Sample records for mixed-integer programming approach

  1. Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach

    NASA Astrophysics Data System (ADS)

    Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin

    2014-09-01

    Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.

  2. Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Lee, Charles H.

    2012-01-01

    We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.

  3. An Integer Programming Model for Multi-Echelon Supply Chain Decision Problem Considering Inventories

    NASA Astrophysics Data System (ADS)

    Harahap, Amin; Mawengkang, Herman; Siswadi; Effendi, Syahril

    2018-01-01

    In this paper we address a problem that is of significance to the industry, namely the optimal decision of a multi-echelon supply chain and the associated inventory systems. By using the guaranteed service approach to model the multi-echelon inventory system, we develop a mixed integer; programming model to simultaneously optimize the transportation, inventory and network structure of a multi-echelon supply chain. To solve the model we develop a direct search approach using a strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points.

  4. An Improved Search Approach for Solving Non-Convex Mixed-Integer Non Linear Programming Problems

    NASA Astrophysics Data System (ADS)

    Sitopu, Joni Wilson; Mawengkang, Herman; Syafitri Lubis, Riri

    2018-01-01

    The nonlinear mathematical programming problem addressed in this paper has a structure characterized by a subset of variables restricted to assume discrete values, which are linear and separable from the continuous variables. The strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method, has been developed. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points. Successful implementation of these algorithms was achieved on various test problems.

  5. Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Linderoth

    2011-11-06

    the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.

  6. Item Pool Construction Using Mixed Integer Quadratic Programming (MIQP). GMAC® Research Report RR-14-01

    ERIC Educational Resources Information Center

    Han, Kyung T.; Rudner, Lawrence M.

    2014-01-01

    This study uses mixed integer quadratic programming (MIQP) to construct multiple highly equivalent item pools simultaneously, and compares the results from mixed integer programming (MIP). Three different MIP/MIQP models were implemented and evaluated using real CAT item pool data with 23 different content areas and a goal of equal information…

  7. Comparison of penalty functions on a penalty approach to mixed-integer optimization

    NASA Astrophysics Data System (ADS)

    Francisco, Rogério B.; Costa, M. Fernanda P.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.

    2016-06-01

    In this paper, we present a comparative study involving several penalty functions that can be used in a penalty approach for globally solving bound mixed-integer nonlinear programming (bMIMLP) problems. The penalty approach relies on a continuous reformulation of the bMINLP problem by adding a particular penalty term to the objective function. A penalty function based on the `erf' function is proposed. The continuous nonlinear optimization problems are sequentially solved by the population-based firefly algorithm. Preliminary numerical experiments are carried out in order to analyze the quality of the produced solutions, when compared with other penalty functions available in the literature.

  8. A two-stage mixed-integer fuzzy programming with interval-valued membership functions approach for flood-diversion planning.

    PubMed

    Wang, S; Huang, G H

    2013-03-15

    Flood disasters have been extremely severe in recent decades, and they account for about one third of all natural catastrophes throughout the world. In this study, a two-stage mixed-integer fuzzy programming with interval-valued membership functions (TMFP-IMF) approach is developed for flood-diversion planning under uncertainty. TMFP-IMF integrates the fuzzy flexible programming, two-stage stochastic programming, and integer programming within a general framework. A concept of interval-valued fuzzy membership function is introduced to address complexities of system uncertainties. TMFP-IMF can not only deal with uncertainties expressed as fuzzy sets and probability distributions, but also incorporate pre-regulated water-diversion policies directly into its optimization process. TMFP-IMF is applied to a hypothetical case study of flood-diversion planning for demonstrating its applicability. Results indicate that reasonable solutions can be generated for binary and continuous variables. A variety of flood-diversion and capacity-expansion schemes can be obtained under four scenarios, which enable decision makers (DMs) to identify the most desired one based on their perceptions and attitudes towards the objective-function value and constraints. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Mixed Integer Linear Programming model for Crude Palm Oil Supply Chain Planning

    NASA Astrophysics Data System (ADS)

    Sembiring, Pasukat; Mawengkang, Herman; Sadyadharma, Hendaru; Bu'ulolo, F.; Fajriana

    2018-01-01

    The production process of crude palm oil (CPO) can be defined as the milling process of raw materials, called fresh fruit bunch (FFB) into end products palm oil. The process usually through a series of steps producing and consuming intermediate products. The CPO milling industry considered in this paper does not have oil palm plantation, therefore the FFB are supplied by several public oil palm plantations. Due to the limited availability of FFB, then it is necessary to choose from which plantations would be appropriate. This paper proposes a mixed integer linear programming model the supply chain integrated problem, which include waste processing. The mathematical programming model is solved using neighborhood search approach.

  10. Comparison of two non-convex mixed-integer nonlinear programming algorithms applied to autoregressive moving average model structure and parameter estimation

    NASA Astrophysics Data System (ADS)

    Uilhoorn, F. E.

    2016-10-01

    In this article, the stochastic modelling approach proposed by Box and Jenkins is treated as a mixed-integer nonlinear programming (MINLP) problem solved with a mesh adaptive direct search and a real-coded genetic class of algorithms. The aim is to estimate the real-valued parameters and non-negative integer, correlated structure of stationary autoregressive moving average (ARMA) processes. The maximum likelihood function of the stationary ARMA process is embedded in Akaike's information criterion and the Bayesian information criterion, whereas the estimation procedure is based on Kalman filter recursions. The constraints imposed on the objective function enforce stability and invertibility. The best ARMA model is regarded as the global minimum of the non-convex MINLP problem. The robustness and computational performance of the MINLP solvers are compared with brute-force enumeration. Numerical experiments are done for existing time series and one new data set.

  11. Conjunctive management of multi-reservoir network system and groundwater system

    NASA Astrophysics Data System (ADS)

    Mani, A.; Tsai, F. T. C.

    2015-12-01

    This study develops a successive mixed-integer linear fractional programming (successive MILFP) method to conjunctively manage water resources provided by a multi-reservoir network system and a groundwater system. The conjunctive management objectives are to maximize groundwater withdrawals and maximize reservoir storages while satisfying water demands and raising groundwater level to a target level. The decision variables in the management problem are reservoir releases and spills, network flows and groundwater pumping rates. Using the fractional programming approach, the objective function is defined as a ratio of total groundwater withdraws to total reservoir storage deficits from the maximum storages. Maximizing this ratio function tends to maximizing groundwater use and minimizing surface water use. This study introduces a conditional constraint on groundwater head in order to sustain aquifers from overpumping: if current groundwater level is less than a target level, groundwater head at the next time period has to be raised; otherwise, it is allowed to decrease up to a certain extent. This conditional constraint is formulated into a set of mixed binary nonlinear constraints and results in a mixed-integer nonlinear fractional programming (MINLFP) problem. To solve the MINLFP problem, we first use the response matrix approach to linearize groundwater head with respect to pumping rate and reduce the problem to an MILFP problem. Using the Charnes-Cooper transformation, the MILFP is transformed to an equivalent mixed-integer linear programming (MILP). The solution of the MILP is successively updated by updating the response matrix in every iteration. The study uses IBM CPLEX to solve the MILP problem. The methodology is applied to water resources management in northern Louisiana. This conjunctive management approach aims to recover the declining groundwater level of the stressed Sparta aquifer by using surface water from a network of four reservoirs as an alternative source of supply.

  12. A Mixed Integer Linear Programming Approach to Electrical Stimulation Optimization Problems.

    PubMed

    Abouelseoud, Gehan; Abouelseoud, Yasmine; Shoukry, Amin; Ismail, Nour; Mekky, Jaidaa

    2018-02-01

    Electrical stimulation optimization is a challenging problem. Even when a single region is targeted for excitation, the problem remains a constrained multi-objective optimization problem. The constrained nature of the problem results from safety concerns while its multi-objectives originate from the requirement that non-targeted regions should remain unaffected. In this paper, we propose a mixed integer linear programming formulation that can successfully address the challenges facing this problem. Moreover, the proposed framework can conclusively check the feasibility of the stimulation goals. This helps researchers to avoid wasting time trying to achieve goals that are impossible under a chosen stimulation setup. The superiority of the proposed framework over alternative methods is demonstrated through simulation examples.

  13. A mixed integer program to model spatial wildfire behavior and suppression placement decisions

    Treesearch

    Erin J. Belval; Yu Wei; Michael Bevers

    2015-01-01

    Wildfire suppression combines multiple objectives and dynamic fire behavior to form a complex problem for decision makers. This paper presents a mixed integer program designed to explore integrating spatial fire behavior and suppression placement decisions into a mathematical programming framework. Fire behavior and suppression placement decisions are modeled using...

  14. Inexact fuzzy-stochastic mixed-integer programming approach for long-term planning of waste management--Part A: methodology.

    PubMed

    Guo, P; Huang, G H

    2009-01-01

    In this study, an inexact fuzzy chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is proposed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing inexact two-stage programming and mixed-integer linear programming techniques by incorporating uncertainties expressed as multiple uncertainties of intervals and dual probability distributions within a general optimization framework. The developed method can provide an effective linkage between the predefined environmental policies and the associated economic implications. Four special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it provides a linkage to predefined policies that have to be respected when a modeling effort is undertaken; secondly, it is useful for tackling uncertainties presented as intervals, probabilities, fuzzy sets and their incorporation; thirdly, it facilitates dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period, multi-level, and multi-option context; fourthly, the penalties are exercised with recourse against any infeasibility, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised solid waste-generation rates are violated. In a companion paper, the developed method is applied to a real case for the long-term planning of waste management in the City of Regina, Canada.

  15. A robust multi-objective global supplier selection model under currency fluctuation and price discount

    NASA Astrophysics Data System (ADS)

    Zarindast, Atousa; Seyed Hosseini, Seyed Mohamad; Pishvaee, Mir Saman

    2017-06-01

    Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss decision variables, respectively, by a two-stage stochastic planning model, a robust stochastic optimization planning model which integrates worst case scenario in modeling approach and finally by equivalent deterministic planning model. The experimental study is carried out to compare the performances of the three models. Robust model resulted in remarkable cost saving and it illustrated that to cope with such uncertainties, we should consider them in advance in our planning. In our case study different supplier were selected due to this uncertainties and since supplier selection is a strategic decision, it is crucial to consider these uncertainties in planning approach.

  16. Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm

    NASA Astrophysics Data System (ADS)

    Kania, Adhe; Sidarto, Kuntjoro Adji

    2016-02-01

    Many engineering and practical problem can be modeled by mixed integer nonlinear programming. This paper proposes to solve the problem with modified spiral dynamics inspired optimization method of Tamura and Yasuda. Four test cases have been examined, including problem in engineering and sport. This method succeeds in obtaining the optimal result in all test cases.

  17. PIPS-SBB: A Parallel Distributed-Memory Branch-and-Bound Algorithm for Stochastic Mixed-Integer Programs

    DOE PAGES

    Munguia, Lluis-Miquel; Oxberry, Geoffrey; Rajan, Deepak

    2016-05-01

    Stochastic mixed-integer programs (SMIPs) deal with optimization under uncertainty at many levels of the decision-making process. When solved as extensive formulation mixed- integer programs, problem instances can exceed available memory on a single workstation. In order to overcome this limitation, we present PIPS-SBB: a distributed-memory parallel stochastic MIP solver that takes advantage of parallelism at multiple levels of the optimization process. We also show promising results on the SIPLIB benchmark by combining methods known for accelerating Branch and Bound (B&B) methods with new ideas that leverage the structure of SMIPs. Finally, we expect the performance of PIPS-SBB to improve furthermore » as more functionality is added in the future.« less

  18. Puerto Rico water resources planning model program description

    USGS Publications Warehouse

    Moody, D.W.; Maddock, Thomas; Karlinger, M.R.; Lloyd, J.J.

    1973-01-01

    Because the use of the Mathematical Programming System -Extended (MPSX) to solve large linear and mixed integer programs requires the preparation of many input data cards, a matrix generator program to produce the MPSX input data from a much more limited set of data may expedite the use of the mixed integer programming optimization technique. The Model Definition and Control Program (MODCQP) is intended to assist a planner in preparing MPSX input data for the Puerto Rico Water Resources Planning Model. The model utilizes a mixed-integer mathematical program to identify a minimum present cost set of water resources projects (diversions, reservoirs, ground-water fields, desalinization plants, water treatment plants, and inter-basin transfers of water) which will meet a set of future water demands and to determine their sequence of construction. While MODCOP was specifically written to generate MPSX input data for the planning model described in this report, the program can be easily modified to reflect changes in the model's mathematical structure.

  19. A hybrid inventory management system respondingto regular demand and surge demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammad S. Roni; Mingzhou Jin; Sandra D. Eksioglu

    2014-06-01

    This paper proposes a hybrid policy for a stochastic inventory system facing regular demand and surge demand. The combination of two different demand patterns can be observed in many areas, such as healthcare inventory and humanitarian supply chain management. The surge demand has a lower arrival rate but higher demand volume per arrival. The solution approach proposed in this paper incorporates the level crossing method and mixed integer programming technique to optimize the hybrid inventory policy with both regular orders and emergency orders. The level crossing method is applied to obtain the equilibrium distributions of inventory levels under a givenmore » policy. The model is further transformed into a mixed integer program to identify an optimal hybrid policy. A sensitivity analysis is conducted to investigate the impact of parameters on the optimal inventory policy and minimum cost. Numerical results clearly show the benefit of using the proposed hybrid inventory model. The model and solution approach could help healthcare providers or humanitarian logistics providers in managing their emergency supplies in responding to surge demands.« less

  20. Menu-Driven Solver Of Linear-Programming Problems

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.; Ferencz, D.

    1992-01-01

    Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).

  1. ALPS: A Linear Program Solver

    NASA Technical Reports Server (NTRS)

    Ferencz, Donald C.; Viterna, Larry A.

    1991-01-01

    ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.

  2. Optimal Facility Location Tool for Logistics Battle Command (LBC)

    DTIC Science & Technology

    2015-08-01

    64 Appendix B. VBA Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Appendix C. Story...should city planners have located emergency service facilities so that all households (the demand) had equal access to coverage?” The critical...programming language called Visual Basic for Applications ( VBA ). CPLEX is a commercial solver for linear, integer, and mixed integer linear programming problems

  3. A Unified Approach to Optimization

    DTIC Science & Technology

    2014-10-02

    employee scheduling, ad placement, latin squares, disjunctions of linear systems, temporal modeling with interval variables, and traveling salesman problems ...integrating technologies. A key to integrated modeling is to formulate a problem with high-levelmetaconstraints, which are inspired by the “global... problem substructure to the solver. This contrasts with the atomistic modeling style of mixed integer programming (MIP) and satisfiability (SAT) solvers

  4. Fast scaffolding with small independent mixed integer programs

    PubMed Central

    Salmela, Leena; Mäkinen, Veli; Välimäki, Niko; Ylinen, Johannes; Ukkonen, Esko

    2011-01-01

    Motivation: Assembling genomes from short read data has become increasingly popular, but the problem remains computationally challenging especially for larger genomes. We study the scaffolding phase of sequence assembly where preassembled contigs are ordered based on mate pair data. Results: We present MIP Scaffolder that divides the scaffolding problem into smaller subproblems and solves these with mixed integer programming. The scaffolding problem can be represented as a graph and the biconnected components of this graph can be solved independently. We present a technique for restricting the size of these subproblems so that they can be solved accurately with mixed integer programming. We compare MIP Scaffolder to two state of the art methods, SOPRA and SSPACE. MIP Scaffolder is fast and produces better or as good scaffolds as its competitors on large genomes. Availability: The source code of MIP Scaffolder is freely available at http://www.cs.helsinki.fi/u/lmsalmel/mip-scaffolder/. Contact: leena.salmela@cs.helsinki.fi PMID:21998153

  5. Stochastic Semidefinite Programming: Applications and Algorithms

    DTIC Science & Technology

    2012-03-03

    doi: 2011/09/07 13:38:21 13 TOTAL: 1 Number of Papers published in non peer-reviewed journals: Baha M. Alzalg and K. A. Ariyawansa, Stochastic...symmetric programming over integers. International Conference on Scientific Computing, Las Vegas, Nevada, July 18--21, 2011. Baha M. Alzalg. On recent...Proceeding publications (other than abstracts): PaperReceived Baha M. Alzalg, K. A. Ariyawansa. Stochastic mixed integer second-order cone programming

  6. Alternative mathematical programming formulations for FSS synthesis

    NASA Technical Reports Server (NTRS)

    Reilly, C. H.; Mount-Campbell, C. A.; Gonsalvez, D. J. A.; Levis, C. A.

    1986-01-01

    A variety of mathematical programming models and two solution strategies are suggested for the problem of allocating orbital positions to (synthesizing) satellites in the Fixed Satellite Service. Mixed integer programming and almost linear programming formulations are presented in detail for each of two objectives: (1) positioning satellites as closely as possible to specified desired locations, and (2) minimizing the total length of the geostationary arc allocated to the satellites whose positions are to be determined. Computational results for mixed integer and almost linear programming models, with the objective of positioning satellites as closely as possible to their desired locations, are reported for three six-administration test problems and a thirteen-administration test problem.

  7. Should We Stop Developing Heuristics and Only Rely on Mixed Integer Programming Solvers in Automated Test Assembly? A Rejoinder to van der Linden and Li (2016).

    PubMed

    Chen, Pei-Hua

    2017-05-01

    This rejoinder responds to the commentary by van der Linden and Li entiled "Comment on Three-Element Item Selection Procedures for Multiple Forms Assembly: An Item Matching Approach" on the article "Three-Element Item Selection Procedures for Multiple Forms Assembly: An Item Matching Approach" by Chen. Van der Linden and Li made a strong statement calling for the cessation of test assembly heuristics development, and instead encouraged embracing mixed integer programming (MIP). This article points out the nondeterministic polynomial (NP)-hard nature of MIP problems and how solutions found using heuristics could be useful in an MIP context. Although van der Linden and Li provided several practical examples of test assembly supporting their view, the examples ignore the cases in which a slight change of constraints or item pool data might mean it would not be possible to obtain solutions as quickly as before. The article illustrates the use of heuristic solutions to improve both the performance of MIP solvers and the quality of solutions. Additional responses to the commentary by van der Linden and Li are included.

  8. Mixed Integer Linear Programming based machine learning approach identifies regulators of telomerase in yeast.

    PubMed

    Poos, Alexandra M; Maicher, André; Dieckmann, Anna K; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer

    2016-06-02

    Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Solution of the Generalized Noah's Ark Problem.

    PubMed

    Billionnet, Alain

    2013-01-01

    The phylogenetic diversity (PD) of a set of species is a measure of the evolutionary distance among the species in the collection, based on a phylogenetic tree. Such a tree is composed of a root, internal nodes, and leaves that correspond to the set of taxa under study. With each edge of the tree is associated a non-negative branch length (evolutionary distance). If a particular survival probability is associated with each taxon, the PD measure becomes the expected PD measure. In the Noah's Ark Problem (NAP) introduced by Weitzman (1998), these survival probabilities can be increased at some cost. The problem is to determine how best to allocate a limited amount of resources to maximize the expected PD of the considered species. It is easy to formulate the NAP as a (difficult) nonlinear 0-1 programming problem. The aim of this article is to show that a general version of the NAP (GNAP) can be solved simply and efficiently with any set of edge weights and any set of survival probabilities by using standard mixed-integer linear programming software. The crucial point to move from a nonlinear program in binary variables to a mixed-integer linear program, is to approximate the logarithmic function by the lower envelope of a set of tangents to the curve. Solving the obtained mixed-integer linear program provides not only a near-optimal solution but also an upper bound on the value of the optimal solution. We also applied this approach to a generalization of the nature reserve problem (GNRP) that consists of selecting a set of regions to be conserved so that the expected PD of the set of species present in these regions is maximized. In this case, the survival probabilities of different taxa are not independent of each other. Computational results are presented to illustrate potentialities of the approach. Near-optimal solutions with hypothetical phylogenetic trees comprising about 4000 taxa are obtained in a few seconds or minutes of computing time for the GNAP, and in about 30 min for the GNRP. In all the cases the average guarantee varies from 0% to 1.20%.

  10. A generalized interval fuzzy mixed integer programming model for a multimodal transportation problem under uncertainty

    NASA Astrophysics Data System (ADS)

    Tian, Wenli; Cao, Chengxuan

    2017-03-01

    A generalized interval fuzzy mixed integer programming model is proposed for the multimodal freight transportation problem under uncertainty, in which the optimal mode of transport and the optimal amount of each type of freight transported through each path need to be decided. For practical purposes, three mathematical methods, i.e. the interval ranking method, fuzzy linear programming method and linear weighted summation method, are applied to obtain equivalents of constraints and parameters, and then a fuzzy expected value model is presented. A heuristic algorithm based on a greedy criterion and the linear relaxation algorithm are designed to solve the model.

  11. A two-level approach to large mixed-integer programs with application to cogeneration in energy-efficient buildings

    DOE PAGES

    Lin, Fu; Leyffer, Sven; Munson, Todd

    2016-04-12

    We study a two-stage mixed-integer linear program (MILP) with more than 1 million binary variables in the second stage. We develop a two-level approach by constructing a semi-coarse model that coarsens with respect to variables and a coarse model that coarsens with respect to both variables and constraints. We coarsen binary variables by selecting a small number of prespecified on/off profiles. We aggregate constraints by partitioning them into groups and taking convex combination over each group. With an appropriate choice of coarsened profiles, the semi-coarse model is guaranteed to find a feasible solution of the original problem and hence providesmore » an upper bound on the optimal solution. We show that solving a sequence of coarse models converges to the same upper bound with proven finite steps. This is achieved by adding violated constraints to coarse models until all constraints in the semi-coarse model are satisfied. We demonstrate the effectiveness of our approach in cogeneration for buildings. Here, the coarsened models allow us to obtain good approximate solutions at a fraction of the time required by solving the original problem. Extensive numerical experiments show that the two-level approach scales to large problems that are beyond the capacity of state-of-the-art commercial MILP solvers.« less

  12. A two-level approach to large mixed-integer programs with application to cogeneration in energy-efficient buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fu; Leyffer, Sven; Munson, Todd

    We study a two-stage mixed-integer linear program (MILP) with more than 1 million binary variables in the second stage. We develop a two-level approach by constructing a semi-coarse model that coarsens with respect to variables and a coarse model that coarsens with respect to both variables and constraints. We coarsen binary variables by selecting a small number of prespecified on/off profiles. We aggregate constraints by partitioning them into groups and taking convex combination over each group. With an appropriate choice of coarsened profiles, the semi-coarse model is guaranteed to find a feasible solution of the original problem and hence providesmore » an upper bound on the optimal solution. We show that solving a sequence of coarse models converges to the same upper bound with proven finite steps. This is achieved by adding violated constraints to coarse models until all constraints in the semi-coarse model are satisfied. We demonstrate the effectiveness of our approach in cogeneration for buildings. Here, the coarsened models allow us to obtain good approximate solutions at a fraction of the time required by solving the original problem. Extensive numerical experiments show that the two-level approach scales to large problems that are beyond the capacity of state-of-the-art commercial MILP solvers.« less

  13. Item Selection for the Development of Parallel Forms from an IRT-Based Seed Test Using a Sampling and Classification Approach

    ERIC Educational Resources Information Center

    Chen, Pei-Hua; Chang, Hua-Hua; Wu, Haiyan

    2012-01-01

    Two sampling-and-classification-based procedures were developed for automated test assembly: the Cell Only and the Cell and Cube methods. A simulation study based on a 540-item bank was conducted to compare the performance of the procedures with the performance of a mixed-integer programming (MIP) method for assembling multiple parallel test…

  14. BBPH: Using progressive hedging within branch and bound to solve multi-stage stochastic mixed integer programs

    DOE PAGES

    Barnett, Jason; Watson, Jean -Paul; Woodruff, David L.

    2016-11-27

    Progressive hedging, though an effective heuristic for solving stochastic mixed integer programs (SMIPs), is not guaranteed to converge in this case. Here, we describe BBPH, a branch and bound algorithm that uses PH at each node in the search tree such that, given sufficient time, it will always converge to a globally optimal solution. Additionally, to providing a theoretically convergent “wrapper” for PH applied to SMIPs, computational results demonstrate that for some difficult problem instances branch and bound can find improved solutions after exploring only a few nodes.

  15. Engineering calculations for solving the orbital allotment problem

    NASA Technical Reports Server (NTRS)

    Reilly, C.; Walton, E. K.; Mount-Campbell, C.; Caldecott, R.; Aebker, E.; Mata, F.

    1988-01-01

    Four approaches for calculating downlink interferences for shaped-beam antennas are described. An investigation of alternative mixed-integer programming models for satellite synthesis is summarized. Plans for coordinating the various programs developed under this grant are outlined. Two procedures for ordering satellites to initialize the k-permutation algorithm are proposed. Results are presented for the k-permutation algorithms. Feasible solutions are found for 5 of the 6 problems considered. Finally, it is demonstrated that the k-permutation algorithm can be used to solve arc allotment problems.

  16. Optimal Diet Planning for Eczema Patient Using Integer Programming

    NASA Astrophysics Data System (ADS)

    Zhen Sheng, Low; Sufahani, Suliadi

    2018-04-01

    Human diet planning is conducted by choosing appropriate food items that fulfill the nutritional requirements into the diet formulation. This paper discusses the application of integer programming to build the mathematical model of diet planning for eczema patients. The model developed is used to solve the diet problem of eczema patients from young age group. The integer programming is a scientific approach to select suitable food items, which seeks to minimize the costs, under conditions of meeting desired nutrient quantities, avoiding food allergens and getting certain foods into the diet that brings relief to the eczema conditions. This paper illustrates that the integer programming approach able to produce the optimal and feasible solution to deal with the diet problem of eczema patient.

  17. A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao

    A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.

  18. Distributed mixed-integer fuzzy hierarchical programming for municipal solid waste management. Part I: System identification and methodology development.

    PubMed

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Chen, Xiujuan; Chen, Jiapei

    2017-03-01

    Due to the existence of complexities of heterogeneities, hierarchy, discreteness, and interactions in municipal solid waste management (MSWM) systems such as Beijing, China, a series of socio-economic and eco-environmental problems may emerge or worsen and result in irredeemable damages in the following decades. Meanwhile, existing studies, especially ones focusing on MSWM in Beijing, could hardly reflect these complexities in system simulations and provide reliable decision support for management practices. Thus, a framework of distributed mixed-integer fuzzy hierarchical programming (DMIFHP) is developed in this study for MSWM under these complexities. Beijing is selected as a representative case. The Beijing MSWM system is comprehensively analyzed in many aspects such as socio-economic conditions, natural conditions, spatial heterogeneities, treatment facilities, and system complexities, building a solid foundation for system simulation and optimization. Correspondingly, the MSWM system in Beijing is discretized as 235 grids to reflect spatial heterogeneity. A DMIFHP model which is a nonlinear programming problem is constructed to parameterize the Beijing MSWM system. To enable scientific solving of it, a solution algorithm is proposed based on coupling of fuzzy programming and mixed-integer linear programming. Innovations and advantages of the DMIFHP framework are discussed. The optimal MSWM schemes and mechanism revelations will be discussed in another companion paper due to length limitation.

  19. An Advanced Tabu Search Approach to Solving the Mixed Payload Airlift Load Planning Problem

    DTIC Science & Technology

    2009-03-01

    cargo, and the problem therefore becomes trivial. 3. Shoring: Some cargo requires shoring which is small planks of plywood stacked on top of each...Integer Programming Method In 1989, Kevin Ng examined the bin-packing MPALP for Canada’s C-130 aircraft (Ng 1992). His goal was to move a set of... leadership & ethics [ ] warfighting [ ] international security [ ] doctrine [X] other (specify): Military Airlift

  20. Classification of drug molecules considering their IC50 values using mixed-integer linear programming based hyper-boxes method.

    PubMed

    Armutlu, Pelin; Ozdemir, Muhittin E; Uney-Yuksektepe, Fadime; Kavakli, I Halil; Turkay, Metin

    2008-10-03

    A priori analysis of the activity of drugs on the target protein by computational approaches can be useful in narrowing down drug candidates for further experimental tests. Currently, there are a large number of computational methods that predict the activity of drugs on proteins. In this study, we approach the activity prediction problem as a classification problem and, we aim to improve the classification accuracy by introducing an algorithm that combines partial least squares regression with mixed-integer programming based hyper-boxes classification method, where drug molecules are classified as low active or high active regarding their binding activity (IC50 values) on target proteins. We also aim to determine the most significant molecular descriptors for the drug molecules. We first apply our approach by analyzing the activities of widely known inhibitor datasets including Acetylcholinesterase (ACHE), Benzodiazepine Receptor (BZR), Dihydrofolate Reductase (DHFR), Cyclooxygenase-2 (COX-2) with known IC50 values. The results at this stage proved that our approach consistently gives better classification accuracies compared to 63 other reported classification methods such as SVM, Naïve Bayes, where we were able to predict the experimentally determined IC50 values with a worst case accuracy of 96%. To further test applicability of this approach we first created dataset for Cytochrome P450 C17 inhibitors and then predicted their activities with 100% accuracy. Our results indicate that this approach can be utilized to predict the inhibitory effects of inhibitors based on their molecular descriptors. This approach will not only enhance drug discovery process, but also save time and resources committed.

  1. Comparison of Integer Programming (IP) Solvers for Automated Test Assembly (ATA). Research Report. ETS RR-15-05

    ERIC Educational Resources Information Center

    Donoghue, John R.

    2015-01-01

    At the heart of van der Linden's approach to automated test assembly (ATA) is a linear programming/integer programming (LP/IP) problem. A variety of IP solvers are available, ranging in cost from free to hundreds of thousands of dollars. In this paper, I compare several approaches to solving the underlying IP problem. These approaches range from…

  2. A Mixed Integer Efficient Global Optimization Framework: Applied to the Simultaneous Aircraft Design, Airline Allocation and Revenue Management Problem

    NASA Astrophysics Data System (ADS)

    Roy, Satadru

    Traditional approaches to design and optimize a new system, often, use a system-centric objective and do not take into consideration how the operator will use this new system alongside of other existing systems. This "hand-off" between the design of the new system and how the new system operates alongside other systems might lead to a sub-optimal performance with respect to the operator-level objective. In other words, the system that is optimal for its system-level objective might not be best for the system-of-systems level objective of the operator. Among the few available references that describe attempts to address this hand-off, most follow an MDO-motivated subspace decomposition approach of first designing a very good system and then provide this system to the operator who decides the best way to use this new system along with the existing systems. The motivating example in this dissertation presents one such similar problem that includes aircraft design, airline operations and revenue management "subspaces". The research here develops an approach that could simultaneously solve these subspaces posed as a monolithic optimization problem. The monolithic approach makes the problem a Mixed Integer/Discrete Non-Linear Programming (MINLP/MDNLP) problem, which are extremely difficult to solve. The presence of expensive, sophisticated engineering analyses further aggravate the problem. To tackle this challenge problem, the work here presents a new optimization framework that simultaneously solves the subspaces to capture the "synergism" in the problem that the previous decomposition approaches may not have exploited, addresses mixed-integer/discrete type design variables in an efficient manner, and accounts for computationally expensive analysis tools. The framework combines concepts from efficient global optimization, Kriging partial least squares, and gradient-based optimization. This approach then demonstrates its ability to solve an 11 route airline network problem consisting of 94 decision variables including 33 integer and 61 continuous type variables. This application problem is a representation of an interacting group of systems and provides key challenges to the optimization framework to solve the MINLP problem, as reflected by the presence of a moderate number of integer and continuous type design variables and expensive analysis tool. The result indicates simultaneously solving the subspaces could lead to significant improvement in the fleet-level objective of the airline when compared to the previously developed sequential subspace decomposition approach. In developing the approach to solve the MINLP/MDNLP challenge problem, several test problems provided the ability to explore performance of the framework. While solving these test problems, the framework showed that it could solve other MDNLP problems including categorically discrete variables, indicating that the framework could have broader application than the new aircraft design-fleet allocation-revenue management problem.

  3. Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs

    DOE PAGES

    Gade, Dinakar; Hackebeil, Gabriel; Ryan, Sarah M.; ...

    2016-04-02

    We present a method for computing lower bounds in the progressive hedging algorithm (PHA) for two-stage and multi-stage stochastic mixed-integer programs. Computing lower bounds in the PHA allows one to assess the quality of the solutions generated by the algorithm contemporaneously. The lower bounds can be computed in any iteration of the algorithm by using dual prices that are calculated during execution of the standard PHA. In conclusion, we report computational results on stochastic unit commitment and stochastic server location problem instances, and explore the relationship between key PHA parameters and the quality of the resulting lower bounds.

  4. Systematic process synthesis and design methods for cost effective waste minimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biegler, L.T.; Grossman, I.E.; Westerberg, A.W.

    We present progress on our work to develop synthesis methods to aid in the design of cost effective approaches to waste minimization. Work continues to combine the approaches of Douglas and coworkers and of Grossmann and coworkers on a hierarchical approach where bounding information allows it to fit within a mixed integer programming approach. We continue work on the synthesis of reactors and of flexible separation processes. In the first instance, we strive for methods we can use to reduce the production of potential pollutants, while in the second we look for ways to recover and recycle solvents.

  5. A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.

    PubMed

    Röhl, Annika; Bockmayr, Alexander

    2017-01-03

    Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement. Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways. Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.

  6. An integer programming model to optimize resource allocation for wildfire containment.

    Treesearch

    Geoffrey H. Donovan; Douglas B. Rideout

    2003-01-01

    Determining the specific mix of fire-fighting resources for a given fire is a necessary condition for identifying the minimum of the Cost Plus Net Value Change (C+NVC) function. Current wildland fire management models may not reliably do so. The problem of identifying the most efficient wildland fire organization is characterized mathematically using integer-...

  7. A mixed integer bi-level DEA model for bank branch performance evaluation by Stackelberg approach

    NASA Astrophysics Data System (ADS)

    Shafiee, Morteza; Lotfi, Farhad Hosseinzadeh; Saleh, Hilda; Ghaderi, Mehdi

    2016-03-01

    One of the most complicated decision making problems for managers is the evaluation of bank performance, which involves various criteria. There are many studies about bank efficiency evaluation by network DEA in the literature review. These studies do not focus on multi-level network. Wu (Eur J Oper Res 207:856-864, 2010) proposed a bi-level structure for cost efficiency at the first time. In this model, multi-level programming and cost efficiency were used. He used a nonlinear programming to solve the model. In this paper, we have focused on multi-level structure and proposed a bi-level DEA model. We then used a liner programming to solve our model. In other hand, we significantly improved the way to achieve the optimum solution in comparison with the work by Wu (2010) by converting the NP-hard nonlinear programing into a mixed integer linear programming. This study uses a bi-level programming data envelopment analysis model that embodies internal structure with Stackelberg-game relationships to evaluate the performance of banking chain. The perspective of decentralized decisions is taken in this paper to cope with complex interactions in banking chain. The results derived from bi-level programming DEA can provide valuable insights and detailed information for managers to help them evaluate the performance of the banking chain as a whole using Stackelberg-game relationships. Finally, this model was applied in the Iranian bank to evaluate cost efficiency.

  8. The use of integer programming to select bulls across breeding companies with volume price discounts.

    PubMed

    McConnel, M B; Galligan, D T

    2004-10-01

    Optimization programs are currently used to aid in the selection of bulls to be used in herd breeding programs. While these programs offer a systematic approach to the problem of semen selection, they ignore the impact of volume discounts. Volume discounts are discounts that vary depending on the number of straws purchased. The dynamic nature of volume discounts means that, in order to be adequately accounted for, they must be considered in the optimization routine. Failing to do this creates a missed economic opportunity because the potential benefits of optimally selecting and combining breeding company discount opportunities are not captured. To address these issues, an integer program was created which used binary decision variables to incorporate the effects of quantity discounts into the optimization program. A consistent set of trait criteria was used to select a group of bulls from 3 sample breeding companies. Three different selection programs were used to select the bulls, 2 traditional methods and the integer method. After the discounts were applied using each method, the integer program resulted in the lowest cost portfolio of bulls. A sensitivity analysis showed that the integer program also resulted in a low cost portfolio when the genetic trait goals were changed to be more or less stringent. In the sample application, a net benefit of the new approach over the traditional approaches was a 12.3 to 20.0% savings in semen cost.

  9. Synchronic interval Gaussian mixed-integer programming for air quality management.

    PubMed

    Cheng, Guanhui; Huang, Guohe Gordon; Dong, Cong

    2015-12-15

    To reveal the synchronism of interval uncertainties, the tradeoff between system optimality and security, the discreteness of facility-expansion options, the uncertainty of pollutant dispersion processes, and the seasonality of wind features in air quality management (AQM) systems, a synchronic interval Gaussian mixed-integer programming (SIGMIP) approach is proposed in this study. A robust interval Gaussian dispersion model is developed for approaching the pollutant dispersion process under interval uncertainties and seasonal variations. The reflection of synchronic effects of interval uncertainties in the programming objective is enabled through introducing interval functions. The proposition of constraint violation degrees helps quantify the tradeoff between system optimality and constraint violation under interval uncertainties. The overall optimality of system profits of an SIGMIP model is achieved based on the definition of an integrally optimal solution. Integer variables in the SIGMIP model are resolved by the existing cutting-plane method. Combining these efforts leads to an effective algorithm for the SIGMIP model. An application to an AQM problem in a region in Shandong Province, China, reveals that the proposed SIGMIP model can facilitate identifying the desired scheme for AQM. The enhancement of the robustness of optimization exercises may be helpful for increasing the reliability of suggested schemes for AQM under these complexities. The interrelated tradeoffs among control measures, emission sources, flow processes, receptors, influencing factors, and economic and environmental goals are effectively balanced. Interests of many stakeholders are reasonably coordinated. The harmony between economic development and air quality control is enabled. Results also indicate that the constraint violation degree is effective at reflecting the compromise relationship between constraint-violation risks and system optimality under interval uncertainties. This can help decision makers mitigate potential risks, e.g. insufficiency of pollutant treatment capabilities, exceedance of air quality standards, deficiency of pollution control fund, or imbalance of economic or environmental stress, in the process of guiding AQM. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Mixed Integer Programming Model and Incremental Optimization for Delivery and Storage Planning Using Truck Terminals

    NASA Astrophysics Data System (ADS)

    Sakakibara, Kazutoshi; Tian, Yajie; Nishikawa, Ikuko

    We discuss the planning of transportation by trucks over a multi-day period. Each truck collects loads from suppliers and delivers them to assembly plants or a truck terminal. By exploiting the truck terminal as a temporal storage, we aim to increase the load ratio of each truck and to minimize the lead time for transportation. In this paper, we show a mixed integer programming model which represents each product explicitly, and discuss the decomposition of the problem into a problem of delivery and storage, and a problem of vehicle routing. Based on this model, we propose a relax-and-fix type heuristic in which decision variables are fixed one by one by mathematical programming techniques such as branch-and-bound methods.

  11. Integration of progressive hedging and dual decomposition in stochastic integer programs

    DOE PAGES

    Watson, Jean -Paul; Guo, Ge; Hackebeil, Gabriel; ...

    2015-04-07

    We present a method for integrating the Progressive Hedging (PH) algorithm and the Dual Decomposition (DD) algorithm of Carøe and Schultz for stochastic mixed-integer programs. Based on the correspondence between lower bounds obtained with PH and DD, a method to transform weights from PH to Lagrange multipliers in DD is found. Fast progress in early iterations of PH speeds up convergence of DD to an exact solution. As a result, we report computational results on server location and unit commitment instances.

  12. The Neighborhood Covering Heuristic (NCH) Approach for the General Mixed Integer Programming Problem

    DTIC Science & Technology

    2004-02-02

    5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Creative Action LLC 680 N. Portage Path Akron, OH 44303; The...University of Akron Department of Theoretical and Applied Mathematics Akron OH 44325-4002 8. PERFORMING ORGANIZATION REPORT NUMBER SF309 9...algorithm is naturally adaptable to a parallel architechture . In particular, under NCH, one could parcel out pieces of the problem to many processors

  13. Aerospace Applications of Integer and Combinatorial Optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  14. Aerospace applications on integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem. for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  15. Incorporation of Fixed Installation Costs into Optimization of Groundwater Remediation with a New Efficient Surrogate Nonlinear Mixed Integer Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Shoemaker, Christine; Wan, Ying

    2016-04-01

    Optimization of nonlinear water resources management issues which have a mixture of fixed (e.g. construction cost for a well) and variable (e.g. cost per gallon of water pumped) costs has been not well addressed because prior algorithms for the resulting nonlinear mixed integer problems have required many groundwater simulations (with different configurations of decision variable), especially when the solution space is multimodal. In particular heuristic methods like genetic algorithms have often been used in the water resources area, but they require so many groundwater simulations that only small systems have been solved. Hence there is a need to have a method that reduces the number of expensive groundwater simulations. A recently published algorithm for nonlinear mixed integer programming using surrogates was shown in this study to greatly reduce the computational effort for obtaining accurate answers to problems involving fixed costs for well construction as well as variable costs for pumping because of a substantial reduction in the number of groundwater simulations required to obtain an accurate answer. Results are presented for a US EPA hazardous waste site. The nonlinear mixed integer surrogate algorithm is general and can be used on other problems arising in hydrology with open source codes in Matlab and python ("pySOT" in Bitbucket).

  16. Path finding methods accounting for stoichiometry in metabolic networks

    PubMed Central

    2011-01-01

    Graph-based methods have been widely used for the analysis of biological networks. Their application to metabolic networks has been much discussed, in particular noting that an important weakness in such methods is that reaction stoichiometry is neglected. In this study, we show that reaction stoichiometry can be incorporated into path-finding approaches via mixed-integer linear programming. This major advance at the modeling level results in improved prediction of topological and functional properties in metabolic networks. PMID:21619601

  17. IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1994-01-01

    IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.

  18. Materiel Acquisition Management of U.S. Army Attack Helicopters

    DTIC Science & Technology

    1989-06-02

    used to evaluate the existing helicopter program periodically in order to determine utility in reference to all evaluation criteria. Defintion of... mixed integer linear programming model, the Phoenix model has demonstrated the potential to assist in the analysis of strategic and operational issues in...Fleet Max i of Aircraft per Fleet Programmed Buys .. -- Technology Unit Production mix Retirement Start-up ROTIE Flying Hour Aviation Overheadl I Aviation

  19. A mathematical model for municipal solid waste management - A case study in Hong Kong.

    PubMed

    Lee, C K M; Yeung, C L; Xiong, Z R; Chung, S H

    2016-12-01

    With the booming economy and increasing population, the accumulation of waste has become an increasingly arduous issue and has aroused the attention from all sectors of society. Hong Kong which has a relative high daily per capita domestic waste generation rate in Asia has not yet established a comprehensive waste management system. This paper conducts a review of waste management approaches and models. Researchers highlight that mathematical models provide useful information for decision-makers to select appropriate choices and save cost. It is suggested to consider municipal solid waste management in a holistic view and improve the utilization of waste management infrastructures. A mathematical model which adopts integer linear programming and mixed integer programming has been developed for Hong Kong municipal solid waste management. A sensitivity analysis was carried out to simulate different scenarios which provide decision-makers important information for establishing Hong Kong waste management system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A new mathematical modeling for pure parsimony haplotyping problem.

    PubMed

    Feizabadi, R; Bagherian, M; Vaziri, H R; Salahi, M

    2016-11-01

    Pure parsimony haplotyping (PPH) problem is important in bioinformatics because rational haplotyping inference plays important roles in analysis of genetic data, mapping complex genetic diseases such as Alzheimer's disease, heart disorders and etc. Haplotypes and genotypes are m-length sequences. Although several integer programing models have already been presented for PPH problem, its NP-hardness characteristic resulted in ineffectiveness of those models facing the real instances especially instances with many heterozygous sites. In this paper, we assign a corresponding number to each haplotype and genotype and based on those numbers, we set a mixed integer programing model. Using numbers, instead of sequences, would lead to less complexity of the new model in comparison with previous models in a way that there are neither constraints nor variables corresponding to heterozygous nucleotide sites in it. Experimental results approve the efficiency of the new model in producing better solution in comparison to two state-of-the art haplotyping approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Fish Processed Production Planning Using Integer Stochastic Programming Model

    NASA Astrophysics Data System (ADS)

    Firmansyah, Mawengkang, Herman

    2011-06-01

    Fish and its processed products are the most affordable source of animal protein in the diet of most people in Indonesia. The goal in production planning is to meet customer demand over a fixed time horizon divided into planning periods by optimizing the trade-off between economic objectives such as production cost and customer satisfaction level. The major decisions are production and inventory levels for each product and the number of workforce in each planning period. In this paper we consider the management of small scale traditional business at North Sumatera Province which performs processing fish into several local seafood products. The inherent uncertainty of data (e.g. demand, fish availability), together with the sequential evolution of data over time leads the production planning problem to a nonlinear mixed-integer stochastic programming model. We use scenario generation based approach and feasible neighborhood search for solving the model. The results which show the amount of each fish processed product and the number of workforce needed in each horizon planning are presented.

  2. A Mixed-Integer Linear Programming Problem which is Efficiently Solvable.

    DTIC Science & Technology

    1987-10-01

    INTEGER LINEAR PROGRAMMING PROBLEM WHICH IS EFFICIENTLY SOLVABLE 12. PERSONAL AUTHOR(S) Leiserson, Charles, and Saxe, James B. 13a. TYPE OF REPORT j13b TIME...ger prongramn rg versions or the problem is not ac’hievable in genieral for sparse inistancves of’ P rolem(r Mi. Th le remrai nder or thris paper is...rClazes c:oIh edge (i,I*) by comlpli urg +- rnirr(z 3, ,x + a,j). A sirnI) le analysis (11 vto Nei [131 indicates why whe Iellinan-Ford algorithm works

  3. Solving the Water Jugs Problem by an Integer Sequence Approach

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2012-01-01

    In this article, we present an integer sequence approach to solve the classic water jugs problem. The solution steps can be obtained easily by additions and subtractions only, which is suitable for manual calculation or programming by computer. This approach can be introduced to secondary and undergraduate students, and also to teachers and…

  4. An interactive approach based on a discrete differential evolution algorithm for a class of integer bilevel programming problems

    NASA Astrophysics Data System (ADS)

    Li, Hong; Zhang, Li; Jiao, Yong-Chang

    2016-07-01

    This paper presents an interactive approach based on a discrete differential evolution algorithm to solve a class of integer bilevel programming problems, in which integer decision variables are controlled by an upper-level decision maker and real-value or continuous decision variables are controlled by a lower-level decision maker. Using the Karush--Kuhn-Tucker optimality conditions in the lower-level programming, the original discrete bilevel formulation can be converted into a discrete single-level nonlinear programming problem with the complementarity constraints, and then the smoothing technique is applied to deal with the complementarity constraints. Finally, a discrete single-level nonlinear programming problem is obtained, and solved by an interactive approach. In each iteration, for each given upper-level discrete variable, a system of nonlinear equations including the lower-level variables and Lagrange multipliers is solved first, and then a discrete nonlinear programming problem only with inequality constraints is handled by using a discrete differential evolution algorithm. Simulation results show the effectiveness of the proposed approach.

  5. Large-Scale Bi-Level Strain Design Approaches and Mixed-Integer Programming Solution Techniques

    PubMed Central

    Kim, Joonhoon; Reed, Jennifer L.; Maravelias, Christos T.

    2011-01-01

    The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic engineering. PMID:21949695

  6. Large-scale bi-level strain design approaches and mixed-integer programming solution techniques.

    PubMed

    Kim, Joonhoon; Reed, Jennifer L; Maravelias, Christos T

    2011-01-01

    The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic engineering.

  7. A solution procedure for mixed-integer nonlinear programming formulation of supply chain planning with quantity discounts under demand uncertainty

    NASA Astrophysics Data System (ADS)

    Yin, Sisi; Nishi, Tatsushi

    2014-11-01

    Quantity discount policy is decision-making for trade-off prices between suppliers and manufacturers while production is changeable due to demand fluctuations in a real market. In this paper, quantity discount models which consider selection of contract suppliers, production quantity and inventory simultaneously are addressed. The supply chain planning problem with quantity discounts under demand uncertainty is formulated as a mixed-integer nonlinear programming problem (MINLP) with integral terms. We apply an outer-approximation method to solve MINLP problems. In order to improve the efficiency of the proposed method, the problem is reformulated as a stochastic model replacing the integral terms by using a normalisation technique. We present numerical examples to demonstrate the efficiency of the proposed method.

  8. Advances in mixed-integer programming methods for chemical production scheduling.

    PubMed

    Velez, Sara; Maravelias, Christos T

    2014-01-01

    The goal of this paper is to critically review advances in the area of chemical production scheduling over the past three decades and then present two recently proposed solution methods that have led to dramatic computational enhancements. First, we present a general framework and problem classification and discuss modeling and solution methods with an emphasis on mixed-integer programming (MIP) techniques. Second, we present two solution methods: (a) a constraint propagation algorithm that allows us to compute parameters that are then used to tighten MIP scheduling models and (b) a reformulation that introduces new variables, thus leading to effective branching. We also present computational results and an example illustrating how these methods are implemented, as well as the resulting enhancements. We close with a discussion of open research challenges and future research directions.

  9. GLOBAL SOLUTIONS TO FOLDED CONCAVE PENALIZED NONCONVEX LEARNING

    PubMed Central

    Liu, Hongcheng; Yao, Tao; Li, Runze

    2015-01-01

    This paper is concerned with solving nonconvex learning problems with folded concave penalty. Despite that their global solutions entail desirable statistical properties, there lack optimization techniques that guarantee global optimality in a general setting. In this paper, we show that a class of nonconvex learning problems are equivalent to general quadratic programs. This equivalence facilitates us in developing mixed integer linear programming reformulations, which admit finite algorithms that find a provably global optimal solution. We refer to this reformulation-based technique as the mixed integer programming-based global optimization (MIPGO). To our knowledge, this is the first global optimization scheme with a theoretical guarantee for folded concave penalized nonconvex learning with the SCAD penalty (Fan and Li, 2001) and the MCP penalty (Zhang, 2010). Numerical results indicate a significant outperformance of MIPGO over the state-of-the-art solution scheme, local linear approximation, and other alternative solution techniques in literature in terms of solution quality. PMID:27141126

  10. Mixed integer nonlinear programming model of wireless pricing scheme with QoS attribute of bandwidth and end-to-end delay

    NASA Astrophysics Data System (ADS)

    Irmeilyana, Puspita, Fitri Maya; Indrawati

    2016-02-01

    The pricing for wireless networks is developed by considering linearity factors, elasticity price and price factors. Mixed Integer Nonlinear Programming of wireless pricing model is proposed as the nonlinear programming problem that can be solved optimally using LINGO 13.0. The solutions are expected to give some information about the connections between the acceptance factor and the price. Previous model worked on the model that focuses on bandwidth as the QoS attribute. The models attempt to maximize the total price for a connection based on QoS parameter. The QoS attributes used will be the bandwidth and the end to end delay that affect the traffic. The maximum goal to maximum price is achieved when the provider determine the requirement for the increment or decrement of price change due to QoS change and amount of QoS value.

  11. Mixed-Integer Conic Linear Programming: Challenges and Perspectives

    DTIC Science & Technology

    2013-10-01

    The novel DCCs for MISOCO may be used in branch- and-cut algorithms when solving MISOCO problems. The experimental software CICLO was developed to...perform limited, but rigorous computational experiments. The CICLO solver utilizes continuous SOCO solvers, MOSEK, CPLES or SeDuMi, builds on the open...submitted Fall 2013. Software: 1. CICLO : Integer conic linear optimization package. Authors: J.C. Góez, T.K. Ralphs, Y. Fu, and T. Terlaky

  12. Dynamic analysis for solid waste management systems: an inexact multistage integer programming approach.

    PubMed

    Li, Yongping; Huang, Guohe

    2009-03-01

    In this study, a dynamic analysis approach based on an inexact multistage integer programming (IMIP) model is developed for supporting municipal solid waste (MSW) management under uncertainty. Techniques of interval-parameter programming and multistage stochastic programming are incorporated within an integer-programming framework. The developed IMIP can deal with uncertainties expressed as probability distributions and interval numbers, and can reflect the dynamics in terms of decisions for waste-flow allocation and facility-capacity expansion over a multistage context. Moreover, the IMIP can be used for analyzing various policy scenarios that are associated with different levels of economic consequences. The developed method is applied to a case study of long-term waste-management planning. The results indicate that reasonable solutions have been generated for binary and continuous variables. They can help generate desired decisions of system-capacity expansion and waste-flow allocation with a minimized system cost and maximized system reliability.

  13. An Integer Programming Approach to School District Financial Management.

    ERIC Educational Resources Information Center

    Dembowski, Frederick L.

    Because of the nature of school district cash flows, there are opportunities for investing surplus cash and the necessity to borrow cash in deficit periods. The term structure of interest rates makes the manual determination of the optimal financial package impossible. In this research, an integer programming model of this cash management process…

  14. The Capability Portfolio Analysis Tool (CPAT): A Mixed Integer Linear Programming Formulation for Fleet Modernization Analysis (Version 2.0.2).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waddell, Lucas; Muldoon, Frank; Henry, Stephen Michael

    In order to effectively plan the management and modernization of their large and diverse fleets of vehicles, Program Executive Office Ground Combat Systems (PEO GCS) and Program Executive Office Combat Support and Combat Service Support (PEO CS&CSS) commis- sioned the development of a large-scale portfolio planning optimization tool. This software, the Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally prioritizes the modernization or replacement of vehicles within the fleet - respecting numerous business rules associated with fleet structure, budgets, industrial base, research and testing, etc., while maximizing overall fleet performance through time. This paper contains a thor-more » ough documentation of the terminology, parameters, variables, and constraints that comprise the fleet management mixed integer linear programming (MILP) mathematical formulation. This paper, which is an update to the original CPAT formulation document published in 2015 (SAND2015-3487), covers the formulation of important new CPAT features.« less

  15. TORC3: Token-ring clearing heuristic for currency circulation

    NASA Astrophysics Data System (ADS)

    Humes, Carlos, Jr.; Lauretto, Marcelo S.; Nakano, Fábio; Pereira, Carlos A. B.; Rafare, Guilherme F. G.; Stern, Julio Michael

    2012-10-01

    Clearing algorithms are at the core of modern payment systems, facilitating the settling of multilateral credit messages with (near) minimum transfers of currency. Traditional clearing procedures use batch processing based on MILP - mixed-integer linear programming algorithms. The MILP approach demands intensive computational resources; moreover, it is also vulnerable to operational risks generated by possible defaults during the inter-batch period. This paper presents TORC3 - the Token-Ring Clearing Algorithm for Currency Circulation. In contrast to the MILP approach, TORC3 is a real time heuristic procedure, demanding modest computational resources, and able to completely shield the clearing operation against the participating agents' risk of default.

