Platinum- and membrane-free swiss-roll mixed-reactant alkaline fuel cell.
Aziznia, Amin; Oloman, Colin W; Gyenge, Előd L
2013-05-01
Eliminating the expensive and failure-prone proton exchange membrane (PEM) together with the platinum-based anode and cathode catalysts would significantly reduce the high capital and operating costs of low-temperature (<373 K) fuel cells. We recently introduced the Swiss-roll mixed-reactant fuel cell (SR-MRFC) concept for borohydride-oxygen alkaline fuel cells. We now present advances in anode electrocatalysis for borohydride electrooxidation through the development of osmium nanoparticulate catalysts supported on porous monolithic carbon fiber materials (referred to as an osmium 3D anode). The borohydride-oxygen SR-MRFC operates at 323 K and near atmospheric pressure, generating a peak power density of 1880 W m(-2) in a single-cell configuration by using an osmium-based anode (with an osmium loading of 0.32 mg cm(-2)) and a manganese dioxide gas-diffusion cathode. To the best of our knowledge, 1880 W m(-2) is the highest power density ever reported for a mixed-reactant fuel cell operating under similar conditions. Furthermore, the performance matches the highest reported power densities for conventional dual chamber PEM direct borohydride fuel cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Abrego-Martínez, J. C.; Moreno-Zuria, A.; Cuevas-Muñiz, F. M.; Arriaga, L. G.; Sun, Shuhui; Mohamedi, Mohamed
2017-12-01
In the present work, we report the design, fabrication and evaluation of a membraneless mixed-reactant and air-breathing microfluidic direct methanol fuel cell (ML-μDMFC) stack operated in passive mode. The operation under mixed-reactant conditions was achieved by using a highly methanol-tolerant Ag/Pt/CP cathode with ultra-low Pt loading in alkaline medium. Prior to the fabrication of the stack, a flow simulation was made in order to study the behavior of the reactants stream in the microchannel through the 2 cells. Subsequently, the device was tested in passive mode using a mixture of 5 M MeOH +0.5 M KOH. The results showed that by connecting the 2 cells in series, it is possible to effectively double the voltage of a single ML-μDMFC, as well as increasing the absolute power by 75% with practically no cost increase. The stack was capable of operate continuously for more than 2 h with a single charge of 40 μL, producing an OCV of 0.89 V and a maximum power density of 3.33 mW mgPt-1. Additionally, the device exhibited good stability throughout a 10 h test.
Ma, Jiwei; Habrioux, Aurélien; Morais, Cláudia; Alonso-Vante, Nicolas
2014-07-21
We reported herein on the use of tolerant cathode catalysts such as carbon supported Pt(x)Ti(y) and/or Pt(x)Se(y) nanomaterials in an air-breathing methanol microfluidic fuel cell. In order to show the improvement of mixed-reactant fuel cell (MRFC) performances obtained with the developed tolerant catalysts, a classical Pt/C nanomaterial was used for comparison. Using 5 M methanol concentration in a situation where the fuel crossover is 100% (MRFC-mixed reactant fuel cell application), the maximum power density of the fuel cell with a Pt/C cathodic catalyst decreased by 80% in comparison with what is observed in the laminar flow fuel cell (LFFC) configuration. With Pt(x)Ti(y)/C and Pt(x)Se(y)/C cathode nanomaterials, the performance loss was only 55% and 20%, respectively. The evaluation of the tolerant cathode catalysts in an air-breathing microfluidic fuel cell suggests the development of a novel nanometric system that will not be size restricted. These interesting results are the consequence of the high methanol tolerance of these advanced electrocatalysts via surface electronic modification of Pt. Herein we used X-ray photoelectron and in situ FTIR spectroscopies to investigate the origin of the high methanol tolerance on modified Pt catalysts.
Stanis, Ronald J.; Lambert, Timothy N.
2016-12-06
An apparatus of an aspect includes a fuel cell catalyst layer. The fuel cell catalyst layer is operable to catalyze a reaction involving a fuel reactant. A fuel cell gas diffusion layer is coupled with the fuel cell catalyst layer. The fuel cell gas diffusion layer includes a porous electrically conductive material. The porous electrically conductive material is operable to allow the fuel reactant to transfer through the fuel cell gas diffusion layer to reach the fuel cell catalyst layer. The porous electrically conductive material is also operable to conduct electrons associated with the reaction through the fuel cell gas diffusion layer. An electrically conductive polymer material is coupled with the fuel cell gas diffusion layer. The electrically conductive polymer material is operable to limit transfer of the fuel reactant to the fuel cell catalyst layer.
Unitized regenerative fuel cell system
NASA Technical Reports Server (NTRS)
Burke, Kenneth A. (Inventor)
2008-01-01
A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.
Small Portable PEM Fuel Cell Systems for NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
2005-01-01
Oxygen-Hydrogen PEM-based fuel cell systems are being examined as a portable power source alternative in addition to advanced battery technology. Fuel cell power systems have been used by the Gemini, Apollo, and Space Shuttle programs. These systems have not been portable, but have been integral parts of their spacecraft, and have used reactants from a separate cryogenic supply. These systems typically have been higher in power. They also have had significant ancillary equipment sections that perform the pumping of reactants and coolant through the fuel cell stack and the separation of the product water from the unused reactant streams. The design of small portable fuel cell systems will be a significant departure from these previous designs. These smaller designs will have very limited ancillary equipment, relying on passive techniques for reactant and thermal management, and the reactant storage will be an integral part of the fuel cell system. An analysis of the mass and volume for small portable fuel cell systems was done to evaluate and quantify areas of technological improvement. A review of current fuel cell technology as well as reactant storage and management technology was completed to validate the analysis and to identify technology challenges
The Advantages of Non-Flow-Through Fuel Cell Power Systems for Aerospace Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark; Burke, Kenneth; Jakupca, Ian
2011-01-01
NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. These improved non-flow-through fuel cell power systems therefore offer significant advantages for many aerospace applications.
NASA Astrophysics Data System (ADS)
Aziznia, Amin; Oloman, Colin W.; Gyenge, Előd L.
2014-11-01
The Swiss-roll single-cell mixed reactant (SR-MRFC) borohydride - oxygen fuel cell equipped with Pt/carbon cloth 3D anode and either MnO2 or Ag gas-diffusion cathodes is investigated by a combination of experimental studies and preliminary mathematical modeling of the polarization curve. We investigate the effects of four variables: cathode side metallic mesh fluid distributor, separator type (Nafion 112® vs. Viledon®), cathode catalyst (MnO2 vs. Ag), and the hydrophilic pore volume fraction of the gas-diffusion cathode. Using a two-phase feed of alkaline borohydride solution (1 M NaBH4 - 2 M NaOH) and O2 gas in an SR-MRFC equipped with Pt/C 3D anode, MnO2 gas diffusion cathode, Viledon® porous diaphragm, expanded mesh cathode-side fluid distributor, the maximum superficial power density is 2230 W m-2 at 323 K and 105 kPa(abs). The latter superficial power density is almost 3.5 times higher than our previously reported superficial power density for the same catalyst combinations. Furthermore, with a Pt anode and Ag cathode catalyst combination, a superficial power density of 2500 W m-2 is achieved with superior performance durability compared to the MnO2 cathode. The fuel cell results are substantiated by impedance spectroscopy analysis and preliminary mathematical model predictions based on mixed potential theory.
Fuel cell system with separating structure bonded to electrolyte
Bourgeois, Richard Scott; Gudlavalleti, Sauri; Quek, Shu Ching; Hasz, Wayne Charles; Powers, James Daniel
2010-09-28
A fuel cell assembly comprises a separating structure configured for separating a first reactant and a second reactant wherein the separating structure has an opening therein. The fuel cell assembly further comprises a fuel cell comprising a first electrode, a second electrode, and an electrolyte interposed between the first and second electrodes, and a passage configured to introduce the second reactant to the second electrode. The electrolyte is bonded to the separating structure with the first electrode being situated within the opening, and the second electrode being situated within the passage.
NASA PEMFC Development Background and History
NASA Technical Reports Server (NTRS)
Hoberecht, Mark
2011-01-01
NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. Four vendors have designed and fabricated non-flow-through fuel cell stacks under NASA funding. One of these vendors is considered the "baseline" vendor, and the remaining three vendors are competing for the "alternate" role. Each has undergone testing of their stack hardware integrated with a NASA balance-of-plant. Future Exploration applications for this hardware include primary fuel cells for a Lunar Lander and regenerative fuel cells for Surface Systems.
Fuel cell system blower configuration
Patel, Kirtikumar H.; Saito, Kazuo
2017-11-28
An exemplary fuel cell system includes a cell stack assembly having a plurality of cathode components and a plurality of anode components. A first reactant blower has an outlet situated to provide a first reactant to the cathode components. A second reactant blower has an outlet situated to provide a second reactant to the anode components. The second reactant blower includes a fan portion that moves the second reactant through the outlet. The second reactant blower also includes a motor portion that drives the fan portion and a bearing portion associated with the fan portion and the motor portion. The motor portion has a motor coolant inlet coupled with the outlet of the first reactant blower to receive some of the first reactant for cooling the motor portion.
Fuel-Cell Structure Prevents Membrane Drying
NASA Technical Reports Server (NTRS)
Mcelroy, J.
1986-01-01
Embossed plates direct flows of reactants and coolant. Membrane-type fuel-cell battery has improved reactant flow and heat removal. Compact, lightweight battery produces high current and power without drying of membranes.
Analysis and Test of a Proton Exchange Membrane Fuel Cell Power System for Space Power Applications
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Varanauski, Donald; Clark, Robert, Jr.
2000-01-01
An effort is underway to develop a prototype Proton Exchange Membrane (PEM) Fuel Cell breadboard system for fuhlre space applications. This prototype will be used to develop a comprehensive design basis for a space-rated PEM fuel cell powerplant. The prototype system includes reactant pressure regulators, ejector-based reactant pumps, a 4-kW fuel cell stack and cooling system, and a passive, membranebased oxygen / water separator. A computer model is being developed concurrently to analytically predict fluid flow in the oxidant reactant system. Fuel cells have historically played an important role in human-rated spacecraft. The Gemini and Apollo spacecraft used fuel cells for vehicle electrical power. The Space Shuttle currently uses three Alkaline Fuel Cell Powerplants (AFCP) to generate all of the vehicle's 15-20kW electrical power. Engineers at the Johnson Space Center have leveraged off the development effort ongoing in the commercial arena to develop PEM fuel cel ls for terrestrial uses. The prototype design originated from efforts to develop a PEM fuel cell replacement for the current Space Shuttle AFCP' s. In order to improve on the life and an already excellent hi storical record of reliability and safety, three subsystems were focused on. These were the fuel cell stack itself, the reactant circulation devices, and reactant / product water separator. PEM fuel cell stack performance is already demonstrating the potential for greater than four times the useful life of the current Shuttle's AFCP. Reactant pumping for product water removal has historically been accomplished with mechanical pumps. Ejectors offer an effective means of reactant pumping as well as the potential for weight reduction, control simplification, and long life. Centrifugal water separation is used on the current AFCP. A passive, membrane-based water separator offers compatibility with the micro-gravity environment of space, and the potential for control simplification, elimination of moving parts in an oxygen environment, and long life. The prototype system has been assembled from components that have previously been tested and evaluated at the component level. Preliminary data obtained from tests performed with the prototype system, as well as other published data, has been used to validate the analytical component models. These components have been incorporated into an integrated oxidant fluid system model. Results obtained from both the performance tests and the analytical model are presented.
Fuel cell with interdigitated porous flow-field
Wilson, Mahlon S.
1997-01-01
A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers.
Fuel cell with interdigitated porous flow-field
Wilson, M.S.
1997-06-24
A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers. 9 figs.
NASA Astrophysics Data System (ADS)
Lee, Jin Wook; Kjeang, Erik
2013-11-01
Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.
Liquid Water Transport in the Reactant Channels of Proton Exchange Membrane Fuel Cells
NASA Astrophysics Data System (ADS)
Banerjee, Rupak
Water management has been identified as a critical issue in the development of PEM fuel cells for automotive applications. Water is present inside the PEM fuel cell in three phases, i.e. liquid phase, vapor phase and mist phase. Liquid water in the reactant channels causes flooding of the cell and blocks the transport of reactants to the reaction sites at the catalyst layer. Understanding the behavior of liquid water in the reactant channels would allow us to devise improved strategies for removing liquid water from the reactant channels. In situ fuel cell tests have been performed to identify and diagnose operating conditions which result in the flooding of the fuel cell. A relationship has been identified between the liquid water present in the reactant channels and the cell performance. A novel diagnostic technique has been established which utilizes the pressure drop multiplier in the reactant channels to predict the flooding of the cell or the drying-out of the membrane. An ex-situ study has been undertaken to quantify the liquid water present in the reactant channels. A new parameter, the Area Coverage Ratio (ACR), has been defined to identify the interfacial area of the reactant channel which is blocked for reactant transport by the presence of liquid water. A parametric study has been conducted to study the effect of changing temperature and the inlet relative humidity on the ACR. The ACR decreases with increase in current density as the gas flow rates increase, removing water more efficiently. With increase in temperature, the ACR decreases rapidly, such that by 60°C, there is no significant ACR to be reported. Inlet relative humidity of the gases does change the saturation of the gases in the channel, but did not show any significant effect on the ACR. Automotive powertrains, which is the target for this work, are continuously faced with transient changes. Water management under transient operating conditions is significantly more challenging and has not been investigated in detail. This study begins to investigate the effects of changing operating conditions on liquid water transport through the reactant channels. It has been identified that rapidly increasing temperature leads to the dry-out of the membrane and rapidly cooling the cell below 55°C results in the start of cell flooding. In changing the operating load of the PEMFC, overshoot in the pressure drop in the reactant channel has been identified for the first time as part of this investigation. A parametric study has been conducted to identify the factors which influence this overshoot behavior.
Fuel cell membrane hydration and fluid metering
Jones, Daniel O.; Walsh, Michael M.
1999-01-01
A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).
NASA Technical Reports Server (NTRS)
Srinivasan, Supramaniam; Manko, David J.; Enayatullah, Mohammad; Appleby, A. John
1989-01-01
High power density fuel cell systems for defense and civilian applications are being developed. Taking into consideration the main causes for efficiency losses (activation, mass transport and ohmic overpotentials) the only fuel cell systems capable of achieving high power densities are the ones with alkaline and solid polymer electrolyte. High power densities (0.8 W/sq cm at 0.8 V and 1 A/sq cm with H2 and O2 as reactants), were already used in NASA's Apollo and Space Shuttle flights as auxiliary power sources. Even higher power densities (4 W/sq cm - i.e., 8 A sq cm at 0.5 V) were reported by the USAF/International Fuel Cells in advanced versions of the alkaline system. High power densities (approximately 1 watt/sq cm) in solid polymer electrolyte fuel cells with ten times lower platinum loading in the electrodes (i.e., 0.4 mg/sq cm) were attained. It is now possible to reach a cell potential of 0.620 V at a current density of 2 A/sq cm and at a temperature of 95 C and pressure of 4/5 atm with H2/O2 as reactants. The slope of the linear region of the potential-current density plot for this case is 0.15 ohm-sq cm. With H2/air as reactants and under the same operating conditions, mass transport limitations are encountered at current densities above 1.4 A/sq cm. Thus, the cell potential at 1 A/sq cm with H2/air as reactants is less than that with H2/O2 as reactants by 40 mV, which is the expected value based on electrode kinetics of the oxygen reduction reaction, and at 2 A/sq cm with H2/air as reactant is less than the corresponding value with H2/O2 as reactants by 250 mV, which is due to the considerably greater mass transport limitations in the former case.
Organometallic catalysts for primary phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Walsh, Fraser
1987-01-01
A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.
Makiel, Joseph M.
1985-01-01
A high temperature solid electrolyte fuel cell generator comprising a housing means defining a plurality of chambers including a generator chamber and a combustion products chamber, a porous barrier separating the generator and combustion product chambers, a plurality of elongated annular fuel cells each having a closed end and an open end with the open ends disposed within the combustion product chamber, the cells extending from the open end through the porous barrier and into the generator chamber, a conduit for each cell, each conduit extending into a portion of each cell disposed within the generator chamber, each conduit having means for discharging a first gaseous reactant within each fuel cell, exhaust means for exhausting the combustion product chamber, manifolding means for supplying the first gaseous reactant to the conduits with the manifolding means disposed within the combustion product chamber between the porous barrier and the exhaust means and the manifolding means further comprising support and bypass means for providing support of the manifolding means within the housing while allowing combustion products from the first and a second gaseous reactant to flow past the manifolding means to the exhaust means, and means for flowing the second gaseous reactant into the generator chamber.
Electrically insulating and sealing frame
Guthrie, Robin J.
1983-11-08
A combination gas seal and electrical insulator having a closed frame shape interconnects a fuel cell stack and a reactant gas plenum of a fuel cell generator. The frame can be of rectangular shape including at least one slidable spline connection in each side to permit expansion or contraction consistent with that of the walls of the gas plenum and fuel cell stack. The slidable spline connections in the frame sides minimizes lateral movement between the frame side members and sealing material interposed between the frame and the fuel cell stack or between the frame and the reactant gas plenum.
System Regulates the Water Contents of Fuel-Cell Streams
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Lazaroff, Scott
2005-01-01
An assembly of devices provides for both humidification of the reactant gas streams of a fuel cell and removal of the product water (the water generated by operation of the fuel cell). The assembly includes externally-sensing forward-pressure regulators that supply reactant gases (fuel and oxygen) at variable pressures to ejector reactant pumps. The ejector supply pressures depend on the consumption flows. The ejectors develop differential pressures approximately proportional to the consumption flow rates at constant system pressure and with constant flow restriction between the mixer-outlet and suction ports of the ejectors. For removal of product water from the circulating oxygen stream, the assembly includes a water/gas separator that contains hydrophobic and hydrophilic membranes. The water separator imposes an approximately constant flow restriction, regardless of the quality of the two-phase flow that enters it from the fuel cell. The gas leaving the water separator is nearly 100 percent humid. This gas is returned to the inlet of the fuel cell along with a quantity of dry incoming oxygen, via the oxygen ejector, thereby providing some humidification.
NASA Technical Reports Server (NTRS)
Vasquez, Arturo
2011-01-01
An advanced reactant pressure regulator with an internal ejector reactant circulation pump has been developed to support NASA's future fuel cell power systems needs. These needs include reliable and safe operation in variable-gravity environments, and for exploration activities with both manned and un manned vehicles. This product was developed for use in Proton Exchange Membrane Fuel Cell (PEMFC) power plant reactant circulation systems, but the design could also be applied to other fuel cell system types, (e.g., solid-oxide or alkaline) or for other gas pressure regulation and circulation needs. The regulator design includes porting for measurement of flow and pressure at key points in the system, and also includes several fuel cell system integration options. NASA has recognized ejectors as a viable alternative to mechanical pumps for use in spacecraft fuel cell power systems. The ejector motive force is provided by a variable, high-pressure supply gas that travels through the ejector s jet nozzle, whereby the pressure energy of the fluid stream is converted to kinetic energy in the gas jet. The ejector can produce circulation-to-consumption-flow ratios that are relatively high (2-3 times), and this phenomenon can potentially (with proper consideration of the remainder of the fuel cell system s design) be used to provide completely for reactant pre-humidification and product water removal in a fuel cell system. Specifically, a custom pressure regulator has been developed that includes: (1) an ejector reactant circulation pump (with interchangeable jet nozzles and mixer sections, gas-tight sliding and static seals in required locations, and internal fluid porting for pressure-sensing at the regulator's control elements) and (2) internal fluid porting to allow for flow rate and system pressure measurements. The fluid porting also allows for inclusion of purge, relief, and vacuum-breaker check valves on the regulator assembly. In addition, this regulator could also be used with NASA's advanced nonflow-through fuel cell power systems by simply incorporating a jet nozzle with an appropriate nozzle diameter.
Lightweight fuel cell powerplant components program
NASA Technical Reports Server (NTRS)
Martin, R. E.
1980-01-01
A lightweight hydrogen-oxygen alkaline fuel cell incorporated into the design of a lightweight fuel cell powerplant (LFCP) was analytically and experimentally developed. The powerplant operates with passive water removal which contributes to a lower system weight and extended operating life. A preliminary LFCP specification and design table were developed along with a lightweight power section for the LFCP design, consisting of repeating two-cell modules was designed. Two, four-cell modules were designed incorporating 0.508 sq ft active area space shuttle technology fuel cells. Over 1,200 hours of single-cell and over 8,800 hours of two-cell module testing was completed. The 0.25 sq ft active area lightweight cell design was shown to be capable of operating on propellant purity reactants out to a current density of 600ASF. Endurance testing of the two-cell module configuration exceeded the 2,500-hour LFCP voltage requirements out to 3700-hours. A two-cell module capable of operating at increased reactant pressure completed 1000 hours of operation at a 30 psia reactant pressure. A lightweight power section consisting of fifteen, two-cell modules connected electrically in series was fabricated.
Development of a High Reliability Compact Air Independent PEMFC Power System
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Wynne, Bob
2013-01-01
Autonomous Underwater Vehicles (AUV's) have received increasing attention in recent years as military and commercial users look for means to maintain a mobile and persistent presence in the undersea world. Compact, neutrally buoyant power systems are needed for both small and large vehicles. Historically, batteries have been employed in these applications, but the energy density and therefore mission duration are limited with current battery technologies. Vehicles with stored energy requirements greater than approximately 10 kWh have an alternate means to get long duration power. High efficiency Proton Exchange Membrane (PEM) fuel cell systems utilizing pure hydrogen and oxygen reactants show the potential for an order of magnitude energy density improvement over batteries as long as the subsystems are compact. One key aspect to achieving a compact and energy dense system is the design of the fuel cell balance of plant (BOP). Recent fuel cell work, initially focused on NASA applications requiring high reliability, has developed systems that can meet target power and energy densities. Passive flow through systems using ejector driven reactant (EDR) circulation have been developed to provide high reactant flow and water management within the stack, with minimal parasitic losses compared to blowers. The ejectors and recirculation loops, along with valves and other BOP instrumentation, have been incorporated within the stack end plate. In addition, components for water management and reactant conditioning have been incorporated within the stack to further minimize the BOP. These BOP systems are thermally and functionally integrated into the stack hardware and fit into the small volumes required for AUV and future NASA applications to maximize the volume available for reactants. These integrated systems provide a compact solution for the fuel cell BOP and maximize the efficiency and reliability of the system. Designs have been developed for multiple applications ranging from less than 1 kWe to 70 kWe. These systems occupy a very small portion of the overall energy system, allowing most of the system volume to be used for reactants. The fuel cell systems have been optimized to use reactants efficiently with high stack efficiency and low parasitic losses. The resulting compact, highly efficient fuel cell system provides exceptional reactant utilization and energy density. Key design variables and supporting test data are presented. Future development activities are described.
Fuel-cell engine stream conditioning system
DuBose, Ronald Arthur
2002-01-01
A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.
Towards operating direct methanol fuel cells with highly concentrated fuel
NASA Astrophysics Data System (ADS)
Zhao, T. S.; Yang, W. W.; Chen, R.; Wu, Q. X.
A significant advantage of direct methanol fuel cells (DMFCs) is the high specific energy of the liquid fuel, making it particularly suitable for portable and mobile applications. Nevertheless, conventional DMFCs have to be operated with excessively diluted methanol solutions to limit methanol crossover and the detrimental consequences. Operation with diluted methanol solutions significantly reduces the specific energy of the power pack and thereby prevents it from competing with advanced batteries. In view of this fact, there exists a need to improve conventional DMFC system designs, including membrane electrode assemblies and the subsystems for supplying/removing reactants/products, so that both the cell performance and the specific energy can be simultaneously maximized. This article provides a comprehensive review of past efforts on the optimization of DMFC systems that operate with concentrated methanol. Based on the discussion of the key issues associated with transport of the reactants/products, the strategies to manage the supply/removal of the reactants/products in DMFC operating with highly concentrated methanol are identified. With these strategies, the possible approaches to achieving the goal of concentrated fuel operation are then proposed. Past efforts in the management of the reactants/products for implementing each of the approaches are also summarized and reviewed.
Solid oxide fuel cell systems with hot zones having improved reactant distribution
Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.
2012-11-06
A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.
Solid oxide fuel cell systems with hot zones having improved reactant distribution
Poshusta, Joseph C; Booten, Charles W; Martin, Jerry L
2013-12-24
A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.
Solid oxide fuel cell systems with hot zones having improved reactant distribution
Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.
2016-05-17
A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.
Internal voltage control of hydrogen-oxygen fuel cells: Feasibility study
NASA Technical Reports Server (NTRS)
Prokopius, P. R.
1975-01-01
An experimental study was conducted to assess the feasibility of internal voltage regulation of fuel cell systems. Two methods were tested. In one, reactant partial pressure was used as the voltage control parameter and in the other reactant total pressure was used for control. Both techniques were breadboarded and tested on a single alkaline-electrolyte fuel cell. Both methods were found to be possible forms of regulation, however, of the two the total pressure technique would be more efficient, simpler to apply and would provide better transient characteristics.
Advances in solid polymer electrolyte fuel cell technology with low-platinum-loading electrodes
NASA Technical Reports Server (NTRS)
Srinivasan, Supramaniam; Ticianelli, E. A.; Derouin, C. R.; Redondo, A.
1987-01-01
The Gemini Space program demonstrated the first major application of fuel cell systems. Solid polymer electrolyte fuel cells were used as auxiliary power sources in the spacecraft. There has been considerable progress in this technology since then, particularly with the substitution of Nafion for the polystyrene sulfonate membrane as the electrolyte. Until recently the performance was good only with high platinum loading (4 mg/sq cm) electrodes. Methods are presented to advance the technology by (1) use of low platinum loading (0.35 mg/sq cm) electrodes; (2) optimization of anode/membrane/cathode interfaces by hot pressing; (3) pressurization of reactant gases, which is most important when air is used as cathodic reactant; and (4) adequate humidification of reactant gases to overcome the water management problem. The high performance of the fuel cell with the low loading of platinum appears to be due to the extension of the three dimensional reaction zone by introduction of a proton conductor, Nafion. This was confirmed by cyclic voltammetry.
NASA Technical Reports Server (NTRS)
Gahn, R. F.; Hagedorn, N. H.; Ling, J. S.
1983-01-01
Experimental studies in a 14.5 sq cm single cell system using mixed reactant solutions at 65 C are described. Systems were tested under isothermal conditions, i.e., reactants and the cell were at the same temperature. Charging and discharging performance were evaluated by measuring watt-hour and coulombic efficiencies, voltage-current relationships, hydrogen evolution and membrane resistivity. Watt-hour efficiencies ranged from 86 percent at 43 ma/sq cm to 75 percent at 129 ma/sq cm with corresponding coulombic efficiencies of 92 percent and 97 percent, respectively. Hydrogen evolution was less than 1 percent of the charge coulumbic capacity during charge-discharge cycling. Bismuth amd bismuth-lead catalyzed chromium electrodes maintained reversible performance and low hydrogen evolution under normal and adverse cycling conditions. Reblending of the anode and cathode solutions was successfully demonstrated to compensate for osmotic volume changes. Improved performance was obtained with mixed reactant systems in comparison to the unmixed reactant systems. Previously announced in STAR as N83-25042
NASA Technical Reports Server (NTRS)
Gahn, R. F.; Hagedorn, N. H.; Ling, J. S.
1983-01-01
Experimental studies in a 14.5 sq cm single cell system using mixed reactant solutions at 65 C are described. Systems were tested under isothermal conditions i.e., reactants and the cell were at the same temperature. Charging and discharging performance were evaluted by measuring watt-hour and coulombic efficiencies, voltage-current relationships, hydrogen evolution and membrane resistivity. Watt-hour efficiencies ranged from 86% at 43 ma/sq cm to 75% at 129 ma/sq cm with corresponding coulombic efficiencies of 92% and 97%, respectively. Hydrogen evolution was less than 1% of the charge coulombic capacity during charge-discharge cycling. Bismuth and bismuth-lead catalyzed chromium electrodes maintained reversible performance and low hydrogen evolution under normal and adverse cycling conditions. Reblending of the anode and cathode solutions was successfully demonstrated to compensate for osmotic volume changes. Improved performance was obtained with mixed reactant systems in comparison to the unmixed reactant systems.
Isenberg, Arnold O.
1983-01-01
High temperature solid oxide electrolyte fuel cell generators which allow controlled leakage among plural chambers in a sealed housing. Depleted oxidant and fuel are directly reacted in one chamber to combust remaining fuel and preheat incoming reactants. The cells are preferably electrically arranged in a series-parallel configuration.
Development of a PEMFC Power System with Integrated Balance of Plant
NASA Technical Reports Server (NTRS)
Wynne, B.; Diffenderfer, C.; Ferguson, S.; Keyser, J.; Miller, M.; Sievers, B.; Ryan, A.; Vasquez, A.
2012-01-01
Autonomous Underwater Vehicles (AUV s) have received increasing attention in recent years as military and commercial users look for means to maintain a mobile and persistent presence in the undersea world. Compact, neutrally buoyant power systems are needed for both small and large vehicles. Batteries are usually employed in these applications, but the energy density and therefore the mission duration are limited with current battery technology. At a certain energy or mission duration requirement, other means to get long duration power become feasible. For example, above 10 kW-hrs liquid oxygen and hydrogen have better specific energy than batteries and are preferable for energy storage as long as a compact system of about 100 W/liter is achievable to convert the chemical energy in these reactants into power. Other reactant forms are possible, such as high pressure gas, chemical hydrides or oxygen carriers, but it is essential that the power system be small and light weight. Recent fuel cell work, primarily focused on NASA applications, has developed power systems that can meet this target power density. Passive flow-through systems, using ejector driven reactant (EDR) flow, integrated into a compact balance of plant have been developed. These systems are thermally and functionally integrated in much the same way as are automotive, air breathing fuel cell systems. These systems fit into the small volumes required for AUV and future NASA applications. Designs have been developed for both a 21" diameter and a larger diameter (LD) AUV. These fuel cell systems occupy a very small portion of the overall energy system, allowing most of the system volume to be used for the reactants. The fuel cell systems have been optimized to use reactants efficiently with high stack efficiency and low parasitic losses. The resulting compact, highly efficient fuel cell system provides exceptional reactant utilization and energy density. Key design variables and supporting test data are presented. Future development activities are described.
Water outlet control mechanism for fuel cell system operation in variable gravity environments
NASA Technical Reports Server (NTRS)
Vasquez, Arturo (Inventor); McCurdy, Kerri L. (Inventor); Bradley, Karla F. (Inventor)
2007-01-01
A self-regulated water separator provides centrifugal separation of fuel cell product water from oxidant gas. The system uses the flow energy of the fuel cell's two-phase water and oxidant flow stream and a regulated ejector or other reactant circulation pump providing the two-phase fluid flow. The system further uses a means of controlling the water outlet flow rate away from the water separator that uses both the ejector's or reactant pump's supply pressure and a compressibility sensor to provide overall control of separated water flow either back to the separator or away from the separator.
Cryogenic reactant storage for lunar base regenerative fuel cells
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.
1989-01-01
There are major advantages to be gained by integrating a cryogenic reactant storage system with a hydrogen-oxygen regenerative fuel cell (RFC) to provide on-site electrical power during the lunar night. Although applicable to any power system using hydrogen-oxygen RFC's for energy storage, cryogenic reactant storage offers a significant benefit whenever the sun/shade cycle and energy storage period approach hundreds of hours. For solar power installations on the moon, cryogenic reactant storage reduces overall specific mass and meteoroid vulnerability of the system. In addition, it offers synergistic benefits to on-site users, such as availability of primary fuel cell reactants for surface rover vehicles and cryogenic propellants for OTV's. The integration involves processing and storing the RFC reactant streams as cryogenic liquids rather than pressurized gases, so that reactant containment (tankage per unit mass of reactants) can be greatly reduced. Hydrogen-oxygen alkaline RFC's, GaAs photovoltaic (PV) arrays, and space cryogenic processing/refrigeration technologies are assumed to be available for the conceptual system design. Advantages are demonstrated by comparing the characteristics of two power system concepts: a conventional lunar surface PV/RFC power system using pressurized gas storage in SOA filament wound pressure vessels and, that same system with gas liquefaction and storage replacing the pressurized storage. Comparisons are made at 20 and 250 kWe. Although cryogenic storage adds a processing plant (drying and liquefaction) to the system plus 30 percent more solar array to provide processing power, the approximate order of magnitude reduction in tankage mass, confirmed by this analysis, results in a reduction in overall total system mass of approximately 50 percent.
Electrochemical Orbital Energy Storage (ECOES) technology program. [regenerative fuel cell system
NASA Technical Reports Server (NTRS)
Mcbryar, H.
1980-01-01
The versatility and flexibility of a regenerative fuel cell power and energy storage system is considered. The principal elements of a Regenerative Fuel Cell System combine the fuel cell and electrolysis cell with a photovoltaic solar cell array, along with fluid storage and transfer equipment. The power output of the array (for LEO) must be roughly triple the load requirements of the vehicle since the electrolyzers must receive about double the fuel cell output power in order to regenerate the reactants (2/3 of the array power) while 1/3 of the array power supplies the vehicle base load. The working fluids are essentially recycled indefinitely. Any resupply requirements necessitated by leakage or inefficient reclamation is water - an ideal material to handle and transport. Any variation in energy storage capacity impacts only the fluid storage portion, and the system is insensitive to use of reserve reactant capacity.
NASA Astrophysics Data System (ADS)
Kahveci, E. E.; Taymaz, I.
2018-03-01
In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.
Fuel cell cooler-humidifier plate
Vitale, Nicholas G.; Jones, Daniel O.
2000-01-01
A cooler-humidifier plate for use in a proton exchange membrane (PEM) fuel cell stack assembly is provided. The cooler-humidifier plate combines functions of cooling and humidification within the fuel cell stack assembly, thereby providing a more compact structure, simpler manifolding, and reduced reject heat from the fuel cell. Coolant on the cooler side of the plate removes heat generated within the fuel cell assembly. Heat is also removed by the humidifier side of the plate for use in evaporating the humidification water. On the humidifier side of the plate, evaporating water humidifies reactant gas flowing over a moistened wick. After exiting the humidifier side of the plate, humidified reactant gas provides needed moisture to the proton exchange membranes used in the fuel cell stack assembly. The invention also provides a fuel cell plate that maximizes structural support within the fuel cell by ensuring that the ribs that form the boundaries of channels on one side of the plate have ends at locations that substantially correspond to the locations of ribs on the opposite side of the plate.
Bipolar plate/diffuser for a proton exchange membrane fuel cell
Besmann, Theodore M.; Burchell, Timothy D.
2001-01-01
A combination bipolar plate/diffuser fuel cell component includes an electrically conducting solid material having: a porous region having a porous surface; and a hermetic region, the hermetic region defining at least a portion of at least one coolant channel, the porous region defining at least a portion of at least one reactant channel, the porous region defining a flow field medium for diffusing the reactant to the porous surface.
Bipolar plate/diffuser for a proton exchange membrane fuel cell
Besmann, Theodore M.; Burchell, Timothy D.
2000-01-01
A combination bipolar plate/diffuser fuel cell component includes an electrically conducting solid material having: a porous region having a porous surface; and a hermetic region, the hermetic region defining at least a portion of at least one coolant channel, the porous region defining at least a portion of at least one reactant channel, the porous region defining a flow field medium for diffusing the reactant to the porous surface.
An overview of Ball Aerospace cryogen storage and delivery systems
NASA Astrophysics Data System (ADS)
Marquardt, J.; Keller, J.; Mills, G.; Schmidt, J.
2015-12-01
Starting on the Gemini program in the 1960s, Beech Aircraft (now Ball Aerospace) has been designing and manufacturing dewars for a variety of cryogens including liquid hydrogen and oxygen. These dewars flew on the Apollo, Skylab and Space Shuttle spacecraft providing fuel cell reactants resulting in over 150 manned spaceflights. Since Space Shuttle, Ball has also built the liquid hydrogen fuel tanks for the Boeing Phantom Eye unmanned aerial vehicle. Returning back to its fuel cell days, Ball has designed, built and tested a volume-constrained liquid hydrogen and oxygen tank system for reactant delivery to fuel cells on unmanned undersea vehicles (UUVs). Herein past history of Ball technology is described. Testing has been completed on the UUV specific design, which will be described.
Air-Independent Solid Oxide Fuel Cells for NASA's LOX-CH4 Landers
NASA Technical Reports Server (NTRS)
Ryan, Abigail C.; Araghi, Koorosh R.; Farmer, Serene C.
2013-01-01
Gemini, Apollo, and Space Shuttle used fuel cells as main power source for vehicle and water source for life support and thermal PEM (Gemini) and Alkaline (Apollo, Shuttle) fuel cells were used Ideal for short (less than 3 weeks) missions when the required O2 and H2 can be launched with the vehicle. New missions that might require long-duration stays in orbit or at a habitat, cannot rely on the availability of pure reactants but should also aim to be sun-independent - a problem for which Solid Oxide Fuel Cells might be the answer. Recently, NASA has investigated & developed LOX/CH4-propelled landers (Altair, MORPHEUS). In order to preserve mission flexibility, fuel cells are being studied as a potential power source. Much of NASA's fuel cell development has been focused on creating a dead-headed, non-flow through PEM fuel cells which would weigh less and be more reliable than the existing Alkaline and PEM technology; however, LOX/CH4 as a propellant introduces SOFCs as a power option due to their ability to accept those reactants without much reforming.
