamics simulation minimized differences between simulated and experimental data (obtained from 10 manual wheelchair users) and muscle co-contraction. For direct comparison between models, the shoulder and elbow muscle moment arms and net joint moments from the dynamic optimization were used as inputs into the static optimization routine. RMS errors between model predictions were calculated to quantify model agreement. There was a wide range of individual muscle force agreement that spanned from poor (26.4% Fmax error in the middle deltoid) to good (6.4% Fmax error in the anterior deltoid) in the prime movers of the shoulder. The predicted muscle forces from the static optimization were sufficient to create the appropriate motion and joint moments at the shoulder for the push phase of wheelchair propulsion, but showed deviations in the elbow moment, pronation-supination motion and hand rim forces. These results suggest the static approach does not produce results similar enough to be a replacement for forward dynamics simulations, and care should be taken in choosing the appropriate method for a specific task and set of constraints. Dynamic optimization modeling approaches may be required for motions that are greatly influenced by muscle activation dynamics or that require significant co-contraction.

  4. Multilevel decomposition approach to integrated aerodynamic/dynamic/structural optimization of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.; Young, Katherine C.; Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.

    1994-01-01

    This paper describes an integrated aerodynamic, dynamic, and structural (IADS) optimization procedure for helicopter rotor blades. The procedure combines performance, dynamics, and structural analyses with a general purpose optimizer using multilevel decomposition techniques. At the upper level, the structure is defined in terms of local quantities (stiffnesses, mass, and average strains). At the lower level, the structure is defined in terms of local quantities (detailed dimensions of the blade structure and stresses). The IADS procedure provides an optimization technique that is compatible with industrial design practices in which the aerodynamic and dynamic design is performed at a global level and the structural design is carried out at a detailed level with considerable dialogue and compromise among the aerodynamic, dynamic, and structural groups. The IADS procedure is demonstrated for several cases.

  5. Integrated aerodynamic/dynamic/structural optimization of helicopter rotor blades using multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.; Young, Katherine C.; Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.

    1995-01-01

    This paper describes an integrated aerodynamic/dynamic/structural (IADS) optimization procedure for helicopter rotor blades. The procedure combines performance, dynamics, and structural analyses with a general-purpose optimizer using multilevel decomposition techniques. At the upper level, the structure is defined in terms of global quantities (stiffness, mass, and average strains). At the lower level, the structure is defined in terms of local quantities (detailed dimensions of the blade structure and stresses). The IADS procedure provides an optimization technique that is compatible with industrial design practices in which the aerodynamic and dynamic designs are performed at a global level and the structural design is carried out at a detailed level with considerable dialog and compromise among the aerodynamic, dynamic, and structural groups. The IADS procedure is demonstrated for several examples.

  6. Computational Fluid Dynamics-Based Design Optimization Method for Archimedes Screw Blood Pumps.

    PubMed

    Yu, Hai; Janiga, Gábor; Thévenin, Dominique

    2016-04-01

    An optimization method suitable for improving the performance of Archimedes screw axial rotary blood pumps is described in the present article. In order to achieve a more robust design and to save computational resources, this method combines the advantages of the established pump design theory with modern computer-aided, computational fluid dynamics (CFD)-based design optimization (CFD-O) relying on evolutionary algorithms and computational fluid dynamics. The main purposes of this project are to: (i) integrate pump design theory within the already existing CFD-based optimization; (ii) demonstrate that the resulting procedure is suitable for optimizing an Archimedes screw blood pump in terms of efficiency. Results obtained in this study demonstrate that the developed tool is able to meet both objectives. Finally, the resulting level of hemolysis can be numerically assessed for the optimal design, as hemolysis is an issue of overwhelming importance for blood pumps. PMID:26526039

  7. Computational Fluid Dynamics-Based Design Optimization Method for Archimedes Screw Blood Pumps.

    PubMed

    Yu, Hai; Janiga, Gábor; Thévenin, Dominique

    2016-04-01

    An optimization method suitable for improving the performance of Archimedes screw axial rotary blood pumps is described in the present article. In order to achieve a more robust design and to save computational resources, this method combines the advantages of the established pump design theory with modern computer-aided, computational fluid dynamics (CFD)-based design optimization (CFD-O) relying on evolutionary algorithms and computational fluid dynamics. The main purposes of this project are to: (i) integrate pump design theory within the already existing CFD-based optimization; (ii) demonstrate that the resulting procedure is suitable for optimizing an Archimedes screw blood pump in terms of efficiency. Results obtained in this study demonstrate that the developed tool is able to meet both objectives. Finally, the resulting level of hemolysis can be numerically assessed for the optimal design, as hemolysis is an issue of overwhelming importance for blood pumps.

  8. Optimal satisfaction degree in energy harvesting cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Li, Zan; Liu, Bo-Yang; Si, Jiang-Bo; Zhou, Fu-Hui

    2015-12-01

    A cognitive radio (CR) network with energy harvesting (EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model (HMM) is used to characterize the imperfect spectrum sensing process. In order to maximize the whole satisfaction degree (WSD) of the cognitive radio network, a tradeoff between the average throughput of the secondary user (SU) and the interference to the primary user (PU) is analyzed. We formulate the satisfaction degree optimization problem as a mixed integer nonlinear programming (MINLP) problem. The satisfaction degree optimization problem is solved by using differential evolution (DE) algorithm. The proposed optimization problem allows the network to adaptively achieve the optimal solution based on its required quality of service (Qos). Numerical results are given to verify our analysis. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the Doctorial Programs Foundation of the Ministry of Education of China (Grant No. 20110203110011), and the 111 Project (Grant No. B08038).

  9. Dynamic Task Optimization in Remote Diabetes Monitoring Systems

    PubMed Central

    Suh, Myung-kyung; Woodbridge, Jonathan; Moin, Tannaz; Lan, Mars; Alshurafa, Nabil; Samy, Lauren; Mortazavi, Bobak; Ghasemzadeh, Hassan; Bui, Alex; Ahmadi, Sheila; Sarrafzadeh, Majid

    2016-01-01

    Diabetes is the seventh leading cause of death in the United States, but careful symptom monitoring can prevent adverse events. A real-time patient monitoring and feedback system is one of the solutions to help patients with diabetes and their healthcare professionals monitor health-related measurements and provide dynamic feedback. However, data-driven methods to dynamically prioritize and generate tasks are not well investigated in the domain of remote health monitoring. This paper presents a wireless health project (WANDA) that leverages sensor technology and wireless communication to monitor the health status of patients with diabetes. The WANDA dynamic task management function applies data analytics in real-time to discretize continuous features, applying data clustering and association rule mining techniques to manage a sliding window size dynamically and to prioritize required user tasks. The developed algorithm minimizes the number of daily action items required by patients with diabetes using association rules that satisfy a minimum support, confidence and conditional probability thresholds. Each of these tasks maximizes information gain, thereby improving the overall level of patient adherence and satisfaction. Experimental results from applying EM-based clustering and Apriori algorithms show that the developed algorithm can predict further events with higher confidence levels and reduce the number of user tasks by up to 76.19 %.

  10. Optimal PMU Placement Evaluation for Power System Dynamic State Estimation

    SciTech Connect

    Zhang, Jinghe; Welch, Greg; Bishop, Gary; Huang, Zhenyu

    2010-10-10

    Abstract - The synchronized phaor measurements unit (PMU), developed in the 1980s, is concidered to be one of the most important devices in the future of power systems. The recent development of PMU technology provides high-speed, precisely synchronized sensor data, which has been found to be usefule for dynamic, state estimation of power the power grid.

  11. Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms.

    PubMed

    Xu, Dongpo; Xia, Yili; Mandic, Danilo P

    2016-02-01

    The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized Hamilton-real (GHR) calculus, thus making a possible efficient derivation of general optimization algorithms directly in the quaternion field, rather than using the isomorphism with the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the novel quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are also introduced, opening a new avenue of research in quaternion optimization and greatly simplified the derivations of learning algorithms. The proposed GHR calculus is shown to yield the same generic algorithm forms as the corresponding real- and complex-valued algorithms. Advantages of the proposed framework are illuminated over illustrative simulations in quaternion signal processing and neural networks. PMID:26087504

  12. Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms.

    PubMed

    Xu, Dongpo; Xia, Yili; Mandic, Danilo P

    2016-02-01

    The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized Hamilton-real (GHR) calculus, thus making a possible efficient derivation of general optimization algorithms directly in the quaternion field, rather than using the isomorphism with the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the novel quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are also introduced, opening a new avenue of research in quaternion optimization and greatly simplified the derivations of learning algorithms. The proposed GHR calculus is shown to yield the same generic algorithm forms as the corresponding real- and complex-valued algorithms. Advantages of the proposed framework are illuminated over illustrative simulations in quaternion signal processing and neural networks.

  13. A complex-valued neural dynamical optimization approach and its stability analysis.

    PubMed

    Zhang, Songchuan; Xia, Youshen; Zheng, Weixing

    2015-01-01

    In this paper, we propose a complex-valued neural dynamical method for solving a complex-valued nonlinear convex programming problem. Theoretically, we prove that the proposed complex-valued neural dynamical approach is globally stable and convergent to the optimal solution. The proposed neural dynamical approach significantly generalizes the real-valued nonlinear Lagrange network completely in the complex domain. Compared with existing real-valued neural networks and numerical optimization methods for solving complex-valued quadratic convex programming problems, the proposed complex-valued neural dynamical approach can avoid redundant computation in a double real-valued space and thus has a low model complexity and storage capacity. Numerical simulations are presented to show the effectiveness of the proposed complex-valued neural dynamical approach.

  14. Optimal dynamic pricing and replenishment policy for perishable items with inventory-level-dependent demand

    NASA Astrophysics Data System (ADS)

    Lu, Lihao; Zhang, Jianxiong; Tang, Wansheng

    2016-04-01

    An inventory system for perishable items with limited replenishment capacity is introduced in this paper. The demand rate depends on the stock quantity displayed in the store as well as the sales price. With the goal to realise profit maximisation, an optimisation problem is addressed to seek for the optimal joint dynamic pricing and replenishment policy which is obtained by solving the optimisation problem with Pontryagin's maximum principle. A joint mixed policy, in which the sales price is a static decision variable and the replenishment rate remains to be a dynamic decision variable, is presented to compare with the joint dynamic policy. Numerical results demonstrate the advantages of the joint dynamic one, and further show the effects of different system parameters on the optimal joint dynamic policy and the maximal total profit.

  15. Role of optimization in the human dynamics of task execution

    NASA Astrophysics Data System (ADS)

    Cajueiro, Daniel O.; Maldonado, Wilfredo L.

    2008-03-01

    In order to explain the empirical evidence that the dynamics of human activity may not be well modeled by Poisson processes, a model based on queuing processes was built in the literature [A. L. Barabasi, Nature (London) 435, 207 (2005)]. The main assumption behind that model is that people execute their tasks based on a protocol that first executes the high priority item. In this context, the purpose of this paper is to analyze the validity of that hypothesis assuming that people are rational agents that make their decisions in order to minimize the cost of keeping nonexecuted tasks on the list. Therefore, we build and analytically solve a dynamic programming model with two priority types of tasks and show that the validity of this hypothesis depends strongly on the structure of the instantaneous costs that a person has to face if a given task is kept on the list for more than one period. Moreover, one interesting finding is that in one of the situations the protocol used to execute the tasks generates complex one-dimensional dynamics.

  16. Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, Part I: main content.

    PubMed

    Orellana, Liliana; Rotnitzky, Andrea; Robins, James M

    2010-01-01

    Dynamic treatment regimes are set rules for sequential decision making based on patient covariate history. Observational studies are well suited for the investigation of the effects of dynamic treatment regimes because of the variability in treatment decisions found in them. This variability exists because different physicians make different decisions in the face of similar patient histories. In this article we describe an approach to estimate the optimal dynamic treatment regime among a set of enforceable regimes. This set is comprised by regimes defined by simple rules based on a subset of past information. The regimes in the set are indexed by a Euclidean vector. The optimal regime is the one that maximizes the expected counterfactual utility over all regimes in the set. We discuss assumptions under which it is possible to identify the optimal regime from observational longitudinal data. Murphy et al. (2001) developed efficient augmented inverse probability weighted estimators of the expected utility of one fixed regime. Our methods are based on an extension of the marginal structural mean model of Robins (1998, 1999) which incorporate the estimation ideas of Murphy et al. (2001). Our models, which we call dynamic regime marginal structural mean models, are specially suitable for estimating the optimal treatment regime in a moderately small class of enforceable regimes of interest. We consider both parametric and semiparametric dynamic regime marginal structural models. We discuss locally efficient, double-robust estimation of the model parameters and of the index of the optimal treatment regime in the set. In a companion paper in this issue of the journal we provide proofs of the main results.

  17. Bacterial Temporal Dynamics Enable Optimal Design of Antibiotic Treatment

    PubMed Central

    Meredith, Hannah R.; Lopatkin, Allison J.; Anderson, Deverick J.; You, Lingchong

    2015-01-01

    There is a critical need to better use existing antibiotics due to the urgent threat of antibiotic resistant bacteria coupled with the reduced effort in developing new antibiotics. β-lactam antibiotics represent one of the most commonly used classes of antibiotics to treat a broad spectrum of Gram-positive and -negative bacterial pathogens. However, the rise of extended spectrum β-lactamase (ESBL) producing bacteria has limited the use of β-lactams. Due to the concern of complex drug responses, many β-lactams are typically ruled out if ESBL-producing pathogens are detected, even if these pathogens test as susceptible to some β-lactams. Using quantitative modeling, we show that β-lactams could still effectively treat pathogens producing low or moderate levels of ESBLs when administered properly. We further develop a metric to guide the design of a dosing protocol to optimize treatment efficiency for any antibiotic-pathogen combination. Ultimately, optimized dosing protocols could allow reintroduction of a repertoire of first-line antibiotics with improved treatment outcomes and preserve last-resort antibiotics. PMID:25905796

  18. Optimal control methods for controlling bacterial populations with persister dynamics

    NASA Astrophysics Data System (ADS)

    Cogan, N. G.

    2016-06-01

    Bacterial tolerance to antibiotics is a well-known phenomena; however, only recent studies of bacterial biofilms have shown how multifaceted tolerance really is. By joining into a structured community and offering shared protection and gene transfer, bacterial populations can protect themselves genotypically, phenotypically and physically. In this study, we collect a line of research that focuses on phenotypic (or plastic) tolerance. The dynamics of persister formation are becoming better understood, even though there are major questions that remain. The thrust of our results indicate that even without detailed description of the biological mechanisms, theoretical studies can offer strategies that can eradicate bacterial populations with existing drugs.

  19. Scaling and optimization of the radiation temperature in dynamic hohlraums

    SciTech Connect

    SLUTZ,STEPHEN A.; DOUGLAS,MELISSA R.; LASH,JOEL S.; VESEY,ROGER A.; CHANDLER,GORDON A.; NASH,THOMAS J.; DERZON,MARK S.

    2000-04-13

    The authors have constructed a quasi-analytic model of the dynamic hohlraum. Solutions only require a numerical root solve, which can be done very quickly. Results of the model are compared to both experiments and full numerical simulations with good agreement. The computational simplicity of the model allows one to find the behavior of the hohlraum temperature as a function the various parameters of the system and thus find optimum parameters as a function of the driving current. The model is used to investigate the benefits of ablative standoff and axial convergence.

  20. Optimizing quantum correlation dynamics by weak measurement in dissipative environment

    NASA Astrophysics Data System (ADS)

    Du, Shao-Jiang; Xia, Yun-Jie; Duan, De-Yang; Zhang, Lu; Gao, Qiang

    2015-04-01

    We investigate the protection of quantum correlations of two qubits in independent vacuum reservoirs by means of weak measurements. It is found that the weak measurement can reduce the amount of quantum correlation for one type of initial state at the beginning in a non-Markovian environment and meanwhile it can reduce the occurrence time of entanglement sudden death (ESD) in the process of time evolution. In a Markovian environment, the quantum entanglements of the two kinds of initial states decay rapidly and the weak measurement can further weaken the quantum entanglement, therefore in this case the entanglement cannot be optimized in the evolution process. Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012 and No.11147019).

  1. A wave dynamics criterion for optimization of mammalian cardiovascular system.

    PubMed

    Pahlevan, Niema M; Gharib, Morteza

    2014-05-01

    The cardiovascular system in mammals follows various optimization criteria covering the heart, the vascular network, and the coupling of the two. Through a simple dimensional analysis we arrived at a non-dimensional number (wave condition number) that can predict the optimum wave state in which the left ventricular (LV) pulsatile power (LV workload) is minimized in a mammalian cardiovascular system. This number is also universal among all mammals independent of animal size maintaining a value of around 0.1. By utilizing a unique in vitro model of human aorta, we tested our hypothesis against a wide range of aortic compliance (pulse wave velocity). We concluded that the optimum value of the wave condition number remains to be around 0.1 for a wide range of aorta compliance that we could simulate in our in-vitro system.

  2. Locusts use dynamic thermoregulatory behaviour to optimize nutritional outcomes

    PubMed Central

    Coggan, Nicole; Clissold, Fiona J.; Simpson, Stephen J.

    2011-01-01

    Because key nutritional processes differ in their thermal optima, ectotherms may use temperature selection to optimize performance in changing nutritional environments. Such behaviour would be especially advantageous to small terrestrial animals, which have low thermal inertia and often have access to a wide range of environmental temperatures over small distances. Using the locust, Locusta migratoria, we have demonstrated a direct link between nutritional state and thermoregulatory behaviour. When faced with chronic restrictions to the supply of nutrients, locusts selected increasingly lower temperatures within a gradient, thereby maximizing nutrient use efficiency at the cost of slower growth. Over the shorter term, when locusts were unable to find a meal in the normal course of ad libitum feeding, they immediately adjusted their thermoregulatory behaviour, selecting a lower temperature at which assimilation efficiency was maximal. Thus, locusts use fine scale patterns of movement and temperature selection to adjust for reduced nutrient supply and thereby ameliorate associated life-history consequences. PMID:21288941

  3. Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.

    2009-01-01

    An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.

  4. Dynamic Layered Dual-Cluster Heads Routing Algorithm Based on Krill Herd Optimization in UWSNs

    PubMed Central

    Jiang, Peng; Feng, Yang; Wu, Feng; Yu, Shanen; Xu, Huan

    2016-01-01

    Aimed at the limited energy of nodes in underwater wireless sensor networks (UWSNs) and the heavy load of cluster heads in clustering routing algorithms, this paper proposes a dynamic layered dual-cluster routing algorithm based on Krill Herd optimization in UWSNs. Cluster size is first decided by the distance between the cluster head nodes and sink node, and a dynamic layered mechanism is established to avoid the repeated selection of the same cluster head nodes. Using Krill Herd optimization algorithm selects the optimal and second optimal cluster heads, and its Lagrange model directs nodes to a high likelihood area. It ultimately realizes the functions of data collection and data transition. The simulation results show that the proposed algorithm can effectively decrease cluster energy consumption, balance the network energy consumption, and prolong the network lifetime. PMID:27589744

  5. Dynamic Layered Dual-Cluster Heads Routing Algorithm Based on Krill Herd Optimization in UWSNs.

    PubMed

    Jiang, Peng; Feng, Yang; Wu, Feng; Yu, Shanen; Xu, Huan

    2016-01-01

    Aimed at the limited energy of nodes in underwater wireless sensor networks (UWSNs) and the heavy load of cluster heads in clustering routing algorithms, this paper proposes a dynamic layered dual-cluster routing algorithm based on Krill Herd optimization in UWSNs. Cluster size is first decided by the distance between the cluster head nodes and sink node, and a dynamic layered mechanism is established to avoid the repeated selection of the same cluster head nodes. Using Krill Herd optimization algorithm selects the optimal and second optimal cluster heads, and its Lagrange model directs nodes to a high likelihood area. It ultimately realizes the functions of data collection and data transition. The simulation results show that the proposed algorithm can effectively decrease cluster energy consumption, balance the network energy consumption, and prolong the network lifetime. PMID:27589744

  6. Performance evaluation of the inverse dynamics method for optimal spacecraft reorientation

    NASA Astrophysics Data System (ADS)

    Ventura, Jacopo; Romano, Marcello; Walter, Ulrich

    2015-05-01

    This paper investigates the application of the inverse dynamics in the virtual domain method to Euler angles, quaternions, and modified Rodrigues parameters for rapid optimal attitude trajectory generation for spacecraft reorientation maneuvers. The impact of the virtual domain and attitude representation is numerically investigated for both minimum time and minimum energy problems. Owing to the nature of the inverse dynamics method, it yields sub-optimal solutions for minimum time problems. Furthermore, the virtual domain improves the optimality of the solution, but at the cost of more computational time. The attitude representation also affects solution quality and computational speed. For minimum energy problems, the optimal solution can be obtained without the virtual domain with any considered attitude representation.

  7. Optimization of the dynamic behavior of strongly nonlinear heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Herbold, Eric B.

    New aspects of strongly nonlinear wave and structural phenomena in granular media are developed numerically, theoretically and experimentally. One-dimensional chains of particles and compressed powder composites are the two main types of materials considered here. Typical granular assemblies consist of linearly elastic spheres or layers of masses and effective nonlinear springs in one-dimensional columns for dynamic testing. These materials are highly sensitive to initial and boundary conditions, making them useful for acoustic and shock-mitigating applications. One-dimensional assemblies of spherical particles are examples of strongly nonlinear systems with unique properties. For example, if initially uncompressed, these materials have a sound speed equal to zero (sonic vacuum), supporting strongly nonlinear compression solitary waves with a finite width. Different types of assembled metamaterials will be presented with a discussion of the material's response to static compression. The acoustic diode effect will be presented, which may be useful in shock mitigation applications. Systems with controlled dissipation will also be discussed from an experimental and theoretical standpoint emphasizing the critical viscosity that defines the transition from an oscillatory to monotonous shock profile. The dynamic compression of compressed powder composites may lead to self-organizing mesoscale structures in two and three dimensions. A reactive granular material composed of a compressed mixture of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) fine-grain powders exhibit this behavior. Quasistatic, Hopkinson bar, and drop-weight experiments show that composite materials with a high porosity and fine metallic particles exhibit a higher strength than less porous mixtures with larger particles, given the same mass fraction of constituents. A two-dimensional Eulerian hydrocode is implemented to investigate the mechanical deformation and failure of the compressed

  8. The uncertainty threshold principle - Some fundamental limitations of optimal decision making under dynamic uncertainty

    NASA Technical Reports Server (NTRS)

    Athans, M.; Ku, R.; Gershwin, S. B.

    1977-01-01

    This note shows that the optimal control of dynamic systems with uncertain parameters has certain limitations. In particular, by means of a simple scalar linear-quadratic optimal control example, it is shown that the infinite horizon solution does not exist if the parameter uncertainty exceeds a certain quantifiable threshold; we call this the uncertainty threshold principle. The philosophical and design implications of this result are discussed.

  9. The Uncertainty Threshold Principle: Some Fundamental Limitations of Optimal Decision Making Under Dynamic Uncertainity

    NASA Technical Reports Server (NTRS)

    Athans, M.; Ku, R.; Gershwin, S. B.

    1977-01-01

    This note shows that the optimal control of dynamic systems with uncertain parameters has certain limitations. In particular, by means of a simple scalar linear-quadratic optimal control example, it is shown that the infinite horizon solution does not exist if the parameter uncertainty exceeds a certain quantifiable threshold; we call this the uncertainty threshold principle. The philosophical and design implications of this result are discussed.

  10. Integration of dynamic, aerodynamic, and structural optimization of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Peters, David A.

    1991-01-01

    Summarized here is the first six years of research into the integration of structural, dynamic, and aerodynamic considerations in the design-optimization process for rotor blades. Specifically discussed here is the application of design optimization techniques for helicopter rotor blades. The reduction of vibratory shears and moments at the blade root, aeroelastic stability of the rotor, optimum airframe design, and an efficient procedure for calculating system sensitivities with respect to the design variables used are discussed.

  11. Optimal purchasing of raw materials: A data-driven approach

    SciTech Connect

    Muteki, K.; MacGregor, J.F.

    2008-06-15

    An approach to the optimal purchasing of raw materials that will achieve a desired product quality at a minimum cost is presented. A PLS (Partial Least Squares) approach to formulation modeling is used to combine databases on raw material properties and on past process operations and to relate these to final product quality. These PLS latent variable models are then used in a sequential quadratic programming (SQP) or mixed integer nonlinear programming (MINLP) optimization to select those raw-materials, among all those available on the market, the ratios in which to combine them and the process conditions under which they should be processed. The approach is illustrated for the optimal purchasing of metallurgical coals for coke making in the steel industry.

  12. Integrated strategic and tactical biomass-biofuel supply chain optimization.

    PubMed

    Lin, Tao; Rodríguez, Luis F; Shastri, Yogendra N; Hansen, Alan C; Ting, K C

    2014-03-01

    To ensure effective biomass feedstock provision for large-scale biofuel production, an integrated biomass supply chain optimization model was developed to minimize annual biomass-ethanol production costs by optimizing both strategic and tactical planning decisions simultaneously. The mixed integer linear programming model optimizes the activities range from biomass harvesting, packing, in-field transportation, stacking, transportation, preprocessing, and storage, to ethanol production and distribution. The numbers, locations, and capacities of facilities as well as biomass and ethanol distribution patterns are key strategic decisions; while biomass production, delivery, and operating schedules and inventory monitoring are key tactical decisions. The model was implemented to study Miscanthus-ethanol supply chain in Illinois. The base case results showed unit Miscanthus-ethanol production costs were $0.72L(-1) of ethanol. Biorefinery related costs accounts for 62% of the total costs, followed by biomass procurement costs. Sensitivity analysis showed that a 50% reduction in biomass yield would increase unit production costs by 11%.

  13. A deterministic global approach for mixed-discrete structural optimization

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Hua; Tsai, Jung-Fa

    2014-07-01

    This study proposes a novel approach for finding the exact global optimum of a mixed-discrete structural optimization problem. Although many approaches have been developed to solve the mixed-discrete structural optimization problem, they cannot guarantee finding a global solution or they adopt too many extra binary variables and constraints in reformulating the problem. The proposed deterministic method uses convexification strategies and linearization techniques to convert a structural optimization problem into a convex mixed-integer nonlinear programming problem solvable to obtain a global optimum. To enhance the computational efficiency in treating complicated problems, the range reduction technique is also applied to tighten variable bounds. Several numerical experiments drawn from practical structural design problems are presented to demonstrate the effectiveness of the proposed method.

  14. Stochastic Optimal Scheduling of Residential Appliances with Renewable Energy Sources

    SciTech Connect

    Wu, Hongyu; Pratt, Annabelle; Chakraborty, Sudipta

    2015-07-03

    This paper proposes a stochastic, multi-objective optimization model within a Model Predictive Control (MPC) framework, to determine the optimal operational schedules of residential appliances operating in the presence of renewable energy source (RES). The objective function minimizes the weighted sum of discomfort, energy cost, total and peak electricity consumption, and carbon footprint. A heuristic method is developed for combining different objective components. The proposed stochastic model utilizes Monte Carlo simulation (MCS) for representing uncertainties in electricity price, outdoor temperature, RES generation, water usage, and non-controllable loads. The proposed model is solved using a mixed integer linear programming (MILP) solver and numerical results show the validity of the model. Case studies show the benefit of using the proposed optimization model.

  15. Wave packet dynamics in the optimal superadiabatic approximation

    NASA Astrophysics Data System (ADS)

    Betz, V.; Goddard, B. D.; Manthe, U.

    2016-06-01

    We explain the concept of superadiabatic representations and show how in the context of electronically non-adiabatic transitions they lead to an explicit formula that can be used to predict transitions at avoided crossings. Based on this formula, we present a simple method for computing wave packet dynamics across avoided crossings. Only knowledge of the adiabatic potential energy surfaces near the avoided crossing is required for the computation. In particular, this means that no diabatization procedure is necessary, the adiabatic electronic energies can be computed on the fly, and they only need to be computed to higher accuracy when an avoided crossing is detected. We test the quality of our method on the paradigmatic example of photo-dissociation of NaI, finding very good agreement with results of exact wave packet calculations.

  16. Optimal Perceived Timing: Integrating Sensory Information with Dynamically Updated Expectations

    PubMed Central

    Di Luca, Massimiliano; Rhodes, Darren

    2016-01-01

    The environment has a temporal structure, and knowing when a stimulus will appear translates into increased perceptual performance. Here we investigated how the human brain exploits temporal regularity in stimulus sequences for perception. We find that the timing of stimuli that occasionally deviate from a regularly paced sequence is perceptually distorted. Stimuli presented earlier than expected are perceptually delayed, whereas stimuli presented on time and later than expected are perceptually accelerated. This result suggests that the brain regularizes slightly deviant stimuli with an asymmetry that leads to the perceptual acceleration of expected stimuli. We present a Bayesian model for the combination of dynamically-updated expectations, in the form of a priori probability of encountering future stimuli, with incoming sensory information. The asymmetries in the results are accounted for by the asymmetries in the distributions involved in the computational process. PMID:27385184

  17. Wave packet dynamics in the optimal superadiabatic approximation.

    PubMed

    Betz, V; Goddard, B D; Manthe, U

    2016-06-14

    We explain the concept of superadiabatic representations and show how in the context of electronically non-adiabatic transitions they lead to an explicit formula that can be used to predict transitions at avoided crossings. Based on this formula, we present a simple method for computing wave packet dynamics across avoided crossings. Only knowledge of the adiabatic potential energy surfaces near the avoided crossing is required for the computation. In particular, this means that no diabatization procedure is necessary, the adiabatic electronic energies can be computed on the fly, and they only need to be computed to higher accuracy when an avoided crossing is detected. We test the quality of our method on the paradigmatic example of photo-dissociation of NaI, finding very good agreement with results of exact wave packet calculations. PMID:27305998

  18. Dynamical Arrest, Structural Disorder, and Optimization of Organic Photovoltaic Devices

    SciTech Connect

    Gould, Ian; Dmitry, Matyushov

    2014-09-11

    This project describes fundamental experimental and theoretical work that relates to charge separation and migration in the solid, heterogeneous or aggregated state. Marcus theory assumes a system in equilibrium with all possible solvent (dipolar) configurations, with rapid interconversion among these on the ET timescale. This project has addressed the more general situation where the medium is at least partially frozen on the ET timescale, i.e. under conditions of dynamical arrest. The approach combined theory and experiment and includes: (1) Computer simulations of model systems, (2) Development of analytical procedures consistent with computer experiment and (3) Experimental studies and testing of the formal theories on this data. Electron transfer processes are unique as a consequence of the close connection between kinetics, spectroscopy and theory, which is an essential component of this work.