  16. Aerospace applications of integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in solving combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on a large space structure and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  17. Solving the water jugs problem by an integer sequence approach

    NASA Astrophysics Data System (ADS)

    Man, Yiu-Kwong

    2012-01-01

    In this article, we present an integer sequence approach to solve the classic water jugs problem. The solution steps can be obtained easily by additions and subtractions only, which is suitable for manual calculation or programming by computer. This approach can be introduced to secondary and undergraduate students, and also to teachers and lecturers involved in teaching mathematical problem solving, recreational mathematics, or elementary number theory.

  18. A hybrid approach to modeling and control of vehicle height for electronically controlled air suspension

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Cai, Yingfeng; Wang, Shaohua; Liu, Yanling; Chen, Long

    2016-01-01

    The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.

  19. Multiple object tracking using the shortest path faster association algorithm.

    PubMed

    Xi, Zhenghao; Liu, Heping; Liu, Huaping; Yang, Bin

    2014-01-01

    To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time.

  20. Multiple Object Tracking Using the Shortest Path Faster Association Algorithm

    PubMed Central

    Liu, Heping; Liu, Huaping; Yang, Bin

    2014-01-01

    To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time. PMID:25215322

  1. Automated Simultaneous Assembly of Multistage Testlets for a High-Stakes Licensing Examination

    ERIC Educational Resources Information Center

    Breithaupt, Krista; Hare, Donovan R.

    2007-01-01

    Many challenges exist for high-stakes testing programs offering continuous computerized administration. The automated assembly of test questions to exactly meet content and other requirements, provide uniformity, and control item exposure can be modeled and solved by mixed-integer programming (MIP) methods. A case study of the computerized…

  2. A Polyhedral Outer-approximation, Dynamic-discretization optimization solver, 1.x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, Rusell; Nagarajan, Harsha; Sundar, Kaarthik

    2017-09-25

    In this software, we implement an adaptive, multivariate partitioning algorithm for solving mixed-integer nonlinear programs (MINLP) to global optimality. The algorithm combines ideas that exploit the structure of convex relaxations to MINLPs and bound tightening procedures

  3. Optimal traffic resource allocation and management.

    DOT National Transportation Integrated Search

    2010-05-01

    "In this paper, we address the problem of determining the patrol routes of state troopers for maximum coverage of : highway spots with high frequencies of crashes (hot spots). We develop a mixed integer linear programming model : for this problem und...

  4. JPLEX: Java Simplex Implementation with Branch-and-Bound Search for Automated Test Assembly

    ERIC Educational Resources Information Center

    Park, Ryoungsun; Kim, Jiseon; Dodd, Barbara G.; Chung, Hyewon

    2011-01-01

    JPLEX, short for Java simPLEX, is an automated test assembly (ATA) program. It is a mixed integer linear programming (MILP) solver written in Java. It reads in a configuration file, solves the minimization problem, and produces an output file for postprocessing. It implements the simplex algorithm to create a fully relaxed solution and…

  5. Radar Resource Management in a Dense Target Environment

    DTIC Science & Technology

    2014-03-01

    problem faced by networked MFRs . While relaxing our assumptions concerning information gain presents numerous challenges worth exploring, future research...linear programming MFR multifunction phased array radar MILP mixed integer linear programming NATO North Atlantic Treaty Organization PDF probability...1: INTRODUCTION Multifunction phased array radars ( MFRs ) are capable of performing various tasks in rapid succession. The performance of target search

  6. Center for Parallel Optimization

    DTIC Science & Technology

    1993-09-30

    BOLLING AFB DC 20332-0001 _ii _ 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE APPROVED FOR PUBLIC RELEASE...Machines Corporation, March 16-19, 1993 , A Branch- and-Bound Method for Mixed Integer Programming on the CM-.5 "* Dr. Roberto Musmanno, University of

  7. Logic integer programming models for signaling networks.

    PubMed

    Haus, Utz-Uwe; Niermann, Kathrin; Truemper, Klaus; Weismantel, Robert

    2009-05-01

    We propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models. The arising logic statements and integer programs are analyzed and can be solved with standard software. For a restricted class of problems the logic models reduce to a polynomial-time solvable satisfiability algorithm. Additionally, a more dynamic model enables enumeration of possible time resolutions in poly-logarithmic time. Computational experiments are included.

  8. A logic-based method for integer programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooker, J.; Natraj, N.R.

    1994-12-31

    We propose a logic-based approach to integer programming that replaces traditional branch-and-cut techniques with logical analogs. Integer variables are regarded as atomic propositions. The constraints give rise to logical formulas that are analogous to separating cuts. No continuous relaxation is used. Rather, the cuts are selected so that they can be easily solved as a discrete relaxation. (In fact, defining a relaxation and generating cuts are best seen as the same problem.) We experiment with relaxations that have a k-tree structure and can be solved by nonserial dynamic programming. We also present logic-based analogs of facet-defining cuts, Chv{acute a}tal rank,more » etc. We conclude with some preliminary computational results.« less

  9. Integer programming for improving radiotherapy treatment efficiency.

    PubMed

    Lv, Ming; Li, Yi; Kou, Bo; Zhou, Zhili

    2017-01-01

    Patients received by radiotherapy departments are diverse and may be diagnosed with different cancers. Therefore, they need different radiotherapy treatment plans and thus have different needs for medical resources. This research aims to explore the best method of scheduling the admission of patients receiving radiotherapy so as to reduce patient loss and maximize the usage efficiency of service resources. A mix integer programming (MIP) model integrated with special features of radiotherapy is constructed. The data used here is based on the historical data collected and we propose an exact method to solve the MIP model. Compared with the traditional First Come First Served (FCFS) method, the new method has boosted patient admission as well as the usage of linear accelerators (LINAC) and beds. The integer programming model can be used to describe the complex problem of scheduling radio-receiving patients, to identify the bottleneck resources that hinder patient admission, and to obtain the optimal LINAC-bed radio under the current data conditions. Different management strategies can be implemented by adjusting the settings of the MIP model. The computational results can serve as a reference for the policy-makers in decision making.

  10. Operations research applications in nuclear energy

    NASA Astrophysics Data System (ADS)

    Johnson, Benjamin Lloyd

    This dissertation consists of three papers; the first is published in Annals of Operations Research, the second is nearing submission to INFORMS Journal on Computing, and the third is the predecessor of a paper nearing submission to Progress in Nuclear Energy. We apply operations research techniques to nuclear waste disposal and nuclear safeguards. Although these fields are different, they allow us to showcase some benefits of using operations research techniques to enhance nuclear energy applications. The first paper, "Optimizing High-Level Nuclear Waste Disposal within a Deep Geologic Repository," presents a mixed-integer programming model that determines where to place high-level nuclear waste packages in a deep geologic repository to minimize heat load concentration. We develop a heuristic that increases the size of solvable model instances. The second paper, "Optimally Configuring a Measurement System to Detect Diversions from a Nuclear Fuel Cycle," introduces a simulation-optimization algorithm and an integer-programming model to find the best, or near-best, resource-limited nuclear fuel cycle measurement system with a high degree of confidence. Given location-dependent measurement method precisions, we (i) optimize the configuration of n methods at n locations of a hypothetical nuclear fuel cycle facility, (ii) find the most important location at which to improve method precision, and (iii) determine the effect of measurement frequency on near-optimal configurations and objective values. Our results correspond to existing outcomes but we obtain them at least an order of magnitude faster. The third paper, "Optimizing Nuclear Material Control and Accountability Measurement Systems," extends the integer program from the second paper to locate measurement methods in a larger, hypothetical nuclear fuel cycle scenario given fixed purchase and utilization budgets. This paper also presents two mixed-integer quadratic programming models to increase the precision of existing methods given a fixed improvement budget and to reduce the measurement uncertainty in the system while limiting improvement costs. We quickly obtain similar or better solutions compared to several intuitive analyses that take much longer to perform.

  11. Robust automated mass spectra interpretation and chemical formula calculation using mixed integer linear programming.

    PubMed

    Baran, Richard; Northen, Trent R

    2013-10-15

    Untargeted metabolite profiling using liquid chromatography and mass spectrometry coupled via electrospray ionization is a powerful tool for the discovery of novel natural products, metabolic capabilities, and biomarkers. However, the elucidation of the identities of uncharacterized metabolites from spectral features remains challenging. A critical step in the metabolite identification workflow is the assignment of redundant spectral features (adducts, fragments, multimers) and calculation of the underlying chemical formula. Inspection of the data by experts using computational tools solving partial problems (e.g., chemical formula calculation for individual ions) can be performed to disambiguate alternative solutions and provide reliable results. However, manual curation is tedious and not readily scalable or standardized. Here we describe an automated procedure for the robust automated mass spectra interpretation and chemical formula calculation using mixed integer linear programming optimization (RAMSI). Chemical rules among related ions are expressed as linear constraints and both the spectra interpretation and chemical formula calculation are performed in a single optimization step. This approach is unbiased in that it does not require predefined sets of neutral losses and positive and negative polarity spectra can be combined in a single optimization. The procedure was evaluated with 30 experimental mass spectra and was found to effectively identify the protonated or deprotonated molecule ([M + H](+) or [M - H](-)) while being robust to the presence of background ions. RAMSI provides a much-needed standardized tool for interpreting ions for subsequent identification in untargeted metabolomics workflows.

  12. Modeling Road Vulnerability to Snow Using Mixed Integer Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Tony K; Omitaomu, Olufemi A; Ostrowski, James A

    As the number and severity of snowfall events continue to grow, the need to intelligently direct road maintenance during these snowfall events will also grow. In several locations, local governments lack the resources to completely treat all roadways during snow events. Furthermore, some governments utilize only traffic data to determine which roads should be treated. As a result, many schools, businesses, and government offices must be unnecessarily closed, which directly impacts the social, educational, and economic well-being of citizens and institutions. In this work, we propose a mixed integer programming formulation to optimally allocate resources to manage snowfall on roadsmore » using meteorological, geographical, and environmental parameters. Additionally, we evaluate the impacts of an increase in budget for winter road maintenance on snow control resources.« less

  13. Multi-Item Multiperiodic Inventory Control Problem with Variable Demand and Discounts: A Particle Swarm Optimization Algorithm

    PubMed Central

    Mousavi, Seyed Mohsen; Niaki, S. T. A.; Bahreininejad, Ardeshir; Musa, Siti Nurmaya

    2014-01-01

    A multi-item multiperiod inventory control model is developed for known-deterministic variable demands under limited available budget. Assuming the order quantity is more than the shortage quantity in each period, the shortage in combination of backorder and lost sale is considered. The orders are placed in batch sizes and the decision variables are assumed integer. Moreover, all unit discounts for a number of products and incremental quantity discount for some other items are considered. While the objectives are to minimize both the total inventory cost and the required storage space, the model is formulated into a fuzzy multicriteria decision making (FMCDM) framework and is shown to be a mixed integer nonlinear programming type. In order to solve the model, a multiobjective particle swarm optimization (MOPSO) approach is applied. A set of compromise solution including optimum and near optimum ones via MOPSO has been derived for some numerical illustration, where the results are compared with those obtained using a weighting approach. To assess the efficiency of the proposed MOPSO, the model is solved using multi-objective genetic algorithm (MOGA) as well. A large number of numerical examples are generated at the end, where graphical and statistical approaches show more efficiency of MOPSO compared with MOGA. PMID:25093195

  14. Automated Test Assembly Using lp_Solve Version 5.5 in R

    ERIC Educational Resources Information Center

    Diao, Qi; van der Linden, Wim J.

    2011-01-01

    This article reviews the use of the software program lp_solve version 5.5 for solving mixed-integer automated test assembly (ATA) problems. The program is freely available under Lesser General Public License 2 (LGPL2). It can be called from the statistical language R using the lpSolveAPI interface. Three empirical problems are presented to…

  15. Stochastic Dynamic Mixed-Integer Programming (SD-MIP)

    DTIC Science & Technology

    2015-05-05

    stochastic linear programming ( SLP ) problems. By using a combination of ideas from cutting plane theory of deterministic MIP (especially disjunctive...developed to date. b) As part of this project, we have also developed tools for very large scale Stochastic Linear Programming ( SLP ). There are...several reasons for this. First, SLP models continue to challenge many of the fastest computers to date, and many applications within the DoD (e.g

  16. Mixed-Integer Nonconvex Quadratic Optimization Relaxations and Performance Analysis

    DTIC Science & Technology

    2016-10-11

    Analysis of Interior Point Algorithms for Non-Lipschitz and Nonconvex Minimization,” (W. Bian, X. Chen, and Ye), Math Programming, 149 (2015) 301-327...Chen, Ge, Wang, Ye), Math Programming, 143 (1-2) (2014) 371-383. This paper resolved an important open question in cardinality constrained...Statistical Performance, and Algorithmic Theory for Local Solutions,” (H. Liu, T. Yao, R. Li, Y. Ye) manuscript, 2nd revision in Math Programming

  17. A comparison of mixed-integer linear programming models for workforce scheduling with position-dependent processing times

    NASA Astrophysics Data System (ADS)

    Moreno-Camacho, Carlos A.; Montoya-Torres, Jairo R.; Vélez-Gallego, Mario C.

    2018-06-01

    Only a few studies in the available scientific literature address the problem of having a group of workers that do not share identical levels of productivity during the planning horizon. This study considers a workforce scheduling problem in which the actual processing time is a function of the scheduling sequence to represent the decline in workers' performance, evaluating two classical performance measures separately: makespan and maximum tardiness. Several mathematical models are compared with each other to highlight the advantages of each approach. The mathematical models are tested with randomly generated instances available from a public e-library.

  18. Scheduling the resident 80-hour work week: an operations research algorithm.

    PubMed

    Day, T Eugene; Napoli, Joseph T; Kuo, Paul C

    2006-01-01

    The resident 80-hour work week requires that programs now schedule duty hours. Typically, scheduling is performed in an empirical "trial-and-error" fashion. However, this is a classic "scheduling" problem from the field of operations research (OR). It is similar to scheduling issues that airlines must face with pilots and planes routing through various airports at various times. The authors hypothesized that an OR approach using iterative computer algorithms could provide a rational scheduling solution. Institution-specific constraints of the residency problem were formulated. A total of 56 residents are rotating through 4 hospitals. Additional constraints were dictated by the Residency Review Committee (RRC) rules or the specific surgical service. For example, at Hospital 1, during the weekday hours between 6 am and 6 pm, there will be a PGY4 or PGY5 and a PGY2 or PGY3 on-duty to cover Service "A." A series of equations and logic statements was generated to satisfy all constraints and requirements. These were restated in the Optimization Programming Language used by the ILOG software suite for solving mixed integer programming problems. An integer programming solution was generated to this resource-constrained assignment problem. A total of 30,900 variables and 12,443 constraints were required. A total of man-hours of programming were used; computer run-time was 25.9 hours. A weekly schedule was generated for each resident that satisfied the RRC regulations while fulfilling all stated surgical service requirements. Each required between 64 and 80 weekly resident duty hours. The authors conclude that OR is a viable approach to schedule resident work hours. This technique is sufficiently robust to accommodate changes in resident numbers, service requirements, and service and hospital rotations.

  19. A Comparison of the DISASTER (Trademark) Scheduling Software with a Simultaneous Scheduling Algorithm for Minimizing Maximum Tardiness in Job Shops

    DTIC Science & Technology

    1993-09-01

    goal ( Heizer , Render , and Stair, 1993:94). Integer Prgronmming. Integer programming is a general purpose approach used to optimally solve job shop...Scheduling," Operations Research Journal. 29, No 4: 646-667 (July-August 1981). Heizer , Jay, Barry Render and Ralph M. Stair, Jr. Production and Operations

  20. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh

    Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. Tomore » alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Results: Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs.« less

  1. Multi-vehicle mobility allowance shuttle transit (MAST) system : an analytical model to select the fleet size and a scheduling heuristic.

    DOT National Transportation Integrated Search

    2012-06-01

    The mobility allowance shuttle transit (MAST) system is a hybrid transit system in which vehicles are : allowed to deviate from a fixed route to serve flexible demand. A mixed integer programming (MIP) : formulation for the static scheduling problem ...

  2. Space tug economic analysis study. Volume 2: Tug concepts analysis. Part 2: Economic analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An economic analysis of space tug operations is presented. The subjects discussed are: (1) cost uncertainties, (2) scenario analysis, (3) economic sensitivities, (4) mixed integer programming formulation of the space tug problem, and (5) critical parameters in the evaluation of a public expenditure.

  3. A multi-objective optimization model for hub network design under uncertainty: An inexact rough-interval fuzzy approach

    NASA Astrophysics Data System (ADS)

    Niakan, F.; Vahdani, B.; Mohammadi, M.

    2015-12-01

    This article proposes a multi-objective mixed-integer model to optimize the location of hubs within a hub network design problem under uncertainty. The considered objectives include minimizing the maximum accumulated travel time, minimizing the total costs including transportation, fuel consumption and greenhouse emissions costs, and finally maximizing the minimum service reliability. In the proposed model, it is assumed that for connecting two nodes, there are several types of arc in which their capacity, transportation mode, travel time, and transportation and construction costs are different. Moreover, in this model, determining the capacity of the hubs is part of the decision-making procedure and balancing requirements are imposed on the network. To solve the model, a hybrid solution approach is utilized based on inexact programming, interval-valued fuzzy programming and rough interval programming. Furthermore, a hybrid multi-objective metaheuristic algorithm, namely multi-objective invasive weed optimization (MOIWO), is developed for the given problem. Finally, various computational experiments are carried out to assess the proposed model and solution approaches.

  4. Selective Optimization

    DTIC Science & Technology

    2015-07-06

    NUMBER 5b. GRANT NUMBER AFOSR FA9550-12-1-0154 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Shabbir Ahmed and Santanu S. Dey 5d. PROJECT NUMBER 5e. TASK...standard mixed-integer programming (MIP) formulations of selective optimization problems. While such formulations can be attacked by commercial...F33615-86-C-5169. 5b. GRANT NUMBER. Enter all grant numbers as they appear in the report, e.g. AFOSR-82-1234. 5c. PROGRAM ELEMENT NUMBER. Enter

  5. Optimizing decentralized production-distribution planning problem in a multi-period supply chain network under uncertainty

    NASA Astrophysics Data System (ADS)

    Nourifar, Raheleh; Mahdavi, Iraj; Mahdavi-Amiri, Nezam; Paydar, Mohammad Mahdi

    2017-09-01

    Decentralized supply chain management is found to be significantly relevant in today's competitive markets. Production and distribution planning is posed as an important optimization problem in supply chain networks. Here, we propose a multi-period decentralized supply chain network model with uncertainty. The imprecision related to uncertain parameters like demand and price of the final product is appropriated with stochastic and fuzzy numbers. We provide mathematical formulation of the problem as a bi-level mixed integer linear programming model. Due to problem's convolution, a structure to solve is developed that incorporates a novel heuristic algorithm based on Kth-best algorithm, fuzzy approach and chance constraint approach. Ultimately, a numerical example is constructed and worked through to demonstrate applicability of the optimization model. A sensitivity analysis is also made.

  6. Mixed integer simulation optimization for optimal hydraulic fracturing and production of shale gas fields

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Gong, B.; Wang, H. G.

    2016-08-01

    Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.

  7. Solving Integer Programs from Dependence and Synchronization Problems

    DTIC Science & Technology

    1993-03-01

    DEFF.NSNE Solving Integer Programs from Dependence and Synchronization Problems Jaspal Subhlok March 1993 CMU-CS-93-130 School of Computer ScienceT IC...method Is an exact and efficient way of solving integer programming problems arising in dependence and synchronization analysis of parallel programs...7/;- p Keywords: Exact dependence tesing, integer programming. parallelilzng compilers, parallel program analysis, synchronization analysis Solving

  8. Enhanced ant colony optimization for inventory routing problem

    NASA Astrophysics Data System (ADS)

    Wong, Lily; Moin, Noor Hasnah

    2015-10-01

    The inventory routing problem (IRP) integrates and coordinates two important components of supply chain management which are transportation and inventory management. We consider a one-to-many IRP network for a finite planning horizon. The demand for each product is deterministic and time varying as well as a fleet of capacitated homogeneous vehicles, housed at a depot/warehouse, delivers the products from the warehouse to meet the demand specified by the customers in each period. The inventory holding cost is product specific and is incurred at the customer sites. The objective is to determine the amount of inventory and to construct a delivery routing that minimizes both the total transportation and inventory holding cost while ensuring each customer's demand is met over the planning horizon. The problem is formulated as a mixed integer programming problem and is solved using CPLEX 12.4 to get the lower and upper bound (best integer) for each instance considered. We propose an enhanced ant colony optimization (ACO) to solve the problem and the built route is improved by using local search. The computational experiments demonstrating the effectiveness of our approach is presented.

  9. Design of supply chain in fuzzy environment

    NASA Astrophysics Data System (ADS)

    Rao, Kandukuri Narayana; Subbaiah, Kambagowni Venkata; Singh, Ganja Veera Pratap

    2013-05-01

    Nowadays, customer expectations are increasing and organizations are prone to operate in an uncertain environment. Under this uncertain environment, the ultimate success of the firm depends on its ability to integrate business processes among supply chain partners. Supply chain management emphasizes cross-functional links to improve the competitive strategy of organizations. Now, companies are moving from decoupled decision processes towards more integrated design and control of their components to achieve the strategic fit. In this paper, a new approach is developed to design a multi-echelon, multi-facility, and multi-product supply chain in fuzzy environment. In fuzzy environment, mixed integer programming problem is formulated through fuzzy goal programming in strategic level with supply chain cost and volume flexibility as fuzzy goals. These fuzzy goals are aggregated using minimum operator. In tactical level, continuous review policy for controlling raw material inventories in supplier echelon and controlling finished product inventories in plant as well as distribution center echelon is considered as fuzzy goals. A non-linear programming model is formulated through fuzzy goal programming using minimum operator in the tactical level. The proposed approach is illustrated with a numerical example.

  10. Performance comparison of genetic algorithms and particle swarm optimization for model integer programming bus timetabling problem

    NASA Astrophysics Data System (ADS)

    Wihartiko, F. D.; Wijayanti, H.; Virgantari, F.

    2018-03-01

    Genetic Algorithm (GA) is a common algorithm used to solve optimization problems with artificial intelligence approach. Similarly, the Particle Swarm Optimization (PSO) algorithm. Both algorithms have different advantages and disadvantages when applied to the case of optimization of the Model Integer Programming for Bus Timetabling Problem (MIPBTP), where in the case of MIPBTP will be found the optimal number of trips confronted with various constraints. The comparison results show that the PSO algorithm is superior in terms of complexity, accuracy, iteration and program simplicity in finding the optimal solution.

  11. Interval-parameter semi-infinite fuzzy-stochastic mixed-integer programming approach for environmental management under multiple uncertainties.

    PubMed

    Guo, P; Huang, G H

    2010-03-01

    In this study, an interval-parameter semi-infinite fuzzy-chance-constrained mixed-integer linear programming (ISIFCIP) approach is developed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing interval-parameter semi-infinite programming (ISIP) and fuzzy-chance-constrained programming (FCCP) by incorporating uncertainties expressed as dual uncertainties of functional intervals and multiple uncertainties of distributions with fuzzy-interval admissible probability of violating constraint within a general optimization framework. The binary-variable solutions represent the decisions of waste-management-facility expansion, and the continuous ones are related to decisions of waste-flow allocation. The interval solutions can help decision-makers to obtain multiple decision alternatives, as well as provide bases for further analyses of tradeoffs between waste-management cost and system-failure risk. In the application to the City of Regina, Canada, two scenarios are considered. In Scenario 1, the City's waste-management practices would be based on the existing policy over the next 25 years. The total diversion rate for the residential waste would be approximately 14%. Scenario 2 is associated with a policy for waste minimization and diversion, where 35% diversion of residential waste should be achieved within 15 years, and 50% diversion over 25 years. In this scenario, not only landfill would be expanded, but also CF and MRF would be expanded. Through the scenario analyses, useful decision support for the City's solid-waste managers and decision-makers has been generated. Three special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it is useful for tackling multiple uncertainties expressed as intervals, functional intervals, probability distributions, fuzzy sets, and their combinations; secondly, it has capability in addressing the temporal variations of the functional intervals; thirdly, it can facilitate dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period and multi-option context. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Automated Test-Form Generation

    ERIC Educational Resources Information Center

    van der Linden, Wim J.; Diao, Qi

    2011-01-01

    In automated test assembly (ATA), the methodology of mixed-integer programming is used to select test items from an item bank to meet the specifications for a desired test form and optimize its measurement accuracy. The same methodology can be used to automate the formatting of the set of selected items into the actual test form. Three different…

  13. A strategic assessment of biofuels development in the Western States

    Treesearch

    Kenneth E. Skog; Robert Rummer; Bryan Jenkins; Nathan Parker; Peter Tittman; Quinn Hart; Richard Nelson; Ed Gray; Anneliese Schmidt; Marcia Patton-Mallory; Gordon Gayle

    2009-01-01

    The Western Governors' Association assessment of biofuels potential in western states estimated the location and capacity of biofuels plants that could potentially be built for selected gasoline prices in 2015 using a mixed integer programming model. The model included information on forest biomass supply curves by county (developed using Forest Service FIA data...

  14. MITIE: Simultaneous RNA-Seq-based transcript identification and quantification in multiple samples.

    PubMed

    Behr, Jonas; Kahles, André; Zhong, Yi; Sreedharan, Vipin T; Drewe, Philipp; Rätsch, Gunnar

    2013-10-15

    High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction. We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction. MITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license.

  15. Microgrid Optimal Scheduling With Chance-Constrained Islanding Capability

    DOE PAGES

    Liu, Guodong; Starke, Michael R.; Xiao, B.; ...

    2017-01-13

    To facilitate the integration of variable renewable generation and improve the resilience of electricity sup-ply in a microgrid, this paper proposes an optimal scheduling strategy for microgrid operation considering constraints of islanding capability. A new concept, probability of successful islanding (PSI), indicating the probability that a microgrid maintains enough spinning reserve (both up and down) to meet local demand and accommodate local renewable generation after instantaneously islanding from the main grid, is developed. The PSI is formulated as mixed-integer linear program using multi-interval approximation taking into account the probability distributions of forecast errors of wind, PV and load. With themore » goal of minimizing the total operating cost while preserving user specified PSI, a chance-constrained optimization problem is formulated for the optimal scheduling of mirogrids and solved by mixed integer linear programming (MILP). Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator and a battery demonstrate the effectiveness of the proposed scheduling strategy. Lastly, we verify the relationship between PSI and various factors.« less

  16. Mixed Integer Programming and Heuristic Scheduling for Space Communication

    NASA Technical Reports Server (NTRS)

    Lee, Charles H.; Cheung, Kar-Ming

    2013-01-01

    Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.

  17. Integer Linear Programming in Computational Biology

    NASA Astrophysics Data System (ADS)

    Althaus, Ernst; Klau, Gunnar W.; Kohlbacher, Oliver; Lenhof, Hans-Peter; Reinert, Knut

    Computational molecular biology (bioinformatics) is a young research field that is rich in NP-hard optimization problems. The problem instances encountered are often huge and comprise thousands of variables. Since their introduction into the field of bioinformatics in 1997, integer linear programming (ILP) techniques have been successfully applied to many optimization problems. These approaches have added much momentum to development and progress in related areas. In particular, ILP-based approaches have become a standard optimization technique in bioinformatics. In this review, we present applications of ILP-based techniques developed by members and former members of Kurt Mehlhorn’s group. These techniques were introduced to bioinformatics in a series of papers and popularized by demonstration of their effectiveness and potential.

  18. Software For Integer Programming

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1992-01-01

    Improved Exploratory Search Technique for Pure Integer Linear Programming Problems (IESIP) program optimizes objective function of variables subject to confining functions or constraints, using discrete optimization or integer programming. Enables rapid solution of problems up to 10 variables in size. Integer programming required for accuracy in modeling systems containing small number of components, distribution of goods, scheduling operations on machine tools, and scheduling production in general. Written in Borland's TURBO Pascal.

  19. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    PubMed

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  20. Stochastic Optimization for Unit Commitment-A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Qipeng P.; Wang, Jianhui; Liu, Andrew L.

    2015-07-01

    Optimization models have been widely used in the power industry to aid the decision-making process of scheduling and dispatching electric power generation resources, a process known as unit commitment (UC). Since UC's birth, there have been two major waves of revolution on UC research and real life practice. The first wave has made mixed integer programming stand out from the early solution and modeling approaches for deterministic UC, such as priority list, dynamic programming, and Lagrangian relaxation. With the high penetration of renewable energy, increasing deregulation of the electricity industry, and growing demands on system reliability, the next wave ismore » focused on transitioning from traditional deterministic approaches to stochastic optimization for unit commitment. Since the literature has grown rapidly in the past several years, this paper is to review the works that have contributed to the modeling and computational aspects of stochastic optimization (SO) based UC. Relevant lines of future research are also discussed to help transform research advances into real-world applications.« less

  1. Operational Planning for Multiple Heterogeneous Unmanned Aerial Vehicles in Three Dimensions

    DTIC Science & Technology

    2009-06-01

    human input in the planning process. Two solution methods are presented: (1) a mixed-integer program, and (2) an algorithm that utilizes a metaheuristic ...and (2) an algorithm that utilizes a metaheuristic to generate composite variables for a linear program, called the Composite Operations Planning...that represent a path and an associated type of UAV. The reformulation is incorporated into an algorithm that uses a metaheuristic to generate the

  2. Modeling hospital infrastructure by optimizing quality, accessibility and efficiency via a mixed integer programming model.

    PubMed

    Ikkersheim, David; Tanke, Marit; van Schooten, Gwendy; de Bresser, Niels; Fleuren, Hein

    2013-06-16

    The majority of curative health care is organized in hospitals. As in most other countries, the current 94 hospital locations in the Netherlands offer almost all treatments, ranging from rather basic to very complex care. Recent studies show that concentration of care can lead to substantial quality improvements for complex conditions and that dispersion of care for chronic conditions may increase quality of care. In previous studies on allocation of hospital infrastructure, the allocation is usually only based on accessibility and/or efficiency of hospital care. In this paper, we explore the possibilities to include a quality function in the objective function, to give global directions to how the 'optimal' hospital infrastructure would be in the Dutch context. To create optimal societal value we have used a mathematical mixed integer programming (MIP) model that balances quality, efficiency and accessibility of care for 30 ICD-9 diagnosis groups. Typical aspects that are taken into account are the volume-outcome relationship, the maximum accepted travel times for diagnosis groups that may need emergency treatment and the minimum use of facilities. The optimal number of hospital locations per diagnosis group varies from 12-14 locations for diagnosis groups which have a strong volume-outcome relationship, such as neoplasms, to 150 locations for chronic diagnosis groups such as diabetes and chronic obstructive pulmonary disease (COPD). In conclusion, our study shows a new approach for allocating hospital infrastructure over a country or certain region that includes quality of care in relation to volume per provider that can be used in various countries or regions. In addition, our model shows that within the Dutch context chronic care may be too concentrated and complex and/or acute care may be too dispersed. Our approach can relatively easily be adopted towards other countries or regions and is very suitable to perform a 'what-if' analysis.

  3. A Fortran-90 Based Multiprecision System

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    The author has developed a new version of his Fortran multiprecision computation system that is based on the Fortran-90 language. With this new approach, a translator program is not required - translation of Fortran code for multiprecision is accomplished by merely utilizing advanced features of Fortran-90, such as derived data types and operator extensions. This approach results in more reliable translation and also permits programmers of multiprecision applications to utilize the full power of the Fortran-90 language. Three multiprecision datatypes are supported in this system: multiprecision integer. real and complex. All the usual Fortran conventions for mixed mode operations are supported, and many of the Fortran intrinsics, such as SIN, EXP and MOD, are supported with multiprecision arguments. This paper also briefly describes an interesting application of this software, wherein new number-theoretic identities have been discovered by means of multiprecision computations.

  4. Applying ant colony optimization metaheuristic to solve forest transportation planning problems with side constraints

    Treesearch

    Marco A. Contreras; Woodam Chung; Greg Jones

    2008-01-01

    Forest transportation planning problems (FTPP) have evolved from considering only the financial aspects of timber management to more holistic problems that also consider the environmental impacts of roads. These additional requirements have introduced side constraints, making FTPP larger and more complex. Mixed-integer programming (MIP) has been used to solve FTPP, but...

  5. Integrating Test-Form Formatting into Automated Test Assembly

    ERIC Educational Resources Information Center

    Diao, Qi; van der Linden, Wim J.

    2013-01-01

    Automated test assembly uses the methodology of mixed integer programming to select an optimal set of items from an item bank. Automated test-form generation uses the same methodology to optimally order the items and format the test form. From an optimization point of view, production of fully formatted test forms directly from the item pool using…

  6. New Approaches for Very Large-Scale Integer Programming

    DTIC Science & Technology

    2016-06-24

    existing algorithms. This research has been presented at several conferences and has and will appear in archival journals. 15. SUBJECT TERMS integer...This research has been presented at several conferences and has and will appear in archival journals. Distribution Statement This is block 12 on the...pdf Upload a Report Document, if any. The maximum file size for the Report Document is 50MB. Archival Publications (published) during reporting

  7. GAMBIT: A Parameterless Model-Based Evolutionary Algorithm for Mixed-Integer Problems.

    PubMed

    Sadowski, Krzysztof L; Thierens, Dirk; Bosman, Peter A N

    2018-01-01

    Learning and exploiting problem structure is one of the key challenges in optimization. This is especially important for black-box optimization (BBO) where prior structural knowledge of a problem is not available. Existing model-based Evolutionary Algorithms (EAs) are very efficient at learning structure in both the discrete, and in the continuous domain. In this article, discrete and continuous model-building mechanisms are integrated for the Mixed-Integer (MI) domain, comprising discrete and continuous variables. We revisit a recently introduced model-based evolutionary algorithm for the MI domain, the Genetic Algorithm for Model-Based mixed-Integer opTimization (GAMBIT). We extend GAMBIT with a parameterless scheme that allows for practical use of the algorithm without the need to explicitly specify any parameters. We furthermore contrast GAMBIT with other model-based alternatives. The ultimate goal of processing mixed dependences explicitly in GAMBIT is also addressed by introducing a new mechanism for the explicit exploitation of mixed dependences. We find that processing mixed dependences with this novel mechanism allows for more efficient optimization. We further contrast the parameterless GAMBIT with Mixed-Integer Evolution Strategies (MIES) and other state-of-the-art MI optimization algorithms from the General Algebraic Modeling System (GAMS) commercial algorithm suite on problems with and without constraints, and show that GAMBIT is capable of solving problems where variable dependences prevent many algorithms from successfully optimizing them.

  8. Optimal design of supply chain network under uncertainty environment using hybrid analytical and simulation modeling approach

    NASA Astrophysics Data System (ADS)

    Chiadamrong, N.; Piyathanavong, V.

    2017-12-01

    Models that aim to optimize the design of supply chain networks have gained more interest in the supply chain literature. Mixed-integer linear programming and discrete-event simulation are widely used for such an optimization problem. We present a hybrid approach to support decisions for supply chain network design using a combination of analytical and discrete-event simulation models. The proposed approach is based on iterative procedures until the difference between subsequent solutions satisfies the pre-determined termination criteria. The effectiveness of proposed approach is illustrated by an example, which shows closer to optimal results with much faster solving time than the results obtained from the conventional simulation-based optimization model. The efficacy of this proposed hybrid approach is promising and can be applied as a powerful tool in designing a real supply chain network. It also provides the possibility to model and solve more realistic problems, which incorporate dynamism and uncertainty.

  9. Optimal one-way and roundtrip journeys design by mixed-integer programming

    NASA Astrophysics Data System (ADS)

    Ribeiro, Isabel M.; Vale, Cecília

    2017-12-01

    The introduction of multimodal/intermodal networks in transportation problems, especially when considering roundtrips, adds complexity to the models. This article presents two models for the optimization of intermodal trips as a contribution to the integration of transport modes in networks. The first model is devoted to one-way trips while the second one is dedicated to roundtrips. The original contribution of this research to transportation is mainly the consideration of roundtrips in the optimization process of intermodal transport, especially because the transport mode between two nodes on the return trip should be the same as the one on the outward trip if both nodes are visited on the return trip, which is a valuable aspect for transport companies. The mathematical formulations of both models leads to mixed binary linear programs, which is not a common approach for this type of problem. In this article, as well as the model description, computational experience is included to highlight the importance and efficiency of the proposed models, which may provide a valuable tool for transport managers.

  10. Determining on-fault earthquake magnitude distributions from integer programming

    NASA Astrophysics Data System (ADS)

    Geist, Eric L.; Parsons, Tom

    2018-02-01

    Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106 variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions.

  11. A hybrid solution approach for a multi-objective closed-loop logistics network under uncertainty

    NASA Astrophysics Data System (ADS)

    Mehrbod, Mehrdad; Tu, Nan; Miao, Lixin

    2015-06-01

    The design of closed-loop logistics (forward and reverse logistics) has attracted growing attention with the stringent pressures of customer expectations, environmental concerns and economic factors. This paper considers a multi-product, multi-period and multi-objective closed-loop logistics network model with regard to facility expansion as a facility location-allocation problem, which more closely approximates real-world conditions. A multi-objective mixed integer nonlinear programming formulation is linearized by defining new variables and adding new constraints to the model. By considering the aforementioned model under uncertainty, this paper develops a hybrid solution approach by combining an interactive fuzzy goal programming approach and robust counterpart optimization based on three well-known robust counterpart optimization formulations. Finally, this paper compares the results of the three formulations using different test scenarios and parameter-sensitive analysis in terms of the quality of the final solution, CPU time, the level of conservatism, the degree of closeness to the ideal solution, the degree of balance involved in developing a compromise solution, and satisfaction degree.

  12. Synthesizing optimal waste blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, V.; Diwekar, W.M.; Hoza, M.

    Vitrification of tank wastes to form glass is a technique that will be used for the disposal of high-level waste at Hanford. Process and storage economics show that minimizing the total number of glass logs produced is the key to keeping cost as low as possible. The amount of glass produced can be reduced by blending of the wastes. The optimal way to combine the tanks to minimize the vole of glass can be determined from a discrete blend calculation. However, this problem results in a combinatorial explosion as the number of tanks increases. Moreover, the property constraints make thismore » problem highly nonconvex where many algorithms get trapped in local minima. In this paper the authors examine the use of different combinatorial optimization approaches to solve this problem. A two-stage approach using a combination of simulated annealing and nonlinear programming (NLP) is developed. The results of different methods such as the heuristics approach based on human knowledge and judgment, the mixed integer nonlinear programming (MINLP) approach with GAMS, and branch and bound with lower bound derived from the structure of the given blending problem are compared with this coupled simulated annealing and NLP approach.« less

  13. A statistical mechanical approach to restricted integer partition functions

    NASA Astrophysics Data System (ADS)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-05-01

    The main aim of this paper is twofold: (1) suggesting a statistical mechanical approach to the calculation of the generating function of restricted integer partition functions which count the number of partitions—a way of writing an integer as a sum of other integers under certain restrictions. In this approach, the generating function of restricted integer partition functions is constructed from the canonical partition functions of various quantum gases. (2) Introducing a new type of restricted integer partition functions corresponding to general statistics which is a generalization of Gentile statistics in statistical mechanics; many kinds of restricted integer partition functions are special cases of this restricted integer partition function. Moreover, with statistical mechanics as a bridge, we reveal a mathematical fact: the generating function of restricted integer partition function is just the symmetric function which is a class of functions being invariant under the action of permutation groups. Using this approach, we provide some expressions of restricted integer partition functions as examples.

  14. An Integer Programming Model for the Management of a Forest in the North of Portugal

    NASA Astrophysics Data System (ADS)

    Cerveira, Adelaide; Fonseca, Teresa; Mota, Artur; Martins, Isabel

    2011-09-01

    This study aims to develop an approach for the management of a forest of maritime pine located in the north region of Portugal. The forest is classified into five public lands, the so-called baldios, extending over 4432 ha. These baldios are co-managed by the Official Forest Services and the local communities mainly for timber production purposes. The forest planning involves non-spatial and spatial constraints. Spatial constraints dictate a maximum clearcut area and an exclusion time. An integer programming model is presented and the computational results are discussed.

  15. Learning oncogenetic networks by reducing to mixed integer linear programming.

    PubMed

    Shahrabi Farahani, Hossein; Lagergren, Jens

    2013-01-01

    Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.

  16. Analysis of the single-vehicle cyclic inventory routing problem

    NASA Astrophysics Data System (ADS)

    Aghezzaf, El-Houssaine; Zhong, Yiqing; Raa, Birger; Mateo, Manel

    2012-11-01

    The single-vehicle cyclic inventory routing problem (SV-CIRP) consists of a repetitive distribution of a product from a single depot to a selected subset of customers. For each customer, selected for replenishments, the supplier collects a corresponding fixed reward. The objective is to determine the subset of customers to replenish, the quantity of the product to be delivered to each and to design the vehicle route so that the resulting profit (difference between the total reward and the total logistical cost) is maximised while preventing stockouts at each of the selected customers. This problem appears often as a sub-problem in many logistical problems. In this article, the SV-CIRP is formulated as a mixed-integer program with a nonlinear objective function. After a thorough analysis of the structure of the problem and its features, an exact algorithm for its solution is proposed. This exact algorithm requires only solutions of linear mixed-integer programs. Values of a savings-based heuristic for this problem are compared to the optimal values obtained for a set of some test problems. In general, the gap may get as large as 25%, which justifies the effort to continue exploring and developing exact and approximation algorithms for the SV-CIRP.

  17. MIP models for connected facility location: A theoretical and computational study☆

    PubMed Central

    Gollowitzer, Stefan; Ljubić, Ivana

    2011-01-01

    This article comprises the first theoretical and computational study on mixed integer programming (MIP) models for the connected facility location problem (ConFL). ConFL combines facility location and Steiner trees: given a set of customers, a set of potential facility locations and some inter-connection nodes, ConFL searches for the minimum-cost way of assigning each customer to exactly one open facility, and connecting the open facilities via a Steiner tree. The costs needed for building the Steiner tree, facility opening costs and the assignment costs need to be minimized. We model ConFL using seven compact and three mixed integer programming formulations of exponential size. We also show how to transform ConFL into the Steiner arborescence problem. A full hierarchy between the models is provided. For two exponential size models we develop a branch-and-cut algorithm. An extensive computational study is based on two benchmark sets of randomly generated instances with up to 1300 nodes and 115,000 edges. We empirically compare the presented models with respect to the quality of obtained bounds and the corresponding running time. We report optimal values for all but 16 instances for which the obtained gaps are below 0.6%. PMID:25009366

  18. Optimising the selection of food items for FFQs using Mixed Integer Linear Programming.

    PubMed

    Gerdessen, Johanna C; Souverein, Olga W; van 't Veer, Pieter; de Vries, Jeanne Hm

    2015-01-01

    To support the selection of food items for FFQs in such a way that the amount of information on all relevant nutrients is maximised while the food list is as short as possible. Selection of the most informative food items to be included in FFQs was modelled as a Mixed Integer Linear Programming (MILP) model. The methodology was demonstrated for an FFQ with interest in energy, total protein, total fat, saturated fat, monounsaturated fat, polyunsaturated fat, total carbohydrates, mono- and disaccharides, dietary fibre and potassium. The food lists generated by the MILP model have good performance in terms of length, coverage and R 2 (explained variance) of all nutrients. MILP-generated food lists were 32-40 % shorter than a benchmark food list, whereas their quality in terms of R 2 was similar to that of the benchmark. The results suggest that the MILP model makes the selection process faster, more standardised and transparent, and is especially helpful in coping with multiple nutrients. The complexity of the method does not increase with increasing number of nutrients. The generated food lists appear either shorter or provide more information than a food list generated without the MILP model.

  19. Modeling an integrated hospital management planning problem using integer optimization approach

    NASA Astrophysics Data System (ADS)

    Sitepu, Suryati; Mawengkang, Herman; Irvan

    2017-09-01

    Hospital is a very important institution to provide health care for people. It is not surprising that nowadays the people’s demands for hospital is increasing. However, due to the rising cost of healthcare services, hospitals need to consider efficiencies in order to overcome these two problems. This paper deals with an integrated strategy of staff capacity management and bed allocation planning to tackle these problems. Mathematically, the strategy can be modeled as an integer linear programming problem. We solve the model using a direct neighborhood search approach, based on the notion of superbasic variables.

  20. Multi-Target Tracking via Mixed Integer Optimization

    DTIC Science & Technology

    2016-05-13

    solving these two problems separately, however few algorithms attempt to solve these simultaneously and even fewer utilize optimization. In this paper we...introduce a new mixed integer optimization (MIO) model which solves the data association and trajectory estimation problems simultaneously by minimizing...Kalman filter [5], which updates the trajectory estimates before the algorithm progresses forward to the next scan. This process repeats sequentially

  1. Optimization Research of Generation Investment Based on Linear Programming Model

    NASA Astrophysics Data System (ADS)

    Wu, Juan; Ge, Xueqian

    Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.

  2. Analysis of Modeling Assumptions used in Production Cost Models for Renewable Integration Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoll, Brady; Brinkman, Gregory; Townsend, Aaron

    2016-01-01

    Renewable energy integration studies have been published for many different regions exploring the question of how higher penetration of renewable energy will impact the electric grid. These studies each make assumptions about the systems they are analyzing; however the effect of many of these assumptions has not been yet been examined and published. In this paper we analyze the impact of modeling assumptions in renewable integration studies, including the optimization method used (linear or mixed-integer programming) and the temporal resolution of the dispatch stage (hourly or sub-hourly). We analyze each of these assumptions on a large and a small systemmore » and determine the impact of each assumption on key metrics including the total production cost, curtailment of renewables, CO2 emissions, and generator starts and ramps. Additionally, we identified the impact on these metrics if a four-hour ahead commitment step is included before the dispatch step and the impact of retiring generators to reduce the degree to which the system is overbuilt. We find that the largest effect of these assumptions is at the unit level on starts and ramps, particularly for the temporal resolution, and saw a smaller impact at the aggregate level on system costs and emissions. For each fossil fuel generator type we measured the average capacity started, average run-time per start, and average number of ramps. Linear programming results saw up to a 20% difference in number of starts and average run time of traditional generators, and up to a 4% difference in the number of ramps, when compared to mixed-integer programming. Utilizing hourly dispatch instead of sub-hourly dispatch saw no difference in coal or gas CC units for either start metric, while gas CT units had a 5% increase in the number of starts and 2% increase in the average on-time per start. The number of ramps decreased up to 44%. The smallest effect seen was on the CO2 emissions and total production cost, with a 0.8% and 0.9% reduction respectively when using linear programming compared to mixed-integer programming and 0.07% and 0.6% reduction, respectively, in the hourly dispatch compared to sub-hourly dispatch.« less

  3. The role of service areas in the optimization of FSS orbital and frequency assignments

    NASA Technical Reports Server (NTRS)

    Levis, C. A.; Wang, C.-W.; Yamamura, Y.; Reilly, C. H.; Gonsalvez, D. J.

    1986-01-01

    An implicit relationship is derived which relates the topocentric separation of two satellites required for a given level of single-entry protection to the separation and orientation of their service areas. The results are presented explicitly for circular beams and topocentric angles. A computational approach is given for elliptical beams and for use with longitude and latitude variables. It is found that the geocentric separation depends primarily on the service area separation, secondarily on a parameter which characterizes the electrical design, and only slightly on the mean orbital position of the satellites. Both linear programming and mixed integer programming algorithms are implemented. Possible objective function choices are discussed, and explicit formulations are presented for the choice of the sum of the absolute deviations of the orbital locations from some prescribed 'ideal' location set. A test problem involving six service areas is examined with results that are encouraging with respect to applying the linear programming procedure to larger scenarios.

  4. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming.

    PubMed

    Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh; Ramkrishna, Doraiswami

    2017-08-01

    Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. To alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs. The software is implemented in Matlab, and is provided as supplementary information . hyunseob.song@pnnl.gov. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2017. This work is written by US Government employees and are in the public domain in the US.

  5. Determining on-fault earthquake magnitude distributions from integer programming

    USGS Publications Warehouse

    Geist, Eric L.; Parsons, Thomas E.

    2018-01-01

    Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106  variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions. 

  6. HIPPO Unit Commitment Version 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-01-17

    Developed for the Midcontinent Independent System Operator, Inc. (MISO), HIPPO-Unit Commitment Version 1 is for solving security constrained unit commitment problem. The model was developed to solve MISO's cases. This version of codes includes I/O module to read in MISO's csv files, modules to create a state-based mixed integer programming formulation for solving MIP, and modules to test basic procedures to solve MIP via HPC.

  7. Optimum use of air tankers in initial attack: selection, basing, and transfer rules

    Treesearch

    Francis E. Greulich; William G. O' Regan

    1982-01-01

    Fire managers face two interrelated problems in deciding the most efficient use of air tankers: where best to base them, and how best to reallocate them each day in anticipation of fire occurrence. A computerized model based on a mixed integer linear program can help in assigning air tankers throughout the fire season. The model was tested using information from...

  8. Decision Model for Planning and Scheduling of Seafood Product Considering Traceability

    NASA Astrophysics Data System (ADS)

    Agustin; Mawengkang, Herman; Mathelinea, Devy

    2018-01-01

    Due to the global challenges, it is necessary for an industrial company to integrate production scheduling and distribution planning, in order to be more efficient and to get more economics advantages. This paper presents seafood production planning and scheduling of a seafood manufacture company which produces simultaneously multi kind of seafood products, located at Aceh Province, Indonesia. The perishability nature of fish highly restricts its storage duration and delivery conditions. Traceability is a tracking requirement to check whether the quality of the product is satisfied. The production and distribution planning problem aims to meet customer demand subject to traceability of the seafood product and other restrictions. The problem is modeled as a mixed integer linear program, and then it is solved using neighborhood search approach.

  9. Introducing health gains in location-allocation models: A stochastic model for planning the delivery of long-term care

    NASA Astrophysics Data System (ADS)

    Cardoso, T.; Oliveira, M. D.; Barbosa-Póvoa, A.; Nickel, S.

    2015-05-01

    Although the maximization of health is a key objective in health care systems, location-allocation literature has not yet considered this dimension. This study proposes a multi-objective stochastic mathematical programming approach to support the planning of a multi-service network of long-term care (LTC), both in terms of services location and capacity planning. This approach is based on a mixed integer linear programming model with two objectives - the maximization of expected health gains and the minimization of expected costs - with satisficing levels in several dimensions of equity - namely, equity of access, equity of utilization, socioeconomic equity and geographical equity - being imposed as constraints. The augmented ε-constraint method is used to explore the trade-off between these conflicting objectives, with uncertainty in the demand and delivery of care being accounted for. The model is applied to analyze the (re)organization of the LTC network currently operating in the Great Lisbon region in Portugal for the 2014-2016 period. Results show that extending the network of LTC is a cost-effective investment.

  10. Reconstructing cerebrovascular networks under local physiological constraints by integer programming

    DOE PAGES

    Rempfler, Markus; Schneider, Matthias; Ielacqua, Giovanna D.; ...

    2015-04-23

    We introduce a probabilistic approach to vessel network extraction that enforces physiological constraints on the vessel structure. The method accounts for both image evidence and geometric relationships between vessels by solving an integer program, which is shown to yield the maximum a posteriori (MAP) estimate to the probabilistic model. Starting from an over-connected network, it is pruning vessel stumps and spurious connections by evaluating the local geometry and the global connectivity of the graph. We utilize a high-resolution micro computed tomography (µCT) dataset of a cerebrovascular corrosion cast to obtain a reference network and learn the prior distributions of ourmore » probabilistic model. As a result, we perform experiments on micro magnetic resonance angiography (µMRA) images of mouse brains and discuss properties of the networks obtained under different tracking and pruning approaches.« less

  11. A global stochastic programming approach for the optimal placement of gas detectors with nonuniform unavailabilities

    DOE PAGES

    Liu, Jianfeng; Laird, Carl Damon

    2017-09-22

    Optimal design of a gas detection systems is challenging because of the numerous sources of uncertainty, including weather and environmental conditions, leak location and characteristics, and process conditions. Rigorous CFD simulations of dispersion scenarios combined with stochastic programming techniques have been successfully applied to the problem of optimal gas detector placement; however, rigorous treatment of sensor failure and nonuniform unavailability has received less attention. To improve reliability of the design, this paper proposes a problem formulation that explicitly considers nonuniform unavailabilities and all backup detection levels. The resulting sensor placement problem is a large-scale mixed-integer nonlinear programming (MINLP) problem thatmore » requires a tailored solution approach for efficient solution. We have developed a multitree method which depends on iteratively solving a sequence of upper-bounding master problems and lower-bounding subproblems. The tailored global solution strategy is tested on a real data problem and the encouraging numerical results indicate that our solution framework is promising in solving sensor placement problems. This study was selected for the special issue in JLPPI from the 2016 International Symposium of the MKO Process Safety Center.« less

  12. A global stochastic programming approach for the optimal placement of gas detectors with nonuniform unavailabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jianfeng; Laird, Carl Damon

    Optimal design of a gas detection systems is challenging because of the numerous sources of uncertainty, including weather and environmental conditions, leak location and characteristics, and process conditions. Rigorous CFD simulations of dispersion scenarios combined with stochastic programming techniques have been successfully applied to the problem of optimal gas detector placement; however, rigorous treatment of sensor failure and nonuniform unavailability has received less attention. To improve reliability of the design, this paper proposes a problem formulation that explicitly considers nonuniform unavailabilities and all backup detection levels. The resulting sensor placement problem is a large-scale mixed-integer nonlinear programming (MINLP) problem thatmore » requires a tailored solution approach for efficient solution. We have developed a multitree method which depends on iteratively solving a sequence of upper-bounding master problems and lower-bounding subproblems. The tailored global solution strategy is tested on a real data problem and the encouraging numerical results indicate that our solution framework is promising in solving sensor placement problems. This study was selected for the special issue in JLPPI from the 2016 International Symposium of the MKO Process Safety Center.« less

  13. Dynamic Distributed Cooperative Control of Multiple Heterogeneous Resources

    DTIC Science & Technology

    2012-10-01

    of the UAVs to maximize the total sensor footprint over the region of interest. The algorithm utilized to solve this problem was based on sampling a...and moving obstacles. Obstacle positions were assumed known a priori. Kingston and Beard [22] presented an algorithm to keep moving UAVs equally spaced...Planning Algorithms , Cambridge University Press, 2006. 11. Ma, C. S. and Miller, R. H., “Mixed integer linear programming trajectory generation for

  14. Optimized Waterspace Management and Scheduling Using Mixed-Integer Linear Programming

    DTIC Science & Technology

    2016-01-01

    Complete [30]. Proposition 4.1 satisfies the first criterion. For the second criterion, we will use the Traveling Salesman Problem (TSP), which has been...A branch and cut algorithm for the symmetric generalized traveling salesman problem , Operations Research 45 (1997) 378–394. [33] J. Silberholz, B...Golden, The generalized traveling salesman problem : A new genetic algorithm ap- proach, Extended Horizons: Advances in Computing, Optimization, and

  15. Automatic design of synthetic gene circuits through mixed integer non-linear programming.

    PubMed

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits.