Structure for common access and support of fuel cell stacks
Walsh, Michael M.
2000-01-01
A structure provides common support and access to multiple fuel cells externally mounted thereto. The structure has openings leading to passages defined therein for providing the access. Various other fuel cell power system components are connected at the openings, such as reactant and coolant sources.
Pulsed jet combustion generator for premixed charge engines
Oppenheim, A. K.; Stewart, H. E.; Hom, K.
1990-01-01
A method and device for generating pulsed jets which will form plumes comprising eddie structures, which will entrain a fuel/air mixture from the head space of an internal combustion engine, and mixing this fuel/air mixture with a pre-ignited fuel/air mixture of the plumes thereby causing combustion of the reactants to occur within the interior of the eddie structures.
Combined goal gasifier and fuel cell system and method
Gmeindl, Frank D.; Geisbrecht, Rodney A.
1990-01-01
A molten carbonate fuel cell is combined with a catalytic coal or coal char gasifier for providing the reactant gases comprising hydrogen, carbon monoxide and carbon dioxide used in the operation of the fuel cell. These reactant gases are stripped of sulfur compounds and particulate material and are then separated in discrete gas streams for conveyance to appropriate electrodes in the fuel cell. The gasifier is arranged to receive the reaction products generated at the anode of the fuel cell by the electricity-producing electrochemical reaction therein. These reaction products from the anode are formed primarily of high temperature steam and carbon dioxide to provide the steam, the atmosphere and the heat necessary to endothermically pyrolyze the coal or char in the presence of a catalyst. The reaction products generated at the cathode are substantially formed of carbon dioxide which is used to heat air being admixed with the carbon dioxide stream from the gasifier for providing the oxygen required for the reaction in the fuel cell and for driving an expansion device for energy recovery. A portion of this carbon dioxide from the cathode may be recycled into the fuel cell with the air-carbon dioxide mixture.
Fuel Production from Seawater and Fuel Cells Using Seawater.
Fukuzumi, Shunichi; Lee, Yong-Min; Nam, Wonwoo
2017-11-23
Seawater is the most abundant resource on our planet and fuel production from seawater has the notable advantage that it would not compete with growing demands for pure water. This Review focuses on the production of fuels from seawater and their direct use in fuel cells. Electrolysis of seawater under appropriate conditions affords hydrogen and dioxygen with 100 % faradaic efficiency without oxidation of chloride. Photoelectrocatalytic production of hydrogen from seawater provides a promising way to produce hydrogen with low cost and high efficiency. Microbial solar cells (MSCs) that use biofilms produced in seawater can generate electricity from sunlight without additional fuel because the products of photosynthesis can be utilized as electrode reactants, whereas the electrode products can be utilized as photosynthetic reactants. Another important source for hydrogen is hydrogen sulfide, which is abundantly found in Black Sea deep water. Hydrogen produced by electrolysis of Black Sea deep water can also be used in hydrogen fuel cells. Production of a fuel and its direct use in a fuel cell has been made possible for the first time by a combination of photocatalytic production of hydrogen peroxide from seawater and dioxygen in the air and its direct use in one-compartment hydrogen peroxide fuel cells to obtain electric power. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design of Long-Endurance Unmanned Airplanes Incorporating Solar and Fuel Cell Propulsion
NASA Technical Reports Server (NTRS)
Youngblood, James W.; Talay, Theodore A.; Pegg, Robert J.
1984-01-01
Preliminary performance analysis and conceptual design are described for a class of unmanned airplanes possessing multi-day endurance capability. A mixed-mode electric power system incorporates solar cells for daytime energy production and a non-regenerative H2-02 fuel cell to supply energy for night flight. The power system provides energy for all onboard systems, including propulsion., payload, and avionics. Excess solar energy is available during significant portions of the day, and may be used for climbing, maneuvering, or payload functions. By jettisoning fuel cell reactant product (water) during flight, vehicle endurance may be increased under certain conditions. Empirical structure sizing algorithms are combined with low-Reynolds number aerodynamics algorithms to estimate airplane size and geometry to meet prescribed mission requirements. Initial calculations for summertime, high-altitude flight (above 40,000 ft (12 km)) at moderate latitude (31 deg N) indicate that mission endurance of several days may be possible for configurations having wing loadings on the order of 0.9 to 1.3 lb/ft(exp 2). These aircraft tend to be somewhat smaller than solar-powered aircraft previously conceived for multi-month endurance utilizing regenerative fuel cell systems for night flight.
NASA Non-Flow-Through PEM Fuel Cell System for Aerospace Applications
NASA Technical Reports Server (NTRS)
Araghi, Koorosh R.
2011-01-01
NASA is researching passive NFT Proton Exchange Membrane (PEM) fuel cell technologies for primary fuel cell power plants in air-independent applications. NFT fuel cell power systems have a higher power density than flow through systems due to both reduced parasitic loads and lower system mass and volume. Reactant storage still dominates system mass/volume considerations. NFT fuel cell stack testing has demonstrated equivalent short term performance to flow through stacks. More testing is required to evaluate long-term performance.
Microfluidic microbial fuel cells: from membrane to membrane free
NASA Astrophysics Data System (ADS)
Yang, Yang; Ye, Dingding; Li, Jun; Zhu, Xun; Liao, Qiang; Zhang, Biao
2016-08-01
Microfluidic microbial fuel cells (MMFCs) are small carbon-neutral devices that use self-organized bacteria to degrade organic substrates and harness energy from the waste water. Conventional MMFCs have made great strides in the past decade and have overcome some limitations, such as high capital costs and low energy output. A co-laminar flow MFC has been first proposed in 2011 with the potential to be an attractively power source to niche applications. Co-laminar MFCs typically operate without any physical membranes separating the reactants, and bacterial ecosystems can be easily manipulated by regulating the inlet conditions. This paper highlights recent accomplishments in the development of co-laminar MFCs, emphasizing basic principles, mass transport and fluid dynamics including boundary layer theory, entrance conditions and mixing zone issues. Furthermore, the development of current techniques, major challenges and the potential research directions are discussed.
NASA Glenn Research Center's Fuel Cell Stack, Ancillary and System Test and Development Laboratory
NASA Technical Reports Server (NTRS)
Loyselle, Patricia L.; Prokopius, Kevin P.; Becks, Larry A.; Burger, Thomas H.; Dick, Joseph F.; Rodriguez, George; Bremenour, Frank; Long, Zedock
2011-01-01
At the NASA Glenn Research Center, a fully operational fuel cell test and evaluation laboratory is available which is capable of evaluating fuel cell components and systems for future NASA missions. Components and subsystems of various types can be operated and monitored under a variety of conditions utilizing different reactants. This fuel cell facility can test the effectiveness of various component and system designs to meet NASA's needs.
High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage
NASA Technical Reports Server (NTRS)
Bents, David J.
1987-01-01
A hydrogen-oxygen regenerative fuel cell (RFC) energy storage system based on high temperature solid oxide fuel cell (SOFC) technology is described. The reactants are stored as gases in lightweight insulated pressure vessels. The product water is stored as a liquid in saturated equilibrium with the fuel gas. The system functions as a secondary battery and is applicable to darkside energy storage for solar photovoltaics.
In-ground operation of Geothermic Fuel Cells for unconventional oil and gas recovery
NASA Astrophysics Data System (ADS)
Sullivan, Neal; Anyenya, Gladys; Haun, Buddy; Daubenspeck, Mark; Bonadies, Joseph; Kerr, Rick; Fischer, Bernhard; Wright, Adam; Jones, Gerald; Li, Robert; Wall, Mark; Forbes, Alan; Savage, Marshall
2016-01-01
This paper presents operating and performance characteristics of a nine-stack solid-oxide fuel cell combined-heat-and-power system. Integrated with a natural-gas fuel processor, air compressor, reactant-gas preheater, and diagnostics and control equipment, the system is designed for use in unconventional oil-and-gas processing. Termed a ;Geothermic Fuel Cell; (GFC), the heat liberated by the fuel cell during electricity generation is harnessed to process oil shale into high-quality crude oil and natural gas. The 1.5-kWe SOFC stacks are packaged within three-stack GFC modules. Three GFC modules are mechanically and electrically coupled to a reactant-gas preheater and installed within the earth. During operation, significant heat is conducted from the Geothermic Fuel Cell to the surrounding geology. The complete system was continuously operated on hydrogen and natural-gas fuels for ∼600 h. A quasi-steady operating point was established to favor heat generation (29.1 kWth) over electricity production (4.4 kWe). Thermodynamic analysis reveals a combined-heat-and-power efficiency of 55% at this condition. Heat flux to the geology averaged 3.2 kW m-1 across the 9-m length of the Geothermic Fuel Cell-preheater assembly. System performance is reviewed; some suggestions for improvement are proposed.
NASA Astrophysics Data System (ADS)
Bywater, R. J.
1980-01-01
Solutions are presented for the turbulent diffusion flame in a two-dimensional shear layer based upon a kinetic theory of turbulence (KTT). The fuel and oxidizer comprising the two streams are considered to react infinitely fast according to a one-step, irreversible kinetic mechanism. The solutions are obtained by direct numerical calculation of the transverse velocity probability density function (PDF) and the associated species distributions. The mean reactant profiles calculated from the solutions display the characteristic thick, turbulent flame zone. The phenomena result from the fact that in the context of the KTT, species react only when in the same velocity cell. This coincides with the known physical requirement that molecular mixing precedes reaction. The solutions demonstrate this behavior by showing how reactants can coexist in the mean, even when infinite reaction rates are enforced at each point (t,x,u) of velocity space.
Fuel effects on flame lift-off under diesel conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persson, Helena; Andersson, Oeivind; Egnell, Rolf
An apparent relation between the lift-off length under diesel conditions and the ignition quality of a fuel has previously been reported. To cast light on the underlying mechanism, the current study aims to separate flame lift-off effects of the chemical ignition delay from those of other fuel properties under diesel conditions. Flame lift-off was measured in an optical diesel engine by high-speed video imaging of OH-chemiluminescence. Fuel and ambient-gas properties were varied during the experiment. Only a weak correlation was found between ignition delay and lift-off length. The data indicate that this correlation is due to a common, stronger correlationmore » with the ambient oxygen concentration. The chemical ignition delay and the fuel type had similar, weak effects on the lift-off length. A recently proposed mechanism for lift-off stabilization was used to interpret the results. It assumes that reactants approaching the lift-off position of the jet are mixed with high-temperature products found along the edges of the flame, which trigger autoignition. In this picture, the fuel effect is most likely due to differences in the amount of mixing with high-temperature products that is required for autoignition. In the current experiment, all lift-off effects seem to arise from variations in the reactant and product temperatures, induced by fuel and ambient properties. (author)« less
Assure Access to the Maritime Battlespace
2012-10-22
Energy Section ( PEM Fuel Cells & Stirling Engines) Smart Battery High Pressure Gas Smart Li-Ion Battery BAA Technologies Energy Section... Fuel Cells and Advanced Reactant Storage 30 Days Endurance Ref Mission LDUUV INP Energy Plan 14 At Sea Test and Analysis At Sea Test and...undersea vehicles capable of operating near shore BAA Contracts awarded BAA Open for Competition Stirling Engine Demo UUV Fuel Cell 500hr
NASA Technical Reports Server (NTRS)
Hagedorn, Norman H. (Inventor)
1993-01-01
An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.
Water reactive hydrogen fuel cell power system
Wallace, Andrew P; Melack, John M; Lefenfeld, Michael
2014-01-21
A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.
Water reactive hydrogen fuel cell power system
Wallace, Andrew P; Melack, John M; Lefenfeld, Michael
2014-11-25
A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.
Ambient pressure fuel cell system
Wilson, Mahlon S.
2000-01-01
An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.
Enhanced methanol utilization in direct methanol fuel cell
Ren, Xiaoming; Gottesfeld, Shimshon
2001-10-02
The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.
Fuel-Cell Power Source Based on Onboard Rocket Propellants
NASA Technical Reports Server (NTRS)
Ganapathi, Gani; Narayan, Sri
2010-01-01
The use of onboard rocket propellants (dense liquids at room temperature) in place of conventional cryogenic fuel-cell reactants (hydrogen and oxygen) eliminates the mass penalties associated with cryocooling and boil-off. The high energy content and density of the rocket propellants will also require no additional chemical processing. For a 30-day mission on the Moon that requires a continuous 100 watts of power, the reactant mass and volume would be reduced by 15 and 50 percent, respectively, even without accounting for boiloff losses. The savings increase further with increasing transit times. A high-temperature, solid oxide, electrolyte-based fuel-cell configuration, that can rapidly combine rocket propellants - both monopropellant system with hydrazine and bi-propellant systems such as monomethyl hydrazine/ unsymmetrical dimethyl hydrazine (MMH/UDMH) and nitrogen tetroxide (NTO) to produce electrical energy - overcomes the severe drawbacks of earlier attempts in 1963-1967 of using fuel reforming and aqueous media. The electrical energy available from such a fuel cell operating at 60-percent efficiency is estimated to be 1,500 Wh/kg of reactants. The proposed use of zirconia-based oxide electrolyte at 800-1,000 C will permit continuous operation, very high power densities, and substantially increased efficiency of conversion over any of the earlier attempts. The solid oxide fuel cell is also tolerant to a wide range of environmental temperatures. Such a system is built for easy refueling for exploration missions and for the ability to turn on after several years of transit. Specific examples of future missions are in-situ landers on Europa and Titan that will face extreme radiation and temperature environments, flyby missions to Saturn, and landed missions on the Moon with 14 day/night cycles.
Mixing Enhancement in a Lobed Injector
NASA Technical Reports Server (NTRS)
Smith, L. L.; Majamaki, A. J.; Lam, I. T.; Delabroy, O.; Karagozian, A. R.; Marble, F. E.; Smith, O. I.
1997-01-01
An experimental investigation of the non-reactive mixing processes associated with a lobed fuel injector in a coflowing air stream is presented. The lobed fuel injector is a device which generates streamwise vorticity, producing high strain rates which can enhance the mixing of reactants while delaying ignition in a controlled manner. The lobed injectors examined in the present study consist of two corrugated plates between which a fuel surrogate, CO2, is injected into coflowing air. Acetone is seeded in the CO2 supply as a fuel marker. Comparison of two alternative lobed injector geometries is made with a straight fuel injector to determine net differences in mixing and strain fields due to streamwise vorticity generation. Planar laser-induced fluorescence (PLIF) of the seeded acetone yields two-dimensional images of the scalar concentration field at various downstream locations, from which local mixing and scalar dissipation rates are computed. It is found that the lobed injector geometry can enhance molecular mixing and create a highly strained flowfield, and that the strain rates generated by scalar energy dissipation can potentially delay ignition in a reacting flowfield.
Fuel cell with metal screen flow-field
Wilson, M.S.; Zawodzinski, C.
1998-08-25
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.
Fuel cell with metal screen flow-field
Wilson, Mahlon S.; Zawodzinski, Christine
2001-01-01
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.
Fuel cell with metal screen flow-field
Wilson, Mahlon S.; Zawodzinski, Christine
1998-01-01
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.
ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications
NASA Technical Reports Server (NTRS)
Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri
2003-01-01
Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications, NASA is investigating the use of in-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes possible for robotic and human exploration to maximize scientific return and minimize cost and risk to both. Progress made to date at the Johnson Space Center on an ISRU producible reactant, Proton Exchange Membrane (PEM) fuel cell based power plant project to demonstrate the concept in conjunction with rover applications will be presented in detail.
ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications
NASA Astrophysics Data System (ADS)
Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri
2003-01-01
Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications. NASA is investigating the use of In-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes possible for robotic and human exploration to maximize scientific return and minimize cost and risk to both. Progress made to date at the Johnson Space Center on an ISRU producible reactant. Proton Exchange Membrane (PEM) fuel cell based power plant project for use in the first demonstration of this concept in conjunction with rover applications will be presented in detail.
Proton Exchange Membrane (PEM) Fuel Cells for Space Applications
NASA Technical Reports Server (NTRS)
Bradley, Karla
2004-01-01
This presentation will provide a summary of the PEM fuel cell development at the National Aeronautics and Space Administration, Johnson Space Center (NASA, JSC) in support of future space applications. Fuel cells have been used for space power generation due to their high energy storage density for multi-day missions. The Shuttle currently utilizes the alkaline fuel cell technology, which has highly safe and reliable performance. However, the alkaline technology has a limited life due to the corrosion inherent to the alkaline technology. PEM fuel cells are under development by industry for transportation, residential and commercial stationary power applications. NASA is trying to incorporate some of this stack technology development in the PEM fuel cells for space. NASA has some unique design and performance parameters which make developing a PEM fuel cell system more challenging. Space fuel cell applications utilize oxygen, rather than air, which yields better performance but increases the hazard level. To reduce the quantity of reactants that need to be flown in space, NASA also utilizes water separation and reactant recirculation. Due to the hazards of utilizing active components for recirculation and water separation, NASA is trying to develop passive recirculation and water separation methods. However, the ability to develop recirculation components and water separators that are gravity-independent and successfully operate over the full range of power levels is one of the greatest challenges to developing a safe and reliable PEM fuel cell system. PEM stack, accessory component, and system tests that have been performed for space power applications will be discussed.
Fluid flow plate for decreased density of fuel cell assembly
Vitale, Nicholas G.
1999-01-01
A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.
Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
2015-08-11
Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.
Electrochemical Energy Storage for an Orbiting Space Station
NASA Technical Reports Server (NTRS)
Martin, R. E.
1981-01-01
The system weight of a multi hundred kilowatt fuel cell electrolysis cell energy storage system based upon alkaline electrochemical cell technology for use in a future orbiting space station in low Earth orbit (LEO) was studied. Preliminary system conceptual design, fuel cell module performance characteristics, subsystem and system weights, and overall system efficiency are identified. The impact of fuel cell module operating temperature and efficiency upon energy storage system weight is investigated. The weight of an advanced technology system featuring high strength filament wound reactant tanks and a fuel cell module employing lightweight graphite electrolyte reservoir plates is defined.
Survey on aging on electrodes and electrocatalysts in phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Stonehart, P.; Hochmuth, J.
1981-01-01
The processes which contribute to the decay in performance of electrodes used in phosphoric acid fuel cell systems are discussed. Loss of catalytic surface area, corrosion of the carbon support, electrode structure degradation, electrolyte degradation, and impurities in the reactant streams are identified as the major areas for concern.
NASA Astrophysics Data System (ADS)
Murphy, T. J.; Douglas, M. R.; Fincke, J. R.; Olson, R. E.; Cobble, J. A.; Haines, B. M.; Hamilton, C. E.; Lee, M. N.; Oertel, J. A.; Parra-Vasquez, N. A. G.; Randolph, R. B.; Schmidt, D. W.; Shah, R. C.; Smidt, J. M.; Tregillis, I. L.
2016-05-01
Mix of ablator material into fuel of an ICF capsule adds non-burning material, diluting the fuel and reducing burn. The amount of the reduction is dependent in part on the morphology of the mix. A probability distribution function (PDF) burn model has been developed [6] that utilizes the average concentration of mixed materials as well as the variance in this quantity across cells provided by the BHR turbulent transport model [3] and its revisions [4] to describe the mix in terms of a PDF of concentrations of fuel and ablator material, and provides the burn rate in mixed material. Work is underway to develop the MARBLE ICF platform for use on the National Ignition Facility in experiments to quantify the influence of heterogeneous mix on fusion burn. This platform consists of a plastic (CH) capsule filled with a deuterated plastic foam (CD) with a density of a few tens of milligrams per cubic centimeter, with tritium gas filling the voids in the foam. This capsule will be driven using x-ray drive on NIF, and the resulting shocks will induce turbulent mix that will result in the mixing of deuterium from the foam with the tritium gas. In order to affect the morphology of the mix, engineered foams with voids of diameter up to 100 microns will be utilized. The degree of mix will be determined from the ratio of DT to DD neutron yield. As the mix increases, the yield from reactions between the deuterium of the CD foam with tritium from the gas will increase. The ratio of DT to DD neutrons will be compared to a variation of the PDF burn model that quantifies reactions from initially separated reactants.
Mathematical modeling of solid oxide fuel cells
NASA Technical Reports Server (NTRS)
Lu, Cheng-Yi; Maloney, Thomas M.
1988-01-01
Development of predictive techniques, with regard to cell behavior, under various operating conditions is needed to improve cell performance, increase energy density, reduce manufacturing cost, and to broaden utilization of various fuels. Such technology would be especially beneficial for the solid oxide fuel cells (SOFC) at it early demonstration stage. The development of computer models to calculate the temperature, CD, reactant distributions in the tubular and monolithic SOFCs. Results indicate that problems of nonuniform heat generation and fuel gas depletion in the tubular cell module, and of size limitions in the monolithic (MOD 0) design may be encountered during FC operation.
NASA Astrophysics Data System (ADS)
Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.
2015-06-01
Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.
NASA Astrophysics Data System (ADS)
Driscoll, Robert B.
An experimental study is conducted on a Pulse Detonation Engine-Crossover System to investigate the feasibility of repeated, shock-initiated combustion and characterize the initiation performance. A PDE-crossover system can decrease deflagration-to-detonation transition length while employing a single spark source to initiate a multi-PDE system. Visualization of a transferred shock wave propagating through a clear channel reveals a complex shock train behind the leading shock. Shock wave Mach number and decay rate remains constant for varying crossover tube geometries and operational frequencies. A temperature gradient forms within the crossover tube due to forward flow of high temperature ionized gas into the crossover tube from the driver PDE and backward flow of ionized gas into the crossover tube from the driven PDE, which can cause intermittent auto-ignition of the driver PDE. Initiation performance in the driven PDE is strongly dependent on initial driven PDE skin temperature in the shock wave reflection region. An array of detonation tubes connected with crossover tubes is developed using optimized parameters and successful operation utilizing shock-initiated combustion through shock wave reflection is achieved and sustained. Finally, an air-breathing, PDE-Crossover System is developed to characterize the feasibility of shock-initiated combustion within an air-breathing pulse detonation engine. The initiation effectiveness of shock-initiated combustion is compared to spark discharge and detonation injection through a pre-detonator. In all cases, shock-initiated combustion produces improved initiation performance over spark discharge and comparable detonation transition run-up lengths relative to pre-detonator initiation. A computational study characterizes the mixing processes and injection flow field within a rotating detonation engine. Injection parameters including reactant flow rate, reactant injection area, placement of the fuel injection, and fuel injection distribution are varied to assess the impact on mixing. Decreasing reactant injection areas improves fuel penetration into the cross-flowing air stream, enhances turbulent diffusion of the fuel within the annulus, and increases local equivalence ratio and fluid mixedness. Staggering fuel injection holes produces a decrease in mixing when compared to collinear fuel injection. Finally, emulating nozzle integration by increasing annulus back-pressure increases local equivalence ratio in the injection region due to increased convection residence time.
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.
2011-01-01
NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.
Tolerant chalcogenide cathodes of membraneless micro fuel cells.
Gago, Aldo Saul; Gochi-Ponce, Yadira; Feng, Yong-Jun; Esquivel, Juan Pablo; Sabaté, Neus; Santander, Joaquin; Alonso-Vante, Nicolas
2012-08-01
The most critical issues to overcome in micro direct methanol fuel cells (μDMFCs) are the lack of tolerance of the platinum cathode and fuel crossover through the polymer membrane. Thus, two novel tolerant cathodes of a membraneless microlaminar-flow fuel cell (μLFFC), Pt(x)S(y) and CoSe(2), were developed. The multichannel structure of the system was microfabricated in SU-8 polymer. A commercial platinum cathode served for comparison. When using 5 M CH(3)OH as the fuel, maximum power densities of 6.5, 4, and 0.23 mW cm(-2) were achieved for the μLFFC with Pt, Pt(x)S(y), and CoSe(2) cathodes, respectively. The Pt(x)S(y) cathode outperformed Pt in the same fuel cell when using CH(3)OH at concentrations above 10 M. In a situation where fuel crossover is 100 %, that is, mixing the fuel with the reactant, the maximum power density of the micro fuel cell with Pt decreased by 80 %. However, for Pt(x)S(y) this decrease corresponded to 35 % and for CoSe(2) there was no change in performance. This result is the consequence of the high tolerance of the chalcogenide-based cathodes. When using 10 M HCOOH and a palladium-based anode, the μLFFC with a CoSe(2) cathode achieved a maxiumum power density of 1.04 mW cm(-2). This micro fuel cell does not contain either Nafion membrane or platinum. We report, for the first time, the evaluation of Pt(x)S(y)- and CoSe(2)-based cathodes in membraneless micro fuel cells. The results suggest the development of a novel system that is not size restricted and its operation is mainly based on the selectivity of its electrodes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Suresh, P V; Jayanti, Sreenivas
2016-10-01
Adoption of hydrogen economy by means of using hydrogen fuel cells is one possible solution for energy crisis and climate change issues. Polymer electrolyte membrane (PEM) fuel cell, which is an important type of fuel cells, suffers from the problem of water management. Cross-flow is induced in some flow field designs to enhance the water removal. The presence of cross-flow in the serpentine and interdigitated flow fields makes them more effective in proper distribution of the reactants on the reaction layer and evacuation of water from the reaction layer than diffusion-based conventional parallel flow fields. However, too much of cross-flow leads to flow maldistribution in the channels, higher pressure drop, and membrane dehydration. In this study, an attempt has been made to quantify the amount of cross-flow required for effective distribution of reactants and removal of water in the gas diffusion layer. Unit cells containing two adjacent channels with gas diffusion layer (GDL) and catalyst layer at the bottom have been considered for the parallel, interdigitated, and serpentine flow patterns. Computational fluid dynamics-based simulations are carried out to study the reactant transport in under-the-rib area with cross-flow in the GDL. A new criterion based on the Peclet number is presented as a quantitative measure of cross-flow in the GDL. The study shows that a cross-flow Peclet number of the order of 2 is required for effective removal of water from the GDL. Estimates show that this much of cross-flow is not usually produced in the U-bends of Serpentine flow fields, making these areas prone to flooding.
Steam Methane Reformation Testing for Air-Independent Solid Oxide Fuel Cell Systems
NASA Technical Reports Server (NTRS)
Mwara, Kamwana N.
2015-01-01
Recently, NASA has been looking into utilizing landers that can be propelled by LOX-CH (sub 4), to be used for long duration missions. Using landers that utilize such propellants, also provides the opportunity to use solid oxide fuel cells as a power option, especially since they are able to process methane into a reactant through fuel reformation. One type of reformation, called steam methane reformation, is a process to reform methane into a hydrogen-rich product by reacting methane and steam (fuel cell exhaust) over a catalyst. A steam methane reformation system could potentially use the fuel cell's own exhaust to create a reactant stream that is hydrogen-rich, and requires less internal reforming of the incoming methane. Also, steam reformation may hold some advantages over other types of reforming, such as partial oxidation (PROX) reformation. Steam reformation does not require oxygen, while up to 25 percent can be lost in PROX reformation due to unusable CO (sub 2) reformation. NASA's Johnson Space Center has conducted various phases of steam methane reformation testing, as a viable solution for in-space reformation. This has included using two different types of catalysts, developing a custom reformer, and optimizing the test system to find the optimal performance parameters and operating conditions.
Synthesis of platinum nanoparticle electrocatalysts by atomic layer deposition
NASA Astrophysics Data System (ADS)
Lubers, Alia Marie
Demand for energy continues to increase, and without alternatives to fossil fuel combustion the effects on our environment will become increasingly severe. Fuel cells offer a promising improvement on current methods of energy generation; they are able to convert hydrogen fuel into electricity with a theoretical efficiency of up to 83% and interface smoothly with renewable hydrogen production. Fuel cells can replace internal combustion engines in vehicles and are used in stationary applications to power homes and businesses. The efficiency of a fuel cell is maximized by its catalyst, which is often composed of platinum nanoparticles supported on carbon. Economical production of fuel cell catalysts will promote adoption of this technology. Atomic layer deposition (ALD) is a possible method for producing catalysts at a large scale when employed in a fluidized bed. ALD relies on sequential dosing of gas-phase precursors to grow a material layer by layer. We have synthesized platinum nanoparticles on a carbon particle support (Pt/C) by ALD for use in proton exchange membrane fuel cells (PEMFCs) and electrochemical hydrogen pumps. Platinum nanoparticles with different characteristics were deposited by changing two chemistries: the carbon substrate through functionalization; and the deposition process by use of either oxygen or hydrogen as ligand removing reactants. The metal depositing reactant was trimethyl(methylcyclopentadienyl)platinum(IV). Functionalizing the carbon substrate increased nucleation during deposition resulting in smaller and more dispersed nanoparticles. Use of hydrogen produced smaller nanoparticles than oxygen, due to a gentler hydrogenation reaction compared to using oxygen's destructive combustion reaction. Synthesized Pt/C materials were used as catalysts in an electrochemical hydrogen pump, a device used to separate hydrogen fuel from contaminants. Catalysts deposited by ALD on functionalized carbon using a hydrogen chemistry were the most successful hydrogen pumping catalysts, comparable to a commercial Pt/C catalyst. Synthesized Pt/C materials were also used as PEMFC catalysts. We found the ALD catalysts with lower platinum loading to be competitive with a commercial fuel cell catalyst, especially when exhibiting similar platinum particle characteristics. The functionalized carbon helped produce smaller and more dispersed platinum particles; however, it encouraged carbon corrosion within an electrode, severing electrical connections and lowering energy production. The most suitable chemistry for competitive Pt/C catalysts was produced by platinum ALD on unmodified carbon using hydrogen as a reactant. ALD is a promising method for fabricating electrocatalysts, which could help fuel cells become an economically viable alternative to fossil fuels.
Fuel Cell/Reformers Technology Development
NASA Technical Reports Server (NTRS)
2004-01-01
NASA Glenn Research Center is interested in developing Solid Oxide Fuel Cell for use in aerospace applications. Solid oxide fuel cell requires hydrogen rich feed stream by converting commercial aviation jet fuel in a fuel processing process. The grantee's primary research activities center on designing and constructing a test facility for evaluating injector concepts to provide optimum feeds to fuel processor; collecting and analyzing literature information on fuel processing and desulfurization technologies; establishing industry and academic contacts in related areas; providing technical support to in-house SOFC-based system studies. Fuel processing is a chemical reaction process that requires efficient delivery of reactants to reactor beds for optimum performance, i.e., high conversion efficiency and maximum hydrogen production, and reliable continuous operation. Feed delivery and vaporization quality can be improved by applying NASA's expertise in combustor injector design. A 10 KWe injector rig has been designed, procured, and constructed to provide a tool to employ laser diagnostic capability to evaluate various injector concepts for fuel processing reactor feed delivery application. This injector rig facility is now undergoing mechanical and system check-out with an anticipated actual operation in July 2004. Multiple injector concepts including impinging jet, venturi mixing, discrete jet, will be tested and evaluated with actual fuel mixture compatible with reforming catalyst requirement. Research activities from September 2002 to the closing of this collaborative agreement have been in the following areas: compiling literature information on jet fuel reforming; conducting autothermal reforming catalyst screening; establishing contacts with other government agencies for collaborative research in jet fuel reforming and desulfurization; providing process design basis for the build-up of injector rig facility and individual injector design.
NASA redox storage system development project
NASA Technical Reports Server (NTRS)
1983-01-01
The operating temperature was raised from 25 C to 65 C, which enhanced the kinetics of the chromium electrode charging reactions. The design of the auxiliary electrochemical cell, which is used to keep both reactants at the same state of charge, was modified, leading to better and more stable performance. Preliminary testing has shown that the four tank mode of operation improves energy efficiency as much as 5 percentage points over the conventional two tank mode. Another variation in operating mode, the use of mixed reactants, potentially offers several very attractive advantages. Preliminary reactant cost studies lend further weight to the feasibility of the mixed reactant concept. Electrode studies show that reproducibility of performance is very dependent on the pyrolysis temperature at which the carbon/graphite felt substrate is formed. Membrane development work continued to concentrate on cost reduction and the enhancement of resistivity and selectivity.
Fox, Don T.; Guo, Luanjing; Fujita, Yoshiko; ...
2015-12-17
Formation of mineral precipitates in the mixing interface between two reactant solutions flowing in parallel in porous media is governed by reactant mixing by diffusion and dispersion and is coupled to changes in porosity/permeability due to precipitation. The spatial and temporal distribution of mixing-dependent precipitation of barium sulfate in porous media was investigated with side-by-side injection of barium chloride and sodium sulfate solutions in thin rectangular flow cells packed with quartz sand. The results for homogeneous sand beds were compared to beds with higher or lower permeability inclusions positioned in the path of the mixing zone. In the homogeneous andmore » high permeability inclusion experiments, BaSO 4 precipitate (barite) formed in a narrow deposit along the length and in the center of the solution–solution mixing zone even though dispersion was enhanced within, and downstream of, the high permeability inclusion. In the low permeability inclusion experiment, the deflected BaSO 4 precipitation zone broadened around one side and downstream of the inclusion and was observed to migrate laterally toward the sulfate solution. A continuum-scale fully coupled reactive transport model that simultaneously solves the nonlinear governing equations for fluid flow, transport of reactants and geochemical reactions was used to simulate the experiments and provide insight into mechanisms underlying the experimental observations. Lastly, migration of the precipitation zone in the low permeability inclusion experiment could be explained by the coupling effects among fluid flow, reactant transport and localized mineral precipitation reaction.« less
2011-12-13
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, technicians secure space shuttle Atlantis’ three fuel cells to special platforms. The fuel cells will be drained of all fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Atlantis’ mid-body and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Atlantis. The orbiter is being prepared for display at the Kennedy Space Center Visitor Complex. Photo credit: NASA/Kim Shiflett
Basuli, Utpal; Jose, Jobin; Lee, Ran Hee; Yoo, Yong Hwan; Jeong, Kwang-Un; Ahn, Jou-Hyeon; Nah, Changwoon
2012-10-01
Proton exchange membrane (PEM) fuel cell stack requires gaskets and seals in each cell to keep the reactant gases within their respective regions. Gasket performance is integral to the successful long-term operation of a fuel cell stack. This review focuses on properties, performance and degradation mechanisms of the different polymer gasket materials used in PEM fuel cell under normal operating conditions. The different degradation mechanisms and their corresponding representative mitigation strategies are also presented here. Summary of various properties of elastomers and their advantages and disadvantages in fuel cell'environment are presented. By considering the level of chemical degradation, mechanical properties and cost effectiveness, it can be proposed that EPDM is one of the best choices for gasket material in PEM fuel cell. Finally, the challenges that remain in using rubber component as in PEM fuel cell, as well as the prospects for exploiting them in the future are discussed.
Fuel cell membrane hydration and fluid metering
Jones, Daniel O.; Walsh, Michael M.
2003-01-01
A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).
Fuel cell stack with internal manifolds for reactant gases
Schnacke, Arthur W.
1985-01-01
A fuel cell stack includes a plurality of plate-like fuel cells arranged along an axis generally parallel to cell thickness with electrically conductive separator plates between each pair of cells. A plurality of axial manifolds are provided at opposite sides of the stack in outer marginal portions beyond the edges of electrodes and electrolyte tiles. Sealing rings prevent cross-leakage of oxidant fuel gases through use of pairs of outwardly extending lips from opposite tile surfaces bonded to first and second electrode frames respectively. The frames provide transition between electrode edges and manifold perimeters. The pairs of extension lips are sealingly bonded together through an electrically insulative sealing ring with wedge shaped fastening members.
Fuel cell stack with internal manifolds for reactant gases
Schnacke, A.W.
1983-10-12
A fuel cell stack includes a plurality of plate-like fuel cells arranged along an axis generally parallel to cell thickness with electrically conductive separator plates between each pair of cells. A plurality of axial manifolds are provided at opposite sides of the stack in outer marginal portions beyond the edges of electrodes and electrolyte tiles. Sealing rings prevent cross-leakage of oxidant fuel gases through use of pairs of outwardly extending lips from opposite tile surfaces bonded to first and second electrode frames respectively. The frames provide transition between electrode edges and manifold perimeters. The pairs of extension lips are sealingly bonded together through an electrically insulative sealing ring with wedge shaped fastening members.
NASA Astrophysics Data System (ADS)
Isnard, H.; Aubert, M.; Blanchet, P.; Brennetot, R.; Chartier, F.; Geertsen, V.; Manuguerra, F.