  19. Modeling Illicit Drug Use Dynamics and Its Optimal Control Analysis

    PubMed Central

    2015-01-01

    The global burden of death and disability attributable to illicit drug use, remains a significant threat to public health for both developed and developing nations. This paper presents a new mathematical modeling framework to investigate the effects of illicit drug use in the community. In our model the transmission process is captured as a social “contact” process between the susceptible individuals and illicit drug users. We conduct both epidemic and endemic analysis, with a focus on the threshold dynamics characterized by the basic reproduction number. Using our model, we present illustrative numerical results with a case study in Cape Town, Gauteng, Mpumalanga and Durban communities of South Africa. In addition, the basic model is extended to incorporate time dependent intervention strategies. PMID:26819625

  20. Modeling Illicit Drug Use Dynamics and Its Optimal Control Analysis.

    PubMed

    Mushayabasa, Steady; Tapedzesa, Gift

    2015-01-01

    The global burden of death and disability attributable to illicit drug use, remains a significant threat to public health for both developed and developing nations. This paper presents a new mathematical modeling framework to investigate the effects of illicit drug use in the community. In our model the transmission process is captured as a social "contact" process between the susceptible individuals and illicit drug users. We conduct both epidemic and endemic analysis, with a focus on the threshold dynamics characterized by the basic reproduction number. Using our model, we present illustrative numerical results with a case study in Cape Town, Gauteng, Mpumalanga and Durban communities of South Africa. In addition, the basic model is extended to incorporate time dependent intervention strategies. PMID:26819625

  1. Endocrine Flexibility: Optimizing Phenotypes in a Dynamic World?

    PubMed

    Taff, Conor C; Vitousek, Maren N

    2016-06-01

    Responding appropriately to changing conditions is crucial in dynamic environments. Individual variation in the flexibility of physiological mediators of phenotype may influence the capacity to mount an integrated response to unpredictable changes in social or ecological context. We propose here a conceptual framework of rapid endocrine flexibility that integrates ecological endocrinology with theoretical and empirical studies of phenotypic plasticity and behavioral syndromes. We highlight the need for research addressing variation in the scope and speed of flexibility, and provide suggestions for future studies of these potentially evolving traits. Elucidating the causes and consequences of variation in endocrine flexibility may have important implications for the evolution of behavior, and for predicting the response of individuals and populations to rapidly changing environments. PMID:27055729

  2. The uncertainty threshold principle - Fundamental limitations of optimal decision making under dynamic uncertainty

    NASA Technical Reports Server (NTRS)

    Athans, M.; Ku, R.; Gershwin, S. B.

    1976-01-01

    The fundamental limitations of the optimal control of dynamic systems with random parameters are analyzed by studying a scalar linear-quadratic optimal control example. It is demonstrated that optimum long-range decision making is possible only if the dynamic uncertainty (quantified by the means and covariances of the random parameters) is below a certain threshold. If this threshold is exceeded, there do not exist optimum decision rules. This phenomenon is called the 'uncertainty threshold principle'. The implications of this phenomenon to the field of modelling, identification, and adaptive control are discussed.

  3. Optimal input design for aircraft parameter estimation using dynamic programming principles

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Morelli, Eugene A.

    1990-01-01

    A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.

  4. Optimal Input Design for Aircraft Parameter Estimation using Dynamic Programming Principles

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Klein, Vladislav

    1990-01-01

    A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.

  5. Dynamic modeling and optimization for space logistics using time-expanded networks

    NASA Astrophysics Data System (ADS)

    Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert

    2014-12-01

    This research develops a dynamic logistics network formulation for lifecycle optimization of mission sequences as a system-level integrated method to find an optimal combination of technologies to be used at each stage of the campaign. This formulation can find the optimal transportation architecture considering its technology trades over time. The proposed methodologies are inspired by the ground logistics analysis techniques based on linear programming network optimization. Particularly, the time-expanded network and its extension are developed for dynamic space logistics network optimization trading the quality of the solution with the computational load. In this paper, the methodologies are applied to a human Mars exploration architecture design problem. The results reveal multiple dynamic system-level trades over time and give recommendation of the optimal strategy for the human Mars exploration architecture. The considered trades include those between In-Situ Resource Utilization (ISRU) and propulsion technologies as well as the orbit and depot location selections over time. This research serves as a precursor for eventual permanent settlement and colonization of other planets by humans and us becoming a multi-planet species.

  6. Dynamic Stability Optimization of Laminated Composite Plates under Combined Boundary Loading

    NASA Astrophysics Data System (ADS)

    Shafei, Erfan; Kabir, Mohammad Zaman

    2011-12-01

    Dynamic stability and design optimization of laminated simply supported plates under planar conservative boundary loads are investigated in current study. Examples can be found in internal connecting elements of spacecraft and aerospace structures subjected to edge axial and shear loads. Designation of such elements is function of layup configuration, plate aspect ratio, loading combinations, and layup thickness. An optimum design aims maximum stability load satisfying a predefined stable vibration frequency. The interaction between compound loading and layup angle parameter affects the order of merging vibration modes and may stabilize the dynamic response. Laminated plates are assumed to be angle-plies symmetric to mid-plane surface. Dynamic equilibrium PDE has been solved using kernel integral transformation for modal frequency values and eigenvalue-based orthogonal functions for critical stability loads. The dictating dynamic stability mode is shown to be controlled by geometric stiffness distributions of composite plates. Solution of presented design optimization problem has been done using analytical approach combined with interior penalty multiplier algorithm. The results are verified by FEA approach and stability zones of original and optimized plates are stated as final data. Presented method can help designers to stabilize the dynamic response of composite plates by selecting an optimized layup orientation and thickness for prescribed design circumstances.

  7. An optimized ultrasound digital beamformer with dynamic focusing implemented on FPGA.

    PubMed

    Almekkawy, Mohamed; Xu, Jingwei; Chirala, Mohan

    2014-01-01

    We present a resource-optimized dynamic digital beamformer for an ultrasound system based on a field-programmable gate array (FPGA). A comprehensive 64-channel receive beamformer with full dynamic focusing is embedded in the Altera Arria V FPGA chip. To improve spatial and contrast resolution, full dynamic beamforming is implemented by a novel method with resource optimization. This was conceived using the implementation of the delay summation through a bulk (coarse) delay and fractional (fine) delay. The sampling frequency is 40 MHz and the beamformer includes a 240 MHz polyphase filter that enhances the temporal resolution of the system while relaxing the Analog-to-Digital converter (ADC) bandwidth requirement. The results indicate that our 64-channel dynamic beamformer architecture is amenable for a low power FPGA-based implementation in a portable ultrasound system.

  8. Synthesizing optimal waste blends

    SciTech Connect

    Narayan, V.; Diwekar, W.M.; Hoza, M.

    1996-10-01

    Vitrification of tank wastes to form glass is a technique that will be used for the disposal of high-level waste at Hanford. Process and storage economics show that minimizing the total number of glass logs produced is the key to keeping cost as low as possible. The amount of glass produced can be reduced by blending of the wastes. The optimal way to combine the tanks to minimize the vole of glass can be determined from a discrete blend calculation. However, this problem results in a combinatorial explosion as the number of tanks increases. Moreover, the property constraints make this problem highly nonconvex where many algorithms get trapped in local minima. In this paper the authors examine the use of different combinatorial optimization approaches to solve this problem. A two-stage approach using a combination of simulated annealing and nonlinear programming (NLP) is developed. The results of different methods such as the heuristics approach based on human knowledge and judgment, the mixed integer nonlinear programming (MINLP) approach with GAMS, and branch and bound with lower bound derived from the structure of the given blending problem are compared with this coupled simulated annealing and NLP approach.

  9. A new method of optimal design for a two-dimensional diffuser by using dynamic programming

    NASA Technical Reports Server (NTRS)

    Gu, Chuangang; Zhang, Moujin; Chen, XI; Miao, Yongmiao

    1991-01-01

    A new method for predicting the optimal velocity distribution on the wall of a two dimensional diffuser is presented. The method uses dynamic programming to solve the optimal control problem with inequality constraints of state variables. The physical model of optimization is designed to prevent the separation of the boundary layer while approaching the maximum pressure ratio in a diffuser of a specified length. The computational results are in fair agreement with the experimental ones. Optimal velocity distribution on a diffuser wall is said to occur when the flow decelerates quickly at first and then smoothly, while the flow is near separation, but always protected from it. The optimal velocity distribution can be used to design the contour of the diffuser.

  10. Optimizing electromagnetic induction sensors for dynamic munitions classification surveys

    NASA Astrophysics Data System (ADS)

    Miller, Jonathan S.; Keranen, Joe; Schultz, Gregory

    2014-06-01

    Standard protocol for detection and classification of Unexploded Ordnance (UXO) comprises a two-step process that includes an initial digital geophysical mapping (DGM) survey to detect magnetic field anomalies followed by a cued survey at each anomaly location that enables classification of these anomalies. The initial DGM survey is typically performed using a low resolution single axis electromagnetic induction (EMI) sensor while the follow-up cued survey requires revisiting each anomaly location with a multi-axis high resolution EMI sensor. The DGM survey comprises data collection in tightly spaced transects over the entire survey area. Once data collection in this area is complete, a threshold analysis is applied to the resulting magnetic field anomaly map to identify anomalies corresponding to potential targets of interest (TOI). The cued sensor is deployed in static mode where this higher resolution sensor is placed over the location of each anomaly to record a number of soundings that may be stacked and averaged to produce low noise data. These data are of sufficient quality to subsequently classify the object as either TOI or clutter. While this approach has demonstrated success in producing effective classification of UXO, conducting successive surveys is time consuming. Additionally, the low resolution of the initial DGM survey often produces errors in the target picking process that results in poor placement of the cued sensor and often requires several revisits to the anomaly location to ensure adequate characterization of the target space. We present data and test results from an advanced multi-axis EMI sensor optimized to provide both detection and classification from a single survey. We demonstrate how the large volume of data from this sensor may be used to produce effective detection and classification decisions while only requiring one survey of the munitions response area.

  11. Stokesian dynamics optimization of three linked spheres microswimmers

    NASA Astrophysics Data System (ADS)

    Marconi, V. I.; Berdakin, I.; Banchio, A. J.

    2014-03-01

    Self-propulsion of swimmers is only possible due to motility strategies able to overcome the absence of inertia. Only the swimming strategies that are time-irreversible are successful. One of the simplest swimmers fulfilling this requirement is the three-linked-spheres swimmer, TLS, a toy model swimmer built upon three spheres linked by two arms that contracts asynchronously. This TLS has received significant attention because it can be studied both, analytically and numerically. Using stokesian dynamics we investigate in detail the net displacement, velocities, forces and power consumption. We compare two swimming strategies: square and circular phase-space cycles. If the efficiency is defined as the ratio between power dissipation and the work needed to produce the same motion by an external force, we show that the most efficient swimmer is the one with almost maximum (maximum) arms contraction for square (circular) cycles. Interestingly, under these optimum conditions, the analytical predictions based on point force approximations of the hydrodynamic mobility tensor differ significantly from those found in our more accurate simulations. This fact highlights the importance of a proper treatment of the hydrodynamic interactions. Supported by CONICET and SeCyt-UNC, Cordoba, Argentina, and NSF(USA)-CONICET(Argentina).

  12. Credibility theory based dynamic control bound optimization for reservoir flood limited water level

    NASA Astrophysics Data System (ADS)

    Jiang, Zhiqiang; Sun, Ping; Ji, Changming; Zhou, Jianzhong

    2015-10-01

    The dynamic control operation of reservoir flood limited water level (FLWL) can solve the contradictions between reservoir flood control and beneficial operation well, and it is an important measure to make sure the security of flood control and realize the flood utilization. The dynamic control bound of FLWL is a fundamental key element for implementing reservoir dynamic control operation. In order to optimize the dynamic control bound of FLWL by considering flood forecasting error, this paper took the forecasting error as a fuzzy variable, and described it with the emerging credibility theory in recent years. By combining the flood forecasting error quantitative model, a credibility-based fuzzy chance constrained model used to optimize the dynamic control bound was proposed in this paper, and fuzzy simulation technology was used to solve the model. The FENGTAN reservoir in China was selected as a case study, and the results show that, compared with the original operation water level, the initial operation water level (IOWL) of FENGTAN reservoir can be raised 4 m, 2 m and 5.5 m respectively in the three division stages of flood season, and without increasing flood control risk. In addition, the rationality and feasibility of the proposed forecasting error quantitative model and credibility-based dynamic control bound optimization model are verified by the calculation results of extreme risk theory.

  13. Fuzzy Mixed Assembly Line Sequencing and Scheduling Optimization Model Using Multiobjective Dynamic Fuzzy GA

    PubMed Central

    Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari

    2014-01-01

    A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962

  14. Dynamic optimization of distributed biological systems using robust and efficient numerical techniques

    PubMed Central

    2012-01-01

    Background Systems biology allows the analysis of biological systems behavior under different conditions through in silico experimentation. The possibility of perturbing biological systems in different manners calls for the design of perturbations to achieve particular goals. Examples would include, the design of a chemical stimulation to maximize the amplitude of a given cellular signal or to achieve a desired pattern in pattern formation systems, etc. Such design problems can be mathematically formulated as dynamic optimization problems which are particularly challenging when the system is described by partial differential equations. This work addresses the numerical solution of such dynamic optimization problems for spatially distributed biological systems. The usual nonlinear and large scale nature of the mathematical models related to this class of systems and the presence of constraints on the optimization problems, impose a number of difficulties, such as the presence of suboptimal solutions, which call for robust and efficient numerical techniques. Results Here, the use of a control vector parameterization approach combined with efficient and robust hybrid global optimization methods and a reduced order model methodology is proposed. The capabilities of this strategy are illustrated considering the solution of a two challenging problems: bacterial chemotaxis and the FitzHugh-Nagumo model. Conclusions In the process of chemotaxis the objective was to efficiently compute the time-varying optimal concentration of chemotractant in one of the spatial boundaries in order to achieve predefined cell distribution profiles. Results are in agreement with those previously published in the literature. The FitzHugh-Nagumo problem is also efficiently solved and it illustrates very well how dynamic optimization may be used to force a system to evolve from an undesired to a desired pattern with a reduced number of actuators. The presented methodology can be used for the

  15. On the optimal reconstruction and control of adaptive optical systems with mirror dynamics.

    PubMed

    Correia, Carlos; Raynaud, Henri-François; Kulcsár, Caroline; Conan, Jean-Marc

    2010-02-01

    In adaptive optics (AO) the deformable mirror (DM) dynamics are usually neglected because, in general, the DM can be considered infinitely fast. Such assumption may no longer apply for the upcoming Extremely Large Telescopes (ELTs) with DM that are several meters in diameter with slow and/or resonant responses. For such systems an important challenge is to design an optimal regulator minimizing the variance of the residual phase. In this contribution, the general optimal minimum-variance (MV) solution to the full dynamical reconstruction and control problem of AO systems (AOSs) is established. It can be looked upon as the parent solution from which simpler (used hitherto) suboptimal solutions can be derived as special cases. These include either partial DM-dynamics-free solutions or solutions derived from the static minimum-variance reconstruction (where both atmospheric disturbance and DM dynamics are neglected altogether). Based on a continuous stochastic model of the disturbance, a state-space approach is developed that yields a fully optimal MV solution in the form of a discrete-time linear-quadratic-Gaussian (LQG) regulator design. From this LQG standpoint, the control-oriented state-space model allows one to (1) derive the optimal state-feedback linear regulator and (2) evaluate the performance of both the optimal and the sub-optimal solutions. Performance results are given for weakly damped second-order oscillatory DMs with large-amplitude resonant responses, in conditions representative of an ELT AO system. The highly energetic optical disturbance caused on the tip/tilt (TT) modes by the wind buffeting is considered. Results show that resonant responses are correctly handled with the MV regulator developed here. The use of sub-optimal regulators results in prohibitive performance losses in terms of residual variance; in addition, the closed-loop system may become unstable for resonant frequencies in the range of interest. PMID:20126246

  16. Construction and parameterization of all static and dynamic H2-optimal state feedback solutions, optimal fixed modes, and fixed decoupling zeros

    NASA Technical Reports Server (NTRS)

    Chen, Ben M.; Saberi, Ali; Sannuti, Peddapullaiah; Shamash, Yacov

    1993-01-01

    This paper considers an H2 optimization problem via state feedback. The class of problems dealt with here are general singular type which have a left invertible transfer matrix function from the control input to the controlled output. This class subsumes the regular H2 optimization problems. The paper constructs and parameterizes all the static and dynamic H2 optimal state feedback solutions. Moreover, all the eigenvalues of an optimal closed-loop system are characterized. All optimal closed-loop systems share a set of eigenvalues which are termed here as the optimal fixed modes. Every H2 optimal controller must assign among the closed-loop eigenvalues the set of optimal fixed modes. This set of optimal fixed modes includes a set of optimal fixed decoupling zeros which shows the minimum absolutely necessary number and locations of pole-zero cancellations present in any H2 optimal design. It is shown that both the sets of optimal fixed modes and optimal fixed decoupling zeros do not vary depending upon whether the static or the dynamic controllers are used.

  17. Improving the dynamic characteristics of body-in-white structure using structural optimization.

    PubMed

    Yahaya Rashid, Aizzat S; Ramli, Rahizar; Mohamed Haris, Sallehuddin; Alias, Anuar

    2014-01-01

    The dynamic behavior of a body-in-white (BIW) structure has significant influence on the noise, vibration, and harshness (NVH) and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process. PMID:25101312

  18. Optimal control landscape for the generation of unitary transformations with constrained dynamics

    SciTech Connect

    Hsieh, Michael; Wu, Rebing; Rabitz, Herschel; Lidar, Daniel

    2010-06-15

    The reliable and precise generation of quantum unitary transformations is essential for the realization of a number of fundamental objectives, such as quantum control and quantum information processing. Prior work has explored the optimal control problem of generating such unitary transformations as a surface-optimization problem over the quantum control landscape, defined as a metric for realizing a desired unitary transformation as a function of the control variables. It was found that under the assumption of nondissipative and controllable dynamics, the landscape topology is trap free, which implies that any reasonable optimization heuristic should be able to identify globally optimal solutions. The present work is a control landscape analysis, which incorporates specific constraints in the Hamiltonian that correspond to certain dynamical symmetries in the underlying physical system. It is found that the presence of such symmetries does not destroy the trap-free topology. These findings expand the class of quantum dynamical systems on which control problems are intrinsically amenable to a solution by optimal control.

  19. Adaptive optimal control of highly dissipative nonlinear spatially distributed processes with neuro-dynamic programming.

    PubMed

    Luo, Biao; Wu, Huai-Ning; Li, Han-Xiong

    2015-04-01

    Highly dissipative nonlinear partial differential equations (PDEs) are widely employed to describe the system dynamics of industrial spatially distributed processes (SDPs). In this paper, we consider the optimal control problem of the general highly dissipative SDPs, and propose an adaptive optimal control approach based on neuro-dynamic programming (NDP). Initially, Karhunen-Loève decomposition is employed to compute empirical eigenfunctions (EEFs) of the SDP based on the method of snapshots. These EEFs together with singular perturbation technique are then used to obtain a finite-dimensional slow subsystem of ordinary differential equations that accurately describes the dominant dynamics of the PDE system. Subsequently, the optimal control problem is reformulated on the basis of the slow subsystem, which is further converted to solve a Hamilton-Jacobi-Bellman (HJB) equation. HJB equation is a nonlinear PDE that has proven to be impossible to solve analytically. Thus, an adaptive optimal control method is developed via NDP that solves the HJB equation online using neural network (NN) for approximating the value function; and an online NN weight tuning law is proposed without requiring an initial stabilizing control policy. Moreover, by involving the NN estimation error, we prove that the original closed-loop PDE system with the adaptive optimal control policy is semiglobally uniformly ultimately bounded. Finally, the developed method is tested on a nonlinear diffusion-convection-reaction process and applied to a temperature cooling fin of high-speed aerospace vehicle, and the achieved results show its effectiveness.

  20. AMIGO2, a toolbox for dynamic modeling, optimization and control in systems biology

    PubMed Central

    Balsa-Canto, Eva; Henriques, David; Gábor, Attila; Banga, Julio R.

    2016-01-01

    Motivation: Many problems of interest in dynamic modeling and control of biological systems can be posed as non-linear optimization problems subject to algebraic and dynamic constraints. In the context of modeling, this is the case of, e.g. parameter estimation, optimal experimental design and dynamic flux balance analysis. In the context of control, model-based metabolic engineering or drug dose optimization problems can be formulated as (multi-objective) optimal control problems. Finding a solution to those problems is a very challenging task which requires advanced numerical methods. Results: This work presents the AMIGO2 toolbox: the first multiplatform software tool that automatizes the solution of all those problems, offering a suite of state-of-the-art (multi-objective) global optimizers and advanced simulation approaches. Availability and Implementation: The toolbox and its documentation are available at: sites.google.com/site/amigo2toolbox. Contact: ebalsa@iim.csic.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27378288

  1. Improving the Dynamic Characteristics of Body-in-White Structure Using Structural Optimization

    PubMed Central

    Yahaya Rashid, Aizzat S.; Mohamed Haris, Sallehuddin; Alias, Anuar

    2014-01-01

    The dynamic behavior of a body-in-white (BIW) structure has significant influence on the noise, vibration, and harshness (NVH) and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process. PMID:25101312

  2. Adaptive optimal control of highly dissipative nonlinear spatially distributed processes with neuro-dynamic programming.

    PubMed

    Luo, Biao; Wu, Huai-Ning; Li, Han-Xiong

    2015-04-01

    Highly dissipative nonlinear partial differential equations (PDEs) are widely employed to describe the system dynamics of industrial spatially distributed processes (SDPs). In this paper, we consider the optimal control problem of the general highly dissipative SDPs, and propose an adaptive optimal control approach based on neuro-dynamic programming (NDP). Initially, Karhunen-Loève decomposition is employed to compute empirical eigenfunctions (EEFs) of the SDP based on the method of snapshots. These EEFs together with singular perturbation technique are then used to obtain a finite-dimensional slow subsystem of ordinary differential equations that accurately describes the dominant dynamics of the PDE system. Subsequently, the optimal control problem is reformulated on the basis of the slow subsystem, which is further converted to solve a Hamilton-Jacobi-Bellman (HJB) equation. HJB equation is a nonlinear PDE that has proven to be impossible to solve analytically. Thus, an adaptive optimal control method is developed via NDP that solves the HJB equation online using neural network (NN) for approximating the value function; and an online NN weight tuning law is proposed without requiring an initial stabilizing control policy. Moreover, by involving the NN estimation error, we prove that the original closed-loop PDE system with the adaptive optimal control policy is semiglobally uniformly ultimately bounded. Finally, the developed method is tested on a nonlinear diffusion-convection-reaction process and applied to a temperature cooling fin of high-speed aerospace vehicle, and the achieved results show its effectiveness. PMID:25794375

  3. Improving the dynamic characteristics of body-in-white structure using structural optimization.

    PubMed

    Yahaya Rashid, Aizzat S; Ramli, Rahizar; Mohamed Haris, Sallehuddin; Alias, Anuar

    2014-01-01

    The dynamic behavior of a body-in-white (BIW) structure has significant influence on the noise, vibration, and harshness (NVH) and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process.

  4. Evaluation of dynamically dimensioned search algorithm for optimizing SWAT by altering sampling distributions and searching range

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary advantage of Dynamically Dimensioned Search algorithm (DDS) is that it outperforms many other optimization techniques in both convergence speed and the ability in searching for parameter sets that satisfy statistical guidelines while requiring only one algorithm parameter (perturbation f...

  5. Multi-host transmission dynamics of schistosomiasis and its optimal control.

    PubMed

    Ding, Chunxiao; Qiu, Zhipeng; Zhu, Huaiping

    2015-10-01

    In this paper we formulate a dynamical model to study the transmission dynamics of schistosomiasis in humans and snails. We also incorporate bovines in the model to study their impact on transmission and controlling the spread of Schistosoma japonicum in humans in China. The dynamics of the model is rigorously analyzed by using the theory of dynamical systems. The theoretical results show that the disease free equilibrium is globally asymptotically stable if R0 < 1, and if R0 > 1 the system has only one positive equilibrium. The local stability of the unique positive equilibrium is investigated and sufficient conditions are also provided for the global stability of the positive equilibrium. The optimal control theory are further applied to the model to study the corresponding optimal control problem. Both analytical and numerical results suggest that: (a) the infected bovines play an important role in the spread of schistosomiasis among humans, and killing the infected bovines will be useful to prevent transmission of schistosomiasis among humans; (b) optimal control strategy performs better than the constant controls in reducing the prevalence of the infected human and the cost for implementing optimal control is much less than that for constant controls; and

  6. Coordinated Action of Fast and Slow Reserves for Optimal Sequential and Dynamic Emergency Reserve Activation

    NASA Astrophysics Data System (ADS)

    Salkuti, Surender Reddy; Bijwe, P. R.; Abhyankar, A. R.

    2016-04-01

    This paper proposes an optimal dynamic reserve activation plan after the occurrence of an emergency situation (generator/transmission line outage, load increase or both). An optimal plan is developed to handle the emergency situation, using coordinated action of fast and slow reserves, for secure operation with minimum overall cost. This paper considers the reserves supplied by generators (spinning reserves) and loads (demand-side reserves). The optimal backing down of costly/fast reserves and bringing up of slow reserves in each sub-interval in an integrated manner is proposed. The simulation studies are performed on IEEE 30, 57 and 300 bus test systems to demonstrate the advantage of proposed integrated/dynamic reserve activation plan over the conventional/sequential approach.

  7. Perform - A performance optimizing computer program for dynamic systems subject to transient loadings

    NASA Technical Reports Server (NTRS)

    Pilkey, W. D.; Wang, B. P.; Yoo, Y.; Clark, B.

    1973-01-01

    A description and applications of a computer capability for determining the ultimate optimal behavior of a dynamically loaded structural-mechanical system are presented. This capability provides characteristics of the theoretically best, or limiting, design concept according to response criteria dictated by design requirements. Equations of motion of the system in first or second order form include incompletely specified elements whose characteristics are determined in the optimization of one or more performance indices subject to the response criteria in the form of constraints. The system is subject to deterministic transient inputs, and the computer capability is designed to operate with a large linear programming on-the-shelf software package which performs the desired optimization. The report contains user-oriented program documentation in engineering, problem-oriented form. Applications cover a wide variety of dynamics problems including those associated with such diverse configurations as a missile-silo system, impacting freight cars, and an aircraft ride control system.

  8. Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming

    NASA Astrophysics Data System (ADS)

    Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai

    2013-09-01

    In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.

  9. Optimal control for unknown discrete-time nonlinear Markov jump systems using adaptive dynamic programming.

    PubMed

    Zhong, Xiangnan; He, Haibo; Zhang, Huaguang; Wang, Zhanshan

    2014-12-01

    In this paper, we develop and analyze an optimal control method for a class of discrete-time nonlinear Markov jump systems (MJSs) with unknown system dynamics. Specifically, an identifier is established for the unknown systems to approximate system states, and an optimal control approach for nonlinear MJSs is developed to solve the Hamilton-Jacobi-Bellman equation based on the adaptive dynamic programming technique. We also develop detailed stability analysis of the control approach, including the convergence of the performance index function for nonlinear MJSs and the existence of the corresponding admissible control. Neural network techniques are used to approximate the proposed performance index function and the control law. To demonstrate the effectiveness of our approach, three simulation studies, one linear case, one nonlinear case, and one single link robot arm case, are used to validate the performance of the proposed optimal control method.

  10. Optimal control for unknown discrete-time nonlinear Markov jump systems using adaptive dynamic programming.

    PubMed

    Zhong, Xiangnan; He, Haibo; Zhang, Huaguang; Wang, Zhanshan

    2014-12-01

    In this paper, we develop and analyze an optimal control method for a class of discrete-time nonlinear Markov jump systems (MJSs) with unknown system dynamics. Specifically, an identifier is established for the unknown systems to approximate system states, and an optimal control approach for nonlinear MJSs is developed to solve the Hamilton-Jacobi-Bellman equation based on the adaptive dynamic programming technique. We also develop detailed stability analysis of the control approach, including the convergence of the performance index function for nonlinear MJSs and the existence of the corresponding admissible control. Neural network techniques are used to approximate the proposed performance index function and the control law. To demonstrate the effectiveness of our approach, three simulation studies, one linear case, one nonlinear case, and one single link robot arm case, are used to validate the performance of the proposed optimal control method. PMID:25420238

  11. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response Performance Constraints

    NASA Technical Reports Server (NTRS)

    Welstead, Jason

    2014-01-01

    This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.

  12. Establishing optimal project-level strategies for pavement maintenance and rehabilitation - A framework and case study

    NASA Astrophysics Data System (ADS)

    Irfan, Muhammad; Bilal Khurshid, Muhammad; Bai, Qiang; Labi, Samuel; Morin, Thomas L.

    2012-05-01

    This article presents a framework and an illustrative example for identifying the optimal pavement maintenance and rehabilitation (M&R) strategy using a mixed-integer nonlinear programming model. The objective function is to maximize the cost-effectiveness expressed as the ratio of the effectiveness to the cost. The constraints for the optimization problem are related to performance, budget, and choice. Two different formulations of effectiveness are derived using treatment-specific performance models for each constituent treatment of the strategy; and cost is expressed in terms of the agency and user costs over the life cycle. The proposed methodology is demonstrated using a case study. Probability distributions are established for the optimization input variables and Monte Carlo simulations are carried out to yield optimal solutions. Using the results of these simulations, M&R strategy contours are developed as a novel tool that can help pavement managers quickly identify the optimal M&R strategy for a given pavement section.

  13. Multidisciplinary Design Optimization Techniques: Implications and Opportunities for Fluid Dynamics Research

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Green, Lawrence L.

    1999-01-01

    A challenge for the fluid dynamics community is to adapt to and exploit the trend towards greater multidisciplinary focus in research and technology. The past decade has witnessed substantial growth in the research field of Multidisciplinary Design Optimization (MDO). MDO is a methodology for the design of complex engineering systems and subsystems that coherently exploits the synergism of mutually interacting phenomena. As evidenced by the papers, which appear in the biannual AIAA/USAF/NASA/ISSMO Symposia on Multidisciplinary Analysis and Optimization, the MDO technical community focuses on vehicle and system design issues. This paper provides an overview of the MDO technology field from a fluid dynamics perspective, giving emphasis to suggestions of specific applications of recent MDO technologies that can enhance fluid dynamics research itself across the spectrum, from basic flow physics to full configuration aerodynamics.

  14. Efficient Optimization of Stimuli for Model-Based Design of Experiments to Resolve Dynamical Uncertainty

    PubMed Central

    Mdluli, Thembi; Buzzard, Gregery T.; Rundell, Ann E.

    2015-01-01

    This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm’s scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements. PMID:26379275

  15. Active Nozzle Control and Integrated Design Optimization of a Beam Subject to Fluid-Dynamic Forces

    NASA Astrophysics Data System (ADS)

    Borglund, D.

    1999-02-01

    Active nozzle control is used to improve the stability of a beam subject to forces induced by fluid flow through attached pipes. The control system has a significant effect on the structural stability, making both flutter and divergence type of instabilities possible. The stability analysis is carried out using a state-variable approach based on a finite element formulation of the structural dynamics. The simultaneous design of the control system and the beam shape minimizing structural mass is performed using numerical optimization. The inclusion of the control system in the optimization gives a considerable reduction of the structural mass but results in an optimal design which is very sensitive to imperfections. Using a simple model of the control system uncertainties, a more robust design is obtained by solving a modified optimization problem. Throughout the study, the theoretical findings are verified by experiments.

  16. Optimizing Natural Gas Networks through Dynamic Manifold Theory and a Decentralized Algorithm: Belgium Case Study

    NASA Astrophysics Data System (ADS)

    Koch, Caleb; Winfrey, Leigh

    2014-10-01

    Natural Gas is a major energy source in Europe, yet political instabilities have the potential to disrupt access and supply. Energy resilience is an increasingly essential construct and begins with transmission network design. This study proposes a new way of thinking about modelling natural gas flow. Rather than relying on classical economic models, this problem is cast into a time-dependent Hamiltonian dynamics discussion. Traditional Natural Gas constraints, including inelastic demand and maximum/minimum pipe flows, are portrayed as energy functions and built into the dynamics of each pipe flow. Doing so allows the constraints to be built into the dynamics of each pipeline. As time progresses in the model, natural gas flow rates find the minimum energy, thus the optimal gas flow rates. The most important result of this study is using dynamical principles to ensure the output of natural gas at demand nodes remains constant, which is important for country to country natural gas transmission. Another important step in this study is building the dynamics of each flow in a decentralized algorithm format. Decentralized regulation has solved congestion problems for internet data flow, traffic flow, epidemiology, and as demonstrated in this study can solve the problem of Natural Gas congestion. A mathematical description is provided for how decentralized regulation leads to globally optimized network flow. Furthermore, the dynamical principles and decentralized algorithm are applied to a case study of the Fluxys Belgium Natural Gas Network.