  16. Selecting Personal Computers.

    ERIC Educational Resources Information Center

    Djang, Philipp A.

    1993-01-01

    Describes a Multiple Criteria Decision Analysis Approach for the selection of personal computers that combines the capabilities of Analytic Hierarchy Process and Integer Goal Programing. An example of how decision makers can use this approach to determine what kind of personal computers and how many of each type to purchase is given. (nine…

  17. A chance-constrained stochastic approach to intermodal container routing problems.

    PubMed

    Zhao, Yi; Liu, Ronghui; Zhang, Xi; Whiteing, Anthony

    2018-01-01

    We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost.

  18. A chance-constrained stochastic approach to intermodal container routing problems

    PubMed Central

    Zhao, Yi; Zhang, Xi; Whiteing, Anthony

    2018-01-01

    We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost. PMID:29438389

  19. Integer programming applications: Bond trading, mortgage backed security financing, and FASB 115 accounting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nauss, R.

    1994-12-31

    In this review we describe three integer programming applications involving fixed income securities. A bond trading model is presented that features a number of possible different objectives and collections of constraints including future interest rate scenarios. A mortgage backed security (MBS) financing model that accounts for potential defaults in the MBS is also presented. Finally we describe an approach to allocate collections of bank securities into three categories: hold to maturity, available for sale, or trading. Placement of securities in these categories affects the capital, net income, and liquidity of a bank according to new accounting rules promulgated by themore » Financial Accounting Standards Board.« less

  20. Poster — Thur Eve — 69: Computational Study of DVH-guided Cancer Treatment Planning Optimization Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghomi, Pooyan Shirvani; Zinchenko, Yuriy

    2014-08-15

    Purpose: To compare methods to incorporate the Dose Volume Histogram (DVH) curves into the treatment planning optimization. Method: The performance of three methods, namely, the conventional Mixed Integer Programming (MIP) model, a convex moment-based constrained optimization approach, and an unconstrained convex moment-based penalty approach, is compared using anonymized data of a prostate cancer patient. Three plans we generated using the corresponding optimization models. Four Organs at Risk (OARs) and one Tumor were involved in the treatment planning. The OARs and Tumor were discretized into total of 50,221 voxels. The number of beamlets was 943. We used commercially available optimization softwaremore » Gurobi and Matlab to solve the models. Plan comparison was done by recording the model runtime followed by visual inspection of the resulting dose volume histograms. Conclusion: We demonstrate the effectiveness of the moment-based approaches to replicate the set of prescribed DVH curves. The unconstrained convex moment-based penalty approach is concluded to have the greatest potential to reduce the computational effort and holds a promise of substantial computational speed up.« less

  1. The checkpoint ordering problem

    PubMed Central

    Hungerländer, P.

    2017-01-01

    Abstract We suggest a new variant of a row layout problem: Find an ordering of n departments with given lengths such that the total weighted sum of their distances to a given checkpoint is minimized. The Checkpoint Ordering Problem (COP) is both of theoretical and practical interest. It has several applications and is conceptually related to some well-studied combinatorial optimization problems, namely the Single-Row Facility Layout Problem, the Linear Ordering Problem and a variant of parallel machine scheduling. In this paper we study the complexity of the (COP) and its special cases. The general version of the (COP) with an arbitrary but fixed number of checkpoints is NP-hard in the weak sense. We propose both a dynamic programming algorithm and an integer linear programming approach for the (COP) . Our computational experiments indicate that the (COP) is hard to solve in practice. While the run time of the dynamic programming algorithm strongly depends on the length of the departments, the integer linear programming approach is able to solve instances with up to 25 departments to optimality. PMID:29170574

  2. Extension of the firefly algorithm and preference rules for solving MINLP problems

    NASA Astrophysics Data System (ADS)

    Costa, M. Fernanda P.; Francisco, Rogério B.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.

    2017-07-01

    An extension of the firefly algorithm (FA) for solving mixed-integer nonlinear programming (MINLP) problems is presented. Although penalty functions are nowadays frequently used to handle integrality conditions and inequality and equality constraints, this paper proposes the implementation within the FA of a simple rounded-based heuristic and four preference rules to find and converge to MINLP feasible solutions. Preliminary numerical experiments are carried out to validate the proposed methodology.

  3. An Integer Programming-Based Generalized Vehicle Routing Approach for Printed Circuit Board Assembly Optimization

    ERIC Educational Resources Information Center

    Seth, Anupam

    2009-01-01

    Production planning and scheduling for printed circuit, board assembly has so far defied standard operations research approaches due to the size and complexity of the underlying problems, resulting in unexploited automation flexibility. In this thesis, the increasingly popular collect-and-place machine configuration is studied and the assembly…

  4. Autonomous Guidance of Agile Small-scale Rotorcraft

    NASA Technical Reports Server (NTRS)

    Mettler, Bernard; Feron, Eric

    2004-01-01

    This report describes a guidance system for agile vehicles based on a hybrid closed-loop model of the vehicle dynamics. The hybrid model represents the vehicle dynamics through a combination of linear-time-invariant control modes and pre-programmed, finite-duration maneuvers. This particular hybrid structure can be realized through a control system that combines trim controllers and a maneuvering control logic. The former enable precise trajectory tracking, and the latter enables trajectories at the edge of the vehicle capabilities. The closed-loop model is much simpler than the full vehicle equations of motion, yet it can capture a broad range of dynamic behaviors. It also supports a consistent link between the physical layer and the decision-making layer. The trajectory generation was formulated as an optimization problem using mixed-integer-linear-programming. The optimization is solved in a receding horizon fashion. Several techniques to improve the computational tractability were investigate. Simulation experiments using NASA Ames 'R-50 model show that this approach fully exploits the vehicle's agility.

  5. ALPS - A LINEAR PROGRAM SOLVER

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    Linear programming is a widely-used engineering and management tool. Scheduling, resource allocation, and production planning are all well-known applications of linear programs (LP's). Most LP's are too large to be solved by hand, so over the decades many computer codes for solving LP's have been developed. ALPS, A Linear Program Solver, is a full-featured LP analysis program. ALPS can solve plain linear programs as well as more complicated mixed integer and pure integer programs. ALPS also contains an efficient solution technique for pure binary (0-1 integer) programs. One of the many weaknesses of LP solvers is the lack of interaction with the user. ALPS is a menu-driven program with no special commands or keywords to learn. In addition, ALPS contains a full-screen editor to enter and maintain the LP formulation. These formulations can be written to and read from plain ASCII files for portability. For those less experienced in LP formulation, ALPS contains a problem "parser" which checks the formulation for errors. ALPS creates fully formatted, readable reports that can be sent to a printer or output file. ALPS is written entirely in IBM's APL2/PC product, Version 1.01. The APL2 workspace containing all the ALPS code can be run on any APL2/PC system (AT or 386). On a 32-bit system, this configuration can take advantage of all extended memory. The user can also examine and modify the ALPS code. The APL2 workspace has also been "packed" to be run on any DOS system (without APL2) as a stand-alone "EXE" file, but has limited memory capacity on a 640K system. A numeric coprocessor (80X87) is optional but recommended. The standard distribution medium for ALPS is a 5.25 inch 360K MS-DOS format diskette. IBM, IBM PC and IBM APL2 are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  6. A simulated annealing approach for redesigning a warehouse network problem

    NASA Astrophysics Data System (ADS)

    Khairuddin, Rozieana; Marlizawati Zainuddin, Zaitul; Jiun, Gan Jia

    2017-09-01

    Now a day, several companies consider downsizing their distribution networks in ways that involve consolidation or phase-out of some of their current warehousing facilities due to the increasing competition, mounting cost pressure and taking advantage on the economies of scale. Consequently, the changes on economic situation after a certain period of time require an adjustment on the network model in order to get the optimal cost under the current economic conditions. This paper aimed to develop a mixed-integer linear programming model for a two-echelon warehouse network redesign problem with capacitated plant and uncapacitated warehouses. The main contribution of this study is considering capacity constraint for existing warehouses. A Simulated Annealing algorithm is proposed to tackle with the proposed model. The numerical solution showed the model and method of solution proposed was practical.

  7. Time Dependent Heterogeneous Vehicle Routing Problem for Catering Service Delivery Problem

    NASA Astrophysics Data System (ADS)

    Azis, Zainal; Mawengkang, Herman

    2017-09-01

    The heterogeneous vehicle routing problem (HVRP) is a variant of vehicle routing problem (VRP) which describes various types of vehicles with different capacity to serve a set of customers with known geographical locations. This paper considers the optimal service deliveries of meals of a catering company located in Medan City, Indonesia. Due to the road condition as well as traffic, it is necessary for the company to use different type of vehicle to fulfill customers demand in time. The HVRP incorporates time dependency of travel times on the particular time of the day. The objective is to minimize the sum of the costs of travelling and elapsed time over the planning horizon. The problem can be modeled as a linear mixed integer program and we address a feasible neighbourhood search approach to solve the problem.

  8. Pricing and location decisions in multi-objective facility location problem with M/M/m/k queuing systems

    NASA Astrophysics Data System (ADS)

    Tavakkoli-Moghaddam, Reza; Vazifeh-Noshafagh, Samira; Taleizadeh, Ata Allah; Hajipour, Vahid; Mahmoudi, Amin

    2017-01-01

    This article presents a new multi-objective model for a facility location problem with congestion and pricing policies. This model considers situations in which immobile service facilities are congested by a stochastic demand following M/M/m/k queues. The presented model belongs to the class of mixed-integer nonlinear programming models and NP-hard problems. To solve such a hard model, a new multi-objective optimization algorithm based on a vibration theory, namely multi-objective vibration damping optimization (MOVDO), is developed. In order to tune the algorithms parameters, the Taguchi approach using a response metric is implemented. The computational results are compared with those of the non-dominated ranking genetic algorithm and non-dominated sorting genetic algorithm. The outputs demonstrate the robustness of the proposed MOVDO in large-sized problems.

  9. Managing time-substitutable electricity usage using dynamic controls

    DOEpatents

    Ghosh, Soumyadip; Hosking, Jonathan R.; Natarajan, Ramesh; Subramaniam, Shivaram; Zhang, Xiaoxuan

    2017-02-07

    A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.

  10. Managing time-substitutable electricity usage using dynamic controls

    DOEpatents

    Ghosh, Soumyadip; Hosking, Jonathan R.; Natarajan, Ramesh; Subramaniam, Shivaram; Zhang, Xiaoxuan

    2017-02-21

    A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.

  11. A multiobjective optimization model and an orthogonal design-based hybrid heuristic algorithm for regional urban mining management problems.

    PubMed

    Wu, Hao; Wan, Zhong

    2018-02-01

    In this paper, a multiobjective mixed-integer piecewise nonlinear programming model (MOMIPNLP) is built to formulate the management problem of urban mining system, where the decision variables are associated with buy-back pricing, choices of sites, transportation planning, and adjustment of production capacity. Different from the existing approaches, the social negative effect, generated from structural optimization of the recycling system, is minimized in our model, as well as the total recycling profit and utility from environmental improvement are jointly maximized. For solving the problem, the MOMIPNLP model is first transformed into an ordinary mixed-integer nonlinear programming model by variable substitution such that the piecewise feature of the model is removed. Then, based on technique of orthogonal design, a hybrid heuristic algorithm is developed to find an approximate Pareto-optimal solution, where genetic algorithm is used to optimize the structure of search neighborhood, and both local branching algorithm and relaxation-induced neighborhood search algorithm are employed to cut the searching branches and reduce the number of variables in each branch. Numerical experiments indicate that this algorithm spends less CPU (central processing unit) time in solving large-scale regional urban mining management problems, especially in comparison with the similar ones available in literature. By case study and sensitivity analysis, a number of practical managerial implications are revealed from the model. Since the metal stocks in society are reliable overground mineral sources, urban mining has been paid great attention as emerging strategic resources in an era of resource shortage. By mathematical modeling and development of efficient algorithms, this paper provides decision makers with useful suggestions on the optimal design of recycling system in urban mining. For example, this paper can answer how to encourage enterprises to join the recycling activities by government's support and subsidies, whether the existing recycling system can meet the developmental requirements or not, and what is a reasonable adjustment of production capacity.

  12. Reduced-Size Integer Linear Programming Models for String Selection Problems: Application to the Farthest String Problem.

    PubMed

    Zörnig, Peter

    2015-08-01

    We present integer programming models for some variants of the farthest string problem. The number of variables and constraints is substantially less than that of the integer linear programming models known in the literature. Moreover, the solution of the linear programming-relaxation contains only a small proportion of noninteger values, which considerably simplifies the rounding process. Numerical tests have shown excellent results, especially when a small set of long sequences is given.

  13. A set-covering based heuristic algorithm for the periodic vehicle routing problem.

    PubMed

    Cacchiani, V; Hemmelmayr, V C; Tricoire, F

    2014-01-30

    We present a hybrid optimization algorithm for mixed-integer linear programming, embedding both heuristic and exact components. In order to validate it we use the periodic vehicle routing problem (PVRP) as a case study. This problem consists of determining a set of minimum cost routes for each day of a given planning horizon, with the constraints that each customer must be visited a required number of times (chosen among a set of valid day combinations), must receive every time the required quantity of product, and that the number of routes per day (each respecting the capacity of the vehicle) does not exceed the total number of available vehicles. This is a generalization of the well-known vehicle routing problem (VRP). Our algorithm is based on the linear programming (LP) relaxation of a set-covering-like integer linear programming formulation of the problem, with additional constraints. The LP-relaxation is solved by column generation, where columns are generated heuristically by an iterated local search algorithm. The whole solution method takes advantage of the LP-solution and applies techniques of fixing and releasing of the columns as a local search, making use of a tabu list to avoid cycling. We show the results of the proposed algorithm on benchmark instances from the literature and compare them to the state-of-the-art algorithms, showing the effectiveness of our approach in producing good quality solutions. In addition, we report the results on realistic instances of the PVRP introduced in Pacheco et al. (2011)  [24] and on benchmark instances of the periodic traveling salesman problem (PTSP), showing the efficacy of the proposed algorithm on these as well. Finally, we report the new best known solutions found for all the tested problems.

  14. A set-covering based heuristic algorithm for the periodic vehicle routing problem

    PubMed Central

    Cacchiani, V.; Hemmelmayr, V.C.; Tricoire, F.

    2014-01-01

    We present a hybrid optimization algorithm for mixed-integer linear programming, embedding both heuristic and exact components. In order to validate it we use the periodic vehicle routing problem (PVRP) as a case study. This problem consists of determining a set of minimum cost routes for each day of a given planning horizon, with the constraints that each customer must be visited a required number of times (chosen among a set of valid day combinations), must receive every time the required quantity of product, and that the number of routes per day (each respecting the capacity of the vehicle) does not exceed the total number of available vehicles. This is a generalization of the well-known vehicle routing problem (VRP). Our algorithm is based on the linear programming (LP) relaxation of a set-covering-like integer linear programming formulation of the problem, with additional constraints. The LP-relaxation is solved by column generation, where columns are generated heuristically by an iterated local search algorithm. The whole solution method takes advantage of the LP-solution and applies techniques of fixing and releasing of the columns as a local search, making use of a tabu list to avoid cycling. We show the results of the proposed algorithm on benchmark instances from the literature and compare them to the state-of-the-art algorithms, showing the effectiveness of our approach in producing good quality solutions. In addition, we report the results on realistic instances of the PVRP introduced in Pacheco et al. (2011)  [24] and on benchmark instances of the periodic traveling salesman problem (PTSP), showing the efficacy of the proposed algorithm on these as well. Finally, we report the new best known solutions found for all the tested problems. PMID:24748696

  15. A Bell-Curved Based Algorithm for Mixed Continuous and Discrete Structural Optimization

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Weber, Michael; Sobieszczanski-Sobieski, Jaroslaw

    2001-01-01

    An evolutionary based strategy utilizing two normal distributions to generate children is developed to solve mixed integer nonlinear programming problems. This Bell-Curve Based (BCB) evolutionary algorithm is similar in spirit to (mu + mu) evolutionary strategies and evolutionary programs but with fewer parameters to adjust and no mechanism for self adaptation. First, a new version of BCB to solve purely discrete optimization problems is described and its performance tested against a tabu search code for an actuator placement problem. Next, the performance of a combined version of discrete and continuous BCB is tested on 2-dimensional shape problems and on a minimum weight hub design problem. In the latter case the discrete portion is the choice of the underlying beam shape (I, triangular, circular, rectangular, or U).

  16. Concurrent airline fleet allocation and aircraft design with profit modeling for multiple airlines

    NASA Astrophysics Data System (ADS)

    Govindaraju, Parithi

    A "System of Systems" (SoS) approach is particularly beneficial in analyzing complex large scale systems comprised of numerous independent systems -- each capable of independent operations in their own right -- that when brought in conjunction offer capabilities and performance beyond the constituents of the individual systems. The variable resource allocation problem is a type of SoS problem, which includes the allocation of "yet-to-be-designed" systems in addition to existing resources and systems. The methodology presented here expands upon earlier work that demonstrated a decomposition approach that sought to simultaneously design a new aircraft and allocate this new aircraft along with existing aircraft in an effort to meet passenger demand at minimum fleet level operating cost for a single airline. The result of this describes important characteristics of the new aircraft. The ticket price model developed and implemented here enables analysis of the system using profit maximization studies instead of cost minimization. A multiobjective problem formulation has been implemented to determine characteristics of a new aircraft that maximizes the profit of multiple airlines to recognize the fact that aircraft manufacturers sell their aircraft to multiple customers and seldom design aircraft customized to a single airline's operations. The route network characteristics of two simple airlines serve as the example problem for the initial studies. The resulting problem formulation is a mixed-integer nonlinear programming problem, which is typically difficult to solve. A sequential decomposition strategy is applied as a solution methodology by segregating the allocation (integer programming) and aircraft design (non-linear programming) subspaces. After solving a simple problem considering two airlines, the decomposition approach is then applied to two larger airline route networks representing actual airline operations in the year 2005. The decomposition strategy serves as a promising technique for future detailed analyses. Results from the profit maximization studies favor a smaller aircraft in terms of passenger capacity due to its higher yield generation capability on shorter routes while results from the cost minimization studies favor a larger aircraft due to its lower direct operating cost per seat mile.

  17. A multistage stochastic programming model for a multi-period strategic expansion of biofuel supply chain under evolving uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Fei; Huang, Yongxi

    Here, we develop a multistage, stochastic mixed-integer model to support biofuel supply chain expansion under evolving uncertainties. By utilizing the block-separable recourse property, we reformulate the multistage program in an equivalent two-stage program and solve it using an enhanced nested decomposition method with maximal non-dominated cuts. We conduct extensive numerical experiments and demonstrate the application of the model and algorithm in a case study based on the South Carolina settings. The value of multistage stochastic programming method is also explored by comparing the model solution with the counterparts of an expected value based deterministic model and a two-stage stochastic model.

  18. A multistage stochastic programming model for a multi-period strategic expansion of biofuel supply chain under evolving uncertainties

    DOE PAGES

    Xie, Fei; Huang, Yongxi

    2018-02-04

    Here, we develop a multistage, stochastic mixed-integer model to support biofuel supply chain expansion under evolving uncertainties. By utilizing the block-separable recourse property, we reformulate the multistage program in an equivalent two-stage program and solve it using an enhanced nested decomposition method with maximal non-dominated cuts. We conduct extensive numerical experiments and demonstrate the application of the model and algorithm in a case study based on the South Carolina settings. The value of multistage stochastic programming method is also explored by comparing the model solution with the counterparts of an expected value based deterministic model and a two-stage stochastic model.

  19. A Mixed Integer Linear Program for Airport Departure Scheduling

    NASA Technical Reports Server (NTRS)

    Gupta, Gautam; Jung, Yoon Chul

    2009-01-01

    Aircraft departing from an airport are subject to numerous constraints while scheduling departure times. These constraints include wake-separation constraints for successive departures, miles-in-trail separation for aircraft bound for the same departure fixes, and time-window or prioritization constraints for individual flights. Besides these, emissions as well as increased fuel consumption due to inefficient scheduling need to be included. Addressing all the above constraints in a single framework while allowing for resequencing of the aircraft using runway queues is critical to the implementation of the Next Generation Air Transport System (NextGen) concepts. Prior work on airport departure scheduling has addressed some of the above. However, existing methods use pre-determined runway queues, and schedule aircraft from these departure queues. The source of such pre-determined queues is not explicit, and could potentially be a subjective controller input. Determining runway queues and scheduling within the same framework would potentially result in better scheduling. This paper presents a mixed integer linear program (MILP) for the departure-scheduling problem. The program takes as input the incoming sequence of aircraft for departure from a runway, along with their earliest departure times and an optional prioritization scheme based on time-window of departure for each aircraft. The program then assigns these aircraft to the available departure queues and schedules departure times, explicitly considering wake separation and departure fix restrictions to minimize total delay for all aircraft. The approach is generalized and can be used in a variety of situations, and allows for aircraft prioritization based on operational as well as environmental considerations. We present the MILP in the paper, along with benefits over the first-come-first-serve (FCFS) scheme for numerous randomized problems based on real-world settings. The MILP results in substantially reduced delays as compared to FCFS, and the magnitude of the savings depends on the queue and departure fix structure. The MILP assumes deterministic aircraft arrival times at the runway queues. However, due to taxi time uncertainty, aircraft might arrive either earlier or later than these deterministic times. Thus, to incorporate this uncertainty, we present a method for using the MILP with "overlap discounted rolling planning horizon". The approach is based on valuing near-term decision results more than future ones. We develop a model of taxitime uncertainty based on real-world data, and then compare the baseline FCFS delays with delays using the above MILP in a simple rolling-horizon method and in the overlap discounted scheme.

  20. REopt: A Platform for Energy System Integration and Optimization: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpkins, T.; Cutler, D.; Anderson, K.

    2014-08-01

    REopt is NREL's energy planning platform offering concurrent, multi-technology integration and optimization capabilities to help clients meet their cost savings and energy performance goals. The REopt platform provides techno-economic decision-support analysis throughout the energy planning process, from agency-level screening and macro planning to project development to energy asset operation. REopt employs an integrated approach to optimizing a site?s energy costs by considering electricity and thermal consumption, resource availability, complex tariff structures including time-of-use, demand and sell-back rates, incentives, net-metering, and interconnection limits. Formulated as a mixed integer linear program, REopt recommends an optimally-sized mix of conventional and renewable energy, andmore » energy storage technologies; estimates the net present value associated with implementing those technologies; and provides the cost-optimal dispatch strategy for operating them at maximum economic efficiency. The REopt platform can be customized to address a variety of energy optimization scenarios including policy, microgrid, and operational energy applications. This paper presents the REopt techno-economic model along with two examples of recently completed analysis projects.« less

  1. A divide-and-conquer approach to determine the Pareto frontier for optimization of protein engineering experiments.

    PubMed

    He, Lu; Friedman, Alan M; Bailey-Kellogg, Chris

    2012-03-01

    In developing improved protein variants by site-directed mutagenesis or recombination, there are often competing objectives that must be considered in designing an experiment (selecting mutations or breakpoints): stability versus novelty, affinity versus specificity, activity versus immunogenicity, and so forth. Pareto optimal experimental designs make the best trade-offs between competing objectives. Such designs are not "dominated"; that is, no other design is better than a Pareto optimal design for one objective without being worse for another objective. Our goal is to produce all the Pareto optimal designs (the Pareto frontier), to characterize the trade-offs and suggest designs most worth considering, but to avoid explicitly considering the large number of dominated designs. To do so, we develop a divide-and-conquer algorithm, Protein Engineering Pareto FRontier (PEPFR), that hierarchically subdivides the objective space, using appropriate dynamic programming or integer programming methods to optimize designs in different regions. This divide-and-conquer approach is efficient in that the number of divisions (and thus calls to the optimizer) is directly proportional to the number of Pareto optimal designs. We demonstrate PEPFR with three protein engineering case studies: site-directed recombination for stability and diversity via dynamic programming, site-directed mutagenesis of interacting proteins for affinity and specificity via integer programming, and site-directed mutagenesis of a therapeutic protein for activity and immunogenicity via integer programming. We show that PEPFR is able to effectively produce all the Pareto optimal designs, discovering many more designs than previous methods. The characterization of the Pareto frontier provides additional insights into the local stability of design choices as well as global trends leading to trade-offs between competing criteria. Copyright © 2011 Wiley Periodicals, Inc.

  2. Neuro Inspired Adaptive Perception and Control for Agile Mobility of Autonomous Vehicles in Uncertain and Hostile Environments

    DTIC Science & Technology

    2017-02-08

    Georgia Tech Research Corporation 505 Tenth Street NW Atlanta, GA 30332 -0420 ABSTRACT Final Report: MURI: Neuro-Inspired Adaptive Perception and...Conquer Strategy for Optimal Trajectory Planning via Mixed-Integer Programming, IEEE Transactions on Robotics, (12 2015): 0. doi: 10.1109/TRO...Learning Day, Microsoft Corporation , Cambridge, MA, May 18, 2015. (c) Presentations 09/06/2015 09/08/2015 125 131 Ali Borji, Dicky N. Sihite, Laurent Itti

  3. Stochastic search in structural optimization - Genetic algorithms and simulated annealing

    NASA Technical Reports Server (NTRS)

    Hajela, Prabhat

    1993-01-01

    An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.

  4. A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem

    NASA Technical Reports Server (NTRS)

    Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad

    2010-01-01

    Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.

  5. Automatic Design of Synthetic Gene Circuits through Mixed Integer Non-linear Programming

    PubMed Central

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398

  6. On the preventive management of sediment-related sewer blockages: a combined maintenance and routing optimization approach.

    PubMed

    Fontecha, John E; Akhavan-Tabatabaei, Raha; Duque, Daniel; Medaglia, Andrés L; Torres, María N; Rodríguez, Juan Pablo

    In this work we tackle the problem of planning and scheduling preventive maintenance (PM) of sediment-related sewer blockages in a set of geographically distributed sites that are subject to non-deterministic failures. To solve the problem, we extend a combined maintenance and routing (CMR) optimization approach which is a procedure based on two components: (a) first a maintenance model is used to determine the optimal time to perform PM operations for each site and second (b) a mixed integer program-based split procedure is proposed to route a set of crews (e.g., sewer cleaners, vehicles equipped with winches or rods and dump trucks) in order to perform PM operations at a near-optimal minimum expected cost. We applied the proposed CMR optimization approach to two (out of five) operative zones in the city of Bogotá (Colombia), where more than 100 maintenance operations per zone must be scheduled on a weekly basis. Comparing the CMR against the current maintenance plan, we obtained more than 50% of cost savings in 90% of the sites.

  7. A sampling and classification item selection approach with content balancing.

    PubMed

    Chen, Pei-Hua

    2015-03-01

    Existing automated test assembly methods typically employ constrained combinatorial optimization. Constructing forms sequentially based on an optimization approach usually results in unparallel forms and requires heuristic modifications. Methods based on a random search approach have the major advantage of producing parallel forms sequentially without further adjustment. This study incorporated a flexible content-balancing element into the statistical perspective item selection method of the cell-only method (Chen et al. in Educational and Psychological Measurement, 72(6), 933-953, 2012). The new method was compared with a sequential interitem distance weighted deviation model (IID WDM) (Swanson & Stocking in Applied Psychological Measurement, 17(2), 151-166, 1993), a simultaneous IID WDM, and a big-shadow-test mixed integer programming (BST MIP) method to construct multiple parallel forms based on matching a reference form item-by-item. The results showed that the cell-only method with content balancing and the sequential and simultaneous versions of IID WDM yielded results comparable to those obtained using the BST MIP method. The cell-only method with content balancing is computationally less intensive than the sequential and simultaneous versions of IID WDM.

  8. Real-time energy-saving metro train rescheduling with primary delay identification

    PubMed Central

    Li, Keping; Schonfeld, Paul

    2018-01-01

    This paper aims to reschedule online metro trains in delay scenarios. A graph representation and a mixed integer programming model are proposed to formulate the optimization problem. The solution approach is a two-stage optimization method. In the first stage, based on a proposed train state graph and system analysis, the primary and flow-on delays are specifically analyzed and identified with a critical path algorithm. For the second stage a hybrid genetic algorithm is designed to optimize the schedule, with the delay identification results as input. Then, based on the infrastructure data of Beijing Subway Line 4 of China, case studies are presented to demonstrate the effectiveness and efficiency of the solution approach. The results show that the algorithm can quickly and accurately identify primary delays among different types of delays. The economic cost of energy consumption and total delay is considerably reduced (by more than 10% in each case). The computation time of the Hybrid-GA is low enough for rescheduling online. Sensitivity analyses further demonstrate that the proposed approach can be used as a decision-making support tool for operators. PMID:29474471

  9. Efficiently approximating the Pareto frontier: Hydropower dam placement in the Amazon basin

    USGS Publications Warehouse

    Wu, Xiaojian; Gomes-Selman, Jonathan; Shi, Qinru; Xue, Yexiang; Garcia-Villacorta, Roosevelt; Anderson, Elizabeth; Sethi, Suresh; Steinschneider, Scott; Flecker, Alexander; Gomes, Carla P.

    2018-01-01

    Real–world problems are often not fully characterized by a single optimal solution, as they frequently involve multiple competing objectives; it is therefore important to identify the so-called Pareto frontier, which captures solution trade-offs. We propose a fully polynomial-time approximation scheme based on Dynamic Programming (DP) for computing a polynomially succinct curve that approximates the Pareto frontier to within an arbitrarily small > 0 on treestructured networks. Given a set of objectives, our approximation scheme runs in time polynomial in the size of the instance and 1/. We also propose a Mixed Integer Programming (MIP) scheme to approximate the Pareto frontier. The DP and MIP Pareto frontier approaches have complementary strengths and are surprisingly effective. We provide empirical results showing that our methods outperform other approaches in efficiency and accuracy. Our work is motivated by a problem in computational sustainability concerning the proliferation of hydropower dams throughout the Amazon basin. Our goal is to support decision-makers in evaluating impacted ecosystem services on the full scale of the Amazon basin. Our work is general and can be applied to approximate the Pareto frontier of a variety of multiobjective problems on tree-structured networks.

  10. Multimodal Logistics Network Design over Planning Horizon through a Hybrid Meta-Heuristic Approach

    NASA Astrophysics Data System (ADS)

    Shimizu, Yoshiaki; Yamazaki, Yoshihiro; Wada, Takeshi

    Logistics has been acknowledged increasingly as a key issue of supply chain management to improve business efficiency under global competition and diversified customer demands. This study aims at improving a quality of strategic decision making associated with dynamic natures in logistics network optimization. Especially, noticing an importance to concern with a multimodal logistics under multiterms, we have extended a previous approach termed hybrid tabu search (HybTS). The attempt intends to deploy a strategic planning more concretely so that the strategic plan can link to an operational decision making. The idea refers to a smart extension of the HybTS to solve a dynamic mixed integer programming problem. It is a two-level iterative method composed of a sophisticated tabu search for the location problem at the upper level and a graph algorithm for the route selection at the lower level. To keep efficiency while coping with the resulting extremely large-scale problem, we invented a systematic procedure to transform the original linear program at the lower-level into a minimum cost flow problem solvable by the graph algorithm. Through numerical experiments, we verified the proposed method outperformed the commercial software. The results indicate the proposed approach can make the conventional strategic decision much more practical and is promising for real world applications.

  11. Control of wavepacket dynamics in mixed alkali metal clusters by optimally shaped fs pulses

    NASA Astrophysics Data System (ADS)

    Bartelt, A.; Minemoto, S.; Lupulescu, C.; Vajda, Š.; Wöste, L.

    We have performed adaptive feedback optimization of phase-shaped femtosecond laser pulses to control the wavepacket dynamics of small mixed alkali-metal clusters. An optimization algorithm based on Evolutionary Strategies was used to maximize the ion intensities. The optimized pulses for NaK and Na2K converged to pulse trains consisting of numerous peaks. The timing of the elements of the pulse trains corresponds to integer and half integer numbers of the vibrational periods of the molecules, reflecting the wavepacket dynamics in their excited states.

  12. Flexible and unique representations of two-digit decimals.

    PubMed

    Zhang, Li; Chen, Min; Lin, Chongde; Szűcs, Denes

    2014-09-01

    We examined the representation of two-digit decimals through studying distance and compatibility effects in magnitude comparison tasks in four experiments. Using number pairs with different leftmost digits, we found both the second digit distance effect and compatibility effect with two-digit integers but only the second digit distance effect with two-digit pure decimals. This suggests that both integers and pure decimals are processed in a compositional manner. In contrast, neither the second digit distance effect nor the compatibility effect was observed in two-digit mixed decimals, thereby showing no evidence for compositional processing of two-digit mixed decimals. However, when the relevance of the rightmost digit processing was increased by adding some decimals pairs with the same leftmost digits, both pure and mixed decimals produced the compatibility effect. Overall, results suggest that the processing of decimals is flexible and depends on the relevance of unique digit positions. This processing mode is different from integer analysis in that two-digit mixed decimals demonstrate parallel compositional processing only when the rightmost digit is relevant. Findings suggest that people probably do not represent decimals by simply ignoring the decimal point and converting them to natural numbers. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Hybrid Nested Partitions and Math Programming Framework for Large-scale Combinatorial Optimization

    DTIC Science & Technology

    2010-03-31

    optimization problems: 1) exact algorithms and 2) metaheuristic algorithms . This project will integrate concepts from these two technologies to develop...optimal solutions within an acceptable amount of computation time, and 2) metaheuristic algorithms such as genetic algorithms , tabu search, and the...integer programming decomposition approaches, such as Dantzig Wolfe decomposition and Lagrangian relaxation, and metaheuristics such as the Nested

  14. An integer programming approach to a real-world recyclable waste collection problem in Argentina.

    PubMed

    Braier, Gustavo; Durán, Guillermo; Marenco, Javier; Wesner, Francisco

    2017-05-01

    This article reports on the use of mathematical programming techniques to optimise the routes of a recyclable waste collection system servicing Morón, a large municipality outside Buenos Aires, Argentina. The truck routing problem posed by the system is a particular case of the generalised directed open rural postman problem. An integer programming model is developed with a solving procedure built around a subtour-merging algorithm and the addition of subtour elimination constraints. The route solutions generated by the proposed methodology perform significantly better than the previously used, manually designed routes, the main improvement being that coverage of blocks within the municipality with the model solutions is 100% by construction, whereas with the manual routes as much as 16% of the blocks went unserviced. The model-generated routes were adopted by the municipality in 2014 and the national government is planning to introduce the methodology elsewhere in the country.

  15. Robust design of (s, S) inventory policy parameters in supply chains with demand and lead time uncertainties

    NASA Astrophysics Data System (ADS)

    Karimi Movahed, Kamran; Zhang, Zhi-Hai

    2015-09-01

    Demand and lead time uncertainties have significant effects on supply chain behaviour. In this paper, we present a single-product three-level multi-period supply chain with uncertain demands and lead times by using robust techniques to study the managerial insights of the supply chain inventory system under uncertainty. We formulate this problem as a robust mixed-integer linear program with minimised expected cost and total cost variation to determine the optimal (s, S) values of the inventory parameters. Several numerical studies are performed to investigate the supply chain behaviour. Useful guidelines for the design of a robust supply chain are also provided. Results show that the order variance and the expected cost in a supply chain significantly increase when the manufacturer's review period is an integer ratio of the distributor's and the retailer's review periods.

  16. A farm-level precision land management framework based on integer programming

    PubMed Central

    Li, Qi; Hu, Guiping; Jubery, Talukder Zaki; Ganapathysubramanian, Baskar

    2017-01-01

    Farmland management involves several planning and decision making tasks including seed selection and irrigation management. A farm-level precision farmland management model based on mixed integer linear programming is proposed in this study. Optimal decisions are designed for pre-season planning of crops and irrigation water allocation. The model captures the effect of size and shape of decision scale as well as special irrigation patterns. The authors illustrate the model with a case study on a farm in the state of California in the U.S. and show the model can capture the impact of precision farm management on profitability. The results show that threefold increase of annual net profit for farmers could be achieved by carefully choosing irrigation and seed selection. Although farmers could increase profits by applying precision management to seed or irrigation alone, profit increase is more significant if farmers apply precision management on seed and irrigation simultaneously. The proposed model can also serve as a risk analysis tool for farmers facing seasonal irrigation water limits as well as a quantitative tool to explore the impact of precision agriculture. PMID:28346499

  17. An Integer Programming Model For Solving Heterogeneous Vehicle Routing Problem With Hard Time Window considering Service Choice

    NASA Astrophysics Data System (ADS)

    Susilawati, Enny; Mawengkang, Herman; Efendi, Syahril

    2018-01-01

    Generally a Vehicle Routing Problem with time windows (VRPTW) can be defined as a problem to determine the optimal set of routes used by a fleet of vehicles to serve a given set of customers with service time restrictions; the objective is to minimize the total travel cost (related to the travel times or distances) and operational cost (related to the number of vehicles used). In this paper we address a variant of the VRPTW in which the fleet of vehicle is heterogenic due to the different size of demand from customers. The problem, called Heterogeneous VRP (HVRP) also includes service levels. We use integer programming model to describe the problem. A feasible neighbourhood approach is proposed to solve the model.

  18. Classifying the Progression of Ductal Carcinoma from Single-Cell Sampled Data via Integer Linear Programming: A Case Study

    PubMed Central

    Catanzaro, Daniele; Schäffer, Alejandro A.; Schwartz, Russell

    2016-01-01

    Ductal Carcinoma In Situ (DCIS) is a precursor lesion of Invasive Ductal Carcinoma (IDC) of the breast. Investigating its temporal progression could provide fundamental new insights for the development of better diagnostic tools to predict which cases of DCIS will progress to IDC. We investigate the problem of reconstructing a plausible progression from single-cell sampled data of an individual with Synchronous DCIS and IDC. Specifically, by using a number of assumptions derived from the observation of cellular atypia occurring in IDC, we design a possible predictive model using integer linear programming (ILP). Computational experiments carried out on a preexisting data set of 13 patients with simultaneous DCIS and IDC show that the corresponding predicted progression models are classifiable into categories having specific evolutionary characteristics. The approach provides new insights into mechanisms of clonal progression in breast cancers and helps illustrate the power of the ILP approach for similar problems in reconstructing tumor evolution scenarios under complex sets of constraints. PMID:26353381

  19. Classifying the Progression of Ductal Carcinoma from Single-Cell Sampled Data via Integer Linear Programming: A Case Study.

    PubMed

    Catanzaro, Daniele; Shackney, Stanley E; Schaffer, Alejandro A; Schwartz, Russell

    2016-01-01

    Ductal Carcinoma In Situ (DCIS) is a precursor lesion of Invasive Ductal Carcinoma (IDC) of the breast. Investigating its temporal progression could provide fundamental new insights for the development of better diagnostic tools to predict which cases of DCIS will progress to IDC. We investigate the problem of reconstructing a plausible progression from single-cell sampled data of an individual with synchronous DCIS and IDC. Specifically, by using a number of assumptions derived from the observation of cellular atypia occurring in IDC, we design a possible predictive model using integer linear programming (ILP). Computational experiments carried out on a preexisting data set of 13 patients with simultaneous DCIS and IDC show that the corresponding predicted progression models are classifiable into categories having specific evolutionary characteristics. The approach provides new insights into mechanisms of clonal progression in breast cancers and helps illustrate the power of the ILP approach for similar problems in reconstructing tumor evolution scenarios under complex sets of constraints.

  20. Coordinative Voltage Control Strategy with Multiple Resources for Distribution Systems of High PV Penetration: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiangqi; Zhang, Yingchen

    This paper presents an optimal voltage control methodology with coordination among different voltage-regulating resources, including controllable loads, distributed energy resources such as energy storage and photovoltaics (PV), and utility voltage-regulating devices such as voltage regulators and capacitors. The proposed methodology could effectively tackle the overvoltage and voltage regulation device distortion problems brought by high penetrations of PV to improve grid operation reliability. A voltage-load sensitivity matrix and voltage-regulator sensitivity matrix are used to deploy the resources along the feeder to achieve the control objectives. Mixed-integer nonlinear programming is used to solve the formulated optimization control problem. The methodology has beenmore » tested on the IEEE 123-feeder test system, and the results demonstrate that the proposed approach could actively tackle the voltage problem brought about by high penetrations of PV and improve the reliability of distribution system operation.« less

  1. Integrated model for pricing, delivery time setting, and scheduling in make-to-order environments

    NASA Astrophysics Data System (ADS)

    Garmdare, Hamid Sattari; Lotfi, M. M.; Honarvar, Mahboobeh

    2018-03-01

    Usually, in make-to-order environments which work only in response to the customer's orders, manufacturers for maximizing the profits should offer the best price and delivery time for an order considering the existing capacity and the customer's sensitivity to both the factors. In this paper, an integrated approach for pricing, delivery time setting and scheduling of new arrival orders are proposed based on the existing capacity and accepted orders in system. In the problem, the acquired market demands dependent on the price and delivery time of both the manufacturer and its competitors. A mixed-integer non-linear programming model is presented for the problem. After converting to a pure non-linear model, it is validated through a case study. The efficiency of proposed model is confirmed by comparing it to both the literature and the current practice. Finally, sensitivity analysis for the key parameters is carried out.

  2. Designing the optimal shutter sequences for the flutter shutter imaging method

    NASA Astrophysics Data System (ADS)

    Jelinek, Jan

    2010-04-01

    Acquiring iris or face images of moving subjects at larger distances using a flash to prevent the motion blur quickly runs into eye safety concerns as the acquisition distance is increased. For that reason the flutter shutter method recently proposed by Raskar et al.has generated considerable interest in the biometrics community. The paper concerns the design of shutter sequences that produce the best images. The number of possible sequences grows exponentially in both the subject' s motion velocity and desired exposure value, with their majority being useless. Because the exact solution leads to an intractable mixed integer programming problem, we propose an approximate solution based on pre - screening the sequences according to the distribution of roots in their Fourier transform. A very fast algorithm utilizing the Jury' s criterion allows the testing to be done without explicitly computing the roots, making the approach practical for moderately long sequences.

  3. On solving three-dimensional open-dimension rectangular packing problems

    NASA Astrophysics Data System (ADS)

    Junqueira, Leonardo; Morabito, Reinaldo

    2017-05-01

    In this article, a recently proposed three-dimensional open-dimension rectangular packing problem is considered, in which the objective is to find a minimal volume rectangular container that packs a set of rectangular boxes. The literature has tackled small-sized instances of this problem by means of optimization solvers, position-free mixed-integer programming (MIP) formulations and piecewise linearization approaches. In this study, the problem is alternatively addressed by means of grid-based position MIP formulations, whereas still considering optimization solvers and the same piecewise linearization techniques. A comparison of the computational performance of both models is then presented, when tested with benchmark problem instances and with new instances, and it is shown that the grid-based position MIP formulation can be competitive, depending on the characteristics of the instances. The grid-based position MIP formulation is also embedded with real-world practical constraints, such as cargo stability, and results are additionally presented.

  4. MIDACO on MINLP space applications

    NASA Astrophysics Data System (ADS)

    Schlueter, Martin; Erb, Sven O.; Gerdts, Matthias; Kemble, Stephen; Rückmann, Jan-J.

    2013-04-01

    A numerical study on two challenging mixed-integer non-linear programming (MINLP) space applications and their optimization with MIDACO, a recently developed general purpose optimization software, is presented. These applications are the optimal control of the ascent of a multiple-stage space launch vehicle and the space mission trajectory design from Earth to Jupiter using multiple gravity assists. Additionally, an NLP aerospace application, the optimal control of an F8 aircraft manoeuvre, is discussed and solved. In order to enhance the optimization performance of MIDACO a hybridization technique, coupling MIDACO with an SQP algorithm, is presented for two of these three applications. The numerical results show, that the applications can be solved to their best known solution (or even new best solution) in a reasonable time by the considered approach. Since using the concept of MINLP is still a novelty in the field of (aero)space engineering, the demonstrated capabilities are seen as very promising.

  5. Coordinated Control Method of Voltage and Reactive Power for Active Distribution Networks Based on Soft Open Point

    DOE PAGES

    Li, Peng; Ji, Haoran; Wang, Chengshan; ...

    2017-03-22

    The increasing penetration of distributed generators (DGs) exacerbates the risk of voltage violations in active distribution networks (ADNs). The conventional voltage regulation devices limited by the physical constraints are difficult to meet the requirement of real-time voltage and VAR control (VVC) with high precision when DGs fluctuate frequently. But, soft open point (SOP), a flexible power electronic device, can be used as the continuous reactive power source to realize the fast voltage regulation. Considering the cooperation of SOP and multiple regulation devices, this paper proposes a coordinated VVC method based on SOP for ADNs. Firstly, a time-series model of coordi-natedmore » VVC is developed to minimize operation costs and eliminate voltage violations of ADNs. Then, by applying the linearization and conic relaxation, the original nonconvex mixed-integer non-linear optimization model is converted into a mixed-integer second-order cone programming (MISOCP) model which can be efficiently solved to meet the requirement of voltage regulation rapidity. Here, we carried out some case studies on the IEEE 33-node system and IEEE 123-node system to illustrate the effectiveness of the proposed method.« less

  6. Coordinated Control Method of Voltage and Reactive Power for Active Distribution Networks Based on Soft Open Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Peng; Ji, Haoran; Wang, Chengshan

    The increasing penetration of distributed generators (DGs) exacerbates the risk of voltage violations in active distribution networks (ADNs). The conventional voltage regulation devices limited by the physical constraints are difficult to meet the requirement of real-time voltage and VAR control (VVC) with high precision when DGs fluctuate frequently. But, soft open point (SOP), a flexible power electronic device, can be used as the continuous reactive power source to realize the fast voltage regulation. Considering the cooperation of SOP and multiple regulation devices, this paper proposes a coordinated VVC method based on SOP for ADNs. Firstly, a time-series model of coordi-natedmore » VVC is developed to minimize operation costs and eliminate voltage violations of ADNs. Then, by applying the linearization and conic relaxation, the original nonconvex mixed-integer non-linear optimization model is converted into a mixed-integer second-order cone programming (MISOCP) model which can be efficiently solved to meet the requirement of voltage regulation rapidity. Here, we carried out some case studies on the IEEE 33-node system and IEEE 123-node system to illustrate the effectiveness of the proposed method.« less

  7. Resource allocation in shared spectrum access communications for operators with diverse service requirements

    NASA Astrophysics Data System (ADS)

    Kibria, Mirza Golam; Villardi, Gabriel Porto; Ishizu, Kentaro; Kojima, Fumihide; Yano, Hiroyuki

    2016-12-01

    In this paper, we study inter-operator spectrum sharing and intra-operator resource allocation in shared spectrum access communication systems and propose efficient dynamic solutions to address both inter-operator and intra-operator resource allocation optimization problems. For inter-operator spectrum sharing, we present two competent approaches, namely the subcarrier gain-based sharing and fragmentation-based sharing, which carry out fair and flexible allocation of the available shareable spectrum among the operators subject to certain well-defined sharing rules, traffic demands, and channel propagation characteristics. The subcarrier gain-based spectrum sharing scheme has been found to be more efficient in terms of achieved throughput. However, the fragmentation-based sharing is more attractive in terms of computational complexity. For intra-operator resource allocation, we consider resource allocation problem with users' dissimilar service requirements, where the operator supports users with delay constraint and non-delay constraint service requirements, simultaneously. This optimization problem is a mixed-integer non-linear programming problem and non-convex, which is computationally very expensive, and the complexity grows exponentially with the number of integer variables. We propose less-complex and efficient suboptimal solution based on formulating exact linearization, linear approximation, and convexification techniques for the non-linear and/or non-convex objective functions and constraints. Extensive simulation performance analysis has been carried out that validates the efficiency of the proposed solution.

  8. Multicriteria Cost Assessment and Logistics Modeling for Military Humanitarian Assistance and Disaster Relief Aerial Delivery Operations

    DTIC Science & Technology

    2015-03-01

    vulnerable people will have access to this airdropped consumable aid (since nobody 1 is necessarily coordinating the distribution on the ground... VBA ) platforms (see Appendix B). In particular, we used GAMS v.23.9.3 with IBM ILOG CPLEX 12.4.0.1 to solve the stochastic, mixed-integer weighted...goal programming model, and we used Excel/ VBA to create an auto- matic, user-friendly interface with the decision maker for model input and analysis of

  9. Solving a Class of Stochastic Mixed-Integer Programs With Branch and Price

    DTIC Science & Technology

    2006-01-01

    a two-dimensional knapsack problem, but for a given m, the objective value gi does not depend on the variance index v. This will be used in a final...optimization. Journal of Multicriteria Decision Analysis 11, 139–150 (2002) 29. Ford, L.R., Fulkerson, D.R.: A suggested computation for the maximal...for solution by a branch-and-price algorithm (B&P). We then survey a number of examples, and use a stochastic facility-location problem (SFLP) for a

  10. On unified modeling, theory, and method for solving multi-scale global optimization problems

    NASA Astrophysics Data System (ADS)

    Gao, David Yang

    2016-10-01

    A unified model is proposed for general optimization problems in multi-scale complex systems. Based on this model and necessary assumptions in physics, the canonical duality theory is presented in a precise way to include traditional duality theories and popular methods as special applications. Two conjectures on NP-hardness are proposed, which should play important roles for correctly understanding and efficiently solving challenging real-world problems. Applications are illustrated for both nonconvex continuous optimization and mixed integer nonlinear programming.

  11. Optimal planning of co-firing alternative fuels with coal in a power plant by grey nonlinear mixed integer programming model.

    PubMed

    Ko, Andi Setiady; Chang, Ni-Bin

    2008-07-01

    Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO(2)) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To ease the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time.

  12. A combined MOIP-MCDA approach to building and screening atmospheric pollution control strategies in urban regions.

    PubMed

    Mavrotas, George; Ziomas, Ioannis C; Diakouaki, Danae

    2006-07-01

    This article presents a methodological approach for the formulation of control strategies capable of reducing atmospheric pollution at the standards set by European legislation. The approach was implemented in the greater area of Thessaloniki and was part of a project aiming at the compliance with air quality standards in five major cities in Greece. The methodological approach comprises two stages: in the first stage, the availability of several measures contributing to a certain extent to reducing atmospheric pollution indicates a combinatorial problem and favors the use of Integer Programming. More specifically, Multiple Objective Integer Programming is used in order to generate alternative efficient combinations of the available policy measures on the basis of two conflicting objectives: public expenditure minimization and social acceptance maximization. In the second stage, these combinations of control measures (i.e., the control strategies) are then comparatively evaluated with respect to a wider set of criteria, using tools from Multiple Criteria Decision Analysis, namely, the well-known PROMETHEE method. The whole procedure is based on the active involvement of local and central authorities in order to incorporate their concerns and preferences, as well as to secure the adoption and implementation of the resulting solution.

  13. A Combined MOIP-MCDA Approach to Building and Screening Atmospheric Pollution Control Strategies in Urban Regions

    NASA Astrophysics Data System (ADS)

    Mavrotas, George; Ziomas, Ioannis C.; Diakouaki, Danae

    2006-07-01

    This article presents a methodological approach for the formulation of control strategies capable of reducing atmospheric pollution at the standards set by European legislation. The approach was implemented in the greater area of Thessaloniki and was part of a project aiming at the compliance with air quality standards in five major cities in Greece. The methodological approach comprises two stages: in the first stage, the availability of several measures contributing to a certain extent to reducing atmospheric pollution indicates a combinatorial problem and favors the use of Integer Programming. More specifically, Multiple Objective Integer Programming is used in order to generate alternative efficient combinations of the available policy measures on the basis of two conflicting objectives: public expenditure minimization and social acceptance maximization. In the second stage, these combinations of control measures (i.e., the control strategies) are then comparatively evaluated with respect to a wider set of criteria, using tools from Multiple Criteria Decision Analysis, namely, the well-known PROMETHEE method. The whole procedure is based on the active involvement of local and central authorities in order to incorporate their concerns and preferences, as well as to secure the adoption and implementation of the resulting solution.

  14. Modelling with Integer Variables.

    DTIC Science & Technology

    1984-01-01

    Computational Comparison of * ’Equivalent’ Mixed Integer Formulations," Naval Research Logistics Quarterly 28 (1981), pp. 115- 131 . 39. R. R, Meyer and...jE(i) 3 K ".- .e I " Z A . .,.. x jCI (i) IJ ~s ;:. ... i=I 1 1X. integer A- k . . . . . . . . . . . ... . ... . . . . . . . . . o...be such that Z X.. = 1 andIfxCi’e k jcI (i) 11 13 kx m). *x + E okv . Then by putting Xil and X.=O for j* i, j£I(i) kE (2.3.4) holds. Hence S’ Pi" As

  15. Aggregation of LoD 1 building models as an optimization problem

    NASA Astrophysics Data System (ADS)

    Guercke, R.; Götzelmann, T.; Brenner, C.; Sester, M.

    3D city models offered by digital map providers typically consist of several thousands or even millions of individual buildings. Those buildings are usually generated in an automated fashion from high resolution cadastral and remote sensing data and can be very detailed. However, not in every application such a high degree of detail is desirable. One way to remove complexity is to aggregate individual buildings, simplify the ground plan and assign an appropriate average building height. This task is computationally complex because it includes the combinatorial optimization problem of determining which subset of the original set of buildings should best be aggregated to meet the demands of an application. In this article, we introduce approaches to express different aspects of the aggregation of LoD 1 building models in the form of Mixed Integer Programming (MIP) problems. The advantage of this approach is that for linear (and some quadratic) MIP problems, sophisticated software exists to find exact solutions (global optima) with reasonable effort. We also propose two different heuristic approaches based on the region growing strategy and evaluate their potential for optimization by comparing their performance to a MIP-based approach.

  16. Techniques for computing the discrete Fourier transform using the quadratic residue Fermat number systems

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Chang, J. J.; Hsu, I. S.; Pei, D. Y.; Reed, I. S.

