NASA Astrophysics Data System (ADS)
Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram
2015-01-01
Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (Δ‡G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.
Dharmaraja, Jeyaprakash; Subbaraj, Paramasivam; Esakkidurai, Thirugnanasamy; Shobana, Sutha; Raji, Saravanan
2014-01-01
Mixed ligand complexation of 2-aminobenzamide (2AB) as ligand [L] with Zn(II) in the presence of some bio-relevant amino acid constituents like glycine (gly), L-alanine (ala), L-valine (val) and L-phenylalanine (phe) as ligand [B] have been investigated using pH-metric measurements with a combined pH electrode at different temperatures (300, 310, 320 and 330 ± 0.1 K) in 50% (v/v) ethanol-water mixture containing I = 0.15 M NaClO(4) as supporting electrolyte. Computer assisted analysis of the experimental titration data showed the presence of ZnLB and ZnLB2 species as mixed ligand complexes in addition to various binary species. In ZnLB/ZnLB(2) species, both primary and secondary ligands act as bidentate to form a stable six, five membered chelate ring. The calculated stabilization parameter Deltalog K, log X, log X' and % R.S. values clearly show the mixed ligand complexes have higher stabilities than their binary. Thermodynamic parameters DeltaG, DeltaH and DeltaS have been derived from the temperature dependence of the stability constants. The complexation behavior of ZnLB species has been studied by means of electronic spectra. The percentage distribution of various binary and mixed ligand species of each type of the complexes in solution depending on pH and the ratio of Zn(II) to 2-aminobenzamide/amino acid of the systems.
NASA Astrophysics Data System (ADS)
Numan, Ahmed T.; Atiyah, Eman M.; Al-Shemary, Rehab K.; Ulrazzaq, Sahira S. Abd
2018-05-01
New Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin-2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic moment measurements. These measurements indicate that the ligand [HL] coordinates with metal (II) ion in a tridentate manner through the oxygen and nitrogen atoms of the ligand, octahedral structures are suggested for these complexes. Antibacterial activity of the ligands [HL], [HQ] and their complexes are studied against (gram positive) and (gram negative) bacteria.
NASA Astrophysics Data System (ADS)
Abd El-Halim, Hanan F.; Mohamed, Gehad G.; Khalil, Eman A. M.
2017-10-01
A series of mixed ligand complexes were prepared from the Schiff base (L1) as a primary ligand, prepared by condensation of oxamide and furan-2-carbaldehyde, and 1,10-phenanthroline (1,10-phen) as a secondary ligand. The Schiff base ligand and its mixed ligand chelates were characterized based on elemental analysis, IR, 1H NMR, thermal analysis, UV-Visible, mass, molar conductance, magnetic moment. X-ray diffraction, solid reflectance and ESR also have been studied. The mixed ligand complexes were found to have the formulae of [M(L1) (1,10-phen)]Clm.nH2O (M = Cr(III) and Fe(III) (m = 3) (n = 0); M = Mn(II), Cu(II) and Cd(II) (m = 2) (n = 0); and M = Co(II) (m = 2) (n = 1), Ni(II) (m = 2) (n = 2) and Zn(II) (m = 2) (n = 3)) and that the geometrical structure of the complexes were octahedral. The parameters of thermodynamic using Coats-Redfern and Horowitz-Metzger equations were calculated. The synthesized Schiff base ligand, 1,10-phenanthroline ligand and Their mixed ligand complexes were also investigated for their antibacterial and antifungal activity against bacterial species (Gram-Ve bacteria: Pseudomonas aeruginosa and Escherichia coli) and (Gram + Ve bacteria: Bacillus subtilis and Streptococcus pneumonia) and fungi (Aspergillus fumigates and Candida albicans). The anticancer activity of the new compounds had been tested against breast (MFC7) and colon (HCT-116) cell lines. The results showed high activity for the synthesized compounds.
NASA Astrophysics Data System (ADS)
Hosny, Nasser M.; Hassan, Nader Y.; Mahmoud, Heba M.; Abdel-Rhman, Mohamed H.
2018-03-01
The ligand 2-isonicotinoyl-N-phenylhydrazine-1-carboxamide (H3L) and its metal complexes with Co(II), Ni(II), Cu(II) and Zn(II) acetates have been synthesized. The isolated compounds have been characterized by elemental analyses, FT-IR, 1H NMR, 13C NMR, ESR, mass, electronic spectra, electrical conductivity, effective magnetic moments and thermal analyses. The free organic ligand exists in the keto form, but in the metal complexes, it coordinates in the enol form. Four coordinated species were suggested for all the isolated metal complexes. The measured optical band gap values confirmed the presence of direct electronic transition and the semi-conductivity of the compounds. The ligand and its Zn(II) complex were examined as cytotoxic agent against HCT-116 and HePG-2. The ligand showed very strong cytotoxic effect against HePG-2, but moderate cytotoxicity against HCT-116. Zn(II) complex showed weak cytotoxicity against the two cell lines.
Chin, Lee-Fang; Kong, Siew-Ming; Seng, Hoi-Ling; Tiong, Yee-Lian; Neo, Kian-Eang; Maah, Mohd Jamil; Khoo, Alan Soo-Beng; Ahmad, Munirah; Hor, Tzi-Sum Andy; Lee, Hong-Boon; San, Swee-Lan; Chye, Soi-Moi; Ng, Chew-Hee
2012-10-01
Two ternary Zn(II) complexes, with 1,10-phenanthroline (phen) as the main ligand and a carboxylate-containing ligand [dipicolinate (dipico) or L-threoninate (L-Thr)] as the subsidiary ligand, were prepared and characterized by elemental analysis, Fourier transform IR, UV, and fluorescence spectroscopy, X-ray diffraction, molar conductivity, and electrospray ionization mass spectrometry. X-ray structure analysis shows that both [Zn(phen)(dipico)(H(2)O)]·H(2)O (1) and [Zn(phen)(L-Thr)(H(2)O)Cl]·2H(2)O (2) have octahedral geometry about the Zn(II) atom. Both complexes can inhibit topoisomerase I, and have better anticancer activity than cisplatin against nasopharyngeal cancer cell lines, HK1 and HONE-1, with concentrations causing 50 % inhibition of cell proliferation (IC(50)) in the low micromolar range. Complex 2 has the highest therapeutic index for HK1. Both Zn(II) complexes can induce cell death by apoptosis. Changing the subsidiary ligand in the Zn(II) complexes affects the UV-fluorescence spectral properties of the coordinated phen ligand, the binding affinity for some DNA sequences, nucleobase sequence-selective binding, the phase at which cell cycle progression was arrested for treated cancer cells, and their therapeutic index.
The ligand effect on the hydrolytic reactivity of Zn(II) complexes toward phosphate diesters.
Bonfá, Lodovico; Gatos, Maddalena; Mancin, Fabrizio; Tecilla, Paolo; Tonellato, Umberto
2003-06-16
The catalytic effects of the Zn(II) complexes of a series of poliaminic ligands in the hydrolysis of the activated phosphodiesters bis-p-nitrophenyl phosphate (BNP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNP) have been investigated. The reactions show first-order rate dependency on both substrate and metal ion complex and a pH dependence which is diagnostic of the acid dissociation of the reactive species. The mechanism of the metal catalyzed transesterification of HPNP has been assessed by solvent isotopic kinetic effect studies and involves the intramolecular nucleophilic attack of the substrate alcoholic group, activated by metal ion coordination. The intrinsic reactivity of the different complexes is controlled by the nature and structure of the ligand: complexes of tridentate ligands, particularly if characterized by a facial coordination mode, are more reactive than those of tetradentate ligands which can hardly allow binding sites for the substrate. In the case of tridentate ligands that form complexes with a facial coordination mode, a linear Brønsted correlation between the reaction rate (log k) and the pK(a) of the active nucleophile is obtained. The beta(nuc) values are 0.75 for the HPNP transesterification and 0.20 for the BNP hydrolysis. These values are indicated as the result of the combination of two opposite Lewis acid effects of the Zn(II) ion: the activation of the substrate and the efficiency of the metal coordinated nucleophile. The latter factor apparently prevails in determining the intrinsic reactivity of the Zn(II) complexes.
NASA Astrophysics Data System (ADS)
Shobana, Sutha; Dharmaraja, Jeyaprakash; Selvaraj, Shanmugaperumal
2013-04-01
Equilibrium studies of Ni(II), Cu(II) and Zn(II) mixed ligand complexes involving a primary ligand 5-fluorouracil (5-FU; A) and imidazoles viz., imidazole (him), benzimidazole (bim), histamine (hist) and L-histidine (his) as co-ligands(B) were carried out pH-metrically in aqueous medium at 310 ± 0.1 K with I = 0.15 M (NaClO4). In solution state, the stoichiometry of MABH, MAB and MAB2 species have been detected. The primary ligand(A) binds the central M(II) ions in a monodentate manner whereas him, bim, hist and his co-ligands(B) bind in mono, mono, bi and tridentate modes respectively. The calculated Δ log K, log X and log X' values indicate higher stability of the mixed ligand complexes in comparison to binary species. Stability of the mixed ligand complex equilibria follows the Irving-Williams order of stability. In vitro biological evaluations of the free ligand(A) and their metal complexes by well diffusion technique show moderate activities against common bacterial and fungal strains. Oxidative cleavage interaction of ligand(A) and their copper complexes with CT DNA is also studied by gel electrophoresis method in the presence of oxidant. In vitro antioxidant evaluations of the primary ligand(A), CuA and CuAB complexes by DPPH free radical scavenging model were carried out. In solid, the MAB type of M(II)sbnd 5-FU(A)sbnd his(B) complexes were isolated and characterized by various physico-chemical and spectral techniques. Both the magnetic susceptibility and electronic spectral analysis suggest distorted octahedral geometry. Thermal studies on the synthesized mixed ligand complexes show loss of coordinated water molecule in the first step followed by decomposition of the organic residues subsequently. XRD and SEM analysis suggest that the microcrystalline nature and homogeneous morphology of MAB complexes. Further, the 3D molecular modeling and analysis for the mixed ligand MAB complexes have also been carried out.
NASA Astrophysics Data System (ADS)
Al-Resayes, Saud I.; Shakir, Mohammad; Abbasi, Ambreen; Amin, Kr. Mohammad Yusuf; Lateef, Abdul
The Schiff base ligand, bis(indoline-2-one)triethylenetetramine (L) obtained from condensation of triethylenetetramine and isatin was used to synthesize the complexes of type, [ML]Cl2 [M = Co(II), Ni(II), Cu(II) and Zn(II)]. L was characterized on the basis of the results of elemental analysis, FT-IR, 1H and 13C NMR, mass spectroscopic studies. The stoichiometry, bonding and stereochemistries of complexes were ascertained on the basis of results of elemental analysis, magnetic susceptibility values, molar conductance and various spectroscopic studies. EPR, UV-vis and magnetic moments revealed an octahedral geometry for complexes. L and its Cu(II) and Zn(II) complexes were screened for their antibacterial activity. Analgesic activity of Cu(II) and Zn(II) complexes was also tested in rats by tail flick method. Both complexes were found to possess good antibacterial and moderate analgesic activity.
NASA Astrophysics Data System (ADS)
Babahan, Ilknur; Emirdağ-Öztürk, Safiye; Poyrazoğlu-Çoban, Esin
2015-04-01
A novel ligand, vicinal dioxime ligand (egonol-hydrazone glyoxime) (LH2) was synthesized and characterized using 1H NMR, 13C NMR, MS, AAS, infrared spectroscopy, and magnetic susceptibility measurements. Mononuclear nickel (II), copper (II) and cobalt (II) complexes with a metal:ligand ratio of 1:2 for LH2 were also synthesized. Zn(II) forms complex [Zn(LH)Cl2] with a metal to ligand ratio of 1:1. IR spectrum shows that the ligand act in a bidentate manner and coordinates N4 donor groups of the ligands to NiII, CuII, CoII and ZnII ions. The detection of H-bonding (Osbnd H⋯O) in the [M(LH)2] metal complexes by IR spectra supported the square-planar MN4 coordination of Ni(II), Cu(II) and Co(II) complexes. The antimicrobial activities of compounds LH2 and their Ni(II), Cu(II), Co(II) and Zn(II) complexes were evaluated using the disc diffusion method against 16 bacteria and 5 yeasts. The minimal inhibitory concentrations (MICs) against all the bacteria and yeasts were also determined. Among the attempted test compounds, it is showed that all the compounds (L, LH2, [Ni(LH)2], [Cu(LH)2], [Co(LH)2(H2O)2], [Zn(LH)Cl2]) were effective against used test microorganisms.
Screening the efficient biological prospects of triazole allied mixed ligand metal complexes
NASA Astrophysics Data System (ADS)
Utthra, Ponnukalai Ponya; Kumaravel, Ganesan; Raman, Natarajan
2017-12-01
Triazole appended mixed ligand complexes (1-8) of the general formula [ML (bpy/phen)2]Cl2, where M = Cu(II), Co(II), Ni(II) and Zn(II), L = triazole appended Schiff base (E)sbnd N-(4-nitrobenzylidene)-1H-1,2,4-triazol-3-amine and bpy/phen = 2,2‧-bipyridine/1,10-phenanthroline, have been synthesized. The design and synthesis of this elaborate ligand has been performed with the aim of increasing stability and conjugation of 1,2,4 triazole, whose Schiff base derivatives are known as biologically active compounds thereby exploring their DNA binding affinity and other biological applications. The compounds have been comprehensively characterized by elemental analysis, spectroscopic methods (IR, UV-Vis, EPR, 1H and 13C NMR spectroscopy), ESI mass spectrometry and magnetic susceptibility measurements. The complexes were found to exhibit octahedral geometry. The complexes 1-8 were subjected to DNA binding techniques evaluated using UV-Vis absorption, CV, CD, Fluorescence spectroscopy and hydrodynamic measurements. Complex 5 showed a Kb value of 3.9 × 105 M-1. The DNA damaging efficacy for the complexes was observed to be high compared to the ligand. The antimicrobial screening of the compounds against bacterial and fungal strains indicates that the complexes possess excellent antimicrobial activity than the ligand. The overall biological activity of the complexes with phen as a co-ligand possessed superior potential than the ligand.
Williams, Neil J; Gan, Wei; Reibenspies, Joseph H; Hancock, Robert D
2009-02-16
The idea is examined that steric crowding in ligands can lead to diminution of the chelation enhanced fluorescence (CHEF) effect in complexes of the small Zn(II) ion as compared to the larger Cd(II) ion. Steric crowding is less severe for the larger ion and for the smaller Zn(II) ion leads to Zn-N bond length distortion, which allows some quenching of fluorescence by the photoinduced electron transfer (PET) mechanism. Some metal ion complexing properties of the ligand tris(2-quinolylmethyl)amine (TQA) are presented in support of the idea that more sterically efficient ligands, which lead to less M-N bond length distortion with the small Zn(II) ion, will lead to a greater CHEF effect with Zn(II) than Cd(II). The structures of [Zn(TQA)H(2)O](ClO(4))(2).1.5 H(2)O (1), ([Pb(TQA)(NO(3))(2)].C(2)H(5)OH) (2), ([Ag(TQA)(ClO(4))]) (3), and (TQA).C(2)H(5)OH (4) are reported. In 1, the Zn(II) is 5-coordinate, with four N-donors from the ligand and a water molecule making up the coordination sphere. The Zn-N bonds are all of normal length, showing that the level of steric crowding in 1 is not sufficient to cause significant Zn-N bond length distortion. This leads to the observation that, as expected, the CHEF effect in the Zn(II)/TQA complex is much stronger than that in the Cd(II)/TQA complex, in contrast to similar but more sterically crowded ligands, where the CHEF effect is stronger in the Cd(II) complex. The CHEF effect for TQA with the metal ions examined varies as Zn(II) > Cd(II) > Ni(II) > Pb(II) > Hg(II) > Cu(II). The structure of 2 shows an 8-coordinate Pb(II), with evidence of a stereochemically active lone pair, and normal Pb-N bond lengths. In 3, the Ag(I) is 5-coordinate, with four N-donors from the TQA and an oxygen from the perchlorate. The Ag(I) shows no distortion toward linear 2-coordinate geometry, and the Ag-N bonds fall slightly into the upper range for Ag-N bonds in 5-coordinate complexes. The structure of 4 shows the TQA ligand to be involved in pi-stacking between quinolyl groups from adjacent TQA molecules. Formation constants determined by UV-visible spectroscopy are reported in 0.1 M NaClO(4) at 25 degrees C for TQA with Zn(II), Cd(II), and Pb(II). When compared with other similar ligands, one sees that, as the level of steric crowding increases, the stability decreases most with the small Zn(II) ion and least with the large Pb(II) ion. This is in accordance with the idea that TQA has a moderate level of steric crowding and that steric crowding increases for TQA analogs tris(2-pyridylmethyl)amine (TPyA) < TQA < tris(6-methyl-2-pyridyl)amine (TMPyA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiao-Bing; Lu, Wen-Guan, E-mail: lwg@sgu.edu.cn; Zhong, Di-Chang
The reactions of Zn(NO{sub 3}){sub 2}·6H{sub 2}O with mixed ligands of 5-amino-tetrazole (Hatz) and l,2,4,5-benzenetetracarboxylic acid (H{sub 4}btec) under hydro(solvo)thermal conditions, gave two three-dimensional (3D) porous metal-organic frameworks (MOFs) of ([Zn{sub 3}(atz){sub 2}(btec)(DMF){sub 2}]·DMF·2H{sub 2}O){sub n} (1) and [Zn{sub 2}(Hprz)(atz)(btec)(H{sub 2}O)]{sub n} (2) in the absence and presence of piperazine (prz), respectively. 1 and 2 were characterized by infrared spectra (IR), elemental analyses (EA) and single-crystal/powder X-ray diffraction. In 1, the adjacent 1D [Zn{sub 3}(btec)]{sub n}{sup 2n+} chains are linked together by atz{sup −} ligands to form a 3D porous MOF with 1D tetragonal channels filled with coordinated and guestmore » DMF, and lattice water molecules. In 2, the adjacent 2D [Zn{sub 2}(btec)]{sub n} wavelike sheets are pillared through atz{sup −} ligands to generate a 3D layered-pillared porous MOF with 1D open channels, which are occupied by coordinated Hprz{sup +} cations and coordinated water molecules. Additionally, thermal stabilities and photoluminescent properties of both compounds in the solid-state at room temperature have been investigated and discussed in detail. - Graphical abstract: Two new MOFs constructed from Zn(II) salts with mixed ligands of 5-amino-tetrazole and l,2,4,5-benzenetetracarboxylic acid were synthesized under different reaction conditions. Structural diversities indicate that the reaction solvent system or the presence of organic base play crucial roles in modulating structures of these compounds. And more, their thermal stability and luminescence are also discussed. - Highlights: • Two new Zn(II) MOFs based on mixed ligands were synthesized. • The two Zn(II) MOFs exhibit different structural motifs. • The two Zn(II) MOFs are photoluminscent in the solid state at room temperature.« less
NASA Astrophysics Data System (ADS)
Soleimani, Esmaiel
2011-05-01
The preparation of a novel macrocyclic ligand ( 1), N,N'-diethylhomopiperazinyl,2,6-pyridinedicarboxylate and its Co(II), Ni(II), Cu(II), and Zn(II) complexes are described. The ligand was prepared in EtOH from the reaction of dipotassium salt of 2,6-pyridinedicarboxylic acid with 1,2-dibromoethane in the presence of homopiperazine. Reaction of macrocyclic ligand ( 1) in EtOH with CoCl 2.6H 2O, NiCl 2.6H 2O, CuCl 2.2H 2O, and ZnCl 2·2H 2O yielded the complexes with the general formula [M(L)Cl 2] {where M = Co(II) ( 2), Ni(II) ( 3), Cu(II) ( 4), Zn ( 5), respectively}. The analysis of IR, 1H and 13C NMR spectral data of macrocyclic ligand ( 1) and its Zn(II) complex ( 5) together with their molar conductivity values, and the magnetic moments of the complexes suggest that the macrocyclic ligand ( 1) is bonded to metal(II) ions through two oxygen atoms of ester moiety and the two nitrogen atoms of homopiperazine ring. The electronic spectral data of these complexes in DMSO are in good agreement with the octahedral coordination of M(II) ions. The ligand field parameters for these complexes, i.e. splitting energy and Racah parameter were calculated to be 14,945 and 673 cm -1 for the Co(II) ( 2), 16,260 and 774 cm -1 for the Ni(II) ( 3) complexes respectively. The spliting energy of 17,262 cm -1 was obtained for the Cu(II) complex ( 4).
NASA Astrophysics Data System (ADS)
Zhang, Meili; Ren, Yixia; Chen, Xiaoli
2014-10-01
Two new Zn(II) complexes, [Zn2(L)(H2O)3]ṡH2O (1) and [Zn3(HL)2(bpp)2(Hbpp)2]ṡ10H2Oṡ2ClO4 (2) (H4L = cis,cis,cis,cis-1,2,3,4-cyclopentanetracarboxylic acid, bpp = 1,3-bis(4-pyridyl)propane), have been synthesized and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction techniques. The structure indicates that the complex 1 crystallizes in triclinic, space group Pī, in which, the four carboxylate groups of L ligand adopt μ2-η1:η0, μ2-η1:η1, μ1-η1:η1 coordination modes, respectively, bridging Zn(II) atoms to generate a (4,6)-connected 2D bilayer network. The structure indicates that the complex 2 crystallizes in monoclinic, space group C2/c, in which, three deprotonated carboxylate groups of L ligand adopt uniform μ1-η1:η0 coordination mode linking Zn(II) atoms to form a 1D polymeric ribbon, the bpp ligands further extend such ribbon giving rised to a (3,4)-connected 2D bilayer network. The most striking feature of 1 and 2 is that both of bilayer networks contain 1D solvent channel, where water molecules are located. In additional, luminescent properties of two complexes have also been studied.
NASA Astrophysics Data System (ADS)
Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Elerman, Yalcin; Buyukgungor, Orhan
2013-01-01
A new potentially hexadentate N2O4 Schiff base ligand, H2L derived from condensation reaction of an aromatic diamine and salicylaldehyde, and its metal complexes were characterized by elemental analyses, IR, UV-Vis, EI-MS, 1H and 13C NMR spectra, as well as conductance measurements. It has been originated that the Schiff base ligand with Cu(II), Ni(II), Co(II), Cd(II) and Zn(II) ions form mononuclear complexes on 1:1 (metal:ligand) stoichiometry. The conductivity data confirm the non-electrolytic nature of the complexes. Also the crystal structures of the complexes [ZnL] and [CoL] have also been determined by using X-ray crystallographic technique. The Zn(II) and Co(II) complexes show a tetrahedral configuration. Electronic absorption spectra of the Cu(II) and Ni(II) complexes suggest a square-planar geometry around the central metal ion. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Bacillus cereus, Enterococcus faecalis and Listeria monocytogenes and also against the three Gram-negative bacteria: Salmonella paraB, Citrobacter freundii and Enterobacter aerogenes. The results showed that in some cases the antibacterial activity of complexes were more than nalidixic acid and amoxicillin as standards.
NASA Astrophysics Data System (ADS)
Bakale, Raghavendra P.; Naik, Ganesh N.; Machakanur, Shrinath S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.; Gudasi, Kalagouda B.
2018-02-01
A hydrazone ligand has been synthesized by the condensation of 2-nitrobenzaldehyde and hydralazine, and its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been reported. Structural characterization of the ligand and its metal complexes has been performed by various spectroscopic [IR, NMR, UV-Vis, Mass], thermal and other physicochemical methods. The structure of the ligand and its Ni(II) complex has been characterized by single crystal X-ray diffraction studies. All the synthesized compounds have been screened for in vitro antimicrobial activity. The antibacterial activity is tested against Gram-positive strains Enterococcus faecalis, Streptococcus mutans and Staphylococcus aureus and Gram-negative strains Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae using ciprofloxacin as the reference standard. Antifungal activity is tested against Candida albicans, Aspergillus fumigatus and Aspergillus niger using ketoconazole as the reference standard. The minimum inhibitory concentration (MIC) was determined for test compounds as well as for reference standard. Ligand, Cu(II) and Zn(II) complexes have shown excellent activity against Candida albicans.
NASA Astrophysics Data System (ADS)
Majumdar, Dhrubajyoti; Biswas, Jayanta Kumar; Mondal, Monojit; Surendra Babu, M. S.; Metre, Ramesh K.; Das, Sourav; Bankura, Kalipada; Mishra, Dipankar
2018-03-01
A series of dinuclear Zn(II) complexes [Zn2 (L1) (CH3OH)2(SCN) (OAc)](1), [Zn2 (L1) (CH3OH)2(N3)2](2) and [Zn2 (L1) (Cl)2(CH3OH)]·CH3OH (3) have been synthesized by the reaction of compartmental Schiff base ligand (H2L1) [N,N‧-Bis(3-ethoxysalicylidenimino)-1,3-diaminopropane] with Zn(OAc)2·2H2O in presence of coligand like KSCN, NaN3 and NaCl respectively. X-ray diffraction analysis revealed that all the complexes are neutral and possess a 4-membered Zn2 (μ2-O)2 ring fastened by the unified coordination action of a doubly deprotonated ligand. In addition, solid state structure of the complexes display extensive intermolecular interaction which has been supported theoretically by Hirshfeld surface analysis with 2D Fingerprint plots. The synthesized Zn(II) metal complexes observed enhancement of luminescence emission compared to the parent Schiff base due to emanating ligand based intraligand (π→π∗) fluorescence. Additionally, Zn(II) metal complexes exhibited considerable antimicrobial potency against some important Gram +ve and Gram -ve bacteria.
NASA Astrophysics Data System (ADS)
Kazemi, Zahra; Rudbari, Hadi Amiri; Mirkhani, Valiollah; Sahihi, Mehdi; Moghadam, Majid; Tangestaninejad, Sharam; Mohammadpoor-Baltork, Iraj
2015-09-01
A tridentate Schiff base ligand NNO donor (HL: 1-((E)-((pyridin-2-yl)methylimino)methyl)naphthalen-2-ol was synthesized from condensation of 2-hydroxynaphtaldehyde and 2-picolylamine. Zinc complex, Zn2L2(NO3)2, was prepared from reaction of Zn(NO3)2 and HL at ambient temperature. The ligand and complex were characterized by FT-IR, 1H NMR, 13C NMR and elemental analysis (CHN). Furthermore, the structure of dinuclear Zn(II) complex was determined by single crystal X-ray analysis. The complex, Zn2L2(NO3)2, is centrosymmetric dimer in which deprotonated phenolates bridge the two Zn(II) atoms and link the two halves of the dimer. In the structure, Zinc(II) ions have a highly distorted six-coordinate structure bonded to two oxygen atoms from a bidentate nitrate group, the pyridine nitrogen, an amine nitrogen and phenolate oxygens. The interaction of dinuclear Zn(II) complex with fish sperm DNA (FS-DNA) and HSA was investigated under physiological conditions using fluorescence quenching, UV-Vis spectroscopy, molecular dynamics simulation and molecular docking methods. The estimated binding constants for the DNA-complex and HSA-complex were (3.60 ± 0.18) × 104 M-1 and (1.35 ± 0.24) × 104 M-1, respectively. The distance between dinuclear Zn(II) complex and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Molecular docking studies revealed the binding of dinuclear Zn(II) complex to the major groove of FS-DNA and IIA site of protein by formation of hydrogen bond, π-cation and hydrophobic interactions.
NASA Astrophysics Data System (ADS)
Abdel Aziz, Ayman A.; Badr, Ibrahim H. A.; El-Sayed, Ibrahim S. A.
2012-11-01
Novel mononuclear Zn(II) and Al(III) complexes were synthesized from the reactions of Zn(OAc)2·2H2O and anhydrous AlCl3 with neutral N2O2 donor tetradentate Schiff bases; N,N'bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H2L1) and N,N'bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H2L2). The new complexes were fully characterized by using micro analyses (CHN), FT-IR, 1H NMR, UV-Vis spectra and thermal analysis. The analytical data have been showed that, the stoichiometry of the complexes is 1:1. Spectroscopic data suggested tetrahedral and square pyramidal geometries for Zn(II) and Al(III) complexes, respectively. The synthesized Zn(II), and Al(III) complexes exhibited intense fluorescence emission in the visible region upon UV-excitation in methylene chloride solution at ambient temperature. This high fluorescence emission was assigned to the strong coordination of the ligands to the small and the highly charged Zn(II) and Al(III) ions. Such strong coordination seems to extend the π-conjugation of the complexes. Thermal analysis measurements indicated that the complexes have good thermal stability. As a potential application the biological activity (e.g., antimicrobial action) of the prepared ligands and complexes was assessed by in-vitro testing of their effect on the growth of various strains of bacteria and fungi.
Abdel Aziz, Ayman A; Badr, Ibrahim H A; El-Sayed, Ibrahim S A
2012-11-01
Novel mononuclear Zn(II) and Al(III) complexes were synthesized from the reactions of Zn(OAc)(2).2H(2)O and anhydrous AlCl(3) with neutral N2O2 donor tetradentate Schiff bases; N,N'bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H(2)L(1)) and N,N'bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H(2)L(2)). The new complexes were fully characterized by using micro analyses (CHN), FT-IR, (1)H NMR, UV-Vis spectra and thermal analysis. The analytical data have been showed that, the stoichiometry of the complexes is 1:1. Spectroscopic data suggested tetrahedral and square pyramidal geometries for Zn(II) and Al(III) complexes, respectively. The synthesized Zn(II), and Al(III) complexes exhibited intense fluorescence emission in the visible region upon UV-excitation in methylene chloride solution at ambient temperature. This high fluorescence emission was assigned to the strong coordination of the ligands to the small and the highly charged Zn(II) and Al(III) ions. Such strong coordination seems to extend the π-conjugation of the complexes. Thermal analysis measurements indicated that the complexes have good thermal stability. As a potential application the biological activity (e.g., antimicrobial action) of the prepared ligands and complexes was assessed by in-vitro testing of their effect on the growth of various strains of bacteria and fungi. Copyright © 2012 Elsevier B.V. All rights reserved.
Mohamed, Gehad G; El-Gamel, Nadia E A
2005-04-01
Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes with the ligand 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester (HL(2)) have been prepared and characterized by elemental analyses, molar conductance, magnetic moment, thermal analysis and spectral data. 1:1 M:HL(2) complexes, with the general formula [M(HL(2))X(2)].nH(2)O (where M = Co(II) (X = Cl, n = 0), Ni(II) (X = Cl, n = 3), Cu(II) (grey colour, X = AcO, n = 1), Cu(II) (yellow colour, X = Cl, n = 0) and Zn(II) (X = Br, n = 0). In addition, the Fe(III) and UO(2)(II) complexes of the type 1:2 M:HL(2) and with the formulae [Fe(L(2))(2)]Cl and [UO(2)(HL(2))(2)](NO(3))(2) are prepared. From the IR data, it is seen that HL(2) ligand behaves as a terdentate ligand coordinated to the metal ions via the pyridyl N, carboxylate O and protonated NH group; except the Fe(III) complex, it coordinates via the deprotonated NH group. This is supported by the molar conductance data, which show that all the complexes are non-electrolytes, while the Fe(III) and UO(2)(II) complexes are 1:1 electrolytes. IR and H1-NMR spectral studies suggest a similar behaviour of the Zn(II) complex in solid and solution states. From the solid reflectance spectral data and magnetic moment measurements, the complexes have a trigonal bipyramidal (Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (Fe(III), UO(2)(II) complexes) geometrical structures. The thermal behaviour of the complexes is studied and the different dynamic parameters are calculated applying Coats-Redfern equation.
NASA Astrophysics Data System (ADS)
Sultan, J. S.; Fezea, S. M.; Mousa, F. H.
2018-05-01
A binucleating tetradentate Schiff base ligand, 1,4- di[amino methylene carboxylic] phenylene (H2L) and its forth new binuclear complexes [Co(II), Cu(II), Zn(II) and Cd(II)] were prepared via reaction metal (II) chloride with ligand (H2L) using 2:1 (M:L) in ethanol solvent. The new ligand (H2L) and its complexes were characterized by elemental microanalysis (C.H.N), atomic absorption, chloride content, molar conductance’s magnetic susceptibility, FTIR UV- Vis spectral and, 1H, 13 C- NMR (for H2L). The antibacterial activity with bacteria activity with bacteria, Staphylococcus aureus, Bacillus and Esccherichia Coli were studied.
NASA Astrophysics Data System (ADS)
Abdel-Latif, Samir A.; Mohamed, Adel A.
2018-03-01
Eight novel Zn(II) complexes with substituted 1,3-diphenyl-4-(arylazo)pyrazol-5-one (L1-L4) derivatives have been synthesized and elucidated using various physicochemical techniques. Quantum mechanical calculations of energies, geometries were done by DFT using B3LYP/GEN functional combined with 6.311G (d,p) and LAN2DZ basis sets. The analyses of HOMO and LUMO have been used to explain the charge transfer within the ligands and complexes. The calculated small energy gap between HOMO and LUMO energies shows that the charge transfer occurs within Zn(II) complexes. Geometrical parameters, molecular electrostatic potential maps (MEP) and total electron densities analyses of the ligands and their Zn complexes have been carried out. Molecular stability, hyperconjugative interactions, intramolecular charge transfer (ICT) and bond strength has been investigated by the applying of natural bond orbital (NBO) analysis. Total static dipole moment (μ), the mean polarizability (<α>), the anisotropy of the polarizability (Δα), the mean first-order hyperpolarizability (<β>) have been also performed. The obtained values show that Zn(II) complexes is brilliant candidate to NLO materials. The analyses of the 1:1 complexes indicate that the Zn(II) ion is five-coordinated with water molecules at axial position in case of L1, L2 and L4 whereas, six-coordinated with L3 and non-electrolytic behaviour of complexes indicates the absence of counter ion.
NASA Astrophysics Data System (ADS)
Taşdemir, Erdal; Özbek, Füreya Elif; Sertçelik, Mustafa; Hökelek, Tuncer; Çelik, Raziye Çatak; Necefoğlu, Hacali
2016-09-01
Three novel complexes Co(II), Ni(II) and Zn(II) containing p-hydroxybenzoates and caffeine ligands were synthesized and characterized by elemental analysis, FT-IR and UV-vis Spectroscopy, molar conductivity and single crystal X-ray diffraction methods. The thermal properties of the synthesized complexes were investigated by TGA/DTA. The general formula of the complexes is [M(HOC6H4COO)2(H2O)4]·2(C8H10N4O2)·8H2O (where: M: Co, Ni and Zn). The IR studies showed that carboxylate groups of p-hydroxybenzoate ligands have monodentate coordination mode. The M2+ ions are octahedrally coordinated by two p-hydroxybenzoate ligands, four water molecules leading to an overall MO6 coordination environment. The medium-strength hydrogen bondings involving the uncoordinated caffeine ligands and water molecules, coordinated and uncoordinated water molecules and p-hydroxybenzoate ligands lead to three-dimensional supramolecular networks in the crystal structures.
NASA Astrophysics Data System (ADS)
Tyagi, Prateek; Tyagi, Monika; Agrawal, Swati; Chandra, Sulekh; Ojha, Himanshu; Pathak, Mallika
2017-01-01
Two novel Schiff base ligands H2L1 and H2L2 have been synthesized by condensation reaction of amine derivative of 1,2,4-triazole moiety with 2-hydroxy-4-methoxybenzaldehyde. Co(II), Ni(II), Cu(II) and Zn(II) of the synthesized Schiff bases were prepared by using a molar ratio of ligand:metal as 1:1. The structure of the Schiff bases and synthesized metal complexes were established by 1H NMR, UV-Vis, IR, Mass spectrometry and molar conductivity. The thermal stability of the complexes was study by TGA. Fluorescence quenching mechanism of metal complexes 1-4 show that Zn(II) and Cu(II) complex binds more strongly to BSA. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31 + g(d,p) basis set. The spectral data shows that the ligands behaves as binegative tridentate. On the basis of the spectral studies, TGA and DFT data an octahedral geometry has been assigned for Co(II), Ni(II), square planar for Cu(II) and tetrahedral for Zn(II) complexes. The anticancer activity were screened against human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2). Result indicates that metal complexes shows increase cytotoxicity in proliferation to cell lines as compared to free ligand.
Grubel, Katarzyna; Rudzka, Katarzyna; Arif, Atta M; Klotz, Katie L; Halfen, Jason A; Berreau, Lisa M
2010-01-04
A series of divalent metal flavonolate complexes of the general formula [(6-Ph(2)TPA)M(3-Hfl)]X (1-5-X; X = OTf(-) or ClO(4)(-); 6-Ph(2)TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II); 3-Hfl = 3-hydroxyflavonolate) were prepared and characterized by X-ray crystallography, elemental analysis, FTIR, UV-vis, (1)H NMR or EPR, and cyclic voltammetry. All of the complexes have a bidentate coordinated flavonolate ligand. The difference in M-O distances (Delta(M-O)) involving this ligand varies through the series, with the asymmetry of flavonolate coordination increasing in the order Mn(II) approximately Ni(II) < Cu(II) < Zn(II) < Co(II). The hypsochromic shift of the absorption band I (pi-->pi*) of the coordinated flavonolate ligand in 1-5-OTf (relative to that in free anion) increases in the order Ni(II) < Mn(II) < Cu(II) < Zn(II), Co(II). Previously reported 3-Hfl complexes of divalent metals fit well with this ordering. (1)H NMR studies indicate that the 3-Hfl complexes of Co(II), Ni(II), and Zn(II) exhibit a pseudo-octahedral geometry in solution. EPR studies suggest that the Mn(II) complex 1-OTf may form binuclear structures in solution. The mononuclear Cu(II) complex 4-OTf has a distorted square pyramidal geometry. The oxidation potential of the flavonolate ligand depends on the metal ion present and/or the solution structure of the complex, with the Mn(II) complex 1-OTf exhibiting the lowest potential, followed by the pseudo-octahedral Ni(II) and Zn(II) 3-Hfl complexes, and the distorted square pyramidal Cu(II) complex 4-OTf. The Mn(II) complex [(6-Ph(2)TPA)Mn(3-Hfl)]OTf (1-OTf) is unique in the series in undergoing ligand exchange reactions in the presence of M(ClO(4))(2).6H(2)O (M = Co, Ni, Zn) in CD(3)CN to produce [(6-Ph(2)TPA)M(CD(3)CN)(n)](X)(2), [Mn(3-Hfl)(2).0.5H(2)O], and MnX(2) (X = OTf(-) or ClO(4)(-)). Under similar conditions, the 3-Hfl complexes of Co(II), Ni(II), and Cu(II) undergo flavonolate ligand exchange to produce [(6-Ph(2)TPA)M(CD(3)CN)(n)](X)(2) (M = Co, Ni, Cu; n = 1 or 2) and [Zn(3-Hfl)(2).2H(2)O]. An Fe(II) complex of 3-Hfl, [(6-Ph(2)TPA)Fe(3-Hfl)]ClO(4) (8), was isolated and characterized by elemental analysis, FTIR, UV-vis, (1)H NMR, cyclic voltammetry, and a magnetic moment measurement. This complex reacts with O(2) to produce the diiron(III) mu-oxo compound [(6-Ph(2)TPAFe(3Hfl))(2)(mu-O)](ClO(4))(2) (6).
NASA Astrophysics Data System (ADS)
Sreejith, S. S.; Mohan, Nithya; Kurup, M. R. Prathapachandra
2018-02-01
A trinulcear Zn2La Schiff base complex was synthesized using slow-solvent evaporation technique from a Zn(II) mononuclear metalloligand by 2:1 addition with La(NO3)3 salt. Single crystal XRD analysis revealed a rare nitrato bridged trinuclear entity which is seldom seen in these class of ligand systems. Qualitative and quantitative analysis of intermolecular interactions/short contacts were done using Hirshfeld surface and 2D finger print analysis. The thermally stable, blue luminescent compound exhibits internal heavy atom effect thereby quenching the emission intensity of the ligand. DFT calculations were performed on the compound to analyze frontier orbitals and also ESP plots were used to monitor nucleophilic/electrophilic regions on the compound and its implications on hydrogen bonding. A comparison of the bond orders and atomic charges on the trinuclear compound and the Zn(II) metalloligand precursor was performed to substantiate the formation of the trinuclear product through ligand exchange.
NASA Astrophysics Data System (ADS)
Subbaraj, P.; Ramu, A.; Raman, N.; Dharmaraja, J.
2014-01-01
A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA = Schiff base and B = 2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, 1H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, 1H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique.
Legrand, Yves-Marie; van der Lee, Arie; Barboiu, Mihail
2007-11-12
In this paper we report an extended series of 2,6-(iminoarene)pyridine-type ZnII complexes [(Lii)2Zn]II, which were surveyed for their ability to self-exchange both their ligands and their aromatic arms and to form different homoduplex and heteroduplex complexes in solution. The self-sorting of heteroduplex complexes is likely to be the result of geometric constraints. Whereas the imine-exchange process occurs quantitatively in 1:1 mixtures of [(Lii)2Zn]II complexes, the octahedral coordination process around the metal ion defines spatial-frustrated exchanges that involve the selective formation of heterocomplexes of two, by two different substituents; the bulkiest ones (pyrene in principle) specifically interact with the pseudoterpyridine core, sterically hindering the least bulky ones, which are intermolecularly stacked with similar ligands of neighboring molecules. Such a self-sorting process defined by the specific self-constitution of the ligands exchanging their aromatic substituents is self-optimized by a specific control over their spatial orientation around a metal center within the complex. They ultimately show an improved charge-transfer energy function by virtue of the dynamic amplification of self-optimized heteroduplex architectures. These systems therefore illustrate the convergence of the combinatorial self-sorting of the dynamic combinatorial libraries (DCLs) strategy and the constitutional self-optimized function.
Osowole, Aderoju Amoke
2012-01-01
The Schiff base, 3-hydroxy-4-{[4-(methylsulfanyl)phenyl]imino}-3,4-dihydronaphthalen-1(2H)-one, and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) complexes have been synthesized and characterized by microanalysis, conductance, 1H NMR, infrared and electronic spectral measurements. The ligand exists in the ketoimine form in chloroform, and in the enolimine form in the solid state, as shown by 1H NMR and IR spectroscopies. The ligand coordinates to the metal ions in the ratio 1:1, using NO chromophores forming complexes of the type [MLNO3]H2O, with the exception of the Zn(II) and Pd(II) complexes. Electronic measurements are indicative of a four coordinate square-planar geometry for all the complexes, except for the Cu(II) and Zn(II) complexes which assume a tetrahedral geometry. None is an electrolyte in nitromethane. The ligand and the metal complexes are air-stable, but decomposed on heating at 120 °C and in the range 150-156 °C respectively. The antibacterial studies reveal that the Co(II) and the Cu(II) complexes exhibit broad-spectrum activity against Proteus mirabilis, Escherichia coli and Staphylococcus aureus with inhibitory zones range of 14.0-22.0 and 13.0-25.0 mm respectively. The antiproliferative studies show that the Zn(II) complex has the best in-vitro anticancer activity against both HT-29 (colon) carcinoma and MCF-7 (human breast) adenocarcinoma with IC50 values of 6.46 µm and 3.19 µm, which exceeds the activity of Cis-platin by 8 % and 63 % respectively. PMID:27350773
Le Gac, Stéphane; Najjari, Btissam; Dorcet, Vincent; Roisnel, Thierry; Fusaro, Luca; Luhmer, Michel; Furet, Eric; Halet, Jean-François; Boitrel, Bernard
2013-08-12
Overhanging carboxylic acid porphyrins have revealed promising ditopic ligands offering a new entry in the field of supramolecular coordination chemistry of porphyrinoids. Notably, the adjunction of a so-called hanging-atop (HAT) Pb(II) cation to regular Pb(II) porphyrin complexes allowed a stereoselective incorporation of the N-core bound cation, and an allosterically controlled Newton's cradle-like motion of the two Pb(II) ions also emerged from such bimetallic complexes. In this contribution, we have extended this work to other ligands and metal ions, aiming at understanding the parameters that control the HAT Pb(II) coordination. The nature of the N-core bound metal ion (Zn(II), Cd(II)), the influence of the deprotonation state of the overhanging COOH group and the presence of a neutral ligand on the opposite side (exogenous or intramolecular), have been examined through (1)H NMR spectroscopic experiments with the help of radiocrystallographic structures and DFT calculations. Single and bis-strap ligands have been considered. They all incorporate a COOH group hung over the N-core on one side. For the bis-strap ligands, either an ester or an amide group has been introduced on the other side. In the presence of a base, the mononuclear Zn(II) or Cd(II) complexes incorporate the carbonyl of the overhanging carboxylate as apical ligand, decreasing its availability for the binding of a HAT Pb(II). An allosteric effector (e.g., 4-dimethylaminopyridine (DMAP), in the case of a single-strap ligand) or an intramolecular ligand (e.g., an amide group), strong enough to compete with the carbonyl of the hung COO(-), is required to switch the N-core bound cation to the opposite side with concomitant release of the COO(-), thereby allowing HAT Pb(II) complexation. In the absence of a base, Zn(II) or Cd(II) binds preferentially the carbonyl of the intramolecular ester or amide groups in apical position rather than that of the COOH. This better preorganization, with the overhanging COOH fully available, is responsible for a stronger binding of the HAT Pb(II). Thus, either allosteric or acid-base control is achieved through stereoselective metalation of Zn(II) or Cd(II). In the latter case, according to the deprotonation state of the COOH group, the best electron-donating ligand is located on one or the other side of the porphyrin (COO(-)>CONHR>COOR>COOH): the lower affinity of COOH for Zn(II) and Cd(II), the higher for a HAT Pb(II). These insights provide new opportunities for the elaboration of innovative bimetallic molecular switches. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Dhahagani, K.; Mathan Kumar, S.; Chakkaravarthi, G.; Anitha, K.; Rajesh, J.; Ramu, A.; Rajagopal, G.
2014-01-01
Metal(II) chelates of Schiff bases derived from the condensation of 4-morpholinoaniline with substituted salicylaldehyde have been prepared and characterized by 1H NMR, IR, electronic, EPR, and magnetic measurement studies. The complexes are of the type M(X-MPMP)2 [where M = Cu(II), Co(II)), Zn(II), or VO(IV); MPMP = 2-[(4 morpholinophenyl imino) methyl] 4-X-phenol, X = Cl, (L1H), X = Br (L2H)]. Single crystal X-ray crystallography studies confirm the structure of newly synthesized Schiff bases. The Schiff bases act as bidentate monobasic ligands, coordinating through deprotonated phenolic oxygen and azomethine nitrogen atoms. The free ligands and metal complexes are screened for their biopotency. Metal complexes exhibit better activity than ligands. Anticancer activity of ligands and their metal complexes are evaluated in human heptocarcinoma(HepG2) cells. The preliminary bioassay indicates that the Schiff base and its zinc complex exhibit inhibitory activity against the human gastric cancer cell lines.
Subbaraj, P; Ramu, A; Raman, N; Dharmaraja, J
2014-01-03
A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA=Schiff base and B=2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, (1)H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, (1)H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique. Copyright © 2013 Elsevier B.V. All rights reserved.
Abd el-Halim, Hanan F; Mohamed, Gehad G; el-Dessouky, Maher M I; Mahmoud, Walaa H
2011-11-01
Nine new mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO(2)(VI) complexes of lomefloxacin drug were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, XRD, UV-vis, (1)H NMR as well as conductivity and magnetic susceptibility measurements and thermal analyses. The dissociation constants of lomefloxacin and stability constants of its binary complexes have been determined spectrophotometrically in aqueous solution at 25±1°C and at 0.1 M KNO(3) ionic strength. The discussion of the outcome data of the prepared complexes indicate that the lomefloxacin ligand behaves as a neutral bidentate ligand through OO coordination sites and coordinated to the metal ions via the carbonyl oxygen and protonated carboxylic oxygen with 1:1 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The powder XRD study reflects the crystalline nature for the investigated ligand and its complexes except Mn(II), Zn(II) and UO(2)(II). The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first steps followed by decomposition of the anions, coordinated water and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. A comparative study of the inhibition zones of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial effect against one or more bacterial species than the free LFX ligand. The antifungal and anticancer activities were also tested. The antifungal effect of almost metal complexes is higher than the free ligand. LFX, [Co(LFX)(H(2)O)(4)]·Cl(2) and [Zn(LFX)(H(2)O)(4)]·Cl(2) were found to be very active with IC50 values 14, 11.2 and 43.1, respectively. While, other complexes had been found to be inactive at lower concentration than 100 μg/ml. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bibi, Sherino; Mohammad, Sharifah; Manan, Ninie Suhana Abdul; Ahmad, Jimmy; Kamboh, Muhammad Afzal; Khor, Sook Mei; Yamin, Bohari M.; Abdul Halim, Siti Nadiah
2017-08-01
Two new mononuclear coordination complexes [Cu(bim)4Cl2]ṡ2H2O (1) and [Zn(bim)2Cl2] (2) containing the 1-benzylimidazole (bim) ligand were successfully synthesized. Both complexes were characterized by IR, UV-vis, and fluorescence spectroscopies, single crystal and powder X-ray diffraction measurements, and thermogravimetric analysis. Self-assembly during the recrystallization process resulted in the formation of octahedral and tetrahedral Cu(II) and Zn(II) complexes, respectively. The single crystals obtained are representative of the bulk material, as shown by the powder X-ray diffraction patterns. Cyclic voltammetry measurements showed that complex 1 undergoes a quasi-reversible redox reaction, while complex 2 undergoes reduction alone, and no oxidation peak was observed; this is due to the stability of the reduced form of complex 2.
NASA Astrophysics Data System (ADS)
Yurdakul, Şenay; Badoğlu, Serdar; Güleşci, Yeliz
2015-02-01
In this study where the interpretations of the experimental IR and Raman spectra recorded at room temperature for the ligands 5-nitroquinoline (5NQ) and 5-nitroisoquinoline (5NIQ) and also for their Zn(II) halide (halogen: chlorine, bromine, iodine) complexes were first reported, the assignments of the observed fundamental bands were achieved in the light of the vibrational spectral data and total energy distribution (TED) values calculated at B3LYP/6-311++G(d,p) and B3LYP/LANL2DZ levels of theory. The equilibrium geometrical parameters, Natural Bond Orbital (NBO) charges and frontier orbital (HOMO, LUMO) energies of these molecular structures were also calculated at the same level of theory. Comparisons over the corresponding experimental and theoretical data obtained for the title ligands and their complexes revealed that in complex form both ligands bond to Zn(II) ion through their ring nitrogen atoms and NO2 groups at the same time.
NASA Astrophysics Data System (ADS)
Mahendra Raj, K.; Vivekanand, B.; Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.
2014-02-01
A series of new binucleating Cu(II), Co(II), Ni(II) and Zn(II) complexes of bicompartmental ligands with ONO donor were synthesized. The ligands were obtained by the condensation of 3-chloro-6-substituted benzo[b]thiophene-2-carbohydrazides and 4,6-diacetylresorcinol. The synthesized ligands and their complexes were characterized by elemental analysis and various spectroscopic techniques. Elemental analysis, IR, 1H NMR, ESI-mass, UV-Visible, TG-DTA, magnetic measurements, molar conductance and powder-XRD data has been used to elucidate their structures. The bonding sites are the oxygen atom of amide carbonyl, azomethine nitrogen and phenolic oxygen for ligands 1 and 2. The binuclear nature of the complexes was confirmed by ESR spectral data. TG-DTA studies for some complexes showed the presence of coordinated water molecules and the final product is the metal oxide. All the complexes were investigated for their electrochemical activity, only the Cu(II) complexes showed the redox property. Cu(II) complexes were square planar, whereas Co(II), Ni(II) and Zn(II) complexes were octahedral. Powder-XRD pattern have been studied in order to test the degree of crystallinity of the complexes and unit cell calculations were made. In order to evaluate the effect of antimicrobial activity of metal ions upon chelation, both the ligands and their metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligands. The DNA cleaving capacities of all the complexes were analyzed by agarose gel electrophoresis method against supercoiled plasmid DNA. Among the compounds tested for antioxidant capacity, ligand 1 displayed excellent activity than its metal complexes.
NASA Astrophysics Data System (ADS)
Hassan, Walid M. I.; Badawy, M. A.; Mohamed, Gehad G.; Moustafa, H.; Elramly, Salwa
2013-07-01
The binuclear complexes of 2-(3-amino-2-hydrazono-4-oxothiazolidin-5-yl) acetic acid ligand (HL) with Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) ions were prepared and their stoichiometry was determined by elemental analysis. The stereochemistry of the studied series of metal complexes was established by analyzing their infrared, 1H NMR spectra and the magnetic moment measurements. According to the elemental analysis data, the complexes were found to have the formulae [Fe2L(H2O)8]Cl5 and [M2L(H2O)8]Cl3 (M = Co(II), Ni(II), Cu(II) and Zn(II)). The present analyses demonstrate that all metal ions coordinated to the ligand via O(9), O(11), N(16) and N(18) atoms. Thermal decomposition studies of the ligand-metal complexes have been performed to verify the status of water molecules present in these metal complexes and their general decomposition pattern. Density Functional Theory (DFT) calculations at the B3LYP/6-31G* level of theory have been carried out to investigate the equilibrium geometry of the ligand and complexes. Moreover, charge density distribution, extent of distortion from regular geometry, dipole moment and orientation have been performed and discussed.
Jeffery, John C; Rice, Craig R; Harding, Lindsay P; Baylies, Christian J; Riis-Johannessen, Thomas
2007-01-01
The ditopic ligand 6,6'-bis(4-methylthiazol-2-yl)-3,3'-([18]crown-6)-2,2'-bipyridine (L(1)) contains both a potentially tetradentate pyridyl-thiazole (py-tz) N-donor chain and an additional "external" crown ether binding site which spans the central 2,2'-bipyridine unit. In polar solvents (MeCN, MeNO(2)) this ligand forms complexes with Zn(II), Cd(II), Hg(II) and Cu(I) ions via coordination of the N donors to the metal ion. Reaction with both Hg(II) and Cu(I) ions results in the self-assembly of dinuclear double-stranded helicate complexes. The ligands are partitioned by rotation about the central py--py bond, such that each can coordinate to both metals as a bis-bidentate donor ligand. With Zn(II) ions a single-stranded mononuclear species is formed in which one ligand coordinates the metal ion in a planar tetradentate fashion. Reaction with Cd(II) ions gives rise to an equilibrium between both the dinuclear double-stranded helicate and the mononuclear species. These complexes can further coordinate s-block metal cations via the remote crown ether O-donor domains; a consequence of which are some remarkable changes in the binding modes of the N-donor domains. Reaction of the Hg(II)- or Cd(II)-containing helicate with either Ba(2+) or Sr(2+) ions effectively reprogrammes the ligand to form only the single-stranded heterobinuclear complexes [MM'(L(1))](4+) (M=Hg(II), Cd(II); M'=Ba(2+), Sr(2+)), where the transition and s-block cations reside in the N- and O-donor sites, respectively. In contrast, the same ions have only a minor structural impact on the Zn(II) species, which already exists as a single-stranded mononuclear complex. Similar reactions with the Cd(II) system result in a shift in equilibrium towards the single-stranded species, the extent of which depends on the size and charge of the s-block cation in question. Reaction of the dicopper(I) double-stranded helicate with Ba(2+) shows that the dinuclear structure still remains intact but the pitch length is significantly increased.
NASA Astrophysics Data System (ADS)
Sennappan, M.; Murali Krishna, P.; Hosamani, Amar A.; Hari Krishna, R.
2018-07-01
An environmental benign and efficient reaction was carried out via amine exchange and condensation reaction in water and methanol mixture (3:1) and absence of catalyst between 1-[3-(2-hydroxy benzylidene)amine)phenyl]ethanone and benzhydrazide yields methaniminium hydrazone Schiff base in high yield. The prepared ligand was structurally characterized by using single crystal XRD, elemental analysis and spectroscopy (UV-Vis, FT-IR, LC-MS and NMR) techniques. The crystal data indicates the ligand crystallizes in orthorhombic system with Pna21 space group. Further, the ligand was used in synthesis of mononuclear Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes and were characterized by elemental analysis, magnetic moment and spectroscopy (UV-Vis, FT-IR and ESR) studies. The spectral data showed that ligand is coordinated to the metal ion through azomethine nitrogen and methaniminium nitrogen. The DNA binding absorption titrations reveals that, ligand, L and its metal complexes, 1-6 are avid binders to CT- DNA. The apparent binding constant values of compounds are in the order of 106 M-1. The nuclease activity of ligand, L and its metal complexes, 1-6 were investigated by gel electrophoresis method using pUC18 DNA. The photoluminescent properties of the methaniminium hydrazone ligand, L and its various metal complexes, 1-6 were investigated. The emission spectra of both ligand (L) and metal complexes (1-6) exhibits emission in the range of blue to red.
Bacchi, A; Carcelli, M; Pelagatti, P; Pelizzi, C; Pelizzi, G; Zani, F
1999-06-15
Several mono- and bis- carbono- and thiocarbonohydrazone ligands have been synthesised and characterised; the X-ray diffraction analysis of bis(phenyl 2-pyridyl ketone) thiocarbonohydrazone is reported. The coordinating properties of the ligands have been studied towards Cu(II), Fe(II), and Zn(II) salts. The ligands and the metal complexes were tested in vitro against Gram positive and Gram negative bacteria, yeasts and moulds. In general, the bisthiocarbonohydrazones possess the best antimicrobial properties and Gram positive bacteria are the most sensitive microorganisms. Bis(ethyl 2-pyridyl ketone) thiocarbonohydrazone, bis(butyl 2-pyridyl ketone)thiocarbonohydrazone and Cu(H2nft)Cl2 (H2nft, bis(5-nitrofuraldehyde)thiocarbonohydrazone) reveal a strong activity with minimum inhibitory concentrations of 0.7 microgram ml-1 against Bacillus subtilis and of 3 micrograms ml-1 against Staphylococcus aureus. Cu(II) complexes are more effective than Fe(II) and Zn(II) ones. All bisthiocarbono- and carbonohydrazones are devoid of mutagenic properties, with the exception of the compounds derived from 5-nitrofuraldehyde. On the contrary a weak mutagenicity, that disappears in the copper complexes, is exhibited by monosubstituted thiocarbonohydrazones.
NASA Astrophysics Data System (ADS)
Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.
2014-09-01
Schiff base ligand 3-chloro-N‧-((7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)benzo[b]thiophene-2-carbohydrazide and its Cu(II), Co(II), Ni(II) and Zn(II) complexes were synthesized, characterized by elemental analysis and various physico-chemical techniques like, IR, 1H NMR, ESI-mass, UV-Visible, thermogravimetry - differential thermal analysis, magnetic measurements and molar conductance. Spectral analysis indicates octahedral geometry for all the complexes. Cu(II) complex have 1:1 stoichiometry of the type [M(L)(Cl)(H2O)2], whereas Co(II), Ni(II) and Zn(II) complexes have 1:2 stoichiometric ratio of the type [M(L)2]. The bonding sites are the oxygen atom of amide carbonyl, nitrogen of azomethine function and phenolic oxygen of the Schiff base ligand via deprotonation. The thermogravimetry - differential thermal analysis studies gave evidence for the presence of coordinated water molecules in the composition of Cu(II) complex which was further supported by IR measurements. All the complexes were investigated for their electrochemical activity, but only the Cu(II) complex showed the redox property. In order to evaluate the effect of antimicrobial potency of metal ions upon chelation, ligand and its metal complexes along with their respective metal chlorides were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligand. Ligand and its complexes were screened for free radical scavenging activity by DPPH method and DNA cleavage activity using Calf-thymus DNA (Cat. No-105850).
Ali, Omyma A M
2014-11-11
Metal complexes of Schiff bases derived from furfuraldehyde and 4,5-dimethyl-1,2-phenylendiamine (L1) or 4,5-dichloro-1,2-phenylendiamine (L2) have been reported and characterized based on elemental analyses, IR, 1H NMR, UV-Vis, magnetic moment, molar conductance and thermal analysis. The complexes are found to have the formulae [PdL1-2]Cl2 and [ZnL1-2](AcO)2·H2O. The molar conductance data reveal that Pd(II) and Zn(II) chelates are ionic in nature and are of the type 2:1 electrolytes. The spectral data are consistent with a square planar and tetrahedral geometry around Pd(II) and Zn(II), respectively, in which the ligands act as tetradentate ligands. The thermal behavior of some chelates is studied and the activation thermodynamic parameters are calculated using Coats-Redfern method. The corrosion inhibition of stainless steel types 410 and 304 in 1 M HCl using the synthesized Schiff bases as inhibitors have been studied by weight loss method. The obtained data considered these ligands as efficient corrosion inhibitors. The ligands and their metal complexes exhibited considerable antibacterial activity against Staphylococcusaureus, and Escherichiacoli and antifungal activity against Candida albicans. Copyright © 2014 Elsevier B.V. All rights reserved.
Praveen, Marapaka; Sherazi, Syed K. A.
1998-01-01
Biologically active complexes of Co(II), Ni(II), Cu(II) and Zn(II) with novel ONO, NNO and SNO donor pyrazinoylhydrazine-derived compounds have been prepared and characterized on the basis of analytical data and various physicochemical studies. Distorted octahedral structures for all the complexes have been proposed. The synthesized ligands and their complexes have been screened for their antibacterial activity against bacterial species Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumonae. The activity data show the metal complexes to be more active than the parent free ligands against one or more bacterial species. PMID:18475857
Yarkandi, Naeema H; El-Ghamry, Hoda A; Gaber, Mohamed
2017-06-01
A novel Schiff base ligand, (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol (HL), has been designed and synthesized in addition to its metal chelates [Co(L) 2 ]·l2H 2 O, [Ni(L)Cl·(H 2 O) 2 ].5H 2 O, [Cu(L)Cl] and [Zn(L)(CH 3 COO)]. The structures of the isolated compounds have been confirmed and identified by means of different spectral and physicochemical techniques including CHN analysis, 1 H & 13 C NMR, mass spectral analysis, molar conductivity measurement, UV-Vis, infrared, magnetic moment in addition to TGA technique. The infrared spectral results ascertained that the ligand acts as monobasic tridentate binding to the metal centers via deprotonated hydroxyl oxygen, azomethine and imidazole nitrogen atoms. The UV-Vis, magnetic susceptibility and molar conductivity data implied octahedral geometry for Co(II) & Ni(II) complexes, tetrahedral for Zn(II) complex and square planar for Cu(II) complex. X-ray structural analysis of Co(II) complex 1 has been reported and discussed. Moreover, the type of interaction between the ligand & its complexes towards salmon sperm DNA (SS-DNA) has been examined by the measurement of absorption spectra and viscosity which confirmed that the ligand and its complexes interact with DNA via intercalation interaction as concluded from the values of binding constants (K b ). Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shakir, M.; Hanif, Summaiya; Sherwani, Mohd. Asif; Mohammad, Owais; Al-Resayes, Saud I.
2015-07-01
A novel series of metal complexes of the types, [ML2(H2O)2]Cl2 and [ML2]Cl2 [M = Mn(II), 1; Co(II), 2; Ni(II), 3; Cu(II), 4; and Zn(II), 5] were synthesized by the interaction of ligand, L (E)-N-(furan-2-yl methylene) quinolin-8-amine, derived from the condensation of 2-furaldehyde and 8-aminoquinoline. The synthesized ligand and its metal complexes were characterized on the basis of results obtained from elemental analysis, ESI-MS, XRD, SEM, TGA/DTA, FT-IR, UV-Vis, magnetic moment and 1H and 13C NMR spectroscopic studies. EPR parameters were recorded in case of complex 4. The comparative in-vitro antimicrobial activities against various pathogens with reference to known antibiotics and antioxidant activity against standard control at variable concentrations revealed that the metal complexes show enhanced antimicrobial and free radical scavenging activities in general as compared to free ligand. However, the complexes 1 and 5 have shown best antioxidant activity among all the metal complexes. Furthermore, comparative in-vitro antiproliferative activity on ligand and its metal chelates performed on MDA-MB-231 (breast carcinoma), KCL22 (blood lymphoid carcinoma), HeLa (cervical carcinoma) cell lines and normal cells (PBMC) revealed that metal chelates show moderate to good activity as compared to ligand where as complex 1 seems to be the most promising one possessing a broad spectrum of activity against all the selected cancer cell lines with IC50 < 2.10 μM.
NASA Astrophysics Data System (ADS)
Al-Fulaij, O. A.; Jeragh, B.; El-Sayed, A. E. M.; El-Defrawy, M. M.; El-Asmy, A. A.
2015-02-01
New metal complexes of Co(II), Ni(II) Cu(II), Zn(II), Cd(II), Pd(II) and Hg(II) with 2,3-butanedione isonicotinylhydrazone [BINH] have been prepared and investigated. Single crystal for BINH is grown and solved as orthorhombic with P 21 21 2 space group. The formula of the ligand was assigned based on the elemental analysis, mass spectra and conductivity measurements. The complexes assigned the formulae [M(BINH-H)Cl]ṡnH2O (Mdbnd Co(II), Ni(II), Cu(II), Zn(II); n = 0 or 1); [Hg(BINH-H)(H2O)2Cl]; [Cd(BINH)Cl2]ṡ2H2O and [Pd(BINH)Cl2]ṡH2O. All complexes are nonelectrolytes. BINH acts as a tridentate ligand in [M(BINH-H)Cl]ṡnH2O and [Hg(BINH-H)(H2O)2Cl] coordinating through Cdbnd Oketonic, Csbnd Oamedic and Cdbnd Nhy and as a neutral bidentate through Cdbnd Oketonic and Cdbnd Nhy in [Cd(BINH)Cl2]ṡ2H2O and [Pd(BINH)Cl2]ṡH2O; the pyridine nitrogen has no rule in coordination. The data are supported by NMR (1H and 13C) spectra. The magnetic moments and electronic spectra provide a tetrahedral structure for the Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes; square-planar for the Pd(II) complex and octahedral for the Hg(II) complex. The TGA of the complexes depicted the outer and inner water molecules as well as the final residue. The cobalt and cadmium complexes ended with the metal while the Cu(II), Zn(II) and Pd(II) complexes ended with complex species. [Hg(BINH-H)(H2O)2Cl] has no residue. The ligand is inactive against all tested organisms except for Bacillus thuringiensis. The Hg(II) complex is found more active than the other complexes. The flotation technique is found applicable for the separation of micro amount (10 ppm) of Zr4+ using 10 ppm of BINH and 1 × 10-5 mol L-1 of oleic acid at pH 6 with efficiency of 98% with no interferences.
NASA Astrophysics Data System (ADS)
Wahyuningsih, S.; Rahmawati, F.; Kamal, S.; Slamet, S.; Yunianto, M.; Rahmawati, P.; Aini, F. N.
2018-03-01
Optode (Optical sensors) is one of the modern chemical sensors in the field of analytical chemistry that has utilized of inorganic polymers. The optode based on MLCT (Metal to Ligand Charge Transfer) (or MMLL’CT, Mixing Metal-Ligand to Ligand Charge Transfer) or LMCT (Ligand to Metal Charge Transfer) phenomenons have beed generated from oktyltrietxysilane, aminopropyltrimethoxysilane and 4-(2-pyrydilazo) resorcinol (abbreviated as OTES-APTS-PAR) for Cu(II), Cr(III), Ni(II), Fe(III), Cd(II), and Zn(II) ions target. The syntheses of thin layer optode were performed by sol gel method followed by evaporation in glass substrat. The formation of 4-(2-pyrydilazo) resorcinol complexes with ions target have gained strong absorption spectras in visible region because of charge transfer phenomenons. The optical sensor of OTES-APTS-PAR was analysed thermal properties using Differential Thermal Analysis (DTA). DTA thermogram showed a glass transition peaks at a temperature of 315.5 °C. Fourier transform Infrared (FTIR) spectras have showed that the optode materials consisted NH aryl groups indicated IR absorption at 1577.7 cm-1 and also –CH aromatic at 1469.0 cm-1. Synthesized optode materials have strong broad visible absorption with the maximum wavelengths (λmax) = 405 nm and 508.5 nm, respectively. This material have excellent optical responds to several metal ions such as Cu(II), Cr(III), Ni(II), Fe(III), Cd(II), and Zn(II) that was showed from huge Δλmax and the increase of Ktotal
NASA Astrophysics Data System (ADS)
Chioma, Festus; Ekennia, Anthony C.; Ibeji, Collins U.; Okafor, Sunday N.; Onwudiwe, Damian C.; Osowole, Aderoju A.; Ujam, Oguejiofo T.
2018-07-01
A pyrimidine-based ligand, 2-(pyrimidin-2-ylamino)naphthalene-1,4-dione (L), has been synthesized by the reaction of 2-aminopyrimidine with 2-hydroxy-1,4-napthoquinone. Reaction of the ligand with Ni(II), Co(II), Mn(II) and Zn(II) acetate gave the corresponding metal complexes which were characterized by spectroscopic techniques, (infrared, electronic), elemental analysis, room-temperature magnetometry, conductance measurements and thermogravimetry-differential scanning calorimetry (TG-DSC) analyses. The room-temperature magnetic data and electronic spectral measurements of the complexes gave evidence of 4-coordinate square planar/tetrahedral geometry. The thermal analyses values obtained indicated the monohydrate complexes. The antimicrobial screening of the compounds showed mild to very good results. The Mn(II) complex showed the best result within in the range of 11.5-29 mm. The electronic, structural and spectroscopic properties of the complexes were further discussed using density functional theory. Molecular docking studies showed significant binding affinity with the drug targets and the metal complexes have potentials to be used as drugs.
NASA Astrophysics Data System (ADS)
Hao, Hong-Jun; Du, Ming-Yue; Wang, Dan-Feng; Sun, Cheng-Jie; Wang, Zhan-Hui; Huang, Rong-Bin; Zheng, Lan-Sun
2013-09-01
Four Zn(II) coordination complexes, namely {[Zn(pmbm)2(tpa)]·H2O}n (1), {[Zn(pmbm)(phda)]·2(H2O)}n (2), [Zn(pmbm)(aze)]n (3), {[Zn(pmbm)(1,4-ndc)]·2(CH3OH)}n (4) [pmbm = 1-(4-pyridylmethyl)-benzimidazole, H2tpa = terephthalic acid, H2phda = phenylenediacetic acid, H2aze = azelaic acid, 1,4-ndcH2 = 1,4-naphthalenedicarboxylic acid] have been synthesized by solution phase ultrasonic reactions of Zn(AC)2·2H2O with pmbm and various dicarboxylates ligands under the ammoniacal condition. All the complexes have been characterized by elemental analyses, IR spectra and X-ray diffraction. Complexes 1 and 2 exhibit one-dimensional chains structure and complex 3 and 4 are two-dimensional sheets structure with (4,4) topology. Complexes 1-4 spanning from one-dimensional chains to two-dimensional sheets suggest that dicarboxylates play significant roles in the formation of such coordination architectures. The photoluminescences of the complexes were also investigated in the solid state at room temperature.
NASA Astrophysics Data System (ADS)
Neelakantan, M. A.; Sundaram, M.; Nair, M. Sivasankaran
2011-09-01
Several mixed ligand Ni(II), Cu(II) and Zn(II) complexes of 2-amino-3-hydroxypyridine (AHP) and imidazoles viz., imidazole (him), benzimidazole (bim), histamine (hist) and L-histidine (his) have been synthesized and characterized by elemental and spectral (vibrational, electronic, 1H NMR and EPR) data as well as by magnetic moment values. On the basis of elemental analysis and molar conductance values, all the complexes can be formulated as [MAB]Cl except histidine complexes as MAB. Thermogravimetric studies reveal the presence of coordinated water molecules in most of the complexes. From the magnetic measurements and electronic spectral data, octahedral structure was proposed for Ni(II) and Cu(II)-AHP-his, tetrahedral for Cu(II)-AHP-him/bim/hist, but square planar for the Cu(II)-AHP complex. The g∥/ A∥ calculated supports tetrahedral environment around the Cu(II) in Cu(II)-AHP-him/bim/hist and distorted octahedral for Cu(II)-AHP-his complexes. The morphology of the reported metal complexes was investigated by scanning electron micrographs (SEM). The potentiometric study has been performed in aqueous solution at 37 °C and I = 0.15 mol dm -3 NaClO 4. MABH, MAB and MAB 2 species has been identified in the present systems. Proton dissociation constants of AHP and stability constants of metal complexes were determined using MINIQUAD-75. The most probable structure of the mixed ligand species is discussed based upon their stability constants. The in vitro biological activity of the complexes was tested against the Gram positive and Gram negative bacteria, fungus and yeast. The oxidative DNA cleavage studies of the complexes were performed using gel electrophoresis method. Cu(II) complexes have been found to promote DNA cleavage in presence of biological reductant such as ascorbate and oxidant like hydrogen peroxide.
NASA Astrophysics Data System (ADS)
Ammar, Reda A.; Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Al-Bedair, Lamia A.
2017-08-01
Tridentate Schiff's base (HL) ligand was synthesized via condensation of salicylaldehyde and 3-hydroxypyridin-2-yliminomethyl-4H-chromen-4-one and their corresponding Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. The isolated solid complexes were characterized by elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR), magnetic moment, EPR, and thermal measurements. The IR spectra showed that HL was coordinated to the metal ions in tridentate manner with O2N donor sites of the azomethine N, deprotonated phenolic-OH and carbonyl-O. The activation of thermodynamic parameters are calculated using Coast-Redfern and Horowitz-Metzger (HM). The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations, UV-Vis and magnetic moment measurements, ESR and ligand field parameters. Antioxidant activities have also been performed for all the compounds. The investigated ligand and metal complexes were screened for their in-vitro antimicrobial activities against different types of fungal and bacterial strains. The resulting data assert on the inspected compounds as a highly promising bactericides and fungicides. The antitumor activities of all inspected compounds were evaluated towards human liver Carcinoma (HepG2) cell line.
NASA Astrophysics Data System (ADS)
Refaat, Heba M.; Noor El-Din, Doaa A.
2018-07-01
Novel complexes of the formula [M(MOX)(Ben)Cl(H2O)m].nH2O and [Ag(MOX)(Ben)] 3.5H2O; M = Co, Ni, and Zn, n = 1.5, 2 and 1, m = 0 or 2, MOX; Moxifloxacin and Ben; benzimidazole, were synthesized. Their effect on different cancer cells together with bacterial and fungal activity was determined. Formulation of the complexes was based on elemental analyses, different spectrophotometric methods (FT-IR, UV/Vis, NMR), and magnetic studies. FT-IR data indicated that the bonding of the Co(II), Ni(II) and Zn(II) ions with MOX to be achieved through the quinolone and carboxylate oxygen atoms. On the other hand Ag(I) bonded to the MOX through hydro-pyrrolopyridine nitrogen atom. TGA and DTA studies for the metal complexes showed them to possess considerable stability. Thermodynamic parameters ΔE*, ΔS* and ΔH* were evaluated and the appearance of fractional orders suggested that the reactions proceed via complicated mechanisms. The novel mixed ligands complexes were evaluated for their biological activity against the bacterial species (S. aureus) and (E. coli) and the fungal species Aspergillus flavus and Candida albicans. The complexes were found to possess better antibacterial and antifungal activities compared to the Moxifloxacin ligand. The compounds' effects were also screened for their anti-oxidant activity by DPPH method and were tested for their cytotoxicity activity against Breast cancer cell lines (MCF-7), Colon carcinoma cells (HCT) and Hepatocellular carcinoma cells (HepG2) by viability assay method.
NASA Astrophysics Data System (ADS)
Gupta, Shraddha Rani; Mourya, Punita; Singh, M. M.; Singh, Vinod P.
2017-06-01
A Schiff base, (E)-N‧-((1H-indol-3-yl)methylene)-2-aminobenzohydrazide (Iabh) and its Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. These compounds have been characterized by different physico-chemical and spectroscopic tools (UV-Vis, IR, NMR and ESI-Mass). The molecular structure of Iabh is determined by single crystal X-ray diffraction technique. The ligand Iabh displays E-configuration about the >Cdbnd N- bond. The structure of ligand is stabilized by intra-molecular H-bonding. In all the metal complexes the ligand coordinates through azomethine-N and carbonyl-O resulting a distorted octahedral geometry for Mn(II), Co(II) and Cu(II) complexes in which chloride ions occupy axial positions. Ni(II) and Zn(II) complexes, however, form 4-coordinate distorted square planer and tetrahedral geometry around metal ion, respectively. The structures of the complexes have been satisfactorily modeled by calculations based on density functional theory (DFT) and time dependent-DFT (TD-DFT). The corrosion inhibition study of the compounds have been performed against mild steel in 0.5 M H2SO4 solution at 298 K by using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). They show appreciable corrosion inhibition property.
de Araújo, Eliene Leandro; Barbosa, Hellen Franciane Gonçalves; Dockal, Edward Ralph; Cavalheiro, Éder Tadeu Gomes
2017-02-01
Schiff bases have been prepared from biopolymer chitosan and salicylaldehyde, 5-methoxysalicylaldehyde, and 5-nitrosalicylaldehyde. Ligands were synthesized in a 1:1.5mol ratio, and their Cu(II), Ni(II) and Zn(II) complexes in a 1:1mol ratio (ligand:metal). Ligands were characterized by 1 H NMR and FTIR, resulting in degrees of substitution from 43.7 to 78.7%. Complexes were characterized using FTIR, electronic spectra, XPRD. The compounds were confirmed by the presence of an imine bond stretching in the 1630-1640cm -1 and νMetal-N and νMetal-O at <600cm -1 . Electronic spectra revealed that both Cu(II) and Ni(II) complexes present a square plane geometry. The crystallinity values were investigated by X-ray powder diffraction. Thermal behavior of all compounds was evaluated by TGA/DTG and DTA curves with mass losses related to dehydration and decomposition, with characteristic events for ligand and complexes. Schiff base complexes presented lower thermal stability and crystallinity than the starting chitosan. Residues were the metallic oxides as confirmed by XPRD, whose amounts were used in the calculation of the percentage of complexed metal ions. Surface morphologies were analyzed with SEM-EDAX. Preliminary cytotoxicity tests were performed using MTT assay with HeLa cells. Despite the differences in solubility, the free bases presented relatively low toxicity. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mahmoud, Walaa H.; Mohamed, Gehad G.; El-Dessouky, Maher M. I.
2015-02-01
Mixed ligand complexes were synthesized using lornoxicam (LOR) as the primary ligand and glycine amino acid (HGly) as the secondary ligand. They were characterized by FT-IR, UV-Vis, mass, 1H NMR, ESR spectral studies, TG-DTG, X-ray powder diffraction and physical analytical studies. From the molar conductance, magnetic moment and electronic spectral data of the synthesized complexes, general formulae of [M(LOR)2(Gly)]·Xn·yH2O where M = Cr(III) (X = Cl, n = 2, y = 3), Mn(II) (X = Cl, n = 1, y = 1), Co(II) (X = BF4, n = 1, y = 0), Ni(II) (X = Cl, n = 1, y = 0), Cu(II) (X = BF4, n = 1, y = 2) and Zn(II) (X = BF4, n = 1, y = 2) and (M = Fe(II) (X = BF4, n = 1, y = 1) and Fe(III) (X = Cl, n = 2, y = 1) with an octahedral structure were proposed. Thermal analyses show that the complexes lose water molecules of hydration initially and subsequently expel anionic parts and organic ligands in continuous steps. The kinetic parameters namely E, ΔH∗, ΔS∗ and ΔG∗ illustrate the spontaneous association of the metal and ligands in the formation of the complexes. The antimicrobial efficiency of the LOR and HGly ligands and the ternary complexes were examined by in vitro method against various pathogenic bacterial and fungal strains. The metal complexes were found to possess efficient antimicrobial properties compared to lornoxicam and most of these complexes could turn out to be excellent models for the design of effective antibiotic drug substances. Also, the two ligands, in comparison to ternary metal complexes are screened for their anticancer activity against breastic cancer cell line. The results showed that the metal complexes be more active than the parent LOR and glycine free ligands except Cr(III) ternary complex which was found to be inactive.
Anti-inflammatory drugs interacting with Zn(II), Cd(II) and Pt(II) metal ions.
Dendrinou-Samara, C; Tsotsou, G; Ekateriniadou, L V; Kortsaris, A H; Raptopoulou, C P; Terzis, A; Kyriakidis, D A; Kessissoglou, D P
1998-09-01
Complexes of Zn(II), Cd(II) and Pt(II) metal ions with the anti-inflammatory drugs, 1-methyl-5-(p-toluoyl)-1H-pyrrole-2-acetic acid (Tolmetin), alpha-methyl-4-(2-methylpropyl)benzeneacetic acid (Ibuprofen), 6-methoxy-alpha-methylnaphthalene-2-acetic acid (Naproxen) and 1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indole-3-acetic acid (indomethacin) have been synthesized and characterized. In the structurally characterized Cd(naproxen)2 complex the anti-inflammatory drugs acts as bidentate chelate ligand coordinatively bound to metal ions through the deprotonated carboxylate group. Crystal data for 1: [C32H26O8Cd], orthorhombic, space group P22(1)2(1), a = 5.693(2) (A), b = 8.760(3) (A), c = 30.74(1) (A), V = 1533(1) A3, Z = 2. Antibacterial and growth inhibitory activity is higher than that of the parent ligands or the platinum(II) diamine compounds.
NASA Astrophysics Data System (ADS)
Benhassine, Anfel; Boulebd, Houssem; Anak, Barkahem; Bouraiou, Abdelmalek; Bouacida, Sofiane; Bencharif, Mustapha; Belfaitah, Ali
2018-05-01
This work presents a combined experimental and theoretical study of two new metal-carboxylate coordination compounds. These complexes were prepared from (1-methyl-1H-benzimidazol-2-yl)methanol under mild conditions. The structures of the prepared compounds were characterized by single-crystal X-ray analysis, FTIR and UV-Vis spectroscopy. In the Cupper complex, the Cu(II) ion is coordinated by two ligands, which act as bidentate chelator through the non-substituted N and O atoms, and two carboxylicg oxygen atoms, displaying a hexa-coordinated compound in a distorted octahedral geometry, while in the Zinc complex the ligand is ligated to the Zn(II) ion in monodentate fashion through the N atom, and the metal ion is also bonded to carboxylic oxygen atoms. The tetra-coordinated compound displays a distorted tetrahedral shape. The density functional theory calculations are carried out for the determination of the optimized structures. The electronic transitions and fundamental vibrational wave numbers are calculated and are in good agreement with experimental. In addition, the ligand and its Cu(II) and Zn(II) complexes were screened and evaluated for their potential as DPPH radical scavenger.
Siddappa, Kuruba; Mane, Sunilkumar B.
2014-01-01
A simple condensation of 3-amino-2-methylquinazoline-4-one with 2-hydroxy-1-naphthaldehyde produced new tridentate ONO donor Schiff base ligand with efficient yield. The structural characterization of ligand and its Cu(II), Ni(II), Co(II), Mn(II), Zn(II), and Cd(II) complexes were achieved by the aid of elemental analysis, spectral characterization such as (UV-visible, IR, NMR, mass, and ESR), and magnetic data. The analytical and spectroscopic studies suggest the octahedral geometries of Cu(II), Co(II), Ni(II) and Mn(II) complexes and tetrahedral geometry of Zn(II) and Cd(II) complexes with the tridentate ONO Schiff base ligand. Furthermore, the conclusions drawn from these studies afford further support to the mode of bonding discussed on the basis of their 3D molecular modeling studies by considering different bond lengths, bond angles, and bond distance. The ligand and its metal complexes evaluated for their antimicrobial activity against Staphylococcus aureus (MTCC number 7443), Bacillus subtilis (MTCC number 9878), Escherichia coli (MTCC number 1698), Aspergillus niger (MTCC number 281), and Aspergillus flavus (MTCC number 277). The MIC of these compounds was found to be most active at 10 μg/mL concentration in inhibiting the growth of the tested organisms. The DNA cleavage activity of all the complexes was studied by gel electrophoresis method. PMID:24678278
NASA Astrophysics Data System (ADS)
Golbedaghi, Reza; Rezaeivala, Majid; Albeheshti, Leila
2014-11-01
Four new [Cd(H2L1)(NO3)]ClO4 (1), [Zn(H2L1)](ClO4)2 (2), [Cd(H2L2)(NO3)]ClO4 (3), and [Zn(H2L2)](ClO4)2 (4), complexes were prepared by the reaction of two new Schiff base ligands and Cd(II) and Zn(II) metal ions in equimolar ratios. The ligands H2L1 and H2L2 were synthesized by reaction of 2-[2-(2-formyl phenoxy)ethoxy]benzaldehyde and/or 2-[2-(3-formyl phenoxy)propoxy]benzaldehyde and ethanol amine and characterized by IR, 1H and 13C NMR spectroscopy. All complexes were characterized by IR, 1H and 13C NMR, COSY, and elemental analysis. Also, the complex 1 was characterized by X-ray in addition to the above methods. The X-ray crystal structure of compound 1 showed that all nitrogen and oxygen atoms of ligand (N2O4) and a molecule of nitrate with two donor oxygen atom have been coordinated to the metal ion and the Cd(II) ion is in an eight-coordinate environment that is best described as a distorted dodecahedron geometry.