2006-02-01
Strontium-90 is one of the most important fission products generated in nuclear industry. In the research field concerning nuclear waste disposal in deep geological environment, it is necessary to quantify accurately and precisely its concentration (or the 90Sr / 238U atomic ratio) in irradiated fuels. To obtain accurate analysis of radioactive 90Sr, mass spectrometry associated with isotope dilution is the most appropriated method. But, in nuclear fuel samples the interference with 90Zr must be previously eliminated. An inductively coupled plasma mass spectrometer with multiple collection, equipped with an hexapole collision cell, has been used to eliminate the 90Sr / 90Zr interference by addition of oxygen in the collision cell as a reactant gas. Zr + ions are converted into ZrO +, whereas Sr + ions are not reactive. A mixed solution, prepared from a solution of enriched 84Sr and a solution of enriched 235U was then used to quantify the 90Sr / 238U ratio in spent fuel sample solutions using the double isotope dilution method. This paper shows the results, the reproducibility and the uncertainties that can be obtained with this method to quantify the 90Sr / 238U atomic ratio in an UOX (uranium oxide) and a MOX (mixed oxide) spent fuel samples using the collision cell of an inductively coupled plasma mass spectrometer with multiple collection to perform the 90Sr / 90Zr separation. A comparison with the results obtained by inductively coupled plasma mass spectrometer with multiple collection after a chemical separation of strontium from zirconium using a Sr spec resin (Eichrom) has been performed. Finally, to validate the analytical procedure developed, measurements of the same samples have been performed by thermal ionization mass spectrometry, used as an independent technique, after chemical separation of Sr.
Develop and test fuel cell powered on-site integrated total energy system
NASA Technical Reports Server (NTRS)
Kaufman, A.; Feigenbaum, H.; Wang, C. L.; Werth, J.; Whelan, J. A.
1983-01-01
Test results are presented for a 24 cell, two sq ft (4kW) stack. This stack is a precursor to a 25kW stack that is a key milestone. Results are discussed in terms of cell performance, electrolyte management, thermal management, and reactant gas manifolding. The results obtained in preliminary testing of a 50kW methanol processing subsystem are discussed. Subcontracting activities involving application analysis for fuel cell on site integrated energy systems are updated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, T. J.; Douglas, M. R.; Fincke, J. R.
Mix of ablator material into fuel of an ICF capsule adds non-burning material, diluting the fuel and reducing burn. The amount of the reduction is dependent in part on the morphology of the mix. A probability distribution function (PDF) burn model has been developed [6] that utilizes the average concentration of mixed materials as well as the variance in this quantity across cells provided by the BHR turbulent transport model [3] and its revisions [4] to describe the mix in terms of a PDF of concentrations of fuel and ablator material, and provides the burn rate in mixed material. Workmore » is underway to develop the MARBLE ICF platform for use on the National Ignition Facility in experiments to quantify the influence of heterogeneous mix on fusion burn. This platform consists of a plastic (CH) capsule filled with a deuterated plastic foam (CD) with a density of a few tens of milligrams per cubic centimeter, with tritium gas filling the voids in the foam. This capsule will be driven using x-ray drive on NIF, and the resulting shocks will induce turbulent mix that will result in the mixing of deuterium from the foam with the tritium gas. In order to affect the morphology of the mix, engineered foams with voids of diameter up to 100 microns will be utilized. The degree of mix will be determined from the ratio of DT to DD neutron yield. As the mix increases, the yield from reactions between the deuterium of the CD foam with tritium from the gas will increase. Lastly, the ratio of DT to DD neutrons will be compared to a variation of the PDF burn model that quantifies reactions from initially separated reactants.« less
Murphy, T. J.; Douglas, M. R.; Fincke, J. R.; ...
2016-05-26
Mix of ablator material into fuel of an ICF capsule adds non-burning material, diluting the fuel and reducing burn. The amount of the reduction is dependent in part on the morphology of the mix. A probability distribution function (PDF) burn model has been developed [6] that utilizes the average concentration of mixed materials as well as the variance in this quantity across cells provided by the BHR turbulent transport model [3] and its revisions [4] to describe the mix in terms of a PDF of concentrations of fuel and ablator material, and provides the burn rate in mixed material. Workmore » is underway to develop the MARBLE ICF platform for use on the National Ignition Facility in experiments to quantify the influence of heterogeneous mix on fusion burn. This platform consists of a plastic (CH) capsule filled with a deuterated plastic foam (CD) with a density of a few tens of milligrams per cubic centimeter, with tritium gas filling the voids in the foam. This capsule will be driven using x-ray drive on NIF, and the resulting shocks will induce turbulent mix that will result in the mixing of deuterium from the foam with the tritium gas. In order to affect the morphology of the mix, engineered foams with voids of diameter up to 100 microns will be utilized. The degree of mix will be determined from the ratio of DT to DD neutron yield. As the mix increases, the yield from reactions between the deuterium of the CD foam with tritium from the gas will increase. Lastly, the ratio of DT to DD neutrons will be compared to a variation of the PDF burn model that quantifies reactions from initially separated reactants.« less
Effect of compressive force on PEM fuel cell performance
NASA Astrophysics Data System (ADS)
MacDonald, Colin Stephen
Polymer electrolyte membrane (PEM) fuel cells possess the potential, as a zero-emission power source, to replace the internal combustion engine as the primary option for transportation applications. Though there are a number of obstacles to vast PEM fuel cell commercialization, such as high cost and limited durability, there has been significant progress in the field to achieve this goal. Experimental testing and analysis of fuel cell performance has been an important tool in this advancement. Experimental studies of the PEM fuel cell not only identify unfiltered performance response to manipulation of variables, but also aid in the advancement of fuel cell modelling, by allowing for validation of computational schemes. Compressive force used to contain a fuel cell assembly can play a significant role in how effectively the cell functions, the most obvious example being to ensure proper sealing within the cell. Compression can have a considerable impact on cell performance beyond the sealing aspects. The force can manipulate the ability to deliver reactants and the electrochemical functions of the cell, by altering the layers in the cell susceptible to this force. For these reasons an experimental study was undertaken, presented in this thesis, with specific focus placed on cell compression; in order to study its effect on reactant flow fields and performance response. The goal of the thesis was to develop a consistent and accurate general test procedure for the experimental analysis of a PEM fuel cell in order to analyse the effects of compression on performance. The factors potentially affecting cell performance, which were a function of compression, were identified as: (1) Sealing and surface contact; (2) Pressure drop across the flow channel; (3) Porosity of the GDL. Each factor was analysed independently in order to determine the individual contribution to changes in performance. An optimal degree of compression was identified for the cell configuration in question and the performance gains from the aforementioned compression factors were quantified. The study provided a considerable amount of practical and analytical knowledge in the area of cell compression and shed light on the importance of precision compressive control within the PEM fuel cell.
Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactantmore » fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.« less
Optimization of polymer electrolyte membrane fuel cell flow channels using a genetic algorithm
NASA Astrophysics Data System (ADS)
Catlin, Glenn; Advani, Suresh G.; Prasad, Ajay K.
The design of the flow channels in PEM fuel cells directly impacts the transport of reactant gases to the electrodes and affects cell performance. This paper presents results from a study to optimize the geometry of the flow channels in a PEM fuel cell. The optimization process implements a genetic algorithm to rapidly converge on the channel geometry that provides the highest net power output from the cell. In addition, this work implements a method for the automatic generation of parameterized channel domains that are evaluated for performance using a commercial computational fluid dynamics package from ANSYS. The software package includes GAMBIT as the solid modeling and meshing software, the solver FLUENT, and a PEMFC Add-on Module capable of modeling the relevant physical and electrochemical mechanisms that describe PEM fuel cell operation. The result of the optimization process is a set of optimal channel geometry values for the single-serpentine channel configuration. The performance of the optimal geometry is contrasted with a sub-optimal one by comparing contour plots of current density, oxygen and hydrogen concentration. In addition, the role of convective bypass in bringing fresh reactant to the catalyst layer is examined in detail. The convergence to the optimal geometry is confirmed by a bracketing study which compares the performance of the best individual to those of its neighbors with adjacent parameter values.
Fuel cell separator with compressible sealing flanges
Mientek, A.P.
1984-03-30
A separator for separating adjacent fuel cells in a stack of such cells includes a flat, rectangular, gas-impermeable plate disposed between adjacent cells and having two opposite side margins thereof folded back over one side of the plate to form two first seal flanges and having the other side margins thereof folded back over the opposite side of the plate to form two second seal flanges, each of the seal flanges cooperating with the plate to define a channel in which is disposed a resiliently compressible stack of thin metal sheets. The two first seal flanges cooperate with the electrolyte matrix of one of the cells to form a gas-impermeable seal between an electrode of the one cell and one of two reactant gas manifolds. The second seal flanges cooperate with the electrolyte matrix of the other cell for forming a gas-impermeable seal between an electrode of the other cell and the other of the two reactant gas manifolds. The seal flanges cooperate with the associated compressible stacks of sheets for maintaining a spacing between the plate and the electrolyte matrices while accommodating variation of that spacing.
Fuel cell separator with compressible sealing flanges
Mientek, Anthony P.
1985-04-30
A separator for separating adjacent fuel cells in a stack of such cells includes a flat, rectangular, gas-impermeable plate disposed between adjacent cells and having two opposite side margins thereof folded back over one side of the plate to form two first seal flanges and having the other side margins thereof folded back over the opposite side of the plate to form two second seal flanges, each of the seal flanges cooperating with the plate to define a channel in which is disposed a resiliently compressible stack of thin metal sheets. The two first seal flanges cooperate with the electrolyte matrix of one of the cells to form a gas-impermeable seal between an electrode of the one cell and one of two reactant gas manifolds. The second seal flanges cooperate with the electrolyte matrix of the other cell for forming a gas-impermeable seal between an electrode of the other cell and the other of the two reactant gas manifolds. The seal flanges cooperate with the associated compressible stacks of sheets for maintaining a spacing between the plate and the electrolyte matrices while accommodating variation of that spacing.
Katz, Murray; Bonk, Stanley P.; Maricle, Donald L.; Abrams, Martin
1991-01-01
A fuel cell has a current collector plate (22) located between an electrode (20) and a separate plate (25). The collector plate has a plurality of arches (26, 28) deformed from a single flat plate in a checkerboard pattern. The arches are of sufficient height (30) to provide sufficient reactant flow area. Each arch is formed with sufficient stiffness to accept compressive load and sufficient resiliently to distribute the load and maintain electrical contact.
Characterization Testing of the Teledyne Passive Breadboard Fuel Cell Powerplant
NASA Technical Reports Server (NTRS)
Loyselle, Patricia; Prokopius, Kevin
2011-01-01
NASA's Exploration Technology Development Program (ETDP) is tasked with the development of enabling and enhancing technologies for NASA's exploration missions. As part of that initiative, the return to the Moon requires a reliable, efficient, and lightweight fuel cell powerplant system to provide power to the Altair Lunar Lander and for lunar surface systems. Fuel cell powerplants are made up of two basic parts; the fuel cell itself and the supporting ancillary subsystem. This subsystem is designed to deliver reactants to the fuel cell and remove product water and waste heat from the fuel cell. Typically, fuel cell powerplant ancillary subsystems rely upon pumps and active water separation techniques to accomplish these tasks for closed hydrogen/oxygen systems. In a typical system, these components are the largest contributors to the overall parasitic power load of the fuel cell powerplant. A potential step towards the development of an efficient lightweight power system is to maximize the use of "passive" or low-power ancillary components as a replacement to these high-power load components
2011-12-13
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, space shuttle Atlantis’ three fuel cells are being removed from the payload bay. The fuel cells will be drained of all fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Atlantis’ mid-body and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Atlantis. The orbiter is being prepared for display at the Kennedy Space Center Visitor Complex. Photo credit: NASA/Kim Shiflett
High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage
NASA Technical Reports Server (NTRS)
Bents, David J.
1987-01-01
A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.
2011-12-13
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, technicians prepare to remove one of three fuel cells from space shuttle Atlantis’ payload bay. The fuel cells will be drained of all fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Atlantis’ mid-body and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Atlantis. The orbiter is being prepared for display at the Kennedy Space Center Visitor Complex. Photo credit: NASA/Kim Shiflett
2011-12-13
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, technicians prepare to remove one of three fuel cells from space shuttle Atlantis’ payload bay. The fuel cells will be drained of all fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Atlantis’ mid-body and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Atlantis. The orbiter is being prepared for display at the Kennedy Space Center Visitor Complex. Photo credit: NASA/Kim Shiflett
High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage
NASA Astrophysics Data System (ADS)
Bents, David J.
A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.
Dynamic Model and Experimental Validation of a PEM Fuel Cell System
NASA Astrophysics Data System (ADS)
Nassif, Younane; Godoy, Emmanuel; Bethoux, Olivier; Roche, Ivan
Fuel cells are expected to become a challenging technology in terms of efficiency, and fitting the emission reduction schedules [Lemons, J. Power Sources, 29:251,
Engineering model system study for a regenerative fuel cell: Study report
NASA Technical Reports Server (NTRS)
Chang, B. J.; Schubert, F. H.; Kovach, A. J.; Wynveen, R. A.
1984-01-01
Key design issues of the regenerative fuel cell system concept were studied and a design definition of an alkaline electrolyte based engineering model system or low Earth orbit missions was completed. Definition of key design issues for a regenerative fuel cell system include gaseous reactant storage, shared heat exchangers and high pressure pumps. A power flow diagram for the 75 kW initial space station and the impact of different regenerative fuel cell modular sizes on the total 5 year to orbit weight and volume are determined. System characteristics, an isometric drawing, component sizes and mass and energy balances are determined for the 10 kW engineering model system. An open loop regenerative fuel cell concept is considered for integration of the energy storage system with the life support system of the space station. Technical problems and their solutions, pacing technologies and required developments and demonstrations for the regenerative fuel cell system are defined.
2010-05-12
multicomponent steady-state model for liquid -feed solid polymer electrolyte DBFCs. These fuel cells use sodium borohydride (NaBH4) in alkaline media...layers, diffusion layers and the polymer electrolyte membrane for a liquid feed DBFC. Diffusion of reactants within and between the pores is accounted...projected for futuristic portable applications. In this project we developed a three- dimensional, multicomponent steady-state model for liquid -feed solid
Phosphorus-doped glass proton exchange membranes for low temperature direct methanol fuel cells
NASA Astrophysics Data System (ADS)
Prakash, Shruti; Mustain, William E.; Park, SeongHo; Kohl, Paul A.
Phosphorus-doped silicon dioxide thin films were used as ion exchange membranes in low temperature proton exchange membrane fuel cells. Phosphorus-doped silicon dioxide glass (PSG) was deposited via plasma-enhanced chemical vapor deposition (PECVD). The plasma deposition of PSG films allows for low temperature fabrication that is compatible with current microelectronic industrial processing. SiH 4, PH 3 and N 2O were used as the reactant gases. The effect of plasma deposition parameters, substrate temperature, RF power, and chamber pressure, on the ionic conductivity of the PSG films is elucidated. PSG conductivities as high as 2.54 × 10 -4 S cm -1 were realized, which is 250 times higher than the conductivity of pure SiO 2 films (1 × 10 -6 S cm -1) under identical deposition conditions. The higher conductivity films were deposited at low temperature, moderate pressure, limited reactant gas flow rate, and high RF power.
NASA Technical Reports Server (NTRS)
Srinivasan, Supramaniam; Mukerjee, Sanjeev; Parthasarathy, A.; CesarFerreira, A.; Wakizoe, Masanobu; Rho, Yong Woo; Kim, Junbom; Mosdale, Renaut A.; Paetzold, Ronald F.; Lee, James
1994-01-01
The proton exchange membrane fuel cell (PEMFC) is one of the most promising electrochemical power sources for space and electric vehicle applications. The wide spectrum of R&D activities on PEMFC's, carried out in our Center from 1988 to date, is as follows (1) Electrode Kinetic and Electrocatalysis of Oxygen Reduction; (2) Optimization of Structures of Electrodes and of Membrane and Electrode Assemblies; (3) Selection and Evaluation of Advanced Proton Conducting Membranes and of Operating Conditions to Attain High Energy Efficiency; (4) Modeling Analysis of Fuel Cell Performance and of Thermal and Water Management; and (5) Engineering Design and Development of Multicell Stacks. The accomplishments on these tasks may be summarized as follows: (1) A microelectrode technique was developed to determine the electrode kinetic parameters for the fuel cell reactions and mass transport parameters for the H2 and O2 reactants in the proton conducting membrane. (2) High energy efficiencies and high power densities were demonstrated in PEMFCs with low platinum loading electrodes (0.4 mg/cm(exp 2) or less), advanced membranes and optimized structures of membrane and electrode assemblies, as well as operating conditions. (3) The modeling analyses revealed methods to minimize mass transport limitations, particularly with air as the cathodic reactant; and for efficient thermal and water management. (4) Work is in progress to develop multi-kilowatt stacks with the electrodes containing low platinum loadings.
Electrolyte paste for molten carbonate fuel cells
Bregoli, Lawrance J.; Pearson, Mark L.
1995-01-01
The electrolyte matrix and electrolyte reservoir plates in a molten carbonate fuel cell power plant stack are filled with electrolyte by applying a paste of dry electrolyte powder entrained in a dissipatable carrier to the reactant flow channels in the current collector plate. The stack plates are preformed and solidified to final operating condition so that they are self sustaining and can be disposed one atop the other to form the power plant stack. Packing the reactant flow channels with the electrolyte paste allows the use of thinner electrode plates, particularly on the anode side of the cells. The use of the packed electrolyte paste provides sufficient electrolyte to fill the matrix and to entrain excess electrolyte in the electrode plates, which also serve as excess electrolyte reservoirs. When the stack is heated up to operating temperatures, the electrolyte in the paste melts, the carrier vaporizes, or chemically decomposes, and the melted electrolyte is absorbed into the matrix and electrode plates.
Flame stabilization and mixing characteristics in a Stagnation Point Reverse Flow combustor
NASA Astrophysics Data System (ADS)
Bobba, Mohan K.
A novel combustor design, referred to as the Stagnation Point Reverse-Flow (SPRF) combustor, was recently developed that is able to operate stably at very lean fuel-air mixtures and with low NOx emissions even when the fuel and air are not premixed before entering the combustor. The primary objective of this work is to elucidate the underlying physics behind the excellent stability and emissions performance of the SPRF combustor. The approach is to experimentally characterize velocities, species mixing, heat release and flame structure in an atmospheric pressure SPRF combustor with the help of various optical diagnostic techniques: OH PLIF, chemiluminescence imaging, PIV and Spontaneous Raman Scattering. Results indicate that the combustor is primarily stabilized in a region downstream of the injector that is characterized by low average velocities and high turbulence levels; this is also the region where most of the heat release occurs. High turbulence levels in the shear layer lead to increased product entrainment levels, elevating the reaction rates and thereby enhancing the combustor stability. The effect of product entrainment on chemical timescales and the flame structure is illustrated with simple reactor models. Although reactants are found to burn in a highly preheated (1300 K) and turbulent environment due to mixing with hot product gases, the residence times are sufficiently long compared to the ignition timescales such that the reactants do not autoignite. Turbulent flame structure analysis indicates that the flame is primarily in the thin reaction zones regime throughout the combustor, and it tends to become more flamelet like with increasing distance from the injector. Fuel-air mixing measurements in case of non-premixed operation indicate that the fuel is shielded from hot products until it is fully mixed with air, providing nearly premixed performance without the safety issues associated with premixing. The reduction in NOx emissions in the SPRF combustor are primarily due to its ability to stably operate under ultra lean (and nearly premixed) condition within the combustor. Further, to extend the usefulness of this combustor configuration to various applications, combustor geometry scaling rules were developed with the help of simplified coaxial and opposed jet models.
2011-12-13
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, technicians assist as a special crane is used to lift one of the three fuel cells away from space shuttle Atlantis’ payload bay. The fuel cells will be drained of all fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Atlantis’ mid-body and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Atlantis. The orbiter is being prepared for display at the Kennedy Space Center Visitor Complex. Photo credit: NASA/Kim Shiflett
2011-12-13
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a special crane lifts one of the three fuel cells away from space shuttle Atlantis’ for securing on a special platform. The fuel cells will be drained of all fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Atlantis’ mid-body and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Atlantis. The orbiter is being prepared for display at the Kennedy Space Center Visitor Complex. Photo credit: NASA/Kim Shiflett
2011-12-13
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, technicians assist as a special crane is used to lift one of the three fuel cells away from space shuttle Atlantis’ payload bay. The fuel cells will be drained of all fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Atlantis’ mid-body and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Atlantis. The orbiter is being prepared for display at the Kennedy Space Center Visitor Complex. Photo credit: NASA/Kim Shiflett
2011-12-13
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, technicians assist as a special crane is used to lift one of the three fuel cells away from space shuttle Atlantis’ payload bay. The fuel cells will be drained of all fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Atlantis’ mid-body and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Atlantis. The orbiter is being prepared for display at the Kennedy Space Center Visitor Complex. Photo credit: NASA/Kim Shiflett
2011-12-13
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a special crane lifts one of the three fuel cells away from space shuttle Atlantis’ payload bay. The fuel cells will be drained of all fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Atlantis’ mid-body and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Atlantis. The orbiter is being prepared for display at the Kennedy Space Center Visitor Complex. Photo credit: NASA/Kim Shiflett
2011-12-13
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, a technician assists as a special crane lifts one of the three fuel cells away from space shuttle Atlantis’ payload bay. The fuel cells will be drained of all fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Atlantis’ mid-body and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Atlantis. The orbiter is being prepared for display at the Kennedy Space Center Visitor Complex. Photo credit: NASA/Kim Shiflett
2011-12-13
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a special crane lifts one of the three fuel cells away from space shuttle Atlantis’ payload bay. The fuel cells will be drained of all fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Atlantis’ mid-body and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Atlantis. The orbiter is being prepared for display at the Kennedy Space Center Visitor Complex. Photo credit: NASA/Kim Shiflett
2011-12-13
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, a technician assists as a special crane is used to lift one of the three fuel cells away from space shuttle Atlantis’ payload bay. The fuel cells will be drained of all fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Atlantis’ mid-body and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Atlantis. The orbiter is being prepared for display at the Kennedy Space Center Visitor Complex. Photo credit: NASA/Kim Shiflett
2011-12-13
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a special crane lifts one of the three fuel cells away from space shuttle Atlantis’ payload bay. The fuel cells will be drained of all fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Atlantis’ mid-body and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Atlantis. The orbiter is being prepared for display at the Kennedy Space Center Visitor Complex. Photo credit: NASA/Kim Shiflett
2011-12-13
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, technicians help position a special crane in place to lift one of the three fuel cells away from space shuttle Atlantis’ payload bay. The fuel cells will be drained of all fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Atlantis’ mid-body and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Atlantis. The orbiter is being prepared for display at the Kennedy Space Center Visitor Complex. Photo credit: NASA/Kim Shiflett
Lightweight Stacks of Direct Methanol Fuel Cells
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram; Valdez, Thomas
2004-01-01
An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.
Phosphoric acid electric utility fuel cell technology development
NASA Astrophysics Data System (ADS)
Breault, R. D.; Briggs, T. A.; Congdon, J. V.; Gelting, R. L.; Goller, G. J.; Luoma, W. L.; McCloskey, M. W.; Mientek, A. P.; Obrien, J. J.; Randall, S. A.
1985-07-01
Improved cross pressure tolerance has been demonstrated for electrodes containing impregnated seals. Electrodes, cooler assemblies, separator plates and reactant manifolds for the third 10-ft(2) short stack were completed. Assembly of the third 10-ft(2) short stack was initiated.
Insertable fluid flow passage bridgepiece and method
Jones, Daniel O.
2000-01-01
A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.
Gamma-based Measurement of ``Dark Mix'' in ICF Capsules
NASA Astrophysics Data System (ADS)
Meaney, Kevin; Herrmann, H.; Kim, Yh; Zylstra, Ab; Geppert-Kleinrath, H.; Hoffman, Nm; Yi, As
2017-10-01
Mix of capsule ablator material into the fusion fuel is a source of yield degradation in inertial confinement fusion. Jetting or chunk mix, such as the elusive ``meteors'' that have been observed at NIF, can be difficult to diagnose because the chunks may not get hot enough to excite dopant x-rays, nor atomized enough for separated-reactants to fuse. Using the gamma reaction history (GRH-6m) diagnostic, (n,n') gammas from strategically placed carbon layer within a beryllium capsule gives a measure of the time-resolved areal density of this carbon during the burn and hence an indication of the compression and spatial distribution of this layer. As the carbon moves further from the fuel, the areal density nominally decreases as 1/r2 for unablated material. However, mix of this carbon into the cold dense fuel layer or hot spot will have a significant effect on the carbon gamma signal. Different types of mix (e.g., jetting, Rayleigh-Taylor fingers, diffusive, ...) as well as features that can seed this mix (eg., tents, fill,...) will be discussed along with their expected effect on the carbon signal. The design for upcoming OMEGA shots, which will demonstrate this technique, and the potential for use on the NIF will be presented.
Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One systemmore » operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.« less
Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
2015-07-14
Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorotilin, V. P., E-mail: VPVorotilin@yandex.ru
A generalization of the theory of chemical transformation processes under turbulent mixing of reactants and arbitrary values of the rate of molecular reactions is presented that was previously developed for the variant of an instantaneous reaction [13]. The use of the features of instantaneous reactions when considering the general case, namely, the introduction of the concept of effective reaction for the reactant volumes and writing a closing conservation equation for these volumes, became possible due to the partition of the whole amount of reactants into “active” and “passive” classes; the reactants of the first class are not mixed and reactmore » by the mechanism of instantaneous reactions, while the reactants of the second class approach each other only through molecular diffusion, and therefore their contribution to the reaction process can be neglected. The physical mechanism of reaction for the limit regime of an ideal mixing reactor (IMR) is revealed and described. Although formally the reaction rate in this regime depends on the concentration of passive fractions of the reactants, according to the theory presented, the true (hidden) mechanism of the reaction is associated only with the reaction of the active fractions of the reactants with vanishingly small concentration in the volume of the reactor. It is shown that the rate constant of fast chemical reactions can be evaluated when the mixing intensity of reactants is much less than that needed to reach the mixing conditions in an IMR.« less
Catalytic Microtube Rocket Igniter
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Deans, Matthew C.
2011-01-01
Devices that generate both high energy and high temperature are required to ignite reliably the propellant mixtures in combustion chambers like those present in rockets and other combustion systems. This catalytic microtube rocket igniter generates these conditions with a small, catalysis-based torch. While traditional spark plug systems can require anywhere from 50 W to multiple kW of power in different applications, this system has demonstrated ignition at less than 25 W. Reactants are fed to the igniter from the same tanks that feed the reactants to the rest of the rocket or combustion system. While this specific igniter was originally designed for liquid methane and liquid oxygen rockets, it can be easily operated with gaseous propellants or modified for hydrogen use in commercial combustion devices. For the present cryogenic propellant rocket case, the main propellant tanks liquid oxygen and liquid methane, respectively are regulated and split into different systems for the individual stages of the rocket and igniter. As the catalyst requires a gas phase for reaction, either the stored boil-off of the tanks can be used directly or one stream each of fuel and oxidizer can go through a heat exchanger/vaporizer that turns the liquid propellants into a gaseous form. For commercial applications, where the reactants are stored as gases, the system is simplified. The resulting gas-phase streams of fuel and oxidizer are then further divided for the individual components of the igniter. One stream each of the fuel and oxidizer is introduced to a mixing bottle/apparatus where they are mixed to a fuel-rich composition with an O/F mass-based mixture ratio of under 1.0. This premixed flow then feeds into the catalytic microtube device. The total flow is on the order of 0.01 g/s. The microtube device is composed of a pair of sub-millimeter diameter platinum tubes connected only at the outlet so that the two outlet flows are parallel to each other. The tubes are each approximately 10 cm long and are heated via direct electric resistive heating. This heating brings the gasses to their minimum required ignition temperature, which is lower than the auto-thermal ignition temperature, and causes the onset of both surface and gas phase ignition producing hot temperatures and a highly reacting flame. The combustion products from the catalytic tubes, which are below the melting point of platinum, are injected into the center of another combustion stage, called the primary augmenter. The reactants for this combustion stage come from the same source but the flows of non-premixed methane and oxygen gas are split off to a secondary mixing apparatus and can be mixed in a near-stoichiometric to highly lean mixture ratio. The primary augmenter is a component that has channels venting this mixed gas to impinge on each other in the center of the augmenter, perpendicular to the flow from the catalyst. The total crosssectional area of these channels is on a similar order as that of the catalyst. The augmenter has internal channels that act as a manifold to distribute equally the gas to the inward-venting channels. This stage creates a stable flame kernel as its flows, which are on the order of 0.01 g/s, are ignited by the combustion products of the catalyst. This stage is designed to produce combustion products in the flame kernel that exceed the autothermal ignition temperature of oxygen and methane.
2011-12-09
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-1 at NASA’s Kennedy Space Center in Florida, technicians re-install the three fuel cells in space shuttle Discovery’s mid-body. The fuel cells were removed and drained of all fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Discovery’s mid-body and have been purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Discovery. Discovery is being prepared for display at the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Dimitri Gerondidakis
2011-12-09
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-1 at NASA’s Kennedy Space Center in Florida, technicians re-install the three fuel cells in space shuttle Discovery’s mid-body. The fuel cells were removed and drained of all fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Discovery’s mid-body and have been purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Discovery. Discovery is being prepared for display at the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Dimitri Gerondidakis
Reforming of fuel inside fuel cell generator
Grimble, Ralph E.
1988-01-01
Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.
Reforming of fuel inside fuel cell generator
Grimble, R.E.
1988-03-08
Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.
Biaxial fatigue crack propagation behavior of perfluorosulfonic-acid membranes
NASA Astrophysics Data System (ADS)
Lin, Qiang; Shi, Shouwen; Wang, Lei; Chen, Xu; Chen, Gang
2018-04-01
Perfluorosulfonic-acid membranes have long been used as the typical electrolyte for polymer-electrolyte fuel cells, which not only transport proton and water but also serve as barriers to prevent reactants mixing. However, too often the structural integrity of perfluorosulfonic-acid membranes is impaired by membrane thinning or cracks/pinholes formation induced by mechanical and chemical degradations. Despite the increasing number of studies that report crack formation, such as crack size and shape, the underlying mechanism and driving forces have not been well explored. In this paper, the fatigue crack propagation behaviors of Nafion membranes subjected to biaxial loading conditions have been investigated. In particular, the fatigue crack growth rates of flat cracks in responses to different loading conditions are compared, and the impact of transverse stress on fatigue crack growth rate is clarified. In addition, the crack paths for slant cracks under both uniaxial and biaxial loading conditions are discussed, which are similar in geometry to those found after accelerated stress testing of fuel cells. The directions of initial crack propagation are calculated theoretically and compared with experimental observations, which are in good agreement. The findings reported here lays the foundation for understanding of mechanical failure of membranes.
Mixed-layered bismuth-oxygen-iodine materials for capture and waste disposal of radioactive iodine
Krumhansl, James L; Nenoff, Tina M
2013-02-26
Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.
Primary and secondary electrical space power based on advanced PEM systems
NASA Technical Reports Server (NTRS)
Vanderborgh, N. E.; Hedstrom, J. C.; Stroh, K. R.; Huff, J. R.
1993-01-01
For new space ventures, power continues to be a pacing function for mission planning and experiment endurance. Although electrochemical power is a well demonstrated space power technology, current hardware limitations impact future mission viability. In order to document and augment electrochemical technology, a series of experiments for the National Aeronautics and Space Administration Lewis Research Center (NASA LeRC) are underway at the Los Alamos National Laboratory that define operational parameters on contemporary proton exchange membrane (PEM) hardware operating with hydrogen and oxygen reactants. Because of the high efficiency possible for water electrolysis, this hardware is also thought part of a secondary battery design built around stored reactants - the so-called regenerative fuel cell. An overview of stack testing at Los Alamos and of analyses related to regenerative fuel cell systems are provided in this paper. Finally, this paper describes work looking at innovative concepts that remove complexity from stack hardware with the specific intent of higher system reliability. This new concept offers the potential for unprecedented electrochemical power system energy densities.
Kaufman, Arthur; Werth, John
1986-01-01
A bipolar gas reactant distribution assembly for use in a fuel cell is disclosed, the assembly having a solid edge seal to prevent leakage of gaseous reactants wherein a pair of porous plates are provided with peripheral slits generally parallel to, and spaced apart from two edges of the plate, the slit being filled with a solid, fusible, gas impervious edge sealing compound. The plates are assembled with opposite faces adjacent one another with a layer of a fusible sealant material therebetween the slits in the individual plates being approximately perpendicular to one another. The plates are bonded to each other by the simultaneous application of heat and pressure to cause a redistribution of the sealant into the pores of the adjacent plate surfaces and to cause the edge sealing compound to flow and impregnate the region of the plates adjacent the slits and comingle with the sealant layer material to form a continuous layer of sealant along the edges of the assembled plates.
Regenerative fuel cell systems for space station
NASA Technical Reports Server (NTRS)
Hoberecht, M. A.; Sheibley, D. W.
1985-01-01
Regenerative fuel cell (RFC) systems are the leading energy storage candidates for Space Station. Key design features are the advanced state of technology readiness and high degree of system level design flexibility. Technology readiness was demonstrated through testing at the single cell, cell stack, mechanical ancillary component, subsystem, and breadboard levels. Design flexibility characteristics include independent sizing of power and energy storage portions of the system, integration of common reactants with other space station systems, and a wide range of various maintenance approaches. The design features led to selection of a RFC system as the sole electrochemical energy storage technology option for the space station advanced development program.
Solid oxide fuel cell with multi-unit construction and prismatic design
McPheeters, Charles C.; Dees, Dennis W.; Myles, Kevin M.
1999-01-01
A single cell unit of a solid oxide fuel cell that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units.
Durability of PEM Fuel Cell Membranes
NASA Astrophysics Data System (ADS)
Huang, Xinyu; Reifsnider, Ken
Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the "separation" function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.
A Novel Unitized Regenerative Proton Exchange Membrane Fuel Cell
NASA Technical Reports Server (NTRS)
Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.
1996-01-01
A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel single cell unitized regenerative fuel cell and results obtained on testing it are presented.
Gradient isolator for flow field of fuel cell assembly
Ernst, W.D.
1999-06-15
Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions. 4 figs.
Gradient isolator for flow field of fuel cell assembly
Ernst, William D.
1999-01-01
Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions.
Houchins, Cassidy; Kleen, Greg J; Spendelow, Jacob S; Kopasz, John; Peterson, David; Garland, Nancy L; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C
2012-12-18
Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed.
NASA redox storage system development project, calendar year 1982
NASA Technical Reports Server (NTRS)
1983-01-01
Development was continued for iron-chromium battery operation at 65 C. Membranes that were adequate at 25 C were shown to be unacceptable at 65 C with regard to selectivity. This led to the elevated-temperature, mixed-reactant mode of operation, in which each reactant solution, when discharged, contains both ferrous and chromic chlorides. This operating mode allows the use of very low-resistivity membranes, resulting in high energy efficiencies at current densities. It also allows the use of very simple techniques to correct for solvent or reactant transfer through cell membranes. Screening of candidate catalysts for the chromium electrode led to the development of a bismuth-lead candidate having several attractive characteristics.
A novel unitized regenerative proton exchange membrane fuel cell
NASA Technical Reports Server (NTRS)
Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.
1995-01-01
A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed in work performed at Lynntech. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel unitized regenerative fuel cell and results obtained on testing it will be presented.
Fuel injection and mixing systems having piezoelectric elements and methods of using the same
Mao, Chien-Pei [Clive, IA; Short, John [Norwalk, IA; Klemm, Jim [Des Moines, IA; Abbott, Royce [Des Moines, IA; Overman, Nick [West Des Moines, IA; Pack, Spencer [Urbandale, IA; Winebrenner, Audra [Des Moines, IA
2011-12-13
A fuel injection and mixing system is provided that is suitable for use with various types of fuel reformers. Preferably, the system includes a piezoelectric injector for delivering atomized fuel, a gas swirler, such as a steam swirler and/or an air swirler, a mixing chamber and a flow mixing device. The system utilizes ultrasonic vibrations to achieve fuel atomization. The fuel injection and mixing system can be used with a variety of fuel reformers and fuel cells, such as SOFC fuel cells.
2011-12-09
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-1 at NASA’s Kennedy Space Center in Florida, technicians prepare to re-install the three fuel cells in space shuttle Discovery’s mid-body. The fuel cells were removed and drained of all fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Discovery’s mid-body and have been purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Discovery. Discovery is being prepared for display at the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Dimitri Gerondidakis
2011-12-09
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-1 at NASA’s Kennedy Space Center in Florida, technicians prepare to re-install the three fuel cells in space shuttle Discovery’s mid-body. The fuel cells were removed and drained of all fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Discovery’s mid-body and have been purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Discovery. Discovery is being prepared for display at the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Dimitri Gerondidakis
2011-12-09
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-1 at NASA’s Kennedy Space Center in Florida, technicians prepare to re-install the three fuel cells in space shuttle Discovery’s mid-body. The fuel cells were removed and drained of all fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Discovery’s mid-body and have been purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Discovery. Discovery is being prepared for display at the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Dimitri Gerondidakis
2011-12-09
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-1 at NASA’s Kennedy Space Center in Florida, technicians prepare to re-install the three fuel cells in space shuttle Discovery’s mid-body. The fuel cells were removed and drained of all fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Discovery’s mid-body and have been purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Discovery. Discovery is being prepared for display at the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Dimitri Gerondidakis
NASA Astrophysics Data System (ADS)
Muirhead, Daniel
In this thesis, the relative humidity (RH) of the cathode reactant gas was investigated as a factor which influences gas diffusion layer (GDL) liquid water accumulation and mass transport-related efficiency losses over a range of operating current densities in a polymer electrolyte membrane (PEM) fuel cell. Limiting current measurements were used to characterize fuel cell oxygen transport resistance while simultaneous measurements of liquid water accumulation were conducted using synchrotron X-ray radiography. GDL porosity distributions were characterized with micro-computed tomography (microCT). The work presented here can be used by researchers to develop improved numerical models to predict GDL liquid water accumulation and to inform the design of next-generation GDL materials to mitigate mass transport-related efficiency losses. This work also contributes an extensive set of concurrent performance and liquid water visualization data to the PEM fuel cell field that can be used for validating multiphase transport models.