  17. Computational fluid dynamics based bulbous bow optimization using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mahmood, Shahid; Huang, Debo

    2012-09-01

    Computational fluid dynamics (CFD) plays a major role in predicting the flow behavior of a ship. With the development of fast computers and robust CFD software, CFD has become an important tool for designers and engineers in the ship industry. In this paper, the hull form of a ship was optimized for total resistance using CFD as a calculation tool and a genetic algorithm as an optimization tool. CFD based optimization consists of major steps involving automatic generation of geometry based on design parameters, automatic generation of mesh, automatic analysis of fluid flow to calculate the required objective/cost function, and finally an optimization tool to evaluate the cost for optimization. In this paper, integration of a genetic algorithm program, written in MATLAB, was carried out with the geometry and meshing software GAMBIT and CFD analysis software FLUENT. Different geometries of additive bulbous bow were incorporated in the original hull based on design parameters. These design variables were optimized to achieve a minimum cost function of "total resistance". Integration of a genetic algorithm with CFD tools proves to be effective for hull form optimization.

  18. Online adaptive optimal control for continuous-time nonlinear systems with completely unknown dynamics

    NASA Astrophysics Data System (ADS)

    Lv, Yongfeng; Na, Jing; Yang, Qinmin; Wu, Xing; Guo, Yu

    2016-01-01

    An online adaptive optimal control is proposed for continuous-time nonlinear systems with completely unknown dynamics, which is achieved by developing a novel identifier-critic-based approximate dynamic programming algorithm with a dual neural network (NN) approximation structure. First, an adaptive NN identifier is designed to obviate the requirement of complete knowledge of system dynamics, and a critic NN is employed to approximate the optimal value function. Then, the optimal control law is computed based on the information from the identifier NN and the critic NN, so that the actor NN is not needed. In particular, a novel adaptive law design method with the parameter estimation error is proposed to online update the weights of both identifier NN and critic NN simultaneously, which converge to small neighbourhoods around their ideal values. The closed-loop system stability and the convergence to small vicinity around the optimal solution are all proved by means of the Lyapunov theory. The proposed adaptation algorithm is also improved to achieve finite-time convergence of the NN weights. Finally, simulation results are provided to exemplify the efficacy of the proposed methods.

  19. Dynamic Patterns of Parasitism and Immunity across Host Development Influence Optimal Strategies of Resource Allocation.

    PubMed

    Tate, Ann T; Graham, Andrea L

    2015-10-01

    The integration of physiological mechanisms into life-history theory is an emerging frontier in our understanding of the constraints and drivers of life-history evolution. Dynamic patterns of antagonism between developmental and immunological pathways in juvenile insects illustrate the importance of mechanisms for determining life-history strategy optima in the face of trade-offs. For example, developmental interference occurs when developmental processes transiently take priority over resources or pathway architecture, preventing allocation to immunity or other traits. We designed a within-host model of infected larval development to explore the impact of developmental dynamics on optimal resource mobilization and allocation strategies as well as on larval resistance and tolerance phenotypes. The model incorporates mechanism-inspired functional forms of developmental interference with immunity against parasites that attack specific larval stages. We find that developmental interference generally increases optimal investment in constitutive immunity and decreases optimal resource mobilization rates, but the results are sensitive to the developmental stage at first infection. Moreover, developmental interference reduces resistance but generally increases tolerance of infection. We demonstrate the potential impact of these dynamics on empirical estimates of host susceptibility and discuss the general implications of incorporating realistic physiological mechanisms and developmental dynamics for life-history theory in insects and other organisms. PMID:26655573

  20. Optimal bipedal interactions with dynamic terrain: synthesis and analysis via nonlinear programming

    NASA Astrophysics Data System (ADS)

    Hubicki, Christian; Goldman, Daniel; Ames, Aaron

    In terrestrial locomotion, gait dynamics and motor control behaviors are tuned to interact efficiently and stably with the dynamics of the terrain (i.e. terradynamics). This controlled interaction must be particularly thoughtful in bipeds, as their reduced contact points render them highly susceptible to falls. While bipedalism under rigid terrain assumptions is well-studied, insights for two-legged locomotion on soft terrain, such as sand and dirt, are comparatively sparse. We seek an understanding of how biological bipeds stably and economically negotiate granular media, with an eye toward imbuing those abilities in bipedal robots. We present a trajectory optimization method for controlled systems subject to granular intrusion. By formulating a large-scale nonlinear program (NLP) with reduced-order resistive force theory (RFT) models and jamming cone dynamics, the optimized motions are informed and shaped by the dynamics of the terrain. Using a variant of direct collocation methods, we can express all optimization objectives and constraints in closed-form, resulting in rapid solving by standard NLP solvers, such as IPOPT. We employ this tool to analyze emergent features of bipedal locomotion in granular media, with an eye toward robotic implementation.

  1. Stochastic approach to reconstruction of dynamical systems: optimal model selection criterion

    NASA Astrophysics Data System (ADS)

    Gavrilov, A.; Mukhin, D.; Loskutov, E. M.; Feigin, A. M.

    2011-12-01

    Most of known observable systems are complex and high-dimensional that doesn't allow to make the exact long-term forecast of their behavior. The stochastic approach to reconstruction of such systems gives a hope to describe important qualitative features of their behavior in a low-dimensional way while all other dynamics is modelled as stochastic disturbance. This report is devoted to application of Bayesian evidence for optimal stochastic model selection when reconstructing the evolution operator of observable system. The idea of Bayesian evidence is to find compromise between the model predictiveness and quality of fitting the model into the data. We represent the evolution operator of investigated system in a form of random dynamic system including deterministic and stochastic parts, both parameterized by artificial neural network. Then we use Bayesian evidence criterion to estimate optimal complexity of the model, i.e. both number of parameters and dimension corresponding to most probable model given the data. We demonstrate on the number of model examples that the model with non-uniformly distributed stochastic part (which corresponds to non-Gaussian perturbations of evolution operator) is optimal in general case. Further, we show that simple stochastic model can be the most preferred for reconstruction of the evolution operator underlying complex observed dynamics even in a case of deterministic high-dimensional system. Workability of suggested approach for modeling and prognosis of real-measured geophysical dynamics is investigated.

  2. Dynamic Patterns of Parasitism and Immunity across Host Development Influence Optimal Strategies of Resource Allocation.

    PubMed

    Tate, Ann T; Graham, Andrea L

    2015-10-01

    The integration of physiological mechanisms into life-history theory is an emerging frontier in our understanding of the constraints and drivers of life-history evolution. Dynamic patterns of antagonism between developmental and immunological pathways in juvenile insects illustrate the importance of mechanisms for determining life-history strategy optima in the face of trade-offs. For example, developmental interference occurs when developmental processes transiently take priority over resources or pathway architecture, preventing allocation to immunity or other traits. We designed a within-host model of infected larval development to explore the impact of developmental dynamics on optimal resource mobilization and allocation strategies as well as on larval resistance and tolerance phenotypes. The model incorporates mechanism-inspired functional forms of developmental interference with immunity against parasites that attack specific larval stages. We find that developmental interference generally increases optimal investment in constitutive immunity and decreases optimal resource mobilization rates, but the results are sensitive to the developmental stage at first infection. Moreover, developmental interference reduces resistance but generally increases tolerance of infection. We demonstrate the potential impact of these dynamics on empirical estimates of host susceptibility and discuss the general implications of incorporating realistic physiological mechanisms and developmental dynamics for life-history theory in insects and other organisms.

  3. Hessian facilitated analysis of optimally controlled quantum dynamics of systems with coupled primary and secondary states.

    PubMed

    Shu, Chuan-Cun; Edwalds, Melanie; Shabani, Alireza; Ho, Tak-San; Rabitz, Herschel

    2015-07-28

    The efficacy of optimal control of quantum dynamics depends on the topology and associated local structure of the underlying control landscape defined as the objective as a function of the control field. A commonly studied control objective involves maximization of the transition probability for steering the quantum system from one state to another state. This paper invokes landscape Hessian analysis performed at an optimal solution to gain insight into the controlled dynamics, where the Hessian is the second-order functional derivative of the control objective with respect to the control field. Specifically, we consider a quantum system composed of coupled primary and secondary subspaces of energy levels with the initial and target states lying in the primary subspace. The primary and secondary subspaces may arise in various scenarios, for example, respectively, as sub-manifolds of ground and excited electronic states of a poly-atomic molecule, with each possessing a set of rotational-vibrational levels. The control field may engage the system through electric dipole transitions that occur either (I) only in the primary subspace, (II) between the two subspaces, or (III) only in the secondary subspace. Important insights about the resultant dynamics in each case are revealed in the structural patterns of the corresponding Hessian. The Fourier spectrum of the Hessian is shown to often be complementary to mechanistic insights provided by the optimal control field and population dynamics.

  4. Risk-Constrained Dynamic Programming for Optimal Mars Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro; Kuwata, Yoshiaki

    2013-01-01

    A chance-constrained dynamic programming algorithm was developed that is capable of making optimal sequential decisions within a user-specified risk bound. This work handles stochastic uncertainties over multiple stages in the CEMAT (Combined EDL-Mobility Analyses Tool) framework. It was demonstrated by a simulation of Mars entry, descent, and landing (EDL) using real landscape data obtained from the Mars Reconnaissance Orbiter. Although standard dynamic programming (DP) provides a general framework for optimal sequential decisionmaking under uncertainty, it typically achieves risk aversion by imposing an arbitrary penalty on failure states. Such a penalty-based approach cannot explicitly bound the probability of mission failure. A key idea behind the new approach is called risk allocation, which decomposes a joint chance constraint into a set of individual chance constraints and distributes risk over them. The joint chance constraint was reformulated into a constraint on an expectation over a sum of an indicator function, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the chance-constraint optimization problem can be turned into an unconstrained optimization over a Lagrangian, which can be solved efficiently using a standard DP approach.

  5. Extended Lagrangian Born-Oppenheimer molecular dynamics in the limit of vanishing self-consistent field optimization

    SciTech Connect

    Souvatzis, Petros; Niklasson, Anders M. N.

    2013-12-07

    We present an efficient general approach to first principles molecular dynamics simulations based on extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The reduction of the optimization requirement reduces the computational cost to a minimum, but without causing any significant loss of accuracy or long-term energy drift. The optimization-free first principles molecular dynamics requires only one single diagonalization per time step, but is still able to provide trajectories at the same level of accuracy as “exact,” fully converged, Born-Oppenheimer molecular dynamics simulations. The optimization-free limit of extended Lagrangian Born-Oppenheimer molecular dynamics therefore represents an ideal starting point for robust and efficient first principles quantum mechanical molecular dynamics simulations.

  6. Guest-induced organization of an optimal receptor from a dynamic receptor library: Spectroscopic screening

    PubMed Central

    Kubota, Yasuo; Sakamoto, Shigeru; Yamaguchi, Kentaro; Fujita, Makoto

    2002-01-01

    Complexation of a cis-protected palladium ion and a family of exo-bidentate and -tridentate ligands results in the formation of an equilibrium mixture of numerous metal-linked receptors that are referred to as a dynamic receptor library. We found that a guest induced the selective formation of the optimal receptor of its own. Screening of the library by using difference NMR facilitates the search for new receptors because in difference NMR only receptors interacting with the guest can be observed. An unpredictable heterotopic receptor was discovered by this screening method. Interestingly, the new receptor thus found was assembled quantitatively only in the presence of its optimal guest. PMID:11959936

  7. Integration of Virtual Reality with Computational Fluid Dynamics for Process Optimization

    NASA Astrophysics Data System (ADS)

    Wu, B.; Chen, G. H.; Fu, D.; Moreland, John; Zhou, Chenn Q.

    2010-03-01

    Computational Fluid Dynamics (CFD) has become a powerful simulation technology used in many industrial applications for process design and optimization to save energy, improve environment, and reduce costs. In order to better understand CFD results and more easily communicate with non-CFD experts, advanced virtual reality (VR) visualization is desired for CFD post-processing. Efforts have recently been made at Purdue University Calumet to integrate VR with CFD to visualize complex data in three dimensions in an interactive, virtual environment. The virtual engineering environment greatly enhances the value of CFD simulations and allows engineers to gain much needed process insights for the design and optimization of industrial processes.

  8. Reduced-Order Model for Dynamic Optimization of Pressure Swing Adsorption

    SciTech Connect

    Agarwal, Anshul; Biegler, L.T.; Zitney, S.E.

    2007-11-01

    optimization, if dynamic PSA models are incorporated with other steady state models in the flowsheet then it will require much faster approaches for integrated optimization.

  9. Multi-stage optimal design for groundwater remediation: a hybrid bi-level programming approach.

    PubMed

    Zou, Yun; Huang, Guo H; He, Li; Li, Hengliang

    2009-08-11

    This paper presents the development of a hybrid bi-level programming approach for supporting multi-stage groundwater remediation design. To investigate remediation performances, a subsurface model was employed to simulate contaminant transport. A mixed-integer nonlinear optimization model was formulated in order to evaluate different remediation strategies. Multivariate relationships based on a filtered stepwise clustering analysis were developed to facilitate the incorporation of a simulation model within a nonlinear optimization framework. By using the developed statistical relationships, predictions needed for calculating the objective function value can be quickly obtained during the search process. The main advantage of the developed approach is that the remediation strategy can be adjusted from stage to stage, which makes the optimization more realistic. The proposed approach was examined through its application to a real-world aquifer remediation case in western Canada. The optimization results based on this application can help the decision makers to comprehensively evaluate remediation performance.

  10. An Approach for Dynamic Optimization of Prevention Program Implementation in Stochastic Environments

    NASA Astrophysics Data System (ADS)

    Kang, Yuncheol; Prabhu, Vittal

    The science of preventing youth problems has significantly advanced in developing evidence-based prevention program (EBP) by using randomized clinical trials. Effective EBP can reduce delinquency, aggression, violence, bullying and substance abuse among youth. Unfortunately the outcomes of EBP implemented in natural settings usually tend to be lower than in clinical trials, which has motivated the need to study EBP implementations. In this paper we propose to model EBP implementations in natural settings as stochastic dynamic processes. Specifically, we propose Markov Decision Process (MDP) for modeling and dynamic optimization of such EBP implementations. We illustrate these concepts using simple numerical examples and discuss potential challenges in using such approaches in practice.

  11. A dynamic oppositional biogeography-based optimization approach for time-varying electrical impedance tomography.

    PubMed

    Rashid, A; Kim, S; Liu, D; Kim, K Y

    2016-06-01

    Dynamic electrical impedance tomography-based image reconstruction using conventional algorithms such as the extended Kalman filter often exhibits inferior performance due to the presence of measurement noise, the inherent ill-posed nature of the problem and its critical dependence on the selection of the initial guess as well as the state evolution model. Moreover, many of these conventional algorithms require the calculation of a Jacobian matrix. This paper proposes a dynamic oppositional biogeography-based optimization (OBBO) technique to estimate the shape, size and location of the non-stationary region boundaries, expressed as coefficients of truncated Fourier series, inside an object domain using electrical impedance tomography. The conductivity of the object domain is assumed to be known a priori. Dynamic OBBO is a novel addition to the family of dynamic evolutionary algorithms. Moreover, it is the first such study on the application of dynamic evolutionary algorithms for dynamic electrical impedance tomography-based image reconstruction. The performance of the algorithm is tested through numerical simulations and experimental study and is compared with state-of-the-art gradient-based extended Kalman filter. The dynamic OBBO is shown to be far superior compared to the extended Kalman filter. It is found to be robust to measurement noise as well as the initial guess, and does not rely on a priori knowledge of the state evolution model. PMID:27203482

  12. Human motion planning based on recursive dynamics and optimal control techniques

    NASA Technical Reports Server (NTRS)

    Lo, Janzen; Huang, Gang; Metaxas, Dimitris

    2002-01-01

    This paper presents an efficient optimal control and recursive dynamics-based computer animation system for simulating and controlling the motion of articulated figures. A quasi-Newton nonlinear programming technique (super-linear convergence) is implemented to solve minimum torque-based human motion-planning problems. The explicit analytical gradients needed in the dynamics are derived using a matrix exponential formulation and Lie algebra. Cubic spline functions are used to make the search space for an optimal solution finite. Based on our formulations, our method is well conditioned and robust, in addition to being computationally efficient. To better illustrate the efficiency of our method, we present results of natural looking and physically correct human motions for a variety of human motion tasks involving open and closed loop kinematic chains.

  13. A dynamic programming-based particle swarm optimization algorithm for an inventory management problem under uncertainty

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Zeng, Ziqiang; Han, Bernard; Lei, Xiao

    2013-07-01

    This article presents a dynamic programming-based particle swarm optimization (DP-based PSO) algorithm for solving an inventory management problem for large-scale construction projects under a fuzzy random environment. By taking into account the purchasing behaviour and strategy under rules of international bidding, a multi-objective fuzzy random dynamic programming model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform fuzzy random parameters into fuzzy variables that are subsequently defuzzified by using an expected value operator with optimistic-pessimistic index. The iterative nature of the authors' model motivates them to develop a DP-based PSO algorithm. More specifically, their approach treats the state variables as hidden parameters. This in turn eliminates many redundant feasibility checks during initialization and particle updates at each iteration. Results and sensitivity analysis are presented to highlight the performance of the authors' optimization method, which is very effective as compared to the standard PSO algorithm.

  14. Performance monitoring for new phase dynamic optimization of instruction dispatch cluster configuration

    DOEpatents

    Balasubramonian, Rajeev; Dwarkadas, Sandhya; Albonesi, David

    2012-01-24

    In a processor having multiple clusters which operate in parallel, the number of clusters in use can be varied dynamically. At the start of each program phase, the configuration option for an interval is run to determine the optimal configuration, which is used until the next phase change is detected. The optimum instruction interval is determined by starting with a minimum interval and doubling it until a low stability factor is reached.

  15. Evolutionary genetic optimization of the injector beam dynamics for the ERL test facility at IHEP

    NASA Astrophysics Data System (ADS)

    Jiao, Yi

    2014-08-01

    The energy recovery linac test facility (ERL-TF), a compact ERL-FEL (free electron laser) two-purpose machine, has been proposed at the Institute of High Energy Physics, Beijing. As one important component of the ERL-TF, the photo-injector was designed and preliminarily optimized. In this paper an evolutionary genetic method, non-dominated sorting genetic algorithm II, is applied to optimize the injector beam dynamics, especially in the high-charge operation mode. Study shows that using an incident laser with rms transverse size of 1-1.2 mm, the normalized emittance of the electron beam can be kept below 1 mm·mrad at the end of the injector. This work, together with the previous optimization of the low-charge operation mode by using the iterative scan method, provides guidance and confidence for future construction and commissioning of the ERL-TF injector.

  16. Error bounds of adaptive dynamic programming algorithms for solving undiscounted optimal control problems.

    PubMed

    Liu, Derong; Li, Hongliang; Wang, Ding

    2015-06-01

    In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.

  17. Replica exchange molecular dynamics optimization of tensor network states for quantum many-body systems.

    PubMed

    Liu, Wenyuan; Wang, Chao; Li, Yanbin; Lao, Yuyang; Han, Yongjian; Guo, Guang-Can; Zhao, Yong-Hua; He, Lixin

    2015-03-01

    Tensor network states (TNS) methods combined with the Monte Carlo (MC) technique have been proven a powerful algorithm for simulating quantum many-body systems. However, because the ground state energy is a highly non-linear function of the tensors, it is easy to get stuck in local minima when optimizing the TNS of the simulated physical systems. To overcome this difficulty, we introduce a replica-exchange molecular dynamics optimization algorithm to obtain the TNS ground state, based on the MC sampling technique, by mapping the energy function of the TNS to that of a classical mechanical system. The method is expected to effectively avoid local minima. We make benchmark tests on a 1D Hubbard model based on matrix product states (MPS) and a Heisenberg J1-J2 model on square lattice based on string bond states (SBS). The results show that the optimization method is robust and efficient compared to the existing results.

  18. Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees.

    PubMed

    Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica

    2012-05-30

    The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release.

  19. Optimizing zonal advection of the Advanced Research WRF (ARW) dynamics for Intel MIC

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecast (WRF) model is the most widely used community weather forecast and research model in the world. There are two distinct varieties of WRF. The Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we will use Intel Intel Many Integrated Core (MIC) architecture to substantially increase the performance of a zonal advection subroutine for optimization. It is of the most time consuming routines in the ARW dynamics core. Advection advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 2.4x.

  20. Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies.

    PubMed

    Giordano, Nils; Mairet, Francis; Gouzé, Jean-Luc; Geiselmann, Johannes; de Jong, Hidde

    2016-03-01

    Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin's Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment.

  1. Optimizing meridional advection of the Advanced Research WRF (ARW) dynamics for Intel Xeon Phi coprocessor

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    The most widely used community weather forecast and research model in the world is the Weather Research and Forecast (WRF) model. Two distinct varieties of WRF exist. The one we are interested is the Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we optimize a meridional (north-south direction) advection subroutine for Intel Xeon Phi coprocessor. Advection is of the most time consuming routines in the ARW dynamics core. It advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.2x.

  2. Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies

    PubMed Central

    Giordano, Nils; Mairet, Francis; Gouzé, Jean-Luc

    2016-01-01

    Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin’s Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment. PMID:26958858

  3. Optimized dynamic contrast-enhanced cone-beam CT for target visualization during liver SBRT

    NASA Astrophysics Data System (ADS)

    Jones, Bernard L.; Altunbas, Cem; Kavanagh, Brian; Schefter, Tracey; Miften, Moyed

    2014-03-01

    The pharmacokinetic behavior of iodine contrast agents makes it difficult to achieve significant enhancement during contrast-enhanced cone-beam CT (CE-CBCT). This study modeled this dynamic behavior to optimize CE-CBCT and improve the localization of liver lesions for SBRT. We developed a model that allows for controlled study of changing iodine concentrations using static phantoms. A projection database consisting of multiple phantom images of differing iodine/scan conditions was built. To reconstruct images of dynamic hepatic concentrations, hepatic contrast enhancement data from conventional CT scans were used to re-assemble the projections to match the expected amount of contrast. In this way the effect of various parameters on image quality was isolated, and using our dynamic model we found parameters for iodine injection, CBCT scanning, and injection/scanning timing which optimize contrast enhancement. Increasing the iodine dose, iodine injection rate, and imaging dose led to significant increases in signal-to-noise ratio (SNR). Reducing the CBCT imaging time also increased SNR, as the image can be completed before the iodine exits the liver. Proper timing of image acquisition played a significant role, as a 30 second error in start time resulted in a 40% SNR decrease. The effect of IV contrast is severely degraded in CBCT, but there is promise that, with optimization of the injection and scan parameters to account for iodine pharmacokinetics, CE-CBCT which models venous-phase blood flow kinetics will be feasible for accurate localization of liver lesions.

  4. Use of a Batch Reactive Distillation with Dynamic Optimization Strategy to Achieve Industrial Grade Ethyl Acetate

    NASA Astrophysics Data System (ADS)

    Konakom, Kwantip; Saengchan, Aritsara; Kittisupakorn, Paisan; Mujtaba, Iqbal M.

    2011-08-01

    Industrial grade ethyl acetate is available with minimum purity of 85.0%. It is mostly produced by an ethanol esterification in a distillation process on both batch and continuous modes. However, researches on high purity production with short operating time are rarely achieved. Therefore, the objective in this work is to study an approach to produce ethyl acetate of 90.0% by 8 hours using a batch reactive distillation column. Based on open-loop simulations, the distillation with constant reflux ratio cannot achieve the product specification. Thus, the dynamic optimization strategy is proposed to handle this problem. For the process safety—preventing the dried column and fractured, a minimum reflux ratio must be determined in advance and then an optimal reflux profile is calculated to achieve optimal product yield. Simulation results show that the industrial grade ethyl acetate can be produced by the dynamic optimization programming with two or more time intervals. Besides, the increasing of time intervals can produce more distillate product.

  5. Volatile decision dynamics: experiments, stochastic description, intermittency control and traffic optimization

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk; Schönhof, Martin; Kern, Daniel

    2002-06-01

    The coordinated and efficient distribution of limited resources by individual decisions is a fundamental, unsolved problem. When individuals compete for road capacities, time, space, money, goods, etc, they normally make decisions based on aggregate rather than complete information, such as TV news or stock market indices. In related experiments, we have observed a volatile decision dynamics and far-from-optimal payoff distributions. We have also identified methods of information presentation that can considerably improve the overall performance of the system. In order to determine optimal strategies of decision guidance by means of user-specific recommendations, a stochastic behavioural description is developed. These strategies manage to increase the adaptibility to changing conditions and to reduce the deviation from the time-dependent user equilibrium, thereby enhancing the average and individual payoffs. Hence, our guidance strategies can increase the performance of all users by reducing overreaction and stabilizing the decision dynamics. These results are highly significant for predicting decision behaviour, for reaching optimal behavioural distributions by decision support systems and for information service providers. One of the promising fields of application is traffic optimization.

  6. Optimal dynamic water allocation: Irrigation extractions and environmental tradeoffs in the Murray River, Australia

    NASA Astrophysics Data System (ADS)

    Grafton, R. Quentin; Chu, Hoang Long; Stewardson, Michael; Kompas, Tom

    2011-12-01

    A key challenge in managing semiarid basins, such as in the Murray-Darling in Australia, is to balance the trade-offs between the net benefits of allocating water for irrigated agriculture, and other uses, versus the costs of reduced surface flows for the environment. Typically, water planners do not have the tools to optimally and dynamically allocate water among competing uses. We address this problem by developing a general stochastic, dynamic programming model with four state variables (the drought status, the current weather, weather correlation, and current storage) and two controls (environmental release and irrigation allocation) to optimally allocate water between extractions and in situ uses. The model is calibrated to Australia's Murray River that generates: (1) a robust qualitative result that "pulse" or artificial flood events are an optimal way to deliver environmental flows over and above conveyance of base flows; (2) from 2001 to 2009 a water reallocation that would have given less to irrigated agriculture and more to environmental flows would have generated between half a billion and over 3 billion U.S. dollars in overall economic benefits; and (3) water markets increase optimal environmental releases by reducing the losses associated with reduced water diversions.

  7. Dynamic modeling and optimal joint torque coordination of advanced robotic systems

    NASA Astrophysics Data System (ADS)

    Kang, Hee-Jun

    The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving

  8. Applying the approximation method PAINT and the interactive method NIMBUS to the multiobjective optimization of operating a wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Hartikainen, Markus E.; Ojalehto, Vesa; Sahlstedt, Kristian

    2015-03-01

    Using an interactive multiobjective optimization method called NIMBUS and an approximation method called PAINT, preferable solutions to a five-objective problem of operating a wastewater treatment plant are found. The decision maker giving preference information is an expert in wastewater treatment plant design at the engineering company Pöyry Finland Ltd. The wastewater treatment problem is computationally expensive and requires running a simulator to evaluate the values of the objective functions. This often leads to problems with interactive methods as the decision maker may get frustrated while waiting for new solutions to be computed. Thus, a newly developed PAINT method is used to speed up the iterations of the NIMBUS method. The PAINT method interpolates between a given set of Pareto optimal outcomes and constructs a computationally inexpensive mixed integer linear surrogate problem for the original wastewater treatment problem. With the mixed integer surrogate problem, the time required from the decision maker is comparatively short. In addition, a new IND-NIMBUS® PAINT module is developed to allow the smooth interoperability of the NIMBUS method and the PAINT method.

  9. Quantifying dynamic sensitivity of optimization algorithm parameters to improve hydrological model calibration

    NASA Astrophysics Data System (ADS)

    Qi, Wei; Zhang, Chi; Fu, Guangtao; Zhou, Huicheng

    2016-02-01

    It is widely recognized that optimization algorithm parameters have significant impacts on algorithm performance, but quantifying the influence is very complex and difficult due to high computational demands and dynamic nature of search parameters. The overall aim of this paper is to develop a global sensitivity analysis based framework to dynamically quantify the individual and interactive influence of algorithm parameters on algorithm performance. A variance decomposition sensitivity analysis method, Analysis of Variance (ANOVA), is used for sensitivity quantification, because it is capable of handling small samples and more computationally efficient compared with other approaches. The Shuffled Complex Evolution method developed at the University of Arizona algorithm (SCE-UA) is selected as an optimization algorithm for investigation, and two criteria, i.e., convergence speed and success rate, are used to measure the performance of SCE-UA. Results show the proposed framework can effectively reveal the dynamic sensitivity of algorithm parameters in the search processes, including individual influences of parameters and their interactive impacts. Interactions between algorithm parameters have significant impacts on SCE-UA performance, which has not been reported in previous research. The proposed framework provides a means to understand the dynamics of algorithm parameter influence, and highlights the significance of considering interactive parameter influence to improve algorithm performance in the search processes.

  10. Adaptive dynamic range optimization (ADRO): a digital amplification strategy for hearing aids and cochlear implants.

    PubMed

    Blamey, Peter J

    2005-01-01

    Adaptive dynamic range optimization (ADRO) is an amplification strategy that uses digital signal processing techniques to improve the audibility, comfort, and intelligibility of sounds for people who use cochlear implants and/or hearing aids. The strategy uses statistical analysis to select the most information-rich section of the input dynamic range in multiple-frequency channels. Fuzzy logic rules control the gain in each frequency channel so that the selected section of the dynamic range is presented at an audible and comfortable level. The ADRO processing thus adaptively optimizes the dynamic range of the signal in multiple-frequency channels. Clinical studies show that ADRO can be fitted easily to all degrees of hearing loss for hearing aids and cochlear implants in a direct and intuitive manner, taking the preferences of the listener into account. The result is high acceptance by new and experienced hearing aid users and strong preferences for ADRO compared with alternative amplification strategies. The ADRO processing is particularly well suited to bimodal and hybrid stimulation which combine electric and acoustic stimulation in opposite ears or in the same ear, respectively.

  11. Adaptive Dynamic Range Optimization (ADRO): A Digital Amplification Strategy for Hearing Aids and Cochlear Implants

    PubMed Central

    Blamey, Peter J.

    2005-01-01

    Adaptive dynamic range optimization (ADRO) is an amplification strategy that uses digital signal processing techniques to improve the audibility, comfort, and intelligibility of sounds for people who use cochlear implants and/or hearing aids. The strategy uses statistical analysis to select the most information-rich section of the input dynamic range in multiple-frequency channels. Fuzzy logic rules control the gain in each frequency channel so that the selected section of the dynamic range is presented at an audible and comfortable level. The ADRO processing thus adaptively optimizes the dynamic range of the signal in multiple-frequency channels. Clinical studies show that ADRO can be fitted easily to all degrees of hearing loss for hearing aids and cochlear implants in a direct and intuitive manner, taking the preferences of the listener into account. The result is high acceptance by new and experienced hearing aid users and strong preferences for ADRO compared with alternative amplification strategies. The ADRO processing is particularly well suited to bimodal and hybrid stimulation which combine electric and acoustic stimulation in opposite ears or in the same ear, respectively. PMID:16012705

  12. Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis

    PubMed Central

    2011-01-01

    Background We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs) from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. Results We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA), particle-swarm optimization (PSO), and differential evolution (DE), as well as a local-search derivative-based algorithm 717 (A717) to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Conclusions Overall, the global meta-heuristic methods (DASA, PSO, and DE) clearly and significantly outperform the local derivative-based method (A717). Among the three meta-heuristics, differential evolution (DE) performs best in terms of the objective function, i.e., reconstructing the output, and in terms of convergence. These

  13. Dynamic optimization of CELSS crop photosynthetic rate by computer-assisted feedback control.

    PubMed

    Chun, C; Mitchell, C A

    1997-01-01

    A procedure for dynamic optimization of net photosynthetic rate (Pn) for crop production in Controlled Ecological Life-Support Systems (CELSS) was developed using leaf lettuce as a model crop. Canopy Pn was measured in real time and fed back for environmental control. Setpoints of photosynthetic photon flux (PPF) and CO2 concentration for each hour of the crop-growth cycle were decided by computer to reach a targeted Pn each day. Decision making was based on empirical mathematical models combined with rule sets developed from recent experimental data. Comparisons showed that dynamic control resulted in better yield per unit energy input to the growth system than did static control. With comparable productivity parameters and potential for significant energy savings, dynamic control strategies will contribute greatly to the sustainability of space-deployed CELSS.