Arafat, Yasir; Ali, Saqib; Shahzadi, Saira; Shahid, Muhammad
2013-01-01
Heterobimetallic complexes of Zn(II) and Sn(IV) with sarcosine have been synthesized at room temperature under stirring conditions by the reaction of sarcosine and zinc acetate in 2 : 1 molar ratio followed by the stepwise addition of CS2 and organotin(IV) halides, where R = Me, n-Bu, and Ph. The complexes were characterized by elemental analysis, FT-IR and NMR (1H, 13C) spectroscopy. IR data showed that the ligand acts in a bidentate manner. NMR data revealed the four coordinate geometry in solution state. In vitro antimicrobial activities data showed that complexes (3) and (4) were effective against bacterial and fungal strains with few exceptions. PMID:24235910
Shahabadi, Nahid; Mohammadi, Somaye
2012-01-01
A mononuclear complex of Zn(II), [Zn(DIP)2 (DMP)] (NO3)2 ·2H2O in which DIP is 4,7-diphenyl-1,10-phenanthroline and DMP is 4,4′-dimethyl-2,2′-bipyridine has been prepared and characterized by 1HNMR spectroscopy, FT-IR, UV-Vis and elemental analysis techniques. DNA-binding properties of the complex were studied using UV-vis spectra, circular dichroism (CD) spectra, fluorescence, cyclic voltammetry (CV), and viscosity measurements. The results indicate that this zinc(II) complex can intercalate into the stacked base pairs of DNA and compete with the strong intercalator ethidium bromide for the intercalative binding sites. PMID:22956919
Coordination Chemistry of Linear Oligopyrrolic Fragments Inspired by Heme Metabolites
NASA Astrophysics Data System (ADS)
Gautam, Ritika
Linear oligopyrroles are degradation products of heme, which is converted in the presence of heme oxygenase to bile pigments, such as biliverdin and bilirubin. These tetrapyrrolic oligopyrroles are ubiquitously present in biological systems and find applications in the fields of catalysis and sensing. These linear tetrapyrrolic scaffolds are further degraded into linear tripyrrolic and dipyrrolic fragments. Although these lower oligopyrroles are abundantly present, their coordination chemistry requires further characterization. This dissertation focuses mainly on two classes of bioinspired linear oligopyrroles, propentdyopent and tripyrrindione, and their transition metal complexes, which present a rich ligand-based redox chemistry. Chapter 1 offers an overview of heme degradation to different classes of linear oligopyrroles and properties of their transition metal complexes. Chapter 2 is focused on the tripyrrin-1,14-dione scaffold of the urinary pigment uroerythrin, which coordinates divalent transition metals palladium and copper with square planar geometry. Specifically, the tripyrrin-1, 14-dione ligand binds Cu(II) and Pd(II) as a dianionic organic radical under ambient conditions. The electrochemical study confirms the presence of ligand based redox chemistry, and one electron oxidation or reduction reactions do not alter the planar geometry around the metal center. The X-Ray analysis and the electron paramagnetic resonance (EPR) studies of the complexes in the solid and solution phase reveals intermolecular interactions between the ligand based unpaired electrons and therefore formation of neutral pi-pi dimers. In Chapter 3, the antioxidant activity and the fluorescence sensor properties of the tripyrrin-1,14-dione ligand in the presence of superoxide are described. We found that the tripyrrindione ligand undergoes one-electron reduction in the presence of the superoxide radical anion (O2•- ) to form highly fluorescent H3TD1•- radical anion, which emits at 635 nm. This reaction also explains the antioxidant properties of the linear tripyrrin-1,14-dione ligand, which acts as a scavenger of O2•-. In Chapter 4, the zinc binding properties of the tripyrrin-1,14-dione ligand are described. The tripyrrolic ligand coordinates as a dianionic ligand with the divalent Zn(II) ion in both organic and aqueous buffered conditions. The complex formed is highly fluorescent with a long wavelength emission band at 648 nm. The X-Ray crystallography analysis indicates the existence of dinuclear complex [Zn(TD1•)(H2O)]2, featuring a distorted square planar geometry around the Zn(II) center. In Chapter 5, the coordination chemistry of the dipyrrin-1,9-dione fragment of propentdyopent ligand is shown with a series of transition metals like (e.g., Co(II), Ni(II), Cu(II) and Zn(II)), which form homoleptic tetrahedral complexes. The spectroscopic and electrochemical characterization confirms that the complexes shows ligand-based redox chemistry and acts as reservoirs for unpaired electrons. Chapter 6 describes the formation of the fluorescent BODIPY complex of propentdyopent ligand. The dipyrrin-1,9-dione scaffold of heme metabolite propendyopent undergoes a one-pot reaction with borontrifluoride etherate in toluene to form a green fluorescent [(pdp)BF2] complex. Spectroscopic studies reveal that the meso-unsubstituted [(pdp)BF2] complex is stable in tetrahydrofuran and has a quantum yield of 0.13. Electrochemical studies confirm that the complex undergoes ligand-based reduction and acts as a host for an unpaired electron.
NASA Astrophysics Data System (ADS)
Bitmez, Şirin; Sayin, Koray; Avar, Bariş; Köse, Muhammet; Kayraldız, Ahmet; Kurtoğlu, Mükerrem
2014-11-01
A new tridentate azo-azomethine ligand, N‧-[{2-hydroxy-5-[(4-nitrophenyl)diazenyl]phenyl}methylidene]benzohydrazidemonohydrate, (sbH·H2O) (1), is prepared by condensation of benzohydrazide and 2-hydroxy-5-[(4-nitrophenyl)diazenyl]benzaldehyde (a) with treatment of a solution of diazonium salt of p-nitroaniline and 2-hydroxybenzaldehyde in EtOH. The five coordination compounds, [Co(sb)2]·4H2O (2), [Ni(sb)2]·H2O (3), [Cu(sb)2]·4H2O (4), [Zn(sb)2]·H2O (5) and [Cd(sb)2]·H2O (6) are prepared by reacting the Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) ions with the ligand. The structures of the compounds are elucidated from the elemental analyses data and spectroscopic studies. It is found the ligand acts as a tridentate bending through phenolic and carbonyl oxygens and nitrogen atom of the Cdbnd Nsbnd group similar to the most of salicylaldimines. Comparison of the infrared spectra of the ligand and its metal complexes confirm that azo-Schiff base behaves as a monobasic tridentate ligand towards the central metal ion with an ONO donor sequence. Upon complexation with the ligand, the Cd(II), and Zn(II) ions form monoclinic structures, while Co(II), Cu(II) and Ni(II) ions form orthorhombic structures. Quantum chemical calculations are performed on tautomers and its metal chelates by using DFT/B3LYP method. Most stable tautomer is determined as tautomer (1a). The geometrical parameters of its metal chelates are obtained as theoretically. The NLO properties of tautomer (1a) and its metal complexes are investigated. Finally, the ligand and its metal complexes are assessed for their genotoxicity.
NASA Astrophysics Data System (ADS)
Mathan Kumar, Shanmugaiah; Kesavan, Mookkandi Palsamy; Vinoth Kumar, Gujuluva Gangatharan; Sankarganesh, Murugesan; Chakkaravarthi, Ganesan; Rajagopal, Gurusamy; Rajesh, Jegathalaprathaban
2018-02-01
A thiosemicarbazone ligand HL appended new Zn(II) complexes [Zn(L)(bpy)] (1) and [Zn(L)(phen)] (2) (where, HL = {2-(3-bromo-5-chloro-2-hydroxybenzylidene)-N-phenylhydrazinecarbothioamide}, bpy = 2, 2‧-bipyridine and phen = 1, 10-phenanthroline) have been synthesized and well characterized using conventional spectroscopic techniques viz.,1H NMR, FTIR and UV-Vis spectra. The crystal structures of complexes 1 and 2 have been determined by single crystal X-ray diffraction studies. Both the complex 1 (τ = 0.5) and 2 (τ = 0.37) possesses square based pyramidally distorted trigonal bipyramidal geometry. The ground state electronic structures of complexes 1 and 2 were investigated by DFT/B3LYP theoretical analysis using 6-311G (d,p) and LANL2DZ basis set level. The superior DNA binding ability of complex 2 has been evaluated using absorption and fluorescence spectral titration studies. Antimicrobial evaluation reveals that complex 2 endowed better screening than HL and complex 1 against both bacterial as well as fungal species. Consequently, complex 2 possesses highest antibacterial screening against Staphylococcus aureus (MIC = 3.0 ± 0.23 mM) and antifungal screening against Candida albicans (MIC = 6.0 ± 0.11 mM). Furthermore, the anticancer activity of the ligand HL, complexes 1 and 2 have been examined against the MCF-7 cell line (Human breast cancer cell line) using MTT assay. It is remarkable that complex 2 (12 ± 0.67 μM) show highest anticancer activity than HL (25.0 ± 0.91 μM) and complex 1 (15 ± 0.88 μM) due to the presence of phen ligand moiety.
NASA Astrophysics Data System (ADS)
Dhankar, Raksha P.; Rahatgaonkar, Anjali M.; Chorghade, Mukund S.; Tiwari, Ashutosh
2-oxo-4-phenyl-6-styryl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid (ADP) was complexed with acetates of Mn(II), Ni(II), Cu(II) and Zn(II). The structures of the ligand and its metal complexes were characterized by microanalysis, IR, NMR, UV-vis spectroscopy, magnetic susceptibility and TGA-DTA analyses. Octahedral and square planar geometries were suggested for the complexes in which the central metal ion coordinated with sbnd O donors of ligand and acetate ions. Each ligand binds the metal using carboxylate oxygens. The ligand and complexes were evaluated for their antimicrobial activities against different species of pathogenic bacteria and fungi. The present novel pyrimidine containing complexes could constitute a new group of antibacterial and antifungal agents.
NASA Astrophysics Data System (ADS)
Abdel-Latif, Samir A.; Mohamed, Adel A.
2018-02-01
Novel Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) metal ions with 1,3-diphenyl-4-phenylazo-5-pyrazolone (L) have been prepared and characterized using different analytical and spectroscopic techniques. 1:1 Complexes of Mn(II), Co(II) and Zn(II) are distorted octahedral whereas Ni(II) complex is square planar and Cu(II) is distorted trigonal bipyramid. 1:2 Complexes of Mn(II), Co(II), Cu(II) and Zn(II) are distorted trigonal bipyramid whereas Ni(II) complex is distorted tetrahedral. All complexes behave as non-ionic in dimethyl formamide (DMF). The electronic structure and nonlinear optical parameters (NLO) of the complexes were investigated theoretically at the B3LYP/GEN level of theory. Molecular stability and bond strengths have been investigated by applying natural bond orbital (NBO) analysis. The geometries of the studied complexes are non-planner. DFT calculations have been also carried out to calculate the global properties; hardness (η), global softness (S) and electronegativity (χ). The calculated small energy gap between HOMO and LUMO energies shows that the charge transfer occurs within the complexes. The total static dipole moment (μtot), the mean polarizability (<α>), the anisotropy of the polarizability (Δα) and the mean first-order hyperpolarizability (<β>) were calculated and compared with urea as a reference material. The complexes show implying optical properties.
Yuan, Zhao; Simmons, J. Tyler; Sreenath, Kesavapillai
2014-01-01
Molecular photophysics and metal coordination chemistry are the two fundamental pillars that support the development of fluorescent cation indicators. In this article, we describe how Zn(II)-coordination alters various ligand-centered photophysical processes that are pertinent to developing Zn(II) indicators. The main aim is to show how small organic Zn(II) indicators work under the constraints of specific requirements, including Zn(II) detection range, photophysical requirements such as excitation energy and emission color, temporal and spatial resolutions in a heterogeneous intracellular environment, and fluorescence response selectivity between similar cations such as Zn(II) and Cd(II). In the last section, the biological questions that fluorescent Zn(II) indicators help to answer are described, which have been motivating and challenging this field of research. PMID:25071933
Liu, Dandan; Zhang, Mingzhu; Du, Wei; Hu, Lei; Li, Fei; Tian, Xiaohe; Wang, Aidong; Zhang, Qiong; Zhang, Zhongping; Wu, Jieying; Tian, Yupeng
2018-06-19
Two-photon active probe to label apoptotic cells plays a significant role in biological systems. However, discrimination of live/apoptotic cells at subcellular level under microscopy remains unachieved. Here, three novel Zn(II) terpyridine-based nitrate complexes (C1-C3) containing different pull/push units were designed. The structures of the ligands and their corresponding Zn(II) complexes were confirmed by single-crystal X-ray diffraction analysis. On the basis of the comprehensive comparison, C3 had a suitable two-photon absorption cross section in the near-infrared wavelength and good biocompatibility. Under two-photon confocal microscopy and transmission electron microscopy, it is found that C3 could target mitochondria in living cells but immigrate into the nucleolus during the apoptotic process. This dual-functional probe (C3) not only offers a valuable image tool but also acts as an indicator for cell mortality at subcellular level in a real-time manner.
NASA Astrophysics Data System (ADS)
Majumdar, Dhrubajyoti; Surendra Babu, M. S.; Das, Sourav; Biswas, Jayanta Kumar; Mondal, Monojit; Hazra, Suman
2017-06-01
A unique thiocyanato linked 1D chain of Zn(II) coordination polymer [Zn2L1(μ1,3-SCN)(η1SCN)]n (1) has been synthesized using potential multisite compartmental N,O donor Schiff base blocker ligand (L1H2) in presence of Zn(OAc)2 and KSCN. The Schiff base ligand [N, N‧-bis(3-methoxysalicylidenimino)-1,3-daminopropane] (L1H2) is 2:1 M ratio condensation product of O-vaniline and 1,3-diaminopropane in methanol medium. The characterization of Complex 1 was accomplished by means of different micro analytical techniques like elemental analyses, IR, UV-Vis, 1H NMR, emission spectroscopy and Single X-ray crystallographic study. Complex 1 crystallizes in Orthorhombic system, space group Pbca, with values a = 11.579(2), b = 18.538(3), and c = 22.160(4) Å; α = β = γ = 90.00°; V = 4756.6(14) and Z = 8. The single crystal X-ray revealed that the one dimensional chain system with the repeating unit [Zn2(μ1,3-SCN)(η1SCN)(L1)]n bridge by an end to end μ1,3 thiocyanate anion. Within each repeating unit two different types of Zn(II) ions are present. One of these is five-coordinate in a square pyramidal geometry while the other is six-coordinate in an octahedral geometry. A brief but lucid comparative approach has been demonstrated in between Schiff base (L1H2) and complex 1 with respect to their photoluminescence activities. Active luminescence behavior of complex 1 in presence of ligand (L1H2) is due to quenching of PET process which is mediated by 'chelating effect'. Complex 1 exhibits strong antimicrobial efficacy against some important Gram + ve and Gram -ve bacteria. Apart from antimicrobial potential, a combined experimental and theoretical investigation has been performed via DFT on molecular structure of complex 1 with respect to Hirshfeld surface analysis.
Hueso-Ureña, Francisco; Illán-Cabeza, Nuria A; Moreno-Carretero, Miguel N; Martínez-Martos, José M; Ramírez-Expósito, María J
2003-04-01
The synthesis, spectroscopic (IR, 1H and 13C NMR, UV-Vis-NIR, EPR), magnetic measurements and biological studies of a number of complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Au(III) and Hg(II) of the Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol and 5-aminouracil, ((5-[[(3-[[(2,4-dioxopyrimidin-5(1H,3H)-yl)imino]methyl]-2-hydroxy-5-methylphenyl)methylene]amino]pyrimidine-2,4(1H,3H)-dione, hereafter denoted as BDF5AU) are reported. In all cases, the complexes appear to be monomeric. The deprotonated ligand in the phenolic oxygen atom shows a tridentate coordination mode through the two azomethine nitrogen atoms and the phenolic oxygen atom. The coordination of the neutral ligand takes place through the phenolic oxygen atom and one azomethine nitrogen atom and the carbonylic oxygen atom in fourth position of one uracil ring. The biological properties of some perchlorate complexes on the activity of some neutral, acid, basic and omega aminopeptidases (AP) are assayed, demonstrating a general inhibitory effect. Neutral and basic AP are mainly inhibited by Cu(II), Ni(II) and Cd(II) complexes, although tyrosyl-AP is activated by Zn(II) complex. Glutamyl-AP but not aspartyl-AP is inhibited by all the complexes assayed excepting Zn(II) complex. Finally, omega AP is inhibited by Ni(II) and Cd(II) complexes. Copyright 2003 Elsevier Science Inc.
NASA Astrophysics Data System (ADS)
Zhou, Yong-Hong; Zhou, Xu-Wan; Zhou, Su-Rong; Tian, Yu-Peng; Wu, Jie-Ying
2017-01-01
Six novel Zn(II), Cd(II), and Cu(II) mixed-ligand coordination complexes, namely, [Zn2Na(sip)2(bpp)3(Hbpp)(H2O)2]·8H2O (1), [Cd3(sip)2(nbi)6(H2O)2]·7H2O (2), [Zn(sip)(nbi)2(H2O)]·Hnbi·3H2O (3), [Cd(hip)(nbi)2(H2O)]·nbi·5H2O (4), [Cd2(nip)2(nbi)2(H2O)2]·DMF (5), and [Cu(nip)(nbi)(H2O)2]·H2O (6) (H3sip=5-sulfoisophthalic acid, H2hip=5-hydroxylisophthalic acid, H2nip=5-nitroisophthalic acid, bpp=1,3-bis(4-pyridyl)propane, and nbi=6-nitrobenzimidazole) have been synthesized hydrothermally by the self-assembly of R-isophthalic acid (R=-SO3H, -NO2, and -OH) and N-donor ligands. Single crystal X-ray analyses reveal that two Zn(II) ions and one Na(I) ion of complex 1 are linked through O atoms to generate a 1D linear chain. Then the 2D supramolecular architectures are constructed via intermolecular interactions. In complex 2, the Cd1 ions are connected by bridging carboxyl groups from sip3- anions to form 1D double chain, which are further connected by Cd2 ions to afford 2D layer structure. The adjacent 2D layers are further linked via hydrogen-bonding interactions to give 3D supramolecular network. Compounds 3-5 show 1D chain structures, which are assembled into 2D or 3D supramolecular frameworks via weak interactions. In compound 6, the Cu(II) ions are bridged by the nip2- ligands to form 48-membered ring, which is assembled into 1Dchain via the π-π stacking interaction. In addition, the thermal stabilities and fluorescence properties of these compounds have also been studied.
NASA Astrophysics Data System (ADS)
Karaoglu, Kaan; Baran, Talat; Serbest, Kerim; Er, Mustafa; Degirmencioglu, Ismail
2009-03-01
Herein, we report two novel macroacyclic Schiff bases derived from tetranaphthaldehyde derivative compound and their binuclear Mn(II), Ni(II), Cu(II) and Zn(II) complexes. The structures of the compounds have been proposed by elemental analyses, spectroscopic data i.e. IR, 1H and 13C NMR, UV-Vis, electrospray ionisation mass spectra, molar conductivities and magnetic susceptibility measurements. The stoichiometries of the complexes derived from mass and elemental analysis correspond to the general formula [M 2L(ClO 4) n](ClO 4) 4-n, (where M is Mn(II), Ni(II), Cu(II), Zn(II) and L represents the Schiff base ligands).
Pesavento, Russell P; Pratt, Derek A; Jeffers, Jerry; van der Donk, Wilfred A
2006-07-21
Cytochrome c oxidase, the enzyme complex responsible for the four-electron reduction of O2 to H2O, contains an unusual histidine-tyrosine cross-link in its bimetallic heme a3-CuB active site. We have synthesised an unhindered, tripodal chelating ligand, BPAIP, containing the unusual ortho-imidazole-phenol linkage, which mimics the coordination environment of the CuB center. The ligand was used to investigate the physicochemical (pKa, oxidation potential) and coordination properties of the imidazole-phenol linkage when bound to a dication. Zn(II) coordination lowers the pKa of the phenol by 0.6 log units, and increases the potential of the phenolate/phenoxyl radical couple by approximately 50 mV. These results are consistent with inductive withdrawal of electron density from the phenolic ring. Spectroscopic data and theoretical calculations (DFT) were used to establish that the cationic complex [Zn(BPAIP)Br]+ has an axially distorted trigonal bipyramidal structure, with three coordinating nitrogen ligands (two pyridine and one imidazole) occupying the equatorial plane and the bromide and the tertiary amine nitrogen of the tripod in the axial positions. Interestingly, the Zn-Namine bonding interaction is weak or absent in [Zn(BPAIP)Br]+ and the complex gains stability in basic solutions, as indicated by 1H NMR spectroscopy. These observations are supported by theoretical calculations (DFT), which suggest that the electron-donating capacity of the equatorial imidazole ligand can be varied by modulation of the protonation and/or redox state of the cross-linked phenol. Deprotonation of the phenol makes the equatorial imidazole a stronger sigma-donor, resulting in an increased Zn-Nimd interaction and thereby leading to distortion of the axial ligand axis toward a more tetrahedral geometry.
Probing the energetics of dissociation of carbonic anhydrase-ligand complexes in the gas phase.
Gao, J; Wu, Q; Carbeck, J; Lei, Q P; Smith, R D; Whitesides, G M
1999-01-01
This paper describes the use of electrospray ionization-Fourier transform ion cyclotron mass spectrometry (ESI-FTICR-MS) to study the relative stabilities of noncovalent complexes of carbonic anhydrase II (CAII, EC 4.2.1.1) and benzenesulfonamide inhibitors in the gas phase. Sustained off-resonance irradiation collision-induced dissociation (SORI-CID) was used to determine the energetics of dissociation of these CAII-sulfonamide complexes in the gas phase. When two molecules of a benzenesulfonamide (1) were bound simultaneously to one molecule of CAII, one of them was found to exhibit significantly weaker binding (DeltaE50 = 0.4 V, where E50 is defined as the amplitude of sustained off-resonance irradiation when 50% of the protein-ligand complexes are dissociated). In solution, the benzenesulfonamide group coordinates as an anion to a Zn(II) ion bound at the active site of the enzyme. The gas phase stability of the complex with the weakly bound inhibitor was the same as that of the inhibitor complexed with apoCAII (i.e., CAII with the Zn(II) ion removed from the binding site). These results indicate that specific interactions between the sulfonamide group on the inhibitor and the Zn(II) ion on CAII were preserved in the gas phase. Experiments also showed a higher gas phase stability for the complex of para-NO2-benzenesulfonamide-CAII than that for ortho-NO2-benzenesulfonamide-CAII complex. This result further suggests that steric interactions of the inhibitors with the binding pocket of CAII parallel those in solution. Overall, these results are consistent with the hypothesis that CAII retains, at least partially, the structure of its binding pocket in the gas phase on the time scale (seconds to minutes) of the ESI-FTICR measurements. PMID:10354450
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yong-Hong, E-mail: zhou21921@sina.com; Zhou, Xu-Wan; Zhou, Su-Rong
Six novel Zn(II), Cd(II), and Cu(II) mixed-ligand coordination complexes, namely, [Zn{sub 2}Na(sip){sub 2}(bpp){sub 3}(Hbpp)(H{sub 2}O){sub 2}]·8H{sub 2}O (1), [Cd{sub 3}(sip){sub 2}(nbi){sub 6}(H{sub 2}O){sub 2}]·7H{sub 2}O (2), [Zn(sip)(nbi){sub 2}(H{sub 2}O)]·Hnbi·3H{sub 2}O (3), [Cd(hip)(nbi){sub 2}(H{sub 2}O)]·nbi·5H{sub 2}O (4), [Cd{sub 2}(nip){sub 2}(nbi){sub 2}(H{sub 2}O){sub 2}]·DMF (5), and [Cu(nip)(nbi)(H{sub 2}O){sub 2}]·H{sub 2}O (6) (H{sub 3}sip=5-sulfoisophthalic acid, H{sub 2}hip=5-hydroxylisophthalic acid, H{sub 2}nip=5-nitroisophthalic acid, bpp=1,3-bis(4-pyridyl)propane, and nbi=6-nitrobenzimidazole) have been synthesized hydrothermally by the self-assembly of R-isophthalic acid (R=–SO{sub 3}H, –NO{sub 2}, and –OH) and N-donor ligands. Single crystal X-ray analyses reveal that two Zn(II) ions and one Na(I) ion of complex 1 are linked through Omore » atoms to generate a 1D linear chain. Then the 2D supramolecular architectures are constructed via intermolecular interactions. In complex 2, the Cd1 ions are connected by bridging carboxyl groups from sip{sup 3−} anions to form 1D double chain, which are further connected by Cd2 ions to afford 2D layer structure. The adjacent 2D layers are further linked via hydrogen-bonding interactions to give 3D supramolecular network. Compounds 3–5 show 1D chain structures, which are assembled into 2D or 3D supramolecular frameworks via weak interactions. In compound 6, the Cu(II) ions are bridged by the nip{sup 2−} ligands to form 48-membered ring, which is assembled into 1Dchain via the π-π stacking interaction. In addition, the thermal stabilities and fluorescence properties of these compounds have also been studied. - Graphical abstract: A series of Cd(II)/Zn(II)/ Cu(II) coordination polymers based on R-isophthalic acid (R=–SO{sub 3}H, –NO{sub 2}, and –OH) and N-donor ligands have been synthesized under hydrothermal conditions and structurally characterized. Photoluminescent properties have been discussed. - Highlights: • Six coordination polymers were synthesized based on mixed-ligand strategy. • The polycarboxylate acids play a crucial role in determining the final structures. • Each complex shows diverse structures and different supramolecular interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Fei; Chen, Jing; Liang, Yongfeng
Two coordination polymers [Co(dnbab){sub 2}(bimb)](H{sub 2}O){sub 4} (1) and [Zn(dnbab){sub 2}(bimb)](H{sub 2}O){sub 5} (2) (Hdnbab=4-[(3,5-dinitrobenzoyl)amino]benzoic acid, bimb=1,4-bis(1-imidazolyl) benzene) have been solvothermally synthesized. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by powder X-ray diffraction (PXRD) and thermogravimetric (TG) analyses. Complexes 1 and 2 are isostructures and each displays an one-dimensional (1D) zigzag chain, which further forms a 3D supramolecular architecture with 1-D channels via inter-chain π–π interactions and hydrogen bonds. Moreover, the magnetic properties of 1 and fluorescent properties of 2 have been investigated. - Graphical abstract: Two coordination supramolecular frameworks [Co(dnbab){sub 2}(bimb)](H{sub 2}O){sub 4}(1)more » and [Zn(dnbab){sub 2}(bimb)](H{sub 2}O){sub 5}(2) (Hdnbab=4-[(3,5-dinitrobenzoyl)amino]benzoic acid, bimb=1,4-bis(1-imidazolyl) benzene) have been synthesized and characterized by X-ray single-crystal diffraction. Their thermal, magnetic and fluorescent properties have also been studied. - Highlights: • Two isomorphic Co(II)/Zn(II) complexes with the mixed-ligands have been synthesized. • Hydrogen bonds and π–π stacking interactions directed the final 3-D architecture assembly. • Both Co(II) and Zn(II) complexes show good thermal stability. • Co complex exhibits antiferromagnetic interaction. • The fluorescent property of Zn(II) complex has been investigated in the solid state.« less
Revisiting and re-engineering the classical zinc finger peptide: consensus peptide-1 (CP-1).
Besold, Angelique N; Widger, Leland R; Namuswe, Frances; Michalek, Jamie L; Michel, Sarah L J; Goldberg, David P
2016-04-01
Zinc plays key structural and catalytic roles in biology. Structural zinc sites are often referred to as zinc finger (ZF) sites, and the classical ZF contains a Cys2His2 motif that is involved in coordinating Zn(II). An optimized Cys2His2 ZF, named consensus peptide 1 (CP-1), was identified more than 20 years ago using a limited set of sequenced proteins. We have reexamined the CP-1 sequence, using our current, much larger database of sequenced proteins that have been identified from high-throughput sequencing methods, and found the sequence to be largely unchanged. The CCHH ligand set of CP-1 was then altered to a CAHH motif to impart hydrolytic activity. This ligand set mimics the His2Cys ligand set of peptide deformylase (PDF), a hydrolytically active M(II)-centered (M = Zn or Fe) protein. The resultant peptide [CP-1(CAHH)] was evaluated for its ability to coordinate Zn(II) and Co(II) ions, adopt secondary structure, and promote hydrolysis. CP-1(CAHH) was found to coordinate Co(II) and Zn(II) and a pentacoordinate geometry for Co(II)-CP-1(CAHH) was implicated from UV-vis data. This suggests a His2Cys(H2O)2 environment at the metal center. The Zn(II)-bound CP-1(CAHH) was shown to adopt partial secondary structure by 1-D (1)H NMR spectroscopy. Both Zn(II)-CP-1(CAHH) and Co(II)-CP-1(CAHH) show good hydrolytic activity toward the test substrate 4-nitrophenyl acetate, exhibiting faster rates than most active synthetic Zn(II) complexes.
Mahmoud, W H; Mahmoud, N F; Mohamed, G G; El-Sonbati, A Z; El-Bindary, A A
2015-01-01
The coordination behavior of a series of transition metal ions named Cr(III), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with a mono negative tridentate guaifenesin ligand (GFS) (OOO donation sites) and 1,10-phenanthroline (Phen) is reported. The metal complexes are characterized based on elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance, UV-vis spectral studies, mass spectroscopy, ESR, XRD and thermal analysis (TG and DTG). The ternary metal complexes were found to have the formulae of [M(GFS)(Phen)Cl]Cl·nH2O (M=Cr(III) (n=1) and Fe(III) (n=0)), [M(GFS)(Phen)Cl]·nH2O (M=Mn(II) (n=0), Zn(II) (n=0) and Cu(II) (n=3)) and [M(GFS)(Phen)(H2O)]Cl·nH2O (M=Co(II) (n=0), Ni(II) (n=0) and Cd(II) (n=4)). All the chelates are found to have octahedral geometrical structures. The ligand and its ternary chelates are subjected to thermal analyses (TG and DTG). The GFS ligand, in comparison to its ternary metal complexes also was screened for their antibacterial activity on gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram negative bacteria (Escherichia coli and Neisseria gonorrhoeae) and for in vitro antifungal activity against (Candida albicans). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent GFS ligand. The complexes were also screened for its in vitro anticancer activity against the Breast cell line (MFC7) and the results obtained show that they exhibit a considerable anticancer activity. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Košická, Petra; Győryová, Katarína; Smolko, Lukáš; Gyepes, Róbert; Hudecová, Daniela
2018-03-01
Two new analogous zinc(II) complexes containing 5-iodo- and 5-bromosalicylate ligands, respectively, were prepared in single-crystal form and characterized by IR spectroscopy, thermal analysis and elemental analysis. The solid-state structures of prepared complexes were determined by single crystal X-ray crystallography. Both complexes are isostructural and their crystal structures composed of neutral molecules [Zn(5-Xsal)2(H2O)2] (where X = Br, I, sal = salicylato). Central Zn(II) atom is in both complexes coordinated by six oxygen atoms, four of which are from two chelate bonded 5-halosalicylates and remaining two from coordinated water molecules. The found chelate binding mode is in line with the Δ values calculated from IR spectral data. Antimicrobial activity of prepared complexes was studied against selected bacteria, yeast and filamentous fungi. Obtained results indicate that 5-iodosalicylate complex is more antimicrobially active than its 5-bromo substituted analogue.
Quantum-chemical, NMR, FT IR, and ESI MS studies of complexes of colchicine with Zn(II).
Jankowski, Wojciech; Kurek, Joanna; Barczyński, Piotr; Hoffmann, Marcin
2017-04-01
Colchicine is a tropolone alkaloid from Colchicinum autumnale. It shows antifibrotic, antimitotic, and anti-inflammatory activities, and is used to treat gout and Mediterranean fever. In this work, complexes of colchicine with zinc(II) nitrate were synthesized and investigated using DFT, 1 H and 13 C NMR, FT IR, and ESI MS. The counterpoise-corrected and uncorrected interaction energies of these complexes were calculated. We also calculated their 1 H, 13 C NMR, and IR spectra and compared them with the corresponding experimentally obtained data. According to the ESI MS mass spectra, colchicine forms stable complexes with zinc(II) nitrate that have various stoichiometries: 2:1, 1:1:1, and 2:1:1 with respect to colchichine, Zn(II), and nitrate ion. All of the complexes were investigated using the quantum theory of atoms in molecules (QTAIM). The calculated and the measured spectra showed differences before and after the complexation process. Calculated electron densities and bond critical points indicated the presence of bonds between the ligands and the central cation in the investigated complexes that satisfied the quantum theory of atoms in molecules. Graphical Abstract DFT, NMR, FT IR, ESI MS, QTAIM and puckering studies of complexes of colchicine with Zn(II).
NASA Astrophysics Data System (ADS)
Koch, Angira; Phukan, Arnab; Chanu, Oinam B.; Kumar, A.; Lal, R. A.
2014-02-01
Five manganese(IV) complexes [Mn(L)(bpy)] (1) and heterobimetallic complexes [MMn(L)Cl2(H2O)4]·1.5H2O (M = ZnII(2), CuII(3)) and [MnM(L)(bpy)Cl2] (M = ZnII(4), CuII(5)] have been synthesized from bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone (H4L) in methanol medium. The composition of the complexes have been established based on the data obtained from analytical, thermoanalytical and mass spectral studies. The structures of the complexes have been discussed in the light of molar conductance, magnetic moment, electronic, EPR, IR, FT-IR spectroscopic studies and transmission electron microscopies. The molar conductance values of these complexes in DMSO suggest their non-electrolytic nature. The μeff value for the complexes (1), (2) and (4) fall in the range 3.82-4.12 BM characteristic of the presence of the manganese(IV) in them. The complex (3) has μeff value of 3.70 BM at RT indicating considerable antiferromagnetic interaction between Mn(IV) and Cu(II). The μeff value of 4.72 BM for complex (5) is slightly lower than 4.90 BM for S = 2 ground state. In the complex (1) to (3), the ligand is coordinated to the metal centres as tetradentate ligand while in the complexes (4) and (5) as hexadentate ligand. Manganese(IV) has distorted octahedral stereochemistry in all complexes. Copper(II) has distorted octahedral and square planar stereochemistry in complexes (3) and (5) while zinc has distorted octahedral and tetrahedral stereochemistry, respectively. EPR studies of the complexes are also reported. The electron transfer reactions of the complexes have also been investigated by cyclic voltammetry.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.
2013-03-01
Complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with curcumin ligand as antitumor activity were synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV-Vis, IR, Raman, ESR, 1H-NMR spectroscopy, X-ray diffraction analysis of powdered samples and thermal analysis, and screened for antimicrobial activity. The IR spectral data suggested that the ligand behaves as a monobasic bidentate ligand towards the central metal ion with an oxygen's donor atoms sequence of both sbnd OH and Cdbnd O groups under keto-enol structure. From the microanalytical data, the stoichiometry of the complexes 1:2 (metal:ligand) was found. The ligand and their metal complexes were screened for antibacterial activity against Escherichia Coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa and fungicidal activity against Aspergillus flavus and Candida albicans.
Siemeling, Ulrich; Klemann, Thorsten; Bruhn, Clemens; Schulz, Jiří; Štěpnička, Petr
2011-05-07
The reaction of Group 12 metal dihalides MX(2) with the P,N-ligands [Fe(C(5)H(4)-PPh(2))(C(5)H(4)-2-py)] (1) (2-py = pyrid-2-yl), [Fe(C(5)H(4)-PPh(2))(C(5)H(4)-CH(2)-2-py)] (2) and [Fe(C(5)H(4)-PPh(2))(C(5)H(4)-3-py)] (3) (3-py = pyrid-3-yl) was investigated. For a 1 : 1 molar ratio of MX(2) and the respective ligand, three structure types were found in the solid state, viz. chelate, cyclic dimer and chain-like coordination polymer. The M(II) coordination environment is distorted pseudo-tetrahedral in each case. The P-M-N angle is much larger in the chelates (≥119°) than in the ligand-bridged structures (≤109°). 1 prefers the formation of chelates [MX(2)(1-κ(2)N,P)]. 3 forms coordination polymers [MX(2)(μ-3)](n). With the more flexible 2 all three structure types can occur. Dynamic coordination equilibria were observed in solution for the molecular complexes obtained with 1 and 2. NMR data indicate that the N- and P-donor sites interact most strongly with Zn(II) and Hg(II), respectively. While the formation of bis(phosphine)mercury complexes (soft-soft) was easily achieved, no bis(pyridine)zinc complex (borderline-borderline) could be obtained, which is surprising in view of the HSAB principle.
NASA Astrophysics Data System (ADS)
Azarkish, Mohammad; Akbari, Alireza; Sedaghat, Tahereh; Simpson, Jim
2017-04-01
Four new ternary complexes, [ZnL (2,2‧-bipy)] (1), Zn2L2(4,4‧-bipy)] (2), [ZnL(Imd)]·H2O (3) and [ZnL3(MeImd)] (4), have been synthesized from the reaction of Zn(II) acetate with 1-(5-bromo-2-hydroxybenzylidene)-4-phenylthiosemicarbazide (H2L) in the presence of a heterocyclic base, 2,2‧-bipyridine, 4,4‧-bipyridine, imidazole or 2-methylimidazole, as an auxiliary ligand. The complexes have been investigated by elemental analysis and FT-IR, UV-Vis and 1HNMR spectroscopy. These data show that the thiosemicarbazone acts as a tridentate dianionic ligand and coordinates via the thiol group, imine nitrogen, and phenolic oxygen. The coordination sphere was completed by the nitrogen atom(s) of the secondary ligand. The structure of 1 was also confirmed by X-ray crystallography and shown to be a five coordinate complex with coordination geometry between the square-pyramidal and trigonal-bipyramidal. Density functional theory (DFT) calculations including geometry optimization, vibrational frequencies and electronic absorptions have been performed for 1 with the B3LYP functional at the TZP(6-311G*) basis set using the Gaussian 03 or ADF 2009 packages. The optimization calculation showed that the crystallographically determined geometry parameters can be reproduced with that basis set. Experimental IR frequencies and calculated vibration frequencies also support each other. The in vitro antibacterial activities of the ligand and complexes have been evaluated against Gram-positive (B. subtilis and S. aureus) and Gram-negative (P. aeruginosa) bacteria and compared with the standard antibacterial drugs. The results reveal that all of the complexes show much better activity in comparison to the individual thiosemoicarbazone ligand (H2L), against all bacterial strains used, with complex 3 showing the most promising results.
NASA Astrophysics Data System (ADS)
El-Samanody, El-Sayed A.; Emam, Sanaa M.; Emara, Esam M.
2017-10-01
A new series of some biologically active Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes was synthesized from the novel thiosemicarbazone ligand; (E)-N'-(furan-2-ylmethylene)morpholine-4-carbothiohydrazide (HL). Elemental, spectral, thermal analyses, magnetic susceptibility and molar conductivity measurements were used to elucidate the structure of separated compounds. The data prove that the ligand reacts with all metal ions in a neutral thione form. The electrolytic tetra-coordinate Cu(II); Zn(II) complexes (5, 6; 10) bind through the thione sulfur, furfural oxygen and azomethine nitrogen atoms of the ligand (NSO type) to construct fused five membered rings. However, the rest non-electrolyte octahedral complexes chelate via the furfural oxygen and azomethine nitrogen atoms of the ligand (NO type). Molecular modeling was conducted for the ligand and two representative complexes (1, 5) in order to substantiate their chemical structures. Thermal analyses are compatible with molecular modeling studies to support the proposed thermal decomposition pathways of metal complexes which start with the rupture of the long and weak N-NH bond. The thermal stability of metal complexes varies according to the number of solvents of crystallization, ionic radii and steric effect of anions. The ESR spectra of Cu(II) complexes are compatible with a primarily (dx2-y2)1 ground state with axial symmetry. The ligand and its Co(II); Cu(II); Cd(II) complexes (1; 5, 8; 11) along with their mixtures with metaldehyde were screened in vitro for their molluscicidal activity against Eobania vermiculata. Combination with metaldehyde enhances the toxicity effect of the tested compounds through reducing the period required for mortality and increasing the percentage of mortality after 24 h of treatments. The tested compounds gathered with metaldehyde are strongly affecting on the activity of ACP and ALP enzymes and TP content which are very important factors in the mucous secretion of Eobania vermiculata. These effects lead to excess mucous secretion, causing dryness and death for the snails.
NASA Astrophysics Data System (ADS)
Sezer, Güneş Günay; Yeşilel, Okan Zafer; Şahin, Onur; Arslanoğlu, Hasan; Erucar, İlknur
2017-09-01
A new coordination polymer {[Zn(μ3-ppda)(H2O)(μ-bpa)Zn(μ-ppda)(μ-bpa)]·4H2O}n (1) (ppda = 1,4-phenylenediacetate, bpa = 1,2-bis(4-pyridyl)ethane) has been synthesized by microwave-assisted reaction and characterized by elemental analysis, IR spectroscopy, single-crystal and powder X-ray diffractions. The asymmetric unit of 1 consists of two Zn(II) ions, two bpa ligands, two ppda ligands, one coordinated and four non-coordinated water molecules. In 1, ppda2- anions are linked the adjacent Zn(II) centers to generate 1D double-stranded chains. These chains are connected into 2D sheets by the bridging bpa ligands. Atomically detailed modeling was performed to compute single and binary component adsorption isotherms of H2, CO2, CH4 and N2 in complex 1. Results showed that 1 exhibits a high adsorption selectivity towards CO2 due to its high affinity for CO2. Results of this study will be helpful to guide the microwave-assisted reaction of coordination polymers to design promising adsorbents for gas storage and gas separation applications. The luminescent property of 1 and the selective removal of dyes in 1 have been also discussed. Results showed that 1 can be a potential candidate for luminescence applications and can selectively adsorb methylene blue (MB) dye molecules.
Cox, Hazel; Norris, Caroline; Wu, Guohua; Guan, Jingang; Hessey, Stephen; Stace, Anthony J
2011-11-14
Singly and doubly charged atomic ions of zinc and copper have been complexed with pyridine and held in an ion trap. Complexes involving Zn(II) and Cu(I) (3d(10)) display a strong tendency to bind with H(2)O, whilst the Zn(I) (3d(10)4s(1)) complexes exhibit a strong preference for the attachment of O(2). DFT calculations show that this latter result can be interpreted as internal oxidation leading to the formation of superoxide complexes, [Zn(II)O(2)(-)](pyridine)(n), in the gas phase. The calculations also show that the oxidation of Zn(I) to form Zn(II)O(2)(-) is promoted by a mixing of the occupied 4s and vacant 4p orbitals on the metal cation, and that this process is facilitated by the presence of the pyridine ligands.
Malik, Ashraf; Parveen, Shadma; Ahamad, Tansir; Alshehri, Saad M.; Singh, Prabal Kumar; Nishat, Nahid
2010-01-01
A starch-urea-based biodegradable coordination polymer modified by transition metal Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) was prepared by polycondensation of starch and urea. All the synthesized polymeric compounds were characterized by Fourier transform-infrared spectroscopy (FT-IR), 1H-NMR spectroscopy, 13C-NMR spectroscopy, UV-visible spectra, magnetic moment measurements, differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA). The results of electronic spectra and magnetic moment measurements indicate that Mn(II), Co(II), and Ni(II) complexes show octahedral geometry, while Cu(II) and Zn(II) complexes show square planar and tetrahedral geometry, respectively. The thermogravimetric analysis revealed that all the polymeric metal complexes are more thermally stable than the parental ligand. In addition, biodegradable studies of all the polymeric compounds were also carried out through ASTM standards of biodegradable polymers by CO2 evolution method. PMID:20414461
Nicotianamine forms complexes with Zn(II) in vivo.
Trampczynska, Aleksandra; Küpper, Hendrik; Meyer-Klaucke, Wolfram; Schmidt, Holger; Clemens, Stephan
2010-01-01
The non-proteinogenic amino acid nicotianamine (NA) is a major player in plant metal homeostasis. It is known to form complexes with different transition metals in vitro. Available evidence associates NA with translocation of Fe, and possibly other micronutrients, to and between different plant cells and tissues. To date, however, it is still extremely challenging to detect metal-ligand complexes in vivo because tissue disruption immediately changes the chemical environment and thereby the availability of binding partners. In order to overcome this limitation we used various Schizosaccharomyces pombe strains expressing a plant NAS gene to study formation of metal-NA complexes in vivo. Tolerance, accumulation and competition data clearly indicated formation of Zn(ii)-NA but not of Cu(ii)-NA complexes. Zn(ii)-NA was then identified by X-ray absorption spectroscopy (XAS). About half of the cellular Zn was found to be bound by NA in NAS-expressing cells while no NA-like ligands were detected by XAS in control cells not expressing NAS. Given the high conservation of eukaryotic metal homeostasis components, these results strongly suggest the possible existence of Zn(ii)-NA complexes also in planta. Reported observations implicating NA in plant Zn homeostasis would then indeed be attributable to direct interaction of Zn(ii) with NA rather than only indirectly to perturbations in Fe metabolism. Re-evaluation of extended X-ray absorption fine structure (EXAFS) spectra for the Zn hyperaccumulator Thlaspi caerulescens showed that NA is as expected not a major storage ligand for Zn. Instead it is hypothesized to be involved in efficient translocation of Zn to above-ground tissues in hyperaccumulators.
Zhang, Hui-Miao; Fu, Wen-Fu; Gan, Xin; Xu, Yan-Qing; Wang, Jun; Xu, Quan-Qing; Chi, Shao-Ming
2008-12-21
A flexible ligand bis(7-methyl-1,8-naphthyridine-2-ylamino)methane (), having kappa(4)-chelating and kappa(2)-bridging modes, and its intriguing structural complexes of Zn(II) with mu-OH, kappa(1)-OAc, mu-kappa(1)-OAc and mu-kappa(2)-OAc ligands, [Zn(2)()(2)(OH)](ClO(4))(3) (), [Zn(4)()(2)(OAc)(6)(OH)(2)].CH(2)Cl(2) (.CH(2)Cl(2)) and [Zn(5)()(2)(OAc)(10)](n).4nH(2)O (.4H(2)O) were synthesized and their structures were determined by X-ray crystallography. These compounds exhibited intense blue fluorescent emissions with a lambda(max) in the range of 380-410 nm in CH(2)Cl(2), CH(3)CN and CH(3)OH solutions, and solid-state emissions centered at 416, 463, 490 and 451 nm were observed for the compounds , , and at room temperature, respectively. The investigated fluorescence properties of associated with various metal ions showed that the fluorescence enhancement of with Cd(II) was more sensitive than with other interfering cations.
Hwang, Seok-Ho; Moorefield, Charles N; Wang, Pingshan; Fronczek, Frank R; Courtney, Brandy H; Newkome, George R
2006-08-07
Synthesis of a novel bis(terpyridine) ligand, 4,4'-bis(2,2':6',2''-terpyridinyl)triphenylamine, utilizing triphenylamine, as a specific angle controller, has led to the self-assembly of a unique hexagonal metallomacrocycle family, [Fe6(2)6(PF6)12] and [Zn6(2)6(BF4)12], utilizing terpyridine-metal(II)-terpyridine connectivity. The crystal structure of the novel ligand shows that the angle between the two terpyridinyl moieties is 119.69 degrees , which enabled the formation of the hexagonal-shaped macrocycles. The crystal packing architectures of this starting ligand revealed channels induced by solvent encapsulation. Following complexation of this ligand with transition metals [Fe(II) or Zn(II)] in a one-pot reaction, the resultant structures were characterized by (1)H and (13)C NMR, UV/Vis and mass spectroscopies. The expected metal-to-ligand charge transfer (MLCT; lambda(max) = 582 nm) and emission (lambda(em) = 575 nm) characteristics were exhibited by both [Fe6(2)6(PF6)12] and[Zn6(2)6(BF4)12]. The photoelectrochemical characteristics of these hexagonal metallomacrocycles demonstrate that they can be used as sensitizers in dye-sensitized solar cells.
Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman
2015-04-05
This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman
2015-04-01
This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.
NASA Astrophysics Data System (ADS)
Singh, Mahesh Kumar; Sutradhar, Sanjit; Paul, Bijaya; Adhikari, Suman; Laskar, Folguni; Acharya, Sandeep; Chakraborty, Debabrata; Biswas, Surajit; Das, Arijit; Roy, Subhadip; Frontera, Antonio
2018-07-01
The fascinating structural chemistry of zinc(II) with 1,1-dicyanoethylene- 2,2-dithiolate [i-MNT2- = {S2C:C(CN)2}2-] ligand is presented. To elaborate, the reactivity of zinc(II) salt towards potassium salt of 1,1-dicyanoethylene-2,2-dithiolate (K2i-MNT) and 1,3-diaminopropane (dap) was studied in the presence of two distinct N-donor ligands, α-picoline (2-Methylpyridine) and γ-picoline (4-Methylpyridine), respectively. As a result, two different Zn(II) coordination complexes of formule [Zn2(dap)2(i-MNT)2] (1) and {[Zn(dap)(i-MNT)(4-MePy)]·2H2O}n (2) were obtained. They were isolated as stable crystalline solids and fully characterized, including by single crystal X-ray diffraction. Complex 1 is a discrete 0D dimer, whereas 2 is a 1D coordination polymer. Although α-picoline was used during the synthesis of 1, it is not involved in the metal coordination. Aiming at rationalizing the influence of the different noncovalent interactions, such as H-bonding, unconventional Nsbnd H···π and anion-π, on the crystal packing of 1 and 2, DFT calculations (M06-2X/def2-TZVP) were performed. Moreover, luminescence property of the complex 2 was investigated. Finally, in vitro antifungal activity of complex 2 was also screened against five fungi viz. Synchitrium endobioticum, Pyricularia oryzae, Helminthosporium oryzae, Candida albicans (ATCC10231) and Trichophyton mentagrophytes by the disc diffusion method and found to be effective when compared to K2i-MNT.H2O.
NASA Astrophysics Data System (ADS)
Salehzadeh, Sadegh; Javarsineh, Seyed Amrollah; Keypour, Hassan
2006-03-01
Tris(3-aminopropyl)amine, 2-pyridinecarboxaldehyde and a number of metal ions were used to prepare metal complexes of a new fully condensed potentially heptadentate(N 7) tripodal Schiff base ligand (L 333). The resulting complexes, [M(L 333)](ClO 4) 2 {M= Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II); L 333=[N(CH 2CH 2CH 2N dbnd6 CH(C 5H 4N)) 3]}, were characterized by microanalysis, IR and electronic spectra in all cases and by NMR spectra in the case of Zn(II) and Cd(II) complexes: these two are both seven-co-ordinate. The 1H NMR, COSY and HMQC spectra of these complexes show two kinds of protons for each methylene group. The COSY spectrum confirms the geminal coupling of the two protons of each methylene group, indicating that the protons are diastereotopic in rigid six-membered rings. In the 1H NMR spectrum of the cadmium complex the signal of the imine proton has two clear satellites peaks ( 3J=41.9 Hz) with intensities in the ratio 1:6:1 due to coupling with neighbouring 111/113Cd. This coupling constant was confirmed by 113Cd NMR spectroscopy. Ab initio studies on [Fe(L 333)] 2+, [Zn(L 333)] 2+ and [Cd(L 333)] 2+ and also on the previously known complex, [Cd(L Me333)] 2+ are also reported. The results show that the shortest bonding interaction between the metal ion and the bridging tertiary nitrogen atom of the ligand is occurs in the Cd(II) complexes.
Radical pathway in catecholase activity with zinc-based model complexes of compartmental ligands.
Guha, Averi; Chattopadhyay, Tanmay; Paul, Nanda Dulal; Mukherjee, Madhuparna; Goswami, Somen; Mondal, Tapan Kumar; Zangrando, Ennio; Das, Debasis
2012-08-20
Four dinuclear and three mononuclear Zn(II) complexes of phenol-based compartmental ligands (HL(1)-HL(7)) have been synthesized with the aim to investigate the viability of a radical pathway in catecholase activity. The complexes have been characterized by routine physicochemical studies as well as X-ray single-crystal structure analysis: [Zn(2)(H(2)L(1))(OH)(H(2)O)(NO(3))](NO(3))(3) (1), [Zn(2)L(2)Cl(3)] (2), [Zn(2)L(3)Cl(3)] (3), [Zn(2)(L(4))(2)(CH(3)COO)(2)] (4), [Zn(HL(5))Cl(2)] (5), [Zn(HL(6))Cl(2)] (6), and [Zn(HL(7))Cl(2)] (7) [L(1)-L(3) and L(5)-L(7) = 2,6-bis(R-iminomethyl)-4-methylphenolato, where R= N-ethylpiperazine for L(1), R = 2-(N-ethyl)pyridine for L(2), R = N-ethylpyrrolidine for L(3), R = N-methylbenzene for L(5), R = 2-(N-methyl)thiophene for L(6), R = 2-(N-ethyl)thiophene for L(7), and L(4) = 2-formyl-4-methyl-6-N-methylbenzene-iminomethyl-phenolato]. Catecholase-like activity of the complexes has been investigated in methanol medium by UV-vis spectrophotometric study using 3,5-di-tert-butylcatechol as model substrate. All complexes are highly active in catalyzing the aerobic oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylbenzoquinone (3,5-DTBQ). Conversion of 3,5-DTBC to 3,5-DTBQ catalyzed by mononuclear complexes (5-7) is observed to proceed via formation of two enzyme-substrate adducts, ES1 and ES2, detected spectroscopically, a finding reported for the first time in any Zn(II) complex catalyzed oxidation of catechol. On the other hand, no such enzyme-substrate adduct has been identified, and 3,5-DTBC to 3,5-DTBQ conversion is observed to be catalyzed by the dinuclear complexes (1-4) very smoothly. EPR experiment suggests generation of radicals in the presence of 3,5-DTBC, and that finding has been strengthened by cyclic voltammetric study. Thus, it may be proposed that the radical pathway is probably responsible for conversion of 3,5-DTBC to 3,5-DTBQ promoted by complexes of redox-innocent Zn(II) ion. The ligand-centered radical generation has further been verified by density functional theory calculation.
NASA Astrophysics Data System (ADS)
Kursunlu, Ahmed Nuri; Guler, Ersin; Sevgi, Fatih; Ozkalp, Birol
2013-09-01
In this study, the new Schiff base ligands derived from condensation of amine and 5-bromo-salicylaldehyde were characterized. All compounds, the Schiff bases and the metal complexes, were characterized by elemental analyzes, FT-IR, 1H NMR, 13C NMR and magnetic susceptibility measurements. The synthesized ligands, along with their metal (II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella enteritidis) and four Gram-positive (Streptococcus pyogones, Bacillus cereus, Staphylococcus aureus and Methicillin-resistant S. aureus) bacterial strains by using disc diffusion and broth microdilution techniques.
Tice, Daniel B; Pike, Robert D; Bebout, Deborah C
2016-08-09
An unbranched N3O2 ligand 2,6-bis[((2-pyridinylmethyl)oxy)methyl]pyridine (L1) was used to prepare new mononuclear heteroleptic Group 12 perchlorate complexes characterized by IR, (1)H NMR and X-ray crystallography. Racemic complexes with pentadentate L1 and one to four oxygens from either water or perchlorate bound to a metal ion were structurally characterized. Octahedral [Zn(L1)(OH2)](ClO4)2 (1) and pentagonal bipyramidal [Cd(L1)(OH2)(OClO3)]ClO4 (2) structures were found with lighter congeners. The polymorphic forms of [Hg(L1)(ClO4)2] characterized (3 in P1[combining macron] and 4 in P21/c) had a mix of monodentate, anisobidentate and bidentate perchlorates, providing the first examples of a tricapped trigonal prismatic Hg(ii) coordination geometry, as well as additional examples of a rare square antiprismatic Hg(ii) coordination geometry. Solution state (1)H NMR characterization of the Group 12 complexes in CD3CN indicated intramolecular reorganization remained rapid under conditions where intermolecular M-L1 exchange was slow on the chemical shift time scale for Zn(ii) and on the J(M(1)H) time scale for Cd(ii) and Hg(ii). Solution studies with more than one equivalent of ligand also suggested that a complex with a 1 : 2 ratio of M : L1 contributed significantly to solution equilibria with Hg(ii) but not the other metal ions. The behavior of related linear pentadentate ligands with Group 12 perchlorate salts is discussed.
Palacios, María A; Titos-Padilla, Silvia; Ruiz, José; Herrera, Juan Manuel; Pope, Simon J A; Brechin, Euan K; Colacio, Enrique
2014-02-03
There were new dinuclear Zn(II)-Ln(III) complexes of general formulas [Zn(μ-L)(μ-OAc)Ln(NO3)2] (Ln(III) = Tb (1), Dy (2), Er (3), and Yb (4)), [Zn(μ-L)(μ-NO3)Er(NO3)2] (5), [Zn(H2O)(μ-L)Nd(NO3)3]·2CH3OH (6), [Zn(μ-L)(μ-9-An)Ln(NO3)2]·2CH3CN (Ln(III) = Tb (7), Dy (8), Er (9), Yb(10)), [Zn(μ-L)(μ-9-An)Yb(9-An)(NO3)3]·3CH3CN (11), [Zn(μ-L)(μ-9-An)Nd(9-An)(NO3)3]·2CH3CN·3H2O (12), and [Zn(μ-L)(μ-9-An)Nd(CH3OH)2(NO3)]ClO4·2CH3OH (13) prepared from the reaction of the compartmental ligand N,N',N″-trimethyl-N,N″-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H2L), with ZnX2·nH2O (X = NO3(-) or OAc(-)) salts, Ln(NO3)3·nH2O, and, in some instances, 9-anthracenecarboxylate anion (9-An). In all these complexes, the Zn(II) ions invariably occupy the internal N3O2 site whereas the Ln(III) ions show preference for the O4 external site, giving rise to a Zn(μ-diphenoxo)Ln bridging fragment. Depending on the Zn(II) salt and solvent used in the reaction, a third bridge can connect the Zn(II) and Ln(III) metal ions, giving rise to triple-bridged diphenoxoacetate in complexes 1-4, diphenoxonitrate in complex 5, and diphenoxo(9-anthracenecarboxylate) in complexes 8-13. Dy(III) and Er(III) complexes 2, 8 and 3, 5, respectively, exhibit field induced single molecule magnet (SMM) behavior, with Ueff values ranging from 11.7 (3) to 41(2) K. Additionally, the solid-state photophysical properties of these complexes are presented showing that ligand L(2-) is able to sensitize Tb(III)- and Dy(III)-based luminescence in the visible region through an energy transfer process (antenna effect). The efficiency of this process is much lower when NIR emitters such as Er(III), Nd(III), and Yb(III) are considered. When the luminophore 9-anthracene carboxylate is incorporated into these complexes, the NIR luminescence is enhanced which proves the efficiency of this bridging ligand to act as antenna group. Complexes 2, 3, 5, and 8 can be considered as dual materials as they combine SMM behavior and luminescent properties.
Mohamed, Gehad G; Omar, M M; Hindy, Ahmed M M
2005-12-01
Metal complexes of Schiff base derived from 2-thiophene carboxaldehyde and 2-aminobenzoic acid (HL) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The ligand dissociation as well as the metal-ligand stability constants were calculated pH metrically at 25 degrees C and ionic strength mu=0.1 (1M NaCl). The complexes are found to have the formulae [M(HL)2](X)n.yH2O (where M=Fe(III) (X=Cl, n=3, y=3), Co(II) (X=Cl, n=2, y=1.5), Ni(II) (X=Cl, n=2, y=1) and UO2(II) (X=NO3, n=2, y=0)) and [M(L)2] (where M=Cu(II) (X=Cl) and Zn(II) (X=AcO)). The molar conductance data reveal that Fe(III) and Co(II), Ni(II) and UO2(II) chelates are ionic in nature and are of the type 3:1 and 2:1 electrolytes, respectively, while Cu(II) and Zn(II) complexes are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a terdentate manner with ONS donor sites of the carboxylate O, azomethine N and thiophene S. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.
NASA Astrophysics Data System (ADS)
Mohamed, Gehad G.; Omar, M. M.; Hindy, Ahmed M. M.
2005-12-01
Metal complexes of Schiff base derived from 2-thiophene carboxaldehyde and 2-aminobenzoic acid (HL) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The ligand dissociation as well as the metal-ligand stability constants were calculated pH metrically at 25 °C and ionic strength μ = 0.1 (1 M NaCl). The complexes are found to have the formulae [M(HL) 2](X) n· yH 2O (where M = Fe(III) (X = Cl, n = 3, y = 3), Co(II) (X = Cl, n = 2, y = 1.5), Ni(II) (X = Cl, n = 2, y = 1) and UO 2(II) (X = NO 3, n = 2, y = 0)) and [M(L) 2] (where M = Cu(II) (X = Cl) and Zn(II) (X = AcO)). The molar conductance data reveal that Fe(III) and Co(II), Ni(II) and UO 2(II) chelates are ionic in nature and are of the type 3:1 and 2:1 electrolytes, respectively, while Cu(II) and Zn(II) complexes are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a terdentate manner with ONS donor sites of the carboxylate O, azomethine N and thiophene S. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, Δ H*, Δ S* and Δ G* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.
The role of ligand covalency in the selective activation of metalloenediynes for Bergman cyclization
Porter, Meghan R.; Zaleski, Jeffrey M.
2017-01-01
One of the key concerns with the development of radical-generating reactive therapeutics is the ability to control the activation event within a biological environment. To that end, a series of quinoline-metal-loenediynes of the form M(QuiED)·2Cl (M = Cu(II), Fe(II), Mg(II), or Zn(II)) and their independently synthesized cyclized analogs have been prepared in an effort to elucidate Bergman cyclization (BC) reactivity differences in solution. HRMS(ESI) establishes a solution stoichiometry of 1:1 metal to ligand with coordination of one chloride counter ion to the metal center. EPR spectroscopy of Cu(QuiED)·2Cl and Cu (QuiBD)·2Cl denotes an axially-elongated tetragonal octahedron (g║ > g⊥ > 2.0023) with a dx2–y2 ground state, while the electronic absorption spectrum reveals a pπ Cl→Cu(II) LMCT feature at 19,000 cm −1, indicating a solution structure with three nitrogens and a chloride in the equatorial plane with the remaining quinoline nitrogen and solvent in the axial positions. Investigations into the BC activity reveal formation of the cyclized product from the Cu(II) and Fe(II) complexes after 12 h at 45 °C in solution, while no product is observed for the Mg(II) or Zn(II) complexes under identical conditions. The basis of this reactivity difference has been found to be a steric effect leading to metal–ligand bond elongation and thus, a retardation of solution reactivity. These results demonstrate how careful consideration of ligand and complex structure may allow for a degree of control and selective activation of these reactive agents. PMID:28931964
Porter, Meghan R; Zaleski, Jeffrey M
2016-01-08
One of the key concerns with the development of radical-generating reactive therapeutics is the ability to control the activation event within a biological environment. To that end, a series of quinoline-metal-loenediynes of the form M( QuiED )·2Cl (M = Cu(II), Fe(II), Mg(II), or Zn(II)) and their independently synthesized cyclized analogs have been prepared in an effort to elucidate Bergman cyclization (BC) reactivity differences in solution. HRMS(ESI) establishes a solution stoichiometry of 1:1 metal to ligand with coordination of one chloride counter ion to the metal center. EPR spectroscopy of Cu( QuiED )·2Cl and Cu ( QuiBD )·2Cl denotes an axially-elongated tetragonal octahedron ( g ║ > g ⊥ > 2.0023) with a d x 2 - y 2 ground state, while the electronic absorption spectrum reveals a pπ Cl→Cu(II) LMCT feature at 19,000 cm -1 , indicating a solution structure with three nitrogens and a chloride in the equatorial plane with the remaining quinoline nitrogen and solvent in the axial positions. Investigations into the BC activity reveal formation of the cyclized product from the Cu(II) and Fe(II) complexes after 12 h at 45 °C in solution, while no product is observed for the Mg(II) or Zn(II) complexes under identical conditions. The basis of this reactivity difference has been found to be a steric effect leading to metal-ligand bond elongation and thus, a retardation of solution reactivity. These results demonstrate how careful consideration of ligand and complex structure may allow for a degree of control and selective activation of these reactive agents.
Oyarzabal, Itziar; Artetxe, Beñat; Rodríguez-Diéguez, Antonio; García, JoséÁngel; Seco, José Manuel; Colacio, Enrique
2016-06-21
Eleven dimetallic Zn(II)-Ln(III) complexes of the general formula [Zn(µ-L)(µ-OAc)Ln(NO3)2]·CH3CN (Ln(III) = Pr (1), Nd (2), Sm (3), Eu (4), Gd (5), Tb (6), Dy (7), Ho (8), Er (9), Tm (10), Yb (11)) have been prepared in a one-pot reaction from the compartmental ligand N,N'-dimethyl-N,N'-bis(2-hydroxy-3-formyl-5-bromo-benzyl)ethylenediamine (H2L). In all these complexes, the Zn(II) ions occupy the internal N2O2 site whereas the Ln(III) ions show preference for the O4 external site. Both metallic ions are bridged by an acetate bridge, giving rise to triple mixed diphenoxido/acetate bridged Zn(II)Ln(III) compounds. The Nd, Dy, Er and Yb complexes exhibit field induced single-ion magnet (SIM) behaviour, with Ueff values ranging from 14.12 to 41.55 K. The Er complex shows two relaxation processes, but only the second relaxation process with an energy barrier of 21.0 K has been characterized. The chromophoric L(2-) ligand is able to act as an "antenna" group, sensitizing the near-infrared (NIR) Nd(III) and Yb(III)-based luminescence in complexes 2 and 11 and therefore, both compounds can be considered as magneto-luminescent materials. In addition, the Sm(III), Eu(III) and Tb(III) derivatives exhibit characteristic emissions in the visible region.
NASA Astrophysics Data System (ADS)
Şahin, Mustafa; Koçak, Nuriye; Erdenay, Damla; Arslan, Uğur
2013-02-01
New asymmetrical tridentate Schiff base ligands were synthesized using 1,2-phenylenediamine, 4-methyl-1,2-phenylenediamine, 2-hydroxy-1-napthaldehyde, 9-anthracenecarboxaldehyde. Schiff base ligands and their metal complexes were synthesised and characterized by using FT-IR, 1H NMR, 13C NMR, UV-Vis, XRD, ESR, elemental analysis and fluorescence studies. The antimicrobial activity of the ligands and their metal complexes were studied against Staphylococcus aureus ATCC 29213, S. aureus ATCC 25923, Streptococcus mutans RSHM 676, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853. The determination of the antibacterial activity was done using the broth microdilution methods. In general, it has been determined that the studied compounds have MIC values similar to Gram-positive and Gram-negative bacteria. It has been found that Ni, Pb, Zn derivatives of HL1A and ZnL2A has lower MIC values than ampicillin for P. aeruginosa ATCC 27853 strain.
NASA Astrophysics Data System (ADS)
Kusmariya, Brajendra S.; Mishra, A. P.
2017-02-01
We report here four mononuclear Co(II), Ni(II), Cu(II) and Zn(II) coordination compounds of general formula [M(L)2] {L = dcp; M = CoII, CuII & ZnII} and [M(L)(H2O)]·H2O {L = dcp; M = NiII} derived from tridentate 2,4-dichloro-6-{[(3-chloro-2-hydroxy-5-nitrophenyl)imino]methyl}phenol (dcp) ligand. These compounds were synthesized and characterized by elemental analysis, FT-IR, uv-vis, 1H NMR, molar conductance, magnetic moment, thermal, PXRD and SEM-EDX. The Powder X-ray Diffraction patterns and SEM analyses showed the crystalline nature of synthesized compounds. The peak broadening was explained in terms of crystallite size and the lattice strain using Scherrer and Williamson-Hall method. Thermogravimetric analysis was performed to determine the thermal stability of synthesized compounds under nitrogen atmosphere up to 820 K at 10 Kmin-1 heating rate. The kinetic and thermodynamic parameters of thermal decomposition were calculated using Coats-Redfern (C-R), Piloyan-Novikova (P-N) and Horowitz-Metzger (H-M) methods assuming first order degradation. The calculated optical band gap values of complexes were found to be in semiconducting range. To support the experimental findings, and derive some fruitful information viz. frequency calculations, HOMO-LUMO, energy gap (ΔE), molecular electrostatic potential (MEP), spin density, absorption spectra etc.; theoretical calculations by means of DFT and TD-DFT at B3LYP level were incorporated.
NASA Astrophysics Data System (ADS)
Rajaei, Iman; Mirsattari, Seyed Nezamoddin
2018-07-01
The synthesis and characterization of a novel symmetrical Schiff base ligand N,Nʹ-bis(4-hydroxysalicylidene)-1,4-phenylenediamine (BHSP) was presented in this study and characterized by FT-IR, NMR (1H and 13C) and UV-Vis spectroscopy experimentally and theoretically. Also a series of binuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes of BHSP ligand have been synthesized by conventional sequential route in 1:1 equivalent of L:M ratio and characterized by routine physicochemical characterizations. The molecular geometry and vibrational frequencies of the BHSP in the ground state were calculated by using density functional theory (DFT) B3LYP method invoking 6-31G(d,p) and 6-31++G(d,p) basis sets. To study different conformations of the molecule, potential energy surface (PES) scan investigations were performed. The energetic behavior of the ligand compound (BHSP) in solvent media has been examined using B3LYP method with the 6-31G(d,p) and 6-31++G(d,p) basis sets by applying the polarized continuum model (PCM). In addition, DFT calculations of the BHSP ligand, molecular electrostatic potential (MEP), contour map, natural bond orbital (NBO) analysis, frontier molecular orbitals (FMO) analysis, NMR analysis and TD-DFT calculations were conducted. The calculated properties are in agreement with the available experimental data and closely related molecule BSP. The calculated results show that the optimized geometry can well reproduce the crystal structural parameters.
NASA Astrophysics Data System (ADS)
Abdel-Monem, Yasser K.; Abouel-Enein, Saeyda A.; El-Seady, Safa M.
2018-01-01
Multidentate Schiff base (H2L) ligand results from condensation of 5-aminouracil and 2-benzoyl pyridine and its metal chloride (Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Fe(III), Cr(III), Ru(III), Zr(IV) and Hf(IV)) complexes were prepared. The structural features of the ligand and its metal complexes were confirmed by elemental analyses, spectroscopic methods (IR, UV-Vis, 1H NMR, mass), magnetic moment measurements and thermal studies. The data refer to the ligand coordinates with metal ions in a neutral form and shows different modes of chelation toward the metal atom. All complexes have octahedral skeleton structure, tetrahedrally Mn(II), Ni(II), trigonalbipyramidal Co(II) and square planner Pd(II). Thermal decomposition of complexes as well as the interaction of different types of solvent of crystallization are assigned by thermogravimetric analysis. Molecular modeling of prepared complexes were investigated to study the expected anticancer activities of the prepared complexes. All metal complexes have no interaction except the complexes of Pd(II), Fe(III) and Mn(II).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lin; Liu, Chong-Bo, E-mail: cbliu@nchu.edu.cn; Yang, Gao-Shan
2015-11-15
Hydrothermal reactions of 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H{sub 2}L) and zinc ions in the presence of N-donor ancillary ligands afford four novel coordination polymers, namely, [Zn{sub 2}(μ{sub 2}-OH)(μ{sub 4}-O){sub 0.5}(L)]·0.5H{sub 2}O (1), [Zn(L)(2,2′-bipy)(H{sub 2}O)] (2), [Zn{sub 3}(L){sub 3}(phen){sub 2}]·H{sub 2}O (3) and [Zn{sub 2}(L){sub 2}(4,4′-bipy)] (4) (2,2′-bipy=2,2′-bipyridine; 4,4′-bipy=4,4′-bipyridine; phen=1,10-phenanthroline). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analyses. Complex 1 shows a 3-D clover framework consisting of [Zn{sub 4}(µ{sub 4}-O)(µ{sub 2}-OH){sub 2}]{sup 4+} clusters, and exhibits a novel (3,8)-connected topological net with the Schläfli symbol of {3·4·5}{sub 2}{3"4·4"4·5"2·6"6·7"1"0·8"2}, andmore » contains double-stranded and two kinds of meso-helices. 2 displays a helical chain structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with meso-helix chains. 3 displays a 2-D {4"4·6"2} parallelogram structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with single-stranded helical chains. 4 shows a 2-D {4"4·6"2} square structure with left- and right-handed helical chains. Moreover, the luminescent properties of 1–4 have been investigated. - Graphical abstract: Four new Zn(II) coordination polymers with helical structures based on flexible V-shaped dicarboxylate ligand have been synthesized and structurally characterized. Photoluminescent properties have been investigated. - Highlights: • Four novel Zn(II) coordination polymers with V-shaped ligand were characterized. • Complexes 1–4 show diverse intriguing helical characters. • Fluorescence properties of complexes 1–4 were investigated.« less
Çay, Sevim; Köse, Muhammet; Tümer, Ferhan; Gölcü, Ayşegül; Tümer, Mehmet
2015-12-05
4-Methoxy-2,6-bis(hydroxymethyl)phenol (1) was prepared from the reaction of 4-methoxyphenol and formaldehyde. The compound (1) was then oxidized to the 4-methoxy-2,6-diformylphenol (2) compound. Molecular structure of compound (2) was determined by X-ray diffraction method. A new symmetric porphyrin Schiff base ligand 4-methoxy-2,6-bis[5-(4-iminophenyl)-10,15,20-triphenylporphyrin]phenol (L) was prepared from the reaction of the 5-(4-aminophenyl)-10,15,20-triphenylporphyrin (TTP-NH2) and the compound (2) in the toluene solution. The metal complexes (Cu(II), Fe(III), Mn(III), Pt(II) and Zn(II)) of the ligand (L) were synthesized and characterized by the spectroscopic and analytical methods. The DNA (fish sperm FSdsDNA) binding studies of the ligand and its complexes were performed using UV-vis spectroscopy. Additionally, superoxide dismutase activities of the porphyrin Schiff base metal complexes were investigated. Additionally, electrochemical, photoluminescence and thermal properties of the compounds were investigated. Copyright © 2015 Elsevier B.V. All rights reserved.
Pyrazole bridged dinuclear Cu(II) and Zn(II) complexes as phosphatase models: Synthesis and activity
NASA Astrophysics Data System (ADS)
Naik, Krishna; Nevrekar, Anupama; Kokare, Dhoolesh Gangaram; Kotian, Avinash; Kamat, Vinayak; Revankar, Vidyanand K.
2016-12-01
Present work describes synthesis of dibridged dinuclear [Cu2L2(μ2-NN pyr)(NO3)2(H2O)2] and [Zn2L(μ-OH)(μ-NNpyr)(H2O)2] complexes derived from a pyrazole based ligand bis(2-hydroxy-3-methoxybenzylidene)-1H-pyrazole-3,5-dicarbohydrazide. The ligand shows dimeric chelate behaviour towards copper against monomeric for zinc counterpart. Spectroscopic evidences affirm octahedral environment around the metal ions in solution state and non-electrolytic nature of the complexes. Both the complexes are active catalysts towards phosphomonoester hydrolysis with first order kcat values in the range of 2 × 10-3s-1. Zinc complex exhibited promising catalytic efficiency for the hydrolysis. The dinuclear complexes hydrolyse via Lewis acid activation, whereby the phosphate esters are preferentially bound in a bidentate bridging fashion and subsequent nucleophilic attack to release phosphate group.
NASA Astrophysics Data System (ADS)
Khan, Sadaf; Nami, Shahab A. A.; Siddiqi, K. S.
2007-10-01
A macrocyclic ligand, bdta (where bdta = 3,6,9,12,15,18-hexaaza-1,2,10,11-tetraphenyl-2,9,11,18-tetraenecyclododecane) has been prepared by cyclocondensation of benzil with diethylenetriamine which efficiently encapsulates transition as well as pseudo-transition metal ions leading to the formation of M(bdta)Cl 2 type complexes [where M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)]. The analytical, spectroscopic and magnetic moment data suggests an octahedral geometry for all the complexes. EPR spectra of Mn(II) and Cu(II) show considerable exchange interaction in the complex. They are non-conducting in DMSO. The TGA profile of the ligand and its complexes are identical and consists of two discreet stages. The voltammogram of Cu-complex exhibits a quasi-reversible one-electron transfer wave for Cu(II)/Cu(I) couple.
Khan, Sadaf; Nami, Shahab A A; Siddiqi, K S
2007-10-01
A macrocyclic ligand, bdta (where bdta=3,6,9,12,15,18-hexaaza-1,2,10,11-tetraphenyl-2,9,11,18-tetraenecyclododecane) has been prepared by cyclocondensation of benzil with diethylenetriamine which efficiently encapsulates transition as well as pseudo-transition metal ions leading to the formation of M(bdta)Cl2 type complexes [where M=Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)]. The analytical, spectroscopic and magnetic moment data suggests an octahedral geometry for all the complexes. EPR spectra of Mn(II) and Cu(II) show considerable exchange interaction in the complex. They are non-conducting in DMSO. The TGA profile of the ligand and its complexes are identical and consists of two discreet stages. The voltammogram of Cu-complex exhibits a quasi-reversible one-electron transfer wave for Cu(II)/Cu(I) couple.
Martínez, Valeria R; Aguirre, María V; Todaro, Juan S; Piro, Oscar E; Echeverría, Gustavo A; Ferrer, Evelina G; Williams, Patricia A M
2018-04-01
Azilsartan is the eighth approved member of angiotensin II receptor blockers for hypertension treatment. Considering that some drugs have additional effects when administered, we studied its effects and mechanisms of action on a human lung cancer cell line A549. We have also modified the structure of the drug by complexation with Zn(II) cation and assayed the anticancer effect. The crystal structure of the new binuclear Zn(II) complex, for short [Zn 2 (azil) 2 (H 2 O) 4 ]·2H 2 O (ZnAzil), was determined by X-ray diffraction methods. The zinc ions are bridged by azilsartan ligands through their carboxylate oxygen and oxadiazol nitrogen atoms. The compounds were examined for their cytotoxic effects against human lung fibroblast (MRC5) and human lung cancer (A549) cell lines. Azilsartan displayed low cytotoxic effects at 150 μM concentrations in A549 human lung cancer cells but the higher effect measured for the Zn complex suggested that this compound may act as an anticancer agent. An apoptotic oxidative stress mechanism of action via the mitochondrial-dependent intrinsic pathway has been determined. Besides, the compounds exerted weak cytotoxic effects in the normal lung related cell line MRC5. Binding constants of the complex formed between each compound and bovine serum albumin (BSA) are in the intermediate range, hence suggesting that azilsartan and ZnAzil could be bonded and transported by BSA. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhou, Li-Juan; Han, Chang-Bao; Wang, Yu-Ling
2016-02-01
Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene-1,4-dicarboxylic acid (H2BDC) and pyridine (py) with Zn(II) or Co(II) yielded two new coordination polymers, namely, poly[(μ4-benzene-1,4-dicarboxylato-κ(4)O:O':O'':O''')(pyridine-κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena-poly[aqua(μ3-benzene-1,4-dicarboxylato-κ(3)O:O':O'')bis(pyridine-κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the Zn(II) cation is five-coordinated by four carboxylate O atoms from four BDC(2-) ligands and one pyridine N atom in a distorted square-pyramidal coordination geometry. Four carboxylate groups bridge two Zn(II) ions to form centrosymmetric paddle-wheel-like Zn2(μ2-COO)4 units, which are linked by the benzene rings of the BDC(2-) ligands to generate a two-dimensional layered structure. The two-dimensional layer is extended into a three-dimensional supramolecular structure with the help of π-π stacking interactions between the aromatic rings. Compound (II) has a one-dimensional double-chain structure based on Co2(μ2-COO)2 units. The Co(II) cations are bridged by BDC(2-) ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC(2-) ligands, one water O atom and two pyridine N atoms. Interchain O-H...O hydrogen-bonding interactions link these chains to form a three-dimensional supramolecular architecture.
NASA Astrophysics Data System (ADS)
Emara, Adel A. A.
2010-09-01
The binuclear Schiff base, H 2L, ligand was synthesized by reaction of 4,6-diacetylresorcinol with diethylenetriamine in the molar ratio 1:2. The coordination behavior of the H 2L towards Cu(II), Ni(II), Co(II), Zn(II), Fe(III), Cr(III), VO(IV) and UO 2(VI) ions has been investigated. The elemental analyses, magnetic moments, thermal studies and IR, electronic, 1H NMR, ESR and mass spectra were used to characterize the isolated ligand and its metal complexes. The ligand acts as dibasic with two N 3O-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The bonding sites are the nitrogen atoms of the azomethine and amine groups and the oxygen atoms of the phenolic groups. The metal complexes exhibit either square planar, tetrahedral, square pyramid or octahedral structures. The Schiff base ligand and its metal complexes were tested against four pathogenic bacteria ( Staphylococcus aureus and Streptococcus pyogenes) as Gram-positive bacteria, and ( Pseudomonas fluorescens and Pseudomonas phaseolicola) as Gram-negative bacteria and two pathogenic fungi ( Fusarium oxysporum and Aspergillus fumigatus) to assess their antimicrobial properties. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.
Gup, Ramazan; Gökçe, Cansu; Dilek, Nefise
2015-03-01
A new water soluble zinc complex has been prepared and structurally characterized. The Zn(II) complex was synthesized by the reaction of 2,6-diacetylpyridine dihydrazone (dph) with {4-[(2E)-2-(hydroxyimino)acetyl]phenoxy} acetic acid (H₂L) in the presence of zinc(II) acetate. Single crystal X-ray diffraction study revealed that the zinc ion is situated in distorted trigonal-bipyramidal environment where the equatorial position is occupied by the nitrogen atom of pyridine ring and the oxygen atoms of acetate groups of two oxime ligands (H₂L) whereas the axial positions of the zinc complex are occupied by the imine nitrogen atoms of dph ligand. Characterization of the complex with FTIR, (1)H and (13)C NMR, UV-vis and elemental analysis also confirmed the proposed structure. Interaction of the Zn(II) complex with calf-thymus DNA (CT-DNA) was investigated through UV-vis spectroscopy and viscosity measurements. The results suggest that the complex preferably bind to DNA through the groove binding mode. The zinc complex cleaves plasmid pBR 322 DNA in the presence and absence of an oxidative agent (H₂O₂), possibly through a hydrolytic pathway which is also supported by DNA cleave experiments in the presence of different radical scavengers. The nuclease activity of the zinc complex significantly depends on concentration of the complex and incubation time both in the presence and absence of H₂O₂. DNA cleave activity is inhibited in the presence of methyl green indicating that the zinc complex seems to bind the major groove of DNA. Copyright © 2015 Elsevier B.V. All rights reserved.