Space Electrochemical Research and Technology
NASA Technical Reports Server (NTRS)
Wilson, Richard M. (Compiler)
1996-01-01
Individual papers presented at the conference address the following topics: development of a micro-fiber nickel electrode for nickel-hydrogen cell, high performance nickel electrodes for space power application, bending properties of nickel electrodes for nickel-hydrogen batteries, effect of KOH concentration and anions on the performance of a Ni-H2 battery positive plate, advanced dependent pressure vessel nickel hydrogen spacecraft cell and battery design, electrolyte management considerations in modern nickel hydrogen and nickel cadmium cell and battery design, a novel unitized regenerative proton exchange membrane fuel cell, fuel cell systems for first lunar outpost - reactant storage options, the TMI regenerable solid oxide fuel cell, engineering development program of a closed aluminum-oxygen semi-cell system for an unmanned underwater vehicle, SPE OBOGS on-board oxygen generating system, hermetically sealed aluminum electrolytic capacitor, sol-gel technology and advanced electrochemical energy storage materials, development of electrochemical supercapacitors for EMA applications, and high energy density electrolytic capacitor.
Weimer, Paul J
2011-02-01
"Extraruminal" fermentations employing in vitro incubation of mixed ruminal bacterial consortia, are capable of converting a complex array of biomass materials to mixtures of volatile fatty acids (VFA), methane, and carbon dioxide. Most of the potential energy in the biomass feedstock is retained in the VFA products, which are potential reactants for electrochemical conversion to hydrocarbon fuels. Quantitative data on VFA yields and proportions from biomass components are necessary for determining industrial feasibility, but such measurements have not been systematically reported. VFA yields and proportions were determined for a variety of carbohydrates, proteins and nucleic acids. Carbohydrates yielded primarily acetic and propionic acids, while proteins also yielded a more favorable product mix (longer average chain length and branched chain VFAs). Addition of certain co-substrates (e.g., glycerol) favorably improved the VFA product mix. The results have implications for hydrocarbon fuel generation from biomass materials by hybrid fermentation/chemical processes. Published by Elsevier Ltd.
Alkaline fuel cell performance investigation
NASA Technical Reports Server (NTRS)
Martin, R. E.; Manzo, M. A.
1988-01-01
An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.
Alkaline fuel cell performance investigation
NASA Technical Reports Server (NTRS)
Martin, R. E.; Manzo, M. A.
1988-01-01
An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more than two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.
Mixed-layered bismuth--oxygen--iodine materials for capture and waste disposal of radioactive iodine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krumhansl, James L; Nenoff, Tina M
2015-01-06
Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility inmore » groundwater environments.« less
Regenerative fuel cell study for satellites in GEO orbit
NASA Technical Reports Server (NTRS)
Vandine, Leslie; Gonzalez-Sanabria, Olga; Levy, Alexander
1987-01-01
The results of a 12 month study to identify high performance regenerative hydrogen-oxygen fuel cell concepts for geosynchronous satellite application are summarized. Emphasis was placed on concepts with the potential for high energy density and passive means for water and heat management to maximize system reliability. Both polymer membrane and alkaline electrolyte fuel cells were considered, with emphasis on the alkaline cell because of its high performance, advanced state of development, and proven ability to operate in a launch and space environment. Three alkaline system concepts were studied. Results indicate that using near term technology energy densities between 46 and 52 watt-hour/lb can be achieved at efficiencies of 55 percent. Using advanced light weight cell construction which was achieved in experimental cells, composite tankage material for the reactant gases and the reversible stack concept, system energy densities of 115 watt-hours/lb can be projected.
Solid polymer electrolyte (SPE) fuel cell technology program, phase 2/2A. [testing and evaluations
NASA Technical Reports Server (NTRS)
1976-01-01
Test evaluations were performed on a fabricated single solid polymer electrolyte cell unit. The cell operated at increased current density and at higher performance levels. This improved performance was obtained through a combination of increased temperature, increased reactant pressures, improved activation techniques and improved thermal control over the baseline cell configuration. The cell demonstrated a higher acid content membrane which resulted in increased performance. Reduced catalyst loading and low cost membrane development showed encouraging results.
Development Status of PEM Non-Flow-Through Fuel Cell System Technology for NASA Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.; Jakupca, Ian J.
2011-01-01
Today s widespread development of proton-exchange-membrane (PEM) fuel cell technology for commercial users owes its existence to NASA, where fuel cell technology saw its first applications. Beginning with the early Gemini and Apollo programs, and continuing to this day with the Shuttle Orbiter program, fuel cells have been a primary source of electrical power for many NASA missions. This is particularly true for manned missions, where astronauts are able to make use of the by-product of the fuel cell reaction, potable water. But fuel cells also offer advantages for unmanned missions, specifically when power requirements exceed several hundred watts and primary batteries are not a viable alternative. In recent years, NASA s Exploration Technology Development Program (ETDP) funded the development of fuel cell technology for applications that provide both primary power and regenerative fuel cell energy storage for planned Exploration missions that involved a return to the moon. Under this program, the Altair Lunar Lander was a mission requiring fuel cell primary power. There were also various Lunar Surface System applications requiring regenerative fuel cell energy storage, in which a fuel cell and electrolyzer combine to form an energy storage system with hydrogen, oxygen, and water as common reactants. Examples of these systems include habitat modules and large rovers. In FY11, the ETDP has been replaced by the Enabling Technology Development and Demonstration Program (ETDDP), with many of the same technology goals and requirements applied against NASA s revised Exploration portfolio.
Houchins, Cassidy; Kleen, Greg J.; Spendelow, Jacob S.; Kopasz, John; Peterson, David; Garland, Nancy L.; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C.
2012-01-01
Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed. PMID:24958432
Fuel cell technology program contract summary report
NASA Technical Reports Server (NTRS)
1972-01-01
A fuel cell technology program which was established to advance the state-of-the-art of hydrogen-oxygen fuel cells using the P and WA PC8B technology as the base is reported. The major tasks of this program consisted of (1) fuel cell system studies of a space shuttle powerplant conceptual design (designated engineering model -1, EM-1) supported by liaison with the space shuttle prime contractors; (2) component and subsystem technology advancement and; (3) a demonstrator powerplant test. Fuel cell system studies, with the EM-1 as the focal point of design activities, included determination of voltage regulation, specific reactant consumption, weight, voltage level and performance characteristics. These studies provided the basis for coordination activities with the space shuttle vehicle prime contractor. Interface information, on-board checkout and in-flight monitoring requirements, and development cost data were also provided as part of this activity. Even though the two vehicles primes had different voltage requirements (115 volts in one case and 28 volts in the other), it was concluded that either option could be provided in the fuel cell power system by the electrical hook-up of the cells in the stack.
2011-11-28
CAPE CANAVERAL, Fla. -- Inside Orbiter Processing Facility-1 at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as space shuttle Discovery’s fuel cells are drained of all fluids. After all of the coolant is removed, the fuel cells will be returned to their previous location within Discovery’s mid-body. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Discovery’s mid-body and have been purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Discovery. Discovery is being prepared for display at the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Frankie Martin
2011-11-28
CAPE CANAVERAL, Fla. -- Inside Orbiter Processing Facility-1 at NASA’s Kennedy Space Center in Florida, a technician prepares one of space shuttle Discovery’s three fuel cells to be drained of all fluids. After all of the coolant is removed, the fuel cells will be returned to their previous location within Discovery’s mid-body. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Discovery’s mid-body and have been purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Discovery. Discovery is being prepared for display at the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Frankie Martin
2011-11-28
CAPE CANAVERAL, Fla. -- Inside Orbiter Processing Facility-1 at NASA’s Kennedy Space Center in Florida, technicians prepare space shuttle Discovery’s three fuel cells to be drained of all fluids. After all of the coolant is removed, the fuel cells will be returned to their previous location within Discovery’s mid-body. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Discovery’s mid-body and have been purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Discovery. Discovery is being prepared for display at the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Frankie Martin
2011-11-28
CAPE CANAVERAL, Fla. -- Inside Orbiter Processing Facility-1 at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as space shuttle Discovery’s fuel cells are drained of all fluids. After all of the coolant is removed, the fuel cells will be returned to their previous location within Discovery’s mid-body. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Discovery’s mid-body and have been purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Discovery. Discovery is being prepared for display at the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Frankie Martin
2011-11-28
CAPE CANAVERAL, Fla. -- Inside Orbiter Processing Facility-1 at NASA’s Kennedy Space Center in Florida, technicians prepare space shuttle Discovery’s three fuel cells to be drained of all fluids. After all of the coolant is removed, the fuel cells will be returned to their previous location within Discovery’s mid-body. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Discovery’s mid-body and have been purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Discovery. Discovery is being prepared for display at the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Frankie Martin
2011-11-28
CAPE CANAVERAL, Fla. -- Inside Orbiter Processing Facility-1 at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as space shuttle Discovery’s fuel cells are drained of all fluids. After all of the coolant is removed, the fuel cells will be returned to their previous location within Discovery’s mid-body. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Discovery’s mid-body and have been purged with inert gases and vented down. The work is part of the Space Shuttle Program’s transition and retirement processing of shuttle Discovery. Discovery is being prepared for display at the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Frankie Martin
Chapter 28: Nanomaterials for Energy Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurst, Katherine E; Luther, Joseph M; Ban, Chunmei
2017-01-02
A wide variety of nanomaterials have been applied to energy related applications, including nanofibers, nanocrystalline materials, nanoparticles, and thin film nanocoatings. Solid-state lighting offers significant advantages in energy efficiency compared to traditional lighting technologies. The potential for nanostructured solid-state lighting devices is excellent as it enjoys significant economic drivers in energy efficiency. Fuel cells convert chemical energy to electrical energy through electrochemical reactions at an anode and cathode. The conversion of biomass to fuels and chemicals offers great potential to reduce energy dependence on petroleum and reduce green house gas emissions. Batteries involve the production and storage of electrical charge,more » the transfer of cations and electrical current, each based on electrochemical reactions and chemical reactants. Battery performance relies on the complex processes and factors that affect the transport of charge in the reactants, and across the interface between the chemical phases.« less
Solid oxide fuel cell with multi-unit construction and prismatic design
McPheeters, C.C.; Dees, D.W.; Myles, K.M.
1999-03-16
A single cell unit of a solid oxide fuel cell is described that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units. 7 figs.
Hydrazine inhalation hepatotoxicity.
Kao, Yung Hsiang; Chong, C H; Ng, W T; Lim, D
2007-10-01
Abstract Hydrazine is a hazardous chemical commonly used as a reactant in rocket and jet fuel cells. Animal studies have demonstrated hepatic changes after hydrazine inhalation. Human case reports of hydrazine inhalation hepatotoxicity are rare. We report a case of mild hepatotoxicity following brief hydrazine vapour inhalation in a healthy young man, which resolved completely on expectant management.
An expert system to manage the operation of the Space Shuttle's fuel cell cryogenic reactant tanks
NASA Technical Reports Server (NTRS)
Murphey, Amy Y.
1990-01-01
This paper describes a rule-based expert system to manage the operation of the Space Shuttle's cryogenic fuel system. Rules are based on standard fuel tank operating procedures described in the EECOM Console Handbook. The problem of configuring the operation of the Space Shuttle's fuel tanks is well-bounded and well defined. Moreover, the solution of this problem can be encoded in a knowledge-based system. Therefore, a rule-based expert system is the appropriate paradigm. Furthermore, the expert system could be used in coordination with power system simulation software to design operating procedures for specific missions.
Voltage instability in a simulated fuel cell stack correlated to cathode water accumulation
NASA Astrophysics Data System (ADS)
Owejan, J. P.; Trabold, T. A.; Gagliardo, J. J.; Jacobson, D. L.; Carter, R. N.; Hussey, D. S.; Arif, M.
Single fuel cells running independently are often used for fundamental studies of water transport. It is also necessary to assess the dynamic behavior of fuel cell stacks comprised of multiple cells arranged in series, thus providing many paths for flow of reactant hydrogen on the anode and air (or pure oxygen) on the cathode. In the current work, the flow behavior of a fuel cell stack is simulated by using a single-cell test fixture coupled with a bypass flow loop for the cathode flow. This bypass simulates the presence of additional cells in a stack and provides an alternate path for airflow, thus avoiding forced convective purging of cathode flow channels. Liquid water accumulation in the cathode is shown to occur in two modes; initially nearly all the product water is retained in the gas diffusion layer until a critical saturation fraction is reached and then water accumulation in the flow channels begins. Flow redistribution and fuel cell performance loss result from channel slug formation. The application of in-situ neutron radiography affords a transient correlation of performance loss to liquid water accumulation. The current results identify a mechanism whereby depleted cathode flow on a single cell leads to performance loss, which can ultimately cause an operating proton exchange membrane fuel cell stack to fail.
NASA Astrophysics Data System (ADS)
Wasterlain, S.; Candusso, D.; Hissel, D.; Harel, F.; Bergman, P.; Menard, P.; Anwar, M.
A single PEMFC has been operated by varying the assembly temperature, the air dew point temperature and the anode/cathode stoichiometry rates with the aim to identify the parameters and combinations of factors affecting the cell performance. Some of the experiments were conducted with low humidified reactants (relative humidity of 12%). The FC characterizations tests have been conducted using in situ electrochemical methods based on load current and cell voltage signal analysis, namely: polarization curves, EIS measurements, cyclic and linear sweep voltammetries (CV and LSV). The impacts of the parameters on the global FC performances were observed using the polarization curves whereas EIS, CV and LSV test results were used to discriminate the different voltage loss sources. The test results suggest that some parameter sets allow maximal output voltages but can also induce material degradation. For instance, higher FC temperature and air flow values can induce significant electrical efficiency benefits, notably by increasing the reversible potential and the reaction kinetics. However, raising the cell temperature can also gradually dry the FC and increase the risk of membrane failure. LSV has also shown that elevated FC temperature and relative humidity can also accelerate the electrolyte degradation (i.e. slightly higher fuel crossover rate) and reduce the lifetime consequently.
Haines, Brian Michael; Grim, Gary P.; Fincke, James R.; ...
2016-07-29
Here, we present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a “CD Mixcap,” is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employmore » any adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long-wavelength asymmetries degrade TT yield more than the DT yield and thus bring DT/TT neutron yield ratios into agreement with experiment. Finally, we present a detailed comparison of the flows in 2D and 3D simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, Brian M., E-mail: bmhaines@lanl.gov; Fincke, James R.; Shah, Rahul C.
We present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a “CD Mixcap,” is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employ anymore » adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long-wavelength asymmetries degrade TT yield more than the DT yield and thus bring DT/TT neutron yield ratios into agreement with experiment. Finally, we present a detailed comparison of the flows in 2D and 3D simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, Brian Michael; Grim, Gary P.; Fincke, James R.
Here, we present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a “CD Mixcap,” is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employmore » any adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long-wavelength asymmetries degrade TT yield more than the DT yield and thus bring DT/TT neutron yield ratios into agreement with experiment. Finally, we present a detailed comparison of the flows in 2D and 3D simulations.« less
NASA Astrophysics Data System (ADS)
Haines, Brian M.; Grim, Gary P.; Fincke, James R.; Shah, Rahul C.; Forrest, Chad J.; Silverstein, Kevin; Marshall, Frederic J.; Boswell, Melissa; Fowler, Malcolm M.; Gore, Robert A.; Hayes-Sterbenz, Anna C.; Jungman, Gerard; Klein, Andreas; Rundberg, Robert S.; Steinkamp, Michael J.; Wilhelmy, Jerry B.
2016-07-01
We present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a "CD Mixcap," is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employ any adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long-wavelength asymmetries degrade TT yield more than the DT yield and thus bring DT/TT neutron yield ratios into agreement with experiment. Finally, we present a detailed comparison of the flows in 2D and 3D simulations.
Reactant gas composition for fuel cell potential control
Bushnell, Calvin L.; Davis, Christopher L.
1991-01-01
A fuel cell (10) system in which a nitrogen (N.sub.2) gas is used on the anode section (11) and a nitrogen/oxygen (N.sub.2 /O.sub.2) gaseous mix is used on the cathode section (12) to maintain the cathode at an acceptable voltage potential during adverse conditions occurring particularly during off-power conditions, for example, during power plant shutdown, start-up and hot holds. During power plant shutdown, the cathode section is purged with a gaseous mixture of, for example, one-half percent (0.5%) oxygen (O.sub.2) and ninety-nine and a half percent (99.5%) nitrogen (N.sub.2) supplied from an ejector (21) bleeding in air (24/28) into a high pressure stream (27) of nitrogen (N.sub.2) as the primary or majority gas. Thereafter the fuel gas in the fuel processor (31) and the anode section (11) is purged with nitrogen gas to prevent nickel (Ni) carbonyl from forming from the shift catalyst. A switched dummy electrical load (30) is used to bring the cathode potential down rapidly during the start of the purges. The 0.5%/99.5% O.sub.2 /N.sub.2 mixture maintains the cathode potential between 0.3 and 0.7 volts, and this is sufficient to maintain the cathode potential at 0.3 volts for the case of H.sub.2 diffusing to the cathode through a 2 mil thick electrolyte filled matrix and below 0.8 volts for no diffusion at open circuit conditions. The same high pressure gas source (20) is used via a "T" juncture ("T") to purge the anode section and its associated fuel processor (31).
Reactivating the Ni-YSZ electrode in solid oxide cells and stacks by infiltration
NASA Astrophysics Data System (ADS)
Skafte, Theis Løye; Hjelm, Johan; Blennow, Peter; Graves, Christopher
2018-02-01
The solid oxide cell (SOC) could play a vital role in energy storage when the share of intermittent electricity production is high. However, large-scale commercialization of the technology is still hindered by the limited lifetime. Here, we address this issue by examining the potential for repairing various failure and degradation mechanisms occurring in the fuel electrode, thereby extending the potential lifetime of a SOC system. We successfully infiltrated the nickel and yttria-stabilized zirconia cermet electrode in commercial cells with Gd-doped ceria after operation. By this method we fully reactivated the fuel electrode after simulated reactant starvation and after carbon formation. Furthermore, by infiltrating after 900 h of operation, the degradation of the fuel electrode was reduced by a factor of two over the course of 2300 h. Lastly, the scalability of the concept is demonstrated by reactivating an 8-cell stack based on a commercial design.
NASA Technical Reports Server (NTRS)
Hammel, R. L. (Editor); Smith, A. G. (Editor)
1974-01-01
The design and application of a supplementary power and heat rejection kit for the Spacelab are discussed. Two subsystems of electric power and thermal control were analyzed to define the requirements for the power and heat rejection kit (PHRK). Twelve exemplary experiments were defined and power timelines were developed. From these timeline, the experiment requirements for sustained power, peak power, and energy were determined. The electrical power subsystem of the PHRK will consist of two fuel cells, oxygen and hydrogen reactant tank assemblies, water storage tanks, plumbing, cabling, and inverters to convert the nominal 28 volt dc fuel cell output to ac power.
Unitized Regenerative Fuel Cell System Development
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
2003-01-01
Unitized Regenerative Fuel Cells (URFC) have recently been developed by several fuel cell manufacturers. These manufacturers have concentrated their efforts on the development of the cell stack technology itself, and have not up to this point devoted much effort to the design and development of the balance of plant. A fuel cell technology program at the Glenn Research Center (GRC) that has as its goal the definition and feasibility testing of the URFC system balance of plant. Besides testing the feasibility, the program also intends to minimize the system weight, volume, and parasitic power as its goal. The design concept currently being developed uses no pumps to circulate coolant or reactants, and minimizes the ancillary components to only the oxygen and hydrogen gas storage tanks, a water storage tank, a loop heat pipe to control the temperature and two pressure control devices to control the cell stack pressures during operation. The information contained in this paper describes the design and operational concepts employed in this concept. The paper also describes the NASA Glenn research program to develop this concept and test its feasibility.
Performance of high mach number scramjets - Tunnel vs flight
NASA Astrophysics Data System (ADS)
Landsberg, Will O.; Wheatley, Vincent; Smart, Michael K.; Veeraragavan, Ananthanarayanan
2018-05-01
While typically analysed through ground-based impulse facilities, scramjets experience significant heating loads in flight, raising engine wall temperatures and the fuel used to cool them beyond standard laboratory conditions. Hence, the present work numerically compares an access-to-space scramjet's performance at both these conditions. The Mach 12 Rectangular-to-Elliptical Shape-Transitioning scramjet flow path is examined via three-dimensional and chemically reacting Reynolds-averaged Navier-Stokes solutions. Flight operation is modelled through 800 K and 1800 K inlet and combustor walls respectively, while fuel is injected at both inlet- and combustor-based stations at 1000 K stagnation temperature. Room temperature walls and fuel plena model shock tunnel conditions. Mixing and combustion performance indicates that while flight conditions promote rapid mixing, high combustor temperatures inhibit the completion of reaction pathways, with reactant dissociation reducing chemical heat release by 16%. However, the heated walls in flight ensured 28% less energy was absorbed by the walls. While inlet fuel injection promotes robust burning of combustor-injected fuel, premature ignition upon the inlet in flight suggests these injectors should be moved further downstream. Coupled with counteracting differences in heat release and loss to the walls, the optimal engine design for flight may differ considerably from that which gives the best performance in the tunnel.
Engine and method for operating an engine
Lauper, Jr., John Christian; Willi, Martin Leo [Dunlap, IL; Thirunavukarasu, Balamurugesh [Peoria, IL; Gong, Weidong [Dunlap, IL
2008-12-23
A method of operating an engine is provided. The method may include supplying a combustible combination of reactants to a combustion chamber of the engine, which may include supplying a first hydrocarbon fuel, hydrogen fuel, and a second hydrocarbon fuel to the combustion chamber. Supplying the second hydrocarbon fuel to the combustion chamber may include at least one of supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into an intake system of the engine and supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into the combustion chamber. Additionally, the method may include combusting the combustible combination of reactants in the combustion chamber.
Modeling two-phase flow in PEM fuel cell channels
NASA Astrophysics Data System (ADS)
Wang, Yun; Basu, Suman; Wang, Chao-Yang
2008-05-01
This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M2 formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels.
Silicon micro-fabricated miniature polymer electrolyte fuel cells
NASA Astrophysics Data System (ADS)
Kelley, Shawn Christopher
2000-10-01
The present thesis relates the design, fabrication, and testing of a unique type of silicon-based, miniature fuel cell. The fuel cell electrodes were constructed using standard silicon micro-fabrication techniques, and were used to construct miniature polymer electrolyte fuel cells (PEFCs) using NafionRTM. During testing, methanol and oxygen were the common reactants, but hydrogen and oxygen could be used as well. A novel form of an electrodeposited Pt:Ru alloy was developed for use as a methanol electrooxidation catalyst in the mini-PEFCs. An optimized mini-PEFC design was developed, tested, and compared with large PEFCs on the basis of performance. Mini-PEFC performance was equivalent to that of large PEFCs when scaled for active-area, but was limited by the function of the oxygen electrode. The rate of methanol crossover in a methanol/oxygen mini-PEFC was predicted using Fick's first law and the electrode chip feed-hole area. It was shown that the present mini-PEFC design could function as a fuel cell material test structure. Additionally, the mini-PEFCs were tested as two-cell stacks and as methanol sensors. The miniature, silicon-based PEFCs developed here successfully incorporate the essential aspects of a large PEFC in a smaller, simpler design.
Study on the micro direct ethanol fuel cell (Micro-DEFC) performance
NASA Astrophysics Data System (ADS)
Saisirirat, Penyarat; Joommanee, Bordindech
2018-01-01
The direct ethanol fuel cell (DEFC) is selected for this research. DEFC uses ethanol in the fuel cell instead of the more toxic methanol. Ethanol is more attractive than methanol by many reasons. Ethanol is a hydrogen-rich liquid and it has a higher specific energy (8.0 kWh/kg) compared to that of methanol (6.1 kWh/kg). Ethanol can be obtained in great quantity from biomass through a fermentation process from renewable resources such as sugar cane, wheat, corn, and even straw. The use of ethanol would also overcome both the storage and infrastructure challenge of hydrogen for fuel cell applications. The experimental apparatus on the micro direct ethanol fuel cell for measuring the cell performance has been set for this research. The objective is to study the micro direct ethanol fuel cell performance for applying with the portable electronic devices. The cell performance is specified in the terms of cell voltage, cell current and power of the cell at room operating temperature and 1 atm for the pressure and also includes the ethanol fuel consumption. The effect of operating temperature change on the electrical production performance is also studied. The steady-state time for collecting each data value is about 5-10 minutes. The results show that with the increase of concentrations of ethanol by volume, the reactant concentration at the reaction sites increases so the electrochemical rate also increases but when it reaches the saturated point the performance gradually drops.
Composite bipolar plate for electrochemical cells
Wilson, Mahlon S.; Busick, Deanna N.
2001-01-01
A bipolar separator plate for fuel cells consists of a molded mixture of a vinyl ester resin and graphite powder. The plate serves as a current collector and may contain fluid flow fields for the distribution of reactant gases. The material is inexpensive, electrically conductive, lightweight, strong, corrosion resistant, easily mass produced, and relatively impermeable to hydrogen gas. The addition of certain fiber reinforcements and other additives can improve the properties of the composite material without significantly increasing its overall cost.
NASA Astrophysics Data System (ADS)
Tan, Wee Choon; Iwai, Hiroshi; Kishimoto, Masashi; Brus, Grzegorz; Szmyd, Janusz S.; Yoshida, Hideo
2018-04-01
Planar solid oxide fuel cells (SOFCs) with decomposed ammonia are numerically studied to investigate the effect of the cell aspect ratio. The ammonia decomposer is assumed to be located next to the SOFCs, and the heat required for the endothermic decomposition reaction is supplied by the thermal radiation from the SOFCs. Cells with aspect ratios (ratios of the streamwise length to the spanwise width) between 0.130 and 7.68 are provided with the reactants at a constant mass flow rate. A parametric study is conducted by varying the cell temperature and fuel utility factor to investigate their effects on the cell performance in terms of the voltage efficiency. The effect of the heat supply to the ammonia decomposer is also studied. The developed model shows good agreement, in terms of the current-voltage curve, with the experimental data obtained from a short stack without parameter tuning. The simulation study reveals that the cell with the highest aspect ratio achieves the highest performance under furnace operation. On the other hand, the 0.750 aspect ratio cell with the highest voltage efficiency of 0.67 is capable of thermally sustaining the ammonia decomposers at a fuel utility of 0.80 using the thermal radiation from both sidewalls.
A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices
NASA Astrophysics Data System (ADS)
Oncescu, Vlad; Erickson, David
In the past decade the scientific community has showed considerable interest in the development of implantable medical devices such as muscle stimulators, neuroprosthetic devices, and biosensors. Those devices have low power requirements and can potentially be operated through fuel cells using reactants present in the body such as glucose and oxygen instead of non-rechargeable lithium batteries. In this paper, we present a thin, enzyme-free fuel cell with high current density and good stability at a current density of 10 μA cm -2. A non-enzymatic approach is preferred because of higher long term stability. The fuel cell uses a stacked electrode design in order to achieve glucose and oxygen separation. An important characteristic of the fuel cell is that it has no membrane separating the electrodes, which results in low ohmic losses and small fuel cell volume. In addition, it uses a porous carbon paper support for the anodic catalyst layer which reduces the amount of platinum or other noble metal catalysts required for fabricating high surface area electrodes with good reactivity. The peak power output of the fuel cell is approximately 2 μW cm -2 and has a sustainable power density of 1.5 μW cm -2 at 10 μA cm -2. An analysis on the effects of electrode thickness and inter electrode gap on the maximum power output of the fuel cell is also performed.
2012-05-29
CAPE CANAVERAL, Fla. – A technician controls a special crane as it lifts a newly removed fuel cell from space shuttle Endeavour's payload bay. The operation took place inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. All three of Endeavour's fuel cells were removed and will be drained of fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Endeavour's midbody and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program's transition and retirement processing of shuttle Endeavour, which is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA's orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Glenn Benson
2012-05-29
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, technicians use a special crane to lift a fuel cell out of space shuttle Endeavour's payload bay. All three of Endeavour's fuel cells were removed and will be drained of fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Endeavour's midbody and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program's transition and retirement processing of shuttle Endeavour, which is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA's orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Glenn Benson
2012-05-29
CAPE CANAVERAL, Fla. – Technicians monitor the progress as one of space shuttle Endeavour's three fuel cells is removed from the vehicle's payload bay. The operation took place inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. All three of Endeavour's fuel cells were removed and will be drained of fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Endeavour's midbody and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program's transition and retirement processing of shuttle Endeavour, which is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA's orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Glenn Benson
2012-05-29
CAPE CANAVERAL, Fla. – Technicians inside Kennedy Space Center's Orbiter Processing Facility-2 lower one of space shuttle Endeavour's recently removed fuel cells onto a waiting platform. All three of Endeavour's fuel cells were removed and will be drained of fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Endeavour's midbody and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program's transition and retirement processing of shuttle Endeavour, which is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA's orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Glenn Benson
2012-05-29
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, a crane hoists one of space shuttle Endeavour's three fuel cells out of the vehicle's payload bay. All three of Endeavour's fuel cells were removed and will be drained of fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Endeavour's midbody and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program's transition and retirement processing of shuttle Endeavour, which is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA's orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Glenn Benson
2012-05-29
CAPE CANAVERAL, Fla. – Technicians inside Kennedy Space Center's Orbiter Processing Facility-2 lower one of space shuttle Endeavour's recently removed fuel cells onto a waiting platform. All three of Endeavour's fuel cells were removed and will be drained of fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Endeavour's midbody and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program's transition and retirement processing of shuttle Endeavour, which is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA's orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Glenn Benson
2012-05-29
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, a technician guides a newly removed fuel cell up and out of space shuttle Endeavour's payload bay. All three of Endeavour's fuel cells were removed and will be drained of fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Endeavour's midbody and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program's transition and retirement processing of shuttle Endeavour, which is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA's orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Glenn Benson
2012-05-29
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, technicians use a special crane to lift a fuel cell out of space shuttle Endeavour's payload bay. All three of Endeavour's fuel cells were removed and will be drained of fluids. The hydrogen and oxygen dewars which feed reactants to the fuel cells remain in Endeavour's midbody and will be purged with inert gases and vented down. The work is part of the Space Shuttle Program's transition and retirement processing of shuttle Endeavour, which is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA's orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Glenn Benson
A complete two-phase model of a porous cathode of a PEM fuel cell
NASA Astrophysics Data System (ADS)
Hwang, J. J.
This paper has developed a complete two-phase model of a proton exchange membrane (PEM) fuel cell by considering fluid flow, heat transfer and current simultaneously. In fluid flow, two momentum equations governing separately the gaseous-mixture velocity (u g) and the liquid-water velocity (u w) illustrate the behaviors of the two-phase flow in a porous electrode. Correlations for the capillary pressure and the saturation level connect the above two-fluid transports. In heat transfer, a local thermal non-equilibrium (LTNE) model accounting for intrinsic heat transfer between the reactant fluids and the solid matrices depicts the interactions between the reactant-fluid temperature (T f) and the solid-matrix temperature (T s). The irreversibility heating due to electrochemical reactions, Joule heating arising from Ohmic resistance, and latent heat of water condensation/evaporation are considered in the present non-isothermal model. In current, Ohm's law is applied to yield the conservations in ionic current (i m) and electronic current (i s) in the catalyst layer. The Butler-Volmer correlation describes the relation of the potential difference (overpotential) and the transfer current between the electrolyte (such as Nafion™) and the catalyst (such as Pt/C).
Combined Microfluidic-Eectric Diffused Mixing of Living Cells in Continuous Flow
NASA Astrophysics Data System (ADS)
Ming-Wen Wang,
2010-02-01
The mixing process is a crucially important stage in the operation of biological and chemical microfluidic devices. If the mixing is inadequate, reactants do not fully interact with each other, and the device may not operate properly. This paper describes a simplified microfluidic mixer (different from a chaotic mixer) which can uniformly mix a buffer solution with living cells by applying an AC electric charge. Diffusion of the living cells into the buffer solution occurs rapidly following the interface of the flow stream with the electric charge; no further agitating step is needed. To accomplish this, an asymmetric pair of electrodes was integrated at the inlets of the buffer solution and the cells fluid. When the buffer solution and the cells fluid were introduced into one flow path, they remained limited to that flow stream. When the electrodes were charged, however, the cells in a short distance were efficiently moved into the solution flow, and the original fluids were mixed. The mixing efficiency depends on the polarizability of the cells, and this in turn is governed by the dielectric properties of the cells, the medium, and the solvent. This micro device, capable of efficiently mixing living cells with a buffer solution, may potentially allow biological mixing to be done outside of hospitals, in facilities without biological analyzing instruments.
Fabrication of fuel cell electrodes and other catalytic structures
Smith, J.L.
1987-02-11
A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte. 1 fig.
Fabrication of catalytic electrodes for molten carbonate fuel cells
Smith, James L.
1988-01-01
A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.
NASA Astrophysics Data System (ADS)
Basu, Saptarshi
Three critical problem domains namely water transport in PEM fuel cell, interaction of vortices with diffusion flames and laminar diffusion layers and thermo-physical processes in droplets heated by a plasma or monochromatic radiation have been analyzed in this dissertation. The first part of the dissertation exhibits a unique, in situ, line-of-sight measurements of water vapor partial pressure and temperature in single and multiple gas channels on the cathode side of an operating PEM fuel cell. Tunable diode laser absorption spectroscopy was employed for these measurements for which water transitions sensitive to temperature and partial pressure were utilized. The technique was demonstrated in a PEM fuel cell operating under both steady state and time-varying load conditions. The second part of the dissertation is dedicated to the study of vortex interaction with laminar diffusion flame and non-reacting diffusion layers. For the non-reacting case, a detailed computational study of scalar mixing in a laminar vortex is presented for vortices generated between two gas streams. A detailed parametric study was conducted to determine the effects of vortex strength, convection time, and non-uniform temperature on scalar mixing characteristics. For the reacting case, an experimental study of the interaction of a planar diffusion flame with a line vortex is presented. The flame-vortex interactions are diagnosed by laser induced incandescence for soot yield and by particle image velocimetry for vortex flow characterization. The soot topography was studied as a function of the vortex strength, residence time, flame curvature and the reactant streams from which vortices are initiated. The third part of the dissertation is modeling of thermo-physical processes in liquid ceramic precursor droplets injected into plasma as used in the thermal spray industry to generate thermal barrier coatings on high value materials. Models include aerodynamic droplet break-up process, mixing of droplets in the high temperature plasma, heat and mass transfer within individual droplets as well as droplet precipitation and internal pressurization. The last part of the work is also concerned with the modeling of thermo-physical processes in liquid ceramic precursor droplets heated by monochromatic radiation. Purpose of this work was to evaluate the feasibility of studying precipitation kinetics and morphological changes in a droplet by mimicking similar heating rates as the plasma.
Design and simulation of novel flow field plate geometry for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Ruan, Hanxia; Wu, Chaoqun; Liu, Shuliang; Chen, Tao
2016-10-01
Bipolar plate is one of the many important components of proton exchange membrane fuel cell (PEMFC) stacks as it supplies fuel and oxidant to the membrane-electrode assembly (MEA), removes water, collects produced current and provides mechanical support for the single cells in the stack. The flow field design of a bipolar plate greatly affects the performance of a PEMFC. It must uniformly distribute the reactant gases over the MEA and prevent product water flooding. This paper aims at improving the fuel cell performance by optimizing flow field designs and flow channel configurations. To achieve this, a novel biomimetic flow channel for flow field designs is proposed based on Murray's Law. Computational fluid dynamics based simulations were performed to compare three different designs (parallel, serpentine and biomimetic channel, respectively) in terms of current density distribution, power density distribution, pressure distribution, temperature distribution, and hydrogen mass fraction distribution. It was found that flow field designs with biomimetic flow channel perform better than that with convectional flow channel under the same operating conditions.
A critical review of noise production models for turbulent, gas-fueled burners
NASA Technical Reports Server (NTRS)
Mahan, J. R.
1984-01-01
The combustion noise literature for the period between 1952 and early 1984 is critically reviewed. Primary emphasis is placed on past theoretical and semi-empirical attempts to predict or explain observed direct combustion noise characteristics of turbulent, gas-fueled burners; works involving liquid-fueled burners are reviewed only when ideas equally applicable to gas-fueled burners are pesented. The historical development of the most important contemporary direct combustion noise theories is traced, and the theories themselves are compared and criticized. While most theories explain combustion noise production by turbulent flames in terms of randomly distributed acoustic monopoles produced by turbulent mixing of products and reactants, none is able to predict the sound pressure in the acoustic farfield of a practical burner because of the lack of a proven model which relates the combustion noise source strenght at a given frequency to the design and operating parameters of the burner. Recommendations are given for establishing a benchmark-quality data base needed to support the development of such a model.