  14. Dynamic optimization of CELSS crop photosynthetic rate by computer-assisted feedback control

    NASA Astrophysics Data System (ADS)

    Chun, C.; Mitchell, C. A.

    1997-01-01

    A procedure for dynamic optimization of net photosynthetic rate (Pn) for crop production in Controlled Ecological Life-Support Systems (CELSS) was developed using leaf lettuce as a model crop. Canopy Pn was measured in real time and fed back for environmental control. Setpoints of photosynthetic photon flux (PPF) and CO_2 concentration for each hour of the crop-growth cycle were decided by computer to reach a targeted Pn each day. Decision making was based on empirical mathematical models combined with rule sets developed from recent experimental data. Comparisons showed that dynamic control resulted in better yield per unit energy input to the growth system than did static control. With comparable productivity parameters and potential for significant energy savings, dynamic control strategies will contribute greatly to the sustainability of space-deployed CELSS.

  15. Game theory and extremal optimization for community detection in complex dynamic networks.

    PubMed

    Lung, Rodica Ioana; Chira, Camelia; Andreica, Anca

    2014-01-01

    The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.

  16. A Lyapunov-Based Extension to Particle Swarm Dynamics for Continuous Function Optimization

    PubMed Central

    Bhattacharya, Sayantani; Konar, Amit; Das, Swagatam; Han, Sang Yong

    2009-01-01

    The paper proposes three alternative extensions to the classical global-best particle swarm optimization dynamics, and compares their relative performance with the standard particle swarm algorithm. The first extension, which readily follows from the well-known Lyapunov's stability theorem, provides a mathematical basis of the particle dynamics with a guaranteed convergence at an optimum. The inclusion of local and global attractors to this dynamics leads to faster convergence speed and better accuracy than the classical one. The second extension augments the velocity adaptation equation by a negative randomly weighted positional term of individual particle, while the third extension considers the negative positional term in place of the inertial term. Computer simulations further reveal that the last two extensions outperform both the classical and the first extension in terms of convergence speed and accuracy. PMID:22303158

  17. Process simulation and dynamic control for marine oily wastewater treatment using UV irradiation.

    PubMed

    Jing, Liang; Chen, Bing; Zhang, Baiyu; Li, Pu

    2015-09-15

    UV irradiation and advanced oxidation processes have been recently regarded as promising solutions in removing polycyclic aromatic hydrocarbons (PAHs) from marine oily wastewater. However, such treatment methods are generally not sufficiently understood in terms of reaction mechanisms, process simulation and process control. These deficiencies can drastically hinder their application in shipping and offshore petroleum industries which produce bilge/ballast water and produced water as the main streams of marine oily wastewater. In this study, the factorial design of experiment was carried out to investigate the degradation mechanism of a typical PAH, namely naphthalene, under UV irradiation in seawater. Based on the experimental results, a three-layer feed-forward artificial neural network simulation model was developed to simulate the treatment process and to forecast the removal performance. A simulation-based dynamic mixed integer nonlinear programming (SDMINP) approach was then proposed to intelligently control the treatment process by integrating the developed simulation model, genetic algorithm and multi-stage programming. The applicability and effectiveness of the developed approach were further tested though a case study. The experimental results showed that the influences of fluence rate and temperature on the removal of naphthalene were greater than those of salinity and initial concentration. The developed simulation model could well predict the UV-induced removal process under varying conditions. The case study suggested that the SDMINP approach, with the aid of the multi-stage control strategy, was able to significantly reduce treatment cost when comparing to the traditional single-stage process optimization. The developed approach and its concept/framework have high potential of applicability in other environmental fields where a treatment process is involved and experimentation and modeling are used for process simulation and control. PMID:26043376

  18. Process simulation and dynamic control for marine oily wastewater treatment using UV irradiation.

    PubMed

    Jing, Liang; Chen, Bing; Zhang, Baiyu; Li, Pu

    2015-09-15

    UV irradiation and advanced oxidation processes have been recently regarded as promising solutions in removing polycyclic aromatic hydrocarbons (PAHs) from marine oily wastewater. However, such treatment methods are generally not sufficiently understood in terms of reaction mechanisms, process simulation and process control. These deficiencies can drastically hinder their application in shipping and offshore petroleum industries which produce bilge/ballast water and produced water as the main streams of marine oily wastewater. In this study, the factorial design of experiment was carried out to investigate the degradation mechanism of a typical PAH, namely naphthalene, under UV irradiation in seawater. Based on the experimental results, a three-layer feed-forward artificial neural network simulation model was developed to simulate the treatment process and to forecast the removal performance. A simulation-based dynamic mixed integer nonlinear programming (SDMINP) approach was then proposed to intelligently control the treatment process by integrating the developed simulation model, genetic algorithm and multi-stage programming. The applicability and effectiveness of the developed approach were further tested though a case study. The experimental results showed that the influences of fluence rate and temperature on the removal of naphthalene were greater than those of salinity and initial concentration. The developed simulation model could well predict the UV-induced removal process under varying conditions. The case study suggested that the SDMINP approach, with the aid of the multi-stage control strategy, was able to significantly reduce treatment cost when comparing to the traditional single-stage process optimization. The developed approach and its concept/framework have high potential of applicability in other environmental fields where a treatment process is involved and experimentation and modeling are used for process simulation and control.

  19. H∞ optimization of dynamic vibration absorber variant for vibration control of damped linear systems

    NASA Astrophysics Data System (ADS)

    Chun, Semin; Lee, Youngil; Kim, Tae-Hyoung

    2015-01-01

    This study focuses on the H∞ optimal design of a dynamic vibration absorber (DVA) variant for suppressing high-amplitude vibrations of damped primary systems. Unlike traditional DVA configurations, the damping element in this type of DVA is connected directly to the ground instead of the primary mass. First, a thorough graphical analysis of the variations in the maximum amplitude magnification factor depending on two design parameters, natural frequency and absorber damping ratios, is performed. The results of this analysis clearly show that any fixed-points-theory-based conventional method could provide, at best, only locally but not globally optimal parameters. Second, for directly handling the H∞ optimization for its optimal design, a novel meta-heuristic search engine, called the diversity-guided cyclic-network-topology-based constrained particle swarm optimization (Div-CNT-CPSO), is developed. The variant DVA system developed using the proposed Div-CNT-CPSO scheme is compared with those reported in the literature. The results of this comparison verified that the proposed system is better than the existing methods for suppressing the steady-state vibration amplitude of a controlled primary system.

  20. Optimal Reference Strain Structure for Studying Dynamic Responses of Flexible Rockets

    NASA Technical Reports Server (NTRS)

    Tsushima, Natsuki; Su, Weihua; Wolf, Michael G.; Griffin, Edwin D.; Dumoulin, Marie P.

    2017-01-01

    In the proposed paper, the optimal design of reference strain structures (RSS) will be performed targeting for the accurate observation of the dynamic bending and torsion deformation of a flexible rocket. It will provide the detailed description of the finite-element (FE) model of a notional flexible rocket created in MSC.Patran. The RSS will be attached longitudinally along the side of the rocket and to track the deformation of the thin-walled structure under external loads. An integrated surrogate-based multi-objective optimization approach will be developed to find the optimal design of the RSS using the FE model. The Kriging method will be used to construct the surrogate model. For the data sampling and the performance evaluation, static/transient analyses will be performed with MSC.Natran/Patran. The multi-objective optimization will be solved with NSGA-II to minimize the difference between the strains of the launch vehicle and RSS. Finally, the performance of the optimal RSS will be evaluated by checking its strain-tracking capability in different numerical simulations of the flexible rocket.

  1. Developing a computationally efficient dynamic multilevel hybrid optimization scheme using multifidelity model interactions.

    SciTech Connect

    Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Gray, Genetha Anne (Sandia National Laboratories, Livermore, CA); Castro, Joseph Pete Jr.; Giunta, Anthony Andrew

    2006-01-01

    Many engineering application problems use optimization algorithms in conjunction with numerical simulators to search for solutions. The formulation of relevant objective functions and constraints dictate possible optimization algorithms. Often, a gradient based approach is not possible since objective functions and constraints can be nonlinear, nonconvex, non-differentiable, or even discontinuous and the simulations involved can be computationally expensive. Moreover, computational efficiency and accuracy are desirable and also influence the choice of solution method. With the advent and increasing availability of massively parallel computers, computational speed has increased tremendously. Unfortunately, the numerical and model complexities of many problems still demand significant computational resources. Moreover, in optimization, these expenses can be a limiting factor since obtaining solutions often requires the completion of numerous computationally intensive simulations. Therefore, we propose a multifidelity optimization algorithm (MFO) designed to improve the computational efficiency of an optimization method for a wide range of applications. In developing the MFO algorithm, we take advantage of the interactions between multi fidelity models to develop a dynamic and computational time saving optimization algorithm. First, a direct search method is applied to the high fidelity model over a reduced design space. In conjunction with this search, a specialized oracle is employed to map the design space of this high fidelity model to that of a computationally cheaper low fidelity model using space mapping techniques. Then, in the low fidelity space, an optimum is obtained using gradient or non-gradient based optimization, and it is mapped back to the high fidelity space. In this paper, we describe the theory and implementation details of our MFO algorithm. We also demonstrate our MFO method on some example problems and on two applications: earth penetrators and

  2. Computational fluid dynamics based aerodynamic optimization of the wind tunnel primary nozzle

    NASA Astrophysics Data System (ADS)

    Jan, Kolář; Václav, Dvořák

    2012-06-01

    The aerodynamic shape optimization of the supersonic flat nozzle is the aim of proposed paper. The nozzle discussed, is applied as a primary nozzle of the inlet part of supersonic wind tunnel. Supersonic nozzles of the measure area inlet parts need to guarantee several requirements of flow properties and quality. Mach number and minimal differences between real and required velocity and turbulence profiles at the nozzle exit are the most important parameters to meet. The aerodynamic shape optimization of the flat 2D nozzle in Computational Fluid Dynamics (CFD) is employed to reach as uniform exit velocity profile as possible, with the mean Mach number 1.4. Optimization process does not use any of standard routines of global or local optimum searching. Instead, newly formed routine, which exploits shape-based oriented sequence of nozzles, is used to research within whole discretized parametric space. The movement within optimization process is not driven by gradient or evolutionary too, instead, the Path of Minimal Shape Deformation is followed. Dynamic mesh approach is used to deform the shape and mesh from the actual nozzle to the subsequent one. Dynamic deformation of mesh allows to speed up whole converging process as an initialization of flow at the newly formed mesh is based on afore-computed shape. Shape-based similarity query in field of supersonic nozzles is discussed and applied. Evolutionary technique with genetic algorithm is used to search for minimal deformational path. As a result, the best variant from the set of solved shapes is analyzed at the base of momentum coefficient and desired Mach number at the nozzle exit.

  3. On PDE solution in transient optimization of gas networks

    NASA Astrophysics Data System (ADS)

    Steinbach, Marc C.

    2007-06-01

    Operative planning in gas distribution networks leads to large-scale mixed-integer optimization problems involving a hyperbolic PDE defined on a graph. We consider the NLP obtained under prescribed combinatorial decisions--or as relaxation in a branch-and-bound framework, addressing in particular the KKT systems arising in primal-dual interior methods. We propose a custom solution algorithm using sparse projections locally in time, based on the KKT systems' structural properties in space as induced by the discretized gas flow equations in combination with the underlying network topology. The numerical efficiency and accuracy of the algorithm are investigated, and detailed computational comparisons with a previously developed control space method and with the multifrontal solver MA27 are provided.

  4. An optimization model for long-range transmission expansion planning

    SciTech Connect

    Santos, A. Jr.; Franca, P.M.; Said, A.

    1989-02-01

    In this paper is presented a static network synthesis method applied to transmission expansion planning. The static synthesis problem is formulated as a mixed-integer network flow model that is solved by an implicit enumeration algorithm. This model considers as the objective function the most productive trade off, resulting in low investment costs and good electrical performance. The load and generation nodal equations are considered in the constraints of the model. The power transmission law of DC load flow is implicit in the optimization model. Results of computational tests are presented and they show the advantage of this method compared with a heuristic procedure. The case studies show a comparison of computational times and costs of solutions obtained for the Brazilian North-Northeast transmission system.

  5. Automated dynamic fed-batch process and media optimization for high productivity cell culture process development.

    PubMed

    Lu, Franklin; Toh, Poh Choo; Burnett, Iain; Li, Feng; Hudson, Terry; Amanullah, Ashraf; Li, Jincai

    2013-01-01

    Current industry practices for large-scale mammalian cell cultures typically employ a standard platform fed-batch process with fixed volume bolus feeding. Although widely used, these processes are unable to respond to actual nutrient consumption demands from the culture, which can result in accumulation of by-products and depletion of certain nutrients. This work demonstrates the application of a fully automated cell culture control, monitoring, and data processing system to achieve significant productivity improvement via dynamic feeding and media optimization. Two distinct feeding algorithms were used to dynamically alter feed rates. The first method is based upon on-line capacitance measurements where cultures were fed based on growth and nutrient consumption rates estimated from integrated capacitance. The second method is based upon automated glucose measurements obtained from the Nova Bioprofile FLEX® autosampler where cultures were fed to maintain a target glucose level which in turn maintained other nutrients based on a stoichiometric ratio. All of the calculations were done automatically through in-house integration with a Delta V process control system. Through both media and feed strategy optimization, a titer increase from the original platform titer of 5 to 6.3 g/L was achieved for cell line A, and a substantial titer increase of 4 to over 9 g/L was achieved for cell line B with comparable product quality. Glucose was found to be the best feed indicator, but not all cell lines benefited from dynamic feeding and optimized feed media was critical to process improvement. Our work demonstrated that dynamic feeding has the ability to automatically adjust feed rates according to culture behavior, and that the advantage can be best realized during early and rapid process development stages where different cell lines or large changes in culture conditions might lead to dramatically different nutrient demands.

  6. MINLP models for the synthesis of optimal peptide tags and downstream protein processing.

    PubMed

    Simeonidis, Evangelos; Pinto, Jose M; Lienqueo, M Elena; Tsoka, Sophia; Papageorgiou, Lazaros G

    2005-01-01

    The development of systematic methods for the synthesis of downstream protein processing operations has seen growing interest in recent years, as purification is often the most complex and costly stage in biochemical production plants. The objective of the work presented here is to develop mathematical models based on mixed integer optimization techniques, which integrate the selection of optimal peptide purification tags into an established framework for the synthesis of protein purification processes. Peptide tags are comparatively short sequences of amino acids fused onto the protein product, capable of reducing the required purification steps. The methodology is illustrated through its application on two example protein mixtures involving up to 13 contaminants and a set of 11 candidate chromatographic steps. The results are indicative of the benefits resulting by the appropriate use of peptide tags in purification processes and provide a guideline for both optimal tag design and downstream process synthesis. PMID:15932268

  7. Measuring resetting of brain dynamics at epileptic seizures: application of global optimization and spatial synchronization techniques.

    PubMed

    Sabesan, Shivkumar; Chakravarthy, Niranjan; Tsakalis, Kostas; Pardalos, Panos; Iasemidis, Leon

    2009-01-01

    Epileptic seizures are manifestations of intermittent spatiotemporal transitions of the human brain from chaos to order. Measures of chaos, namely maximum Lyapunov exponents (STL(max)), from dynamical analysis of the electroencephalograms (EEGs) at critical sites of the epileptic brain, progressively converge (diverge) before (after) epileptic seizures, a phenomenon that has been called dynamical synchronization (desynchronization). This dynamical synchronization/desynchronization has already constituted the basis for the design and development of systems for long-term (tens of minutes), on-line, prospective prediction of epileptic seizures. Also, the criterion for the changes in the time constants of the observed synchronization/desynchronization at seizure points has been used to show resetting of the epileptic brain in patients with temporal lobe epilepsy (TLE), a phenomenon that implicates a possible homeostatic role for the seizures themselves to restore normal brain activity. In this paper, we introduce a new criterion to measure this resetting that utilizes changes in the level of observed synchronization/desynchronization. We compare this criterion's sensitivity of resetting with the old one based on the time constants of the observed synchronization/desynchronization. Next, we test the robustness of the resetting phenomena in terms of the utilized measures of EEG dynamics by a comparative study involving STL(max), a measure of phase (ϕ(max)) and a measure of energy (E) using both criteria (i.e. the level and time constants of the observed synchronization/desynchronization). The measures are estimated from intracranial electroencephalographic (iEEG) recordings with subdural and depth electrodes from two patients with focal temporal lobe epilepsy and a total of 43 seizures. Techniques from optimization theory, in particular quadratic bivalent programming, are applied to optimize the performance of the three measures in detecting preictal entrainment. It is

  8. Smart DRM (dynamic range management) for optimal IR seeker sensitivity and dynamic range control

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; Olson, Teresa L. P.; Frey, Steven R., Jr.

    2003-08-01

    For an IR (infrared) sensor, the raw digital images coming out from the FPA (focal plane array) A/D converter contain strong non-uniformity/fixed pattern noise (FPN) as well as permanent and blinking dead pixels. Before performing the target detection and tracking functions, these raw images are processed by a CWF (chopper-wheel-free) MBPF NUC (Measurement-Based-Parametric-Fitting Non-Uniformity Correction) system to replace the dead pixels and to remove or reduce the FPN, as shown in Figure 1. The input to MBPF NUC is RIMi,j(the raw image), where 1<=i, j<=256, and the output is CIMi,j, the corrected image. It is important to note that as shown in Figure 1 the IT (integration time) for the FPA input capacitors is a critical parameter to control the sensor's sensitivity and temperature DR (dynamic range). From the results of our FPN measurement, the STD (standard deviation) of FPN from a raw uncorrected image can be as high as 300-400 counts. This high count FPN will severely reduce the sensor's sensitivity (we would like to detect a weak target as low as a couple of counts) and hamper the target tracking and/or ATR functions because of the high counts FPN artifacts. Therefore, the major purpose of the NUC system is to reduce FPN for early target detection, and the secondary purpose is to reduce FPN artifacts for reliable target tracking and ATR.

  9. Fast optimization of binary clusters using a novel dynamic lattice searching method.

    PubMed

    Wu, Xia; Cheng, Wen

    2014-09-28

    Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd)79 clusters with DFT-fit parameters of Gupta potential.

  10. Increasing the Lifetime of Mobile WSNs via Dynamic Optimization of Sensor Node Communication Activity

    PubMed Central

    Guimarães, Dayan Adionel; Sakai, Lucas Jun; Alberti, Antonio Marcos; de Souza, Rausley Adriano Amaral

    2016-01-01

    In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors’ batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information. PMID:27657075

  11. Dynamics of hepatitis C under optimal therapy and sampling based analysis

    NASA Astrophysics Data System (ADS)

    Pachpute, Gaurav; Chakrabarty, Siddhartha P.

    2013-08-01

    We examine two models for hepatitis C viral (HCV) dynamics, one for monotherapy with interferon (IFN) and the other for combination therapy with IFN and ribavirin. Optimal therapy for both the models is determined using the steepest gradient method, by defining an objective functional which minimizes infected hepatocyte levels, virion population and side-effects of the drug(s). The optimal therapies for both the models show an initial period of high efficacy, followed by a gradual decline. The period of high efficacy coincides with a significant decrease in the viral load, whereas the efficacy drops after hepatocyte levels are restored. We use the Latin hypercube sampling technique to randomly generate a large number of patient scenarios and study the dynamics of each set under the optimal therapy already determined. Results show an increase in the percentage of responders (indicated by drop in viral load below detection levels) in case of combination therapy (72%) as compared to monotherapy (57%). Statistical tests performed to study correlations between sample parameters and time required for the viral load to fall below detection level, show a strong monotonic correlation with the death rate of infected hepatocytes, identifying it to be an important factor in deciding individual drug regimens.

  12. Large Scale Multi-area Static/Dynamic Economic Dispatch using Nature Inspired Optimization

    NASA Astrophysics Data System (ADS)

    Pandit, Manjaree; Jain, Kalpana; Dubey, Hari Mohan; Singh, Rameshwar

    2016-07-01

    Economic dispatch (ED) ensures that the generation allocation to the power units is carried out such that the total fuel cost is minimized and all the operating equality/inequality constraints are satisfied. Classical ED does not take transmission constraints into consideration, but in the present restructured power systems the tie-line limits play a very important role in deciding operational policies. ED is a dynamic problem which is performed on-line in the central load dispatch centre with changing load scenarios. The dynamic multi-area ED (MAED) problem is more complex due to the additional tie-line, ramp-rate and area-wise power balance constraints. Nature inspired (NI) heuristic optimization methods are gaining popularity over the traditional methods for complex problems. This work presents the modified particle swarm optimization (PSO) based techniques where parameter automation is effectively used for improving the search efficiency by avoiding stagnation to a sub-optimal result. This work validates the performance of the PSO variants with traditional solver GAMS for single as well as multi-area economic dispatch (MAED) on three test cases of a large 140-unit standard test system having complex constraints.

  13. Fast optimization of binary clusters using a novel dynamic lattice searching method

    SciTech Connect

    Wu, Xia Cheng, Wen

    2014-09-28

    Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd){sub 79} clusters with DFT-fit parameters of Gupta potential.

  14. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response and Actuator Constraints

    NASA Technical Reports Server (NTRS)

    Welstead, Jason; Crouse, Gilbert L., Jr.

    2014-01-01

    Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.

  15. Estimation of muscle activity using higher-order derivatives, static optimization, and forward-inverse dynamics.

    PubMed

    Yamasaki, Taiga; Idehara, Katsutoshi; Xin, Xin

    2016-07-01

    We propose a new method to estimate muscle activity in a straightforward manner with high accuracy and relatively small computational costs by using the external input of the joint angle and its first to fourth derivatives with respect to time. The method solves the inverse dynamics problem of the skeletal system, the forward dynamics problem of the muscular system, and the load-sharing problem of muscles as a static optimization of neural excitation signals. The external input including the higher-order derivatives is required for a calculation of constraints imposed on the load-sharing problem. The feasibility of the method is demonstrated by the simulation of a simple musculoskeletal model with a single joint. Moreover, the influences of the muscular dynamics, and the higher-order derivatives on the estimation of the muscle activity are demonstrated, showing the results when the time constants of the activation dynamics are very small, and the third and fourth derivatives of the external input are ignored, respectively. It is concluded that the method can have the potential to improve estimation accuracy of muscle activity of highly dynamic motions. PMID:27211782

  16. Design of Optimal Treatments for Neuromusculoskeletal Disorders using Patient-Specific Multibody Dynamic Models

    PubMed Central

    Fregly, Benjamin J.

    2011-01-01

    Disorders of the human neuromusculoskeletal system such as osteoarthritis, stroke, cerebral palsy, and paraplegia significantly affect mobility and result in a decreased quality of life. Surgical and rehabilitation treatment planning for these disorders is based primarily on static anatomic measurements and dynamic functional measurements filtered through clinical experience. While this subjective treatment planning approach works well in many cases, it does not predict accurate functional outcome in many others. This paper presents a vision for how patient-specific multibody dynamic models can serve as the foundation for an objective treatment planning approach that identifies optimal treatments and treatment parameters on an individual patient basis. First, a computational paradigm is presented for constructing patient-specific multibody dynamic models. This paradigm involves a combination of patient-specific skeletal models, muscle-tendon models, neural control models, and articular contact models, with the complexity of the complete model being dictated by the requirements of the clinical problem being addressed. Next, three clinical applications are presented to illustrate how such models could be used in the treatment design process. One application involves the design of patient-specific gait modification strategies for knee osteoarthritis rehabilitation, a second involves the selection of optimal patient-specific surgical parameters for a particular knee osteoarthritis surgery, and the third involves the design of patient-specific muscle stimulation patterns for stroke rehabilitation. The paper concludes by discussing important challenges that need to be overcome to turn this vision into reality. PMID:21785529

  17. Gold nanoparticle aggregation for quantification of oligonucleotides: optimization and increased dynamic range.

    PubMed

    Cordray, Michael S; Amdahl, Matthew; Richards-Kortum, Rebecca R

    2012-12-15

    A variety of assays have been proposed to detect small quantities of nucleic acids at the point of care. One approach relies on target-induced aggregation of gold nanoparticles functionalized with oligonucleotide sequences complementary to adjacent regions on the targeted sequence. In the presence of the target sequence, the gold nanoparticles aggregate, producing an easily detectable shift in the optical scattering properties of the solution. The major limitations of this assay are that it requires heating and that long incubation times are needed to produce a result. This study aimed to optimize the assay conditions and optical readout, with the goals of eliminating the need for heating and reducing the time to result without sacrificing sensitivity or dynamic range. By optimizing assay conditions and measuring the spectrum of scattered light at the end point of incubation, we found that the assay is capable of producing quantifiable results at room temperature in 30min with a linear dynamic range spanning 150amol to 15fmol of target. If changes in light scattering are measured dynamically during the incubation process, the linear range can be expanded 2-fold, spanning 50amol to 500fmol, while decreasing the time to result to 10min.

  18. Detectability Thresholds and Optimal Algorithms for Community Structure in Dynamic Networks

    NASA Astrophysics Data System (ADS)

    Ghasemian, Amir; Zhang, Pan; Clauset, Aaron; Moore, Cristopher; Peel, Leto

    2016-07-01

    The detection of communities within a dynamic network is a common means for obtaining a coarse-grained view of a complex system and for investigating its underlying processes. While a number of methods have been proposed in the machine learning and physics literature, we lack a theoretical analysis of their strengths and weaknesses, or of the ultimate limits on when communities can be detected. Here, we study the fundamental limits of detecting community structure in dynamic networks. Specifically, we analyze the limits of detectability for a dynamic stochastic block model where nodes change their community memberships over time, but where edges are generated independently at each time step. Using the cavity method, we derive a precise detectability threshold as a function of the rate of change and the strength of the communities. Below this sharp threshold, we claim that no efficient algorithm can identify the communities better than chance. We then give two algorithms that are optimal in the sense that they succeed all the way down to this threshold. The first uses belief propagation, which gives asymptotically optimal accuracy, and the second is a fast spectral clustering algorithm, based on linearizing the belief propagation equations. These results extend our understanding of the limits of community detection in an important direction, and introduce new mathematical tools for similar extensions to networks with other types of auxiliary information.

  19. On optimal dynamic sequential search for matching in real-time machine vision.

    PubMed

    Liu, Zhibin; Shi, Zongying; Xu, Wenli

    2010-11-01

    In the matching tasks of tracking and geometrical vision, there are usually priors available on the absolute and/or relative image locations of features of interest. In this paper, we use these priors dynamically to guide a feature by feature matching search that can achieve global matching with much fewer image processing operations and lower overall computational cost. First, the concept of dynamic sequential search (DSS) is presented. Then, the problem of determining an optimal search order for DSS is investigated, when the probabilistic distribution of the features can be described by a multivariate Gaussian model. Based on the general formulas for sequentially updating the predicted positions of the features as well as their innovation covariance, the theoretic lower bound for the sum of the areas of the features search-regions is derived, and the necessary and sufficient condition for the optimal search order to approach this lower bound is presented. After that, an algorithm for dynamically determining a suboptimal search order is presented, with a computational complexity of O(n3), which is two magnitudes lower than those of the state-of-the-art algorithms. The effectiveness of the proposed method is validated by both statistical simulation and real-world experiments with a monocular visual SLAM (simultaneous localization and mapping) system. The results verify that the performance of the proposed method is better than the state-of-the-art algorithms, with both fewer image processing operations and lower overall computational cost. PMID:20483685

  20. Inference for optimal dynamic treatment regimes using an adaptive m-out-of-n bootstrap scheme.

    PubMed

    Chakraborty, Bibhas; Laber, Eric B; Zhao, Yingqi

    2013-09-01

    A dynamic treatment regime consists of a set of decision rules that dictate how to individualize treatment to patients based on available treatment and covariate history. A common method for estimating an optimal dynamic treatment regime from data is Q-learning which involves nonsmooth operations of the data. This nonsmoothness causes standard asymptotic approaches for inference like the bootstrap or Taylor series arguments to breakdown if applied without correction. Here, we consider the m-out-of-n bootstrap for constructing confidence intervals for the parameters indexing the optimal dynamic regime. We propose an adaptive choice of m and show that it produces asymptotically correct confidence sets under fixed alternatives. Furthermore, the proposed method has the advantage of being conceptually and computationally much simple than competing methods possessing this same theoretical property. We provide an extensive simulation study to compare the proposed method with currently available inference procedures. The results suggest that the proposed method delivers nominal coverage while being less conservative than alternatives. The proposed methods are implemented in the qLearn R-package and have been made available on the Comprehensive R-Archive Network (http://cran.r-project.org/). Analysis of the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study is used as an illustrative example.

  1. The Optimized Operation of Gas Turbine Combined Heat and Power Units Oriented for the Grid-Connected Control

    NASA Astrophysics Data System (ADS)

    Xia, Shu; Ge, Xiaolin

    2016-04-01

    In this study, according to various grid-connected demands, the optimization scheduling models of Combined Heat and Power (CHP) units are established with three scheduling modes, which are tracking the total generation scheduling mode, tracking steady output scheduling mode and tracking peaking curve scheduling mode. In order to reduce the solution difficulty, based on the principles of modern algebraic integers, linearizing techniques are developed to handle complex nonlinear constrains of the variable conditions, and the optimized operation problem of CHP units is converted into a mixed-integer linear programming problem. Finally, with specific examples, the 96 points day ahead, heat and power supply plans of the systems are optimized. The results show that, the proposed models and methods can develop appropriate coordination heat and power optimization programs according to different grid-connected control.

  2. Dynamic artificial bee colony algorithm for multi-parameters optimization of support vector machine-based soft-margin classifier

    NASA Astrophysics Data System (ADS)

    Yan, Yiming; Zhang, Ye; Gao, Fengjiao

    2012-12-01

    This article proposes a `dynamic' artificial bee colony (D-ABC) algorithm for solving optimizing problems. It overcomes the poor performance of artificial bee colony (ABC) algorithm, when applied to multi-parameters optimization. A dynamic `activity' factor is introduced to D-ABC algorithm to speed up convergence and improve the quality of solution. This D-ABC algorithm is employed for multi-parameters optimization of support vector machine (SVM)-based soft-margin classifier. Parameter optimization is significant to improve classification performance of SVM-based classifier. Classification accuracy is defined as the objection function, and the many parameters, including `kernel parameter', `cost factor', etc., form a solution vector to be optimized. Experiments demonstrate that D-ABC algorithm has better performance than traditional methods for this optimizing problem, and better parameters of SVM are obtained which lead to higher classification accuracy.

  3. Mystic: Implementation of the Static Dynamic Optimal Control Algorithm for High-Fidelity, Low-Thrust Trajectory Design

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2006-01-01

    Mystic software is designed to compute, analyze, and visualize optimal high-fidelity, low-thrust trajectories, The software can be used to analyze inter-planetary, planetocentric, and combination trajectories, Mystic also provides utilities to assist in the operation and navigation of low-thrust spacecraft. Mystic will be used to design and navigate the NASA's Dawn Discovery mission to orbit the two largest asteroids, The underlying optimization algorithm used in the Mystic software is called Static/Dynamic Optimal Control (SDC). SDC is a nonlinear optimal control method designed to optimize both 'static variables' (parameters) and dynamic variables (functions of time) simultaneously. SDC is a general nonlinear optimal control algorithm based on Bellman's principal.