Elius Hossain, Md; Mahmudul Hasan, Md; Halim, M E; Ehsan, M Q; Halim, Mohammad A
2015-03-05
Some transition metal complexes of phenylalanine of general formula [M(C9H10NO2)2]; where M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) are prepared in aqueous medium and characterized by spectroscopic, thermo-gravimetric (TG) and magnetic susceptibility analysis. Density functional theory (DFT) has been employed calculating the equilibrium geometries and vibrational frequencies of those complexes at B3LYP level of theory using 6-31G(d) and SDD basis sets. In addition, frontier molecular orbital and time-dependent density functional theory (TD-DFT) calculations are performed with CAM-B3LYP/6-31+G(d,p) and B3LYP/SDD level of theories. Thermo-gravimetric analysis confirms the composition of the complexes by comparing the experimental and calculated data for C, H, N and metals. Experimental and computed IR results predict a significant change in vibrational frequencies of metal-phenylalanine complexes compared to free ligand. DFT calculation confirms that Mn, Co, Ni and Cu complexes form square planar structure whereas Zn adopts distorted tetrahedral geometry. The metal-oxygen bonds in the optimized geometry of all complexes are shorter compared to the metal-nitrogen bonds which is consistent with a previous study. Cation-binding energy, enthalpy and Gibbs free energy indicates that these complexes are thermodynamically stable. UV-vis and TD-DFT studies reveal that these complexes demonstrate representative metal-to-ligand charge transfer (MLCT) and d-d transitions bands. TG analysis and IR spectra of the metal complexes strongly support the absence of water in crystallization. Magnetic susceptibility data of the complexes exhibits that all except Zn(II) complex are high spin paramagnetic. Copyright © 2014 Elsevier B.V. All rights reserved.
Zehra, Siffeen; Shavez Khan, Mohammad; Ahmad, Iqbal; Arjmand, Farukh
2018-05-07
New tailored Cu(II) & Zn(II) metal-based antitumor drug entities were synthesized from substituted benzothiazole o‒vanillin Schiff base ligands. The complexes were thoroughly characterized by elemental analysis, spectroscopic studies {IR, 1 H & 13 C NMR, ESI-MS, EPR} and magnetic susceptibility measurements. The structure activity relationship (SAR) studies of benzothiazole Cu(II) & Zn(II) complexes having molecular formulas [C 30 H 22 CuN 5 O 7 S 2 ], [C 30 H 20 Cl 2 CuN 5 O 7 S 2 ], [C 30 H 20 CuF 2 N 5 O 7 S 2 ], [C 30 H 22 N 4 O 4 S 2 Zn], [C 30 H 20 Cl 2 N 4 O 4 S 2 Zn], and [C 30 H 20 F 2 N 5 O 7 S 2 Zn], with CT‒DNA were performed by employing absorption, emission titrations, and hydrodynamic measurements. The DNA binding affinity was quantified by K b and K sv values which gave higher binding propensity for chloro-substituted Cu(II) [C 30 H 20 Cl 2 CuN 5 O 7 S 2 ] complex, suggestive of groove binding mode with subtle partial intercalation. Molecular properties and drug likeness profile were assessed for the ligands and all the Lipinski's rules were found to be obeyed. The antimicrobial potential of ligands and their Cu(II) & Zn(II) complexes were screened against some notably important pathogens viz., E. coli, S. aureus, P. aeruginosa, B. subtilis, and C. albicans. The cytotoxicity of the complexes [C 30 H 20 Cl 2 CuN 5 O 7 S 2 ], [C 30 H 20 CuF 2 N 5 O 7 S 2 ], [C 30 H 20 Cl 2 N 4 O 4 S 2 Zn], and [C 30 H 20 F 2 N 5 O 7 S 2 Zn] were evaluated against five human cancer cell lines viz., MCF‒7 (breast), MIA‒PA‒CA‒2 (pancreatic), HeLa (cervix) and Hep‒G2 (Hepatoma) and A498 (Kidney) by SRB assay which revealed that chloro-substituted [C 30 H 20 Cl 2 CuN 5 O 7 S 2 ] complex, exhibited pronounced specific cytotoxicity with GI 50 value of 4.8 μg/ml against HeLa cell line. Molecular docking studies were also performed to explore the binding modes and orientation of the complexes in the DNA helix.
Taylor, June S.; Mushak, Paul; Coleman, Joseph E.
1970-01-01
Electron spin resonance (esr) spectra of Cu(II) and Co(II) carbonic anhydrase, and a spin-labeled sulfonamide complex of the Zn(II) enzyme, are reported. The coordination geometry of Cu(II) bound in the enzyme appears to have approximately axial symmetry. Esr spectra of enzyme complexes with metal-binding anions also show axial symmetry and greater covalency, in the order ethoxzolamide < SH- < N3- ≤ CN-. Well-resolved superhyperfine structure in the spectrum of the cyanide complex suggests the presence of two, and probably three, equivalent nitrogen ligands from the protein. Esr spectra of the Co(II) enzyme and its complexes show two types of Co(II) environment, one typical of the native enzyme and the 1:1 CN- complex, and one typical of a 2:1 CN- complex. Co(II) in the 2:1 complex appears to be low-spin and probably has a coordination number of 5. Binding of a spin-labeled sulfonamide to the active center immobilizes the free radical. The similarity of the esr spectra of spin-labeled Zn(II) and Co(II) carbonic anhydrases suggests that the conformation at the active center is similar in the two metal derivatives. PMID:4320976
Yuan, Guozan; Shan, Weilong; Qiao, Xuelong; Ma, Li; Huo, Yanping
2014-07-01
Five new Zn(II) complexes, namely [Zn(3)(L)(6)] (1), [Zn(2)(Cl)(2)(L)(2) (py)(2)] (2), [Zn(2)(Br)(2) (L)(2)(py)(2)] (3), [Zn(L)(2)(py)] (4), and [Zn(2)(OAc)(2)(L)(2)(py)(2)] (5), were prepared by the solvothermal reaction of ZnX(2) (X(-) =Cl(-), Br(-), F(-), and OAc(-)) salts with a 8-hydroxyquinolinate ligand (HL) that contained a trifluorophenyl group. All of the complexes were characterized by elemental analysis, IR spectroscopy, and powder and single-crystal X-ray crystallography. The building blocks exhibited unprecedented structural diversification and their self-assembly afforded one mononuclear, three binuclear, and one trinuclear Zn(II) structures in response to different anions and solvent systems. Complexes 1-5 featured four types of supramolecular network controlled by non-covalent interactions, such as π⋅⋅⋅π-stacking, C-H⋅⋅⋅π, hydrogen-bonding, and halogen-related interactions. Investigation of their photoluminescence properties exhibited disparate emission wavelengths, lifetimes, and quantum yields in the solid state. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qin, Jiao-Lan; Shen, Wen-Ying; Chen, Zhen-Feng; Zhao, Li-Fang; Qin, Qi-Pin; Yu, Yan-Cheng; Liang, Hong
2017-01-01
Three new oxoaporphine Co(II), Ni(II) and Zn(II) complexes 1–3 have been synthesized and fully characterized. 1–3 have similar mononuclear structures with the metal and ligand ratio of 1:2. 1–3 exhibited higher cytotoxicity than the OD ligand and cisplatin against HepG2, T-24, BEL-7404, MGC80–3 and SK-OV-3/DDP cells, with IC50 value of 0.23−4.31 μM. Interestingly, 0.5 μM 1–3 significantly caused HepG2 arrest at S-phase, which was associated with the up-regulation of p53, p21, p27, Chk1 and Chk2 proteins, and decrease in cyclin A, CDK2, Cdc25A, PCNA proteins. In addition, 1–3 induced HepG2 apoptosis via a caspase-dependent mitochondrion pathway as evidenced by p53 activation, ROS production, Bax up-regulation and Bcl-2 down-regulation, mitochondrial dysfunction, cytochrome c release, caspase activation and PARP cleavage. Furthermore, 3 inhibited tumor growth in HepG2 xenograft model, and displayed more safety profile in vivo than cisplatin. PMID:28436418
The Activity-Related Ionization in Carbonic Anhydrase
Appleton, David W.; Sarkar, Bibudhendra
1974-01-01
The catalytic activity of carbonic anhydrase (EC 4.2.1.1) is linked to the ionization of a group in close proximity to the essential zinc ion. Studies have been undertaken to delineate the ionizations germane to the active-site chelate system. Several imidazole ligand systems were studied in order to approach a representative chelate. The simplest involved the complexation of Zn(II) by imidazole and by N-methylimidazole. As well, two bidentate systems, Zn(II)-4,4′-bis-imidazoylmethane and Co(II)-cyclic-L-histidyl-L-histidine were investigated. It was found that in a species containing metal-bound water and imidazole coordinated by means of the pyridinium nitrogen, the most acidic group was the pyrrole N-H in the imidazole ring. By the use of N-methylimidazole, the pKa of a metal-bound water molecule in a tri-imidazole ligand field was found to be 9.1. Noting the preference for labilization of the pyrrole hydrogen, the catalytic features of carbonic anhydrase are reexamined assuming that the pKenz is associated with the N-H ionization, and not with the ionization of metal-bound water. PMID:4209558
Daniel, Varughese P; Murukan, B; Kumari, B Sindhu; Mohanan, K
2008-07-01
Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with a potentially tridentate Schiff base, formed by condensation of 2-amino-3-carboxyethyl-4,5-dimethylthiophene with salicylaldehyde were synthesized and characterized on the basis of elemental analyses, molar conductance values, magnetic susceptibility measurements, UV-vis, IR, EPR and NMR spectral data, wherever possible and applicable. Spectral studies reveal that the free ligand exists in a bifunctionally hydrogen bonded manner and coordinates to the metal ion in a tridentate fashion through the deprotonated phenolate oxygen, azomethine nitrogen and ester carbonyl group. On the basis of electronic spectral data and magnetic susceptibility measurements, suitable geometry has been proposed for each complex. The EPR spectral data of the Cu(II) complex showed that the metal-ligand bonds have considerable covalent character. The Ni(II) complex has undergone facile transesterification reaction when refluxed in methanol for a lengthy period. X-ray diffraction studies of Cu(II) complex showed that the complex has an orthorhombic crystal lattice. In view of the biological activity of thiophene derivatives, the ligand and the complexes were subjected to antibacterial screening. It has been observed that the antibacterial activity of the ligand increased on chelation with metal ion.
NASA Astrophysics Data System (ADS)
Hosny, Nasser Mohammed; Hussien, Mostafa A.; Radwan, Fatima M.; Nawar, Nagwa
2014-11-01
Four new metal complexes derived from the reaction of Cu(II), Co(II), Ni(II) and Zn(II) acetates with the Schiff-base ligand (H3L) resulted from the condensation of the amino acid 2-amino-3-hydroxyprobanoic acid (serine) and acetylacetone have been synthesized and characterized by, elemental analyses, ES-MS, IR, UV-Vis., 1H NMR, 13C NMR, ESR, thermal analyses (TGA and DTG) and magnetic measurements. The results showed that the Schiff-base ligand acts as bi-negative tridentate through the azomethine nitrogen, the deprotonated carboxylate oxygen and the enolic carbonyl oxygen. The optical band gaps measurements indicated the semi-conducting nature of these complexes. Molecular docking was used to predict the binding between the Schiff base ligand with the receptor of prostate cancer mutant H874Y. The interactions between the Cu(II) complex and calf thymus DNA (CT-DNA) have been studied by UV spectra. The results confirm that the Cu(II) complex binds to CT-DNA in an intercalative mode.
Md Yusof, Enis Nadia; Ravoof, Thahira Begum S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhimanyu; Crouse, Karen Anne; Mohamed Tahir, Mohamed Ibrahim; Ahmad, Haslina
2015-01-01
Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC) with 2-methoxybenzaldehyde (2MB) and 3-methoxybenzaldehyde (3MB). The ligands were reacted separately with acetates of Cu(II), Ni(II) and Zn(II) yielding 1:2 (metal:ligand) complexes. The metal complexes formed were expected to have a general formula of [M(NS)2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1) and S2M3MBH (2) were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cell lines. Only the Cu(II) complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II) complexes have a strong DNA binding affinity. PMID:25988384
Liang, Yen-Peng; He, Yun-Jui; Lee, Yin-Hsuan; Chan, Yi-Tsu
2015-03-21
Three unsymmetrical, 60°-bended bisterpyridine ligands with varying phenylene spacer lengths have been synthesized via the Suzuki-Miyaura coupling reactions. Their self-assembly processes were found to be strongly dependent on the ligand geometry. Upon complexation with Zn(II) ions, only 2,4''-di(4'-terpyridinyl)-1,1':4',1''-terphenyl underwent self-selection to give a trinuclear metallomacrocycle with perfect heteroleptic connectivity and the other two afforded a mixture of constitutional isomers. The metallosupramolecular assemblies were characterized by NMR spectroscopy, electrospray mass spectrometry (ESI MS), and single-crystal X-ray diffraction. In particular, the identification of isomeric architecture was accomplished using tandem mass spectrometry (MS(2)) coupled with traveling wave ion mobility mass spectrometry (TWIM MS).
Synthesis of first row transition metal selenomaltol complexes.
Spiegel, Michael T; Hoogerbrugge, Amanda; Truksa, Shamus; Smith, Andrew G; Shuford, Kevin L; Klausmeyer, Kevin K; Farmer, Patrick J
2018-06-21
We report an efficient, one-step synthesis of the chelator 3-hydroxy-2-methyl-4-selenopyrone (selenomaltol). Complexes of selenomaltol with Fe(iii), Ni(ii), Cu(ii) and Zn(ii) have been prepared and studied by NMR, X-ray crystallography, cyclic voltammetry, EPR and electronic absorption. The Ni(ii) and Cu(ii) complexes show chemically reversible oxidations which are suggested to be ligand-based. Nuclear independent chemical shifts (NICS) analysis is used to compare aromaticity of the heterocyclic rings of selenomaltol and its chelates. The compounds described here should significantly expand the scope and utility of unusual O,Se-donor chelates.
Stapleton, Brian; Walker, Lawrence R; Logan, Timothy M
2013-03-19
Thermodynamic measurements of Fe(II) binding and activation of repressor function in the iron-dependent repressor from Mycobacterium tuberculosis (IdeR) are reported. IdeR, a member of the diphtheria toxin repressor family of proteins, regulates iron homeostasis and contributes to the virulence response in M. tuberculosis. Although iron is the physiological ligand, this is the first detailed analysis of iron binding and activation in this protein. The results showed that IdeR binds 2 equiv of Fe(II) with dissociation constants that differ by a factor of 25. The high- and low-affinity iron binding sites were assigned to physical binding sites I and II, respectively, using metal binding site mutants. IdeR was also found to contain a high-affinity Zn(II) binding site that was assigned to physical metal binding site II through the use of binding site mutants and metal competition assays. Fe(II) binding was modestly weaker in the presence of Zn(II), but the coupled metal binding-DNA binding affinity was significantly stronger, requiring 30-fold less Fe(II) to activate DNA binding compared to Fe(II) alone. Together, these results suggest that IdeR is a mixed-metal repressor, where Zn(II) acts as a structural metal and Fe(II) acts to trigger the physiologically relevant promoter binding. This new model for IdeR activation provides a better understanding of IdeR and the biology of iron homeostasis in M. tuberculosis.
NASA Astrophysics Data System (ADS)
Al-Harbi, Sami A.; Bashandy, Mahmoud S.; Al-Saidi, Hammed M.; Emara, Adel A. A.; Mousa, Tarek A. A.
2015-06-01
This article describes the synthesis of novel bidentate Schiff base (H2L) from condensation of 2-amino-4-phenylthiazole (APT) with 4,6-diacetylresorcinol (DAR) in the molar ratio 2:1. We studied interaction of ligand (H2L) with transition metal ions such as Cr(III), Fe(III), Cu(II), Zn(II) and Cd(II). The ligand (H2L) has two bidentate sets of (N-O) units which can coordinate with two metal ions to afford novel binuclear metal complexes. The directions of coordinate bonds are from nitrogen atoms of azomethine groups and oxygen atoms of the phenolic groups. Structures of the newly synthesized complexes were confirmed by elemental analysis, IR, UV, 1H NMR, ESR, TGA and mass spectral data. All of the newly synthesized complexes were evaluated for their antibacterial and anti-fungal activities. They were also evaluated for their in vitro anticancer activity against human colon carcinoma cells (HCT-116) and mammalian cells of African green monkey kidney (VERO). The Cu(II) complex with selectivity index (S.I.) = 21.26 exhibited better activity than methotrexate (MTX) as a reference drug with S.I. value = 13.30, while Zn(II) complex with S.I. value = 10.24 was found to be nearly as active as MTX. Molecular docking studies further helped in understanding the mode of action of the compounds through their various interactions with active sites of dihydrofolate reductase (DHFR) enzyme. The observed activity of Fe(III) and Cu(II) complexes gave rise to the conclusion that they might exert their action through inhibition of the DHFR enzyme.
Al-Harbi, Sami A; Bashandy, Mahmoud S; Al-Saidi, Hammed M; Emara, Adel A A; Mousa, Tarek A A
2015-06-15
This article describes the synthesis of novel bidentate Schiff base (H2L) from condensation of 2-amino-4-phenylthiazole (APT) with 4,6-diacetylresorcinol (DAR) in the molar ratio 2:1. We studied interaction of ligand (H2L) with transition metal ions such as Cr(III), Fe(III), Cu(II), Zn(II) and Cd(II). The ligand (H2L) has two bidentate sets of (N-O) units which can coordinate with two metal ions to afford novel binuclear metal complexes. The directions of coordinate bonds are from nitrogen atoms of azomethine groups and oxygen atoms of the phenolic groups. Structures of the newly synthesized complexes were confirmed by elemental analysis, IR, UV, (1)H NMR, ESR, TGA and mass spectral data. All of the newly synthesized complexes were evaluated for their antibacterial and anti-fungal activities. They were also evaluated for their in vitro anticancer activity against human colon carcinoma cells (HCT-116) and mammalian cells of African green monkey kidney (VERO). The Cu(II) complex with selectivity index (S.I.)=21.26 exhibited better activity than methotrexate (MTX) as a reference drug with S.I. value=13.30, while Zn(II) complex with S.I. value=10.24 was found to be nearly as active as MTX. Molecular docking studies further helped in understanding the mode of action of the compounds through their various interactions with active sites of dihydrofolate reductase (DHFR) enzyme. The observed activity of Fe(III) and Cu(II) complexes gave rise to the conclusion that they might exert their action through inhibition of the DHFR enzyme. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sevgi, Fatih; Bagkesici, Ugur; Kursunlu, Ahmed Nuri; Guler, Ersin
2018-02-01
Zinc (II), copper (II), nickel (II), cobalt (II) and iron (III) complexes of Schiff bases (LG, LP) derived from 2-hydroxynaphthaldehyde with glycine and phenylalanine were reported and characterized by 1H NMR, 13C NMR, elemental analyses, melting point, FT-IR, magnetic susceptibility and thermal analyses (TGA). TGA data show that iron and cobalt include to the coordinated water and metal:ligand ratio is 1:2 while the complex stoichiometry for Ni (II), Cu (II) and Zn (II) complexes is 1:1. As expected, Ni (II) and Zn (II) complexes are diamagnetic; Cu (II), Co (II) and Fe (III) complexes are paramagnetic character due to a strong ligand of LG and LP. The LG, LP and their metal complexes were screened for their antimicrobial activities against five Gram-positive (Staphylococcus aureus, Methicillin resistant Staphylococcus aureus (MRSA), Bacillus cereus, Streptococcus mutans and Enterococcus faecalis) and three Gram-negative (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) and one fungi (Candida albicans) by using broth microdilution techniques. The activity data show that ligands and their metal complexes exhibited moderate to good activity against Gram-positive bacteria and fungi.
Costes, Jean Pierre; Titos-Padilla, Silvia; Oyarzabal, Itziar; Gupta, Tulika; Duhayon, Carine; Rajaraman, Gopalan; Colacio, Enrique
2016-05-02
The new dinuclear Zn(II)-Dy(III) and trinuclear Zn(II)-Dy(III)-Zn(II) complexes of formula [(LZnBrDy(ovan) (NO3)(H2O)](H2O)·0.5(MeOH) (1) and [(L(1)ZnBr)2Dy(MeOH)2](ClO4) (3) (L and L(1) are the dideprotonated forms of the N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato and 2-{(E)-[(3-{[(2E,3E)-3-(hydroxyimino)butan-2-ylidene ]amino}-2,2-dimethylpropyl)imino]methyl}-6-methoxyphenol Schiff base compartmental ligands, respectively) have been prepared and magnetostructurally characterized. The X-ray structure of 1 indicates that the Dy(III) ion exhibits a DyO9 coordination sphere, which is made from four O atoms coming from the compartmental ligand (two methoxy terminal groups and two phenoxido bridging groups connecting Zn(II) and Dy(III) ions), other four atoms belonging to the chelating nitrato and ovanillin ligands, and the last one coming to the coordinated water molecule. The structure of 3 shows the central Dy(III) ion surrounded by two L(1)Zn units, so that the Dy(III) and Zn(II) ions are linked by phenoxido/oximato bridging groups. The Dy ion is eight-coordinated by the six O atoms afforded by two L(1) ligands and two O atoms coming from two methanol molecules. Alternating current (AC) dynamic magnetic measurements of 1, 3, and the previously reported dinuclear [LZnClDy(thd)2] (2) complex (where thd = 2,2,6,6-tetramethyl-3,5-heptanedionato ligand) indicate single molecule magnet (SMM) behavior for all these complexes with large thermal energy barriers for the reversal of the magnetization and butterfly-shaped hysteresis loops at 2 K. Ab initio calculations on 1-3 show a pure Ising ground state for all of them, which induces almost completely suppressed quantum tunnelling magnetization (QTM), and thermally assisted quantum tunnelling magnetization (TA-QTM) relaxations via the first excited Kramers doublet, leading to large energy barriers, thus supporting the observation of SMM behavior. The comparison between the experimental and theoretical magnetostructural data for 1-3 has allowed us to draw some conclusions about the influence of ligand substitution around the Dy(III) on the SMM properties. Finally, these SMMs exhibit metal- and ligand-centered dual emissions in the visible region, and, therefore, they can be considered as magnetoluminescent bifunctional molecular materials.
NASA Astrophysics Data System (ADS)
Jabłońska-Wawrzycka, Agnieszka; Rogala, Patrycja; Czerwonka, Grzegorz; Hodorowicz, Maciej; Stadnicka, Katarzyna
2016-02-01
The reaction of zinc salts with heterocyclic ether (1-ethoxymethyl-2-methylimidazole (1-ExMe-2-MeIm)), acid (pyridine-2,3-dicarboxylic acid (2,3-pydcH2)) and amide (3,5-dimethylpyrazole-1-carboxamide (3,5-DMePzCONH2)) yielded three new zinc complexes formulated as [Zn(1-ExMe-2-MeIm)2Cl2] 1, fac-[Zn(H2O)6][Zn(2,3-pydcH)3]22 and [Zn(3,5-DMePz)2(NCO)2] 3. Complexes of 1 and 3 are four-coordinated with a tetrahedron as coordination polyhedron. However, compound 2 forms an octahedral cation-anion complex. The complex 3 was prepared by eliminating of the carboxamide group from the ligand and then the 3,5-dimethylpyrazole (3,5-DMePz) and isocyanates formed were employed as new ligands. The IR and X-ray studies have confirmed a bidentate fashion of coordination of the 2,3-pydcH and monodentate fashion of coordination of the 1-ExMe-2-MeIm and 3,5-DMePz to the Zn(II) ions. The crystal packing of Zn(II) complexes are stabilized by intermolecular classical hydrogen bonds of O-H⋯O and N-H⋯O types. The most interesting feature of the supramolecular architecture of complexes is the existence of C-H⋯O, C-H⋯Cl and C-H⋯π interactions and π⋯π stacking, which also contributes to structural stabilisation. The correlation between crystal structure and thermal stability of zinc complexes is observed. In all compounds the fragments of ligands donor-atom containing go in the last steps. Additionally, antimicrobial activities of compounds were carried out against certain Gram-positive and Gram-negative bacteria and counts of CFU (colony forming units) were also determined. The achieved results confirmed a significant antibacterial activity of some tested zinc complexes. On the basis of the Δ log CFU values the antibacterial activity of zinc complexes follows the order: 3 > 2 > 1. Influence a number of N-donor atoms in zinc environment on antibacterial activity is also observed.
Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B
2014-10-15
Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
El-Sawaf, Ayman K.; El-Essawy, Farag; Nassar, Amal A.; El-Samanody, El-Sayed A.
2018-04-01
The coordination characteristic of new N4-morpholinyl isatin-3-thiosemicarbazone (HL) towards Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) has been studies. The structures of the complexes were described by elemental analyses, molar conductivity, magnetic, thermal and spectral (IR, UV-Vis, 1H and 13C NMR and ESR) studies. On the basis of analytical and spectral studies the ligand behaves as monobasic tridentate ONS donor forming two five membered rings towards cobalt, copper and palladium and afforded complexes of the kind [M(L)X], (Mdbnd Co, Cu or Pd; Xdbnd Cl, Br or OAc). Whereas the ligand bound to NiCl2 as neutral tridentate ONS donor and with ZnCl2 as neutral bidentate NS donor. The newly synthesized thiosemicarbazone ligand and some of its complexes were examined for antimicrobial activity against 2 gram negative bacterial strains (Escherichia coli Pseudomonas and aeruginosa), 2 gram positive bacterial strains (Streptococcus pneumoniae and Staphylococcus aureus)} and two Pathogenic fungi (Aspergillus fumigatus and Candida albicans). All metal complexes possess higher antimicrobial activity comparing with the free thiosemicarbazone ligand. The high potent activities of the complexes may arise from the coordination and chelation, which tends to make metal complexes act as more controlling and potent antimicrobial agents, thus hindering the growing of the microorganisms. The antimicrobial results also show that copper bromide complex is better antimicrobial agent as compared to the Schiff base and its metal complexes.
NASA Astrophysics Data System (ADS)
Kürkçüoğlu, Güneş Süheyla; Sayın, Elvan; Şahin, Onur
2015-12-01
Two cyanide bridged hetero-metallic complexes of general formula, [M(1,2-dmi)2Ni(μ-CN)4]n (1,2-dmi = 1,2-dimethylimidazole and M = Zn(II) or Cd(II)) have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal analyses and elemental analyses. The crystallographic analyses reveal that the complexes, [Zn(1,2-dmi)2Ni(μ-CN)4] (1) and [Cd(1,2-dmi)2Ni(μ-CN)4] (2), have polymeric 2D networks. In the complexes, four cyanide groups of [Ni(CN)4]2- coordinated to the adjacent M(II) ions and distorted octahedral geometries of complexes are completed by two nitrogen atoms of trans 1,2-dmi ligands. The structures of 1 and 2 are similar and linked via intermolecular hydrogen bonding, C-H⋯Ni interactions to give rise to 3D networks. Vibration assignments are given for all the observed bands and the spectral features also supported to the crystal structures of heteronuclear complexes. The FT-IR and Raman spectra of the complexes are very much consistent with the structural data presented.
Hu, Yingli; Ding, Meili; Liu, Xiao-Qin; Sun, Lin-Bing; Jiang, Hai-Long
2016-04-28
Based on an organic ligand involving both carboxylate and tetrazole groups, a chemically stable Zn(II) metal-organic framework has been rationally synthesized and behaves as a fluorescence chemosensor for the highly selective and sensitive detection of picric acid, an extremely hazardous and strong explosive.
Mohamed, Gehad G; El-Gamel, Nadia E A
2004-11-01
The ternary piroxicam (Pir; 4-hydroxy-2-methyl-N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA chelates were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.
NASA Astrophysics Data System (ADS)
Mohamed, Gehad G.; El-Gamel, Nadia E. A.
2004-11-01
The ternary piroxicam (Pir; 4-hydroxy-2-methyl- N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA cheletes were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.
Mack, John; Asano, Yoshiaki; Kobayashi, Nagao; Stillman, Martin J
2005-12-21
The first magnetic circular dichroism (MCD) spectra are reported for tetraphenyltetraacenaphthoporphyrin (TPTANP). The impact on the electronic structure of steric interactions between the fused acenaphthalene rings and the meso-tetraphenyl substituents is explored based on an analysis of the optical spectra of the Zn(II) complex (ZnTPTANP) and the free base dication species ([H4TPTANP]2+). In the case of ZnTPTANP, significant folding of the porphyrinoid ligand induces a highly unusual MCD-sign reversal providing the first direct spectroscopic evidence of ligand nonplanarity. Density functional theory (DFT) geometry optimizations for a wide range of Zn(II) porphyrinoids based on the B3LYP functional and TD-DFT calculations of the associated UV-visible absorption spectra are reported, allowing a complete assessment of the MCD data. TPTANP complexes are found to fall into a class of cyclic polyenes, termed as soft MCD chromophores by Michl (J. Pure Appl. Chem. 1980, 52, 1549.), since the signs of the Faraday A1 terms observed in the MCD spectrum are highly sensitive to slight structural changes. The origin of an unusually large red shift of the main B (or Soret) band of MTPTANP (the most red shifted ever reported for fused-ring-expanded metal porphines) and of similar red shifts observed in the spectra of other peripherally crowded porphyrinoid complexes is also explored and explained on this basis.
Intercalation of a Zn(II) complex containing ciprofloxacin drug between DNA base pairs.
Shahabadi, Nahid; Asadian, Ali Ashraf; Mahdavi, Mryam
2017-11-02
In this study, an attempt has been made to study the interaction of a Zn(II) complex containing an antibiotic drug, ciprofloxacin, with calf thymus DNA using spectroscopic methods. It was found that Zn(II) complex could bind with DNA via intercalation mode as evidenced by: hyperchromism in UV-Vis spectrum; these spectral characteristics suggest that the Zn(II) complex interacts with DNA most likely through a mode that involves a stacking interaction between the aromatic chromophore and the base pairs of DNA. DNA binding constant (K b = 1.4 × 10 4 M -1 ) from spectrophotometric studies of the interaction of Zn(II) complex with DNA is comparable to those of some DNA intercalative polypyridyl Ru(II) complexes 1.0 -4.8 × 10 4 M -1 . CD study showed stabilization of the right-handed B form of DNA in the presence of Zn(II) complex as observed for the classical intercalator methylene blue. Thermodynamic parameters (ΔH < 0 and ΔS < 0) indicated that hydrogen bond and Van der Waals play main roles in this binding prose. Competitive fluorimetric studies with methylene blue (MB) dye have shown that Zn(II) complex exhibits the ability of this complex to displace with DNA-MB, indicating that it binds to DNA in strong competition with MB for the intercalation.
NASA Astrophysics Data System (ADS)
Adly, Omima M. I.; Shebl, Magdy; El-Shafiy, Hoda F.; Khalil, Saied M. E.; Taha, A.; Mahdi, Mohammed A. N.
2017-12-01
New mono-, bi- and trinuclear metal complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO2(VI) with a new Schiff base ligand H3L; ((E)-2-hydroxy-N‧-(4-(2-hydroxyphenyl)-4-oxobutan-2-ylidene)) benzohydrazide (H3L) have been synthesized. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The metal complexes exhibited octahedral and tetrahedral geometrical arrangements. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. Structural parameters of the synthesized compounds were calculated on the basis of DFT level implemented in the Gaussian 09 program and Hyperchem 7.52 and correlated with the experimental data. The antimicrobial activity of the present compounds was screened against Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Salmonella typhimurium and Escherichia coli), yeast (Candida albicans) and fungus (Aspergillus fumigatus). The antitumor activity of the ligand and its Ni(II) and Cu(II) complexes was investigated against HepG2 cell line.
Wang, Xiangfei; Yang, Fang; Tang, Meng; Yuan, Limin; Liu, Wenlong
2015-07-01
The hydrothermal synthesis of the novel complex poly[aqua(μ4-benzene-1,2,3-tricarboxylato)[μ2-4,4'-(hydrazine-1,2-diylidenedimethanylylidene)dipyridine](μ3-hydroxido)dizinc(II)], [Zn(C9H3O6)(OH)(C12H10N4)(H2O)]n, is described. The benzene-1,2,3-tricarboxylate ligand connects neighbouring Zn4(OH)2 secondary building units (SBUs) producing an infinite one-dimensional chain. Adjacent one-dimensional chains are connected by the N,N'-bis[(pyridin-4-yl)methylidene]hydrazine ligand, forming a two-dimensional layered structure. Adjacent layers are stacked to generate a three-dimensional supramolecular architecture via O-H...O hydrogen-bond interactions. The thermal stability of this complex is described and the complex also appears to have potential for application as a luminescent material.
Shi, Zhi-Qiang; Guo, Zi-Jian; Zheng, He-Gen
2015-05-14
Two luminescent Zn(II) metal-organic frameworks were prepared from a π-conjugated thiophene-containing carboxylic acid ligand. These two MOFs show strong luminescene and their luminescence could be quenched by a series of nitroaromatic explosives. Importantly, they exhibit very highly sensitive and selective detection of picric acid compared to other nitroaromatic explosives.
NASA Astrophysics Data System (ADS)
Ben Nasr, M.; Soudani, S.; Lefebvre, F.; Jelsch, C.; Ben Nasr, C.
2017-06-01
The Zn(II) complex with the monodentate ligand 4-fluoroaniline, ZnCl2(C6H4FNH2)2, has been prepared and characterized by single crystal X-ray diffraction, solid state nuclear magnetic resonance, infrared spectroscopy and differential scanning calorimetry. The Zn(II) ion is tetracoordinated by two nitrogen atoms of two monodentate 4-fluoroaniline ligands and two chlorine atoms. In the molecular arrangement, the ZnCl2(C6H4FNH2)2 entities are interconnected via Nsbnd H⋯Cl hydrogen bonds to form layers parallel to the (a, b) plane. The nature and proportion of contacts in the crystal packing were investigated through the Hirshfeld surfaces. The crystal is mainly maintained by electrostatic attractions Cl- … Hsbnd N and by extensive hydrophobic contacts as revealed by the Hirshfeld 2D fingerprint plots and statistical analysis. The13C and 19F CP-MAS NMR spectra are in agreement with the X-ray structure and confirm the phase purity of the crystalline sample. The vibrational absorption bands were identified by infrared spectroscopy. A calorimetric study shows that the title compound is stable until 262.5 °C.
Illán-Cabeza, Nuria A; Jiménez-Pulido, Sonia B; Hueso-Ureña, Francisco; Peña-Ruiz, Tomás; Quirós-Olozábal, Miguel; Moreno-Carretero, Miguel N
2016-11-28
2,4-Bis(1,3,7-trimethyl-pteridine-2,4(1H,3H)-dione-6-yl)-2,3-dihydro-2-methyl-1H-1,5-benzodiazepine (DLMBZD) has been prepared and its molecular and crystal structures have been determined from spectral and XRD data. The benzodiazepine ligand was reacted with zinc(ii), cadmium(ii) and mercury(ii) chloride, bromide and iodide to give complexes with general formula [M(DLMBZD)X 2 ]. The complexes have been synthesized and characterized by IR, NMR and elemental analysis. The structure of seven complexes has been obtained by single crystal X-ray diffraction. In all the cases, the metal is (2 + 2 + 1)-five-coordinated by two halide ligands, two nitrogen atoms from pyrazine and diazepine rings and a carbonyl oxygen from a pteridine ring. The coordinated-metal environment is a square-based pyramid, with increasing trigonality from Hg(ii) to Zn(ii) complexes. To coordinate the metals, the ligand folds itself, establishing four intramolecular σ-π interactions with the pyrimidine and pyrazine rings. A topological analysis of the electron density using the Quantum Theory of Atoms in Molecules and the complexes stability has been performed.
NASA Astrophysics Data System (ADS)
Devi, Jai; Batra, Nisha; Malhotra, Rajesh
2012-11-01
New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL1 and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL2 derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML(1-2)2 have been synthesized, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate ? coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mn < Zn < Cu < Co < Ni. The ligands and their complexes were tested for in vitro antibacterial activity at different concentrations against bacteria viz. Gram positive Bacillus subtilis, Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu > Mn > Ni > Co > Zn.
NASA Astrophysics Data System (ADS)
El-Samanody, El-Sayed A.; Polis, Magdy W.; Emara, Esam M.
2017-09-01
A new series of biologically active Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes derived from the novel thiosemicarbazone ligand; (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide (HL) were synthesized. The mode of bonding of the ligand and the geometrical structures of its metal complexes were achieved by different analytical and spectral methods. The ligand coordinated with metal ions in a neutral bidentate fashion through the thione sulfur and azomethine nitrogen atoms. All metal complexes adopted octahedral geometry, except Cu(II) complexes (3, 6, 7) which have a square planar structure. The general thermal decomposition pathways of the ligand along with its metal complexes were explained. The thermal stability of the complexes is controlled by the number of outer and inner sphere water molecules, ionic radii and the steric hindrance. The activation thermodynamic parameters; (activation energy (E*), enthalpy of activation (ΔH*), entropy of activation (ΔS*) and Gibbs free energy (ΔG*)) along with order of reaction (n) were estimated from DTG curves. The ESR spectra of Cu(II) complexes indicated that (dx2-y2)1 is the ground state with covalence character of metal-ligand bonds. The molluscicidal and biochemical effects of the ligand and its Ni(II); Cu(II) complexes (2; 3, 5, 7) along with their combinations with metaldehyde were screened in vitro on the mucous gland of Eobania vermiculata. The tested compounds exhibited a significant toxicity against the tested animals and have almost the same toxic effect of metaldehyde which increases the mucous secretion of the snails and leads to death.
Synthesis and Reactivity of Tripodal Complexes Containing Pendant Bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blacquiere, Johanna M.; Pegis, Michael L.; Raugei, Simone
2014-09-02
The synthesis of a new tripodal ligand family is reported, with tertiary-amine groups in the second-coordination sphere. The ligands are tris(amido)amine derivatives, with the pendant amines attached via a peptide coupling strategy. They were designed to be used in new catalysts for the oxygen reduction reaction (ORR), in which the pendant acid/base group could improve catalyst performance. Two members of the new ligand family were each metallated with Co(II) and Zn(II) to afford trigonal monopyramidal complexes. Reaction of the cobalt complexes, [Co(L)]-, with dioxygen reversibly generates a small amount of a Co(III)-superoxo species, which was characterized by EPR. Protonation ofmore » the zinc complex Zn[N{CH2CH2NC(O)CH2N(CH2Ph)2}3)-– ([Zn(TNBn)]-) with one equivalent of acid occurs with displacement and dissociation of an amide ligand. Addition of excess acid to the any of the complexes [M(L)]- results in complete proteolysis and formation of the ligands H3L. This decomposition limits the use of these complexes as catalysts for the ORR. An alternative ligand with two pyridyl arms was also prepared but could not be metallated. These studies highlight the importance of stability of the primary-coordination sphere of ORR electrocatalysts to both oxidative and acidic conditions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.« less
NASA Astrophysics Data System (ADS)
Masoud, Mamdouh S.; Ali, Alaa E.; Elasala, Gehan S.; Kolkaila, Sherif A.
2018-03-01
Synthesis, physicochemical characterization and thermal analysis of ceftazidime complexes with transition metals (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)) were discussed. It's obtained that ceftazidime act as bidentate ligand. From magnetic measurement and spectral data, octahedral structures were proposed for all complexes except for cobalt, nickel and mercury had tetrahedral structural. Hyper chemistry program confirmed binding sites of ceftazidime. Ceftazidime complexes show higher activity than ceftazidime for some strains. From TG and DTA curves the thermal decomposition mechanisms of ceftazidime and their metal complexes were suggested. The thermal decomposition of the complexes ended with the formation of metal oxides as a final product except in case of Hg complex.
Zn(II)-Coordinated Quantum Dot-FRET Nanosensors for the Detection of Protein Kinase Activity
Lim, Butaek; Park, Ji-In; Lee, Kyung Jin; Lee, Jin-Won; Kim, Tae-Wuk; Kim, Young-Pil
2015-01-01
We report a simple detection of protein kinase activity using Zn(II)-mediated fluorescent resonance energy transfer (FRET) between quantum dots (QDs) and dye-tethered peptides. With neither complex chemical ligands nor surface modification of QDs, Zn(II) was the only metal ion that enabled the phosphorylated peptides to be strongly attached on the carboxyl groups of the QD surface via metal coordination, thus leading to a significant FRET efficiency. As a result, protein kinase activity in intermixed solution was efficiently detected by QD-FRET via Zn(II) coordination, especially when the peptide substrate was combined with affinity-based purification. We also found that mono- and di-phosphorylation in the peptide substrate could be discriminated by the Zn(II)-mediated QD-FRET. Our approach is expected to find applications for studying physiological function and signal transduction with respect to protein kinase activity. PMID:26213934
Zn(II)-Coordinated Quantum Dot-FRET Nanosensors for the Detection of Protein Kinase Activity.
Lim, Butaek; Park, Ji-In; Lee, Kyung Jin; Lee, Jin-Won; Kim, Tae-Wuk; Kim, Young-Pil
2015-07-23
We report a simple detection of protein kinase activity using Zn(II)-mediated fluorescent resonance energy transfer (FRET) between quantum dots (QDs) and dye-tethered peptides. With neither complex chemical ligands nor surface modification of QDs, Zn(II) was the only metal ion that enabled the phosphorylated peptides to be strongly attached on the carboxyl groups of the QD surface via metal coordination, thus leading to a significant FRET efficiency. As a result, protein kinase activity in intermixed solution was efficiently detected by QD-FRET via Zn(II) coordination, especially when the peptide substrate was combined with affinity-based purification. We also found that mono- and di-phosphorylation in the peptide substrate could be discriminated by the Zn(II)-mediated QD-FRET. Our approach is expected to find applications for studying physiological function and signal transduction with respect to protein kinase activity.
2016-01-01
Transition metal ions (Zn(II), Cu(II)/(I), Fe(III)/(II), Mn(II)) are essential for life and participate in a wide range of biological functions. Cellular Zn(II) levels must be high enough to ensure that it can perform its essential roles. Yet, since Zn(II) binds to ligands with high avidity, excess Zn(II) can lead to protein mismetallation. The major targets of mismetallation, and the underlying causes of Zn(II) intoxication, are not well understood. Here, we use a forward genetic selection to identify targets of Zn(II) toxicity. In wild-type cells, in which Zn(II) efflux prevents intoxication of the cytoplasm, extracellular Zn(II) inhibits the electron transport chain due to the inactivation of the major aerobic cytochrome oxidase. This toxicity can be ameliorated by depression of an alternate oxidase or by mutations that restrict access of Zn(II) to the cell surface. Conversely, efflux deficient cells are sensitive to low levels of Zn(II) that do not inhibit the respiratory chain. Under these conditions, intracellular Zn(II) accumulates and leads to heme toxicity. Heme accumulation results from dysregulation of the regulon controlled by PerR, a metal-dependent repressor of peroxide stress genes. When metallated with Fe(II) or Mn(II), PerR represses both heme biosynthesis (hemAXCDBL operon) and the abundant heme protein catalase (katA). Metallation of PerR with Zn(II) disrupts this coordination, resulting in depression of heme biosynthesis but continued repression of catalase. Our results support a model in which excess heme partitions to the membrane and undergoes redox cycling catalyzed by reduced menaquinone thereby resulting in oxidative stress. PMID:27935957
Recognition of thymine in DNA bulges by a Zn(II) macrocyclic complex.
del Mundo, Imee Marie A; Fountain, Matthew A; Morrow, Janet R
2011-08-14
A Zn(II) macrocyclic complex with appended quinoline is a bifunctional recognition agent that uses both the Zn(II) center and the pendent aromatic group to bind to thymine in bulges with good selectivity over DNA containing G, C or A bulges. Spectroscopic studies show that the stem containing the bulge stays largely intact in a DNA hairpin with the Zn(II) complex bound to the thymine bulge. This journal is © The Royal Society of Chemistry 2011
Cheng, Gang; So, Gary Kwok-Ming; To, Wai-Pong; Chen, Yong; Kwok, Chi-Chung; Ma, Chensheng; Guan, Xiangguo; Chang, Xiaoyong; Kwok, Wai-Ming; Che, Chi-Ming
2015-08-01
The synthesis and spectroscopic properties of luminescent tetranuclear zinc(ii) complexes of substituted 7-azaindoles and a series of luminescent copper(i) complexes containing 7,8-bis(diphenylphosphino)-7,8-dicarba- nido -undecaborate ligand are described. These complexes are stable towards air and moisture. Thin film samples of the luminescent copper(i) complexes in 2,6-dicarbazolo-1,5-pyridine and zinc(ii) complexes in poly(methyl methacrylate) showed emission quantum yields of up to 0.60 (for Cu-3 ) and 0.96 (for Zn-1 ), respectively. Their photophysical properties were examined by ultrafast time-resolved emission spectroscopy, temperature dependent emission lifetime measurements and density functional theory calculations. Monochromic blue and orange solution-processed OLEDs with these Zn(ii) and Cu(i) complexes as light-emitting dopants have been fabricated, respectively. Maximum external quantum efficiency (EQE) of 5.55% and Commission Internationale de l'Eclairage (CIE) coordinates of (0.16, 0.19) were accomplished with the optimized Zn-1 -OLED while these values were, respectively 15.64% and (0.48, 0.51) for the optimized Cu-3 -OLED. Solution-processed white OLEDs having maximum EQE of 6.88%, CIE coordinates of (0.42, 0.44), and colour rendering index of 81 were fabricated by using these luminescent Zn(ii) and Cu(i) complexes as blue and orange light-emitting dopant materials, respectively.
Chen, Zhimin; Wu, Yiqun; Gu, Donghong; Gan, Fuxi
2007-11-01
A new chelating ligand, 2-(2-(5-tert-butylisoxazol-3-yl)hydrazono)-N-(2,4-dimethylphenyl)-3-oxobutanamide (HL), and its four binuclear transition metal complexes, M(2)(L)(2) (micro-OCH(3))(2) [M=Ni(II), Co(II), Cu(II), Zn(II)], were synthesized using the procedure of diazotization, coupling and metallization. Their structures were postulated based on elemental analysis, (1)H NMR, MALDI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films of these complexes on K9 glass substrates were prepared using the spin-coating method and their absorption properties were evaluated. The thermal properties of the metal(II) complexes were investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC). Different thermodynamic and kinetic parameters namely activation energy (E*), enthalpy of activation (DeltaH*), entropy of activation (DeltaS*) and free energy change of activation (DeltaG*) are calculated using Coats-Redfern (CR) equation.
Raman, Natarajan; Mahalakshmi, Rajkumar; Arun, T; Packianathan, S; Rajkumar, R
2014-09-05
The present contribution reports a thorough characterization of newly obtained metallointercalators incorporating Schiff bases, formed by the condensation of N-acetoacetyl-o-toluidine with 1-amino-4-nitrobenzene (L(1))/1-amino-4-chlorobenzene (L(2)) as main ligand and 1,10-phenanthroline as co-ligand respectively. The characterization of newly formed metallointercalators has been done by (1)H NMR, UV-Vis, IR, EPR spectroscopy and molar conductivity studies. X-ray powder diffraction illustrates that they are crystalline nature. Binding interaction of these complexes with calf thymus (CT-DNA) has been investigated by emission, absorption, viscosity, cyclic voltammetry and differential pulse voltammetry. DNA binding experiments results reveal that the synthesized complexes interact with DNA through intercalative mode. The in vitro antibacterial and antifungal assay indicate that these complexes are good antimicrobial agents against various pathogens. The DNA cleavage exhibits that they act as efficient cleaving agents. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Valencia, Laura
2013-01-01
A new symmetrical [N4O2] hexadentate Schiff base ligand, (E)-N-(pyridin-2-ylmethylene)-2-(3-(2-((E)-pyridin-2-lmethyleneamino)phenoxy)naphthalen-2-yloxy)benzenamine, abbreviated to L, and its complexes of Ni(II), Cu(II), Zn(II), Co(II), Cd(II) and Mn(II) have been synthesized in the presence of metal ions. The complexes were structurally characterized by elemental analyses, IR, UV-Vis, NMR and molar conductivity. The crystal structures of two complexes, [NiL(ONO2)2]·2H2O and [CoLCl2]CH3OH·0.5H2O, have been determined by a single crystal X-ray diffraction study. In these complexes, the ligand is coordinated in a neutral form via pyridine and azomethine nitrogen atoms. The metal ions complete their six coordination with two coordinated nitrate or chloride ions, forming a distorted octahedral geometry. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Enterococcus faecalis, Bacillus cereus and Staphylococcus epid and also against the three Gram-negative bacteria: Citrobacter freundii, Enterobacter aerogenes and Salmonella typhi. The activity data show that the complexes are more potent antibacterials than the parent Schiff base.
Kalanithi, M; Rajarajan, M; Tharmaraj, P; Sheela, C D
2012-02-15
Tridentate chelate complexes of Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the chalcone based ligands 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-(phenylallyl)]phenol(HL(1)), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-p-tolylallyl]phenol(HL(2)), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-4-nitrophenylallyl]phenol(HL(3)). Microanalytical data, UV-vis spectrophotometric method, magnetic susceptibility measurements, IR, 1H NMR, Mass, and EPR techniques were used to characterize the structure of chelates. The electronic absorption spectra and magnetic susceptibility measurements suggest a distorted square planar geometry for the copper(II) ion. The other metal complexes show distorted tetrahedral geometry. The coordination of the ligands with metal(II) ions was further confirmed by solution fluorescence spectrum. The antimicrobial activity of the ligands and metal(II) complexes against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger has been carried out and compared. The electrochemical behavior of copper(II) complex is studied by cyclic voltammetry. Copyright © 2011 Elsevier B.V. All rights reserved.
Richardson, Christopher E. R.; Cunden, Lisa S.; Butty, Vincent L.; Nolan, Elizabeth M.; Lippard, Stephen J.; Shoulders, Matthew D.
2018-01-01
We describe the preparation, evaluation, and application of an S100A12 protein-conjugated solid support, hereafter the “A12-resin,” that can remove 99% of Zn(II) from complex biological solutions without significantly perturbing the concentrations of other metal ions. The A12-resin can be applied to selectively deplete Zn(II) from diverse tissue culture media and from other biological fluids, including human serum. To further demonstrate the utility of this approach, we investigated metabolic, transcriptomic, and metallomic responses of HEK293 cells cultured in medium depleted of Zn(II) using S100A12. The resulting data provide insight into how cells respond to acute Zn(II) deficiency. We expect that the A12-resin will facilitate interrogation of disrupted Zn(II) homeostasis in biological settings, uncovering novel roles for Zn(II) in biology. PMID:29334734
NASA Astrophysics Data System (ADS)
Zhang, Meili; Ren, Yixia; Ma, Zhenzhen; Qiao, Lei
2017-06-01
Two coordination polymers, [Zn(pda)(bib)]n (1) and [Cd(pda)0.5(bib)Cl]n (2)]. (H2pda = 1,4-phenylenediacetic acid, bib = 1,2-bis(imidazol-1-ylmethyl)benzene), have been synthesized by using Zn(II)/Cd(II) salts with two flexible ligands pda and bib under hydrothermal conditions. Their structures have been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography and powder X-ray diffraction (PXRD) analysis. Due to the coordination geometry around the metal ions and the diverse coordination modes of the flexible ligands, the obtained complex show diverse structures. In the structure of 1, a pair of bib ligands connect two Zn(II) atoms give rise a 22-membered ring, which is further extended by pda ligands in bidentate coordination mode leading a ring-containing 2D layer. In 2, bib ligands join [Cd2Cl2]2+ dimmers generate 1D polymeric ribbon, the pda ligands further extend such ribbon forming a 2D layer network containing rectangular windows, which discovers the effect of the central metal ions on the formation of metal-organic frameworks. In additional, luminescent properties of two complexes have also been studied, they could be potential fluorescence materials.
Crystal structures and thermodynamics/kinetics of Zn(II) coordination polymers with helical chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Tian; Yue, Ke-Fen, E-mail: ykflyy@nwu.edu.cn; Zhao, Yi-xing
Solvothermal reactions of Zn(II) acetates and four V-shaped carboxylates ligands in the presence of 1,4-Bis(2-methyl-imidazol-1-yl)butane afforded four interesting Zn(II) coordination polymers with helical chains, namely, {[Zn(bib)(atibdc)]·2H_2O}{sub n} (1), {[Zn(bib)(atbip)]·H_2O}{sub n} (2), {[Zn(bib)(2,2′-tda)]}{sub n} (3) and {[Zn(bib)(5-tbipa)]·EtOH}{sub n} (4), (H{sub 2}atibdc=5-amino-2,4,6-triiodoisophthalic acid, H{sub 2}atbip=5-amino-2,4,6-tribromoisophthalic acid, 2,2′-H{sub 2}tad=2,2′-thiodiacetic acid, 5-H{sub 2}tbipa=5-tert-butyl-isophthalic acid). 1 reveals a 3D chiral framework with three kinds of helical chains along a, b and c axis. 2 shows a 2D step-type chiral framework with right-handed helical chains. 3 displays a wavelike 2D layer network possessing alternate left- and right-handed helical chains. 4 presents a four-connected 3D framework withmore » zigzag and meso-helical chains. The different spacers and substituent group of carboxylic acid ligands may lead to the diverse network structures of 1–4. The fluorescent properties of complexes 1−4 were studied. In addition, the thermal decompositions properties of 1–4 were investigated by simultaneous TG/DTG–DSC technique. The apparent activation energy E and the pre-exponential factor (A) of skeleton collapse for the complexes 1–4 are calculated by the integral Kissinger's method and Ozawa–Doyle's method. The activation energy E (E{sub 1}=209.658 kJ·mol{sup −1}, E{sub 2}=250.037 kJ mol{sup −1}, E{sub 3}=225.300 kJ mol{sup −1}, E{sub 4}=186.529 kJ·mol{sup −1}) demonstrates that the reaction rate of the melting decomposition is slow. The thermodynamic parameters (ΔH{sup ‡}, ΔG{sup ‡} and ΔS{sup ‡}) at the peak temperatures of the DTG curves were also calculated. ΔG{sup ‡}>0 indicates that the skeleton collapse is not spontaneous. ΔH{sub d}>0 suggests that the skeleton collapse is endothermic, corresponding to the intense endothermic peak of the DSC curve. The structural stability could be illustrated from the point of thermodynamics and kinetics. - Graphical abstract: Four new zinc coordination architectures constructed from the primary ligand bib, transition metal ions Zn(II) and four V-shaped carboxylate coligands. The different structural evolutions of complexes 1–4 have systematically illustrated that the carboxylate coligands play a critical role in the assemblies of the CPs. Their thermal decompositions properties of 1–4 were investigated by simultaneous TG/DTG–DSC technique. The apparent activation energy E and the pre-exponential factor (A) of skeleton collapse for the complexes 1−4 are calculated by the integral Kissinger’s method and Ozawa–Doyle’s method. The structural stability could be illustrated from the point of thermodynamics and kinetics. Display Omitted.« less
NASA Astrophysics Data System (ADS)
Singh, Ajay K.; Pandey, O. P.; Sengupta, S. K.
2013-09-01
Zn(II) complexes have been synthesized by reacting zinc acetate with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/benzaldehyde/indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non electrolytes. Elemental analyses suggest that the complexes have 1:2 metal to ligands stoichiometry of the types [ZnL2(H2O)2](L = monoanionic Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/indoline-2,3-dione) [ZnL2‧(OOCCH3)2(H2O)2](L‧ = neutral Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde), and they were characterized by IR, 1H NMR, and 13C NMR. Particle sizes of synthesized compounds were measured with dynamic light scattering (DLS) analyser which indicates that particle diameter are of the range ca. 100-200 nm. All these Schiff bases and their complexes have also been screened for their antibacterial (Bacillus subtilis (B. subtilis), Escherichia coli (E. coli) and antifungal activities (Colletotrichum falcatum (C. falcatum), Aspergillus niger (A. niger), Fusarium oxysporium (F. oxysporium) Curvularia pallescence (C. pallescence). The antimicrobial activities have shown that upon complexation the activity increases.
Hormann, Jan; Malina, Jaroslav; Lemke, Oliver; Hülsey, Max J; Wedepohl, Stefanie; Potthoff, Jan; Schmidt, Claudia; Ott, Ingo; Keller, Bettina G; Brabec, Viktor; Kulak, Nora
2018-05-07
Many drugs that are applied in anticancer therapy such as the anthracycline doxorubicin contain DNA-intercalating 9,10-anthraquinone (AQ) moieties. When Cu(II) cyclen complexes were functionalized with up to three (2-anthraquinonyl)methyl substituents, they efficiently inhibited DNA and RNA synthesis resulting in high cytotoxicity (selective for cancer cells) accompanied by DNA condensation/aggregation phenomena. Molecular modeling suggests an unusual bisintercalation mode with only one base pair between the two AQ moieties and the metal complex as a linker. A regioisomer, in which the AQ moieties point in directions unfavorable for such an interaction, had a much weaker biological activity. The ligands alone and corresponding Zn(II) complexes (used as redox inert control compounds) also exhibited lower activity.
NASA Astrophysics Data System (ADS)
Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar
2013-03-01
In this study, diacetylmonoximebenzoylhydrazone (L1H2) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L2H2) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L1H2 ligand, and 1:1 for L2H2 ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, 1H- and 13C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L1H2 ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N4O2 donor environment, while the L2H2 ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N2O2 donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L1H)2], and binuclear polymeric metal (II) complexes [{M2(L2)}n]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co2+, Ni2+, Cu2+, Zn2+ and Pb2+] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L1H2) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L2H2) ligand shows strong binding ability toward nickel(II) and zinc(II) ions.
Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar
2013-03-15
In this study, diacetylmonoximebenzoylhydrazone (L(1)H(2)) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L(2)H(2)) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L(1)H(2) ligand, and 1:1 for L(2)H(2) ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, (1)H- and (13)C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L(1)H(2) ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N(4)O(2) donor environment, while the L(2)H(2) ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N(2)O(2) donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L(1)H)(2)], and binuclear polymeric metal (II) complexes [{M(2)(L(2))}(n)]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co(2+), Ni(2+), Cu(2+), Zn(2+) and Pb(2+)] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L(1)H(2)) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L(2)H(2)) ligand shows strong binding ability toward nickel(II) and zinc(II) ions. Copyright © 2012 Elsevier B.V. All rights reserved.
Structural variation in transition-metal bispidine compounds.
Comba, Peter; Kerscher, Marion; Merz, Michael; Müller, Vera; Pritzkow, Hans; Remenyi, Rainer; Schiek, Wolfgang; Xiong, Yun
2002-12-16
The experimentally determined molecular structures of 40 transition metal complexes with the tetradentate bispyridine-substituted bispidone ligand, 2,4-bis(2-pyridine)-3,7-diazabicyclo[3.3.1]nonane-9-one [M(bisp)XYZ]n+; M = CrIII, MnII, FeII, CoII, CuII, CuI, ZnII; X, Y, Z = mono- or bidentate co-ligands; penta-, hexa- or heptacoordinate complexes) are characterized in detail, supported by force-field and DFT calculations. While the bispidine ligand is very rigid (N3...N7 distance = 2.933 +/- 0.025 A), it tolerates a large range of metal-donor bond lengths (2.07 A < sigma(M-N)/4 < 2.35 A). Of particular interest is the ratio of the bond lengths between the metal center and the two tertiary amine donors (0.84 A < M-N3/M-N7 < 1.05 A) and the fact that, in terms of this ratio there seem to be two clusters with M-N3 < M-N7 and M-N3 > or = M-N7. Calculations indicate that the two structural types are close to degenerate, and the structural form therefore depends on the metal ion, the number and type of co-ligands, as well as structural variations of the bispidine ligand backbone. Tuning of the structures is of importance since the structurally differing complexes have very different stabilities and reactivities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Jing; Han Xiao; Meng Qin
2013-01-15
Five Cd(II)/Zn(II) complexes [Cd(1,2-bdc)(pz){sub 2}(H{sub 2}O)]{sub n} (1), [Cd1Cd2(btec)(H{sub 2}O){sub 6}]{sub n} (2), [Cd(3,4-pdc) (H{sub 2}O)]{sub n} (3), [Zn(2,5-pdc)(H{sub 2}O){sub 4}]{center_dot}2H{sub 2}O (4) and {l_brace} [Zn(2,5-pdc)(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace} {sub n} (5) (H{sub 2}bdc=1,2-benzenedicarboxylic acid, pz=pyrazole, H{sub 4}btec=1,2,4,5-benzenetetracarboxylic acid, H{sub 2}pdc=pyridine-dicarboxylic acid) were hydrothermally synthesized and characterized by single-crystal X-ray diffraction, surface photovoltage spectroscopy, XRD, TG analysis, IR and UV-vis spectra and elemental analysis. Structural analyses show that complexes 1-3 are 1D, 2D and 3D Cd(II) coordination polymers, respectively. Complex 4 is a mononuclear Zn(II) complex. Complex 5 is a 3D Zn(II) coordination polymer. The surface photoelectric properties of complexesmore » were investigated by SPS. The results indicate that all complexes exhibit photoelectric responses in the range of 300-600 nm, which reveals that they all possess certain photoelectric conversion properties. By the comparative analyses, it can be found that the species and coordination micro-environment of central metal ion, the species and property of ligands affect the intensity and scope of photoelectric response. - Graphical abstract: Five Cd(II)/Zn(II) complexes have been hydrothermally synthesized and characterized. The photoelectric properties were studied with SPS. The species and coordination micro-environment of central metal ion, the species and property of ligands all affect the photoelectric responses. Highlights: Black-Right-Pointing-Pointer Five Cd/Zn complexes have been synthesized and characterized. Black-Right-Pointing-Pointer The SPS results indicate they possess obvious photoelectric conversion property. Black-Right-Pointing-Pointer The species and coordination environment of central metal ion affect SPS. Black-Right-Pointing-Pointer The species and property of ligands affect SPS. Black-Right-Pointing-Pointer By the energy-band theory and the crystal filed theory, the SPS are analyzed and assigned.« less
Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes
NASA Astrophysics Data System (ADS)
Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M. Arif
2016-05-01
We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.
NASA Astrophysics Data System (ADS)
Hosny, Nasser Mohammed; Hussien, Mostafa A.; Radwan, Fatima M.; Nawar, Nagwa
2017-09-01
New metal complexes derived from the in situ reaction of Cu(II), Co(II), Ni(II) and Zn(II) acetates with the Schiff-base ligand (H2L) resulted from the condensation of 2-amino-5-guanidinopentanoic acid (arginine) and acetylacetone have been synthesized. The resulting complexes have been characterized by, elemental analyses, ES-MS, IR, Raman spectra, UV-Vis., 1HNMR, ESR, thermal analyses (TGA and DTG) and magnetic measurements. The results showed that, The Schiff-base ligand acts as bi-negative tridentate coordinating via azomethine nitrogen, enolic carbonyl oxygen and carboxylate oxygen after displacement of hydrogen. The thermodynamic parameters E∗, ΔH, ΔG and ΔS of the isolated complexes have been calculated. The optical band gap (Eg) values of Cu, Co, Ni and Zn were found to be 3.3, 3.4, 3.7 and 4.3 eV, respectively, arising from direct transitions. Optical band gap measurements indicate the semi-conductivity nature of these complexes.
NASA Astrophysics Data System (ADS)
Zhang, Li; Li, Xiaohui; Zhang, Yan
2016-01-01
Two interpenetrated 3D coordination polymers, namely [Cd2(tdc)2(bpp) (DMA)]n (1) and [Zn2(tdc)2(bib)2]n·2n(DMA) (2) (H2tdc = 2,5-thiophenedicarboxylic acid, bpp = 1,3-di(4-pyridyl)propane, bib = 1, 4-bis(imidazolyl)butane, DMA = N,N-dimethylacetamide), have been solvothermally synthesized by the self-assembly of flexible N-donor and dicarboxylate ligands. Single crystal X-ray diffraction analyses revealed that compound 1 features a 2-fold interpenetrated 3D framework based on dinuclear [Cd2(COO)3] subunits and can be simplified into a 6-connected pcu topology, and compound 2 features a 3-fold interpenetrated 3D framework with 4-connected dia topology. Moreover, the thermal stabilities and luminescent properties of these two compounds were also investigated.
NASA Astrophysics Data System (ADS)
Wang, Xin-Fang; Du, Ceng-Ceng; Zhou, Sheng-Bin; Wang, Duo-Zhi
2017-01-01
Herein we reported six new Ni(II)/Cu(II)/Zn(II) complexes, namely, [Ni(L1)4(OH)2] (1), [Cu(L1)4(OH)2] (2), [Cu(L1)2(SiF6)]n (3), {[Cu(L2)(HCOO)2]·H2O·CH3OH}n (4), [Ni(L2)2(NO3)2]n (5) and {[Zn(L2)Cl2]·DMF}n (6) (L1 = 3,6-bis(imidazole-1-yl)pyridazine, L2 = 3,6-bis(benzimidazole-1-yl)pyridazine), which were characterized by single-crystal X-ray diffraction, elemental analysis, IR, PXRD. These complexes have been successfully constructed under interface diffusion process, heating reflux or hydrothermal conditions. The structures of 1 and 2 are mononuclear complexes. Complex 3 exhibits a 6-connected 3D topology network with the Schläfli symbol of (412·63). In complex 4, two Cu(II) were connected through two HCOO- anions to form dinuclear structure unit, which is arranged into a 1D ladder-like structure by μ2-L2 ligands. Complexes 5 and 6 are 1D zigzag chains connected by L2 ligands, but the Ni(II) ion is six-coordinated in 5 and the Zn(II) ion is four-coordinated in 6. Moreover, the solid-state luminescence property and UV-vis diffuse reflection spectrum of complex 6 have been investigated and discussed.
NASA Astrophysics Data System (ADS)
Mohamed, Gehad G.; Omar, M. M.; Ibrahim, Amr A.
2010-02-01
Novel Schiff base (H 2L) ligand is prepared via condensation of benzil and triethylenetetraamine. The ligand is characterized based on elemental analysis, mass, IR and 1H NMR spectra. Metal complexes are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). 1:1 [M]:[H 2L] complexes are found from the elemental analyses data having the formulae [M(H 2L)Cl 2]· yH 2O (M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)), [Fe(H 2L)Cl 2]Cl·H 2O, [Th(H 2L)Cl 2]Cl 2·3H 2O and [UO 2(H 2L)](CH 3COO) 2·2H 2O. The metal chelates are found to be non-electrolytes except Fe(III), Th(IV) and UO 2(II) complexes are electrolytes. IR spectra show that H 2L is coordinated to the metal ions in a neutral tetradentate manner with 4Ns donor sites of the two azomethine N and two NH groups. The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats-Redfern method. The ligand (H 2L), in comparison to its metal complexes, is screened for its antibacterial activity. The activity data show that the metal complexes have antibacterial activity more than the parent Schiff base ligand and cefepime standard against one or more bacterial species.
NASA Astrophysics Data System (ADS)
Emam, Sanaa Moustafa
2017-04-01
Some new metal(II) complexes of asymmetric Schiff base ligand were prepared by template technique. The shaped complexes are in binuclear structures and were explained through elemental analysis, molar conductivity, various spectroscopic methods (IR, U.V-Vis, XRD, ESR), thermal (TG) and magnetic moment measurements. The IR spectra were done demonstrating that the Schiff base ligand acts as neutral tetradentate moiety in all metal complexes. The electronic absorption spectra represented octahedral geometry for all complexes, while, the ESR spectra for Cu(II) complex showed axially symmetric g-tensor parameter with g׀׀ > g⊥ > 2.0023 indicating to 2B1g ground state with (dx2-y2)1 configuration. The nature of the solid residue created from TG estimations was affirmed utilizing IR and XRD spectra. The biological activity of the prepared complexes was studied against Land Snails. Additionally, the in vitro antitumor activity of the synthesized complexes with Hepatocellular Carcinoma cell (Hep-G2) was examined. It was observed that Zn(II) complex (5), exhibits a high inhibition of growth of the cell line with IC50 of 7.09 μg/mL.
NASA Astrophysics Data System (ADS)
Ren, Xiu-Hui; Wang, Peng; Cheng, Jun-Yan; Dong, Yu-Bin
2018-06-01
Three M(II)-coordination polymers (M dbnd Zn(II), Mn(II)) were synthesized based on a pyridine N-oxide bridging ligand 3,5-bis(4-carboxylphenyl)-pyridine N-oxide (L1). Compounds 1-3 all have novel complicated structures. Compound 1 (Zn(L1)2(H2O)2) and 2 (Zn2(L1)2(H2O)2) are two single crystals obtained in "one pot" and 1 features 1D double chains motif and 2 features 3D network structure. Compound 3 shows 3D network structure with triangular tunnels. The thermogravimetric analyses and photoluminescence properties were also used to investigate the title compounds.
NASA Astrophysics Data System (ADS)
Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla
2016-02-01
Polymeric tetracyanonickelate(II) complexes of the type [M(L)2Ni(CN)4]n (Ldbnd N-methylethylenediamine (men) or N-ethylethylenediamine (neen); Mdbnd Ni(II), Cu(II), Zn(II) or Cd(II)) have been prepared and characterized by FT-IR, Raman spectroscopy, thermal and elemental analysis techniques. Additionally, FT-IR and Raman spectral analyses of men and neen have experimentally and theoretically investigated in the range of 4000-250 cm-1. The corresponding vibration assignments of men and neen are performed by using B3LYP density functional theory (DFT) method together with 6-31 G(d) basis set. The spectral features of the complexes suggest that the coordination environment of the M(II) ions are surrounded by the two symmetry related men and neen ligands and the two symmetry related N atom of cyanide groups, whereas the Ni(II) atoms are coordinated with a square-planar to four C atoms of the cyanide groups. Polymeric structures of the complexes consist of one dimensional alternative chains of [M(L)2]2+ and [Ni(CN)4]2- moieties. The thermal decompositions in the temperature range 30-700 °C of the complexes were investigated in the static air atmosphere.
NASA Astrophysics Data System (ADS)
Zordok, W. A.; Sadeek, S. A.
2018-04-01
Seven new complexes of2-oxo-4,6-diphenyl-1,2-dihyropyridine-3-carbonitrile (L) with Fe(III), Co(II), Cu(II), Zn(II), Y(III), Zr(IV) and La(III) were synthesized. The isolated solid compounds were elucidated from micro analytical, IR, electronic, mass, 1H NMR, magnetic susceptibility measurements and TG/DTG, DTA analyses. The intensity of ν(Ctbnd N) was changed to strong and shifted to around 2200 cm-1. Also, the ν(Cdbnd O) was shifted to higher frequency value (1644 cm-1). The spectra of the complexes indicate that the free ligand is coordinated to the metal ions via nitrogen of carbonitrile group and oxygen of keto group. From DFT calculations the Cu(II) and Fe(III) complexes behave as regular octahedral, while other complexes are distorted octahedral. The value of energy gap of the free ligand (ΔE = 0.3343 eV) is greater than all new complexes, so they are more reactive than free ligand, also the Fe(III) complex (ΔE = 0.0985 eV) is the most reactive complex, while Cu(II) complex (ΔE = 0.3219 eV) is the least reactive complex. The LMCT in case of Zr(IV) complex was resulted from transitions from HOMO-2 (62%), HOMO-1 (16%)and HOMO (25%), while the d-d transition in Fe(III) complex was resulted from HOMO-1(30%), HOMO-2(62%) and HOMO(30%). Also, the metal complexes exhibit antibacterial activity for Gram-positive and Gram-negative and antifungal activity. The Y(III) and Cu(II) complexes are highly significant for Escherichia coli and salmonella typhimurium.
Zn(II) and Hg(II) binding to a designed peptide that accommodates different coordination geometries.
Szunyogh, Dániel; Gyurcsik, Béla; Larsen, Flemming H; Stachura, Monika; Thulstrup, Peter W; Hemmingsen, Lars; Jancsó, Attila
2015-07-28
Designed metal ion binding peptides offer a variety of applications in both basic science as model systems of more complex metalloproteins, and in biotechnology, e.g. in bioremediation of toxic metal ions, biomining or as artificial enzymes. In this work a peptide (HS: Ac-SCHGDQGSDCSI-NH2) has been specifically designed for binding of both Zn(II) and Hg(II), i.e. metal ions with different preferences in terms of coordination number, coordination geometry, and to some extent ligand composition. It is demonstrated that HS accommodates both metal ions, and the first coordination sphere, metal ion exchange between peptides, and speciation are characterized as a function of pH using UV-absorption-, synchrotron radiation CD-, (1)H-NMR-, and PAC-spectroscopy as well as potentiometry. Hg(II) binds to the peptide with very high affinity in a {HgS2} coordination geometry, bringing together the two cysteinates close to each end of the peptide in a loop structure. Despite the high affinity, Hg(II) is kinetically labile, exchanging between peptides on the subsecond timescale, as indicated by line broadening in (1)H-NMR. The Zn(II)-HS system displays more complex speciation, involving monomeric species with coordinating cysteinates, histidine, and a solvent water molecule, as well as HS-Zn(II)-HS complexes. In summary, the HS peptide displays conformational flexibility, contains many typical metal ion binding groups, and is able to accommodate metal ions with different structural and ligand preferences with high affinity. As such, the HS peptide may be a scaffold offering binding of a variety of metal ions, and potentially serve for metal ion sequestration in biotechnological applications.
NASA Astrophysics Data System (ADS)
Mohamed, Gehad G.; Zayed, Ehab M.; Hindy, Ahmed M. M.
2015-06-01
Novel bis Schiff base ligand, [N1,N3-bis(furan-2-ylmethylene)propane-1,3-diamine], was prepared by the condensation of furan-2-carboxaldehyde with propane-1,3-diamine. Its conformational changes on complexation with transition metal ions [Co(II), Ni(II), Cu(II), Mn(II), Cd(II), Zn(II) and Fe(III)] have been studied on the basis of elemental analysis, conductivity measurements, spectral (infrared, 1H NMR, electronic), magnetic and thermogravimetric studies. The conductance data of the complexes revealed their electrolytic nature suggesting them as 1:2 (for bivalent metal ions) and 1:3 (for Fe(III) ion) electrolytes. The complexes were found to have octahedral geometry based on magnetic moment and solid reflectance measurements. Thermal analysis data revealed the decomposition of the complexes in successive steps with the removal of anions, coordinated water and bis Schiff base ligand. The thermodynamic parameters were calculated using Coats-Redfern equation. The Anticancer screening studies were performed on human colorectal cancer (HCT), hepatic cancer (HepG2) and breast cancer (MCF-7) cell lines. The antimicrobial activity of all the compounds was studied against Gram negative (Escherichia coli and Proteus vulgaris) and Gram positive (Bacillus vulgaris and Staphylococcus pyogones) bacteria. It was observed that the coordination of metal ion has a pronounced effect on the microbial activities of the bis Schiff base ligand. All the metal complexes have shown higher antimicrobial effect than the free bis Schiff base ligand.
NASA Astrophysics Data System (ADS)
Azarkish, Mohammad; Akbari, Alireza; Sedaghat, Tahereh; Simpson, Jim
2018-03-01
The new ternary complexes, ZnLL‧ [L = 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide and L‧ = imidazole (1), 2, 2‧-bipyridine (2) and 2-methyimidazole (3)], Zn2L2L‧ [L‧ = 4, 4‧-bipy (4)] and CuLL‧ [L‧ = 2, 2‧-bipy (5)] have been synthesized by the reaction of a metal(II) acetate salt with the thiosemicarbazone and in presence of heterocyclic bases as auxiliary ligands. The synthesized compounds were investigated by elemental analysis and IR, 1H NMR, and 13C NMR spectroscopy and complex 5 was structurally characterized by X-ray crystallography. The results indicate the thiosemicarbazone doubly deprotonated and coordinates to metal through the thiolate sulfur, imine nitrogen and phenolic oxygen atoms. The nitrogen atom(s) of the auxiliary ligand complete the coordination sphere. Complex 4 is binuclear with 4, 4‧-bipy acting as a bridging ligand. The structure of 5 is a distorted square pyramid with one of the bipyridine nitrogen atoms in the apical position. This compound creates an inversion dimer in solid state by intermolecular hydrogen bonds of Nsbnd H⋯S type. The in vitro antibacterial activity of the synthesized compounds were evaluated against Gram-positive (B. subtilis and S. aureus) and Gram-negative (P. aeruginosa) bacteria and is compared to that of standard antibacterial drugs. All complexes exhibit good inhibitory effects and are significantly more effective than the parent ligand.
Wszelaka-Rylik, Małgorzata; Witkiewicz-Kucharczyk, Aleksandra; Wójcik, Jacek; Bal, Wojciech
2007-05-01
Diadenosine 5',5''-P(1)P(4) tetraphosphate (Ap(4)A) has been considered as an intracellular partner for Zn(II). We applied potentiometry, ITC and NMR to study protonation equilibria of Ap(4)A and Zn(II) complexation by this dinucleotide. The values of binding constants obtained by these three techniques under various experimental conditions coherently demonstrated that Ap(4)A binds Zn(II) weakly, with an apparent binding constant of ca. 10(4) at neutral pH. Such a low stability of Zn(II) complexes with Ap(4)A excludes a possibility for interactions between these two agents in vivo.
Nolan, Elizabeth M; Jaworski, Jacek; Racine, Maryann E; Sheng, Morgan; Lippard, Stephen J
2006-11-27
The syntheses and photophysical characterization of ZP9, 2-{2-chloro-6-hydroxy-3-oxo-5-[(2-{[pyridin-2-ylmethyl-(1H-pyrrol-2-ylmethyl)amino]methyl}phenylamino)methyl]-3H-xanthen-9-yl}benzoic acid, and ZP10, 2-{2-chloro-6-hydroxy-5-[(2-{[(1-methyl-1H-pyrrol-2-ylmethyl)pyridin-2-ylmethylamino]methyl}phenylamino)methyl]-3-oxo-3H-xanthen-9-yl}benzoic acid, two asymmetrically derivatized fluorescein-based dyes, are described. These sensors each contain an aniline-based ligand moiety functionalized with a pyridyl-amine-pyrrole group and have dissociation constants for Zn(II) in the sub-micromolar (ZP9) and low-micromolar (ZP10) range, which we define as "midrange". They give approximately 12- (ZP9) and approximately 7-fold (ZP10) fluorescence turn-on immediately following Zn(II) addition at neutral pH and exhibit improved selectivity for Zn(II) compared to the di-(2-picolyl)amine-based Zinpyr (ZP) sensors. Confocal microscopy studies indicate that such asymmetrical fluorescein-based probes are cell permeable and Zn(II) responsive in vivo.
Nolan, Elizabeth M.; Jaworski, Jacek; Racine, Maryann E.; Sheng, Morgan; Lippard, Stephen J.
2006-01-01
The syntheses and photophysical characterization of ZP9, 2-{2-chloro-6-hydroxy-3-oxo-5-[(2-{[pyridin-2-ylmethyl-(1H-pyrrol-2-ylmethyl)amino]methyl}phenylamino)methyl]-3H-xanthen-9-yl}benzoic acid, and ZP10, 2-{2-chloro-6-hydroxy-5-[(2-{[(1-methyl-1H-pyrrol-2-ylmethyl)pyridin-2-ylmethylamino]methyl}phenylamino)methyl]-3-oxo-3H-xanthen-9-yl}benzoic acid, two asymmetrically derivatized fluorescein-based dyes, are described. These sensors each contain an aniline-based ligand moiety functionalized with a pyridyl-amine-pyrrole group and have dissociation constants for Zn(II) in the sub-micromolar (ZP9) and low-micromolar (ZP10) range, which we define as “midrange”. They give ~12- (ZP9) and ~7-fold (ZP10) fluorescence turn-on immediately following Zn(II) addition at neutral pH and exhibit improved selectivity for Zn(II) compared to the di-(2-picolyl)amine-based Zinpyr (ZP) sensors. Confocal microscopy studies indicate that such asymmetrical fluorescein-based probes are cell permeable and Zn(II) responsive in vivo. PMID:17112271
NASA Astrophysics Data System (ADS)
Anitha, C.; Sheela, C. D.; Tharmaraj, P.; Sumathi, S.
2012-10-01
A series of metal(II) complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the azo Schiff base ligand 4-((E)-4-((E)-(4-chlorophenyl)diazenyl)-2-hydroxybenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (CDHBAP) and characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR, ESR and EI-mass), magnetic moment measurements, molar conductance, DNA, SEM, X-ray crystallography and fluorescence studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square pyramidal geometry for VO(II) and octahedral geometry for all the other complexes. The important infrared (IR) spectral bands corresponding to the active groups in the ligand and the solid complexes under investigation were studied and implies that CDHBAP is coordinated to the metal ions in a neutral tridentate manner. The redox behavior of copper(II) and vanadyl(II) complexes have been studied by cyclic voltammetry. The nuclease activity of the above metal(II) complexes shows that the complexes cleave DNA. All the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The antibacterial and antifungal activities of the synthesized ligand and its metal complexes were screened against bacterial species (Staphylococcus aureus, Salmonella typhi, Escherichia coli, Bacillus subtilis, Shigella sonnie) and fungi (Candida albicans, Aspergillus niger, Rhizoctonia bataicola). Amikacin and Ketoconozole were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with the parent Schiff base ligand against bacterial and fungal species. The second harmonic generation (SHG) efficiency of the ligand was measured and the NLO (non-linear optical) properties of the ligand are expected to result in the realization of advanced optical devices in optical fiber communication (OFC) and optical computing. The SEM image of the copper(II) complex implies that the size of the particles is 1 μm.
Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes.
Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M Arif
2016-05-15
We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica. Copyright © 2016 Elsevier B.V. All rights reserved.
Singh, Ajay K; Pandey, O P; Sengupta, S K
2013-09-01
Zn(II) complexes have been synthesized by reacting zinc acetate with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/benzaldehyde/indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non electrolytes. Elemental analyses suggest that the complexes have 1:2 metal to ligands stoichiometry of the types [ZnL2(H2O)2](L=monoanionic Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/indoline-2,3-dione) [ZnL2(')(OOCCH3)2(H2O)2](L'=neutral Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde), and they were characterized by IR, (1)H NMR, and (13)C NMR. Particle sizes of synthesized compounds were measured with dynamic light scattering (DLS) analyser which indicates that particle diameter are of the range ca. 100-200nm. All these Schiff bases and their complexes have also been screened for their antibacterial (Bacillus subtilis (B. subtilis), Escherichia coli (E. coli) and antifungal activities (Colletotrichum falcatum (C. falcatum), Aspergillus niger (A. niger), Fusarium oxysporium (F. oxysporium) Curvularia pallescence (C. pallescence). The antimicrobial activities have shown that upon complexation the activity increases. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.
2015-03-01
The Schiff's base derived from condensation of s-triazole (4-amino-5-mercapto-3-methyl-S-triazole) with pyridine-2-aldehyde and their corresponding Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. The isolated solid complexes were characterized by elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR, mass), magnetic moment and thermal measurements. The IR spectral data suggest that the ligand coordinate in a tridentate manner (SNN) via the one thiol (SH), one pyridine ring and the azomethine (Cdbnd N) groups. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using Coats-Redfern, Horowitz-Metzger (HM), and Piloyan-Novikova (PN). The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations and ligand field parameters. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 °C and ionic strength 0.10 M potassium nitrate. The biological activity of these compounds against various fungi has been investigated.
Ferreirós-Martínez, Raquel; Esteban-Gómez, David; Tóth, Éva; de Blas, Andrés; Platas-Iglesias, Carlos; Rodríguez-Blas, Teresa
2011-04-18
Herein we report a detailed investigation of the complexation properties of the macrocyclic decadentate receptor N,N'-Bis[(6-carboxy-2-pyridil)methyl]-4,13-diaza-18-crown-6 (H(2)bp18c6) toward different divalent metal ions [Zn(II), Cd(II), Pb(II), Sr(II), and Ca(II)] in aqueous solution. We have found that this ligand is especially suited for the complexation of large metal ions such as Sr(II) and Pb(II), which results in very high Pb(II)/Ca(II) and Pb(II)/Zn(II) selectivities (in fact, higher than those found for ligands widely used for the treatment of lead poisoning such as ethylenediaminetetraacetic acid (edta)), as well as in the highest Sr(II)/Ca(II) selectivity reported so far. These results have been rationalized on the basis of the structure of the complexes. X-ray crystal diffraction, (1)H and (13)C NMR spectroscopy, as well as theoretical calculations at the density functional theory (B3LYP) level have been performed. Our results indicate that for large metal ions such as Pb(II) and Sr(II) the most stable conformation is Δ(δλδ)(δλδ), while for Ca(II) our calculations predict the Δ(λδλ)(λδλ) form being the most stable one. The selectivity that bp18c6(2-) shows for Sr(II) over Ca(II) can be attributed to a better fit between the large Sr(II) ions and the relatively large crown fragment of the ligand. The X-ray crystal structure of the Pb(II) complex shows that the Δ(δλδ)(δλδ) conformation observed in solution is also maintained in the solid state. The Pb(II) ion is endocyclically coordinated, being directly bound to the 10 donor atoms of the ligand. The bond distances to the donor atoms of the pendant arms (2.55-2.60 Å) are substantially shorter than those between the metal ion and the donor atoms of the crown moiety (2.92-3.04 Å). This is a typical situation observed for the so-called hemidirected compounds, in which the Pb(II) lone pair is stereochemically active. The X-ray structures of the Zn(II) and Cd(II) complexes show that these metal ions are exocyclically coordinated by the ligand, which explains the high Pb(II)/Cd(II) and Pb(II)/Zn(II) selectivities. Our receptor bp18c6(2-) shows promise for application in chelation treatment of metal intoxication by Pb(II) and (90)Sr(II).