    1986-01-01

    The complex integer multiplier and adder over the direct sum of two copies of finite field developed by Cozzens and Finkelstein (1985) is specialized to the direct sum of the rings of integers modulo Fermat numbers. Such multiplication over the rings of integers modulo Fermat numbers can be performed by means of two integer multiplications, whereas the complex integer multiplication requires three integer multiplications. Such multiplications and additions can be used in the implementation of a discrete Fourier transform (DFT) of a sequence of complex numbers. The advantage of the present approach is that the number of multiplications needed to compute a systolic array of the DFT can be reduced substantially. The architectural designs using this approach are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaohu; Shi, Di; Wang, Zhiwei

    Shunt FACTS devices, such as, a Static Var Compensator (SVC), are capable of providing local reactive power compensation. They are widely used in the network to reduce the real power loss and improve the voltage profile. This paper proposes a planning model based on mixed integer conic programming (MICP) to optimally allocate SVCs in the transmission network considering load uncertainty. The load uncertainties are represented by a number of scenarios. Reformulation and linearization techniques are utilized to transform the original non-convex model into a convex second order cone programming (SOCP) model. Numerical case studies based on the IEEE 30-bus systemmore » demonstrate the effectiveness of the proposed planning model.« less

  18. Constrained spacecraft reorientation using mixed integer convex programming

    NASA Astrophysics Data System (ADS)

    Tam, Margaret; Glenn Lightsey, E.

    2016-10-01

    A constrained attitude guidance (CAG) system is developed using convex optimization to autonomously achieve spacecraft pointing objectives while meeting the constraints imposed by on-board hardware. These constraints include bounds on the control input and slew rate, as well as pointing constraints imposed by the sensors. The pointing constraints consist of inclusion and exclusion cones that dictate permissible orientations of the spacecraft in order to keep objects in or out of the field of view of the sensors. The optimization scheme drives a body vector towards a target inertial vector along a trajectory that consists solely of permissible orientations in order to achieve the desired attitude for a given mission mode. The non-convex rotational kinematics are handled by discretization, which also ensures that the quaternion stays unity norm. In order to guarantee an admissible path, the pointing constraints are relaxed. Depending on how strict the pointing constraints are, the degree of relaxation is tuneable. The use of binary variables permits the inclusion of logical expressions in the pointing constraints in the case that a set of sensors has redundancies. The resulting mixed integer convex programming (MICP) formulation generates a steering law that can be easily integrated into an attitude determination and control (ADC) system. A sample simulation of the system is performed for the Bevo-2 satellite, including disturbance torques and actuator dynamics which are not modeled by the controller. Simulation results demonstrate the robustness of the system to disturbances while meeting the mission requirements with desirable performance characteristics.

  19. Engineering calculations for communications satellite systems planning

    NASA Technical Reports Server (NTRS)

    Reilly, C. H.; Levis, C. A.; Mount-Campbell, C.; Gonsalvez, D. J.; Wang, C. W.; Yamamura, Y.

    1985-01-01

    Computer-based techniques for optimizing communications-satellite orbit and frequency assignments are discussed. A gradient-search code was tested against a BSS scenario derived from the RARC-83 data. Improvement was obtained, but each iteration requires about 50 minutes of IBM-3081 CPU time. Gradient-search experiments on a small FSS test problem, consisting of a single service area served by 8 satellites, showed quickest convergence when the satellites were all initially placed near the center of the available orbital arc with moderate spacing. A transformation technique is proposed for investigating the surface topography of the objective function used in the gradient-search method. A new synthesis approach is based on transforming single-entry interference constraints into corresponding constraints on satellite spacings. These constraints are used with linear objective functions to formulate the co-channel orbital assignment task as a linear-programming (LP) problem or mixed integer programming (MIP) problem. Globally optimal solutions are always found with the MIP problems, but not necessarily with the LP problems. The MIP solutions can be used to evaluate the quality of the LP solutions. The initial results are very encouraging.

  20. Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem.

    PubMed

    Chen, Xiaopan; Kong, Yunfeng; Dang, Lanxue; Hou, Yane; Ye, Xinyue

    2015-01-01

    As a class of hard combinatorial optimization problems, the school bus routing problem has received considerable attention in the last decades. For a multi-school system, given the bus trips for each school, the school bus scheduling problem aims at optimizing bus schedules to serve all the trips within the school time windows. In this paper, we propose two approaches for solving the bi-objective school bus scheduling problem: an exact method of mixed integer programming (MIP) and a metaheuristic method which combines simulated annealing with local search. We develop MIP formulations for homogenous and heterogeneous fleet problems respectively and solve the models by MIP solver CPLEX. The bus type-based formulation for heterogeneous fleet problem reduces the model complexity in terms of the number of decision variables and constraints. The metaheuristic method is a two-stage framework for minimizing the number of buses to be used as well as the total travel distance of buses. We evaluate the proposed MIP and the metaheuristic method on two benchmark datasets, showing that on both instances, our metaheuristic method significantly outperforms the respective state-of-the-art methods.

  1. Optimization Model for Web Based Multimodal Interactive Simulations.

    PubMed

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-07-15

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update . In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach.

  2. Optimization Model for Web Based Multimodal Interactive Simulations

    PubMed Central

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-01-01

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update. In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach. PMID:26085713

  3. A Structural Weight Estimation Program (SWEEP) for Aircraft. Volume 11 - Flexible Airloads Stand-Alone Program

    DTIC Science & Technology

    1974-06-01

    stiffness, lb-in. I Integer used to designate wing strip number 2 I Airplanw pitching moment of inertia, slug ft 2 I Airplane yawing moment of inertia...slug ft J Integer used to designated wing-loading distribution, i.e., J-l, loading due to angle of attack J=2> loading due to flap deflection J-3...moment at intersection of load reference line and body interface station (for vertical tail), in.-lb Integer used to designate type of wing airload

  4. Household water use and conservation models using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Cahill, R.; Lund, J. R.; DeOreo, B.; Medellín-Azuara, J.

    2013-10-01

    The increased availability of end use measurement studies allows for mechanistic and detailed approaches to estimating household water demand and conservation potential. This study simulates water use in a single-family residential neighborhood using end-water-use parameter probability distributions generated from Monte Carlo sampling. This model represents existing water use conditions in 2010 and is calibrated to 2006-2011 metered data. A two-stage mixed integer optimization model is then developed to estimate the least-cost combination of long- and short-term conservation actions for each household. This least-cost conservation model provides an estimate of the upper bound of reasonable conservation potential for varying pricing and rebate conditions. The models were adapted from previous work in Jordan and are applied to a neighborhood in San Ramon, California in the eastern San Francisco Bay Area. The existing conditions model produces seasonal use results very close to the metered data. The least-cost conservation model suggests clothes washer rebates are among most cost-effective rebate programs for indoor uses. Retrofit of faucets and toilets is also cost-effective and holds the highest potential for water savings from indoor uses. This mechanistic modeling approach can improve understanding of water demand and estimate cost-effectiveness of water conservation programs.

  5. Household water use and conservation models using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Cahill, R.; Lund, J. R.; DeOreo, B.; Medellín-Azuara, J.

    2013-04-01

    The increased availability of water end use measurement studies allows for more mechanistic and detailed approaches to estimating household water demand and conservation potential. This study uses, probability distributions for parameters affecting water use estimated from end use studies and randomly sampled in Monte Carlo iterations to simulate water use in a single-family residential neighborhood. This model represents existing conditions and is calibrated to metered data. A two-stage mixed integer optimization model is then developed to estimate the least-cost combination of long- and short-term conservation actions for each household. This least-cost conservation model provides an estimate of the upper bound of reasonable conservation potential for varying pricing and rebate conditions. The models were adapted from previous work in Jordan and are applied to a neighborhood in San Ramon, California in eastern San Francisco Bay Area. The existing conditions model produces seasonal use results very close to the metered data. The least-cost conservation model suggests clothes washer rebates are among most cost-effective rebate programs for indoor uses. Retrofit of faucets and toilets is also cost effective and holds the highest potential for water savings from indoor uses. This mechanistic modeling approach can improve understanding of water demand and estimate cost-effectiveness of water conservation programs.

  6. Liveness-enforcing supervisors synthesis for a class of generalised Petri nets based on two-stage deadlock control and mathematical programming

    NASA Astrophysics Data System (ADS)

    Zhao, Mi; Hou, Yifan; Liu, Ding

    2010-10-01

    In this article we deal with deadlock prevention problems for S4PR, a class of generalised Petri nets, which can well model a large class of flexible manufacturing systems where deadlocks are caused by insufficiently marked siphons. We present a deadlock prevention methodology that is an iterative approach consisting of two stages. The first one is called siphon control, which is to add for each insufficiently marked minimal siphon a control place to the original net. Its objective is to prevent a minimal siphon from being insufficiently marked. The second one, called control-induced siphon control, is to add a control place to the augmented net with its output arcs connecting to the source transitions, which assures that there are no new insufficiently marked siphons generated. At each iteration, a mixed integer programming approach is adopted for generalised Petri nets to obtain an insufficiently marked minimal siphon from the maximal deadly siphon. This way complete siphon enumeration is avoided that is much more time-consuming for a sizeable plant model than the proposed method. The relation of the proposed method and the liveness and reversibility of the controlled net is obtained. Examples are presented to demonstrate the presented method.

  7. Graphical models for optimal power flow

    DOE PAGES

    Dvijotham, Krishnamurthy; Chertkov, Michael; Van Hentenryck, Pascal; ...

    2016-09-13

    Optimal power flow (OPF) is the central optimization problem in electric power grids. Although solved routinely in the course of power grid operations, it is known to be strongly NP-hard in general, and weakly NP-hard over tree networks. In this paper, we formulate the optimal power flow problem over tree networks as an inference problem over a tree-structured graphical model where the nodal variables are low-dimensional vectors. We adapt the standard dynamic programming algorithm for inference over a tree-structured graphical model to the OPF problem. Combining this with an interval discretization of the nodal variables, we develop an approximation algorithmmore » for the OPF problem. Further, we use techniques from constraint programming (CP) to perform interval computations and adaptive bound propagation to obtain practically efficient algorithms. Compared to previous algorithms that solve OPF with optimality guarantees using convex relaxations, our approach is able to work for arbitrary tree-structured distribution networks and handle mixed-integer optimization problems. Further, it can be implemented in a distributed message-passing fashion that is scalable and is suitable for “smart grid” applications like control of distributed energy resources. In conclusion, numerical evaluations on several benchmark networks show that practical OPF problems can be solved effectively using this approach.« less

  8. A customized MILP approach to the synthesis of heat recovery networks reaching specified topology targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galli, M.R.; Cerda, J.

    1998-06-01

    A mathematical representation of a heat-exchanger network structure that explicitly accounts for the relative location of heat-transfer units, splitters, and mixers is presented. It is the basis of a mixed-integer linear programming sequential approach to the synthesis of heat-exchanger networks that allows the designer to specify beforehand some desired topology features as further design targets. Such structural information stands for additional problem data to be considered in the problem formulation, thus enhancing the involvement of the design engineer in the synthesis task. The topology constraints are expressed in terms of (1) the equipment items (heat exchangers, splitters, and mixers) thatmore » could be incorporated into the network, (2) the feasible neighbors for every potential unit, and (3) the heat matches, if any, with which a heat exchanger can be accomplished in parallel over any process stream. Moreover, the number and types of splitters being arranged over either a particular stream or the whole network can also be restrained. The new approach has been successfully applied to the solution of five example problems at each of which a wide variety of structural design restrictions were specified.« less

  9. Finding fixed satellite service orbital allotments with a k-permutation algorithm

    NASA Technical Reports Server (NTRS)

    Reilly, Charles H.; Mount-Campbell, Clark A.; Gonsalvez, David J. A.

    1990-01-01

    A satellite system synthesis problem, the satellite location problem (SLP), is addressed. In SLP, orbital locations (longitudes) are allotted to geostationary satellites in the fixed satellite service. A linear mixed-integer programming model is presented that views SLP as a combination of two problems: the problem of ordering the satellites and the problem of locating the satellites given some ordering. A special-purpose heuristic procedure, a k-permutation algorithm, has been developed to find solutions to SLPs. Solutions to small sample problems are presented and analyzed on the basis of calculated interferences.

  10. Simulation and Mixed Integer Linear Programming Models for Analysis of Semi-Automated Mail Processing

    DTIC Science & Technology

    1989-12-01

    Sincere appreciation is deserved by Geraldo Veiga , Department of Industrial Engineering and Operations Research, at the University of California, Berkeley...Convergence 124 Veiga , University of California, Berkeley, must be credited with applying the MINOS code to our GMF-A problems). MINOS is a FORTRAN...placed in cart ACT,O,,TS23; and if the cart is full, an ACT,O,LSN8l3CARr.GE.LSMBl3FULL,TS24; entity is sent to TS24 to ACr,O,,TT fl ; empty the cart

  11. Analysis, Evaluation and Improvement of Sequential Single-Item Auctions for the Cooperative Real-Time Allocation of Tasks

    DTIC Science & Technology

    2013-03-30

    Abstract: We study multi-robot routing problems (MR- LDR ) where a team of robots has to visit a set of given targets with linear decreasing rewards over...time, such as required for the delivery of goods to rescue sites after disasters. The objective of MR- LDR is to find an assignment of targets to...We develop a mixed integer program that solves MR- LDR optimally with a flow-type formulation and can be solved faster than the standard TSP-type

  12. Elements of Mathematics, Book O: Intuitive Background. Chapter 2, The Integers.

    ERIC Educational Resources Information Center

    Exner, Robert; And Others

    The sixteen chapters of this book provide the core materials for the Elements of Mathematics Program, a secondary sequence developed for highly motivated students with strong verbal abilities. The sequence is based on a functional-relational approach to mathematics teaching, and emphasizes teaching by analysis of real-life situations. This text is…

  13. On Distributed PV Hosting Capacity Estimation, Sensitivity Study, and Improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Mather, Barry

    This paper first studies the estimated distributed PV hosting capacities of seventeen utility distribution feeders using the Monte Carlo simulation based stochastic analysis, and then analyzes the sensitivity of PV hosting capacity to both feeder and photovoltaic system characteristics. Furthermore, an active distribution network management approach is proposed to maximize PV hosting capacity by optimally switching capacitors, adjusting voltage regulator taps, managing controllable branch switches and controlling smart PV inverters. The approach is formulated as a mixed-integer nonlinear optimization problem and a genetic algorithm is developed to obtain the solution. Multiple simulation cases are studied and the effectiveness of themore » proposed approach on increasing PV hosting capacity is demonstrated.« less

  14. A Generalized National Planning Approach for Admission Capacity in Higher Education: A Nonlinear Integer Goal Programming Model with a Novel Differential Evolution Algorithm

    PubMed Central

    El-Qulity, Said Ali; Mohamed, Ali Wagdy

    2016-01-01

    This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness. PMID:26819583

  15. A Generalized National Planning Approach for Admission Capacity in Higher Education: A Nonlinear Integer Goal Programming Model with a Novel Differential Evolution Algorithm.

    PubMed

    El-Qulity, Said Ali; Mohamed, Ali Wagdy

    2016-01-01

    This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness.

  16. Personnel scheduling using an integer programming model- an application at Avanti Blue-Nile Hotels.

    PubMed

    Kassa, Biniyam Asmare; Tizazu, Anteneh Eshetu

    2013-01-01

    In this paper, we report perhaps a first of its kind application of management science in the Ethiopian hotel industry. Avanti Blue Nile Hotels, a newly established five star hotel in Bahir Dar, is the company for which we developed an integer programming model that determines an optimal weekly shift schedule for the Hotel's engineering department personnel while satisfying several constraints including weekly rest requirements per employee, rest requirements between working shifts per employee, required number of personnel per shift, and other constraints. The model is implemented on an excel solver routine. The model enables the company's personnel department management to develop a fair personnel schedule as needed and to effectively utilize personnel resources while satisfying several technical, legal and economic requirements. These encouraging achievements make us optimistic about the gains other Ethiopian organizations can amass by introducing management science approaches in their management planning and decision making systems.

  17. A Composite Algorithm for Mixed Integer Constrained Nonlinear Optimization.

    DTIC Science & Technology

    1980-01-01

    de Silva [141, and Weisman and Wood [76). A particular direct search algorithm, the simplex method, has been cited for having the potential for...spaced discrete points on a line which makes the direction suitable for an efficient integer search technique based on Fibonacci numbers. Two...defined by a subset of variables. The complex algorithm is particularly well suited for this subspace search for two reasons. First, the complex method

  18. MILP model for integrated balancing and sequencing mixed-model two-sided assembly line with variable launching interval and assignment restrictions

    NASA Astrophysics Data System (ADS)

    Azmi, N. I. L. Mohd; Ahmad, R.; Zainuddin, Z. M.

    2017-09-01

    This research explores the Mixed-Model Two-Sided Assembly Line (MMTSAL). There are two interrelated problems in MMTSAL which are line balancing and model sequencing. In previous studies, many researchers considered these problems separately and only few studied them simultaneously for one-sided line. However in this study, these two problems are solved simultaneously to obtain more efficient solution. The Mixed Integer Linear Programming (MILP) model with objectives of minimizing total utility work and idle time is generated by considering variable launching interval and assignment restriction constraint. The problem is analysed using small-size test cases to validate the integrated model. Throughout this paper, numerical experiment was conducted by using General Algebraic Modelling System (GAMS) with the solver CPLEX. Experimental results indicate that integrating the problems of model sequencing and line balancing help to minimise the proposed objectives function.

  19. Large-Scale Multiobjective Static Test Generation for Web-Based Testing with Integer Programming

    ERIC Educational Resources Information Center

    Nguyen, M. L.; Hui, Siu Cheung; Fong, A. C. M.

    2013-01-01

    Web-based testing has become a ubiquitous self-assessment method for online learning. One useful feature that is missing from today's web-based testing systems is the reliable capability to fulfill different assessment requirements of students based on a large-scale question data set. A promising approach for supporting large-scale web-based…

  20. Random crystal field effects on the integer and half-integer mixed-spin system

    NASA Astrophysics Data System (ADS)

    Yigit, Ali; Albayrak, Erhan

    2018-05-01

    In this work, we have focused on the random crystal field effects on the phase diagrams of the mixed spin-1 and spin-5/2 Ising system obtained by utilizing the exact recursion relations (ERR) on the Bethe lattice (BL). The distribution function P(Di) = pδ [Di - D(1 + α) ] +(1 - p) δ [Di - D(1 - α) ] is used to randomize the crystal field.The phase diagrams are found to exhibit second- and first-order phase transitions depending on the values of α, D and p. It is also observed that the model displays tricritical point, isolated point, critical end point and three compensation temperatures for suitable values of the system parameters.

  1. Integrated supply chain design for commodity chemicals production via woody biomass fast pyrolysis and upgrading.

    PubMed

    Zhang, Yanan; Hu, Guiping; Brown, Robert C

    2014-04-01

    This study investigates the optimal supply chain design for commodity chemicals (BTX, etc.) production via woody biomass fast pyrolysis and hydroprocessing pathway. The locations and capacities of distributed preprocessing hubs and integrated biorefinery facilities are optimized with a mixed integer linear programming model. In this integrated supply chain system, decisions on the biomass chipping methods (roadside chipping vs. facility chipping) are also explored. The economic objective of the supply chain model is to maximize the profit for a 20-year chemicals production system. In addition to the economic objective, the model also incorporates an environmental objective of minimizing life cycle greenhouse gas emissions, analyzing the trade-off between the economic and environmental considerations. The capital cost, operating cost, and revenues for the biorefinery facilities are based on techno-economic analysis, and the proposed approach is illustrated through a case study of Minnesota, with Minneapolis-St. Paul serving as the chemicals distribution hub. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Optimal design of zero-water discharge rinsing systems.

    PubMed

    Thöming, Jorg

    2002-03-01

    This paper is about zero liquid discharge in processes that use water for rinsing. Emphasis was given to those systems that contaminate process water with valuable process liquor and compounds. The approach involved the synthesis of optimal rinsing and recycling networks (RRN) that had a priori excluded water discharge. The total annualized costs of the RRN were minimized by the use of a mixed-integer nonlinear program (MINLP). This MINLP was based on a hyperstructure of the RRN and contained eight counterflow rinsing stages and three regenerator units: electrodialysis, reverse osmosis, and ion exchange columns. A "large-scale nickel plating process" case study showed that by means of zero-water discharge and optimized rinsing the total waste could be reduced by 90.4% at a revenue of $448,000/yr. Furthermore, with the optimized RRN, the rinsing performance can be improved significantly at a low-cost increase. In all the cases, the amount of valuable compounds reclaimed was above 99%.

  3. Road Risk Modeling and Cloud-Aided Safety-Based Route Planning.

    PubMed

    Li, Zhaojian; Kolmanovsky, Ilya; Atkins, Ella; Lu, Jianbo; Filev, Dimitar P; Michelini, John

    2016-11-01

    This paper presents a safety-based route planner that exploits vehicle-to-cloud-to-vehicle (V2C2V) connectivity. Time and road risk index (RRI) are considered as metrics to be balanced based on user preference. To evaluate road segment risk, a road and accident database from the highway safety information system is mined with a hybrid neural network model to predict RRI. Real-time factors such as time of day, day of the week, and weather are included as correction factors to the static RRI prediction. With real-time RRI and expected travel time, route planning is formulated as a multiobjective network flow problem and further reduced to a mixed-integer programming problem. A V2C2V implementation of our safety-based route planning approach is proposed to facilitate access to real-time information and computing resources. A real-world case study, route planning through the city of Columbus, Ohio, is presented. Several scenarios illustrate how the "best" route can be adjusted to favor time versus safety metrics.

  4. On Revenue-Optimal Dynamic Auctions for Bidders with Interdependent Values

    NASA Astrophysics Data System (ADS)

    Constantin, Florin; Parkes, David C.

    In a dynamic market, being able to update one's value based on information available to other bidders currently in the market can be critical to having profitable transactions. This is nicely captured by the model of interdependent values (IDV): a bidder's value can explicitly depend on the private information of other bidders. In this paper we present preliminary results about the revenue properties of dynamic auctions for IDV bidders. We adopt a computational approach to design single-item revenue-optimal dynamic auctions with known arrivals and departures but (private) signals that arrive online. In leveraging a characterization of truthful auctions, we present a mixed-integer programming formulation of the design problem. Although a discretization is imposed on bidder signals the solution is a mechanism applicable to continuous signals. The formulation size grows exponentially in the dependence of bidders' values on other bidders' signals. We highlight general properties of revenue-optimal dynamic auctions in a simple parametrized example and study the sensitivity of prices and revenue to model parameters.

  5. Solving a supply chain scheduling problem with non-identical job sizes and release times by applying a novel effective heuristic algorithm

    NASA Astrophysics Data System (ADS)

    Pei, Jun; Liu, Xinbao; Pardalos, Panos M.; Fan, Wenjuan; Wang, Ling; Yang, Shanlin

    2016-03-01

    Motivated by applications in manufacturing industry, we consider a supply chain scheduling problem, where each job is characterised by non-identical sizes, different release times and unequal processing times. The objective is to minimise the makespan by making batching and sequencing decisions. The problem is formalised as a mixed integer programming model and proved to be strongly NP-hard. Some structural properties are presented for both the general case and a special case. Based on these properties, a lower bound is derived, and a novel two-phase heuristic (TP-H) is developed to solve the problem, which guarantees to obtain a worst case performance ratio of ?. Computational experiments with a set of different sizes of random instances are conducted to evaluate the proposed approach TP-H, which is superior to another two heuristics proposed in the literature. Furthermore, the experimental results indicate that TP-H can effectively and efficiently solve large-size problems in a reasonable time.

  6. Dynamic UNITY

    DTIC Science & Technology

    2002-01-01

    UNITY program that implements exactly the same algorithm as Specification 1.1. The correctness of this program is proven in amanner sim- 4 program...chapter, we introduce the Dynamic UNITY formalism, which allows us to reason about algorithms and protocols in which the sets of participating processes...implements Euclid’s algorithm for calculating the greatest common divisor (GCD) of two integers; it repeat- edly reads an integer message from each of its

  7. Mathematical model and metaheuristics for simultaneous balancing and sequencing of a robotic mixed-model assembly line

    NASA Astrophysics Data System (ADS)

    Li, Zixiang; Janardhanan, Mukund Nilakantan; Tang, Qiuhua; Nielsen, Peter

    2018-05-01

    This article presents the first method to simultaneously balance and sequence robotic mixed-model assembly lines (RMALB/S), which involves three sub-problems: task assignment, model sequencing and robot allocation. A new mixed-integer programming model is developed to minimize makespan and, using CPLEX solver, small-size problems are solved for optimality. Two metaheuristics, the restarted simulated annealing algorithm and co-evolutionary algorithm, are developed and improved to address this NP-hard problem. The restarted simulated annealing method replaces the current temperature with a new temperature to restart the search process. The co-evolutionary method uses a restart mechanism to generate a new population by modifying several vectors simultaneously. The proposed algorithms are tested on a set of benchmark problems and compared with five other high-performing metaheuristics. The proposed algorithms outperform their original editions and the benchmarked methods. The proposed algorithms are able to solve the balancing and sequencing problem of a robotic mixed-model assembly line effectively and efficiently.

  8. Mathematical programming (MP) model to determine optimal transportation infrastructure for geologic CO2 storage in the Illinois basin

    NASA Astrophysics Data System (ADS)

    Rehmer, Donald E.

    Analysis of results from a mathematical programming model were examined to 1) determine the least cost options for infrastructure development of geologic storage of CO2 in the Illinois Basin, and 2) perform an analysis of a number of CO2 emission tax and oil price scenarios in order to implement development of the least-cost pipeline networks for distribution of CO2. The model, using mixed integer programming, tested the hypothesis of whether viable EOR sequestration sites can serve as nodal points or hubs to expand the CO2 delivery infrastructure to more distal locations from the emissions sources. This is in contrast to previous model results based on a point-to- point model having direct pipeline segments from each CO2 capture site to each storage sink. There is literature on the spoke and hub problem that relates to airline scheduling as well as maritime shipping. A large-scale ship assignment problem that utilized integer linear programming was run on Excel Solver and described by Mourao et al., (2001). Other literature indicates that aircraft assignment in spoke and hub routes can also be achieved using integer linear programming (Daskin and Panayotopoulos, 1989; Hane et al., 1995). The distribution concept is basically the reverse of the "tree and branch" type (Rothfarb et al., 1970) gathering systems for oil and natural gas that industry has been developing for decades. Model results indicate that the inclusion of hubs as variables in the model yields lower transportation costs for geologic carbon dioxide storage over previous models of point-to-point infrastructure geometries. Tabular results and GIS maps of the selected scenarios illustrate that EOR sites can serve as nodal points or hubs for distribution of CO2 to distal oil field locations as well as deeper saline reservoirs. Revenue amounts and capture percentages both show an improvement over solutions when the hubs are not allowed to come into the solution. Other results indicate that geologic storage of CO2 into saline aquifers does not come into solutions selected by the model until the CO 2 emissions tax approaches 50/tonne. CO2 capture and storage begins to occur when the oil price is above 24.42 a barrel based on the constraints of the model. The annual storage capacity of the basin is nearly maximized when the net price of oil is as low as 40 per barrel and the CO2 emission tax is 60/tonne. The results from every subsequent scenario that was examined by this study demonstrate that EOR utilizing anthropogenically captured CO2 will earn net revenue, and thus represents an economically viable option for CO2 storage in the Illinois Basin.

  9. A Treatment of Computational Precision, Number Representation, and Large Integers in an Introductory Fortran Course

    ERIC Educational Resources Information Center

    Richardson, William H., Jr.

    2006-01-01

    Computational precision is sometimes given short shrift in a first programming course. Treating this topic requires discussing integer and floating-point number representations and inaccuracies that may result from their use. An example of a moderately simple programming problem from elementary statistics was examined. It forced students to…

  10. Currency Arbitrage Detection Using a Binary Integer Programming Model

    ERIC Educational Resources Information Center

    Soon, Wanmei; Ye, Heng-Qing

    2011-01-01

    In this article, we examine the use of a new binary integer programming (BIP) model to detect arbitrage opportunities in currency exchanges. This model showcases an excellent application of mathematics to the real world. The concepts involved are easily accessible to undergraduate students with basic knowledge in Operations Research. Through this…

  11. Galaxy Redshifts from Discrete Optimization of Correlation Functions

    NASA Astrophysics Data System (ADS)

    Lee, Benjamin C. G.; Budavári, Tamás; Basu, Amitabh; Rahman, Mubdi

    2016-12-01

    We propose a new method of constraining the redshifts of individual extragalactic sources based on celestial coordinates and their ensemble statistics. Techniques from integer linear programming (ILP) are utilized to optimize simultaneously for the angular two-point cross- and autocorrelation functions. Our novel formalism introduced here not only transforms the otherwise hopelessly expensive, brute-force combinatorial search into a linear system with integer constraints but also is readily implementable in off-the-shelf solvers. We adopt Gurobi, a commercial optimization solver, and use Python to build the cost function dynamically. The preliminary results on simulated data show potential for future applications to sky surveys by complementing and enhancing photometric redshift estimators. Our approach is the first application of ILP to astronomical analysis.

  12. A combinatorial approach to the design of vaccines.

    PubMed

    Martínez, Luis; Milanič, Martin; Legarreta, Leire; Medvedev, Paul; Malaina, Iker; de la Fuente, Ildefonso M

    2015-05-01

    We present two new problems of combinatorial optimization and discuss their applications to the computational design of vaccines. In the shortest λ-superstring problem, given a family S1,...,S(k) of strings over a finite alphabet, a set Τ of "target" strings over that alphabet, and an integer λ, the task is to find a string of minimum length containing, for each i, at least λ target strings as substrings of S(i). In the shortest λ-cover superstring problem, given a collection X1,...,X(n) of finite sets of strings over a finite alphabet and an integer λ, the task is to find a string of minimum length containing, for each i, at least λ elements of X(i) as substrings. The two problems are polynomially equivalent, and the shortest λ-cover superstring problem is a common generalization of two well known combinatorial optimization problems, the shortest common superstring problem and the set cover problem. We present two approaches to obtain exact or approximate solutions to the shortest λ-superstring and λ-cover superstring problems: one based on integer programming, and a hill-climbing algorithm. An application is given to the computational design of vaccines and the algorithms are applied to experimental data taken from patients infected by H5N1 and HIV-1.

  13. A mathematical programming approach for sequential clustering of dynamic networks

    NASA Astrophysics Data System (ADS)

    Silva, Jonathan C.; Bennett, Laura; Papageorgiou, Lazaros G.; Tsoka, Sophia

    2016-02-01

    A common analysis performed on dynamic networks is community structure detection, a challenging problem that aims to track the temporal evolution of network modules. An emerging area in this field is evolutionary clustering, where the community structure of a network snapshot is identified by taking into account both its current state as well as previous time points. Based on this concept, we have developed a mixed integer non-linear programming (MINLP) model, SeqMod, that sequentially clusters each snapshot of a dynamic network. The modularity metric is used to determine the quality of community structure of the current snapshot and the historical cost is accounted for by optimising the number of node pairs co-clustered at the previous time point that remain so in the current snapshot partition. Our method is tested on social networks of interactions among high school students, college students and members of the Brazilian Congress. We show that, for an adequate parameter setting, our algorithm detects the classes that these students belong more accurately than partitioning each time step individually or by partitioning the aggregated snapshots. Our method also detects drastic discontinuities in interaction patterns across network snapshots. Finally, we present comparative results with similar community detection methods for time-dependent networks from the literature. Overall, we illustrate the applicability of mathematical programming as a flexible, adaptable and systematic approach for these community detection problems. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.

  14. A k-permutation algorithm for Fixed Satellite Service orbital allotments

    NASA Technical Reports Server (NTRS)

    Reilly, Charles H.; Mount-Campbell, Clark A.; Gonsalvez, David J. A.

    1988-01-01

    A satellite system synthesis problem, the satellite location problem (SLP), is addressed in this paper. In SLP, orbital locations (longitudes) are allotted to geostationary satellites in the Fixed Satellite Service. A linear mixed-integer programming model is presented that views SLP as a combination of two problems: (1) the problem of ordering the satellites and (2) the problem of locating the satellites given some ordering. A special-purpose heuristic procedure, a k-permutation algorithm, that has been developed to find solutions to SLPs formulated in the manner suggested is described. Solutions to small example problems are presented and analyzed.

  15. The Optimization dispatching of Micro Grid Considering Load Control

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Xie, Jiqiang; Yang, Xiu; He, Hongli

    2018-01-01

    This paper proposes an optimization control of micro-grid system economy operation model. It coordinates the new energy and storage operation with diesel generator output, so as to achieve the economic operation purpose of micro-grid. In this paper, the micro-grid network economic operation model is transformed into mixed integer programming problem, which is solved by the mature commercial software, and the new model is proved to be economical, and the load control strategy can reduce the charge and discharge times of energy storage devices, and extend the service life of the energy storage device to a certain extent.

  16. Astronauts' menu problem.

    NASA Technical Reports Server (NTRS)

    Lesso, W. G.; Kenyon, E.

    1972-01-01

    Consideration of the problems involved in choosing appropriate menus for astronauts carrying out SKYLAB missions lasting up to eight weeks. The problem of planning balanced menus on the basis of prepackaged food items within limitations on the intake of calories, protein, and certain elements is noted, as well as a number of other restrictions of both physical and arbitrary nature. The tailoring of a set of menus for each astronaut on the basis of subjective rankings of each food by the astronaut in terms of a 'measure of pleasure' is described, and a computer solution to this problem by means of a mixed integer programming code is presented.

  17. Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Lee, Charles H.; Cheung, Kar-Ming

    2012-01-01

    In this paper, we propose to solve the constrained optimization problem in two phases. The first phase uses heuristic methods such as the ant colony method, particle swarming optimization, and genetic algorithm to seek a near optimal solution among a list of feasible initial populations. The final optimal solution can be found by using the solution of the first phase as the initial condition to the SQP algorithm. We demonstrate the above problem formulation and optimization schemes with a large-scale network that includes the DSN ground stations and a number of spacecraft of deep space missions.

  18. An Improved Multi-Objective Programming with Augmented ε-Constraint Method for Hazardous Waste Location-Routing Problems

    PubMed Central

    Yu, Hao; Solvang, Wei Deng

    2016-01-01

    Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment. PMID:27258293

  19. Municipal solid waste management planning for Xiamen City, China: a stochastic fractional inventory-theory-based approach.

    PubMed

    Chen, Xiujuan; Huang, Guohe; Zhao, Shan; Cheng, Guanhui; Wu, Yinghui; Zhu, Hua

    2017-11-01

    In this study, a stochastic fractional inventory-theory-based waste management planning (SFIWP) model was developed and applied for supporting long-term planning of the municipal solid waste (MSW) management in Xiamen City, the special economic zone of Fujian Province, China. In the SFIWP model, the techniques of inventory model, stochastic linear fractional programming, and mixed-integer linear programming were integrated in a framework. Issues of waste inventory in MSW management system were solved, and the system efficiency was maximized through considering maximum net-diverted wastes under various constraint-violation risks. Decision alternatives for waste allocation and capacity expansion were also provided for MSW management planning in Xiamen. The obtained results showed that about 4.24 × 10 6  t of waste would be diverted from landfills when p i is 0.01, which accounted for 93% of waste in Xiamen City, and the waste diversion per unit of cost would be 26.327 × 10 3  t per $10 6 . The capacities of MSW management facilities including incinerators, composting facility, and landfills would be expanded due to increasing waste generation rate.

  20. An Improved Multi-Objective Programming with Augmented ε-Constraint Method for Hazardous Waste Location-Routing Problems.

    PubMed

    Yu, Hao; Solvang, Wei Deng

    2016-05-31

    Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment.

  1. Airborne Tactical Crossload Planner

    DTIC Science & Technology

    2017-12-01

    set out in the Airborne Standard Operating Procedure (ASOP). 14. SUBJECT TERMS crossload, airborne, optimization, integer linear programming ...they land to their respective sub-mission locations. In this thesis, we formulate and implement an integer linear program called the Tactical...to meet any desired crossload objectives. xiv We demonstrate TCP with two real-world tactical problems from recent airborne operations: one by the

  2. Discrete Optimization of Electronic Hyperpolarizabilities in a Chemical Subspace

    DTIC Science & Technology

    2009-05-01

    molecular design. Methods for optimization in discrete spaces have been studied extensively and recently reviewed ( 5). Optimization methods include...integer programming, as in branch-and-bound techniques (including dead-end elimination [ 6]), simulated annealing ( 7), and genetic algorithms ( 8...These algorithms have found renewed interest and application in molecular and materials design (9- 12) . Recently, new approaches have been

  3. Discovery of Boolean metabolic networks: integer linear programming based approach.

    PubMed

    Qiu, Yushan; Jiang, Hao; Ching, Wai-Ki; Cheng, Xiaoqing

    2018-04-11

    Traditional drug discovery methods focused on the efficacy of drugs rather than their toxicity. However, toxicity and/or lack of efficacy are produced when unintended targets are affected in metabolic networks. Thus, identification of biological targets which can be manipulated to produce the desired effect with minimum side-effects has become an important and challenging topic. Efficient computational methods are required to identify the drug targets while incurring minimal side-effects. In this paper, we propose a graph-based computational damage model that summarizes the impact of enzymes on compounds in metabolic networks. An efficient method based on Integer Linear Programming formalism is then developed to identify the optimal enzyme-combination so as to minimize the side-effects. The identified target enzymes for known successful drugs are then verified by comparing the results with those in the existing literature. Side-effects reduction plays a crucial role in the study of drug development. A graph-based computational damage model is proposed and the theoretical analysis states the captured problem is NP-completeness. The proposed approaches can therefore contribute to the discovery of drug targets. Our developed software is available at " http://hkumath.hku.hk/~wkc/APBC2018-metabolic-network.zip ".

  4. Fuzzy Energy and Reserve Co-optimization With High Penetration of Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Cong; Botterud, Audun; Zhou, Zhi

    In this study, we propose a fuzzy-based energy and reserve co-optimization model with consideration of high penetration of renewable energy. Under the assumption of a fixed uncertainty set of renewables, a two-stage robust model is proposed for clearing energy and reserves in the first stage and checking the feasibility and robustness of re-dispatches in the second stage. Fuzzy sets and their membership functions are introduced into the optimization model to represent the satisfaction degree of the variable uncertainty sets. The lower bound of the uncertainty set is expressed as fuzzy membership functions. The solutions are obtained by transforming the fuzzymore » mathematical programming formulation into traditional mixed integer linear programming problems.« less

  5. Fuzzy Energy and Reserve Co-optimization With High Penetration of Renewable Energy

    DOE PAGES

    Liu, Cong; Botterud, Audun; Zhou, Zhi; ...

    2016-10-21

    In this study, we propose a fuzzy-based energy and reserve co-optimization model with consideration of high penetration of renewable energy. Under the assumption of a fixed uncertainty set of renewables, a two-stage robust model is proposed for clearing energy and reserves in the first stage and checking the feasibility and robustness of re-dispatches in the second stage. Fuzzy sets and their membership functions are introduced into the optimization model to represent the satisfaction degree of the variable uncertainty sets. The lower bound of the uncertainty set is expressed as fuzzy membership functions. The solutions are obtained by transforming the fuzzymore » mathematical programming formulation into traditional mixed integer linear programming problems.« less

  6. Strategic planning for disaster recovery with stochastic last mile distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, Russell Whitford; Van Hentenryck, Pascal; Coffrin, Carleton

    2010-01-01

    This paper considers the single commodity allocation problem (SCAP) for disaster recovery, a fundamental problem faced by all populated areas. SCAPs are complex stochastic optimization problems that combine resource allocation, warehouse routing, and parallel fleet routing. Moreover, these problems must be solved under tight runtime constraints to be practical in real-world disaster situations. This paper formalizes the specification of SCAPs and introduces a novel multi-stage hybrid-optimization algorithm that utilizes the strengths of mixed integer programming, constraint programming, and large neighborhood search. The algorithm was validated on hurricane disaster scenarios generated by Los Alamos National Laboratory using state-of-the-art disaster simulation toolsmore » and is deployed to aid federal organizations in the US.« less

  7. TH-EF-BRB-04: 4π Dynamic Conformal Arc Therapy Dynamic Conformal Arc Therapy (DCAT) for SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, T; Long, T; Tian, Z.

    2016-06-15

    Purpose: To develop an efficient and effective trajectory optimization methodology for 4π dynamic conformal arc treatment (4π DCAT) with synchronized gantry and couch motion; and to investigate potential clinical benefits for stereotactic body radiation therapy (SBRT) to breast, lung, liver and spine tumors. Methods: The entire optimization framework for 4π DCAT inverse planning consists of two parts: 1) integer programming algorithm and 2) particle swarm optimization (PSO) algorithm. The integer programming is designed to find an optimal solution for arc delivery trajectory with both couch and gantry rotation, while PSO minimize a non-convex objective function based on the selected trajectorymore » and dose-volume constraints. In this study, control point interaction is explicitly taken into account. Beam trajectory was modeled as a series of control points connected together to form a deliverable path. With linear treatment planning objectives, a mixed-integer program (MIP) was formulated. Under mild assumptions, the MIP is tractable. Assigning monitor units to control points along the path can be integrated into the model and done by PSO. The developed 4π DCAT inverse planning strategy is evaluated on SBRT cases and compared to clinically treated plans. Results: The resultant dose distribution of this technique was evaluated between 3D conformal treatment plan generated by Pinnacle treatment planning system and 4π DCAT on a lung SBRT patient case. Both plans share the same scale of MU, 3038 and 2822 correspondingly to 3D conformal plan and 4π DCAT. The mean doses for most of OARs were greatly reduced at 32% (cord), 70% (esophagus), 2.8% (lung) and 42.4% (stomach). Conclusion: Initial results in this study show the proposed 4π DCAT treatment technique can achieve better OAR sparing and lower MUs, which indicates that the developed technique is promising for high dose SBRT to reduce the risk of secondary cancer.« less

  8. Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem

    PubMed Central

    Chen, Xiaopan; Kong, Yunfeng; Dang, Lanxue; Hou, Yane; Ye, Xinyue

    2015-01-01

    As a class of hard combinatorial optimization problems, the school bus routing problem has received considerable attention in the last decades. For a multi-school system, given the bus trips for each school, the school bus scheduling problem aims at optimizing bus schedules to serve all the trips within the school time windows. In this paper, we propose two approaches for solving the bi-objective school bus scheduling problem: an exact method of mixed integer programming (MIP) and a metaheuristic method which combines simulated annealing with local search. We develop MIP formulations for homogenous and heterogeneous fleet problems respectively and solve the models by MIP solver CPLEX. The bus type-based formulation for heterogeneous fleet problem reduces the model complexity in terms of the number of decision variables and constraints. The metaheuristic method is a two-stage framework for minimizing the number of buses to be used as well as the total travel distance of buses. We evaluate the proposed MIP and the metaheuristic method on two benchmark datasets, showing that on both instances, our metaheuristic method significantly outperforms the respective state-of-the-art methods. PMID:26176764

  9. Coordinated platooning with multiple speeds

    DOE PAGES

    Luo, Fengqiao; Larson, Jeffrey; Munson, Todd

    2018-03-22

    In a platoon, vehicles travel one after another with small intervehicle distances; trailing vehicles in a platoon save fuel because they experience less aerodynamic drag. This work presents a coordinated platooning model with multiple speed options that integrates scheduling, routing, speed selection, and platoon formation/dissolution in a mixed-integer linear program that minimizes the total fuel consumed by a set of vehicles while traveling between their respective origins and destinations. The performance of this model is numerically tested on a grid network and the Chicago-area highway network. We find that the fuel-savings factor of a multivehicle system significantly depends on themore » time each vehicle is allowed to stay in the network; this time affects vehicles’ available speed choices, possible routes, and the amount of time for coordinating platoon formation. For problem instances with a large number of vehicles, we propose and test a heuristic decomposed approach that applies a clustering algorithm to partition the set of vehicles and then routes each group separately. When the set of vehicles is large and the available computational time is small, the decomposed approach finds significantly better solutions than does the full model.« less

  10. Coordinated platooning with multiple speeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Fengqiao; Larson, Jeffrey; Munson, Todd

    In a platoon, vehicles travel one after another with small intervehicle distances; trailing vehicles in a platoon save fuel because they experience less aerodynamic drag. This work presents a coordinated platooning model with multiple speed options that integrates scheduling, routing, speed selection, and platoon formation/dissolution in a mixed-integer linear program that minimizes the total fuel consumed by a set of vehicles while traveling between their respective origins and destinations. The performance of this model is numerically tested on a grid network and the Chicago-area highway network. We find that the fuel-savings factor of a multivehicle system significantly depends on themore » time each vehicle is allowed to stay in the network; this time affects vehicles’ available speed choices, possible routes, and the amount of time for coordinating platoon formation. For problem instances with a large number of vehicles, we propose and test a heuristic decomposed approach that applies a clustering algorithm to partition the set of vehicles and then routes each group separately. When the set of vehicles is large and the available computational time is small, the decomposed approach finds significantly better solutions than does the full model.« less

  11. Applications of Optimal Building Energy System Selection and Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marnay, Chris; Stadler, Michael; Siddiqui, Afzal

    2011-04-01

    Berkeley Lab has been developing the Distributed Energy Resources Customer Adoption Model (DER-CAM) for several years. Given load curves for energy services requirements in a building microgrid (u grid), fuel costs and other economic inputs, and a menu of available technologies, DER-CAM finds the optimum equipment fleet and its optimum operating schedule using a mixed integer linear programming approach. This capability is being applied using a software as a service (SaaS) model. Optimisation problems are set up on a Berkeley Lab server and clients can execute their jobs as needed, typically daily. The evolution of this approach is demonstrated bymore » description of three ongoing projects. The first is a public access web site focused on solar photovoltaic generation and battery viability at large commercial and industrial customer sites. The second is a building CO2 emissions reduction operations problem for a University of California, Davis student dining hall for which potential investments are also considered. And the third, is both a battery selection problem and a rolling operating schedule problem for a large County Jail. Together these examples show that optimization of building u grid design and operation can be effectively achieved using SaaS.« less

  12. Tactical resource allocation and elective patient admission planning in care processes.

    PubMed

    Hulshof, Peter J H; Boucherie, Richard J; Hans, Erwin W; Hurink, Johann L

    2013-06-01

    Tactical planning of resources in hospitals concerns elective patient admission planning and the intermediate term allocation of resource capacities. Its main objectives are to achieve equitable access for patients, to meet production targets/to serve the strategically agreed number of patients, and to use resources efficiently. This paper proposes a method to develop a tactical resource allocation and elective patient admission plan. These tactical plans allocate available resources to various care processes and determine the selection of patients to be served that are at a particular stage of their care process. Our method is developed in a Mixed Integer Linear Programming (MILP) framework and copes with multiple resources, multiple time periods and multiple patient groups with various uncertain treatment paths through the hospital, thereby integrating decision making for a chain of hospital resources. Computational results indicate that our method leads to a more equitable distribution of resources and provides control of patient access times, the number of patients served and the fraction of allocated resource capacity. Our approach is generic, as the base MILP and the solution approach allow for including various extensions to both the objective criteria and the constraints. Consequently, the proposed method is applicable in various settings of tactical hospital management.

  13. Electricity market design for generator revenue sufficiency with increased variable generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, Todd; Botterud, Audun

    Here, we present a computationally efficient mixed-integer program (MIP) that determines optimal generator expansion decisions, and hourly unit commitment and dispatch in a power system. The impact of increasing wind power capacity on the optimal generation mix and generator profitability is analyzed for a test case that approximates the electricity market in Texas (ERCOT). We analyze three market policies that may support resource adequacy: Operating Reserve Demand Curves (ORDC), Fixed Reserve Scarcity Prices (FRSP) and fixed capacity payments (CP). Optimal expansion plans are comparable between the ORDC and FRSP implementations, while capacity payments may result in additional new capacity. Themore » FRSP policy leads to frequent reserves scarcity events and corresponding price spikes, while the ORDC implementation results in more continuous energy prices. Average energy prices decrease with increasing wind penetration under all policies, as do revenues for baseload and wind generators. Intermediate and peak load plants benefit from higher reserve prices and are less exposed to reduced energy prices. All else equal, an ORDC approach may be preferred to FRSP as it results in similar expansion and revenues with less extreme energy prices. A fixed CP leads to additional new flexible NGCT units, but lower profits for other technologies.« less

  14. Electricity market design for generator revenue sufficiency with increased variable generation

    DOE PAGES

    Levin, Todd; Botterud, Audun

    2015-10-01

    Here, we present a computationally efficient mixed-integer program (MIP) that determines optimal generator expansion decisions, and hourly unit commitment and dispatch in a power system. The impact of increasing wind power capacity on the optimal generation mix and generator profitability is analyzed for a test case that approximates the electricity market in Texas (ERCOT). We analyze three market policies that may support resource adequacy: Operating Reserve Demand Curves (ORDC), Fixed Reserve Scarcity Prices (FRSP) and fixed capacity payments (CP). Optimal expansion plans are comparable between the ORDC and FRSP implementations, while capacity payments may result in additional new capacity. Themore » FRSP policy leads to frequent reserves scarcity events and corresponding price spikes, while the ORDC implementation results in more continuous energy prices. Average energy prices decrease with increasing wind penetration under all policies, as do revenues for baseload and wind generators. Intermediate and peak load plants benefit from higher reserve prices and are less exposed to reduced energy prices. All else equal, an ORDC approach may be preferred to FRSP as it results in similar expansion and revenues with less extreme energy prices. A fixed CP leads to additional new flexible NGCT units, but lower profits for other technologies.« less

  15. A New Path-Constrained Rendezvous Planning Approach for Large-Scale Event-Driven Wireless Sensor Networks

    PubMed Central

    Zhang, Gongxuan; Wang, Yongli; Wang, Tianshu

    2018-01-01

    We study the problem of employing a mobile-sink into a large-scale Event-Driven Wireless Sensor Networks (EWSNs) for the purpose of data harvesting from sensor-nodes. Generally, this employment improves the main weakness of WSNs that is about energy-consumption in battery-driven sensor-nodes. The main motivation of our work is to address challenges which are related to a network’s topology by adopting a mobile-sink that moves in a predefined trajectory in the environment. Since, in this fashion, it is not possible to gather data from sensor-nodes individually, we adopt the approach of defining some of the sensor-nodes as Rendezvous Points (RPs) in the network. We argue that RP-planning in this case is a tradeoff between minimizing the number of RPs while decreasing the number of hops for a sensor-node that needs data transformation to the related RP which leads to minimizing average energy consumption in the network. We address the problem by formulating the challenges and expectations as a Mixed Integer Linear Programming (MILP). Henceforth, by proving the NP-hardness of the problem, we propose three effective and distributed heuristics for RP-planning, identifying sojourn locations, and constructing routing trees. Finally, experimental results prove the effectiveness of our approach. PMID:29734718

  16. A New Path-Constrained Rendezvous Planning Approach for Large-Scale Event-Driven Wireless Sensor Networks.

    PubMed

    Vajdi, Ahmadreza; Zhang, Gongxuan; Zhou, Junlong; Wei, Tongquan; Wang, Yongli; Wang, Tianshu

    2018-05-04

    We study the problem of employing a mobile-sink into a large-scale Event-Driven Wireless Sensor Networks (EWSNs) for the purpose of data harvesting from sensor-nodes. Generally, this employment improves the main weakness of WSNs that is about energy-consumption in battery-driven sensor-nodes. The main motivation of our work is to address challenges which are related to a network’s topology by adopting a mobile-sink that moves in a predefined trajectory in the environment. Since, in this fashion, it is not possible to gather data from sensor-nodes individually, we adopt the approach of defining some of the sensor-nodes as Rendezvous Points (RPs) in the network. We argue that RP-planning in this case is a tradeoff between minimizing the number of RPs while decreasing the number of hops for a sensor-node that needs data transformation to the related RP which leads to minimizing average energy consumption in the network. We address the problem by formulating the challenges and expectations as a Mixed Integer Linear Programming (MILP). Henceforth, by proving the NP-hardness of the problem, we propose three effective and distributed heuristics for RP-planning, identifying sojourn locations, and constructing routing trees. Finally, experimental results prove the effectiveness of our approach.

  17. Exact calculation of distributions on integers, with application to sequence alignment.

    PubMed

    Newberg, Lee A; Lawrence, Charles E

    2009-01-01

    Computational biology is replete with high-dimensional discrete prediction and inference problems. Dynamic programming recursions can be applied to several of the most important of these, including sequence alignment, RNA secondary-structure prediction, phylogenetic inference, and motif finding. In these problems, attention is frequently focused on some scalar quantity of interest, a score, such as an alignment score or the free energy of an RNA secondary structure. In many cases, score is naturally defined on integers, such as a count of the number of pairing differences between two sequence alignments, or else an integer score has been adopted for computational reasons, such as in the test of significance of motif scores. The probability distribution of the score under an appropriate probabilistic model is of interest, such as in tests of significance of motif scores, or in calculation of Bayesian confidence limits around an alignment. Here we present three algorithms for calculating the exact distribution of a score of this type; then, in the context of pairwise local sequence alignments, we apply the approach so as to find the alignment score distribution and Bayesian confidence limits.

  18. Discovering Link Communities in Complex Networks by an Integer Programming Model and a Genetic Algorithm

    PubMed Central

    Li, Zhenping; Zhang, Xiang-Sun; Wang, Rui-Sheng; Liu, Hongwei; Zhang, Shihua

    2013-01-01

    Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks. PMID:24386268

  19. A supplier selection and order allocation problem with stochastic demands

    NASA Astrophysics Data System (ADS)

    Zhou, Yun; Zhao, Lei; Zhao, Xiaobo; Jiang, Jianhua

    2011-08-01

    We consider a system comprising a retailer and a set of candidate suppliers that operates within a finite planning horizon of multiple periods. The retailer replenishes its inventory from the suppliers and satisfies stochastic customer demands. At the beginning of each period, the retailer makes decisions on the replenishment quantity, supplier selection and order allocation among the selected suppliers. An optimisation problem is formulated to minimise the total expected system cost, which includes an outer level stochastic dynamic program for the optimal replenishment quantity and an inner level integer program for supplier selection and order allocation with a given replenishment quantity. For the inner level subproblem, we develop a polynomial algorithm to obtain optimal decisions. For the outer level subproblem, we propose an efficient heuristic for the system with integer-valued inventory, based on the structural properties of the system with real-valued inventory. We investigate the efficiency of the proposed solution approach, as well as the impact of parameters on the optimal replenishment decision with numerical experiments.