NASA Technical Reports Server (NTRS)
Kimble, Michael C.; Anderson, Everett B.; Jayne, Karen D.; Woodman, Alan S.
2004-01-01
Micro-tubular fuel cells that would operate at power levels on the order of hundreds of watts or less are under development as alternatives to batteries in numerous products - portable power tools, cellular telephones, laptop computers, portable television receivers, and small robotic vehicles, to name a few examples. Micro-tubular fuel cells exploit advances in the art of proton-exchange-membrane fuel cells. The main advantage of the micro-tubular fuel cells over the plate-and-frame fuel cells would be higher power densities: Whereas the mass and volume power densities of low-pressure hydrogen-and-oxygen-fuel plate-and-frame fuel cells designed to operate in the targeted power range are typically less than 0.1 W/g and 0.1 kW/L, micro-tubular fuel cells are expected to reach power densities much greater than 1 W/g and 1 kW/L. Because of their higher power densities, micro-tubular fuel cells would be better for powering portable equipment, and would be better suited to applications in which there are requirements for modularity to simplify maintenance or to facilitate scaling to higher power levels. The development of PEMFCs has conventionally focused on producing large stacks of cells that operate at typical power levels >5 kW. The usual approach taken to developing lower-power PEMFCs for applications like those listed above has been to simply shrink the basic plate-and-frame configuration to smaller dimensions. A conventional plate-and-frame fuel cell contains a membrane/electrode assembly in the form of a flat membrane with electrodes of the same active area bonded to both faces. In order to provide reactants to both electrodes, bipolar plates that contain flow passages are placed on both electrodes. The mass and volume overhead of the bipolar plates amounts to about 75 percent of the total mass and volume of a fuel-cell stack. Removing these bipolar plates in the micro-tubular fuel cell significantly increases the power density.
Microfluidic electrochemical reactors
Nuzzo, Ralph G [Champaign, IL; Mitrovski, Svetlana M [Urbana, IL
2011-03-22
A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.
2013-08-06
of the problem studied Proton exchange membrane fuel cells ( PEMFCs ) are the most promising candidate systems for alternative electricity...characteristic. The limiting current can be used as a tool to study mass transport phenomena in PEMFC because it can provide experimental data for the...coefficient for PEMFCs under in situ conditions based on the galvanostatic discharge of a cell with an interrupted reactant supply. The results indicated
Gas/Water and Heat Management of PEM-Based Fuel Cell and Electrolyzer Systems for Space Applications
NASA Astrophysics Data System (ADS)
Guo, Qing; Ye, Fang; Guo, Hang; Ma, Chong Fang
2017-02-01
Hydrogen/oxygen fuel cells were successfully utilized in the field of space applications to provide electric energy and potable water in human-rated space mission since the 1960s. Proton exchange membrane (PEM) based fuel cells, which provide high power/energy densities, were reconsidered as a promising space power equipment for future space exploration. PEM-based water electrolyzers were employed to provide life support for crews or as major components of regenerative fuel cells for energy storage. Gas/water and heat are some of the key challenges in PEM-based fuel cells and electrolytic cells, especially when applied to space scenarios. In the past decades, efforts related to gas/water and thermal control have been reported to effectively improve cell performance, stability lifespan, and reduce mass, volume and costs of those space cell systems. This study aimed to present a primary review of research on gas/water and waste thermal management for PEM-based electrochemical cell systems applied to future space explorations. In the fuel cell system, technologies related to reactant supplement, gas humidification, water removal and active/passive water separation were summarized in detail. Experimental studies were discussed to provide a direct understanding of the effect of the gas-liquid two-phase flow on product removal and mass transfer for PEM-based fuel cell operating in a short-term microgravity environment. In the electrolyzer system, several active and static passive phaseseparation methods based on diverse water supplement approaches were discussed. A summary of two advanced passive thermal management approaches, which are available for various sizes of space cell stacks, was specifically provided
Integrated current collector and catalyst support
Bregoli, Lawrence J.
1985-10-22
An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.
Integrated current collector and catalyst support
Bregoli, L.J.
1984-10-17
An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.
Space shuttle electrical power generation and reactant supply system
NASA Technical Reports Server (NTRS)
Simon, W. E.
1985-01-01
The design philosophy and development experience of fuel cell power generation and cryogenic reactant supply systems are reviewed, beginning with the state of technology at the conclusion of the Apollo Program. Technology advancements span a period of 10 years from initial definition phase to the most recent space transportation system (STS) flights. The development program encompassed prototype, verification, and qualification hardware, as well as post-STS-1 design improvements. Focus is on the problems encountered, the scientific and engineering approaches employed to meet the technological challenges, and the results obtained. Major technology barriers are discussed, and the evolving technology development paths are traced from their conceptual beginnings to the fully man-rated systems which are now an integral part of the shuttle vehicle.
Cell module and fuel conditioner
NASA Technical Reports Server (NTRS)
Hoover, D. Q., Jr.
1980-01-01
Stack tests indicate that the discrepancies between calculated and measured temperature profiles are due to reactant cross-over and a lower than expected thermal conductivity of cells. Preliminary results indicate that acceptable contact resistance between cooling plane halves can be achieved without the use of paper. The preliminary design of the enclosure, definition of required labor and equipment for manufacturing repeating components, and the assembly procedures for the benchwork design were developed. Fabrication of components for a second 5-cell stack of the MK-2 design and a second 23-cell stack of the MK-1 design was started. The definition of water and fuel for the reforming subsystem was developed along with a preliminary definition of the control system for the subsystem. The construction and shakedown of the differential catalytic reactor was completed and testing of the first catalyst initiated.
Diagnosing magnetized liner inertial fusion experiments on Z
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.
The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~10 12 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10 10. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm 3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.
Diagnosing magnetized liner inertial fusion experiments on Z
Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; ...
2015-05-14
The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~10 12 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10 10. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm 3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.
Rich-burn, flame-assisted fuel cell, quick-mix, lean-burn (RFQL) combustor and power generation
NASA Astrophysics Data System (ADS)
Milcarek, Ryan J.; Ahn, Jeongmin
2018-03-01
Micro-tubular flame-assisted fuel cells (mT-FFC) were recently proposed as a modified version of the direct flame fuel cell (DFFC) operating in a dual chamber configuration. In this work, a rich-burn, quick-mix, lean-burn (RQL) combustor is combined with a micro-tubular solid oxide fuel cell (mT-SOFC) stack to create a rich-burn, flame-assisted fuel cell, quick-mix, lean-burn (RFQL) combustor and power generation system. The system is tested for rapid startup and achieves peak power densities after only 35 min of testing. The mT-FFC power density and voltage are affected by changes in the fuel-lean and fuel-rich combustion equivalence ratio. Optimal mT-FFC performance favors high fuel-rich equivalence ratios and a fuel-lean combustion equivalence ratio around 0.80. The electrical efficiency increases by 150% by using an intermediate temperature cathode material and improving the insulation. The RFQL combustor and power generation system achieves rapid startup, a simplified balance of plant and may have applications for reduced NOx formation and combined heat and power.
Estimating the effective rate of fast chemical reactions with turbulent mixing of reactants
NASA Astrophysics Data System (ADS)
Vorotilin, V. P.; Yanovskii, Yu. G.
2015-07-01
On the basis of representation of a turbulent fluid as an aggregation of independent turbulent particles (vortexes), we derive relations for the effective rate of chemical reactions and obtain a closed system of equations describing reactions with turbulent mixing of reactants. A variant of instantaneous reactions is considered that explains the proposed approach simply. In particular, the turbulent mixing events according to this approach are uniquely related to the acts of chemical interaction, which makes it possible to exclude from consideration the mixing of inert impurities-the most difficult point of the theory formulated using classical notions. The obtained system of equations is closed without introducing arbitrarily adopted correlations, by naturally introducing the concept of effective reaction and writing the equations of conservation for both the concentrations of reactants and their volumes.
Development of porous carbon foam polymer electrolyte membrane fuel cell
NASA Astrophysics Data System (ADS)
Kim, Jin; Cunningham, Nicolas
In order to prove the feasibility of using porous carbon foam material in a polymer electrolyte membrane fuel cell (PEMFC), a single PEMFC is constructed with a piece of 80PPI (pores per linear inch) Reticulated Vitreous Carbon (RVC) foam at a thickness of 3.5 mm employed in the cathode flow-field. The cell performance of such design is compared with that of a conventional fuel cell with serpentine channel design in the cathode and anode flow-fields. Experimental results show that the RVC foam fuel cell not only produces comparative power density to, but also offers interesting benefits over the conventional fuel cell. A 250 h long term test conducted on a RVC foam fuel cell shows that the durability and performance stability of the material is deemed to be acceptable. Furthermore, a parametric study is conducted on single RVC foam fuel cells. Effect of geometrical and material parameters of the RVC foam such as PPI and thickness and operating conditions such as pressure, temperature, and stoichiometric ratio of the reactant gases on the cell performance is experimentally investigated in detail. The single cell with the 80PPI RVC foam exhibits the best performance, especially if the thinnest foam (3.5 mm) is used. The cell performance improves with increasing the operating gauge pressure from 0 kPa to 80 kPa and the operating temperature from 40 °C to 60 °C, but deteriorates as it further increases to 80 °C. The cell performance improves as the stoichiometric ratio of air increases from 1.5 to 4.5; however, the improvement becomes marginal when it is raised above 3.0. On the other hand, changing the stoichiometric ratio of hydrogen does not have a significant impact on the cell performance.
Apparatus and method for continuous production of materials
Chang, Chih-hung; Jin, Hyungdae
2014-08-12
Embodiments of a continuous-flow injection reactor and a method for continuous material synthesis are disclosed. The reactor includes a mixing zone unit and a residence time unit removably coupled to the mixing zone unit. The mixing zone unit includes at least one top inlet, a side inlet, and a bottom outlet. An injection tube, or plurality of injection tubes, is inserted through the top inlet and extends past the side inlet while terminating above the bottom outlet. A first reactant solution flows in through the side inlet, and a second reactant solution flows in through the injection tube(s). With reference to nanoparticle synthesis, the reactant solutions combine in a mixing zone and form nucleated nanoparticles. The nucleated nanoparticles flow through the residence time unit. The residence time unit may be a single conduit, or it may include an outer housing and a plurality of inner tubes within the outer housing.
Pettit, William Henry
2001-01-01
A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.
Operation of the NETL Chemical Looping Reactor with Natural Gas and a Novel Copper-Iron Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayham, Sanuel; Straub, Doug; Weber, Justin
2017-02-01
As part of the U.S. Department of Energy’s Advanced Combustion Program, the National Energy Technology Laboratory’s Research and Innovation Center (NETL R&IC) is investigating the feasibility of a novel combustion concept in which the GHG emissions can be significantly reduced. This concept involves burning fuel and air without mixing these two reactants. If this concept is technically feasible, then CO 2 emissions can be significantly reduced at a much lower cost than more conventional approaches. This indirect combustion concept has been called Chemical Looping Combustion (CLC) because an intermediate material (i.e., a metaloxide) is continuously cycled to oxidize the fuel.more » This CLC concept is the focus of this research and will be described in more detail in the following sections.« less
NASA Astrophysics Data System (ADS)
Wang, Yulin; Yue, Like; Wang, Shixue
2017-03-01
The cathode flow-field design of polymer electrolyte membrane (PEM) fuel cells determines the distribution of reactant gases and the removal of liquid water. A suitable design can result in perfect water management and thus high cell performance. In this paper, a new design for a cathode flow-field with a sub-channel was proposed and had been experimentally analyzed in a parallel flow-field PEM fuel cell. Three sub-channel inlets were placed along the cathode channel. The main-channel inlet was fed with moist air to humidify the membrane and maintain high proton conductivity, whereas, the sub-channel inlet was fed with dry air to enhance water removal in the flow channel. The experimental results indicated that the sub-channel design can decrease the pressure drop in the flow channel, and the sub-channels inlet positions (SIP, where the sub-channel inlets were placed along the cathode channel) and flow rates (SFR, percentage of air from the sub-channel inlet in the total cathode flow rate) had a considerable impact on water removal and cell performance. A proposed design that combines the SIP and SFR can effectively eliminate water from the fuel cell, increasing the maximum power density by more than 13.2% compared to the conventional design.
Reichner, P.; Dollard, W.J.
1991-01-08
An electrochemical apparatus is made having a generator section containing axially elongated electrochemical cells, a fresh gaseous feed fuel inlet, a gaseous feed oxidant inlet, and at least one gaseous spent fuel exit channel, where the spent fuel exit channel passes from the generator chamber to combine with the fresh feed fuel inlet at a mixing apparatus, reformable fuel mixture channel passes through the length of the generator chamber and connects with the mixing apparatus, that channel containing entry ports within the generator chamber, where the axis of the ports is transverse to the fuel electrode surfaces, where a catalytic reforming material is distributed near the reformable fuel mixture entry ports. 2 figures.
Catalytic autothermal reforming increases fuel cell flexibility
NASA Technical Reports Server (NTRS)
Flytzani-Stephanopoulos, M.; Voecks, G. E.
1981-01-01
Experimental results are presented for the autothermal reforming (ATR) of n-hexane, n-tetradecane, benzene and benzene solutions of naphthalene. The tests were run at atmospheric pressure and at moderately high reactant preheat temperatures in the 800-900 K range. Carbon formation lines were determined for paraffinic and aromatic liquids. Profiles were determined for axial bed temperature and composition. Space velocity efforts were assessed, and the locations and types of carbon were recorded. Significant reactive differences between hydrocarbons were identified. Carbon formation characteristics were hydrocarbon specific. The differing behavior of paraffinic and aromatic fuels with respect to their carbon formation may be important in explaining the narrow range of carbon-free operating conditions found in the ATR of number two fuel oil.
Energy harvesting by implantable abiotically catalyzed glucose fuel cells
NASA Astrophysics Data System (ADS)
Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F.
Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the μW-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices.
NASA Astrophysics Data System (ADS)
Meng, Dennis Desheng; Kim, C. J.
As an alternative or supplement to small batteries, the much-anticipated micro-direct methanol fuel cell (μDMFC) faces several key technical issues such as methanol crossover, reactant delivery, and byproduct release. This paper addresses two of the issues, removal of CO 2 bubbles and delivery of methanol fuel, in a non-prohibitive way for system miniaturization. A recently reported bubble-driven pumping mechanism is applied to develop active μDMFCs free of an ancillary pump or a gas separator. The intrinsically generated CO 2 bubbles in the anodic microchannels are used to pump and circulate the liquid fuel before being promptly removed as a part of the pumping mechanism. Without a discrete liquid pump or gas separator, the widely known packaging penalty incurred within many micro-fuel-cell systems can be alleviated so that the system's power/energy density does not decrease dramatically as a result of miniaturization. Since the power required for pumping is provided by the byproduct of the fuel cell reaction, the parasitic power loss due to an external pump is also eliminated. The fuel circulation is visually confirmed, and the effectiveness for fuel cell applications is verified during continuous operation of a μDMFC for over 70 min with 1.2 mL of 2 M methanol. The same device was shown to operate for only 5 min if the pumping mechanism is disabled by blocking the gas venting membrane. Methanol consumption while utilizing the reported self-circulation mechanism is estimated to be 46%. Different from common pump-free fuel delivery approaches, the reported mechanism delivers the fuel actively and is independent of gravity.
Megawatt solar power systems for lunar surface operations
NASA Technical Reports Server (NTRS)
Adams, B.; Alhadeff, S.; Beard, S.; Carlile, D.; Cook, D.; Douglas, C.; Garcia, D.; Gillespie, D.; Golingo, R.; Gonzalez, D.
1990-01-01
The work presented here shows that a solar power system can provide power on the order of one megawatt to a lunar base with a fairly high specific power. The main drawback to using solar power is still the high mass, and therefore, cost of supplying energy storage through the solar night. The use of cryogenic reactant storage in a fuel cell system, however, greatly reduces the total system mass over conventional energy storage schemes.
A review of polymer electrolyte membrane fuel cell stack testing
NASA Astrophysics Data System (ADS)
Miller, M.; Bazylak, A.
This paper presents an overview of polymer electrolyte membrane fuel cell (PEMFC) stack testing. Stack testing is critical for evaluating and demonstrating the viability and durability required for commercial applications. Single cell performance cannot be employed alone to fully derive the expected performance of PEMFC stacks, due to the non-uniformity in potential, temperature, and reactant and product flow distributions observed in stacks. In this paper, we provide a comprehensive review of the state-of-the art in PEMFC testing. We discuss the main topics of investigation, including single cell vs. stack-level performance, cell voltage uniformity, influence of operating conditions, durability and degradation, dynamic operation, and stack demonstrations. We also present opportunities for future work, including the need to verify the impact of stack size and cell voltage uniformity on performance, determine operating conditions for achieving a balance between electrical efficiency and flooding/dry-out, meet lifetime requirements through endurance testing, and develop a stronger understanding of degradation.
All-solid electrodes with mixed conductor matrix
Huggins, Robert A.; Boukamp, Bernard A.
1984-01-01
Alkali metal based electrochemical cells offer a great deal of promise for applications in many areas such as electric vehicles and load leveling purposes in stationary power plants. Lithium is an attractive candidate as the electroactive species in such cells since lithium is very electropositive, abundant and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated at elevated temperatures. The subject invention provides an electrochemical cell in one embodiment of which lithium is the electroactive species. The cell comprises an electrolyte, a positive electrode, and a negative electrode, either or both of which is an all-solid, composite microstructural electrode containing both a reactant phase and a mixed ionic-electronic conducting phase. The cells of the subject invention exhibit improved kinetic features, current and power densities. Repeated charging and discharging of these cells can be accomplished without appreciable loss of capacity.
Diagnosing magnetized liner inertial fusion experiments on Z
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, S. B., E-mail: sbhanse@sandia.gov; Gomez, M. R.; Sefkow, A. B.
Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼10{sup 12} DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10{sup 10}. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm{sup 3} densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.
Gay, Eddie C.; Martino, Fredric J.
1976-01-01
Particulate electrode reactants, for instance transition metal sulfides for the positive electrodes and lithium alloys for the negative electrodes, are vibratorily compacted into porous, electrically conductive structures. Structures of high porosity support sufficient reactant material to provide high cell capacity per unit weight while serving as an electrical current collector to improve the utilization of reactant materials. Pore sizes of the structure and particle sizes of the reactant material are selected to permit uniform vibratory loading of the substrate without settling of the reactant material during cycling.
Investigation of low temperature solid oxide fuel cells for air-independent UUV applications
NASA Astrophysics Data System (ADS)
Moton, Jennie Mariko
Unmanned underwater vehicles (UUVs) will benefit greatly from high energy density (> 500 Wh/L) power systems utilizing high-energy-density fuels and air-independent oxidizers. Current battery-based systems have limited energy densities (< 400 Wh/L), which motivate development of alternative power systems such as solid oxide fuel cells (SOFCs). SOFC-based power systems have the potential to achieve the required UUV energy densities, and the current study explores how SOFCs based on gadolinia-doped ceria (GDC) electrolytes with operating temperatures of 650°C and lower may operate in the unique environments of a promising UUV power plant. The plant would contain a H 2O2 decomposition reactor to supply humidified O2 to the SOFC cathode and exothermic aluminum/H2O combustor to provide heated humidified H2 fuel to the anode. To characterize low-temperature SOFC performance with these unique O2 and H2 source, SOFC button cells based on nickel/GDC (Gd0.1Ce0.9O 1.95) anodes, GDC electrolytes, and lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ or LSCF)/GDC cathodes were fabricated and tested for performance and stability with humidity on both the anode and the cathode. Cells were also tested with various reactant concentrations of H2 and O2 to simulate gas depletion down the channel of an SOFC stack. Results showed that anode performance depended primarily on fuel concentration and less on the concentration of the associated increase in product H2O. O 2 depletion with humidified cathode flows also caused significant loss in cell current density at a given voltage. With the humidified flows in either the anode or cathode, stability tests of the button cells at 650 °C showed stable voltage is maintained at low operating current (0.17 A/cm2) at up to 50 % by mole H2O, but at higher current densities (0.34 A/cm2), irreversible voltage degradation occurred at rates of 0.8-3.7 mV/hour depending on exposure time. From these button cell results, estimated average current densities over the length of a low-temperature SOFC stack were estimated and used to size a UUV power system based on Al/H 2O oxidation for fuel and H2O2 decomposition for O2. The resulting system design suggested that energy densities above 300 Wh/L may be achieved at neutral buoyancy with seawater if the cell is operated at high reactant utilizations in the SOFC stack for missions longer than 20 hours.
NASA Astrophysics Data System (ADS)
Jendras, P.; Lötsch, K.; von Unwerth, T.
2017-03-01
To reduce emissions and to substitute combustion engines automotive manufacturers, legislature and first users aspire hydrogen fuel cell vehicles. Up to now the focus of research was set on ensuring functionality and increasing durability of fuel cell components. Therefore, expensive materials were used. Contemporary research and development try to substitute these substances by more cost-effective material combinations. The bipolar plate is a key component with the greatest influence on volume and mass of a fuel cell stack and they have to meet complex requirements. They support bending sensitive components of stack, spread reactants over active cell area and form the electrical contact to another cell. Furthermore, bipolar plates dissipate heat of reaction and separate one cell gastight from the other. Consequently, they need a low interfacial contact resistance (ICR) to the gas diffusion layer, high flexural strength, good thermal conductivity and a high durability. To reduce costs stainless steel is a favoured material for bipolar plates in automotive applications. Steel is characterized by good electrical and thermal conductivity but the acid environment requires a high chemical durability against corrosion as well. On the one hand formation of a passivating oxide layer increasing ICR should be inhibited. On the other hand pitting corrosion leading to increased permeation rate may not occur. Therefore, a suitable substrate lamination combination is wanted. In this study material testing methods for bipolar plates are considered.
NASA Technical Reports Server (NTRS)
Schefer, R. W.; Sawyer, R. F.
1976-01-01
An opposed reacting jet combustor (ORJ) was tested at a pressure of 1 atmosphere. A premixed propane/air stream was stabilized by a counterflowing jet of the same reactants. The resulting intensely mixed zone of partially reacted combustion products produced stable combustion at equivalence ratios as low as 0.45. Measurements are presented for main stream velocities of 7.74 and 13.6 m/sec with an opposed jet velocity of 96 m/sec, inlet air temperatures from 300 to 600 K, and equivalence ratios from 0.45 to 0.625. Fuel lean premixed combustion was an effective method of achieving low NOx emissions and high combustion efficiencies simultaneously. Under conditions promoting lower flame temperature, NO2 constituted up to 100 percent of the total NOx. At higher temperatures this percentage decreased to a minimum of 50 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutland, Christopher J.
2009-04-26
The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with newmore » numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.« less
Effects of non-unity Lewis numbers in diffusion flames
NASA Technical Reports Server (NTRS)
Linan, A.; Orlandi, P.; Verzicco, R.; Higuera, F. J.
1994-01-01
The purpose of this work is to carry out direct numerical simulations of diffusion controlled combustion with non-unity Lewis numbers for the reactants and products, thus accounting for the differential diffusion effects of the temperature and concentration fields. We use a formulation based on combining the conservation equations in a way to eliminate the reaction terms similar to the method used by Burke and Schumann (1928) for unity Lewis numbers. We present calculations for an axisymmetric fuel jet and for a planar, time evolving mixing layer, leaving out the effects of thermal expansion and variations of the transport coefficients due to the heat release. Our results show that the front of the flame shifts toward the fuel or oxygen sides owing to the effect of the differential diffusion and that the location of maximum temperature may not coincide with the flame. The dependence of the distribution of the reaction products on their Lewis number has been investigated.
NASA Astrophysics Data System (ADS)
Meiler, M.; Andre, D.; Schmid, O.; Hofer, E. P.
Intelligent energy management is a cost-effective key path to realize efficient automotive drive trains [R. O'Hayre, S.W. Cha, W. Colella, F.B. Prinz. Fuel Cell Fundamentals, John Wiley & Sons, Hoboken, 2006]. To develop operating strategy in fuel cell drive trains, precise and computational efficient models of all system components, especially the fuel cell stack, are needed. Should these models further be used in diagnostic or control applications, then some major requirements must be fulfilled. First, the model must predict the mean fuel cell voltage very precisely in all possible operating conditions, even during transients. The model output should be as smooth as possible to support best efficient optimization strategies of the complete system. At least, the model must be computational efficient. For most applications, a difference between real fuel cell voltage and model output of less than 10 mV and 1000 calculations per second will be sufficient. In general, empirical models based on system identification offer a better accuracy and consume less calculation resources than detailed models derived from theoretical considerations [J. Larminie, A. Dicks. Fuel Cell Systems Explained, John Wiley & Sons, West Sussex, 2003]. In this contribution, the dynamic behaviour of the mean cell voltage of a polymer-electrolyte-membrane fuel cell (PEMFC) stack due to variations in humidity of cell's reactant gases is investigated. The validity of the overall model structure, a so-called general Hammerstein model (or Uryson model), was introduced recently in [M. Meiler, O. Schmid, M. Schudy, E.P. Hofer. Dynamic fuel cell stack model for real-time simulation based on system identification, J. Power Sources 176 (2007) 523-528]. Fuel cell mean voltage is calculated as the sum of a stationary and a dynamic voltage component. The stationary component of cell voltage is represented by a lookup-table and the dynamic voltage by a parallel placed, nonlinear transfer function. A suitable experimental setup to apply fast variations of gas humidity is introduced and is used to investigate a 10 cell PEMFC stack under various operation conditions. Using methods like stepwise multiple-regression a good mathematical description with reduced free parameters is achieved.
Yuan, Wei; Fang, Guoyun; Li, Zongtao; Chen, Yonghui; Tang, Yong
2018-01-04
Methanol crossover (MCO) significantly affects the performance of a direct methanol fuel cell (DMFC). In order to reduce its effect, this study presents in-house carbon nanofiber webs (CNWs) used as a porous methanol barrier for MCO control in a passive DMFC. The CNW is made from polyacrylonitrile (PAN) by using electrospinning and heat treatment. The impacts of PAN concentration and carbonizing temperature on the material properties are considered. The concentration of PAN has a great effect on the micro structures of the CNWs since a higher concentration of PAN leads to a larger nanofiber diameter and lower porosity. A higher carbonizing temperature helps promote the sample conductivity. The use of CNWs has twofold effects on the cell performance. It helps significantly enhance the cell performance, especially at a low methanol concentration due to its balanced effect on reactant and product management. There is an increase in peak power density of up to 53.54% when the CNW is used, in contrast with the conventional DMFC at 2 mol/L. The dynamic and constant-load performances of the fuel cell based on CNWs are also investigated in this work.
Fang, Guoyun; Chen, Yonghui; Tang, Yong
2018-01-01
Methanol crossover (MCO) significantly affects the performance of a direct methanol fuel cell (DMFC). In order to reduce its effect, this study presents in-house carbon nanofiber webs (CNWs) used as a porous methanol barrier for MCO control in a passive DMFC. The CNW is made from polyacrylonitrile (PAN) by using electrospinning and heat treatment. The impacts of PAN concentration and carbonizing temperature on the material properties are considered. The concentration of PAN has a great effect on the micro structures of the CNWs since a higher concentration of PAN leads to a larger nanofiber diameter and lower porosity. A higher carbonizing temperature helps promote the sample conductivity. The use of CNWs has twofold effects on the cell performance. It helps significantly enhance the cell performance, especially at a low methanol concentration due to its balanced effect on reactant and product management. There is an increase in peak power density of up to 53.54% when the CNW is used, in contrast with the conventional DMFC at 2 mol/L. The dynamic and constant-load performances of the fuel cell based on CNWs are also investigated in this work. PMID:29300368
Reichner, Philip; Dollard, Walter J.
1991-01-01
An electrochemical apparatus (10) is made having a generator section (22) containing axially elongated electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one gaseous spent fuel exit channel (46), where the spent fuel exit channel (46) passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) at a mixing apparatus (50), reformable fuel mixture channel (52) passes through the length of the generator chamber (22) and connects with the mixing apparatus (50), that channel containing entry ports (54) within the generator chamber (22), where the axis of the ports is transverse to the fuel electrode surfaces (18), where a catalytic reforming material is distributed near the reformable fuel mixture entry ports (54).
Multiphase transport in polymer electrolyte membrane fuel cells
NASA Astrophysics Data System (ADS)
Gauthier, Eric D.
Polymer electrolyte membrane fuel cells (PEMFCs) enable efficient conversion of fuels to electricity. They have enormous potential due to the high energy density of the fuels they utilize (hydrogen or alcohols). Power density is a major limitation to wide-scale introduction of PEMFCs. Power density in hydrogen fuel cells is limited by accumulation of water in what is termed fuel cell `flooding.' Flooding may occur in either the gas diffusion layer (GDL) or within the flow channels of the bipolar plate. These components comprise the electrodes of the fuel cell and balance transport of reactants/products with electrical conductivity. This thesis explores the role of electrode materials in the fuel cell and examines the fundamental connection between material properties and multiphase transport processes. Water is generated at the cathode catalyst layer. As liquid water accumulates it will utilize the largest pores in the GDL to go from the catalyst layer to the flow channels. Water collects to large pores via lateral transport at the interface between the GDL and catalyst layer. We have shown that water may be collected in these large pores from several centimeters away, suggesting that we could engineer the GDL to control flooding with careful placement and distribution of large flow-directing pores. Once liquid water is in the flow channels it forms slugs that block gas flow. The slugs are pushed along the channel by a pressure gradient that is dependent on the material wettability. The permeable nature of the GDL also plays a major role in slug growth and allowing bypass of gas between adjacent channels. Direct methanol fuel cells (DMFCs) have analogous multiphase flow issues where carbon dioxide bubbles accumulate, `blinding' regions of the fuel cell. This problem is fundamentally similar to water management in hydrogen fuel cells but with a gas/liquid phase inversion. Gas bubbles move laterally through the porous GDL and emerge to form large bubbles within the flow channel. We have compared the role of GDL materials in liquid drop and gas bubble formation and movement within fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsigabu Gebrehiwet; James R. Henriksen; Luanjing Guo
Multi-component mineral precipitation in porous, subsurface environments is challenging to simulate or engineer when in situ reactant mixing is controlled by diffusion. In contrast to well-mixed systems, the conditions that favor mineral precipitation in porous media are distributed along chemical gradients, which evolve spatially due to concurrent mineral precipitation and modification of solute transport in the media. The resulting physical and chemical characteristics of a mixing/precipitation zone are a consequence of coupling between transport and chemical processes, and the distinctive properties of individual chemical systems. We examined the spatial distribution of precipitates formed in “double diffusion” columns for two chemicalmore » systems, calcium carbonate and calcium phosphate. Polyacrylamide hydrogel was used as a low permeability, high porosity medium to maximize diffusive mixing and minimize pressure- and density-driven flow between reactant solutions. In the calcium phosphate system, multiple, visually dense and narrow bands of precipitates were observed that were reminiscent of previously reported Liesegang patterns. In the calcium carbonate system, wider precipitation zones characterized by more sparse distributions of precipitates and a more open channel structure were observed. In both cases, formation of precipitates inhibited, but did not necessarily eliminate, continued transport and mixing of the reactants. A reactive transport model with fully implicit coupling between diffusion, chemical speciation and precipitation kinetics, but where explicit details of nucleation processes were neglected, was able to qualitatively simulate properties of the precipitation zones. The results help to illustrate how changes in the physical properties of a precipitation zone depend on coupling between diffusion-controlled reactant mixing and chemistry-specific details of precipitation kinetics.« less
REDOX electrochemical energy storage
NASA Technical Reports Server (NTRS)
Thaller, L. H.
1980-01-01
Reservoirs of chemical solutions can store electrical energy with high efficiency. Reactant solutions are stored outside conversion section where charging and discharging reactions take place. Conversion unit consists of stacks of cells connected together in parallel hydraulically, and in series electrically. Stacks resemble fuel cell batteries. System is 99% ampere-hour efficient, 75% watt hour efficient, and has long projected lifetime. Applications include storage buffering for remote solar or wind power systems, and industrial load leveling. Cost estimates are $325/kW of power requirement plus $51/kWh storage capacity. Mass production would reduce cost by about factor of two.
Vakil, Himanshu B.; Kosky, Philip G.
1982-01-01
In the preparation of the gaseous reactant feed to undergo a chemical reaction requiring the presence of steam, the efficiency of overall power utilization is improved by premixing the gaseous reactant feed with water and then heating to evaporate the water in the presence of the gaseous reactant feed, the heating fluid utilized being at a temperature below the boiling point of water at the pressure in the volume where the evaporation occurs.
NASA Astrophysics Data System (ADS)
Undapalli, Satish
A new combustor referred to as Stagnation Point Reverse Flow (SPRF) combustor has been developed at Georgia Tech to meet the increasingly stringent emission regulations. The combustor incorporates a novel design to meet the conflicting requirements of low pollution and high stability in both premixed and non-premixed modes. The objective of this thesis work is to perform Large Eddy Simulations (LES) on this lab-scale combustor and elucidate the underlying physics that has resulted in its excellent performance. To achieve this, numerical simulations have been performed in both the premixed and non-premixed combustion modes, and velocity field, species field, entrainment characteristics, flame structure, emissions, and mixing characteristics have been analyzed. Simulations have been carried out first for a non-reactive case to resolve relevant fluid mechanics without heat release by the computational grid. The computed mean and RMS quantities in the non-reacting case compared well with the experimental data. Next, the simulations were extended for the premixed reactive case by employing different sub-grid scale combustion chemistry closures: Eddy Break Up (EBU), Artificially Thickened Flame (TF) and Linear Eddy Mixing (LEM) models. Results from the EBU and TF models exhibit reasonable agreement with the experimental velocity field. However, the computed thermal and species fields have noticeable discrepancies. Only LEM with LES (LEMLES), which is an advanced scalar approach, has been able to accurately predict both the velocity and species fields. Scalar mixing plays an important role in combustion, and this is solved directly at the sub-grid scales in LEM. As a result, LEM accurately predicts the scalar fields. Due to the two way coupling between the super-grid and sub-grid quantities, the velocity predictions also compare very well with the experiments. In other approaches, the sub-grid effects have been either modeled using conventional approaches (EBU) or need some ad hoc adjustments to account these effects accurately (TF). The results from LEMLES, using a reduced chemical mechanism, have been analyzed in the premixed mode. The results show that mass entrainment occurs along the shear layer in the combustor. The entrained mass carries products into the reactant stream and provides reactant preheating. Thus, product entrainment enhances the reaction rates and help stabilize the flame even at very lean conditions. These products have been shown to enter into the flame through local extinction zones present on the flame surface. The flame structure has been further analyzed, and the combustion mode was found to be primarily in thin reaction zones. Closer to the injector, there are isolated regions, where the combustion mode is in broken reaction zones, while the downstream flame structure is closer to a flamelet regime. The emissions in the combustor have been studied using simple global mechanisms for NO x. Computations have shown extremely low NOx values, comparable to the measured emissions. These low emissions have been shown to be primarily due to the low temperatures in the combustor. LEMLES computations have also been performed with a detailed chemistry to capture more accurate flame structure. The flame in the detailed chemistry case shows more extinction zones close to the injector than that in the reduced chemical mechanism. The LEMLES approach has also been used to resolve the combustion mode in the non-premixed case. The studies have indicated that the mixing of the fuel and air close to the injector controls the combustion process. The predictions in the near field have been shown to be very sensitive to the inflow conditions. Analysis has shown that the fuel and air mixing occurs to lean proportions in the combustor before any burning takes place. The flame structure in the non-premixed mode was very similar to the premixed mode. Along with the fuel air mixing, the products also mixed with the reactants and provided the preheating effects to stabilize the flame in the downstream region of the combustor.
NASA Astrophysics Data System (ADS)
Jinuntuya, Fontip; Whiteley, Michael; Chen, Rui; Fly, Ashley
2018-02-01
The Gas Diffusion Layer (GDL) of a Polymer Electrolyte Membrane Fuel Cell (PEMFC) plays a crucial role in overall cell performance. It is responsible for the dissemination of reactant gasses from the gas supply channels to the reactant sites at the Catalyst Layer (CL), and the adequate removal of product water from reactant sites back to the gas channels. Existing research into water transport in GDLs has been simplified to 2D estimations of GDL structures or use virtual stochastic models. This work uses X-ray computed tomography (XCT) to reconstruct three types of GDL in a model. These models are then analysed via Lattice Boltzmann methods to understand the water transport behaviours under differing contact angles and pressure differences. In this study, the three GDL samples were tested over the contact angles of 60°, 80°, 90°, 100°, 120° and 140° under applied pressure differences of 5 kPa, 10 kPa and 15 kPa. By varying the contact angle and pressure difference, it was found that the transition between stable displacement and capillary fingering is not a gradual process. Hydrophilic contact angles in the region of 60°<θ < 90° showed stable displacement properties, whereas contact angles in the region of 100°<θ < 140° displayed capillary fingering characteristics.
Direct methanol feed fuel cell and system
NASA Technical Reports Server (NTRS)
Surampudi, Subbarao (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor)
2009-01-01
Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.
NASA Astrophysics Data System (ADS)
Maloney, Thomas M.; Prokopius, Paul R.; Voecks, Gerald E.