Anoop Krishnan, K; Sreejalekshmi, K G; Vimexen, V; Dev, Vinu V
2016-02-01
The prospective application of sulphurised activated carbon (SAC) as an ecofriendly and cost-effective adsorbent for Zinc(II) removal from aqueous phase is evaluated, with an emphasis on kinetic and isotherm aspects. SAC was prepared from sugarcane bagasse pith obtained from local juice shops in Sree Bhadrakali Devi Temple located at Ooruttukala, Neyyattinkara, Trivandrum, India during annual festive seasons. Activated carbon modified with sulphur containing ligands was opted as the adsorbent to leverage on the affinity of Zn(II) for sulphur. We report batch-adsorption experiments for parameter optimisations aiming at maximum removal of Zn(II) from liquid-phase using SAC. Adsorption of Zn(II) onto SAC was maximum at pH 6.5. For initial concentrations of 25 and 100mgL(-1), maximum of 12.3mgg(-1) (98.2%) and 23.7mgg(-1) (94.8%) of Zn(II) was adsorbed onto SAC at pH 6.5. Kinetic and equilibrium data were best described by pseudo-second-order and Langmuir models, respectively. A maximum adsorption capacity of 147mgg(-1) was obtained for the adsorption of Zn(II) onto SAC from aqueous solutions. The reusability of the spent adsorbent was also determined. Copyright © 2015 Elsevier Inc. All rights reserved.
One Dimensional Coordination Polymer of Zn(II) for Developing Multifunctional Nanoparticles.
Agarwal, Rashmi A
2017-10-16
A variety of nanoparticles (NPs) including Ag, Au, Pd, Cr and mixed Cu/Fe have been synthesized in a non-activated (without solvent removal) one dimensional coordination polymer (CP) of Zn(II) via two different mechanisms, acid formation and redox activity of the framework. Main driving force to grow these NPs within the cavities of CP is the presence of free oxygens of one of the monodentate carboxylate groups of BDC ligand. These free oxygens act as anchoring sites for the metal ions of the metal precursors. Chemical and physical characteristics of the NPs within the framework have been evaluated by the high resolution transmission electron microscopic (HRTEM) images. Excluding Ag(0) and Pd(0) other NPs are present as combinations of their elemental as well as oxide forms (Au/Au 2 O 3 , Cr/Cr 2 O 3 /CrO 2 and Cu/Cu 2 O, Fe/FeO). Synthesized Ag NPs within the framework show remarkable antibacterial efficacy at extremely low concentrations. Ag, Au and Cu/Fe NPs show ferromagnetic properties within the framework at room temperature. This polymer has potential to sequester highly toxic Cr(VI) to non toxic Cr(0), Cr(III) and Cr(IV) species.
Wang, Dan; Li, Shu-Mu; Zheng, Jian-Quan; Kong, Duan-Yang; Zheng, Xiang-Jun; Fang, De-Cai; Jin, Lin-Pei
2017-01-17
2-(Trityliminomethyl)-quinolin-8-ol (HL) and its Zn(II) complex were synthesized and characterized by single-crystal X-ray diffraction. HL is an unsymmetrical molecule and coordinated with Zn(II) ion to form ZnL 2 in the antiparallel-mode arrangement via Zn-O (hydroxyl group) and Zn-N (quinoline ring) of HL. A high degree of ZnL 2 molecules ordering stacking is formed by the coordination bonds and intermolecular π-π interactions, in which head-to-tail arrangement (J-mode stacking) for L - is found. HL is nonfluorescent and ZnL 2 is weakly fluorescent in THF. The fluorescence emission of ZnL 2 enhances in THF/H 2 O as H 2 O% (volume %) is above 60% and aggregates particles with several hundred nanometers are formed, which is confirmed by DLS data and TEM images. The J-aggregates stacking for L - in ZnL 2 results in aggregation-induced emission enhancement (AIEE) for ZnL 2 in THF/H 2 O. Theoretical computations based on B3LYP/6-31G(d, p) and TD-B3LYP/6-31G(d, p) methods were carried out. ESIPT is the supposed mechanism for fluorescent silence of HL, and fluorescence emission of ZnL 2 is attributed to the restriction of ESIPT process. The oscillator strength of ZnL 2 increases from 0.017 for monomer to 0.032 for trimer. It indicates that a high degree of ZnL 2 molecules ordering stacking in THF/H 2 O is of benefit to fluorescence enhancement. HL is an ESIPT-coupled AIEE chemosensor for Zn(II) with high selectivity and sensitivity in aqueous medium. HL can efficiently detect intracellular Zn(II) ions because of ESIPT-coupled AIEE property of ZnL 2 in mixed solvent.
Zinc(II) complexation by some biologically relevant pH buffers.
Wyrzykowski, D; Tesmar, A; Jacewicz, D; Pranczk, J; Chmurzyński, L
2014-12-01
The isothermal titration calorimetry (ITC) technique supported by potentiometric titration data was used to study the interaction of zinc ions with pH buffer substances, namely 2-(N-morpholino)ethanesulfonic acid (Mes), piperazine-N,N'-bis(2-ethanesulfonic acid) (Pipes), and dimethylarsenic acid (Caco). The displacement ITC titration method with nitrilotriacetic acid as a strong, competitive ligand was applied to determine conditional-independent thermodynamic parameters for the binding of Zn(II) to Mes, Pipes, and Caco. Furthermore, the relationship between the proposed coordination mode of the buffers and the binding enthalpy has been discussed. Copyright © 2014 John Wiley & Sons, Ltd.
Gao, Jiaojiao; Xing, Feifei; Bai, Yueling; Zhu, Shourong
2014-06-07
A new neuromelanin-like ketocatechol-containing iminodiacetic acid ligand, (N-(3,4-dihydroxyl)phenacylimino)diacetic acid (H4L), which is also quite similar to compounds found in insect cuticle, has been synthesized and characterized. The X-ray crystal structure of H4L has been successfully determined. Proton binding and coordination with Fe(III), Cu(II), and Zn(II) have been studied by potentiometric titrations and UV-vis spectrophotometry in aqueous solution. UV spectra of H4L in the absence and presence of different metal ions indicate complexes formed with the catechol moiety of H4L in aqueous solution. Visible spectra and NMR reveal that H4L with Fe(III), Cu(II), and Zn(II) can all give stable mono-(ML) and dinuclear complexes [M(ML)]. Fe(III) can also form {Fe(FeL)2} and {Fe(FeL)3} species with sufficient base. The process is accompanied by a drastic color change from light blue to deep-blue to wine-red. The Fe(III)-Cu(II) heteronuclear complex also exists in aqueous solution whose spectra are similar to the homonuclear Fe(III) complex. However, the spectra of {Fe(CuL)} shifted to a longer wavelength and {Fe(CuL)2} and {Fe(CuL)3} shifted to a shorter wavelength. Keto-enol tautomerism was observed in weak basic aqueous solution as indicated by (1)H NMR spectra. The reaction products of Cu(II) complex with H2O2 depend on the H2O2 concentration and pH value. Low concentrations of H2O2 oxidize H4L to a series of semiquinone and quinone compounds with absorption maxima at 314-400 nm, while a high concentration of H2O2 oxidizes H4L to colorless muconic acid derivatives. NaIO4 gives different oxidase products, but no 2,4,5-trihydroxyphenylalanine quinone (TPQ)-like hydroxyquinone can be found.
NASA Astrophysics Data System (ADS)
Sumrra, Sajjad H.; Mushtaq, Fazila; Khalid, Muhammad; Raza, Muhammad Asam; Nazar, Muhammad Faizan; Ali, Bakhat; Braga, Ataualpa A. C.
2018-02-01
Biologically active triazole Schiff base ligand (L) and metal complexes [Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] are reported herein. The ligand acted as tridentate and coordinated towards metallic ions via azomethine-N, triazolic-N moiety and deprotonated-O of phenyl substituents in an octahedral manner. These compounds were characterized by physical, spectral and analytical analysis. The synthesized ligand and metal complexes were screened for antibacterial pathogens against Chromohalobacter salexigens, Chromohalobacter israelensi, Halomonas halofila and Halomonas salina, antifungal bioassay against Aspergillus niger and Aspergellus flavin, antioxidant (DPPH, phosphomolybdate) and also for enzyme inhibition [butyrylcholinesterase (BChE) and acetylcholinesterase (AChE)] studies. The results of these activities indicated the ligand to possess potential activity which significantly increased upon chelation. Moreover, vibrational bands, frontier molecular orbitals (FMOs) and natural bond analysis (NBO) of ligand (1) were carried out through density functional theory (DFT) with B3lYP/6-311 ++G (d,p) approach. While, UV-Vis analysis was performed by time dependent TD-DFT with B3lYP/6-311 ++G (d,p) method. NBO analysis revealed that investigated compound (L) contains enormous molecular stability owing to hyper conjugative interactions. Theoretical spectroscopic findings showed good agreement to experimental spectroscopic data. Global reactivity descriptors were calculated using the energies of FMOs which indicated compound (L) might be bioactive. These parameters confirmed the charge transfer phenomenon and reasonable correspondence with experimental bioactivity results.
Bello-Vieda, Nestor J; Murcia, Ricardo A; Muñoz-Castro, Alvaro; Macías, Mario A; Hurtado, John J
2017-11-10
The reaction of isophthaloyl dichloride with 1 H -1,2,4-triazole afforded the new ligand 1,3-phenylenebis(1,2,4-triazole-1-yl)methanone ( 1 ). A series of Co(II), Cu(II), Zn(II) and Ni(II) complexes were synthesized using 1 and then characterized by melting point analysis, elemental analysis, theoretical calculations, thermogravimetric analysis, X-ray powder diffraction, nuclear magnetic resonance, infrared and Raman spectroscopy. Experimental and computational studies predict the formation of coordination polymers (CPs). The cobalt and copper CPs and zinc(II) complex were found to be good initiators for the ring-opening polymerization of ε-caprolactone (CL) under solvent-free conditions. ¹H-NMR analysis showed that the obtained polymers of CL were mainly linear and had terminal hydroxymethylene groups. Differential scanning calorimetry showed that the obtained polycaprolactones had high crystallinity, and TGA showed that they had decomposition temperatures above 400 °C. These results provide insight and guidance for the design of metal complexes with potential applications in the polymerization of CL.
Liang, Xing; Su, Yibing; Yang, Ying; Qin, Wenwu
2012-02-15
The PbZn separation/preconcentration technique, based on the complex formation reaction of Pb(II) and Zn(II), using a copolymer poly(styrene-co-maleic anhydride) (PSMA), without adding any carrier element was developed. The effects of several experimental parameters such as solution pH, temperature and adsorption time were studied. The experimental results show that the PSMA resin-Pb equilibrium was achieved in 2 min and the Pb(II) loading capacity is up to 641.62 mg g(-1) in aqueous solution under optimum conditions, which is much higher than the Zn(II) loading capacity within 80 min. The adsorption test for Pb(II) indicates that PSMA can recover Pb(II) from a mixed solution of Pb(II), Zn(II) and light metals such as Ca(II) and Mg(II) with higher adsorption rate and larger selective coefficient. A further study indicates that PSMA as chelating resins recovering Pb(II) can be regenerated via mineral acid (6M H(2)SO(4)). PSMA was synthesized by radical polymerization and tested as an adsorbent for the selective recovery of Pb(II). In addition, the formation procedure and structure of Pb-PSMA complex were also studied. Both the PSMA and the Pb-PSMA complex were characterized by means of FTIR spectroscopy, elemental analysis, gel permeation chromatography (GPC) and atomic absorption spectrometry (AAS). Copyright © 2011 Elsevier B.V. All rights reserved.
Self-Assembled Pyridine-Dipyrrolate Cages.
Zhang, Huacheng; Lee, Juhoon; Lammer, Aaron D; Chi, Xiaodong; Brewster, James T; Lynch, Vincent M; Li, Hao; Zhang, Zhan; Sessler, Jonathan L
2016-04-06
An inherently nonlinear pyridine dipyrrolate ligand, namely 2,6-bis(3,4-diethyl-5-carboxy-1H-pyrrol-2yl)pyridine (compound 1), is able to distinguish between different zinc(II) cation sources, namely Zn(acac)2 and Zn(OAc)2, respectively. This differentiation is manifest both in terms of the observed fluorescent behavior in mixed organic media and the reaction chemistry. Treatment of 1 with Zn(acac)2 gives rise to a cage dimer, cage-1, wherein two molecules of compound 1 act as double bridging units to connect two individual cage subunits. As inferred from X-ray crystallographic studies, this cage system consists of discrete zinc dimers with hydroxide bridges that, with the assistance of bound DMF solvent molecules, serve to fix the geometry and orientation of the pyridine dipyrrolate building blocks. When a different zinc source, Zn(OAc)2, is used to carry out an ostensibly similar complexation reaction with compound 1, an acetate-bridged 1D abacus-like cage polymer is obtained as inferred from X-ray diffraction analysis. This extended solid state structure, cage-2, contains individual zinc dimer cage submits and appears stabilized by solvent molecules (DMF) and the counteranion (acetate). Rod-like assemblies are also observed by DLS and SEM. This construct, in contrast to cage-1, proved fluorescent in mixed organic media. The structure of the ligand itself (i.e., in the absence of Zn(II)) was confirmed by X-ray crystallographic analysis and was found to assemble into a supramolecular polymer. Conversion to a dimer form was seen upon the addition of TBAOAc. On the basis of the metric parameters, the structures seen in the solid state are stabilized via hydrogen bonding interactions involving solvent molecules.
NASA Astrophysics Data System (ADS)
Ravichandran, J.; Gurumoorthy, P.; Karthick, C.; Kalilur Rahiman, A.
2014-03-01
Four new zinc(II) complexes [Zn(HL1-4)Cl2] (1-4), where HL1-4 = 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols, have been isolated and fully characterized using various spectro-analytical techniques. The X-ray crystal structure of complex 4 shows the distorted trigonal-bipyramidal coordination geometry around zinc(II) ion. The crystal packing is stabilized by intermolecular NH⋯O hydrogen bonding interaction. The complexes display no d-d electronic band in the visible region due to d10 electronic configuration of zinc(II) ion. The electrochemical properties of the synthesized ligands and their complexes exhibit similar voltammogram at reduction potential due to electrochemically innocent Zn(II) ion, which evidenced that the electron transfer is due to the nature of the ligand. Binding interaction of complexes with calf thymus DNA was studied by UV-Vis absorption titration, viscometric titration and cyclic voltammetry. All complexes bind with CT DNA by intercalation, giving the binding affinity in the order of 2 > 1 ≫ 3 > 4. The prominent cheminuclease activity of complexes on plasmid DNA (pBR322 DNA) was observed in the absence and presence of H2O2. Oxidative pathway reveals that the underlying mechanism involves hydroxyl radical.
NASA Astrophysics Data System (ADS)
Zhang, Fan; Lin, Qiu-Yue; Hu, Wan-Li; Song, Wen-Ji; Shen, Shu-Ting; Gui, Pan
2013-06-01
Three new transition metal complexes [Mn2(DCA)2(bipy)2]·5H2O (1), [M2(DCA)2(bipy)2(H2O)]·10H2O(M = Ni(II)(2);Zn(II)(3)), (DCA = demethylcantharate, 7-oxabicyclo[2,2,1]heptane-2,3-dicarboxylate, C8H8O5) were synthesized and characterized by elemental analysis, molar conductance, infrared spectra and X-ray diffraction techniques. Each metal ion was six-coordinated in complexes. Complex 1 has a Mn2O2 center. Complexes 2 and 3 have asymmetric binuclear structure. Great amount of intermolecular hydrogen-bonding and π-π* stacking interactions were formed in these complex structures. The DNA-binding properties of complexes were investigated by electronic absorption spectra and viscosity measurements. The DNA binding constants Kb/(L mol-1) were 1.71 × 104 (1), 2.62 × 104 (2) and 1.59 × 104 (3) at 298 K. The complexes could quench the intrinsic fluorescence of bovine serum albumin (BSA) strongly through static quenching. The protein binding constants Ka/(L mol-1) were 7.27 × 104 (1), 4.55 × 104 (2) and 7.87 × 104 L mol-1 (3) and binding site was one. The complexes bind more tightly with DNA and BSA than with ligands. Complexes 1 and 3 had stronger inhibition ratios than Na2(DCA) against human hepatoma cells (SMMC-7721) lines and human gastric cancer cells (MGC80-3) lines in vitro. Complex 3 showed the strongest antiproliferative activity against SMMC-7721 (IC50 = 29.46 ± 2.12 μmol L-1) and MGC80-3 (IC50 = 27.02 ± 2.38 μmol L-1), which shows potential in anti-cancer drug development.
Wang, Yingge; Gelabert, Alexandre; Michel, F. Marc; ...
2016-05-07
Competitive sorption of Pb(II) and Zn(II) on Shewanella oneidensis MR-1 biofilm-coated single-crystal α-Al 2O 3 (1 –1 0 2) and α-Fe 2O 3 (0 0 0 1) surfaces was investigated using long-period X-ray standing wave-florescence yield (LP-XSW-FY) spectroscopy. In situ partitioning of aqueous Pb(II) and Zn(II) between the biofilms and underlying metal-oxide substrates was probed following exposure of these complex interfaces to equi-molar Pb and Zn solutions (0.01 M NaNO 3 as background electrolyte, pH = 6.0, and 3-h equilibration time). At higher Pb and Zn concentrations (≥10 –5 M), more than 99% of these ions partitioned into the biofilmsmore » at S. oneidensis/α-Al 2O 3 (1 –1 0 2)/water interfaces, which is consistent with the partitioning behavior of both Pb(II) or Zn(II) in single-metal-ion experiments. Furthermore, no apparent competitive effects were found in this system at these relatively high metal-ion concentrations. However, at lower equi-molar concentrations (≤10 –6 M), Pb(II) and Zn(II) partitioning in the same system changed significantly compared to the single-metal-ion systems. The presence of Zn(II) decreased Pb(II) partitioning onto α-Al 2O 3 (1 –1 0 2) substantially (~52% to ~13% at 10 –7 M, and ~23% to ~5% at 10–6 M), whereas the presence of Pb(II) caused more Zn(II) to partition onto α-Al 2O 3 (1 –1 0 2) surfaces (~15% to ~28% at 10 –7 M, and ~1% to ~7% at 10 –6 M) .The higher observed partitioning of Zn(II) (~28%) at the α-Al 2O 3 (1 –1 0 2) surfaces compared to Pb(II) (~13%) in the mixed-metal-ion systems at the lowest concentration (10 –7 M) suggests that Zn(II) is slightly favored over Pb(II) for sorption sites on α-Al 2O 3 (1 –1 0 2) surfaces under our experimental conditions.« less
NASA Astrophysics Data System (ADS)
Zaky, R. R.; Ibrahim, K. M.; Gabr, I. M.
2011-10-01
Schiff base complexes of Cu(II), Ni(II) and Zn(II) with the o-hydroxyacetophenone [N-(3-hydroxy-2-naphthoyl)] hydrazone (H 2o-HAHNH) containing N and O donor sites have been synthesized. Both ligand and its metal complexes were characterized by different physicochemical methods, elemental analysis, molar conductivity ( 1H NMR, 13C NMR, IR, UV-visible, ESR, MS spectra) and also thermal analysis (TG and DTG) techniques. The discussion of the outcome data of the prepared complexes indicates that the ligand behave as a bidentate and/or tridentate ligand. The electronic spectra of the complexes as well as their magnetic moments suggest octahedral geometries for all isolated complexes. The room temperature solid state ESR spectrum of the Cu(II) complex shows d x2- y2 as a ground state, suggesting tetragonally distorted octahedral geometry around Cu(II) centre. The molar conductance measurements proved that the complexes are non-electrolytes. The kinetic thermodynamic parameters such as: E#, Δ H#, Δ G#, Δ S# are calculated from the DTG curves, for the [Ni(H O-HAHNH) 2] and [Zn(H 2 O-HAHNH)(OAc) 2]·H 2O complexes using the Coats-Redfern equation. Also, the antimicrobial properties of all compounds were studied using a wide spectrum of bacterial and fungal strains. The [Cu(H o-HAHNH)(OAc)(H 2O) 2] complex was the most active against all strains, including Aspergillus sp., Stemphylium sp. and Trichoderma sp. Fungi; E. coli and Clostridium sp. Bacteria.
A mixed valence zinc dithiolene system with spectator metal and reactor ligands.
Ratvasky, Stephen C; Mogesa, Benjamin; van Stipdonk, Michael J; Basu, Partha
2016-08-16
Neutral complexes of zinc with N,N'-diisopropylpiperazine-2,3-dithione ( i Pr 2 Dt 0 ) and N,N'-dimethylpiperazine-2,3-dithione (Me 2 Dt 0 ) with chloride or maleonitriledithiolate (mnt 2- ) as coligands have been synthesized and characterized. The molecular structures of these zinc complexes have been determined using single crystal X-ray diffractometry. Complexes recrystallize in monoclinic P type systems with zinc adopting a distorted tetrahedral geometry. Two zinc complexes with mixed-valent dithiolene ligands exhibit ligand-to-ligand charge transfer bands. Optimized geometries, molecular vibrations and electronic structures of charge-transfer complexes were calculated using density functional theory (B3LYP/6-311G+(d,p) level). Redox orbitals are shown to be almost exclusively ligand in nature, with a HOMO based heavily on the electron-rich maleonitriledithiolate ligand, and a LUMO comprised mostly of the electron-deficient dithione ligand. Charge transfer is thus believed to proceed from dithiolate HOMO to dithione LUMO, showing ligand-to-ligand redox interplay across a d 10 metal.
NASA Astrophysics Data System (ADS)
Kendur, Umashri; Chimmalagi, Geeta H.; Patil, Sunil M.; Gudasi, Kalagouda B.; Frampton, Christopher S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.
2018-02-01
Air and moisture stable coordination compounds of late first row transition metal ions, viz., Co(II), Ni(II), Cu(II) and Zn(II) with a newly designed ligand, (E)-2-amino-N'-(1-(2-hydroxy-6-methyl-4-oxo-4H-pyran-3-yl)ethylidene)benzohydrazide (H2L) were prepared and extensively characterized using various spectro-analytical techniques. The ligand acts both in mono as well as doubly deprotonated manner. The ligand to metal stoichiometry was found to be 1:2 in case of complexes using chloride salts, whereas 1:1 in case of copper (II) complex using its acetate salt. The molecular structures of H2L, nickel and copper complexes were unambiguously determined by single-crystal X-ray diffraction studies reveal that H2L exists in a zwitterionic form while copper complex has copper centre in a distorted square planar environment. On the other hand, cobalt, nickel and zinc complexes display distorted octahedral coordination around the metal ion. In case of [Ni(HL)2].H2O, intramolecular Csbnd H⋯π stacking interaction were observed between the centroid of five membered chelate ring and phenyl proton C5sbnd H5 and intermolecular Csbnd H⋯π stacking interaction between the centroid of phenyl ring, dehydroacetic acid (DHA) ring and phenyl protons. The [Cu(L)DMF] complex is stabilized by intramolecular hydrogen bonding N1H⋯N2 and by intermolecular hydrogen bonding N1H⋯O4. Intermolecular interactions were investigated by Hirshfeld surfaces. Further, H2L and its metal complexes were screened for their in vivo and in vitro anti-inflammatory activities. The activity of the ligand has enhanced on coordination with transition metals. The tested compounds have shown excellent activity, which is almost equipotent to the standard used in the study.
Farag, A A M; Haggag, Sawsan M S; Mahmoud, Mohamed E
2012-07-01
A method is described for thin film assembly of nano-sized Zn(II)-8-hydroxy-5,7-dinitroquinolate complex, Zn[((NO(2))(2)-8HQ)(2)] by using successive ion layer adsorption and reaction (SILAR) technique. Highly homogeneous assembled nano-sized metal complex thin films with particle size distribution in the range 27-47nm was identified by using scanning electron microscopy (SEM). Zn[((NO(2))(2)-8HQ)(2)] and [(NO(2))(2)-8HQ] ligand were studied by thermal gravimetric analysis (TGA). Graphical representation of temperature dependence of the dark electrical conductivity produced two distinct linear parts for two activation energies at 0.377eV and 1.11eV. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals a direct allowed transition with a fundamental band gap of 2.74eV. The dark current density-voltage (J-V) characteristics showed the rectification effect due to the formation of junction barrier of Zn[((NO(2))(2)-8HQ)(2)] complex film/n-Si interface. The photocurrent in the reverse direction is strongly increased by photo-illumination and the photovoltaic characteristics were also determined and evaluated. Copyright © 2012 Elsevier B.V. All rights reserved.
Alaleona, Flaminia; Franceschini, Stefano; Ceci, Pierpaolo; Ilari, Andrea; Chiancone, Emilia
2010-02-01
The cyanobacterium Thermosynechococcus elongatus is one the few bacteria to possess two Dps proteins, DpsA-Te and Dps-Te. The present characterization of DpsA-Te reveals unusual structural and functional features that differentiate it from Dps-Te and the other known Dps proteins. Notably, two Zn(II) are bound at the ferroxidase center, owing to the unique substitution of a metal ligand at the A-site (His78 in place of the canonical aspartate) and to the presence of a histidine (His164) in place of a hydrophobic residue at a metal-coordinating distance in the B-site. Only the latter Zn(II) is displaced by incoming iron, such that Zn(II)-Fe(III) complexes are formed upon oxidation, as indicated by absorbance and atomic emission spectroscopy data. In contrast to the typical behavior of Dps proteins, where Fe(II) oxidation by H(2)O(2) is about 100-fold faster than by O(2), in DpsA-Te the ferroxidation efficiency of O(2) is very high and resembles that of H(2)O(2). Oxygraphic experiments show that two Fe(II) are required to reduce O(2), and that H(2)O(2) is not released into solution at the end of the reaction. On this basis, a reaction mechanism is proposed that also takes into account the formation of Zn(II)-Fe(III) complexes. The physiological significance of the DpsA-Te behavior is discussed in the framework of a possible localization of the protein at the thylakoid membranes, where photosynthesis takes place, with the consequent increased formation of reactive oxygen species.
Hou, Chen; Gan, Hong-Mei; Liu, Jia-Cheng
2015-05-01
In the title polymeric complex, {[Zn(C24H22N6O2)(H2O)4](NO3)2·2H2O} n , the Zn(II) cation, located about a twofold rotation axis, is coordinated by two imidazole groups and four water mol-ecules in a distorted N2O4 octa-hedral geometry; among the four coordinate water mol-ecules, two are located on the same twofold rotation axis. The 1,4-bis-[4-(1H-imidazol-1-yl)benzo-yl]piperazine] ligand is centro-symmetric, with the centroid of the piperazine ring located on an inversion center, and bridges the Zn(II) cations, forming polymeric chains propagating along [201]. In the crystal, O-H⋯O and weak C-H⋯O hydrogen bonds link the polymeric chains, nitrate anions and solvent water mol-ecules into a three-dimensional supra-molecular architecture. A short O⋯O contact of 2.823 (13) Å is observed between neighboring nitrate anions.
NASA Astrophysics Data System (ADS)
Veiga, Nicolás; Macho, Israel; Gómez, Kerman; González, Gabriel; Kremer, Carlos; Torres, Julia
2015-10-01
Among myo-inositol phosphates, the most abundant in nature is the myo-inositol hexakisphosphate, InsP6. Although it is known to be vital to cell functioning, the biochemical research into its metabolism needs chemical and structural analysis of all the protonation, complexation and precipitation processes that it undergoes in the biological media. In view of its high negative charge at physiological level, our group has been leading a thorough research into the InsP6 chemical and structural behavior in the presence of the alkali and alkaline earth metal ions essential for life. The aim of this article is to extend these studies, dealing with the chemical and structural features of the InsP6 interaction with biologically relevant 3d transition metal ions (Fe(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)), in a non-interacting medium and under simulated physiological conditions. The metal-complex stability constants were determined by potentiometry, showing under ligand-excess conditions the formation of mononuclear species in different protonation states. Under metal ion excess, polymetallic species were detected for Fe(II), Fe(III), Zn(II) and Cu(II). Additionally, the 31P NMR and UV-vis spectroscopic studies provided interesting structural aspects of the strong metal ion-InsP6 interaction.
NASA Astrophysics Data System (ADS)
Abou-Hussein, Azza A. A.; Linert, Wolfgang
Mono- and bi-nuclear acyclic and macrocyclic complexes with hard-soft Schiff base, H2L, ligand derived from the reaction of 4,6-diacetylresorcinol and thiocabohydrazide, in the molar ratio 1:2 have been prepared. The H2L ligand reacts with Co(II), Ni(II), Cu(II), Zn(II), Mn(II) and UO2(VI) nitrates, VO(IV) sulfate and Ru(III) chloride to get acyclic binuclear complexes except for VO(IV) and Ru(III) which gave acyclic mono-nuclear complexes. Reaction of the acyclic mono-nuclear VO(IV) and Ru(III) complexes with 4,6-diacetylresorcinol afforded the corresponding macrocyclic mono-nuclear VO(IV) and Ru(IIII) complexes. Template reactions of the 4,6-diacetylresorcinol and thiocarbohydrazide with either VO(IV) or Ru(III) salts afforded the macrocyclic binuclear VO(IV) and Ru(III) complexes. The Schiff base, H2L, ligand acts as dibasic with two NSO-tridentate sites and can coordinate with two metal ions to form binuclear complexes after the deprotonation of the hydrogen atoms of the phenolic groups in all the complexes, except in the case of the acyclic mononuclear Ru(III) and VO(IV) complexes, where the Schiff base behaves as neutral tetradentate chelate with N2S2 donor atoms. The ligands and the metal complexes were characterized by elemental analysis, IR, UV-vis 1H-NMR, thermal gravimetric analysis (TGA) and ESR, as well as the measurements of conductivity and magnetic moments at room temperature. Electronic spectra and magnetic moments of the complexes indicate the geometries of the metal centers are either tetrahedral, square planar or octahedral. Kinetic and thermodynamic parameters were calculated using Coats-Redfern equation, for the different thermal decomposition steps of the complexes. The ligands and the metal complexes were screened for their antimicrobial activity against Staphylococcus aureus as Gram-positive bacteria, and Pseudomonas fluorescens as Gram-negative bacteria in addition to Fusarium oxysporum fungus. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.
Abou-Hussein, Azza A A; Linert, Wolfgang
2012-09-01
Mono- and bi-nuclear acyclic and macrocyclic complexes with hard-soft Schiff base, H(2)L, ligand derived from the reaction of 4,6-diacetylresorcinol and thiocabohydrazide, in the molar ratio 1:2 have been prepared. The H(2)L ligand reacts with Co(II), Ni(II), Cu(II), Zn(II), Mn(II) and UO(2)(VI) nitrates, VO(IV) sulfate and Ru(III) chloride to get acyclic binuclear complexes except for VO(IV) and Ru(III) which gave acyclic mono-nuclear complexes. Reaction of the acyclic mono-nuclear VO(IV) and Ru(III) complexes with 4,6-diacetylresorcinol afforded the corresponding macrocyclic mono-nuclear VO(IV) and Ru(IIII) complexes. Template reactions of the 4,6-diacetylresorcinol and thiocarbohydrazide with either VO(IV) or Ru(III) salts afforded the macrocyclic binuclear VO(IV) and Ru(III) complexes. The Schiff base, H(2)L, ligand acts as dibasic with two NSO-tridentate sites and can coordinate with two metal ions to form binuclear complexes after the deprotonation of the hydrogen atoms of the phenolic groups in all the complexes, except in the case of the acyclic mononuclear Ru(III) and VO(IV) complexes, where the Schiff base behaves as neutral tetradentate chelate with N(2)S(2) donor atoms. The ligands and the metal complexes were characterized by elemental analysis, IR, UV-vis (1)H-NMR, thermal gravimetric analysis (TGA) and ESR, as well as the measurements of conductivity and magnetic moments at room temperature. Electronic spectra and magnetic moments of the complexes indicate the geometries of the metal centers are either tetrahedral, square planar or octahedral. Kinetic and thermodynamic parameters were calculated using Coats-Redfern equation, for the different thermal decomposition steps of the complexes. The ligands and the metal complexes were screened for their antimicrobial activity against Staphylococcus aureus as Gram-positive bacteria, and Pseudomonas fluorescens as Gram-negative bacteria in addition to Fusarium oxysporum fungus. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
El-Sonbati, A. Z.; El-Bindary, A. A.; Diab, M. A.
2003-02-01
The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [( 11)+( 12)] in the paper and in mononuclear polymer complexes ( 1)-( 5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX 2 and KPtCl 4 in the presence of N-heterocyclic base consisting of polymer complexes ( 9)+( 10), and in monouclear compounds ( 6)-( 8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds ( 13)+( 14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.
El-Sonbati, A Z; El-Bindary, A A; Diab, M A
2003-02-01
The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [(11)+(12)] in the paper and in mononuclear polymer complexes (1)-(5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX2 and KPtCl4 in the presence of N-heterocyclic base consisting of polymer complexes (9)+(10), and in monouclear compounds (6)-(8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds (13)+(14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.
NASA Astrophysics Data System (ADS)
Victory Devi, Ch.; Rajmuhon Singh, N.
2011-10-01
The interaction of uracil with Nd(III) has been explored in presence and absence of Zn(II) using the comparative absorption spectroscopy involving the 4f-4f transitions in different solvents. The complexation of uracil with Nd(III) is indicated by the change in intensity of 4f-4f bands expressing in terms of significant change in oscillator strength and Judd-Ofelt parameters. Intensification of this bands became more prominent in presence of Zn(II) suggesting the stimulative effect of Zn(II) towards the complexation of Nd(III) with uracil. Other spectral parameters namely Slator-Condon ( Fk's), nephelauxetic effect ( β), bonding ( b1/2) and percent covalency ( δ) parameters are computed to correlate their simultaneous binding of metal ions with uracil. The sensitivities of the observed 4f-4f transitions towards the minor coordination changes around Nd(III) has been used to monitor the simultaneous coordination of uracil with Nd(III) and Zn(II). The variation of intensities (oscillator strengths and Judd-Ofelt parameters) of 4f-4f bands during the complexation has helped in following the heterobimetallic complexation of uracil. Rate of complexation with respect to hypersensitive transition was evaluated. Energy of activation and thermodynamic parameters for the complexation reaction were also determined.
Generating a Metal-responsive Transcriptional Regulator to Test What Confers Metal Sensing in Cells*
Osman, Deenah; Piergentili, Cecilia; Chen, Junjun; Chakrabarti, Buddhapriya; Foster, Andrew W.; Lurie-Luke, Elena; Huggins, Thomas G.; Robinson, Nigel J.
2015-01-01
FrmR from Salmonella enterica serovar typhimurium (a CsoR/RcnR-like transcriptional de-repressor) is shown to repress the frmRA operator-promoter, and repression is alleviated by formaldehyde but not manganese, iron, cobalt, nickel, copper, or Zn(II) within cells. In contrast, repression by a mutant FrmRE64H (which gains an RcnR metal ligand) is alleviated by cobalt and Zn(II). Unexpectedly, FrmR was found to already bind Co(II), Zn(II), and Cu(I), and moreover metals, as well as formaldehyde, trigger an allosteric response that weakens DNA affinity. However, the sensory metal sites of the cells' endogenous metal sensors (RcnR, ZntR, Zur, and CueR) are all tighter than FrmR for their cognate metals. Furthermore, the endogenous metal sensors are shown to out-compete FrmR. The metal-sensing FrmRE64H mutant has tighter metal affinities than FrmR by approximately 1 order of magnitude. Gain of cobalt sensing by FrmRE64H remains enigmatic because the cobalt affinity of FrmRE64H is substantially weaker than that of the endogenous cobalt sensor. Cobalt sensing requires glutathione, which may assist cobalt access, conferring a kinetic advantage. For Zn(II), the metal affinity of FrmRE64H approaches the metal affinities of cognate Zn(II) sensors. Counter-intuitively, the allosteric coupling free energy for Zn(II) is smaller in metal-sensing FrmRE64H compared with nonsensing FrmR. By determining the copies of FrmR and FrmRE64H tetramers per cell, then estimating promoter occupancy as a function of intracellular Zn(II) concentration, we show how a modest tightening of Zn(II) affinity, plus weakened DNA affinity of the apoprotein, conspires to make the relative properties of FrmRE64H (compared with ZntR and Zur) sufficient to sense Zn(II) inside cells. PMID:26109070
NASA Astrophysics Data System (ADS)
Hanif, Muhammad; Chohan, Zahid H.
2013-03-01
A new series of three biologically active triazole derived Schiff base ligands L1-L3 have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, Carolyn E.; Musiani, Francesco; Huang, Hsin-Ting
Escherichia coli RcnR (resistance to cobalt and nickel regulator, EcRcnR) is a metal-responsive repressor of the genes encoding the Ni(II) and Co(II) exporter proteins RcnAB by binding to PRcnAB. The DNA binding affinity is weakened when the cognate ions Ni(II) and Co(II) bind to EcRcnR in a six-coordinate site that features a (N/O)5S ligand donor-atom set in distinct sites: while both metal ions are bound by the N terminus, Cys35, and His64, Co(II) is additionally bound by His3. On the other hand, the noncognate Zn(II) and Cu(I) ions feature a lower coordination number, have a solvent-accessible binding site, and coordinatemore » protein ligands that do not include the N-terminal amine. A molecular model of apo-EcRcnR suggested potential roles for Glu34 and Glu63 in binding Ni(II) and Co(II) to EcRcnR. The roles of Glu34 and Glu63 in metal binding, metal selectivity, and function were therefore investigated using a structure/function approach. X-ray absorption spectroscopy was used to assess the structural changes in the Ni(II), Co(II), and Zn(II) binding sites of Glu → Ala and Glu → Cys variants at both positions. The effect of these structural alterations on the regulation of PrcnA by EcRcnR in response to metal binding was explored using LacZ reporter assays. These combined studies indicate that while Glu63 is a ligand for both metal ions, Glu34 is a ligand for Co(II) but possibly not for Ni(II). The Glu34 variants affect the structure of the cognate metal sites, but they have no effect on the transcriptional response. In contrast, the Glu63 variants affect both the structure and transcriptional response, although they do not completely abolish the function of EcRcnR. The structure of the Zn(II) site is not significantly perturbed by any of the glutamic acid variations. The spectroscopic and functional data obtained on the mutants were used to calculate models of the metal-site structures of EcRcnR bound to Ni(II), Co(II), and Zn(II). The results are interpreted in terms of a switch mechanism, in which a subset of the metal-binding ligands is responsible for the allosteric response required for DNA release.« less
Cheng, Gang; So, Gary Kwok-Ming; To, Wai-Pong; Chen, Yong; Kwok, Chi-Chung; Ma, Chensheng; Guan, Xiangguo; Chang, Xiaoyong; Kwok, Wai-Ming
2015-01-01
The synthesis and spectroscopic properties of luminescent tetranuclear zinc(ii) complexes of substituted 7-azaindoles and a series of luminescent copper(i) complexes containing 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate ligand are described. These complexes are stable towards air and moisture. Thin film samples of the luminescent copper(i) complexes in 2,6-dicarbazolo-1,5-pyridine and zinc(ii) complexes in poly(methyl methacrylate) showed emission quantum yields of up to 0.60 (for Cu-3) and 0.96 (for Zn-1), respectively. Their photophysical properties were examined by ultrafast time-resolved emission spectroscopy, temperature dependent emission lifetime measurements and density functional theory calculations. Monochromic blue and orange solution-processed OLEDs with these Zn(ii) and Cu(i) complexes as light-emitting dopants have been fabricated, respectively. Maximum external quantum efficiency (EQE) of 5.55% and Commission Internationale de l'Eclairage (CIE) coordinates of (0.16, 0.19) were accomplished with the optimized Zn-1-OLED while these values were, respectively 15.64% and (0.48, 0.51) for the optimized Cu-3-OLED. Solution-processed white OLEDs having maximum EQE of 6.88%, CIE coordinates of (0.42, 0.44), and colour rendering index of 81 were fabricated by using these luminescent Zn(ii) and Cu(i) complexes as blue and orange light-emitting dopant materials, respectively. PMID:29142704
Kocyła, Anna; Adamczyk, Justyna; Krężel, Artur
2018-01-24
Cellular zinc (Zn(ii)) is bound with proteins that are part of the proteomes of all domains of life. It is mostly utilized as a catalytic or structural protein cofactor, which results in a vast number of binding architectures. The Zn(ii) ion is also important for the formation of transient protein complexes with a Zn(ii)-dependent quaternary structure that is formed upon cellular zinc signals. The mechanisms by which proteins associate with and dissociate from Zn(ii) and the connection with cellular Zn(ii) changes remain incompletely understood. In this study, we aimed to examine how zinc protein domains with various Zn(ii)-binding architectures are formed under free Zn(ii) concentration changes and how formation of the Zn(ii)-dependent assemblies is related to the protein concentration and reactivity. To accomplish these goals we chose four zinc domains with different Zn(ii)-to-protein binding stoichiometries: classical zinc finger (ZnP), LIM domain (Zn 2 P), zinc hook (ZnP 2 ) and zinc clasp (ZnP 1 P 2 ) folds. Our research demonstrated a lack of changes in the saturation level of intraprotein zinc binding sites, despite various peptide concentrations, while homo- and heterodimers indicated a concentration-dependent tendency. In other words, at a certain free Zn(ii) concentration, the fraction of a formed dimeric complex increases or decreases with subunit concentration changes. Secondly, even small or local changes in free Zn(ii) may significantly affect protein saturation depending on its architecture, function and subcellular concentration. In our paper, we indicate the importance of interdependence of free Zn(ii) availability and protein subunit concentrations for cellular zinc signal regulation.
Cheng, Jinghui; Gou, Fei; Zhang, Xiaohong; Shen, Guangyu; Zhou, Xiangge; Xiang, Haifeng
2016-09-19
We report a class of multiresponsive colorimetric and fluorescent pH probes based on three different reaction mechanisms including cation exchange, protonation, and hydrolysis reaction of K(I), Ca(II), Zn(II), Cu(II), Al(III), and Pd(II) Salen complexes. Compared with traditional pure organic pH probes, these complex-based pH probes exhibited a much better selectivity due to the shielding function of the filled-in metal ion in the complex. Their pH sensing performances were affected by the ligand structure and the central metal ion. This work is the first report of "off-on-on'-off" colorimetric and fluorescent pH probes that possess three different reaction mechanisms and should inspire the design of multiple-responsive probes for important analytes in biological systems.
Siemeling, Ulrich; Vor der Brüggen, Jens; Vorfeld, Udo; Neumann, Beate; Stammler, Anja; Stammler, Hans-George; Brockhinke, Andreas; Plessow, Regina; Zanello, Piero; Laschi, Franco; Fabrizi de Biani, Fabrizia; Fontani, Marco; Steenken, Steen; Stapper, Marion; Gurzadyan, Gagik
2003-06-16
Terpyridine ligands of the type Fc'-X-tpy (Fc'=ferrocenyl or octamethylferrocenyl, X=rigid spacer, tpy'=4'-substituted 2,2':6',2''-terpyridine) were prepared, crystallographically characterised and used for the synthesis of di- and trinuclear bis(terpyridine) complexes of RuII, FeII and ZnII. Donor-sensitiser dyads and triads based on RuII were thoroughly investigated by (spectro)electrochemistry, UV/Vis, transient absorption and luminescence spectroscopy, and an energy level scheme was derived on the basis of the data collected. Intramolecular quenching of the photoexcited RuII complexes by the redox-active Fc' groups can occur reductively and by energy transfer. Both the redox potential of the donor Fc' and the nature of the spacer X have a decisive influence on excited-state lifetimes and emission properties of the complexes. Some of the compounds show room-temperature luminescence, which is unprecedented for ferrocenyl-functionalised compounds of this kind.
NASA Astrophysics Data System (ADS)
AL-Adilee, Khalid J.; Abass, Ahmed K.; Taher, Ali M.
2016-03-01
A new heterocyclic thiazolylazo dye ligand, 2- [bar2-(4, 5- dimethyl thiazolyl) azo ] -4-Ethoxy Phenol (DMeTAEP), (LH) was synthesized by the diazotization of 4.5-dimethyl thiazolylazonium chloride and coupling with 4- Ethoxy phenol in alkaline alcoholic solution under suitable optimized experimental conditions to yield a new azo dye ligand. The structure of ligand and its complexes was prepared from Co(III), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Ag (I) and Au(III) ions. They confirmed by XRD, SEM, (TG-DTG) thermal analysis, 1H-NMR,UV-visb, mass and FT-IR spectroscopic methods, elemental analysis, atomic absorption, magnetic susceptibility and molar conductance. The mole ratio [M: L], it was also studied which was 1:1 for Ag (I) and Au (III) complexes and 1:2 The rest of the metal complexes. The isolated solid complexes are found to have the general formula [M (L)2 ] Cln.mH2O, where n = 1, m = 0 when M = Co (III) and n = 0, m = 1 when M = Ni (II), and Hg(II) while n = 0 and m = 0 when M = Cu (II), Zn (II), Cd (II) and ]ML (H2O)] of Ag(I) - complex but Au(III)-complex structural formula was [Au(L)Cl] Cl conductivity measurements for prepared complexes showed 1:1 electrolyte for Co(III(and Au(III) complexes and non - electrolyte the rest of complexes. The spectral and analytical data revealed that this ligand behaves as a tridentate chelating agent and coordination number of all metal ions were found to be six except for Ag (I) and Au (III) which was four. The activities of complexes were examined as sensitizers in the photocatalytic reaction of p-nitro aniline (PNA) which is used as a model of water pollutants.
NASA Astrophysics Data System (ADS)
Tümer, Mehmet; Ekinci, Duygu; Tümer, Ferhan; Bulut, Akif
2007-07-01
In this study, we synthesized the amine compound 2-(2-aminoethyliminomethyl)phenol (H 3A) as the starting material, and then we prepared the polydentate Schiff base ligands from the reactions of the amine compound (H 3A) with phtaldialdehyde (H 2L), 4-methyl-2,6-di-formlyphenol (H 3L 1) and 4- t-butyl-2,6-di-formylphenol (H 3L 2) in the ethanol solution. Moreover, the complexes Cd(II), Cu(II), Co(II), Ni(II), Zn(II) and Sn(II) of the ligands H 2L, H 3L 1 and H 3L 2 have been prepared. All compounds have been characterized by the analytical and spectroscopic methods. In addition, the magnetic susceptibility and molar conductance measurements have been made. The catalytic properties of the mono- and binuclear Co(II) and Cu(II) complexes have been studied on the 3,5-di- tert-butylcatechol (3,5-DTBC) and ascorbic acid (aa) as a substrate. The oxidative C-C coupling properties of the Co(II) and Cu(II) complexes have been investigated on the sterically hindered 2,6-di- tert-butylphenol (dtbp). The antimicrobial activity properties of the ligands and their mono- and binuclear complexes have been studied against the bacteria and fungi. The results have been compared to the antibacterial and fungi drugs. The TGA curves show that the decomposition takes place in three steps for all complexes. Electrochemical properties of the complexes Cu(II) and Ni(II) have been investigated for the first time in acetonitrile by cyclic voltammetry.
(2-{[2-(1H-Benzimidazol-2-yl-κN 3)phenyl]iminomethyl-κN}-5-methylphenolato-κO)chloridozinc(II)
Eltayeb, Naser Eltaher; Teoh, Siang Guan; Chantrapromma, Suchada; Fun, Hoong-Kun
2011-01-01
In the title mononuclear complex, [Zn(C21H16N3O)Cl], the ZnII ion is coordinated in a distorted tetrahedral geometry by two benzimidazole N atoms and one phenolate O atom from the tridentate Schiff base ligand and a chloride ligand. The benzimidazole ring system forms dihedral angles of 26.68 (9) and 56.16 (9)° with the adjacent benzene ring and the methylphenolate group benzene ring, respectively. In the crystal, molecules are linked by N—H⋯Cl hydrogen bonds into chains along [100]. Furthermore, weak C—H⋯O and C—H⋯π interactions, in addition to π–π interactions with centroid–centroid distances in the range 3.5826 (13)–3.9681 (13) Å, are also observed. PMID:22065469
Tong, Yi-Ping; Lin, Yan-Wen
2011-02-01
Two Ga(III) complexes with main ligand, 2-(2-hydroxyphenyl)benzothiazole (HL'), namely mixed-ligand ML2X-type [GaL'2X'] (1) (HX'=acetic acid, as ancillary ligand) and the meridianal tris-chelate [GaL'3] (2) have been investigated by the density functional theory (DFT/TDDFT) level calculations. Both 1 and 2 can be presented as a similar "mixed-ligand ML2X-type" species. The molecular geometries, electronic structures, metal-ligand bonding property of Ga-O (N) (main ligand), Ga-O (N) (ancillary ligand) interactions, and the ancillary ligand effect on their HOMO-LUMO gap, their absorption/emission property, and their absorption/emission wavelengths/colors for them have been discussed in detail based on the orbital interactions, the partial density of states (PDOS), and so on. The current investigation also indicates that it is quite probable that by introduction of different ancillary ligands, a series of new mixed-ligand ML2X-type complexes for group 13 metals can be designed with their absorption/emission property and the absorption/emission wavelengths and colors being tuned. Copyright © 2011 Elsevier B.V. All rights reserved.
Lance, E A; Rhodes, C W; Nakon, R
1983-09-01
Potentiometric, visible, infrared, electron spin, and nuclear magnetic resonance studies of the complexation of N-(2-acetamido)iminodiacetic acid (H2ADA) by Ca(II), Mg(II), Mn(II), Zn(II), Co(II), Ni(II), and Cu(II) are reported. Ca(II) and Mg(II) were found not to form 2:1 ADA2- to M(II) complexes, while Mn(II), Cu(II), Ni(II), Zn(II), and Co(II) did form 2:1 metal chelates at or below physiological pH values. Co(II) and Zn(II), but not Cu(II), were found to induce stepwise deprotonation of the amide groups to form [M(H-1ADA)4-(2)]. Formation (affinity) constants for the various metal complexes are reported, and the probable structures of the various metal chelates in solution are discussed on the basis of various spectral data.
Heavy ligand atom induced large magnetic anisotropy in Mn(ii) complexes.
Chowdhury, Sabyasachi Roy; Mishra, Sabyashachi
2017-06-28
In the search for single molecule magnets, metal ions are considered pivotal towards achieving large magnetic anisotropy barriers. In this context, the influence of ligands with heavy elements, showing large spin-orbit coupling, on magnetic anisotropy barriers was investigated using a series of Mn(ii)-based complexes, in which the metal ion did not have any orbital contribution. The mixing of metal and ligand orbitals was achieved by explicitly correlating the metal and ligand valence electrons with CASSCF calculations. The CASSCF wave functions were further used for evaluating spin-orbit coupling and zero-field splitting parameters for these complexes. For Mn(ii) complexes with heavy ligand atoms, such as Br and I, several interesting inter-state mixings occur via the spin-orbit operator, which results in large magnetic anisotropy in these Mn(ii) complexes.
NASA Astrophysics Data System (ADS)
El-Behery, Mostafa; El-Twigry, Haifaa
2007-01-01
A new hydrazone ligand, HL, was prepared by the reaction of 7-chloro-4-hydrazinoquinoline with o-hydroxybenzaldehyde. The ligand behaves as monoprotic bidentate. This was accounted for as the ligand contains a phenolic group and its hydrogen atom is reluctant to be replaced by a metal ion. The ligand reacted with Cu(II), Ni(II), Co(II), Fe(III), and UO 2(II) ions to yield mononuclear complexes. In the case of Fe(III) ion two complexes, mono- and binuclear complexes, were obtained in the absence and presence of LiOH, respectively. Also, mixed ligand complexes were obtained from the reaction of the metal cations Cu(II), Ni(II) and Fe(III) with the ligand (HL) and 8-hydroxyquinoline (8-OHqu) in the presence of LiOH, in the molar ratio 1:1:1:1. It is clear that 8-OHqu behaves as monoprotic bidentate ligand in such mixed ligand complexes. The ligand, HL, and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass, and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square-planar geometry, while Ni(II) mixed complex has also formed a tetrahedral configuration and UO 2(II) complex which formed a favorable pentagonal biprymidial geometry. Magnetic moment of the binuclear Fe(III) complex is quite low compared to calculated value for two iron ions complex and thus shows antiferromagnetic interactions between the two adjacent ferric ions. The HL and metal complexes were tested against one stain Gram positive bacteria ( Staphylococcus aureus), Gram negative bacteria ( Escherichia coli), and fungi ( Candida albicans). The tested compounds exhibited higher antibacterial acivities.
Felmy, Heather M.; Bennett, Kevin T.; Clark, Sue B.
2017-05-12
To gain insight on the role of mixed solvents on the thermodynamic driving forces for the complexation between trivalent f-elements and organic ligands, solution phase thermodynamic parameters were determined for Eu(III) complexation with 2-hydroxyisobutyric acid (HIBA) and 2-aminoisobutyric acid (AIBA) in mixed methanol (MeOH)-water and N,N-dimethylformamide (DMF)-water solvents. Included in this study were the determination of mixed solvent autoprotolysis constants (pK α) as well as the thermodynamic formation constants: log β, ΔG, ΔH, and ΔS, for ligand protonation and Eu(III)-ligand complexation utilizing potentiometry and calorimetry techniques. The results presented are conditional thermodynamic values determined at an ionic strength of 1.0more » M NaClO 4 and a temperature of 298 K. It was found that moving from an aqueous solution to a binary aqueous-organic solvent affected all solution equilibria to some degree and that the extent of change depended on both the type of mixed solvent and the ligand in each study. Here, the ability to understand and predict these changes in thermodynamic values as a function of solvent composition provides important information about the chemistry of the trivalent f-elements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felmy, Heather M.; Bennett, Kevin T.; Clark, Sue B.
To gain insight on the role of mixed solvents on the thermodynamic driving forces for the complexation between trivalent f-elements and organic ligands, solution phase thermodynamic parameters were determined for Eu(III) complexation with 2-hydroxyisobutyric acid (HIBA) and 2-aminoisobutyric acid (AIBA) in mixed methanol (MeOH)-water and N,N-dimethylformamide (DMF)-water solvents. Included in this study were the determination of mixed solvent autoprotolysis constants (pK α) as well as the thermodynamic formation constants: log β, ΔG, ΔH, and ΔS, for ligand protonation and Eu(III)-ligand complexation utilizing potentiometry and calorimetry techniques. The results presented are conditional thermodynamic values determined at an ionic strength of 1.0more » M NaClO 4 and a temperature of 298 K. It was found that moving from an aqueous solution to a binary aqueous-organic solvent affected all solution equilibria to some degree and that the extent of change depended on both the type of mixed solvent and the ligand in each study. Here, the ability to understand and predict these changes in thermodynamic values as a function of solvent composition provides important information about the chemistry of the trivalent f-elements.« less
Yamgar, B A; Sawant, V A; Bharate, B G; Chavan, S S
2011-01-01
A series of complexes of the type [M(L)(dppe)X2]; where M=Zn(II) or Cd(II); L=4-(2'-thiazolylazo)chlorobenzene (L1), 4-(2'-thiazolylazo)bromobenzene (L2) and 4-(2'-thiazolylazo) iodobenzene (L3); dppe=1,2-bis(diphenylphosphino)ethane; X=N3- or NCS- have been prepared and characterized on the basis of their microanalysis, molar conductance, thermal, IR, UV-vis and 1H NMR spectral studies. IR spectra show that the ligand L is coordinated to the metal atom in bidentate manner via azo nitrogen and thiazole nitrogen. An octahedral structure is proposed for all the complexes. The thermal behavior of the complexes revealed that the thiocyanato complexes are thermally more stable than the azido complexes. All the complexes exhibit blue-green emission with high quantum yield as the result of the fluorescence from the intraligand emission excited state. Copyright © 2010 Elsevier B.V. All rights reserved.
Yan, Fa-Shun; Sun, Jian-Long; Xie, Wen-Hai; Shen, Liang; Ji, Hong-Fang
2017-12-28
Alzheimer's disease (AD) is the main form of dementia and has a steadily increasing prevalence. As both oxidative stress and metal homeostasis are involved in the pathogenesis of AD, it would be interesting to develop a dual function agent, targeting the two factors. Curcumin, a natural compound isolated from the rhizome of Curcuma longa , is an antioxidant and can also chelate metal ions. Whether the complexes of curcumin with metal ions possess neuroprotective effects has not been evaluated. Therefore, the present study was designed to investigate the protective effects of the complexes of curcumin with Cu(II) or Zn(II) on hydrogen peroxide (H₂O₂)-induced injury and the underlying molecular mechanisms. The use of rat pheochromocytoma (PC12) cells, a widely used neuronal cell model system, was adopted. It was revealed that curcumin-Cu(II) complexes systems possessed enhanced O₂ ·- -scavenging activities compared to unchelated curcumin. In comparison with unchelated curcumin, the protective effects of curcumin-Cu(II) complexes systems were stronger than curcumin-Zn(II) system. Curcumin-Cu(II) or -Zn(II) complexes systems significantly enhanced the superoxide dismutase, catalase, and glutathione peroxidase activities and attenuated the increase of malondialdehyde levels and caspase-3 and caspase-9 activities, in a dose-dependent manner. The curcumin-Cu(II) complex system with a 2:1 ratio exhibited the most significant effect. Further mechanistic study demonstrated that curcumin-Cu(II) or -Zn(II) complexes systems inhibited cell apoptosis via downregulating the nuclear factor κB (NF-κB) pathway and upregulating Bcl-2/Bax pathway. In summary, the present study found that curcumin-Cu(II) or -Zn(II) complexes systems, especially the former, possess significant neuroprotective effects, which indicates the potential advantage of curcumin as a promising agent against AD and deserves further study.
Sobha, S; Mahalakshmi, R; Raman, N
2012-06-15
A series of Cu(II), Ni(II) and Zn(II) complexes of the type ML have been synthesized with Schiff bases derived from o-acetoacetotoluidide, 2-hydroxybenzaldehyde and o-phenylenediamine/1,4-diaminobutane. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the six metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff bases are found to act as tetradentate ligands using N(2)O(2) donor set of atoms leading to a square-planar geometry for the complexes around all the metal ions. The binding properties of metal complexes with DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. Detailed analysis reveals that the metal complexes intercalate into the DNA base stack as intercalators. All the metal complexes cleave the pUC19 DNA in presence of H(2)O(2.) The Schiff bases and their complexes have been screened for their antibacterial activity against five bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae) by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligands. Copyright © 2012 Elsevier B.V. All rights reserved.
Metal-organophosphine and metal-organophosphonium frameworks with layered honeycomb-like structures.
Humphrey, Simon M; Allan, Phoebe K; Oungoulian, Shaunt E; Ironside, Matthew S; Wise, Erica R
2009-04-07
Phosphanotriylbenzenecarboxylic acid (ptbcH(3); P(C(6)H(4)-p-CO(2)H)(3)) and its methyl phosphonium iodide derivative (mptbcH(3)I; {H(3)CP(C(6)H(4)-p-CO(2)H)(3)}I) have been used as organic building blocks in reaction with Zn(ii) salts to obtain a series of related two-dimensional coordination polymers with honeycomb-like networks. The variable coordination number and oxidation states available to phosphorus have been exploited to produce a family of related phosphine coordination materials (PCMs) using a single ligand precursor. The phosphine carboxylate trianion, ptbc(3-), reacted with Zn(ii) to form 3,3-connected undulating hexagonal sheets based on tetrahedral P and Zn nodes, where Zn-ptbc = 1 : 1. When hydroxide was used as an additional framework ligand, Zn(4)(OH)(2) clusters were obtained. The clusters support 6,3-connected bilayers that consist of pairs of fused hexagonal sheets (Zn-ptbc = 2 : 1) with intra-layer pore spaces. The Zn(4)(OH)(2) clusters are also coordinated by solvent, which was preferentially displaced when the bilayer material was synthesized in the presence of ethylene diamine. Treatment of ptbc(3-) with MeI resulted in methylation of the phosphine to give the P(v) phosphonium iodide salt derivative. The formally dianionic methylphosphonium tricarboxylate building block, mptbc(2-), has the same trigonal-pyramidal bridging geometry as the parent phosphine. However, mptbc(2-) reacted with Zn(ii) on a 1 : 1 stoichiometric ratio to give an unusual trilayer sheet polymer that is based exclusively on 3-connected nodes. Solid-state (31)P NMR studies confirmed that the phosphine ligands were resistant to oxidation upon solvothermal reaction under aerobic conditions.
Microreactor and method for preparing a radiolabeled complex or a biomolecule conjugate
Reichert, David E; Kenis, Paul J. A.; Wheeler, Tobias D; Desai, Amit V; Zeng, Dexing; Onal, Birce C
2015-03-17
A microreactor for preparing a radiolabeled complex or a biomolecule conjugate comprises a microchannel for fluid flow, where the microchannel comprises a mixing portion comprising one or more passive mixing elements, and a reservoir for incubating a mixed fluid. The reservoir is in fluid communication with the microchannel and is disposed downstream of the mixing portion. A method of preparing a radiolabeled complex includes flowing a radiometal solution comprising a metallic radionuclide through a downstream mixing portion of a microchannel, where the downstream mixing portion includes one or more passive mixing elements, and flowing a ligand solution comprising a bifunctional chelator through the downstream mixing portion. The ligand solution and the radiometal solution are passively mixed while in the downstream mixing portion to initiate a chelation reaction between the metallic radionuclide and the bifunctional chelator. The chelation reaction is completed to form a radiolabeled complex.
NASA Astrophysics Data System (ADS)
Vivekanand, B.; Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.
2015-01-01
Schiff base 3-((5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its Cu(II), Co(II), Ni(II), Zn(II) and Fe(III), complexes have been synthesized and characterized by elemental analysis, UV-Visible, IR, 1H NMR, 13C NMR and mass spectra, molar conductance, magnetic susceptibility, ESR and TGA data. The ligand and its metal complexes have been screened for their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, antifungal activity against Aspergillus niger and Aspergillus flavus in minimum inhibition concentration (MIC) by cup plate method respectively, antioxidant activity using 1,1-diphenyl-2-picryl hydrazyl (DPPH), which was compared with that of standard drugs vitamin-C and vitamin-E and DNA cleavage activity using calf-thymus DNA.
Hanif, Muhammad; Chohan, Zahid H
2013-03-01
A new series of three biologically active triazole derived Schiff base ligands L(1)-L(3) have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination. Copyright © 2012 Elsevier B.V. All rights reserved.
Skyrianou, Kalliopi C; Psycharis, Vassilis; Raptopoulou, Catherine P; Kessissoglou, Dimitris P; Psomas, George
2011-01-01
The nickel(II) complexes with the second-generation quinolone antibacterial agent enrofloxacin in the presence or absence of the nitrogen-donor heterocyclic ligands 1,10-phenanthroline, 2,2'-bipyridine or pyridine have been synthesized and characterized. Enrofloxacin acts as bidentate ligand coordinated to Ni(II) ion through the ketone oxygen and a carboxylato oxygen. The crystal structure of (1,10-phenanthroline)bis(enrofloxacinato)nickel(II) has been determined by X-ray crystallography. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that they bind to CT DNA and bis(pyridine)bis(enrofloxacinato)nickel(II) exhibits the highest binding constant to CT DNA. The cyclic voltammograms of the complexes have shown that in the presence of CT DNA the complexes can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. The biological properties of the complexes have been evaluated in comparison to the corresponding Zn(II) enrofloxacinato complexes as well as Ni(II) complexes with the first-generation quinolone oxolinic acid. Copyright © 2010 Elsevier Inc. All rights reserved.
Hou, Chen; Gan, Hong-Mei; Liu, Jia-Cheng
2015-01-01
In the title polymeric complex, {[Zn(C24H22N6O2)(H2O)4](NO3)2·2H2O}n, the ZnII cation, located about a twofold rotation axis, is coordinated by two imidazole groups and four water molecules in a distorted N2O4 octahedral geometry; among the four coordinate water molecules, two are located on the same twofold rotation axis. The 1,4-bis[4-(1H-imidazol-1-yl)benzoyl]piperazine] ligand is centro-symmetric, with the centroid of the piperazine ring located on an inversion center, and bridges the ZnII cations, forming polymeric chains propagating along [201]. In the crystal, O—H⋯O and weak C—H⋯O hydrogen bonds link the polymeric chains, nitrate anions and solvent water molecules into a three-dimensional supramolecular architecture. A short O⋯O contact of 2.823 (13) Å is observed between neighboring nitrate anions. PMID:25995894
Thermometric titration studies of mixed ligand complexes of thorium.
Kugler, G C; Carey, G H
1970-10-01
Mixed-ligand chelates consisting of two different multidentate ligands linked to a central thorium(IV) ion have been prepared in aqueous solution and their heats of formation studied thermo metrically. Pyrocatechol, tiron, chromotropic acid, potassium hydrogen phthalate, 8-hydroxyquinoline-S-sulphonic acid, iminodiacetic acid, 5-sulphosalicylic acid and salicylic acid were used as the secondary ligands, while ethylenediaminetetra-acetate and 1, 2-diaminocyclohexane-N,N,N',N'-tetra-acetate were used as primary ligands. DeltaH values for the overall reactions are given, and where possible, the DeltaH and DeltaS values for the specific secondary ligand addition were calculated. The overall stability of the mixed-ligand chelates and the enhanced stability of EDTA mixed chelates relative to the analogous DCTA chelates were found to be due to entropy rather than enthalpy effects.
NASA Astrophysics Data System (ADS)
Aktan, Ebru; Gündüzalp, Ayla Balaban; Özmen, Ümmühan Özdemir
2017-01-01
The carboxamides; N,N‧-bis(thiophene-2-carboxamido)-1,3-diaminopropanol (L1) and N,N‧-bis(furan-2-carboxamido)-1,3-diaminopropanol (L2) were synthesized and characterized using 1H NMR, 13C NMR, LC-MS and FT-IR spectrum. The molecular geometries of these molecules were optimized by DFT/B3LYP method with 6-311G(d,p) basis set in Gaussian 09 software. The geometrical parameters, frontier molecular orbitals (FMOs) and molecular electrostatic potential (MEP) mapped surfaces were calculated by the same basis set. Dinuclear Cu(II) and Zn(II) complexes having general formula as [MLCl]2Cl2.nH2O (in which M = Cu(II),Zn(II); n = 0,2) were also synthesized and characterized using LC-MS and FT-IR spectrum, thermogravimetric analysis (TGA/DTA curves), magnetic moments and molar conductivities. Coordination was found to be through carbonyl oxygen and two chlorine atoms as bridging in distorted tetrahedral geometry. The optimized structures, geometrical parameters, frontier molecular orbitals (FMOs) and dipole moments of metal complexes were also obtained by DFT/B3LYP method with LanL2DZ basis set. Antibacterial activities of the compounds were screened against E. coli using microdilution method (MIC's in μg/mL). The activity results show that the corresponding compounds exhibit good to moderate antibacterial effects when compared with sulfamethoxazole and sulfisoxazole antibiotics as positive controls. Also, metal complexes have remarkable increase in their activities than parent ligands against E. coli which is mostly effected by [Cu(L2)Cl]2Cl2 complex as potential antibacterial agent.
Patil, Sunil S.; Thakur, Ganesh A.; Shaikh, Manzoor M.
2011-01-01
Mixed ligand complexes of dioxouranium (VI) of the type [UO2(Q)(L)·2H2O] have been synthesized using 8-hydroxyquinoline (HQ) as a primary ligand and amino acids (HL) such as L-threonine, L-tryptophan, and L-isoleucine as secondary ligands. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements, and spectral and thermal studies. The electrical conductance studies of the complexes indicate their nonelectrolytic nature. Magnetic susceptibility measurements revealed diamagnetic nature of the complexes. Electronic absorption spectra of the complexes show intraligand and charge transfer transitions, respectively. Bonding of the metal ion through N- and O-donor atoms of the ligands is revealed by IR studies, and the chemical environment of the protons is confirmed by NMR studies. The thermal analysis data of the complexes indicate the presence of coordinated water molecules. The agar cup and tube dilution methods have been used to study the antibacterial activity of the complexes against the pathogenic bacteria S. aureus, C. diphtheriae, S. typhi, and E. coli. PMID:22389843
Kumar, Ashish; Dubey, Mrigendra; Kumar, Amit; Pandey, Daya Shankar
2014-09-11
Novel saponification-triggered gelation in an ester-based bis-salen Zn(II) complex (1) is described. Strategic structural modifications induced by NaOH in 1 tune the dipolar-/π-interactions leading to J-aggregation and the creation of an inorganic gel material (IGM), which has been established by photophysical, DFT and rheological studies.
Li, Xiaopeng; Chan, Yi-Tsu; Casiano-Maldonado, Madalis; Yu, Jing; Carri, Gustavo A; Newkome, George R; Wesdemiotis, Chrys
2011-09-01
The self-assembly of Zn(II) ions and bis(terpyridine) (tpy) ligands carrying 120° or 180° angles between their metal binding sites was utilized to prepare metallosupramolecular libraries with the
NASA Astrophysics Data System (ADS)
Pramanik, Harun A. R.; Das, Dharitri; Paul, Pradip C.; Mondal, Paritosh; Bhattacharjee, Chira R.
2014-02-01
Synthesis of a series of newer mixed ligand copper(II) complexes of aminoacid Schiff base of the type [CuL(X)] (L = N-(2‧-hydroxy acetophenone) glycinate, X = imidazole (im) 2, benzimidazole (benz) 3, pyridine (py) 4, hydrazine (hz) 5,8-hydroxyquinoline (8-hq) 6, pyrrolidine (pyrr) 7, piperidine (pip) 8, and nicotinamide (nic) 9) have been accomplished from the interaction of an aquated Schiff base complex, [CuL(H2O)]·H2O, 1 with some selected neutral nitrogen-donor ligands. The copper(II) Schiff base complex, [CuL(H2O)]·H2O, L = N-(2‧-hydroxy acetophenone) glycinate was synthesized from the reaction of glycine and 2‧ hydroxy acetophenone and copper(II) acetate. The compounds were characterised by elemental analysis, spectral, magnetic and thermal studies. The density functional theory calculations were performed using LANL2DZ and 6-311 G(d, p) basis sets with B3LYP correlation functional to ascertain the stable electronic structure, HOMO-LUMO energy gap, chemical hardness and dipole moment of the mixed ligand complexes. A distorted square planar geometry has been conjectured for the complexes. Antibacterial activities of the ligand and its metal complexes have been tested against selected gram-positive and gram-negative strains and correlated with computational docking scores.
Lin, Cuiling; Xu, Luonan; Huang, Libo; Chen, Jia; Liu, Yuanyuan; Ma, Yifan; Ye, Feixiang; Qiu, Huayu; He, Tian; Yin, Shouchun
2016-09-01
Controlling the topologies of polymers is a hot topic in polymer chemistry because the physical and/or chemical properties of polymers are determined (at least partially) by their topologies. This study exploits the host-guest interactions between dibenzo-24-crown-8 and secondary ammonium salts and metal coordination interactions between 2,6-bis(benzimidazolyl)-pyridine units with metal ions (Zn(II) and/or Eu(III) ) as orthogonal non-covalent interactions to prepare supramolecular polymers. By changing the ratios of the metal ion additives (Zn(NO3 )2 and Eu(NO3 )3 ) linkers to join the host-guest dimeric complex, the linear supramolecular polymers (100 mol% Zn(NO3 )2 per ligand) and hyperbranched supramolecular polymers (97 mol% Zn(NO3 )2 and 3 mol% Eu(NO3 )3 per ligand) are separately and successfully constructed. This approach not only expands topological control over polymeric systems, but also paves the way for the functionalization of smart and adaptive materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, M.M.; Bard, A.J.
The electrochemistry and electrogenerated chemiluminescence (ECL) of a series of europium chelates, cryptates, and mixed-ligand chelate/cryptand complexes were studied. The complexes were of the following general forms: EuL{sub 4}{sup -}, where L = {beta}-diketonate, a bis-chelating ligand (such as dibenzoylmethide), added as salts (A)EuL{sub 4}, where A= tetrabutylammonium ion or piperidinium ion (pipH{sup +}); Eu(crypt){sup 3+}, where crypt = a cryptand ligand, e.g., 4,7,13,16,21-pentaoxa-1,10-diazabicyclo[8,8,5]-tricosa ne; and Eu(crypt)(L){sup 2+} for the mixed-ligand systems. ECL was obtained for the chelates and mixed-ligand systems by reducing the complexes at a Pt electrode in the presence of peroxydisulfate in acetonitrile solutions and was attributedmore » to the electron-transfer reaction between the reduced bound ligands and SO{sub 4}{sup .-}, followed by intramolecular excitation transfer from the excited ligand orbitals to the metal-centered 4f states. No ECL was observed under the same conditions for the europium complexes incorporating only the cryptand ligands in aqueous solution. The ECL spectra matched the photoluminescence spectra with a narrow emission band observed at 612 nm, corresponding to a metal-centered 4f-4f transition. The ECL efficiencies for the ECL-active species were low, about 10{sup -1}-10{sup -4}% of that of the Ru-(bpy){sub 3}{sup 2+}/S{sub 2}O{sub 8}{sup 2-} system under similar conditions. 38 refs., 6 figs., 2 tabs.« less
Synthesis, characterization and antimicrobial studies of Schiff base complexes
NASA Astrophysics Data System (ADS)
Zafar, Hina; Ahmad, Anis; Khan, Asad U.; Khan, Tahir Ali
2015-10-01
The Schiff base complexes, MLCl2 [M = Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized by the template reaction of respective metal ions with 2-acetylpyrrole and 1,3-diaminopropane in 1:2:1 M ratio. The complexes have been characterized by elemental analyses, ESI - mass, NMR (1H and 13C), IR, XRD, electronic and EPR spectral studies, magnetic susceptibility and molar conductance measurements. These studies show that all the complexes have octahedral arrangement around the metal ions. The molar conductance measurements of all the complexes in DMSO indicate their non-electrolytic nature. The complexes were screened for their antibacterial activity in vitro against Gram-positive (Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae) bacteria. Among the metal complexes studied the copper complex [CuLCl2], showed highest antibacterial activity nearly equal to standard drug ciprofloxacin. Other complexes also showed considerable antibacterial activity. The relative order of activity against S. Pyogenes is as Cu(II) > Zn(II) > Co(II) = Fe(II) > Ni(II) and with K. Pneumonia is as Cu(II) > Co(II) > Zn(II) > Fe(II) > Ni(II).
Sakthivel, A.; Rajasekaran, K.
2007-01-01
New N2O2 donor type Schiff base has been designed and synthesized by condensing acetoacetanilido-4-aminoantipyrine with 2-aminobenzoic acid in ethanol. Solid metal complexes of the Schiff base with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, fast atom bombardment (FAB) mass, IR, UV-Vis, and 1H NMR spectral studies. The data show that the complexes have the composition of ML type. The UV-Vis. and magnetic susceptibility data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Aspergillus flavus, Rhizopus stolonifer, Candida albicans, Rhizoctonia bataicola and Trichoderma harizanum. All the metal complexes showed stronger antifungal activities than the free ligand. The minimum inhibitory concentrations (MIC) of the metal complexes were found in the range of 10~31 µg/ml. PMID:24015086
Chen, Xincai; Chen, Guangcun; Chen, Linggui; Chen, Yingxu; Lehmann, Johannes; McBride, Murray B; Hay, Anthony G
2011-10-01
Biochars produced by pyrolysis of hardwood at 450 °C (HW450) and corn straw at 600 °C (CS600) were characterized and investigated as adsorbents for the removal of Cu(II) and Zn(II) from aqueous solution. The adsorption data were well described by a Langmuir isotherm, with maximum Cu(II) and Zn(II) adsorption capacities of 12.52 and 11.0 mg/g for CS600, 6.79 and 4.54 mg/g for HW450, respectively. Thermodynamic analysis suggested that the adsorption was an endothermic process and did not occur spontaneously. Although Cu(II) adsorption was only marginally affected by Zn(II), Cu(II) competed with Zn(II) for binding sites at Cu(II) and Zn(II) concentrations ≥ 1.0mM. Results from this study indicated that plant-residue or agricultural waste derived biochar can act as effective surface sorbent, but their ability to treat mixed waste streams needs to be carefully evaluated on an individual basis. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kumar, Amit; Kumar, Ashish; Pandey, Daya Shankar
2016-05-28
Novel binuclear Zn(ii) complexes (1-2) derived from bis-chelating salen type ligands (H2L(1) and H2L(2)) possessing N,N-diethylamine moieties on the periphery of the molecules have been synthesized and thoroughly characterized by satisfactory elemental analyses and spectral (FT-IR, (1)H, (13)C NMR, UV-vis, fluorescence and ESI-MS) studies. The structures of H2L(1) and 1 have been authenticated by single crystal X-ray diffraction analyses. Complexes 1 and 2 strongly fluoresce and act as highly selective and sensitive chemosensors for picric acid in different organic as well as aqueous media. Both 1 and 2 showed strong potential to detect traces of PA in vapour/solid phase through contact mode analysis. Spectral and theoretical (DFT) studies suggested that the observed fluorescence quenching may be associated with ground state (GS) charge transfer as well as electrostatic interactions between 1/2 and PA. The fluorescence lifetime for the representative complex 1 displayed a double exponential curve and unaltered lifetime (τav, 0.63 nm) in the absence and presence of PA and strongly suggested that quenching follows a static mechanism. Further, DFT calculations on 1 and 2 strongly supported the static mechanism through GS charge transfer between complexes and PA. In addition, (1)H NMR spectral studies on 1-2 in the presence of PA firmly advocated strong hydrogen bonding and π-π stacking between the phenolic rings of 1-2 and the aromatic ring of PA. These complexes are capable of detecting PA either individually or in a competitive environment of other nitro- explosives. Florescence spectral studies on the model complex M lacking N,N-diethylamine groups revealed moderate selectivity and sensitivity towards PA and supported the key role of N,N-diethylamine moieties in the selectivity and sensitivity of complexes.
Chelation of Cu(II), Zn(II), and Fe(II) by Tannin Constituents of Selected Edible Nuts
Karamać, Magdalena
2009-01-01
The tannin fractions isolated from hazelnuts, walnuts and almonds were characterised by colorimetric assays and by an SE-HPLC technique. The complexation of Cu(II) and Zn(II) was determined by the reaction with tetramethylmurexide, whereas for Fe(II), ferrozine was employed. The walnut tannins exhibited a significantly weaker reaction with the vanillin/HCl reagent than hazelnut and almond tannins, but the protein precipitation capacity of the walnut fraction was high. The SE-HPLC chromatogram of the tannin fraction from hazelnuts revealed the presence of oligomers with higher molecular weights compared to that of almonds. Copper ions were most effectively chelated by the constituents of the tannin fractions of hazelnuts, walnuts and almonds. At a 0.2 mg/assay addition level, the walnut tannins complexed almost 100% Cu(II). The Fe(II) complexation capacities of the tannin fractions of walnuts and hazelnuts were weaker in comparison to that of the almond tannin fraction, which at a 2.5 mg/assay addition level, bound Fe(II) by ~90%. The capacity to chelate Zn(II) was quite varied for the different nut tannin fractions: almond tannins bound as much as 84% Zn(II), whereas the value for walnut tannins was only 8.7%; and for hazelnut tannins, no Zn(II) chelation took place at the levels tested. PMID:20054482
Chelation of Cu(II), Zn(II), and Fe(II) by tannin constituents of selected edible nuts.
Karamać, Magdalena
2009-12-22
The tannin fractions isolated from hazelnuts, walnuts and almonds were characterised by colorimetric assays and by an SE-HPLC technique. The complexation of Cu(II) and Zn(II) was determined by the reaction with tetramethylmurexide, whereas for Fe(II), ferrozine was employed. The walnut tannins exhibited a significantly weaker reaction with the vanillin/HCl reagent than hazelnut and almond tannins, but the protein precipitation capacity of the walnut fraction was high. The SE-HPLC chromatogram of the tannin fraction from hazelnuts revealed the presence of oligomers with higher molecular weights compared to that of almonds. Copper ions were most effectively chelated by the constituents of the tannin fractions of hazelnuts, walnuts and almonds. At a 0.2 mg/assay addition level, the walnut tannins complexed almost 100% Cu(II). The Fe(II) complexation capacities of the tannin fractions of walnuts and hazelnuts were weaker in comparison to that of the almond tannin fraction, which at a 2.5 mg/assay addition level, bound Fe(II) by approximately 90%. The capacity to chelate Zn(II) was quite varied for the different nut tannin fractions: almond tannins bound as much as 84% Zn(II), whereas the value for walnut tannins was only 8.7%; and for hazelnut tannins, no Zn(II) chelation took place at the levels tested.
Ferrate(VI) oxidation of zinc-cyanide complex.
Yngard, Ria; Damrongsiri, Seelawut; Osathaphan, Khemarath; Sharma, Virender K
2007-10-01
Zinc-cyanide complexes are found in gold mining effluents and in metal finishing rinse water. The effect of Zn(II) on the oxidation of cyanide by ferrate(VI) (Fe(VI)O(4)(2-), Fe(VI)) was thus investigated by studying the kinetics of the reaction of Fe(VI) with cyanide present in a potassium salt of a zinc cyanide complex (K(2)Zn(CN)(4)) and in a mixture of Zn(II) and cyanide solutions as a function of pH (9.0-11.0). The rate-law for the oxidation of Zn(CN)(4)(2-) by Fe(VI) was found to be -d[Fe(VI)]/dt=k[Fe(VI)][Zn(CN)(4)(2-)](0.5). The rate constant, k, decreased with an increase in pH. The effect of temperature (15-45 degrees C) on the oxidation was studied at pH 9.0, which gave an activation energy of 45.7+/-1.5kJmol(-1). The cyanide oxidation rate decreased in the presence of the Zn(II) ions. However, Zn(II) ions had no effect on the cyanide removal efficiency by Fe(VI) and the stoichiometry of Fe(VI) to cyanide was approximately 1:1; similar to the stoichiometry in absence of Zn(II) ions. The destruction of cyanide by Fe(VI) resulted in cyanate. The experiments on removal of cyanide from rinse water using Fe(VI) demonstrated complete conversion of cyanide to cyanate.
One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties
NASA Astrophysics Data System (ADS)
Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur
2016-11-01
Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.