  4. Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems

    SciTech Connect

    Banchi, L.; Apollaro, T. J. G.; Cuccoli, A.; Vaia, R.; Verrucchi, P.

    2010-11-15

    The capability of faithfully transmit quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum devices. Different solutions have been proposed to accomplish such a challenging task, which, however, require either an ad hoc engineering of the internal interactions of the physical system acting as the channel or specific initialization procedures. Here we show that optimal dynamics for efficient quantum-state and entanglement transfer can be attained in generic quantum systems with homogeneous interactions by tuning the coupling between the system and the two attached qubits. We devise a general procedure to determine the optimal coupling, and we explicitly implement it in the case of a channel consisting of a spin-(1/2)XY chain. The quality of quantum-state and entanglement transfer is found to be very good and, remarkably, almost independent of the channel length.

  5. Seawater intrusion policy analysis with a numerical spatially heterogeneous dynamic optimization model

    NASA Astrophysics Data System (ADS)

    Reinelt, Peter

    2005-05-01

    For more than 50 years, Monterey County and California State officials have pursued without success water policies to halt groundwater overdraft and seawater intrusion in the multilayer confined aquifers underlying arguably the most productive farmland in the United States. This study develops a general dynamic optimization model that emphasizes the institutional and physical characteristics that differentiate this policy problem from other groundwater extraction problems. The solution of the model exhibits heterogeneous spatial distribution of optimal extraction based on spatially distributed extraction cost, pumping cost externality, and seawater intrusion stock externality. Comparison of model results under alternative management regimes elucidates landowner economic incentives, reveals the potential welfare loss of current state policy, and explains much of the history of the political economy of water in Monterey County.

  6. Cluster statistics and quasisoliton dynamics in microscopic optimal-velocity models

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Xu, Xihua; Pang, John Z. F.; Monterola, Christopher

    2016-04-01

    Using the non-linear optimal velocity models as an example, we show that there exists an emergent intrinsic scale that characterizes the interaction strength between multiple clusters appearing in the solutions of such models. The interaction characterizes the dynamics of the localized quasisoliton structures given by the time derivative of the headways, and the intrinsic scale is analogous to the "charge" of the quasisolitons, leading to non-trivial cluster statistics from the random perturbations to the initial steady states of uniform headways. The cluster statistics depend both on the quasisoliton charge and the density of the traffic. The intrinsic scale is also related to an emergent quantity that gives the extremum headways in the cluster formation, as well as the coexistence curve separating the absolute stable phase from the metastable phase. The relationship is qualitatively universal for general optimal velocity models.

  7. Fluid dynamic analysis of a continuous stirred tank reactor for technical optimization of wastewater digestion.

    PubMed

    Hurtado, F J; Kaiser, A S; Zamora, B

    2015-03-15

    Continuous stirred tank reactors (CSTR) are widely used in wastewater treatment plants to reduce the organic matter and microorganism present in sludge by anaerobic digestion. The present study carries out a numerical analysis of the fluid dynamic behaviour of a CSTR in order to optimize the process energetically. The characterization of the sludge flow inside the digester tank, the residence time distribution and the active volume of the reactor under different criteria are determined. The effects of design and power of the mixing system on the active volume of the CSTR are analyzed. The numerical model is solved under non-steady conditions by examining the evolution of the flow during the stop and restart of the mixing system. An intermittent regime of the mixing system, which kept the active volume between 94% and 99%, is achieved. The results obtained can lead to the eventual energy optimization of the mixing system of the CSTR. PMID:25635665

  8. Fluid dynamic analysis of a continuous stirred tank reactor for technical optimization of wastewater digestion.

    PubMed

    Hurtado, F J; Kaiser, A S; Zamora, B

    2015-03-15

    Continuous stirred tank reactors (CSTR) are widely used in wastewater treatment plants to reduce the organic matter and microorganism present in sludge by anaerobic digestion. The present study carries out a numerical analysis of the fluid dynamic behaviour of a CSTR in order to optimize the process energetically. The characterization of the sludge flow inside the digester tank, the residence time distribution and the active volume of the reactor under different criteria are determined. The effects of design and power of the mixing system on the active volume of the CSTR are analyzed. The numerical model is solved under non-steady conditions by examining the evolution of the flow during the stop and restart of the mixing system. An intermittent regime of the mixing system, which kept the active volume between 94% and 99%, is achieved. The results obtained can lead to the eventual energy optimization of the mixing system of the CSTR.

  9. Optimization of Fluid Front Dynamics in Porous Media Using Rate Control: I. Equal Mobility Fluids

    SciTech Connect

    Sundaryanto, Bagus; Yortsos, Yanis C.

    1999-10-18

    In applications involving this injection of a fluid in a porous medium to displace another fluid, a main objective is the maximization of the displacement efficiency. For a fixed arrangement of injection and production points (sources and sinks), such optimization is possible by controlling the injection rate policy. Despite its practical relevance, however, this aspect has received scant attention in the literature. In this paper, a fundamental approach based on optimal control theory, for the case when the fluids are miscible, of equal viscosity and in the absence of dispersion and gravity effects. Both homogeneous and heterogeneous porous media are considered. From a fluid dynamics viewpoint, this is a problem in the deformation of material lines in porous media, as a function of time-varying injection rates.

  10. Dynamic dual-isotope molecular imaging elucidates principles for optimizing intrathecal drug delivery

    PubMed Central

    Wolf, Daniel A.; Hesterman, Jacob Y.; Sullivan, Jenna M.; Orcutt, Kelly D.; Silva, Matthew D.; Lobo, Merryl; Wellman, Tyler; Hoppin, Jack

    2016-01-01

    The intrathecal (IT) dosing route offers a seemingly obvious solution for delivering drugs directly to the central nervous system. However, gaps in understanding drug molecule behavior within the anatomically and kinetically unique environment of the mammalian IT space have impeded the establishment of pharmacokinetic principles for optimizing regional drug exposure along the neuraxis. Here, we have utilized high-resolution single-photon emission tomography with X-ray computed tomography to study the behavior of multiple molecular imaging tracers following an IT bolus injection, with supporting histology, autoradiography, block-face tomography, and MRI. Using simultaneous dual-isotope imaging, we demonstrate that the regional CNS tissue exposure of molecules with varying chemical properties is affected by IT space anatomy, cerebrospinal fluid (CSF) dynamics, CSF clearance routes, and the location and volume of the injected bolus. These imaging approaches can be used across species to optimize the safety and efficacy of IT drug therapy for neurological disorders. PMID:27699254

  11. Self-consistently optimized energy functions for protein structure prediction by molecular dynamics.

    PubMed

    Koretke, K K; Luthey-Schulten, Z; Wolynes, P G

    1998-03-17

    The protein energy landscape theory is used to obtain optimal energy functions for protein structure prediction via simulated annealing. The analysis here takes advantage of a more complete statistical characterization of the protein energy landscape and thereby improves on previous approximations. This schema partially takes into account correlations in the energy landscape. It also incorporates the relationships between folding dynamics and characteristic energy scales that control the collapse of the proteins and modulate rigidity of short-range interactions. Simulated annealing for the optimal energy functions, which are associative memory hamiltonians using a database of folding patterns, generally leads to quantitatively correct structures. In some cases the algorithm achieves "creativity," i.e., structures result that are better than any homolog in the database.

  12. Dynamic dual-isotope molecular imaging elucidates principles for optimizing intrathecal drug delivery

    PubMed Central

    Wolf, Daniel A.; Hesterman, Jacob Y.; Sullivan, Jenna M.; Orcutt, Kelly D.; Silva, Matthew D.; Lobo, Merryl; Wellman, Tyler; Hoppin, Jack

    2016-01-01

    The intrathecal (IT) dosing route offers a seemingly obvious solution for delivering drugs directly to the central nervous system. However, gaps in understanding drug molecule behavior within the anatomically and kinetically unique environment of the mammalian IT space have impeded the establishment of pharmacokinetic principles for optimizing regional drug exposure along the neuraxis. Here, we have utilized high-resolution single-photon emission tomography with X-ray computed tomography to study the behavior of multiple molecular imaging tracers following an IT bolus injection, with supporting histology, autoradiography, block-face tomography, and MRI. Using simultaneous dual-isotope imaging, we demonstrate that the regional CNS tissue exposure of molecules with varying chemical properties is affected by IT space anatomy, cerebrospinal fluid (CSF) dynamics, CSF clearance routes, and the location and volume of the injected bolus. These imaging approaches can be used across species to optimize the safety and efficacy of IT drug therapy for neurological disorders.

  13. Many-body decoherence dynamics and optimized operation of a single-photon switch

    NASA Astrophysics Data System (ADS)

    Murray, C. R.; Gorshkov, A. V.; Pohl, T.

    2016-09-01

    We develop a theoretical framework to characterize the decoherence dynamics due to multi-photon scattering in an all-optical switch based on Rydberg atom induced nonlinearities. By incorporating the knowledge of this decoherence process into optimal photon storage and retrieval strategies, we establish optimized switching protocols for experimentally relevant conditions, and evaluate the corresponding limits in the achievable fidelities. Based on these results we work out a simplified description that reproduces recent experiments (Nat. Commun. 7 12480) and provides a new interpretation in terms of many-body decoherence involving multiple incident photons and multiple gate excitations forming the switch. Aside from offering insights into the operational capacity of realistic photon switching capabilities, our work provides a complete description of spin wave decoherence in a Rydberg quantum optics setting, and has immediate relevance to a number of further applications employing photon storage in Rydberg media.

  14. Using support vector machine and dynamic parameter encoding to enhance global optimization

    NASA Astrophysics Data System (ADS)

    Zheng, Z.; Chen, X.; Liu, C.; Huang, K.

    2016-05-01

    This study presents an approach which combines support vector machine (SVM) and dynamic parameter encoding (DPE) to enhance the run-time performance of global optimization with time-consuming fitness function evaluations. SVMs are used as surrogate models to partly substitute for fitness evaluations. To reduce the computation time and guarantee correct convergence, this work proposes a novel strategy to adaptively adjust the number of fitness evaluations needed according to the approximate error of the surrogate model. Meanwhile, DPE is employed to compress the solution space, so that it not only accelerates the convergence but also decreases the approximate error. Numerical results of optimizing a few benchmark functions and an antenna in a practical application are presented, which verify the feasibility, efficiency and robustness of the proposed approach.

  15. A Dynamic Programming Algorithm for Optimal Design of Tidal Power Plants

    NASA Astrophysics Data System (ADS)

    Nag, B.

    2013-03-01

    A dynamic programming algorithm is proposed and demonstrated on a test case to determine the optimum operating schedule of a barrage tidal power plant to maximize the energy generation over a tidal cycle. Since consecutive sets of high and low tides can be predicted accurately for any tidal power plant site, this algorithm can be used to calculate the annual energy generation for different technical configurations of the plant. Thus an optimal choice of a tidal power plant design can be made from amongst different design configurations yielding the least cost of energy generation. Since this algorithm determines the optimal time of operation of sluice gate opening and turbine gates opening to maximize energy generation over a tidal cycle, it can also be used to obtain the annual schedule of operation of a tidal power plant and the minute-to-minute energy generation, for dissemination amongst power distribution utilities.

  16. Optimizing the dynamic range extension of a radiochromic film dosimetry system

    SciTech Connect

    Devic, Slobodan; Tomic, Nada; Soares, Christopher G.; Podgorsak, Ervin B.

    2009-02-15

    The authors present a radiochromic film dosimetry protocol for a multicolor channel radiochromic film dosimetry system consisting of the external beam therapy (EBT) model GAFCHROMIC film and the Epson Expression 1680 flat-bed document scanner. Instead of extracting only the red color channel, the authors are using all three color channels in the absorption spectrum of the EBT film to extend the dynamic dose range of the radiochromic film dosimetry system. By optimizing the dose range for each color channel, they obtained a system that has both precision and accuracy below 1.5%, and the optimized ranges are 0-4 Gy for the red channel, 4-50 Gy for the green channel, and above 50 Gy for the blue channel.

  17. Optimal control in nonequilibrium systems: Dynamic Riemannian geometry of the Ising model

    NASA Astrophysics Data System (ADS)

    Rotskoff, Grant M.; Crooks, Gavin E.

    2015-12-01

    A general understanding of optimal control in nonequilibrium systems would illuminate the operational principles of biological and artificial nanoscale machines. Recent work has shown that a system driven out of equilibrium by a linear response protocol is endowed with a Riemannian metric related to generalized susceptibilities, and that geodesics on this manifold are the nonequilibrium control protocols with the lowest achievable dissipation. While this elegant mathematical framework has inspired numerous studies of exactly solvable systems, no description of the thermodynamic geometry yet exists when the metric cannot be derived analytically. Herein, we numerically construct the dynamic metric of the two-dimensional Ising model in order to study optimal protocols for reversing the net magnetization.

  18. Partial Overhaul and Initial Parallel Optimization of KINETICS, a Coupled Dynamics and Chemistry Atmosphere Model

    NASA Technical Reports Server (NTRS)

    Nguyen, Howard; Willacy, Karen; Allen, Mark

    2012-01-01

    KINETICS is a coupled dynamics and chemistry atmosphere model that is data intensive and computationally demanding. The potential performance gain from using a supercomputer motivates the adaptation from a serial version to a parallelized one. Although the initial parallelization had been done, bottlenecks caused by an abundance of communication calls between processors led to an unfavorable drop in performance. Before starting on the parallel optimization process, a partial overhaul was required because a large emphasis was placed on streamlining the code for user convenience and revising the program to accommodate the new supercomputers at Caltech and JPL. After the first round of optimizations, the partial runtime was reduced by a factor of 23; however, performance gains are dependent on the size of the data, the number of processors requested, and the computer used.

  19. Coherent control of plasma dynamics by feedback-optimized wavefront manipulation

    SciTech Connect

    He, Z.-H.; Hou, B.; Gao, G.; Nees, J. A.; Krushelnick, K.; Thomas, A. G. R.; Lebailly, V.; Clarke, R.

    2015-05-15

    Plasmas generated by an intense laser pulse can support coherent structures such as large amplitude wakefield that can affect the outcome of an experiment. We investigate the coherent control of plasma dynamics by feedback-optimized wavefront manipulation using a deformable mirror. The experimental outcome is directly used as feedback in an evolutionary algorithm for optimization of the phase front of the driving laser pulse. In this paper, we applied this method to two different experiments: (i) acceleration of electrons in laser driven plasma waves and (ii) self-compression of optical pulses induced by ionization nonlinearity. The manipulation of the laser wavefront leads to orders of magnitude improvement to electron beam properties such as the peak charge, beam divergence, and transverse emittance. The demonstration of coherent control for plasmas opens new possibilities for future laser-based accelerators and their applications.

  20. The salt marsh vegetation spread dynamics simulation and prediction based on conditions optimized CA

    NASA Astrophysics Data System (ADS)

    Guan, Yujuan; Zhang, Liquan

    2006-10-01

    The biodiversity conservation and management of the salt marsh vegetation relies on processing their spatial information. Nowadays, more attentions are focused on their classification surveying and describing qualitatively dynamics based on RS images interpreted, rather than on simulating and predicting their dynamics quantitatively, which is of greater importance for managing and planning the salt marsh vegetation. In this paper, our notion is to make a dynamic model on large-scale and to provide a virtual laboratory in which researchers can run it according requirements. Firstly, the characteristic of the cellular automata was analyzed and a conclusion indicated that it was necessary for a CA model to be extended geographically under varying conditions of space-time circumstance in order to make results matched the facts accurately. Based on the conventional cellular automata model, the author introduced several new conditions to optimize it for simulating the vegetation objectively, such as elevation, growth speed, invading ability, variation and inheriting and so on. Hence the CA cells and remote sensing image pixels, cell neighbors and pixel neighbors, cell rules and nature of the plants were unified respectively. Taking JiuDuanSha as the test site, where holds mainly Phragmites australis (P.australis) community, Scirpus mariqueter (S.mariqueter) community and Spartina alterniflora (S.alterniflora) community. The paper explored the process of making simulation and predictions about these salt marsh vegetable changing with the conditions optimized CA (COCA) model, and examined the links among data, statistical models, and ecological predictions. This study exploited the potential of applying Conditioned Optimized CA model technique to solve this problem.

  1. Dynamic topology multi force particle swarm optimization algorithm and its application

    NASA Astrophysics Data System (ADS)

    Chen, Dongning; Zhang, Ruixing; Yao, Chengyu; Zhao, Zheyu

    2016-01-01

    Particle swarm optimization (PSO) algorithm is an effective bio-inspired algorithm but it has shortage of premature convergence. Researchers have made some improvements especially in force rules and population topologies. However, the current algorithms only consider a single kind of force rules and lack consideration of comprehensive improvement in both multi force rules and population topologies. In this paper, a dynamic topology multi force particle swarm optimization (DTMFPSO) algorithm is proposed in order to get better search performance. First of all, the principle of the presented multi force particle swarm optimization (MFPSO) algorithm is that different force rules are used in different search stages, which can balance the ability of global and local search. Secondly, a fitness-driven edge-changing (FE) topology based on the probability selection mechanism of roulette method is designed to cut and add edges between the particles, and the DTMFPSO algorithm is proposed by combining the FE topology with the MFPSO algorithm through concurrent evolution of both algorithm and structure in order to further improve the search accuracy. Thirdly, Benchmark functions are employed to evaluate the performance of the DTMFPSO algorithm, and test results show that the proposed algorithm is better than the well-known PSO algorithms, such as µPSO, MPSO, and EPSO algorithms. Finally, the proposed algorithm is applied to optimize the process parameters for ultrasonic vibration cutting on SiC wafer, and the surface quality of the SiC wafer is improved by 12.8% compared with the PSO algorithm in Ref. [25]. This research proposes a DTMFPSO algorithm with multi force rules and dynamic population topologies evolved simultaneously, and it has better search performance.

  2. Stochastic optimal foraging: tuning intensive and extensive dynamics in random searches.

    PubMed

    Bartumeus, Frederic; Raposo, Ernesto P; Viswanathan, Gandhimohan M; da Luz, Marcos G E

    2014-01-01

    Recent theoretical developments had laid down the proper mathematical means to understand how the structural complexity of search patterns may improve foraging efficiency. Under information-deprived scenarios and specific landscape configurations, Lévy walks and flights are known to lead to high search efficiencies. Based on a one-dimensional comparative analysis we show a mechanism by which, at random, a searcher can optimize the encounter with close and distant targets. The mechanism consists of combining an optimal diffusivity (optimally enhanced diffusion) with a minimal diffusion constant. In such a way the search dynamics adequately balances the tension between finding close and distant targets, while, at the same time, shifts the optimal balance towards relatively larger close-to-distant target encounter ratios. We find that introducing a multiscale set of reorientations ensures both a thorough local space exploration without oversampling and a fast spreading dynamics at the large scale. Lévy reorientation patterns account for these properties but other reorientation strategies providing similar statistical signatures can mimic or achieve comparable efficiencies. Hence, the present work unveils general mechanisms underlying efficient random search, beyond the Lévy model. Our results suggest that animals could tune key statistical movement properties (e.g. enhanced diffusivity, minimal diffusion constant) to cope with the very general problem of balancing out intensive and extensive random searching. We believe that theoretical developments to mechanistically understand stochastic search strategies, such as the one here proposed, are crucial to develop an empirically verifiable and comprehensive animal foraging theory. PMID:25216191

  3. Dynamic optimization model of energy related economic planning and development for the Navajo nation

    SciTech Connect

    Beladi, S.A.

    1983-01-01

    The Navajo reservation located in portions of Arizona, New Mexico and Utah is rich in low sulfur coal deposits, ideal for strip mining operation. The Navajo Nation has been leasing the mineral resources to non-Indian enterprises for purposes of extraction. Since the early 1950s the Navajo Nation has entered into extensive coal leases with several large companies and utilities. Contracts have committed huge quantities of Navajo coal for mining. This research was directed to evaluate the shadow prices of Navajo coal and identify optimal coal extraction. An economic model of coal resource extraction over time was structured within an optimal control theory framework. The control problem was formulated as a discrete dynamic optimization problem. A comparison of the shadow prices of coal deposits derived from the dynamic model with the royalty payments the tribe receives on the basis of the present long-term lease contracts indicates that, in most cases, the tribe is paid considerably less than the amount of royalty projected by the model. Part of these discrepancies may be explained in terms of the low coal demand condition at the time of leasing and due to greater uncertainties with respect to the geologic information and other risks associated with mining operations. However, changes in the demand for coal with rigidly fixed terms of royalty rates will lead to non-optimal extraction of coal. A corrective tax scheme is suggested on the basis of the results of this research. The proposed tax per unit of coal shipped from a site is the difference between the shadow price and the present royalty rate. The estimated tax rates over time are derived.

  4. Optimism

    PubMed Central

    Carver, Charles S.; Scheier, Michael F.; Segerstrom, Suzanne C.

    2010-01-01

    Optimism is an individual difference variable that reflects the extent to which people hold generalized favorable expectancies for their future. Higher levels of optimism have been related prospectively to better subjective well-being in times of adversity or difficulty (i.e., controlling for previous well-being). Consistent with such findings, optimism has been linked to higher levels of engagement coping and lower levels of avoidance, or disengagement, coping. There is evidence that optimism is associated with taking proactive steps to protect one's health, whereas pessimism is associated with health-damaging behaviors. Consistent with such findings, optimism is also related to indicators of better physical health. The energetic, task-focused approach that optimists take to goals also relates to benefits in the socioeconomic world. Some evidence suggests that optimism relates to more persistence in educational efforts and to higher later income. Optimists also appear to fare better than pessimists in relationships. Although there are instances in which optimism fails to convey an advantage, and instances in which it may convey a disadvantage, those instances are relatively rare. In sum, the behavioral patterns of optimists appear to provide models of living for others to learn from. PMID:20170998

  5. Integrated aerodynamic and dynamic optimization of tiltrotor wing and rotor systems

    NASA Astrophysics Data System (ADS)

    Orr, Stanley

    Rotorcraft analysis and design must account for interdisciplinary interactions, especially between aerodynamics, structural, and dynamics responses. In this design domain, the work of disciplinary experts is segregated to a large extent. Furthermore, the design of subsystems is also segregated. In this environment it is difficult to account for interdisciplinary interactions and exploit the coupling between sub systems. This work examined the multidisciplinary nature of a tiltrotor aircraft focusing on the aerodynamic design of the rotor, and the structural and dynamic design of the rotor and wing systems. The design was considered to be in the preliminary design phase, after the basic configuration is set and before fine details of the design are defined. Attention was focused on developing an optimization problem formulation that was sufficiently complete so that optimization technologies and heuristic strategies could be developed and evaluated for tiltrotor design. Furthermore the level of detail in the analysis was consistent with the phase of design. Coupling between the aerodynamic, dynamic, and structural design was shown to be significant. Additionally, the coupling between the design of the wing and rotor systems was also significant, so that an integrated design was required. This work developed integrated design strategies for solving this design problem efficiently, while exploiting the couplings. Sum of system weights was the main objective along with vibratory rotor hub loads while hover performance, strength, frequency placement, and stability were constraints. Design variables included blade aerodynamic planform and twist as well as the details of composite D-spar blade sections, and details of composite torque-box wing sections. Cruise mode rotor speed and wing thickness were also included as design variables. A genetic algorithm based collaborative optimization was used as the solution framework for the global optimal search. The problem was

  6. Optimizing conjunctive use of surface water and groundwater resources with stochastic dynamic programming

    NASA Astrophysics Data System (ADS)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2014-05-01

    Optimal management of conjunctive use of surface water and groundwater has been attempted with different algorithms in the literature. In this study, a hydro-economic modelling approach to optimize conjunctive use of scarce surface water and groundwater resources under uncertainty is presented. A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due to head-dependent pumping costs. These dynamic pumping costs strongly affect the total costs and can lead to non-convexity of the future cost function. The water user groups (agriculture, industry, domestic) are characterized by inelastic demands and fixed water allocation and water supply curtailment costs. As in traditional SDP approaches, one step-ahead sub-problems are solved to find the optimal management at any time knowing the inflow scenario and reservoir/aquifer storage levels. These non-linear sub-problems are solved using a genetic algorithm (GA) that minimizes the sum of the immediate and future costs for given surface water reservoir and groundwater aquifer end storages. The immediate cost is found by solving a simple linear allocation sub-problem, and the future costs are assessed by interpolation in the total cost matrix from the following time step. Total costs for all stages, reservoir states, and inflow scenarios are used as future costs to drive a forward moving simulation under uncertain water availability. The use of a GA to solve the sub-problems is computationally more costly than a traditional SDP approach with linearly interpolated future costs. However, in a two-reservoir system the future cost function would have to be represented by a set of planes, and strict convexity in both the surface water and groundwater dimension cannot be maintained

  7. Progress on Optimization of the Nonlinear Beam Dynamics in the MEIC Collider Rings

    SciTech Connect

    Morozov, Vasiliy S.; Derbenev, Yaroslav S.; Lin, Fanglei; Pilat, Fulvia; Zhang, Yuhong; Cai, Y.; Nosochkov, Y. M.; Sullivan, Michael; Wang, M.-H.; Wienands, Uli

    2015-09-01

    One of the key design features of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is a small beta function at the interaction point (IP) allowing one to achieve a high luminosity of up to 1034 cm-2s-1. The required strong beam focusing unavoidably causes large chromatic effects such as chromatic tune spread and beam smear at the IP, which need to be compensated. This paper reports recent progress in our development of a chromaticity correction scheme for the ion ring including optimization of dynamic aperture and momentum acceptance.

  8. High-Dynamic-Range Imaging of Nanoscale Magnetic Fields Using Optimal Control of a Single Qubit

    NASA Astrophysics Data System (ADS)

    Häberle, T.; Schmid-Lorch, D.; Karrai, K.; Reinhard, F.; Wrachtrup, J.

    2013-10-01

    We present a novel spectroscopy protocol based on optimal control of a single quantum system. It enables measurements with quantum-limited sensitivity (ηω∝(1/T2*), T2* denoting the system’s coherence time) but has an orders of magnitude larger dynamic range than pulsed spectroscopy methods previously employed for this task. We employ this protocol to image nanoscale magnetic fields with a single scanning nitrogen-vacancy center in diamond. Here, our scheme enables quantitative imaging of a strongly inhomogeneous field in a single scan without closed-loop control, which has previously been necessary to achieve this goal.

  9. Progress on optimization of the nonlinear beam dynamics in the MEIC collider rings

    SciTech Connect

    None, None

    2015-07-13

    One of the key design features of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is a small beta function at the interaction point (IP) allowing one to achieve a high luminosity of up to 1034 cm-2s-1. The required strong beam focusing unavoidably causes large chromatic effects such as chromatic tune spread and beam smear at the IP, which need to be compensated. This paper reports recent progress in our development of a chromaticity correction scheme for the ion ring including optimization of dynamic aperture and momentum acceptance.

  10. Multi-objective evolutionary optimization of biological pest control with impulsive dynamics in soybean crops.

    PubMed

    Cardoso, Rodrigo T N; da Cruz, André R; Wanner, Elizabeth F; Takahashi, Ricardo H C

    2009-08-01

    The biological pest control in agriculture, an environment-friendly practice, maintains the density of pests below an economic injury level by releasing a suitable quantity of their natural enemies. This work proposes a multi-objective numerical solution to biological pest control for soybean crops, considering both the cost of application of the control action and the cost of economic damages. The system model is nonlinear with impulsive control dynamics, in order to cope more effectively with the actual control action to be applied, which should be performed in a finite number of discrete time instants. The dynamic optimization problem is solved using the NSGA-II, a fast and trustworthy multi-objective genetic algorithm. The results suggest a dual pest control policy, in which the relative price of control action versus the associated additional harvest yield determines the usage of either a low control action strategy or a higher one.

  11. The importance of functional form in optimal control solutions of problems in population dynamics

    USGS Publications Warehouse

    Runge, M.C.; Johnson, F.A.

    2002-01-01

    Optimal control theory is finding increased application in both theoretical and applied ecology, and it is a central element of adaptive resource management. One of the steps in an adaptive management process is to develop alternative models of system dynamics, models that are all reasonable in light of available data, but that differ substantially in their implications for optimal control of the resource. We explored how the form of the recruitment and survival functions in a general population model for ducks affected the patterns in the optimal harvest strategy, using a combination of analytical, numerical, and simulation techniques. We compared three relationships between recruitment and population density (linear, exponential, and hyperbolic) and three relationships between survival during the nonharvest season and population density (constant, logistic, and one related to the compensatory harvest mortality hypothesis). We found that the form of the component functions had a dramatic influence on the optimal harvest strategy and the ultimate equilibrium state of the system. For instance, while it is commonly assumed that a compensatory hypothesis leads to higher optimal harvest rates than an additive hypothesis, we found this to depend on the form of the recruitment function, in part because of differences in the optimal steady-state population density. This work has strong direct consequences for those developing alternative models to describe harvested systems, but it is relevant to a larger class of problems applying optimal control at the population level. Often, different functional forms will not be statistically distinguishable in the range of the data. Nevertheless, differences between the functions outside the range of the data can have an important impact on the optimal harvest strategy. Thus, development of alternative models by identifying a single functional form, then choosing different parameter combinations from extremes on the likelihood

  12. An optimal dynamic inversion-based neuro-adaptive approach for treatment of chronic myelogenous leukemia.

    PubMed

    Padhi, Radhakant; Kothari, Mangal

    2007-09-01

    Combining the advanced techniques of optimal dynamic inversion and model-following neuro-adaptive control design, an innovative technique is presented to design an automatic drug administration strategy for effective treatment of chronic myelogenous leukemia (CML). A recently developed nonlinear mathematical model for cell dynamics is used to design the controller (medication dosage). First, a nominal controller is designed based on the principle of optimal dynamic inversion. This controller can treat the nominal model patients (patients who can be described by the mathematical model used here with the nominal parameter values) effectively. However, since the system parameters for a realistic model patient can be different from that of the nominal model patients, simulation studies for such patients indicate that the nominal controller is either inefficient or, worse, ineffective; i.e. the trajectory of the number of cancer cells either shows non-satisfactory transient behavior or it grows in an unstable manner. Hence, to make the drug dosage history more realistic and patient-specific, a model-following neuro-adaptive controller is augmented to the nominal controller. In this adaptive approach, a neural network trained online facilitates a new adaptive controller. The training process of the neural network is based on Lyapunov stability theory, which guarantees both stability of the cancer cell dynamics as well as boundedness of the network weights. From simulation studies, this adaptive control design approach is found to be very effective to treat the CML disease for realistic patients. Sufficient generality is retained in the mathematical developments so that the technique can be applied to other similar nonlinear control design problems as well.

  13. Adaptive control schemes for improving dynamic performance of efficiency-optimized induction motor drives.

    PubMed

    Kumar, Navneet; Raj Chelliah, Thanga; Srivastava, S P

    2015-07-01

    Model Based Control (MBC) is one of the energy optimal controllers used in vector-controlled Induction Motor (IM) for controlling the excitation of motor in accordance with torque and speed. MBC offers energy conservation especially at part-load operation, but it creates ripples in torque and speed during load transition, leading to poor dynamic performance of the drive. This study investigates the opportunity for improving dynamic performance of a three-phase IM operating with MBC and proposes three control schemes: (i) MBC with a low pass filter (ii) torque producing current (iqs) injection in the output of speed controller (iii) Variable Structure Speed Controller (VSSC). The pre and post operation of MBC during load transition is also analyzed. The dynamic performance of a 1-hp, three-phase squirrel-cage IM with mine-hoist load diagram is tested. Test results are provided for the conventional field-oriented (constant flux) control and MBC (adjustable excitation) with proposed schemes. The effectiveness of proposed schemes is also illustrated for parametric variations. The test results and subsequent analysis confer that the motor dynamics improves significantly with all three proposed schemes in terms of overshoot/undershoot peak amplitude of torque and DC link power in addition to energy saving during load transitions. PMID:25820090

  14. Optimal pultrusion process conditions for improving the dynamic properties of graphite-epoxy composite beams

    SciTech Connect

    Kowsika, M.V.S.L.N.; Mantena, P.R.