1995-01-01
The Electrochemical Technology Branch of the NASA Lewis Research Center (LeRC) has initiated a program to develop a renewable energy system testbed to evaluate, characterize, and demonstrate fully integrated regenerative fuel cell (RFC) system for space, military, and commercial applications. A multi-agency management team, led by NASA LeRC, is implementing the program through a unique international coalition which encompasses both government and industry participants. This open-ended teaming strategy optimizes the development for space, military, and commercial RFC system technologies. Program activities to date include system design and analysis, and reactant storage sub-system design, with a major emphasis centered upon testbed fabrication and installation and testing of two key RFC system components, namely, the fuel cells and electrolyzers. Construction of the LeRC 25 kW RFC system testbed at the NASA-Jet Propulsion Labortory (JPL) facility at Edwards Air Force Base (EAFB) is nearly complete and some sub-system components have already been installed. Furthermore, planning for the first commercial RFC system demonstration is underway.
A temperature-controlled photoelectrochemical cell for quantitative product analysis.
Corson, Elizabeth R; Creel, Erin B; Kim, Youngsang; Urban, Jeffrey J; Kostecki, Robert; McCloskey, Bryan D
2018-05-01
In this study, we describe the design and operation of a temperature-controlled photoelectrochemical cell for analysis of gaseous and liquid products formed at an illuminated working electrode. This cell is specifically designed to quantitatively analyze photoelectrochemical processes that yield multiple gas and liquid products at low current densities and exhibit limiting reactant concentrations that prevent these processes from being studied in traditional single chamber electrolytic cells. The geometry of the cell presented in this paper enables front-illumination of the photoelectrode and maximizes the electrode surface area to electrolyte volume ratio to increase liquid product concentration and hence enhances ex situ spectroscopic sensitivity toward them. Gas is bubbled through the electrolyte in the working electrode chamber during operation to maintain a saturated reactant concentration and to continuously mix the electrolyte. Gaseous products are detected by an in-line gas chromatograph, and liquid products are analyzed ex situ by nuclear magnetic resonance. Cell performance was validated by examining carbon dioxide reduction on a silver foil electrode, showing comparable results both to those reported in the literature and identical experiments performed in a standard parallel-electrode electrochemical cell. To demonstrate a photoelectrochemical application of the cell, CO 2 reduction experiments were carried out on a plasmonic nanostructured silver photocathode and showed different product distributions under dark and illuminated conditions.
A temperature-controlled photoelectrochemical cell for quantitative product analysis
NASA Astrophysics Data System (ADS)
Corson, Elizabeth R.; Creel, Erin B.; Kim, Youngsang; Urban, Jeffrey J.; Kostecki, Robert; McCloskey, Bryan D.
2018-05-01
In this study, we describe the design and operation of a temperature-controlled photoelectrochemical cell for analysis of gaseous and liquid products formed at an illuminated working electrode. This cell is specifically designed to quantitatively analyze photoelectrochemical processes that yield multiple gas and liquid products at low current densities and exhibit limiting reactant concentrations that prevent these processes from being studied in traditional single chamber electrolytic cells. The geometry of the cell presented in this paper enables front-illumination of the photoelectrode and maximizes the electrode surface area to electrolyte volume ratio to increase liquid product concentration and hence enhances ex situ spectroscopic sensitivity toward them. Gas is bubbled through the electrolyte in the working electrode chamber during operation to maintain a saturated reactant concentration and to continuously mix the electrolyte. Gaseous products are detected by an in-line gas chromatograph, and liquid products are analyzed ex situ by nuclear magnetic resonance. Cell performance was validated by examining carbon dioxide reduction on a silver foil electrode, showing comparable results both to those reported in the literature and identical experiments performed in a standard parallel-electrode electrochemical cell. To demonstrate a photoelectrochemical application of the cell, CO2 reduction experiments were carried out on a plasmonic nanostructured silver photocathode and showed different product distributions under dark and illuminated conditions.
NASA Astrophysics Data System (ADS)
Shi, Xinxin; Zhang, Jiaona; Huang, Tinglin
2018-02-01
Sulfur-doped graphene (SDG) has been found to be an efficient electrocatalyst for oxygen reduction reaction. However, previous studies on the catalytic activity of SDG have been mainly confined to O2-saturated alkaline media which is a typical alkaline fuel cell environment. Air-cathode microbial fuel cells (ACMFCs), as a novel energy conversion and wastewater treatment technology, use the oxygen from air as cathodic reactant in neutral media with low concentration of O2. Thus, it is meaningful to explore the catalytic performance of SDG in such ACMFC environment. The result showed that in ACMFC environment, the peak current density of SDG in CV test was surprisingly 4.5 times higher than that of Pt/C, indicating a much stronger catalytic activity of SDG. Moreover, SDG exhibited a stronger tolerance against the crossover of glucose (a typical anodic fuel in ACMFC) and better stability than Pt/C in neutral media.
A Glucose Fuel Cell for Implantable Brain–Machine Interfaces
Rapoport, Benjamin I.; Kedzierski, Jakub T.; Sarpeshkar, Rahul
2012-01-01
We have developed an implantable fuel cell that generates power through glucose oxidation, producing steady-state power and up to peak power. The fuel cell is manufactured using a novel approach, employing semiconductor fabrication techniques, and is therefore well suited for manufacture together with integrated circuits on a single silicon wafer. Thus, it can help enable implantable microelectronic systems with long-lifetime power sources that harvest energy from their surrounds. The fuel reactions are mediated by robust, solid state catalysts. Glucose is oxidized at the nanostructured surface of an activated platinum anode. Oxygen is reduced to water at the surface of a self-assembled network of single-walled carbon nanotubes, embedded in a Nafion film that forms the cathode and is exposed to the biological environment. The catalytic electrodes are separated by a Nafion membrane. The availability of fuel cell reactants, oxygen and glucose, only as a mixture in the physiologic environment, has traditionally posed a design challenge: Net current production requires oxidation and reduction to occur separately and selectively at the anode and cathode, respectively, to prevent electrochemical short circuits. Our fuel cell is configured in a half-open geometry that shields the anode while exposing the cathode, resulting in an oxygen gradient that strongly favors oxygen reduction at the cathode. Glucose reaches the shielded anode by diffusing through the nanotube mesh, which does not catalyze glucose oxidation, and the Nafion layers, which are permeable to small neutral and cationic species. We demonstrate computationally that the natural recirculation of cerebrospinal fluid around the human brain theoretically permits glucose energy harvesting at a rate on the order of at least 1 mW with no adverse physiologic effects. Low-power brain–machine interfaces can thus potentially benefit from having their implanted units powered or recharged by glucose fuel cells. PMID:22719888
Stagnation point reverse flow combustor
NASA Technical Reports Server (NTRS)
Zinn, Ben T. (Inventor); Neumeier, Yedidia (Inventor); Seitzman, Jerry M. (Inventor); Jagoda, Jechiel (Inventor); Weksler, Yoav (Inventor)
2008-01-01
A method for combusting a combustible fuel includes providing a vessel having an opening near a proximate end and a closed distal end defining a combustion chamber. A combustible reactants mixture is presented into the combustion chamber. The combustible reactants mixture is ignited creating a flame and combustion products. The closed end of the combustion chamber is utilized for directing combustion products toward the opening of the combustion chamber creating a reverse flow of combustion products within the combustion chamber. The reverse flow of combustion products is intermixed with combustible reactants mixture to maintain the flame.
Carbon fuel particles used in direct carbon conversion fuel cells
Cooper, John F.; Cherepy, Nerine
2012-10-09
A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.
Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells
Cooper, John F.; Cherepy, Nerine
2008-10-21
A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.
Carbon fuel particles used in direct carbon conversion fuel cells
Cooper, John F [Oakland, CA; Cherepy, Nerine [Oakland, CA
2011-08-16
A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.
Carbon fuel particles used in direct carbon conversion fuel cells
Cooper, John F [Oakland, CA; Cherepy, Nerine [Oakland, CA
2012-01-24
A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.
Fabrication of Thin Electrolytes for Second-Generation Solid Oxide Fuel Cells
1999-05-05
stabilized zirconia but are equally applicable to components, have been developed. Halogen com- other oxide electrolytes. pounds such as ZrCl4 and YC13...substrates. They used ZrCl4 and an oxygen source reactant. EVD is a two-step YC13 vapor mixtures as the metal compound sources process. The first step...thin zirconia layers on ited film. In this step oxygen ions formed on the porous alumina substrates. ZrCl4 and YC13 vapor water vapor side of the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Gu Young; Noh, Seungtak; Lee, Yoon Ho
2016-01-15
Nanostructured ZrO{sub 2} thin films were prepared by thermal atomic layer deposition (ALD) and by plasma-enhanced atomic layer deposition (PEALD). The effects of the deposition conditions of temperature, reactant, plasma power, and duration upon the physical and chemical properties of ZrO{sub 2} films were investigated. The ZrO{sub 2} films by PEALD were polycrystalline and had low contamination, rough surfaces, and relatively large grains. Increasing the plasma power and duration led to a clear polycrystalline structure with relatively large grains due to the additional energy imparted by the plasma. After characterization, the films were incorporated as electrolytes in thin film solidmore » oxide fuel cells, and the performance was measured at 500 °C. Despite similar structure and cathode morphology of the cells studied, the thin film solid oxide fuel cell with the ZrO{sub 2} thin film electrolyte by the thermal ALD at 250 °C exhibited the highest power density (38 mW/cm{sup 2}) because of the lowest average grain size at cathode/electrolyte interface.« less
NASA Redox Storage System Development Project
NASA Technical Reports Server (NTRS)
Hagedorn, N. H.
1984-01-01
The Redox Storage System Technology Project was jointly supported by the U.S. Department of Energy and NASA. The objectives of the project were to develop the Redox flow battery concept and to probe its technical and economic viability. The iron and chromium redox couples were selected as the reactants. Membranes and electrodes were developed for the original mode of operating at 25 C with the reactants separated by an ion-exchange membrane. Analytical capabilities and system-level operating concepts were developed and verified in a 1-kW, 13-kWh preprototype system. A subsequent change was made in operating mode, going to 65 C and using mixed reactants. New membranes and a new electrode catalyst were developed, resulting in single cell operation as high as 80 mA/sq cm with energy efficiencies greater than 80 percent. Studies indicate a likely system cost of about $75/kWh. Standard Oil of Ohio (Sohio) has undertaken further development of the Redox system. An exclusive patent license was obtained from NASA by Sohio. Transfer of Redox technology to Sohio is supported by the NASA Technology Utilization Office.
Effects of Doping and/or Atmosphere on the Electrical Conductivity of Li4Ti5O12
2008-11-01
materials were ground with an alumina mortar and pestle with enough methanol to form a slurry. The dried and mixed reactant mixture was pelletized...N. V.; Chaban, N. G.; Petrov, K. I. Inorg. Mater. 1982, 18, 1066. 21. Hayashi, S.; Hatano, H. J. Ceram. Soc. Japan 1994,102, 378. 11 22...with an alumina mortar and pestle with enough methanol to form a slurry. The dried and mixed reactant mixture was pelletized and then heated at 800
Energy Storage Technology Development for Space Exploration
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.
2011-01-01
The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.
Spraying Techniques for Large Scale Manufacturing of PEM-FC Electrodes
NASA Astrophysics Data System (ADS)
Hoffman, Casey J.
Fuel cells are highly efficient energy conversion devices that represent one part of the solution to the world's current energy crisis in the midst of global climate change. When supplied with the necessary reactant gasses, fuel cells produce only electricity, heat, and water. The fuel used, namely hydrogen, is available from many sources including natural gas and the electrolysis of water. If the electricity for electrolysis is generated by renewable energy (e.g., solar and wind power), fuel cells represent a completely 'green' method of producing electricity. The thought of being able to produce electricity to power homes, vehicles, and other portable or stationary equipment with essentially zero environmentally harmful emissions has been driving academic and industrial fuel cell research and development with the goal of successfully commercializing this technology. Unfortunately, fuel cells cannot achieve any appreciable market penetration at their current costs. The author's hypothesis is that: the development of automated, non-contact deposition methods for electrode manufacturing will improve performance and process flexibility, thereby helping to accelerate the commercialization of PEMFC technology. The overarching motivation for this research was to lower the cost of manufacturing fuel cell electrodes and bring the technology one step closer to commercial viability. The author has proven this hypothesis through a detailed study of two non-contact spraying methods. These scalable deposition systems were incorporated into an automated electrode manufacturing system that was designed and built by the author for this research. The electrode manufacturing techniques developed by the author have been shown to produce electrodes that outperform a common lab-scale contact method that was studied as a baseline, as well as several commercially available electrodes. In addition, these scalable, large scale electrode manufacturing processes developed by the author are also flexible and can be used to fabricate almost any fuel cell electrodes on the market today. This dissertation provides a description of the entire electrode manufacturing process as well as an analysis of the accuracy, performance and repeatability of the methods.
Novel high explosive compositions
Perry, D.D.; Fein, M.M.; Schoenfelder, C.W.
1968-04-16
This is a technique of preparing explosive compositions by the in-situ reaction of polynitroaliphatic compounds with one or more carboranes or carborane derivatives. One or more polynitroaliphatic reactants are combined with one or more carborane reactants in a suitable container and mixed to a homogeneous reaction mixture using a stream of inert gas or conventional mixing means. Ordinarily the container is a fissure, crack, or crevice in which the explosive is to be implanted. The ratio of reactants will determine not only the stoichiometry of the system, but will effect the quality and quantity of combustion products, the explosive force obtained as well as the impact sensitivity. The test values can shift with even relatively slight changes or modifications in the reaction conditions. Eighteen illustrative examples accompany the disclosure. (46 claims)
Coupling the Mixed Potential and Radiolysis Models for Used Fuel Degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buck, Edgar C.; Jerden, James L.; Ebert, William L.
The primary purpose of this report is to describe the strategy for coupling three process level models to produce an integrated Used Fuel Degradation Model (FDM). The FDM, which is based on fundamental chemical and physical principals, provides direct calculation of radionuclide source terms for use in repository performance assessments. The G-value for H2O2 production (Gcond) to be used in the Mixed Potential Model (MPM) (H2O2 is the only radiolytic product presently included but others will be added as appropriate) needs to account for intermediate spur reactions. The effects of these intermediate reactions on [H2O2] are accounted for in themore » Radiolysis Model (RM). This report details methods for applying RM calculations that encompass the effects of these fast interactions on [H2O2] as the solution composition evolves during successive MPM iterations and then represent the steady-state [H2O2] in terms of an “effective instantaneous or conditional” generation value (Gcond). It is anticipated that the value of Gcond will change slowly as the reaction progresses through several iterations of the MPM as changes in the nature of fuel surface occur. The Gcond values will be calculated with the RM either after several iterations or when concentrations of key reactants reach threshold values determined from previous sensitivity runs. Sensitivity runs with RM indicate significant changes in G-value can occur over narrow composition ranges. The objective of the mixed potential model (MPM) is to calculate the used fuel degradation rates for a wide range of disposal environments to provide the source term radionuclide release rates for generic repository concepts. The fuel degradation rate is calculated for chemical and oxidative dissolution mechanisms using mixed potential theory to account for all relevant redox reactions at the fuel surface, including those involving oxidants produced by solution radiolysis and provided by the radiolysis model (RM). The RM calculates the concentration of species generated at any specific time and location from the surface of the fuel. Several options being considered for coupling the RM and MPM are described in the report. Different options have advantages and disadvantages based on the extent of coding that would be required and the ease of use of the final product.« less
Freiberg, Anna T. S.; Tucker, Michael C.; Weber, Adam Z.
2017-04-12
The reduction of platinum-loading on the cathode side of polymer-electrolyte fuel cells leads to a poorly understood increase in mass-transport resistance (MTR) at high current densities. This local resistance was measured using a facile hydrogen-pump technique with dilute active gases for membrane-electrode assemblies with catalyst layers of varying platinum-loading (0.03-0.40 mgPt/cm²). Furthermore, polarization curves in H 2/air were measured and corrected for the overpotential caused by the increased MTR for low loadings on the air side due to the reduced concentration of reactant gas at the catalyst surface. The difference in performance after correction for all resistances including the MTRmore » is minor, suggesting its origin to be diffusive in nature, and proving the meaningfulness of the facile hydrogen-pump technique for the characterization of the cathode catalyst layer under defined operation conditions.« less
Elucidating Performance Limitations in Alkaline-Exchange- Membrane Fuel Cells
Shiau, Huai-Suen; Zenyuk, Iryna V.; Weber, Adam Z.
2017-07-15
Water management is a serious concern for alkaline-exchange-membrane fuel cells (AEMFCs) because water is a reactant in the alkaline oxygen-reduction reaction and hydroxide conduction in alkaline-exchange membranes is highly hydration dependent. Here in this article, we develop and use a multiphysics, multiphase model to explore water management in AEMFCs. We demonstrate that the low performance is mostly caused by extremely non-uniform distribution of water in the ionomer phase. A sensitivity analysis of design parameters including humidification strategies, membrane properties, and water transport resistance was undertaken to explore possible optimization strategies. Furthermore, the strategy and issues of reducing bicarbonate/carbonate buildup inmore » the membrane-electrode assembly with CO 2 from air is demonstrated based on the model prediction. Overall, mathematical modeling is used to explore trends and strategies to overcome performance bottlenecks and help enable AEMFC commercialization.« less
NASA Astrophysics Data System (ADS)
Skafte, Theis Løye; Blennow, Peter; Hjelm, Johan; Graves, Christopher
2018-01-01
Reduction of CO2 to CO and O2 in the solid oxide electrolysis cell (SOEC) has the potential to play a crucial role in closing the CO2 loop. Carbon deposition in nickel-based cells is however fatal and must be considered during CO2 electrolysis. Here, the effect of operating parameters is investigated systematically using simple current-potential experiments. Due to variations of local conditions, it is shown that higher current density and lower fuel electrode porosity will cause local carbon formation at the electrochemical reaction sites despite operating with a CO outlet concentration outside the thermodynamic carbon formation region. Attempts at mitigating the issue by coating the composite nickel/yttria-stabilized zirconia electrode with carbon-inhibiting nanoparticles and by sulfur passivation proved unsuccessful. Increasing the fuel electrode porosity is shown to mitigate the problem, but only to a certain extent. This work shows that a typical SOEC stack converting CO2 to CO and O2 is limited to as little as 15-45% conversion due to risk of carbon formation. Furthermore, cells operated in CO2-electrolysis mode are poisoned by reactant gases containing ppb-levels of sulfur, in contrast to ppm-levels for operation in fuel cell mode.
Direct methanol feed fuel cell and system
NASA Technical Reports Server (NTRS)
Kindler, Andrew (Inventor); Halpert, Gerald (Inventor); Frank, Harvey A. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor)
2008-01-01
Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.
Direct methanol feed fuel cell and system
NASA Technical Reports Server (NTRS)
Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Halpert, Gerald (Inventor); Surampudi, Subbarao (Inventor); Kindler, Andrew (Inventor)
2004-01-01
Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.
Direct methanol feed fuel cell and system
NASA Technical Reports Server (NTRS)
Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Halpert, Gerald (Inventor); Surampudi, Subbarao (Inventor); Kindler, Andrew (Inventor)
2000-01-01
Improvements to non-acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.
Direct methanol feed fuel cell and system
NASA Technical Reports Server (NTRS)
Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Halpert, Gerald (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor)
2001-01-01
Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.
Strategic enzyme patterning for microfluidic biofuel cells
NASA Astrophysics Data System (ADS)
Kjeang, E.; Sinton, D.; Harrington, D. A.
The specific character of biological enzyme catalysts enables combined fuel and oxidant channels and simplified non-compartmentalized fuel cell assemblies. In this work, a microstructured enzymatic biofuel cell architecture is proposed, and species transport phenomena combined with consecutive chemical reactions are studied computationally in order to provide guidelines for optimization. This is the first computational study of this technology, and a 2D CFD model for species transport coupled with laminar fluid flow and Michaelis-Menten enzyme kinetics is established. It is shown that the system is reaction rate limited, indicating that enzyme specific turnover numbers are key parameters for biofuel cell performance. Separated and mixed enzyme patterns in different proportions are analyzed for various Peclet numbers. High fuel utilization is achieved in the diffusion dominated and mixed species transport regimes with separated enzymes arranged in relation to individual turnover rates. However, the Peclet number has to be above a certain threshold value to obtain satisfying current densities. The mixed transport regime is particularly attractive while current densities are maintained close to maximum levels. Optimum performance is achieved by mixed enzyme patterning tailored with respect to individual turnover rates, enabling high current densities combined with nearly complete fuel utilization.
Solid polymer membrane program
NASA Technical Reports Server (NTRS)
1971-01-01
The results are presented for a solid polymer electrolyte fuel cell development program. Failure mechanism was identified and resolution of the mechanism experienced in small stack testing was demonstrated. The effect included laboratory analysis and evaluation of a matrix of configurations and operational variables for effects on the degree of hydrogen fluoride released from the cell and on the degree of blistering/delamination occurring in the reactant inlet areas of the cell and to correlate these conditions with cell life capabilities. The laboratory evaluation tests were run at conditions intended to accelerate the degradation of the solid polymer electrolyte in order to obtain relative evaluations as quick as possible. Evaluation of the resolutions for the identified failure mechanism in space shuttle configuration cell assemblies was achieved with the fabrication and life testing of two small stack buildups of four cell assemblies and eight cells each.
Molten carbonate fuel cell cathode with mixed oxide coating
Hilmi, Abdelkader; Yuh, Chao-Yi
2013-05-07
A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.
Performance of a flameless combustion furnace using biogas and natural gas.
Colorado, A F; Herrera, B A; Amell, A A
2010-04-01
Flameless combustion technology has proved to be flexible regarding the utilization of conventional fuels. This flexibility is associated with the main characteristic of the combustion regime, which is the mixing of the reactants above the autoignition temperature of the fuel. Flameless combustion advantages when using conventional fuels are a proven fact. However, it is necessary to assess thermal equipments performance when utilizing bio-fuels, which usually are obtained from biomass gasification and the excreta of animals in bio-digesters. The effect of using biogas on the performance of an experimental furnace equipped with a self-regenerative Flameless burner is reported in this paper. All the results were compared to the performance of the system fueled with natural gas. Results showed that temperature field and uniformity are similar for both fuels; although biogas temperatures were slightly lower due to the larger amount of inert gases (CO(2)) in its composition that cool down the reactions. Species patterns and pollutant emissions showed similar trends and values for both fuels, and the energy balance for biogas showed a minor reduction of the efficiency of the furnace; this confirms that Flameless combustion is highly flexible to burn conventional and diluted fuels. Important modifications on the burner were not necessary to run the system using biogas. Additionally, in order to highlight the advantages of the Flameless combustion regime, some comparisons of the burner performance working in Flameless mode and working in conventional mode are presented. Copyright 2009 Elsevier Ltd. All rights reserved.
Cover and startup gas supply system for solid oxide fuel cell generator
Singh, P.; George, R.A.
1999-07-27
A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.
Cover and startup gas supply system for solid oxide fuel cell generator
Singh, Prabhakar; George, Raymond A.
1999-01-01
A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloney, T.M.; Prokopius, P.R.; Voecks, G.E.
1995-01-25
The Electrochemical Technology Branch of the NASA Lewis Research Center (LeRC) has initiated a program to develop a renewable energy system testbed to evaluate, characterize, and demonstrate fully integrated regenerative fuel cell (RFC) system for space, military, and commercial applications. A multi-agency management team, led by NASA LeRC, is implementing the program through a unique international coalition which encompasses both government and industry participants. This open-ended teaming strategy optimizes the development for space, military, and commercial RFC system technologies. Program activities to date include system design and analysis, and reactant storage sub-system design, with a major emphasis centered upon testbedmore » fabrication and installation and testing of two key RFC system components, namely, the fuel cells and electrolyzers. Construction of the LeRC 25 kW RFC system testbed at the NASA-Jet Propulsion Labortory (JPL) facility at Edwards Air Force Base (EAFB) is nearly complete and some sub-system components have already been installed. Furthermore, planning for the first commercial RFC system demonstration is underway. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}« less
A small portable proton exchange membrane fuel cell and hydrogen generator for medical applications.
Adlhart, O J; Rohonyi, P; Modroukas, D; Driller, J
1997-01-01
Small, lightweight power sources for total artificial hearts (TAH), left ventricular assist devices (LVAD), and other medical products are under development. The new power source will provide 2 to 3 times the capacity of conventional batteries. The implications of this new power source are profound. For example, for the Heartmate LVAD, 5 to 8 hours of operation are obtained with 3 lb of lead acid batteries (Personal Communication Mr. Craig Sherman, Thermo Cardiosystems, Inc TCI 11/29/96). With the same weight, as much as 14 hours of operation appear achievable with the proton exchange membrane (PEM) fuel cell power source. Energy densities near 135 watt-hour/L are achievable. These values significantly exceed those of most conventional and advanced primary and secondary batteries. The improvement is mission dependent and even applies for the short deployment cited above. The comparison to batteries becomes even more favorable if the mission length is increased. The higher capacity requires only replacement of lightweight hydride cartridges and logistically available water. Therefore, when one spare 50 L hydride cartridge weighing 115 g is added to the reactant supply the energy density of the total system increases to 230 watt-hour/kg. This new power source is comprised of a hydrogen fueled, air-breathing PEM fuel cell and a miniature hydrogen generator (US Patent No 5,514,353). The fuel cell is of novel construction and differs from conventional bipolar PEM fuel cells by the arrangement of cells on a single sheet of ion-exchange membrane. The construction avoids the weight and volume penalty of conventional bipolar stacks. The hydrogen consumed by the fuel cell is generated load-responsively in the miniature hydrogen generator, by reacting calcium hydride with water, forming in the process hydrogen and lime. The generator is cartridge rechargeable and available in capacities providing up to several hundred watt-hours of electric power.
Microstructured Electrolyte Membranes to Improve Fuel Cell Performance
NASA Astrophysics Data System (ADS)
Wei, Xue
Fuel cells, with the advantages of high efficiency, low greenhouse gas emission, and long lifetime are a promising technology for both portable power and stationary power sources. The development of efficient electrolyte membranes with high ionic conductivity, good mechanical durability and dense structure at low cost remains a challenge to the commercialization of fuel cells. This thesis focuses on exploring novel composite polymer membranes and ceramic electrolytes with the microstructure engineered to improve performance in direct methanol fuel cells (DMFCs) and solid oxide fuel cells (SOFCs), respectively. Polymer/particle composite membranes hold promise to meet the demands of DMFCs at lower cost. The structure of composite membranes was controlled by aligning proton conducting particles across the membrane thickness under an applied electric field. The field-induced structural changes caused the membranes to display an enhanced water uptake, proton conductivity, and methanol permeability in comparison to membranes prepared without an applied field. Although both methanol permeability and proton conductivity are enhanced by the applied field, the permeability increase is relatively lower than the proton conductivity improvement, which results in enhanced proton/methanol selectivity and improved DMFC performance. Apatite ceramics are a new class of fast ion conductors being studied as alternative SOFC electrolytes in the intermediate temperature range. An electrochemical/hydrothermal deposition method was developed to grow fully dense apatite membranes containing well-developed crystals with c-axis alignment to promote ion conductivity. Hydroxyapatite seed crystals were first deposited onto a metal substrate electrochemically. Subsequent ion substitution during the hydrothermal growth process promoted the formation of dense, fully crystalline films with microstructure optimal for ion transport. The deposition parameters were systematically investigated, such as reactant type, reagent concentration, solution pH, and reaction time. Dense apatite films were formed on palladium substrates that can serve as intermediate temperature fuel cell anodes. The novel apatite membrane structure is promising for fuel cell applications, as well as in improving the biocompatibility of orthopedic implants when coated on stainless steel or titanium substrates.
Compartmented electrode structure
Vissers, Donald R.; Shimotake, Hiroshi; Gay, Eddie C.; Martino, Fredric J.
1977-06-14
Electrodes for secondary electrochemical cells are provided with compartments for containing particles of the electrode reactant. The compartments are defined by partitions that are generally impenetrable to the particles of reactant and, in some instances, to the liquid electrolyte used in the cell. During cycling of the cell, reactant material initially loaded into a particular compartment is prevented from migrating and concentrating within the lower portion of the electrode or those portions of the electrode that exhibit reduced electrical resistance.
Pyrochlore-type catalysts for the reforming of hydrocarbon fuels
Berry, David A [Morgantown, WV; Shekhawat, Dushyant [Morgantown, WV; Haynes, Daniel [Morgantown, WV; Smith, Mark [Morgantown, WV; Spivey, James J [Baton Rouge, LA
2012-03-13
A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.
Pyrochlore catalysts for hydrocarbon fuel reforming
Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.
2012-08-14
A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB'yB"zO7-.DELTA., where y>0 and z.gtoreq.0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.
Murthy, Arun; Manthiram, Arumugam
2011-06-28
Highly water-dispersible polymer acid-doped polyanilines have been synthesized and evaluated as an alternative for expensive Nafion ionomers in the anode of direct methanol fuel cells (DMFC). These polymers as ionomers lead to higher performance in single cell DMFC compared to Nafion ionomers due to mixed ionic-electronic conduction, water dispersibility, and co-catalytic activity. This journal is © The Royal Society of Chemistry 2011
NASA Astrophysics Data System (ADS)
Baricco, Marcello; Bang, Mads; Fichtner, Maximilian; Hauback, Bjorn; Linder, Marc; Luetto, Carlo; Moretto, Pietro; Sgroi, Mauro
2017-02-01
The main objective of the SSH2S (Fuel Cell Coupled Solid State Hydrogen Storage Tank) project was to develop a solid state hydrogen storage tank based on complex hydrides and to fully integrate it with a High Temperature Proton Exchange Membrane (HT-PEM) fuel cell stack. A mixed lithium amide/magnesium hydride system was used as the main storage material for the tank, due to its high gravimetric storage capacity and relatively low hydrogen desorption temperature. The mixed lithium amide/magnesium hydride system was coupled with a standard intermetallic compound to take advantage of its capability to release hydrogen at ambient temperature and to ensure a fast start-up of the system. The hydrogen storage tank was designed to feed a 1 kW HT-PEM stack for 2 h to be used for an Auxiliary Power Unit (APU). A full thermal integration was possible thanks to the high operation temperature of the fuel cell and to the relative low temperature (170 °C) for hydrogen release from the mixed lithium amide/magnesium hydride system.
Gasoline-fueled solid oxide fuel cell using MoO2-Based Anode
NASA Astrophysics Data System (ADS)
Hou, Xiaoxue; Marin-Flores, Oscar; Kwon, Byeong Wan; Kim, Jinsoo; Norton, M. Grant; Ha, Su
2014-12-01
This short communication describes the performance of a solid oxide fuel cell (SOFC) fueled by directly feeding premium gasoline to the anode without using external reforming. The novel component of the fuel cell that enables such operation is the mixed conductivity of MoO2-based anode. Using this anode, a fuel cell demonstrating a maximum power density of 31 mW/cm2 at 0.45 V was successfully fabricated. Over a 24 h period of operation, the open cell voltage remained stable at ∼0.92 V. Scanning electron microscopy (SEM) examination of the anode surface pre- and post-testing showed no evidence of coking.
Microorganism mediated liquid fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troiano, Richard
Herein disclosed is a method for producing liquid hydrocarbon product, the method comprising disintegrating a hydrocarbon source; pretreating the disintegrated hydrocarbon source; solubilizing the disintegrated hydrocarbon source to form a slurry comprising a reactant molecule of the hydrocarbon source; admixing a biochemical liquor into the slurry, wherein the biochemical liquor comprises at least one conversion enzyme configured to facilitate bond selective photo-fragmentation of said reactant molecule of the hydrocarbon source, to form liquid hydrocarbons via enzyme assisted bond selective photo-fragmentation, wherein said conversion enzyme comprises reactive sites configured to restrict said reactant molecule such that photo-fragmentation favorably targets a preselectedmore » internal bond of said reactant molecule; separating the liquid hydrocarbons from the slurry, wherein contaminants remain in the slurry; and enriching the liquid hydrocarbons to form a liquid hydrocarbon product. Various aspects of such method/process are also discussed.« less
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor); Davis, Dennis D. (Inventor)
1991-01-01
A flow reactor for simulating the interaction in the troposphere is set forth. A first reactant mixed with a carrier gas is delivered from a pump and flows through a duct having louvers therein. The louvers straighten out the flow, reduce turbulence and provide laminar flow discharge from the duct. A second reactant delivered from a source through a pump is input into the flowing stream, the second reactant being diffused through a plurality of small diffusion tubes to avoid disturbing the laminar flow. The commingled first and second reactants in the carrier gas are then directed along an elongated duct where the walls are spaced away from the flow of reactants to avoid wall interference, disturbance or turbulence arising from the walls. A probe connected with a measuring device can be inserted through various sampling ports in the second duct to complete measurements of the first and second reactants and the product of their reaction at selected XYZ locations relative to the flowing system.
Depth and Extent of Gas-Ablator Mix in Symcap Implosions at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Pino, Jesse; Ma, T.; MacLaren, S. A.; Salmonson, J. D.; Ho, D.; Khan, S. F.; Masse, L.; Ralph, J. E.; Czajka, C.; Casey, D.; Sacks, R.; Smalyuk, V. A.; Tipton, R. E.; Kyrala, G. A.
2017-10-01
A longstanding question in ICF physics has been the extent to which capsule ablator material mixes into the burning fusion fuel and degrades performance. Several recent campaigns at the National Ignition Facility have examined this question through the use of separated reactants. A layer of CD plastic is placed on the inner surface of the CH shell and the shell is filled with a gas mixture of H and T. This allows for simultaneous neutron signals that inform different aspects of the physics; we get core TT neutron yield, atomic mix from the DT neutrons, and information about shell heating from the DD neutron signal. By systematically recessing the CD layer away from the gas boundary we gain an inference of the depth of the mixing layer. This presentation will cover three campaigns to look at mixing depth: An ignition-like design (``Low-foot'') at two convergence ratios, as well as a robust, nearly one-dimensional, low convergence, symmetric platform designed to minimize ablation front feed-through (HED 2-shock). We show that the 2-shock capsule has less ablator-gas mix, and compare the experimental results to mix-model simulations. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344, LLNS, LLC.
2015-01-07
Min Lee, Kevin Huang. Mixed Oxide-Ion and Carbonate-Ion Conductors (MOCCs) as Electrolyte Materials for Solid Oxide Fuel Cells, 218th ECS Meeting... Solid Oxide Fuel Cells The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official...ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Solid Oxide Fuel Cell, Oxygen Reduction, Molten Carbonate
Ice Melting to Release Reactants in Solution Syntheses.
Wei, Hehe; Huang, Kai; Zhang, Le; Ge, Binghui; Wang, Dong; Lang, Jialiang; Ma, Jingyuan; Wang, Da; Zhang, Shuai; Li, Qunyang; Zhang, Ruoyu; Hussain, Naveed; Lei, Ming; Liu, Li-Min; Wu, Hui
2018-03-19
Aqueous solution syntheses are mostly based on mixing two solutions with different reactants. It is shown that freezing one solution and melting it in another solution provides a new interesting strategy to mix chemicals and to significantly change the reaction kinetics and thermodynamics. For example, a precursor solution containing a certain concentration of AgNO 3 was frozen and dropped into a reductive NaBH 4 solution at about 0 °C. The ultra-slow release of reactants was successfully achieved. An ice-melting process can be used to synthesize atomically dispersed metals, including cobalt, nickel, copper, rhodium, ruthenium, palladium, silver, osmium, iridium, platinum, and gold, which can be easily extended to other solution syntheses (such as precipitation, hydrolysis, and displacement reactions) and provide a generalized method to redesign the interphase reaction kinetics and ion diffusion in wet chemistry. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Gotch, S. M.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NAA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Electrical Power Generation (EPG)/Power Reactants Storage and Distribution (PRSD) System Hardware is documented. The EPG/PRSD hardware is required for performing critical functions of cryogenic hydrogen and oxygen storage and distribution to the Fuel Cell Powerplants (FCP) and Atmospheric Revitalization Pressure Control Subsystem (ARPCS). Specifically, the EPG/PRSD hardware consists of the following: Hydryogen (H2) tanks; Oxygen (O2) tanks; H2 Relief Valve/Filter Packages (HRVFP); O2 Relief Valve/Filter Packages (ORVFP); H2 Valve Modules (HVM); O2 Valve Modules (OVM); and O2 and H2 lines, components, and fittings.
Examination of Mechanisms and Fuel-Molecular Effects on Soot Formation.
1988-02-13
atoms. Since the k[acetone]/ki[C 2H2]2 ratios as previ6usly calculated are significantly greater than one, production of H-atoms via acetone...Reactant decay and product formation as determined using this analysis are described below. Acetylene was calculated to decay principally by three...times of 500 to 700 microseconds. Gas samples of reactant, intermediate, and final products were collected and analyzed using gas chromatography
Combustion Synthesis Technology Applied to In-situ Resource Utilization
2006-06-15
or bond energies. When both the precursor salts and the fuel are water soluble, a good homogenization can be achieved in the solution. In the...metallic compounds, e.g. Ni-Al. Steel processing additives, e.g. ferro-nitrides. Electrodes for electrolysis of corrosive media, e.g. TiN, TiB2...reactants; 4. Spreading of a molten phase; 5. Gasification of volatile impurities and reactants; 6. Chemical reaction with initial product formation; 7
Optical calorimetry in microfluidic droplets.