2016-01-01
The structure–property relationship study of a series of cationic Ir(III) complexes in the form of [Ir(C^N)2(dtBubpy)]PF6 [where dtBubpy = 4,4′-di-tert-butyl-2,2′-bipyridine and C^N = cyclometallating ligand bearing an electron-withdrawing group (EWG) at C4 of the phenyl substituent, i.e., −CF3 (1), −OCF3 (2), −SCF3 (3), −SO2CF3 (4)] has been investigated. The physical and optoelectronic properties of the four complexes were comprehensively characterized, including by X-ray diffraction analysis. All the complexes exhibit quasireversible dtBubpy-based reductions from −1.29 to −1.34 V (vs SCE). The oxidation processes are likewise quasireversible (metal + C^N ligand) and are between 1.54 and 1.72 V (vs SCE). The relative oxidation potentials follow a general trend associated with the Hammett parameter (σ) of the EWGs. Surprisingly, complex 4 bearing the strongest EWG does not adhere to the expected Hammett behavior and was found to exhibit red-shifted absorption and emission maxima. Nevertheless, the concept of introducing EWGs was found to be generally useful in blue-shifting the emission maxima of the complexes (λem = 484–545 nm) compared to that of the prototype complex [Ir(ppy)2(dtBubpy)]PF6 (where ppy = 2-phenylpyridinato) (λem = 591 nm). The complexes were found to be bright emitters in solution at room temperature (ΦPL = 45–66%) with microsecond excited-state lifetimes (τe = 1.14–4.28 μs). The photophysical properties along with density functional theory (DFT) calculations suggest that the emission of these complexes originates from mixed contributions from ligand-centered (LC) transitions and mixed metal-to-ligand and ligand-to-ligand charge transfer (LLCT/MLCT) transitions, depending on the EWG. In complexes 1, 3, and 4 the 3LC character is prominent over the mixed 3CT character, while in complex 2, the mixed 3CT character is much more pronounced, as demonstrated by DFT calculations and the observed positive solvatochromism effect. Due to the quasireversible nature of the oxidation and reduction waves, fabrication of light-emitting electrochemical cells (LEECs) using these complexes as emitters was possible with the LEECs showing moderate efficiencies. PMID:27681985
New method for the direct determination of dissolved Fe(III) concentration in acid mine waters
To, T.B.; Nordstrom, D. Kirk; Cunningham, K.M.; Ball, J.W.; McCleskey, R. Blaine
1999-01-01
A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II) >> Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes in Fe reduction-oxidation distribution. Complexed Fe(II) is cleanly removed using a silica-based, reversed-phase adsorbent, yielding excellent isolation of the Fe(III) complex. Iron(III) concentration is measured colorimetrically or by graphite furnace atomic absorption spectrometry (GFAAS). The method requires inexpensive commercial reagents and simple procedures that can be used in the field. Calcium(II), Ni(II), Pb(II), AI(III), Zn(II), and Cd(II) cause insignificant colorimetric interferences for most acid mine waters. Waters containing >20 mg of Cu/L could cause a colorimetric interference and should be measured by GFAAS. Cobalt(II) and Cr(III) interfere if their molar ratios to Fe(III) exceed 24 and 5, respectively. Iron(II) interferes when its concentration exceeds the capacity of the complexing ligand (14 mg/L). Because of the GFAAS elemental specificity, only Fe(II) is a potential interferent in the GFAAS technique. The method detection limit is 2 ??g/L (40 nM) using GFAAS and 20 ??g/L (0.4 ??M) by colorimetry.A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II)???Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes in Fe reduction-oxidation distribution. Complexed Fe(II) is cleanly removed using a silica-based, reversed-phase adsorbent, yielding excellent isolation of the Fe(III) complex. Iron(III) concentration is measured colorimetrically or by graphite furnace atomic absorption spectrometry (GFAAS). The method requires inexpensive commercial reagents and simple procedures that can be used in the field. Calcium(II), Ni(II), Pb(II), Al(III), Zn(II), and Cd(II) cause insignificant colorimetric interferences for most acid mine waters. Waters containing >20 mg of Cu/L could cause a colorimetric interference and should be measured by GFAAS. Cobalt(II) and Cr(III) interfere if their molar ratios to Fe(III) exceed 24 and 5, respectively. Iron(II) interferes when its concentration exceeds the capacity of the complexing ligand (14 mg/L). Because of the GFAAS elemental specificity, only Fe(II) is a potential interferent in the GFAAS technique. The method detection limit is 2/??g/L (40 nM) using GFAAS and 20 ??g/L (0.4 ??M) by colorimetry.
Two new luminescent Zn(II) compounds constructed from guanazole and aromatic polycarboxylate ligands
NASA Astrophysics Data System (ADS)
Zhao, Haixiang; Dong, Yanli; Liu, Haiping
2016-02-01
Two new Zn(II) compounds, namely [(CH3)2NH2]2n[Zn3(bpt)2(datrz)2]n (1) and [(CH3)2NH2)]n[Zn2(bptc)(datrz)]n·n(H2O) (2) (H3bpt = biphenyl-3,4‧,5-tricarboxylic acid, H4bptc = biphenyl-3,3‧,5,5‧-tetracarboxylic acid, Hdatrz = 3,5-diamino-1,2,4-triazole), have been obtained by the self-assemble reactions of Zn(NO3)2, 3,5-diamino-1,2,4-triazole, aromatic polycarboxylate ligands under solvothermal conditions. Single crystal X-ray structural analyses reveal that both compounds display three-dimensional (3D) frameworks. Compound 1 features a trinodal (3, 4, 6)-connected topological network with the point symbol of {4.62}2{4.64.8}{46.64.85}. Compound 2 displays a binodal (4, 6)-connected topological network with the point symbol of {32.62.72}{34.42.64.75}. In addition, the thermal stabilities and luminescent properties of compounds 1 and 2 were also investigated in the solid state at room temperature.
Synthesis, Characterization, and BSA-Binding Studies of Novel Sulfonated Zinc-Triazine Complexes
Abeydeera, Nalin; Perera, Inoka C.
2018-01-01
Four Zn(II) complexes containing a pyridyl triazine core (L1 = 3-(2-pyridyl)-5,6-di(2-furyl)-1,2,4-triazine-5′,5″-disulfonic acid disodium salt and L2 = 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-4′,4″-disulfonic acid sodium salt) were synthesized, and their chemical formulas were finalized as [Zn(L1)Cl2]·5H2O·ZnCl2 (1), [Zn(L1)2Cl2]·4H2O·2CH3OH (2), [Zn(L2)Cl2]·3H2O·CH3OH (3), and [Zn(L2)2Cl2] (4). The synthesized complexes are water soluble, making them good candidates for biological applications. All four complexes have been characterized by elemental analysis and 1H NMR, IR, and UV-Vis spectroscopy. The IR stretching frequency of N=N and C=N bonds of complexes 1–4 have shifted to lower frequencies in comparison with free ligands, and a bathochromic shift was observed in UV-Vis spectra of all four complexes. The binding studies of ligands and complexes 1–4 with bovine serum albumin (BSA) resulted binding constants (K b) of 3.09 × 104 M−1, 12.30 × 104 M−1, and 16.84 × 104 M−1 for ferene, complex 1, and complex 2, respectively, indicating potent serum distribution via albumins. PMID:29670646
Rahman, Nafisur; Kashif, Mohammad
2010-03-01
Point and interval hypothesis tests performed to validate two simple and economical, kinetic spectrophotometric methods for the assay of lansoprazole are described. The methods are based on the formation of chelate complex of the drug with Fe(III) and Zn(II). The reaction is followed spectrophotometrically by measuring the rate of change of absorbance of coloured chelates of the drug with Fe(III) and Zn(II) at 445 and 510 nm, respectively. The stoichiometric ratio of lansoprazole to Fe(III) and Zn(II) complexes were found to be 1:1 and 2:1, respectively. The initial-rate and fixed-time methods are adopted for determination of drug concentrations. The calibration graphs are linear in the range 50-200 µg ml⁻¹ (initial-rate method), 20-180 µg ml⁻¹ (fixed-time method) for lansoprazole-Fe(III) complex and 120-300 (initial-rate method), and 90-210 µg ml⁻¹ (fixed-time method) for lansoprazole-Zn(II) complex. The inter-day and intra-day precision data showed good accuracy and precision of the proposed procedure for analysis of lansoprazole. The point and interval hypothesis tests indicate that the proposed procedures are not biased. Copyright © 2010 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Dharmaraja, Jeyaprakash; Esakkidurai, Thirugnanasamy; Subbaraj, Paramasivam; Shobana, Sutha
2013-10-01
Mixed ligand Cu(II) complexes of 2-aminobenzamide (2AB) and amino acids viz., glycine (gly), L-alanine (ala), L-valine (val) and L-phenylalanine (phe) have been synthesised and characterized by various physico-chemical and spectral techniques. The calculated g-tensor values for Cu(II) complexes at 77 K and 300 K, show the distorted octahedral geometry which has been confirmed from the absorption studies. Consequently, the thermal studies illustrate that the loss of water and acetate molecules in the initial stage which are followed by the decomposition of organic residues. The powder X-ray diffraction and SEM analysis reflect that all the complexes have well-defined crystallinity nature with homogeneous morphology. The binding activities of CT DNA with CuAB complexes have been examined by absorption studies. Further, the oxidative cleavage interactions of 2-aminobenzamide and CuAB complexes with DNA were studied by gel electrophoresis method in H2O2 medium. Also, the complex formation of Cu(II) involving 2-aminobenzamide and amino acids were carried out by a combined pH-metric and spectrophotometric techniques in 50% (v/v) water-ethanol mixture at 300, 310, 320 and 330 ± 0.1 K with I = 0.15 mol dm-3 (NaClO4). In solution, CuAB and CuAB2 species has been detected and the binding modes of 2-aminobenzamide and amino acids in both binary and mixed ligand complexes are same. The calculated stabilization value of Δ log K, log X and log X' indicates higher stabilities for the mixed ligand complexes rather than their binary species. The thermodynamic parameters like ΔG, ΔH and ΔS have been determined from temperature dependence of the stability constant. In vitro biological activities of 2-aminobenzamide, CuA and CuAB complexes show remarkable activities against some bacterial and fungal strains. The percentage distribution of various binary and mixed ligand species in solution at dissimilar pH intervals were also evaluated.
NASA Astrophysics Data System (ADS)
Pyreu, D. F.; Gridchin, S. N.
2018-05-01
The formation of mixed-ligand complexes in the M(II)-Nta, Ida-L (M = Cu(II), Ni, Zn, Co(II), L = Ser, Thr, Asp, Arg, Asn) systems, where Ida and Nta are the residues of iminodiacetic and nitrilotriacetic acids, respectively, is studied using pH measurements, calorimetry and spectrophotometry. The thermodynamic parameters (log K, Δr G 0, Δr H, Δr S) of their formation at 298.15 K and ionic strength I = 0.5 (KNO3) are determined. The most likely scenario of amino acid residue coordination in the composition of mixed complexes is discussed.
Trávnícek, Zdenek; Krystof, Vladimír; Sipl, Michal
2006-02-01
The synthesis, characterization and biological activity of the first zinc(II) complexes with potent inhibitors of cyclin-dependent kinases (CDKs) derived from 6-benzylaminopurine are described. Based on the results following from elemental analyses, infrared, NMR and ES+MS (electrospray mass spectra in the positive ion mode) spectroscopies, conductivity data, thermal analysis and X-ray structures, the tetrahedral Zn(II) complexes of the compositions [Zn(Olo)Cl(2)](n) (1), [Zn(iprOlo)Cl(2)](n) (2), [Zn(BohH(+))Cl(3)] x H(2)O (3) and [Zn(iprOloH(+))Cl(3)] x H(2)O (4) have been prepared, where Olo=2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine (Olomoucine), iprOlo=2-(2-hydroxyethylamino)-6-benzylamino-9-isopropylpurine (i-propyl-Olomoucine), Boh=2-(3-hydroxypropylamino)-6-benzylamino-9-isopropylpurine (Bohemine). The 1D-polymeric chain structure for [Zn(Olo)Cl(2)](n) (1) as well as the monomeric one for [Zn(BohH(+))Cl(3)] x H(2)O (3) and [Zn(iprOloH(+))Cl(3)] x H(2)O (4) have been revealed unambiguously by single crystal X-ray analyses. The 1D-polymeric chain of 1 consists of Zn(Olo)Cl(2) monomeric units in which the Zn(II) ion is coordinated by two chlorine atoms and one oxygen atom of the 2-hydroxyethylamino group of Olomoucine. The next monomeric unit is bonded to Zn(II) through the N7 atom of a purine ring. Thus, each of Zn(II) ions is tetrahedrally coordinated and a ZnCl(2)NO chromophore occurs in the complex 1. The complexes 3 and 4 are mononuclear species with a distorted tetrahedral arrangement of donor atoms around the Zn(II) ion with a ZnCl(3)N chromophore. The corresponding CDK inhibitor, i.e., both Boh and iprOlo, is coordinated to Zn(II) via the N7 atom of the purine ring in 3 and 4. The cytotoxicity of the zinc(II) complexes against human melanoma, sarcoma, leukaemia and carcinoma cell lines has been determined as well as the inhibition of the CDK2/cyclin E kinase. A relationship between the structure and biological activity of the complexes is also discussed.
Jayakumar, S; Mahendiran, D; Srinivasan, T; Mohanraj, G; Kalilur Rahiman, A
2016-02-01
The reaction of soft tripodal scorpionate ligand, sodium hydrotris(methimazolyl)borate with M(ClO4)2·6H2O [MMn(II), Ni(II), Cu(II) or Zn(II)] in methanol leads to the cleavage of B-N bond followed by the formation of complexes of the type [M(MeimzH)4](ClO4)2·H2O (1-4), where MeimzH=methimazole. All the complexes were fully characterized by spectro-analytical techniques. The molecular structure of the zinc(II) complex (4) was determined by X-ray crystallography, which supports the observed deboronation reaction in the scorpionate ligand with tetrahedral geometry around zinc(II) ion. The electronic spectra of complexes suggested tetrahedral geometry for manganese(II) and nickel(II) complexes, and square-planar geometry for copper(II) complex. Frontier molecular orbital analysis (HOMO-LUMO) was carried out by B3LYP/6-31G(d) to understand the charge transfer occurring in the molecules. All the complexes exhibit significant antimicrobial activity against Gram (-ve) and Gram (+ve) bacterial as well as fungal strains, which are quite comparable to standard drugs streptomycin and clotrimazole. The copper(II) complex (3) showed excellent free radical scavenging activity against DPPH in all concentration with IC50 value of 30μg/mL, when compared to the other complexes. In the molecular docking studies, all the complexes showed hydrophobic, π-π and hydrogen bonding interactions with BSA. The cytotoxic activity of the complexes against human hepatocellular liver carcinoma (HepG2) cells was assessed by MTT assay, which showed exponential responses toward increasing concentration of complexes. Copyright © 2015 Elsevier B.V. All rights reserved.
Al-Jaroudi, Said S; Monim-ul-Mehboob, M; Altaf, Muhammad; Al-Saadi, Abdulaziz A; Wazeer, Mohammed I M; Altuwaijri, Saleh; Isab, Anvarhusein A
2014-12-01
The gold(III) complexes of the type [(DACH)Au(en)]Cl3, 1,2-Diaminocyclohexane ethylenediamine gold(III) chloride [where 1,2-DACH = cis-, trans-1,2- and S,S-1,2diaminocyclohexane and en = ethylenediamine] have been synthesized and characterized using various analytical and spectroscopic techniques including elemental analysis, UV-Vis and FTIR spectra; and solution as well as solid-state NMR measurements. The solid-state (13)C NMR shows that 1,2-diaminocyclohexane (1,2-DACH) and ethylenediamine (en) are strongly bound to the gold(III) center via N donor atoms. The stability of the mixed diamine ligand gold(III) was determined by (1)H and (13)C NMR spectra. Their electrochemical behavior was studied by cyclic voltammetry. The structural details and relative stabilities of the four possible isomers of the complexes were also reported at the B3LYP/LANL2DZ level of theory. The coordination sphere of these complexes around gold(III) center adopts distorted square planar geometry. The computational study also demonstrates that trans- conformations is slightly more stable than the cis-conformations. The antiproliferative effects and cytotoxic properties of the mixed diamine ligand gold(III) complexes were evaluated in vitro on human gastric SGC7901 and prostate PC3 cancer cells using MTT assay. The antiproliferative study of the gold(III) complexes on PC3 and SGC7901 cells indicate that complex 1 is the most effective antiproliferative agent among mixed ligand based gold(III) complexes 1-3. The IC50 data reveal that the in vitro cytotoxicity of complexes 1 and 3 against SGC7901 cancer cells are fairly better than that of cisplatin.
Li, Xuezhao; Wu, Jinguo; He, Cheng; Zhang, Rong; Duan, Chunying
2016-04-14
By incorporating a fac-tris(4-(2-pyridinyl)phenylamine)iridium as the backbone of the tripodal ligand to constrain the coordination geometry of Zn(II) ions, a pentanuclear Ir-Zn heterometal-organic luminescent polyhedron was obtained via a subcomponent self-assembly for carbon dioxide fixation and sulfite sequestration.
NASA Astrophysics Data System (ADS)
Anđelković, Katarina; Pevec, Andrej; Grubišić, Sonja; Turel, Iztok; Čobeljić, Božidar; Milenković, Milica R.; Keškić, Tanja; Radanović, Dušanka
2018-06-01
The mixed chloride-azide [ZnL(N3)1.65Cl0.35] (1) and chloride-isocyanate [CdL(NCO)1.64Cl0.36] (2) complexes with the condensation product of 2-quinolinecarboxaldehyde and trimethylammonium acetohydrazide chloride (Girard's T reagent) (HLCl) have been prepared and characterized by X-ray crystallography. In complexes 1 and 2, Zn1 and Cd1 ions, respectively, are five-coordinated in a distorted square based pyramidal geometry with NNO set of donor atoms of deprotonated hydrazone ligand and two monodentate ligands N3- and/or N3- and Cl- in the case of 1 and OCN- and/or OCN- and Cl- in the case of 2. The structural parameters of 1 and 2 have been discussed in relation to those of previously reported M(II) complexes with the same hydrazone ligand. Density functional theory calculations have been employed to study the interaction between the Zn2+ and Cd2+ ions and ligands. High affinity of ligands towards the Zn2+ and Cd2+ ions are predicted for both complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanko, James M.
Mixed-metal supramolecular complexes containing one or two RuII light absorbing subunits coupled through polyazine bridging ligands to a RhIII reactive metal center were prepared for use as photocatalysts for the production of solar H 2 fuel from H 2O. The electrochemical, photophysical, and photochemical properties upon variation of the monodentate, labile ligands coordinated to the Rh reactive metal center were investigated.
Kurahashi, Takuya; Fujii, Hiroshi
2011-06-01
Ligand radicals from salen complexes are unique mixed-valence compounds in which a phenoxyl radical is electronically linked to a remote phenolate via a neighboring redox-active metal ion, providing an opportunity to study electron transfer from a phenolate to a phenoxyl radical mediated by a redox-active metal ion as a bridge. We herein synthesize one-electron-oxidized products from electronically diverse manganese(III) salen complexes in which the locus of oxidation is shown to be ligand-centered, not metal-centered, affording manganese(III)-phenoxyl radical species. The key point in the present study is an unambiguous assignment of intervalence charge transfer bands by using nonsymmetrical salen complexes, which enables us to obtain otherwise inaccessible insight into the mixed-valence property. A d(4) high-spin manganese(III) ion forms a Robin-Day class II mixed-valence system, in which electron transfer is occurring between the localized phenoxyl radical and the phenolate. This is in clear contrast to a d(8) low-spin nickel(II) ion with the same salen ligand, which induces a delocalized radical (Robin-Day class III) over the two phenolate rings, as previously reported by others. The present findings point to a fascinating possibility that electron transfer could be drastically modulated by exchanging the metal ion that bridges the two redox centers. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Yousef Ebrahimipour, S.; Sheikhshoaie, Iran; Crochet, Aurelien; Khaleghi, Moj; Fromm, Katharina M.
2014-08-01
A tridentate hydrazone Schiff base ligand, (E)-N";-(2-hydroxybenzylidene)acetohydrazide [HL], and its mixed-ligand Cu(II) complex [CuL(phen)], have been synthesized and characterized by elemental analyses, FT-IR, molar conductivity, UV-Vis spectroscopy. The structure of the complex has been determined by X-ray diffraction. This complex has square pyramidal geometry and the positions around central atom are occupied with donor atoms of Schiff base ligand and two nitrogens of 1,10-phenanthroline. Computational studies of compounds were performed by using DFT calculations. The linear polarizabilities and first hyperpolarizabilities of the studied molecules indicate that these compounds can be good candidates of nonlinear optical materials. It is in accordance with experimental data. In addition, invitro antimicrobial results show that these compounds specially [CuL(phen)] have great potential of antibacterial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogenes bacteria and antifungal activity against Candida Albicans in comparison to some standard drugs.
NASA Astrophysics Data System (ADS)
Chandra, Sulekh; Gupta, Lokesh Kumar; Sangeetika
2005-11-01
The complexation of new mixed thia-aza-oxa macrocycle viz., 2,12-dithio-5,9,14,18-tetraoxo-7,16-dithia-1,3,4,10,11,13-hexaazacyclooctadecane containing thiosemicarba-zone unit with a series of transition metals Co(II), Ni(II) and Cu(II) has been investigated, by different spectroscopic techniques. The structural features of the ligand have been studied by EI-mass, 1H NMR and IR spectral techniques. Elemental analyses, magnetic moment susceptibility, molar conductance, IR, electronic, and EPR spectral studies characterized the complexes. Electronic absorption and IR spectra of the complexes indicate octahedral geometry for chloro, nitrato, thiocyanato or acetato complexes. The dimeric and neutral nature of the sulphato complexes are confirmed from magnetic susceptibility and low conductance values. Electronic spectra suggests square-planar geometry for all sulphato complexes. The redox behaviour was studied by cyclic voltammetry, show metal-centered reduction processes for all complexes. The complexes of copper show both oxidation and reduction process. The redox potentials depend on the conformation of central atom in the macrocyclic complexes. Newly synthesized macrocyclic ligand and its transition metal complexes show markedly growth inhibitory activity against pathogenic bacterias and plant pathogenic fungi under study. Most of the complexes have higher activity than that of the metal free ligand.
Li, Dongfeng; Li, Shuan; Yang, Dexi; Yu, Jiuhong; Huang, Jin; Li, Yizhi; Tang, Wenxia
2003-09-22
The imidazolate-bridged homodinuclear Cu(II)-Cu(II) complex, [(CuimCu)L]ClO(4).0.5H(2)O (1), and heterodinuclear Cu(II)-Zn(II) complex, [(CuimZnL(-)(2H))(CuimZnL(-)(H))](ClO(4))(3) (2), of a single macrocyclic ligand with two hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22,2,2,2(11,14)]triaconta-1,11,13,24,27,29-hexaene), have been synthesized as possible models for copper-zinc superoxide dismutase (Cu(2),Zn(2)-SOD). Their crystal structures analyzed by X-ray diffraction methods have shown that the structures of the two complexes are markedly different. Complex 1 crystallizes in the orthorhombic system, containing an imidazolate-bridged dicopper(II) [Cu-im-Cu](3+) core, in which the two copper(II) ions are pentacoordinated by virtue of an N4O environment with a Cu.Cu distance of 5.999(2) A, adopting the geometry of distorted trigonal bipyramid and tetragonal pyramid, respectively. Complex 2 crystallizes in the triclinic system, containing two similar Cu-im-Zn cores in the asymmetric unit, in which both the Cu(II) and Zn(II) ions are pentacoordinated in a distorted trigonal bipyramid geometry, with the Cu.Zn distance of 5.950(1)/5.939(1) A, respectively. Interestingly, the macrocyclic ligand with two arms possesses a chairlike (anti) conformation in complex 1, but a boatlike (syn) conformation in complex 2. Magnetic measurements and ESR spectroscopy of complex 1 have revealed the presence of an antiferromagnetic exchange interaction between the two Cu(II) ions. The ESR spectrum of the Cu(II)-Zn(II) heterodinuclear complex 2 displayed a typical signal for mononuclear trigonal bipyramidal Cu(II) complexes. From pH-dependent ESR and electronic spectroscopic studies, the imidazolate bridges in the two complexes have been found to be stable over broad pH ranges. The cyclic voltammograms of the two complexes have been investigated. Both of the two complexes can catalyze the dismutation of superoxide and show rather high activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Xiu-Chun; Xi, Fu-Gui; Wang, Kun
From a new dicarboxylate ligand, 9H-carbazole-2,7-dicarboxylic acid (2,7-H{sub 2}CDC), three Zn(II) metal-organic frameworks were synthesized in the absence or presence of ditopic N-donor ligands. They are formulated as [Zn{sub 5}(μ{sub 3}-OH){sub 2}(2,7-CDC){sub 4}(DEF){sub 2}] (1) (DEF=N,N-diethylformamide), [Zn{sub 2}(2,7-CDC){sub 2}(DABCO)(H{sub 2}O)]·5DMF·H{sub 2}O (2) (DABCO=1-diaza-bicyclo[2.2.2]octane, DMF=N,N-dimethylformamide), and [Zn{sub 2}(2,7-CDC){sub 2}(bpea)]·3DMA·2 H{sub 2}O (3) (bpea=1,2-bis(4-pyridyl)ethylane, DMA=N,N-dimethylacetamide). Compounds 1 and 3 display the 3D pcu frameworks. In 1 the unusual pentanuclear [Zn{sub 5}(μ{sub 3}-OH){sub 2}(COO){sub 8}] secondary building units (SBUs) are linked by dicarboxylate ligands. Differently, in 3 the well-known paddle–wheel [Zn{sub 2}(COO){sub 4}] SBUs are linked by dicarboxylate and dipyridyl ligands. Compound 2more » shows the rare self-catenated 3D alb-3,6-C2/c net topology based on the dinuclear paddle–wheel SBU and a mononuclear unit. The stability and fluorescent properties of the compounds have been studied. - Graphical abstract: A new dicarboxylate ligand, 9H-carbazole-2,7-dicarboxylic acid, was used to construct Zn(II) metal-organic frameworks, including a novel self-catenated network with the rare 3D alb-3,6-C2/c net and two pcu-type networks based on an unprecedented pentanuclear clusters and the common paddle–wheel units. The compounds show blue fluorescent properties. Display Omitted - Highlights: • MOFs with a new carbazole-based dicarboxylate ligand. • New pentanuclear [Zn{sub 5}(μ{sub 3}-OH){sub 2}(COO){sub 8}] secondary building unit. • The rare self-catenated 3D alb-3,6-C2/c net.« less
NASA Astrophysics Data System (ADS)
Singh, Sandeep K.; Srivastava, Ashish Kumar; Srivastava, Krishna; Banerjee, Rahul; Prasad, Jagdish
2017-11-01
Two mixed-ligand copper(II)-organic coordination compounds with 5,5‧-dimethyl-2,2‧-bipyridine (5,5‧-Me2bpy) as a primary ligand while aliphatic malonate (Hmal) and aromatic 2-hydroxynicotinate (2-OHNA) as secondary ligands, were synthesized. These complexes are formulated as: [Cu(Hmal)(5,5‧-Me2bpy)(H2O)](ClO4) 1 and [Cu2(2-OHNA)2(5,5‧-Me2bpy)2(NO3)](NO3) 2. These two complexes were structurally characterized by single crystal X-ray diffraction analysis. Characterization was further supported by powder X-ray diffraction analysis, elemental analyses, FT-IR, FAB-MASS and TGA, DSC studies. Cyclic voltammetric and UV-visible spectral studies of these two complexes have also been done. The electrochemical studies of complex 1 in DMSO and DMF have shown that this complex undergoes quasi-reversible diffusion-controlled one-electron transfer reaction without any chemical complication while complex 2 in DMSO undergoes quasi-reversible diffusion-controlled one electron transfer reaction, following EC mechanism. The electrochemical behaviour of complex 2 in DMF is complicated probably due to presence of more than one species in solution phase.
Kanagaraj, P; Nagendran, A; Rana, D; Matsuura, T; Neelakandan, S
2015-01-01
The charged surface modifying macromolecule (cSMM) was blended into the casting solution of poly(ether imide) (PEI) to prepare surface modified ultrafiltration membranes by phase inversion technique. The separation of proteins including bovine serum albumin, egg albumin, pepsin and trypsin was investigated by the fabricated membranes. On increasing cSMM content, solute rejection decreases whereas membrane flux increases. The pore size and surface porosity of the 5 wt% cSMM blend PEI membranes increases to 41.4 Å and 14.8%, respectively. Similarly, the molecular weight cut-off of the membranes ranged from 20 to 45 kDa, depending on the various compositions of the prepared membranes. The toxic heavy metal ions Cu(II), Cr(III), Zn(II) and Pb(II) from aqueous solutions were subjected to rejection by the prepared blended membrane with various concentration of polyethyleneimine (PETIM) as water soluble polymeric ligand. It was found that the rejection behavior of metal ion depends on the PETIM concentration and the stability complexation of metal ion with ligand. Copyright © 2014 Elsevier B.V. All rights reserved.
Novel crown-ether-methylenediphosphonotetrathioate hybrids as Zn(II) chelators.
Meltzer, Diana; Gottlieb, Hugo E; Amir, Aviran; Shimon, Linda J W; Fischer, Bilha
2015-12-28
Hybrids of methylenediphosphonotetrathioate and crown-ether (MDPT-CE) were synthesized forming 7-,8-,9-,10- and 13-membered rings. Both 7- and 13-membered ring-containing compounds were found to be highly stable to air-oxidation for at least four weeks. These hybrids bind Zn(II) by both MDPT and CE moieties, forming a 2 : 1 L : Zn(II) complex. Interestingly, the 13-membered ring MDPT-CE showing a high affinity to Zn(II) (Ka 3 ± 0.5 × 10(6) mol(-2) L(2)) does not bind Li(I) or Na(I). The 13-Membered MDPT-CE hybrid is a promising water-soluble, air-stable, high-affinity Zn(II)-chelator, exhibiting selectivity to Zn(II) vs. Mg(II), Na(I), and Li(I).
NASA Astrophysics Data System (ADS)
Jeragh, Bakir; Ali, Mayada S.; El-Asmy, Ahmed A.
2015-06-01
A single crystal of 3,4-dihydroxybenzylidene isonicotinylhydrazone, HBINH, has been grown and solved by X-ray crystallography. The VO2+, Zr4+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pd2+ complexes of HBINH have been prepared and spectroscopically characterized. The data confirmed the formulae [Co(HBINH)(H2O)Cl]Cl·H2O, [Pd(HBINH)Cl2], [Zn(HBINH)2Cl2], [Cd(HBINH)(H2O)2Cl2]·1½H2O, [(VO)2(HBINH-3H)(OH)(H2O)], [Ni2(HBINH)(H2O)6Cl2]Cl2, [Cu2(HBINH-3H)(H2O)2(OAc)]·3H2O, [Zr2(HBINH-3H)Cl4]Cl, [Hg2(HBINH)Cl4] and the dimer {[Cu(HBINH)Cl]Cl}2. Most of the complexes have intense colors and high melting points and some are electrolytes in DMSO solution. The ligand behaves as a neutral bidentate in the Co(II), Cu(II), Pd(II), Zn(II) and Cd(II) complexes; dibasic tetradentate in [Ni2(HBINH)(H2O)6Cl2]Cl2 and tribasic tetradentate in [Cu2(HBINH-3H)(OAc)]·5H2O, [(VO)2(HBINH-3H)(OH)(H2O)] and [Zr2(HBINH-3H)Cl4]Cl by the loss of 3H+ due to the deprotonation of the two hydroxyl groups and the enolization of the amide (Odbnd CNH) group. A tetrahedral geometry was proposed for the Co(II), Cu(II), Zn(II) and Hg(II) complexes; square-planar for the Pd(II) complex; square-pyramid for the VO2+ complex and octahedral for the Ni(II) and Cd(II) complexes. The complexes [Cd(HBINH)(H2O)2Cl2]·1½H2O, [(VO)2(HBINH-3H)(OH)(H2O)] and [Cu2(HBINH-3H)-(H2O)2(OAc)]·3H2O have activities against Bacillus sp. M3010, Candida albicans, Escherichia coli, Staphylococcus aureus and Slamonella sp. PA393.
Ge, Ying; Guo, Yujun; Qin, Weidong
2014-04-01
Polyamidoamine (PAMAM) dendrimer generation 2.5 was synthesized and evaluated as sweeping agent for in-column enrichment and as stationary phase for capillary electrochromatographic separation of heavy metal ions, viz., Pb(II), Cu(II), Hg(II), Zn(II) and Co(II), in a running buffer containing 4-(2-pyridylazo)resorcinol (PAR) as a chromogenic reagent. During experiment, a plug of aqueous PAMAM generation 2.5 solution was first introduced to the capillary, followed by electrokinetic injection of the heavy metal ions under a positive voltage. In this step, PAMAM acted as a sweeping agent, stacking the metal ions on the analyte/PAMAM boundary by forming metal ion-PAMAM complexes. The second preconcentration process occurred when PAR, a stronger ligand, moving toward the injection end under the electric field, reached and re-swept the metal ion-PAMAM zone, forming metal ion-PAR complexes. During separation, the neutral PAMAM moved toward the detector with the electroosmotic flow, dynamically coating the capillary wall, forming stationary phases that affected the separation of the metal ions. Due to the function of PAMAM, the detection sensitivity and resolution of the heavy metal ions improved significantly. Under the optimum conditions, the detection limits were 0.299, 0.184, 0.774, 0.182 and 0.047 μg/L for Pb(II), Cu(II), Hg(II), Zn(II) and Co(II), respectively. The method was successfully applied to the determination of heavy metals in snow, tap and rain water samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Ehama, Kiyomi; Ohmichi, Yusuke; Sakamoto, Soichiro; Fujinami, Takeshi; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Tsuchimoto, Masanobu; Re, Nazzareno
2013-11-04
Carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2]·solvent were synthesized through atmospheric CO2 fixation reaction of [Zn(II)L(n)(H2O)2]·xH2O, Ln(III)(NO3)3·6H2O, and triethylamine, where Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato. Each Zn(II)2Ln(III)2 structure possessing an inversion center can be described as two di-μ-phenoxo-bridged {Zn(II)L(n)Ln(III)(NO3)} binuclear units bridged by two carbonato CO3(2-) ions. The Zn(II) ion has square pyramidal coordination geometry with N2O2 donor atoms of L(n) and one oxygen atom of a bridging carbonato ion at the axial site. Ln(III) ion is coordinated by nine oxygen atoms consisting of four from the deprotonated Schiff-base L(n), two from a chelating nitrate, and three from two carbonate groups. The temperature-dependent magnetic susceptibilities in the range 1.9-300 K, field-dependent magnetization from 0 to 5 T at 1.9 K, and alternating current magnetic susceptibilities under the direct current bias fields of 0 and 1000 Oe were measured. The magnetic properties of the Zn(II)2Ln(III)2 complexes are analyzed on the basis of the dicarbonato-bridged binuclear Ln(III)-Ln(III) structure, as the Zn(II) ion with d(10) electronic configuration is diamagnetic. ZnGd1 (L(1)) and ZnGd2 (L(2)) show a ferromagnetic Gd(III)-Gd(III) interaction with J(Gd-Gd) = +0.042 and +0.028 cm(-1), respectively, on the basis of the Hamiltonian H = -2J(Gd-Gd)ŜGd1·ŜGd2. The magnetic data of the Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) were analyzed by a spin Hamiltonian including the crystal field effect on the Ln(III) ions and the Ln(III)-Ln(III) magnetic interaction. The Stark splitting of the ground state was so evaluated, and the energy pattern indicates a strong easy axis (Ising type) anisotropy. Luminescence spectra of Zn(II)2Tb(III)2 complexes were observed, while those of Zn(II)2Dy(III)2 were not detected. The fine structure assignable to the (5)D4 → (7)F6 transition of ZnTb1 and ZnTb2 is in good accord with the energy pattern from the magnetic analysis. The Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) showed an out-of-phase signal with frequency-dependence in alternating current susceptibility, indicative of single molecule magnet. Under a dc bias field of 1000 Oe, the signals become significantly more intense and the energy barrier, Δ/kB, for the magnetic relaxation was estimated from the Arrhenius plot to be 39(1) and 42(8) K for ZnTb1 and ZnTb2, and 52(2) and 67(2) K for ZnDy1 and ZnDy2, respectively.
Ambrosi, Gianluca; Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Macedi, Eleonora; Micheloni, Mauro; Paoli, Paola; Pontellini, Roberto; Rossi, Patrizia
2011-02-01
Binding properties of 24,29-dimethyl-6,7,15,16-tetraoxotetracyclo[19.5.5.0(5,8).0(14,17)]-1,4,9,13,18,21,24,29-octaazaenatriaconta-Δ(5,8),Δ(14,17)-diene ligand L towards Zn(II) and anions, such as the halide series and inorganic oxoanions (phosphate (Pi), sulfate, pyrophosphate (PPi), and others), were investigated in aqueous solution; in addition, the Zn(II)/L system was tested as a metal-ion-based receptor for the halide series. Ligand L is a cryptand receptor incorporating two squaramide functions in an over-structured chain that connects two opposite nitrogen atoms of the Me(2)[12]aneN(4) polyaza macrocyclic base. It binds Zn(II) to form mononuclear species in which the metal ion, coordinated by the Me(2)[12]aneN(4) moiety, lodges inside the three-dimensional cavity. Zn(II)-containing species are able to bind chloride and fluoride at the physiologically important pH value of 7.4; the anion is coordinated to the metal center but the squaramide units play the key role in stabilizing the anion through a hydrogen-bonding network; two crystal structures reported here clearly show this aspect. Free L is able to bind fluoride, chloride, bromide, sulfate, Pi, and PPi in aqueous solution. The halides are bound at acidic pH, whereas the oxoanions are bound in a wide range of pH values ranging from acidic to basic. The cryptand cavity, abundant in hydrogen-bonding sites at all pH values, allows excellent selectivity towards Pi to be achieved mainly at physiological pH 7.4. By joining amine and squaramide moieties and using this preorganized topology, it was possible, with preservation of the solubility of the receptor, to achieve a very wide pH range in which oxoanions can be bound. The good selectivity towards Pi allows its discrimination in a manner not easily obtainable with nonmetallic systems in aqueous environment. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Williams, Kathryn R.; Adhyaru, Bhavin
2004-01-01
An experiment on kinetics of deactivation of carbonic anhydrase by removal of zinc is demonstrated. Carbonic anhydrase, the enzyme that catalyzes the interconversion of carbon dioxide and bicarbonate, requires on Zn(II) ion in its active site, and removal of the zinc cofactor by complexion to another ligand leaves the apoenzyme, which is totally…
NASA Astrophysics Data System (ADS)
Purtas, Fatih; Sayin, Koray; Ceyhan, Gokhan; Kose, Muhammet; Kurtoglu, Mukerrem
2017-06-01
A new Schiff base containing azo chromophore group obtained by condensation of 2-hydroxy-4-[(E)-phenyldiazenyl]benzaldehyde with 3,4-dimethylaniline (HL) are used for the syntheses of new copper(II) and zinc(II) chelates, [Cu(L)2], and [Zn(L)2], and characterized by physico-chemical and spectroscopic methods such as 1H and 13C NMR, IR, UV.-Vis. and elemental analyses. The solid state structure of the ligand was characterized by single crystal X-ray diffraction study. X-ray diffraction data was then used to calculate the harmonic oscillator model of aromaticity (HOMA) indexes for the rings so as to investigate of enol-imine and keto-amine tautomeric forms in the solid state. The phenol ring C10-C15 shows a considerable deviation from the aromaticity with HOMA value of 0.837 suggesting the shift towards the keto-amine tautomeric form in the solid state. The analytical data show that the metal to ligand ratio in the chelates was found to be 1:2. Theoretical calculations of the possible isomers of the ligand and two metal complexes are performed by using B3LYP method. Electrochemical and photoluminescence properties of the synthesized azo-Schiff bases were also investigated.
Redox chemistry of nickel(II) complexes supported by a series of noninnocent β-diketiminate ligands.
Takaichi, June; Morimoto, Yuma; Ohkubo, Kei; Shimokawa, Chizu; Hojo, Takayuki; Mori, Seiji; Asahara, Haruyasu; Sugimoto, Hideki; Fujieda, Nobutaka; Nishiwaki, Nagatoshi; Fukuzumi, Shunichi; Itoh, Shinobu
2014-06-16
Nickel complexes of a series of β-diketiminate ligands ((R)L(-), deprotonated form of 2-substituted N-[3-(phenylamino)allylidene]aniline derivatives (R)LH, R = Me, H, Br, CN, and NO2) have been synthesized and structurally characterized. One-electron oxidation of the neutral complexes [Ni(II)((R)L(-))2] by AgSbF6 or [Ru(III)(bpy)3](PF6)3 (bpy = 2,2'-bipyridine) gave the corresponding metastable cationic complexes, which exhibit an EPR spectrum due to a doublet species (S = 1/2) and a characteristic absorption band in near IR region ascribable to a ligand-to-ligand intervalence charge-transfer (LLIVCT) transition. DFT calculations have indicated that the divalent oxidation state of nickel ion (Ni(II)) is retained, whereas one of the β-diketiminate ligands is oxidized to give formally a mixed-valence complex, [Ni(II)((R)L(-))((R)L(•))](+). Thus, the doublet spin state of the oxidized cationic complex can be explained by taking account of the antiferromagnetic interaction between the high-spin nickel(II) ion (S = 1) and the organic radical (S = 1/2) of supporting ligand. A single-crystal structure of one of the cationic complexes (R = H) has been successfully determined to show that both ligands in the cationic complex are structurally equivalent. On the basis of theoretical analysis of the LLIVCT band and DFT calculations as well as the crystal structure, the mixed-valence complexes have been assigned to Robin-Day class III species, where the radical spin is equally delocalized between the two ligands to give the cationic complex, which is best described as [Ni(II)((R)L(0.5•-))2](+). One-electron reduction of the neutral complexes with decamethylcobaltocene gave the anionic complexes when the ligand has the electron-withdrawing substituent (R = CN, NO2, Br). The generated anionic complexes exhibited EPR spectra due to a doublet species (S = 1/2) but showed no LLIVCT band in the near-IR region. Thus, the reduced complexes are best described as the d(9) nickel(I) complexes supported by two anionic β-diketiminate ligands, [Ni(I)((R)L(-))2](-). This conclusion was also supported by DFT calculations. Substituent effects on the electronic structures of the three oxidation states (neutral, cationic, and anionic) of the complexes are systematically evaluated on the basis of DFT calculations.
Hevroni, Bosmat Levi; Major, Dan Thomas; Dixit, Mudit; Mhashal, Anil Ranu; Das, Susanta; Fischer, Bilha
2016-05-18
Currently, there is an urgent need for biocompatible metal-ion chelators capable of antioxidant activity and disassembly of amyloid beta (Aβ)-aggregates as potential therapeutics for Alzheimer's disease (AD). We recently demonstrated the promising antioxidant activity of adenine/guanine 2',3' or 3',5'-bis(thio)phosphate analogues, 2'-dA/G3'5'PO/S and A2'3'PO/S, and their affinity to Zn(ii)-ions. These findings encouraged us to evaluate them as agents for the dissolution of Aβ42-Zn(ii)/Cu(ii) aggregates. Specifically, we explored their ability to bind Cu(ii)/Zn(ii)-ions, the geometry and stoichiometry of these complexes, Cu(ii)/Zn(ii)-binding-sites and binding mode, and the ability of these analogues to dissolve Aβ42-Zn(ii)/Cu(ii) aggregates, as well as their effect on the secondary structure of those aggregates. Finally, we identified the most promising agents for dissolution of Aβ42-Zn(ii)/Cu(ii) aggregates. Specifically, we observed the formation of a 1 : 1 complex between 2'-dG3'5'PO and Cu(ii), involving O4 ligands. Zn(ii) was coordinated by both thiophosphate groups of 2'-dA3'5'PS and A2'3'PS involving O2S2 ligands in a 1 : 1 stoichiometry. A2'3'PS dissolves Aβ42-Zn(ii) and Aβ42-Cu(ii) aggregates as effectively as, and 2.5-fold more effectively than EDTA, respectively. Furthermore, 2'-dG3'5'PS and A2'3'PS reverted the Aβ42-M(ii) structure, back to that of the free Aβ42. Finally, cryo-TEM and TEM images confirmed the disassembly of Aβ42 and Aβ42-M(ii) aggregates by A2'3'PS. Hence, 2'-dG3'5'PS and A2'3'PS may serve as promising scaffolds for new AD therapeutics, acting as both effective antioxidants and agents for solubilization of Aβ42-Cu(ii)/Zn(ii) aggregates.
NASA Astrophysics Data System (ADS)
Tsaturyan, Arshak; Machida, Yosuke; Akitsu, Takashiro; Gozhikova, Inna; Shcherbakov, Igor
2018-06-01
We report on synthesis and characterization of binaphthyl containing Schiff base Ni(II), Cu(II), and Zn(II) complexes as promising photosensitizers for dye-sensitized solar cells (DSSC). Based on theoretical and experimental data, the possibility of their application in DSSC was confirmed. To our knowledge, we find dye performance of complex is steric and rigid structure widely spread to efficiency. The spatial and electronic structures of the complexes were studied by means of the quantum chemical modeling using DFT and TD-DFT approaches. The adsorption energies of the complexes on TiO2 cluster were calculated and appeared to be very close in value. The Zn(II) complex has the biggest value of molar extinction.
Espa, Davide; Pilia, Luca; Marchiò, Luciano; Artizzu, Flavia; Serpe, Angela; Mercuri, Maria Laura; Simão, Dulce; Almeida, Manuel; Pizzotti, Maddalena; Tessore, Francesca; Deplano, Paola
2012-03-28
The mixed-ligand dithiolene complex [Pt(Bz(2)pipdt)(dcbdt)] (1) bearing the two ligands Bz(2)pipdt = 1,4-dibenzyl-piperazine-3,2-dithione and dcbdt = dicyanobenzodithiolato, has been synthesized, characterized and studied to evaluate its second-order optical nonlinearity. The dithione/dithiolato character of the two ligands gives rise to an asymmetric distribution of the charge in the molecule. This is reflected by structural data showing that in the C(2)S(2)PtS(2)C(2) dithiolene core the four sulfur atoms define a square-planar coordination environment of the metal where the Pt-S bond distances involving the two ligands are similar, while the C-S bond distances in the C(2)S(2) units exhibit a significant difference in Bz(2)pipdt (dithione) and dcbdt (dithiolato). 1 shows a moderately strong absorption peak in the visible region, which can be related to a HOMO-LUMO transition, where the dcbdt ligand (dithiolato) contributes mostly to the HOMO, and the Bz(2)pipdt one (dithione) mostly to the LUMO. Thus this transition has ligand-to-ligand charge transfer (CT) character with some contribution of the metal and undergoes negative solvatochromism and molecular quadratic optical nonlinearity (μβ(0) = -1296 × 10(-48) esu), which was determined by the EFISH (electric-field-induced second-harmonic generation) technique and compared with the values of similar complexes on varying the dithiolato ligand (mnt = maleonitriledithiolato, dmit = 2-thioxo-1,3-dithiole-4,5-dithiolato). Theoretical calculations help to elucidate the role of the dithiolato ligands in affecting the molecular quadratic optical nonlinearity of these complexes.
NASA Astrophysics Data System (ADS)
Osuntokun, Jejenija; Ajibade, Peter A.; Onwudiwe, Damian C.
2016-12-01
Zinc complexes of the type [Zn(diptu)2(ced)] (1), [Zn(diptu)2(ced)py] (2), [Zn(diptu)2(ced)bpy] (3), and [Zn(diptu)2(ced)phen] (4), (where (diptu)2(ced) = 1-cyano-1-carboethoxyethylene-2,2-dithiolato-κS,S‧-bis(N,N-diisopropyllthiourea), py = pyridine, bpy = 2, 2‧ bipyridine and phen = 1, 10 phenanthroline have been synthesized and characterized by elemental analyses, Fourier transform infra-red (FTIR) and Nuclear magnetic resonance (NMR) spectroscopies. The parent complex (1) was formulated as four coordinate species, which gave rise to 5 coordinate complex in (2) and six coordinate compounds in (3) and (4), with the dithiolate acting as bidentate chelating ligand. The complexes were used as single-source precursors for the synthesis of HDA-capped ZnS nanoparticles. The nanoparticles gave different morphologies with sizes in the range of 1.92-4.72 nm as observed from the TEM analysis and supported by XRD. The UV-vis spectroscopy showed that all the ZnS nanoparticles are blue shifted, with respect to the bulk, which confirmed quantum confinement. The photoluminescence spectra showed narrow and broad emission peaks around 290 and 360 nm which are ascribed to spontaneous emission peaks from band to band transition and surface states respectively. Photocatalytic activities of all the nanoparticles were investigated with methylene blue (MB) acting as the organic dye, and the UV-vis spectral revealed a gradual decrease in absorption peak that confirmed the degradation of the MB.
Deinlein, Ulrich; Weber, Michael; Schmidt, Holger; Rensch, Stefan; Trampczynska, Aleksandra; Hansen, Thomas H; Husted, Søren; Schjoerring, Jan K; Talke, Ina N; Krämer, Ute; Clemens, Stephan
2012-02-01
Zn deficiency is among the leading health risk factors in developing countries. Breeding of Zn-enriched crops is expected to be facilitated by molecular dissection of plant Zn hyperaccumulation (i.e., the ability of certain plants to accumulate Zn to levels >100-fold higher than normal plants). The model hyperaccumulators Arabidopsis halleri and Noccaea caerulescens share elevated nicotianamine synthase (NAS) expression relative to nonaccumulators among a core of alterations in metal homeostasis. Suppression of Ah-NAS2 by RNA interference (RNAi) resulted in strongly reduced root nicotianamine (NA) accumulation and a concomitant decrease in root-to-shoot translocation of Zn. Speciation analysis by size-exclusion chromatography coupled to inductively coupled plasma mass spectrometry showed that the dominating Zn ligands in roots were NA and thiols. In NAS2-RNAi plants, a marked increase in Zn-thiol species was observed. Wild-type A. halleri plants cultivated on their native soil showed elemental profiles very similar to those found in field samples. Leaf Zn concentrations in NAS2-RNAi lines, however, did not reach the Zn hyperaccumulation threshold. Leaf Cd accumulation was also significantly reduced. These results demonstrate a role for NAS2 in Zn hyperaccumulation also under near-natural conditions. We propose that NA forms complexes with Zn(II) in root cells and facilitates symplastic passage of Zn(II) toward the xylem.
Deinlein, Ulrich; Weber, Michael; Schmidt, Holger; Rensch, Stefan; Trampczynska, Aleksandra; Hansen, Thomas H.; Husted, Søren; Schjoerring, Jan K.; Talke, Ina N.; Krämer, Ute; Clemens, Stephan
2012-01-01
Zn deficiency is among the leading health risk factors in developing countries. Breeding of Zn-enriched crops is expected to be facilitated by molecular dissection of plant Zn hyperaccumulation (i.e., the ability of certain plants to accumulate Zn to levels >100-fold higher than normal plants). The model hyperaccumulators Arabidopsis halleri and Noccaea caerulescens share elevated nicotianamine synthase (NAS) expression relative to nonaccumulators among a core of alterations in metal homeostasis. Suppression of Ah-NAS2 by RNA interference (RNAi) resulted in strongly reduced root nicotianamine (NA) accumulation and a concomitant decrease in root-to-shoot translocation of Zn. Speciation analysis by size-exclusion chromatography coupled to inductively coupled plasma mass spectrometry showed that the dominating Zn ligands in roots were NA and thiols. In NAS2-RNAi plants, a marked increase in Zn-thiol species was observed. Wild-type A. halleri plants cultivated on their native soil showed elemental profiles very similar to those found in field samples. Leaf Zn concentrations in NAS2-RNAi lines, however, did not reach the Zn hyperaccumulation threshold. Leaf Cd accumulation was also significantly reduced. These results demonstrate a role for NAS2 in Zn hyperaccumulation also under near-natural conditions. We propose that NA forms complexes with Zn(II) in root cells and facilitates symplastic passage of Zn(II) toward the xylem. PMID:22374395
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.
To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K +, Zn 2+, Pb 2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic-inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm -1 for Pb(II) and ca. 1580 cm -1 for Zn(II) are consistentmore » with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. Finally, these complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.
To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K +, Zn 2+, Pb 2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic–inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm –1 for Pb(II) and ca. 1580 cm –1 for Zn(II) are consistentmore » with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. These complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less
MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.; ...
2016-09-07
To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K +, Zn 2+, Pb 2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic-inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm -1 for Pb(II) and ca. 1580 cm -1 for Zn(II) are consistentmore » with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. Finally, these complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less
Megger, Dominik A; Rosowski, Kristin; Radunsky, Christian; Kösters, Jutta; Sitek, Barbara; Müller, Jens
2017-04-05
Three new complexes bearing the tridentate hydrazone-based ligand 2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)pyridine (L) were synthesized and structurally characterized. Biological tests indicate that the Zn(ii) complex [ZnCl 2 (L)] is of low cytotoxicity against the hepatocellular carcinoma cell line HepG2. In contrast, the Cu(ii) and Mn(ii) complexes [CuCl 2 (L)] and [MnCl 2 (L)] are highly cytotoxic with EC 50 values of 1.25 ± 0.01 μM and 20 ± 1 μM, respectively. A quantitative proteome analysis reveals that treatment of the cells with the Cu(ii) complex leads to a significantly altered abundance of 102 apoptosis-related proteins, whereas 38 proteins were up- or down-regulated by the Mn(ii) complex. A closer inspection of those proteins regulated only by the Cu(ii) complex suggests that the superior cytotoxic activity of this complex is likely to be related to an initiation of the caspase-independent cell death (CICD). In addition, an increased generation of reactive oxygen species (ROS) and a strong up-regulation of proteins responsive to oxidative stress suggest that alterations of the cellular redox metabolism likely contribute to the cytotoxicity of the Cu(ii) complex.
Patel, Parth; Parmar, Bhavesh; Kureshy, Rukhsana I; Khan, Noor-Ul H; Suresh, Eringathodi
2018-06-19
Herein, a zinc(ii)-based 3D mixed ligand metal organic framework (MOF) was synthesized via versatile routes including green mechanochemical synthesis. The MOF {[Zn(ATA)(L)·H2O]}n (ZnMOF-1-NH2) has been characterized by various physico-chemical techniques, including SCXRD, and composed of the bipyridyl-based Schiff base (E)-N'-(pyridin-4-ylmethylene)isonicotinohydrazide (L) and 2-aminoterephthalic acid (H2ATA) ligands as linkers. The MOF material has been explored as a multifunctional heterogeneous catalyst for the cycloaddition of alkyl and aryl epoxides with CO2 and sulfoxidation reactions of aryl sulfides. The influence of various reaction parameters is examined to optimize the performance of the catalytic reactions. It is found that solvent-free catalytic reaction conditions offer good catalytic conversion in the case of cyclic carbonates, and for sulfoxide, good conversion and selectivity are achieved in the presence of DCM as a solvent medium under ambient reaction conditions. The chemical and thermal stability of the catalyst are excellent and it is active for up to four catalytic cycles without significant loss in activity. Furthermore, based on the catalytic activity and structural evidence, a plausible mechanism for both catalytic reactions is proposed.
Rey, A; Papadopoulos, M; Leon, E; Mallo, L; Pirmettis, Y; Manta, E; Raptopoulou, C; Chiotellis, E; Leon, A
2001-03-01
A novel "3 + 1" mixed ligand 99mTc complex with N,N-bis(2-mercaptoethyl)-N'N'-diethyl-ethilenediamine as ligand and 1-octanethiol as coligand was prepared and evaluated as potential brain radiopharmaceutical. Preparation at tracer level was accomplished by substitution, using 99mTc-glucoheptonate as precursor and a coligand/ligand ratio of 5. Under these conditions the labeling yield was over 80% and a major product with radiochemical purity >80% was isolated by HPLC methods and used for biological evaluation. Chemical characterization at carrier level was developed using the corresponding rhenium and 99gTc complexes. Results were consistent with the expected "3 + 1" structure and X-ray diffraction study demonstrated that the complex adopted a distorted trigonal bipyramidal geometry. All sulphur atoms underwent ionization leading to the formation of a neutral compound. Biodistribution in mice demonstrated early brain uptake, fast blood clearance and excretion through hepatobiliary system. Although brain/blood ratio increased significantly with time, this novel 99mTc complex did not exhibit ideal properties as brain perfusion radiopharmaceutical since brain uptake was too low.
NASA Astrophysics Data System (ADS)
Patel, R. N.; Singh, Yogendra Pratap
2018-02-01
The mixed ligand oxovanadium(IV) complex [VO(L1)(L2)] [L1 = N'-[(Z)-phenyl(pyridin-2-yl)methylidene]benzohydrazide and L2 = Benzohydrazide] has been synthesized in aerobic condition. The complex was characterized by elemental analysis spectroscopic (UV-vis, IR, epr) and electrochemical methods. X-ray diffraction pattern was also used to characterize this complex, which has a distorted octahedral structure. Single crystal diffraction analysis reveals that Csbnd H⋯π (aryl/metal chelate rings) interactions contribute to the stabilization of the crystal structure in given dimension. The room temperature magnetic susceptibility data shows paramagnetic nature of the complex. The complex was also tested for in-vitro antidiabetic activity. Moderate α-glucosidase inhibition is shown by this complex, which may be considered as α-glucosidase inhibitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocakoç, Mehpeyker, E-mail: mkocakoc@cu.edu.tr; Tapramaz, Recep, E-mail: recept@omu.edu.tr
Acesulfame potassium salt is a synthetic and non-caloric sweetener. It is also important chemically for its capability of being ligand in coordination compounds, because it can bind over Nitrogen and Oxygen atoms of carbonyl and sulfonyl groups and ring oxygen. Some acesulfame containing transition metal ion complexes with mixed ligands exhibit solvato and thermo chromic properties and these properties make them physically important. In this work single crystals of Mn{sup +2} ion complex with mixed ligand, [Mn(acs){sub 2}(2-pic){sub 2}(H{sub 2}O){sub 2}], was studied with electron paramagnetic resonance (EPR) spectroscopy. EPR parameters were determined. Zero field splitting parameters indicated that themore » complex was highly symmetric. Variable temperature studies showed no detectable chance in spectra.« less
NASA Astrophysics Data System (ADS)
Singh, Th. David; Sumitra, Ch.; Yaiphaba, N.; Devi, H. Debecca; Devi, M. Indira; Singh, N. Rajmuhon
2005-04-01
The coordination chemistry of glutathione reduced (GSH) is of great importance as it acts as excellent model system for the binding of metal ions. The GSH complexation with metal ions is involved in the toxicology of different metal ions. Its coordination behaviour for soft metal ions and hard metal ions is found different because of the structure of GSH and its different potential binding sites. In our work we have studied two chemically dissimilar metal ions viz. Pr(III), which prefer hard donor site like carboxylic groups and Zn(II) the soft metal ion which prefer peptide-NH and sulphydryl groups. The absorption difference and comparative absorption spectroscopy involving 4f-4f transitions of the heterobimetallic Complexation of GSH with Pr(III) and Zn(II) has been explored in aqueous and aquated organic solvents. The variation in the energy parameters like Slater-Condon ( F K), Racah ( E K) and Lande ( ξ4f), Nephelauxetic parameter ( β) and bonding parameter ( b1/2) are computed to explain the nature of complexation.
Synthesis, spectroscopic, thermogravimetric and antimicrobial studies of mixed ligands complexes
NASA Astrophysics Data System (ADS)
Mahmoud, Walaa H.; Mahmoud, Nessma F.; Mohamed, Gehad G.; El-Sonbati, Adel Z.; El-Bindary, Ashraf A.
2015-09-01
An interesting series of mixed ligand complexes have been synthesized by the reaction of metal chloride with guaifenesin (GFS) in the presence of 2-aminoacetic acid (HGly) (1:1:1 molar ratio). The elemental analysis, magnetic moments, molar conductance, spectral (UV-Vis, IR, 1H NMR and ESR) and thermal studies were used to characterize the isolated complexes. The molecular structure of GFS is optimized theoretically and the quantum chemical parameters are calculated. The IR showed that the ligand (GFS) acts as monobasic tridentate through the hydroxyl, phenoxy etheric and methoxy oxygen atoms and co-ligand (HGly) as monobasic bidentate through the deprotonated carboxylate oxygen atom and nitrogen atom of amino group. The molar conductivities showed that all the complexes are non-electrolytes except Cr(III) complex is electrolyte. Electronic and magnetic data proposed the octahedral structure for all complexes under investigation. ESR spectrum for Cu(II) revealed data which confirm the proposed structure. Antibacterial screening of the compounds were carried out in vitro on gram positive (Bacillus subtilis and Staphylococcus aureus), gram negative (Escherichia coli and Neisseria gonorrhoeae) bacteria and for in vitro antifungal activity against Candida albicans organism. However, some complexes showed more chemotherapeutic efficiency than the parent GFS drug. The complexes were also screened for their in vitro anticancer activity against the breast cell line (MFC7) and the results obtained showed that they exhibit a considerable anticancer activity.
Novel Cu(I)-selective chelators based on a bis(phosphorothioyl)amide scaffold.
Amir, Aviran; Ezra, Alon; Shimon, Linda J W; Fischer, Bilha
2014-08-04
Bis(dialkyl/aryl-phosphorothioyl)amide (BPA) derivatives are versatile ligands known by their high metal-ion affinity and selectivity. Here, we synthesized related chelators based on bis(1,3,2-dithia/dioxaphospholane-2-sulfide)amide (BTPA/BOPA) scaffolds targeting the chelation of soft metal ions. Crystal structures of BTPA compounds 6 (N(-)R3NH(+)) and 8 (NEt) revealed a gauche geometry, while BOPA compound 7 (N(-)R3NH(+)) exhibited an anti-geometry. Solid-state (31)P magic-angle spinning NMR spectra of BTPA 6-Hg(II) and 6-Zn(II) complexes imply a square planar or tetrahedral geometry of the former and a distorted tetrahedral geometry of the latter, while both BTPA 6-Ni(II) and BOPA 7-Ni(II) complexes possibly form a polymeric structure. In Cu(I)-H2O2 system (Fenton reaction conditions) BTPA compounds 6, 8, and 10 (NCH2Ph) were identified as most potent antioxidants (IC50 32, 56, and 29 μM, respectively), whereas BOPA analogues 7, 9 (NEt), and 11 (NCH2Ph) were found to be poor antioxidants. In Fe(II)-H2O2 system, IC50 values for both BTPA and BOPA compounds exceeded 500 μM indicating high selectivity to Cu(I) versus the borderline Fe(II)-ion. Neither BTPA nor BOPA derivatives showed radical scavenging properties in H2O2 photolysis, implying that inhibition of the Cu(I)-induced Fenton reaction by both BTPA and BOPA analogues occurred predominantly through Cu(I)-chelation. In addition, NMR-monitored Cu(I)- and Zn(II)-titration of BTPA compounds 8 and 10 showed their high selectivity to a soft metal ion, Cu(I), as compared to a borderline metal ion, Zn(II). In summary, lipophilic BTPA analogues are promising highly selective Cu(I) ion chelators.
Najar, Adel M; Tidmarsh, Ian S; Adams, Harry; Ward, Michael D
2009-12-21
Reaction of two structurally related bridging ligands L(26Py) and L(13Ph), in which two bidentate chelating pyrazolyl-pyridine units are connected to either a 2,6-pyridine-diyl or 1,3-benzene-diyl central group via methylene spacers, with first-row transition metal dications, results in a surprising variety of structures. The commonest is that of an octanuclear coordination cage [M(8)L(12)]X(16) [M = Co(II) or Zn(II); X = perchlorate or tetrafluoroborate] in which a metal ion is located at each of the eight vertices of an approximate cube, and one bis-bidentate bridging ligand spans each edge. The arrangement of fac and mer tris-chelate metal centers around the inversion center results in approximate (non-crystallographic) S(6) symmetry. Another structural type observed in the solid state is a hexanuclear complex [Co(6)(L(13Ph))(9)](ClO(4))(12) in which the six metal ions are in a rectangular array (two rows of three), folded about the central Co-Co vector like a partially open book, with each metal-metal edge containing one bridging ligand apart from the two outermost metal-metal edges which are spanned by a pair of bridging ligands in a double helical array. The final structural type we observed is a tetranuclear square [Ni(4)(L(26Py))(6)](BF(4))(8), with the four Ni-Ni edges spanned alternately by one and two bridging ligand such that it effectively consists of two dinuclear double helicates cross-linked by additional bridging ligands. A balance between the "cube" and "book" forms, which varied from compound to compound, was observed in solution in many cases by (1)H NMR and ES mass spectrometry studies.
NASA Astrophysics Data System (ADS)
Fang, Kang; He, Xiang; Shao, Min; Li, Ming-Xing
2016-08-01
Four unique complexes with diverse coordination architectures were synthesized upon complexation of 5,5-(1,4-phenylenebis (methylene))bis (oxy)- diisophthalic acid (H4L) with zinc ions by using different solvent. namely, {[Zn(H2L) (bpp)]·DEF}n (1), {[Zn2(L) (bpp)2]·4H2O}n (2), {[Zn2(L) (pdp)2]·3H2O·DEF}n (3), {[Zn2(L) (pdp)2].4H2O}n (4). Complexes 1,2 and 3,4 are obtained by varying solvents to control their structures. The size of solvent molecular plays an important role to control different structure of these compounds. Compound 1 is 2D waved framework with (4, 4) grid layer as sql topology. Compound 3 displays a (4,6)-connected 2-nodal net with a fsc topology. Compounds 2 and 4 are all three-dimensional network simplified as (4,4)-connected 2-nodal net with a bbf topology. The photochemical properties of compounds 1-4 were tested in the solid state at room temperature, owing to their strong luminescent emissions, complexes 1-4 are good candidates for photoactive materials.
NASA Astrophysics Data System (ADS)
Wu, Weiping; Li, Baohong; Gu, Chuying; Wang, Jun; Singh, Amita; Kumar, Abhinav
2017-11-01
A porous Zn(II) metal-organic framework (MOF) [Zn(H2L)(4,4‧-bipy)0.5]n (1) has been selected and its luminescence sensing for cations and anions as well as the photocatalytic property against methyl violet have been explored. Luminescence studies indicated that 1 could be an efficient multifunctional fluorescent material for highly sensitive detection of metal cation Cu2+ and anions CrO42-. The luminescence intensity of 1 was found to decrease proportionately with increase in the concentration of Cu2+ and CrO42-. Furthermore, the photocatalytic property of 1 for degradation of the methyl violet (MV) have been explored and a possible photocatalytic mechanism have been proposed using density of states (DOS) and partial DOS (pDOS) calculations.
Mishra, Lallan; Yadaw, Ajay K; Bhattacharya, Subrato; Dubey, Santosh K
2005-05-01
The complexes of Ru(II)-2,2'-bipyridyl with substituted diazopentane-2,4-diones (L1H-L5H) were synthesized and characterized by elemental analyses, conductance, FAB (fast atom bombardment) mass and spectral (IR, UV/Vis (UV/visible), NMR) studies. Molecular geometry optimization of the complexes was also made. None of the complexes luminesce. However, facilitated oxidation of Ru(II) to Ru(III) was evidenced from their lower reduction potential data. The ligands and their complexes were tested for their antitumour activity against a variety of tumour cell lines. Though activity is found to vary with the type of tumour cell lines used, yet complex 5 with naphtyldiazopentane-2,4-dione as co-ligand was found to be a potential compound as it showed in general significant activity against all cell lines studied.
Diverse Zn(II) MOFs assembled from V-shaped asymmetric multicarboxylate and N-donor ligands
NASA Astrophysics Data System (ADS)
Ye, Run-Ping; Yang, Jin-Xia; Zhang, Xin; Zhang, Lei; Yao, Yuan-Gen
2016-02-01
By reacting an asymmetry semi-rigid V-shaped linker H3L (H3L = 3-(3-carboxyphenoxy) phthalic acid) and Zn(NO3)2·6H2O under different N-donor ligands in different solvents, four new Zn-based coordination polymers, [Zn(HL)(2,2‧-bpy)(H2O)]n(1), [Zn(HL)(4,4‧-bpy)]n·n(DMA) (2), [Zn3(L)2(phen)3(H2O)]n·n(H2O) (3) and [Zn(HL)(phen)(H2O)]2(4) (2,2‧-bpy = 2,2‧-bipyridine; 4,4‧-bpy = 4,4‧-bipyridine; phen = 1,10-phenanthroline; DMA = N,N-dimethylacetamide) have been obtained. All of these compounds have been clearly identified by single crystal X-ray diffraction analysis. Compound 1 exhibits one-dimensional (1D) chain structure constructed from uninuclear Zn(II) motif, which further extends into 2D supramolecular architecture via intermolecular π-π interactions and hydrogen bonds. Structural analysis reveals that the structure of 2 and 3 can be described as a 2D hcb topology network with the point symbol of {63}. Compound 4 shows a 0D binuclear motif while its 3D packing network has a large potential solvent voids. The results of this research demonstrate that the solvent and the secondary ligands could co-regulate different structural coordination polymers with interesting properties. In addition, the thermal stabilities and solid-state luminescence properties of compounds 1-4 have also been investigated.
Whittington, Christi L; Wojtas, Lukasz; Gao, Wen-Yang; Ma, Shengqian; Larsen, Randy W
2015-03-28
It has now been demonstrated that Ru(ii)tris(2,2'-bipyridine) (RuBpy) can be utilized to template the formation of new metal organic framework (MOF) materials containing crystallographically resolved RuBpy clusters with unique photophysical properties. Two such materials, RWLC-1 and RWLC-2, have now been reported from our laboratory and are composed of RuBpy encapsulated in MOFs composed of Zn(ii) ions and 1,3,5-tris(4-carboxyphenyl)benzene ligands (C. L. Whittington, L. Wojtas and R. W. Larsen, Inorg. Chem., 2014, 53, 160-166). Here, a third RuBpy templated photoactive MOF is described (RWLC-3) that is derived from the reaction between Zn(ii) ions and 1,4-dicarboxybenzene in the presence of RuBpy. Single Crystal X-ray diffraction studies determined the position of RuBpy cations within the crystal lattice. The RWLC-3 structure is described as a 2-fold interpenetrated pillared honeycomb network (bnb) containing crystallographically resolved RuBpy clusters. The two bnb networks are weakly interconnected. The encapsulated RuBpy exhibits two emission decay lifetimes (τ-fast = 120 ns, τ-slow = 453 ns) and a bathochromic shift in the steady state emission spectrum relative to RuBpy in ethanol.
NASA Astrophysics Data System (ADS)
Sakthi, Marimuthu; Ramu, Andy
2017-12-01
A new salicylaldehyde derived 2,4-diiodo-6-((2-phenylaminoethylimino)methyl)phenol Schiff base(L) and its transition metal complexes of the type MLCl where, M = Cu(II), Ni(II), Co(II), Mn(II) and Zn(II) have been synthesized. The coordination mode of Schiff base holding NNO donor atoms with metal ions was well investigated by elemental analysis, ESI-mass as well as IR, UV-vis, CV and NMR spectral studies. The binding efficiency and mode of these complexes with biological macromolecules viz., herring sperm DNA (HS- DNA) and bovine serum albumin (BSA) have been explored through various spectroscopic techniques. The characteristic changes in absorption, emission and, circular dichroism spectra of the complexes with DNA indicate the noticeable interaction between them. From the all spectral information complexes could interact with DNA via non-intercalation mode of binding. The hyperchromisim in absorption band and hypochromisim in emission intensity of BSA with different complex concentrations shown significant information, and the binding affinity value has been predicted from Stern-Volmer plots. Further, all the complexes could cleave the circular plasmid pUC19 DNA efficiently by using an activator H2O2. The ligand and all metal(II) complexes showed good antibacterial activities. The molecular docking studies of the complexes with DNA were performed in order to make a comparison and conclusion with spectral technic results.
Gillet, Raphaël; Roux, Amandine; Brandel, Jérémy; Huclier-Markai, Sandrine; Camerel, Franck; Jeannin, Olivier; Nonat, Aline M; Charbonnière, Loïc J
2017-10-02
Here we present the synthesis and characterization of a new bispidine (3,7-diazabicyclo[3.3.1]nonane) ligand with N-methanephosphonate substituents (L 2 ). Its physicochemical properties in water, as well as those of the corresponding Cu(II) and Zn(II) complexes, have been evaluated by using UV-visible absorption spectroscopy, potentiometry, 1 H and 31 P NMR, and cyclic voltammetry. Radiolabeling experiments with 64 Cu II have been carried out, showing excellent radiolabeling properties. Quantitative complexation was achieved within 60 min under stoichiometric conditions, at room temperature and in the nanomolar concentration range. It was also demonstrated that the complexation occurred below pH 2. Properties have been compared to those of the analogue bispidol bearing a N-methanecarboxylate substituent (L 1 ). Although both systems meet the required criteria to be used as new chelator for 64/67 Cu in terms of the kinetics of formation, thermodynamic stability, selectivity for Cu(II), and kinetic inertness regarding redox- or acid-assisted decomplexation processes, substitution of the carboxylic acid function by the phosphonic moiety is responsible for a significant increase in the thermodynamic stability of the Cu(II) complex (+2 log units for pCu) and also leads to an increase in the radiochemical yields with 64 Cu II which is quantitative for L 2 .
Benny, Paul D; Fugate, Glenn A; Barden, Adam O; Morley, Jennifer E; Silva-Lopez, Elsa; Twamley, Brendan
2008-04-07
Reaction of [NEt4]2[ReBr3(CO)3] with 2,4-pentanedione (acac) yields a complex of the type fac-Re(acac)(OH2)(CO)3 (1) under aqueous conditions. 1 was further reacted with a monodentate ligand (pyridine) to yield a fac-Re(acac)(pyridine)(CO)3 complex (2). Complex 1 was found to react with primary amines to generate a Schiff base (imine) in aqueous solutions. When a mixed-nitrogen donor bidentate ligand, 2-(2-aminoethyl)pyridine, that has different coordination affinities for fac-Re(acac)(OH2)(CO)3 was utilized, a unique tridentate ligand was formed in situ utilizing a metal-assisted Schiff base formation to yield a complex fac-Re(CO)3(3[(2-phenylethyl)imino]-2-pentanone) (3). Tridentate ligand formation was found to occur only with the Re-coordinated acac ligand. Reactions of acac with fac-Re(CO)3Br(2-(2-aminoethyl)pyridine) (4) or a mixture of [NEt4]2[ReBr3(CO)3], acac, and 2-(2-aminoethyl)pyridine did not yield the formation of complex 3 in water.
On the active site of mononuclear B1 metallo β-lactamases: a computational study
NASA Astrophysics Data System (ADS)
Sgrignani, Jacopo; Magistrato, Alessandra; Dal Peraro, Matteo; Vila, Alejandro J.; Carloni, Paolo; Pierattelli, Roberta
2012-04-01
Metallo-β-lactamases (MβLs) are Zn(II)-based bacterial enzymes that hydrolyze β-lactam antibiotics, hampering their beneficial effects. In the most relevant subclass (B1), X-ray crystallography studies on the enzyme from Bacillus Cereus point to either two zinc ions in two metal sites (the so-called `3H' and `DCH' sites) or a single Zn(II) ion in the 3H site, where the ion is coordinated by Asp120, Cys221 and His263 residues. However, spectroscopic studies on the B1 enzyme from B. Cereus in the mono-zinc form suggested the presence of the Zn(II) ion also in the DCH site, where it is bound to an aspartate, a cysteine, a histidine and a water molecule. A structural model of this enzyme in its DCH mononuclear form, so far lacking, is therefore required for inhibitor design and mechanistic studies. By using force field based and mixed quantum-classical (QM/MM) molecular dynamics (MD) simulations of the protein in aqueous solution we constructed such structural model. The geometry and the H-bond network at the catalytic site of this model, in the free form and in complex with two common β-lactam drugs, is compared with experimental and theoretical findings of CphA and the recently solved crystal structure of new B2 MβL from Serratia fonticola (Sfh-I). These are MβLs from the B2 subclass, which features an experimentally well established mono-zinc form, in which the Zn(II) is located in the DCH site. From our simulations the ɛɛδ and δɛδ protomers emerge as possible DCH mono-zinc reactive species, giving a novel contribution to the discussion on the MβL reactivity and to the drug design process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, K.J.; Lee, L.; Mabbott, G.A.
1983-03-30
The electrochemistry of a series of mixed-metal bimetallic complexes of the type B/sub 5/MLM'B'/sub 5/, where B/sub 5/M = (CNN)/sub 5/Fe/sup II/ or (NH/sub 3/)/sub 5/Ru/sup II/, L = pyrazine, 4,4'-bipyridine, or 4-cyanopyridine, M'B'/sub 5/ = Rh/sup III/(NH/sub 3/)/sub 5/ or Co/sup III/(CN)/sub 5/, is reported. The bimetallic complexes all have metal-to-ligand charge-transfer (MLCT) bands associated with the M-B unit (d/sub ..pi../M ..-->.. p/sub ..pi../*L). The effect of the remote metal center, M'B'/sub 5/, is to function as a Lewis acid, shifting the MLCT maximum to lower energy and shifting the M/sup III///sup II/ reduction potential more positive with respectmore » to free B/sub 5/ML. The remote metal influence is attenuated by longer bridging ligands and by reduced ..pi..-overlap. A comparison of the electrochemical data of the mixed-valence Fe(II)/Fe(III) and Ru(II)/Ru(III) complexes to the mixed-metal Fe(II)/Co(III) and Ru(II)/Rh(III) complexes has enabled a quantitative measure of the stabilization due to electron delocalization in the mixed-valence complexes. The results show that electron delocalization is greater for the ruthenium complexes than for the iron complexes, is a small contributor to the total stabilization of the mixed-valence state, and even in ruthenium drops off rapidly as the length of the bridge increases.« less
NASA Astrophysics Data System (ADS)
Ding, Xiao-Li; Shen, Lu; Zou, Lu-Yi; Ma, Ming-Shuo; Ren, Ai-Min
2018-04-01
A theoretical study on a series of neutral heteroleptic Cu(I) complexes with different azole-pyridine-based N^N ligands has been presented to get insight into the effect of various nitrogen atoms in the azole ring on photophysical properties. The results reveal that the highest occupied molecular orbital (HOMO) levels and the emission wavelengths of these complexes are mainly governed by the nitrogen atom number in azole ring. With the increasing number of nitrogen atom , the electron density distribution of HOMO gradually extend from the N^N ligand to the whole molecule, meanwhile, the improved contribution from Cu(d) orbits in HOMO results in an effective mixing of various charge transfermodes, and hence, the fast radiative decay(kr) and the slow non-radiative decay rate(knr) are achieved. The photoluminescence quantum yield (PLQY) show an apparent dependence on the nitrogen atom number in the five-membered nitrogen heterocycles. However, the increasing number of nitrogen atoms is not necessary for increasing PLQY. The complex 3 with 1,2,4-triazole-pyridine-based N^N ligands is considered to be a potential emitter with high phosphorescence efficiency. Finally, we hope that our investigations will contribute to systematical understanding and guiding for material molecular engineering.
Rauf, Abdur
1996-01-01
Mixed ligands biologically active complexes of cobalt(II), copper(II) and nickel(II) with nicotinoylhydrazine-derived ONO, NNO and SNO donor schiff-base ligands having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesised and characterised on the basis of their physical, analytical and spectral data. In order to evaluate the role of anions on their bioability, these ligands and their synthesised metal complexes with various anions have been screened against bacterial species such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus and the title studies have proved a definative role of anions in increasing the biological activity PMID:18472896
Synthesis and Spectral Evaluation of Some Unsymmetrical Mesoporphyrinic Complexes
Boscencu, Rica; Oliveira, Anabela Sousa; Ferreira, Diana P.; Ferreira, Luís Filipe Vieira
2012-01-01
Synthesis and spectral evaluation of new zinc and copper unsymmetrical mesoporphyrinic complexes are reported. Zn(II)-5-(4-acetoxy-3-methoxyphenyl)-10,15,20- tris-(4-carboxymethylphenyl)porphyrin, Zn(II)-5-[(3,4-methylenedioxy)phenyl]-10,15,20- tris-(4-carboxymethylphenyl)porphyrin, Cu(II)-5-(4-acetoxy-3-methoxyphenyl)-10,15,20- tris-(4-carboxymethylphenyl)porphyrin and Cu(II)-5-[(3,4-methylenedioxy)phenyl]-10,15,20- tris-(4-carboxymethylphenyl)porphyrin were synthesized using microwave-assisted synthesis. The complexes were characterized by elemental analysis, FT-IR, UV-Vis, EPR and NMR spectroscopy, which fully confirmed their structure. The spectral absorption properties of the porphyrinic complexes were studied in solvents with different polarities. Fluorescence emission and singlet oxygen formation quantum yields were evaluated for the compounds under study, revealing high yields for the zinc derivatives. The copper complexes are not emissive and only display residual capacity for singlet oxygen formation. PMID:22942693
Werrett, Melissa V; Wright, Phillip J; Simpson, Peter V; Raiteri, Paolo; Skelton, Brian W; Stagni, Stefano; Buckley, Alysia G; Rigby, Paul J; Massi, Massimiliano
2015-12-21
Three new complexes of formulation fac-[Re(CO)3(diim)L], where diim is either 1,10-phenanthroline or 1,10-phenanthroline functionalised at position 5 by a thioalkyl chain, and L is either a chloro or aryltetrazolato ancillary ligand, were synthesised and photophysically characterised. The complexes exhibit phosphorescent emission with maxima around 600 nm, originating from triplet metal-to-ligand charge transfer states with partially mixed ligand-to-ligand charge transfer character. The emission is relatively long-lived, within the 200-400 ns range, and with quantum yields of 2-4%. The complexes were trialed as cellular markers in live HeLa cells, along with two previously reported rhenium tetrazolato complexes bound to unsubstituted 1,10-phenanthroline. All five complexes exhibit good cellular uptake and non-specific perinuclear localisation. Upon excitation at 405 nm, the emission from the rhenium complexes could be clearly distinguished from autofluorescence, as demonstrated by spectral detection within the live cells. Four of the complexes did not appear to be toxic, however prolonged excitation could result in membrane blebbing. No major sign of photobleaching was detected upon multiple imaging on the same cell sample.
The biological inorganic chemistry of zinc ions.
Krężel, Artur; Maret, Wolfgang
2016-12-01
The solution and complexation chemistry of zinc ions is the basis for zinc biology. In living organisms, zinc is redox-inert and has only one valence state: Zn(II). Its coordination environment in proteins is limited by oxygen, nitrogen, and sulfur donors from the side chains of a few amino acids. In an estimated 10% of all human proteins, zinc has a catalytic or structural function and remains bound during the lifetime of the protein. However, in other proteins zinc ions bind reversibly with dissociation and association rates commensurate with the requirements in regulation, transport, transfer, sensing, signalling, and storage. In contrast to the extensive knowledge about zinc proteins, the coordination chemistry of the "mobile" zinc ions in these processes, i.e. when not bound to proteins, is virtually unexplored and the mechanisms of ligand exchange are poorly understood. Knowledge of the biological inorganic chemistry of zinc ions is essential for understanding its cellular biology and for designing complexes that deliver zinc to proteins and chelating agents that remove zinc from proteins, for detecting zinc ion species by qualitative and quantitative analysis, and for proper planning and execution of experiments involving zinc ions and nanoparticles such as zinc oxide (ZnO). In most investigations, reference is made to zinc or Zn 2+ without full appreciation of how biological zinc ions are buffered and how the d-block cation Zn 2+ differs from s-block cations such as Ca 2+ with regard to significantly higher affinity for ligands, preference for the donor atoms of ligands, and coordination dynamics. Zinc needs to be tightly controlled. The interaction with low molecular weight ligands such as water and inorganic and organic anions is highly relevant to its biology but in contrast to its coordination in proteins has not been discussed in the biochemical literature. From the discussion in this article, it is becoming evident that zinc ion speciation is important in zinc biochemistry and for biological recognition as a variety of low molecular weight zinc complexes have already been implicated in biological processes, e.g. with ATP, glutathione, citrate, ethylenediaminedisuccinic acid, nicotianamine, or bacillithiol. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Christidis, Panayiotis C.; Georgousis, Zacharias D.; Hadjipavlou-Litina, Dimitra; Bolos, Christos A.