    1996-03-01

    The manufacturing process variables significantly influence the mechanical properties of pultruded composites. In this study, a statistical central composite design (CCD) test pattern has been used to manufacture unidirectional graphite-epoxy pultruded composite beams under carefully controlled process conditions. The influences of significant pultrusion process variables and their effects/interactions on the dynamic mechanical properties were investigated. The pultruded specimens were subjected to free vibration decay tests to determine nondestructively the dynamic flexural modulus and loss factor (a measure of internal damping). Mathematical models were derived based on the observed values of the dynamic properties using regression analysis procedures. These models were used to determine the optimal pultrusion process conditions for improving the dynamic mechanical properties of the finished product. A theoretical model postulating varying distribution of fiber content through the thickness of the pultruded composite is also presented. Static flexural tests and microscopic evaluation were employed to validate the assumption that a thin distinct layer of matrix material is formed on the outer surface of these pultruded products.

  15. Network dynamics for optimal compressive-sensing input-signal recovery.

    PubMed

    Barranca, Victor J; Kovačič, Gregor; Zhou, Douglas; Cai, David

    2014-10-01

    By using compressive sensing (CS) theory, a broad class of static signals can be reconstructed through a sequence of very few measurements in the framework of a linear system. For networks with nonlinear and time-evolving dynamics, is it similarly possible to recover an unknown input signal from only a small number of network output measurements? We address this question for pulse-coupled networks and investigate the network dynamics necessary for successful input signal recovery. Determining the specific network characteristics that correspond to a minimal input reconstruction error, we are able to achieve high-quality signal reconstructions with few measurements of network output. Using various measures to characterize dynamical properties of network output, we determine that networks with highly variable and aperiodic output can successfully encode network input information with high fidelity and achieve the most accurate CS input reconstructions. For time-varying inputs, we also find that high-quality reconstructions are achievable by measuring network output over a relatively short time window. Even when network inputs change with time, the same optimal choice of network characteristics and corresponding dynamics apply as in the case of static inputs.

  16. Optimal control strategy design based on dynamic programming for a dual-motor coupling-propulsion system.

    PubMed

    Zhang, Shuo; Zhang, Chengning; Han, Guangwei; Wang, Qinghui

    2014-01-01

    A dual-motor coupling-propulsion electric bus (DMCPEB) is modeled, and its optimal control strategy is studied in this paper. The necessary dynamic features of energy loss for subsystems is modeled. Dynamic programming (DP) technique is applied to find the optimal control strategy including upshift threshold, downshift threshold, and power split ratio between the main motor and auxiliary motor. Improved control rules are extracted from the DP-based control solution, forming near-optimal control strategies. Simulation results demonstrate that a significant improvement in reducing energy loss due to the dual-motor coupling-propulsion system (DMCPS) running is realized without increasing the frequency of the mode switch.

  17. Dynamic optimization for commercialization of renewable energy: an example for solar photovoltaics

    SciTech Connect

    Richards, Kenneth, R.; Ashton, W. Bradley; McVeigh, James

    2000-04-21

    There are several studies of optimal allocation of research and development resources over the time horizon of a project. The primary result of the basic noncompetitive models in this literature is that the optimal strategy is to choose a research intensity and ending date for the project such that the marginal costs of accelerating the project equals the marginal benefits of introducing the product sooner. This literature provides useful insights for the government planner who must allocate R&D resources for renewable energy development. However, several characteristics distinguish the process from the typical R&D planning problem. Specifically, with PV development, where the goal is to maximize the net present value of activities leading to cost reduction in commercial modules, there are (1) significant lag-times between investment in laboratory research and resulting effects in the marketplace, (2) a learning curve associated with the manufacturing process that also reduces the cost s of PV modules, (3) interim benefits from technical advances, (4) no clear end point to the R&D process, but rather a tapering off of the value of advances in technical efficiency, (5) significant uncertainty in the R&D process, (6) a family of products rather than an individual technology, (7) a co-mingling of government and private resources with implications for efficient management. A dynamic model is developed to characterize the optimal intensity and timing of government and private resource allocation for basic research in improving the technical efficiency of cells and subsidies to the manufacturing process to encourage progress on the learning curve. A series of propositions regarding optimal paths for each are examined. While the research is purely analytical, the results are useful for conceptualizing the R&D planning process. They also provide a basis for a numerical study that can address whether current levels and historic patterns of funding are optimal.

  18. Dynamic optimization of chemical engineering problems using a control vector parameterization method with an iterative genetic algorithm

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Sun, Fan; Zhong, Weimin; Luo, Na

    2013-09-01

    An approach that combines genetic algorithm (GA) and control vector parameterization (CVP) is proposed to solve the dynamic optimization problems of chemical processes using numerical methods. In the new CVP method, control variables are approximated with polynomials based on state variables and time in the entire time interval. The iterative method, which reduces redundant expense and improves computing efficiency, is used with GA to reduce the width of the search region. Constrained dynamic optimization problems are even more difficult. A new method that embeds the information of infeasible chromosomes into the evaluation function is introduced in this study to solve dynamic optimization problems with or without constraint. The results demonstrated the feasibility and robustness of the proposed methods. The proposed algorithm can be regarded as a useful optimization tool, especially when gradient information is not available.

  19. Optimal dynamic voltage scaling for wireless sensor nodes with real-time constraints

    NASA Astrophysics Data System (ADS)

    Cassandras, Christos G.; Zhuang, Shixin

    2005-11-01

    Sensors are increasingly embedded in manufacturing systems and wirelessly networked to monitor and manage operations ranging from process and inventory control to tracking equipment and even post-manufacturing product monitoring. In building such sensor networks, a critical issue is the limited and hard to replenish energy in the devices involved. Dynamic voltage scaling is a technique that controls the operating voltage of a processor to provide desired performance while conserving energy and prolonging the overall network's lifetime. We consider such power-limited devices processing time-critical tasks which are non-preemptive, aperiodic and have uncertain arrival times. We treat voltage scaling as a dynamic optimization problem whose objective is to minimize energy consumption subject to hard or soft real-time execution constraints. In the case of hard constraints, we build on prior work (which engages a voltage scaling controller at task completion times) by developing an intra-task controller that acts at all arrival times of incoming tasks. We show that this optimization problem can be decomposed into two simpler ones whose solution leads to an algorithm that does not actually require solving any nonlinear programming problems. In the case of soft constraints, this decomposition must be partly relaxed, but it still leads to a scalable (linear in the number of tasks) algorithm. Simulation results are provided to illustrate performance improvements in systems with intra-task controllers compared to uncontrolled systems or those using inter-task control.

  20. Fluid-Dynamic Optimal Design of Helical Vascular Graft for Stenotic Disturbed Flow

    PubMed Central

    Ha, Hojin; Hwang, Dongha; Choi, Woo-Rak; Baek, Jehyun; Lee, Sang Joon

    2014-01-01

    Although a helical configuration of a prosthetic vascular graft appears to be clinically beneficial in suppressing thrombosis and intimal hyperplasia, an optimization of a helical design has yet to be achieved because of the lack of a detailed understanding on hemodynamic features in helical grafts and their fluid dynamic influences. In the present study, the swirling flow in a helical graft was hypothesized to have beneficial influences on a disturbed flow structure such as stenotic flow. The characteristics of swirling flows generated by helical tubes with various helical pitches and curvatures were investigated to prove the hypothesis. The fluid dynamic influences of these helical tubes on stenotic flow were quantitatively analysed by using a particle image velocimetry technique. Results showed that the swirling intensity and helicity of the swirling flow have a linear relation with a modified Germano number (Gn*) of the helical pipe. In addition, the swirling flow generated a beneficial flow structure at the stenosis by reducing the size of the recirculation flow under steady and pulsatile flow conditions. Therefore, the beneficial effects of a helical graft on the flow field can be estimated by using the magnitude of Gn*. Finally, an optimized helical design with a maximum Gn* was suggested for the future design of a vascular graft. PMID:25360705

  1. Optimization of intensity modulated radiotherapy under constraints for static and dynamic MLC delivery.

    PubMed

    Alber, M; Nüsslin, F

    2001-12-01

    Multi-leaf collimators (MLCs) are emerging as the prevalent modality to apply intensity modulated radiotherapy (IMRT). Both the principle and the particular design of MLCs stipulate complex constraints on the practically applicable intensity modulated radiation fields. Most consequentially, the distribution of exposure times across the maximum field outline is either a piecewise constant function in the static mode or a piecewise linear function in the dynamic mode of driving an MLC. In view of clinical utility, the total leaf movement should be minimized, which requires that MLC-related constraints be considered in the dose optimization process. A method is proposed to achieve this for both static MLC fields and dynamic leaf close-in application. The method is an amendment to a generic gradient-based IMRT dose optimization algorithm and solves numerical problems related to the non-convexity of the MLC constraints, which can cause erratic behaviour of a gradient-based algorithm. It employs bistable penalty functions to select preferrable leaf configurations from the configuration space of the MLC, which is limited by specific design features. Together with an 'annealing' escape mechanism from local minima, the algorithm is capable of finding the optimum of an IMRT problem as leaf sequences with minimized leaf travel. In particular, the efficiency of static IMRT can be raised to the levels of unmodulated fields with very few field segments, thereby increasing the utility of IMRT in clinical practice.

  2. Dynamic Allocation of SPM Based on Time-Slotted Cache Conflict Graph for System Optimization

    NASA Astrophysics Data System (ADS)

    Wu, Jianping; Ling, Ming; Zhang, Yang; Mei, Chen; Wang, Huan

    This paper proposes a novel dynamic Scratch-pad Memory allocation strategy to optimize the energy consumption of the memory sub-system. Firstly, the whole program execution process is sliced into several time slots according to the temporal dimension; thereafter, a Time-Slotted Cache Conflict Graph (TSCCG) is introduced to model the behavior of Data Cache (D-Cache) conflicts within each time slot. Then, Integer Nonlinear Programming (INP) is implemented, which can avoid time-consuming linearization process, to select the most profitable data pages. Virtual Memory System (VMS) is adopted to remap those data pages, which will cause severe Cache conflicts within a time slot, to SPM. In order to minimize the swapping overhead of dynamic SPM allocation, a novel SPM controller with a tightly coupled DMA is introduced to issue the swapping operations without CPU's intervention. Last but not the least, this paper discusses the fluctuation of system energy profit based on different MMU page size as well as the Time Slot duration quantitatively. According to our design space exploration, the proposed method can optimize all of the data segments, including global data, heap and stack data in general, and reduce the total energy consumption by 27.28% on average, up to 55.22% with a marginal performance promotion. And comparing to the conventional static CCG (Cache Conflicts Graph), our approach can obtain 24.7% energy profit on average, up to 30.5% with a sight boost in performance.

  3. Reduced-order model for dynamic optimization of pressure swing adsorption processes

    SciTech Connect

    Agarwal, A.; Biegler, L.; Zitney, S.

    2007-01-01

    Over the past decades, pressure swing adsorption (PSA) processes have been widely used as energy-efficient gas and liquid separation techniques, especially for high purity hydrogen purification from refinery gases. The separation processes are based on solid-gas equilibrium and operate under periodic transient conditions. Models for PSA processes are therefore multiple instances of partial differential equations (PDEs) in time and space with periodic boundary conditions that link the processing steps together. The solution of this coupled stiff PDE system is governed by steep concentrations and temperature fronts moving with time. As a result, the optimization of such systems for either design or operation represents a significant computational challenge to current differential algebraic equation (DAE) optimization techniques and nonlinear programming algorithms. Model reduction is one approach to generate cost-efficient low-order models which can be used as surrogate models in the optimization problems. The study develops a reduced-order model (ROM) based on proper orthogonal decomposition (POD), which is a low-dimensional approximation to a dynamic PDE-based model. Initially, a representative ensemble of solutions of the dynamic PDE system is constructed by solving a higher-order discretization of the model using the method of lines, a two-stage approach that discretizes the PDEs in space and then integrates the resulting DAEs over time. Next, the ROM method applies the Karhunen-Loeve expansion to derive a small set of empirical eigenfunctions (POD modes) which are used as basis functions within a Galerkin's projection framework to derive a low-order DAE system that accurately describes the dominant dynamics of the PDE system. The proposed method leads to a DAE system of significantly lower order, thus replacing the one obtained from spatial discretization before and making optimization problem computationally-efficient. The method has been applied to the dynamic

  4. Using stochastic dual dynamic programming in problems with multiple near-optimal solutions

    NASA Astrophysics Data System (ADS)

    Rougé, Charles; Tilmant, Amaury

    2016-05-01

    Stochastic dual dynamic programming (SDDP) is one of the few algorithmic solutions available to optimize large-scale water resources systems while explicitly considering uncertainty. This paper explores the consequences of, and proposes a solution to, the existence of multiple near-optimal solutions (MNOS) when using SDDP for mid or long-term river basin management. These issues arise when the optimization problem cannot be properly parametrized due to poorly defined and/or unavailable data sets. This work shows that when MNOS exists, (1) SDDP explores more than one solution trajectory in the same run, suggesting different decisions in distinct simulation years even for the same point in the state-space, and (2) SDDP is shown to be very sensitive to even minimal variations of the problem setting, e.g., initial conditions—we call this "algorithmic chaos." Results that exhibit such sensitivity are difficult to interpret. This work proposes a reoptimization method, which simulates system decisions by periodically applying cuts from one given year from the SDDP run. Simulation results obtained through this reoptimization approach are steady state solutions, meaning that their probability distributions are stable from year to year.

  5. A dynamic simulation/optimization model for scheduling restoration of degraded military training lands.

    PubMed

    Önal, Hayri; Woodford, Philip; Tweddale, Scott A; Westervelt, James D; Chen, Mengye; Dissanayake, Sahan T M; Pitois, Gauthier

    2016-04-15

    Intensive use of military vehicles on Department of Defense training installations causes deterioration in ground surface quality. Degraded lands restrict the scheduled training activities and jeopardize personnel and equipment safety. We present a simulation-optimization approach and develop a discrete dynamic optimization model to determine an optimum land restoration for a given training schedule and availability of financial resources to minimize the adverse effects of training on military lands. The model considers weather forecasts, scheduled maneuver exercises, and unique qualities and importance of the maneuver areas. An application of this approach to Fort Riley, Kansas, shows that: i) starting with natural conditions, the total amount of training damages would increase almost linearly and exceed a quarter of the training area and 228 gullies would be formed (mostly in the intensive training areas) if no restoration is carried out over 10 years; ii) assuming an initial state that resembles the present conditions, sustaining the landscape requires an annual restoration budget of $957 thousand; iii) targeting a uniform distribution of maneuver damages would increase the total damages and adversely affect the overall landscape quality, therefore a selective restoration strategy may be preferred; and iv) a proactive restoration strategy would be optimal where land degradations are repaired before they turn into more severe damages that are more expensive to repair and may pose a higher training risk. The last finding can be used as a rule-of-thumb for land restoration efforts in other installations with similar characteristics.

  6. Dynamic response and optimal design of curved metallic sandwich panels under blast loading.

    PubMed

    Qi, Chang; Yang, Shu; Yang, Li-Jun; Han, Shou-Hong; Lu, Zhen-Hua

    2014-01-01

    It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a "soft" outer face and a "hard" inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances.

  7. Integration of dynamic, aerodynamic and structural optimization of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Peters, David A.

    1987-01-01

    The purpose of the research is to study the integration of structural, dynamic, and aerodynamic considerations in the design-optimization process for helicopter rotorblades. This is to be done in three phases. Task 1 is to bring on-line computer codes that could perform the finite-element frequency analyses of rotor blades. The major features of this program are summarized. The second task was to bring on-line an optimization code for the work. Several were tried and it was decided to use CONMIN. Explicit volume constraints on the thicknesses and lumped masses used in the optimization were added. The specific aeroelastic constraint that the center of mass must be forward of the quarter chord in order to prevent flutter was applied. The bending-torsion coupling due to cg-ea offset within the blade cross section was included. Also included were some very simple stress constraints. The first three constraints are completed, and the fourth constraint is being completed.

  8. On the existence of the optimal order for wavefunction extrapolation in Born-Oppenheimer molecular dynamics

    NASA Astrophysics Data System (ADS)

    Fang, Jun; Gao, Xingyu; Song, Haifeng; Wang, Han

    2016-06-01

    Wavefunction extrapolation greatly reduces the number of self-consistent field (SCF) iterations and thus the overall computational cost of Born-Oppenheimer molecular dynamics (BOMD) that is based on the Kohn-Sham density functional theory. Going against the intuition that the higher order of extrapolation possesses a better accuracy, we demonstrate, from both theoretical and numerical perspectives, that the extrapolation accuracy firstly increases and then decreases with respect to the order, and an optimal extrapolation order in terms of minimal number of SCF iterations always exists. We also prove that the optimal order tends to be larger when using larger MD time steps or more strict SCF convergence criteria. By example BOMD simulations of a solid copper system, we show that the optimal extrapolation order covers a broad range when varying the MD time step or the SCF convergence criterion. Therefore, we suggest the necessity for BOMD simulation packages to open the user interface and to provide more choices on the extrapolation order. Another factor that may influence the extrapolation accuracy is the alignment scheme that eliminates the discontinuity in the wavefunctions with respect to the atomic or cell variables. We prove the equivalence between the two existing schemes, thus the implementation of either of them does not lead to essential difference in the extrapolation accuracy.

  9. Time-optimal path planning in dynamic flows using level set equations: theory and schemes

    NASA Astrophysics Data System (ADS)

    Lolla, Tapovan; Lermusiaux, Pierre F. J.; Ueckermann, Mattheus P.; Haley, Patrick J.

    2014-10-01

    We develop an accurate partial differential equation-based methodology that predicts the time-optimal paths of autonomous vehicles navigating in any continuous, strong, and dynamic ocean currents, obviating the need for heuristics. The goal is to predict a sequence of steering directions so that vehicles can best utilize or avoid currents to minimize their travel time. Inspired by the level set method, we derive and demonstrate that a modified level set equation governs the time-optimal path in any continuous flow. We show that our algorithm is computationally efficient and apply it to a number of experiments. First, we validate our approach through a simple benchmark application in a Rankine vortex flow for which an analytical solution is available. Next, we apply our methodology to more complex, simulated flow fields such as unsteady double-gyre flows driven by wind stress and flows behind a circular island. These examples show that time-optimal paths for multiple vehicles can be planned even in the presence of complex flows in domains with obstacles. Finally, we present and support through illustrations several remarks that describe specific features of our methodology.

  10. Time-optimal path planning in dynamic flows using level set equations: theory and schemes

    NASA Astrophysics Data System (ADS)

    Lolla, Tapovan; Lermusiaux, Pierre F. J.; Ueckermann, Mattheus P.; Haley, Patrick J.

    2014-09-01

    We develop an accurate partial differential equation-based methodology that predicts the time-optimal paths of autonomous vehicles navigating in any continuous, strong, and dynamic ocean currents, obviating the need for heuristics. The goal is to predict a sequence of steering directions so that vehicles can best utilize or avoid currents to minimize their travel time. Inspired by the level set method, we derive and demonstrate that a modified level set equation governs the time-optimal path in any continuous flow. We show that our algorithm is computationally efficient and apply it to a number of experiments. First, we validate our approach through a simple benchmark application in a Rankine vortex flow for which an analytical solution is available. Next, we apply our methodology to more complex, simulated flow fields such as unsteady double-gyre flows driven by wind stress and flows behind a circular island. These examples show that time-optimal paths for multiple vehicles can be planned even in the presence of complex flows in domains with obstacles. Finally, we present and support through illustrations several remarks that describe specific features of our methodology.

  11. A dynamic simulation/optimization model for scheduling restoration of degraded military training lands.

    PubMed

    Önal, Hayri; Woodford, Philip; Tweddale, Scott A; Westervelt, James D; Chen, Mengye; Dissanayake, Sahan T M; Pitois, Gauthier

    2016-04-15

    Intensive use of military vehicles on Department of Defense training installations causes deterioration in ground surface quality. Degraded lands restrict the scheduled training activities and jeopardize personnel and equipment safety. We present a simulation-optimization approach and develop a discrete dynamic optimization model to determine an optimum land restoration for a given training schedule and availability of financial resources to minimize the adverse effects of training on military lands. The model considers weather forecasts, scheduled maneuver exercises, and unique qualities and importance of the maneuver areas. An application of this approach to Fort Riley, Kansas, shows that: i) starting with natural conditions, the total amount of training damages would increase almost linearly and exceed a quarter of the training area and 228 gullies would be formed (mostly in the intensive training areas) if no restoration is carried out over 10 years; ii) assuming an initial state that resembles the present conditions, sustaining the landscape requires an annual restoration budget of $957 thousand; iii) targeting a uniform distribution of maneuver damages would increase the total damages and adversely affect the overall landscape quality, therefore a selective restoration strategy may be preferred; and iv) a proactive restoration strategy would be optimal where land degradations are repaired before they turn into more severe damages that are more expensive to repair and may pose a higher training risk. The last finding can be used as a rule-of-thumb for land restoration efforts in other installations with similar characteristics. PMID:26895721

  12. Dynamic Response and Optimal Design of Curved Metallic Sandwich Panels under Blast Loading

    PubMed Central

    Yang, Shu; Han, Shou-Hong; Lu, Zhen-Hua

    2014-01-01

    It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a “soft” outer face and a “hard” inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances. PMID:25126606

  13. Optimal control strategies for disinfection of bacterial populations with persister and susceptible dynamics.

    PubMed

    Cogan, N G; Brown, Jason; Darres, Kyle; Petty, Katherine

    2012-09-01

    It is increasingly clear that bacteria manage to evade killing by antibiotics and antimicrobials in a variety of ways, including mutation, phenotypic variations, and formation of biofilms. With recent advances in understanding the dynamics of the tolerance mechanisms, there have been subsequent advances in understanding how to manipulate the bacterial environments to eradicate the bacteria. This study focuses on using mathematical techniques to find the optimal disinfection strategy to eliminate the bacteria while managing the load of antibiotic that is applied. In this model, the bacterial population is separated into those that are tolerant to the antibiotic and those that are susceptible to disinfection. There are transitions between the two populations whose rates depend on the chemical environment. Our results extend previous mathematical studies to include more realistic methods of applying the disinfectant. The goal is to provide experimentally testable predictions that have been lacking in previous mathematical studies. In particular, we provide the optimal disinfection protocol under a variety of assumptions within the model that can be used to validate or invalidate our simplifying assumptions and the experimental hypotheses that we used to develop the model. We find that constant dosing is not the optimal method for disinfection. Rather, cycling between application and withdrawal of the antibiotic yields the fastest killing of the bacteria.

  14. Resolution of strongly competitive product channels with optimal dynamic discrimination: Application to flavins

    NASA Astrophysics Data System (ADS)

    Roslund, Jonathan; Roth, Matthias; Guyon, Laurent; Boutou, Véronique; Courvoisier, Francois; Wolf, Jean-Pierre; Rabitz, Herschel

    2011-01-01

    Fundamental molecular selectivity limits are probed by exploiting laser-controlled quantum interferences for the creation of distinct spectral signatures in two flavin molecules, erstwhile nearly indistinguishable via steady-state methods. Optimal dynamic discrimination (ODD) uses optimally shaped laser fields to transiently amplify minute molecular variations that would otherwise go unnoticed with linear absorption and fluorescence techniques. ODD is experimentally demonstrated by combining an optimally shaped UV pump pulse with a time-delayed, fluorescence-depleting IR pulse for discrimination amongst riboflavin and flavin mononucleotide in aqueous solution, which are structurally and spectroscopically very similar. Closed-loop, adaptive pulse shaping discovers a set of UV pulses that induce disparate responses from the two flavins and allows for concomitant flavin discrimination of ˜16σ. Additionally, attainment of ODD permits quantitative, analytical detection of the individual constituents in a flavin mixture. The successful implementation of ODD on quantum systems of such high complexity bodes well for the future development of the field and the use of ODD techniques in a variety of demanding practical applications.

  15. On the existence of the optimal order for wavefunction extrapolation in Born-Oppenheimer molecular dynamics.

    PubMed

    Fang, Jun; Gao, Xingyu; Song, Haifeng; Wang, Han

    2016-06-28

    Wavefunction extrapolation greatly reduces the number of self-consistent field (SCF) iterations and thus the overall computational cost of Born-Oppenheimer molecular dynamics (BOMD) that is based on the Kohn-Sham density functional theory. Going against the intuition that the higher order of extrapolation possesses a better accuracy, we demonstrate, from both theoretical and numerical perspectives, that the extrapolation accuracy firstly increases and then decreases with respect to the order, and an optimal extrapolation order in terms of minimal number of SCF iterations always exists. We also prove that the optimal order tends to be larger when using larger MD time steps or more strict SCF convergence criteria. By example BOMD simulations of a solid copper system, we show that the optimal extrapolation order covers a broad range when varying the MD time step or the SCF convergence criterion. Therefore, we suggest the necessity for BOMD simulation packages to open the user interface and to provide more choices on the extrapolation order. Another factor that may influence the extrapolation accuracy is the alignment scheme that eliminates the discontinuity in the wavefunctions with respect to the atomic or cell variables. We prove the equivalence between the two existing schemes, thus the implementation of either of them does not lead to essential difference in the extrapolation accuracy. PMID:27369493

  16. Pareto archived dynamically dimensioned search with hypervolume-based selection for multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Asadzadeh, Masoud; Tolson, Bryan

    2013-12-01

    Pareto archived dynamically dimensioned search (PA-DDS) is a parsimonious multi-objective optimization algorithm with only one parameter to diminish the user's effort for fine-tuning algorithm parameters. This study demonstrates that hypervolume contribution (HVC) is a very effective selection metric for PA-DDS and Monte Carlo sampling-based HVC is very effective for higher dimensional problems (five objectives in this study). PA-DDS with HVC performs comparably to algorithms commonly applied to water resources problems (ɛ-NSGAII and AMALGAM under recommended parameter values). Comparisons on the CEC09 competition show that with sufficient computational budget, PA-DDS with HVC performs comparably to 13 benchmark algorithms and shows improved relative performance as the number of objectives increases. Lastly, it is empirically demonstrated that the total optimization runtime of PA-DDS with HVC is dominated (90% or higher) by solution evaluation runtime whenever evaluation exceeds 10 seconds/solution. Therefore, optimization algorithm runtime associated with the unbounded archive of PA-DDS is negligible in solving computationally intensive problems.

  17. A parameters optimization method for planar joint clearance model and its application for dynamics simulation of reciprocating compressor

    NASA Astrophysics Data System (ADS)

    Hai-yang, Zhao; Min-qiang, Xu; Jin-dong, Wang; Yong-bo, Li

    2015-05-01

    In order to improve the accuracy of dynamics response simulation for mechanism with joint clearance, a parameter optimization method for planar joint clearance contact force model was presented in this paper, and the optimized parameters were applied to the dynamics response simulation for mechanism with oversized joint clearance fault. By studying the effect of increased clearance on the parameters of joint clearance contact force model, the relation of model parameters between different clearances was concluded. Then the dynamic equation of a two-stage reciprocating compressor with four joint clearances was developed using Lagrange method, and a multi-body dynamic model built in ADAMS software was used to solve this equation. To obtain a simulated dynamic response much closer to that of experimental tests, the parameters of joint clearance model, instead of using the designed values, were optimized by genetic algorithms approach. Finally, the optimized parameters were applied to simulate the dynamics response of model with oversized joint clearance fault according to the concluded parameter relation. The dynamics response of experimental test verified the effectiveness of this application.

  18. Combating obesity through healthy eating behavior: a call for system dynamics optimization.

    PubMed

    Abidin, Norhaslinda Zainal; Mamat, Mustafa; Dangerfield, Brian; Zulkepli, Jafri Haji; Baten, Md Azizul; Wibowo, Antoni

    2014-01-01

    Poor eating behavior has been identified as one of the core contributory factors of the childhood obesity epidemic. The consequences of obesity on numerous aspects of life are thoroughly explored in the existing literature. For instance, evidence shows that obesity is linked to incidences of diseases such as heart disease, type-2 diabetes, and some cancers, as well as psychosocial problems. To respond to the increasing trends in the UK, in 2008 the government set a target to reverse the prevalence of obesity (POB) back to 2000 levels by 2020. This paper will outline the application of system dynamics (SD) optimization to simulate the effect of changes in the eating behavior of British children (aged 2 to 15 years) on weight and obesity. This study also will identify how long it will take to achieve the government's target. This paper proposed a simulation model called Intervention Childhood Obesity Dynamics (ICOD) by focusing the interrelations between various strands of knowledge in one complex human weight regulation system. The model offers distinct insights into the dynamics by capturing the complex interdependencies from the causal loop and feedback structure, with the intention to better understand how eating behaviors influence children's weight, body mass index (BMI), and POB measurement. This study proposed a set of equations that are revised from the original (baseline) equations. The new functions are constructed using a RAMP function of linear decrement in portion size and number of meal variables from 2013 until 2020 in order to achieve the 2020 desired target. Findings from the optimization analysis revealed that the 2020 target won't be achieved until 2026 at the earliest, six years late. Thus, the model suggested that a longer period may be needed to significantly reduce obesity in this population. PMID:25502170

  19. Trajectory optimization for dynamic couch rotation during volumetric modulated arc radiotherapy

    NASA Astrophysics Data System (ADS)

    Smyth, Gregory; Bamber, Jeffrey C.; Evans, Philip M.; Bedford, James L.

    2013-11-01

    Non-coplanar radiation beams are often used in three-dimensional conformal and intensity modulated radiotherapy to reduce dose to organs at risk (OAR) by geometric avoidance. In volumetric modulated arc radiotherapy (VMAT) non-coplanar geometries are generally achieved by applying patient couch rotations to single or multiple full or partial arcs. This paper presents a trajectory optimization method for a non-coplanar technique, dynamic couch rotation during VMAT (DCR-VMAT), which combines ray tracing with a graph search algorithm. Four clinical test cases (partial breast, brain, prostate only, and prostate and pelvic nodes) were used to evaluate the potential OAR sparing for trajectory-optimized DCR-VMAT plans, compared with standard coplanar VMAT. In each case, ray tracing was performed and a cost map reflecting the number of OAR voxels intersected for each potential source position was generated. The least-cost path through the cost map, corresponding to an optimal DCR-VMAT trajectory, was determined using Dijkstra’s algorithm. Results show that trajectory optimization can reduce dose to specified OARs for plans otherwise comparable to conventional coplanar VMAT techniques. For the partial breast case, the mean heart dose was reduced by 53%. In the brain case, the maximum lens doses were reduced by 61% (left) and 77% (right) and the globes by 37% (left) and 40% (right). Bowel mean dose was reduced by 15% in the prostate only case. For the prostate and pelvic nodes case, the bowel V50 Gy and V60 Gy were reduced by 9% and 45% respectively. Future work will involve further development of the algorithm and assessment of its performance over a larger number of cases in site-specific cohorts.

  20. Observability-Based Approach to Design, Analysis and Optimization of Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Alaeddini, Atiye

    The present dissertation aims to use the coupling between actuation and sensing in nonlinear systems to alternatively design a set of feasible control policies, to find the minimum number of sensors, or to find an optimal sensors configuration. Feasibility, here, means a combination of sensory system and control policy which guarantees observability. In some cases the optimality of the obtained solution is also considered. In some nonlinear systems, full observability requires active sensing, and will be shown how control policies that guarantee observability can be obtained by considering the geometry of the system dynamics. The observability matrix is used to test observability, whereas for the optimization problem observability Gramian matrix is used. This dissertation also considers the stability in designing controllers. The problem of designing a stabilizing control policy for a control-affine nonlinear system is addressed. The effect of time-varying control on the observability is investigated and shown to potentially improve the system observability. A particular application of the techniques considered here is the problem of designing network sensing and topology based on the observability criteria. The goal is to develop a protocol for the network which guarantees privacy. Furthermore, given a network of connected agents, we would like to determine which nodes should be observed to maximize information about the entire network. This dissertation begins with theoretical basis then moves towards applications of the theory. The first application is navigation of an autonomous ground robot with limited inertial sensing, motivated by the visuomotor system of insects. The second application is the problem of detecting an epidemic disease, which demonstrates design of an observability-based optimal network.