  20. The impact of case mix on timely access to appointments in a primary care group practice.

    PubMed

    Ozen, Asli; Balasubramanian, Hari

    2013-06-01

    At the heart of the practice of primary care is the concept of a physician panel. A panel refers to the set of patients for whose long term, holistic care the physician is responsible. A physician's appointment burden is determined by the size and composition of the panel. Size refers to the number of patients in the panel while composition refers to the case-mix, or the type of patients (older versus younger, healthy versus chronic patients), in the panel. In this paper, we quantify the impact of the size and case-mix on the ability of a multi-provider practice to provide adequate access to its empanelled patients. We use overflow frequency, or the probability that the demand exceeds the capacity, as a measure of access. We formulate problem of minimizing the maximum overflow for a multi-physician practice as a non-linear integer programming problem and establish structural insights that enable us to create simple yet near optimal heuristic strategies to change panels. This optimization framework helps a practice: (1) quantify the imbalances across physicians due to the variation in case mix and panel size, and the resulting effect on access; and (2) determine how panels can be altered in the least disruptive way to improve access. We illustrate our methodology using four test practices created using patient level data from the primary care practice at Mayo Clinic, Rochester, Minnesota. An important advantage of our approach is that it can be implemented in an Excel Spreadsheet and used for aggregate level planning and panel management decisions.

  1. Determination of optimum values for maximizing the profit in bread production: Daily bakery Sdn Bhd

    NASA Astrophysics Data System (ADS)

    Muda, Nora; Sim, Raymond

    2015-02-01

    An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers. In many settings the term refers to integer linear programming (ILP), in which the objective function and the constraints (other than the integer constraints) are linear. An ILP has many applications in industrial production, including job-shop modelling. A possible objective is to maximize the total production, without exceeding the available resources. In some cases, this can be expressed in terms of a linear program, but variables must be constrained to be integer. It concerned with the optimization of a linear function while satisfying a set of linear equality and inequality constraints and restrictions. It has been used to solve optimization problem in many industries area such as banking, nutrition, agriculture, and bakery and so on. The main purpose of this study is to formulate the best combination of all ingredients in producing different type of bread in Daily Bakery in order to gain maximum profit. This study also focuses on the sensitivity analysis due to changing of the profit and the cost of each ingredient. The optimum result obtained from QM software is RM 65,377.29 per day. This study will be benefited for Daily Bakery and also other similar industries. By formulating a combination of all ingredients make up, they can easily know their total profit in producing bread everyday.

  2. Distributed mixed-integer fuzzy hierarchical programming for municipal solid waste management. Part II: scheme analysis and mechanism revelation.

    PubMed

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Chen, Jiapei; Chen, Xiujuan; Li, Kailong

    2017-03-01

    As presented in the first companion paper, distributed mixed-integer fuzzy hierarchical programming (DMIFHP) was developed for municipal solid waste management (MSWM) under complexities of heterogeneities, hierarchy, discreteness, and interactions. Beijing was selected as a representative case. This paper focuses on presenting the obtained schemes and the revealed mechanisms of the Beijing MSWM system. The optimal MSWM schemes for Beijing under various solid waste treatment policies and their differences are deliberated. The impacts of facility expansion, hierarchy, and spatial heterogeneities and potential extensions of DMIFHP are also discussed. A few of findings are revealed from the results and a series of comparisons and analyses. For instance, DMIFHP is capable of robustly reflecting these complexities in MSWM systems, especially for Beijing. The optimal MSWM schemes are of fragmented patterns due to the dominant role of the proximity principle in allocating solid waste treatment resources, and they are closely related to regulated ratios of landfilling, incineration, and composting. Communities without significant differences among distances to different types of treatment facilities are more sensitive to these ratios than others. The complexities of hierarchy and heterogeneities pose significant impacts on MSWM practices. Spatial dislocation of MSW generation rates and facility capacities caused by unreasonable planning in the past may result in insufficient utilization of treatment capacities under substantial influences of transportation costs. The problems of unreasonable MSWM planning, e.g., severe imbalance among different technologies and complete vacancy of ten facilities, should be gained deliberation of the public and the municipal or local governments in Beijing. These findings are helpful for gaining insights into MSWM systems under these complexities, mitigating key challenges in the planning of these systems, improving the related management practices, and eliminating potential socio-economic and eco-environmental issues resulting from unreasonable management.

  3. Industrial waste recycling strategies optimization problem: mixed integer programming model and heuristics

    NASA Astrophysics Data System (ADS)

    Tang, Jiafu; Liu, Yang; Fung, Richard; Luo, Xinggang

    2008-12-01

    Manufacturers have a legal accountability to deal with industrial waste generated from their production processes in order to avoid pollution. Along with advances in waste recovery techniques, manufacturers may adopt various recycling strategies in dealing with industrial waste. With reuse strategies and technologies, byproducts or wastes will be returned to production processes in the iron and steel industry, and some waste can be recycled back to base material for reuse in other industries. This article focuses on a recovery strategies optimization problem for a typical class of industrial waste recycling process in order to maximize profit. There are multiple strategies for waste recycling available to generate multiple byproducts; these byproducts are then further transformed into several types of chemical products via different production patterns. A mixed integer programming model is developed to determine which recycling strategy and which production pattern should be selected with what quantity of chemical products corresponding to this strategy and pattern in order to yield maximum marginal profits. The sales profits of chemical products and the set-up costs of these strategies, patterns and operation costs of production are considered. A simulated annealing (SA) based heuristic algorithm is developed to solve the problem. Finally, an experiment is designed to verify the effectiveness and feasibility of the proposed method. By comparing a single strategy to multiple strategies in an example, it is shown that the total sales profit of chemical products can be increased by around 25% through the simultaneous use of multiple strategies. This illustrates the superiority of combinatorial multiple strategies. Furthermore, the effects of the model parameters on profit are discussed to help manufacturers organize their waste recycling network.

  4. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.

    PubMed

    Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A

    2016-03-01

    In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/. © 2016 Wiley Periodicals, Inc.

  5. Beam orientation optimization for intensity-modulated radiation therapy using mixed integer programming

    NASA Astrophysics Data System (ADS)

    Yang, Ruijie; Dai, Jianrong; Yang, Yong; Hu, Yimin

    2006-08-01

    The purpose of this study is to extend an algorithm proposed for beam orientation optimization in classical conformal radiotherapy to intensity-modulated radiation therapy (IMRT) and to evaluate the algorithm's performance in IMRT scenarios. In addition, the effect of the candidate pool of beam orientations, in terms of beam orientation resolution and starting orientation, on the optimized beam configuration, plan quality and optimization time is also explored. The algorithm is based on the technique of mixed integer linear programming in which binary and positive float variables are employed to represent candidates for beam orientation and beamlet weights in beam intensity maps. Both beam orientations and beam intensity maps are simultaneously optimized in the algorithm with a deterministic method. Several different clinical cases were used to test the algorithm and the results show that both target coverage and critical structures sparing were significantly improved for the plans with optimized beam orientations compared to those with equi-spaced beam orientations. The calculation time was less than an hour for the cases with 36 binary variables on a PC with a Pentium IV 2.66 GHz processor. It is also found that decreasing beam orientation resolution to 10° greatly reduced the size of the candidate pool of beam orientations without significant influence on the optimized beam configuration and plan quality, while selecting different starting orientations had large influence. Our study demonstrates that the algorithm can be applied to IMRT scenarios, and better beam orientation configurations can be obtained using this algorithm. Furthermore, the optimization efficiency can be greatly increased through proper selection of beam orientation resolution and starting beam orientation while guaranteeing the optimized beam configurations and plan quality.

  6. Improving Transportation Services for the University of the Thai Chamber of Commerce: A Case Study on Solving the Mixed-Fleet Vehicle Routing Problem with Split Deliveries

    NASA Astrophysics Data System (ADS)

    Suthikarnnarunai, N.; Olinick, E.

    2009-01-01

    We present a case study on the application of techniques for solving the Vehicle Routing Problem (VRP) to improve the transportation service provided by the University of The Thai Chamber of Commerce to its staff. The problem is modeled as VRP with time windows, split deliveries, and a mixed fleet. An exact algorithm and a heuristic solution procedure are developed to solve the problem and implemented in the AMPL modeling language and CPLEX Integer Programming solver. Empirical results indicate that the heuristic can find relatively good solutions in a small fraction of the time required by the exact method. We also perform sensitivity analysis and find that a savings in outsourcing cost can be achieved with a small increase in vehicle capacity.

  7. Towards a theory of automated elliptic mesh generation

    NASA Technical Reports Server (NTRS)

    Cordova, J. Q.

    1992-01-01

    The theory of elliptic mesh generation is reviewed and the fundamental problem of constructing computational space is discussed. It is argued that the construction of computational space is an NP-Complete problem and therefore requires a nonstandard approach for its solution. This leads to the development of graph-theoretic, combinatorial optimization and integer programming algorithms. Methods for the construction of two dimensional computational space are presented.

  8. A Generalized Distance’ Estimation Procedure for Intra-Urban Interaction

    DTIC Science & Technology

    Bettinger . It is found that available estimation techniques necessarily result in non-integer solutions. A mathematical device is therefore...The estimation of urban and regional travel patterns has been a necessary part of current efforts to establish land use guidelines for the Texas...paper details computational experience with travel estimation within Corpus Christi, Texas, using a new convex programming approach of Charnes, Raike and

  9. Bi-objective integer programming for RNA secondary structure prediction with pseudoknots.

    PubMed

    Legendre, Audrey; Angel, Eric; Tahi, Fariza

    2018-01-15

    RNA structure prediction is an important field in bioinformatics, and numerous methods and tools have been proposed. Pseudoknots are specific motifs of RNA secondary structures that are difficult to predict. Almost all existing methods are based on a single model and return one solution, often missing the real structure. An alternative approach would be to combine different models and return a (small) set of solutions, maximizing its quality and diversity in order to increase the probability that it contains the real structure. We propose here an original method for predicting RNA secondary structures with pseudoknots, based on integer programming. We developed a generic bi-objective integer programming algorithm allowing to return optimal and sub-optimal solutions optimizing simultaneously two models. This algorithm was then applied to the combination of two known models of RNA secondary structure prediction, namely MEA and MFE. The resulting tool, called BiokoP, is compared with the other methods in the literature. The results show that the best solution (structure with the highest F 1 -score) is, in most cases, given by BiokoP. Moreover, the results of BiokoP are homogeneous, regardless of the pseudoknot type or the presence or not of pseudoknots. Indeed, the F 1 -scores are always higher than 70% for any number of solutions returned. The results obtained by BiokoP show that combining the MEA and the MFE models, as well as returning several optimal and several sub-optimal solutions, allow to improve the prediction of secondary structures. One perspective of our work is to combine better mono-criterion models, in particular to combine a model based on the comparative approach with the MEA and the MFE models. This leads to develop in the future a new multi-objective algorithm to combine more than two models. BiokoP is available on the EvryRNA platform: https://EvryRNA.ibisc.univ-evry.fr .

  10. Computer Corner: Spreadsheets, Power Series, Generating Functions, and Integers.

    ERIC Educational Resources Information Center

    Snow, Donald R.

    1989-01-01

    Implements a table algorithm on a spreadsheet program and obtains functions for several number sequences such as the Fibonacci and Catalan numbers. Considers other applications of the table algorithm to integers represented in various number bases. (YP)

  11. Reverse engineering of logic-based differential equation models using a mixed-integer dynamic optimization approach

    PubMed Central

    Henriques, David; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R.

    2015-01-01

    Motivation: Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters. Results: In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cells. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: julio@iim.csic.es or saezrodriguez@ebi.ac.uk PMID:26002881

  12. Reverse engineering of logic-based differential equation models using a mixed-integer dynamic optimization approach.

    PubMed

    Henriques, David; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R

    2015-09-15

    Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters. In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cells. Supplementary data are available at Bioinformatics online. julio@iim.csic.es or saezrodriguez@ebi.ac.uk. © The Author 2015. Published by Oxford University Press.

  13. Solving a mathematical model integrating unequal-area facilities layout and part scheduling in a cellular manufacturing system by a genetic algorithm.

    PubMed

    Ebrahimi, Ahmad; Kia, Reza; Komijan, Alireza Rashidi

    2016-01-01

    In this article, a novel integrated mixed-integer nonlinear programming model is presented for designing a cellular manufacturing system (CMS) considering machine layout and part scheduling problems simultaneously as interrelated decisions. The integrated CMS model is formulated to incorporate several design features including part due date, material handling time, operation sequence, processing time, an intra-cell layout of unequal-area facilities, and part scheduling. The objective function is to minimize makespan, tardiness penalties, and material handling costs of inter-cell and intra-cell movements. Two numerical examples are solved by the Lingo software to illustrate the results obtained by the incorporated features. In order to assess the effects and importance of integration of machine layout and part scheduling in designing a CMS, two approaches, sequentially and concurrent are investigated and the improvement resulted from a concurrent approach is revealed. Also, due to the NP-hardness of the integrated model, an efficient genetic algorithm is designed. As a consequence, computational results of this study indicate that the best solutions found by GA are better than the solutions found by B&B in much less time for both sequential and concurrent approaches. Moreover, the comparisons between the objective function values (OFVs) obtained by sequential and concurrent approaches demonstrate that the OFV improvement is averagely around 17 % by GA and 14 % by B&B.

  14. New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints

    DOE PAGES

    Munoz, F. D.; Hobbs, B. F.; Watson, J. -P.

    2016-02-01

    A novel two-phase bounding and decomposition approach to compute optimal and near-optimal solutions to large-scale mixed-integer investment planning problems is proposed and it considers a large number of operating subproblems, each of which is a convex optimization. Our motivating application is the planning of power transmission and generation in which policy constraints are designed to incentivize high amounts of intermittent generation in electric power systems. The bounding phase exploits Jensen’s inequality to define a lower bound, which we extend to stochastic programs that use expected-value constraints to enforce policy objectives. The decomposition phase, in which the bounds are tightened, improvesmore » upon the standard Benders’ algorithm by accelerating the convergence of the bounds. The lower bound is tightened by using a Jensen’s inequality-based approach to introduce an auxiliary lower bound into the Benders master problem. Upper bounds for both phases are computed using a sub-sampling approach executed on a parallel computer system. Numerical results show that only the bounding phase is necessary if loose optimality gaps are acceptable. But, the decomposition phase is required to attain optimality gaps. Moreover, use of both phases performs better, in terms of convergence speed, than attempting to solve the problem using just the bounding phase or regular Benders decomposition separately.« less

  15. New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz, F. D.; Hobbs, B. F.; Watson, J. -P.

    A novel two-phase bounding and decomposition approach to compute optimal and near-optimal solutions to large-scale mixed-integer investment planning problems is proposed and it considers a large number of operating subproblems, each of which is a convex optimization. Our motivating application is the planning of power transmission and generation in which policy constraints are designed to incentivize high amounts of intermittent generation in electric power systems. The bounding phase exploits Jensen’s inequality to define a lower bound, which we extend to stochastic programs that use expected-value constraints to enforce policy objectives. The decomposition phase, in which the bounds are tightened, improvesmore » upon the standard Benders’ algorithm by accelerating the convergence of the bounds. The lower bound is tightened by using a Jensen’s inequality-based approach to introduce an auxiliary lower bound into the Benders master problem. Upper bounds for both phases are computed using a sub-sampling approach executed on a parallel computer system. Numerical results show that only the bounding phase is necessary if loose optimality gaps are acceptable. But, the decomposition phase is required to attain optimality gaps. Moreover, use of both phases performs better, in terms of convergence speed, than attempting to solve the problem using just the bounding phase or regular Benders decomposition separately.« less

  16. Mixed integer programming model for optimizing the layout of an ICU vehicle.

    PubMed

    Alejo, Javier Sánchez; Martín, Modoaldo Garrido; Ortega-Mier, Miguel; García-Sánchez, Alvaro

    2009-12-08

    This paper presents a Mixed Integer Programming (MIP) model for designing the layout of the Intensive Care Units' (ICUs) patient care space. In particular, this MIP model was developed for optimizing the layout for materials to be used in interventions. This work was developed within the framework of a joint project between the Madrid Technical Unverstity and the Medical Emergency Services of the Madrid Regional Government (SUMMA 112). The first task was to identify the relevant information to define the characteristics of the new vehicles and, in particular, to obtain a satisfactory interior layout to locate all the necessary materials. This information was gathered from health workers related to ICUs. With that information an optimization model was developed in order to obtain a solution. From the MIP model, a first solution was obtained, consisting of a grid to locate the different materials needed for the ICUs. The outcome from the MIP model was discussed with health workers to tune the solution, and after slightly altering that solution to meet some requirements that had not been included in the mathematical model, the eventual solution was approved by the persons responsible for specifying the characteristics of the new vehicles. According to the opinion stated by the SUMMA 112's medical group responsible for improving the ambulances (the so-called "coaching group"), the outcome was highly satisfactory. Indeed, the final design served as a basis to draw up the requirements of a public tender. As a result from solving the Optimization model, a grid was obtained to locate the different necessary materials for the ICUs. This grid had to be slightly altered to meet some requirements that had not been included in the mathematical model. The results were discussed with the persons responsible for specifying the characteristics of the new vehicles. The outcome was highly satisfactory. Indeed, the final design served as a basis to draw up the requirements of a public tender. The authors advocate this approach to address similar problems within the field of Health Services to improve the efficiency and the effectiveness of the processes involved. Problems such as those in operation rooms or emergency rooms, where the availability of a large amount of material is critical are eligible to be dealt with in a simmilar manner.

  17. Mixed integer programming model for optimizing the layout of an ICU vehicle

    PubMed Central

    2009-01-01

    Background This paper presents a Mixed Integer Programming (MIP) model for designing the layout of the Intensive Care Units' (ICUs) patient care space. In particular, this MIP model was developed for optimizing the layout for materials to be used in interventions. This work was developed within the framework of a joint project between the Madrid Technical Unverstity and the Medical Emergency Services of the Madrid Regional Government (SUMMA 112). Methods The first task was to identify the relevant information to define the characteristics of the new vehicles and, in particular, to obtain a satisfactory interior layout to locate all the necessary materials. This information was gathered from health workers related to ICUs. With that information an optimization model was developed in order to obtain a solution. From the MIP model, a first solution was obtained, consisting of a grid to locate the different materials needed for the ICUs. The outcome from the MIP model was discussed with health workers to tune the solution, and after slightly altering that solution to meet some requirements that had not been included in the mathematical model, the eventual solution was approved by the persons responsible for specifying the characteristics of the new vehicles. According to the opinion stated by the SUMMA 112's medical group responsible for improving the ambulances (the so-called "coaching group"), the outcome was highly satisfactory. Indeed, the final design served as a basis to draw up the requirements of a public tender. Results As a result from solving the Optimization model, a grid was obtained to locate the different necessary materials for the ICUs. This grid had to be slightly altered to meet some requirements that had not been included in the mathematical model. The results were discussed with the persons responsible for specifying the characteristics of the new vehicles. Conclusion The outcome was highly satisfactory. Indeed, the final design served as a basis to draw up the requirements of a public tender. The authors advocate this approach to address similar problems within the field of Health Services to improve the efficiency and the effectiveness of the processes involved. Problems such as those in operation rooms or emergency rooms, where the availability of a large amount of material is critical are eligible to be dealt with in a simmilar manner. PMID:19995438

  18. Future aircraft networks and schedules

    NASA Astrophysics Data System (ADS)

    Shu, Yan

    2011-07-01

    Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents computational results of these large-scale instances. To validate the models and solution algorithms developed, this thesis also compares the daily flight schedules that it designs with the schedules of the existing airlines. Furthermore, it creates instances that represent different economic and fuel-prices conditions and derives schedules under these different conditions. In addition, it discusses the implication of using new aircraft in the future flight schedules. Finally, future research in three areas---model, computational method, and simulation for validation---is proposed.

  19. Fractal electrodynamics via non-integer dimensional space approach

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2015-09-01

    Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.

  20. Scheduling algorithms for rapid imaging using agile Cubesat constellations

    NASA Astrophysics Data System (ADS)

    Nag, Sreeja; Li, Alan S.; Merrick, James H.

    2018-02-01

    Distributed Space Missions such as formation flight and constellations, are being recognized as important Earth Observation solutions to increase measurement samples over space and time. Cubesats are increasing in size (27U, ∼40 kg in development) with increasing capabilities to host imager payloads. Given the precise attitude control systems emerging in the commercial market, Cubesats now have the ability to slew and capture images within short notice. We propose a modular framework that combines orbital mechanics, attitude control and scheduling optimization to plan the time-varying, full-body orientation of agile Cubesats in a constellation such that they maximize the number of observed images and observation time, within the constraints of Cubesat hardware specifications. The attitude control strategy combines bang-bang and PD control, with constraints such as power consumption, response time, and stability factored into the optimality computations and a possible extension to PID control to account for disturbances. Schedule optimization is performed using dynamic programming with two levels of heuristics, verified and improved upon using mixed integer linear programming. The automated scheduler is expected to run on ground station resources and the resultant schedules uplinked to the satellites for execution, however it can be adapted for onboard scheduling, contingent on Cubesat hardware and software upgrades. The framework is generalizable over small steerable spacecraft, sensor specifications, imaging objectives and regions of interest, and is demonstrated using multiple 20 kg satellites in Low Earth Orbit for two case studies - rapid imaging of Landsat's land and coastal images and extended imaging of global, warm water coral reefs. The proposed algorithm captures up to 161% more Landsat images than nadir-pointing sensors with the same field of view, on a 2-satellite constellation over a 12-h simulation. Integer programming was able to verify that optimality of the dynamic programming solution for single satellites was within 10%, and find up to 5% more optimal solutions. The optimality gap for constellations was found to be 22% at worst, but the dynamic programming schedules were found at nearly four orders of magnitude better computational speed than integer programming. The algorithm can include cloud cover predictions, ground downlink windows or any other spatial, temporal or angular constraints into the orbital module and be integrated into planning tools for agile constellations.

  1. Modification of Programs CHIEF and CID to Compute Sound Radiation from an Arbitrary Body with Mixed Boundary Conditions

    DTIC Science & Technology

    1991-06-01

    layer surfaces (NSU * NSV) DIMENSION CC(1I), TRNS(3), IELTS (8, 311) REAL Xl(lH@), YI(liOI) CHARACTER*3 SYMTYP CHARACTER*4 FLOTYP, TAPEID, PRTTYP INTEGER...element data. WRITE(NUINPRT, 1411) 1410 FORMAT(//,’ EEENT DATA’,/) DO 1412 1 = 1, I6EE WIlTE(KUNPRT,1411) 1, ( IELTS (J,1),J=1,S) 1412 CONTINUE 00 1414...1 = 1, iaaiM DO 1413 J =1, S CC(J) IELTS (J, 1) 1413 CONTINUE XIRG = XIRG * 1 CALL LDSURR(XIRG, 10, CC, TRNS, XIZAX, 22 NRL MEMORANDUM REPORT 6813 1

  2. Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    2015-07-01

    In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.

  3. Wind Power Ramping Product for Increasing Power System Flexibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Mingjian; Zhang, Jie; Wu, Hongyu

    With increasing penetrations of wind power, system operators are concerned about a potential lack of system flexibility and ramping capacity in real-time dispatch stages. In this paper, a modified dispatch formulation is proposed considering the wind power ramping product (WPRP). A swinging door algorithm (SDA) and dynamic programming are combined and used to detect WPRPs in the next scheduling periods. The detected WPRPs are included in the unit commitment (UC) formulation considering ramping capacity limits, active power limits, and flexible ramping requirements. The modified formulation is solved by mixed integer linear programming. Numerical simulations on a modified PJM 5-bus Systemmore » show the effectiveness of the model considering WPRP, which not only reduces the production cost but also does not affect the generation schedules of thermal units.« less

  4. Designing optimal cell factories: integer programming couples elementary mode analysis with regulation

    PubMed Central

    2012-01-01

    Background Elementary mode (EM) analysis is ideally suited for metabolic engineering as it allows for an unbiased decomposition of metabolic networks in biologically meaningful pathways. Recently, constrained minimal cut sets (cMCS) have been introduced to derive optimal design strategies for strain improvement by using the full potential of EM analysis. However, this approach does not allow for the inclusion of regulatory information. Results Here we present an alternative, novel and simple method for the prediction of cMCS, which allows to account for boolean transcriptional regulation. We use binary linear programming and show that the design of a regulated, optimal metabolic network of minimal functionality can be formulated as a standard optimization problem, where EM and regulation show up as constraints. We validated our tool by optimizing ethanol production in E. coli. Our study showed that up to 70% of the predicted cMCS contained non-enzymatic, non-annotated reactions, which are difficult to engineer. These cMCS are automatically excluded by our approach utilizing simple weight functions. Finally, due to efficient preprocessing, the binary program remains computationally feasible. Conclusions We used integer programming to predict efficient deletion strategies to metabolically engineer a production organism. Our formulation utilizes the full potential of cMCS but adds additional flexibility to the design process. In particular our method allows to integrate regulatory information into the metabolic design process and explicitly favors experimentally feasible deletions. Our method remains manageable even if millions or potentially billions of EM enter the analysis. We demonstrated that our approach is able to correctly predict the most efficient designs for ethanol production in E. coli. PMID:22898474

  5. Anisotropic fractal media by vector calculus in non-integer dimensional space

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2014-08-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  6. Optimal Partitioning of a Surveillance Space for Persistent Coverage Using Multiple Autonomous Unmanned Aerial Vehicles: An Integer Programming Approach

    DTIC Science & Technology

    2014-03-27

    asymptotically equal. Carlsson shows that the problem is solved by treating each subregion Ri as a traveling salesman problem (TSP) with a set of points that...terminal state to the goal. If no- travel zones are repre- sented as the union of regions Akx > Bk, the coverage problem can be expressed as an IP [14...3 1.2 Problem Statement

  7. Superstructure-based Design and Optimization of Batch Biodiesel Production Using Heterogeneous Catalysts

    NASA Astrophysics Data System (ADS)

    Nuh, M. Z.; Nasir, N. F.

    2017-08-01

    Biodiesel as a fuel comprised of mono alkyl esters of long chain fatty acids derived from renewable lipid feedstock, such as vegetable oil and animal fat. Biodiesel production is complex process which need systematic design and optimization. However, no case study using the process system engineering (PSE) elements which are superstructure optimization of batch process, it involves complex problems and uses mixed-integer nonlinear programming (MINLP). The PSE offers a solution to complex engineering system by enabling the use of viable tools and techniques to better manage and comprehend the complexity of the system. This study is aimed to apply the PSE tools for the simulation of biodiesel process and optimization and to develop mathematical models for component of the plant for case A, B, C by using published kinetic data. Secondly, to determine economic analysis for biodiesel production, focusing on heterogeneous catalyst. Finally, the objective of this study is to develop the superstructure for biodiesel production by using heterogeneous catalyst. The mathematical models are developed by the superstructure and solving the resulting mixed integer non-linear model and estimation economic analysis by using MATLAB software. The results of the optimization process with the objective function of minimizing the annual production cost by batch process from case C is 23.2587 million USD. Overall, the implementation a study of process system engineering (PSE) has optimized the process of modelling, design and cost estimation. By optimizing the process, it results in solving the complex production and processing of biodiesel by batch.

  8. Resilient Distribution System by Microgrids Formation After Natural Disasters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chen; Wang, Jianhui; Qiu, Feng

    2016-03-01

    Microgrids with distributed generation provide a resilient solution in the case of major faults in a distribution system due to natural disasters. This paper proposes a novel distribution system operational approach by forming multiple microgrids energized by distributed generation from the radial distribution system in real-time operations, to restore critical loads from the power outage. Specifically, a mixed-integer linear program (MILP) is formulated to maximize the critical loads to be picked up while satisfying the self-adequacy and operation constraints for the microgrids formation problem, by controlling the ON/OFF status of the remotely controlled switch devices and distributed generation. A distributedmore » multi-agent coordination scheme is designed via local communications for the global information discovery as inputs of the optimization, which is suitable for autonomous communication requirements after the disastrous event. The formed microgrids can be further utilized for power quality control and can be connected to a larger microgrid before the restoration of the main grids is complete. Numerical results based on modified IEEE distribution test systems validate the effectiveness of our proposed scheme.« less

  9. TTSA: An Effective Scheduling Approach for Delay Bounded Tasks in Hybrid Clouds.

    PubMed

    Yuan, Haitao; Bi, Jing; Tan, Wei; Zhou, MengChu; Li, Bo Hu; Li, Jianqiang

    2017-11-01

    The economy of scale provided by cloud attracts a growing number of organizations and industrial companies to deploy their applications in cloud data centers (CDCs) and to provide services to users around the world. The uncertainty of arriving tasks makes it a big challenge for private CDC to cost-effectively schedule delay bounded tasks without exceeding their delay bounds. Unlike previous studies, this paper takes into account the cost minimization problem for private CDC in hybrid clouds, where the energy price of private CDC and execution price of public clouds both show the temporal diversity. Then, this paper proposes a temporal task scheduling algorithm (TTSA) to effectively dispatch all arriving tasks to private CDC and public clouds. In each iteration of TTSA, the cost minimization problem is modeled as a mixed integer linear program and solved by a hybrid simulated-annealing particle-swarm-optimization. The experimental results demonstrate that compared with the existing methods, the optimal or suboptimal scheduling strategy produced by TTSA can efficiently increase the throughput and reduce the cost of private CDC while meeting the delay bounds of all the tasks.

  10. A novel minimum cost maximum power algorithm for future smart home energy management.

    PubMed

    Singaravelan, A; Kowsalya, M

    2017-11-01

    With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP) problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP) algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.

  11. Waste management with recourse: an inexact dynamic programming model containing fuzzy boundary intervals in objectives and constraints.

    PubMed

    Tan, Q; Huang, G H; Cai, Y P

    2010-09-01

    The existing inexact optimization methods based on interval-parameter linear programming can hardly address problems where coefficients in objective functions are subject to dual uncertainties. In this study, a superiority-inferiority-based inexact fuzzy two-stage mixed-integer linear programming (SI-IFTMILP) model was developed for supporting municipal solid waste management under uncertainty. The developed SI-IFTMILP approach is capable of tackling dual uncertainties presented as fuzzy boundary intervals (FuBIs) in not only constraints, but also objective functions. Uncertainties expressed as a combination of intervals and random variables could also be explicitly reflected. An algorithm with high computational efficiency was provided to solve SI-IFTMILP. SI-IFTMILP was then applied to a long-term waste management case to demonstrate its applicability. Useful interval solutions were obtained. SI-IFTMILP could help generate dynamic facility-expansion and waste-allocation plans, as well as provide corrective actions when anticipated waste management plans are violated. It could also greatly reduce system-violation risk and enhance system robustness through examining two sets of penalties resulting from variations in fuzziness and randomness. Moreover, four possible alternative models were formulated to solve the same problem; solutions from them were then compared with those from SI-IFTMILP. The results indicate that SI-IFTMILP could provide more reliable solutions than the alternatives. 2010 Elsevier Ltd. All rights reserved.

  12. Generation Expansion Planning With Large Amounts of Wind Power via Decision-Dependent Stochastic Programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Yiduo; Zheng, Qipeng P.; Wang, Jianhui

    Power generation expansion planning needs to deal with future uncertainties carefully, given that the invested generation assets will be in operation for a long time. Many stochastic programming models have been proposed to tackle this challenge. However, most previous works assume predetermined future uncertainties (i.e., fixed random outcomes with given probabilities). In several recent studies of generation assets' planning (e.g., thermal versus renewable), new findings show that the investment decisions could affect the future uncertainties as well. To this end, this paper proposes a multistage decision-dependent stochastic optimization model for long-term large-scale generation expansion planning, where large amounts of windmore » power are involved. In the decision-dependent model, the future uncertainties are not only affecting but also affected by the current decisions. In particular, the probability distribution function is determined by not only input parameters but also decision variables. To deal with the nonlinear constraints in our model, a quasi-exact solution approach is then introduced to reformulate the multistage stochastic investment model to a mixed-integer linear programming model. The wind penetration, investment decisions, and the optimality of the decision-dependent model are evaluated in a series of multistage case studies. The results show that the proposed decision-dependent model provides effective optimization solutions for long-term generation expansion planning.« less

  13. Integrating gene and protein expression data with genome-scale metabolic networks to infer functional pathways.

    PubMed

    Pey, Jon; Valgepea, Kaspar; Rubio, Angel; Beasley, John E; Planes, Francisco J

    2013-12-08

    The study of cellular metabolism in the context of high-throughput -omics data has allowed us to decipher novel mechanisms of importance in biotechnology and health. To continue with this progress, it is essential to efficiently integrate experimental data into metabolic modeling. We present here an in-silico framework to infer relevant metabolic pathways for a particular phenotype under study based on its gene/protein expression data. This framework is based on the Carbon Flux Path (CFP) approach, a mixed-integer linear program that expands classical path finding techniques by considering additional biophysical constraints. In particular, the objective function of the CFP approach is amended to account for gene/protein expression data and influence obtained paths. This approach is termed integrative Carbon Flux Path (iCFP). We show that gene/protein expression data also influences the stoichiometric balancing of CFPs, which provides a more accurate picture of active metabolic pathways. This is illustrated in both a theoretical and real scenario. Finally, we apply this approach to find novel pathways relevant in the regulation of acetate overflow metabolism in Escherichia coli. As a result, several targets which could be relevant for better understanding of the phenomenon leading to impaired acetate overflow are proposed. A novel mathematical framework that determines functional pathways based on gene/protein expression data is presented and validated. We show that our approach is able to provide new insights into complex biological scenarios such as acetate overflow in Escherichia coli.

  14. Currency arbitrage detection using a binary integer programming model

    NASA Astrophysics Data System (ADS)

    Soon, Wanmei; Ye, Heng-Qing

    2011-04-01

    In this article, we examine the use of a new binary integer programming (BIP) model to detect arbitrage opportunities in currency exchanges. This model showcases an excellent application of mathematics to the real world. The concepts involved are easily accessible to undergraduate students with basic knowledge in Operations Research. Through this work, students can learn to link several types of basic optimization models, namely linear programming, integer programming and network models, and apply the well-known sensitivity analysis procedure to accommodate realistic changes in the exchange rates. Beginning with a BIP model, we discuss how it can be reduced to an equivalent but considerably simpler model, where an efficient algorithm can be applied to find the arbitrages and incorporate the sensitivity analysis procedure. A simple comparison is then made with a different arbitrage detection model. This exercise helps students learn to apply basic Operations Research concepts to a practical real-life example, and provides insights into the processes involved in Operations Research model formulations.

  15. An Interactive Artificial Cutting Plane Method for Bicriterion Integer Programming Problems

    DTIC Science & Technology

    1992-08-01

    AUTHOR(S) Diane Breivik Allen, 1st Lt 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER AFIT Student Attending...INTERACTIVE ARTIFICIAL CUTTING PLANE METHOD FOR BICRITERION INTEGER PROGRAMMING PROBLEMS By Diane Breivik Allen A Thesis Submitted to the Faculty of...ITfiSRA&1 DTIC TAB 0 Unannounced 0 Justirication By BY Diane Breivik Allen Distributlon/ Availability CQdes Avail and/or Dist Special Approved: DTI

  16. Two Related Parametric Integrals

    ERIC Educational Resources Information Center

    Dana-Picard, T.

    2007-01-01

    Two related sequences of definite integrals are considered. By mixing hand-work, computer algebra system assistance and websurfing, fine connections can be studied between integrals and a couple of interesting sequences of integers. (Contains 4 tables.)

  17. Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming.

    PubMed

    Lyubetsky, Vassily; Gershgorin, Roman; Gorbunov, Konstantin

    2017-12-06

    Chromosome structure is a very limited model of the genome including the information about its chromosomes such as their linear or circular organization, the order of genes on them, and the DNA strand encoding a gene. Gene lengths, nucleotide composition, and intergenic regions are ignored. Although highly incomplete, such structure can be used in many cases, e.g., to reconstruct phylogeny and evolutionary events, to identify gene synteny, regulatory elements and promoters (considering highly conserved elements), etc. Three problems are considered; all assume unequal gene content and the presence of gene paralogs. The distance problem is to determine the minimum number of operations required to transform one chromosome structure into another and the corresponding transformation itself including the identification of paralogs in two structures. We use the DCJ model which is one of the most studied combinatorial rearrangement models. Double-, sesqui-, and single-operations as well as deletion and insertion of a chromosome region are considered in the model; the single ones comprise cut and join. In the reconstruction problem, a phylogenetic tree with chromosome structures in the leaves is given. It is necessary to assign the structures to inner nodes of the tree to minimize the sum of distances between terminal structures of each edge and to identify the mutual paralogs in a fairly large set of structures. A linear algorithm is known for the distance problem without paralogs, while the presence of paralogs makes it NP-hard. If paralogs are allowed but the insertion and deletion operations are missing (and special constraints are imposed), the reduction of the distance problem to integer linear programming is known. Apparently, the reconstruction problem is NP-hard even in the absence of paralogs. The problem of contigs is to find the optimal arrangements for each given set of contigs, which also includes the mutual identification of paralogs. We proved that these problems can be reduced to integer linear programming formulations, which allows an algorithm to redefine the problems to implement a very special case of the integer linear programming tool. The results were tested on synthetic and biological samples. Three well-known problems were reduced to a very special case of integer linear programming, which is a new method of their solutions. Integer linear programming is clearly among the main computational methods and, as generally accepted, is fast on average; in particular, computation systems specifically targeted at it are available. The challenges are to reduce the size of the corresponding integer linear programming formulations and to incorporate a more detailed biological concept in our model of the reconstruction.

  18. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear Optimization and Robust Mixed Integer Linear Optimization

    PubMed Central

    Li, Zukui; Ding, Ran; Floudas, Christodoulos A.

    2011-01-01

    Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263

  19. A multi-period optimization model for energy planning with CO(2) emission consideration.

    PubMed

    Mirzaesmaeeli, H; Elkamel, A; Douglas, P L; Croiset, E; Gupta, M

    2010-05-01

    A novel deterministic multi-period mixed-integer linear programming (MILP) model for the power generation planning of electric systems is described and evaluated in this paper. The model is developed with the objective of determining the optimal mix of energy supply sources and pollutant mitigation options that meet a specified electricity demand and CO(2) emission targets at minimum cost. Several time-dependent parameters are included in the model formulation; they include forecasted energy demand, fuel price variability, construction lead time, conservation initiatives, and increase in fixed operational and maintenance costs over time. The developed model is applied to two case studies. The objective of the case studies is to examine the economical, structural, and environmental effects that would result if the electricity sector was required to reduce its CO(2) emissions to a specified limit. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Optimal planning for the sustainable utilization of municipal solid waste.

    PubMed

    Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J; Serna-González, Medardo; El-Halwagi, Mahmoud M

    2013-12-01

    The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Process simulation and dynamic control for marine oily wastewater treatment using UV irradiation.

    PubMed

    Jing, Liang; Chen, Bing; Zhang, Baiyu; Li, Pu

    2015-09-15

    UV irradiation and advanced oxidation processes have been recently regarded as promising solutions in removing polycyclic aromatic hydrocarbons (PAHs) from marine oily wastewater. However, such treatment methods are generally not sufficiently understood in terms of reaction mechanisms, process simulation and process control. These deficiencies can drastically hinder their application in shipping and offshore petroleum industries which produce bilge/ballast water and produced water as the main streams of marine oily wastewater. In this study, the factorial design of experiment was carried out to investigate the degradation mechanism of a typical PAH, namely naphthalene, under UV irradiation in seawater. Based on the experimental results, a three-layer feed-forward artificial neural network simulation model was developed to simulate the treatment process and to forecast the removal performance. A simulation-based dynamic mixed integer nonlinear programming (SDMINP) approach was then proposed to intelligently control the treatment process by integrating the developed simulation model, genetic algorithm and multi-stage programming. The applicability and effectiveness of the developed approach were further tested though a case study. The experimental results showed that the influences of fluence rate and temperature on the removal of naphthalene were greater than those of salinity and initial concentration. The developed simulation model could well predict the UV-induced removal process under varying conditions. The case study suggested that the SDMINP approach, with the aid of the multi-stage control strategy, was able to significantly reduce treatment cost when comparing to the traditional single-stage process optimization. The developed approach and its concept/framework have high potential of applicability in other environmental fields where a treatment process is involved and experimentation and modeling are used for process simulation and control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Anisotropic fractal media by vector calculus in non-integer dimensional space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2014-08-15

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensionalmore » space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.« less

  3. Reliable design of a closed loop supply chain network under uncertainty: An interval fuzzy possibilistic chance-constrained model

    NASA Astrophysics Data System (ADS)

    Vahdani, Behnam; Tavakkoli-Moghaddam, Reza; Jolai, Fariborz; Baboli, Arman

    2013-06-01

    This article seeks to offer a systematic approach to establishing a reliable network of facilities in closed loop supply chains (CLSCs) under uncertainties. Facilities that are located in this article concurrently satisfy both traditional objective functions and reliability considerations in CLSC network designs. To attack this problem, a novel mathematical model is developed that integrates the network design decisions in both forward and reverse supply chain networks. The model also utilizes an effective reliability approach to find a robust network design. In order to make the results of this article more realistic, a CLSC for a case study in the iron and steel industry has been explored. The considered CLSC is multi-echelon, multi-facility, multi-product and multi-supplier. Furthermore, multiple facilities exist in the reverse logistics network leading to high complexities. Since the collection centres play an important role in this network, the reliability concept of these facilities is taken into consideration. To solve the proposed model, a novel interactive hybrid solution methodology is developed by combining a number of efficient solution approaches from the recent literature. The proposed solution methodology is a bi-objective interval fuzzy possibilistic chance-constraint mixed integer linear programming (BOIFPCCMILP). Finally, computational experiments are provided to demonstrate the applicability and suitability of the proposed model in a supply chain environment and to help decision makers facilitate their analyses.

  4. Distributing Earthquakes Among California's Faults: A Binary Integer Programming Approach

    NASA Astrophysics Data System (ADS)

    Geist, E. L.; Parsons, T.

    2016-12-01

    Statement of the problem is simple: given regional seismicity specified by a Gutenber-Richter (G-R) relation, how are earthquakes distributed to match observed fault-slip rates? The objective is to determine the magnitude-frequency relation on individual faults. The California statewide G-R b-value and a-value are estimated from historical seismicity, with the a-value accounting for off-fault seismicity. UCERF3 consensus slip rates are used, based on geologic and geodetic data and include estimates of coupling coefficients. The binary integer programming (BIP) problem is set up such that each earthquake from a synthetic catalog spanning millennia can occur at any location along any fault. The decision vector, therefore, consists of binary variables, with values equal to one indicating the location of each earthquake that results in an optimal match of slip rates, in an L1-norm sense. Rupture area and slip associated with each earthquake are determined from a magnitude-area scaling relation. Uncertainty bounds on the UCERF3 slip rates provide explicit minimum and maximum constraints to the BIP model, with the former more important to feasibility of the problem. There is a maximum magnitude limit associated with each fault, based on fault length, providing an implicit constraint. Solution of integer programming problems with a large number of variables (>105 in this study) has been possible only since the late 1990s. In addition to the classic branch-and-bound technique used for these problems, several other algorithms have been recently developed, including pre-solving, sifting, cutting planes, heuristics, and parallelization. An optimal solution is obtained using a state-of-the-art BIP solver for M≥6 earthquakes and California's faults with slip-rates > 1 mm/yr. Preliminary results indicate a surprising diversity of on-fault magnitude-frequency relations throughout the state.

  5. Cutting planes for the multistage stochastic unit commitment problem

    DOE PAGES

    Jiang, Ruiwei; Guan, Yongpei; Watson, Jean -Paul

    2016-04-20

    As renewable energy penetration rates continue to increase in power systems worldwide, new challenges arise for system operators in both regulated and deregulated electricity markets to solve the security-constrained coal-fired unit commitment problem with intermittent generation (due to renewables) and uncertain load, in order to ensure system reliability and maintain cost effectiveness. In this paper, we study a security-constrained coal-fired stochastic unit commitment model, which we use to enhance the reliability unit commitment process for day-ahead power system operations. In our approach, we first develop a deterministic equivalent formulation for the problem, which leads to a large-scale mixed-integer linear program.more » Then, we verify that the turn on/off inequalities provide a convex hull representation of the minimum-up/down time polytope under the stochastic setting. Next, we develop several families of strong valid inequalities mainly through lifting schemes. In particular, by exploring sequence independent lifting and subadditive approximation lifting properties for the lifting schemes, we obtain strong valid inequalities for the ramping and general load balance polytopes. Lastly, branch-and-cut algorithms are developed to employ these valid inequalities as cutting planes to solve the problem. Our computational results verify the effectiveness of the proposed approach.« less

  6. MinGenome: An In Silico Top-Down Approach for the Synthesis of Minimized Genomes.

    PubMed

    Wang, Lin; Maranas, Costas D

    2018-02-16

    Genome minimized strains offer advantages as production chassis by reducing transcriptional cost, eliminating competing functions and limiting unwanted regulatory interactions. Existing approaches for identifying stretches of DNA to remove are largely ad hoc based on information on presumably dispensable regions through experimentally determined nonessential genes and comparative genomics. Here we introduce a versatile genome reduction algorithm MinGenome that implements a mixed-integer linear programming (MILP) algorithm to identify in size descending order all dispensable contiguous sequences without affecting the organism's growth or other desirable traits. Known essential genes or genes that cause significant fitness or performance loss can be flagged and their deletion can be prohibited. MinGenome also preserves needed transcription factors and promoter regions ensuring that retained genes will be properly transcribed while also avoiding the simultaneous deletion of synthetic lethal pairs. The potential benefit of removing even larger contiguous stretches of DNA if only one or two essential genes (to be reinserted elsewhere) are within the deleted sequence is explored. We applied the algorithm to design a minimized E. coli strain and found that we were able to recapitulate the long deletions identified in previous experimental studies and discover alternative combinations of deletions that have not yet been explored in vivo.

  7. Cutting planes for the multistage stochastic unit commitment problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Ruiwei; Guan, Yongpei; Watson, Jean -Paul

    As renewable energy penetration rates continue to increase in power systems worldwide, new challenges arise for system operators in both regulated and deregulated electricity markets to solve the security-constrained coal-fired unit commitment problem with intermittent generation (due to renewables) and uncertain load, in order to ensure system reliability and maintain cost effectiveness. In this paper, we study a security-constrained coal-fired stochastic unit commitment model, which we use to enhance the reliability unit commitment process for day-ahead power system operations. In our approach, we first develop a deterministic equivalent formulation for the problem, which leads to a large-scale mixed-integer linear program.more » Then, we verify that the turn on/off inequalities provide a convex hull representation of the minimum-up/down time polytope under the stochastic setting. Next, we develop several families of strong valid inequalities mainly through lifting schemes. In particular, by exploring sequence independent lifting and subadditive approximation lifting properties for the lifting schemes, we obtain strong valid inequalities for the ramping and general load balance polytopes. Lastly, branch-and-cut algorithms are developed to employ these valid inequalities as cutting planes to solve the problem. Our computational results verify the effectiveness of the proposed approach.« less

  8. Find_tfSBP: find thermodynamics-feasible and smallest balanced pathways with high yield from large-scale metabolic networks.

    PubMed

    Xu, Zixiang; Sun, Jibin; Wu, Qiaqing; Zhu, Dunming

    2017-12-11

    Biologically meaningful metabolic pathways are important references in the design of industrial bacterium. At present, constraint-based method is the only way to model and simulate a genome-scale metabolic network under steady-state criteria. Due to the inadequate assumption of the relationship in gene-enzyme-reaction as one-to-one unique association, computational difficulty or ignoring the yield from substrate to product, previous pathway finding approaches can't be effectively applied to find out the high yield pathways that are mass balanced in stoichiometry. In addition, the shortest pathways may not be the pathways with high yield. At the same time, a pathway, which exists in stoichiometry, may not be feasible in thermodynamics. By using mixed integer programming strategy, we put forward an algorithm to identify all the smallest balanced pathways which convert the source compound to the target compound in large-scale metabolic networks. The resulting pathways by our method can finely satisfy the stoichiometric constraints and non-decomposability condition. Especially, the functions of high yield and thermodynamics feasibility have been considered in our approach. This tool is tailored to direct the metabolic engineering practice to enlarge the metabolic potentials of industrial strains by integrating the extensive metabolic network information built from systems biology dataset.

  9. Application of optimization technique for flood damage modeling in river system

    NASA Astrophysics Data System (ADS)

    Barman, Sangita Deb; Choudhury, Parthasarathi

    2018-04-01

    A river system is defined as a network of channels that drains different parts of a basin uniting downstream to form a common outflow. An application of various models found in literatures, to a river system having multiple upstream flows is not always straight forward, involves a lengthy procedure; and with non-availability of data sets model calibration and applications may become difficult. In the case of a river system the flow modeling can be simplified to a large extent if the channel network is replaced by an equivalent single channel. In the present work optimization model formulations based on equivalent flow and applications of the mixed integer programming based pre-emptive goal programming model in evaluating flood control alternatives for a real life river system in India are proposed to be covered in the study.

  10. Mathematical programming formulations for satellite synthesis

    NASA Technical Reports Server (NTRS)

    Bhasin, Puneet; Reilly, Charles H.

    1987-01-01

    The problem of satellite synthesis can be described as optimally allotting locations and sometimes frequencies and polarizations, to communication satellites so that interference from unwanted satellite signals does not exceed a specified threshold. In this report, mathematical programming models and optimization methods are used to solve satellite synthesis problems. A nonlinear programming formulation which is solved using Zoutendijk's method and a gradient search method is described. Nine mixed integer programming models are considered. Results of computer runs with these nine models and five geographically compatible scenarios are presented and evaluated. A heuristic solution procedure is also used to solve two of the models studied. Heuristic solutions to three large synthesis problems are presented. The results of our analysis show that the heuristic performs very well, both in terms of solution quality and solution time, on the two models to which it was applied. It is concluded that the heuristic procedure is the best of the methods considered for solving satellite synthesis problems.

  11. Optimising multi-product multi-chance-constraint inventory control system with stochastic period lengths and total discount under fuzzy purchasing price and holding costs

    NASA Astrophysics Data System (ADS)

    Allah Taleizadeh, Ata; Niaki, Seyed Taghi Akhavan; Aryanezhad, Mir-Bahador

    2010-10-01

    While the usual assumptions in multi-periodic inventory control problems are that the orders are placed at the beginning of each period (periodic review) or depending on the inventory level they can happen at any time (continuous review), in this article, we relax these assumptions and assume that the periods between two replenishments of the products are independent and identically distributed random variables. Furthermore, assuming that the purchasing price are triangular fuzzy variables, the quantities of the orders are of integer-type and that there are space and service level constraints, total discount are considered to purchase products and a combination of back-order and lost-sales are taken into account for the shortages. We show that the model of this problem is a fuzzy mixed-integer nonlinear programming type and in order to solve it, a hybrid meta-heuristic intelligent algorithm is proposed. At the end, a numerical example is given to demonstrate the applicability of the proposed methodology and to compare its performance with one of the existing algorithms in real world inventory control problems.

  12. AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1994-01-01

    This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.

  13. Estimating spatial and temporal components of variation in count data using negative binomial mixed models

    USGS Publications Warehouse

    Irwin, Brian J.; Wagner, Tyler; Bence, James R.; Kepler, Megan V.; Liu, Weihai; Hayes, Daniel B.

    2013-01-01

    Partitioning total variability into its component temporal and spatial sources is a powerful way to better understand time series and elucidate trends. The data available for such analyses of fish and other populations are usually nonnegative integer counts of the number of organisms, often dominated by many low values with few observations of relatively high abundance. These characteristics are not well approximated by the Gaussian distribution. We present a detailed description of a negative binomial mixed-model framework that can be used to model count data and quantify temporal and spatial variability. We applied these models to data from four fishery-independent surveys of Walleyes Sander vitreus across the Great Lakes basin. Specifically, we fitted models to gill-net catches from Wisconsin waters of Lake Superior; Oneida Lake, New York; Saginaw Bay in Lake Huron, Michigan; and Ohio waters of Lake Erie. These long-term monitoring surveys varied in overall sampling intensity, the total catch of Walleyes, and the proportion of zero catches. Parameter estimation included the negative binomial scaling parameter, and we quantified the random effects as the variations among gill-net sampling sites, the variations among sampled years, and site × year interactions. This framework (i.e., the application of a mixed model appropriate for count data in a variance-partitioning context) represents a flexible approach that has implications for monitoring programs (e.g., trend detection) and for examining the potential of individual variance components to serve as response metrics to large-scale anthropogenic perturbations or ecological changes.

  14. System design optimization for stand-alone photovoltaic systems sizing by using superstructure model

    NASA Astrophysics Data System (ADS)

    Azau, M. A. M.; Jaafar, S.; Samsudin, K.

    2013-06-01

    Although the photovoltaic (PV) systems have been increasingly installed as an alternative and renewable green power generation, the initial set up cost, maintenance cost and equipment mismatch are some of the key issues that slows down the installation in small household. This paper presents the design optimization of stand-alone photovoltaic systems using superstructure model where all possible types of technology of the equipment are captured and life cycle cost analysis is formulated as a mixed integer programming (MIP). A model for investment planning of power generation and long-term decision model are developed in order to help the system engineer to build a cost effective system.

  15. MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics.

    PubMed

    Egea, Jose A; Henriques, David; Cokelaer, Thomas; Villaverde, Alejandro F; MacNamara, Aidan; Danciu, Diana-Patricia; Banga, Julio R; Saez-Rodriguez, Julio

    2014-05-10

    Optimization is the key to solving many problems in computational biology. Global optimization methods, which provide a robust methodology, and metaheuristics in particular have proven to be the most efficient methods for many applications. Despite their utility, there is a limited availability of metaheuristic tools. We present MEIGO, an R and Matlab optimization toolbox (also available in Python via a wrapper of the R version), that implements metaheuristics capable of solving diverse problems arising in systems biology and bioinformatics. The toolbox includes the enhanced scatter search method (eSS) for continuous nonlinear programming (cNLP) and mixed-integer programming (MINLP) problems, and variable neighborhood search (VNS) for Integer Programming (IP) problems. Additionally, the R version includes BayesFit for parameter estimation by Bayesian inference. The eSS and VNS methods can be run on a single-thread or in parallel using a cooperative strategy. The code is supplied under GPLv3 and is available at http://www.iim.csic.es/~gingproc/meigo.html. Documentation and examples are included. The R package has been submitted to BioConductor. We evaluate MEIGO against optimization benchmarks, and illustrate its applicability to a series of case studies in bioinformatics and systems biology where it outperforms other state-of-the-art methods. MEIGO provides a free, open-source platform for optimization that can be applied to multiple domains of systems biology and bioinformatics. It includes efficient state of the art metaheuristics, and its open and modular structure allows the addition of further methods.