2008-01-01
The reaction of sodium salt of 2-thiophenecarboxylic acid (tpca), 2-thiopheneacetic acid (tpaa), 2-furoic acid (fa) and picolinic acid (pica), with [Cu(Me 5dien)(ClO 4) 2] ( 1) (Me 5dien = N, N, N', N″ N″-pentamethyldiethylenetriamine) in a 1:1 molar ratio, afforded new mixed-ligand compounds of the type [Cu(Me 5dien)(tpca)(H 2O)](ClO 4) ( 2), [Cu(Me 5dien)(tpaa)(H 2O)](ClO 4) ( 3), [Cu(Me 5dien)(fa)](BPh 4) ( 4) and [Cu(Me 5dien)(pica)](ClO 4) ( 5). The new mixed-ligand complexes are mononuclear, paramagnetic, conductive compounds with a distorted square pyramidal geometry. The square pyramidal stereochemistry proposed by spectroscopic (IR, UV-vis) data was further confirmed by the X-ray structure analysis of the compound ( 3) in which the Cu atom is coordinated by the three N atoms from the Me 5dien ligand, one O atom from the mono-carboxylate anion, lying on the equatorial square plane, and one O atom from the water molecule, occupying the axial position. The two Cu sbnd O bond distances are 1.955(2) and 2.212(2) Ǻ, respectively. The complexes were tested for antioxidant/anti-inflammatory activity. Complex 4 is the most active against soybean lipoxygenase with IC 50 = 100 μM. The presence of a furoic ring leads to higher lipoxygenase inhibition, whereas the picolinyl-ring supports scavenging activity.
Fondo, Matilde; Corredoira-Vázquez, Julio; Herrera-Lanzós, Antía; García-Deibe, Ana M; Sanmartín-Matalobos, Jesús; Herrera, Juan Manuel; Colacio, Enrique; Nuñez, Cristina
2017-12-12
Mononuclear complexes of stoichiometry [Ln(H 3 L)(H 2 O)(NO 3 )](NO 3 ) 2 (Ln = Tb, 1; Dy, 2, Er, 3), which crystallise with different solvates, and the heterotrinuclear compound [Zn 2 Dy(L)(NO 3 ) 3 (OH)] (4) can be obtained with the same H 3 L compartmental ligand. The single X-ray crystal structure of the mononuclear complexes shows a LnO 9 core with a muffin-like disposition while the geometry of the DyO 9 core in 4 seems to be closer to spherical capped square antiprism. The analysis of the magnetic properties of all the complexes demonstrates that the mononuclear lanthanide compounds do not show slow relaxation of the magnetization, even when the samples are diluted with a diamagnetic matrix and subjected to a dc applied field of 1000 Oe. Nevertheless, the heterotrinuclear dysprosium complex 4·3H 2 O is a field-induced single ion magnet, with an estimated U eff barrier of 59 K. The luminescence characterisation of all the metal complexes in methanol solution at 298 K also shows a notable increase in the fluorescence emission of the heterotrinuclear complex with respect to the mononuclear ones, in such a way that 4 can be defined as a fluorescent single ion magnet.
NASA Astrophysics Data System (ADS)
Nikiforov, Grigori B.; Roesky, Herbert W.; Vidovic, Denis; Magull, Jörg
2003-08-01
The heterobimetallic Yb(II) mixed ligand complex L2Yb2LiI31 has been prepared by the reaction of the lithium salt of the ligand L with the ytterbium diiodide. Compound 1 is characterized by single crystal X-ray structural analysis, multinuclear NMR and mass spectrometry. Complex 1 consists of LYbI and LLi units connected with the central Yb(1) atom. The latter is surrounded by the LYbI and LLi moieties in a sandwich like structure including two bridging iodine atoms. The NCCCN unsaturated system of the ligand in each of the units is almost planar and π coordinated to the Yb(1) atom. These two planar units are tilted to each other and the pendant arms of the β-diketiminato ligand in each moiety are bent. The metal atoms are located out of the NCCCN plane of the ligands and the three metal atoms in complex 1 form almost a straight line.
NASA Astrophysics Data System (ADS)
Jin, Jun-Cheng; Fu, Ai-Yun; Li, Dian; Chang, Wen-Gui; Wu, Ju; Yang, Mei; Xie, Cheng-Gen; Xu, Guang-Nian; Cai, An-Xing; Wu, Ai-Hua
2014-11-01
Two new zinc(II) metal-organic compounds of [Zn(ADC)(bimh)]n (1) and [Zn(ADA)(bimh)]n (2) (H2ADC = 1,3-adamantanedicarboxylic acid, H2ADA = 1,3-adamantanediacetic acid, bimh = 1,6-bis(2-methyl-imidazole-1-yl)-hexane, have been structurally characterized by X-ray diffraction analysis. In compound 1, the zinc(II) ions are bridged by ADC and bimh ligands to form a 1D looped chain. In compound 2, the ADA molecules alternately bridge Zn(II) atoms to form infinite chains, and then the 1D chain is connected through the bimh ligand resulting in an undulating infinite two-dimensional (2D) polymeric network. Additionally, TG analysis, XRPD and fluorescent properties for compounds 1 and 2 are also measured and discussed.
Courcot, B; Firley, D; Fraisse, B; Becker, P; Gillet, J-M; Pattison, P; Chernyshov, D; Sghaier, M; Zouhiri, F; Desmaële, D; d'Angelo, J; Bonhomme, F; Geiger, S; Ghermani, N E
2007-05-31
A new target in AIDS therapy development is HIV-1 integrase (IN). It was proven that HIV-1 IN required divalent metal cations to achieve phosphodiester bond cleavage of DNA. Accordingly, all newly investigated potent IN inhibitors contain chemical fragments possessing a high ability to chelate metal cations. One of the promising leads in the polyhydroxylated styrylquinolines (SQLs) series is (E)-8-hydroxy-2-[2-(4,5-dihydroxy-3-methoxyphenyl)-ethenyl]-7-quinoline carboxylic acid (1). The present study focuses on the quinoline-based progenitor (2), which is actually the most probable chelating part of SQLs. Conventional and synchrotron low-temperature X-ray crystallographic studies were used to investigate the chelating power of progenitor 2. Mg2+ and Cu2+ cations were selected for this purpose, and three types of metal complexes of 2 were obtained: Mg(II) complex (4), Cu(II) complex (5) and mixed Mg(II)-Cu(II) complexes (6 and 7). The analysis of the crystal structure of complex 4 indicates that two tridentate ligands coordinate two Mg2+ cations, both in octahedral geometry. The Mg-Mg distance was found equal to 3.221(1) A, in agreement with the metal-metal distance of 3.9 A encountered in the crystal structure of Escherichia coli DNA polymerase I. In 5, the complex is formed by two bidentate ligands coordinating one copper ion in tetrahedral geometry. Both mixed Mg(II)-Cu(II) complexes, 6 and 7 exhibit an original arrangement of four ligands linked to a central heterometallic cluster consisting of three octahedrally coordinated magnesium ions and one tetrahedrally coordinated copper ion. Quantum mechanics calculations were also carried out in order to display the electrostatic potential generated by the dianionic ligand 2 and complex 4 and to quantify the binding energy (BE) during the formation of the magnesium complex of progenitor 2. A comparison of the binding energies of two hypothetical monometallic Mg(II) complexes with that found in the bimetallic magnesium complex 4 was made.
Paquette, Michelle M; Patrick, Brian O; Frank, Natia L
2011-07-06
The ability to optically switch or tune the intrinsic properties of transition metals (e.g., redox potentials, emission/absorption energies, and spin states) with photochromic metal-ligand complexes is an important strategy for developing "smart" materials. We have described a methodology for using metal-carbonyl complexes as spectroscopic probes of ligand field changes associated with light-induced isomerization of photochromic ligands. Changes in ligand field between the ring-closed spirooxazine (SO) and ring-opened photomerocyanine (PMC) forms of photochromic azahomoadamantyl and indolyl phenanthroline-spirooxazine ligands are demonstrated through FT-IR, (13)C NMR, and computational studies of their molybdenum-tetracarbonyl complexes. The frontier molecular orbitals (MOs) of the SO and PMC forms differ considerably in both electron density distributions and energies. Of the multiple π* MOs in the SO and PMC forms of the ligands, the LUMO+1, a pseudo-b(1)-symmetry phenanthroline-based MO, mixes primarily with the Mo(CO)(4) fragment and provides the major pathway for Mo(d)→phen(π*) backbonding. The LUMO+1 is found to be 0.2-0.3 eV lower in energy in the SO form relative to the PMC form, suggesting that the SO form is a better π-acceptor. Light-induced isomerization of the photochromic ligands was therefore found to lead to changes in the energies of their frontier MOs, which in turn leads to changes in π-acceptor ability and ligand field strength. Ligand field changes associated with photoisomerizable ligands allow tuning of excited-state and ground-state energies that dictate energy/electron transfer, optical/electrical properties, and spin states of a metal center upon photoisomerization, positioning photochromic ligand-metal complexes as promising targets for smart materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saeednia, S., E-mail: sami_saeednia@yahoo.com; Iranmanesh, P.; Ardakani, M. Hatefi
Highlights: • A novel nano-scale Zn(II) complex was synthesized by solvothermal method. • Chemical structure of the nanostructures was characterized as well as bulk complex. • The photoluminescence property of the complex was investigated at room temperature. • The thermogravimetry and differential thermal analysis were carried out. • Thermal decomposition of the nanostructures was prepared zinc oxide nanoparticles. - Abstract: Nanoparticles of a novel Zn(II) Schiff base complex, [Zn(HL)NO{sub 3}]{sub 2} (1), (H{sub 2}L = 2-[(2-hydroxy-propylimino) methyl] phenol), was synthesized by using solvothermal method. Shape, morphology and chemical structure of the synthesized nanoparticles were characterized by scanning electron microscopy (SEM),more » X-ray powder diffraction (XRD), Fourier Transform Infrared Spectoscopy (FT-IR) and UV–vis spectroscopy. Structural determination of compound 1 was determined by single-crystal X-ray diffraction. The results were revealed that the zinc complex is a centrosymmetric dimer in which deprotonated phenolates bridge the two five-coordinate metal atoms and link the two halves of the dimer. The thermal stability of compound 1 was analyzed by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The effect of the initial substrates concentration and reaction time on size and morphology of compound 1 nanostructure was investigated as well. Furthermore, the luminescent properties of the complex 1 were examined. ZnO nanoparticles with diameter between 15 and 20 nm were simply synthesized by solid-state transformation of compound 1 at 700 °C.« less
Zayed, M A; El-Dien, F A Nour; Mohamed, Gehad G; El-Gamel, Nadia E A
2006-05-01
The ternary chelates of piroxicam (Pir) and tenoxicam (Ten) with Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) in the presence of various amino acids such as glycine (Gly) or dl-phenylalanine (PhA) were prepared and characterized with different physicochemical methods. IR spectra confirm that Pir and Ten behave as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its deprotonated carboxylic group. In addition, PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its deprotonated carboxylic and amino groups. The solid reflectance spectra and magnetic moment measurements confirm that all the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. Thermal behaviour of the complexes is extensively studied using TG and DTA techniques. TG results show that water molecules (hydrated and coordinated) and anions are removed in the first and second steps while Gly, PhA, Pir and Ten are decomposed in the next and subsequent steps. The pyrolyses of the chelates into different gases are observed in the DTA curves as exo- or endothermic peaks. Also, phase transition states are observed in some chelates. Different thermodynamic parameters are calculated using Coats-Redfern method and the results are interpreted.
NASA Astrophysics Data System (ADS)
Zayed, M. A.; El-Dien, F. A. Nour; Mohamed, Gehad G.; El-Gamel, Nadia E. A.
2006-05-01
The ternary chelates of piroxicam (Pir) and tenoxicam (Ten) with Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) in the presence of various amino acids such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized with different physicochemical methods. IR spectra confirm that Pir and Ten behave as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its deprotonated carboxylic group. In addition, PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its deprotonated carboxylic and amino groups. The solid reflectance spectra and magnetic moment measurements confirm that all the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. Thermal behaviour of the complexes is extensively studied using TG and DTA techniques. TG results show that water molecules (hydrated and coordinated) and anions are removed in the first and second steps while Gly, PhA, Pir and Ten are decomposed in the next and subsequent steps. The pyrolyses of the chelates into different gases are observed in the DTA curves as exo- or endothermic peaks. Also, phase transition states are observed in some chelates. Different thermodynamic parameters are calculated using Coats-Redfern method and the results are interpreted.
Bimetallic Metal-Organic Frameworks: Probing the Lewis Acid Site for CO2 Conversion.
Zou, Ruyi; Li, Pei-Zhou; Zeng, Yong-Fei; Liu, Jia; Zhao, Ruo; Duan, Hui; Luo, Zhong; Wang, Jin-Gui; Zou, Ruqiang; Zhao, Yanli
2016-05-01
A highly porous metal-organic framework (MOF) incorporating two kinds of second building units (SBUs), i.e., dimeric paddlewheel (Zn2 (COO)4 ) and tetrameric (Zn4 (O)(CO2 )6 ), is successfully assembled by the reaction of a tricarboxylate ligand with Zn(II) ion. Subsequently, single-crystal-to-single-crystal metal cation exchange using the constructed MOF is investigated, and the results show that Cu(II) and Co(II) ions can selectively be introduced into the MOF without compromising the crystallinity of the pristine framework. This metal cation-exchangeable MOF provides a useful platform for studying the metal effect on both gas adsorption and catalytic activity of the resulted MOFs. While the gas adsorption experiments reveal that Cu(II) and Co(II) exchanged samples exhibit comparable CO2 adsorption capability to the pristine Zn(II) -based MOF under the same conditions, catalytic investigations for the cycloaddition reaction of CO2 with epoxides into related carbonates demonstrate that Zn(II) -based MOF affords the highest catalytic activity as compared with Cu(II) and Co(II) exchanged ones. Molecular dynamic simulations are carried out to further confirm the catalytic performance of these constructed MOFs on chemical fixation of CO2 to carbonates. This research sheds light on how metal exchange can influence intrinsic properties of MOFs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Site Selective Binding of Zn(ll) ot Metallo-b-Lactamase L1 from Stenotrophomonas Maltophilia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costello,A.; Periyannan, G.; Yang, K.
2006-01-01
Extended X-ray absorption fine structure studies of the metallo-{beta}-lactamase L1 from Stenotrophomonas maltophilia containing 1 and 2 equiv of Zn(II) and containing 2 equiv of Zn(II) plus hydrolyzed nitrocefin are presented. The data indicate that the first, catalytically dominant metal ion is bound by L1 at the consensus Zn1 site. The data further suggest that binding of the first metal helps preorganize the ligands for binding of the second metal ion. The di-Zn enzyme displays a well-defined metal-metal interaction at 3.42 Angstroms. Reaction with the {beta}-lactam antibiotic nitrocefin results in a product-bound species, in which the ring-opened lactam rotates inmore » the active site to present the S1 sulfur atom of nitrocefin to one of the metal ions for coordination. The product bridges the two metal ions, with a concomitant lengthening of the Zn-Zn interaction to 3.62 Angstroms.« less
Abdollahi, Nasrin; Masoomi, Mohammad Yaser; Morsali, Ali; Junk, Peter C; Wang, Jun
2018-07-01
A 3-D Zn(II) based metal-organic framework (MOF) of [Zn 4 (oba) 3 (DMF) 2 ] was synthesized using the nonlinear dicarboxylate ligand, 4,4'-oxybis(benzoic acid) (H 2 oba) via sonochemical and solvothermal routes. IR spectroscopy, single-crystal X-ray crystallography, scanning electron microscopy, and X-ray powder diffraction were used to characterize these MOF samples. The effect of different times of irradiation and various concentrations of primary reagents were experimented for obtaining monotonous morphology. The results show that uniform nanoplates can be achieved by increasing the time of irradiation and decreasing the concentration. N 2 adsorption was applied to examine the effect of synthesis method on porosity of the framework. Also Congo red and Sudan red dyes were employed to explore the efficiency of this MOF in removal of the dye pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.
A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state.
Bencini, Andrea; Berni, Emanuela; Bianchi, Antonio; Fornasari, Patrizia; Giorgi, Claudia; Lima, Joao C; Lodeiro, Carlos; Melo, Maria J; de Melo, J Seixas; Parola, Antonio Jorge; Pina, Fernando; Pina, Joao; Valtancoli, Barbara
2004-07-21
The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.
Revisiting Mn and Fe removal in humic rich estuaries
NASA Astrophysics Data System (ADS)
Oldham, Véronique E.; Miller, Megan T.; Jensen, Laramie T.; Luther, George W.
2017-07-01
Metal removal by estuarine mixing has been studied for several decades, but few studies emphasize dissolved metal speciation and organic ligand complexation. Findings from the last decade indicate that metal-humic complexation can be significant for dissolved metals including Cu(II), Al(III) and Fe(III), but little consideration is given to the precipitation of these complexes with humic material at pH < 2. Given that total soluble metal analysis involves an acidification step for sample preservation, we show that Mn and other metal concentrations may have been underestimated in estuaries, especially when humic substance concentrations are high. A competitive ligand assay of selected samples from our study site, a coastal waterway bordered by wetlands (Broadkill River, DE), showed that Mn(III)-humic complexation is significant, and that some Mn(III)-L complexes precipitate during acidification. In the oxygenated surface waters of the Broadkill River, total dissolved Mn (dMnT) was up to 100% complexed to ambient ligands as Mn(III)-L, and we present evidence for humic-type Mn(III)-L complexes. The Mn(III) complexes were kinetically stabilized against Fe(II) reduction, even when [Fe(II)] was 17 times higher than [dMnT]. Unlike typical oceanic surface waters, [Fe(II)] > [Fe(III)-L] in surface waters, which may be attributed to high rates of photoreduction of Fe(III)-L complexes. Total [Mn(III)-L] ranged from 0.22 to 8.4 μM, in excess of solid MnOx (below 0.28 μM in all samples). Filtration of samples through 0.02 μm filters indicated that all Mn(III)-L complexes pass through the filters and were not colloidal species in contrast to dissolved Fe. Incubation experiments indicated that the reductive dissolution of solid MnOx by ambient ligands may be responsible for Mn(III) formation in this system. Unlike previous studies of estuarine mixing, which demonstrated metal removal during mixing, we show significant export of dMn and dissolved Fe (dFe) in the summer and fall of 2015. Thus, we propose that estuarine removal should be considered seasonal for dMn and dFe, with export in the summer and fall and removal during the winter.
Jo, Hyun Hwa; Edupuganti, Ramakrishna; You, Lei; Dalby, Kevin N.
2015-01-01
The use of reversible covalent bonding in a four-component assembly incorporating chiral alcohols was recently reported to give a method for determining the enantiomeric excess of the alcohols via CD spectroscopy. Experiments that probe the mechanism of this assembly, which consists of 2-formylpyridine (2-PA), dipicolylamine (DPA), Zn(ii) and alcohols to yield zinc complexes of tren-like ligands, are presented. The studies focus upon the mechanism of conversion of a hemi-aminal (1) to a hemi-aminal ether (3), thereby incorporating the fourth component. It was found that molecular sieves along with 3 to 4 equivalents of alcohol are required to drive the conversion of 1 to 3. Attempts to isolate an intermediate in this reaction via addition of strong Lewis acids led to the discovery of a five-membered ring pyridinium salt (5), but upon exposure to Zn(ii) and alcohols gave different products to the assembly. This was interpreted to support the intermediacy of an iminium species. Kinetic studies reveal that the conversion of 1 to 3 is zero-order in alcohol in large excesses of alcohol, supporting rate-determining formation of an intermediate prior to reaction with alcohol. Further, the magnitudes of the rate constants for interconversion of 1 and 3 are similar, supporting the notion that there are similar rate-determining steps (rds) for the forward and reverse reactions. Hammett plots show that the rds involves creation of a negative charge (interpreted as the loss of positive charge), supporting the notion that the decomplexation of Zn(ii) from the assemblies to generate apo-forms of 1 and 3 is rate-determining. The individual mechanistic conclusions are combined to create a qualitative reaction coordinate diagram for the interconversion of 1 and 3. PMID:25530834
Spectroscopic studies on some fluorescent mixed-ligand titanium(IV) complexes.
Baranwal, Balram Prasad; Singh, Alok Kumar; Varma, Anand
2011-12-15
A novel route to synthesize some titanium(IV) complexes containing acetylacetone, straight chain carboxylic acid and hydroxycarboxylic acid ligands has been investigated. Complexes with the general formula [Ti(acac)Cl(2-n)(OOCR*)(n)(OOCC(15)H(31))] (where Hacac=acetylacetone, R*COOH=hydroxycarboxylic acids and n=1 or 2) have been isolated and characterized. Molecular weight determinations indicated mononuclear nature of the complexes. LMCT bands were observed in the electronic spectra. Infrared spectra suggested bidentate nature of the ligands. Fluorescent behaviour of the complexes was noticed on the basis of fluorescence spectra. Powder XRD indicated them to be semi-crystalline having the crystallite size in 136-185 nm range. Transmission electron microscopy (TEM) indicated spherical particles of ~ 200 nm diameter. On the basis of physico-chemical studies, it is suggested that titanium is having coordination number 7 or 8 in these complexes. Copyright © 2011 Elsevier B.V. All rights reserved.
van der Meer, Margarethe; Rechkemmer, Yvonne; Frank, Uta; Breitgoff, Frauke D; Hohloch, Stephan; Su, Cheng-Yong; Neugebauer, Petr; Marx, Raphael; Dörfel, María; van Slageren, Joris; Sarkar, Biprajit
2016-09-19
Quinonoid ligands are excellent bridges for generating redox-rich dinuclear assemblies. A large majority of these bridges are symmetrically substituted, with examples of unsymmetrically substituted quinonoid bridges being extremely rare. We present here a dicobalt complex in its various redox states with an unsymmetrically substituted quinonoid bridging ligand. Two homovalent forms and one mixed-valent form have been isolated and characterized by single crystal X-ray diffraction. The complex displays a large comproportionation constant for the mixed-valent state which is three orders of magnitude higher than that observed for the analogous complex with a symmetrically substituted bridge. Results from electrochemistry, UV/Vis/NIR spectroelectrochemistry, SQUID magnetometry, multi-frequency EPR spectroscopy and FIR spectroscopy are used to probe the electronic structures of these complexes. FIR provides direct evidence of exchange coupling. The results presented here display the advantages of using an unsymmetrically substituted bridge: site specific redox chemistry, high thermodynamic stabilization of the mixed-valent form, isolation and crystallization of various redox forms of the complex. This work represents an important step on the way to generating heterodinuclear complexes for use in cooperative catalysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Rajasekhar, Bathula; Bodavarapu, Navya; Sridevi, M.; Thamizhselvi, G.; RizhaNazar, K.; Padmanaban, R.; Swu, Toka
2018-03-01
The present study reports the synthesis and evaluation of nonlinear optical property and G-Quadruplex DNA Stabilization of five novel copper(II) mixed ligand complexes. They were synthesized from copper(II) salt, 2,5- and 2,3- pyridinedicarboxylic acid, diethylenetriamine and amide based ligand (AL). The crystal structure of these complexes were determined through X-ray diffraction and supported by ESI-MAS, NMR, UV-Vis and FT-IR spectroscopic methods. Their nonlinear optical property was studied using Gaussian09 computer program. For structural optimization and nonlinear optical property, density functional theory (DFT) based B3LYP method was used with LANL2DZ basis set for metal ion and 6-31G∗ for C,H,N,O and Cl atoms. The present work reveals that pre-polarized Complex-2 showed higher β value (29.59 × 10-30e.s.u) as compared to that of neutral complex-1 (β = 0.276 × 10-30e.s.u.) which may be due to greater advantage of polarizability. Complex-2 is expected to be a potential material for optoelectronic and photonic technologies. Docking studies using AutodockVina revealed that complex-2 has higher binding energy for both G-Quadruplex DNA (-8.7 kcal/mol) and duplex DNA (-10.1 kcal/mol). It was also observed that structure plays an important role in binding efficiency.
Toward efficient Zn(II)-based artificial nucleases.
Boseggia, Elisa; Gatos, Maddalena; Lucatello, Lorena; Mancin, Fabrizio; Moro, Stefano; Palumbo, Manlio; Sissi, Claudia; Tecilla, Paolo; Tonellato, Umberto; Zagotto, Giuseppe
2004-04-14
A series of cis-cis-triaminocyclohexane Zn(II) complex-anthraquinone intercalator conjugates, designed in such a way to allow their easy synthesis and modification, have been investigated as hydrolytic cleaving agents for plasmid DNA. The ligand structure comprises a triaminocyclohexane platform linked by means of alkyl spacers of different length (from C(4) to C(8)) to the anthraquinone group which may intercalate the DNA. At a concentration of 5 microM, the complex of the derivative with a C(8) alkyl spacer induces the hydrolytic stand scission of supercoiled DNA with a rate of 4.6 x 10(-6) s(-1) at pH 7 and 37 degrees C. The conjugation of the metal complex with the anthraquinone group leads to a 15-fold increase of the cleavage efficiency when compared with the anthraquinone lacking Zn-triaminocyclohexane complex. The straightforward synthetic procedure employed, allowing a systematic change of the spacer length, made possible to gain more insight on the role of the intercalating group in determining the reactivity of the systems. Comparison of the reactivity of the different complexes shows a remarkable increase of the DNA cleaving efficiency with the length of the spacer. In the case of too-short spacers, the advantages due to the increased DNA affinity are canceled due to the incorrect positioning of the reactive group, thus leading to cleavage inhibition.
Structural diversity in binuclear complexes of alkaline earth metal ions with 4,6-diacetylresorcinol
NASA Astrophysics Data System (ADS)
Shebl, Magdy; Khalil, Saied M. E.; Taha, A.; Mahdi, M. A. N.
2012-11-01
A new series of binuclear and mixed-ligand complexes with the general formula: [M 2(LO)yClz]; where M = Mg(II), Ca(II), Sr(II) and Ba(II); H2L = 4,6-diacetylresorcinol, the secondary ligand L' = acetylacetone (acac), 8-hydroxyquinoline (8-HQ) or 2,2'-bipyridyl (Bipy), n = 0-2, m = 1, 2, x = 0, 1, 2, 4, y = 0, 2, 4, 5 and z = 0-2; have been synthesized. They have been characterized by the analytical and spectral methods (IR, 1H NMR and mass) as well as TGA and molar conductivity measurements. The spectroscopic and conductance data suggested that the H2L ligand behaves as a neutral, monobasic or dibasic tetradentate ligand, depending on the basicity of the secondary ligand, through the two phenolic and two carbonyl groups. Binuclear octahedral geometry has been assigned to all of the prepared complexes in various molar ratios 2:2; 2:2:2; 1:2:1 and 1:2:4 (L:M:L'). Molecular orbital calculations were performed for the ligands and their complexes using Hyperchem 7.52 program on the bases of PM3 level and the results were correlated with the experimental data. The ligand and some of its alkaline metal(II) complexes showed antibacterial activity towards some of Gram-positive and Gram-negative bacteria, yeast (Candida albicans) and fungus (Aspergillus fumigatus).
Giedroc, D P; Chen, X; Pennella, M A; LiWang, A C
2001-11-09
The human metalloregulatory transcription factor, metal-response element (MRE)-binding transcription factor-1 (MTF-1), contains six TFIIIA-type Cys(2)-His(2) motifs, each of which was projected to form well-structured betabetaalpha domains upon Zn(II) binding. In this report, the structure and backbone dynamics of a fragment containing the unusual C-terminal fingers F4-F6 has been investigated. (15)N heteronuclear single quantum coherence (HSQC) spectra of uniformly (15)N-labeled hMTF-zf46 show that Zn(II) induces the folding of hMTF-zf46. Analysis of the secondary structure of Zn(3) hMTF-zf46 determined by (13)Calpha chemical shift indexing and the magnitude of (3)J(Halpha-HN) clearly reveal that zinc fingers F4 and F6 adopt typical betabetaalpha structures. An analysis of the heteronuclear backbone (15)N relaxation dynamics behavior is consistent with this picture and further reveals independent tumbling of the finger domains in solution. Titration of apo-MTF-zf46 with Zn(II) reveals that the F4 domain binds Zn(II) significantly more tightly than do the other two finger domains. In contrast to fingers F4 and F6, the betabetaalpha fold of finger F5 is unstable and only partially populated at substoichiometric Zn(II); a slight molar excess of zinc results in severe conformational exchange broadening of all F5 NH cross-peaks. Finally, although Cd(II) binds to apo-hMTF-zf46 as revealed by intense S(-)-->Cd(II) absorption, a non-native structure results; addition of stoichiometric Zn(II) to the Cd(II) complex results in quantitative refolding of the betabetaalpha structure in F4 and F6. The functional implications of these results are discussed.
Wang, Dan; Chen, Weizhong; Huang, Shanqing; He, Yafeng; Liu, Xichun; Hu, Qingyuan; Wei, Tianbiao; Sang, Hong; Gan, Jianhua
2017-01-01
Pseudomonas aeruginosa (P. aeruginosa) is a major opportunistic human pathogen, causing serious nosocomial infections among immunocompromised patients by multi-determinant virulence and high antibiotic resistance. The CzcR-CzcS signal transduction system in P. aeruginosa is primarily involved in metal detoxification and antibiotic resistance through co-regulating cross-resistance between Zn(II) and carbapenem antibiotics. Although the intracellular regulatory pathway is well-established, the mechanism by which extracellular sensor domain of histidine kinase (HK) CzcS responds to Zn(II) stimulus to trigger downstream signal transduction remains unclear. Here we determined the crystal structure of the CzcS sensor domain (CzcS SD) in complex with Zn(II) at 1.7 Å resolution. This is the first three-dimensional structural view of Zn(II)-sensor domain of the two-component system (TCS). The CzcS SD is of α/β-fold in nature, and it senses the Zn(II) stimulus at micromole level in a tetrahedral geometry through its symmetry-related residues (His55 and Asp60) on the dimer interface. Though the CzcS SD resembles the PhoQ-DcuS-CitA (PDC) superfamily member, it interacts with the effector in a novel domain with the N-terminal α-helices rather than the conserved β-sheets pocket. The dimerization of the N-terminal H1 and H1’ α-helices is of primary importance for the activity of HK CzcS. This study provides preliminary insight into the molecular mechanism of Zn(II) sensing and signaling transduction by the HK CzcS, which will be beneficial to understand how the pathogen P. aeruginosa resists to high levels of heavy metals and antimicrobial agents. PMID:28732057
Wang, Dan; Chen, Weizhong; Huang, Shanqing; He, Yafeng; Liu, Xichun; Hu, Qingyuan; Wei, Tianbiao; Sang, Hong; Gan, Jianhua; Chen, Hao
2017-07-01
Pseudomonas aeruginosa (P. aeruginosa) is a major opportunistic human pathogen, causing serious nosocomial infections among immunocompromised patients by multi-determinant virulence and high antibiotic resistance. The CzcR-CzcS signal transduction system in P. aeruginosa is primarily involved in metal detoxification and antibiotic resistance through co-regulating cross-resistance between Zn(II) and carbapenem antibiotics. Although the intracellular regulatory pathway is well-established, the mechanism by which extracellular sensor domain of histidine kinase (HK) CzcS responds to Zn(II) stimulus to trigger downstream signal transduction remains unclear. Here we determined the crystal structure of the CzcS sensor domain (CzcS SD) in complex with Zn(II) at 1.7 Å resolution. This is the first three-dimensional structural view of Zn(II)-sensor domain of the two-component system (TCS). The CzcS SD is of α/β-fold in nature, and it senses the Zn(II) stimulus at micromole level in a tetrahedral geometry through its symmetry-related residues (His55 and Asp60) on the dimer interface. Though the CzcS SD resembles the PhoQ-DcuS-CitA (PDC) superfamily member, it interacts with the effector in a novel domain with the N-terminal α-helices rather than the conserved β-sheets pocket. The dimerization of the N-terminal H1 and H1' α-helices is of primary importance for the activity of HK CzcS. This study provides preliminary insight into the molecular mechanism of Zn(II) sensing and signaling transduction by the HK CzcS, which will be beneficial to understand how the pathogen P. aeruginosa resists to high levels of heavy metals and antimicrobial agents.
Synthesis, structures and properties of three copper complexes with dibutyldithiocarbamate ligand
NASA Astrophysics Data System (ADS)
Wang, Chen; Niu, Jiao; Li, Jun; Ma, Xiaoxun
2017-05-01
Three copper complexes constructed with sulfur-containing dibutyldithiocarbamate ligand (DDTC), [(Et2NCS2)4Cu2] (1), [(Et2NCS2)(EtO)Cu]2 (2) and [(Et2NCS2)6Cu13I10]n (3) have been synthesized through the reaction of CuI with different mole ratios of DDTC under solution-diffusion conditions. The single crystal X-ray diffraction revealed that divalent Cu cations in complexes 1 and 2 imply that the reactant, Cu(I), was involved in the redox process. They formed binuclear complexes according to bridging S from DDTC ligands and O atoms from ethanol molecules respectively. The mixed valence Cu cations had two types of coordination environments in complex 3 and formed a two-dimensional layered coordination polymer by bridging the five-core Cu(I) clusters and Cu(II). The powder X-ray diffraction, luminescent, thermogravimetric analysis, etc. were also studied in this paper.
NASA Astrophysics Data System (ADS)
Grabchev, Ivo; Yordanova, Stanislava; Bosch, Paula; Vasileva-Tonkova, Evgenia; Kukeva, Rositsa; Stoyanov, Stanimir; Stoyanova, Radostina
2017-02-01
Two new 1,8-naphthalimide derivatives (NI1 and NI2) have been synthesized and characterized. The photophysical properties of the new compounds have been investigated in organic solvents of different polarity. It has been shown that both compounds are solvent depended. Cu(II) and Zn(II) complexes of NI2 were obtained and characterized by IR-NMR, fluorescence and EPR spectroscopy. The influence of different metal cations on the fluorescence intensity has been investigated in acetonitrile solution. Antimicrobial composite PLA-metal complexes materials have been obtained for the first time. Microbiological activity of both metal complexes has been investigated in vitro against different Gram-positive and Gram-negative bacteria and two yeasts. The various antimicrobial activities and the minimum inhibitory concentrations (MICs) of both complexes have been determined. The microbiological activity of composite materials PLA-metal complexes in thin polymeric film has also been investigated. The results suggest that the new metal complexes could find application in designing new antimicrobial preparations to control the spread of infections.
Jászberényi, Zoltán; Bányai, István; Brücher, Ernö; Király, Róbert; Hideg, Kálmán; Kálai, Tamás
2006-02-28
Three DTPA-derivative ligands, the non-substituted DTPA-bis(amide) (L(0)), the mono-substituted DTPA-bis(n-butylamide) (L(1)) and the di-substituted DTPA-bis[bis(n-butylamide)] (L(2)) were synthesized. The stability constants of their Gd3+ complexes (GdL) have been determined by pH-potentiometry with the use of EDTA or DTPA as competing ligands. The endogenous Cu2+ and Zn2+ ions form ML, MHL and M(2)L species. For the complexes CuL(0) and CuL(1) the dissociation of the amide hydrogens (CuLH(-1)) has also been detected. The stability constants of complexes formed with Gd3+, Cu2+ and Zn2+ increase with an increase in the number of butyl substituents in the order ML(0) < ML(1) < ML(2). NMR studies of the diamagnetic YL(0) show the presence of four diastereomers formed by changing the chirality of the terminal nitrogens of their enantiomers. At 323 K, the enantiomerization process, involving the racemization of central nitrogen, falls into the fast exchange range. By the assignment and interpretation of 1H and 13C NMR spectra, the fractions of the diastereomers were found to be equal at pH = 5.8 for YL(0). The kinetic stabilities of GdL(0), GdL(1) and GdL(2) have been characterized by the rates of the exchange reactions occurring between the complexes and Eu3+, Cu2+ or Zn2+. The rates of reaction with Eu3+ are independent of the [Eu3+] and increase with increasing [H+], indicating the rate determining role of the proton assisted dissociation of complexes. The rates of reaction with Cu2+ and Zn2+ increase with rising metal ion concentration, which shows that the exchange can take place with direct attack of Cu2+ or Zn2+ on the complex, via the formation of a dinuclear intermediate. The rates of the proton, Cu2+ and Zn2+ assisted dissociation of Gd3+ complexes decrease with increasing number of the n-butyl substituents, which is presumably the result of steric hindrance hampering the formation or dissociation of the intermediates. The kinetic stabilities of GdL(0) and GdL(1) at pH = 7.4, [Cu2+] = 1 x 10(-6) M and [Zn(2+)] = 1 x 10(-5) M are similar to that of Gd(DTPA)2-, while the complex GdL2 possesses a much higher kinetic stability.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Chira R.; Goswami, Pankaj; Pramanik, Harun A. R.; Paul, Pradip C.; Mondal, Paritosh
2011-05-01
Two new mixed-ligand iron(III) complexes, [Fe(L n)(acac)(C 2H 5OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac) 3] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H 2L 1) or 2-aminobenzoic acid (H 2L 2). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L n)(acac)X] ( n = 1, 2; X = Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, 1H and 13C NMR spectroscopy. Room temperature magnetic susceptibility measurements ( μeff ˜ 5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (Δ Ep > 100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential ( E1/2) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Jing; Liang Jingjing; Pan Yingli
Mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) (Ln=lanthanide, en=ethylenediamine, dien=diethylenetriamine, trien=triethylenetetramine) were investigated under solvothermal conditions, and novel mixed-coordinated lanthanide(III) complexes [Ln(en){sub 2}(dien)({eta}{sup 2}-SbSe{sub 4})] (Ln=Ce(1a), Nd(1b)), [Ln(en){sub 2}(dien)(SbSe{sub 4})] (Ln=Sm(2a), Gd(2b), Dy(2c)), [Ln(en)(trien)({mu}-{eta}{sup 1},{eta}{sup 2}-SbSe{sub 4})]{sub {infinity}} (Ln=Ce(3a), Nd(3b)) and [Sm(en)(trien)({eta}{sup 2}-SbSe{sub 4})] (4a) were prepared. Two structural types of lanthanide selenidoantimonates were obtained across the lanthanide series in both en+dien and en+trien systems. The tetrahedral anion [SbSe{sub 4}]{sup 3-} acts as a monodentate ligand mono-SbSe{sub 4}, a bidentate chelating ligand {eta}{sup 2}-SbSe{sub 4} or a tridentate bridging ligand {mu}-{eta}{sup 1},{eta}{sup 2}-SbSe{sub 4} to the lanthanide(III) center depending on themore » Ln{sup 3+} ions and the mixed ethylene polyamines, indicating the effect of lanthanide contraction on the structures of the lanthanide(III) selenidoantimonates. The lanthanide selenidoantimonates exhibit semiconducting properties with E{sub g} between 2.08 and 2.51 eV. - Graphical Abstract: Two structural types of lanthanide(III) selenidoantimonates are formed in both en-dien and en-trien mixed polyamines across lanthanide series, indicating the lanthanide contraction effect on the structures of the lanthanide(III) selenidoantimonates. Highlights: > Two structural types of lanthanide selenidoantimonates are prepared across the lanthanide series in both Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) systems. > The [SbSe{sub 4}]{sup 3-} anion acts as a mono-SbSe{sub 4}, a {eta}{sup 2}-SbSe{sub 4} or a {mu}-{eta}{sup 1},{eta}{sup 2}-SbSe{sub 4} ligand to the Ln{sup 3+} ions. > The soft base ligand [SbSe{sub 4}]{sup 3-} can be controlled to coordinate to the Ln{sup 3+} ions with en+dien and en+trien as co-ligands.« less
Thermodynamic Analysis of Nickel(II) and Zinc(II) Adsorption to Biochar.
Alam, Md Samrat; Gorman-Lewis, Drew; Chen, Ning; Flynn, Shannon L; Ok, Yong Sik; Konhauser, Kurt O; Alessi, Daniel S
2018-05-21
While numerous studies have investigated metal uptake from solution by biochar, few of these have developed a mechanistic understanding of the adsorption reactions that occur at the biochar surface. In this study, we explore a combined modeling and spectroscopic approach for the first time to describe the molecular level adsorption of Ni(II) and Zn(II) to five types of biochar. Following thorough characterization, potentiometric titrations were carried out to measure the proton (H + ) reactivity of each biochar, and the data was used to develop protonation models. Surface complexation modeling (SCM) supported by synchrotron-based extended X-ray absorption fine structure (EXAFS) was then used to gain insights into the molecular scale metal-biochar surface reactions. The SCM approach was combined with isothermal titration calorimetry (ITC) data to determine the thermodynamic driving forces of metal adsorption. Our results show that the reactivity of biochar toward Ni(II) and Zn(II) directly relates to the site densities of biochar. EXAFS along with FT-IR analyses, suggest that Ni(II) and Zn(II) adsorption occurred primarily through proton-active carboxyl (-COOH) and hydroxyl (-OH) functional groups on the biochar surface. SCM-ITC analyses revealed that the enthalpies of protonation are exothermic and Ni(II) and Zn(II) complexes with biochar surface are slightly exothermic to slightly endothermic. The results obtained from these combined approaches contribute to the better understanding of molecular scale metal adsorption onto the biochar surface, and will facilitate the further development of thermodynamics-based, predictive approaches to biochar removal of metals from contaminated water.
Paramagnetic resonance studies of bistrispyrazolylborate cobalt(II) and related derivatives
NASA Astrophysics Data System (ADS)
Myers, William K.
Herein, a systematic frozen solution electron-nuclear double resonance (ENDOR) study of high-spin Co(II) complexes is reported to demonstrate the efficacy of methyl substitutions as a means of separating dipolar and contact coupling, and further, to increase the utility of high-spin Co(II) as a spectroscopic probe for the ubiquitous, but spectroscopically-silent Zn(II) metalloenzymes. High-spin (hs) Co(II) has been subject of paramagnetic resonance studies for over 50 years and has been used as a spectroscopic probe for Zn metalloenzymes for over 35 years. However, as will be seen, the inherent complexity of the electronic properties of the cobaltous ion remains to be exploited to offer a wealth of information on Zn(II) enzymatic environments. Specifically, ENDOR measurements on bistrispyrazolylborate cobalt(II) confirm the utility of the novel method of methyl substitution to differentiate dipolar and Fermi contact couplings. An extensive set of electron paramagnetic resonance (EPR) simulations were performed. Software was developed to implement an ENDOR control interface. Finally, proton relaxation measurements were made in the range of 12-42 MHz, which were accounted for with the large g-value anisotropy of the Co(II) compounds. Taken as a whole, these studies point to the rich complexity of the electronic structure of high-spin cobalt(II) and, when sufficiently well-characterized, the great utility it has as a surrogate of biological Zn(II).
Fan, Rong; Zhou, Qiu-Ping; Zhang, Guo-Fang; Cai, Mei-Yu; Li, Ping; Gan, Li-Hua; Zhao, Feng-Qi; Li, Ji-Zhen; Fan, Xue-Zhong; Ng, Seik Weng
2010-01-01
Nine metal compounds of Mn(II), Zn(II) and Cd(II) derived from dinitropyridone ligands (3,5-dinitro-pyrid-2-one, 2HDNP; 3,5-dinitropyrid-4-one, 4HDNP and 3,5-dinitropyrid-4-one-N- hydroxide, 4HDNPO) were characterized by elemental analysis, FT-IR and partly by TG-DSC. Three of which were further structurally characterized by X-ray single-crystal diffraction analysis. The structures of the three compounds, Mn(4DNP)2(H2O)4, 4, Zn(4DNPO)2(H2O)4, 8, and Cd(4DNPO)2(H2O)4, 9, crystallize in the monoclinic space group P2(1)/n and Z = 2, with a = 8.9281(9), b = 9.1053(9), c = 10.6881(11) Å, β = 97.9840(10)° for 4; a = 8.4154(7), b = 9.9806(8), c = 10.5695(8) Å, β = 97.3500(10)° for 8; a = 8.5072(7), b = 10.2254(8), c = 10.5075(8) Å, β 96.6500(10)° for 9. All three complexes are octahedral consisting of four equatorial water molecules, and two nitrogen or oxygen donor ligands (DNP or DNPO). The abundant hydrogen-bonding and π-π stacking interactions seem to contribute to stabilization of the crystal structures of the compounds. The TG-DTG results revealed that the complexes showed a weight loss sequence corresponding to all coordinated water molecules, nitro groups, the breaking of the pyridine rings and finally the formation of metal oxides. PMID:20526459
Fan, Rong; Zhou, Qiu-Ping; Zhang, Guo-Fang; Cai, Mei-Yu; Li, Ping; Gan, Li-Hua; Zhao, Feng-Qi; Li, Ji-Zhen; Fan, Xue-Zhong; Ng, Seik Weng
2009-09-28
Nine metal compounds of Mn(II), Zn(II) and Cd(II) derived from dinitropyridone ligands (3,5-dinitro-pyrid-2-one, 2HDNP; 3,5-dinitropyrid-4-one, 4HDNP and 3,5-dinitropyrid-4-one-N- hydroxide, 4HDNPO) were characterized by elemental analysis, FT-IR and partly by TG-DSC. Three of which were further structurally characterized by X-ray single-crystal diffraction analysis. The structures of the three compounds, Mn(4DNP)(2)(H(2)O)(4), 4, Zn(4DNPO)(2)(H(2)O)(4), 8, and Cd(4DNPO)(2)(H(2)O)(4), 9, crystallize in the monoclinic space group P2(1)/n and Z = 2, with a = 8.9281(9), b = 9.1053(9), c = 10.6881(11) A, beta = 97.9840(10) degrees for 4; a = 8.4154(7), b = 9.9806(8), c = 10.5695(8) A, beta = 97.3500(10) degrees for 8; a = 8.5072(7), b = 10.2254(8), c = 10.5075(8) A, beta 96.6500(10) degrees for 9. All three complexes are octahedral consisting of four equatorial water molecules, and two nitrogen or oxygen donor ligands (DNP or DNPO). The abundant hydrogen-bonding and pi-pi stacking interactions seem to contribute to stabilization of the crystal structures of the compounds. The TG-DTG results revealed that the complexes showed a weight loss sequence corresponding to all coordinated water molecules, nitro groups, the breaking of the pyridine rings and finally the formation of metal oxides.
Tsybizova, Alexandra; Tarábek, Ján; Buchta, Michal; Holý, Petr; Schröder, Detlef
2012-10-15
Heavy metals are both a problem for the environment and an important resource for industry. Their selective extraction by means of organic ligands therefore is an attractive topic. The coordination of three thiacrown ethers to late 3d-metal ions was investigated by a combination of electrospray ionization mass spectrometry (ESI-MS) and electron paramagnetic resonance (EPR). The mass spectrometric experiments were carried out in an ion trap mass spectrometer with an ESI source. Absolute binding constants were estimated by comparison with data for 18-crown-6/Na(+). EPR spectroscopy was used as a complementary method for investigating the Cu(I) /Cu(II) redox couple. The study found that thiacrown ethers preferentially bind traces of copper even at an excess of other metal ions (Co(II), Ni(II), and Zn(II)). The absolute association constants of the Cu(I) complexes were about 10(8) M(-1), and about two orders of magnitude lower for the other 3d-metal cations. The EPR spectra demonstrated that the reduction from Cu(II) to Cu(I) upon formation of the [(thiacrown)Cu](+) species takes place in solution. ESI-MS demonstrated that the three thiacrown ligands examined had high binding constants as well as good selectivities for copper(I) at low concentrations, and in the presence of other metal ions. By a combination of ESI-MS and EPR spectrometry it was shown that the reduction from Cu(II) to Cu(I) occurred in solution. Copyright © 2012 John Wiley & Sons, Ltd.
Hong, Jianquan; Tian, Haiwen; Zhang, Lixin; Zhou, Xigeng; Del Rosal, Iker; Weng, Linhong; Maron, Laurent
2018-01-22
The preferential substitution of oxo ligands over alkyl ones of rare-earth complexes is commonly considered as "impossible" due to the high oxophilicity of metal centers. Now, it has been shown that simply assembling mixed methyl/oxo rare-earth complexes to a rigid trinuclear cluster framework cannot only enhance the activity of the Ln-oxo bond, but also protect the highly reactive Ln-alkyl bond, thus providing a previously unrecognized opportunity to selectively manipulate the oxo ligand in the presence of numerous reactive functionalities. Such trimetallic cluster has proved to be a suitable platform for developing the unprecedented non-redox rare-earth-mediated oxygen atom transfer from ketones to CS 2 and PhNCS. Controlled experiments and computational studies shed light on the driving force for these reactions, emphasizing the importance of the sterical accessibility and multimetallic effect of the cluster framework in promoting reversal of reactivity of rare-earth oxo complexes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Onwudiwe, Damian C.; Strydom, Christien A.
2015-01-01
Bipyridine adducts of N-phenyldithiocarbamato complexes, [ML12L2] (M = Cd(II), Zn(II); L1 = N-phenyldithiocarbamate, L2 = 2,2‧ bipyridine), have been synthesized and characterised. The decomposition of these complexes to metal sulphides has been investigated by thermogravimetric analysis (TGA). The complexes were used as single-source precursors to synthesize MS (M = Zn, Cd) nanoparticles (NPs) passivated by hexadecyl amine (HDA). The growth of the nanoparticles was carried out at two different temperatures: 180 and 220 °C, and the optical and structural properties of the nanoparticles were studied using UV-Vis spectroscopy, photoluminescence spectroscopy (PL), transmission emission microscopy (TEM) and powdered X-ray diffraction (p-XRD). Nanoparticles, whose average diameters are 2.90 and 3.54 nm for ZnS, and 8.96 and 9.76 nm for CdS grown at 180 and 220 °C respectively, were obtained.
Novel mixed ligand technetium complexes as 5-HT1A receptor imaging agents.
León, A; Rey, A; Mallo, L; Pirmettis, I; Papadopoulos, M; León, E; Pagano, M; Manta, E; Incerti, M; Raptopoulou, C; Terzis, A; Chiotellis, E
2002-02-01
The synthesis, characterization and biological evaluation of two novel 3 + 1 mixed ligand 99mTc-complexes, bearing the 1-(2-methoxyphenylpiperazine) moiety, a fragment of the true 5-HT1A antagonist WAY 100635, is reported. Complexes at tracer level 99mTcO[(CH3CH2)2NCH2CH2N(CH2CH2S)2][o-CH3OC6H4N(CH2CH2)2NCH2CH2S], 99mTc-1, and 99mTcO[((CH3)2CH)2NCH2CH2N(CH2CH2S)2][o-CH3OC6H4N (CH2CH2)2NCH2CH2S], 99mTc-2, were prepared using 99mTc-glucoheptonate as precursor. For structural characterization, the analogous oxorhenium complexes, Re-1 and Re-2, were prepared by ligand exchange reaction using ReOCl3(PPh3)2 as precursor, and characterized by elemental analysis and spectroscopic methods. Complex Re-1 was further characterized by crystallographic analysis. Labeling was performed with high yield (>85%) and radiochemical purity (>90%) using very low ligand concentration. The structure of 99mTc complexes was established by comparative HPLC using the well-characterized oxorhenium analogues as references. In vitro binding assays demonstrated the affinity of these complexes for 5-HT1A receptors (IC50 : 67 and 45 nM for Re-1 and Re-2 respectively). Biological studies in mice showed the ability of 99mTc-1 and 99mTc-2 complexes to cross the intact blood-brain barrier (1.4 and 0.9% dose/g, respectively at 1 min post-inj.). The distribution of these complexes in various regions in rat brain is inhomogeneous. The highest ratio between areas reach and poor in 5-HT1A receptors was calculated for complex Tc-1 at 60 min p.i. (hippocampus/cerebellum = 1.7).
NASA Astrophysics Data System (ADS)
Kalinowska, M.; Piekut, J.; Bruss, A.; Follet, C.; Sienkiewicz-Gromiuk, J.; Świsłocka, R.; Rzączyńska, Z.; Lewandowski, W.
2014-03-01
The molecular structure of Mn(II), Cu(II), Zn(II), Cd(II) and Ca(II) ferulates (4-hydroxy-3-methoxycinnamates) was studied. The selected metal ferulates were synthesized. Their composition was established by means of elementary and thermogravimetric analysis. The following spectroscopic methods were used: infrared (FT-IR), Raman (FT-Raman), nuclear magnetic resonance (13C, 1H NMR) and ultraviolet-visible (UV/VIS). On the basis of obtained results the electronic charge distribution in studied metal complexes in comparison with ferulic acid molecule was discussed. The microbiological study of ferulic acid and ferulates toward Escherichia coli, Bacillus subtilis, Candida albicans, Pseudomonas aeruginosa, Staphylococcus aureus and Proteus vulgaris was done.
Measuring Aptamer Equilbria Using Gradient Micro Free Flow Electrophoresis
Turgeon, Ryan T.; Fonslow, Bryan R.; Jing, Meng; Bowser, Michael T.
2010-01-01
Gradient micro free flow electrophoresis (μFFE) was used to observe the equilibria of DNA aptamers with their targets (IgE or HIVRT) across a range of ligand concentrations. A continuous stream of aptamer was mixed online with an increasing concentration of target and introduced into the μFFE device, which separated ligand-aptamer complexes from the unbound aptamer. The continuous nature of μFFE allowed the equilibrium distribution of aptamer and complex to be measured at 300 discrete target concentrations within 5 minutes. This is a significant improvement in speed and precision over affinity capillary electrophoresis (ACE) assays. The dissociation constant of the aptamer-IgE complex was estimated to be 48± 3 nM. The high coverage across the range of ligand concentrations allowed complex stoichiometries of the aptamer-HIVRT complexes to be observed. Nearly continuous observation of the equilibrium distribution from 0 to 500 nM HIVRT revealed the presence of complexes with 3:1 (aptamer:HIVRT), 2:1 and 1:1 stoichiometries. PMID:20373790
Latapiat, Verónica; Rodríguez, Felipe E.; Godoy, Francisca; Montenegro, Felipe A.; Barrera, Nelson P.; Huidobro-Toro, Juan P.
2017-01-01
Protein allosteric modulation is a pillar of metabolic regulatory mechanisms; this concept has been extended to include ion channel regulation. P2XRs are ligand-gated channels activated by extracellular ATP, sensitive to trace metals and other chemicals. By combining in silico calculations with electrophysiological recordings, we investigated the molecular basis of P2X4R modulation by Zn(II) and ivermectin, an antiparasite drug currently used in veterinary medicine. To this aim, docking studies, molecular dynamics simulations and non-bonded energy calculations for the P2X4R in the apo and holo states or in the presence of ivermectin and/or Zn(II) were accomplished. Based on the crystallized Danio rerio P2X4R, the rat P2X4R, P2X2R, and P2X7R structures were modeled, to determine ivermectin binding localization. Calculations revealed that its allosteric site is restricted to transmembrane domains of the P2X4R; the role of Y42 and W46 plus S341 and non-polar residues were revealed as essential, and are not present in the homologous P2X2R or P2X7R transmembrane domains. This finding was confirmed by preferential binding conformations and electrophysiological data, revealing P2X4R modulator specificity. Zn(II) acts in the P2X4R extracellular domain neighboring the SS3 bridge. Molecular dynamics in the different P2X4R states revealed allosterism-induced stability. Pore and lateral fenestration measurements of the P2X4R showed conformational changes in the presence of both modulators compatible with a larger opening of the extracellular vestibule. Electrophysiological studies demonstrated additive effects in the ATP-gated currents by joint applications of ivermectin plus Zn(II). The C132A P2X4R mutant was insensitive to Zn(II); but IVM caused a 4.9 ± 0.7-fold increase in the ATP-evoked currents. Likewise, the simultaneous application of both modulators elicited a 7.1 ± 1.7-fold increase in the ATP-gated current. Moreover, the C126A P2X4R mutant evoked similar ATP-gated currents comparable to those of wild-type P2X4R. Finally, a P2X4/2R chimera did not respond to IVM but Zn(II) elicited a 2.7 ± 0.6-fold increase in the ATP-gated current. The application of IVM plus Zn(II) evoked a 2.7 ± 0.9-fold increase in the ATP-gated currents. In summary, allosteric modulators caused additive ATP-gated currents; consistent with lateral fenestration enlargement. Energy calculations demonstrated a favorable transition of the holo receptor state following both allosteric modulators binding, as expected for allosteric interactions. PMID:29326590
Metal Ion Dependence of the Matrix Metalloproteinase-1 Mechanism.
Yang, Hao; Makaroff, Katherine; Paz, Nicholas; Aitha, Mahesh; Crowder, Michael W; Tierney, David L
2015-06-16
Matrix metalloproteinase-1 (MMP-1) plays crucial roles in disease-related physiologies and pathological processes in the human body. We report here solution studies of MMP-1, including characterization of a series of mutants designed to bind metal in either the catalytic site or the structural site (but not both). Circular dichroism and fluorescence spectroscopy of the mutants demonstrate the importance of the structural Zn(II) in maintaining both secondary and tertiary structure, while UV-visible, nuclear magnetic resonance, electron paramagnetic resonance, and extended X-ray absorption fine structure show its presence influences the catalytic metal ion's coordination number. The mutants allow us to demonstrate convincingly the preparation of a mixed-metal analogue, Co(C)Zn(S)-MMP-1, with Zn(II) in the structural site and Co(II) in the catalytic site. Stopped-flow fluorescence of the native form, Zn(C)Zn(S)-MMP-1, and the mixed-metal Co(C)Zn(S)-MMP-1 analogue shows that the internal fluorescence of a nearby Trp residue is modulated with catalysis and can be used to monitor reactivity under a number of conditions, opening the door to substrate profiling.
Sydor, Andrew M.; Lebrette, Hugo; Ariyakumaran, Rishikesh; Cavazza, Christine; Zamble, Deborah B.
2014-01-01
The pathogen Helicobacter pylori requires two nickel-containing enzymes, urease and [NiFe]-hydrogenase, for efficient colonization of the human gastric mucosa. These enzymes possess complex metallocenters that are assembled by teams of proteins in multistep pathways. One essential accessory protein is the GTPase HypB, which is required for Ni(II) delivery to [NiFe]-hydrogenase and participates in urease maturation. Ni(II) or Zn(II) binding to a site embedded in the GTPase domain of HypB modulates the enzymatic activity, suggesting a mechanism of regulation. In this study, biochemical and structural analyses of H. pylori HypB (HpHypB) revealed an intricate link between nucleotide and metal binding. HpHypB nickel coordination, stoichiometry, and affinity were modulated by GTP and GDP, an effect not observed for zinc, and biochemical evidence suggests that His-107 coordination to nickel toggles on and off in a nucleotide-dependent manner. These results are consistent with the crystal structure of HpHypB loaded with Ni(II), GDP, and Pi, which reveals a nickel site distinct from that of zinc-loaded Methanocaldococcus jannaschii HypB as well as subtle changes to the protein structure. Furthermore, Cys-142, a metal ligand from the Switch II GTPase motif, was identified as a key component of the signal transduction between metal binding and the enzymatic activity. Finally, potassium accelerated the enzymatic activity of HpHypB but had no effect on the other biochemical properties of the protein. Altogether, this molecular level information about HpHypB provides insight into its cellular function and illuminates a possible mechanism of metal ion discrimination. PMID:24338018
Sydor, Andrew M; Lebrette, Hugo; Ariyakumaran, Rishikesh; Cavazza, Christine; Zamble, Deborah B
2014-02-14
The pathogen Helicobacter pylori requires two nickel-containing enzymes, urease and [NiFe]-hydrogenase, for efficient colonization of the human gastric mucosa. These enzymes possess complex metallocenters that are assembled by teams of proteins in multistep pathways. One essential accessory protein is the GTPase HypB, which is required for Ni(II) delivery to [NiFe]-hydrogenase and participates in urease maturation. Ni(II) or Zn(II) binding to a site embedded in the GTPase domain of HypB modulates the enzymatic activity, suggesting a mechanism of regulation. In this study, biochemical and structural analyses of H. pylori HypB (HpHypB) revealed an intricate link between nucleotide and metal binding. HpHypB nickel coordination, stoichiometry, and affinity were modulated by GTP and GDP, an effect not observed for zinc, and biochemical evidence suggests that His-107 coordination to nickel toggles on and off in a nucleotide-dependent manner. These results are consistent with the crystal structure of HpHypB loaded with Ni(II), GDP, and Pi, which reveals a nickel site distinct from that of zinc-loaded Methanocaldococcus jannaschii HypB as well as subtle changes to the protein structure. Furthermore, Cys-142, a metal ligand from the Switch II GTPase motif, was identified as a key component of the signal transduction between metal binding and the enzymatic activity. Finally, potassium accelerated the enzymatic activity of HpHypB but had no effect on the other biochemical properties of the protein. Altogether, this molecular level information about HpHypB provides insight into its cellular function and illuminates a possible mechanism of metal ion discrimination.
Pushie, M. Jake; Nienaber, Kurt H.; McDonald, Alex; Millhauser, Glenn L.; George, Graham N.
2014-01-01
The metal coordinating properties of the prion protein (PrP) have been the subject of intense focus and debate since the first reports of copper interaction with PrP just before the turn of the century. The picture of metal coordination to PrP has been improved and refined over the past decade, and yet the structural details of the various metal coordination modes have not been fully elucidated in some cases. Herein we employ X-ray absorption near edge spectroscopy as well as extended X-ray absorption fine structure (EXAFS) spectroscopy to structurally characterize the dominant 1:1 coordination modes for CuII, CuI and ZnII with an N-terminal fragment of PrP. The PrP fragment constitutes four tandem repeats representative of the mammalian octarepeat domain, designated OR4, which is also the most studied PrP fragment for metal interactions, making our findings applicable to a large body of previous work. Density functional theory (DFT) calculations provide additional structural and thermodynamic data, and candidate structures are used to inform EXAFS data analysis. The optimized geometries from DFT calculations are used to identify potential coordination complexes for multi-histidine coordination of CuII, CuI and ZnII in an aqueous medium, modeled using 4-methylimidazole to represent the histidine side chain. Through a combination of in silico coordination chemistry as well as rigorous EXAFS curve fitting, using full multiple scattering on candidate structures from DFT calculations, we have characterized the predominant coordination modes for the 1:1 complexes of CuII, CuI and ZnII with the OR4 peptide at pH 7.4 at atomic resolution, which are best represented as a square planar [CuII(His)4]2+, digonal [CuI(His)2]+ and tetrahedral [ZnII(His)3(OH2)]2+, respectively. PMID:25042361
Taha, A; Farag, A A M; Ammar, A H; Ahmed, H M
2014-09-15
A new binuclear mixed ligand complex, [Cu2(Phth)(Me4en)2(H2O)2(NO3)2]·H2O (where, Phth=phthalate, and (Me4en)=N,N,N',N'tetramethylethylenediamine) was synthesized and characterized using analytical, spectral, magnetic, molar conductance, thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements. The XRD data of Cu(II)-complex was analyzed on the basis of Williamson-Hall (W-H) and compared with TEM results. The results indicate that the complex is well crystalline and correspond to hexagonal crystal structure. Analysis of the absorption coefficient near the absorption edge reveals that the optical band gaps are indirect allowed transition with values of 1.17 and 1.78 eV. The d-d absorption bands of the complex (dissolved in various solvents) exhibit a color changes (solvatochromic). Specific and non-specific interactions of solvent molecules with the complex were investigated using Multiple Linear Regression Analysis (MLRA). Transient photocurrent characteristics of Cu(II)-complex/n-Si heterojunctions indicate that photocurrent under illumination increase with increasing of light intensity and explained by continuous distribution of traps. Structural parameters of the free ligands and their Cu(II)-complex were calculated on the basis of semi-empirical PM3 level and compared with the experimental data. The present copper (II) complex was screened for its antimicrobial activity against some Gram-positive and Gram-negative bacteria and fungus strain. Copyright © 2014 Elsevier B.V. All rights reserved.
Tian, Ye; Huang, Xiaoqiang; Zhu, Yushan
2015-08-01
Enzyme amino-acid sequences at ligand-binding interfaces are evolutionarily optimized for reactions, and the natural conformation of an enzyme-ligand complex must have a low free energy relative to alternative conformations in native-like or non-native sequences. Based on this assumption, a combined energy function was developed for enzyme design and then evaluated by recapitulating native enzyme sequences at ligand-binding interfaces for 10 enzyme-ligand complexes. In this energy function, the electrostatic interaction between polar or charged atoms at buried interfaces is described by an explicitly orientation-dependent hydrogen-bonding potential and a pairwise-decomposable generalized Born model based on the general side chain in the protein design framework. The energy function is augmented with a pairwise surface-area based hydrophobic contribution for nonpolar atom burial. Using this function, on average, 78% of the amino acids at ligand-binding sites were predicted correctly in the minimum-energy sequences, whereas 84% were predicted correctly in the most-similar sequences, which were selected from the top 20 sequences for each enzyme-ligand complex. Hydrogen bonds at the enzyme-ligand binding interfaces in the 10 complexes were usually recovered with the correct geometries. The binding energies calculated using the combined energy function helped to discriminate the active sequences from a pool of alternative sequences that were generated by repeatedly solving a series of mixed-integer linear programming problems for sequence selection with increasing integer cuts.
Copper-phospholipid interaction at cell membrane model hydrophobic surfaces.
Mlakar, Marina; Cuculić, Vlado; Frka, Sanja; Gašparović, Blaženka
2018-04-01
Detailed investigation of Cu (II) binding with natural lipid phosphatidylglycerol (PG) in aqueous solution was carried out by voltammetric measurements at the mercury drop electrode, complemented by monolayer studies in a Langmuir trough and electrophoretic measurements, all used as models for hydrophobic cell membranes. Penetration of copper ions into the PG layer was facilitated by the formation of hydrophilic Cu-Phenanthroline (Phen) complex in the subphase, followed by the mixed ligand Cu-Phen-PG complex formation at the hydrophobic interface. Electrophoretic measurements indicated a comparatively low abundance of the formed mixed ligand complex within the PG vesicles, resulting it the zeta potential change of +0.83mV, while monolayer studies confirmed their co-existence at the interface. The Cu-Phen-PG complex was identified in the pH range from 6 to 9. The stoichiometry of the complex ([PhenCuOHPG]), as well as its stability and kinetics of formation, were determined at the mercury drop electrode. Cu-Phen-PG reduces quasireversibly at about -0.7V vs. Ag/AgCl including reactant adsorption, followed by irreversible mixed complex dissociation, indicating a two-electron transfer - chemical reaction (EC mechanism). Consequently, the surface concentration (γ) of the adsorbed [PhenCuOHPG] complex at the hydrophobic electrode surface was calculated to be (3.35±0.67)×10 -11 molcm -2 . Information on the mechanism of Cu (II) - lipid complex formation is a significant contribution to the understanding of complex processes at natural cell membranes. Copyright © 2017 Elsevier B.V. All rights reserved.
Biodegradation of Metal-EDTA Complexes by an Enriched Microbial Population
Thomas, Russell A. P.; Lawlor, Kirsten; Bailey, Mark; Macaskie, Lynne E.
1998-01-01
A mixed culture utilizing EDTA as the sole carbon source was isolated from a mixed inoculum of water from the River Mersey (United Kingdom) and sludge from an industrial effluent treatment plant. Fourteen component organisms were isolated from the culture, including representatives of the genera Methylobacterium, Variovorax, Enterobacter, Aureobacterium, and Bacillus. The mixed culture biodegraded metal-EDTA complexes slowly; the biodegradability was in the order Fe>Cu>Co>Ni>Cd. By incorporation of inorganic phosphate into the medium as a precipitant ligand, heavy metals were removed in parallel to EDTA degradation. The mixed culture also utilized a number of possible EDTA degradation intermediates as carbon sources. PMID:9546167
Ligand effects on the ferro- to antiferromagnetic exchange ratio in bis(o-semiquinonato)copper(II).
Ovcharenko, Victor I; Gorelik, Elena V; Fokin, Sergey V; Romanenko, Galina V; Ikorskii, Vladimir N; Krashilina, Anna V; Cherkasov, Vladimir K; Abakumov, Gleb A
2007-08-29
Heterospin complexes [Cu(SQ)2Py].C7H8, Cu(SQ)2DABCO, and [Cu(SQ)2NIT-mPy].C6H6, where Cu(SQ)2 is bis(3,6-di-tert-butyl-o-benzosemiquinonato)copper(II), DABCO is 1,4-diazabicyclo(2,2,2)octane, and NIT-mPy is the nitronyl nitroxide 2-(pyridin-3-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl, have been synthesized. The molecules of these complexes have a specific combination of the intramolecular ferro- and antiferromagnetic exchange interactions between the odd electrons of Cu(II) and SQ ligands, characterized by large exchange coupling parameters |J| approximately 100-300 cm(-1). X-ray and magnetochemical studies of a series of mixed-ligand compounds revealed that an extra ligand (Py, NIT-mPy, or DABCO) coordinated to the metal atom produces a dramatic effect on the magnetic properties of the complex, changing the multiplicity of the ground state. Quantum chemical analysis of magnetostructural correlations showed that the energy of the antiferromagnetic exchange interaction between the odd electrons of the SQ ligands in the Cu(SQ)2 bischelate is extremely sensitive to both the nature of the extra ligand and structural distortions of the coordination unit, arising from extra ligand coordination.
DNA binding of supramolecular mixed-metal complexes
NASA Astrophysics Data System (ADS)
Swavey, Shawn; Williams, Rodd L.; Fang, Zhenglai; Milkevitch, Matthew; Brewer, Karen J.
2001-10-01
The high binding affinity of cisplatin toward DNA has led to its popularity as an anticancer agent. Due to cumulative drug resistance and toxic side effects, researchers are exploring related metallodrugs. Our approach involves the use of supramolecular complexes. These mixed-metal complexes incorporate a reactive platinum moiety bridged by a polyazine ligand to a light absorbing metal-based chromophore. The presence of the light absorber allows excitation of these systems, opening up the possibility of photoactivation. The use of a supramolecular design allows components of the assembly to be varied to enhance device function and light absorbing properties. Aspects of our molecular design process and results on the DNA binding properties for a number of these mixed-metal complexes will be discussed.
NASA Astrophysics Data System (ADS)
Maurya, R. C.; Malik, B. A.; Mir, J. M.; Vishwakarma, P. K.; Rajak, D. K.; Jain, N.
2015-11-01
The present report pertains to synthesis and combined experimental-DFT studies of a series of four novel mixed-ligand complexes of cobalt(II) of the general composition [Co(dha)(L)(H2O)2], where dhaH = dehydroacetic acid, LH = β-ketoenolates viz., o-acetoacetotoluidide (o-aatdH), o-acetoacetanisidide (o-aansH), acetylacetone (acacH) or 1-benzoylacetone (1-bac). The resulting complexes were formulated based on elemental analysis, molar conductance, magnetic measurements, mass spectrometric, IR, electronic, electron spin resonance and cyclic voltammetric studies. The TGA based thermal behavior of one representative complex was evaluated. Molecular geometry optimizations and vibrational frequency calculations have been performed with Gaussian 09 software package by using density functional theory (DFT) methods with B3LYP/LANL2MB combination for dhaH and one of its complexes, [Co(dha)(1-bac)(H2O)2]. Theoretical data has been found in an excellent agreement with the experimental results. Based on experimental and theoretical data, suitable trans-octahedral structure has been proposed for the present class of complexes. Moreover, the complexes also showed a satisfactory antibacterial activity.
Spectroscopic, thermal analysis and DFT computational studies of salen-type Schiff base complexes.
Ebrahimi, Hossein Pasha; Hadi, Jabbar S; Abdulnabi, Zuhair A; Bolandnazar, Zeinab
2014-01-03
A new series of metal(II) complexes of Co(II), Ni(II), Cu(II), Zn(II), and Pb(II) have been synthesized from a salen-type Schiff base ligand derived from o-vanillin and 4-methyl-1,2-phenylenediamine and characterized by elemental analysis, spectral (IR, UV-Vis, (1)H NMR, (13)C NMR and EI-mass), molar conductance measurements and thermal analysis techniques. Coats-Redfern method has been utilized to calculate the kinetic and thermodynamic parameters of the metal complexes. The molecular geometry, Mulliken atomic charges of the studied compounds were investigated theoretically by performing density functional theory (DFT) to access reliable results to the experimental values. The theoretical (13)C chemical shift results of the studied compounds have been calculated at the B3LYP, PBEPBE and PW91PW91 methods and standard 6-311+G(d,p) basis set starting from optimized geometry. The comparison of the results indicates that B3LYP/6-311+G(d,p) yields good agreement with the observed chemical shifts. The measured low molar conductance values in DMF indicate that the metal complexes are non-electrolytes. The spectral and thermal analysis reveals that all complexes have octahedral geometry except Cu(II) complex which can attain the square planner arrangement. The presence of lattice and coordinated water molecules are indicated by thermograms of the complexes. The thermogravimetric (TG/DTG) analyses confirm high stability for all complexes followed by thermal decomposition in different steps. Copyright © 2013 Elsevier B.V. All rights reserved.
Bhattacharjee, Chira R; Goswami, Pankaj; Pramanik, Harun A R; Paul, Pradip C; Mondal, Paritosh
2011-05-01
Two new mixed-ligand iron(III) complexes, [Fe(L(n))(acac)(C(2)H(5)OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac)(3)] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H(2)L(1)) or 2-aminobenzoic acid (H(2)L(2)). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L(n))(acac)X] (n=1, 2; X=Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, (1)H and (13)C NMR spectroscopy. Room temperature magnetic susceptibility measurements (μ(eff)∼5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (ΔE(p)>100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential (E(1/2)) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kushawaha, S. K.; Dani, R. K.; Bharty, M. K.; Chaudhari, U. K.; Sharma, V. K.; Kharwar, R. N.; Singh, N. K.
2014-04-01
A new Zn(II) complex [Zn(pbth)2] (where Hpbth = N-picolinoyl-N‧-benzothioylhydrazide) has been synthesized and characterized by elemental analyses, IR, UV-Visible and single crystal X-ray data. The distorted octahedral complex [Zn(pbth)2] crystallizes in monoclinic system with space group C2/c and is stabilized by various types of inter and intramolecular extended hydrogen bonding providing supramolecular framework. The optimized molecular geometry of N-picolinoyl-N‧-benzothioylhydrazide (Hpbth) and the zinc complex in the ground state have been calculated by using the DFT method using B3LYP functional with 6-311 G(d,p){C,H,N,O,S}/Lanl2DZ basis set. The results of the optimized molecular geometry are presented and compared with the experimental X-ray diffraction data. In addition, quantum chemical calculations of Hpbth and the complex, molecular electrostatic potential (MEP), contour map and frontier molecular orbital analysis were performed. The solid state electrical conductivity and thermal behaviour (TGA) of the complex were investigated. The bioefficacy of the complex has been examined against the growth of bacteria in vitro to evaluate its anti-microbial potential.
DFT study of uranyl peroxo complexes with H2O, F-, OH-, CO3(2-), and NO3(-).
Odoh, Samuel O; Schreckenbach, Georg
2013-05-06
The structural and electronic properties of monoperoxo and diperoxo uranyl complexes with aquo, fluoride, hydroxo, carbonate, and nitrate ligands have been studied using scalar relativistic density functional theory (DFT). Only the complexes in which the peroxo ligands are coordinated to the uranyl moiety in a bidentate mode were considered. The calculated binding energies confirm that the affinity of the peroxo ligand for the uranyl group far exceeds that of the F(-), OH(-), CO3(2-), NO3(-), and H2O ligands. The formation of the monoperoxo complexes from UO2(H2O)5(2+) and HO2(-) were found to be exothermic in solution. In contrast, the formation of the monouranyl-diperoxo, UO2(O2)2X2(4-) or UO2(O2)2X(4-/3-) (where X is any of F(-), OH(-), CO3(2-), or NO3(-)), complexes were all found to be endothermic in aqueous solution. This suggests that the monoperoxo species are the terminal monouranyl peroxo complexes in solution, in agreement with recent experimental work. Overall, we find that the properties of the uranyl-peroxo complexes conform to well-known trends: the coordination of the peroxo ligand weakens the U-O(yl) bonds, stabilizes the σ(d) orbitals and causes a mixing between the uranyl π- and peroxo σ- and π-orbitals. The weakening of the U-O(yl) bonds upon peroxide coordination results in uranyl stretching vibrational frequencies that are much lower than those obtained after the coordination of carbonato or hydroxo ligands.
NASA Astrophysics Data System (ADS)
Sadeek, S. A.; El-Hamid, S. M. Abd
2016-10-01
[Zn(Ofl)(Phen)(H2O)2](CH3COO)·2H2O (1), [ZrO(Ofl)(Phen)(H2O)]NO3·2H2O (2) and [UO2(Ofl)(Phen)(H2O)](CH3COO)·H2O (3) complexes of fluoroquinolone antibacterial agent ofloxacin (HOfl), containing a nitrogen donor heterocyclic ligand, 1,10-phenathroline monohydrate (Phen), were prepared and their structures were established with the help of elemental analysis, molar conductance, magnetic properties, thermal studies and different spectroscopic studies like IR, UV-Vis., 1H NMR and Mass. The IR data of HOfl and Phen ligands suggested the existing of a bidentate binding involving carboxylate O and pyridone O for HOfl ligand and two pyridine N atoms for Phen ligand. The coordination geometries and electronic structures are determined from electronic absorption spectra and magnetic moment measurements. From molar conductance studies reveals that metal complexes are electrolytes and of 1:1 type. The calculated bond length and force constant, F(Udbnd O), in the uranyl complex are 1.751 Å and 641.04 Nm-1. The thermal properties of the complexes were investigated by thermogravimetry (TGA) technique. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. Antimicrobial activity of the compounds was evaluated against some bacteria and fungi species. The activity data show that most metal complexes have antibacterial activity than that of the parent HOfl drug. The in vitro cytotoxicities of ligands and their complexes were also evaluated against human breast and colon carcinoma cells.
Two novel mixed-ligand complexes containing organosulfonate ligands.
Li, Mingtian; Huang, Jun; Zhou, Xuan; Fang, Hua; Ding, Liyun
2008-07-01
The structures reported herein, viz. bis(4-aminonaphthalene-1-sulfonato-kappaO)bis(4,5-diazafluoren-9-one-kappa(2)N,N')copper(II), [Cu(C(10)H(8)NO(3)S)(2)(C(11)H(6)N(2)O)(2)], (I), and poly[[[diaquacadmium(II)]-bis(mu-4-aminonaphthalene-1-sulfonato)-kappa(2)O:N;kappa(2)N:O] dihydrate], {[Cd(C(10)H(8)NO(3)S)(2)(H(2)O)(2)].2H(2)O}(n), (II), are rare examples of sulfonate-containing complexes where the anion does not fulfill a passive charge-balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the Cu(II) atom, and the asymmetric unit contains one-half of a Cu atom, one complete 4-aminonaphthalene-1-sulfonate (ans) ligand and one 4,5-diazafluoren-9-one (DAFO) ligand. The Cu(II) atom has an elongated distorted octahedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules. Complex (II) is polymeric and its crystal structure is built up by one-dimensional chains and solvent water molecules. Here also the cation (a Cd(II) atom) lies on a crystallographic inversion center and adopts a slightly distorted octahedral geometry. Each ans anion serves as a bridging ligand linking two Cd(II) atoms into one-dimensional infinite chains along the [010] direction, with each Cd(II) center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant pi-pi stacking interactions between adjacent ligands and hydrogen bonds contribute to the formation of two- and three-dimensional networks.
Jansone-Popova, Santa; Ivanov, Alexander S.; Bryantsev, Vyacheslav S.; ...
2017-05-04
Here, we report a new family of preorganized bislactam- 1,10-phenanthroline (BLPhen) complexants that possess both hard and soft donor atoms within a convergent cavity and show unprecedented extraction strength for the trivalent fblock metal ions. BLPhen ligands with saturated and unsaturated δ-lactam rings have notable differences in their affinity and selectivity for Am(III) over Eu(III), with the latter being the most selective mixed N,O-donor extractant of Am(III) reported to date. Saturated BLPhen was crystallized with five Ln(III) nitrates to form charge-neutral 1:1 complexes in the solid state. DFT calculations further elaborate on the variety of effects that dictate the performancemore » of these preorganized compounds.« less
Zn(II), Cd(II) and Hg(I) complexes of cinnamic acid: FT-IR, FT-Raman, 1H and 13C NMR studies
NASA Astrophysics Data System (ADS)
Kalinowska, M.; Świsłocka, R.; Lewandowski, W.
2011-05-01
The effect of zinc, cadmium(II) and mercury(I) ions on the electronic structure of cinnamic acid (phenylacrylic acid) was studied. In this research many miscellaneous analytical methods, which complement one another, were used: infrared (FT-IR), Raman (FT-Raman), nuclear magnetic resonance ( 1H, 13C NMR) and quantum mechanical calculations. The spectroscopic studies provide some knowledge on the distribution of the electronic charge in molecule, the delocalization energy of π-electrons and the reactivity of metal complexes. In the series of Zn(II) → Cd(II) → Hg(I) cinnamates: (1) systematic shifts of several bands in the experimental and theoretical IR and Raman spectra and (2) regular chemical shifts for protons 1H and 13C nuclei were observed.
High-sensitivity determination of Zn(II) and Cu(II) in vitro by fluorescence polarization
NASA Astrophysics Data System (ADS)
Thompson, Richard B.; Maliwal, Badri P.; Feliccia, Vincent; Fierke, Carol A.
1998-04-01
Recent work has suggested that free Cu(II) may play a role in syndromes such as Crohn's and Wilson's diseases, as well as being a pollutant toxic at low levels to shellfish and sheep. Similarly, Zn(II) has been implicated in some neural damage in the brain resulting from epilepsy and ischemia. Several high sensitivity methods exist for determining these ions in solution, including GFAAS, ICP-MS, ICP-ES, and electrochemical techniques. However, these techniques are generally slow and costly, require pretreatment of the sample, require complex instruments and skilled personnel, and are incapable of imaging at the cellular and subcellular level. To address these shortcomings we developed fluorescence polarization (anisotropy) biosensing methods for these ions which are very sensitivity, highly selective, require simple instrumentation and little pretreatment, and are inexpensive. Thus free Cu(II) or Zn(II) can be determined at picomolar levels by changes in fluorescence polarization, lifetime, or wavelength ratio using these methods; these techniques may be adapted to microscopy.
NASA Astrophysics Data System (ADS)
Movahedi, Elaheh; Rezvani, Ali Reza
2018-05-01
A novel mixed-ligand Ag(I) complex, , has been synthesized and characterized by the elemental analysis, IR spectroscopy and 1HNMR. In the formula, dian and phen are N-(4,5-diazafluoren-9-ylidene)aniline and 1,10-phenanthroline, respectively. This complex also has been prepared at nano size by sonochemical technique and characterized by the FTIR and scanning electron microscopy (SEM). To evaluate the biological preferences of the Ag(I) complex and nanocomplex and verify the relationships between the structure and biological function, in vitro DNA binding and antibacterial experiments have been carried out. DNA-complex interaction has been pursued by electronic absorption titration, luminescence titration, competitive binding experiment, effect of ionic strength, thermodynamic studies, viscometric evaluation and circular dichroism spectroscopy in the physiological pH. Each compound displays significant binding trend to the CT-DNA. The mode of binding to the CT-DNA probably is a moderate intercalation mode with the partial insertion of the planar ligands between the base stacks of double-stranded DNA. The relative viscosities and circular dichroism spectra of the CT-DNA with the complex solutions, confirm the intense interactions of the Ag(I) complex and nanocomplex with DNA. An in vitro antibacterial test of the complex and nanocomplex on a series of the Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis) and the Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) shows a remarkable antibacterial feature of the Ag(I) complex. The MIC values (minimum inhibitory concentration) of the compounds compare with silver nitrate and silver sulfadiazine. The bacterial inhibitions of the Ag(I) complex and nanocomplex are agreed to their DNA binding affinities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinlein, Claudia; Zheng, Shao-Liang; Betley, Theodore A.