  1. Optimal Identification of Semi-Rigid Domains in Macromolecules from Molecular Dynamics Simulation

    PubMed Central

    Bernhard, Stefan; Noé, Frank

    2010-01-01

    Biological function relies on the fact that biomolecules can switch between different conformations and aggregation states. Such transitions involve a rearrangement of parts of the biomolecules involved that act as dynamic domains. The reliable identification of such domains is thus a key problem in biophysics. In this work we present a method to identify semi-rigid domains based on dynamical data that can be obtained from molecular dynamics simulations or experiments. To this end the average inter-atomic distance-deviations are computed. The resulting matrix is then clustered by a constrained quadratic optimization problem. The reliability and performance of the method are demonstrated for two artificial peptides. Furthermore we correlate the mechanical properties with biological malfunction in three variants of amyloidogenic transthyretin protein, where the method reveals that a pathological mutation destabilizes the natural dimer structure of the protein. Finally the method is used to identify functional domains of the GroEL-GroES chaperone, thus illustrating the efficiency of the method for large biomolecular machines. PMID:20498702

  2. Export dynamics as an optimal growth problem in the network of global economy

    PubMed Central

    Caraglio, Michele; Baldovin, Fulvio; Stella, Attilio L.

    2016-01-01

    We analyze export data aggregated at world global level of 219 classes of products over a period of 39 years. Our main goal is to set up a dynamical model to identify and quantify plausible mechanisms by which the evolutions of the various exports affect each other. This is pursued through a stochastic differential description, partly inspired by approaches used in population dynamics or directed polymers in random media. We outline a complex network of transfer rates which describes how resources are shifted between different product classes, and determines how casual favorable conditions for one export can spread to the other ones. A calibration procedure allows to fit four free model-parameters such that the dynamical evolution becomes consistent with the average growth, the fluctuations, and the ranking of the export values observed in real data. Growth crucially depends on the balance between maintaining and shifting resources to different exports, like in an explore-exploit problem. Remarkably, the calibrated parameters warrant a close-to-maximum growth rate under the transient conditions realized in the period covered by data, implying an optimal self organization of the global export. According to the model, major structural changes in the global economy take tens of years. PMID:27530505

  3. Export dynamics as an optimal growth problem in the network of global economy.

    PubMed

    Caraglio, Michele; Baldovin, Fulvio; Stella, Attilio L

    2016-01-01

    We analyze export data aggregated at world global level of 219 classes of products over a period of 39 years. Our main goal is to set up a dynamical model to identify and quantify plausible mechanisms by which the evolutions of the various exports affect each other. This is pursued through a stochastic differential description, partly inspired by approaches used in population dynamics or directed polymers in random media. We outline a complex network of transfer rates which describes how resources are shifted between different product classes, and determines how casual favorable conditions for one export can spread to the other ones. A calibration procedure allows to fit four free model-parameters such that the dynamical evolution becomes consistent with the average growth, the fluctuations, and the ranking of the export values observed in real data. Growth crucially depends on the balance between maintaining and shifting resources to different exports, like in an explore-exploit problem. Remarkably, the calibrated parameters warrant a close-to-maximum growth rate under the transient conditions realized in the period covered by data, implying an optimal self organization of the global export. According to the model, major structural changes in the global economy take tens of years.

  4. Export dynamics as an optimal growth problem in the network of global economy.

    PubMed

    Caraglio, Michele; Baldovin, Fulvio; Stella, Attilio L

    2016-01-01

    We analyze export data aggregated at world global level of 219 classes of products over a period of 39 years. Our main goal is to set up a dynamical model to identify and quantify plausible mechanisms by which the evolutions of the various exports affect each other. This is pursued through a stochastic differential description, partly inspired by approaches used in population dynamics or directed polymers in random media. We outline a complex network of transfer rates which describes how resources are shifted between different product classes, and determines how casual favorable conditions for one export can spread to the other ones. A calibration procedure allows to fit four free model-parameters such that the dynamical evolution becomes consistent with the average growth, the fluctuations, and the ranking of the export values observed in real data. Growth crucially depends on the balance between maintaining and shifting resources to different exports, like in an explore-exploit problem. Remarkably, the calibrated parameters warrant a close-to-maximum growth rate under the transient conditions realized in the period covered by data, implying an optimal self organization of the global export. According to the model, major structural changes in the global economy take tens of years. PMID:27530505

  5. Export dynamics as an optimal growth problem in the network of global economy

    NASA Astrophysics Data System (ADS)

    Caraglio, Michele; Baldovin, Fulvio; Stella, Attilio L.

    2016-08-01

    We analyze export data aggregated at world global level of 219 classes of products over a period of 39 years. Our main goal is to set up a dynamical model to identify and quantify plausible mechanisms by which the evolutions of the various exports affect each other. This is pursued through a stochastic differential description, partly inspired by approaches used in population dynamics or directed polymers in random media. We outline a complex network of transfer rates which describes how resources are shifted between different product classes, and determines how casual favorable conditions for one export can spread to the other ones. A calibration procedure allows to fit four free model-parameters such that the dynamical evolution becomes consistent with the average growth, the fluctuations, and the ranking of the export values observed in real data. Growth crucially depends on the balance between maintaining and shifting resources to different exports, like in an explore-exploit problem. Remarkably, the calibrated parameters warrant a close-to-maximum growth rate under the transient conditions realized in the period covered by data, implying an optimal self organization of the global export. According to the model, major structural changes in the global economy take tens of years.

  6. Optimal variable flip angle schemes for dynamic acquisition of exchanging hyperpolarized substrates

    NASA Astrophysics Data System (ADS)

    Xing, Yan; Reed, Galen D.; Pauly, John M.; Kerr, Adam B.; Larson, Peder E. Z.

    2013-09-01

    In metabolic MRI with hyperpolarized contrast agents, the signal levels vary over time due to T1 decay, T2 decay following RF excitations, and metabolic conversion. Efficient usage of the nonrenewable hyperpolarized magnetization requires specialized RF pulse schemes. In this work, we introduce two novel variable flip angle schemes for dynamic hyperpolarized MRI in which the flip angle is varied between excitations and between metabolites. These were optimized to distribute the magnetization relatively evenly throughout the acquisition by accounting for T1 decay, prior RF excitations, and metabolic conversion. Simulation results are presented to confirm the flip angle designs and evaluate the variability of signal dynamics across typical ranges of T1 and metabolic conversion. They were implemented using multiband spectral-spatial RF pulses to independently modulate the flip angle at various chemical shift frequencies. With these schemes we observed increased SNR of [1-13C]lactate generated from [1-13C]pyruvate, particularly at later time points. This will allow for improved characterization of tissue perfusion and metabolic profiles in dynamic hyperpolarized MRI.

  7. Passive vibration control in rotor dynamics: Optimization of composed support using viscoelastic materials

    NASA Astrophysics Data System (ADS)

    Ribeiro, Eduardo Afonso; Pereira, Jucélio Tomás; Alberto Bavastri, Carlos

    2015-09-01

    One of the major reasons for inserting damping into bearings is that rotating machines are often requested in critical functioning conditions having sometimes to function under dynamic instability or close to critical speeds. Hydrodynamic and magnetic bearings have usually been used for this purpose, but they present limitations regarding costs and operation, rendering the use of viscoelastic supports a feasible solution for vibration control in rotating machines. Most papers in the area use simple analytic or single degree of freedom models for the rotor as well as classic mechanical models of linear viscoelasticity for the support - like Maxwell, Kelvin-Voigt, Zenner, four-element, GHM models and even frequency independent models - but they lack the accuracy of fractional models in a large range of frequency and temperature regarding the same number of coefficients. Even in those works, the need to consider the addition of degrees of freedom to the support is evident. However, so far no paper has been published focusing on a methodology to determine the optimal constructive form for any viscoelastic support in which the rotor is discretized by finite elements associated to an accurate model for characterizing the viscoelastic material. In general, the support is meant to be a simple isolation system, and the fact the stiffness matrix is complex and frequency-temperature dependent - due to its viscoelastic properties - forces the traditional methods to require an extremely long computing time, thus rendering them too time consuming in an optimization environment. The present work presents a robust methodology based mainly on generalized equivalent parameters (GEP) - for an optimal design of viscoelastic supports for rotating machinery - aiming at minimizing the unbalance frequency response of the system using a hybrid optimization technique (genetic algorithms and Nelder-Mead method). The rotor is modeled based on the finite element method using Timoshenko's thick

  8. DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 reference manual

    SciTech Connect

    Griffin, Joshua D. (Sandai National Labs, Livermore, CA); Eldred, Michael Scott; Martinez-Canales, Monica L.; Watson, Jean-Paul; Kolda, Tamara Gibson; Adams, Brian M.; Swiler, Laura Painton; Williams, Pamela J.; Hough, Patricia Diane; Gay, David M.; Dunlavy, Daniel M.; Eddy, John P.; Hart, William Eugene; Guinta, Anthony A.; Brown, Shannon L.

    2006-10-01

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.

  9. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual.

    SciTech Connect

    Eldred, Michael Scott; Dalbey, Keith R.; Bohnhoff, William J.; Adams, Brian M.; Swiler, Laura Painton; Hough, Patricia Diane; Gay, David M.; Eddy, John P.; Haskell, Karen H.

    2010-05-01

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.

  10. Structural and Dynamic Requirements for Optimal Activity of the Essential Bacterial Enzyme Dihydrodipicolinate Synthase

    PubMed Central

    Reboul, C. F.; Porebski, B. T.; Griffin, M. D. W.; Dobson, R. C. J.; Perugini, M. A.; Gerrard, J. A.; Buckle, A. M.

    2012-01-01

    Dihydrodipicolinate synthase (DHDPS) is an essential enzyme involved in the lysine biosynthesis pathway. DHDPS from E. coli is a homotetramer consisting of a ‘dimer of dimers’, with the catalytic residues found at the tight-dimer interface. Crystallographic and biophysical evidence suggest that the dimers associate to stabilise the active site configuration, and mutation of a central dimer-dimer interface residue destabilises the tetramer, thus increasing the flexibility and reducing catalytic efficiency and substrate specificity. This has led to the hypothesis that the tetramer evolved to optimise the dynamics within the tight-dimer. In order to gain insights into DHDPS flexibility and its relationship to quaternary structure and function, we performed comparative Molecular Dynamics simulation studies of native tetrameric and dimeric forms of DHDPS from E. coli and also the native dimeric form from methicillin-resistant Staphylococcus aureus (MRSA). These reveal a striking contrast between the dynamics of tetrameric and dimeric forms. Whereas the E. coli DHDPS tetramer is relatively rigid, both the E. coli and MRSA DHDPS dimers display high flexibility, resulting in monomer reorientation within the dimer and increased flexibility at the tight-dimer interface. The mutant E. coli DHDPS dimer exhibits disorder within its active site with deformation of critical catalytic residues and removal of key hydrogen bonds that render it inactive, whereas the similarly flexible MRSA DHDPS dimer maintains its catalytic geometry and is thus fully functional. Our data support the hypothesis that in both bacterial species optimal activity is achieved by fine tuning protein dynamics in different ways: E. coli DHDPS buttresses together two dimers, whereas MRSA dampens the motion using an extended tight-dimer interface. PMID:22685390

  11. Combinatorial Optimization Algorithms for Dynamic Multiple Fault Diagnosis in Automotive and Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Kodali, Anuradha

    In this thesis, we develop dynamic multiple fault diagnosis (DMFD) algorithms to diagnose faults that are sporadic and coupled. Firstly, we formulate a coupled factorial hidden Markov model-based (CFHMM) framework to diagnose dependent faults occurring over time (dynamic case). Here, we implement a mixed memory Markov coupling model to determine the most likely sequence of (dependent) fault states, the one that best explains the observed test outcomes over time. An iterative Gauss-Seidel coordinate ascent optimization method is proposed for solving the problem. A soft Viterbi algorithm is also implemented within the framework for decoding dependent fault states over time. We demonstrate the algorithm on simulated and real-world systems with coupled faults; the results show that this approach improves the correct isolation rate as compared to the formulation where independent fault states are assumed. Secondly, we formulate a generalization of set-covering, termed dynamic set-covering (DSC), which involves a series of coupled set-covering problems over time. The objective of the DSC problem is to infer the most probable time sequence of a parsimonious set of failure sources that explains the observed test outcomes over time. The DSC problem is NP-hard and intractable due to the fault-test dependency matrix that couples the failed tests and faults via the constraint matrix, and the temporal dependence of failure sources over time. Here, the DSC problem is motivated from the viewpoint of a dynamic multiple fault diagnosis problem, but it has wide applications in operations research, for e.g., facility location problem. Thus, we also formulated the DSC problem in the context of a dynamically evolving facility location problem. Here, a facility can be opened, closed, or can be temporarily unavailable at any time for a given requirement of demand points. These activities are associated with costs or penalties, viz., phase-in or phase-out for the opening or closing of a

  12. Combinatorial Optimization Algorithms for Dynamic Multiple Fault Diagnosis in Automotive and Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Kodali, Anuradha

    In this thesis, we develop dynamic multiple fault diagnosis (DMFD) algorithms to diagnose faults that are sporadic and coupled. Firstly, we formulate a coupled factorial hidden Markov model-based (CFHMM) framework to diagnose dependent faults occurring over time (dynamic case). Here, we implement a mixed memory Markov coupling model to determine the most likely sequence of (dependent) fault states, the one that best explains the observed test outcomes over time. An iterative Gauss-Seidel coordinate ascent optimization method is proposed for solving the problem. A soft Viterbi algorithm is also implemented within the framework for decoding dependent fault states over time. We demonstrate the algorithm on simulated and real-world systems with coupled faults; the results show that this approach improves the correct isolation rate as compared to the formulation where independent fault states are assumed. Secondly, we formulate a generalization of set-covering, termed dynamic set-covering (DSC), which involves a series of coupled set-covering problems over time. The objective of the DSC problem is to infer the most probable time sequence of a parsimonious set of failure sources that explains the observed test outcomes over time. The DSC problem is NP-hard and intractable due to the fault-test dependency matrix that couples the failed tests and faults via the constraint matrix, and the temporal dependence of failure sources over time. Here, the DSC problem is motivated from the viewpoint of a dynamic multiple fault diagnosis problem, but it has wide applications in operations research, for e.g., facility location problem. Thus, we also formulated the DSC problem in the context of a dynamically evolving facility location problem. Here, a facility can be opened, closed, or can be temporarily unavailable at any time for a given requirement of demand points. These activities are associated with costs or penalties, viz., phase-in or phase-out for the opening or closing of a

  13. Free-energy derivatives and structure optimization within quasiharmonic lattice dynamics

    NASA Astrophysics Data System (ADS)

    Taylor, M. B.; Barrera, G. D.; Allan, N. L.; Barron, T. H. K.

    1997-12-01

    A method is presented for the calculation of the gradient of the free energy with respect to all the internal and external degrees of freedom of a periodic crystal. This gradient can be used in conjunction with a static-energy Hessian for efficient geometrical optimization of systems with large unit cells. The free energy is calculated using lattice statics and lattice dynamics in the quasiharmonic approximation, and its derivatives by means of first-order perturbation theory. In the present application of the method, particles are assumed to interact via arbitrary short-ranged spherically-symmetric pair potentials and long-ranged Coulomb forces, and polarizability effects are accounted for by use of the shell model. The method can be used directly as the basis for a computer program which makes efficient use of both storage and CPU time, especially for large unit cells. Detailed expressions for all the lattice sums are presented.

  14. Speed improvement of B-snake algorithm using dynamic programming optimization.

    PubMed

    Charfi, Maher; Zrida, Jalel

    2011-10-01

    This paper presents a novel approach to contour approximation carried out by means of the B-snake algorithm and the dynamic programming (DP) optimization technique. Using the proposed strategy for contour point search procedure, computing complexity is reduced to O(N×M(2)), whereas the standard DP method has an O(N×M(4)) complexity, with N being the number of contour sample points and M being the number of candidates in the search space. The storage requirement was also decreased from N×M(3) to N×M memory elements. Some experiments on noise corrupted synthetic image, magnetic resonance, and computer tomography medical images have shown that the proposed approach results are equivalent to those obtained by the standard DP algorithm.

  15. Q- and A-learning Methods for Estimating Optimal Dynamic Treatment Regimes

    PubMed Central

    Schulte, Phillip J.; Tsiatis, Anastasios A.; Laber, Eric B.; Davidian, Marie

    2013-01-01

    In clinical practice, physicians make a series of treatment decisions over the course of a patient’s disease based on his/her baseline and evolving characteristics. A dynamic treatment regime is a set of sequential decision rules that operationalizes this process. Each rule corresponds to a decision point and dictates the next treatment action based on the accrued information. Using existing data, a key goal is estimating the optimal regime, that, if followed by the patient population, would yield the most favorable outcome on average. Q- and A-learning are two main approaches for this purpose. We provide a detailed account of these methods, study their performance, and illustrate them using data from a depression study. PMID:25620840

  16. Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions.

    PubMed

    Zhang, Baqun; Tsiatis, Anastasios A; Laber, Eric B; Davidian, Marie

    2013-01-01

    A dynamic treatment regime is a list of sequential decision rules for assigning treatment based on a patient's history. Q- and A-learning are two main approaches for estimating the optimal regime, i.e., that yielding the most beneficial outcome in the patient population, using data from a clinical trial or observational study. Q-learning requires postulated regression models for the outcome, while A-learning involves models for that part of the outcome regression representing treatment contrasts and for treatment assignment. We propose an alternative to Q- and A-learning that maximizes a doubly robust augmented inverse probability weighted estimator for population mean outcome over a restricted class of regimes. Simulations demonstrate the method's performance and robustness to model misspecification, which is a key concern. PMID:24302771

  17. Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions

    PubMed Central

    Zhang, Baqun; Tsiatis, Anastasios A.; Laber, Eric B.; Davidian, Marie

    2013-01-01

    Summary A dynamic treatment regime is a list of sequential decision rules for assigning treatment based on a patient’s history. Q- and A-learning are two main approaches for estimating the optimal regime, i.e., that yielding the most beneficial outcome in the patient population, using data from a clinical trial or observational study. Q-learning requires postulated regression models for the outcome, while A-learning involves models for that part of the outcome regression representing treatment contrasts and for treatment assignment. We propose an alternative to Q- and A-learning that maximizes a doubly robust augmented inverse probability weighted estimator for population mean outcome over a restricted class of regimes. Simulations demonstrate the method’s performance and robustness to model misspecification, which is a key concern. PMID:24302771

  18. Optimal performance of the tryptophan operon of E. coli: a stochastic, dynamical, mathematical-modeling approach.

    PubMed

    Salazar-Cavazos, Emanuel; Santillán, Moisés

    2014-02-01

    In this work, we develop a detailed, stochastic, dynamical model for the tryptophan operon of E. coli, and estimate all of the model parameters from reported experimental data. We further employ the model to study the system performance, considering the amount of biochemical noise in the trp level, the system rise time after a nutritional shift, and the amount of repressor molecules necessary to maintain an adequate level of repression, as indicators of the system performance regime. We demonstrate that the level of cooperativity between repressor molecules bound to the first two operators in the trp promoter affects all of the above enlisted performance characteristics. Moreover, the cooperativity level found in the wild-type bacterial strain optimizes a cost-benefit function involving low biochemical noise in the tryptophan level, short rise time after a nutritional shift, and low number of regulatory molecules. PMID:24307084

  19. Process Optimization of Seed Precipitation Tank with Multiple Impellers Using Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-Liang; Lv, Chao; Liu, Yan; Zhang, Ting-An

    2015-07-01

    The complex fluid flow in a large-scale tank stirred with multiple Ekato Intermig impellers used in the seed precipitation process was numerically analyzed by the computational fluid dynamics method. The flow field, liquid-solid mixing, and power consumption were simulated by adopting the Eulerian granular multiphase model and standard k- ɛ turbulence model. A steady multiple reference frame approach was used to represent impeller rotation. The simulated results showed that the five-stage multiple Intermig impeller coupled with sloped baffles could generate circulation loops in axial, which is good for solid uniform mixing. The fluid is overmixed under the current industrial condition. Compared with the current process conditions, a three-stage impeller with L/ D of 1.25 not only could meet the industrial requirements, but also more than 20% power could be saved. The results have important implications for reliable design and optimal performance for industry.

  20. Model of Prey-Predator Dynamics with Reflexive Spatial Behaviour of Species Based on Optimal Migration.

    PubMed

    Sadovsky, Michael; Senashova, Mariya

    2016-04-01

    We consider the model of spatially distributed community consisting of two species with "predator-prey" interaction; each of the species occupies two stations. Transfer of individuals between the stations (migration) is not random, and migration stipulates the maximization of net reproduction of each species. The spatial distribution pattern is provided by discrete stations, and the dynamics runs in discrete time. For each time moment, firstly a redistribution of individuals between the stations is carried out to maximize the net reproduction, and then the reproduction takes place, with the upgraded abundances. Besides, three versions of the basic model are implemented where each species implements reflexive behaviour strategy to determine the optimal migration flow. It was found that reflexivity gives an advantage to the species realizing such strategy, for some specific sets of parameters. Nevertheless, the regular scanning of the parameters area shows that non-reflexive behaviour yields an advantage in the great majority of parameters combinations. PMID:27125654

  1. Rapid maneuvering of multi-body dynamic systems with optimal motion compensation

    NASA Astrophysics Data System (ADS)

    Bishop, B.; Gargano, R.; Sears, A.; Karpenko, M.

    2015-12-01

    Rapid maneuvering of multi-body dynamical systems is an important, yet challenging, problem in many applications. Even in the case of rigid bodies, it can be difficult to maintain precise control over nominally stationary links if it is required to move some of the other links quickly because of the various nonlinearities and coupled interactions that occur between the bodies. Typical control concepts treat the multi-body motion control problem in two-stages. First, the nonlinear and coupling terms are treated as disturbances and a trajectory tracking control law is designed in order to attenuate their effects. Next, motion profiles are designed, based on kinematics parameterizations, and these are used as inputs to the closed loop system to move the links. This paper describes an approach for rapid maneuvering of multi-body systems that uses optimal control theory to account for dynamic nonlinearities and coupling as part of the motion trajectory design. Incorporating appropriate operational constraints automatically compensates for these multi-body effects so that motion time can be reduced while simultaneously achieving other objectives such as reducing the excitation of selected links. Since the compensatory effect is embedded within the optimal motion trajectories, the performance improvement can be obtained even when using simple closed-loop architectures for maneuver implementation. Simulation results for minimum time control of a two-axis gimbal system and for rapid maneuvering of a TDRS single-access antenna, wherein it is desired to limit the excitation of the satellite body to which the antenna is attached, are presented to illustrate the concepts.

  2. Design and construction of miniature artificial ecosystem based on dynamic response optimization

    NASA Astrophysics Data System (ADS)

    Hu, Dawei; Liu, Hong; Tong, Ling; Li, Ming; Hu, Enzhu

    The miniature artificial ecosystem (MAES) is a combination of man, silkworm, salad and mi-croalgae to partially regenerate O2 , sanitary water and food, simultaneously dispose CO2 and wastes, therefore it have a fundamental life support function. In order to enhance the safety and reliability of MAES and eliminate the influences of internal variations and external dis-turbances, it was necessary to configure MAES as a closed-loop control system, and it could be considered as a prototype for future bioregenerative life support system. However, MAES is a complex system possessing large numbers of parameters, intricate nonlinearities, time-varying factors as well as uncertainties, hence it is difficult to perfectly design and construct a prototype through merely conducting experiments by trial and error method. Our research presented an effective way to resolve preceding problem by use of dynamic response optimiza-tion. Firstly the mathematical model of MAES with first-order nonlinear ordinary differential equations including parameters was developed based on relevant mechanisms and experimental data, secondly simulation model of MAES was derived on the platform of MatLab/Simulink to perform model validation and further digital simulations, thirdly reference trajectories of de-sired dynamic response of system outputs were specified according to prescribed requirements, and finally optimization for initial values, tuned parameter and independent parameters was carried out using the genetic algorithm, the advanced direct search method along with parallel computing methods through computer simulations. The result showed that all parameters and configurations of MAES were determined after a series of computer experiments, and its tran-sient response performances and steady characteristics closely matched the reference curves. Since the prototype is a physical system that represents the mathematical model with reason-able accuracy, so the process of designing and

  3. Dynamical-decoupling noise spectroscopy at an optimal working point of a qubit

    NASA Astrophysics Data System (ADS)

    Cywiński, Łukasz

    2014-10-01

    I present a theory of environmental noise spectroscopy via dynamical decoupling of a qubit at an optimal working point. Considering a sequence of n pulses and pure dephasing due to quadratic coupling to Gaussian distributed noise ξ (t), I use the linked-cluster (cumulant) expansion to calculate the coherence decay. Solutions allowing for reconstruction of spectral density of noise are given. For noise with correlation time shorter than the time scale on which coherence decays, the noise filtered by the dynamical decoupling procedure can be treated as effectively Gaussian at large n, and well-established methods of noise spectroscopy can be used to reconstruct the spectrum of ξ2(t) noise. On the other hand, for noise of dominant low-frequency character (1/fβ noise with β >1), an infinite-order resummation of the cumulant expansion is necessary, and it leads to an analytical formula for coherence decay having a power-law tail at long times. In this case, the coherence at time t depends both on spectral density of ξ (t) noise at ω =nπ/t, and on the effective low-frequency cutoff of the noise spectrum, which is typically given by the inverse of the data acquisition time. Simulations of decoherence due to purely transverse noise show that the analytical formulas derived in this paper apply in this often encountered case of an optimal working point, provided that the number of pulses is not very large, and that the longitudinal qubit splitting is much larger than the transverse noise amplitude.

  4. Applying Dynamical Systems Theory to Optimize Libration Point Orbit Stationkeeping Maneuvers for WIND

    NASA Technical Reports Server (NTRS)

    Brown, Jonathan M.; Petersen, Jeremy D.

    2014-01-01

    NASA's WIND mission has been operating in a large amplitude Lissajous orbit in the vicinity of the interior libration point of the Sun-Earth/Moon system since 2004. Regular stationkeeping maneuvers are required to maintain the orbit due to the instability around the collinear libration points. Historically these stationkeeping maneuvers have been performed by applying an incremental change in velocity, or (delta)v along the spacecraft-Sun vector as projected into the ecliptic plane. Previous studies have shown that the magnitude of libration point stationkeeping maneuvers can be minimized by applying the (delta)v in the direction of the local stable manifold found using dynamical systems theory. This paper presents the analysis of this new maneuver strategy which shows that the magnitude of stationkeeping maneuvers can be decreased by 5 to 25 percent, depending on the location in the orbit where the maneuver is performed. The implementation of the optimized maneuver method into operations is discussed and results are presented for the first two optimized stationkeeping maneuvers executed by WIND.

  5. Dynamic stability of spine using stability-based optimization and muscle spindle reflex.

    PubMed

    Zeinali-Davarani, Shahrokh; Hemami, Hooshang; Barin, Kamran; Shirazi-Adl, Aboulfazl; Parnianpour, Mohamad

    2008-02-01

    A computational method for simulation of 3-D movement of the trunk under the control of 48 anatomically oriented muscle actions was developed. Neural excitation of muscles was set based on inverse dynamics approach along with the stability-based optimization. The effect of muscle spindle reflex response on the trunk movement stability was evaluated upon the application of a perturbation moment. The method was used to simulate the trunk movement from the upright standing to 60 degrees of flexion. Incorporation of the stability condition as an additional constraint in the optimization resulted in an increase in antagonistic activities demonstrating that the antagonistic co-activation acts to increase the trunk stability in response to self-induced postural internal perturbation. In presence of a 30 Nm flexion perturbation moment, muscle spindles decreased the induced deviation of the position and velocity profiles from the desired ones. The stability-generated co-activation decreased the reflexive response of muscle spindles to the perturbation demonstrating that the rise in muscle co-activation can ameliorate the corruption of afferent neural sensory system at the expense of higher loading of the spine.

  6. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond

    DOE PAGES

    Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.

    2015-08-24

    In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that the optimal controlmore » scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.« less

  7. Discussion of skill improvement in marine ecosystem dynamic models based on parameter optimization and skill assessment

    NASA Astrophysics Data System (ADS)

    Shen, Chengcheng; Shi, Honghua; Liu, Yongzhi; Li, Fen; Ding, Dewen

    2016-07-01

    Marine ecosystem dynamic models (MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM skill, and it attempts to establish a technical framework to inspire further ideas concerning MEDM skill improvement. The skill of MEDMs can be improved by parameter optimization (PO), which is an important step in model calibration. An efficient approach to solve the problem of PO constrained by MEDMs is the global treatment of both sensitivity analysis and PO. Model validation is an essential step following PO, which validates the efficiency of model calibration by analyzing and estimating the goodness-of-fit of the optimized model. Additionally, by focusing on the degree of impact of various factors on model skill, model uncertainty analysis can supply model users with a quantitative assessment of model confidence. Research on MEDMs is ongoing; however, improvement in model skill still lacks global treatments and its assessment is not integrated. Thus, the predictive performance of MEDMs is not strong and model uncertainties lack quantitative descriptions, limiting their application. Therefore, a large number of case studies concerning model skill should be performed to promote the development of a scientific and normative technical framework for the improvement of MEDM skill.

  8. Implementation of an ANCF beam finite element for dynamic response optimization of elastic manipulators

    NASA Astrophysics Data System (ADS)

    Vohar, B.; Kegl, M.; Ren, Z.

    2008-12-01

    Theoretical and practical aspects of an absolute nodal coordinate formulation (ANCF) beam finite element implementation are considered in the context of dynamic transient response optimization of elastic manipulators. The proposed implementation is based on the introduction of new nodal degrees of freedom, which is achieved by an adequate nonlinear mapping between the original and new degrees of freedom. This approach preserves the mechanical properties of the ANCF beam, but converts it into a conventional finite element so that its nodal degrees of freedom are initially always equal to zero and never depend explicitly on the design variables. Consequently, the sensitivity analysis formulas can be derived in the usual manner, except that the introduced nonlinear mapping has to be taken into account. Moreover, the adjusted element can also be incorporated into general finite element analysis and optimization software in the conventional way. The introduced design variables are related to the cross-section of the beam, to the shape of the (possibly) skeletal structure of the manipulator and to the drive functions. The layered cross-section approach and the design element technique are utilized to parameterize the shape of individual elements and the whole structure. A family of implicit time integration methods is adopted for the response and sensitivity analysis. Based on this assumption, the corresponding sensitivity formulas are derived. Two numerical examples illustrate the performance of the proposed element implementation.

  9. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond

    SciTech Connect

    Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.

    2015-08-24

    In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that the optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.

  10. Custom-tailored adsorbers: A molecular dynamics study on optimal design of ion exchange chromatography material.

    PubMed

    Lang, Katharina M H; Kittelmann, Jörg; Pilgram, Florian; Osberghaus, Anna; Hubbuch, Jürgen

    2015-09-25

    The performance of functionalized materials, e.g., ion exchange resins, depends on multiple resin characteristics, such as type of ligand, ligand density, the pore accessibility for a molecule, and backbone characteristics. Therefore, the screening and identification process for optimal resin characteristics for separation is very time and material consuming. Previous studies on the influence of resin characteristics have focused on an experimental approach and to a lesser extent on the mechanistic understanding of the adsorption mechanism. In this in silico study, a previously developed molecular dynamics (MD) tool is used, which simulates any given biomolecule on resins with varying ligand densities. We describe a set of simulations and experiments with four proteins and six resins varying in ligand density, and show that simulations and experiments correlate well in a wide range of ligand density. With this new approach simulations can be used as pre-experimental screening for optimal adsorber characteristics, reducing the actual number of screening experiments, which results in a faster and more knowledge-based development of custom-tailored adsorbers.