  16. MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics

    PubMed Central

    2014-01-01

    Background Optimization is the key to solving many problems in computational biology. Global optimization methods, which provide a robust methodology, and metaheuristics in particular have proven to be the most efficient methods for many applications. Despite their utility, there is a limited availability of metaheuristic tools. Results We present MEIGO, an R and Matlab optimization toolbox (also available in Python via a wrapper of the R version), that implements metaheuristics capable of solving diverse problems arising in systems biology and bioinformatics. The toolbox includes the enhanced scatter search method (eSS) for continuous nonlinear programming (cNLP) and mixed-integer programming (MINLP) problems, and variable neighborhood search (VNS) for Integer Programming (IP) problems. Additionally, the R version includes BayesFit for parameter estimation by Bayesian inference. The eSS and VNS methods can be run on a single-thread or in parallel using a cooperative strategy. The code is supplied under GPLv3 and is available at http://www.iim.csic.es/~gingproc/meigo.html. Documentation and examples are included. The R package has been submitted to BioConductor. We evaluate MEIGO against optimization benchmarks, and illustrate its applicability to a series of case studies in bioinformatics and systems biology where it outperforms other state-of-the-art methods. Conclusions MEIGO provides a free, open-source platform for optimization that can be applied to multiple domains of systems biology and bioinformatics. It includes efficient state of the art metaheuristics, and its open and modular structure allows the addition of further methods. PMID:24885957

  17. An Optimization Approach to Coexistence of Bluetooth and Wi-Fi Networks Operating in ISM Environment

    NASA Astrophysics Data System (ADS)

    Klajbor, Tomasz; Rak, Jacek; Wozniak, Jozef

    Unlicensed ISM band is used by various wireless technologies. Therefore, issues related to ensuring the required efficiency and quality of operation of coexisting networks become essential. The paper addresses the problem of mutual interferences between IEEE 802.11b transmitters (commercially named Wi-Fi) and Bluetooth (BT) devices.An optimization approach to modeling the topology of BT scatternets is introduced, resulting in more efficient utilization of ISM environment consisting of BT and Wi-Fi networks. To achieve it, the Integer Linear Programming approach has been proposed. Example results presented in the paper illustrate significant benefits of using the proposed modeling strategy.

  18. A hybrid Jaya algorithm for reliability-redundancy allocation problems

    NASA Astrophysics Data System (ADS)

    Ghavidel, Sahand; Azizivahed, Ali; Li, Li

    2018-04-01

    This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching-learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability-redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series-parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30-100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results.

  19. Classification and disease prediction via mathematical programming

    NASA Astrophysics Data System (ADS)

    Lee, Eva K.; Wu, Tsung-Lin

    2007-11-01

    In this chapter, we present classification models based on mathematical programming approaches. We first provide an overview on various mathematical programming approaches, including linear programming, mixed integer programming, nonlinear programming and support vector machines. Next, we present our effort of novel optimization-based classification models that are general purpose and suitable for developing predictive rules for large heterogeneous biological and medical data sets. Our predictive model simultaneously incorporates (1) the ability to classify any number of distinct groups; (2) the ability to incorporate heterogeneous types of attributes as input; (3) a high-dimensional data transformation that eliminates noise and errors in biological data; (4) the ability to incorporate constraints to limit the rate of misclassification, and a reserved-judgment region that provides a safeguard against over-training (which tends to lead to high misclassification rates from the resulting predictive rule) and (5) successive multi-stage classification capability to handle data points placed in the reserved judgment region. To illustrate the power and flexibility of the classification model and solution engine, and its multigroup prediction capability, application of the predictive model to a broad class of biological and medical problems is described. Applications include: the differential diagnosis of the type of erythemato-squamous diseases; predicting presence/absence of heart disease; genomic analysis and prediction of aberrant CpG island meythlation in human cancer; discriminant analysis of motility and morphology data in human lung carcinoma; prediction of ultrasonic cell disruption for drug delivery; identification of tumor shape and volume in treatment of sarcoma; multistage discriminant analysis of biomarkers for prediction of early atherosclerois; fingerprinting of native and angiogenic microvascular networks for early diagnosis of diabetes, aging, macular degeneracy and tumor metastasis; prediction of protein localization sites; and pattern recognition of satellite images in classification of soil types. In all these applications, the predictive model yields correct classification rates ranging from 80% to 100%. This provides motivation for pursuing its use as a medical diagnostic, monitoring and decision-making tool.

  20. Operator mixing in the ɛ -expansion: Scheme and evanescent-operator independence

    NASA Astrophysics Data System (ADS)

    Di Pietro, Lorenzo; Stamou, Emmanuel

    2018-03-01

    We consider theories with fermionic degrees of freedom that have a fixed point of Wilson-Fisher type in noninteger dimension d =4 -2 ɛ . Due to the presence of evanescent operators, i.e., operators that vanish in integer dimensions, these theories contain families of infinitely many operators that can mix with each other under renormalization. We clarify the dependence of the corresponding anomalous-dimension matrix on the choice of renormalization scheme beyond leading order in ɛ -expansion. In standard choices of scheme, we find that eigenvalues at the fixed point cannot be extracted from a finite-dimensional block. We illustrate in examples a truncation approach to compute the eigenvalues. These are observable scaling dimensions, and, indeed, we find that the dependence on the choice of scheme cancels. As an application, we obtain the IR scaling dimension of four-fermion operators in QED in d =4 -2 ɛ at order O (ɛ2).

  1. Optimal GENCO bidding strategy

    NASA Astrophysics Data System (ADS)

    Gao, Feng

    Electricity industries worldwide are undergoing a period of profound upheaval. The conventional vertically integrated mechanism is being replaced by a competitive market environment. Generation companies have incentives to apply novel technologies to lower production costs, for example: Combined Cycle units. Economic dispatch with Combined Cycle units becomes a non-convex optimization problem, which is difficult if not impossible to solve by conventional methods. Several techniques are proposed here: Mixed Integer Linear Programming, a hybrid method, as well as Evolutionary Algorithms. Evolutionary Algorithms share a common mechanism, stochastic searching per generation. The stochastic property makes evolutionary algorithms robust and adaptive enough to solve a non-convex optimization problem. This research implements GA, EP, and PS algorithms for economic dispatch with Combined Cycle units, and makes a comparison with classical Mixed Integer Linear Programming. The electricity market equilibrium model not only helps Independent System Operator/Regulator analyze market performance and market power, but also provides Market Participants the ability to build optimal bidding strategies based on Microeconomics analysis. Supply Function Equilibrium (SFE) is attractive compared to traditional models. This research identifies a proper SFE model, which can be applied to a multiple period situation. The equilibrium condition using discrete time optimal control is then developed for fuel resource constraints. Finally, the research discusses the issues of multiple equilibria and mixed strategies, which are caused by the transmission network. Additionally, an advantage of the proposed model for merchant transmission planning is discussed. A market simulator is a valuable training and evaluation tool to assist sellers, buyers, and regulators to understand market performance and make better decisions. A traditional optimization model may not be enough to consider the distributed, large-scale, and complex energy market. This research compares the performance and searching paths of different artificial life techniques such as Genetic Algorithm (GA), Evolutionary Programming (EP), and Particle Swarm (PS), and look for a proper method to emulate Generation Companies' (GENCOs) bidding strategies. After deregulation, GENCOs face risk and uncertainty associated with the fast-changing market environment. A profit-based bidding decision support system is critical for GENCOs to keep a competitive position in the new environment. Most past research do not pay special attention to the piecewise staircase characteristic of generator offer curves. This research proposes an optimal bidding strategy based on Parametric Linear Programming. The proposed algorithm is able to handle actual piecewise staircase energy offer curves. The proposed method is then extended to incorporate incomplete information based on Decision Analysis. Finally, the author develops an optimal bidding tool (GenBidding) and applies it to the RTS96 test system.

  2. Validation on flight data of a closed-loop approach for GPS-based relative navigation of LEO satellites

    NASA Astrophysics Data System (ADS)

    Tancredi, U.; Renga, A.; Grassi, M.

    2013-05-01

    This paper describes a carrier-phase differential GPS approach for real-time relative navigation of LEO satellites flying in formation with large separations. These applications are characterized indeed by a highly varying number of GPS satellites in common view and large ionospheric differential errors, which significantly impact relative navigation performance and robustness. To achieve high relative positioning accuracy a navigation algorithm is proposed which processes double-difference code and carrier measurements on two frequencies, to fully exploit the integer nature of the related ambiguities. Specifically, a closed-loop scheme is proposed in which fixed estimates of the baseline and integer ambiguities produced by means of a partial integer fixing step are fed back to an Extended Kalman Filter for improving the float estimate at successive time instants. The approach also benefits from the inclusion in the filter state of the differential ionospheric delay in terms of the Vertical Total Electron Content of each satellite. The navigation algorithm performance is tested on actual flight data from GRACE mission. Results demonstrate the effectiveness of the proposed approach in managing integer unknowns in conjunction with Extended Kalman Filtering, and that centimeter-level accuracy can be achieved in real-time also with large separations.

  3. Rational-q Triggered Transport Changes With Varying Toroidal Rotation in DIII-D

    NASA Astrophysics Data System (ADS)

    Austin, M. E.; Burrell, K. H.; Waltz, R. E.; van Zeeland, M. A.; McKee, G. R.; Shafer, M. W.; Rhodes, T. L.

    2007-11-01

    Comparison of rational-q triggered ITBs in discharges with varying toroidal torque injection was carried out. Experiments were conducted in negative central shear discharges with different mixes of co/counter neutral beam injection (NBI) that altered the equilibrium ExB shear in conditions where transient improvements in transport occur near integer qmin values. The transport changes were seen in high and low rotation cases; however, the latter discharges did not transition to improved core confinement. Observations support the model that sufficient background ExB shear is required for barrier formation and zonal flow effects at integer qmin act as trigger in this case. The lack of TAE modes in the balanced injection cases indicates they are not linked to the transient confinement improvement. Fluctuation data obtained in co and balanced NBI show similar reductions in turbulence near integer qmin as well as poloidal velocity excursions that may be further evidence of zonal flow.

  4. Decision support for hospital bed management using adaptable individual length of stay estimations and shared resources

    PubMed Central

    2013-01-01

    Background Elective patient admission and assignment planning is an important task of the strategic and operational management of a hospital and early on became a central topic of clinical operations research. The management of hospital beds is an important subtask. Various approaches have been proposed, involving the computation of efficient assignments with regard to the patients’ condition, the necessity of the treatment, and the patients’ preferences. However, these approaches are mostly based on static, unadaptable estimates of the length of stay and, thus, do not take into account the uncertainty of the patient’s recovery. Furthermore, the effect of aggregated bed capacities have not been investigated in this context. Computer supported bed management, combining an adaptable length of stay estimation with the treatment of shared resources (aggregated bed capacities) has not yet been sufficiently investigated. The aim of our work is: 1) to define a cost function for patient admission taking into account adaptable length of stay estimations and aggregated resources, 2) to define a mathematical program formally modeling the assignment problem and an architecture for decision support, 3) to investigate four algorithmic methodologies addressing the assignment problem and one base-line approach, and 4) to evaluate these methodologies w.r.t. cost outcome, performance, and dismissal ratio. Methods The expected free ward capacity is calculated based on individual length of stay estimates, introducing Bernoulli distributed random variables for the ward occupation states and approximating the probability densities. The assignment problem is represented as a binary integer program. Four strategies for solving the problem are applied and compared: an exact approach, using the mixed integer programming solver SCIP; and three heuristic strategies, namely the longest expected processing time, the shortest expected processing time, and random choice. A baseline approach serves to compare these optimization strategies with a simple model of the status quo. All the approaches are evaluated by a realistic discrete event simulation: the outcomes are the ratio of successful assignments and dismissals, the computation time, and the model’s cost factors. Results A discrete event simulation of 226,000 cases shows a reduction of the dismissal rate compared to the baseline by more than 30 percentage points (from a mean dismissal ratio of 74.7% to 40.06% comparing the status quo with the optimization strategies). Each of the optimization strategies leads to an improved assignment. The exact approach has only a marginal advantage over the heuristic strategies in the model’s cost factors (≤3%). Moreover,this marginal advantage was only achieved at the price of a computational time fifty times that of the heuristic models (an average computing time of 141 s using the exact method, vs. 2.6 s for the heuristic strategy). Conclusions In terms of its performance and the quality of its solution, the heuristic strategy RAND is the preferred method for bed assignment in the case of shared resources. Future research is needed to investigate whether an equally marked improvement can be achieved in a large scale clinical application study, ideally one comprising all the departments involved in admission and assignment planning. PMID:23289448

  5. Decision support for hospital bed management using adaptable individual length of stay estimations and shared resources.

    PubMed

    Schmidt, Robert; Geisler, Sandra; Spreckelsen, Cord

    2013-01-07

    Elective patient admission and assignment planning is an important task of the strategic and operational management of a hospital and early on became a central topic of clinical operations research. The management of hospital beds is an important subtask. Various approaches have been proposed, involving the computation of efficient assignments with regard to the patients' condition, the necessity of the treatment, and the patients' preferences. However, these approaches are mostly based on static, unadaptable estimates of the length of stay and, thus, do not take into account the uncertainty of the patient's recovery. Furthermore, the effect of aggregated bed capacities have not been investigated in this context. Computer supported bed management, combining an adaptable length of stay estimation with the treatment of shared resources (aggregated bed capacities) has not yet been sufficiently investigated. The aim of our work is: 1) to define a cost function for patient admission taking into account adaptable length of stay estimations and aggregated resources, 2) to define a mathematical program formally modeling the assignment problem and an architecture for decision support, 3) to investigate four algorithmic methodologies addressing the assignment problem and one base-line approach, and 4) to evaluate these methodologies w.r.t. cost outcome, performance, and dismissal ratio. The expected free ward capacity is calculated based on individual length of stay estimates, introducing Bernoulli distributed random variables for the ward occupation states and approximating the probability densities. The assignment problem is represented as a binary integer program. Four strategies for solving the problem are applied and compared: an exact approach, using the mixed integer programming solver SCIP; and three heuristic strategies, namely the longest expected processing time, the shortest expected processing time, and random choice. A baseline approach serves to compare these optimization strategies with a simple model of the status quo. All the approaches are evaluated by a realistic discrete event simulation: the outcomes are the ratio of successful assignments and dismissals, the computation time, and the model's cost factors. A discrete event simulation of 226,000 cases shows a reduction of the dismissal rate compared to the baseline by more than 30 percentage points (from a mean dismissal ratio of 74.7% to 40.06% comparing the status quo with the optimization strategies). Each of the optimization strategies leads to an improved assignment. The exact approach has only a marginal advantage over the heuristic strategies in the model's cost factors (≤3%). Moreover,this marginal advantage was only achieved at the price of a computational time fifty times that of the heuristic models (an average computing time of 141 s using the exact method, vs. 2.6 s for the heuristic strategy). In terms of its performance and the quality of its solution, the heuristic strategy RAND is the preferred method for bed assignment in the case of shared resources. Future research is needed to investigate whether an equally marked improvement can be achieved in a large scale clinical application study, ideally one comprising all the departments involved in admission and assignment planning.

  6. Frequency assignments for HFDF receivers in a search and rescue network

    NASA Astrophysics Data System (ADS)

    Johnson, Krista E.

    1990-03-01

    This thesis applies a multiobjective linear programming approach to the problem of assigning frequencies to high frequency direction finding (HFDF) receivers in a search-and-rescue network in order to maximize the expected number of geolocations of vessels in distress. The problem is formulated as a multiobjective integer linear programming problem. The integrality of the solutions is guaranteed by the totally unimodularity of the A-matrix. Two approaches are taken to solve the multiobjective linear programming problem: (1) the multiobjective simplex method as implemented in ADBASE; and (2) an iterative approach. In this approach, the individual objective functions are weighted and combined in a single additive objective function. The resulting single objective problem is expressed as a network programming problem and solved using SAS NETFLOW. The process is then repeated with different weightings for the objective functions. The solutions obtained from the multiobjective linear programs are evaluated using a FORTRAN program to determine which solution provides the greatest expected number of geolocations. This solution is then compared to the sample mean and standard deviation for the expected number of geolocations resulting from 10,000 random frequency assignments for the network.

  7. Metamodeling and the Critic-based approach to multi-level optimization.

    PubMed

    Werbos, Ludmilla; Kozma, Robert; Silva-Lugo, Rodrigo; Pazienza, Giovanni E; Werbos, Paul J

    2012-08-01

    Large-scale networks with hundreds of thousands of variables and constraints are becoming more and more common in logistics, communications, and distribution domains. Traditionally, the utility functions defined on such networks are optimized using some variation of Linear Programming, such as Mixed Integer Programming (MIP). Despite enormous progress both in hardware (multiprocessor systems and specialized processors) and software (Gurobi) we are reaching the limits of what these tools can handle in real time. Modern logistic problems, for example, call for expanding the problem both vertically (from one day up to several days) and horizontally (combining separate solution stages into an integrated model). The complexity of such integrated models calls for alternative methods of solution, such as Approximate Dynamic Programming (ADP), which provide a further increase in the performance necessary for the daily operation. In this paper, we present the theoretical basis and related experiments for solving the multistage decision problems based on the results obtained for shorter periods, as building blocks for the models and the solution, via Critic-Model-Action cycles, where various types of neural networks are combined with traditional MIP models in a unified optimization system. In this system architecture, fast and simple feed-forward networks are trained to reasonably initialize more complicated recurrent networks, which serve as approximators of the value function (Critic). The combination of interrelated neural networks and optimization modules allows for multiple queries for the same system, providing flexibility and optimizing performance for large-scale real-life problems. A MATLAB implementation of our solution procedure for a realistic set of data and constraints shows promising results, compared to the iterative MIP approach. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Convex relaxations for gas expansion planning

    DOE PAGES

    Borraz-Sanchez, Conrado; Bent, Russell Whitford; Backhaus, Scott N.; ...

    2016-01-01

    Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Here, given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutionsmore » to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solution« less

  9. RSM 1.0 - A RESUPPLY SCHEDULER USING INTEGER OPTIMIZATION

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    RSM, Resupply Scheduling Modeler, is a fully menu-driven program that uses integer programming techniques to determine an optimum schedule for replacing components on or before the end of a fixed replacement period. Although written to analyze the electrical power system on the Space Station Freedom, RSM is quite general and can be used to model the resupply of almost any system subject to user-defined resource constraints. RSM is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more computationally intensive, integer programming was required for accuracy when modeling systems with small quantities of components. Input values for component life cane be real numbers, RSM converts them to integers by dividing the lifetime by the period duration, then reducing the result to the next lowest integer. For each component, there is a set of constraints that insure that it is replaced before its lifetime expires. RSM includes user-defined constraints such as transportation mass and volume limits, as well as component life, available repair crew time and assembly sequences. A weighting factor allows the program to minimize factors such as cost. The program then performs an iterative analysis, which is displayed during the processing. A message gives the first period in which resources are being exceeded on each iteration. If the scheduling problem is unfeasible, the final message will also indicate the first period in which resources were exceeded. RSM is written in APL2 for IBM PC series computers and compatibles. A stand-alone executable version of RSM is provided; however, this is a "packed" version of RSM which can only utilize the memory within the 640K DOS limit. This executable requires at least 640K of memory and DOS 3.1 or higher. Source code for an APL2/PC workspace version is also provided. This version of RSM can make full use of any installed extended memory but must be run with the APL2 interpreter; and it requires an 80486 based microcomputer or an 80386 based microcomputer with an 80387 math coprocessor, at least 2Mb of extended memory, and DOS 3.3 or higher. The standard distribution medium for this package is one 5.25 inch 360K MS-DOS format diskette. RSM was developed in 1991. APL2 and IBM PC are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  10. Emerald: an object-based language for distributed programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, N.C.

    1987-01-01

    Distributed systems have become more common, however constructing distributed applications remains a very difficult task. Numerous operating systems and programming languages have been proposed that attempt to simplify the programming of distributed applications. Here a programing language called Emerald is presented that simplifies distributed programming by extending the concepts of object-based languages to the distributed environment. Emerald supports a single model of computation: the object. Emerald objects include private entities such as integers and Booleans, as well as shared, distributed entities such as compilers, directories, and entire file systems. Emerald objects may move between machines in the system, but objectmore » invocation is location independent. The uniform semantic model used for describing all Emerald objects makes the construction of distributed applications in Emerald much simpler than in systems where the differences in implementation between local and remote entities are visible in the language semantics. Emerald incorporates a type system that deals only with the specification of objects - ignoring differences in implementation. Thus, two different implementations of the same abstraction may be freely mixed.« less

  11. Leveraging Structure: Logical Necessity in the Context of Integer Arithmetic

    ERIC Educational Resources Information Center

    Bishop, Jessica Pierson; Lamb, Lisa L.; Philipp, Randolph A.; Whitacre, Ian; Schappelle, Bonnie P.

    2016-01-01

    Looking for, recognizing, and using underlying mathematical structure is an important aspect of mathematical reasoning. We explore the use of mathematical structure in children's integer strategies by developing and exemplifying the construct of logical necessity. Students in our study used logical necessity to approach and use numbers in a…

  12. An optimization model for energy generation and distribution in a dynamic facility

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1981-01-01

    An analytical model is described using linear programming for the optimum generation and distribution of energy demands among competing energy resources and different economic criteria. The model, which will be used as a general engineering tool in the analysis of the Deep Space Network ground facility, considers several essential decisions for better design and operation. The decisions sought for the particular energy application include: the optimum time to build an assembly of elements, inclusion of a storage medium of some type, and the size or capacity of the elements that will minimize the total life-cycle cost over a given number of years. The model, which is structured in multiple time divisions, employ the decomposition principle for large-size matrices, the branch-and-bound method in mixed-integer programming, and the revised simplex technique for efficient and economic computer use.

  13. Optimal Design and Operation of Permanent Irrigation Systems

    NASA Astrophysics Data System (ADS)

    Oron, Gideon; Walker, Wynn R.

    1981-01-01

    Solid-set pressurized irrigation system design and operation are studied with optimization techniques to determine the minimum cost distribution system. The principle of the analysis is to divide the irrigation system into subunits in such a manner that the trade-offs among energy, piping, and equipment costs are selected at the minimum cost point. The optimization procedure involves a nonlinear, mixed integer approach capable of achieving a variety of optimal solutions leading to significant conclusions with regard to the design and operation of the system. Factors investigated include field geometry, the effect of the pressure head, consumptive use rates, a smaller flow rate in the pipe system, and outlet (sprinkler or emitter) discharge.

  14. Development of a Menu Driven Materials Data Base for Use on Personal Computers

    DTIC Science & Technology

    1992-07-01

    written permission. Copyright Is the responsibility of the Director Publishing and Marketing , AGPS. Enquiries should be directed to the Manager, AGPS...PROGRAM LISTING A-2-1 Program MOB; uses crt; label levell,level2,level3,shutdown,dis;play; var options,code, nlines ,nmeflitemp,i,j4,k :integer; w,chl,ch2,ch3...char; menus :array [I. .1001 of st~ring[801; nline :array [l. .100] of integer; s2 :string[21; control :string[4]; aline :string[801; inm,iflt :text

  15. Towards Lagrangian formulations of mixed-symmetry higher spin fields on AdS-space within BFV-BRST formalism

    NASA Astrophysics Data System (ADS)

    Reshetnyak, A. A.

    2010-11-01

    The spectrum of superstring theory on the AdS 5 × S 5 Ramond-Ramond background in tensionless limit contains integer and half-integer higher-spin fields subject at most to two-rows Young tableaux Y( s 1, s 2). We review the details of a gauge-invariant Lagrangian description of such massive and massless higher-spin fields in anti-de-Sitter spaces with arbitrary dimensions. The procedure is based on the construction of Verma modules, its oscillator realizations and of a BFV-BRST operator for non-linear algebras encoding unitary irreducible representations of AdS group.

  16. A model for solving the prescribed burn planning problem.

    PubMed

    Rachmawati, Ramya; Ozlen, Melih; Reinke, Karin J; Hearne, John W

    2015-01-01

    The increasing frequency of destructive wildfires, with a consequent loss of life and property, has led to fire and land management agencies initiating extensive fuel management programs. This involves long-term planning of fuel reduction activities such as prescribed burning or mechanical clearing. In this paper, we propose a mixed integer programming (MIP) model that determines when and where fuel reduction activities should take place. The model takes into account multiple vegetation types in the landscape, their tolerance to frequency of fire events, and keeps track of the age of each vegetation class in each treatment unit. The objective is to minimise fuel load over the planning horizon. The complexity of scheduling fuel reduction activities has led to the introduction of sophisticated mathematical optimisation methods. While these approaches can provide optimum solutions, they can be computationally expensive, particularly for fuel management planning which extends across the landscape and spans long term planning horizons. This raises the question of how much better do exact modelling approaches compare to simpler heuristic approaches in their solutions. To answer this question, the proposed model is run using an exact MIP (using commercial MIP solver) and two heuristic approaches that decompose the problem into multiple single-period sub problems. The Knapsack Problem (KP), which is the first heuristic approach, solves the single period problems, using an exact MIP approach. The second heuristic approach solves the single period sub problem using a greedy heuristic approach. The three methods are compared in term of model tractability, computational time and the objective values. The model was tested using randomised data from 711 treatment units in the Barwon-Otway district of Victoria, Australia. Solutions for the exact MIP could be obtained for up to a 15-year planning only using a standard implementation of CPLEX. Both heuristic approaches can solve significantly larger problems, involving 100-year or even longer planning horizons. Furthermore there are no substantial differences in the solutions produced by the three approaches. It is concluded that for practical purposes a heuristic method is to be preferred to the exact MIP approach.

  17. Stacking-sequence optimization for buckling of laminated plates by integer programming

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Walsh, Joanne L.

    1991-01-01

    Integer-programming formulations for the design of symmetric and balanced laminated plates under biaxial compression are presented. Both maximization of buckling load for a given total thickness and the minimization of total thickness subject to a buckling constraint are formulated. The design variables that define the stacking sequence of the laminate are zero-one integers. It is shown that the formulation results in a linear optimization problem that can be solved on readily available software. This is in contrast to the continuous case, where the design variables are the thicknesses of layers with specified ply orientations, and the optimization problem is nonlinear. Constraints on the stacking sequence such as a limit on the number of contiguous plies of the same orientation and limits on in-plane stiffnesses are easily accommodated. Examples are presented for graphite-epoxy plates under uniaxial and biaxial compression using a commercial software package based on the branch-and-bound algorithm.

  18. An electromagnetism-like metaheuristic for open-shop problems with no buffer

    NASA Astrophysics Data System (ADS)

    Naderi, Bahman; Najafi, Esmaeil; Yazdani, Mehdi

    2012-12-01

    This paper considers open-shop scheduling with no intermediate buffer to minimize total tardiness. This problem occurs in many production settings, in the plastic molding, chemical, and food processing industries. The paper mathematically formulates the problem by a mixed integer linear program. The problem can be optimally solved by the model. The paper also develops a novel metaheuristic based on an electromagnetism algorithm to solve the large-sized problems. The paper conducts two computational experiments. The first includes small-sized instances by which the mathematical model and general performance of the proposed metaheuristic are evaluated. The second evaluates the metaheuristic for its performance to solve some large-sized instances. The results show that the model and algorithm are effective to deal with the problem.

  19. The integrated model for solving the single-period deterministic inventory routing problem

    NASA Astrophysics Data System (ADS)

    Rahim, Mohd Kamarul Irwan Abdul; Abidin, Rahimi; Iteng, Rosman; Lamsali, Hendrik

    2016-08-01

    This paper discusses the problem of efficiently managing inventory and routing problems in a two-level supply chain system. Vendor Managed Inventory (VMI) policy is an integrating decisions between a supplier and his customers. We assumed that the demand at each customer is stationary and the warehouse is implementing a VMI. The objective of this paper is to minimize the inventory and the transportation costs of the customers for a two-level supply chain. The problem is to determine the delivery quantities, delivery times and routes to the customers for the single-period deterministic inventory routing problem (SP-DIRP) system. As a result, a linear mixed-integer program is developed for the solutions of the SP-DIRP problem.

  20. Data Sufficiency Assessment and Pumping Test Design for Groundwater Prediction Using Decision Theory and Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    McPhee, J.; William, Y. W.

    2005-12-01

    This work presents a methodology for pumping test design based on the reliability requirements of a groundwater model. Reliability requirements take into consideration the application of the model results in groundwater management, expressed in this case as a multiobjective management model. The pumping test design is formulated as a mixed-integer nonlinear programming (MINLP) problem and solved using a combination of genetic algorithm (GA) and gradient-based optimization. Bayesian decision theory provides a formal framework for assessing the influence of parameter uncertainty over the reliability of the proposed pumping test. The proposed methodology is useful for selecting a robust design that will outperform all other candidate designs under most potential 'true' states of the system

  1. Cost-aware request routing in multi-geography cloud data centres using software-defined networking

    NASA Astrophysics Data System (ADS)

    Yuan, Haitao; Bi, Jing; Li, Bo Hu; Tan, Wei

    2017-03-01

    Current geographically distributed cloud data centres (CDCs) require gigantic energy and bandwidth costs to provide multiple cloud applications to users around the world. Previous studies only focus on energy cost minimisation in distributed CDCs. However, a CDC provider needs to deliver gigantic data between users and distributed CDCs through internet service providers (ISPs). Geographical diversity of bandwidth and energy costs brings a highly challenging problem of how to minimise the total cost of a CDC provider. With the recently emerging software-defined networking, we study the total cost minimisation problem for a CDC provider by exploiting geographical diversity of energy and bandwidth costs. We formulate the total cost minimisation problem as a mixed integer non-linear programming (MINLP). Then, we develop heuristic algorithms to solve the problem and to provide a cost-aware request routing for joint optimisation of the selection of ISPs and the number of servers in distributed CDCs. Besides, to tackle the dynamic workload in distributed CDCs, this article proposes a regression-based workload prediction method to obtain future incoming workload. Finally, this work evaluates the cost-aware request routing by trace-driven simulation and compares it with the existing approaches to demonstrate its effectiveness.

  2. Embedding resilience in the design of the electricity supply for industrial clients

    PubMed Central

    Moura, Márcio das Chagas; Diniz, Helder Henrique Lima; da Cunha, Beatriz Sales; Lins, Isis Didier; Simoni, Vicente Ribeiro

    2017-01-01

    This paper proposes an optimization model, using Mixed-Integer Linear Programming (MILP), to support decisions related to making investments in the design of power grids serving industrial clients that experience interruptions to their energy supply due to disruptive events. In this approach, by considering the probabilities of the occurrence of a set of such disruptive events, the model is used to minimize the overall expected cost by determining an optimal strategy involving pre- and post-event actions. The pre-event actions, which are considered during the design phase, evaluate the resilience capacity (absorption, adaptation and restoration) and are tailored to the context of industrial clients dependent on a power grid. Four cases are analysed to explore the results of different probabilities of the occurrence of disruptions. Moreover, two scenarios, in which the probability of occurrence is lowest but the consequences are most serious, are selected to illustrate the model’s applicability. The results indicate that investments in pre-event actions, if implemented, can enhance the resilience of power grids serving industrial clients because the impacts of disruptions either are experienced only for a short time period or are completely avoided. PMID:29190777

  3. Embedding resilience in the design of the electricity supply for industrial clients.

    PubMed

    Moura, Márcio das Chagas; Diniz, Helder Henrique Lima; Droguett, Enrique López; da Cunha, Beatriz Sales; Lins, Isis Didier; Simoni, Vicente Ribeiro

    2017-01-01

    This paper proposes an optimization model, using Mixed-Integer Linear Programming (MILP), to support decisions related to making investments in the design of power grids serving industrial clients that experience interruptions to their energy supply due to disruptive events. In this approach, by considering the probabilities of the occurrence of a set of such disruptive events, the model is used to minimize the overall expected cost by determining an optimal strategy involving pre- and post-event actions. The pre-event actions, which are considered during the design phase, evaluate the resilience capacity (absorption, adaptation and restoration) and are tailored to the context of industrial clients dependent on a power grid. Four cases are analysed to explore the results of different probabilities of the occurrence of disruptions. Moreover, two scenarios, in which the probability of occurrence is lowest but the consequences are most serious, are selected to illustrate the model's applicability. The results indicate that investments in pre-event actions, if implemented, can enhance the resilience of power grids serving industrial clients because the impacts of disruptions either are experienced only for a short time period or are completely avoided.

  4. Algorithms for Heterogeneous, Multiple Depot, Multiple Unmanned Vehicle Path Planning Problems

    DOE PAGES

    Sundar, Kaarthik; Rathinam, Sivakumar

    2016-12-26

    Unmanned vehicles, both aerial and ground, are being used in several monitoring applications to collect data from a set of targets. This article addresses a problem where a group of heterogeneous aerial or ground vehicles with different motion constraints located at distinct depots visit a set of targets. The vehicles also may be equipped with different sensors, and therefore, a target may not be visited by any vehicle. The objective is to find an optimal path for each vehicle starting and ending at its respective depot such that each target is visited at least once by some vehicle, the vehicle–targetmore » constraints are satisfied, and the sum of the length of the paths for all the vehicles is minimized. Two variants of this problem are formulated (one for ground vehicles and another for aerial vehicles) as mixed-integer linear programs and a branchand- cut algorithm is developed to compute an optimal solution to each of the variants. Computational results show that optimal solutions for problems involving 100 targets and 5 vehicles can be obtained within 300 seconds on average, further corroborating the effectiveness of the proposed approach.« less

  5. A green vehicle routing problem with customer satisfaction criteria

    NASA Astrophysics Data System (ADS)

    Afshar-Bakeshloo, M.; Mehrabi, A.; Safari, H.; Maleki, M.; Jolai, F.

    2016-12-01

    This paper develops an MILP model, named Satisfactory-Green Vehicle Routing Problem. It consists of routing a heterogeneous fleet of vehicles in order to serve a set of customers within predefined time windows. In this model in addition to the traditional objective of the VRP, both the pollution and customers' satisfaction have been taken into account. Meanwhile, the introduced model prepares an effective dashboard for decision-makers that determines appropriate routes, the best mixed fleet, speed and idle time of vehicles. Additionally, some new factors evaluate the greening of each decision based on three criteria. This model applies piecewise linear functions (PLFs) to linearize a nonlinear fuzzy interval for incorporating customers' satisfaction into other linear objectives. We have presented a mixed integer linear programming formulation for the S-GVRP. This model enriches managerial insights by providing trade-offs between customers' satisfaction, total costs and emission levels. Finally, we have provided a numerical study for showing the applicability of the model.

  6. Capacity Adequacy and Revenue Sufficiency in Electricity Markets With Wind Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, Todd; Botterud, Audun

    2015-05-01

    We present a computationally efficient mixed-integer program (MIP) that determines optimal generator expansion decisions, as well as periodic unit commitment and dispatch. The model is applied to analyze the impact of increasing wind power capacity on the optimal generation mix and the profitability of thermal generators. In a case study, we find that increasing wind penetration reduces energy prices while the prices for operating reserves increase. Moreover, scarcity pricing for operating reserves through reserve shortfall penalties significantly impacts the prices and profitability of thermal generators. Without scarcity pricing, no thermal units are profitable, however scarcity pricing can ensure profitability formore » peaking units at high wind penetration levels. Capacity payments can also ensure profitability, but the payments required for baseload units to break even increase with the amount of wind power. The results indicate that baseload units are most likely to experience revenue sufficiency problems when wind penetration increases and new baseload units are only developed when natural gas prices are high and wind penetration is low.« less

  7. Optimal design and dispatch of a system of diesel generators, photovoltaics and batteries for remote locations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scioletti, Michael S.; Newman, Alexandra M.; Goodman, Johanna K.

    Renewable energy technologies, specifically, solar photovoltaic cells, combined with battery storage and diesel generators, form a hybrid system capable of independently powering remote locations, i.e., those isolated from larger grids. If sized correctly, hybrid systems reduce fuel consumption compared to diesel generator-only alternatives. We present an optimization model for establishing a hybrid power design and dispatch strategy for remote locations, such as a military forward operating base, that models the acquisition of different power technologies as integer variables and their operation using nonlinear expressions. Our cost-minimizing, nonconvex, mixed-integer, nonlinear program contains a detailed battery model. Due to its complexities, wemore » present linearizations, which include exact and convex under-estimation techniques, and a heuristic, which determines an initial feasible solution to serve as a “warm start” for the solver. We determine, in a few hours at most, solutions within 5% of optimality for a candidate set of technologies; these solutions closely resemble those from the nonlinear model. Lastly, our instances contain real data spanning a yearly horizon at hour fidelity and demonstrate that a hybrid system could reduce fuel consumption by as much as 50% compared to a generator-only solution.« less

  8. Optimal design and dispatch of a system of diesel generators, photovoltaics and batteries for remote locations

    DOE PAGES

    Scioletti, Michael S.; Newman, Alexandra M.; Goodman, Johanna K.; ...

    2017-05-08

    Renewable energy technologies, specifically, solar photovoltaic cells, combined with battery storage and diesel generators, form a hybrid system capable of independently powering remote locations, i.e., those isolated from larger grids. If sized correctly, hybrid systems reduce fuel consumption compared to diesel generator-only alternatives. We present an optimization model for establishing a hybrid power design and dispatch strategy for remote locations, such as a military forward operating base, that models the acquisition of different power technologies as integer variables and their operation using nonlinear expressions. Our cost-minimizing, nonconvex, mixed-integer, nonlinear program contains a detailed battery model. Due to its complexities, wemore » present linearizations, which include exact and convex under-estimation techniques, and a heuristic, which determines an initial feasible solution to serve as a “warm start” for the solver. We determine, in a few hours at most, solutions within 5% of optimality for a candidate set of technologies; these solutions closely resemble those from the nonlinear model. Lastly, our instances contain real data spanning a yearly horizon at hour fidelity and demonstrate that a hybrid system could reduce fuel consumption by as much as 50% compared to a generator-only solution.« less

  9. Minimal excitation states for heat transport in driven quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Vannucci, Luca; Ronetti, Flavio; Rech, Jérôme; Ferraro, Dario; Jonckheere, Thibaut; Martin, Thierry; Sassetti, Maura

    2017-06-01

    We investigate minimal excitation states for heat transport into a fractional quantum Hall system driven out of equilibrium by means of time-periodic voltage pulses. A quantum point contact allows for tunneling of fractional quasiparticles between opposite edge states, thus acting as a beam splitter in the framework of the electron quantum optics. Excitations are then studied through heat and mixed noise generated by the random partitioning at the barrier. It is shown that levitons, the single-particle excitations of a filled Fermi sea recently observed in experiments, represent the cleanest states for heat transport since excess heat and mixed shot noise both vanish only when Lorentzian voltage pulses carrying integer electric charge are applied to the conductor. This happens in the integer quantum Hall regime and for Laughlin fractional states as well, with no influence of fractional physics on the conditions for clean energy pulses. In addition, we demonstrate the robustness of such excitations to the overlap of Lorentzian wave packets. Even though mixed and heat noise have nonlinear dependence on the voltage bias, and despite the noninteger power-law behavior arising from the fractional quantum Hall physics, an arbitrary superposition of levitons always generates minimal excitation states.

  10. Introducing the MCHF/OVRP/SDMP: Multicapacitated/Heterogeneous Fleet/Open Vehicle Routing Problems with Split Deliveries and Multiproducts

    PubMed Central

    Yilmaz Eroglu, Duygu; Caglar Gencosman, Burcu; Cavdur, Fatih; Ozmutlu, H. Cenk

    2014-01-01

    In this paper, we analyze a real-world OVRP problem for a production company. Considering real-world constrains, we classify our problem as multicapacitated/heterogeneous fleet/open vehicle routing problem with split deliveries and multiproduct (MCHF/OVRP/SDMP) which is a novel classification of an OVRP. We have developed a mixed integer programming (MIP) model for the problem and generated test problems in different size (10–90 customers) considering real-world parameters. Although MIP is able to find optimal solutions of small size (10 customers) problems, when the number of customers increases, the problem gets harder to solve, and thus MIP could not find optimal solutions for problems that contain more than 10 customers. Moreover, MIP fails to find any feasible solution of large-scale problems (50–90 customers) within time limits (7200 seconds). Therefore, we have developed a genetic algorithm (GA) based solution approach for large-scale problems. The experimental results show that the GA based approach reaches successful solutions with 9.66% gap in 392.8 s on average instead of 7200 s for the problems that contain 10–50 customers. For large-scale problems (50–90 customers), GA reaches feasible solutions of problems within time limits. In conclusion, for the real-world applications, GA is preferable rather than MIP to reach feasible solutions in short time periods. PMID:25045735

  11. A multiobjective optimization framework for multicontaminant industrial water network design.

    PubMed

    Boix, Marianne; Montastruc, Ludovic; Pibouleau, Luc; Azzaro-Pantel, Catherine; Domenech, Serge

    2011-07-01

    The optimal design of multicontaminant industrial water networks according to several objectives is carried out in this paper. The general formulation of the water allocation problem (WAP) is given as a set of nonlinear equations with binary variables representing the presence of interconnections in the network. For optimization purposes, three antagonist objectives are considered: F(1), the freshwater flow-rate at the network entrance, F(2), the water flow-rate at inlet of regeneration units, and F(3), the number of interconnections in the network. The multiobjective problem is solved via a lexicographic strategy, where a mixed-integer nonlinear programming (MINLP) procedure is used at each step. The approach is illustrated by a numerical example taken from the literature involving five processes, one regeneration unit and three contaminants. The set of potential network solutions is provided in the form of a Pareto front. Finally, the strategy for choosing the best network solution among those given by Pareto fronts is presented. This Multiple Criteria Decision Making (MCDM) problem is tackled by means of two approaches: a classical TOPSIS analysis is first implemented and then an innovative strategy based on the global equivalent cost (GEC) in freshwater that turns out to be more efficient for choosing a good network according to a practical point of view. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. A novel approach for inventory problem in the pharmaceutical supply chain.

    PubMed

    Candan, Gökçe; Yazgan, Harun Reşit

    2016-02-24

    In pharmaceutical enterprises, keeping up with global market conditions is possible with properly selected supply chain management policies. Generally; demand-driven classical supply chain model is used in the pharmaceutical industry. In this study, a new mathematical model is developed to solve an inventory problem in the pharmaceutical supply chain. Unlike the studies in literature, the "shelf life and product transition times" constraints are considered, simultaneously, first time in the pharmaceutical production inventory problem. The problem is formulated as a mixed-integer linear programming (MILP) model with a hybrid time representation. The objective is to maximize total net profit. Effectiveness of the proposed model is illustrated considering a classical and a vendor managed inventory (VMI) supply chain on an experimental study. To show the effectiveness of the model, an experimental study is performed; which contains 2 different supply chain policy (Classical and VMI), 24 and 30 months planning horizon, 10 and 15 different cephalosporin products. Finally the mathematical model is compared to another model in literature and the results show that proposed model is superior. This study suggest a novel approach for solving pharmaceutical inventory problem. The developed model is maximizing total net profit while determining optimal production plan under shelf life and product transition constraints in the pharmaceutical industry. And we believe that the proposed model is much more closed to real life unlike the other studies in literature.

  13. Combinatorial therapy discovery using mixed integer linear programming.

    PubMed

    Pang, Kaifang; Wan, Ying-Wooi; Choi, William T; Donehower, Lawrence A; Sun, Jingchun; Pant, Dhruv; Liu, Zhandong

    2014-05-15

    Combinatorial therapies play increasingly important roles in combating complex diseases. Owing to the huge cost associated with experimental methods in identifying optimal drug combinations, computational approaches can provide a guide to limit the search space and reduce cost. However, few computational approaches have been developed for this purpose, and thus there is a great need of new algorithms for drug combination prediction. Here we proposed to formulate the optimal combinatorial therapy problem into two complementary mathematical algorithms, Balanced Target Set Cover (BTSC) and Minimum Off-Target Set Cover (MOTSC). Given a disease gene set, BTSC seeks a balanced solution that maximizes the coverage on the disease genes and minimizes the off-target hits at the same time. MOTSC seeks a full coverage on the disease gene set while minimizing the off-target set. Through simulation, both BTSC and MOTSC demonstrated a much faster running time over exhaustive search with the same accuracy. When applied to real disease gene sets, our algorithms not only identified known drug combinations, but also predicted novel drug combinations that are worth further testing. In addition, we developed a web-based tool to allow users to iteratively search for optimal drug combinations given a user-defined gene set. Our tool is freely available for noncommercial use at http://www.drug.liuzlab.org/. zhandong.liu@bcm.edu Supplementary data are available at Bioinformatics online.

  14. Split diversity in constrained conservation prioritization using integer linear programming.

    PubMed

    Chernomor, Olga; Minh, Bui Quang; Forest, Félix; Klaere, Steffen; Ingram, Travis; Henzinger, Monika; von Haeseler, Arndt

    2015-01-01

    Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization.Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator-prey interactions between the species in a community to define viability constraints.Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure.We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda.

  15. Rarity-weighted richness: a simple and reliable alternative to integer programming and heuristic algorithms for minimum set and maximum coverage problems in conservation planning.

    PubMed

    Albuquerque, Fabio; Beier, Paul

    2015-01-01

    Here we report that prioritizing sites in order of rarity-weighted richness (RWR) is a simple, reliable way to identify sites that represent all species in the fewest number of sites (minimum set problem) or to identify sites that represent the largest number of species within a given number of sites (maximum coverage problem). We compared the number of species represented in sites prioritized by RWR to numbers of species represented in sites prioritized by the Zonation software package for 11 datasets in which the size of individual planning units (sites) ranged from <1 ha to 2,500 km2. On average, RWR solutions were more efficient than Zonation solutions. Integer programming remains the only guaranteed way find an optimal solution, and heuristic algorithms remain superior for conservation prioritizations that consider compactness and multiple near-optimal solutions in addition to species representation. But because RWR can be implemented easily and quickly in R or a spreadsheet, it is an attractive alternative to integer programming or heuristic algorithms in some conservation prioritization contexts.

  16. Footstep Planning on Uneven Terrain with Mixed-Integer Convex Optimization

    DTIC Science & Technology

    2014-08-01

    ORGANIZATION NAME(S) AND ADDRESS(ES) Massachusetts Institute of Technology,Computer Science and Artificial Intellegence Laboratory,Cambridge,MA,02139...the MIT Energy Initiative, MIT CSAIL, and the DARPA Robotics Challenge. 1Robin Deits is with the Computer Science and Artificial Intelligence Laboratory

  17. Techniques for Computing the DFT Using the Residue Fermat Number Systems and VLSI

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Chang, J. J.; Hsu, I. S.; Pei, D. Y.; Reed, I. S.

    1985-01-01

    The integer complex multiplier and adder over the direct sum of two copies of a finite field is specialized to the direct sum of the rings of integers modulo Fermat numbers. Such multiplications and additions can be used in the implementation of a discrete Fourier transform (DFT) of a sequence of complex numbers. The advantage of the present approach is that the number of multiplications needed for the DFT can be reduced substantially over the previous approach. The architectural designs using this approach are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.

  18. Tunable transmission of quantum Hall edge channels with full degeneracy lifting in split-gated graphene devices.

    PubMed

    Zimmermann, Katrin; Jordan, Anna; Gay, Frédéric; Watanabe, Kenji; Taniguchi, Takashi; Han, Zheng; Bouchiat, Vincent; Sellier, Hermann; Sacépé, Benjamin

    2017-04-13

    Charge carriers in the quantum Hall regime propagate via one-dimensional conducting channels that form along the edges of a two-dimensional electron gas. Controlling their transmission through a gate-tunable constriction, also called quantum point contact, is fundamental for many coherent transport experiments. However, in graphene, tailoring a constriction with electrostatic gates remains challenging due to the formation of p-n junctions below gate electrodes along which electron and hole edge channels co-propagate and mix, short circuiting the constriction. Here we show that this electron-hole mixing is drastically reduced in high-mobility graphene van der Waals heterostructures thanks to the full degeneracy lifting of the Landau levels, enabling quantum point contact operation with full channel pinch-off. We demonstrate gate-tunable selective transmission of integer and fractional quantum Hall edge channels through the quantum point contact. This gate control of edge channels opens the door to quantum Hall interferometry and electron quantum optics experiments in the integer and fractional quantum Hall regimes of graphene.

  19. Optimizing Multi-Product Multi-Constraint Inventory Control Systems with Stochastic Replenishments

    NASA Astrophysics Data System (ADS)

    Allah Taleizadeh, Ata; Aryanezhad, Mir-Bahador; Niaki, Seyed Taghi Akhavan

    Multi-periodic inventory control problems are mainly studied employing two assumptions. The first is the continuous review, where depending on the inventory level orders can happen at any time and the other is the periodic review, where orders can only happen at the beginning of each period. In this study, we relax these assumptions and assume that the periodic replenishments are stochastic in nature. Furthermore, we assume that the periods between two replenishments are independent and identically random variables. For the problem at hand, the decision variables are of integer-type and there are two kinds of space and service level constraints for each product. We develop a model of the problem in which a combination of back-order and lost-sales are considered for the shortages. Then, we show that the model is of an integer-nonlinear-programming type and in order to solve it, a search algorithm can be utilized. We employ a simulated annealing approach and provide a numerical example to demonstrate the applicability of the proposed methodology.

  20. Economic and environmental optimization of a multi-site utility network for an industrial complex.

    PubMed

    Kim, Sang Hun; Yoon, Sung-Geun; Chae, Song Hwa; Park, Sunwon

    2010-01-01

    Most chemical companies consume a lot of steam, water and electrical resources in the production process. Given recent record fuel costs, utility networks must be optimized to reduce the overall cost of production. Environmental concerns must also be considered when preparing modifications to satisfy the requirements for industrial utilities, since wastes discharged from the utility networks are restricted by environmental regulations. Construction of Eco-Industrial Parks (EIPs) has drawn attention as a promising approach for retrofitting existing industrial parks to improve energy efficiency. The optimization of the utility network within an industrial complex is one of the most important undertakings to minimize energy consumption and waste loads in the EIP. In this work, a systematic approach to optimize the utility network of an industrial complex is presented. An important issue in the optimization of a utility network is the desire of the companies to achieve high profits while complying with the environmental regulations. Therefore, the proposed optimization was performed with consideration of both economic and environmental factors. The proposed approach consists of unit modeling using thermodynamic principles, mass and energy balances, development of a multi-period Mixed Integer Linear Programming (MILP) model for the integration of utility systems in an industrial complex, and an economic/environmental analysis of the results. This approach is applied to the Yeosu Industrial Complex, considering seasonal utility demands. The results show that both the total utility cost and waste load are reduced by optimizing the utility network of an industrial complex. 2009 Elsevier Ltd. All rights reserved.

  1. A Mixed-Methods Exploration of an Environment for Learning Computer Programming

    ERIC Educational Resources Information Center

    Mather, Richard

    2015-01-01

    A mixed-methods approach is evaluated for exploring collaborative behaviour, acceptance and progress surrounding an interactive technology for learning computer programming. A review of literature reveals a compelling case for using mixed-methods approaches when evaluating technology-enhanced-learning environments. Here, ethnographic approaches…

  2. Obstacle avoidance handling and mixed integer predictive control for space robots

    NASA Astrophysics Data System (ADS)

    Zong, Lijun; Luo, Jianjun; Wang, Mingming; Yuan, Jianping

    2018-04-01

    This paper presents a novel obstacle avoidance constraint and a mixed integer predictive control (MIPC) method for space robots avoiding obstacles and satisfying physical limits during performing tasks. Firstly, a novel kind of obstacle avoidance constraint of space robots, which needs the assumption that the manipulator links and the obstacles can be represented by convex bodies, is proposed by limiting the relative velocity between two closest points which are on the manipulator and the obstacle, respectively. Furthermore, the logical variables are introduced into the obstacle avoidance constraint, which have realized the constraint form is automatically changed to satisfy different obstacle avoidance requirements in different distance intervals between the space robot and the obstacle. Afterwards, the obstacle avoidance constraint and other system physical limits, such as joint angle ranges, the amplitude boundaries of joint velocities and joint torques, are described as inequality constraints of a quadratic programming (QP) problem by using the model predictive control (MPC) method. To guarantee the feasibility of the obtained multi-constraint QP problem, the constraints are treated as soft constraints and assigned levels of priority based on the propositional logic theory, which can realize that the constraints with lower priorities are always firstly violated to recover the feasibility of the QP problem. Since the logical variables have been introduced, the optimization problem including obstacle avoidance and system physical limits as prioritized inequality constraints is termed as MIPC method of space robots, and its computational complexity as well as possible strategies for reducing calculation amount are analyzed. Simulations of the space robot unfolding its manipulator and tracking the end-effector's desired trajectories with the existence of obstacles and physical limits are presented to demonstrate the effectiveness of the proposed obstacle avoidance strategy and MIPC control method of space robots.

  3. Extending ALE3D, an Arbitrarily Connected hexahedral 3D Code, to Very Large Problem Size (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, A L

    2010-12-15

    As the number of compute units increases on the ASC computers, the prospect of running previously unimaginably large problems is becoming a reality. In an arbitrarily connected 3D finite element code, like ALE3D, one must provide a unique identification number for every node, element, face, and edge. This is required for a number of reasons, including defining the global connectivity array required for domain decomposition, identifying appropriate communication patterns after domain decomposition, and determining the appropriate load locations for implicit solvers, for example. In most codes, the unique identification number is defined as a 32-bit integer. Thus the maximum valuemore » available is 231, or roughly 2.1 billion. For a 3D geometry consisting of arbitrarily connected hexahedral elements, there are approximately 3 faces for every element, and 3 edges for every node. Since the nodes and faces need id numbers, using 32-bit integers puts a hard limit on the number of elements in a problem at roughly 700 million. The first solution to this problem would be to replace 32-bit signed integers with 32-bit unsigned integers. This would increase the maximum size of a problem by a factor of 2. This provides some head room, but almost certainly not one that will last long. Another solution would be to replace all 32-bit int declarations with 64-bit long long declarations. (long is either a 32-bit or a 64-bit integer, depending on the OS). The problem with this approach is that there are only a few arrays that actually need to extended size, and thus this would increase the size of the problem unnecessarily. In a future computing environment where CPUs are abundant but memory relatively scarce, this is probably the wrong approach. Based on these considerations, we have chosen to replace only the global identifiers with the appropriate 64-bit integer. The problem with this approach is finding all the places where data that is specified as a 32-bit integer needs to be replaced with the 64-bit integer. that need to be replaced. In the rest of this paper we describe the techniques used to facilitate this transformation, issues raised, and issues still to be addressed. This poster will describe the reasons, methods, issues associated with extending the ALE3D code to run problems larger than 700 million elements.« less

  4. A Simulation Based Approach to Optimize Berth Throughput Under Uncertainty at Marine Container Terminals

    NASA Technical Reports Server (NTRS)

    Golias, Mihalis M.