Three ferric dipyrromethene complexes featuring different ancillary ligands were synthesized by one electron oxidation of ferrous precursors. Four-coordinate iron complexes of the type ( ArL)FeX 2 [ ArL = 1,9-(2,4,6-Ph 3C 6H 2) 2-5-mesityldipyrromethene] with X = Cl or tBuO were prepared and found to be high-spin (S = 5/2), as determined by superconducting quantum interference device magnetometry, electron paramagnetic resonance, and 57Fe Mössbauer spectroscopy. The ancillary ligand substitution was found to affect both ground state and excited properties of the ferric complexes examined. While each ferric complex displays reversible reduction and oxidation events, each alkoxide for chloride substitution resultsmore » in a nearly 600 mV cathodic shift of the Fe III/II couple. The oxidation event remains largely unaffected by the ancillary ligand substitution and is likely dipyrrin-centered. While the alkoxide substituted ferric species largely retain the color of their ferrous precursors, characteristic of dipyrrin-based ligand-to-ligand charge transfer (LLCT), the dichloride ferric complex loses the prominent dipyrrin chromophore, taking on a deep green color. Time-dependent density functional theory analyses indicate the weaker-field chloride ligands allow substantial configuration mixing of ligand-to-metal charge transfer into the LLCT bands, giving rise to the color changes observed. Furthermore, the higher degree of covalency between the alkoxide ferric centers is manifest in the observed reactivity. Delocalization of spin density onto the tert-butoxide ligand in ( ArL)FeCl(O tBu) is evidenced by hydrogen atom abstraction to yield ( ArL)FeCl and HOtBu in the presence of substrates containing weak C–H bonds, whereas the chloride ( ArL)FeCl 2 analogue does not react under these conditions.« less
Al-Noaimi, Mousa; Awwadi, Firas F; Mansi, Ahmad; Abdel-Rahman, Obadah S; Hammoudeh, Ayman; Warad, Ismail
2015-01-25
The novel azoimine ligand, Ph-NH-N=C(COCH3)-NHPh(C≡CH) (H2L), was synthesized and its molecular structure was determined by X-ray crystallography. Catalytic hydration of the terminal acetylene of H2L in the presence of RuCl3·3H2O in ethanol at reflux temperature yielded a ketone (L1=Ph-N=N-C(COCH3)=N-Ph(COCH3) and an enol (L2=Ph-N=N-C(COCH3)=N-PhC(OH)=CH2) by Markovnikov addition of water. Two mixed-ligand ruthenium complexes having general formula, trans-[Ru(bpy)(Y)Cl2] (1-2) (where Y=L1 (1) and Y=L2 (2), bpy is 2.2'-bipyrdine) were achieved by the stepwise addition of equimolar amounts of (H2L) and bpy ligands to RuCl3·3H2O in absolute ethanol. Theses complexes were characterized by elemental analyses and spectroscopic (IR, UV-Vis, and NMR (1D (1)H NMR, (13)C NMR, (DEPT-135), (DEPT-90), 2D (1)H-(1)H and (13)C-(1)H correlation (HMQC) spectroscopy)). The two complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 604 mV vs. ferrocene/ferrocenium (Cp2Fe(0/+)) couple along with one electron ligand reduction at -1010 mV. The crystal structure of complex 1 showed that the bidentate ligand L1 coordinates to Ru(II) by the azo- and imine-nitrogen donor atoms. The complex adopts a distorted trans octahedral coordination geometry of chloride ligands. The electronic spectra of 1 and 1+ in dichloromethane have been modeled by time-dependent density functional theory (TD-DFT). Copyright © 2014 Elsevier B.V. All rights reserved.
El-Sherif, Ahmed A; Shoukry, Mohamed M
2007-03-01
The formation equilibria of copper(II) complexes and the ternary complexes Cu(PDC)L (PDC=2,6-bis-(hydroxymethyl)-pyridine, HL=amino acid, amides or DNA constituents) have been investigated. Ternary complexes are formed by a simultaneous mechanism. The results showed the formation of Cu(PDC)L, Cu(PDC, H(-1))(L) and Cu(PDC, H(-2))(L) complexes. The concentration distribution of the complexes in solution is evaluated as a function of pH. The effect of dioxane as a solvent on the protonation constant of PDC and the formation constants of Cu(II) complexes are discussed. The thermodynamic parameters DeltaH degrees and DeltaS degrees calculated from the temperature dependence of the equilibrium constants are investigated.
Mancin, Fabrizio; Chin, Jik
2002-09-18
Cd(II) complex of L binds selectively to cytidine in DMSO with an equilibrium constant of 117 M-1 (where LH is 2-aminomethyl-8-hydroxyquinoline). In contrast, the Zn(II) complex of L does not bind appreciably to any of the four nucleobases under the same condition used for the Cd(II) complex.
Zhou, Jian-Liang; An, Jing-Jing; Li, Ping; Li, Hui-Jun; Jiang, Yan; Cheng, Jie-Fei
2009-03-20
We present herein a novel bioseparation/chemical analysis strategy for protein-ligand screening and affinity ranking in compound mixtures, designed to increase screening rates and improve sensitivity and ruggedness in performance. The strategy is carried out by combining on-line two-dimensional turbulent flow chromatography (2D-TFC) with liquid chromatography-mass spectrometry (LC-MS), and accomplished through the following steps: (1) a reversed-phase TFC stage to separate the protein/ligand complex from the unbound free molecules, (2) an on-line dissociation process to release the bound ligands from the complexes, and (3) a second mixed-mode cation-exchange/reversed-phase TFC stage to trap the bound ligands and to remove the proteins and salts, followed by LC-MS analysis for identification and determination of the binding affinities. The technique can implement an ultra-fast isolation of protein/ligand complex with the retention time of a complex peak in about 5s, and on-line prepare the "clean" sample to be directly compatible with the LC-MS analysis. The improvement in performance of this 2D-TFC/LC-MS approach over the conventional approach has been demonstrated by determining affinity-selected ligands of the target proteins acetylcholinesterase and butyrylcholinesterase from a small library with known binding affinities and a steroidal alkaloid library composed of structurally similar compounds. Our results show that 2D-TFC/LC-MS is a generic and efficient tool for high-throughput screening of ligands with low-to-high binding affinities, and structure-activity relationship evaluation.
Taha, A; Farag, A A M; Ammar, A H; Ahmed, H M
2014-03-25
In this work, a new solvatochromic mononuclear mixed ligand complex with the formula, Cu(DMCHD)(Me5dien)NO3 (where, DMCHD=5,5-Dimethyl cyclohexanate 1,3-dione and (Me5dien)=N,N,N',N'N″-pentamethyldiethylenetriamine was synthesized and characterized by analytical, spectral, magnetic, molar conductance, thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements. The formation constant-value for copper (II)-DMCHD was found to be much lower than the expected for similar β-diketones, revealing monobasic unidentate nature of this ligand. The d-d absorption bands of the prepared complex exhibit a color changes in various solvent (solvatochromic). Specific and non-specific interactions of solvent molecules with the complex were investigated using Multi Parametric Linear Regression Analysis (MLRA). Structural parameters of the free ligands and their Cu (II) - complex were calculated on the basis of semi-empirical PM3 level and compared with the experimental data. The crystallite size and morphology of Cu(DMCHD)(Me5dien)NO3 were examined using XRD analysis and TEM, revealing that the complex is well crystalline and correspond to the monoclinic crystal structure. The lattice strain and mean crystallite size were estimated by Williamson-Hall (W-H) plot using X-ray diffraction data. The main important absorption parameters such as extinction molar coefficient, oscillator strength and electric dipole strength of the principal optical transitions in the UV-Vis region were calculated. The analysis of absorption coefficient near the fundamental absorption edge reveals that the optical band gaps are direct allowed transitions with values of 2.78 eV and 3.59 eV. The present copper (II) complex was screened for its antimicrobial activity against Staphylococcus Aureus and Bacillus Subtilis as Gram-positive bacteria, Escherichia Coli and Salmonella Typhimurium as Gram-negative bacteria and Candida Albicans as fungus strain. Copyright © 2013 Elsevier B.V. All rights reserved.
Voltage color tunable OLED with (Sm,Eu)-β-diketonate complex blend
NASA Astrophysics Data System (ADS)
Reyes, R.; Cremona, M.; Teotonio, E. E. S.; Brito, H. F.; Malta, O. L.
2004-09-01
Light emission from organic electroluminescent diodes (OLEDs) in which mixed samarium and europium β-diketonate complexes, [Sm 0.7Eu 0.3(TTA) 3(TPPO) 2], was used as the emitting layer is described. The electroluminescence spectra exhibit narrow peaks arising from 4f-intraconfigurational transitions of the Sm 3+ and Eu 3+ ions and a broad emission band attributed to the electrophosphorescence of the TTA ligand. The intensity ratio of the peaks determined by the bias voltage applied to the OLED, together with the ligand electrophosphorescence, allows to obtain a voltage-tunable color light source.
NASA Astrophysics Data System (ADS)
Abu Ali, Hijazi; Abu Shamma, Amani; Kamel, Shayma
2017-08-01
New cobalt valproate complexes with different nitrogen based ligands were synthesized and characterized using various techniques such as IR, UV-Vis, single crystal X-ray diffraction as well as other physical properties. The general formula of the prepared complexes is [Con(valp)m(L)z], (n = 1, 2 …; m = 1, 2, …; Z = 1, 2 …). The complexes [Co2(valp)4] (1), [Co(valp)2(2-ampy)2] (2) and [Co2(valp)4(quin)2] (3) showed different carboxylate coordination modes. The crystal structures of the complexes 2 and 3 were determined using single crystal X-ray diffraction. Kinetic studies of hydrolysis reactions of BNPP [bis-(p-nitrophenyl)phosphate] with complexes 2 and 3 were performed. The hydrolysis rate of BNPP was studied at different temperatures, pH and concentrations by UV-Vis spectrophotometric method. The results showed that the hydrolysis rate of BNPP was 7.70 × 102 L mol-1 s-1 for (3) and 2.60 × 10-1 L mol-1 s-1 for (2).
NASA Astrophysics Data System (ADS)
Chang, Ho-Chol; Mochizuki, Katsunori; Kitagawa, Susumu
2008-11-01
Dynamic properties of a diruthenium complex with ligand-unsupported Ru-Ru triple bonds, Na 2[Ru 2(3,6-DTBCat) 4] ( 1), were studied using variable-temperature 1H NMR. Structural freedom derived from the ligand-unsupported structure leads to torsional motion about the Ru-Ru bonds in THF and in DMF. The observed solvent dependency corresponds to the electrostatic interactions between the diruthenium complex and Na + counter cations, which are sensitive to the polarity of solvents. In addition, a new diruthenium complex, [{Na(THF) 2(H 2O)}{Na(THF) 0.5(H 2O)}{Ru 2(3,6-DTBCat) 2(H 4Cat) 2}] ( 2·2.5THF·2H 2O), with a ligand-unsupported Ru-Ru bond surrounded by two different kinds of catecholate derivatives, has been synthesized and crystallographically characterized. The complex, which was characterized by single-crystal structural analysis, will provide an opportunity to investigate not only static molecular structures but also dynamic physicochemical properties in comparison with analogues containing four identical catecholate derivatives.
X-ray absorption spectral studies of copper (II) mixed ligand complexes
NASA Astrophysics Data System (ADS)
Soni, B.; Dar, Davood Ah; Shrivastava, B. D.; Prasad, J.; Srivastava, K.
2014-09-01
X-ray absorption spectra at the K-edge of copper have been studied in two copper mixed ligand complexes, one having tetramethyethylenediamine (tmen) and the other having tetraethyethylenediamine (teen) as one of the ligands. The spectra have been recorded at BL-8 dispersive extended X-ray absorption fine structure (EXAFS) beamline at the 2.5 GeV INDUS- 2 synchrotron, RRCAT, Indore, India. The data obtained has been processed using the data analysis program Athena. The energy of the K-absorption edge, chemical shift, edge-width and shift of the principal absorption maximum in the complexes have been determined and discussed. The values of these parameters have been found to be approximately the same in both the complexes indicating that the two complexes possess similar chemical environment around the copper metal atom. The chemical shift has been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length because of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase- uncorrected bond length. Bond length has also been determined by Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The results obtained from LSS and the Fourier transformation methods are comparable with each other, since both are phase uncorrected bond lengths.
Onwudiwe, Damian C; Strydom, Christien A
2015-01-25
Bipyridine adducts of N-phenyldithiocarbamato complexes, [ML(1)2L(2)] (M=Cd(II), Zn(II); L(1)=N-phenyldithiocarbamate, L(2)=2,2' bipyridine), have been synthesized and characterised. The decomposition of these complexes to metal sulphides has been investigated by thermogravimetric analysis (TGA). The complexes were used as single-source precursors to synthesize MS (M=Zn, Cd) nanoparticles (NPs) passivated by hexadecyl amine (HDA). The growth of the nanoparticles was carried out at two different temperatures: 180 and 220 °C, and the optical and structural properties of the nanoparticles were studied using UV-Vis spectroscopy, photoluminescence spectroscopy (PL), transmission emission microscopy (TEM) and powdered X-ray diffraction (p-XRD). Nanoparticles, whose average diameters are 2.90 and 3.54 nm for ZnS, and 8.96 and 9.76 nm for CdS grown at 180 and 220 °C respectively, were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radanović, Mirjana M.; Jelić, Miodrag G., E-mail: jelicmgm@uns.ac.rs; Romčević, Nebojša Ž.
Highlights: • New zinc(II) complex with pyridoxalaminoguanidine was synthesized. • The enhancement of the photoluminescence due to the compound formation was achieved. • Very high photoluminescence of Zn(II) compound was noticed. • Comparative analysis of photoluminescence with tris(2,2′-bipyridine) ruthenium(II) was provided. - Abstract: The first compound of zinc(II) containing pyridoxalaminoguanidine has been synthesized and characterized by elemental analysis, infrared spectra, conductometric measurements and X-ray crystallography. Single crystals of the compound were obtained in the reaction of methanolic solution of zinc(II) chloride and pyridoxalaminoguanidine hydrochloride. In this compound the coordination of chelate ligand is absent and tetrachlorido complex of zinc(II) withmore » pyridoxalaminuguanidinium cation as contraion is obtained. Photoluminescence spectra were measured. Lorentzian multipeak technique was used to determine peak wavelengths and their intensities. Photoluminescence spectroscopy upon 325, 488 and 514 nm laser excitation light was used to obtain results. This novel compound of zinc(II) was compared to the well-known organic light emitting diode material—ruthenium(II) complex with bypiridine i.e., tris(2,2′-bipyridine)ruthenium(II), under the same circumstances and the identical experimental setup. A scheme of energy levels and transitions is proposed to explain the obtained experimental results.« less
Nasri, Soumaya; Amiri, Nesrine; Turowska-Tyrk, Ilona; Daran, Jean-Claude; Nasri, Habib
2016-01-01
In the title compound, [Zn(C72H44N4O8)(C6H4N2)]·C6H4N2 or [Zn(TPBP)(4-CNpy]·(4-CNpy) [where TPBP and 4-CNpy are 5,10,15,20-(tetraphenylbenzoate)porphyrinate and 4-cyanopyridine, respectively], the ZnII cation is chelated by four pyrrole-N atoms of the porphyrinate anion and coordinated by a pyridyl-N atom of the 4-CNpy axial ligand in a distorted square-pyramidal geometry. The average Zn—N(pyrrole) bond length is 2.060 (6) Å and the Zn—N(4-CNpy) bond length is 2.159 (2) Å. The zinc cation is displaced by 0.319 (1) Å from the N4C20 mean plane of the porphyrinate anion toward the 4-cyanopyridine axial ligand. This porphyrinate macrocycle exhibits major saddle and moderate ruffling and doming deformations. In the crystal, the [Zn(TPBP)(4-CNpy)] complex molecules are linked together via weak C—H⋯N, C—H⋯O and C—H⋯π interactions, forming supramolecular channels parallel to the c axis. The non-coordinating 4-cyanopyridine molecules are located in the channels and linked with the complex molecules, via weak C—H⋯N interactions and π-π stacking or via weak C—H⋯O and C—H⋯π interactions. The non-coordinating 4-cyanopyridine molecule is disordered over two positions with an occupancy ratio of 0.666 (4):0.334 (4). PMID:26958379
NASA Astrophysics Data System (ADS)
Fizer, Maksym; Sidey, Vasyl; Tupys, Andrii; Ostapiuk, Yurii; Tymoshuk, Oleksandr; Bazel, Yaroslav
2017-12-01
The 1-[(5-Benzyl-1,3-thiazol-2-yl)diazenyl]naphthalene-2-ol (BnTAN) is a recently synthesized azo dye that can act as a tridentate ligand in complexes with transition metals. In a series of previous works, this analytical reagent was shown to be applicable for selective, reliable, express and relatively inexpensive determination of heavy metals in different objects through the spectrophotometric technique. Although the action of 1-(2-thiazolylazo)-2-naphthol (TAN) dyes as tridentate ligands has been suggested in the literature long time ago, due to the lack of experimental data, it was necessary to investigate the mechanism of formation and the structure of BnTAN complexes with the such transition metals as Cu(II), Zn(II) and Cd(II). Furthermore, the reactivity and properties of different acidity forms and conformers of BnTAN and related TAN dyes were not fully defined, so the determination of these properties by analysis of wavefunction was also necessary. Two standard spectrophotometric methods and voltammetric technique were used to determine the composition of complex of BnTAN with metals ions. All three experimental methods indicate that coordination ratio of metal:dye is equal to 1:2. Moreover, this study reports the stability and geometry of conformers of different forms (anionic/neutral/cationic) of BnTAN, along with a detailed analysis of electronic properties, reactivity and aromaticity of the most stable conformers of BnTAN forms. Each of the above forms has some difference in position of benzyl ring against the thiazole moiety, which is explained in terms of attraction and repulsion of these two fragments induced by partial atomic charges. The crucial influence of hydrogen bond and weak non-covalent interactions between naphthyl, aza- and thiazolyl fragments has been established. The quantum chemical calculations have shown that partial atomic charges of anionic, neutral and cationic forms can explain the reactivity of each BnTAN form, and have also clarified the mechanism of formation of metal complex through the connection of metal with phenol oxygen, thiazolyl nitrogen and one nitrogen of aza group - thus giving two five-membered metal-containing cycles and confirming that BnTAN acts as a tridentate ligand. The obtained results introduce novel and crucial information which can assist in understanding the mechanism of complex formation of BnTAN and display the strength and level of detail of applying quantum chemical methods to reveal the reactivity, energy properties, and electronic properties of this new dye.
Adsorption of enrofloxacin in presence of Zn(II) on a calcareous soil.
Graouer-Bacart, Mareen; Sayen, Stéphanie; Guillon, Emmanuel
2015-12-01
As a result of their consumption, excretion, disposal and persistence, antibiotics enter the soil environment and may be transported to surface and ground waters. During their transfer through soils, retention processes play a key role in their mobility. Antibiotics often coexist with heavy metals in soils due to agricultural practices and other sources of inputs. In this context, this study deals with the co-adsorption of Zn(II) and enrofloxacin (ENR), a widely-used veterinary antibiotic, on a calcareous soil using batch retention experiments and X-ray Absorption Near Edge Structure (XANES) spectroscopy. To improve our understanding of the interaction of this emerging organic contaminant with metal cations at the water-soil interface, the ternary system containing ENR, Zn(II) and a selected calcareous soil was investigated over a pH range between 7 and 10, at different solid-solution contact times and ENR concentrations. The presence of Zn(II) slightly influenced the retention of the antibiotic, leading to an increase of the adsorbed ENR amounts. The distribution coefficient Kd value increased from 0.66 Lg(-1) for single ENR adsorption to 1.04 Lg(-1) in presence of Zn(II) at a 1/2 ENR/Zn(II) ratio. The combination of adsorption isotherm data, solution speciation diagrams and XANES spectra evidenced a small proportion of Zn(II)-ENR complexes at soil pH leading to the slight increase of ENR adsorption in presence of zinc. These results suggest that it is necessary to consider the interaction between ENR and metal cations when assessing the mobility of ENR in soils. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kong, Ming; Liu, Yanqiu; Wang, Hui; Luo, Junshan; Li, Dandan; Zhang, Shengyi; Li, Shengli; Wu, Jieying; Tian, Yupeng
2015-01-01
Four novel Zn(II) terpyridine complexes (ZnLCl2, ZnLBr2, ZnLI2, ZnL(SCN)2) based on carbazole derivative group were designed, synthesized and fully characterized. Their photophysical properties including absorption and one-photon excited fluorescence, two-photon absorption (TPA) and optical power limiting (OPL) were further investigated systematically and interpreted on the basis of theoretical calculations (TD-DFT). The influences of different solvents on the absorption and One-Photon Excited Fluorescence (OPEF) spectral behavior, quantum yields and the lifetime of the chromophores have been investigated in detail. The third-order nonlinear optical (NLO) properties were investigated by open/closed aperture Z-scan measurements using femtosecond pulse laser in the range from 680 to 1080 nm. These results revealed that ZnLCl2 and ZnLBr2 exhibited strong two-photon absorption and ZnLCl2 showed superior optical power limiting property.
Triantis, Charalampos; Tsotakos, Theodoros; Tsoukalas, Charalampos; Sagnou, Marina; Raptopoulou, Catherine; Terzis, Aris; Psycharis, Vassilis; Pelecanou, Maria; Pirmettis, Ioannis; Papadopoulos, Minas
2013-11-18
The synthesis and characterization of neutral mixed ligand complexes fac-[M(CO)3(P)(OO)] and cis-trans-[M(CO)2(P)2(OO)] (M = Re, (99m)Tc), with deprotonated acetylacetone or curcumin as the OO donor bidentate ligands and a phosphine (triphenylphosphine or methyldiphenylphosphine) as the monodentate P ligand, is described. The complexes were synthesized through the corresponding fac-[M(CO)3(H2O)(OO)] (M = Re, (99m)Tc) intermediate aqua complex. In the presence of phosphine, replacement of the H2O molecule of the intermediate complex at room temperature generates the neutral tricarbonyl monophosphine fac-[Re(CO)3(P)(OO)] complex, while under reflux conditions further replacement of the trans to the phosphine carbonyl generates the new stable dicarbonyl bisphosphine complex cis-trans-[Re(CO)2(P)2(OO)]. The Re complexes were fully characterized by elemental analysis, spectroscopic methods, and X-ray crystallography showing a distorted octahedral geometry around Re. Both the monophosphine and the bisphosphine complexes of curcumin show selective binding to β-amyloid plaques of Alzheimer's disease. At the (99m)Tc tracer level, the same type of complexes, fac-[(99m)Tc(CO)3(P)(OO)] and cis-trans-[(99m)Tc(CO)2(P)2(OO)], are formed introducing new donor combinations for (99m)Tc(I). Overall, β-diketonate and phosphine constitute a versatile ligand combination for Re(I) and (99m)Tc(I), and the successful employment of the multipotent curcumin as β-diketone provides a solid example of the pharmacological potential of this system.
Liu, Tong; Reyes-Caballero, Hermes; Li, Chenxi; Scott, Robert A.; Giedroc, David P.
2013-01-01
Transition metal-transporting P1B-type CPx ATPases play crucial roles in mediating metal homeostasis and resistance in all cells. The degree to which N-terminal metal binding domains (MBDs) confer metal specificity to the transporter is unclear. We show that the two MBDs of the Zn/Cd/Pb effluxing pump Anabaena AztA are functionally nonequivalent, but only with respect to zinc resistance. Inactivation of the a-MBD largely abrogates resistance to high intracellular Zn(II) levels, whereas inactivation of the b-MBD is not as deleterious. In contrast, inactivation of either the a- or b-MBD has little measurable impact on Cd(II) and Pb(II) resistance. The membrane proximal b-MBD binds Zn(II) with a higher affinity than the distal N-terminal a-MBD. Facile Zn(II)-specific intermolecular transfer from the a-MBD to the higher-affinity b-MBD is readily observed by 1H–15N HSQC spectroscopy. Unlike Zn(II), Cd(II) and Pb(II) form saturated 1:1 S4 or S3(O/N) complexes with AztAaHbH, where a single metal ion bridges the two MBDs. We propose that the tandem MBDs enhance Zn(II)-specific transport, while stabilizing a non-native inter-MBD Cd/Pb cross-linked structure that is a poor substrate and/or regulator for the transporter. PMID:17824670
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabello, G., E-mail: gerardocabelloguzman@hotmail.com; Lillo, L.; Caro, C.
2016-05-15
Highlights: • ZnAl{sub 2}O{sub 4} and MgAl{sub 2}O{sub 4} thin films were prepared by photo-chemical method. • The Zn(II), Mg(II) and Al(III) β-diketonate complexes were used as precursors. • The photochemical reaction was monitored by UV–vis and FT-IR spectroscopy. • The results reveal spinel oxide formation and the generation of intermediate products. - Abstract: ZnAl{sub 2}O{sub 4} and MgAl{sub 2}O{sub 4} thin films were grown on Si(100) and quartz plate substrates using a photochemical method in the solid phase with thin films of β-diketonate complexes as the precursors. The films were deposited by spin-coating and subsequently photolyzed at room temperaturemore » using 254 nm UV light. The photolysis of these films results in the deposition of metal oxide thin films and fragmentation of the ligands from the coordination sphere of the complexes. The obtained samples were post-annealed at different temperatures (350–1100 °C) for 2 h and characterized by FT-Infrared spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force miscroscopy (AFM), and UV–vis spectroscopy. The results indicate the formation of spinel-type structures and other phases. These characteristics determined the quality of the films, which were obtained from the photodeposition of ternary metal oxides.« less
Xue, Yongjie; Hou, Haobo; Zhu, Shujing
2009-02-15
Polluted and contaminated water can often contain more than one heavy metal species. It is possible that the behavior of a particular metal species in a solution system will be affected by the presence of other metals. In this study, we have investigated the adsorption of Cd(II), Cu(II), Pb(II), and Zn(II) onto basic oxygen furnace slag (BOF slag) in single- and multi-element solution systems as a function of pH and concentration, in a background solution of 0.01M NaNO(3). In adsorption edge experiments, the pH was varied from 2.0 to 13.0 with total metal concentration 0.84mM in the single element system and 0.21mM each of Cd(II), Cu(II), Pb(II), and Zn(II) in the multi-element system. The value of pH(50) (the pH at which 50% adsorption occurs) was found to follow the sequence Zn>Cu>Pb>Cd in single-element systems, but Pb>Cu>Zn>Cd in the multi-element system. Adsorption isotherms at pH 6.0 in the multi-element systems showed that there is competition among various metals for adsorption sites on BOF slag. The adsorption and potentiometric titrations data for various slag-metal systems were modeled using an extended constant-capacitance surface complexation model that assumed an ion-exchange process below pH 6.5 and the formation of inner-sphere surface complexes at higher pH. Inner-sphere complexation was more dominant for the Cu(II), Pb(II) and Zn(II) systems.
NASA Astrophysics Data System (ADS)
Wang, X.-L.; Chen, Yongqiang; Liu, Guocheng; Lin, Hongyan; Zhang, Jinxia
2009-09-01
Two novel metal-organic coordination polymers [Cu(PIP)(bpea)(H 2O)]·H 2O ( 1) and [Cu(PIP)(1,4-bdc)] ( 2) have been obtained from hydrothermal reaction of copper(II) with the mixed ligands [biphenylethene-4,4'-dicarboxylic acid (bpea) for 1, benzene-1,4-dicarboxylic acid (1,4-H 2bdc) for 2, and 2-phenylimidazo[4,5- f]1,10-phenanthroline (PIP)]. Both complexes have been structurally characterized by elemental analyses, IR and single-crystal X-ray diffraction analyses. Structural analyses reveal that complex 1 possesses infinite one-dimensional zigzag chain, 2 exhibits a two-dimensional (4,4) network, both of which are extended into three-dimensional supramolecular network by weak interactions. The different structures of the title complexes illustrate the influence of the flexibility (the spacer length of carboxyl groups and the structural rigidity of the spacer) of organic dicarboxylate ligands on the formation of such coordination architectures. Moreover, the thermal properties and the voltammetric behavior of complexes 1 and 2 have been reported.
Homoleptic nickel(II) complexes of redox-tunable pincer-type ligands.
Hewage, Jeewantha S; Wanniarachchi, Sarath; Morin, Tyler J; Liddle, Brendan J; Banaszynski, Megan; Lindeman, Sergey V; Bennett, Brian; Gardinier, James R
2014-10-06
Different synthetic methods have been developed to prepare eight new redox-active pincer-type ligands, H(X,Y), that have pyrazol-1-yl flanking donors attached to an ortho-position of each ring of a diarylamine anchor and that have different groups, X and Y, at the para-aryl positions. Together with four previously known H(X,Y) ligands, a series of 12 Ni(X,Y)2 complexes were prepared in high yields by a simple one-pot reaction. Six of the 12 derivatives were characterized by single-crystal X-ray diffraction, which showed tetragonally distorted hexacoordinate nickel(II) centers. The nickel(II) complexes exhibit two quasi-reversible one-electron oxidation waves in their cyclic voltammograms, with half-wave potentials that varied over a remarkable 700 mV range with the average of the Hammett σ(p) parameters of the para-aryl X, Y groups. The one- and two-electron oxidized derivatives [Ni(Me,Me)2](BF4)n (n = 1, 2) were prepared synthetically, were characterized by X-band EPR, electronic spectroscopy, and single-crystal X-ray diffraction (for n = 2), and were studied computationally by DFT methods. The dioxidized complex, [Ni(Me,Me)2](BF4)2, is an S = 2 species, with nickel(II) bound to two ligand radicals. The mono-oxidized complex [Ni(Me,Me)2](BF4), prepared by comproportionation, is best described as nickel(II) with one ligand centered radical. Neither the mono- nor the dioxidized derivative shows any substantial electronic coupling between the metal and their bound ligand radicals because of the orthogonal nature of their magnetic orbitals. On the other hand, weak electronic communication occurs between ligands in the mono-oxidized complex as evident from the intervalence charge transfer (IVCT) transition found in the near-IR absorption spectrum. Band shape analysis of the IVCT transition allowed comparisons of the strength of the electronic interaction with that in the related, previously known, Robin-Day class II mixed valence complex, [Ga(Me,Me)2](2+).
NASA Astrophysics Data System (ADS)
Sharma, S. S.; Kadia, M. V.
2014-12-01
The complexation of lanthanide ions (Y3+, La3+, Ce3+, Pr3+, Nd3+, Sm3+, Gd3+, Tb3+, and Dy3+) with 3-[(1 R)-1-hydroxy-2-(methylamino)ethyl]phenol hydrochloride was studied at different temperatures and different ionic strengths in aqueous solutions by Irving-Rossotti pH titration technique. Stepwise calculation, PKAS and BEST Fortran IV computer programs were used for determination of proton-ligand and metal-ligand stability constants. The formation of species like MA, MA2, and MA(OH) is considered in SPEPLOT. Thermodynamic parameters of complex formation (Δ G, Δ H, and Δ S) are also evaluated. Negative Δ G and Δ H values indicate that complex formation is favourable in these experimental conditions. The stability of complexes is also studied at in different solvent-aqueous (vol/vol). The stability series of lanthanide complexes has shown to have the "gadolinium break." Stability of complexes decreases with increase in ionic strength and temperature. Effect of systematic errors like effect of dissolved carbon dioxide, concentration of alkali, concentration of acid, concentration of ligand and concentration of metal have also been explained.
Kubešová, Kateřina; Dořičáková, Aneta; Trávníček, Zdeněk; Dvořák, Zdeněk
2016-07-25
The effects of four copper(II) mixed-ligand complexes [Cu(qui1)(L)]NO3·H2O (1-3) and [Cu(qui2)(phen)]NO3 (4), where qui1=2-phenyl-3-hydroxy-4(1H)-quinolinone, Hqui2=2-(4-amino-3,5-dichlorophenyl)-N-propyl-3-hydroxy-4(1H)-quinolinone-7-carboxamide, L=1,10-phenanthroline (phen) (1), 5-methyl-1,10-phenanthroline (mphen) (2), bathophenanthroline (bphen) (3), on transcriptional activities of steroid receptors, nuclear receptors and xenoreceptors have been studied. The complexes (1-4) did not influence basal or ligand-inducible activities of glucocorticoid receptor, androgen receptor, thyroid receptor, pregnane X receptor and vitamin D receptor, as revealed by gene reporter assays. The complexes 1 and 2 dose-dependently induced luciferase activity in stable gene reporter AZ-AhR cell line, and this induction was reverted by resveratrol, indicating involvement of aryl hydrocarbon receptor (AhR) in the process. The complexes 1, 2 and 3 induced CYP1A1 mRNA in LS180 cells and CYP1A1/CYP1A2 in human hepatocytes through AhR. Electrophoretic mobility shift assay EMSA showed that the complexes 1 and 2 transformed AhR in its DNA-binding form. Collectively, we demonstrate that the complexes 1 and 2 activate AhR and induce AhR-dependent genes in human hepatocytes and cancer cell lines. In conclusion, the data presented here might be of toxicological importance, regarding the multiple roles of AhR in human physiology and pathophysiology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mokhtaruddin, Nur Shuhada Mohd; Yusof, Enis Nadia Md; Ravoof, Thahira B. S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhi; Tahir, Mohamed Ibrahim Mohamed
2017-07-01
Three tridentate Schiff bases containing N and S donor atoms were synthesized via the condensation reaction between S-2-methylbenzyldithiocarbazate with 2-acetyl-4-methylpyridine (S2APH); 4-methyl-3-thiosemicarbazide with 2-acetylpyridine (MT2APH) and 4-ethyl-3-thiosemicarbazide with 2-acetylpyridine (ET2APH). Three new, binuclear and mixed-ligand copper(II) complexes with the general formula, [Cu(sac)(L)]2 (sac = saccharinate anion; L = anion of the Schiff base) were then synthesized, and subsequently characterized by IR and UV/Vis spectroscopy as well as by molar conductivity and magnetic susceptibility measurements. The Schiff bases were also spectroscopically characterized using NMR and MS to further confirm their structures. The spectroscopic data indicated that the Schiff bases behaved as a tridentate NNS donor ligands coordinating via the pyridyl-nitrogen, azomethine-nitrogen and thiolate-sulphur atoms. Magnetic data indicated a square pyramidal environment for the complexes and the conductivity values showed that the complexes were essentially non-electrolytes in DMSO. The X-ray crystallographic analysis of one complex, [Cu(sac)(S2AP)]2 showed that the Cu(II) atom was coordinated to the thiolate-S, azomethine-N and pyridyl-N donors of the S2AP Schiff base and to the saccharinate-N from one anion, as well as to the carbonyl-O atom from a symmetry related saccharinate anion yielding a centrosymmetric binuclear complex with a penta-coordinate, square pyramidal geometry. All the copper(II) saccharinate complexes were found to display strong cytotoxic activity against the MCF-7 and MDA-MB-231 human breast cancer cell lines.
Boguta, Patrycja; Sokołowska, Zofia
2016-01-01
The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic acids with zinc.
Boguta, Patrycja; Sokołowska, Zofia
2016-01-01
The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic acids with zinc. PMID:27077915
NASA Astrophysics Data System (ADS)
Hu, Ge; Guo, Lei; Wei, Sheng; Zhang, Shuang
2012-06-01
A Re(I) complex of Re(CO)3(PTO)Br with 2-(pyridin-2-yl)-5-p-tolyl-1,3,4-oxadiazole (PTO) as the diamine ligand is synthesized, resulting in a phosphorescent emitter which contains oxadiazole functional moiety. Single crystal analysis confirms that oxadiazole moiety of PTO ligand participates in the coordination with Re center. Coordination ability difference between N atom from pyridine ring and that from oxadiazole moiety is found. Density functional theory calculation on the crystal suggests that the onset electronic transition owns a mixed character of metal-to-ligand-charge-transfer and ligand-to-ligand-charge-transfer. Upon photon excitation, Re(CO)3(PTO)Br exhibits a yellow emission peaking at 549 nm with a short excited state lifetime of 0.15 μs. Further measurements suggest that Re(CO)3(PTO)Br owns HOMO and LUMO energy levels of -5.79 V and -3.49 V and a high decomposition temperature of 322 °C. The optimal electroluminescence device using Re(CO)3(PTO)Br as the emitting dopant shows an orange light of 598 nm, with a maximum luminance of 4600 cd/m2 and a maximum current efficiency of 11.5 cd/A.
NASA Astrophysics Data System (ADS)
Yi, Xiu-Chun; Xi, Fu-Gui; Wang, Kun; Su, Zhao; Gao, En-Qing
2013-10-01
From a new dicarboxylate ligand, 9H-carbazole-2,7-dicarboxylic acid (2,7-H2CDC), three Zn(II) metal-organic frameworks were synthesized in the absence or presence of ditopic N-donor ligands. They are formulated as [Zn5(μ3-OH)2(2,7-CDC)4(DEF)2] (1) (DEF=N,N-diethylformamide), [Zn2(2,7-CDC)2(DABCO)(H2O)]·5DMF·H2O (2) (DABCO=1-diaza-bicyclo[2.2.2]octane, DMF=N,N-dimethylformamide), and [Zn2(2,7-CDC)2(bpea)]·3DMA·2 H2O (3) (bpea=1,2-bis(4-pyridyl)ethylane, DMA=N,N-dimethylacetamide). Compounds 1 and 3 display the 3D pcu frameworks. In 1 the unusual pentanuclear [Zn5(μ3-OH)2(COO)8] secondary building units (SBUs) are linked by dicarboxylate ligands. Differently, in 3 the well-known paddle-wheel [Zn2(COO)4] SBUs are linked by dicarboxylate and dipyridyl ligands. Compound 2 shows the rare self-catenated 3D alb-3,6-C2/c net topology based on the dinuclear paddle-wheel SBU and a mononuclear unit. The stability and fluorescent properties of the compounds have been studied.
El-Sherif, Ahmed A; Shehata, Mohamed R; Shoukry, Mohamed M; Barakat, Mohammad H
2012-01-01
Thermodynamic parameters for protonation of 1,4-bis(3-aminopropyl)-piperazine (BAPP) and its metal complexation with some divalent metal ions were determined in aqueous solution at constant ionic strength (0.1 M NaNO(3)) using a potentiometric technique. The order of -ΔG(0) and -ΔH(0) was found to obey Co(2+) < Ni(2+) < Cu(2+) > Zn(2+), in accordance with the Irving-Williams order. The formation equilibria of zinc (II) complexes and the ternary complexes Zn(BAPP)L, where L = amino acid, amides, or DNA constituents), have been investigated. Ternary complexes are formed by a simultaneous mechanism. The concentration distribution of the complexes in solution was evaluated as a function of pH. Stoichiometry and stability constants for the complexes formed are reported and discussed. The stability of ternary complexes was quantitatively compared with their corresponding binary complexes in terms of the parameter Δlog K.
El-Sherif, Ahmed A.; Shehata, Mohamed R.; Shoukry, Mohamed M.; Barakat, Mohammad H.
2012-01-01
Thermodynamic parameters for protonation of 1,4-bis(3-aminopropyl)-piperazine (BAPP) and its metal complexation with some divalent metal ions were determined in aqueous solution at constant ionic strength (0.1 M NaNO3) using a potentiometric technique. The order of –ΔG0 and –ΔH0 was found to obey Co2+ < Ni2+ < Cu2+ > Zn2+, in accordance with the Irving-Williams order. The formation equilibria of zinc (II) complexes and the ternary complexes Zn(BAPP)L, where L = amino acid, amides, or DNA constituents), have been investigated. Ternary complexes are formed by a simultaneous mechanism. The concentration distribution of the complexes in solution was evaluated as a function of pH. Stoichiometry and stability constants for the complexes formed are reported and discussed. The stability of ternary complexes was quantitatively compared with their corresponding binary complexes in terms of the parameter Δlog K. PMID:23226992
Multipoint molecular recognition within a calix[6]arene funnel complex
Coquière, David; de la Lande, Aurélien; Martí, Sergio; Parisel, Olivier; Prangé, Thierry; Reinaud, Olivia
2009-01-01
A multipoint recognition system based on a calix[6]arene is described. The calixarene core is decorated on alternating aromatic subunits by 3 imidazole arms at the small rim and 3 aniline groups at the large rim. This substitution pattern projects the aniline nitrogens toward each other when Zn(II) binds at the Tris-imidazole site or when a proton binds at an aniline. The XRD structure of the monoprotonated complex having an acetonitrile molecule bound to Zn(II) in the cavity revealed a constrained geometry at the metal center reminiscent of an entatic state. Computer modeling suggests that the aniline groups behave as a tritopic monobasic site in which only 1 aniline unit is protonated and interacts with the other 2 through strong hydrogen bonding. The metal complex selectively binds a monoprotonated diamine vs. a monoamine through multipoint recognition: coordination to the metal ion at the small rim, hydrogen bonding to the calix-oxygen core, CH/π interaction within the cavity's aromatic walls, and H-bonding to the anilines at the large rim. PMID:19237564
Wang, Yingge; Gelabert, Alexandre; Michel, F. Marc; ...
2016-05-30
Microbial biofilms are often present as coatings on metal-oxide surfaces in natural and industrial environments and may induce significant changes in the partitioning behavior and speciation of aqueous metal ions, which in turn can impact their transport and fate. In this study, long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy was used to measure under in situ conditions the partitioning of aqueous Pb(II) and Zn(II) between multilayer Shewanella oneidensis MR-1 biofilms and highly polished, oriented single-crystal surfaces of α-Al 2O 3 and α-Fe 2O 3 as a function of metal-ion concentration and time at pH 6.0. We show that after 3-hmore » exposure time, Pb(II) binds preferentially to the alpha-Al 2O 3 (1-102) and α-Fe 2O 3 (0001) surfaces at low Pb concentration ([Pb] = 10 –7 M) and then increasingly partitions into the biofilm coatings at higher concentrations (10 –6 to 10 –4 M). In contrast, Zn(II) partitions preferentially into the biofilm coating for both surfaces at all Zn concentrations studied (10 –7 to 10 –4 M). In comparison, the α-Al 2O 3 (0001) surface has a low affinity for both Pb(II) and Zn(II), and the biofilm coatings are the dominant sink for both ions. These findings suggest that in the presence of S. oneidensis biofilm coatings, α-Al 2O 3 (0001) is the least reactive surface for Pb(II) and Zn(II) compared to α-Al 2O 3 (1-102) and α-Fe 2O 3 (0001). They also show that Zn(II) has a lower affinity than Pb(II) for reactive sites on α-Al 2O 3 (1-102) and α-Fe 2O 3 (0001) at [Me(II)] of 10 –7 M; at 10 –5 M, the bulk of the metal ions partition into the biofilm coatings. At longer exposure times (20-24 h), both Pb(II) and Zn(II) increasingly partition to the metal-oxide surfaces at [Me(II)] = 10 –5 M and pH 6.0, indicating possible reaction/diffusion-controlled sorption processes. Pb L-III-edge and Zn K-edge grazing-incidence extended X-ray absorption fine structure (GI-EXAFS) measurements suggest that both Pb(II) and Zn(II) ions may be complexed by carboxyl groups in S. oneidensis biofilms after 3-h exposure at pH 6.0 and [Me(II)] = 10 –5 M. In contrast with Burkholderia cepacia, which was used in our previous studies of monolayer biofilm-coated metal-oxide surfaces (Templeton et al., 2001), S. oneidensis MR-1 forms relatively thick biofilm coatings (6-20 μm) that are rich in reactive functional groups and are expected to dominate metal-ion adsorption. Lastly, our results show that even thick and highly reactive biofilms like S. oneidensis do not cause much change in the intrinsic chemical reactivities of the underlying metal-oxide surfaces with respect to aqueous Pb(II) and Zn(II) and don't block reactive sites on the metal-oxide surfaces; instead they reduce the rate of Pb(II) and Zn(II) sorption onto these surfaces.« less
NASA Astrophysics Data System (ADS)
Wang, Yingge; Gélabert, Alexandre; Michel, F. Marc; Choi, Yongseong; Gescher, Johannes; Ona-Nguema, Georges; Eng, Peter J.; Bargar, John R.; Farges, Francois; Spormann, Alfred M.; Brown, Gordon E.
2016-09-01
Microbial biofilms are often present as coatings on metal-oxide surfaces in natural and industrial environments and may induce significant changes in the partitioning behavior and speciation of aqueous metal ions, which in turn can impact their transport and fate. In this study, long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy was used to measure under in situ conditions the partitioning of aqueous Pb(II) and Zn(II) between multilayer Shewanella oneidensis MR-1 biofilms and highly polished, oriented single-crystal surfaces of α-Al2O3 and α-Fe2O3 as a function of metal-ion concentration and time at pH 6.0. We show that after 3-h exposure time, Pb(II) binds preferentially to the α-Al2O3 (1-102) and α-Fe2O3 (0 0 0 1) surfaces at low Pb concentration ([Pb] = 10-7 M) and then increasingly partitions into the biofilm coatings at higher concentrations (10-6 to 10-4 M). In contrast, Zn(II) partitions preferentially into the biofilm coating for both surfaces at all Zn concentrations studied (10-7 to 10-4 M). In comparison, the α-Al2O3 (0 0 0 1) surface has a low affinity for both Pb(II) and Zn(II), and the biofilm coatings are the dominant sink for both ions. These findings suggest that in the presence of S. oneidensis biofilm coatings, α-Al2O3 (0 0 0 1) is the least reactive surface for Pb(II) and Zn(II) compared to α-Al2O3 (1-102) and α-Fe2O3 (0 0 0 1). They also show that Zn(II) has a lower affinity than Pb(II) for reactive sites on α-Al2O3 (1-102) and α-Fe2O3 (0 0 0 1) at [Me(II)] of 10-7 M; at 10-5 M, the bulk of the metal ions partition into the biofilm coatings. At longer exposure times (20-24 h), both Pb(II) and Zn(II) increasingly partition to the metal-oxide surfaces at [Me(II)] = 10-5 M and pH 6.0, indicating possible reaction/diffusion-controlled sorption processes. Pb LIII-edge and Zn K-edge grazing-incidence extended X-ray absorption fine structure (GI-EXAFS) measurements suggest that both Pb(II) and Zn(II) ions may be complexed by carboxyl groups in S. oneidensis biofilms after 3-h exposure at pH 6.0 and [Me(II)] = 10-5 M. In contrast with Burkholderia cepacia, which was used in our previous studies of monolayer biofilm-coated metal-oxide surfaces (Templeton et al., 2001), S. oneidensis MR-1 forms relatively thick biofilm coatings (6-20 μm) that are rich in reactive functional groups and are expected to dominate metal-ion adsorption. Our results show that even thick and highly reactive biofilms like S. oneidensis do not cause much change in the intrinsic chemical reactivities of the underlying metal-oxide surfaces with respect to aqueous Pb(II) and Zn(II) and don't block reactive sites on the metal-oxide surfaces; instead they reduce the rate of Pb(II) and Zn(II) sorption onto these surfaces.
Improved 18F Labeling of Peptides with a Fluoride-Aluminum-Chelate Complex
McBride, William J.; D’Souza, Christopher A.; Sharkey, Robert M.; Karacay, Habibe; Rossi, Edmund A.; Chang, Chien-Hsing; Goldenberg, David M.
2010-01-01
We reported previously the feasibility to radiolabel peptides with fluorine-18 (18F) using a rapid, one-pot, method that first mixes 18F− with Al3+, and then binds the (Al18F)2+ complex to a NOTA ligand on the peptide. In this report, we examined several new NOTA ligands and determined how temperature, reaction time, and reagent concentration affected the radiolabeling yield. Four structural variations of the NOTA ligand had isolated radiolabeling yields ranging from 5.8% to 87% under similar reaction conditions. All of the Al18F NOTA complexes were stable in vitro in human serum and those that were tested in vivo also were stable. The radiolabeling reactions were performed at 100°C and the peptides could be labeled in as little as five minutes. The IMP467 peptide could be labeled up to 115 GBq/μmol (3100 Ci/mmol), with a total reaction and purification time of 30 min without chromatographic purification. PMID:20540570
Marzo, Tiziano; De Pascali, Sandra A; Gabbiani, Chiara; Fanizzi, Francesco P; Messori, Luigi; Pratesi, Alessandro
2017-08-01
A group of mixed-ligand Pt(II) complexes bearing acetylacetonate and sulphur ligands were recently developed in the University of Lecce as a new class of prospective anticancer agents that manifested promising pharma-cological properties in preliminary in vitro and in vivo tests. Though modelled on the basis of cisplatin, these Pt(II) complexes turned out to exhibit a profoundly distinct mode of action as they were found to act mainly on non-genomic targets rather than on DNA. Accordingly, we have explored here their reactions with two representative model proteins through an established ESI-MS procedure with the aim to describe their general interaction mechanism with protein targets. A pronounced reactivity with the tested proteins was indeed documented; the nature of the resulting metallodrug-protein interactions could be characterised in depth in the various cases. Preferential binding to protein targets compared to DNA is supported by independent ICP-OES measurements. The implications of these findings are discussed.
Incipient class II mixed valency in a plutonium solid-state compound
NASA Astrophysics Data System (ADS)
Cary, Samantha K.; Galley, Shane S.; Marsh, Matthew L.; Hobart, David L.; Baumbach, Ryan E.; Cross, Justin N.; Stritzinger, Jared T.; Polinski, Matthew J.; Maron, Laurent; Albrecht-Schmitt, Thomas E.
2017-09-01
Electron transfer in mixed-valent transition-metal complexes, clusters and materials is ubiquitous in both natural and synthetic systems. The degree to which intervalence charge transfer (IVCT) occurs, dependent on the degree of delocalization, places these within class II or III of the Robin-Day system. In contrast to the d-block, compounds of f-block elements typically exhibit class I behaviour (no IVCT) because of localization of the valence electrons and poor spatial overlap between metal and ligand orbitals. Here, we report experimental and computational evidence for delocalization of 5f electrons in the mixed-valent PuIII/PuIV solid-state compound, Pu3(DPA)5(H2O)2 (DPA = 2,6-pyridinedicarboxylate). The properties of this compound are benchmarked by the pure PuIII and PuIV dipicolinate complexes, [PuIII(DPA)(H2O)4]Br and PuIV(DPA)2(H2O)3·3H2O, as well as by a second mixed-valent compound, PuIII[PuIV(DPA)3H0.5]2, that falls into class I instead. Metal-to-ligand charge transfer is involved in both the formation of Pu3(DPA)5(H2O)2 and in the IVCT.
Reger, Daniel L; Pascui, Andrea E; Smith, Mark D; Jezierska, Julia; Ozarowski, Andrew
2012-11-05
The reaction of M(BF(4))(2)·xH(2)O, where M is Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II), with the new ditopic ligand m-bis[bis(3,5-dimethyl-1-pyrazolyl)methyl]benzene (L(m)*) leads to the formation of monofluoride-bridged dinuclear metallacycles of the formula [M(2)(μ-F)(μ-L(m)*)(2)](BF(4))(3). The analogous manganese(II) species, [Mn(2)(μ-F)(μ-L(m)*)(2)](ClO(4))(3), was isolated starting with Mn(ClO(4))(2)·6H(2)O using NaBF(4) as the source of the bridging fluoride. In all of these complexes, the geometry around the metal centers is trigonal bipyramidal, and the fluoride bridges are linear. The (1)H, (13)C, and (19)F NMR spectra of the zinc(II) and cadmium(II) compounds and the (113)Cd NMR of the cadmium(II) compound indicate that the metallacycles retain their structure in acetonitrile and acetone solution. The compounds with M = Mn(II), Fe(II), Co(II), Ni(II), and Cu(II) are antiferromagnetically coupled, although the magnitude of the coupling increases dramatically with the metal as one moves to the right across the periodic table: Mn(II) (-6.7 cm(-1)) < Fe(II) (-16.3 cm(-1)) < Co(II) (-24.1 cm(-1)) < Ni(II) (-39.0 cm(-1)) ≪ Cu(II) (-322 cm(-1)). High-field EPR spectra of the copper(II) complexes were interpreted using the coupled-spin Hamiltonian with g(x) = 2.150, g(y) = 2.329, g(z) = 2.010, D = 0.173 cm(-1), and E = 0.089 cm(-1). Interpretation of the EPR spectra of the iron(II) and manganese(II) complexes required the spin Hamiltonian using the noncoupled spin operators of two metal ions. The values g(x) = 2.26, g(y) = 2.29, g(z) = 1.99, J = -16.0 cm(-1), D(1) = -9.89 cm(-1), and D(12) = -0.065 cm(-1) were obtained for the iron(II) complex and g(x) = g(y) = g(z) = 2.00, D(1) = -0.3254 cm(-1), E(1) = -0.0153, J = -6.7 cm(-1), and D(12) = 0.0302 cm(-1) were found for the manganese(II) complex. Density functional theory (DFT) calculations of the exchange integrals and the zero-field splitting on manganese(II) and iron(II) ions were performed using the hybrid B3LYP functional in association with the TZVPP basis set, resulting in reasonable agreement with experiment.
NASA Astrophysics Data System (ADS)
Ibrahim, Mohamed M.; Ramadan, Abd El-Motaleb M.; Shaban, Shaban Y.; Mersal, Gaber A. M.; El-Shazly, Samir A.; Al-Juaid, Salih
2017-04-01
A series of mixed-ligand complexes, viz., [CuLL'X]Y {L = bipyridine; L' = glycine; X = 0, Y = ClO4- (1); X = Cl, Y = 2H2O (2); X = H2O, Y = NO3- (3); X = CH3COO-, Y = H2O (4)} and {[Cu(Gly)(BPy)]2-μ-(SO4)}(5)} have been synthesized and characterized by means of elemental analysis, spectroscopic (FT-IR, UV-Vis and ESR), and thermal analysis, as well as magnetic moment measurements. Spectral and X-ray structural features led to the conclusion that complexes 2-5 have square-pyramidal environments around copper(II) center with coordination chromophores CuN3OCl and CuN3O2, respectively. Whereas complex 1 displays square planar geometry. The quasi-reversible CuII/CuI redox couple slightly improves its reversibility with considerable decrease in current intensity. Additionally, the antioxidant (superoxide dismutase and catalase) biomimetic catalytic activities of the obtained complexes have been tested and found to be promising candidates as dual functional mimic enzyme to serve for complete reactive oxygen species (ROS) detoxification, both with respect to the superoxide radicals and the related peroxides.
Third-order nonlinear optical properties of soluble Cr(III)-dioxolene complexes
NASA Astrophysics Data System (ADS)
Noro, Shin-ichiro; Sassa, Takafumi; Aoyama, Tetsuya; Chang, Ho-Chol; Kitagawa, Susumu; Wada, Tatsuo
2004-10-01
We synthesized novel ligand-based mixed valence (LBMV) CrIII-dioxolene complexes, [Cr(X4SQ)(X4Cat)(4,4'-di-tert-butyl-2,2'-bpy)] (SQ = semiquinone, Cat = catecohol, 2,2'-bpy = 2,2'-bipyridine; X = Cl (2a) and Br (2b)) and [Cr(X4SQ)(X4Cat)(4,4'-dinonyl-2,2'-bpy)] (X = Cl (3a) and Br (3b)), and prepared thin films for investigating their third-order nonlinear optical (NLO) properties in terms of the mixed valence states. Electronic absorption spectra of these complexes in solution and solid states showed an intervalence charge-transfer (IVCT) band from Cat2- to SQ"- at the IR region, indicating of a coexistence of SQ and Cat ligands, namely, LBMV state of the complexes. These complexes were well soluble in nonpolar organic solvent, which allowed us to prepare thin films by spin coating. The obtained films showed the electronic absorption spectra similar to those in solution and were amorphous because of steric hindrance of halogen and alkyl substituents in o-dioxolene and 2,2'-bpy moieties, respectively. The x(3) values of the films of 3a and 3b with a thickness of 30 ~ 40 nm were determined for 1.0 × 10-12 esu at 1.907 μm.
Pinto, Sara M A; Tomé, Vanessa A; Calvete, Mário J F; Pereira, Mariette M; Burrows, Hugh D; Cardoso, Ana M S; Pallier, Agnès; C A Castro, M Margarida; Tóth, Éva; Geraldes, Carlos F G C
2016-01-01
Water soluble phthalocyanines bearing either four PEG500 or four choline substituents in the macrocyclic structure, as well as their Zn(II) and Mn(III) complexes were synthesized. The metal-free and Zn(II) complexes present relatively high fluorescence quantum yields (up to 0.30), while the Mn(III) complexes show no fluorescence as a consequence of rapid non-radiative deactivation of the Mn(III) phthalocyanine excited states through low-lying metal based or charge-transfer states. The effect of DMSO on the aggregation of the phthalocyanines was studied. It was not possible to obtain the Mn(II) complexes by reduction of the corresponding Mn(III) complexes due to the presence of electron donating substituents at the periphery of the phthalocyanines. The (1)H NMRD plots of the PEG500 and choline substituted Mn(III)-phthalocyanine complexes are typical of self-aggregated Mn(III) systems with r1 relaxivities of 4.0 and 5.7mM(-1)s(-1) at 20MHz and 25°C. The Mn(III)-phthalocyanine-PEG4 complex shows no significant cytotoxicity to HeLa cell cultures after 2h of incubation up to 2mM concentration. After 24h of cell exposure to the compound, significant toxicity was observed for all the concentrations tested with IC50 of 1.105mM. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Anita, K.; Rajmuhon Singh, N.
2011-10-01
The complexation of thiosemicarbazide with Pr(III) and Nd(III) in absence and presence of Zn(II), a soft metal ion in aqueous and organic solvents like CH 3OH,CH 3CN, dioxane (C 4H 8O 2) and DMF (C 3H 7NO) and their equimolar mixtures are discussed by employing absorption difference and comparative absorption spectrophotometry. Complexation of thiosemicarbazide with Pr(III) and Nd(III) is indicated by the changes in the absorption intensity following the subsequent changes in the oscillator strength of different 4f-4f bands and Judd-Ofelt intensity ( Tλ) parameters. The other spectral parameters like energy interaction parameters namely Slater-Condon ( Fk), Racah ( Ek), Lande ( ξ4f), Nephelauxetic ratio ( β) and bonding parameters ( b1/2) are further computed to explain the nature of complexation. The difference in the energy parameters with respect to donor atoms and solvents reveal that the chemical environment around the lanthanide ions has great impact on f-f transition and any change in the environment result in modification of the spectra. Various solvents and their equimolar mixtures are also used to discuss the participation of solvents in the complexation.
Peys, Nick; Maurelli, Sara; Reekmans, Gunter; Adriaensens, Peter; De Gendt, Stefan; Hardy, An; Van Doorslaer, Sabine; Van Bael, Marlies K
2015-01-05
Aqueous solutions of oxalato- and citrato-VO(2+) complexes are prepared, and their ligand exchange reaction is investigated as a function of the amount of citrate present in the aqueous solution via continuous-wave electron paramagnetic resonance (CW EPR) and hyperfine sublevel correlation (HYSCORE) spectroscopy. With a low amount of citrate, monomeric cis-oxalato-VO(2+) complexes occur with a distorted square-pyramidal geometry. As the amount of citrate increases, oxalate is gradually exchanged for citrate. This leads to (i) an intermediate situation of monomeric VO(2+) complexes with a mix of oxalate/citrate ligands and (ii) a final situation of both monomeric and dimeric complexes with exclusively citrato ligands. The monomeric citrato-VO(2+) complexes dominate (abundance > 80%) and are characterized by a 6-fold chelation of the vanadium(IV) ion by 4 RCO2(-) ligands at the equatorial positions and a H2O/R-OH ligand at the axial position. The different redox stabilities of these complexes, relative to that of dissolved O2 in the aqueous solution, is analyzed via (51)V NMR. It is shown that the oxidation rate is the highest for the oxalato-VO(2+) complexes. In addition, the stability of the VO(2+) complexes can be drastically improved by evacuation of the dissolved O2 from the solution and subsequent storage in a N2 ambient atmosphere. The vanadium oxide phase formation process, starting with the chemical solution deposition of the aqueous solutions and continuing with subsequent processing in an ambient 0.1% O2 atmosphere, differs for the two complexes. The oxalato-VO(2+) complexes turn into the oxygen-deficient crystalline VO2 B at 400 °C, which then turns into crystalline V6O13 at 500 °C. In contrast, the citrato-VO(2+) complexes form an amorphous film at 400 °C that crystallizes into VO2 M1 and V6O13 at 500 °C.
Clavijo Jordan, M Veronica; Lo, Su-Tang; Chen, Shiuhwei; Preihs, Christian; Chirayil, Sara; Zhang, Shanrong; Kapur, Payal; Li, Wen-Hong; De Leon-Rodriguez, Luis M; Lubag, Angelo J M; Rofsky, Neil M; Sherry, A Dean
2016-09-13
Many secretory tissues release Zn(II) ions along with other molecules in response to external stimuli. Here we demonstrate that secretion of Zn(II) ions from normal, healthy prostate tissue is stimulated by glucose in fasted mice and that release of Zn(II) can be monitored by MRI. An ∼50% increase in water proton signal enhancement is observed in T1-weighted images of the healthy mouse prostate after infusion of a Gd-based Zn(II) sensor and an i.p. bolus of glucose. Release of Zn(II) from intracellular stores was validated in human epithelial prostate cells in vitro and in surgically exposed prostate tissue in vivo using a Zn(II)-sensitive fluorescent probe known to bind to the extracellular surface of cells. Given the known differences in intracellular Zn(II) stores in healthy versus malignant prostate tissues, the Zn(II) sensor was then evaluated in a transgenic adenocarcinoma of the mouse prostate (TRAMP) model in vivo. The agent proved successful in detecting small malignant lesions as early as 11 wk of age, making this noninvasive MR imaging method potentially useful for identifying prostate cancer in situations where it may be difficult to detect using current multiparametric MRI protocols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Li; Yin, Huimin; Cui, Peng
Five heteroleptic cationic iridium complexes with a π-expansive cyclometalating 2,3-diphenylbenzo[g] quinoxaline (dpbq) ligand (C^N ligand) and different diimine ligands (N^N ligands) (i.e. 2,2’-bipyridine (bpy, 1), phenanthroline (phen, 2), 2-(2-pyridinyl)quinoline (pqu, 3), 2,2’-bisquinoline (bqu, 4), and 2-(quinolin-2-yl)quinoxaline (quqo, 5)) were synthesized and characterized. The lowest-energy singlet electronic transitions (S1 states) were mainly dpbq ligand-centred 1ILCT (intraligand charge transfer)/1MLCT (metal to ligand charge transfer) transitions mixed with some 1π,π* transitions for complexes 1–4 with increased contributions from 1LLCT (ligand to ligand charge transfer) in 3 and 4. For complex 5, the S1 state was switched to the 1LLCT/1MLCT transitions. All five complexesmore » displayed weak near-infrared (NIR) phosphorescence, with maximal emission output spanning 700–1400 nm and quantum yields being on the order of 10-3. The triplet state absorptions of 1–4 all resembled that of the [Ir(dpbq)2Cl]2 dimer with lifetimes of ca. 400 ns, while the TA spectrum of 5 possessed the characteristics of both the quqo ligand and the [Ir(dpbq)2Cl]2 dimer with a bi-exponential decay of ca. 5 μs and 400 ns. While the photophysics of these complexes differ slightly, their theranostic photodynamic therapy (PDT) effects varied drastically. All of the complexes were biologically active toward melanoma cells. Complexes 2 and 3 were the most cytotoxic, with 230–340 nM activity and selectivity factors for melanoma cells over normal skin fibroblasts of 34 to 40 fold. Complexes 2, 3, and 5 became very potent cytotoxins with light activation, with EC50 values as low as 12–18 nM. This potent nanomolar light-triggered activity combined with a lower dark toxicity resulted in 5 having a phototherapeutic index (PI) margin of almost 275. The bpy coligand led to the least amount of dark toxicity of 1, while phen and pqu produced cytotoxic but selective complexes 2 and 3. The quqo coligand produced the most potent complex 5 for in vitro PDT, both in terms of photocytotoxicity and PI. All Ir(III) complexes exhibited very bright NIR phosphorescence in melanoma cells. The wide range of cytotoxicity and photocytotoxicity effects within a relatively small class of complexes highlights the importance of the identity of the coligand in the biological activity of the π-expansive biscyclometalated Ir(III) complexes, and their bright NIR emission in live cells demonstrates their potential as theranostic PDT agents.« less
NASA Astrophysics Data System (ADS)
Alotaibi, Mshari A.; Alharthi, Abdulrahman I.; Zierkiewicz, Wiktor; Akhtar, Muhammad; Tahir, Muhammad Nawaz; Mazhar, Muhammad; Isab, Anvarhusein A.; Ahmad, Saeed
2017-04-01
A zinc(II) complex of 1,3-diaminopropane (Dap), [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]n (1) has been prepared and characterized by elemental analysis, IR, 1H &13C NMR spectroscopy, and its crystal structure was determined by X-ray crystallography. The crystal structure of 1 consists of two types of molecules, a discrete monomer and a polymeric one. In the monomeric unit, the zinc atom is bound to one terminal Dap molecule and to two N-bound thiocyanate ions, while in the polymeric unit, Dap acts as a bridging ligand forming a linear chain. The Zn(II) ions in both assume a slightly distorted tetrahedral geometry. The structures of two systems: the [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]3 complex as a model of 1 and [Zn(Dap)(NCS)2]4 as a simple polymeric structure were optimized with the B3LYP-D3 method. The DFT results support that the experimentally determined structure (1) is more stable in comparison to a simple polymeric structure, [Zn(Dap)(NCS)2]n (2). The interaction energies (ΔE) for NCS anions obtained by B3LYP-D3 method are about -145 kcal mol-1, while the calculated ΔE values for neutral organic ligands are about twice smaller. The X-ray structure of 1 shows that the complex is stabilized mainly by hydrogen bonds. We also found that weak chalcogen bonds play an additional role in stabilization of compound 1. Some of the intermolecular S⋯N distances are smaller than the sum of the van der Waals radii of the corresponding atoms. To the best of our knowledge, this is the first study that shows the structure where the trivalent sulfur is involved in formation of a S⋯π chalcogen bond. The NBO and NCI analyses confirm the existence of this kind of interactions.
NASA Astrophysics Data System (ADS)
Alizadeh, Rahman; Afzal, Mohd; Arjmand, Farukh
2014-10-01
Bicyclic heterocyclic compounds viz. benzothiazoles are key components of deoxyribonucleic acid (DNA) molecules and participate directly in the encoding of genetic information. Benzothiazoles, therefore, represent a potent and selective class of antitumor compounds. The design and synthesis of chiral antitumor chemotherapeutic agents of Cu(II) and Zn(II), L- and -D benzothiazole Schiff base-valine complexes 1a &b and 2a &b, respectively were carried out and thoroughly characterized by spectroscopic and analytical techniques. Interaction of 1a and b and 2a and b with CT DNA by employing UV-vis, florescence, circular dichroic methods and cleavage studies of 1a with pBR322 plasmid, molecular docking were done in order to demonstrate their enantiomeric disposition toward the molecular drug target DNA. Interestingly, these studies unambiguously demonstrated the greater potency of L-enantiomer in comparison to D-enantiomer.
The Control of Orbital Mixing in Ruthenium Complexes Containing Quinone Related Ligands
1991-04-04
and sodium, respectively. Tetrabutylammonium perchlorate (TBAP) and tetrabutylammonium hexafluorophosphate (Kodak; TBAH) were recrystallized from...solution. Lithium perchlorate trihydrate (0.036 g; 0.23 mmol) in methanol (2 mL) was added to the hot reaction mixture. The mixture was cooled to room...and lithium aluminum hydride suspension in THF (this required the use of the 4,5-dimethylated orthophenylenediamine complex for solubility reasons
Effect of Atmospheric Organics on Bioavailable Fe Lifetime in the Oceans
NASA Technical Reports Server (NTRS)
Meskhidze, Nicholas; Hurley, David; Royalty, Taylor Michael; Johnson, Matthew S.
2016-01-01
The deposition of atmospheric aerosols is an important supply pathway of soluble iron (sol-Fe) to the global oceans influencing marine ecosystem processes and climate. Previous studies have shown that natural and anthropogenic acidic trace gases, when mixed with mineral dust, can lead to production of sol-Fe, leading to considerable increase in dust-Fe solubility. Recent studies have further highlighted the importance of atmospheric organic compounds/ligands in the production of sol-Fe during atmospheric transport and transformation of mineral aerosols. However, the actual scope of this aerosol sol-Fe for stimulating the primary productivity in the oceans is determined by both: the total atmospheric fluxes of sol-Fe and the lifetime of sol-Fe after its deposition to the ocean. In this study several atmospheric organic ligands were investigated for their effect on the lifetime of sol-Fe after mixing with seawater. Organic ligands were selected based on their abundance in the marine boundary layer and rainwater and their ability to form bidentate complexes with Fe. The results reveal that the tested organics had minor influence on Fe(II) lifetime in seawater. However, results also show that some organic acid considerably extended the lifetime of colloidal and aqueous Fe(III). Using these results we simulate aerosol sol-Fe lifetime in the ocean for different mineral dust deposition events in the presence and the absence of atmospheric organic ligands. The calculations suggest that when a large dust plume is assumed to contain Fe(II) alone, less than 15% of aerosol sol-Fe gets complexed with marine organic ligands. However, this fraction increases to over 90% when atmospheric Fe is allowed to bond with atmospheric organic acids prior to deposition to the oceans. Calculations also show that for the conditions when seawater organic ligands get titrated by Fe released from dust aerosol particles, retention of sol-Fe in the ocean depends on surface ocean mixing, i.e., replenishing rates for Fe-bonding ligands from below. This study suggests that in future ocean biogeochemistry models more attention should be devoted to better quantification of the role of atmospheric organic acids in the lifetime of aerosol sol-Fe after its deposition to the ocean and the improvements of upper ocean turbulence parameterizations.
Bresolin, I T L; Borsoi-Ribeiro, M; Tamashiro, W M S C; Augusto, E F P; Vijayalakshmi, M A; Bueno, S M A
2010-04-01
Monoclonal antibodies (MAbs) have been used for therapies and some analytical procedures as highly purified molecules. Many techniques have been applied and studied, focusing on monoclonal antibodies purification. In this study, an immobilized metal affinity chromatography membrane was developed and evaluated for the purification of anti-TNP IgG(1) mouse MAbs from cell culture supernatant after precipitation with a 50% saturated ammonium sulfate solution. The chelating ligands iminodiacetic acid, carboxymethylated aspartic acid (CM-Asp), nitrilotriacetic acid, and tris (carboxymethyl) ethylenediamine in agarose gels with immobilized Ni(II) and Zn(II) ions were compared for the adsorption and desorption of MAbs. The most promising chelating ligand--CM-Asp--was then coupled to poly(ethylene vinyl alcohol) (PEVA) hollow fiber membranes. According to SDS-PAGE and ELISA analyses, a higher selectivity and a purification factor of 85.9 (fraction eluted at 500 mM Tris) were obtained for IgG(1) using PEVA-CM-Asp-Zn(II). The anti-TNP MAb could be eluted under mild pH conditions causing no loss of antigen binding capacity.
Park, Se Won; Ham, Ho Wan; Kim, Young Sik
2012-04-01
In the paper, we describe new Ir complexes for achieving efficient blue phosphorescence. New blue-emitting mixed-ligand Ir complexes comprising one cyclometalating, two phosphines trans to each other such as Ir(dppz)(PPh3)2(H)(L) (Ll= Cl, NCMe+, CN), [dppz = 3,5-Diphenylpyrazole] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. To gain insight into the factors responsible for the emission color change and the variation of luminescence efficiency, we investigate the electron-withdrawing capabilities of ancillary ligands using DFT and TD-DFT calculations on the ground and excited states of the complexes. To achieve deep blue emission and increase the emission efficiency, (1) we substitute the phenyl group on the 3-position of the pyrazole ring that lowers the triplet energy enough that the quenching channel is not thermally accessible and (2) change the ancillary ligands coordinated to iridium atom to phosphine and cyano groups known as very strong field ligands. Their inclusion in the coordination sphere can increase the HOMO-LUMO gap to achieve the hypsochromic shift in emission color and lower the HOMO and LUMO energy level, which causes a large d-orbital energy splitting and avoids the quenching effect to improve the luminescence efficiency. The maximum emission spectra of Ir(dppz)(PPh3)2(H)(CI) and Ir(dppz)(PPh3)2(H)(CN) were in the ranges of 439, 432 nm, respectively.
Hureau, Christelle; Groni, Sihem; Guillot, Régis; Blondin, Geneviève; Duboc, Carole; Anxolabéhère-Mallart, Elodie
2008-10-20
The two pentadentate amino-pyridine ligands L5(2) and L5(3) (L5(2) and L5(3) stand for the N-methyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine and the N-methyl-N,N',N'-tris(2-pyridylmethyl)propane-1,3-diamine, respectively) were used to synthesize four mononuclear Mn(II) complexes, namely [(L5(2))MnCl](PF6) (1(PF6)), [(L5(3))MnCl](PF6) (2(PF6)), [(L5(2))Mn(OH2)](BPh4)2 (3(BPh4)2), and [(L5(3))Mn(OH2)](BPh4)2 (4(BPh4)2). The X-ray diffraction studies revealed different configurations for the ligand L5(n) (n = 2, 3) depending on the sixth exogenous ligand and/or the counterion. Solid state high-field electron paramagnetic resonance spectra were recorded on complexes 1-4 as on previously described mononuclear Mn(II) systems with tetra- or hexadentate amino-pyridine ligands. Positive and negative axial zero-field splitting (ZFS) parameters D were determined whose absolute values ranged from 0.090 to 0.180 cm(-1). Density-functional theory calculations were performed unraveling that, in contrast with chloro systems, the spin-spin and spin-orbit coupling contributions to the D-parameter are comparable for mixed N,O-coordination sphere complexes.
Small-Molecule Fluorescent Sensors for Investigating Zinc Metalloneurochemistry
Nolan, Elizabeth M.; Lippard, Stephen J.
2008-01-01
Conspectus Metal ions are involved in many neurobiological processes relevant to human health and disease. The metalloneurochemistry of Zn(II) is of substantial current interest. Zinc is the second most abundant d-block metal ion in the human brain and its distribution varies, with relatively high concentrations found in the hippocampus. Brain zinc is generally divided into two categories: protein-bound and loosely-bound. The latter pool is also referred to as histochemically observable, chelatable, labile, or mobile zinc. The neurophysiological and neuropathological significance of such mobile Zn(II) remains enigmatic. Studies of Zn(II) distribution, translocation, and function in vivo require tools for its detection. Because Zn(II) has a closed-shell d10 configuration and no convenient spectroscopic signature, fluorescence is a suitable method for monitoring Zn(II) in biological contexts. This Account summarizes work by our laboratory addressing the design, preparation, characterization, and use of small-molecule fluorescent sensors for imaging mobile Zn(II) in living cells and samples of brain tissue. These sensors provide “turn-on” or ratiometric Zn(II) detection in aqueous solution at neutral pH. By making alterations to the Zn(II)-binding unit and fluorophore platform, we have devised sensors with varied photophysical and metal-binding properties. We used several of these probes to image Zn(II) distribution, uptake, and mobilization in a variety of cell types, including neuronal cultures. Goals for the future include developing strategies for multi-color imaging, further defining the quenching and turn-on mechanisms of the sensors, and employing the probes to elucidate the functional significance of Zn(II) in neurobiology. PMID:18989940
Adarsh, N. N.; Dastidar, Parthasarathi
2010-01-01
In the title coordination polymer, {[Zn(SO4)(C18H16N6O2)(H2O)3]·CH3OH·H2O}n, the Zn2+ ion adopts a slightly distorted cis-ZnN2O4 octahedral geometry arising from three coordinated water molecules, one sulfate ion and two bridging 3,3′-bis(3-pyridyl)-1,1′-(m-phenylene)diurea (bpmpbu) ligands. The dihedral angles between the central benzene ring and two terminal pyridine rings of the bpmbpu molecule are 10.58 (17) and 34.63 (16)°. In the crystal, the ligands bridge the ZnII ions, thus generating a one-dimensional zigzag coordination polymer propagating in [010]. The crystal structure features extensive N—H⋯O and O—H⋯O hydrogen-bonding interactions. PMID:21580512
NASA Astrophysics Data System (ADS)
Lu, Shih-I.; Liao, Jian-Min; Huang, Xiao-Zhuang; Lin, Chia-Hsun; Ke, Szu-Yu; Wang, Chih-Chieh
2017-11-01
We used force-field based grand-canonical Monte Carlo simulation method and density functional theory to study adsorption characteristics of carbon dioxide (CO2) molecules in a metal-organic framework (MOF) compound, [Zn(bdc)(dpds)]n. The studied MOF include a metal ion (Zn(II)), an anion organic linker (dianion of benzene dicarboxylicacid, bdc2-) and a neutral organic linker (4,4‧-dipyridyldisulfide, dpds). Results from calculated adsorption isotherms and enthalpies of adsorption agree with the experimental data. The interactions between the adsorbed CO2 and the organic linkers were examined in simulations. Calculated results show available absorption sites are surrounded by two dpds ligands in which an S-S bond as an N-N‧ spacer connect two pyridines. In contrast, the bdc2- ligand does not give a significant contribution to the substantial adsorption amount even though it contains the carboxylate group that provides available bonding site to CO2.
Gas adsorption and gas mixture separations using mixed-ligand MOF material
Hupp, Joseph T [Northfield, IL; Mulfort, Karen L [Chicago, IL; Snurr, Randall Q [Evanston, IL; Bae, Youn-Sang [Evanston, IL
2011-01-04
A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.
Lü, Xing-Qiang; Jiang, Ji-Jun; Chen, Chun-Long; Kang, Bei-Sheng; Su, Cheng-Yong
2005-06-27
The reactions of Cu(II) with the mixed nitrilotriacetic acid (H3NTA) and 4,4'-bipyridyl (4,4'-bpy) ligands in different metal-to-ligand ratios in the presence of NaOH and NaClO4 afforded two complexes, Na3[Cu2(NTA)2(4,4'-bpy)]ClO4 x 5H2O (1) and [Cu2(NTA) (4,4'-bpy)2]ClO4 x 4H2O (2). The two complexes have been characterized by elemental analysis, IR, XRD, and single-crystal X-ray diffraction. 1 contains a basic doubly negatively charged [Cu2(NTA)2(4,4'-bpy)]2- dinuclear unit which was further assembled via multiple Na-O and O-H...O interactions into a three-dimensional (3D) pillared-layer structure. 2 features a two-dimensional (2D) undulated brick-wall architecture containing a basic doubly positively charged [Cu4(NTA)2(4,4'-bpy)2]2+ tetranuclear unit. The 2D network possesses large cavities hosting guest molecules and was further assembled via O-H...O hydrogen bonds into a 3D structure with several channels running in different directions.
A trimetallic strategy towards ZnDyCr and ZnDyCo single-ion magnets.
Hu, Kong-Qiu; Jiang, Xiang; Wu, Shu-Qi; Liu, Cai-Ming; Cui, Ai-Li; Kou, Hui-Zhong
2015-09-21
Two cyano- and phenoxo-bridged octanuclear complexes ZnDyCo (complex ) and ZnDyCr (complex ) with diamagnetic Zn(ii) and Co(iii) are reported. Dy(iii) is surrounded by nine oxygen atoms of two [Zn(Me2valpn)] (Me2valpn(2-) = dianion of N,N'-2,2-dimethylpropylenebis(3-methoxysalicylideneimine)) and one water molecule. Magnetic studies reveal that both exhibit single-ion magnet (SIM) behavior with the energy barrier of 85.9 K for complex and 100.9 K for complex .
Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces
NASA Astrophysics Data System (ADS)
Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.
2016-09-01
Mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) (∼0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 -1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 -1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time). However, no changes in the partitioning of Cu(II) and Zn(II) onto the α-Al2O3 (1 -1 0 2) surface were observed with increasing reaction time, suggesting that these ions strongly complex with functional groups in the ESHA coatings. Similar results were obtained for Cu(II) and Zn(II) on the ESHA-coated α-Al2O3 (1 -1 0 2) surfaces in samples without the addition of calcium. However, the amounts of Pb(II) mobilized from the ESHA coatings onto the α-Al2O3 (1 -1 0 2) surfaces increased from 40% (no added Ca) to 58% (with 2 mM Ca) after 72 h of reaction time, possibly due to displacement of Pb(II) by Ca(II) from binding sites in the ESHA coatings. In contrast, Pb(II), Cu(II), and Zn(II) present in the ESHA coatings were found to be unreactive with the α-Al2O3 (0 0 0 1) surface. The observed reactivities of the three ESHA-coated metal-oxide surfaces with respect to metal-ion sorption are consistent with the trend observed for the uncoated metal-oxide surfaces: α-Fe2O3 (0 0 0 1) > α-Al2O3 (1 -1 0 2) > α-Al2O3 (0 0 0 1). In addition, Pb(II) partitioning onto α-Al2O3 (1 -1 0 2) surfaces increased with increasing pH from 4.0 to 9.0 as a result of the increasingly negative surface charge. These results show that intrinsic properties (nature of binding sites, binding affinities, and surface charge) of the ESHA coatings and metal-oxide surfaces, as well as external parameters such as pH and competing ions, are key factors governing the distribution and speciation of metal ions at complex NOM/mineral interfaces.
Tamayo, Lenka V; Gouvea, Ligiane R; Sousa, Anna C; Albuquerque, Ronniel M; Teixeira, Sarah Fernandes; de Azevedo, Ricardo Alexandre; Louro, Sonia R W; Ferreira, Adilson Kleber; Beraldo, Heloisa
2016-02-01
Copper(II) complexes [Cu(H2O)2 (L1)(phen)](ClO4) (1) and [Cu(H2O)(L2)(phen)](ClO4) (2) (HL1 = naringenin; HL2 = hesperetin) were obtained, in which an anionic flavonoid ligand is attached to the metal center along with 1,10-phenanthroline (phen) as co-ligand. Complexes (1) and (2) were assayed for their cytotoxic activity against A549 lung carcinoma and against normal lung fibroblasts (LL-24) and human umbilical vein endothelial cells (HUVEC). We found IC50 = 16.42 µM (1) and IC50 = 5.82 µM (2) against A549 tumor cells. Complexes (1) and (2) exhibited slight specificity, being more cytotoxic against malignant than against non-malignant cells. 1 and 2 induced apoptosis on A549 cells in a mitochondria-independent pathway, and showed antioxidant activity. The antioxidant effect of the complexes could possibly improve their apoptotic action, most likely by a PI3K-independent reduction of autophagy. Complexes (1) and (2) interact in vitro with calf thymus DNA by an intercalative binding mode. EPR data indicated that 1 and 2 interact with human serum albumin (HSA) forming mixed ligand species.
Metal complexes of diisopropylthiourea: synthesis, characterization and antibacterial studies.
Ajibade, Peter A; Zulu, Nonkululeko H
2011-01-01
Co(II), Cu(II), Zn(II) and Fe(III) complexes of diisopropylthiourea have been synthesized and characterized by elemental analyses, molar conductivity, magnetic susceptibility, FTIR and electronic spectroscopy. The compounds are non-electrolytes in solution and spectroscopic data of the complexes are consistent with 4-coordinate geometry for the metal(II) complexes and six coordinate octahedral for Fe(III) complex. The complexes were screened for their antibacterial activities against six bacteria: Escherichia coli, Pseudomonas auriginosa, Klebsiella pneumoniae, Bacillus cereus, Staphylococcus aureus and Bacillus pumilus. The complexes showed varied antibacterial activities and their minimum inhibitory concentrations (MICs) were determined.
Brun, Nadja Rebecca; Lenz, Markus; Wehrli, Bernhard; Fent, Karl
2014-04-01
The increasing use of zinc oxide nanoparticles (nZnO) and their associated environmental occurrence make it necessary to assess their potential effects on aquatic organisms. Upon water contact, nZnO dissolve partially to zinc (Zn(II)). To date it is not yet completely understood, whether effects of nZnO are solely or partly due to dissolved Zn(II). Here we compare potential effects of 0.2, 1 and 5mg/L nZnO and corresponding concentrations of released Zn(II) by water soluble ZnCl2 to two development stages of zebrafish, embryos and eleuthero-embryos, by analysing expressional changes by RT-qPCR. Another objective was to assess uptake and tissue distribution of Zn(II). Laser ablation-ICP-MS analysis demonstrated that uptake and tissue distribution of Zn(II) were identical for nZnO and ZnCl2 in eleuthero-embryos. Zn(II) was found particularly in the retina/pigment layer of eyes and brain. Both nZnO and dissolved Zn(II) derived from ZnCl2 had similar inhibiting effects on hatching, and they induced similar expressional changes of target genes. At 72hours post fertilization (hpf), both nZnO and Zn(II) delayed hatching at all doses, and inhibited hatching at 1 and 5 mg/L at 96 hpf. Both nZnO and Zn(II) lead to induction of metallothionein (mt2) in both embryos and eleuthero-embryos at all concentrations. Transcripts of oxidative stress related genes cat and Cu/Zn sod were also altered. Moreover, we show for the first time that nZnO exposure results in transcriptional changes of pro-inflammatory cytokines IL-1β and TNFα. Overall, transcriptional alterations were higher in embryos than eleuthero-embryos. The similarities of the effects lead to the conclusion that effects of nZnO are mainly related to the release of Zn(II). Copyright © 2014 Elsevier B.V. All rights reserved.