Chamoun, Jacob; Pattekar, Ashish; Afshinmanesh, Farzaneh; Martini, Joerg; Recht, Michael I
2018-05-29
A novel microfluidic calorimeter that measures the enthalpy change of reactions occurring in 100 μm diameter aqueous droplets in fluoropolymer oil has been developed. The aqueous reactants flow into a microfluidic droplet generation chip in separate fluidic channels, limiting contact between the streams until immediately before they form the droplet. The diffusion-driven mixing of reactants is predominantly restricted to within the droplet. The temperature change in droplets due to the heat of reaction is measured optically by recording the reflectance spectra of encapsulated thermochromic liquid crystals (TLC) that are added to one of the reactant streams. As the droplets travel through the channel, the spectral characteristics of the TLC represent the internal temperature, allowing optical measurement with a precision of ≈6 mK. The microfluidic chip and all fluids are temperature controlled, and the reaction heat within droplets raises their temperature until thermal diffusion dissipates the heat into the surrounding oil and chip walls. Position resolved optical temperature measurement of the droplets allows calculation of the heat of reaction by analyzing the droplet temperature profile over time. Channel dimensions, droplet generation rate, droplet size, reactant stream flows and oil flow rate are carefully balanced to provide rapid diffusional mixing of reactants compared to thermal diffusion, while avoiding thermal "quenching" due to contact between the droplets and the chip walls. Compared to conventional microcalorimetry, which has been used in this work to provide reference measurements, this new continuous flow droplet calorimeter has the potential to perform titrations ≈1000-fold faster while using ≈400-fold less reactants per titration.
Varanasi, Jhansi L; Sinha, Pallavi; Das, Debabrata
2017-05-01
To selectively enrich an electrogenic mixed consortium capable of utilizing dark fermentative effluents as substrates in microbial fuel cells and to further enhance the power outputs by optimization of influential anodic operational parameters. A maximum power density of 1.4 W/m 3 was obtained by an enriched mixed electrogenic consortium in microbial fuel cells using acetate as substrate. This was further increased to 5.43 W/m 3 by optimization of influential anodic parameters. By utilizing dark fermentative effluents as substrates, the maximum power densities ranged from 5.2 to 6.2 W/m 3 with an average COD removal efficiency of 75% and a columbic efficiency of 10.6%. A simple strategy is provided for selective enrichment of electrogenic bacteria that can be used in microbial fuel cells for generating power from various dark fermentative effluents.
NASA Astrophysics Data System (ADS)
Zamel, Nada; Li, Xianguo
The objective of this study is to put forward a full analysis of the impact of the difference between the Canadian and American energy realities on the life cycle of fuel cell vehicles and internal combustion engine vehicles. Electricity is a major type of energy used in the transportation sector. Electricity is needed in the production of feedstock of fuel, the production of the fuel, the production of the vehicle material and the assembly of the vehicles. Therefore, it is necessary to investigate the impact of the electricity mix difference between Canada and the United States. In the analysis, the life cycle of the fuel consists of obtaining the raw material, extracting the fuel from the raw material, transporting and storing the fuel as well as using the fuel in the vehicle. Four different methods of obtaining hydrogen were analyzed; using coal and nuclear power to produce electricity and extract hydrogen through electrolysis and via steam reforming of natural gas in a natural gas plant and in a hydrogen refueling station. It is found that fuel cell vehicle fuelled by hydrogen has lower energy consumption and greenhouse gas emissions than internal combustion engine vehicle fuelled by conventional gasoline except for hydrogen production using coal as the primary energy source in Canada and the United States. Using the Canadian electricity mix will result in lower carbon dioxide emissions and energy consumption than using the American electricity mix. For the present vehicles, using the Canadian electricity mix will save up to 215.18 GJ of energy and 20.87 t of CO 2 on a per capita basis and 26.53 GJ of energy and 6.8 t of CO 2 on a per vehicle basis. Similarly, for the future vehicles, using the Canadian electricity mix will lower the total carbon dioxide emissions by 21.15 t and the energy consumed is reduced by 218.49 GJ on a per capita basis and 26.53 GJ of energy and 7.22 t of CO 2 on a per vehicle basis. The well-to-tank efficiencies are higher with the Canadian electricity mix.
In situ formation of leak-free polyethylene glycol (PEG) membranes in microfluidic fuel cells.
Ho, W F; Lim, K M; Yang, K-L
2016-11-29
Membraneless microfluidic fuel cells operated under two co-laminar flows often face serious fuel cross-over problems, especially when flow rates are close to zero. In this study, we show that polyethylene glycol (PEG) monomers can be cross-linked inside microfluidic channels to form leak-free PEG membranes, which prevent mixing of two incompatible electrolyte solutions while allowing diffusion of certain molecules (e.g. glucose) and ions. By using PEG monomers of different molecular weights and cross-linking conditions, we are able to tailor selectivity of the membrane to allow passage of glucose while blocking larger molecules such as trypan blue. As a proof of principle, a microfluidic fuel cell with a PEG membrane and two incompatible electrolytes (acid and base) is demonstrated. Thanks to the leak-free nature of the PEG membrane, these two electrolytes do not mix together even at very slow flow rates. This microfluidic fuel cell is able to generate a voltage up to ∼450 mV from 10 mM of glucose with a flow rate of 20 μL min -1 . This microfluidic fuel cell is potentially useful as a miniature power source for many applications.
Develop and test fuel cell powered on-site integrated total energy system
NASA Technical Reports Server (NTRS)
Kaufman, A.; Johnson, G. K.
1982-01-01
Satisfactory performance is reported for the first 12-cell sub-stack of the 5 kW rebuild using improved ABA reactant distribution plates. Construction and test results are described for the first full-sized single-cell test (0.33 m x 0.56 m). Test duration was 450 hours. Plans are outlined for construction and testing of two methanol reformer units based on commercially-available shell-and-tube heat exchangers. A 5 kW-equivalent precursor and a 50 kW-equivalent prototype will be built. Supporting design and single-tube experimental data are presented. Stack support efforts are summarized on corrosion currents of graphite materials and acid-management of single-cell test facilities. Comparative properties are summarized for the two methanol/steam reforming catalysts evauated under Task V (now completed); T2107RS and C70-2RS.
Henning, Sebastian; Ishikawa, Hiroshi; Kühn, Laura; Herranz, Juan; Müller, Elisabeth; Eychmüller, Alexander; Schmidt, Thomas J
2017-08-28
Highly active and durable oxygen reduction catalysts are needed to reduce the costs and enhance the service life of polymer electrolyte fuel cells (PEFCs). This can be accomplished by alloying Pt with a transition metal (for example Ni) and by eliminating the corrodible, carbon-based catalyst support. However, materials combining both approaches have seldom been implemented in PEFC cathodes. In this work, an unsupported Pt-Ni alloy nanochain ensemble (aerogel) demonstrates high current PEFC performance commensurate with that of a carbon-supported benchmark (Pt/C) following optimization of the aerogel's catalyst layer (CL) structure. The latter is accomplished using a soluble filler to shift the CL's pore size distribution towards larger pores which improves reactant and product transport. Chiefly, the optimized PEFC aerogel cathodes display a circa 2.5-fold larger surface-specific ORR activity than Pt/C and maintain 90 % of the initial activity after an accelerated stress test (vs. 40 % for Pt/C). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of Fuel Cell Anode Recycle on Catalytic Fuel Reforming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shekhawat, Dushyant; Berry, D.A.; Gardner, T.H.
2007-06-01
The presence of steam in the reactant gas of a catalytic fuel reformer decreases the formation of carbon, minimizing catalyst deactivation. However, the operation of the reformer without supplemental water reduces the size, weight, cost, and overall complexity of the system. The work presented here examines experimentally two options for adding steam to the reformer inlet: (I) recycle of a simulated fuel cell anode exit gas (comprised of mainly CO2, H2O, and N2 and some H2 and CO) and (II) recycle of the reformate from the reformer exit back to the reformer inlet (mainly comprised of H2, CO, and N2more » and some H2O and CO2). As expected, anode gas recycle reduced the carbon formation and increased the hydrogen concentration in the reformate. However, reformer recycle was not as effective due principally to the lower water content in the reformate compared to the anode gas. In fact, reformate recycle showed slightly increased carbon formation compared to no recycle. In an attempt to understand the effects of individual gases in these recycle streams (H2, CO, CO2, N2, and H2O), individual gas species were independently introduced to the reformer feed.« less
Effects of fuel cell anode recycle on catalytic fuel reforming
DOE Office of Scientific and Technical Information (OSTI.GOV)
shekhawat, D.; Berry, D.; Gardner, T.
2007-01-01
The presence of steam in the reactant gas of a catalytic fuel reformer decreases the formation of carbon, minimizing catalyst deactivation. However, the operation of the reformer without supplemental water reduces the size, weight, cost, and overall complexity of the system. The work presented here examines experimentally two options for adding steam to the reformer inlet: (I) recycle of a simulated fuel cell anode exit gas (comprised of mainly CO2, H2O, and N2 and some H2 and CO) and (II) recycle of the reformate from the reformer exit back to the reformer inlet (mainly comprised of H2, CO, and N2more » and some H2O and CO2). As expected, anode gas recycle reduced the carbon formation and increased the hydrogen concentration in the reformate. However, reformer recycle was not as effective due principally to the lower water content in the reformate compared to the anode gas. In fact, reformate recycle showed slightly increased carbon formation compared to no recycle. In an attempt to understand the effects of individual gases in these recycle streams (H2, CO, CO2, N2, and H2O), individual gas species were independently introduced to the reformer feed. Published by Elsevier B.V.« less
Gold nanoparticles: novel catalyst for the preparation of direct methanol fuel cell.
Kuralkar, Mayuri; Ingle, Avinash; Gaikwad, Swapnil; Gade, Aniket; Rai, Mahendra
2015-04-01
The authors report the biosynthesis of gold nanoparticles (Au-NPs) using plant pathogenic Phoma glomerata (MTCC 2210). The synthesis of nanoparticles was characterised by visual observation followed UV-visible spectrophotometric analysis, Fourier transform infrared spectroscopy and nanoparticle tracking analysis. Later, direct methanol fuel cell (DMFC) was constructed using two chambers (anodic chamber and cathodic chamber). These Au-NPs as catalysts have various advantages over the other catalysts that are used in the DMFC. Most importantly, it is cheaper as compared with other catalysts like platinum, and showed higher catalytic activity because of its effective surface structure. Being nano in size, it provides more surface area for the attachment of reactant molecules (methanol molecules). The DMFC catalysed by Au-NPs are found to be suitable to replace lithium ion battery technology in consumer electronics like cell phones, laptops and so on due to the fact that they can produce a high amount of energy in a small space. As long as fuel and air are supplied to the DMFC, it will continue to produce power, so it does not need to be recharged. The use of Au-NPs as catalyst in DMFC has not been reported in the past; it is reported here the first time.
Study of effective transport properties of fresh and aged gas diffusion layers
NASA Astrophysics Data System (ADS)
Bosomoiu, Magdalena; Tsotridis, Georgios; Bednarek, Tomasz
2015-07-01
Gas diffusion layers (GDLs) play an important role in proton exchange membrane fuel cells (PEMFCs) for the diffusion of reactant and the removal of product water. In the current study fresh and aged GDLs (Sigracet® GDL34BC) were investigated by X-ray computed tomography to obtain a representative 3D image of the real GDL structure. The examined GDL samples are taken from areas located under the flow channel and under the land. Additionally, a brand new Sigracet® GDL34BC was taken as a reference sample in order to find out the impact of fuel cell assembly on GDL. The produced 3D image data were used to calculate effective transport properties such as thermal and electrical conductivity, diffusivity, permeability and capillary pressure curves of the dry and partially saturated GDL. The simulation indicates flooding by product water occurs at contact angles lower than 125° depending on sample porosity. In addition, GDL anisotropy significantly affects the permeability as well as thermal and electrical conductivities. The calculated material bulk properties could be next used as input for CFD modelling of PEM fuel cells where GDL is usually assumed layer-like and homogeneous. Tensor material parameters allow to consider GDL anisotropy and lead to more realistic results.
Characterization of transport phenomena in porous transport layers using X-ray microtomography
NASA Astrophysics Data System (ADS)
Hasanpour, S.; Hoorfar, M.; Phillion, A. B.
2017-06-01
Among different methods available for estimating the transport properties of porous transport layers (PTLs) of polymer electrolyte membrane fuel cells, X-ray micro computed tomography (X-μCT) imaging in combination with image-based numerical simulation has been recognized as a viable tool. In this study, four commercially-available single-layer and dual-layer PTLs are analyzed using this method in order to compare and contrast transport properties between different PTLs, as well as the variability within a single sheet. Complete transport property datasets are created for each PTL. The simulation predictions indicate that PTLs with high porosity show considerable variability in permeability and effective diffusivity, while PTLs with low porosity do not. Furthermore, it is seen that the Tomadakis-Sotirchos (TS) analytical expressions for porous media match the image-based simulations when porosity is relatively low but predict higher permeability and effective diffusivity for porosity values greater than 80%. Finally, the simulations show that cracks within MPL of dual-layer PTLs have a significant effect on the overall permeability and effective diffusivity of the PTLs. This must be considered when estimating the transport properties of dual-layer PTLs. These findings can be used to improve macro-scale models of product and reactant transport within fuel cells, and ultimately, fuel cell efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Vernon Cole; Abhra Roy; Ashok Damle
2012-10-02
Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion pathsmore » for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.« less
Method and apparatus for the control of fluid dynamic mixing in pulse combustors
Bramlette, T.T.; Keller, J.O.
1992-06-02
In a method and apparatus for controlling total ignition delay time in a pulse combustor, and thus controlling the mixing characteristics of the combustion reactants and the combustion products in the combustor, the total ignition delay time is controlled by adjusting the inlet geometry of the inlet to the combustion chamber. The inlet geometry may be fixed or variable for controlling the mixing characteristics. A feedback loop may be employed to sense actual combustion characteristics, and, in response to the sensed combustion characteristics, the inlet geometry may be varied to obtain the total ignition delay time necessary to achieve the desired combustion characteristics. Various embodiments relate to the varying of the mass flow rate of reactants while holding the radius/velocity ratio constant. 10 figs.
Method and apparatus for the control of fluid dynamic mixing in pulse combustors
Bramlette, T. Tazwell; Keller, Jay O.
1992-06-02
In a method and apparatus for controlling total ignition delay time in a pulse combustor, and thus controlling the mixing characteristics of the combustion reactants and the combustion products in the combustor, the total ignition delay time is controlled by adjusting the inlet geometry of the inlet to the combustion chamber. The inlet geometry may be fixed or variable for controlling the mixing characteristics. A feedback loop may be employed to sense actual combustion characteristics, and, in response to the sensed combustion characteristics, the inlet geometry may be varied to obtain the total ignition delay time necessary to achieve the desired combustion characteristics. Various embodiments relate to the varying of the mass flow rate of reactants while holding the radius/velocity ratio constant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorotilin, V. P., E-mail: VPVorotilin@yandex.ru; Yanovskii, Yu. G.
On the basis of representation of a turbulent fluid as an aggregation of independent turbulent particles (vortexes), we derive relations for the effective rate of chemical reactions and obtain a closed system of equations describing reactions with turbulent mixing of reactants. A variant of instantaneous reactions is considered that explains the proposed approach simply. In particular, the turbulent mixing events according to this approach are uniquely related to the acts of chemical interaction, which makes it possible to exclude from consideration the mixing of inert impurities–the most difficult point of the theory formulated using classical notions. The obtained system ofmore » equations is closed without introducing arbitrarily adopted correlations, by naturally introducing the concept of effective reaction and writing the equations of conservation for both the concentrations of reactants and their volumes.« less
Maya-Cornejo, J; Ortiz-Ortega, E; Álvarez-Contreras, L; Arjona, N; Guerra-Balcázar, M; Ledesma-García, J; Arriaga, L G
2015-02-14
A membraneless nanofluidic fuel cell with flow-through electrodes that works with several fuels (individually or mixed): methanol, ethanol, glycerol and ethylene-glycol in alkaline media is presented. For this application, an efficient Cu@Pd electrocatalyst was synthesized and tested, resulting outstanding performance until now reported, opening the possibility of power nano-devices for multi-uses purposes, regardless of fuel re-charge employed.
NASA Astrophysics Data System (ADS)
Ganesh, Karthik
Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts. However, by extrapolating the necessary rate of concentration of sodium hydroxide required to produce hydrogen rates that would enable use of the system on highway drive cycles, it was deemed unsafe due to the caustic nature of the solution used.
Plasma-catalyzed fuel reformer
Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele
2013-06-11
A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.
Fabrication of copper-based anodes via atmosphoric plasma spraying techniques
Lu, Chun [Monroeville, PA
2012-04-24
A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.
Tapered plug foam spray apparatus
NASA Technical Reports Server (NTRS)
Allen, Peter B. (Inventor)
1996-01-01
A two-component foam spray gun is readily disassembled for cleaning. It includes a body (1) with reactant (12, 14) and purge gas (16) inlet ports. A moldable valve packing (32) inside the body has a tapered conical interior surface (142), and apertures which match the reactant ports. A valve/tip (40) has a conical outer surface (48) which mates with the valve packing (32). The valve/tip (40) is held in place by a moldable packing washer (34), held at non-constant pressure by a screw (36, 38). The interior of the valve/tip (40) houses a removable mixing chamber (50). The mixing chamber (50) has direct flow orifices (60) and an auxiliary flow path (58, 60) which ameliorate pressure surges. The spray gun can be disassembled for cleaning without disturbing the seal, by removing the valve/tip (40) to the rear, thereby breaking it free of the conical packing. Rotation of the valve/tip (40) relative to the body (1) shuts off the reactant flow, and starts the purge gas flow.
NASA Astrophysics Data System (ADS)
Jones, A. R.
1985-11-01
Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.
A microfluidic direct formate fuel cell on paper.
Copenhaver, Thomas S; Purohit, Krutarth H; Domalaon, Kryls; Pham, Linda; Burgess, Brianna J; Manorothkul, Natalie; Galvan, Vicente; Sotez, Samantha; Gomez, Frank A; Haan, John L
2015-08-01
We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane-less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co-laminar flow of the anode stream and oxidant stream to prevent mixing. However, in paper microfluidics, capillary action drives flow while minimizing stream mixing. In this work, we demonstrate a paper MFC that uses formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using these materials we achieve a maximum power density of nearly 2.5 mW/mg Pd. In a series configuration, our MFC achieves an open circuit voltage just over 1 V, and in a parallel configuration, short circuit of 20 mA absolute current. We also demonstrate that the MFC does not require continuous flow of fuel and oxidant to produce power. We found that we can pre-saturate the materials on the paper, stop the electrolyte flow, and still produce approximately 0.5 V for 15 min. This type of paper MFC has potential applications in point-of-care diagnostic devices and other electrochemical sensors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
One-step catalytic conversion of biomass-derived carbohydrates to liquid fuels
Sen, Ayusman; Yang, Weiran
2014-03-18
The invention relates to a method for manufacture of hydrocarbon fuels and oxygenated hydrocarbon fuels such as alkyl substituted tetrahydrofurans such as 2,5-dimethyltetrahydrofuran, 2-methyltetrahydrofuran, 5-methylfurfural and mixtures thereof. The method generally entails forming a mixture of reactants that includes carbonaceous material, water, a metal catalyst and an acid reacting that mixture in the presence of hydrogen. The reaction is performed at a temperature and for a time sufficient to produce a furan type hydrocarbon fuel. The process may be adapted to provide continuous manufacture of hydrocarbon fuels such as a furan type fuel.
Diffusive tunneling for alleviating Knudsen-layer reactivity reduction under hydrodynamic mix
NASA Astrophysics Data System (ADS)
Tang, Xianzhu; McDevitt, Chris; Guo, Zehua
2017-10-01
Hydrodynamic mix will produce small features for intermixed deuterium-tritium fuel and inert pusher materials. The geometrical characteristics of the mix feature have a large impact on Knudsen layer yield reduction. We considered two features. One is planar structure, and the other is fuel cells segmented by inert pusher material which can be represented by a spherical DT bubble enclosed by a pusher shell. The truly 3D fuel feature, the spherical bubble, has the largest degree of yield reduction, due to fast ions being lost in all directions. The planar fuel structure, which can be regarded as 1D features, has modest amount of potential for yield degradation. While the increasing yield reduction with increasing Knudsen number of the fuel region is straightforwardly anticipated, we also show, by a combination of direct simulation and simple model, that once the pusher materials is stretched sufficiently thin by hydrodynamic mix, the fast fuel ions diffusively tunnel through them with minimal energy loss, so the Knudsen layer yield reduction becomes alleviated. This yield recovery can occur in a chunk-mixed plasma, way before the far more stringent, asymptotic limit of an atomically homogenized fuel and pusher assembly. Work supported by LANL LDRD program.
Air electrode composition for solid oxide fuel cell
Kuo, Lewis; Ruka, Roswell J.; Singhal, Subhash C.
1999-01-01
An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell.
Air electrode composition for solid oxide fuel cell
Kuo, L.; Ruka, R.J.; Singhal, S.C.
1999-08-03
An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO{sub 3}. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell. 3 figs.
Su, Chao; Chen, Yubo; Wang, Wei; Ran, Ran; Shao, Zongping; Diniz da Costa, João C; Liu, Shaomin
2014-06-17
In this study, we propose and experimentally verified that methane and formic acid mixed fuel can be employed to sustain solid oxide fuel cells (SOFCs) to deliver high power outputs at intermediate temperatures and simultaneously reduce the coke formation over the anode catalyst. In this SOFC system, methane itself was one part of the fuel, but it also played as the carrier gas to deliver the formic acid to reach the anode chamber. On the other hand, the products from the thermal decomposition of formic acid helped to reduce the carbon deposition from methane cracking. In order to clarify the reaction pathways for carbon formation and elimination occurring in the anode chamber during the SOFC operation, O2-TPO and SEM analysis were carried out together with the theoretical calculation. Electrochemical tests demonstrated that stable and high power output at an intermediate temperature range was well-maintained with a peak power density of 1061 mW cm(-2) at 750 °C. With the synergic functions provided by the mixed fuel, the SOFC was running for 3 days without any sign of cell performance decay. In sharp contrast, fuelled by pure methane and tested at similar conditions, the SOFC immediately failed after running for only 30 min due to significant carbon deposition. This work opens a new way for SOFC to conquer the annoying problem of carbon deposition just by properly selecting the fuel components to realize their synergic effects.
Hydrogen storage and integrated fuel cell assembly
Gross, Karl J.
2010-08-24
Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.
On-Site Fuel Cell Energy Systems: The U.S. Air Force Field Test Demonstration Plan.
1980-12-01
Continue on reverse -, de if necessary and identify by block number) Fuel cells Cogererati on Energy conversion ABSTRACT (Continue an reverse ide If...fuel electrode, water at the oxygen electrode, and to act as a mechanical barrier between the two gases to prevent mixing and direct combustion . When the...possibility of more effective utilization of hydrocarbon fuels, especially when compared with the alternative heat engine combustion technologies. Figure 12
NASA Astrophysics Data System (ADS)
Ginn, T. R.
2018-01-01
The challenge of determining mixing extent of solutions undergoing advective-dispersive-diffusive transport is well known. In particular, reaction extent between displacing and displaced solutes depends on mixing at the pore scale, that is, generally smaller than continuum scale quantification that relies on dispersive fluxes. Here a novel mobile-mobile mass transfer approach is developed to distinguish diffusive mixing from dispersive spreading in one-dimensional transport involving small-scale velocity variations with some correlation, such as occurs in hydrodynamic dispersion, in which short-range ballistic transports give rise to dispersed but not mixed segregation zones, termed here ballisticules. When considering transport of a single solution, this approach distinguishes self-diffusive mixing from spreading, and in the case of displacement of one solution by another, each containing a participant reactant of an irreversible bimolecular reaction, this results in time-delayed diffusive mixing of reactants. The approach generates models for both kinetically controlled and equilibrium irreversible reaction cases, while honoring independently measured reaction rates and dispersivities. The mathematical solution for the equilibrium case is a simple analytical expression. The approach is applied to published experimental data on bimolecular reactions for homogeneous porous media under postasymptotic dispersive conditions with good results.
Mix Model Comparison of Low Feed-Through Implosions
NASA Astrophysics Data System (ADS)
Pino, Jesse; MacLaren, S.; Greenough, J.; Casey, D.; Dewald, E.; Dittrich, T.; Khan, S.; Ma, T.; Sacks, R.; Salmonson, J.; Smalyuk, V.; Tipton, R.; Kyrala, G.
2016-10-01
The CD Mix campaign previously demonstrated the use of nuclear diagnostics to study the mix of separated reactants in plastic capsule implosions at the NIF. Recently, the separated reactants technique has been applied to the Two Shock (TS) implosion platform, which is designed to minimize this feed-through and isolate local mix at the gas-ablator interface and produce core yields in good agreement with 1D clean simulations. The effects of both inner surface roughness and convergence ratio have been probed. The TT, DT, and DD neutron signals respectively give information about core gas performance, gas-shell atomic mix, and heating of the shell. In this talk, we describe efforts to model these implosions using high-resolution 2D ARES simulations. Various methods of interfacial mix will be considered, including the Reynolds-Averaged Navier Stokes (RANS) KL method as well as and a multicomponent enhanced diffusivity model with species, thermal, and pressure gradient terms. We also give predictions of a upcoming campaign to investigate Mid-Z mixing by adding a Ge dopant to the CD layer. LLNL-ABS-697251 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
High Temperature Polymers for use in Fuel Cells
NASA Technical Reports Server (NTRS)
Peplowski, Katherine M.
2004-01-01
NASA Glenn Research Center (GRC) is currently working on polymers for fuel cell and lithium battery applications. The desire for more efficient, higher power density, and a lower environmental impact power sources has led to interest in proton exchanges membrane fuels cells (PEMFC) and lithium batteries. A PEMFC has many advantages as a power source. The fuel cell uses oxygen and hydrogen as reactants. The resulting products are electricity, heat, and water. The PEMFC consists of electrodes with a catalyst, and an electrolyte. The electrolyte is an ion-conducting polymer that transports protons from the anode to the cathode. Typically, a PEMFC is operated at a temperature of about 80 C. There is intense interest in developing a fuel cell membrane that can operate at higher temperatures in the range of 80 C- 120 C. Operating the he1 cell at higher temperatures increases the kinetics of the fuel cell reaction as well as decreasing the susceptibility of the catalyst to be poisoned by impurities. Currently, Nafion made by Dupont is the most widely used polymer membrane in PEMFC. Nafion does not function well above 80 C due to a significant decrease in the conductivity of the membrane from a loss of hydration. In addition to the loss of conductivity at high temperatures, the long term stability and relatively high cost of Nafion have stimulated many researches to find a substitute for Nafion. Lithium ion batteries are popular for use in portable electronic devices, such as laptop computers and mobile phones. The high power density of lithium batteries makes them ideal for the high power demand of today s advanced electronics. NASA is developing a solid polymer electrolyte that can be used for lithium batteries. Solid polymer electrolytes have many advantages over the current gel or liquid based systems that are used currently. Among these advantages are the potential for increased power density and design flexibility. Automobiles, computers, and cell phones require highly efficient power density for lowering emissions and meeting increasing consumer demands. Many of the solutions can be provided by proton exchange membrane fuel cells and lithium batteries. NASA Glenn Research Center has recognized this need, and is presently engaged in a solution. The goals for the summer include mastering synthesis techniques, understanding the reactions occurring during the synthesis, and characterizing the resulting polymer membranes using NMR, DSC, and TGA for the PEMFC and lithium batteries.
Recuperated atmospheric SOFC/gas turbine hybrid cycle
Lundberg, Wayne
2010-05-04
A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).
Recuperated atmosphere SOFC/gas turbine hybrid cycle
Lundberg, Wayne
2010-08-24
A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, Andrew, E-mail: a.duncan@imperial.ac.uk; Erban, Radek, E-mail: erban@maths.ox.ac.uk; Zygalakis, Konstantinos, E-mail: k.zygalakis@ed.ac.uk
Stochasticity plays a fundamental role in various biochemical processes, such as cell regulatory networks and enzyme cascades. Isothermal, well-mixed systems can be modelled as Markov processes, typically simulated using the Gillespie Stochastic Simulation Algorithm (SSA) [25]. While easy to implement and exact, the computational cost of using the Gillespie SSA to simulate such systems can become prohibitive as the frequency of reaction events increases. This has motivated numerous coarse-grained schemes, where the “fast” reactions are approximated either using Langevin dynamics or deterministically. While such approaches provide a good approximation when all reactants are abundant, the approximation breaks down when onemore » or more species exist only in small concentrations and the fluctuations arising from the discrete nature of the reactions become significant. This is particularly problematic when using such methods to compute statistics of extinction times for chemical species, as well as simulating non-equilibrium systems such as cell-cycle models in which a single species can cycle between abundance and scarcity. In this paper, a hybrid jump-diffusion model for simulating well-mixed stochastic kinetics is derived. It acts as a bridge between the Gillespie SSA and the chemical Langevin equation. For low reactant reactions the underlying behaviour is purely discrete, while purely diffusive when the concentrations of all species are large, with the two different behaviours coexisting in the intermediate region. A bound on the weak error in the classical large volume scaling limit is obtained, and three different numerical discretisations of the jump-diffusion model are described. The benefits of such a formalism are illustrated using computational examples.« less
Polymeric foams from cross-linkable poly-N-ary lenebenzimidazoles
NASA Technical Reports Server (NTRS)
Harrison, E. S.; Delano, C. B.; Riccitello, S. R. (Inventor)
1978-01-01
Foamed cross-linked poly-N-arylenebinzimidazoles are prepared by mixing an organic tetraamine and an ortho substituted aromatic dicarboxylic acid anhydride in the presence of a blowing agent, and then heating the prepolymer to a temperature sufficient to complete polymerization and foaming of the reactants. In another embodiment of the process, the reactants are heated to form a prepolymer. The prepolymer is then cured at higher temperatures to complete foaming and polymerization.
NASA Redox Project status summary
NASA Technical Reports Server (NTRS)
Hagedorn, N. H.
1983-01-01
This report is a summary of the results of the Redox Project effort during Cy 1982. It was presented at the Fifth U.S. Department of Energy Battery and Electrochemical Contractors Conference, Arlington, Va., Dec. 7-9, 1982. The major development during 1982 was the shift from Redox system operation at 25 C with unmixed reactants to operation at 65 C with mixed reactants. This change has made possible a two- or three-fold increase in operating current density, to about 65 mA/sq cm, and an increase in reactant utilization from 40% to about 90%. Both of these improvements will lead to significant system cost reductions. Contract studies have indicated that Redox reactant costs also will be moderate. A new catalyst for the chromuim electrode offers all the advantages of the conventional gold-lead catalyst while being easier to apply and more forgiving in use.
Method of Manufacturing Micro-Disperse Particles of Sodium Borohydride
Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester. Alan P.; Bell, Nelson S.
2008-09-23
A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.
Method of generating hydrogen gas from sodium borohydride
Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.
2007-12-11
A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.
Compact solid source of hydrogen gas
Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.
2004-06-08
A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.
Modeling of Low Feed-Through CD Mix Implosions
NASA Astrophysics Data System (ADS)
Pino, Jesse; MacLaren, Steven; Greenough, Jeff; Casey, Daniel; Dittrich, Tom; Kahn, Shahab; Kyrala, George; Ma, Tammy; Salmonson, Jay; Smalyuk, Vladimir; Tipton, Robert
2015-11-01
The CD Mix campaign previously demonstrated the use of nuclear diagnostics to study the mix of separated reactants in plastic capsule implosions at the National Ignition Facility. However, the previous implosions suffered from large instability growth seeded from perturbations on the outside of the capsule. Recently, the separated reactants technique has been applied to two platforms designed to minimize this feed-through and isolate local mix at the gas-ablator interface: the Two Shock (TS) and Adiabat-Shaped (AS) Platforms. Additionally, the background contamination of Deuterium in the gas has been greatly reduced, allowing for simultaneous observation of TT, DT, and DD neutrons, which respectively give information about core gas performance, gas-shell atomic mix, and heating of the shell. In this talk, we describe efforts to model these implosions using high-resolution 2D ARES simulations with both a Reynolds-Averaged Navier Stokes method and an enhanced diffusivity model. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-674867.
Lázaro, M J; Sebastián, D; Suelves, I; Moliner, R
2009-07-01
Carbon nanofiber (CNF) growth by catalytic decomposition of methane in a fixed-bed reactor was studied out to elucidate the influence of some important reaction conditions: temperature, space velocity and reactant partial pressure, in the morphological properties of the carbonaceous material obtained. The main objective is to synthesize a suitable carbonaceous nanomaterial to be used as support in platinum based electrocatalysts for Proton Exchange Membrane Fuel Cells (PEMFC) which improves current carbon blacks. High specific surface area is required in an electrocatalyst support since platinum dispersion is enhanced and so a cost-effective usage and high catalytic activity. Good electrical conductivity of carbon support is also required since the fuel cell power density is improved. With this proposal, characterization was carried out by nitrogen physisorption, XRD, SEM and TPO. The results were analysed by a factorial design and analysis of variance (ANOVA) in order to find an empirical correlation between operating conditions and CNF characteristics. It was found that the highest specific surface area and pore volume were found at 823 K and at a space velocity of 10 L gcat(-1) h(-1). The graphitic character of CNF, which is known to influence the electrical conductivity, presented a maximum value at temperatures between 923 K and 973 K. SEM images showed a narrow size distribution of CNF diameter between 40 and 90 nm and homogeneous appearance.
Mechanism of Gaseous Detonation Propagation Through Reactant Layers Bounded by Inert Gas
NASA Astrophysics Data System (ADS)
Houim, Ryan
2017-11-01
Vapor cloud explosions and rotating detonation engines involve the propagation of gaseous detonations through a layer of reactants that is bounded by inert gas. Mechanistic understanding of how detonations propagate stably or fail in these scenarios is incomplete. Numerical simulations were used to investigate mechanisms of gaseous detonation propagation through reactant layers bounded by inert gas. The reactant layer was a stoichiometric mixture of C2H4/O2 at 1 atm and 300K and is 4 detonation cells in height. Cases where the inert gas temperature was 300, 1500, and 3500 K will be discussed. The detonation failed for the 300 K case and propagated marginally for the 1500 K case. Surprisingly, the detonation propagated stably for the 3500 K case. A shock structure forms that involves a detached shock in the inert gas and a series of oblique shocks in the reactants. A small local explosion is triggered when the Mach stem of a detonation cell interacts with the compressed reactants behind one of these oblique shocks. The resulting pressure wave produces a new Mach stem and a new triple point that leads to a stable detonation. Preliminary results on the influence of a deflagration at the inert/reactant interface on the stability of a layered detonation will be discussed.
Degradation of polymer electrolyte membrane fuel cell by siloxane in biogas
NASA Astrophysics Data System (ADS)
Seo, Ji-Sung; Kim, Da-Yeong; Hwang, Sun-Mi; Seo, Min Ho; Seo, Dong-Jun; Yang, Seung Yong; Han, Chan Hui; Jung, Yong-Min; Guim, Hwanuk; Nahm, Kee Suk; Yoon, Young-Gi; Kim, Tae-Young
2016-06-01
We studied the degradation and durability of polymer electrolyte membrane fuel cell (PEMFC) at membrane-electrode-assembly (MEA) level by injection of octamethylcyclotetrasiloxane (D4) as a representative siloxane, which has been found in many industrial and personal products. Specifically, i) GC/MS analysis demonstrated that the ring-opening polymerization of D4 could result in the formation of various linear and cyclic siloxanes in both electrodes of MEA; ii) post-test analysis revealed that the transformed siloxanes were transported from the anode to the cathode via free-volumes in the polymer membrane; iii) RDE measurement and DFT calculation revealed that D4 was not directly responsible for the electrocatalytic activity of Pt; iv) electrochemical analysis demonstrated that the residual methyl groups of siloxane and various siloxanes did not hinder the proton transport in the polymer membrane; and v) siloxanes accumulated in the primary and secondary pores with the exception of an external surface of carbon, causing an increase in the oxygen reactant's resistance and resulting in a decrease of the cell performance. In addition, we confirmed that injection of D4 did not affect the carbon corrosion adversely because the siloxane had little influence on water sorption in the catalyst layer.
NASA Astrophysics Data System (ADS)
Li, Y. S.; Zhao, T. S.; Liang, Z. X.
In preparing low-temperature fuel cell electrodes, a polymer binder is essential to bind discrete catalyst particles to form a porous catalyst layer that simultaneously facilitates the transfer of ions, electrons, and reactants/products. For two types of polymer binder, namely, an A3-an anion conducting ionomer and a PTFE-a neutral polymer, an investigation is made of the effect of the content of each binder in the anode catalyst layer on the performance of an alkaline direct ethanol fuel cell (DEFC) with an anion-exchange membrane and non-platinum (non-Pt) catalysts. Experiments are performed by feeding either ethanol (C 2H 5OH) solution or ethanol-potassium hydroxide (C 2H 5OH-KOH) solution. The experimental results for the case of feeding C 2H 5OH solution without added KOH indicate that the cell performance varies with the A3 ionomer content in the anode catalyst layer, and a content of 10 wt.% exhibits the best performance. When feeding C 2H 5OH-KOH solution, the results show that: (i) in the region of low current density, the best performance is achieved for a membrane electrode assembly without any binder in the anode catalyst layer; (ii) in the region of high current density, the performance is improved with incorporation of PTFE binder in the anode catalyst layer; (iii) the PTFE binder yields better performance than does the A3 binder.