    2011-01-01

    Berth scheduling is a critical function at marine container terminals and determining the best berth schedule depends on several factors including the type and function of the port, size of the port, location, nearby competition, and type of contractual agreement between the terminal and the carriers. In this paper we formulate the berth scheduling problem as a bi-objective mixed-integer problem with the objective to maximize customer satisfaction and reliability of the berth schedule under the assumption that vessel handling times are stochastic parameters following a discrete and known probability distribution. A combination of an exact algorithm, a Genetic Algorithms based heuristic and a simulation post-Pareto analysis is proposed as the solution approach to the resulting problem. Based on a number of experiments it is concluded that the proposed berth scheduling policy outperforms the berth scheduling policy where reliability is not considered.

  5. The impact of short-term stochastic variability in solar irradiance on optimal microgrid design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schittekatte, Tim; Stadler, Michael; Cardoso, Gonçalo

    2016-07-01

    This paper proposes a new methodology to capture the impact of fast moving clouds on utility power demand charges observed in microgrids with photovoltaic (PV) arrays, generators, and electrochemical energy storage. It consists of a statistical approach to introduce sub-hourly events in the hourly economic accounting process. The methodology is implemented in the Distributed Energy Resources Customer Adoption Model (DER-CAM), a state of the art mixed integer linear model used to optimally size DER in decentralized energy systems. Results suggest that previous iterations of DER-CAM could undersize battery capacities. The improved model depicts more accurately the economic value of PVmore » as well as the synergistic benefits of pairing PV with storage.« less

  6. Dynamic Flow Management Problems in Air Transportation

    NASA Technical Reports Server (NTRS)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer programming formulation, the solution of which generates feasible and near-optimal routes for individual flights. The algorithm, termed the Lagrangian Generation Algorithm, is used to solve practical problems in the southwestern portion of United States in which the solutions are within 1% of the corresponding lower bounds.

  7. Scheduling work zones in multi-modal networks phase 1: scheduling work zones in transportation service networks.

    DOT National Transportation Integrated Search

    2016-06-01

    The purpose of this project is to study the optimal scheduling of work zones so that they have minimum negative impact (e.g., travel delay, gas consumption, accidents, etc.) on transport service vehicle flows. In this project, a mixed integer linear ...

  8. Energy-efficient approach to minimizing the energy consumption in an extended job-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Tang, Dunbing; Dai, Min

    2015-09-01

    The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production planning and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed smalland large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.

  9. A Dynamic Scheduling Method of Earth-Observing Satellites by Employing Rolling Horizon Strategy

    PubMed Central

    Dishan, Qiu; Chuan, He; Jin, Liu; Manhao, Ma

    2013-01-01

    Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments. PMID:23690742

  10. Hybrid Metaheuristics for Solving a Fuzzy Single Batch-Processing Machine Scheduling Problem

    PubMed Central

    Molla-Alizadeh-Zavardehi, S.; Tavakkoli-Moghaddam, R.; Lotfi, F. Hosseinzadeh

    2014-01-01

    This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM) scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA), variable neighborhood search (VNS), and simulated annealing (SA) frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms. PMID:24883359

  11. A dynamic scheduling method of Earth-observing satellites by employing rolling horizon strategy.

    PubMed

    Dishan, Qiu; Chuan, He; Jin, Liu; Manhao, Ma

    2013-01-01

    Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments.

  12. Minimizing makespan in a two-stage flow shop with parallel batch-processing machines and re-entrant jobs

    NASA Astrophysics Data System (ADS)

    Huang, J. D.; Liu, J. J.; Chen, Q. X.; Mao, N.

    2017-06-01

    Against a background of heat-treatment operations in mould manufacturing, a two-stage flow-shop scheduling problem is described for minimizing makespan with parallel batch-processing machines and re-entrant jobs. The weights and release dates of jobs are non-identical, but job processing times are equal. A mixed-integer linear programming model is developed and tested with small-scale scenarios. Given that the problem is NP hard, three heuristic construction methods with polynomial complexity are proposed. The worst case of the new constructive heuristic is analysed in detail. A method for computing lower bounds is proposed to test heuristic performance. Heuristic efficiency is tested with sets of scenarios. Compared with the two improved heuristics, the performance of the new constructive heuristic is superior.

  13. An optimization model for metabolic pathways.

    PubMed

    Planes, F J; Beasley, J E

    2009-10-15

    Different mathematical methods have emerged in the post-genomic era to determine metabolic pathways. These methods can be divided into stoichiometric methods and path finding methods. In this paper we detail a novel optimization model, based upon integer linear programming, to determine metabolic pathways. Our model links reaction stoichiometry with path finding in a single approach. We test the ability of our model to determine 40 annotated Escherichia coli metabolic pathways. We show that our model is able to determine 36 of these 40 pathways in a computationally effective manner.

  14. Optimal reconfiguration strategy for a degradable multimodule computing system

    NASA Technical Reports Server (NTRS)

    Lee, Yann-Hang; Shin, Kang G.

    1987-01-01

    The present quantitative approach to the problem of reconfiguring a degradable multimode system assigns some modules to computation and arranges others for reliability. By using expected total reward as the optimal criterion, there emerges an active reconfiguration strategy based not only on the occurrence of failure but the progression of the given mission. This reconfiguration strategy requires specification of the times at which the system should undergo reconfiguration, and the configurations to which the system should change. The optimal reconfiguration problem is converted to integer nonlinear knapsack and fractional programming problems.

  15. An interval-based possibilistic programming method for waste management with cost minimization and environmental-impact abatement under uncertainty.

    PubMed

    Li, Y P; Huang, G H

    2010-09-15

    Considerable public concerns have been raised in the past decades since a large amount of pollutant emissions from municipal solid waste (MSW) disposal of processes pose risks on surrounding environment and human health. Moreover, in MSW management, various uncertainties exist in the related costs, impact factors and objectives, which can affect the optimization processes and the decision schemes generated. In this study, an interval-based possibilistic programming (IBPP) method is developed for planning the MSW management with minimized system cost and environmental impact under uncertainty. The developed method can deal with uncertainties expressed as interval values and fuzzy sets in the left- and right-hand sides of constraints and objective function. An interactive algorithm is provided for solving the IBPP problem, which does not lead to more complicated intermediate submodels and has a relatively low computational requirement. The developed model is applied to a case study of planning a MSW management system, where mixed integer linear programming (MILP) technique is introduced into the IBPP framework to facilitate dynamic analysis for decisions of timing, sizing and siting in terms of capacity expansion for waste-management facilities. Three cases based on different waste-management policies are examined. The results obtained indicate that inclusion of environmental impacts in the optimization model can change the traditional waste-allocation pattern merely based on the economic-oriented planning approach. The results obtained can help identify desired alternatives for managing MSW, which has advantages in providing compromised schemes under an integrated consideration of economic efficiency and environmental impact under uncertainty. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Finding optimal vaccination strategies under parameter uncertainty using stochastic programming.

    PubMed

    Tanner, Matthew W; Sattenspiel, Lisa; Ntaimo, Lewis

    2008-10-01

    We present a stochastic programming framework for finding the optimal vaccination policy for controlling infectious disease epidemics under parameter uncertainty. Stochastic programming is a popular framework for including the effects of parameter uncertainty in a mathematical optimization model. The problem is initially formulated to find the minimum cost vaccination policy under a chance-constraint. The chance-constraint requires that the probability that R(*)

  17. An integer programming formulation of the parsimonious loss of heterozygosity problem.

    PubMed

    Catanzaro, Daniele; Labbé, Martine; Halldórsson, Bjarni V

    2013-01-01

    A loss of heterozygosity (LOH) event occurs when, by the laws of Mendelian inheritance, an individual should be heterozygote at a given site but, due to a deletion polymorphism, is not. Deletions play an important role in human disease and their detection could provide fundamental insights for the development of new diagnostics and treatments. In this paper, we investigate the parsimonious loss of heterozygosity problem (PLOHP), i.e., the problem of partitioning suspected polymorphisms from a set of individuals into a minimum number of deletion areas. Specifically, we generalize Halldórsson et al.'s work by providing a more general formulation of the PLOHP and by showing how one can incorporate different recombination rates and prior knowledge about the locations of deletions. Moreover, we show that the PLOHP can be formulated as a specific version of the clique partition problem in a particular class of graphs called undirected catch-point interval graphs and we prove its general $({\\cal NP})$-hardness. Finally, we provide a state-of-the-art integer programming (IP) formulation and strengthening valid inequalities to exactly solve real instances of the PLOHP containing up to 9,000 individuals and 3,000 SNPs. Our results give perspectives on the mathematics of the PLOHP and suggest new directions on the development of future efficient exact solution approaches.

  18. Integer programming of cement distribution by train

    NASA Astrophysics Data System (ADS)

    Indarsih

    2018-01-01

    Cement industry in Central Java distributes cement by train to meet daily demand in Yogyakarta and Central Java area. There are five destination stations. For each destination station, there is a warehouse to load cements. Decision maker of cement industry have a plan to redesign the infrastructure and transportation system. The aim is to determine how many locomotives, train wagons, and containers and how to arrange train schedules with subject to the delivery time. For this purposes, we consider an integer programming to minimize the total of operational cost. Further, we will discuss a case study and the solution the problem can be calculated by LINGO software.

  19. An integer programming model for distal humerus fracture fixation planning.

    PubMed

    Maratt, Joseph D; Peaks, Ya-Sin A; Doro, Lisa Case; Karunakar, Madhav A; Hughes, Richard E

    2008-05-01

    To demonstrate the feasibility of an integer programming model to assist in pre-operative planning for open reduction and internal fixation of a distal humerus fracture. We describe an integer programming model based on the objective of maximizing the reward for screws placed while satisfying the requirements for sound internal fixation. The model maximizes the number of bicortical screws placed while avoiding screw collision and favoring screws of greater length that cross multiple fracture planes. The model was tested on three types of total articular fractures of the distal humerus. Solutions were generated using 5, 9, 21 and 33 possible screw orientations per hole. Solutions generated using 33 possible screw orientations per hole and five screw lengths resulted in the most clinically relevant fixation plan and required the calculation of 1,191,975 pairs of screws that resulted in collision. At this level of complexity, the pre-processor took 104 seconds to generate the constraints for the solver, and a solution was generated in under one minute in all three cases. Despite the large size of this problem, it can be solved in a reasonable amount of time, making use of the model practical in pre-surgical planning.

  20. Optimization of Emissions Sensor Networks Incorporating Tradeoffs Between Different Sensor Technologies

    NASA Astrophysics Data System (ADS)

    Nicholson, B.; Klise, K. A.; Laird, C. D.; Ravikumar, A. P.; Brandt, A. R.

    2017-12-01

    In order to comply with current and future methane emissions regulations, natural gas producers must develop emissions monitoring strategies for their facilities. In addition, regulators must develop air monitoring strategies over wide areas incorporating multiple facilities. However, in both of these cases, only a limited number of sensors can be deployed. With a wide variety of sensors to choose from in terms of cost, precision, accuracy, spatial coverage, location, orientation, and sampling frequency, it is difficult to design robust monitoring strategies for different scenarios while systematically considering the tradeoffs between different sensor technologies. In addition, the geography, weather, and other site specific conditions can have a large impact on the performance of a sensor network. In this work, we demonstrate methods for calculating optimal sensor networks. Our approach can incorporate tradeoffs between vastly different sensor technologies, optimize over typical wind conditions for a particular area, and consider different objectives such as time to detection or geographic coverage. We do this by pre-computing site specific scenarios and using them as input to a mixed-integer, stochastic programming problem that solves for a sensor network that maximizes the effectiveness of the detection program. Our methods and approach have been incorporated within an open source Python package called Chama with the goal of providing facility operators and regulators with tools for designing more effective and efficient monitoring systems. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525.

  1. Harmonic mixing characteristics of metal-barrier-metal junctions as predicted by electron tunneling

    NASA Technical Reports Server (NTRS)

    Faris, S. M.; Gustafson, T. K.

    1974-01-01

    The bias dependence of the nonlinear mixing characteristics of metal-barrier-metal junction currents is deduced assuming an electron tunneling model. The difference-frequency beat voltage at frequency omega sub 1 - (n x omega sub 2), when n is an integer and omega sub 1 and omega sub 2 are the assumed frequencies of two induced currents, is found to have n zeros as the diode bias is varied. Recent experimental observations have demonstrated such characteristics.

  2. The Value of Developing a Mixed-Methods Program of Research.

    PubMed

    Simonovich, Shannon

    2017-07-01

    This article contributes to the discussion of the value of utilizing mixed methodological approaches to conduct nursing research. To this end, the author of this article proposes creating a mixed-methods program of research over time, where both quantitative and qualitative data are collected and analyzed simultaneously, rather than focusing efforts on designing singular mixed-methods studies. A mixed-methods program of research would allow for the best of both worlds: precision through focus on one method at a time, and the benefits of creating a robust understanding of a phenomenon over the trajectory of one's career through examination from various methodological approaches.

  3. Multi-Objective Programming for Lot-Sizing with Quantity Discount

    NASA Astrophysics Data System (ADS)

    Kang, He-Yau; Lee, Amy H. I.; Lai, Chun-Mei; Kang, Mei-Sung

    2011-11-01

    Multi-objective programming (MOP) is one of the popular methods for decision making in a complex environment. In a MOP, decision makers try to optimize two or more objectives simultaneously under various constraints. A complete optimal solution seldom exists, and a Pareto-optimal solution is usually used. Some methods, such as the weighting method which assigns priorities to the objectives and sets aspiration levels for the objectives, are used to derive a compromise solution. The ɛ-constraint method is a modified weight method. One of the objective functions is optimized while the other objective functions are treated as constraints and are incorporated in the constraint part of the model. This research considers a stochastic lot-sizing problem with multi-suppliers and quantity discounts. The model is transformed into a mixed integer programming (MIP) model next based on the ɛ-constraint method. An illustrative example is used to illustrate the practicality of the proposed model. The results demonstrate that the model is an effective and accurate tool for determining the replenishment of a manufacturer from multiple suppliers for multi-periods.

  4. Nonlinear Mixing of Optical Vortices with Fractional Topological Charges in Raman Sideband Generation.

    NASA Astrophysics Data System (ADS)

    Strohaber, James; Boran, Yakup; Sayrac, Muhammed; Johnson, Lewis; Zhu, Feng; Kolomenskii, Alexandre; Schuessler, Hans

    We studied the nonlinear parametric interaction of femtosecond fractionally-charged optical vortices in a Raman-active medium. Propagation of such beams is described using the Kirchhoff-Fresnel integrals by embedding a non-integer 2pi phase step in a Gaussian beam profile. When using fractionally-charged pump or Stokes beams, we observed the production of new topological charge and phase discontinuities in the Raman field. These newly generated fractionally-charged Raman vortex beams were found to follow the same orbital angular momentum algebra derived by for integer vortex beams. This work was funded by the Robert A. Welch Foundation, Grant No. A1546 and the Qatar Foundation under Grants No. NPRP 6-465-1-091.

  5. Optimal satisfaction degree in energy harvesting cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Li, Zan; Liu, Bo-Yang; Si, Jiang-Bo; Zhou, Fu-Hui

    2015-12-01

    A cognitive radio (CR) network with energy harvesting (EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model (HMM) is used to characterize the imperfect spectrum sensing process. In order to maximize the whole satisfaction degree (WSD) of the cognitive radio network, a tradeoff between the average throughput of the secondary user (SU) and the interference to the primary user (PU) is analyzed. We formulate the satisfaction degree optimization problem as a mixed integer nonlinear programming (MINLP) problem. The satisfaction degree optimization problem is solved by using differential evolution (DE) algorithm. The proposed optimization problem allows the network to adaptively achieve the optimal solution based on its required quality of service (Qos). Numerical results are given to verify our analysis. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the Doctorial Programs Foundation of the Ministry of Education of China (Grant No. 20110203110011), and the 111 Project (Grant No. B08038).

  6. On orbital allotments for geostationary satellites

    NASA Technical Reports Server (NTRS)

    Gonsalvez, David J. A.; Reilly, Charles H.; Mount-Campbell, Clark A.

    1986-01-01

    The following satellite synthesis problem is addressed: communication satellites are to be allotted positions on the geostationary arc so that interference does not exceed a given acceptable level by enforcing conservative pairwise satellite separation. A desired location is specified for each satellite, and the objective is to minimize the sum of the deviations between the satellites' prescribed and desired locations. Two mixed integer programming models for the satellite synthesis problem are presented. Four solution strategies, branch-and-bound, Benders' decomposition, linear programming with restricted basis entry, and a switching heuristic, are used to find solutions to example synthesis problems. Computational results indicate the switching algorithm yields solutions of good quality in reasonable execution times when compared to the other solution methods. It is demonstrated that the switching algorithm can be applied to synthesis problems with the objective of minimizing the largest deviation between a prescribed location and the corresponding desired location. Furthermore, it is shown that the switching heuristic can use no conservative, location-dependent satellite separations in order to satisfy interference criteria.

  7. Short-term benefits from central unit commitment and dispatch: Application to the Southern African Power Pool

    NASA Astrophysics Data System (ADS)

    Bowen, Brian Hugh

    1998-12-01

    Electricity utilities in the Southern African region are conscious that gains could be made from more economically efficient trading but have had no tools with which to analyze the effects of a change in policy. This research is the first to provide transparent quantitative techniques to quantify the impacts of new trading arrangements in this region. The study poses a model of the recently formed Southern African Power Pool, built with the collaboration of the region's national utilities to represent each country's demand and generation/transmission system. The multi-region model includes commitment and dispatch from diverse hydrothermal sources over a vast area. Economic gains are determined by comparing the total costs under free-trade conditions with those from the existing fixed-trade bilateral arrangements. The objective function minimizes production costs needed to meet total demand, subject to each utility's constraints for thermal and hydro generation, transmission, load balance and losses. Linearized thermal cost functions are used along with linearized input output hydropower plant curves and hydrothermal on/off status variables to formulate a mixed-integer programming problem. Results from the modeling show that moving to optimal trading patterns could save between 70 million and 130 million per year. With free-trade policies the quantity of power flow between utilities is doubled and maximum usage is made of the hydropower stations thus reducing costs and fuel use. In electricity exporting countries such as Zambia and Mozambique gains from increased trade are achieved which equal 16% and 18% respectively of the value of their total manufactured exports. A sensitivity analysis is conducted on the possible effects of derating generation, derating transmission and reducing water inflows but gains remain large. Maximum economic gains from optimal trading patterns can be achieved by each country allowing centralized control through the newly founded SAPP coordination center. Using standard mixed integer programming solvers makes the cost of such modeling activity easily affordable to each utility in the Southern African pool. This research provides the utilities with the modeling tools to quantify the gains from increased trade and thereby furthers a move towards greater efficiency, faster economic growth and reduced use of fossil fuels.

  8. A mixed integer linear programming model for operational planning of a biodiesel supply chain network from used cooking oil

    NASA Astrophysics Data System (ADS)

    Jonrinaldi, Hadiguna, Rika Ampuh; Salastino, Rades

    2017-11-01

    Environmental consciousness has paid many attention nowadays. It is not only about how to recycle, remanufacture or reuse used end products but it is also how to optimize the operations of the reverse system. A previous research has proposed a design of reverse supply chain of biodiesel network from used cooking oil. However, the research focused on the design of the supply chain strategy not the operations of the supply chain. It only decided how to design the structure of the supply chain in the next few years, and the process of each stage will be conducted in the supply chain system in general. The supply chain system has not considered operational policies to be conducted by the companies in the supply chain. Companies need a policy for each stage of the supply chain operations to be conducted so as to produce the optimal supply chain system, including how to use all the resources that have been designed in order to achieve the objectives of the supply chain system. Therefore, this paper proposes a model to optimize the operational planning of a biodiesel supply chain network from used cooking oil. A mixed integer linear programming is developed to model the operational planning of biodiesel supply chain in order to minimize the total operational cost of the supply chain. Based on the implementation of the model developed, the total operational cost of the biodiesel supply chain incurred by the system is less than the total operational cost of supply chain based on the previous research during seven days of operational planning about amount of 2,743,470.00 or 0.186%. Production costs contributed to 74.6 % of total operational cost and the cost of purchasing the used cooking oil contributed to 24.1 % of total operational cost. So, the system should pay more attention to these two aspects as changes in the value of these aspects will cause significant effects to the change in the total operational cost of the supply chain.

  9. A deterministic aggregate production planning model considering quality of products

    NASA Astrophysics Data System (ADS)

    Madadi, Najmeh; Yew Wong, Kuan

    2013-06-01

    Aggregate Production Planning (APP) is a medium-term planning which is concerned with the lowest-cost method of production planning to meet customers' requirements and to satisfy fluctuating demand over a planning time horizon. APP problem has been studied widely since it was introduced and formulated in 1950s. However, in several conducted studies in the APP area, most of the researchers have concentrated on some common objectives such as minimization of cost, fluctuation in the number of workers, and inventory level. Specifically, maintaining quality at the desirable level as an objective while minimizing cost has not been considered in previous studies. In this study, an attempt has been made to develop a multi-objective mixed integer linear programming model that serves those companies aiming to incur the minimum level of operational cost while maintaining quality at an acceptable level. In order to obtain the solution to the multi-objective model, the Fuzzy Goal Programming approach and max-min operator of Bellman-Zadeh were applied to the model. At the final step, IBM ILOG CPLEX Optimization Studio software was used to obtain the experimental results based on the data collected from an automotive parts manufacturing company. The results show that incorporating quality in the model imposes some costs, however a trade-off should be done between the cost resulting from producing products with higher quality and the cost that the firm may incur due to customer dissatisfaction and sale losses.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Juliane

    MISO is an optimization framework for solving computationally expensive mixed-integer, black-box, global optimization problems. MISO uses surrogate models to approximate the computationally expensive objective function. Hence, derivative information, which is generally unavailable for black-box simulation objective functions, is not needed. MISO allows the user to choose the initial experimental design strategy, the type of surrogate model, and the sampling strategy.

  11. MDTri: robust and efficient global mixed integer search of spaces of multiple ternary alloys: A DIRECT-inspired optimization algorithm for experimentally accessible computational material design

    DOE PAGES

    Graf, Peter A.; Billups, Stephen

    2017-07-24

    Computational materials design has suffered from a lack of algorithms formulated in terms of experimentally accessible variables. Here we formulate the problem of (ternary) alloy optimization at the level of choice of atoms and their composition that is normal for synthesists. Mathematically, this is a mixed integer problem where a candidate solution consists of a choice of three elements, and how much of each of them to use. This space has the natural structure of a set of equilateral triangles. We solve this problem by introducing a novel version of the DIRECT algorithm that (1) operates on equilateral triangles insteadmore » of rectangles and (2) works across multiple triangles. We demonstrate on a test case that the algorithm is both robust and efficient. Lastly, we offer an explanation of the efficacy of DIRECT -- specifically, its balance of global and local search -- by showing that 'potentially optimal rectangles' of the original algorithm are akin to the Pareto front of the 'multi-component optimization' of global and local search.« less

  12. MDTri: robust and efficient global mixed integer search of spaces of multiple ternary alloys: A DIRECT-inspired optimization algorithm for experimentally accessible computational material design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Peter A.; Billups, Stephen

    Computational materials design has suffered from a lack of algorithms formulated in terms of experimentally accessible variables. Here we formulate the problem of (ternary) alloy optimization at the level of choice of atoms and their composition that is normal for synthesists. Mathematically, this is a mixed integer problem where a candidate solution consists of a choice of three elements, and how much of each of them to use. This space has the natural structure of a set of equilateral triangles. We solve this problem by introducing a novel version of the DIRECT algorithm that (1) operates on equilateral triangles insteadmore » of rectangles and (2) works across multiple triangles. We demonstrate on a test case that the algorithm is both robust and efficient. Lastly, we offer an explanation of the efficacy of DIRECT -- specifically, its balance of global and local search -- by showing that 'potentially optimal rectangles' of the original algorithm are akin to the Pareto front of the 'multi-component optimization' of global and local search.« less

  13. Optimization of Energy Efficiency and Conservation in Green Building Design Using Duelist, Killer-Whale and Rain-Water Algorithms

    NASA Astrophysics Data System (ADS)

    Biyanto, T. R.; Matradji; Syamsi, M. N.; Fibrianto, H. Y.; Afdanny, N.; Rahman, A. H.; Gunawan, K. S.; Pratama, J. A. D.; Malwindasari, A.; Abdillah, A. I.; Bethiana, T. N.; Putra, Y. A.

    2017-11-01

    The development of green building has been growing in both design and quality. The development of green building was limited by the issue of expensive investment. Actually, green building can reduce the energy usage inside the building especially in utilization of cooling system. External load plays major role in reducing the usage of cooling system. External load is affected by type of wall sheathing, glass and roof. The proper selection of wall, type of glass and roof material are very important to reduce external load. Hence, the optimization of energy efficiency and conservation in green building design is required. Since this optimization consist of integer and non-linear equations, this problem falls into Mixed-Integer-Non-Linear-Programming (MINLP) that required global optimization technique such as stochastic optimization algorithms. In this paper the optimized variables i.e. type of glass and roof were chosen using Duelist, Killer-Whale and Rain-Water Algorithms to obtain the optimum energy and considering the minimal investment. The optimization results exhibited the single glass Planibel-G with the 3.2 mm thickness and glass wool insulation provided maximum ROI of 36.8486%, EUI reduction of 54 kWh/m2·year, CO2 emission reduction of 486.8971 tons/year and reduce investment of 4,078,905,465 IDR.

  14. Environmental hedging: A theory and method for reconciling reservoir operations for downstream ecology and water supply

    NASA Astrophysics Data System (ADS)

    Adams, L. E.; Lund, J. R.; Moyle, P. B.; Quiñones, R. M.; Herman, J. D.; O'Rear, T. A.

    2017-09-01

    Building reservoir release schedules to manage engineered river systems can involve costly trade-offs between storing and releasing water. As a result, the design of release schedules requires metrics that quantify the benefit and damages created by releases to the downstream ecosystem. Such metrics should support making operational decisions under uncertain hydrologic conditions, including drought and flood seasons. This study addresses this need and develops a reservoir operation rule structure and method to maximize downstream environmental benefit while meeting human water demands. The result is a general approach for hedging downstream environmental objectives. A multistage stochastic mixed-integer nonlinear program with Markov Chains, identifies optimal "environmental hedging," releases to maximize environmental benefits subject to probabilistic seasonal hydrologic conditions, current, past, and future environmental demand, human water supply needs, infrastructure limitations, population dynamics, drought storage protection, and the river's carrying capacity. Environmental hedging "hedges bets" for drought by reducing releases for fish, sometimes intentionally killing some fish early to reduce the likelihood of large fish kills and storage crises later. This approach is applied to Folsom reservoir in California to support survival of fall-run Chinook salmon in the lower American River for a range of carryover and initial storage cases. Benefit is measured in terms of fish survival; maintaining self-sustaining native fish populations is a significant indicator of ecosystem function. Environmental hedging meets human demand and outperforms other operating rules, including the current Folsom operating strategy, based on metrics of fish extirpation and water supply reliability.

  15. A neural network approach to job-shop scheduling.

    PubMed

    Zhou, D N; Cherkassky, V; Baldwin, T R; Olson, D E

    1991-01-01

    A novel analog computational network is presented for solving NP-complete constraint satisfaction problems, i.e. job-shop scheduling. In contrast to most neural approaches to combinatorial optimization based on quadratic energy cost function, the authors propose to use linear cost functions. As a result, the network complexity (number of neurons and the number of resistive interconnections) grows only linearly with problem size, and large-scale implementations become possible. The proposed approach is related to the linear programming network described by D.W. Tank and J.J. Hopfield (1985), which also uses a linear cost function for a simple optimization problem. It is shown how to map a difficult constraint-satisfaction problem onto a simple neural net in which the number of neural processors equals the number of subjobs (operations) and the number of interconnections grows linearly with the total number of operations. Simulations show that the authors' approach produces better solutions than existing neural approaches to job-shop scheduling, i.e. the traveling salesman problem-type Hopfield approach and integer linear programming approach of J.P.S. Foo and Y. Takefuji (1988), in terms of the quality of the solution and the network complexity.

  16. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy.

    PubMed

    Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen

    2018-01-05

    With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP approach is tested and compared with MultiPlan on three clinical cases of varying complexities. In general, the plans generated by the SVDLP achieve steeper dose gradient, better conformity and less damage to normal tissues. In conclusion, the SVDLP approach effectively improves the quality of treatment plan due to the use of the complete beam search space. This challenging optimization problem with the complete beam search space is effectively handled by the proposed SVD acceleration.

  17. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy

    NASA Astrophysics Data System (ADS)

    Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen

    2018-01-01

    With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP approach is tested and compared with MultiPlan on three clinical cases of varying complexities. In general, the plans generated by the SVDLP achieve steeper dose gradient, better conformity and less damage to normal tissues. In conclusion, the SVDLP approach effectively improves the quality of treatment plan due to the use of the complete beam search space. This challenging optimization problem with the complete beam search space is effectively handled by the proposed SVD acceleration.

  18. Non-integer expansion embedding techniques for reversible image watermarking

    NASA Astrophysics Data System (ADS)

    Xiang, Shijun; Wang, Yi

    2015-12-01

    This work aims at reducing the embedding distortion of prediction-error expansion (PE)-based reversible watermarking. In the classical PE embedding method proposed by Thodi and Rodriguez, the predicted value is rounded to integer number for integer prediction-error expansion (IPE) embedding. The rounding operation makes a constraint on a predictor's performance. In this paper, we propose a non-integer PE (NIPE) embedding approach, which can proceed non-integer prediction errors for embedding data into an audio or image file by only expanding integer element of a prediction error while keeping its fractional element unchanged. The advantage of the NIPE embedding technique is that the NIPE technique can really bring a predictor into full play by estimating a sample/pixel in a noncausal way in a single pass since there is no rounding operation. A new noncausal image prediction method to estimate a pixel with four immediate pixels in a single pass is included in the proposed scheme. The proposed noncausal image predictor can provide better performance than Sachnev et al.'s noncausal double-set prediction method (where data prediction in two passes brings a distortion problem due to the fact that half of the pixels were predicted with the watermarked pixels). In comparison with existing several state-of-the-art works, experimental results have shown that the NIPE technique with the new noncausal prediction strategy can reduce the embedding distortion for the same embedding payload.

  19. Edit distance for marked point processes revisited: An implementation by binary integer programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirata, Yoshito; Aihara, Kazuyuki

    2015-12-15

    We implement the edit distance for marked point processes [Suzuki et al., Int. J. Bifurcation Chaos 20, 3699–3708 (2010)] as a binary integer program. Compared with the previous implementation using minimum cost perfect matching, the proposed implementation has two advantages: first, by using the proposed implementation, we can apply a wide variety of software and hardware, even spin glasses and coherent ising machines, to calculate the edit distance for marked point processes; second, the proposed implementation runs faster than the previous implementation when the difference between the numbers of events in two time windows for a marked point process ismore » large.« less

  20. SSP: an interval integer linear programming for de novo transcriptome assembly and isoform discovery of RNA-seq reads.

    PubMed

    Safikhani, Zhaleh; Sadeghi, Mehdi; Pezeshk, Hamid; Eslahchi, Changiz

    2013-01-01

    Recent advances in the sequencing technologies have provided a handful of RNA-seq datasets for transcriptome analysis. However, reconstruction of full-length isoforms and estimation of the expression level of transcripts with a low cost are challenging tasks. We propose a novel de novo method named SSP that incorporates interval integer linear programming to resolve alternatively spliced isoforms and reconstruct the whole transcriptome from short reads. Experimental results show that SSP is fast and precise in determining different alternatively spliced isoforms along with the estimation of reconstructed transcript abundances. The SSP software package is available at http://www.bioinf.cs.ipm.ir/software/ssp. © 2013.

  1. ProMC: Input-output data format for HEP applications using varint encoding

    NASA Astrophysics Data System (ADS)

    Chekanov, S. V.; May, E.; Strand, K.; Van Gemmeren, P.

    2014-10-01

    A new data format for Monte Carlo (MC) events, or any structural data, including experimental data, is discussed. The format is designed to store data in a compact binary form using variable-size integer encoding as implemented in the Google's Protocol Buffers package. This approach is implemented in the PROMC library which produces smaller file sizes for MC records compared to the existing input-output libraries used in high-energy physics (HEP). Other important features of the proposed format are a separation of abstract data layouts from concrete programming implementations, self-description and random access. Data stored in PROMC files can be written, read and manipulated in a number of programming languages, such C++, JAVA, FORTRAN and PYTHON.

  2. Exact algorithms for haplotype assembly from whole-genome sequence data.

    PubMed

    Chen, Zhi-Zhong; Deng, Fei; Wang, Lusheng

    2013-08-15

    Haplotypes play a crucial role in genetic analysis and have many applications such as gene disease diagnoses, association studies, ancestry inference and so forth. The development of DNA sequencing technologies makes it possible to obtain haplotypes from a set of aligned reads originated from both copies of a chromosome of a single individual. This approach is often known as haplotype assembly. Exact algorithms that can give optimal solutions to the haplotype assembly problem are highly demanded. Unfortunately, previous algorithms for this problem either fail to output optimal solutions or take too long time even executed on a PC cluster. We develop an approach to finding optimal solutions for the haplotype assembly problem under the minimum-error-correction (MEC) model. Most of the previous approaches assume that the columns in the input matrix correspond to (putative) heterozygous sites. This all-heterozygous assumption is correct for most columns, but it may be incorrect for a small number of columns. In this article, we consider the MEC model with or without the all-heterozygous assumption. In our approach, we first use new methods to decompose the input read matrix into small independent blocks and then model the problem for each block as an integer linear programming problem, which is then solved by an integer linear programming solver. We have tested our program on a single PC [a Linux (x64) desktop PC with i7-3960X CPU], using the filtered HuRef and the NA 12878 datasets (after applying some variant calling methods). With the all-heterozygous assumption, our approach can optimally solve the whole HuRef data set within a total time of 31 h (26 h for the most difficult block of the 15th chromosome and only 5 h for the other blocks). To our knowledge, this is the first time that MEC optimal solutions are completely obtained for the filtered HuRef dataset. Moreover, in the general case (without the all-heterozygous assumption), for the HuRef dataset our approach can optimally solve all the chromosomes except the most difficult block in chromosome 15 within a total time of 12 days. For both of the HuRef and NA12878 datasets, the optimal costs in the general case are sometimes much smaller than those in the all-heterozygous case. This implies that some columns in the input matrix (after applying certain variant calling methods) still correspond to false-heterozygous sites. Our program, the optimal solutions found for the HuRef dataset available at http://rnc.r.dendai.ac.jp/hapAssembly.html.

  3. Energy-efficient container handling using hybrid model predictive control

    NASA Astrophysics Data System (ADS)

    Xin, Jianbin; Negenborn, Rudy R.; Lodewijks, Gabriel

    2015-11-01

    The performance of container terminals needs to be improved to adapt the growth of containers while maintaining sustainability. This paper provides a methodology for determining the trajectory of three key interacting machines for carrying out the so-called bay handling task, involving transporting containers between a vessel and the stacking area in an automated container terminal. The behaviours of the interacting machines are modelled as a collection of interconnected hybrid systems. Hybrid model predictive control (MPC) is proposed to achieve optimal performance, balancing the handling capacity and energy consumption. The underlying control problem is hereby formulated as a mixed-integer linear programming problem. Simulation studies illustrate that a higher penalty on energy consumption indeed leads to improved sustainability using less energy. Moreover, simulations illustrate how the proposed energy-efficient hybrid MPC controller performs under different types of uncertainties.

  4. Local search heuristic for the discrete leader-follower problem with multiple follower objectives

    NASA Astrophysics Data System (ADS)

    Kochetov, Yury; Alekseeva, Ekaterina; Mezmaz, Mohand

    2016-10-01

    We study a discrete bilevel problem, called as well as leader-follower problem, with multiple objectives at the lower level. It is assumed that constraints at the upper level can include variables of both levels. For such ill-posed problem we define feasible and optimal solutions for pessimistic case. A central point of this work is a two stage method to get a feasible solution under the pessimistic case, given a leader decision. The target of the first stage is a follower solution that violates the leader constraints. The target of the second stage is a pessimistic feasible solution. Each stage calls a heuristic and a solver for a series of particular mixed integer programs. The method is integrated inside a local search based heuristic that is designed to find near-optimal leader solutions.

  5. Scheduling of hybrid types of machines with two-machine flowshop as the first type and a single machine as the second type

    NASA Astrophysics Data System (ADS)

    Hsiao, Ming-Chih; Su, Ling-Huey

    2018-02-01

    This research addresses the problem of scheduling hybrid machine types, in which one type is a two-machine flowshop and another type is a single machine. A job is either processed on the two-machine flowshop or on the single machine. The objective is to determine a production schedule for all jobs so as to minimize the makespan. The problem is NP-hard since the two parallel machines problem was proved to be NP-hard. Simulated annealing algorithms are developed to solve the problem optimally. A mixed integer programming (MIP) is developed and used to evaluate the performance for two SAs. Computational experiments demonstrate the efficiency of the simulated annealing algorithms, the quality of the simulated annealing algorithms will also be reported.

  6. Robust Distribution Network Reconfiguration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Changhyeok; Liu, Cong; Mehrotra, Sanjay

    2015-03-01

    We propose a two-stage robust optimization model for the distribution network reconfiguration problem with load uncertainty. The first-stage decision is to configure the radial distribution network and the second-stage decision is to find the optimal a/c power flow of the reconfigured network for given demand realization. We solve the two-stage robust model by using a column-and-constraint generation algorithm, where the master problem and subproblem are formulated as mixed-integer second-order cone programs. Computational results for 16, 33, 70, and 94-bus test cases are reported. We find that the configuration from the robust model does not compromise much the power loss undermore » the nominal load scenario compared to the configuration from the deterministic model, yet it provides the reliability of the distribution system for all scenarios in the uncertainty set.« less

  7. Optimization Models for Scheduling of Jobs

    PubMed Central

    Indika, S. H. Sathish; Shier, Douglas R.

    2006-01-01

    This work is motivated by a particular scheduling problem that is faced by logistics centers that perform aircraft maintenance and modification. Here we concentrate on a single facility (hangar) which is equipped with several work stations (bays). Specifically, a number of jobs have already been scheduled for processing at the facility; the starting times, durations, and work station assignments for these jobs are assumed to be known. We are interested in how best to schedule a number of new jobs that the facility will be processing in the near future. We first develop a mixed integer quadratic programming model (MIQP) for this problem. Since the exact solution of this MIQP formulation is time consuming, we develop a heuristic procedure, based on existing bin packing techniques. This heuristic is further enhanced by application of certain local optimality conditions. PMID:27274921

  8. Capacity planning of link restorable optical networks under dynamic change of traffic

    NASA Astrophysics Data System (ADS)

    Ho, Kwok Shing; Cheung, Kwok Wai

    2005-11-01

    Future backbone networks shall require full-survivability and support dynamic changes of traffic demands. The Generalized Survivable Networks (GSN) was proposed to meet these challenges. GSN is fully-survivable under dynamic traffic demand changes, so it offers a practical and guaranteed characterization framework for ASTN / ASON survivable network planning and bandwidth-on-demand resource allocation 4. The basic idea of GSN is to incorporate the non-blocking network concept into the survivable network models. In GSN, each network node must specify its I/O capacity bound which is taken as constraints for any allowable traffic demand matrix. In this paper, we consider the following generic GSN network design problem: Given the I/O bounds of each network node, find a routing scheme (and the corresponding rerouting scheme under failure) and the link capacity assignment (both working and spare) which minimize the cost, such that any traffic matrix consistent with the given I/O bounds can be feasibly routed and it is single-fault tolerant under the link restoration scheme. We first show how the initial, infeasible formal mixed integer programming formulation can be transformed into a more feasible problem using the duality transformation of the linear program. Then we show how the problem can be simplified using the Lagrangian Relaxation approach. Previous work has outlined a two-phase approach for solving this problem where the first phase optimizes the working capacity assignment and the second phase optimizes the spare capacity assignment. In this paper, we present a jointly optimized framework for dimensioning the survivable optical network with the GSN model. Experiment results show that the jointly optimized GSN can bring about on average of 3.8% cost savings when compared with the separate, two-phase approach. Finally, we perform a cost comparison and show that GSN can be deployed with a reasonable cost.

  9. Intelligent Tutoring for Programming Tasks: Using Plan Analysis to Generate Better Hints.

    DTIC Science & Technology

    1982-03-01

    construction and execution of a BASIC proqram that assiqns an integer value to a variable and then prints the value of that integer. - ARTICHOKE : assign...the string " ARTICHOKE " to a string variable, assiqn the value of that variable to a second variable, and print the second variable. -SINOP: qet two...the first five tasks: GREENFLAG, ARTICHOKE , SINOP, NINOP, and TWOS. Because the protocols are very lonq, it was necessary to condense them into a

  10. Determining the Surface-to-Air Missile Requirement for Western and Southern Part of the Turkish Air Defense System

    DTIC Science & Technology

    2008-03-01

    been shown to yield success in such applications as well. ( Daskin ,1995). LP optimization, matrix row reduction, a combination of both, or cutting...integer solution (Current, 2002). If the LP relaxation of the SCLP results in a fractional solution, Current, Daskin , and Schilling (2002) recommend...coverage for a given number of SAM sites. The model is formulated as an integer program, and the LINGO 10 software package is used to solve the model

  11. Optimization Model for Capacity Management and Bed Scheduling for Hospital

    NASA Astrophysics Data System (ADS)

    Sitepu, Suryati; Mawengkang, Herman; Husein, Ismail

    2018-01-01

    Hospital is a very important institution to provide health care for people. It is not surprising that nowadays the people’s demands for hospital is increasing.. However, due to the rising cost of healthcare services, hospitals need to consider efficiencies in order to overcome these two problems. This paper deals with an integrated strategy of staff capacity management and bed allocation planning to tackle these problems. Mathematically, the strategy can be modeled as an integer linear programming problem. We solve the model using a direct neighborhood search approach, based on the notion of superbasic variables.

  12. Results of the Clarus Regional Demonstrations : Evaluation of Enhanced Road Weather Forecasting

    DOT National Transportation Integrated Search

    2012-01-01

    The Clarus Initiative is a research effort of the U.S. Department of Transportation Intelligent Transportation Systems Joint Program Office and the Federal Highway Administrations Road Weather Management Program to develop and demonstrate an integ...

  13. Teaching Math More Effectively, Through the Design of Calculational Proofs.

    DTIC Science & Technology

    1994-03-01

    typically taught in a first discrete math course -e.g. set theory, mathematical induction, a theory of integers, finc- tions and relations, combinatorics...by all who want to teach mathematics effectively. 4 4 The authors’ 500-pape text A Logical Approach to Discrete Math (Springer Verlag NY, 1993) uses...the appr,.., h described in this article in teaching the usual topics in discrete math -logic, set theory, & theory of integers, induct,., functions

  14. Investigating Integer Restrictions in Linear Programming

    ERIC Educational Resources Information Center

    Edwards, Thomas G.; Chelst, Kenneth R.; Principato, Angela M.; Wilhelm, Thad L.

    2015-01-01

    Linear programming (LP) is an application of graphing linear systems that appears in many Algebra 2 textbooks. Although not explicitly mentioned in the Common Core State Standards for Mathematics, linear programming blends seamlessly into modeling with mathematics, the fourth Standard for Mathematical Practice (CCSSI 2010, p. 7). In solving a…

  15. The fate of a gray soliton in a quenched Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Gamayun, Oleksandr; Bezvershenko, Yulia; Cheianov, Vadim

    2015-03-01

    We investigate the destiny of a gray soliton in a repulsive one-dimensional Bose-Einstein condensate undergoing a sudden quench of the non-linearity parameter. The outcome of the quench is found to depend dramatically on the ratio η of the final and initial values of the speed of sound. For integer η the soliton splits into exactly 2 η - 1 solitons. For non-integer η the soliton decays into multiple solitons and Bogoliubov modes. The case of integer η is analyzed in detail. The parameters of solitons in the out-state are found explicitly. Our approach exploits the inverse scattering method and can be easily used for the similar quenches in any classical integrable system.

  16. Self-compensating design for reduction of timing and leakage sensitivity to systematic pattern dependent variation

    NASA Astrophysics Data System (ADS)

    Gupta, Puneet; Kahng, Andrew B.; Kim, Youngmin; Sylvester, Dennis

    2006-03-01

    Focus is one of the major sources of linewidth variation. CD variation caused by defocus is largely systematic after the layout is finished. In particular, dense lines "smile" through focus while isolated lines "frown" in typical Bossung plots. This well-defined systematic behavior of focus-dependent CD variation allows us to develop a self-compensating design methodology. In this work, we propose a novel design methodology that allows explicit compensation of focus-dependent CD variation, either within a cell (self-compensated cells) or across cells in a critical path (self-compensated design). By creating iso and dense variants for each library cell, we can achieve designs that are more robust to focus variation. Optimization with a mixture of iso and dense cell variants is possible both for area and leakage power, with the latter providing an interesting complement to existing leakage reduction techniques such as dual-Vth. We implement both heuristic and Mixed-Integer Linear Programming (MILP) solution methods to address this optimization, and experimentally compare their results. Our results indicate that designing with a self-compensated cell library incurs ~12% area penalty and ~6% leakage increase over original layouts while compensating for focus-dependent CD variation (i.e., the design meets timing constraints across a large range of focus variation). We observe ~27% area penalty and ~7% leakage increase at the worst-case defocus condition using only single-pitch cells. The area penalty of circuits after using either the heuristic or MILP optimization approach is reduced to ~3% while maintaining timing. We also apply our optimizations to leakage, which traditionally shows very large variability due to its exponential relationship with gate CD. We conclude that a mixed iso/dense library combined with a sensitivity-based optimization approach yields much better area/timing/leakage tradeoffs than using a self-compensated cell library alone. Self-compensated design shows an average of 25% leakage reduction at the worst defocus condition for the benchmark designs that we have studied.

  17. The Retrofit Puzzle Extended: Optimal Fleet Owner Behavior over Multiple Time Periods

    DOT National Transportation Integrated Search

    2009-08-04

    In "The Retrofit Puzzle: Optimal Fleet Owner Behavior in the Context of Diesel Retrofit Incentive Programs" (1) an integer program was developed to model profit-maximizing diesel fleet owner behavior when selecting pollution reduction retrofits. Flee...

  18. A Two-Stage Approach for Medical Supplies Intermodal Transportation in Large-Scale Disaster Responses

    PubMed Central

    Ruan, Junhu; Wang, Xuping; Shi, Yan

    2014-01-01

    We present a two-stage approach for the “helicopters and vehicles” intermodal transportation of medical supplies in large-scale disaster responses. In the first stage, a fuzzy-based method and its heuristic algorithm are developed to select the locations of temporary distribution centers (TDCs) and assign medial aid points (MAPs) to each TDC. In the second stage, an integer-programming model is developed to determine the delivery routes. Numerical experiments verified the effectiveness of the approach, and observed several findings: (i) More TDCs often increase the efficiency and utility of medical supplies; (ii) It is not definitely true that vehicles should load more and more medical supplies in emergency responses; (iii) The more contrasting the traveling speeds of helicopters and vehicles are, the more advantageous the intermodal transportation is. PMID:25350005

  19. A conformal mapping based fractional order approach for sub-optimal tuning of PID controllers with guaranteed dominant pole placement

    NASA Astrophysics Data System (ADS)

    Saha, Suman; Das, Saptarshi; Das, Shantanu; Gupta, Amitava

    2012-09-01

    A novel conformal mapping based fractional order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PIλDμ) controller have been approximated in this paper vis-à-vis a LQR tuned conventional integer order PID controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PIλDμ controller pushes the open loop zeros of the equivalent PID controller towards greater damping regions which gives a trajectory of the controller zeros and dominant closed loop poles. This trajectory is termed as "M-curve". This phenomena is used to design a two-stage tuning algorithm which reduces the existing PID controller's effort in a significant manner compared to that with a single stage LQR based pole placement method at a desired closed loop damping and frequency.

  20. A Mixed Methods Approach to Understanding School Counseling Program Evaluation: High School Counselors' Methods and Perceptions

    ERIC Educational Resources Information Center

    Aucoin, Jennifer Mangrum

    2013-01-01

    The purpose of this mixed methods concurrent triangulation study was to examine the program evaluation practices of high school counselors. A total of 294 high school counselors in Texas were assessed using a mixed methods concurrent triangulation design. A researcher-developed survey, the School Counseling Program Evaluation Questionnaire…

  1. Hybridization with a twist: Hidden (hastatic) order in URu2Si2

    NASA Astrophysics Data System (ADS)

    Flint, Rebecca

    The hidden order developing below 17.5K in the heavy fermion material URu2Si2 has eluded identification for over thirty years. A number of recent experiments have shed new light on the nature of this phase. In particular, de Haas-van Alphen measurements indicate nearly perfectly Ising quasiparticles deep in the hidden order phase, and recent nonlinear susceptibility measurements show that this strong Ising anisotropy persists up to and above the hidden order transition itself. Along with other features, this Ising anisotropy implies that the conduction electrons hybridize with a local Ising moment - a 5f2 state of the uranium atom with integer spin. As the hybridization mixes states of integer and half-integer spin, it is itself a spinor and this ``hastatic'' (hasta: [Latin] spear) order parameter therefore breaks both time-reversal and double time-reversal symmetries. A microscopic theory of hastatic order naturally unites a number of disparate experimental results from the large entropy of condensation to the spin rotational symmetry breaking seen in torque magnetometry, and provides a number of experimental predictions. Moreover, this new spinorial order parameter provides a window into a number of new heavy fermion phases.

  2. NEWTONP - CUMULATIVE BINOMIAL PROGRAMS

    NASA Technical Reports Server (NTRS)

    Bowerman, P. N.

    1994-01-01

    The cumulative binomial program, NEWTONP, is one of a set of three programs which calculate cumulative binomial probability distributions for arbitrary inputs. The three programs, NEWTONP, CUMBIN (NPO-17555), and CROSSER (NPO-17557), can be used independently of one another. NEWTONP can be used by statisticians and users of statistical procedures, test planners, designers, and numerical analysts. The program has been used for reliability/availability calculations. NEWTONP calculates the probably p required to yield a given system reliability V for a k-out-of-n system. It can also be used to determine the Clopper-Pearson confidence limits (either one-sided or two-sided) for the parameter p of a Bernoulli distribution. NEWTONP can determine Bayesian probability limits for a proportion (if the beta prior has positive integer parameters). It can determine the percentiles of incomplete beta distributions with positive integer parameters. It can also determine the percentiles of F distributions and the midian plotting positions in probability plotting. NEWTONP is designed to work well with all integer values 0 < k <= n. To run the program, the user simply runs the executable version and inputs the information requested by the program. NEWTONP is not designed to weed out incorrect inputs, so the user must take care to make sure the inputs are correct. Once all input has been entered, the program calculates and lists the result. It also lists the number of iterations of Newton's method required to calculate the answer within the given error. The NEWTONP program is written in C. It was developed on an IBM AT with a numeric co-processor using Microsoft C 5.0. Because the source code is written using standard C structures and functions, it should compile correctly with most C compilers. The program format is interactive. It has been implemented under DOS 3.2 and has a memory requirement of 26K. NEWTONP was developed in 1988.

  3. HAL/S programmer's guide. [space shuttle flight software language

    NASA Technical Reports Server (NTRS)

    Newbold, P. M.; Hotz, R. L.

    1974-01-01

    HAL/S is a programming language developed to satisfy the flight software requirements for the space shuttle program. The user's guide explains pertinent language operating procedures and described the various HAL/S facilities for manipulating integer, scalar, vector, and matrix data types.

  4. Are you ready? Managing transportation resources through the Y2K weekend

    DOT National Transportation Integrated Search

    2011-01-01

    The Clarus Initiative, a joint effort of the U.S. Department of Transportation Intelligent Transportation Systems (ITS) Joint Program Office and FHWAs Road Weather Management Program (RWMP), is a six-year effort to develop and demonstrate an integ...

  5. A Simulation of Alternatives for Wholesale Inventory Replenishment

    DTIC Science & Technology

    2016-03-01

    algorithmic details. The last method is a mixed-integer, linear optimization model. Comparative Inventory Simulation, a discrete event simulation model, is...simulation; event graphs; reorder point; fill-rate; backorder; discrete event simulation; wholesale inventory optimization model 15. NUMBER OF PAGES...model. Comparative Inventory Simulation, a discrete event simulation model, is designed to find fill rates achieved for each National Item

  6. Greenhouse gas emissions control in integrated municipal solid waste management through mixed integer bilevel decision-making.

    PubMed

    He, Li; Huang, G H; Lu, Hongwei

    2011-10-15

    Recent studies indicated that municipal solid waste (MSW) is a major contributor to global warming due to extensive emissions of greenhouse gases (GHGs). However, most of them focused on investigating impacts of MSW on GHG emission amounts. This study presents two mixed integer bilevel decision-making models for integrated municipal solid waste management and GHG emissions control: MGU-MCL and MCU-MGL. The MGU-MCL model represents a top-down decision process, with the environmental sectors at the national level dominating the upper-level objective and the waste management sectors at the municipal level providing the lower-level objective. The MCU-MGL model implies a bottom-up decision process where municipality plays a leading role. Results from the models indicate that: the top-down decisions would reduce metric tonne carbon emissions (MTCEs) by about 59% yet increase about 8% of the total management cost; the bottom-up decisions would reduce MTCE emissions by about 13% but increase the total management cost very slightly; on-site monitoring and downscaled laboratory experiments are still required for reducing uncertainty in GHG emission rate from the landfill facility. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Generalized Symbolic Execution for Model Checking and Testing

    NASA Technical Reports Server (NTRS)

    Khurshid, Sarfraz; Pasareanu, Corina; Visser, Willem; Kofmeyer, David (Technical Monitor)

    2003-01-01

    Modern software systems, which often are concurrent and manipulate complex data structures must be extremely reliable. We present a novel framework based on symbolic execution, for automated checking of such systems. We provide a two-fold generalization of traditional symbolic execution based approaches: one, we define a program instrumentation, which enables standard model checkers to perform symbolic execution; two, we give a novel symbolic execution algorithm that handles dynamically allocated structures (e.g., lists and trees), method preconditions (e.g., acyclicity of lists), data (e.g., integers and strings) and concurrency. The program instrumentation enables a model checker to automatically explore program heap configurations (using a systematic treatment of aliasing) and manipulate logical formulae on program data values (using a decision procedure). We illustrate two applications of our framework: checking correctness of multi-threaded programs that take inputs from unbounded domains with complex structure and generation of non-isomorphic test inputs that satisfy a testing criterion. Our implementation for Java uses the Java PathFinder model checker.