  11. Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.

    PubMed

    Wei, Qinglai; Liu, Derong; Lin, Hanquan

    2016-03-01

    In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iteration ADP algorithm permits an arbitrary positive semi-definite function to initialize the algorithm. A novel convergence analysis is developed to guarantee that the iterative value function converges to the optimal performance index function. Initialized by different initial functions, it is proven that the iterative value function will be monotonically nonincreasing, monotonically nondecreasing, or nonmonotonic and will converge to the optimum. In this paper, for the first time, the admissibility properties of the iterative control laws are developed for value iteration algorithms. It is emphasized that new termination criteria are established to guarantee the effectiveness of the iterative control laws. Neural networks are used to approximate the iterative value function and compute the iterative control law, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.

  12. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond

    NASA Astrophysics Data System (ADS)

    Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.

    2015-08-01

    We demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ˜0.7 ms up to ˜30 ms . We extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We identify that the optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.

  13. Improving the coherence properties of solid-state spin ensembles via optimized dynamical decoupling

    NASA Astrophysics Data System (ADS)

    Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.

    2016-04-01

    In this work, we optimize a dynamical decoupling (DD) protocol to improve the spin coherence properties of a dense ensemble of nitrogen-vacancy (NV) centers in diamond. Using liquid nitrogen-based cooling and DD microwave pulses, we increase the transverse coherence time T2 from ˜ 0.7 ms up to ˜ 30 ms. We extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. After performing a detailed analysis of pulse and detuning errors, we compare the performance of various DD protocols. We identify that the concatenated XY8 pulse sequences serves as the optimal control scheme for preserving an arbitrary spin state. Finally, we use the concatenated sequences to demonstrate an immediate improvement of the AC magnetic sensitivity up to a factor of two at 250 kHz. For future work, similar protocols may be used to increase coherence times up to NV-NV interaction time scales, a major step toward the creation of quantum collective NV spin states.

  14. Optimization strategies for molecular dynamics programs on Cray computers and scalar work stations

    NASA Astrophysics Data System (ADS)

    Unekis, Michael J.; Rice, Betsy M.

    1994-12-01

    We present results of timing runs and different optimization strategies for a prototype molecular dynamics program that simulates shock waves in a two-dimensional (2-D) model of a reactive energetic solid. The performance of the program may be improved substantially by simple changes to the Fortran or by employing various vendor-supplied compiler optimizations. The optimum strategy varies among the machines used and will vary depending upon the details of the program. The effect of various compiler options and vendor-supplied subroutine calls is demonstrated. Comparison is made between two scalar workstations (IBM RS/6000 Model 370 and Model 530) and several Cray supercomputers (X-MP/48, Y-MP8/128, and C-90/16256). We find that for a scientific application program dominated by sequential, scalar statements, a relatively inexpensive high-end work station such as the IBM RS/60006 RISC series will outperform single processor performance of the Cray X-MP/48 and perform competitively with single processor performance of the Y-MP8/128 and C-9O/16256.

  15. Optimizing the rotor design for controlled-shear affinity filtration using computational fluid dynamics.

    PubMed

    Francis, Patrick; Martinez, D Mark; Taghipour, Fariborz; Bowen, Bruce D; Haynes, Charles A

    2006-12-20

    Controlled shear affinity filtration (CSAF) is a novel integrated processing technology that positions a rotor directly above an affinity membrane chromatography column to permit protein capture and purification directly from cell culture. The conical rotor is intended to provide a uniform and tunable shear stress at the membrane surface that inhibits membrane fouling and cell cake formation by providing a hydrodynamic force away from and a drag force parallel to the membrane surface. Computational fluid dynamics (CFD) simulations are used to show that the rotor in the original CSAF device (Vogel et al., 2002) does not provide uniform shear stress at the membrane surface. This results in the need to operate the system at unnecessarily high rotor speeds to reach a required shear stress of at least 0.17 Pa at every radial position of the membrane surface, compromising the scale-up of the technology. Results from CFD simulations are compared with particle image velocimetry (PIV) experiments and a numerical solution for low Reynolds number conditions to confirm that our CFD model accurately describes the hydrodynamics in the rotor chamber of the CSAF device over a range of rotor velocities, filtrate fluxes, and (both laminar and turbulent) retentate flows. CFD simulations were then carried out in combination with a root-finding method to optimize the shape of the CSAF rotor. The optimized rotor geometry produces a nearly constant shear stress of 0.17 Pa at a rotational velocity of 250 rpm, 60% lower than the original CSAF design. This permits the optimized CSAF device to be scaled up to a maximum rotor diameter 2.5 times larger than is permissible in the original device, thereby providing more than a sixfold increase in volumetric throughput. PMID:16937405

  16. Non-resonant dynamic stark control of vibrational motion with optimized laser pulses.

    PubMed

    Thomas, Esben F; Henriksen, Niels E

    2016-06-28

    The term dynamic Stark control (DSC) has been used to describe methods of quantum control related to the dynamic Stark effect, i.e., a time-dependent distortion of energy levels. Here, we employ analytical models that present clear and concise interpretations of the principles behind DSC. Within a linearly forced harmonic oscillator model of vibrational excitation, we show how the vibrational amplitude is related to the pulse envelope, and independent of the carrier frequency of the laser pulse, in the DSC regime. Furthermore, we shed light on the DSC regarding the construction of optimal pulse envelopes - from a time-domain as well as a frequency-domain perspective. Finally, in a numerical study beyond the linearly forced harmonic oscillator model, we show that a pulse envelope can be constructed such that a vibrational excitation into a specific excited vibrational eigenstate is accomplished. The pulse envelope is constructed such that high intensities are avoided in order to eliminate the process of ionization.

  17. Optimizing performance of hybrid FSO/RF networks in realistic dynamic scenarios

    NASA Astrophysics Data System (ADS)

    Llorca, Jaime; Desai, Aniket; Baskaran, Eswaran; Milner, Stuart; Davis, Christopher

    2005-08-01

    Hybrid Free Space Optical (FSO) and Radio Frequency (RF) networks promise highly available wireless broadband connectivity and quality of service (QoS), particularly suitable for emerging network applications involving extremely high data rate transmissions such as high quality video-on-demand and real-time surveillance. FSO links are prone to atmospheric obscuration (fog, clouds, snow, etc) and are difficult to align over long distances due the use of narrow laser beams and the effect of atmospheric turbulence. These problems can be mitigated by using adjunct directional RF links, which provide backup connectivity. In this paper, methodologies for modeling and simulation of hybrid FSO/RF networks are described. Individual link propagation models are derived using scattering theory, as well as experimental measurements. MATLAB is used to generate realistic atmospheric obscuration scenarios, including moving cloud layers at different altitudes. These scenarios are then imported into a network simulator (OPNET) to emulate mobile hybrid FSO/RF networks. This framework allows accurate analysis of the effects of node mobility, atmospheric obscuration and traffic demands on network performance, and precise evaluation of topology reconfiguration algorithms as they react to dynamic changes in the network. Results show how topology reconfiguration algorithms, together with enhancements to TCP/IP protocols which reduce the network response time, enable the network to rapidly detect and act upon link state changes in highly dynamic environments, ensuring optimized network performance and availability.

  18. Study of the bus dynamic coscheduling optimization method under urban rail transit line emergency.

    PubMed

    Wang, Yun; Yan, Xuedong; Zhou, Yu; Wang, Jiaxi; Chen, Shasha

    2014-01-01

    As one of the most important urban commuter transportation modes, urban rail transit (URT) has been acting as a key solution for supporting mobility needs in high-density urban areas. However, in recent years, high frequency of unexpected events has caused serious service disruptions in URT system, greatly harming passenger safety and resulting in severe traffic delays. Therefore, there is an urgent need to study emergency evacuation problem in URT. In this paper, a method of bus dynamic coscheduling is proposed and two models are built based on different evacuation destinations including URT stations and surrounding bus parking spots. A dynamic coscheduling scheme for buses can be obtained by the models. In the model solution process, a new concept-the equivalent parking spot-is proposed to transform the nonlinear model into an integer linear programming (ILP) problem. A case study is conducted to verify the feasibility of models. Also, sensitivity analysis of two vital factors is carried out to analyze their effects on the total evacuation time. The results reveal that the designed capacity of buses has a negative influence on the total evacuation time, while an increase in the number of passengers has a positive effect. Finally, some significant optimizing strategies are proposed.

  19. Non-resonant dynamic stark control of vibrational motion with optimized laser pulses

    NASA Astrophysics Data System (ADS)

    Thomas, Esben F.; Henriksen, Niels E.

    2016-06-01

    The term dynamic Stark control (DSC) has been used to describe methods of quantum control related to the dynamic Stark effect, i.e., a time-dependent distortion of energy levels. Here, we employ analytical models that present clear and concise interpretations of the principles behind DSC. Within a linearly forced harmonic oscillator model of vibrational excitation, we show how the vibrational amplitude is related to the pulse envelope, and independent of the carrier frequency of the laser pulse, in the DSC regime. Furthermore, we shed light on the DSC regarding the construction of optimal pulse envelopes - from a time-domain as well as a frequency-domain perspective. Finally, in a numerical study beyond the linearly forced harmonic oscillator model, we show that a pulse envelope can be constructed such that a vibrational excitation into a specific excited vibrational eigenstate is accomplished. The pulse envelope is constructed such that high intensities are avoided in order to eliminate the process of ionization.

  20. Optimal GPS/accelerometer integration algorithm for monitoring the vertical structural dynamics

    NASA Astrophysics Data System (ADS)

    Meng, Xiaolin; Wang, Jian; Han, Houzeng

    2014-11-01

    The vertical structural dynamics is a crucial factor for structural health monitoring (SHM) of civil structures such as high-rise buildings, suspension bridges and towers. This paper presents an optimal GPS/accelerometer integration algorithm for an automated multi-sensor monitoring system. The closed loop feedback algorithm for integrating the vertical GPS and accelerometer measurements is proposed based on a 5 state extended KALMAN filter (EKF) and then the narrow moving window Fast Fourier Transform (FFT) analysis is applied to extract structural dynamics. A civil structural vibration is simulated and the analysed result shows the proposed algorithm can effectively integrate the online vertical measurements produced by GPS and accelerometer. Furthermore, the accelerometer bias and scale factor can also be estimated which is impossible with traditional integration algorithms. Further analysis shows the vibration frequencies detected in GPS or accelerometer are all included in the integrated vertical defection time series and the accelerometer can effectively compensate the short-term GPS outages with high quality. Finally, the data set collected with a time synchronised and integrated GPS/accelerometer monitoring system installed on the Nottingham Wilford Bridge when excited by 15 people jumping together at its mid-span are utilised to verify the effectiveness of this proposed algorithm. Its implementations are satisfactory and the detected vibration frequencies are 1.720 Hz, 1.870 Hz, 2.104 Hz, 2.905 Hz and also 10.050 Hz, which is not found in GPS or accelerometer only measurements.

  1. Non-resonant dynamic stark control of vibrational motion with optimized laser pulses.

    PubMed

    Thomas, Esben F; Henriksen, Niels E

    2016-06-28

    The term dynamic Stark control (DSC) has been used to describe methods of quantum control related to the dynamic Stark effect, i.e., a time-dependent distortion of energy levels. Here, we employ analytical models that present clear and concise interpretations of the principles behind DSC. Within a linearly forced harmonic oscillator model of vibrational excitation, we show how the vibrational amplitude is related to the pulse envelope, and independent of the carrier frequency of the laser pulse, in the DSC regime. Furthermore, we shed light on the DSC regarding the construction of optimal pulse envelopes - from a time-domain as well as a frequency-domain perspective. Finally, in a numerical study beyond the linearly forced harmonic oscillator model, we show that a pulse envelope can be constructed such that a vibrational excitation into a specific excited vibrational eigenstate is accomplished. The pulse envelope is constructed such that high intensities are avoided in order to eliminate the process of ionization. PMID:27369515

  2. Multidisciplinary optimization for the design and control of uncertain dynamical systems

    NASA Astrophysics Data System (ADS)

    Sridharan, Srikanth

    This dissertation considers an integrated approach to system design and controller design based on analyzing limits of system performance. Historically, plant design methodologies have not incorporated control relevant considerations. Such an approach could result in a system that might not meet its specifications (or one that requires a complex control architecture to do so). System and controller designers often go through several iterations in order to converge to an acceptable plant and controller design. The focus of this dissertation is on the design and control an air-breathing hypersonic vehicle using such an integrated system-control design framework. The goal is to reduce the number of system-control design iterations (by explicitly incorporate control considerations in the system design process), as well as to influence the guidance/trajectory specifications for the system. Due to the high computational costs associated with obtaining a dynamic model for each plant configuration considered, approximations to the system dynamics are used in the control design process. By formulating the control design problem using bilinear and polynomial matrix inequalities, several common control and system design constraints can be simultaneously incorporated into a vehicle design optimization. Several design problems are examined to illustrate the effectiveness of this approach (and to compare the computational burden of this methodology against more traditional approaches).

  3. Optimization of the dynamic wavefront control of a pulsed kilojoule/nanosecond-petawatt laser facility.

    PubMed

    Zou, Ji-Ping; Sautivet, Anne-Marie; Fils, Jérôme; Martin, Luc; Abdeli, Kahina; Sauteret, Christian; Wattellier, Benoit

    2008-02-10

    The wavefront aberrations in a large-scale, flash-lamp-pumped, high-energy, high-power glass laser system can degrade considerably the quality of the final focal spot, and limit severely the repetition rate. The various aberrations induced on the Laboratoire pour l'Utilisation des Lasers Intenses (LULI), laser facility (LULI2000) throughout the amplification are identified and analyzed in detail. Based on these analyses, an optimized procedure for dynamic wavefront control is then designed and implemented. The lower-order Zernike aberrations can be effectively reduced by combining an adaptive-optics setup, comprising a bimorph deformable mirror and a four-wave lateral shearing interferometer, with a precise alignment system. This enables the laser chain to produce a reproducible focal spot close to the diffraction limit (Strehl ratio approximately 0.7). This allows also to increase the repetition rate, initially limited by the recovery time of the laser amplifiers, by a factor of 2 (one shot per hour). The proposed procedure provides an attractive alternative for dynamic correction of the wavefront aberrations of a laser facility as complex as the LULI2000. PMID:18268782

  4. Optimization of the dynamic wavefront control of a pulsed kilojoule/nanosecond-petawatt laser facility

    NASA Astrophysics Data System (ADS)

    Zou, Ji-Ping; Sautivet, Anne-Marie; Fils, Jérôme; Martin, Luc; Abdeli, Kahina; Sauteret, Christian; Wattellier, Benoit

    2008-02-01

    The wavefront aberrations in a large-scale, flash-lamp-pumped, high-energy, high-power glass laser system can degrade considerably the quality of the final focal spot, and limit severely the repetition rate. The various aberrations induced on the Laboratoire pour l'Utilisation des Lasers Intenses (LULI), laser facility (LULI2000) throughout the amplification are identified and analyzed in detail. Based on these analyses, an optimized procedure for dynamic wavefront control is then designed and implemented. The lower-order Zernike aberrations can be effectively reduced by combining an adaptive-optics setup, comprising a bimorph deformable mirror and a four-wave lateral shearing interferometer, with a precise alignment system. This enables the laser chain to produce a reproducible focal spot close to the diffraction limit (Strehl ratio ~0.7). This allows also to increase the repetition rate, initially limited by the recovery time of the laser amplifiers, by a factor of 2 (one shot per hour). The proposed procedure provides an attractive alternative for dynamic correction of the wavefront aberrations of a laser facility as complex as the LULI2000.

  5. Study of the Bus Dynamic Coscheduling Optimization Method under Urban Rail Transit Line Emergency

    PubMed Central

    Yan, Xuedong; Wang, Jiaxi; Chen, Shasha

    2014-01-01

    As one of the most important urban commuter transportation modes, urban rail transit (URT) has been acting as a key solution for supporting mobility needs in high-density urban areas. However, in recent years, high frequency of unexpected events has caused serious service disruptions in URT system, greatly harming passenger safety and resulting in severe traffic delays. Therefore, there is an urgent need to study emergency evacuation problem in URT. In this paper, a method of bus dynamic coscheduling is proposed and two models are built based on different evacuation destinations including URT stations and surrounding bus parking spots. A dynamic coscheduling scheme for buses can be obtained by the models. In the model solution process, a new concept—the equivalent parking spot—is proposed to transform the nonlinear model into an integer linear programming (ILP) problem. A case study is conducted to verify the feasibility of models. Also, sensitivity analysis of two vital factors is carried out to analyze their effects on the total evacuation time. The results reveal that the designed capacity of buses has a negative influence on the total evacuation time, while an increase in the number of passengers has a positive effect. Finally, some significant optimizing strategies are proposed. PMID:25530750

  6. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics.

    PubMed

    Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin

    2016-09-02

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method.

  7. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics.

    PubMed

    Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin

    2016-01-01

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method. PMID:27598161

  8. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics

    PubMed Central

    Dong, Bing; Li, Yan; Han, Xin-li; Hu, Bin

    2016-01-01

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10−5 in optimized correction and is 1.427 × 10−5 in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method. PMID:27598161

  9. A dynamic multiarmed bandit-gene expression programming hyper-heuristic for combinatorial optimization problems.

    PubMed

    Sabar, Nasser R; Ayob, Masri; Kendall, Graham; Qu, Rong

    2015-02-01

    Hyper-heuristics are search methodologies that aim to provide high-quality solutions across a wide variety of problem domains, rather than developing tailor-made methodologies for each problem instance/domain. A traditional hyper-heuristic framework has two levels, namely, the high level strategy (heuristic selection mechanism and the acceptance criterion) and low level heuristics (a set of problem specific heuristics). Due to the different landscape structures of different problem instances, the high level strategy plays an important role in the design of a hyper-heuristic framework. In this paper, we propose a new high level strategy for a hyper-heuristic framework. The proposed high-level strategy utilizes a dynamic multiarmed bandit-extreme value-based reward as an online heuristic selection mechanism to select the appropriate heuristic to be applied at each iteration. In addition, we propose a gene expression programming framework to automatically generate the acceptance criterion for each problem instance, instead of using human-designed criteria. Two well-known, and very different, combinatorial optimization problems, one static (exam timetabling) and one dynamic (dynamic vehicle routing) are used to demonstrate the generality of the proposed framework. Compared with state-of-the-art hyper-heuristics and other bespoke methods, empirical results demonstrate that the proposed framework is able to generalize well across both domains. We obtain competitive, if not better results, when compared to the best known results obtained from other methods that have been presented in the scientific literature. We also compare our approach against the recently released hyper-heuristic competition test suite. We again demonstrate the generality of our approach when we compare against other methods that have utilized the same six benchmark datasets from this test suite. PMID:24951713

  10. Dynamic emulation modelling for the optimal operation of water systems: an overview

    NASA Astrophysics Data System (ADS)

    Castelletti, A.; Galelli, S.; Giuliani, M.

    2014-12-01

    Despite sustained increase in computing power over recent decades, computational limitations remain a major barrier to the effective and systematic use of large-scale, process-based simulation models in rational environmental decision-making. Whereas complex models may provide clear advantages when the goal of the modelling exercise is to enhance our understanding of the natural processes, they introduce problems of model identifiability caused by over-parameterization and suffer from high computational burden when used in management and planning problems. As a result, increasing attention is now being devoted to emulation modelling (or model reduction) as a way of overcoming these limitations. An emulation model, or emulator, is a low-order approximation of the process-based model that can be substituted for it in order to solve high resource-demanding problems. In this talk, an overview of emulation modelling within the context of the optimal operation of water systems will be provided. Particular emphasis will be given to Dynamic Emulation Modelling (DEMo), a special type of model complexity reduction in which the dynamic nature of the original process-based model is preserved, with consequent advantages in a wide range of problems, particularly feedback control problems. This will be contrasted with traditional non-dynamic emulators (e.g. response surface and surrogate models) that have been studied extensively in recent years and are mainly used for planning purposes. A number of real world numerical experiences will be used to support the discussion ranging from multi-outlet water quality control in water reservoir through erosion/sedimentation rebalancing in the operation of run-off-river power plants to salinity control in lake and reservoirs.

  11. A dynamic multiarmed bandit-gene expression programming hyper-heuristic for combinatorial optimization problems.

    PubMed

    Sabar, Nasser R; Ayob, Masri; Kendall, Graham; Qu, Rong

    2015-02-01

    Hyper-heuristics are search methodologies that aim to provide high-quality solutions across a wide variety of problem domains, rather than developing tailor-made methodologies for each problem instance/domain. A traditional hyper-heuristic framework has two levels, namely, the high level strategy (heuristic selection mechanism and the acceptance criterion) and low level heuristics (a set of problem specific heuristics). Due to the different landscape structures of different problem instances, the high level strategy plays an important role in the design of a hyper-heuristic framework. In this paper, we propose a new high level strategy for a hyper-heuristic framework. The proposed high-level strategy utilizes a dynamic multiarmed bandit-extreme value-based reward as an online heuristic selection mechanism to select the appropriate heuristic to be applied at each iteration. In addition, we propose a gene expression programming framework to automatically generate the acceptance criterion for each problem instance, instead of using human-designed criteria. Two well-known, and very different, combinatorial optimization problems, one static (exam timetabling) and one dynamic (dynamic vehicle routing) are used to demonstrate the generality of the proposed framework. Compared with state-of-the-art hyper-heuristics and other bespoke methods, empirical results demonstrate that the proposed framework is able to generalize well across both domains. We obtain competitive, if not better results, when compared to the best known results obtained from other methods that have been presented in the scientific literature. We also compare our approach against the recently released hyper-heuristic competition test suite. We again demonstrate the generality of our approach when we compare against other methods that have utilized the same six benchmark datasets from this test suite.

  12. Optimal sensitometric curves of Kodak EDR2 film for dynamic intensity modulated radiation therapy verification

    PubMed Central

    Suriyapee, S; Pitaxtarnin, N; Oonsiri, S; Jumpangern, C; Israngkul Na Ayuthaya, I

    2008-01-01

    Purpose: To investigate the optimal sensitometric curves of extended dose range (EDR2) radiographic film in terms of depth, field size, dose range and processing conditions for dynamic intensity modulated radiation therapy (IMRT) dosimetry verification with 6 MV X-ray beams. Materials and methods: A Varian Clinac 23 EX linear accelerator with 6 MV X-ray beam was used to study the response of Kodak EDR2 film. Measurements were performed at depths of 5, 10 and 15 cm in MedTec virtual water phantom and with field sizes of 2x2, 3x3, 10x10 and 15x15 cm2. Doses ranging from 20 to 450 cGy were used. The film was developed with the Kodak RP X-OMAT Model M6B automatic film processor. Film response was measured with the Vidar model VXR-16 scanner. Sensitometric curves were applied to the dose profiles measured with film at 5 cm in the virtual water phantom with field sizes of 2x2 and 10x10 cm2 and compared with ion chamber data. Scanditronix/Wellhofer OmniProTM IMRT software was used for the evaluation of the IMRT plan calculated by Eclipse treatment planning. Results: Investigation of the reproducibility and accuracy of the film responses, which depend mainly on the film processor, was carried out by irradiating one film nine times with doses of 20 to 450 cGy. A maximum standard deviation of 4.9% was found which decreased to 1.9% for doses between 20 and 200 cGy. The sensitometric curves for various field sizes at fixed depth showed a maximum difference of 4.2% between 2x2 and 15x15 cm2 at 5 cm depth with a dose of 450 cGy. The shallow depth tended to show a greater effect of field size responses than the deeper depths. The sensitometric curves for various depths at fixed field size showed slightly different film responses; the difference due to depth was within 1.8% for all field sizes studied. Both field size and depth effect were reduced when the doses were lower than 450 cGy. The difference was within 2.5% in the dose range from 20 to 300 cGy for all field sizes and

  13. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-10-01

    Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ˜15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ˜45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically

  14. A Bell-Curved Based Algorithm for Mixed Continuous and Discrete Structural Optimization

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Weber, Michael; Sobieszczanski-Sobieski, Jaroslaw

    2001-01-01

    An evolutionary based strategy utilizing two normal distributions to generate children is developed to solve mixed integer nonlinear programming problems. This Bell-Curve Based (BCB) evolutionary algorithm is similar in spirit to (mu + mu) evolutionary strategies and evolutionary programs but with fewer parameters to adjust and no mechanism for self adaptation. First, a new version of BCB to solve purely discrete optimization problems is described and its performance tested against a tabu search code for an actuator placement problem. Next, the performance of a combined version of discrete and continuous BCB is tested on 2-dimensional shape problems and on a minimum weight hub design problem. In the latter case the discrete portion is the choice of the underlying beam shape (I, triangular, circular, rectangular, or U).

  15. Optimization of municipal solid waste collection and transportation routes

    SciTech Connect

    Das, Swapan Bhattacharyya, Bidyut Kr.

    2015-09-15

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length.

  16. Fuzzy multiobjective models for optimal operation of a hydropower system

    NASA Astrophysics Data System (ADS)

    Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.

    2013-06-01

    Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.

  17. Extension of the hybrid linear programming method to optimize simultaneously the design and operation of groundwater utilization systems

    NASA Astrophysics Data System (ADS)

    Bostan, Mohamad; Hadi Afshar, Mohamad; Khadem, Majed

    2015-04-01

    This article proposes a hybrid linear programming (LP-LP) methodology for the simultaneous optimal design and operation of groundwater utilization systems. The proposed model is an extension of an earlier LP-LP model proposed by the authors for the optimal operation of a set of existing wells. The proposed model can be used to optimally determine the number, configuration and pumping rates of the operational wells out of potential wells with fixed locations to minimize the total cost of utilizing a two-dimensional confined aquifer under steady-state flow conditions. The model is able to take into account the well installation, piping and pump installation costs in addition to the operational costs, including the cost of energy and maintenance. The solution to the problem is defined by well locations and their pumping rates, minimizing the total cost while satisfying a downstream demand, lower/upper bound on the pumping rates, and lower/upper bound on the water level drawdown at the wells. A discretized version of the differential equation governing the flow is first embedded into the model formulation as a set of additional constraints. The resulting mixed-integer highly constrained nonlinear optimization problem is then decomposed into two subproblems with different sets of decision variables, one with a piezometric head and the other with the operational well locations and the corresponding pumping rates. The binary variables representing the well locations are approximated by a continuous variable leading to two LP subproblems. Having started with a random value for all decision variables, the two subproblems are solved iteratively until convergence is achieved. The performance and ability of the proposed method are tested against a hypothetical problem from the literature and the results are presented and compared with those obtained using a mixed-integer nonlinear programming method. The results show the efficiency and effectiveness of the proposed method for

  18. Combined optimization model for sustainable energization strategy

    NASA Astrophysics Data System (ADS)

    Abtew, Mohammed Seid

    Access to energy is a foundation to establish a positive impact on multiple aspects of human development. Both developed and developing countries have a common concern of achieving a sustainable energy supply to fuel economic growth and improve the quality of life with minimal environmental impacts. The Least Developing Countries (LDCs), however, have different economic, social, and energy systems. Prevalence of power outage, lack of access to electricity, structural dissimilarity between rural and urban regions, and traditional fuel dominance for cooking and the resultant health and environmental hazards are some of the distinguishing characteristics of these nations. Most energy planning models have been designed for developed countries' socio-economic demographics and have missed the opportunity to address special features of the poor countries. An improved mixed-integer programming energy-source optimization model is developed to address limitations associated with using current energy optimization models for LDCs, tackle development of the sustainable energization strategies, and ensure diversification and risk management provisions in the selected energy mix. The Model predicted a shift from traditional fuels reliant and weather vulnerable energy source mix to a least cost and reliable modern clean energy sources portfolio, a climb on the energy ladder, and scored multifaceted economic, social, and environmental benefits. At the same time, it represented a transition strategy that evolves to increasingly cleaner energy technologies with growth as opposed to an expensive solution that leapfrogs immediately to the cleanest possible, overreaching technologies.

  19. Analysis of green algal growth via dynamic model simulation and process optimization.

    PubMed

    Zhang, Dongda; Chanona, Ehecatl Antonio Del-Rio; Vassiliadis, Vassilios S; Tamburic, Bojan

    2015-10-01

    Chlamydomonas reinhardtii is a green microalga with the potential to generate sustainable biofuels for the future. Process simulation models are required to predict the impact of laboratory-scale growth experiments on future scaled-up system operation. Two dynamic models were constructed to simulate C. reinhardtii photo-autotrophic and photo-mixotrophic growth. A novel parameter estimation methodology was applied to determine the values of key parameters in both models, which were then verified using experimental results. The photo-mixotrophic model was used to accurately predict C. reinhardtii growth under different light intensities and in different photobioreactor configurations. The optimal dissolved CO2 concentration for C. reinhardtii photo-autotrophic growth was determined to be 0.0643 g·L(-1) , and the optimal light intensity for algal growth was 47 W·m(-2) . Sensitivity analysis revealed that the primary factor limiting C. reinhardtii growth was its intrinsic cell decay rate rather than light attenuation, regardless of the growth mode. The photo-mixotrophic growth model was also applied to predict the maximum biomass concentration at different flat-plate photobioreactors scales. A double-exposure-surface photobioreactor with a lower light intensity (less than 50 W·m(-2) ) was the best configuration for scaled-up C. reinhardtii cultivation. Three different short-term (30-day) C. reinhardtii photo-mixotrophic cultivation processes were simulated and optimised. The maximum biomass productivity was 0.053 g·L(-1) ·hr(-1) , achieved under continuous photobioreactor operation. The continuous stirred-tank reactor was the best operating mode, as it provides both the highest biomass productivity and lowest electricity cost of pump operation. PMID:25855209

  20. Analysis of green algal growth via dynamic model simulation and process optimization.

    PubMed

    Zhang, Dongda; Chanona, Ehecatl Antonio Del-Rio; Vassiliadis, Vassilios S; Tamburic, Bojan

    2015-10-01

    Chlamydomonas reinhardtii is a green microalga with the potential to generate sustainable biofuels for the future. Process simulation models are required to predict the impact of laboratory-scale growth experiments on future scaled-up system operation. Two dynamic models were constructed to simulate C. reinhardtii photo-autotrophic and photo-mixotrophic growth. A novel parameter estimation methodology was applied to determine the values of key parameters in both models, which were then verified using experimental results. The photo-mixotrophic model was used to accurately predict C. reinhardtii growth under different light intensities and in different photobioreactor configurations. The optimal dissolved CO2 concentration for C. reinhardtii photo-autotrophic growth was determined to be 0.0643 g·L(-1) , and the optimal light intensity for algal growth was 47 W·m(-2) . Sensitivity analysis revealed that the primary factor limiting C. reinhardtii growth was its intrinsic cell decay rate rather than light attenuation, regardless of the growth mode. The photo-mixotrophic growth model was also applied to predict the maximum biomass concentration at different flat-plate photobioreactors scales. A double-exposure-surface photobioreactor with a lower light intensity (less than 50 W·m(-2) ) was the best configuration for scaled-up C. reinhardtii cultivation. Three different short-term (30-day) C. reinhardtii photo-mixotrophic cultivation processes were simulated and optimised. The maximum biomass productivity was 0.053 g·L(-1) ·hr(-1) , achieved under continuous photobioreactor operation. The continuous stirred-tank reactor was the best operating mode, as it provides both the highest biomass productivity and lowest electricity cost of pump operation.