Shanmugaprakash, M; Sivakumar, V
2015-12-01
The present work, analyzes the potential of defatted pongamia oil cake (DPOC) for the biosorption of Zn(II) ions from aqueous solutions in the both batch and column mode. Batch experiments were conducted to evaluate the optimal pH, effect of adsorbent dosage, initial Zn(II) ions concentration and contact time. The biosorption equilibrium and kinetics data for Zn(II) ions onto the DPOC were studied in detail, using several models, among all it was found to be that, Freundlich and the second-order model explained the equilibrium data well. The calculated thermodynamic parameters had shown that the biosorption of Zn(II) ions was exothermic and spontaneous in nature. Batch desorption studies showed that the maximum Zn(II) recovery occurred, using 0.1 M EDTA. The Bed Depth Service Time (BDST) and the Thomas model was successfully employed to evaluate the model parameters in the column mode. The results indicated that the DPOC can be applied as an effective and eco-friendly biosorbent for the removal of Zn(II) ions in polluted wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.
Functionalized polyethylene fibers for the selective capture of palladium ions from aqueous solution
NASA Astrophysics Data System (ADS)
Pang, Li-juan; Li, Rong; Hu, Jiang-tao; Zhang, Lin-juan; Zhang, Ming-xing; Yang, Chen-guang; Wu, Guo-zhong
2018-03-01
An innovative ultrahigh molecular weight polyethylene (UHMWPE) fibrous adsorbent was successfully synthesized via radiation grafting and applied to the selective capture of palladium ions from dilute aqueous solutions. The influence of the pH, initial Pd(II) concentration, and temperature on the adsorption performance was examined in a batch adsorption experiment. Pd K-edge extended X-ray absorption fine structure (EXAFS) spectra indicated that Pd(II) was immobilized on the adsorbent surface via a ligand exchange reaction that formed a stable UHMWPE-PMDA-Pd complex. Although the concentrations of coexisting ions (Cu(II), Zn(II), Cr(VI), Fe(III), and Ni(II)) in the solution were much higher than that of Pd(II), the adsorption capacity for Pd(II) of the as-prepared absorbent was significantly greater than that for other metal ions. Kinetic studies showed good correlation with the pseudo-second-order model. The maximum capacity for Pd(II) adsorption was approximately 221.8 mg·g-1 at 298 K. The adsorption behavior conformed to the Langmuir isotherm model. Thermodynamic studies revealed that the adsorption of Pd(II) was a feasible, spontaneous, and endothermic process.
Zhang, Lujia L; Cattrall, Robert W; Kolev, Spas D
2011-06-15
This paper reports the first use of a polymer inclusion membrane (PIM) for on-line separation in flow injection analysis (FIA) involving simultaneous extraction and back-extraction. The FIA system containing the PIM separation module was used for the determination of Zn(II) in aqueous samples in the presence of Mg(II), Ca(II), Cd(II), Co(II), Ni(II), Cu(II), and Fe(III). The Fe(III) and Cu(II) interferences were eliminated by off-line precipitation with phosphate and on-line complexation with chloride, respectively. The concentration of Zn(II) was determined spectrophotometrically using 4-(2-pyridylazo) resorcinol (PAR). The optimal composition of the PIM consisted of 40% (m/m) di(2-ethlyhexyl) phosphoric acid (D2EHPA) as carrier, 10% (m/m) dioctyl phthalate (DOP) as plasticizer and 50% (m/m) poly(vinyl chloride) (PVC) as the base polymer. The optimized FIA system was characterized by a linear calibration curve in the range from 1.0 to 30.0 mg L(-1) Zn(II), a detection limit of 0.05 mg L(-1) and a relative standard deviation of 3.4% with a sampling rate of 4h(-1). Reproducible results were obtained for 20 replicate injections over a 5h period which demonstrated a good membrane stability. The FIA system was applied to the determination of Zn(II) in pharmaceuticals and samples from the galvanizing industry and very good agreement with atomic absorption spectrometry was obtained. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhang, Wenkai; Kjaer, Kasper S.; Alonso-Mori, Roberto; ...
2016-08-25
Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover – the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN –) ligands and one 2,2'-bipyridine (bpy) ligand. This enablesmore » MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN) 4(bpy)] 2–. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. Here, we conclude that the MLCT excited state of [Fe(CN) 4(bpy)] 2– decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2'-bipyridine) 3] 2+ by more than two orders of magnitude.« less
El-Ayaan, Usama; El-Metwally, Nashwa M; Youssef, Magdy M; El Bialy, Serry A A
2007-12-31
The present work carried out a study on perchlorate mixed-ligand copper(II) complexes which have been synthesized from ethylenediamine derivatives (3a-c) and beta-diketones. These complexes, namely [Cu(DA-Cl)(acac)H(2)O]ClO(4)4, [Cu(DA-Cl)(bzac)H(2)O]H(2)O.ClO(4)5, [Cu(DA-OMe)(acac)H(2)O]ClO(4)6, [Cu(DA-OMe)(bzac)H(2)O]ClO(4)7, [Cu(DA-H)(acac)H(2)O]2H(2)O.ClO(4)8 and [Cu(DA-H)(bzac)H(2)O]ClO(4)9 (where acac, acetylacetonate and bzac, benzoylacetonate) were characterized by elemental analysis, spectral (IR and UV-vis) and magnetic moment measurements. Thermal properties and decomposition kinetics of all complexes are investigated. The interpretation, mathematical analysis and evaluation of kinetic parameters (E, A, DeltaH, DeltaS and DeltaG) of all thermal decomposition stages have been evaluated using Coats-Redfern equation. The biochemical studies showed that, the diamines 3a-c have powerful effects on degradation of DNA and protein. The antibacterial screening demonstrated that, the diamine (DA-Cl), 3b has the maximum and broad activities against Gram +ve and Gram -ve bacterial strains.
NASA Astrophysics Data System (ADS)
Zhang, Yongqiang; Zhou, Peng; Liang, Baohuan; Huang, Ling; Zhou, Yanling; Ma, Zhen
2017-10-01
Reactions between 4‧-phenyl-terpyridine (L) and several Zn(II) salts (p-toluenesulfonate, nitrate, trifluoromethane sulfonate or hexafluoroantimonate) led to the formation of the complexes [ZnL2](p-OSO2PhCH3)2 (1), [ZnL2](NO3)2 (2), [ZnL2](SO3CF3)2 (3) and [ZnL2](SbF6)2 (4), which were characterized by IR, 1H NMR, elemental analysis, UV-vis spectroscopies and single crystal X-ray diffraction, along with their TG-DTA thermal and photoluminescent properties. The four compounds show mononuclear Zn(II) structures with hexacoordinated, irregular ZnN6 octahedron geometries. Their colours and photo-luminescent properties have changed regularly depending on the counterions of the compounds.
Schilter, David; Rauchfuss, Thomas B.; Stein, Matthias
2012-01-01
A series of mixed-valence iron-nickel dithiolates is described that exhibits structures similar to those of mixed-valence diiron dithiolates. Interaction of tricarbonyl salt [(dppe)Ni(pdt)Fe(CO)3]BF4 ([1]BF4, dppe = Ph2PCH2CH2PPh2, pdtH2 = HSCH2CH2CH2SH) with P-donor ligands (L) afforded the substituted derivatives [(dppe)Ni(pdt)Fe(CO)2L]BF4 incorporating L = PHCy2 ([1a]BF4), PPh(NEt2)2 ([1b]BF4), P(NMe2)3 ([1c]BF4), P(i-Pr)3 ([1d]BF4) and PCy3 ([1e]BF4). The related precursor [(dcpe)Ni(pdt)Fe(CO)3]BF4 ([2]BF4, dcpe = Cy2PCH2CH2PCy2) gave the more electron-rich family of compounds [(dcpe)Ni(pdt)Fe(CO)2L]BF4 for L = PPh2(2-pyridyl) ([2a]BF4), PPh3 ([2b]BF4) and PCy3 ([2c]BF4). For bulky and strongly basic monophosphorus ligands, the salts feature distorted Fe coordination geometries: crystallographic analyses of [1e]BF4 and [2c]BF4 showed they adopt ‘rotated’ Fe(I) centers, in which PCy3 occupies a basal site and one CO ligand partially bridges the Ni and Fe centers. Like the undistorted mixed-valence derivatives, the new class of complexes are described as Ni(II)Fe(I) (S = ½) systems according to EPR spectroscopy, although with attenuated 31P hyperfine interactions. DFT calculations using the BP86, B3LYP, and PBE0 exchange-correlation functionals agree with the structural and spectroscopic data, suggesting that the spin for [1e]+ is localized in a Fe(I)-centered d(z2) orbital, orthogonal to the Fe-P bond. The PCy3 complexes, rare examples of species featuring ‘rotated’ Fe centers, both structurally and spectroscopically resemble mixed-valence diiron dithiolates. Also reproducing the NiS2Fe core of the [NiFe]-H2ase active site, the hybrid models incorporate key features of the two major classes of H2ase. Furthermore, cyclic voltammetry experiments suggest that the highly basic phosphine ligands enable a second oxidation corresponding to the couple [(dxpe)Ni(pdt)Fe(CO)2L]+/2+. The resulting unsaturated 32e− dications represent the closest approach to modeling the highly electrophilic Ni-SIa state. In the case of L = PPh2(2-pyridyl) chelation of this ligand accompanies the second oxidation. PMID:22838645
Virus inactivation under the photodynamic effect of phthalocyanine zinc(II) complexes.
Remichkova, Mimi; Mukova, Luchia; Nikolaeva-Glomb, Lubomira; Nikolova, Nadya; Doumanova, Lubka; Mantareva, Vanya; Angelov, Ivan; Kussovski, Veselin; Galabov, Angel S
2017-03-01
Various metal phthalocyanines have been studied for their capacity for photodynamic effects on viruses. Two newly synthesized water-soluble phthalocyanine Zn(II) complexes with different charges, cationic methylpyridyloxy-substituted Zn(II)- phthalocyanine (ZnPcMe) and anionic sulfophenoxy-substituted Zn(II)-phthalocyanine (ZnPcS), were used for photoinactivation of two DNA-containing enveloped viruses (herpes simplex virus type 1 and vaccinia virus), two RNA-containing enveloped viruses (bovine viral diarrhea virus and Newcastle disease virus) and two nude viruses (the enterovirus Coxsackie B1, a RNA-containing virus, and human adenovirus 5, a DNA virus). These two differently charged phthalocyanine complexes showed an identical marked virucidal effect against herpes simplex virus type 1, which was one and the same at an irradiation lasting 5 or 20 min (Δlog=3.0 and 4.0, respectively). Towards vaccinia virus this effect was lower, Δlog=1.8 under the effect of ZnPcMe and 2.0 for ZnPcS. Bovine viral diarrhea virus manifested a moderate sensitivity to ZnPcMe (Δlog=1.8) and a pronounced one to ZnPcS at 5- and 20-min irradiation (Δlog=5.8 and 5.3, respectively). The complexes were unable to inactivate Newcastle disease virus, Coxsackievirus B1 and human adenovirus type 5.
NASA Astrophysics Data System (ADS)
Shi, Chenjie; Wang, Zikai; Chen, Yifan; Zhang, Xiaoyu; Zhao, Yue; Tao, Yuehong; Wu, Hua
2017-09-01
Four 3D coordination compounds, named [Cd3(nbta)2(bix)2(H2O)2]·H2O (1), Zn3(nbta)2(biim)3 (2), Zn6(nbta)4(btd)5 (3) and [Co3(nbta)2(bid)(H2O)8]·4H2O (4) (bix=1,4-bis(imidazole-1-ylmethyl)benzene, biim=1,1‧-(1,4-butanediyl)bis(imidazole), btd=1,10-bis(1,2,4-triazol-1-yl)decane, bid=1,10-bis(imidazole-1-yl)decane), and H3nbta=5-nitro-1,2,3-benzenetricarboxylic acid), have been synthesized by solvothermal methods and structurally characterized by X-ray diffraction studies. In compound 1, every nbta3- anion connects four CdII ions to give a 2D layer, and the layers are pillared by bix ligands to generate a 3D framework with a Schläfli symbol of (3·4·63·7)(4·64·8)(43·63)(34·42·66·76·88·92). For compound 2, every nbta3- anion connects three ZnII ions to give a 2D layer structure, the 2D layers are further connected into a facinating 3D framework by biim ligands with (3,4)-connected (3·6·7)(3·5·62·7·8)(3·52·6·8·9)(5·6·8·10·112) topology. In compound 3, the nbta3- anions are connected by ZnII ions to generate a 2D layer, and the layers are bridged by btd ligands to build a fascinating 3D framework with (4·6·7·8·92)(4·6·8·92·10)(4·93·102)(4·6·8·9·102)(4·6·7·8·9·10)(4·6·7·8·102)(42·6·7·8·9) topology. In compound 4, the nbta3- aions are connected by CoII ions into a 2D layer, the 2D layers are linked by bid ligands to generate a 3D 103 topological framework. Furthermore, the IR spectra, TGA, PXRD, elemental analyses, the solid-state luminescence of compounds 1-3 have been studied.
Chartrand, Daniel; Castro Ruiz, Carlos A; Hanan, Garry S
2012-12-03
The synthesis and characterization of a novel family of positively charged fac-[Re(bpy)(CO)(3)(L)]PF(6) (bpy = 2,2'-bipyridine) complexes are reported, where L is a pyridine functionalized in para or meta position with a fulvene moiety, namely, 4-fluoren-9-ylidenemethyl-pyridine (pFpy) and 3-fluoren-9-ylidenemethyl-pyridine (mFpy). The complexes were prepared in high yield (86%) by direct addition at room temperature of the corresponding pyridine to the tetrahydrofuran (THF) adduct fac-[Re(bpy)(CO)(3)(THF)][PF(6)] precursor. Both ligand and complex structures were fully characterized by a variety of techniques including X-ray crystallography. The complexes did not exhibit the expected triplet mixed metal-ligand-to-ligand charge transfer (MLLCT) emission, because of its deactivation by the non-emissive triplet excited state of fulvene. The absorption profile shows that the MLLCT is overshadowed by the fulvene centered π-π* transition of higher molar absorptivity as shown by time dependent density functional theory (TD-DFT) calculations. The position of the fulvene on the pyridyl ring has a large effect on this transition, the para position displaying a much higher absorption coefficient (21.3 × 10(3) M(-1) cm(-1)) at lower energy (364 nm) than the meta position (331 nm, 16.0 × 10(3) M(-1) cm(-1)).
Nami, Shahab A A; Husain, Ahmad; Siddiqi, K S; Westcott, Barry L; Kopp-Vaughn, Kristin
2010-01-01
New bimetallic complex salts corresponding to the formulation [Ni(L)][MCl(4)] have been synthesized by the facile reaction between [Ni(L)](ClO(4))(2) and [MCl(2)(PPh(3))(2)] in high yields [where M=Co(II), Zn(II), Hg(II) and L=3,7-bis(2-aminoethyl)-1,3,5,7-tetraazabicyclo(3.3.1)nonane]. The complexes were characterized by IR, electronic spectra, TGA/DSC, magnetic moment and conductivity measurements. The X-ray crystal structure for [Ni(L)][CoCl(4)] clearly establishes the cationic-anionic interaction. It crystallizes in the space group P1 with unit cell dimensions a=7.1740(15)A, b=8.1583(16)A and c=8.3102(16)A. A square-planar geometry is evident for the [Ni(L)](2+) cation while the anion is found to be tetrahedral. A two-step thermolytic pattern is observed in the pyrolysis of the bimetallic complex salts. Copyright 2009 Elsevier B.V. All rights reserved.
Raju, Gajjela; Srinivas, Ragampeta; Santhosh Reddy, Vangala; Idris, Mohammed M.; Kamal, Ahmed; Nagesh, Narayana
2012-01-01
Studies on ligand interaction with quadruplex DNA, and their role in stabilizing the complex at concentration prevailing under physiological condition, has attained high interest. Electrospray ionization mass spectrometry (ESI-MS) and spectroscopic studies in solution were used to evaluate the interaction of PBD and TMPyP4 ligands, stoichiometry and selectivity to G-quadruplex DNA. Two synthetic ligands from PBD family, namely pyrene-linked pyrrolo[2,1-c][1,4]benzodiazepine hybrid (PBD1), mixed imine-amide pyrrolobenzodiazepine dimer (PBD2) and 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4) were studied. G-rich single-stranded oligonucleotide d(5′GGGGTTGGGG3′) designated as d(T2G8), from the telomeric region of Tetrahymena Glaucoma, was considered for the interaction with ligands. ESI-MS and spectroscopic methods viz., circular dichroism (CD), UV-Visible, and fluorescence were employed to investigate the G-quadruplex structures formed by d(T2G8) sequence and its interaction with PBD and TMPyP4 ligands. From ESI-MS spectra, it is evident that the majority of quadruplexes exist as d(T2G8)2 and d(T2G8)4 forms possessing two to ten cations in the centre, thereby stabilizing the complex. CD band of PBD1 and PBD2 showed hypo and hyperchromicity, on interaction with quadruplex DNA, indicating unfolding and stabilization of quadruplex DNA complex, respectively. UV-Visible and fluorescence experiments suggest that PBD1 bind externally where as PBD2 intercalate moderately and bind externally to G-quadruplex DNA. Further, melting experiments using SYBR Green indicate that PBD1 unfolds and PBD2 stabilizes the G-quadruplex complex. ITC experiments using d(T2G8) quadruplex with PBD ligands reveal that PBD1 and PBD2 prefer external/loop binding and external/intercalative binding to quadruplex DNA, respectively. From experimental results it is clear that the interaction of PBD2 and TMPyP4 impart higher stability to the quadruplex complex. PMID:22558271
Ham, Ho-Wan; Jung, Kyung-Yoon; Kim, Young-Sik
2012-02-01
New blue emitting mixed ligand iridium(III) complexes comprising one cyclometalating, two phosphines trans to each other such as Ir{(CF3)2Meppy}(PPhMe3)2(H)(L) [L = CI, NCMe, CN] [(CF3)2Meppy = 2-(3', 5'-bis-trifluoromethylphenyl)-4-methylpyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. To achieve deep blue emission, the trifluoromethyl group substituted on the phenyl ring and the methyl group substituted on the pyridyl ring increased HOMO-LUMO gap and achieved the hypsochromic shift. To gain insight into the factors responsible for the emission color change and the different luminescence efficiency, we investigate the electron-withdrawing capabilities of ancillary ligands using the DFT and TD-DFT calculations on the ground and excited states of the complexes. From these results, we discuss how the ancillary ligand influences the emission peak as well as the metal to ligand charge transfer (MLCT) transition efficiency. The maximum emission spectra of Ir{(CF3)2Meppy}(PPhMe3)2(H)(Cl), [Ir{(CF3),Meppy)(PPhMe3),(H)(NCMe)]+ and Ir{(CF3)2Meppy}(PPhMe3)2(H)(CN) were in the ranges of 441, 435, 434 nm, respectively.
Basak, Geetanjali; Das, Nilanjana
2014-11-01
The present study aimed at elucidating the role of biosurfactant produced by yeast for the removal of Zn(II) ions from electroplating wastewater. The yeast species isolated from CETP, Vellore, Tamilnadu was identified as Cryptococcus sp.VITGBN2, based on molecular techniques, and was found to be potent producer of biosurfactant in mineral salt media containing vegetable oil as additional carbon source. Chemical structure of the purified biosurfactant was identified as acidic diacetate sophorolipid through GC-MS analysis. Interaction of Zn(II) ions with biosurfactant was monitored using FT-IR, SEM and EDS analysis. Zn (II) removal at 100 mg l(-1) concentration was 84.8% compared were other synthetic surfactants (Tween 80 and sodium dodecyl sulphate), yeast mediated biosurfactant showed enhanced Zn (II) removal in batch mode. The role of biosurfactant on Zn(II) removal was evaluated in column mode packed with biosurfactant entrapped in sodium alginate beads. At a flow rate of 1 ml min(-1) and bed height of 12 cm, immobilized biosurfactant showed 94.34% Zn(II) removal from electroplating wastewater. The present study confirmed that Zn(II) removal was biosurfactant mediated. This is the first report establishing the involvement of yeast mediated biosurfactant in Zn(II) removal from wastewater.
Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater.
Sun, Yuqing; Lei, Cheng; Khan, Eakalak; Chen, Season S; Tsang, Daniel C W; Ok, Yong Sik; Lin, Daohui; Feng, Yujie; Li, Xiang-Dong
2017-06-01
Nanoscale zero-valent iron (nZVI) was tested for the removal of Cu(II), Zn(II), Cr(VI), and As(V) in model saline wastewaters from hydraulic fracturing. Increasing ionic strength (I) from 0.35 to 4.10 M (Day-1 to Day-90 wastewaters) increased Cu(II) removal (25.4-80.0%), inhibited Zn(II) removal (58.7-42.9%), slightly increased and then reduced Cr(VI) removal (65.7-44.1%), and almost unaffected As(V) removal (66.7-75.1%) by 8-h reaction with nZVI at 1-2 g L -1 . The removal kinetics conformed to pseudo-second-order model, and increasing I decreased the surface area-normalized rate coefficient (k sa ) of Cu(II) and Cr(VI), probably because agglomeration of nZVI in saline wastewaters restricted diffusion of metal(loid)s to active surface sites. Increasing I induced severe Fe dissolution from 0.37 to 0.77% in DIW to 4.87-13.0% in Day-90 wastewater; and Fe dissolution showed a significant positive correlation with Cu(II) removal. With surface stabilization by alginate and polyvinyl alcohol, the performance of entrapped nZVI in Day-90 wastewater was improved for Zn(II) and Cr(VI), and Fe dissolution was restrained (3.20-7.36%). The X-ray spectroscopic analysis and chemical speciation modelling demonstrated that the difference in removal trends from Day-1 to Day-90 wastewaters was attributed to: (i) distinctive removal mechanisms of Cu(II) and Cr(VI) (adsorption, (co-)precipitation, and reduction), compared to Zn(II) (adsorption) and As(V) (bidentate inner-sphere complexation); and (ii) changes in solution speciation (e.g., from Zn 2+ to ZnCl 3 - and ZnCl 4 2- ; from CrO 4 2- to CaCrO 4 complex). Bare nZVI was susceptible to variations in wastewater chemistry while entrapped nZVI was more stable and environmentally benign, which could be used to remove metals/metalloids before subsequent treatment for reuse/disposal. Copyright © 2017 Elsevier Ltd. All rights reserved.
Weinstein, Julia A; Tierney, Mark T; Davies, E Stephen; Base, Karel; Robeiro, Anthony A; Grinstaff, Mark W
2006-05-29
A general route for synthesis of six structurally similar Pt(II) diimine thiolate/phenolates chromophores possessing bulky phenolate or thiolate ligands is reported. The Pt chromophores were characterized using an array of techniques including 1H, 13C, and 195Pt NMR, absorption, emission, (spectro)electrochemistry, and EPR spectroscopy. Systematic variation of the electronic structure of the Pt(II) chromophores studied was achieved by (i) changing solvent polarity; (ii) substituting oxygen for sulfur in the donor ligand; (iii) alternating donor ligands from bis- to di-coordination; and (iv) changing the electron donating/withdrawing properties of the ligand(s). The lowest excited state in these new chromophores was assigned to a [charge-transfer-to-diimine] transition from the HOMO of mixed Pt/S (or Pt/O) character on the basis of absorption and emission spectroscopy, UV/vis (spectro)electrochemistry, and EPR spectroscopy. One of the chromophores, Pt(dpphen)(3,5-di-tert-butyl-catecholate) represents an example of a Pt(II) diimine phenolate chromophore that possesses a reversible oxidation centered predominantly on the donor ligand. Results from EPR spectroscopy indicate participation of the Pt(II) orbitals in the HOMO. There is a dramatic difference in the photophysical properties of carborane complexes compared to other mixed-ligand Pt(II) compounds, which includes room-temperature emission and photostability. The charge-transfer character of the lowest excited state in this series of chromophores is maintained throughout. Moreover, the absorption and emission energies and the redox properties of the excited state can be significantly tuned.
Manes, Taylor A; Rose, Michael J
2016-06-06
Presented herein is a synthetic scheme to generate symmetric and asymmetric ligands based on a 1,8-disubstituted anthracene scaffold. The metal-binding scaffolds were prepared by aryl chloride activation of 1,8-dichloroanthracene using Suzuki-type couplings facilitated by [Pd(dba)2] as a Pd source; the choice of cocatalyst (XPhos or SPhos) yielded symmetrically or asymmetrically substituted scaffolds (respectively): namely, Anth-SMe2 (3), Anth-N2 (4), and Anth-NSMe (6). The ligands exhibit a nonplanar geometry in the solid state (X-ray), owing to steric hindrance between the anthracene scaffold and the coupled aryl units. To determine the flexibility and binding characteristics of the anthracene-based ligands, the symmetric scaffolds were complexed with [Mn(CO)5Br] to afford the mononuclear species [(Anth-SMe2)Mn(CO)3Br] (8) and [(Anth-N2)Mn(CO)3Br] (9), in which the donor moieties chelate the Mn center in a cis fashion. The asymmetric ligand Anth-NSMe (6) binds preferentially through the py moieties, affording the bis-ligated complex [(Anth-NSMe)2Mn(CO)3Br] (10), wherein the thioether-S donors remain unbound. Alternatively, deprotection of the thioether in 6 affords the free thiol ligand Anth-NSH (7), which more readily binds the Mn center. Complexation of 7 ultimately affords the mixed-valence Mn(I)/Mn(II) dimer of formula [(Anth-NS)3Mn2(CO)3] (11), which exhibits a fac-{Mn(CO)3} unit supported by a triad of bridging thiolates, which are in turn ligated to a supporting Mn(II) center (EPR: |D| = 0.053 cm(-1), E/|D| = 0.3, Aiso = -150 MHz). All of the metal complexes have been characterized by single-crystal X-ray diffraction, IR spectroscopy and NMR/EPR measurements-all of which demonstrate that the meta-linked, anthracene-based ligand scaffold is a viable approach for the coordination of metal carbonyls.
Arcon, Juan Pablo; Defelipe, Lucas A; Modenutti, Carlos P; López, Elias D; Alvarez-Garcia, Daniel; Barril, Xavier; Turjanski, Adrián G; Martí, Marcelo A
2017-04-24
One of the most important biological processes at the molecular level is the formation of protein-ligand complexes. Therefore, determining their structure and underlying key interactions is of paramount relevance and has direct applications in drug development. Because of its low cost relative to its experimental sibling, molecular dynamics (MD) simulations in the presence of different solvent probes mimicking specific types of interactions have been increasingly used to analyze protein binding sites and reveal protein-ligand interaction hot spots. However, a systematic comparison of different probes and their real predictive power from a quantitative and thermodynamic point of view is still missing. In the present work, we have performed MD simulations of 18 different proteins in pure water as well as water mixtures of ethanol, acetamide, acetonitrile and methylammonium acetate, leading to a total of 5.4 μs simulation time. For each system, we determined the corresponding solvent sites, defined as space regions adjacent to the protein surface where the probability of finding a probe atom is higher than that in the bulk solvent. Finally, we compared the identified solvent sites with 121 different protein-ligand complexes and used them to perform molecular docking and ligand binding free energy estimates. Our results show that combining solely water and ethanol sites allows sampling over 70% of all possible protein-ligand interactions, especially those that coincide with ligand-based pharmacophoric points. Most important, we also show how the solvent sites can be used to significantly improve ligand docking in terms of both accuracy and precision, and that accurate predictions of ligand binding free energies, along with relative ranking of ligand affinity, can be performed.
Montgomery, D; Barber, K; Edayilam, N; Oqujiuba, K; Young, S; Biotidara, T; Gathers, A; Danjaji, M; Tharayil, N; Martinez, N; Powell, B
2017-06-01
Batch sorption experiments were conducted with 0.5-50 ppb 99 Tc, 133 Cs, 237 Np and U in the presence and absence of citrate and/or oxalate in a 25 g/L Savannah River Site (SRS) soil suspension. Citrate and oxalate were the ligands of choice due to their relevancy to plant exudates, the nuclides were selected for their wide range of biogeochemical behavior, and the soil from SRS was selected as a model Department of Energy (DOE) site soil. Batch samples were continually mixed on a rotary shaker and maintained at a pH of approximately 5. Analysis via ICP-MS indicated that sorption of 237 Np increased with ligand concentration compared to baseline studies, as did sorption of 99 Tc although to a lesser extent. The increased sorption of 237 Np is proposed to be due to a combination of factors that are dependent on the ligand(s) present in the specific system including, ligand dissolution of the soil by citrate and formation of tertiary soil-oxalate-Np complexes. The increased 99 Tc sorption is attributed to the dissolution of the soil by the ligands, leading to an increase in the number of available sorption sites for 99 Tc. Uranium sorption decreased and dissolution of native uranium was also observed with increasing ligand concentration, thought to be a result of the formation of strong U-ligand complexes remaining in the aqueous phase. The majority of these effects were observed at the highest ligand concentrations of 50 mg C /L. No notable changes were observed for the 133 Cs system which is ascribed to the minimal interaction of Cs + with these organic ligands. Copyright © 2017 Elsevier Ltd. All rights reserved.
Imaging free zinc levels in vivo - what can be learned?
De Leon-Rodriguez, Luis; Lubag, Angelo Josue M; Sherry, A Dean
2012-12-01
Our ever-expanding knowledge about the role of zinc in biology includes its role in redox modulation, immune response, neurotransmission, reproduction, diabetes, cancer, and Alzheimers disease is galvanizing interest in detecting and monitoring the various forms of Zn(II) in biological systems. This paper reviews reported strategies for detecting and tracking of labile or "free" unchelated Zn(II) in tissues. While different bound structural forms of Zn(II) have been identified and studied in vitro by multiple techniques, very few molecular imaging methods have successfully tracked the ion in vivo. A number of MRI and optical strategies have now been reported for detection of free Zn(II) in cells and tissues but only a few have been applied successfully in vivo. A recent report of a MRI sensor for in vivo tracking of Zn(II) released from pancreatic β-cells during insulin secretion exemplifies the promise of rational design of new Zn(II) sensors for tracking this biologically important ion in vivo. Such studies promise to provide new insights into zinc trafficking in vivo and the critical role of this ion in many human diseases.
Messersmith, Stephania J; Kirschbaum, Kristin; Kirchhoff, Jon R
2010-04-19
A series of low-valent rhenium phosphine complexes with the general formula [Re(dmpe)(3-x)(depe)(x)](2+/+) (x = 0-3), where dmpe is 1,2-bis(dimethylphosphino)ethane and depe is 1,2-bis(diethylphosphino)ethane, were synthesized and characterized. The reaction of [Re(benzil)(PPh(3))Cl(3)] with the appropriate phosphine yielded the homoleptic tris complexes [Re(dmpe)(3)](+) and [Re(depe)(3)](2+), while the mixed-ligand complexes [Re(dmpe)(2)(depe)](+) and [Re(dmpe)(depe)(2)](2+) were prepared from [Re(dmpe)(2)Cl(2)](+) and [Re(depe)(2)Cl(2)](+), respectively. The oxidation state of the final product strongly depends on the donating properties of the ligand. Each complex, however, exhibits a diffusion-controlled, reversible one-electron transfer between Re(I) and Re(II) with formal reduction potentials, E degrees ', ranging from -0.09 to -0.28 V versus a ferrocene external standard. Subsequent oxidation to Re(III) was found to be chemically irreversible. UV-vis and luminescence spectroelectrochemical techniques were used to study the spectral properties of the Re(I) and Re(II) forms. The Re(II) complexes are red in color and exhibit absorption features from 350 to 600 nm; the lowest-energy transition was assigned as a sigma(P) to dpi(Re) ligand-to-metal charge-transfer (LMCT) transition. Excitation into the lowest-energy absorption band revealed rare examples of luminescent (Phi approximately 0.07) LMCT excited states from d(5) transition-metal complexes in a room temperature solution. Structural characterization of salts of both oxidation states of [Re(dmpe)(2)(depe)](2+/+) was also performed.
Wang, Yi; Yuan, Qunhui; Xu, Hongbo; Zhu, Xuefeng; Gan, Wei
2016-07-21
Low-dimensional molecular motifs with diversity developed via the on-surface chemistry are attracting growing interest for their potential in advanced nanofabrication. In this work, scanning tunneling microscopy was employed to investigate the in situ and ex situ metal coordinations between 4,4'-ditetradecyl-2,2'-bipyridine (bpy) and Zn(ii) or Cu(ii) ions at a highly oriented pyrolytic graphite (HOPG)/1-phenyloctane interface under ambient conditions. The results demonstrate that the bpy adopts a flat-lying orientation with its substituted alkyl chains in a tail-to-tail arrangement in a bpy monolayer. For the in situ coordination, the bpy/Zn(ii) and bpy/Cu(ii) complexes are aligned in edge-on fashions, wherein the bpy stands vertically on the HOPG surface and interdigitates at the alkyl chains. In the two-dimensional arrays of ex situ coordinated complexes, metal dependent motifs have been observed with Zn(ii) and Cu(ii), wherein the bipyridine moieties are parallel to the graphite surface. These results suggest that the desired on-surface coordination architectures may be achieved by the intentional selection of the metal centers.
Alizadeh, Rahman; Afzal, Mohd; Arjmand, Farukh
2014-10-15
Bicyclic heterocyclic compounds viz. benzothiazoles are key components of deoxyribonucleic acid (DNA) molecules and participate directly in the encoding of genetic information. Benzothiazoles, therefore, represent a potent and selective class of antitumor compounds. The design and synthesis of chiral antitumor chemotherapeutic agents of Cu(II) and Zn(II), L- and -D benzothiazole Schiff base-valine complexes 1a &b and 2a &b, respectively were carried out and thoroughly characterized by spectroscopic and analytical techniques. Interaction of 1a and b and 2a and b with CT DNA by employing UV-vis, florescence, circular dichroic methods and cleavage studies of 1a with pBR322 plasmid, molecular docking were done in order to demonstrate their enantiomeric disposition toward the molecular drug target DNA. Interestingly, these studies unambiguously demonstrated the greater potency of L-enantiomer in comparison to D-enantiomer. Copyright © 2014 Elsevier B.V. All rights reserved.
Utko, Józef; Sobocińska, Maria; Dobrzyńska, Danuta; Lis, Tadeusz
2015-07-01
The dinuclear barium-zinc complex, μ-chlorido-1:2κ(2) Cl:Cl-chlorido-2κCl-bis-(2-meth-oxy-ethanol-1κO)bis-(2-meth-oxy-ethanol-1κ(2) O,O')bis-(μ-tri-phenyl-acetato-1:2κ(2) O:O')bariumzinc, [BaZn(C20H15O2)2Cl2(C3H8O2)4], has been synthesized by the reaction of barium tri-phenyl-acetate, anhydrous zinc chloride and 2-meth-oxy-ethanol in the presence of toluene. The barium and zinc metal cations in the dinuclear complex are linked via one chloride anion and carboxyl-ate O atoms of the tri-phenyl-acetate ligands, giving a Ba⋯Zn separation of 3.9335 (11) Å. The irregular nine-coordinate BaO8Cl coordination centres comprise eight O-atom donors, six of them from 2-meth-oxy-ethanol ligands (four from two bidentate O,O'-chelate inter-actions and two from monodentate inter-actions), two from bridging tri-phenyl-acetate ligands and one from a bridging Cl donor. The distorted tetra-hedral coordination sphere of zinc comprises two O-atom donors from the tri-phenyl-acetate ligands and two Cl donors (one bridging and one terminal). In the crystal, O-H⋯Cl, O-H⋯O and C-H⋯Cl inter-molecular inter-actions form a layered structure, lying parallel to (001).
NASA Astrophysics Data System (ADS)
Romero, S.; Mosset, A.; Trombe, J. C.
1996-12-01
Two new families of lanthanide complexes associating the ligands oxalate and carbonate or oxalate and formate have been prepared under autogenous pressure at 200°C using a pseudo-hydrothermal method. The two families have been extended to some lanthanides ( Ln): oxalate-carbonate Ln= Ce, Pr, Nd, and Eu; oxalate-formate Ln= La, Ce, and Sm. The starting suspension contains either oxalate or a mixture of oxalate and oxalic acid. The structures have been solved for the element cerium. In both cases, the structure is built up from cerium atoms sharing all their oxygen atoms with oxalate and carbonate or oxalate and formate ligands, thus forming a three-dimensional network. The cerium polyhedra share either faces or edges or corners. The coordination scheme of the oxalate ligands is variable: bischelating, bischelating and monodentate, or bischelating and bismonodentate. The carbonate group acts as a bischelating and bismonodentate ligand while the formate group is chelating and monodentate. The characterization of these two original families by infrared spectra and thermal behavior is presented for some pure phases. A tentative explanation of the synthesis of these two phases will be emphasized.
Breen, John M; Clérac, Rodolphe; Zhang, Lei; Cloonan, Suzanne M; Kennedy, Elaine; Feeney, Martin; McCabe, Thomas; Williams, D Clive; Schmitt, Wolfgang
2012-03-14
Herein we report the intra- and inter-molecular assembly of a {V(5)O(9)} subunit. This mixed-valent structural motif can be stabilised as [V(5)O(9)(L(1-3))(4)](5-/9-) (1-3) by a range of organoarsonate ligands (L(1)-L(3)) whose secondary functionalities influence its packing arrangement within the crystal structures. Variation of the reaction conditions results in the dodecanuclear cage structure [V(12)O(14)(OH)(4)(L(1))(10)](4-) (4) where two modified convex building units are linked via two dimeric {O(4)V(IV)(OH)(2)V(IV)O(4)} moieties. Bi-functional phosphonate ligands, L(4)-L(6) allow the intramolecular connectivity of the {V(5)O(9)} subunit to give hybrid capsules [V(10)O(18)(L(4-6))(4)](10-) (5-7). The dimensions of the electrophilic cavities of the capsular entities are determined by the incorporated ligand type. Mass spectrometry experiments confirm the stability of the complexes in solution. We investigate and model the temperature-dependent magnetic properties of representative complexes 1, 4, 6 and 7 and provide preliminary cell-viability studies of three different cancer cell lines with respect to Na(8)H(2)[6]·36H(2)O and Na(8)H(2)[7]·2DMF·29H(2)O.
NASA Astrophysics Data System (ADS)
Vignoli Muniz, Gabriel S.; Incio, Jimmy Llontop; Alves, Odivaldo C.; Krambrock, Klaus; Teixeira, Letícia R.; Louro, Sonia R. W.
2018-01-01
The stability of ternary copper(II) complexes of a heterocyclic ligand, L (L being 2,2‧-bipyridine (bipy) or 1,10-phenanthroline (phen)) and the fluorescent antibacterial agent norfloxacin (NFX) as the second ligand was studied at pH 7.4 and different ionic strengths. Fluorescence quenching upon titration of NFX with the binary complexes allowed to obtain stability constants for NFX binding, Kb, as a function of ionic strength. The Kb values vary by more than two orders of magnitude when buffer concentration varies from 0.5 to 100 mM. It was observed that previously synthesized ternary complexes dissociate in buffer according with the obtained stability constants. This shows that equimolar solutions of NFX and binary complexes are equivalent to solutions of synthesized ternary complexes. The interaction of the ternary copper complexes with anionic SDS (sodium dodecyl sulfate) micelles was studied by fluorescence and electron paramagnetic resonance (EPR). Titration of NFX-loaded SDS micelles with the complexes Cu:L allowed to determine the stability constants inside the micelles. Fluorescence quenching demonstrated that SDS micelles increase the stability constants by factors around 50. EPR spectra gave details of the copper(II) local environment, and demonstrated that the structure of the ternary complexes inside SDS micelles is different from that in buffer. Mononuclear ternary complexes formed inside the micelles, while in buffer most ternary complexes are binuclear. The results show that anionic membrane interfaces increase formation of copper fluoroquinolone complexes, which can influence bioavailability, membrane diffusion, and mechanism of action of the antibiotics.
NASA Astrophysics Data System (ADS)
Li, Zhongguo; Gao, Feng; Xiao, Zhengguo; Wu, Xingzhi; Zuo, Jinglin; Song, Yinglin
2018-07-01
The third-order nonlinear optical properties of two di-lanthanide (Ln = Tb and Dy) sandwich complexes with mixed phthalocyanine and Schiff-base ligands were studied using Z-scan technique at 532 nm with 20 ps and 4 ns pulses. Both complexes exhibit reverse saturable absorption and self-focusing effect in ps regime, while the second-order hyperpolarizability decreases from Dy to Tb. Interestingly, the Tb triple-decker complexes show larger nonlinear absorption than Dy complexes on ns timescale. The time-resolved pump-probe measurements demonstrate that the nonlinear optical response was caused by excited-state mechanism related to the five-level model, while the singlet state lifetime of Dy complexes is 3 times shorter than that of Tb complexes. Our results indicate the lanthanide ions play a critical role in the photo-physical properties of triple-decker phthalocyanine complexes for their application as optical limiting materials.
NASA Astrophysics Data System (ADS)
Song, Jun-Ling; Mao, Jiang-Gao
2005-04-01
The syntheses, crystal structures and characterizations of two new divalent metal carboxylate-phosphonates, namely, Zn(H 3L)·2H 2O ( 1) and Pb(H 3L)(H 2O) 2 ( 2) (H 5L dbnd6 4-HO 2C-C 6H 4-CH 2N(CH 2PO 3H 2) 2) have been reported. Compound 1 features a 1D column structure in which the Zn(II) ions are tetrahedrally coordinated by four phosphonate oxygen atoms from four phosphonate ligands, and neighboring such 1D building blocks are further interconnected via hydrogen bonds into a 3D network. The carboxylate group of H 3L anion remains non-coordinated. Compound 2 has a 2D layer structure. Pb(II) ion is 7-coordinated by four phosphonate oxygen atoms from four phosphonate ligands and three aqua ligands. The interconnection of Pb(II) ions via bridging H 3L anions results in a <001> layer. The carboxylate group of the H 3L anion also remains non-coordinated and is oriented toward the interlayer space. Solid state luminescent spectrum of compound 1 exhibits a strong broad blue fluorescent emission band at 455 nm under excitation at 365 nm at room temperature.
Wang, Haoping; Kang, Tiantian; Wang, Xiaoju; Feng, Liheng
2018-07-01
A simple Schiff base comprised of tris(2-aminoethyl)amine and salicylaldehyde was designed and synthesized by one-step reaction. Although this compound has poor selectivity for metal ions in acetonitrile, it shows high selectivity and sensitivity detection for Zn(II) ions through adjusting the solvent polarity (the volume ratio of CH 3 CN/H 2 O). In other words, this work provides a facile way to realize a transformation from poor to excellent feature for fluorescent probes. The bonding mode of this probe with Zn(II) ions was verified by 1 H NMR and MS assays. The stoichiometric ratio of the probe with Zn(II) is 1:1 (mole), which matches with the Job-plot assay. The detection limitation of the probe for Zn(II) is up to 1 × 10 -8 mol/L. The electrochemical property of the probe combined with Zn(II) was investigated by cyclic voltammetry method, and the result agreed with the theoretical calculation by the Gaussian 09 software. The probe for Zn(II) could be applied in practical samples and biological systems. The main contribution of this work lies in providing a very simple method to realize the selectivity transformation for poor selective probes. The providing way is a simple, easy and low-cost method for obtaining high selectively fluorescence probes. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, R.L., E-mail: rlpjc@yahoo.co.in; Kushwaha, A.; Shrivastava, O.N.
2012-12-15
New heterobimetallic complexes [Cu{sub x}Ni{sub 1-x}(dadb){center_dot}yH{sub 2}O]{sub n} {l_brace}where dadb=2,5-Diamino-3,6-dichloro-1,4-benzoquinone (1); x=1 (2), 0.5 (4), 0.25 (5), 0.125 (6), 0.0625 (7) and 0 (3); y=2; n=degree of polymerization{r_brace} were synthesized and characterized. Heterobimetallic complexes show normal magnetic moments, whereas, monometallic complexes exhibit magnetic moments less than the value due to spin only. Thermo-gravimetric analysis shows that degradation of the ligand dadb moiety is being controlled by the electronic environment of the Cu(II) ions in preference over Ni(II) in heterobimetallic complexes. Existence of the mixed valency/non-integral oxidation states of copper and nickel metal ions in the complex 4 has been attributedmore » from magnetic moment and ESR spectral results. Solid state dc electrical conductivity of all the complexes was investigated. Monometallic complexes were found to be semiconductors, whereas heterobimetallic coordination polymer 4 was found to exhibit metallic behaviour. Existence of mixed valency/ non-integral oxidation state of metal ions seems to be responsible for the metallic behaviour. - Graphical abstract: Contrast to the semiconductor monometallic complexes 2 and 3, the heterobimetallic complex 4 exhibits metallic behaviour attributed to the mixed valency/non-integral oxidation state of the metal ions concluded from magnetic and ESR spectral studies. Highlights: Black-Right-Pointing-Pointer 1-D coordination compounds of the type Cu{sub x}Ni{sub 1-x}(dadb){center_dot}yH{sub 2}O were synthesized and characterized. Black-Right-Pointing-Pointer Thermal degradation of the complexes provides an indication of long range electronic communication between metal to ligand. Black-Right-Pointing-Pointer On inclusion of Ni(II) into 1-D coordination polymer of Cu(II). (a) Cu(II) and Ni(II) ions exhibit non-integral oxidation state. (b) resulting heterobimetallic complex 4 exhibits metallic behaviour at all temperature range of the present study whereas monometallic complexes are semiconductor.« less
NASA Astrophysics Data System (ADS)
Smirnova, T. D.; Shtykov, S. N.; Kochubei, V. I.; Khryachkova, E. S.
2011-01-01
The complexation of Eu3+ with doxycycline (DC) antibiotic in the presence of several second ligands and surfactant micelles of different types is studied by the spectrophotometric and luminescence methods. It is found that the efficiency of excitation energy transfer in Eu3+-DC chelate depends on the nature of the second ligand and surfactant micelles. Using thenoyltrifluoroacetone (TTA) as an example, it is shown that the second ligand additionally sensitizes the europium fluorescence, and the possibility of intermediate sensitization of DC and then of europium is shown by the example of 1,10-phenanthroline. In all cases, the excitation energy transfer efficiency was increased due to the so-called antenna effect. The decay kinetics of the sensitized fluorescence of the binary and mixed-ligand chelates in aqueous and micellar solutions of nonionic surfactants is studied and the relative quantum yields and lifetimes of fluorescence are determined.
NASA Astrophysics Data System (ADS)
Zhu, Xian-Dong; Li, Yong; Gao, Jian-Gang; Wang, Fen-Hua; Li, Qing-Hai; Yang, Hong-Xun; Chen, Lei
2017-02-01
Two new coordination polymers generally formulated as [Ni3(Hchda)2(chda)2(bpy)2(H2O)2]n (1) and [Ni3(Hchda)2(chda)2(bpp)2(H2O)2]n (2) [H2chda = 1,1'-cyclohexanediacetic acid, bpy = 4,4'-bipyridine and bpp = 1,3-bis(4-pyridyl)propane], have been successfully assembled through mixed-ligands synthetic strategy with flexible alicyclic carboxylate and bipyridyl ligands. There structures feature trinuclear nickel secondary building units connected via the bridging bipyridyl spacers to form two-dimensional (4,4) grid layer. The nature of the different N-donor auxiliary ligands leads to the discrepancy in supramolecular structure of the two compounds. Magnetic studies indicate the ferromagnetic intra-complex magnetic interaction in the molecule for 1 and 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunnus, K.; Josefsson, I.; Schreck, S.
We analyze the effects of covalent interactions in Ni 2p3d resonant inelastic X-ray scattering (RIXS) spectra from aqueous Ni 2+ ions and find that the relative RIXS intensities of ligand-to-metal charge-transfer final states with respect to the ligand-field final states reflect the covalent mixing between Ni 3d and water orbitals. Specifically, the experimental intensity ratio at the Ni L 3-edge allows to determine that the Ni 3d orbitals have on average 5.5% of water character. Here, we propose that 2p3d RIXS at the Ni L 3-edge can be utilized to quantify covalency in Ni complexes without the use of externalmore » references or simulations.« less
Kunnus, K.; Josefsson, I.; Schreck, S.; ...
2016-12-23
We analyze the effects of covalent interactions in Ni 2p3d resonant inelastic X-ray scattering (RIXS) spectra from aqueous Ni 2+ ions and find that the relative RIXS intensities of ligand-to-metal charge-transfer final states with respect to the ligand-field final states reflect the covalent mixing between Ni 3d and water orbitals. Specifically, the experimental intensity ratio at the Ni L 3-edge allows to determine that the Ni 3d orbitals have on average 5.5% of water character. Here, we propose that 2p3d RIXS at the Ni L 3-edge can be utilized to quantify covalency in Ni complexes without the use of externalmore » references or simulations.« less
NASA Astrophysics Data System (ADS)
Liu, Chong-Bo; Wen, Hui-Liang; Tan, Sheng-Shui; Yi, Xiu-Guang
2008-05-01
Two new lanthanide coordination polymers with mixed-carboxylates, [Ln(OX)(HAPA)(H 2O)] n[Ln = Eu ( 1), Ho ( 2); H 2APA = 5-aminoisophthalic acid; OX = oxalate] were obtained by hydrothermal reactions, and characterized by single crystal X-ray diffraction, elemental analysis and IR spectra. Complexes 1 and 2 are both 3-D supramolecular structure, in which lanthanide ions are bridged by oxalate and 5-aminoisophthalate ligands forming 2-D metal-organic framework, and 2-D networks are further architectured to form 3-D supramolecular structures by hydrogen bonds. The two carboxylate groups of H 2APA ligand are all deprotonated and exhibit chelating and bridging bidentate coordination modes, respectively, and the amino group in HAPA presents - NH3+ in the titled complexes. The thermogravimetric analysis was carried out to examine the thermal stability of the titled complexes. And the photoluminescence property of 1 was investigated.
Mandewale, Mustapha C.; Thorat, Bapu; Shelke, Dnyaneshwar; Yamgar, Ramesh
2015-01-01
A new series of quinoline hydrazone derivatives and their metal complexes have been synthesized and their biological properties have been evaluated against Mycobacterium tuberculosis (H37 RV strain). Most of the newly synthesized compounds displayed 100% inhibitory activity at a concentration of 6.25–25 μg/mL, against Mycobacterium tuberculosis. Fluorescence properties of all the synthesized compounds have been studied. PMID:26759537
Studies of Plasticized-Polymer Electrolytes Containing Mixed Zn(II) and Li(I)
1992-06-12
iIIIII1iIIII!I 14. SUBJECT TERMS 15. tdUMnnrri . 9 poly(ethylene glycol) ( PEG ), poly(ethylene glycol dimethyl ether) (PEGDME), 16. PRICE CODE...glycol) ( PEG ) and poly(ethylene glycol dimethyl ether) (PEGDME). The addition of salts to either PEO or plasticized-PEO strongly influences the...were found to depend on salt concentration. Td varied from 385 to 3350 C as the zinc content was increased from 0 to 100%. Thus the overall thermal
Monomer and metallopolymer compounds of Tb(III) as precursors for OLEDs
NASA Astrophysics Data System (ADS)
Irina, Savchenko; Oleksandra, Berezhnytska; Olena, Trunova; Yaroslav, Fedorov; Sergiy, Smola; Nataliya, Rusakova
2018-03-01
The Terbium (III) complexes [Tb(III)-water, mixed-ligand complex Tb(III)-phenanthroline] with 2-methyl-5-phenyl-1-pentene-3,5-dione were synthesized. The polycomplex was obtained by free-radical polymerization. The results of above studies have shown that the configuration of the chelate unit is unchanged during the polymerization. As a result, the type of coordination was determined and the structure of coordination polyhedra was assumed. The luminescence spectra of obtained metallocomplexes and polymer were investigated and analyzed. The solubilization of terbium complex with phenanthroline, was shown to change luminescence intensity in this complex.
Farkas, Edit; Nagel, Johannes; Waldron, Bradley P; Parker, David; Tóth, Imre; Brücher, Ernő; Rösch, Frank; Baranyai, Zsolt
2017-08-01
The development of 68 Ge/ 68 Ga generators has made the positron-emitting 68 Ga isotope widely accessible and raised interest in new chelate complexes of Ga 3+ . The hexadentate 1,4-di(acetate)-6-methyl[amino(methyl)acetate]perhydro-1,4-diazepane (DATA m ) ligand and its bifunctional analogue, 1,4-di(acetate)-6-pentanoic acid[amino(methyl)acetate]perhydro-1,4-diazepane (DATA 5m ), rapidly form complexes with 68 Ga in high radiochemical yield. The stability constants of DATA m and DATA 5m complexes formed with Ga 3+ , Zn 2+ , Cu 2+ , Mn 2+ and Ca 2+ have been determined by using pH potentiometry, spectrophotometry (Cu 2+ ) and 1 H and 71 Ga NMR spectroscopy (Ga 3+ ). The stability constants of Ga(DATA m ) and Ga(DATA 5m ) complexes are slightly higher than those of Ga(AAZTA). The species distribution calculations indicated the predominance of Ga(L)OH mixed-hydroxo complexes at physiological pH. The 1 H and 71 Ga NMR spectroscopy studies provided information about the coordinated functional groups of ligands and on the kinetics of exchange between the Ga(L) and Ga(L)OH complexes. The transmetalation reactions between the Ga(L) complexes and Cu 2+ citrate (6
NASA Astrophysics Data System (ADS)
Devillers, M.; Ladrière, J.
1993-03-01
57Fe Mössbauer investigations are carried out on a wide series of heterometallic diaquadiformato Fe(II)/ M(II) complexes with M = Mn, Co, Ni, Cu, and Zn to provide a local picture of the coordination environment of the 57Fe 2+ ions as a function of (i) the nature of the host cation and (ii) the relative amounts of both metals in the matrix (between 50 and 0.25 at.% Fe). Information is obtained on the quantitative distribution of both metals between the two structurally nonequivalent lattice sites and on the local geometry around the dopant atom in each crystal site. In the mixed Fe-Cu complexes. Fe 2+ ions are preferentially incorporated in the tetrahydrated site; in Cu-rich Fe xCu 1- x(HCO 2) 2· 2H 2O, the 57Fe 2+ ions located in the hexaformato-coordinated site are surrounded by an axially compressed octahedron of formate ligands which contrasts with the elongated configuration observed in the pure iron compound and in the other mixed systems. Semiquantitative estimations of the tetragonal field splitting and of the extent of metal-ligand interactions are proposed from the temperature dependence of the quadrupole splitting values.
NASA Astrophysics Data System (ADS)
Kalinovskaya, I. V.
2014-09-01
The luminescence spectral characteristics of mixed-ligand compounds of ytterbium(III) with cinnamic acid and neutral phosphorus-containing ligands were studied by luminescence spectroscopy. The intensity of luminescence of the compounds was determined. The highest intensity of luminescence was found for the ytterbium(III) compound with triphenylphosphine oxide.
Li, Yan; Yu, Jia-Wen; Liu, Zhong-Yi; Yang, En-Cui; Zhao, Xiao-Jun
2015-01-05
Three new homometallic lanthanide complexes with mixed carboxylate-modified rigid ligands, [Ln(μ3-OH)(na)(pyzc)]n (na(-) = 1-naphtholate, pyzc(-) = 2-pyrazinecarboxylate, Ln = Dy (1), Yb (2), and Gd (3)), were solvothermally synthesized, and their structures and magnetic as well as photophysical properties were completely investigated. Complexes 1-3 are crystallographically isostructural, exhibiting linear chains with four bidentate bridging μ-COO(-) moieties encapsulated cubic {Ln4(μ3-OH)4}(8+) clusters repeatedly extended by 4-fold chelating-bridging-pyzc(-) connectors. Magnetically, the former two complexes with highly anisotropic Dy(III) and weak anisotropic Yb(III) ions in the distorted NO7 triangular dodecahedron coordination environment display field-induced slow relaxation of magnetization. Fitting the dynamic magnetic data to the Arrhenius law gives energy barrier ΔE/kB = 39.6 K and pre-exponential factor τo = 1.52 × 10(-8) s for 1 and ΔE/kB = 14.1 K and τo = 2.13 × 10(-7) s for 2. By contrast, complex 3 with isotropic Gd(III) ion and weak intracluster antiferromagnetic coupling shows a significant cryogenic magnetocaloric effect, with a maximum -ΔSm value of 30.0 J kg(-1) K(-1) at 2.5 K and 70 kOe. Additionally, the chromophoric na(-) and pyzc(-) ligands can serve as antenna groups, selectively sensitizing the Dy(III)- and Yb(III)-based luminescence of 1 and 2 in the UV-visible region by an intramolecular energy transfer process. Thus, complexes 1-3, incorporating field-induced slow magnetic magnetization and interesting luminescence together, can be used as composite magneto-optical materials. More importantly, these interesting results further demonstrate that the mixed-ligand system with rigid carboxylate-functionalized chromophores can be excellent candidates for the preparations of new bifunctional magneto-optical materials.
Gentile, Luciana B.; Nagamine, Marcia K.; Biondi, Luiz R.; Sanches, Daniel S.; Toyota, Fábio; Giovani, Tatiane M.; de Jesus, Isis P.; da Fonseca, Ivone I. M.; Queiroz-Hazarbassanov, Nicolle; Diaz, Bruno L.; Salles Gomes, Cristina de O. Massoco
2017-01-01
There are many factors which make canine cancer like cancer in humans. The occurrence of spontaneous mammary tumors in pet dogs, tumor genetics, molecular targets and exposure to the same environmental risk factors are among these factors. Therefore, the study of canine cancer can provide useful information to the oncology field. This study aimed to establish and characterize a panel of primary mixed cell cultures obtained from spontaneous canine mammary tumors. Eight established cell cultures obtained from one normal mammary gland, one complex adenoma, one mixed adenoma, two complex carcinomas and two mixed carcinomas were analyzed. The gene expression levels of classic molecular cancer players such as fibroblast growth factor receptor (FGFR) 2, breast cancer (BRCA) 1, BRCA2 and estrogen receptor (ESR) 1 were evaluated. For the first time, three orphan nuclear receptors, estrogen-related receptors (ERRs) α, β and γ were studied in canine mammary cancer. The highest expression level of ERRα was observed in complex carcinoma-derived cell culture, while the highest levels of ERRβ and γ were observed in cells derived from a mixed carcinoma. Meanwhile, complex carcinomas presented the highest levels of expression of ESR1, BRCA1 and FGFR2 among all samples. BRCA2 was found exclusively in complex adenoma. The transcription factor GATA3 had its highest levels in mixed carcinoma samples and its lowest levels in complex adenoma. Proliferation assays were also performed to evaluate the mixed cell cultures response to ER ligands, genistein and DES, both in normoxia and hypoxic conditions. Our results demonstrate that morphological and functional studies of primary mixed cell cultures derived from spontaneous canine mammary tumors are possible and provide valuable tool for the study of various stages of mammary cancer development. PMID:28945747
NASA Astrophysics Data System (ADS)
Adam, Abdel Majid A.; Refat, Moamen S.; Saad, Hosam A.
2013-11-01
In this work, structural, thermal, morphological and pharmacological characterization was performed on the interactions between a hexamethylenediamine (HMDA) donor and three types of acceptors to understand the complexation behavior of diamines. The three types of acceptors include π-acceptors (i.e., quinol (QL) and picric acid (PA)), σ-acceptors (i.e., bromine and iodine) and vacant orbital acceptors (i.e., tin(IV) tetrachloride (SnCl4) and zinc chloride (ZnCl2)). The characterization of the obtained CT complexes was performed using elemental analysis, infrared (IR), Raman, 1H NMR and electronic absorption spectroscopy, powder X-ray diffraction (XRD) and thermogravimetric (TG) analysis. Their morphologies were studied using scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX). The biological activities of the obtained CT complexes were tested for their antibacterial activities. The complex containing the QL acceptor exhibited a remarkable electronic spectrum with a strong, broad absorption band, which had an observed λmax that was at a much longer wavelength than those of the free reactants. In addition, this complex exhibited strong antimicrobial activities against various bacterial and fungal strains compared to standard drugs. The complexes containing the PA, iodine, Sn(IV) and Zn(II) acceptors exhibited good thermal stability up to 240, 330, 275 and 295 °C, respectively. The complexes containing bromine, Sn(IV) and Zn(II) acceptors exhibited good crystallinity. In addition to its good crystallinity properties, the complex containing the bromine acceptor exhibits a remarkable morphology feature.
Wang, Yanlan; Monfredini, Anna; Deyris, Pierre-Alexandre; Blanchard, Florent; Derat, Etienne; Malacria, Max
2017-01-01
We present that cationic rings can act as donor ligands thanks to suitably delocalized metal–metal bonds. This could grant parent complexes with the peculiar properties of aromatic rings that are crafted with main group elements. We assembled Pd nuclei into equilateral mono-cationic triangles with unhindered faces. Like their main group element counterparts and despite their positive charge, these noble-metal rings form stable bonding interactions with other cations, such as positively charged silver atoms, to deliver the corresponding tetranuclear dicationic complexes. Through a mix of modeling and experimental techniques we propose that this bonding mode is an original coordination-like one rather than a 4-centre–2-electron bond, which have already been observed in three dimensional aromatics. The present results thus pave the way for the use of suitable metal rings as ligands. PMID:29163890
Manicke, N; Hoof, S; Keck, M; Braun-Cula, B; Feist, M; Limberg, C
2017-07-17
A hexanuclear iron(II) siloxide complex has been prepared by reacting an incompletely condensed silsesquioxane first with NaOMe and then with Fe(OTf) 2 . In the process of product formation, the siloxane framework undergoes a transformation and it was shown that this happens already upon addition of base: Treatment of the ligand precursor with NaOMe leads to a completely condensed silsesquioxane cage with 12 Si atoms that is composed of 2 equiv of the tetrasiloxide ligands found in the product complex. Its iron centers form a two-dimensional array reminiscent of the situations found in minerals and two-dimensional oxide films caused by segregation of FeO x and silica. As the hexairon(II) assembly contains two high-spin square-planar FeO 4 units-suggested to represent the active sites in Fe-zeolites, which react with N 2 O to generate strongly oxidizing sites-it was treated with Me 3 NO. This led to the oxidation of two of the iron centers to the oxidation state +III and elimination of one iron ion, so that a pentanuclear, mixed valent iron siloxide was formed. All complexes were fully characterized.
USDA-ARS?s Scientific Manuscript database
Trichothecenes are among the mycotoxins of greatest concern to food and feed safety and are produced by at least two lineages of Fusarium: the F. sambucinum (FSAMSC) and F. incarnatum-equiseti (FIESC) species complexes. Trichothecene biosynthesis begins with the formation of a cyclic sesquiterpene f...
NASA Astrophysics Data System (ADS)
Li, Lin; Liu, Chong-Bo; Yang, Gao-Shan; Xiong, Zhi-Qiang; Liu, Hong; Wen, Hui-Liang
2015-11-01
Hydrothermal reactions of 2,2‧-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H2L) and zinc ions in the presence of N-donor ancillary ligands afford four novel coordination polymers, namely, [Zn2(μ2-OH)(μ4-O)0.5(L)]·0.5H2O (1), [Zn(L)(2,2‧-bipy)(H2O)] (2), [Zn3(L)3(phen)2]·H2O (3) and [Zn2(L)2(4,4‧-bipy)] (4) (2,2‧-bipy=2,2‧-bipyridine; 4,4‧-bipy=4,4‧-bipyridine; phen=1,10-phenanthroline). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analyses. Complex 1 shows a 3-D clover framework consisting of [Zn4(μ4-O)(μ2-OH)2]4+ clusters, and exhibits a novel (3,8)-connected topological net with the Schläfli symbol of {3·4·5}2{34·44·52·66·710·82}, and contains double-stranded and two kinds of meso-helices. 2 displays a helical chain structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with meso-helix chains. 3 displays a 2-D {44·62} parallelogram structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with single-stranded helical chains. 4 shows a 2-D {44·62} square structure with left- and right-handed helical chains. Moreover, the luminescent properties of 1-4 have been investigated.
Garden, Jennifer A; White, Andrew J P; Williams, Charlotte K
2017-02-21
The preparation of heterodinuclear complexes, especially those comprising early-late transition metals coordinated by a simple or symmetrical ancillary ligand, represents a fundamental challenge and an opportunity to prepare catalysts benefitting from synergic properties. Here, two new mixed titanium(iv)-zinc(ii) complexes, [LTi(O i Pr) 2 ZnEt] and [LTi(O i Pr) 2 ZnPh], both coordinated by a diphenolate tetra(amine) macrocyclic ligand (L), are prepared. The synthesis benefits from the discovery that reaction of the ligand with a single equivalent of titanium tetrakis(iso-propoxide) allows the efficient formation of a mono-Ti(iv) complex, [LTi(O i Pr) 2 ]. All new complexes are characterized by a combination of single crystal X-ray diffraction, multinuclear NMR spectroscopy and mass spectrometry techniques. The two heterobimetallic complexes, [LTi(O i Pr) 2 ZnEt] and [LTi(O i Pr) 2 ZnPh], feature trianionic coordination by the macrocyclic ligand and bridging alkoxide groups coordinate to both the different metal centres. The heterodinuclear catalysts are compared to the mono-titanium analogue, [LTi(O i Pr) 2 ], in various polymerization reactions. In the alternating copolymerizations of carbon dioxide and cyclohexene oxide, the mono-titanium complex is totally inactive whilst the heterodinuclear complexes show moderate activity (TOF = 3 h -1 ); it should be noted the activity is measured using just 1 bar pressure of carbon dioxide. In the ring opening polymerization of lactide and ε-caprolactone, the mono-Ti(iv) complex is totally inactive whilst the heterodinuclear complexes show moderate-high activities, qualified by comparison to other known titanium polymerization catalysts (l-lactide, k obs = 11 × 10 -4 s -1 at 70 °C, 1 M in [lactide]) and ε-caprolactone (k obs = 5 × 10 -4 s -1 at 70 °C, 0.9 M in [ε-caprolactone]).
Diels-Alder active-template synthesis of rotaxanes and metal-ion-switchable molecular shuttles.
Crowley, James D; Hänni, Kevin D; Leigh, David A; Slawin, Alexandra M Z
2010-04-14
A synthesis of [2]rotaxanes in which Zn(II) or Cu(II) Lewis acids catalyze a Diels-Alder cycloaddition to form the axle while simultaneously acting as the template for the assembly of the interlocked molecules is described. Coordination of the Lewis acid to a multidentate endotopic 2,6-di(methyleneoxymethyl)pyridyl- or bipyridine-containing macrocycle orients a chelated dienophile through the macrocycle cavity. Lewis acid activation of the double bond causes it to react with an incoming "stoppered" diene, affording the [2]rotaxane in up to 91% yield. Unusually for an active-template synthesis, the metal binding site "lives on" in these rotaxanes. This was exploited in the synthesis of a molecular shuttle containing two different ligating sites in which the position of the macrocycle could be switched by complexation with metal ions [Zn(II) and Pd(II)] with different preferred coordination geometries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshimura, Takashi; Hou, Z.; Wakatsuki, Yasua
1995-11-01
Reaction of the ytterbium-benzophenone dianion complex (1), which was formed by reaction of Yb metal with benzophenone in THF/HMPA, with 2,6-di-tert-butyl-4-methylphenol, yielded the ytterbium(II) aryloxide complex Yb(OAr){sub 2}(HMPA){sub 2} (2, Ar= C{sub 6}H{sub 2} -{sup t}Bu{sub 2}-2,6-Me-4) as a major product (80%) and the ytterbium(III) enolate complex (3) as a minor one (ca. 5% yield). The mechanisms of these reactions are discussed. X-ray crystallographic studies reveal that 3, 4a, and 7b are isostructural, and so are 5a and 6. The central metal ions in these complexes are all five-coordinated in a trigonal bipyramid form (highly distorted in the case ofmore » 5a and 6) with two HMPA ligands at the apical and three anionic oxygen ligands at the equatorial positions. 25 refs., 7 figs., 7 tabs.« less
NASA Astrophysics Data System (ADS)
Wirawan, T.; Supriyanto, G.; Soegianto, A.
2018-04-01
Preparation of a new Zn2+ ion-imprinted polymer (Zn-IIP) is presented in this report. The Zn-IIP are prepared by precipitation polymerization using 8-hydroxyquinoline (8HQ) as a ligand, methacrylic acid (MAA) as functional monomer, and ethylene glycol dimethacrylate (EGDMA) as a cross-linker has been prepared. The benzoyl peroxide and ethanol/acetonitrile (2:1) mixture were used as initiator and porogen, respectively. Precipitation polymerization was carried out by heating in a water bath at 60°C for 8 hours. After polymerization, cavities in the polymer particles corresponding to the Zn2+ ions were created by leaching the polymer with 2 mol L-1 HNO3. The polymer was washed with aquabidest and dried in an oven at the temperature of 60°C for 24 hours. The Zn-IIP was characterized by Fourier Transform Infrared Spectrophotometry (FT-IR) and Scanning Electron Microscopy (SEM). The synthesized Zn-IIP was used as a new adsorbent for solid phase extraction (SPE) of Zn(II) prior to Flame Atomic Absorption Spectrometry (FAAS) determination. The experimental parameters for SPE, such as pH of the sample, loading rate, and elution volume, have been optimized. The effect of pH of the sample on the extraction of analyte was studied in batch mode. The effects of loading rate and elution volume on the extraction of analyte were studied in dynamic mode by loading of the sample through IIP-SPE cartridge containing 100 mg of the synthesized Zn-IIP. The imprinted polymer (Zn-IIP) have bands at 3433.06 cm-1 (O-H), 1508.23 cm-1 (C=N aromatics), 1284.5 cm-1 (C-N aromatics), 1056.9 cm-1 (C-O phenol), 1724.24 cm-1 (C=O), and 1639.38 cm-1 (conjugated C=O with C=C). The Scanning Electron Microscopy (SEM) images of IIP and IIP show that the IIP is seen to have more cavities than NIP. The optimum pH for quantitative Zn(II) retention was 5.5, and the elution was completed with 2 mL of 1.0 mol L-1 nitric acid. The optimum loading rate was 0.5 mL min-1. The recovery of Zn(II) from solution samples after its SPE extraction on IIP with 50-fold theoretical preconcentration was 94.60-104.50%. The LOD and LOQ with 50-fold theoretical preconcentration obtained were 0.0073 mg L-1 and 0.0244 mg L-1, respectively.
Albertin, Gabriele; Antoniutti, Stefano; Bacchi, Alessia; D'Este, Claudia; Pelizzi, Giancarlo
2004-02-23
Chloro complexes [RuCl(N-N)P3]BPh4 (1-3) [N-N = 2,2'-bipyridine, bpy; 1,10-phenanthroline, phen; 5,5'-dimethyl-2,2'-bipyridine, 5,5'-Me2bpy; P = P(OEt)3, PPh(OEt)2 and PPh2OEt] were prepared by allowing the [RuCl4(N-N)].H2O compounds to react with an excess of phosphite in ethanol. The bis(bipyridine) [RuCl(bpy)2[P(OEt)3
Enhancing the effective energy barrier of a Dy(III) SMM using a bridged diamagnetic Zn(II) ion.
Upadhyay, Apoorva; Singh, Saurabh Kumar; Das, Chinmoy; Mondol, Ranajit; Langley, Stuart K; Murray, Keith S; Rajaraman, Gopalan; Shanmugam, Maheswaran
2014-08-18
Field induced single-molecule-magnet behaviour is observed for both a heterodinuclear [ZnDy(L(-))2](3+) complex (1) and a mononuclear [Dy(HL)2](3+) complex (2), with effective energy barriers of 83 cm(-1) and 16 cm(-1), respectively. Insights into the relaxation mechanism(s) and barrier heights are provided via ab initio and DFT calculations. Our findings reveal an interesting observation that the U(eff) of SMMs can be enhanced by incorporating diamagnetic metal ions.
Costes, Jean Pierre; Titos-Padilla, Silvia; Oyarzabal, Itziar; Gupta, Tulika; Duhayon, Carine; Rajaraman, Gopalan; Colacio, Enrique
2015-10-26
Three new Dy complexes have been prepared according to a complex-as-ligand strategy. Structural determinations indicate that the central Dy ion is surrounded by two LZn units (L(2-) is the di-deprotonated form of the N2 O2 compartmental N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato) Schiff base. The Dy ions are nonacoordinate to eight oxygen atoms from the two L ligands and to a water molecule. The Zn ions are pentacoordinate in all cases, linked to the N2 O2 atoms from L, and the apical position of the Zn coordination sphere is occupied by a water molecule or bromide or chloride ions. These resulting complexes, formulated (LZnX)-Dy-(LZnX), are tricationic with X=H2 O and monocationic with X=Br or Cl. They behave as field-free single-molecule magnets (SMMs) with effective energy barriers (Ueff ) for the reversal of the magnetization of 96.9(6) K with τ0 =2.4×10(-7) s, 146.8(5) K with τ0 =9.2×10(-8) s, and 146.1(10) K with τ0 =9.9×10(-8) s for compounds with ZnOH2 , ZnBr, and ZnCl motifs, respectively. The Cole-Cole plots exhibit semicircular shapes with α parameters in the range of 0.19 to 0.29, which suggests multiple relaxation processes. Under a dc applied magnetic field of 1000 Oe, the quantum tunneling of magnetization (QTM) is partly or fully suppressed and the energy barriers increase to Ueff =128.6(5) K and τ0 =1.8×10(-8) s for 1, Ueff =214.7 K and τ0 =9.8×10(-9) s for 2, and Ueff =202.4 K and τ0 =1.5×10(-8) s for 3. The two pairs of largely negatively charged phenoxido oxygen atoms with short DyO bonds are positioned at opposite sides of the Dy(3+) ion, which thus creates a strong crystal field that stabilizes the axial MJ =±15/2 doublet as the ground Kramers doublet. Although the compound with the ZnOH2 motifs possesses the larger negative charges on the phenolate oxygen atoms, as confirmed by using DFT calculations, it exhibits the larger distortions of the DyO9 coordination polyhedron from ideal geometries and a smaller Ueff value. Ab initio calculations support the easy-axis anisotropy of the ground Kramers doublet and predict zero-field SMM behavior through Orbach and TA-QTM relaxations via the first excited Kramers doublet, which leads to large energy barriers. In accordance with the experimental results, ab initio calculations have also shown that, compared with water, the peripheral halide ligands coordinated to the Zn(2+) ions increase the barrier height when the distortions of the DyO9 have a negative effect. All the complexes exhibit metal-centered luminescence after excitation into the UV π-π* absorption band of ligand L(2-) at λ=335 nm, which results in the appearance of the characteristic Dy(III) ((4) F9/2 →(6) HJ/2 ; J=15/2, 13/2) emission bands in the visible region. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lebdusková, Petra; Kotek, Jan; Hermann, Petr; Vander Elst, Luce; Muller, Robert N; Lukes, Ivan; Peters, Joop A
2004-01-01
A novel conjugate of a polysaccharide and a Gd(III) chelate with potential as contrast agent for magnetic resonance imaging (MRI) was synthesized. The structure of the chelate was derived from H5DTPA by replacing the central pendant arm by a phosphinic acid functional group, which was covalently bound to the polysaccharide inulin. On the average, each monosaccharide unit of the inulin was attached to approximately one (0.9) chelate moiety. The average molecular weight is 23110 and the average number of Gd3+ ions per molecule is 24. The ligand binds the Gd3+ ion in an octadentate fashion via three nitrogen atoms, four carboxylate oxygen atoms, and one P-O oxygen atom, and its first coordination sphere is completed by a water molecule. This compound shows promising properties for application as a contrast agent for MRI thanks to a favorable residence lifetime of this water molecule (170 ns at 298 K), a relatively long rotational correlation time (866 ps at 298 K), and the presence of two water molecules in the second coordination sphere of the Gd3+ ion. Furthermore, its stability toward transmetalation with Zn(II) is as high as that of the clinically used [Gd(DTPA)(H2O)]2-.
Karthikeyan, Ammasai; Thomas Muthiah, Packianathan; Perdih, Franc
2016-05-01
The coordination chemistry of mixed-ligand complexes continues to be an active area of research since these compounds have a wide range of applications. Many coordination polymers and metal-organic framworks are emerging as novel functional materials. Aminopyrimidine and its derivatives are flexible ligands with versatile binding and coordination modes which have been proven to be useful in the construction of organic-inorganic hybrid materials and coordination polymers. Thiophenecarboxylic acid, its derivatives and their complexes exhibit pharmacological properties. Cobalt(II) and copper(II) complexes of thiophenecarboxylate have many biological applications, for example, as antifungal and antitumor agents. Two new cobalt(II) and copper(II) complexes incorporating thiophene-2-carboxylate (2-TPC) and 2-amino-4,6-dimethoxypyrimidine (OMP) ligands have been synthesized and characterized by X-ray diffraction studies, namely (2-amino-4,6-dimethoxypyrimidine-κN)aquachlorido(thiophene-2-carboxylato-κO)cobalt(II) monohydrate, [Co(C5H3O2S)Cl(C6H9N3O2)(H2O)]·H2O, (I), and catena-poly[copper(II)-tetrakis(μ-thiophene-2-carboxylato-κ(2)O:O')-copper(II)-(μ-2-amino-4,6-dimethoxypyrimidine-κ(2)N(1):N(3))], [Cu2(C5H3O2S)4(C6H9N3O2)]n, (II). In (I), the Co(II) ion has a distorted tetrahedral coordination environment involving one O atom from a monodentate 2-TPC ligand, one N atom from an OMP ligand, one chloride ligand and one O atom of a water molecule. An additional water molecule is present in the asymmetric unit. The amino group of the coordinated OMP molecule and the coordinated carboxylate O atom of the 2-TPC ligand form an interligand N-H...O hydrogen bond, generating an S(6) ring motif. The pyrimidine molecules also form a base pair [R2(2)(8) motif] via a pair of N-H...N hydrogen bonds. These interactions, together with O-H...O and O-H...Cl hydrogen bonds and π-π stacking interactions, generate a three-dimensional supramolecular architecture. The one-dimensional coordination polymer (II) contains the classical paddle-wheel [Cu2(CH3COO)4(H2O)2] unit, where each carboxylate group of four 2-TPC ligands bridges two square-pyramidally coordinated Cu(II) ions and the apically coordinated OMP ligands bridge the dinuclear copper units. Each dinuclear copper unit has a crystallographic inversion centre, whereas the bridging OMP ligand has crystallographic twofold symmetry. The one-dimensional polymeric chains self-assemble via N-H...O, π-π and C-H...π interactions, generating a three-dimensional supramolecular architecture.
A novel polymer probe for Zn(II) detection with ratiometric fluorescence signal
NASA Astrophysics Data System (ADS)
Diao, Haipeng; Guo, Lixia; Liu, Wen; Feng, Liheng
2018-05-01
A conjugated polymer probe comprised of fluorene, quinolone and benzothiazole units was designed and synthesized by the Suzuki coupling reaction. Through the studies of photophysical and thermal properties, the polymer displays blue-emitting feature and good thermal stability. A ratiometric fluorescence signal of the probe for Zn(II) was observed in ethanol with a new emission peak at 555 nm. The probe possesses a high selectivity and sensitivity for Zn(II) during familiar metal ions in ethanol. The detection limit of the probe for Zn (II) is up to 10-8 mol/L. The electron distributions of the polymer before and after bonding with Zn (II) were investigated by the Gaussian 09 software, which agreed with the experimental results. Noticeably, based on the color property of the probe with Zn(II), a series of color test paper were developed for visual detecting Zn(II) ions. This work helps to provide a platform or pattern for the development of polymer fluorescence probe in the chemosensor field.
Basu Baul, Tushar S; Kundu, Sajal; Singh, Palwinder; Shaveta; Guedes da Silva, M Fátima C
2015-02-07
The amyloid beta precursor protein (APP) and its neurotoxic cleavage product amyloid beta (Aβ) are a cause of Alzheimer's disease and appear essential for neuronal development and cell homeostasis. Proteolytic processing of APP is influenced by metal ions and protein ligands, however the structural and functional mechanism of APP regulation is not known so far. In this context, molecular modeling studies were performed to understand the molecular behavior of (E)-N-(pyridin-2-ylmethylene)arylamines (LR) with an E2 domain of the APP in its complex with zinc (APP; PDB ID: ). Docking results indeed confirmed that the LR interacts with Zn in the binding site of the protein between two α-helical chains. In view of these findings, LR was further investigated for complexation reactions with Zn(2+) in order to establish the structural models in solution and in the solid state. Five new Zn(2+) complexes of compositions viz. [Zn(Br)2(L2-Me)] (), [Zn(Br)2(L2-OMe)] (), [Zn(i)2(L2-OMe)] (), [Zn(NO3)2(L2-OMe)(H2O)] () and [Zn(L4-Me)2(H2O)2](NO3)2 () were synthesized and their structures were ascertained by microanalysis, IR and (1)H NMR spectroscopy, and single-crystal X-ray diffraction. The zinc atom in complex exhibits a distorted tetrahedral geometry while the crystal structures of complexes and show distorted square pyramidal geometries. The zinc cation in and has an octahedral coordination environment, but in the zinc coordination geometry is less distorted. The Zn(ii) cations take part in one ( and ) or two () 5-membered metallacycles imposed by the NN or NNO chelation modes of LR. The significant intermolecular ππ interactions are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Hong-Jian, E-mail: hjcheng@cslg.cn; Tang, Hui-Xiang; Shen, Ya-Li
2015-12-15
Solvothermal reactions of Zn(NO{sub 3}){sub 2}·6H{sub 2}O with 3,6-bis(1-imidazolyl)carbazole (3,6-bmcz) and 1,4-benzenedicarboxylic acid (1,4-H{sub 2}bdc), p-phenylenediacetic acid (p-H{sub 2}pda), benzophenone-4,4-dicarboxylic acid (H{sub 2}bpda) afforded three coordination polymers [Zn(1,4-bdc)(3,6-bmcz)]{sub n} (1), {[Zn(p-pda)(3,6-bmcz)]·1.5H_2O}{sub n} (2) and {[Zn(bpda)(3,6-bmcz)]·0.25H_2O}{sub n} (3). Complexes 1–3 were characterized by elemental analysis, IR, powder X-ray diffraction, and single-crystal X-ray diffraction. Complex 1 shows 3D structure with 2D nets inclined polycatenation. Complexes 2 and 3 possess an extended 3D supramolecular architecture based on their respective 2D layers through hydrogen-bonding interactions and the π···π stacking interactions. The solid state luminescent and optical properties of 1–3 at ambient temperature were alsomore » investigated. A comparative study on their photocatalytic activity toward the degradation of methylene blue in polluted water was explored. - Graphical abstract: Reactions of Zn(NO{sub 3}){sub 2} and 3,6-(1-imidazolyl)carbazole with 1,4-benzenedicarboxylic acid, p-phenylenediacetic acid or benzophenone-4,4-dicarboxylic acid afforded three coordination polymers with different topologies and photocatalytic activity. - Highlights: • Reactions of 1,4-H{sub 2}bdc, p-H{sub 2}pda or H{sub 2}bpda with 3,6-bmcz and Zn(II) gave three CPs. • Complex 1 is a 3D entanglement. • Complex 2 or 3 is a 3D supramolecular structure based on different 2D layers. • Complex 2 exhibited good catalytic activity of methylene blue photodegradation.« less