  8. RSM 1.0 user's guide: A resupply scheduler using integer optimization

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A.; Green, Robert D.; Reed, David M.

    1991-01-01

    The Resupply Scheduling Model (RSM) is a PC based, fully menu-driven computer program. It uses integer programming techniques to determine an optimum schedule to replace components on or before a fixed replacement period, subject to user defined constraints such as transportation mass and volume limits or available repair crew time. Principal input for RSJ includes properties such as mass and volume and an assembly sequence. Resource constraints are entered for each period corresponding to the component properties. Though written to analyze the electrical power system on the Space Station Freedom, RSM is quite general and can be used to model the resupply of almost any system subject to user defined resource constraints. Presented here is a step by step procedure for preparing the input, performing the analysis, and interpreting the results. Instructions for installing the program and information on the algorithms are given.

  9. Designing single- and multiple-shell sampling schemes for diffusion MRI using spherical code.

    PubMed

    Cheng, Jian; Shen, Dinggang; Yap, Pew-Thian

    2014-01-01

    In diffusion MRI (dMRI), determining an appropriate sampling scheme is crucial for acquiring the maximal amount of information for data reconstruction and analysis using the minimal amount of time. For single-shell acquisition, uniform sampling without directional preference is usually favored. To achieve this, a commonly used approach is the Electrostatic Energy Minimization (EEM) method introduced in dMRI by Jones et al. However, the electrostatic energy formulation in EEM is not directly related to the goal of optimal sampling-scheme design, i.e., achieving large angular separation between sampling points. A mathematically more natural approach is to consider the Spherical Code (SC) formulation, which aims to achieve uniform sampling by maximizing the minimal angular difference between sampling points on the unit sphere. Although SC is well studied in the mathematical literature, its current formulation is limited to a single shell and is not applicable to multiple shells. Moreover, SC, or more precisely continuous SC (CSC), currently can only be applied on the continuous unit sphere and hence cannot be used in situations where one or several subsets of sampling points need to be determined from an existing sampling scheme. In this case, discrete SC (DSC) is required. In this paper, we propose novel DSC and CSC methods for designing uniform single-/multi-shell sampling schemes. The DSC and CSC formulations are solved respectively by Mixed Integer Linear Programming (MILP) and a gradient descent approach. A fast greedy incremental solution is also provided for both DSC and CSC. To our knowledge, this is the first work to use SC formulation for designing sampling schemes in dMRI. Experimental results indicate that our methods obtain larger angular separation and better rotational invariance than the generalized EEM (gEEM) method currently used in the Human Connectome Project (HCP).

  10. Synchronizable Series Expressions. Part 2. Overview of the Theory and Implementation.

    DTIC Science & Technology

    1987-11-01

    more running time than shown in the table. because time is eventually required in order to collect the garbage it creates. Program Running ’rime Garbage...possible to simply put an enumerator where it is used.) (loop for x integer from I to 4 collect x) - (lotS* ((x (Eup I :to 4))) (declare (type integer x...below. (loop for x from 1 to 4 and for y = 0 then (1- x) collect (list x y)) - (lotS* ((x (Eup 1 :to 4)) (y (Tprevious (1- x) 0))) (Rlist (list x y

  11. Papers on Program Testing,

    DTIC Science & Technology

    1979-01-01

    tractability for scientific analysis. Although much remains to be learned about mutation as a testing tool, there is a considerable body of written material...explicitly address classifications (2) may not have been affected at all! In general, the and (3) in this article , except to point out that even relative...34 ARTICLE B=B’B C IN CACM 1971). C=C*02 INTEGER AiN),N.F D=B+C INTEGER M.NS.R.I.J.W IF (A.NE.D) GOTO 200 MI PRINT 150 NS=N 150 FORMATIIH .RIGHT ANGLED

  12. Advancing the study of violence against women using mixed methods: integrating qualitative methods into a quantitative research program.

    PubMed

    Testa, Maria; Livingston, Jennifer A; VanZile-Tamsen, Carol

    2011-02-01

    A mixed methods approach, combining quantitative with qualitative data methods and analysis, offers a promising means of advancing the study of violence. Integrating semi-structured interviews and qualitative analysis into a quantitative program of research on women's sexual victimization has resulted in valuable scientific insight and generation of novel hypotheses for testing. This mixed methods approach is described and recommendations for integrating qualitative data into quantitative research are provided.

  13. Computational design of enzyme-ligand binding using a combined energy function and deterministic sequence optimization algorithm.

    PubMed

    Tian, Ye; Huang, Xiaoqiang; Zhu, Yushan

    2015-08-01

    Enzyme amino-acid sequences at ligand-binding interfaces are evolutionarily optimized for reactions, and the natural conformation of an enzyme-ligand complex must have a low free energy relative to alternative conformations in native-like or non-native sequences. Based on this assumption, a combined energy function was developed for enzyme design and then evaluated by recapitulating native enzyme sequences at ligand-binding interfaces for 10 enzyme-ligand complexes. In this energy function, the electrostatic interaction between polar or charged atoms at buried interfaces is described by an explicitly orientation-dependent hydrogen-bonding potential and a pairwise-decomposable generalized Born model based on the general side chain in the protein design framework. The energy function is augmented with a pairwise surface-area based hydrophobic contribution for nonpolar atom burial. Using this function, on average, 78% of the amino acids at ligand-binding sites were predicted correctly in the minimum-energy sequences, whereas 84% were predicted correctly in the most-similar sequences, which were selected from the top 20 sequences for each enzyme-ligand complex. Hydrogen bonds at the enzyme-ligand binding interfaces in the 10 complexes were usually recovered with the correct geometries. The binding energies calculated using the combined energy function helped to discriminate the active sequences from a pool of alternative sequences that were generated by repeatedly solving a series of mixed-integer linear programming problems for sequence selection with increasing integer cuts.

  14. Modeling sustainability in renewable energy supply chain systems

    NASA Astrophysics Data System (ADS)

    Xie, Fei

    This dissertation aims at modeling sustainability of renewable fuel supply chain systems against emerging challenges. In particular, the dissertation focuses on the biofuel supply chain system design, and manages to develop advanced modeling framework and corresponding solution methods in tackling challenges in sustaining biofuel supply chain systems. These challenges include: (1) to integrate "environmental thinking" into the long-term biofuel supply chain planning; (2) to adopt multimodal transportation to mitigate seasonality in biofuel supply chain operations; (3) to provide strategies in hedging against uncertainty from conversion technology; and (4) to develop methodologies in long-term sequential planning of the biofuel supply chain under uncertainties. All models are mixed integer programs, which also involves multi-objective programming method and two-stage/multistage stochastic programming methods. In particular for the long-term sequential planning under uncertainties, to reduce the computational challenges due to the exponential expansion of the scenario tree, I also developed efficient ND-Max method which is more efficient than CPLEX and Nested Decomposition method. Through result analysis of four independent studies, it is found that the proposed modeling frameworks can effectively improve the economic performance, enhance environmental benefits and reduce risks due to systems uncertainties for the biofuel supply chain systems.

  15. Entanglement spectrum degeneracy and the Cardy formula in 1+1 dimensional conformal field theories

    NASA Astrophysics Data System (ADS)

    Alba, Vincenzo; Calabrese, Pasquale; Tonni, Erik

    2018-01-01

    We investigate the effect of a global degeneracy in the distribution of the entanglement spectrum in conformal field theories in one spatial dimension. We relate the recently found universal expression for the entanglement Hamiltonian to the distribution of the entanglement spectrum. The main tool to establish this connection is the Cardy formula. It turns out that the Affleck-Ludwig non-integer degeneracy, appearing because of the boundary conditions induced at the entangling surface, can be directly read from the entanglement spectrum distribution. We also clarify the effect of the non-integer degeneracy on the spectrum of the partial transpose, which is the central object for quantifying the entanglement in mixed states. We show that the exact knowledge of the entanglement spectrum in some integrable spin-chains provides strong analytical evidences corroborating our results.

  16. Incorporating Active Runway Crossings in Airport Departure Scheduling

    NASA Technical Reports Server (NTRS)

    Gupta, Gautam; Malik, Waqar; Jung, Yoon C.

    2010-01-01

    A mixed integer linear program is presented for deterministically scheduling departure and ar rival aircraft at airport runways. This method addresses different schemes of managing the departure queuing area by treating it as first-in-first-out queues or as a simple par king area where any available aircraft can take-off ir respective of its relative sequence with others. In addition, this method explicitly considers separation criteria between successive aircraft and also incorporates an optional prioritization scheme using time windows. Multiple objectives pertaining to throughput and system delay are used independently. Results indicate improvement over a basic first-come-first-serve rule in both system delay and throughput. Minimizing system delay results in small deviations from optimal throughput, whereas minimizing throughput results in large deviations in system delay. Enhancements for computational efficiency are also presented in the form of reformulating certain constraints and defining additional inequalities for better bounds.

  17. An MIP model to schedule the call center workforce and organize the breaks

    NASA Astrophysics Data System (ADS)

    Türker, Turgay; Demiriz, Ayhan

    2016-06-01

    In modern economies, companies place a premium on managing their workforce efficiently especially in labor intensive service sector, since the services have become the significant portion of the economies. Tour scheduling is an important tool to minimize the overall workforce costs while satisfying the minimum service level constraints. In this study, we consider the workforce management problem of an inbound call-center while satisfying the call demand within the short time periods with the minimum cost. We propose a mixed-integer programming model to assign workers to the daily shifts, to determine the weekly off-days, and to determine the timings of lunch and other daily breaks for each worker. The proposed model has been verified on the weekly demand data observed at a specific call center location of a satellite TV operator. The model was run on both 15 and 10 minutes demand estimation periods (planning time intervals).

  18. Resource-constrained scheduling with hard due windows and rejection penalties

    NASA Astrophysics Data System (ADS)

    Garcia, Christopher

    2016-09-01

    This work studies a scheduling problem where each job must be either accepted and scheduled to complete within its specified due window, or rejected altogether. Each job has a certain processing time and contributes a certain profit if accepted or penalty cost if rejected. There is a set of renewable resources, and no resource limit can be exceeded at any time. Each job requires a certain amount of each resource when processed, and the objective is to maximize total profit. A mixed-integer programming formulation and three approximation algorithms are presented: a priority rule heuristic, an algorithm based on the metaheuristic for randomized priority search and an evolutionary algorithm. Computational experiments comparing these four solution methods were performed on a set of generated benchmark problems covering a wide range of problem characteristics. The evolutionary algorithm outperformed the other methods in most cases, often significantly, and never significantly underperformed any method.

  19. Discrete Optimization Model for Vehicle Routing Problem with Scheduling Side Cosntraints

    NASA Astrophysics Data System (ADS)

    Juliandri, Dedy; Mawengkang, Herman; Bu'ulolo, F.

    2018-01-01

    Vehicle Routing Problem (VRP) is an important element of many logistic systems which involve routing and scheduling of vehicles from a depot to a set of customers node. This is a hard combinatorial optimization problem with the objective to find an optimal set of routes used by a fleet of vehicles to serve the demands a set of customers It is required that these vehicles return to the depot after serving customers’ demand. The problem incorporates time windows, fleet and driver scheduling, pick-up and delivery in the planning horizon. The goal is to determine the scheduling of fleet and driver and routing policies of the vehicles. The objective is to minimize the overall costs of all routes over the planning horizon. We model the problem as a linear mixed integer program. We develop a combination of heuristics and exact method for solving the model.

  20. Exploiting Identical Generators in Unit Commitment

    DOE PAGES

    Knueven, Ben; Ostrowski, Jim; Watson, Jean -Paul

    2017-12-14

    Here, we present sufficient conditions under which thermal generators can be aggregated in mixed-integer linear programming (MILP) formulations of the unit commitment (UC) problem, while maintaining feasibility and optimality for the original disaggregated problem. Aggregating thermal generators with identical characteristics (e.g., minimum/maximum power output, minimum up/down-time, and cost curves) into a single unit reduces redundancy in the search space induced by both exact symmetry (permutations of generator schedules) and certain classes of mutually non-dominated solutions. We study the impact of aggregation on two large-scale UC instances, one from the academic literature and another based on real-world operator data. Our computationalmore » tests demonstrate that when present, identical generators can negatively affect the performance of modern MILP solvers on UC formulations. Further, we show that our reformation of the UC MILP through aggregation is an effective method for mitigating this source of computational difficulty.« less

  1. Integrating multimodal transport into cellulosic biofuel supply chain design under feedstock seasonality with a case study based on California.

    PubMed

    Xie, Fei; Huang, Yongxi; Eksioglu, Sandra

    2014-01-01

    A multistage, mixed integer programing model was developed that fully integrates multimodal transport into the cellulosic biofuel supply chain design under feedstock seasonality. Three transport modes are considered: truck, single railcar, and unit train. The goal is to minimize the total cost for infrastructure, feedstock harvesting, biofuel production, and transportation. Strategic decisions including the locations and capacities of transshipment hubs, biorefineries, and terminals and tactical decisions on system operations are optimized in an integrated manner. When the model was implemented to a case study of cellulosic ethanol production in California, it was found that trucks are convenient for short-haul deliveries while rails are more effective for long-haul transportation. Taking the advantage of these benefits, the multimodal transport provides more cost effective solutions than the single-mode transport (truck). Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Determining Regulatory Networks Governing the Differentiation of Embryonic Stem Cells to Pancreatic Lineage

    NASA Astrophysics Data System (ADS)

    Banerjee, Ipsita

    2009-03-01

    Knowledge of pathways governing cellular differentiation to specific phenotype will enable generation of desired cell fates by careful alteration of the governing network by adequate manipulation of the cellular environment. With this aim, we have developed a novel method to reconstruct the underlying regulatory architecture of a differentiating cell population from discrete temporal gene expression data. We utilize an inherent feature of biological networks, that of sparsity, in formulating the network reconstruction problem as a bi-level mixed-integer programming problem. The formulation optimizes the network topology at the upper level and the network connectivity strength at the lower level. The method is first validated by in-silico data, before applying it to the complex system of embryonic stem (ES) cell differentiation. This formulation enables efficient identification of the underlying network topology which could accurately predict steps necessary for directing differentiation to subsequent stages. Concurrent experimental verification demonstrated excellent agreement with model prediction.

  3. Simultaneous delivery time and aperture shape optimization for the volumetric-modulated arc therapy (VMAT) treatment planning problem

    NASA Astrophysics Data System (ADS)

    Mahnam, Mehdi; Gendreau, Michel; Lahrichi, Nadia; Rousseau, Louis-Martin

    2017-07-01

    In this paper, we propose a novel heuristic algorithm for the volumetric-modulated arc therapy treatment planning problem, optimizing the trade-off between delivery time and treatment quality. We present a new mixed integer programming model in which the multi-leaf collimator leaf positions, gantry speed, and dose rate are determined simultaneously. Our heuristic is based on column generation; the aperture configuration is modeled in the columns and the dose distribution and time restriction in the rows. To reduce the number of voxels and increase the efficiency of the master model, we aggregate similar voxels using a clustering technique. The efficiency of the algorithm and the treatment quality are evaluated on a benchmark clinical prostate cancer case. The computational results show that a high-quality treatment is achievable using a four-thread CPU. Finally, we analyze the effects of the various parameters and two leaf-motion strategies.

  4. Biomass supply chain optimisation for Organosolv-based biorefineries.

    PubMed

    Giarola, Sara; Patel, Mayank; Shah, Nilay

    2014-05-01

    This work aims at providing a Mixed Integer Linear Programming modelling framework to help define planning strategies for the development of sustainable biorefineries. The up-scaling of an Organosolv biorefinery was addressed via optimisation of the whole system economics. Three real world case studies were addressed to show the high-level flexibility and wide applicability of the tool to model different biomass typologies (i.e. forest fellings, cereal residues and energy crops) and supply strategies. Model outcomes have revealed how supply chain optimisation techniques could help shed light on the development of sustainable biorefineries. Feedstock quality, quantity, temporal and geographical availability are crucial to determine biorefinery location and the cost-efficient way to supply the feedstock to the plant. Storage costs are relevant for biorefineries based on cereal stubble, while wood supply chains present dominant pretreatment operations costs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A mathematical formulation for interface-based modular product design with geometric and weight constraints

    NASA Astrophysics Data System (ADS)

    Jung-Woon Yoo, John

    2016-06-01

    Since customer preferences change rapidly, there is a need for design processes with shorter product development cycles. Modularization plays a key role in achieving mass customization, which is crucial in today's competitive global market environments. Standardized interfaces among modularized parts have facilitated computational product design. To incorporate product size and weight constraints during computational design procedures, a mixed integer programming formulation is presented in this article. Product size and weight are two of the most important design parameters, as evidenced by recent smart-phone products. This article focuses on the integration of geometric, weight and interface constraints into the proposed mathematical formulation. The formulation generates the optimal selection of components for a target product, which satisfies geometric, weight and interface constraints. The formulation is verified through a case study and experiments are performed to demonstrate the performance of the formulation.

  6. Achieving full connectivity of sites in the multiperiod reserve network design problem

    USGS Publications Warehouse

    Jafari, Nahid; Nuse, Bryan L.; Moore, Clinton; Dilkina, Bistra; Hepinstall-Cymerman, Jeffrey

    2017-01-01

    The conservation reserve design problem is a challenge to solve because of the spatial and temporal nature of the problem, uncertainties in the decision process, and the possibility of alternative conservation actions for any given land parcel. Conservation agencies tasked with reserve design may benefit from a dynamic decision system that provides tactical guidance for short-term decision opportunities while maintaining focus on a long-term objective of assembling the best set of protected areas possible. To plan cost-effective conservation over time under time-varying action costs and budget, we propose a multi-period mixed integer programming model for the budget-constrained selection of fully connected sites. The objective is to maximize a summed conservation value over all network parcels at the end of the planning horizon. The originality of this work is in achieving full spatial connectivity of the selected sites during the schedule of conservation actions.

  7. Exploiting Identical Generators in Unit Commitment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knueven, Ben; Ostrowski, Jim; Watson, Jean -Paul

    Here, we present sufficient conditions under which thermal generators can be aggregated in mixed-integer linear programming (MILP) formulations of the unit commitment (UC) problem, while maintaining feasibility and optimality for the original disaggregated problem. Aggregating thermal generators with identical characteristics (e.g., minimum/maximum power output, minimum up/down-time, and cost curves) into a single unit reduces redundancy in the search space induced by both exact symmetry (permutations of generator schedules) and certain classes of mutually non-dominated solutions. We study the impact of aggregation on two large-scale UC instances, one from the academic literature and another based on real-world operator data. Our computationalmore » tests demonstrate that when present, identical generators can negatively affect the performance of modern MILP solvers on UC formulations. Further, we show that our reformation of the UC MILP through aggregation is an effective method for mitigating this source of computational difficulty.« less

  8. Optimization of orbital assignment and specification of service areas in satellite communications

    NASA Technical Reports Server (NTRS)

    Wang, Cou-Way; Levis, Curt A.; Buyukdura, O. Merih

    1987-01-01

    The mathematical nature of the orbital and frequency assignment problem for communications satellites is explored, and it is shown that choosing the correct permutations of the orbit locations and frequency assignments is an important step in arriving at values which satisfy the signal-quality requirements. Two methods are proposed to achieve better spectrum/orbit utilization. The first, called the delta S concept, leads to orbital assignment solutions via either mixed-integer or restricted basis entry linear programming techniques; the method guarantees good single-entry carrier-to-interference ratio results. In the second, a basis for specifying service areas is proposed for the Fixed Satellite Service. It is suggested that service areas should be specified according to the communications-demand density in conjunction with the delta S concept in order to enable the system planner to specify more satellites and provide more communications supply.

  9. Optimising reverse logistics network to support policy-making in the case of Electrical and Electronic Equipment.

    PubMed

    Achillas, Ch; Vlachokostas, Ch; Aidonis, D; Moussiopoulos, N; Iakovou, E; Banias, G

    2010-12-01

    Due to the rapid growth of Waste Electrical and Electronic Equipment (WEEE) volumes, as well as the hazardousness of obsolete electr(on)ic goods, this type of waste is now recognised as a priority stream in the developed countries. Policy-making related to the development of the necessary infrastructure and the coordination of all relevant stakeholders is crucial for the efficient management and viability of individually collected waste. This paper presents a decision support tool for policy-makers and regulators to optimise electr(on)ic products' reverse logistics network. To that effect, a Mixed Integer Linear Programming mathematical model is formulated taking into account existing infrastructure of collection points and recycling facilities. The applicability of the developed model is demonstrated employing a real-world case study for the Region of Central Macedonia, Greece. The paper concludes with presenting relevant obtained managerial insights. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Integrated optimization of planetary rover layout and exploration routes

    NASA Astrophysics Data System (ADS)

    Lee, Dongoo; Ahn, Jaemyung

    2018-01-01

    This article introduces an optimization framework for the integrated design of a planetary surface rover and its exploration route that is applicable to the initial phase of a planetary exploration campaign composed of multiple surface missions. The scientific capability and the mobility of a rover are modelled as functions of the science weight fraction, a key parameter characterizing the rover. The proposed problem is formulated as a mixed-integer nonlinear program that maximizes the sum of profits obtained through a planetary surface exploration mission by simultaneously determining the science weight fraction of the rover, the sites to visit and their visiting sequences under resource consumption constraints imposed on each route and collectively on a mission. A solution procedure for the proposed problem composed of two loops (the outer loop and the inner loop) is developed. The results of test cases demonstrating the effectiveness of the proposed framework are presented.

  11. An improved exploratory search technique for pure integer linear programming problems

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1990-01-01

    The development is documented of a heuristic method for the solution of pure integer linear programming problems. The procedure draws its methodology from the ideas of Hooke and Jeeves type 1 and 2 exploratory searches, greedy procedures, and neighborhood searches. It uses an efficient rounding method to obtain its first feasible integer point from the optimal continuous solution obtained via the simplex method. Since this method is based entirely on simple addition or subtraction of one to each variable of a point in n-space and the subsequent comparison of candidate solutions to a given set of constraints, it facilitates significant complexity improvements over existing techniques. It also obtains the same optimal solution found by the branch-and-bound technique in 44 of 45 small to moderate size test problems. Two example problems are worked in detail to show the inner workings of the method. Furthermore, using an established weighted scheme for comparing computational effort involved in an algorithm, a comparison of this algorithm is made to the more established and rigorous branch-and-bound method. A computer implementation of the procedure, in PC compatible Pascal, is also presented and discussed.

  12. Harmony search optimization algorithm for a novel transportation problem in a consolidation network

    NASA Astrophysics Data System (ADS)

    Davod Hosseini, Seyed; Akbarpour Shirazi, Mohsen; Taghi Fatemi Ghomi, Seyed Mohammad

    2014-11-01

    This article presents a new harmony search optimization algorithm to solve a novel integer programming model developed for a consolidation network. In this network, a set of vehicles is used to transport goods from suppliers to their corresponding customers via two transportation systems: direct shipment and milk run logistics. The objective of this problem is to minimize the total shipping cost in the network, so it tries to reduce the number of required vehicles using an efficient vehicle routing strategy in the solution approach. Solving several numerical examples confirms that the proposed solution approach based on the harmony search algorithm performs much better than CPLEX in reducing both the shipping cost in the network and computational time requirement, especially for realistic size problem instances.

  13. A Hierarchical Approach to Fracture Mechanics

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Taasan, Shlomo

    2004-01-01

    Recent research conducted under NASA LaRC's Creativity and Innovation Program has led to the development of an initial approach for a hierarchical fracture mechanics. This methodology unites failure mechanisms occurring at different length scales and provides a framework for a physics-based theory of fracture. At the nanoscale, parametric molecular dynamic simulations are used to compute the energy associated with atomic level failure mechanisms. This information is used in a mesoscale percolation model of defect coalescence to obtain statistics of fracture paths and energies through Monte Carlo simulations. The mathematical structure of predicted crack paths is described using concepts of fractal geometry. The non-integer fractal dimension relates geometric and energy measures between meso- and macroscales. For illustration, a fractal-based continuum strain energy release rate is derived for inter- and transgranular fracture in polycrystalline metals.

  14. New scheduling rules for a dynamic flexible flow line problem with sequence-dependent setup times

    NASA Astrophysics Data System (ADS)

    Kia, Hamidreza; Ghodsypour, Seyed Hassan; Davoudpour, Hamid

    2017-09-01

    In the literature, the application of multi-objective dynamic scheduling problem and simple priority rules are widely studied. Although these rules are not efficient enough due to simplicity and lack of general insight, composite dispatching rules have a very suitable performance because they result from experiments. In this paper, a dynamic flexible flow line problem with sequence-dependent setup times is studied. The objective of the problem is minimization of mean flow time and mean tardiness. A 0-1 mixed integer model of the problem is formulated. Since the problem is NP-hard, four new composite dispatching rules are proposed to solve it by applying genetic programming framework and choosing proper operators. Furthermore, a discrete-event simulation model is made to examine the performances of scheduling rules considering four new heuristic rules and the six adapted heuristic rules from the literature. It is clear from the experimental results that composite dispatching rules that are formed from genetic programming have a better performance in minimization of mean flow time and mean tardiness than others.

  15. Cost Optimization Model for Business Applications in Virtualized Grid Environments

    NASA Astrophysics Data System (ADS)

    Strebel, Jörg

    The advent of Grid computing gives enterprises an ever increasing choice of computing options, yet research has so far hardly addressed the problem of mixing the different computing options in a cost-minimal fashion. The following paper presents a comprehensive cost model and a mixed integer optimization model which can be used to minimize the IT expenditures of an enterprise and help in decision-making when to outsource certain business software applications. A sample scenario is analyzed and promising cost savings are demonstrated. Possible applications of the model to future research questions are outlined.

  16. ADVANCING THE STUDY OF VIOLENCE AGAINST WOMEN USING MIXED METHODS: INTEGRATING QUALITATIVE METHODS INTO A QUANTITATIVE RESEARCH PROGRAM

    PubMed Central

    Testa, Maria; Livingston, Jennifer A.; VanZile-Tamsen, Carol

    2011-01-01

    A mixed methods approach, combining quantitative with qualitative data methods and analysis, offers a promising means of advancing the study of violence. Integrating semi-structured interviews and qualitative analysis into a quantitative program of research on women’s sexual victimization has resulted in valuable scientific insight and generation of novel hypotheses for testing. This mixed methods approach is described and recommendations for integrating qualitative data into quantitative research are provided. PMID:21307032

  17. Selection of actuator locations for static shape control of large space structures by heuristic integer programing

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Adelman, H. M.

    1984-01-01

    Orbiting spacecraft such as large space antennas have to maintain a highly accurate space to operate satisfactorily. Such structures require active and passive controls to mantain an accurate shape under a variety of disturbances. Methods for the optimum placement of control actuators for correcting static deformations are described. In particular, attention is focused on the case were control locations have to be selected from a large set of available sites, so that integer programing methods are called for. The effectiveness of three heuristic techniques for obtaining a near-optimal site selection is compared. In addition, efficient reanalysis techniques for the rapid assessment of control effectiveness are presented. Two examples are used to demonstrate the methods: a simple beam structure and a 55m space-truss-parabolic antenna.

  18. Developing optimal nurses work schedule using integer programming

    NASA Astrophysics Data System (ADS)

    Shahidin, Ainon Mardhiyah; Said, Mohd Syazwan Md; Said, Noor Hizwan Mohamad; Sazali, Noor Izatie Amaliena

    2017-08-01

    Time management is the art of arranging, organizing and scheduling one's time for the purpose of generating more effective work and productivity. Scheduling is the process of deciding how to commit resources between varieties of possible tasks. Thus, it is crucial for every organization to have a good work schedule for their staffs. The job of Ward nurses at hospitals runs for 24 hours every day. Therefore, nurses will be working using shift scheduling. This study is aimed to solve the nurse scheduling problem at an emergency ward of a private hospital. A 7-day work schedule for 7 consecutive weeks satisfying all the constraints set by the hospital will be developed using Integer Programming. The work schedule for the nurses obtained gives an optimal solution where all the constraints are being satisfied successfully.

  19. Maximizing the U.S. Army’s Future Contribution to Global Security Using the Capability Portfolio Analysis Tool (CPAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Scott J.; Edwards, Shatiel B.; Teper, Gerald E.

    We report that recent budget reductions have posed tremendous challenges to the U.S. Army in managing its portfolio of ground combat systems (tanks and other fighting vehicles), thus placing many important programs at risk. To address these challenges, the Army and a supporting team developed and applied the Capability Portfolio Analysis Tool (CPAT) to optimally invest in ground combat modernization over the next 25–35 years. CPAT provides the Army with the analytical rigor needed to help senior Army decision makers allocate scarce modernization dollars to protect soldiers and maintain capability overmatch. CPAT delivers unparalleled insight into multiple-decade modernization planning usingmore » a novel multiphase mixed-integer linear programming technique and illustrates a cultural shift toward analytics in the Army’s acquisition thinking and processes. CPAT analysis helped shape decisions to continue modernization of the $10 billion Stryker family of vehicles (originally slated for cancellation) and to strategically reallocate over $20 billion to existing modernization programs by not pursuing the Ground Combat Vehicle program as originally envisioned. Ultimately, more than 40 studies have been completed using CPAT, applying operations research methods to optimally prioritize billions of taxpayer dollars and allowing Army acquisition executives to base investment decisions on analytically rigorous evaluations of portfolio trade-offs.« less

  20. Maximizing the U.S. Army’s Future Contribution to Global Security Using the Capability Portfolio Analysis Tool (CPAT)

    DOE PAGES

    Davis, Scott J.; Edwards, Shatiel B.; Teper, Gerald E.; ...

    2016-02-01

    We report that recent budget reductions have posed tremendous challenges to the U.S. Army in managing its portfolio of ground combat systems (tanks and other fighting vehicles), thus placing many important programs at risk. To address these challenges, the Army and a supporting team developed and applied the Capability Portfolio Analysis Tool (CPAT) to optimally invest in ground combat modernization over the next 25–35 years. CPAT provides the Army with the analytical rigor needed to help senior Army decision makers allocate scarce modernization dollars to protect soldiers and maintain capability overmatch. CPAT delivers unparalleled insight into multiple-decade modernization planning usingmore » a novel multiphase mixed-integer linear programming technique and illustrates a cultural shift toward analytics in the Army’s acquisition thinking and processes. CPAT analysis helped shape decisions to continue modernization of the $10 billion Stryker family of vehicles (originally slated for cancellation) and to strategically reallocate over $20 billion to existing modernization programs by not pursuing the Ground Combat Vehicle program as originally envisioned. Ultimately, more than 40 studies have been completed using CPAT, applying operations research methods to optimally prioritize billions of taxpayer dollars and allowing Army acquisition executives to base investment decisions on analytically rigorous evaluations of portfolio trade-offs.« less

  1. Integration of environmental aspects in modelling and optimisation of water supply chains.

    PubMed

    Koleva, Mariya N; Calderón, Andrés J; Zhang, Di; Styan, Craig A; Papageorgiou, Lazaros G

    2018-04-26

    Climate change becomes increasingly more relevant in the context of water systems planning. Tools are necessary to provide the most economic investment option considering the reliability of the infrastructure from technical and environmental perspectives. Accordingly, in this work, an optimisation approach, formulated as a spatially-explicit multi-period Mixed Integer Linear Programming (MILP) model, is proposed for the design of water supply chains at regional and national scales. The optimisation framework encompasses decisions such as installation of new purification plants, capacity expansion, and raw water trading schemes. The objective is to minimise the total cost incurring from capital and operating expenditures. Assessment of available resources for withdrawal is performed based on hydrological balances, governmental rules and sustainable limits. In the light of the increasing importance of reliability of water supply, a second objective, seeking to maximise the reliability of the supply chains, is introduced. The epsilon-constraint method is used as a solution procedure for the multi-objective formulation. Nash bargaining approach is applied to investigate the fair trade-offs between the two objectives and find the Pareto optimality. The models' capability is addressed through a case study based on Australia. The impact of variability in key input parameters is tackled through the implementation of a rigorous global sensitivity analysis (GSA). The findings suggest that variations in water demand can be more disruptive for the water supply chain than scenarios in which rainfalls are reduced. The frameworks can facilitate governmental multi-aspect decision making processes for the adequate and strategic investments of regional water supply infrastructure. Copyright © 2018. Published by Elsevier B.V.

  2. Forecasting future needs and optimal allocation of medical residency positions: the Emilia-Romagna Region case study.

    PubMed

    Senese, Francesca; Tubertini, Paolo; Mazzocchetti, Angelina; Lodi, Andrea; Ruozi, Corrado; Grilli, Roberto

    2015-01-30

    Italian regional health authorities annually negotiate the number of residency grants to be financed by the National government and the number and mix of supplementary grants to be funded by the regional budget. This study provides regional decision-makers with a requirement model to forecast the future demand of specialists at the regional level. We have developed a system dynamics (SD) model that projects the evolution of the supply of medical specialists and three demand scenarios across the planning horizon (2030). Demand scenarios account for different drivers: demography, service utilization rates (ambulatory care and hospital discharges) and hospital beds. Based on the SD outputs (occupational and training gaps), a mixed integer programming (MIP) model computes potentially effective assignments of medical specialization grants for each year of the projection. To simulate the allocation of grants, we have compared how regional and national grants can be managed in order to reduce future gaps with respect to current training patterns. The allocation of 25 supplementary grants per year does not appear as effective in reducing expected occupational gaps as the re-modulation of all regional training vacancies.

  3. Magnitude comparison with different types of rational numbers.

    PubMed

    DeWolf, Melissa; Grounds, Margaret A; Bassok, Miriam; Holyoak, Keith J

    2014-02-01

    An important issue in understanding mathematical cognition involves the similarities and differences between the magnitude representations associated with various types of rational numbers. For single-digit integers, evidence indicates that magnitudes are represented as analog values on a mental number line, such that magnitude comparisons are made more quickly and accurately as the numerical distance between numbers increases (the distance effect). Evidence concerning a distance effect for compositional numbers (e.g., multidigit whole numbers, fractions and decimals) is mixed. We compared the patterns of response times and errors for college students in magnitude comparison tasks across closely matched sets of rational numbers (e.g., 22/37, 0.595, 595). In Experiment 1, a distance effect was found for both fractions and decimals, but response times were dramatically slower for fractions than for decimals. Experiments 2 and 3 compared performance across fractions, decimals, and 3-digit integers. Response patterns for decimals and integers were extremely similar but, as in Experiment 1, magnitude comparisons based on fractions were dramatically slower, even when the decimals varied in precision (i.e., number of place digits) and could not be compared in the same way as multidigit integers (Experiment 3). Our findings indicate that comparisons of all three types of numbers exhibit a distance effect, but that processing often involves strategic focus on components of numbers. Fractions impose an especially high processing burden due to their bipartite (a/b) structure. In contrast to the other number types, the magnitude values associated with fractions appear to be less precise, and more dependent on explicit calculation. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  4. Environment-Aware Production Scheduling for Paint Shops in Automobile Manufacturing: A Multi-Objective Optimization Approach

    PubMed Central

    Zhang, Rui

    2017-01-01

    The traditional way of scheduling production processes often focuses on profit-driven goals (such as cycle time or material cost) while tending to overlook the negative impacts of manufacturing activities on the environment in the form of carbon emissions and other undesirable by-products. To bridge the gap, this paper investigates an environment-aware production scheduling problem that arises from a typical paint shop in the automobile manufacturing industry. In the studied problem, an objective function is defined to minimize the emission of chemical pollutants caused by the cleaning of painting devices which must be performed each time before a color change occurs. Meanwhile, minimization of due date violations in the downstream assembly shop is also considered because the two shops are interrelated and connected by a limited-capacity buffer. First, we have developed a mixed-integer programming formulation to describe this bi-objective optimization problem. Then, to solve problems of practical size, we have proposed a novel multi-objective particle swarm optimization (MOPSO) algorithm characterized by problem-specific improvement strategies. A branch-and-bound algorithm is designed for accurately assessing the most promising solutions. Finally, extensive computational experiments have shown that the proposed MOPSO is able to match the solution quality of an exact solver on small instances and outperform two state-of-the-art multi-objective optimizers in literature on large instances with up to 200 cars. PMID:29295603

  5. LEO cooperative multi-spacecraft refueling mission optimization considering J2 perturbation and target's surplus propellant constraint

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; Zhang, Jin; Li, Hai-yang; Zhou, Jian-yong

    2017-01-01

    The optimization of an LEO cooperative multi-spacecraft refueling mission considering the J2 perturbation and target's surplus propellant constraint is studied in the paper. First, a mission scenario is introduced. One service spacecraft and several target spacecraft run on an LEO near-circular orbit, the service spacecraft rendezvouses with some service positions one by one, and target spacecraft transfer to corresponding service positions respectively. Each target spacecraft returns to its original position after obtaining required propellant and the service spacecraft returns to its original position after refueling all target spacecraft. Next, an optimization model of this mission is built. The service sequence, orbital transfer time, and service position are used as deign variables, whereas the propellant cost is used as the design objective. The J2 perturbation, time constraint and the target spacecraft's surplus propellant capability constraint are taken into account. Then, a hybrid two-level optimization approach is presented to solve the formulated mixed integer nonlinear programming (MINLP) problem. A hybrid-encoding genetic algorithm is adopted to seek the near optimal solution in the up-level optimization, while a linear relative dynamic equation considering the J2 perturbation is used to obtain the impulses of orbital transfer in the low-level optimization. Finally, the effectiveness of the proposed model and method is validated by numerical examples.

  6. Environment-Aware Production Schedulingfor Paint Shops in Automobile Manufacturing: A Multi-Objective Optimization Approach.

    PubMed

    Zhang, Rui

    2017-12-25

    The traditional way of scheduling production processes often focuses on profit-driven goals (such as cycle time or material cost) while tending to overlook the negative impacts of manufacturing activities on the environment in the form of carbon emissions and other undesirable by-products. To bridge the gap, this paper investigates an environment-aware production scheduling problem that arises from a typical paint shop in the automobile manufacturing industry. In the studied problem, an objective function is defined to minimize the emission of chemical pollutants caused by the cleaning of painting devices which must be performed each time before a color change occurs. Meanwhile, minimization of due date violations in the downstream assembly shop is also considered because the two shops are interrelated and connected by a limited-capacity buffer. First, we have developed a mixed-integer programming formulation to describe this bi-objective optimization problem. Then, to solve problems of practical size, we have proposed a novel multi-objective particle swarm optimization (MOPSO) algorithm characterized by problem-specific improvement strategies. A branch-and-bound algorithm is designed for accurately assessing the most promising solutions. Finally, extensive computational experiments have shown that the proposed MOPSO is able to match the solution quality of an exact solver on small instances and outperform two state-of-the-art multi-objective optimizers in literature on large instances with up to 200 cars.

  7. Prepositioning emergency supplies under uncertainty: a parametric optimization method

    NASA Astrophysics Data System (ADS)

    Bai, Xuejie; Gao, Jinwu; Liu, Yankui

    2018-07-01

    Prepositioning of emergency supplies is an effective method for increasing preparedness for disasters and has received much attention in recent years. In this article, the prepositioning problem is studied by a robust parametric optimization method. The transportation cost, supply, demand and capacity are unknown prior to the extraordinary event, which are represented as fuzzy parameters with variable possibility distributions. The variable possibility distributions are obtained through the credibility critical value reduction method for type-2 fuzzy variables. The prepositioning problem is formulated as a fuzzy value-at-risk model to achieve a minimum total cost incurred in the whole process. The key difficulty in solving the proposed optimization model is to evaluate the quantile of the fuzzy function in the objective and the credibility in the constraints. The objective function and constraints can be turned into their equivalent parametric forms through chance constrained programming under the different confidence levels. Taking advantage of the structural characteristics of the equivalent optimization model, a parameter-based domain decomposition method is developed to divide the original optimization problem into six mixed-integer parametric submodels, which can be solved by standard optimization solvers. Finally, to explore the viability of the developed model and the solution approach, some computational experiments are performed on realistic scale case problems. The computational results reported in the numerical example show the credibility and superiority of the proposed parametric optimization method.

  8. Uncertainty Quantification in CO 2 Sequestration Using Surrogate Models from Polynomial Chaos Expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yan; Sahinidis, Nikolaos V.

    2013-03-06

    In this paper, surrogate models are iteratively built using polynomial chaos expansion (PCE) and detailed numerical simulations of a carbon sequestration system. Output variables from a numerical simulator are approximated as polynomial functions of uncertain parameters. Once generated, PCE representations can be used in place of the numerical simulator and often decrease simulation times by several orders of magnitude. However, PCE models are expensive to derive unless the number of terms in the expansion is moderate, which requires a relatively small number of uncertain variables and a low degree of expansion. To cope with this limitation, instead of using amore » classical full expansion at each step of an iterative PCE construction method, we introduce a mixed-integer programming (MIP) formulation to identify the best subset of basis terms in the expansion. This approach makes it possible to keep the number of terms small in the expansion. Monte Carlo (MC) simulation is then performed by substituting the values of the uncertain parameters into the closed-form polynomial functions. Based on the results of MC simulation, the uncertainties of injecting CO{sub 2} underground are quantified for a saline aquifer. Moreover, based on the PCE model, we formulate an optimization problem to determine the optimal CO{sub 2} injection rate so as to maximize the gas saturation (residual trapping) during injection, and thereby minimize the chance of leakage.« less

  9. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problemmore » is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.« less

  10. A parallel metaheuristic for large mixed-integer dynamic optimization problems, with applications in computational biology

    PubMed Central

    Henriques, David; González, Patricia; Doallo, Ramón; Saez-Rodriguez, Julio; Banga, Julio R.

    2017-01-01

    Background We consider a general class of global optimization problems dealing with nonlinear dynamic models. Although this class is relevant to many areas of science and engineering, here we are interested in applying this framework to the reverse engineering problem in computational systems biology, which yields very large mixed-integer dynamic optimization (MIDO) problems. In particular, we consider the framework of logic-based ordinary differential equations (ODEs). Methods We present saCeSS2, a parallel method for the solution of this class of problems. This method is based on an parallel cooperative scatter search metaheuristic, with new mechanisms of self-adaptation and specific extensions to handle large mixed-integer problems. We have paid special attention to the avoidance of convergence stagnation using adaptive cooperation strategies tailored to this class of problems. Results We illustrate its performance with a set of three very challenging case studies from the domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic signaling pathway and has 84 continuous and 34 binary decision variables. A second case study considers the dynamic modeling of signaling in liver cancer using high-throughput data, and has 135 continuous and 109 binaries decision variables. The third case study is an extremely difficult problem related with breast cancer, involving 690 continuous and 138 binary decision variables. We report computational results obtained in different infrastructures, including a local cluster, a large supercomputer and a public cloud platform. Interestingly, the results show how the cooperation of individual parallel searches modifies the systemic properties of the sequential algorithm, achieving superlinear speedups compared to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving (above a 60%) the performance with respect to a non-cooperative parallel scheme. The scalability of the method is also good (tests were performed using up to 300 cores). Conclusions These results demonstrate that saCeSS2 can be used to successfully reverse engineer large dynamic models of complex biological pathways. Further, these results open up new possibilities for other MIDO-based large-scale applications in the life sciences such as metabolic engineering, synthetic biology, drug scheduling. PMID:28813442

  11. A parallel metaheuristic for large mixed-integer dynamic optimization problems, with applications in computational biology.

    PubMed

    Penas, David R; Henriques, David; González, Patricia; Doallo, Ramón; Saez-Rodriguez, Julio; Banga, Julio R

    2017-01-01

    We consider a general class of global optimization problems dealing with nonlinear dynamic models. Although this class is relevant to many areas of science and engineering, here we are interested in applying this framework to the reverse engineering problem in computational systems biology, which yields very large mixed-integer dynamic optimization (MIDO) problems. In particular, we consider the framework of logic-based ordinary differential equations (ODEs). We present saCeSS2, a parallel method for the solution of this class of problems. This method is based on an parallel cooperative scatter search metaheuristic, with new mechanisms of self-adaptation and specific extensions to handle large mixed-integer problems. We have paid special attention to the avoidance of convergence stagnation using adaptive cooperation strategies tailored to this class of problems. We illustrate its performance with a set of three very challenging case studies from the domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic signaling pathway and has 84 continuous and 34 binary decision variables. A second case study considers the dynamic modeling of signaling in liver cancer using high-throughput data, and has 135 continuous and 109 binaries decision variables. The third case study is an extremely difficult problem related with breast cancer, involving 690 continuous and 138 binary decision variables. We report computational results obtained in different infrastructures, including a local cluster, a large supercomputer and a public cloud platform. Interestingly, the results show how the cooperation of individual parallel searches modifies the systemic properties of the sequential algorithm, achieving superlinear speedups compared to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving (above a 60%) the performance with respect to a non-cooperative parallel scheme. The scalability of the method is also good (tests were performed using up to 300 cores). These results demonstrate that saCeSS2 can be used to successfully reverse engineer large dynamic models of complex biological pathways. Further, these results open up new possibilities for other MIDO-based large-scale applications in the life sciences such as metabolic engineering, synthetic biology, drug scheduling.

  12. The Application of a Multiphase Triangulation Approach to Mixed Methods: The Research of an Aspiring School Principal Development Program

    ERIC Educational Resources Information Center

    Youngs, Howard; Piggot-Irvine, Eileen

    2012-01-01

    Mixed methods research has emerged as a credible alternative to unitary research approaches. The authors show how a combination of a triangulation convergence model with a triangulation multilevel model was used to research an aspiring school principal development pilot program. The multilevel model is used to show the national and regional levels…

  13. Using Mixed Methods and Collaboration to Evaluate an Education and Public Outreach Program (Invited)

    NASA Astrophysics Data System (ADS)

    Shebby, S.; Shipp, S. S.

    2013-12-01

    Traditional indicators (such as the number of participants or Likert-type ratings of participant perceptions) are often used to provide stakeholders with basic information about program outputs and to justify funding decisions. However, use of qualitative methods can strengthen the reliability of these data and provide stakeholders with more meaningful information about program challenges, successes, and ultimate impacts (Stern, Stame, Mayne, Forss, David & Befani, 2012). In this session, presenters will discuss how they used a mixed methods evaluation to determine the impact of an education and public outreach (EPO) program. EPO efforts were intended to foster more effective, sustainable, and efficient utilization of science discoveries and learning experiences through three main goals 1) increase engagement and support by leveraging of resources, expertise, and best practices; 2) organize a portfolio of resources for accessibility, connectivity, and strategic growth; and 3) develop an infrastructure to support coordination. The evaluation team used a mixed methods design to conduct the evaluation. Presenters will first discuss five potential benefits of mixed methods designs: triangulation of findings, development, complementarity, initiation, and value diversity (Greene, Caracelli & Graham, 2005). They will next demonstrate how a 'mix' of methods, including artifact collection, surveys, interviews, focus groups, and vignettes, was included in the EPO project's evaluation design, providing specific examples of how alignment between the program theory and the evaluation plan was best achieved with a mixed methods approach. The presentation will also include an overview of different mixed methods approaches and information about important considerations when using a mixed methods design, such as selection of data collection methods and sources, and the timing and weighting of quantitative and qualitative methods (Creswell, 2003). Ultimately, this presentation will provide insight into how a mixed methods approach was used to provide stakeholders with important information about progress toward program goals. Creswell, J.W. (2003). Research design: Qualitative, quantitative, and mixed approaches. Thousand Oaks, CA: Sage. Greene, J. C., Caracelli, V. J., & Graham, W. D. (1989). Toward a conceptual framework for mixed-method evaluation designs. Educational Evaluation and Policy Analysis, 11(3), 255-274. Stern, E; Stame, N; Mayne, J; Forss, K; Davis, R & Befani, B (2012) Broadening the range of designs and methods for impact evaluation. Department for International Development.

  14. Combined optimization model for sustainable energization strategy

    NASA Astrophysics Data System (ADS)

    Abtew, Mohammed Seid

    Access to energy is a foundation to establish a positive impact on multiple aspects of human development. Both developed and developing countries have a common concern of achieving a sustainable energy supply to fuel economic growth and improve the quality of life with minimal environmental impacts. The Least Developing Countries (LDCs), however, have different economic, social, and energy systems. Prevalence of power outage, lack of access to electricity, structural dissimilarity between rural and urban regions, and traditional fuel dominance for cooking and the resultant health and environmental hazards are some of the distinguishing characteristics of these nations. Most energy planning models have been designed for developed countries' socio-economic demographics and have missed the opportunity to address special features of the poor countries. An improved mixed-integer programming energy-source optimization model is developed to address limitations associated with using current energy optimization models for LDCs, tackle development of the sustainable energization strategies, and ensure diversification and risk management provisions in the selected energy mix. The Model predicted a shift from traditional fuels reliant and weather vulnerable energy source mix to a least cost and reliable modern clean energy sources portfolio, a climb on the energy ladder, and scored multifaceted economic, social, and environmental benefits. At the same time, it represented a transition strategy that evolves to increasingly cleaner energy technologies with growth as opposed to an expensive solution that leapfrogs immediately to the cleanest possible, overreaching technologies.

  15. Maximum likelihood pedigree reconstruction using integer linear programming.

    PubMed

    Cussens, James; Bartlett, Mark; Jones, Elinor M; Sheehan, Nuala A

    2013-01-01

    Large population biobanks of unrelated individuals have been highly successful in detecting common genetic variants affecting diseases of public health concern. However, they lack the statistical power to detect more modest gene-gene and gene-environment interaction effects or the effects of rare variants for which related individuals are ideally required. In reality, most large population studies will undoubtedly contain sets of undeclared relatives, or pedigrees. Although a crude measure of relatedness might sometimes suffice, having a good estimate of the true pedigree would be much more informative if this could be obtained efficiently. Relatives are more likely to share longer haplotypes around disease susceptibility loci and are hence biologically more informative for rare variants than unrelated cases and controls. Distant relatives are arguably more useful for detecting variants with small effects because they are less likely to share masking environmental effects. Moreover, the identification of relatives enables appropriate adjustments of statistical analyses that typically assume unrelatedness. We propose to exploit an integer linear programming optimisation approach to pedigree learning, which is adapted to find valid pedigrees by imposing appropriate constraints. Our method is not restricted to small pedigrees and is guaranteed to return a maximum likelihood pedigree. With additional constraints, we can also search for multiple high-probability pedigrees and thus account for the inherent uncertainty in any particular pedigree reconstruction. The true pedigree is found very quickly by comparison with other methods when all individuals are observed. Extensions to more complex problems seem feasible. © 2012 Wiley Periodicals, Inc.

  16. Integer Optimization Model for a Logistic System based on Location-Routing Considering Distance and Chosen Route

    NASA Astrophysics Data System (ADS)

    Mulyasari, Joni; Mawengkang, Herman; Efendi, Syahril

    2018-02-01

    In a distribution network it is important to decide the locations of facilities that impacts not only the profitability of an organization but the ability to serve customers.Generally the location-routing problem is to minimize the overall cost by simultaneously selecting a subset of candidate facilities and constructing a set of delivery routes that satisfy some restrictions. In this paper we impose restriction on the route that should be passed for delivery. We use integer programming model to describe the problem. A feasible neighbourhood search is proposed to solve the result model.

  17. A new Fortran 90 program to compute regular and irregular associated Legendre functions (new version announcement)

    NASA Astrophysics Data System (ADS)

    Schneider, Barry I.; Segura, Javier; Gil, Amparo; Guan, Xiaoxu; Bartschat, Klaus

    2018-04-01

    This is a revised and updated version of a modern Fortran 90 code to compute the regular Plm (x) and irregular Qlm (x) associated Legendre functions for all x ∈(- 1 , + 1) (on the cut) and | x | > 1 and integer degree (l) and order (m). The necessity to revise the code comes as a consequence of some comments of Prof. James Bremer of the UC//Davis Mathematics Department, who discovered that there were errors in the code for large integer degree and order for the normalized regular Legendre functions on the cut.

  18. A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing

    NASA Technical Reports Server (NTRS)

    Takaki, Mitsuo; Cavalcanti, Diego; Gheyi, Rohit; Iyoda, Juliano; dAmorim, Marcelo; Prudencio, Ricardo

    2009-01-01

    The complexity of constraints is a major obstacle for constraint-based software verification. Automatic constraint solvers are fundamentally incomplete: input constraints often build on some undecidable theory or some theory the solver does not support. This paper proposes and evaluates several randomized solvers to address this issue. We compare the effectiveness of a symbolic solver (CVC3), a random solver, three hybrid solvers (i.e., mix of random and symbolic), and two heuristic search solvers. We evaluate the solvers on two benchmarks: one consisting of manually generated constraints and another generated with a concolic execution of 8 subjects. In addition to fully decidable constraints, the benchmarks include constraints with non-linear integer arithmetic, integer modulo and division, bitwise arithmetic, and floating-point arithmetic. As expected symbolic solving (in particular, CVC3) subsumes the other solvers for the concolic execution of subjects that only generate decidable constraints. For the remaining subjects the solvers are complementary.

  19. Charge-transfer crystallites as molecular electrical dopants

    PubMed Central

    Méndez, Henry; Heimel, Georg; Winkler, Stefanie; Frisch, Johannes; Opitz, Andreas; Sauer, Katrein; Wegner, Berthold; Oehzelt, Martin; Röthel, Christian; Duhm, Steffen; Többens, Daniel; Koch, Norbert; Salzmann, Ingo

    2015-01-01

    Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself. Despite a comparable relative increase in conductivity, we observe only partial charge transfer for the latter. In contrast to the parent polymer, pronounced intermolecular frontier-orbital hybridization of oligomer and dopant in 1:1 mixed-stack co-crystallites leads to the emergence of empty electronic states within the energy gap of the surrounding quaterthiophene matrix. It is their Fermi–Dirac occupation that yields mobile charge carriers and, therefore, the co-crystallites—rather than individual acceptor molecules—should be regarded as the dopants in such systems. PMID:26440403

  20. Recent research in network problems with applications

    NASA Technical Reports Server (NTRS)

    Thompson, G. L.

    1980-01-01

    The capabilities of network codes and their extensions are surveyed in regard to specially structured integer programming problems which are solved by using the solutions of a series of ordinary network problems.

Top