Segregated exhaust SOFC generator with high fuel utilization capability
Draper, Robert; Veyo, Stephen E.; Kothmann, Richard E.
2003-08-26
A fuel cell generator contains a plurality of fuel cells (6) in a generator chamber (1) and also contains a depleted fuel reactor or a fuel depletion chamber (2) where oxidant (24,25) and fuel (81) is fed to the generator chamber (1) and the depleted fuel reactor chamber (2), where both fuel and oxidant react, and where all oxidant and fuel passages are separate and do not communicate with each other, so that fuel and oxidant in whatever form do not mix and where a depleted fuel exit (23) is provided for exiting a product gas (19) which consists essentially of carbon dioxide and water for further treatment so that carbon dioxide can be separated and is not vented to the atmosphere.
The behaviour of transuranic mixed oxide fuel in a Candu-900 reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morreale, A. C.; Ball, M. R.; Novog, D. R.
2012-07-01
The production of transuranic actinide fuels for use in current thermal reactors provides a useful intermediary step in closing the nuclear fuel cycle. Extraction of actinides reduces the longevity, radiation and heat loads of spent material. The burning of transuranic fuels in current reactors for a limited amount of cycles reduces the infrastructure demand for fast reactors and provides an effective synergy that can result in a reduction of as much as 95% of spent fuel waste while reducing the fast reactor infrastructure needed by a factor of almost 13.5 [1]. This paper examines the features of actinide mixed oxidemore » fuel, TRUMOX, in a CANDU{sup R}* nuclear reactor. The actinide concentrations used were based on extraction from 30 year cooled spent fuel and mixed with natural uranium in 3.1 wt% actinide MOX fuel. Full lattice cell modeling was performed using the WIMS-AECL code, super-cell calculations were analyzed in DRAGON and full core analysis was executed in the RFSP 2-group diffusion code. A time-average full core model was produced and analyzed for reactor coefficients, reactivity device worth and online fuelling impacts. The standard CANDU operational limits were maintained throughout operations. The TRUMOX fuel design achieved a burnup of 27.36 MWd/kg HE. A full TRUMOX fuelled CANDU was shown to operate within acceptable limits and provided a viable intermediary step for burning actinides. The recycling, reprocessing and reuse of spent fuels produces a much more sustainable and efficient nuclear fuel cycle. (authors)« less
NASA Astrophysics Data System (ADS)
Ong, Ai Lien; Saad, Saeed; Lan, Rong; Goodfellow, Robert J.; Tao, Shanwen
2011-10-01
Hydroxyl-ion conductive poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) membranes with different characteristics were prepared via relatively simple bromination/amination serial reactions with reduced number of involved chemicals and shorter reaction time. The effects of reactants ratio, reaction atmosphere, polymer concentration, casting solvent, and hydroxylation treatment on reaction were investigated in details. The microstructure, water uptake, swelling ratio, ion-exchange capacity and ionic conductivity of the membranes were also studied. The obtained results demonstrate that, the ionic conductivity of the membrane is dependent on casting solvent. The N-methyl-2-pyrrolidonecast membrane exhibits the highest conductivity with the thinnest film. Although the membrane was prepared via a relatively simple preparation route with least toxic chemicals, a competitive ionic conductivity value of 1.64 × 10-2 S cm-1 was achieved at 60 °C. A power density of 19.5 mW cm-2 has been demonstrated from the alkaline membrane fuel cell operated at 70 °C, assembled from the entirely homemade membrane electrode assembly without any hot-pressing.
NASA Technical Reports Server (NTRS)
Brown, K. L.; Bertsch, P. J.
1986-01-01
Results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Generation (EPG)/Fuel Cell Powerplant (FCP) hardware. The EPG/FCP hardware is required for performing functions of electrical power generation and product water distribution in the Orbiter. Specifically, the EPG/FCP hardware consists of the following divisions: (1) Power Section Assembly (PSA); (2) Reactant Control Subsystem (RCS); (3) Thermal Control Subsystem (TCS); and (4) Water Removal Subsystem (WRS). The IOA analysis process utilized available EPG/FCP hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
Shum, Andrew D.; Parkinson, Dilworth Y.; Xiao, Xianghui; ...
2017-10-07
The performance of polymer-electrolyte fuel cells is heavily dependent on proper management of liquid water. One particular reason is that liquid water can collect in the gas diffusion layers (GDLs) blocking the reactant flow to the catalyst layer. This results in increased mass-transport losses. At higher temperatures, evaporation of water becomes a dominant water-removal mechanism and specifically phase-change-induced (PCI) flow is present due to thermal gradients. This study used synchrotron based micro X-ray computed tomography (CT) to visualize and quantify the water distribution within gas diffusion layers subject to a thermal gradient. Plotting saturation as a function of through-plane distancemore » quantitatively shows water redistribution, where water evaporates at hotter locations and condenses in colder locations. The morphology of the 2 GDLs on the micro-scale, as well as evaporating water clusters, are resolved, indicating that the GDL voids are slightly prolate, whereas water clusters are oblate. From the mean radii of water distributions and visual inspection, it is observed that larger water clusters evaporate faster than smaller ones.« less
NASA Technical Reports Server (NTRS)
English, R. E.; Finnegan, P. M.
1985-01-01
The concept of generating power in space by means of a conducting tether deployed from a spacecraft was studied. Using hydrogen and oxygen as the rocket propellant to overcome the drag of such a power-generating tether would yield more benefit than if used in a fuel cell. The mass consumption would be 25 percent less than the reactant consumption of fuel cells. Residual hydrogen and oxygen in the external tank and in the orbiter could be used very effectively for this purpose. Many other materials (such as waste from life support) could be used as the propellant. Electrical propulsion using tether generated power can compensate for the drag of a power-generating tether, half the power going to the useful load and the rest for electric propulsion. In addition, the spacecraft's orbital energy is a large energy reservoir that permits load leveling and a ratio of peak to average power equal to 2. Critical technologies to be explored before a power-generating tether can be used in space are delineated.
A high pressure ratio DC compressor for tactical cryocoolers
NASA Astrophysics Data System (ADS)
Chen, Weibo; Cameron, Benjamin H.; Zagarola, Mark V.; Narayanan, Sri R.
2016-05-01
A high pressure ratio DC compressor is a critical component for many cryocooler cycles. Prior research has focused on the adaptation of commercial compressor technology (scroll, screw, linear with rectification valves, and regenerative) for use in cryogenic applications where long-life and oil-free (i.e., volatile contamination free) are unique requirements. In addition, many cryocooler applications are for cooling imaging instruments making low vibration an additional requirement. Another candidate compressor technology has emerged from the fuel cell industry. Proton Exchange Membranes (PEMs) are used in fuel cells to separate reactants and transport protons, and these capabilities may be used in cryocoolers to compress hydrogen from low to high pressure. A particular type of PEM utilizing an anhydrous membrane forms the basis of a solid-state cryocooler. Creare has been investigating the use of PEM compressors for low temperature Joule-Thomson and dilution cryocoolers. These cryocoolers have no moving parts, can operate at temperatures down to nominally 23 K, produce no vibration, and are low cost. Our work on the cycle optimization, cryocooler design, and development and demonstration of the compressor technology is the subject of this paper.
Large-Flow-Area Flow-Selective Liquid/Gas Separator
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Bradley, Karla F.
2010-01-01
This liquid/gas separator provides the basis for a first stage of a fuel cell product water/oxygen gas phase separator. It can separate liquid and gas in bulk in multiple gravity environments. The system separates fuel cell product water entrained with circulating oxygen gas from the outlet of a fuel cell stack before allowing the gas to return to the fuel cell stack inlet. Additional makeup oxygen gas is added either before or after the separator to account for the gas consumed in the fuel cell power plant. A large volume is provided upstream of porous material in the separator to allow for the collection of water that does not exit the separator with the outgoing oxygen gas. The water then can be removed as it continues to collect, so that the accumulation of water does not impede the separating action of the device. The system is designed with a series of tubes of the porous material configured into a shell-and-tube heat exchanger configuration. The two-phase fluid stream to be separated enters the shell-side portion of the device. Gas flows to the center passages of the tubes through the porous material and is then routed to a common volume at the end of the tubes by simple pressure difference from a pumping device. Gas flows through the porous material of the tubes with greater ease as a function of the ratio of the dynamic viscosity of the water and gas. By careful selection of the dimensions of the tubes (wall thickness, porosity, diameter, length of the tubes, number of the tubes, and tube-to-tube spacing in the shell volume) a suitable design can be made to match the magnitude of water and gas flow, developed pressures from the oxygen reactant pumping device, and required residual water inventory for the shellside volume.
Effect of fuel stratification on detonation wave propagation
NASA Astrophysics Data System (ADS)
Masselot, Damien; Fievet, Romain; Raman, Venkat
2016-11-01
Rotating detonation engines (RDEs) form a class of pressure-gain combustion systems of higher efficiency compared to conventional gas turbine engines. One of the key features of the design is the injection system, as reactants need to be continuously provided to the detonation wave to sustain its propagation speed. As inhomogeneities in the reactant mixture can perturb the detonation wave front, premixed fuel jet injectors might seem like the most stable solution. However, this introduces the risk of the detonation wave propagating through the injector, causing catastrophic failure. On the other hand, non-premixed fuel injection will tend to quench the detonation wave near the injectors, reducing the likelihood of such failure. Still, the effects of such non-premixing and flow inhomogeneities ahead of a detonation wave have yet to be fully understood and are the object of this study. A 3D channel filled with O2 diluted in an inert gas with circular H2 injectors is simulated as a detonation wave propagates through the system. The impact of key parameters such as injector spacing, injector size, mixture composition and time variations will be discussed. PhD Candidate.
Licht, S
2011-12-15
STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO(2) , which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO(2) -free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industial age levels in 10 years. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method For Processing Spent (Trn,Zr)N Fuel
Miller, William E.; Richmann, Michael K.
2004-07-27
A new process for recycling spent nuclear fuels, in particular, mixed nitrides of transuranic elements and zirconium. The process consists of two electrorefiner cells in series configuration. A transuranic element such as plutonium is reduced at the cathode in the first cell, zirconium at the cathode in the second cell, and nitrogen-15 is released and captured for reuse to make transuranic and zirconium nitrides.
Electrochemical cell and method of assembly
Shimotake, Hiroshi; Voss, Ernst C. H.; Bartholme, Louis G.
1979-01-01
A method of preparing an electrochemical cell is disclosed which permits the assembly to be accomplished in air. The cell includes a metal sulfide as the positive electrode reactant, lithium alloy as the negative electrode reactant and an alkali metal, molten salt electrolyte. Positive electrode reactant is introduced as Li.sub.2 FeS.sub.2, a single-phase compound produced by the reaction of Li.sub.2 S and FeS. The use of this compound permits introduction of lithium in an oxidized form. Additional lithium can be introduced in the negative electrode structure enclosed within an aluminum foil envelope between layers of porous aluminum. Molten salt electrolyte is added after assembly and evacuation of the cell by including an interelectrode separator that has been prewet with an organic solution of KCl.
Method for forming synthesis gas using a plasma-catalyzed fuel reformer
Hartvigsen, Joseph J; Elangovan, S; Czernichowski, Piotr; Hollist, Michele
2015-04-28
A method of forming a synthesis gas utilizing a reformer is disclosed. The method utilizes a reformer that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding apparatus and system are also disclosed herein.
Development of electrodes for the NASA iron/chromium
NASA Technical Reports Server (NTRS)
Swette, L.; Jalan, V.
1984-01-01
This program was directed primarily to the development of the negative (Cr3+/Cr2+) electrode for the NASA chromous/ferric Redox battery. The investigation of the effects of substrate processing and gold/lead catalyzation parameters on electrochemical performance were continued. In addition, the effects of reactant cross-mixing, acidity level, and temperature were examined for both Redox couples. Finally, the performance of optimized electrodes was tested in system hardware (1/3 square foot single cell). The major findings are discussed: (1) The recommended processing temperature for the carbon felt, as a substrate for the negative electrode, is 1650 to 1750 C, (2) The recommended gold catalyzation procedure is essentially the published NASA procedure (NASA TM-82724, Nov. 1981) based on deposition from aqueous methanol solution, with the imposition of a few controls such as temperature (25 C) and precatalyzation pH of the felt (7), (3) Experimental observations of the gold catalyzation process and subsequent electron microscopy indicate that the gold is deposited from the colloidal state, induced by contact of the solution with the carbon felt, (4) Electrodeposited lead appears to be present as a thin uniform layer over the entire surface of the carbon fibers, rather than an discrete particles, and (5) Cross-mixing of reactants (Fe-2+ in negative electrode solution or Cr-3+ in the positive electrode solution) did not appear to produce significant interference at either electrode.
Megawatt solar power systems for lunar surface operations
NASA Technical Reports Server (NTRS)
Adams, Brian; Alhadeff, Sam; Beard, Shawn; Carlile, David; Cook, David; Douglas, Craig; Garcia, Don; Gillespie, David; Golingo, Raymond; Gonzalez, Drew
1990-01-01
Lunar surface operations require habitation, transportation, life support, scientific, and manufacturing systems, all of which require some form of power. As an alternative to nuclear power, the development of a modular one megawatt solar power system is studied, examining both photovoltaic and dynamic cycle conversion methods, along with energy storage, heat rejection, and power backup subsystems. For photovoltaic power conversion, two systems are examined. First, a substantial increase in photovoltaic conversion efficiency is realized with the use of new GaAs/GaSb tandem photovoltaic cells, offering an impressive overall array efficiency of 23.5 percent. Since these new cells are still in the experimental phase of development, a currently available GaAs cell providing 18 percent efficiency is examined as an alternate to the experimental cells. Both Brayton and Stirling cycles, powered by linear parabolic solar concentrators, are examined for dynamic cycle power conversion. The Brayton cycle is studied in depth since it is already well developed and can provide high power levels fairly efficiently in a compact, low mass system. The dynamic conversion system requires large scale waste heat rejection capability. To provide this heat rejection, a comparison is made between a heat pipe/radiative fin system using advanced composites, and a potentially less massive liquid droplet radiator system. To supply power through the lunar night, both a low temperature alkaline fuel cell system and an experimental high temperature monolithic solid-oxide fuel cell system are considered. The reactants for the fuel cells are stored cryogenically in order to avoid the high tankage mass required by conventional gaseous storage. In addition, it is proposed that the propellant tanks from a spent, prototype lunar excursion vehicle be used for this purpose, therefore resulting in a significant overall reduction in effective storage system mass.
2006-01-05
KENNEDY SPACE CENTER, FLA. - In NASA Kennedy Space Center’s Orbiter Processing Facility bay 3, a fuel cell removed from the orbiter Discovery is lowered toward a work stand. Fuel cells are located under the forward portion of the payload bay. They make power for the orbiter by mixing hydrogen and oxygen to produce electricity. Fuel cells also create potable water that is pumped into storage tanks for the crew to use in orbit. Discovery is the designated orbiter for the second return-to-flight mission, STS-121, scheduled for launch in May. Photo credit: NASA/Kim Shiflett
2006-01-05
KENNEDY SPACE CENTER, FLA. - In NASA Kennedy Space Center’s Orbiter Processing Facility bay 3, technicians begin dismantling the fuel cell removed from the orbiter Discovery. Fuel cells are located under the forward portion of the payload bay. They make power for the orbiter by mixing hydrogen and oxygen to produce electricity. Fuel cells also create potable water that is pumped into storage tanks for the crew to use in orbit. Discovery is the designated orbiter for the second return-to-flight mission, STS-121, scheduled for launch in May. Photo credit: NASA/Kim Shiflett
2006-01-05
KENNEDY SPACE CENTER, FLA. - In NASA Kennedy Space Center’s Orbiter Processing Facility bay 3, a fuel cell removed from the orbiter Discovery is lowered toward the floor. Fuel cells are located under the forward portion of the payload bay. They make power for the orbiter by mixing hydrogen and oxygen to produce electricity. Fuel cells also create potable water that is pumped into storage tanks for the crew to use in orbit. Discovery is the designated orbiter for the second return-to-flight mission, STS-121, scheduled for launch in May. Photo credit: NASA/Kim Shiflett
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratcliff, Matthew A; McCormick, Robert L; Burke, Stephen
A relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from direct injection spark ignition (DISI) vehicles. The fundamental cause of this observation is not well understood. One potential explanation is that increased evaporative cooling as a result of ethanol's high HOV may slow evaporation and prevent sufficient reactant mixing resulting in the combustion of localized fuel rich regions within the cylinder. In addition, it is well known that ethanol when blended in gasoline forms positive azeotropes which can alter the liquid/vapor composition during the vaporization process. In fact, it was shown recentlymore » through a numerical study that these interactions can retain the aromatic species within the liquid phase impeding the in-cylinder mixing of these compounds, which would accentuate PM formation upon combustion. To better understand the role of the azeotrope interactions on the vapor/liquid composition evolution of the fuel, distillations were performed using the Advanced Distillation Curve apparatus on carefully selected samples consisting of gasoline blended with ethanol and heavy aromatic and oxygenated compounds with varying vapor pressures, including cumene, p-cymene, 4-tertbutyl toluene, anisole, and 4-methyl anisole. Samples collected during the distillation indicate an enrichment of the heavy aromatic or oxygenated additive with an increase in initial ethanol concentration from E0 to E30. A recently developed distillation and droplet evaporation model is used to explore the influence of dilution effects versus azeotrope interactions on the aromatic species enrichment. The results suggest that HOV-cooling effects as well as aromatic species enrichment behaviors should be considered in future development of predictive indices to forecast the PM potential of fuels containing oxygenated compounds with comparatively high HOV.« less
NASA Astrophysics Data System (ADS)
Sun, May Yongmei
This research focuses on two steps of commercial fuel ethanol production processes: the hydrolysis starch process and the fermentation process. The goal of this research is to evaluate the performance of co-immobilized biocatalysts in a fluidized bed reactor with emphasis on economic and engineering aspects and to develop a predictive mathematical model for this system. The productivity of an FBR is higher than productivity of a traditional batch reactor or CSTR. Fluidized beds offer great advantages over packed beds for immobilized cells when small particles are used or when the reactant feed contains suspended solids. Plugging problems, excessive pressure drops (and thus attrition), or crushing risks may be avoided. No mechanical stirring is required as mixing occurs due to the natural turbulence in the fluidized process. Both enzyme and microorganism are immobilized in one catalyst bead which is called co-immobilization. Inside this biocatalyst matrix, starch is hydrolyzed by the enzyme glucoamylase to form glucose and then converted to ethanol and carbon dioxide by microorganisms. Two biocatalysts were evaluated: (1) co-immobilized yeast strain Saccharomyces cerevisiae and glucoamylase. (2) co-immobilized Zymomonas mobilis and glucoamylase. A co-immobilized biocatalyst accomplishes the simultaneous saccharification and fermentation (SSF process). When compared to a two-step process involving separate saccharification and fermentation stages, the SSF process has productivity values twice that given by the pre-saccharified process when the time required for pre-saccharification (15--25 h) was taken into account. The SSF process should also save capital cost. The information about productivity, fermentation yield, concentration profiles along the bed, ethanol inhibition, et al., was obtained from the experimental data. For the yeast system, experimental results showed that: no apparent decrease of productivity occurred after two and half months, the productivity was 25--44g/L-hr (based on reactor volume), the average yield was 0.45 g ethanol/g starch, the biocatalyst retained physical integrity and contamination did not affect fermentation. For the Z. mobilis system the maximum volumetric productivity was 38 g ethanol/L-h, the average yield was 0.51 g ethanol/g starch and the FBR was successfully operated for almost one month. In order to develop, scale-up and economically evaluate this system more efficiently, a predictive mathematical model that is based on fundamental principles was developed and verified. This model includes kinetics of reactions, transport phenomena of the reactant and product by diffusion within the biocatalyst bead, and the hydrodynamics of the three phase fluidized bed. The co-immobilized biocatalyst involves a consecutive reaction mechanism The mathematical descriptions of the effectiveness factors of reactant and the intermediate product were developed. Hydrodynamic literature correlations were used to develop the dispersion coefficient and gas, liquid, and solid holdup. The solutions of coupled non-linear second order equations for biocatalyst bead and reactor together with the boundary conditions were solved numerically. This model gives considerable information about the system, such as concentration profiles inside both the beads and column, flow rate and feed concentration influences on productivity and phase hold up, and the influence of enzyme and cell mass loading in the catalyst. This model is generic in nature such that it can be easily applied to a diverse set of applications and operating conditions.
Towards developing a backing layer for proton exchange membrane electrolyzers
NASA Astrophysics Data System (ADS)
Lettenmeier, P.; Kolb, S.; Burggraf, F.; Gago, A. S.; Friedrich, K. A.
2016-04-01
Current energy policies require the urgent replacement of fossil energy carriers by carbon neutral ones, such as hydrogen. The backing or micro-porous layer plays an important role in the performance of hydrogen proton exchange membrane (PEM) fuel cells, reducing contact resistance and improving reactant/product management. Such carbon-based coating cannot be used in PEM electrolysis since it oxidizes to CO2 at high voltages. A functional titanium macro-porous layer (MPL) on the current collectors of a PEM electrolyzer is developed by thermal spraying. It improves the contact with the catalyst layers by ca. 20 mΩ cm2, increasing significantly the efficiency of the device when operating at high current densities.
Assessment of bio-fuel options for solid oxide fuel cell applications
NASA Astrophysics Data System (ADS)
Lin, Jiefeng
Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with diesel engine and truck idling with fuel cell auxiliary power unit system. The customized nozzle used for fuel vaporization and mixing achieved homogenous atomization of input hydrocarbon fuels (e.g., diesel, biodiesel, diesel-biodiesel blend, and biodiesel-ethanol-diesel), and improved the performance of fuel catalytic reformation. Given the same operating condition (reforming temperature, total oxygen content, water input flow, and gas hourly space velocity), the hydrocarbon reforming performance follows the trend of diesel > biodiesel-ethanol-diesel > diesel-biodiesel blend > biodiesel (i.e., diesel catalytic reformation has the highest hydrogen production, lowest risk of carbon formation, and least possibility of hot spot occurrence). These results provide important new insight into the use of bio-fuels and bio-fuel blends as a primary fuel source for solid oxide fuel cell applications.
X-ray targeted bond or compound destruction
Pravica, Sr., Michael G.
2016-11-01
This document provides methods, systems, and devices for inducing a decomposition reaction by directing x-rays towards a location including a particular compound. The x-rays can have an irradiation energy that corresponds to a bond distance of a bond in the particular compound in order to break that bond and induce a decomposition of that particular compound. In some cases, the particular compound is a hazardous substance or part of a hazardous substance. In some cases, the particular compound is delivered to a desired location in an organism and x-rays induce a decomposition reaction that creates a therapeutic substance (e.g., a toxin that kills cancer cells) in the location of the organism. In some cases, the particular compound decomposes to produce a reactant in a reactor apparatus (e.g., fuel cell or semiconductor fabricator).
Non-equilibrium reactive flux: A unified framework for slow and fast reaction kinetics.
Bose, Amartya; Makri, Nancy
2017-10-21
The flux formulation of reaction rate theory is recast in terms of the expectation value of the reactive flux with an initial condition that corresponds to a non-equilibrium, factorized reactant density. In the common case of slow reactive processes, the non-equilibrium expression reaches the plateau regime only slightly slower than the equilibrium flux form. When the reactants are described by a single quantum state, as in the case of electron transfer reactions, the factorized reactant density describes the true initial condition of the reactive process. In such cases, the time integral of the non-equilibrium flux expression yields the reactant population as a function of time, allowing characterization of the dynamics in cases where there is no clear separation of time scales and thus a plateau regime cannot be identified. The non-equilibrium flux offers a unified approach to the kinetics of slow and fast chemical reactions and is ideally suited to mixed quantum-classical methods.
Wet in situ transesterification of microalgae using ethyl acetate as a co-solvent and reactant.
Park, Jeongseok; Kim, Bora; Chang, Yong Keun; Lee, Jae W
2017-04-01
This study addresses wet in situ transesterification of microalgae for the production of biodiesel by introducing ethyl acetate as both reactant and co-solvent. Ethyl acetate and acid catalyst are mixed with wet microalgae in one pot and the mixture is heated for simultaneous lipid extraction and transesterification. As a single reactant and co-solvent, ethyl acetate can provide higher FAEE yield and more saccharification of carbohydrates than the case of binary ethanol and chloroform as a reactant and a co-solvent. The optimal yield was 97.8wt% at 114°C and 4.06M catalyst with 6.67mlEtOAC/g dried algae based on experimental results and response surface methodology (RSM). This wet in situ transesterification of microalgae using ethyl acetate doesn't require an additional co-solvent and it also promises more economic benefit as combining extraction and transesterification in a single process. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hassan, Huzairy; Jin, Bo; Dai, Sheng; Ngau, Cornelius
2016-11-01
The formation of microbial biofilm while maintaining the electricity output is a challenging topic in microbial fuel cell (MFC) studies. This MFC critical factor becomes more significant when handling with industrial wastewater which normally contains refractory and toxic compounds. This study explores the formation of industrial mixed culture biofilm in chlorophenol cultivated medium through observing and characterizing microscopically its establishment on MFC anode surface. The mixed culture was found to develop its biofilm on the anode surface in the chlorophenol environment and established its maturity and dispersal stages with concurrent electricity generation and phenolic degradation. The mixed culture biofilm engaged the electron transfer roles in MFC by generating current density of 1.4 mA/m2 and removing 53 % of 2,4-dichlorophenol. The results support further research especially on hazardous wastewater treatment using a benign and sustainable method.
Goodwin, Sean; Walsh, Darren A
2017-07-19
Electrolytic water splitting could potentially provide clean H 2 for a future "hydrogen economy". However, as H 2 and O 2 are produced in close proximity to each other in water electrolyzers, mixing of the gases can occur during electrolysis, with potentially dangerous consequences. Herein, we describe an electrochemical water-splitting cell, in which mixing of the electrogenerated gases is impossible. In our cell, separate H 2 - and O 2 -evolving cells are connected electrically by a bipolar electrode in contact with an inexpensive dissolved redox couple (K 3 Fe(CN) 6 /K 4 Fe(CN) 6 ). Electrolytic water splitting occurs in tandem with oxidation/reduction of the K 3 Fe(CN) 6 /K 4 Fe(CN) redox couples in the separate compartments, affording completely spatially separated H 2 and O 2 evolution. We demonstrate operation of our prototype cell using conventional Pt electrodes for each gas-evolving reaction, as well as using earth-abundant Ni 2 P electrocatalysts for H 2 evolution. Furthermore, we show that our cell can be run in reverse and operate as a H 2 fuel cell, releasing the energy stored in the electrogenerated H 2 and O 2 . We also describe how the absence of an ionically conducting electrolyte bridging the H 2 - and O 2 -electrode compartments makes it possible to develop H 2 fuel cells in which the anode and cathode are at different pH values, thereby increasing the voltage above that of conventional fuel cells. The use of our cell design in electrolyzers could result in dramatically improved safety during operation and the generation of higher-purity H 2 than available from conventional electrolysis systems. Our cell could also be readily modified for the electrosynthesis of other chemicals, where mixing of the electrochemical products is undesirable.
Performance of a single layer fuel cell based on a mixed proton-electron conducting composite
NASA Astrophysics Data System (ADS)
Zagórski, Krzysztof; Wachowski, Sebastian; Szymczewska, Dagmara; Mielewczyk-Gryń, Aleksandra; Jasiński, Piotr; Gazda, Maria
2017-06-01
Many of the challenges in solid oxide fuel cell technology stem from chemical and mechanical incompatibilities between the anode, cathode and electrolyte materials. Numerous attempts have been made to identify compatible materials. Here, these challenges are circumvented by the introduction of a working single layer fuel cell, fabricated from a composite of proton conducting BaCe0.6Zr0.2Y0.2O3-δ and a mixture of semiconducting oxides - Li2O, NiO, and ZnO. Structural and electrical properties of the composite, related to its fuel cell performance are investigated. The single layer fuel cell shows a maximum OCV of 0.83 V and a peak power density of 3.86 mW cm-2 at 600 °C. Activation and mass transport losses are identified as the major limiting factor for efficiency and power output.
Simplified process for leaching precious metals from fuel cell membrane electrode assemblies
Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ
2009-12-22
The membrane electrode assemblies of fuel cells are recycled to recover the catalyst precious metals from the assemblies. The assemblies are cryogenically embrittled and pulverized to form a powder. The pulverized assemblies are then mixed with a surfactant to form a paste which is contacted with an acid solution to leach precious metals from the pulverized membranes.
NASA Astrophysics Data System (ADS)
Yin, Jie-Wei; Zhang, Chunming; Yin, Yi-Mei; Shi, Huangang; Lin, Ye; Lu, Jun; Ma, Zi-Feng
2015-07-01
As a candidate of cathode material of single-chamber solid oxide fuel cell (SC-SOFC), cobalt-free mixed ionic electronic conductor (MIEC) Nd0.5Sr0.5Fe0.8Cu0.2O3-δ (NSFCu) is synthesized by sol-gel method with ethylene diamine tetraacetic acid and citric acid as co-complexing agents. The XRD shows NSFCu is stable after CO2 treatment and chemical compatible with SDC at high temperatures. CO2-TPD (CO2-temperature programmed desorption) demonstrates both CO2 adsorption and desorption phenomenon on NSFCu surface. However, the polarization resistances (Rp) of NSFCu and SDC (10:4 in weight) composite electrodes showed no decay in 5% CO2. Single cell using N2-O2-CH4 mixed gas (CH4 to O2 ratio = 1.5) as fuel shows maximum power density of 635 mW cm-2 at 700 °C. These results suggest that NSFCu-SDC is a promising composite cathode material for application in single-chamber solid oxide fuel cell.
NASA Astrophysics Data System (ADS)
Elitzur, Shani; Rosenband, Valery; Gany, Alon
2016-11-01
Energy supply and waste management are among the most significant challenges in human spacecraft. Great efforts are invested in managing solid waste, recycling grey water and urine, cleaning the atmosphere, removing CO2, generating and saving energy, and making further use of components and products. This paper describes and investigates a concept for managing waste water and urine to simultaneously produce electric and heat energies as well as fresh water. It utilizes an original technique for aluminum activation to react spontaneously with water at room temperature to produce hydrogen on-site and on-demand. This reaction has further been proven to be effective also when using waste water and urine. Applying the hydrogen produced in a fuel cell, one obtains electric energy as well as fresh (drinking) water. The method was compared to the traditional energy production technology of the Space Shuttle, which is based on storing the fuel cell reactants, hydrogen and oxygen, in cryogenic tanks. It is shown that the alternative concept presented here may provide improved safety, compactness (reduction of more than one half of the volume of the hydrogen storage system), and management of waste liquids for energy generation and drinking water production. Nevertheless, it adds mass compared to the cryogenic hydrogen technology. It is concluded that the proposed method may be used as an emergency and backup power system as well as an additional hydrogen source for extended missions in human spacecraft.
NASA Astrophysics Data System (ADS)
Kim, Si-Won; Bae, Yonggyun; Yoon, Kyung Joong; Lee, Jong-Ho; Lee, Jong-Heun; Hong, Jongsup
2018-02-01
To mitigate CO2 emissions, its reduction by high-temperature electrolysis using solid oxide cells is extensively investigated, for which excessive steam supply is assumed. However, such condition may degrade its feasibility due to massive energy required for generating hot steam, implying the needs for lowering steam demand. In this study, high-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells is considered to satisfy such needs. The effect of internal and external steam supply on its electrochemical performance and gas productivity is elucidated. It is shown that the steam produced in-situ inside the fuel-electrode by a reverse water gas shift reaction may decrease significantly the electrochemical resistance of dry CO2-fed operations, attributed to self-sustaining positive thermo-electrochemical reaction loop. This mechanism is conspicuous at low current density, whereas it is no longer effective at high current density in which total reactant concentrations for electrolysis is critical. To overcome such limitations, a small amount of external steam supply to the CO2-enriched feed stream may be needed, but this lowers the CO2 conversion and CO/H2 selectivity. Based on these results, it is discussed that there can be minimum steam supply sufficient for guaranteeing both low electrochemical resistance and high gas productivity.
System for adding sulfur to a fuel cell stack system for improved fuel cell stability
Mukerjee, Subhasish [Pittsford, NY; Haltiner, Jr., Karl J; Weissman, Jeffrey G [West Henrietta, NY
2012-03-06
A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.
Fuel cells with doped lanthanum gallate electrolyte
NASA Astrophysics Data System (ADS)
Feng, Man; Goodenough, John B.; Huang, Keqin; Milliken, Christopher
Single cells with doped lanthanum gallate electrolyte material were constructed and tested from 600 to 800°C. Both ceria and the electrolyte material were mixed with NiO powder respectively to form composite anodes. Doped lanthanum cobaltite was used exclusively as the cathode material. While high power density from the solid oxide fuel cells at 800°C was achieved. our results clearly indicate that anode overpotential is the dominant factor in the power loss of the cells. Better anode materials and anode processing methods need to be found to fully utilize the high ionic conductivity of the doped lanthanum galiate and achieve higher power density at 800°C from solid oxide fuel cells.
NASA Astrophysics Data System (ADS)
Tapia, A.; Salgado, S.; Martín, P.; Villanueva, F.; García-Contreras, R.; Cabañas, B.
2018-03-01
The heterogeneous reactions of nitrogen dioxide (NO2) and trifluoroacetic acid (CF3COOH) with soot produced by diesel and GTL (gas-to-liquid) fuels were investigated using a Knudsen flow reactor with mass spectrometry as a detection system for gas phase species. Soot was generated with a 4 cylinder diesel engine working under steady-state like urban operation mode. Heterogeneous reaction of the mentioned gases with a commercial carbon, Printex U, used as reference, was also analyzed. The initial and the steady-state uptake coefficients, γ0 and γss, respectively, were measured indicating that GTL soot reacts faster than diesel soot and Printex U carbon for NO2 gas reactant. According to the number of reacted molecules on the surface, Printex U soot presents more reducing sites than diesel and GTL soot. Initial uptake coefficients for GTL and diesel soot for the reaction with CF3COOH gas reactant are very similar and no clear conclusions can be obtained related to the initial reactivity. The number of reacted molecules calculated for CF3COOH reactions shows values two orders of magnitude higher than the corresponding to NO2 reactions, indicating a greater presence of basic functionalities in the soot surfaces. More information of the surface composition has been obtained using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) before and after the reaction of soot samples with gas reactants. As conclusion, the interface of diesel and GTL soot before reaction mainly consists of polycyclic aromatic hydrocarbons (PAHs), nitro-compounds as well as ether functionalities. After reaction with gas reactant, it was observed that PAHs and nitro-compounds remain on the soot surface and new spectral bands such as carbonyl groups (carboxylic acids, aldehydes, esters and ketones) are observed. Physical properties of soot from both fuels studied such as BET surface isotherm and SEM analysis were also developed and related to the observed reactivity.
2006-01-05
KENNEDY SPACE CENTER, FLA. - In NASA Kennedy Space Center’s Orbiter Processing Facility bay 3, the fuel cell removed from the orbiter Discovery is lowered onto a bracket on the work stand. Fuel cells are located under the forward portion of the payload bay. They make power for the orbiter by mixing hydrogen and oxygen to produce electricity. Fuel cells also create potable water that is pumped into storage tanks for the crew to use in orbit. Discovery is the designated orbiter for the second return-to-flight mission, STS-121, scheduled for launch in May. Photo credit: NASA/Kim Shiflett
2006-01-05
KENNEDY SPACE CENTER, FLA. - In NASA Kennedy Space Center’s Orbiter Processing Facility bay 3, technicians begin removing a piece of hardware from the side of a fuel cell removed from the orbiter Discovery. Fuel cells are located under the forward portion of the payload bay. They make power for the orbiter by mixing hydrogen and oxygen to produce electricity. Fuel cells also create potable water that is pumped into storage tanks for the crew to use in orbit. Discovery is the designated orbiter for the second return-to-flight mission, STS-121, scheduled for launch in May. Photo credit: NASA/Kim Shiflett
2006-01-05
KENNEDY SPACE CENTER, FLA. - In NASA Kennedy Space Center’s Orbiter Processing Facility bay 3, technicians remove a piece of hardware from the side of a fuel cell removed from the orbiter Discovery. Fuel cells are located under the forward portion of the payload bay. They make power for the orbiter by mixing hydrogen and oxygen to produce electricity. Fuel cells also create potable water that is pumped into storage tanks for the crew to use in orbit. Discovery is the designated orbiter for the second return-to-flight mission, STS-121, scheduled for launch in May. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Srivastava, Ratndeep
Renewable hydrogen-fuelled proton exchange membrane (PEMFC) fuel cells have consistently demonstrated great promise as a future source of energy due to their high conversion efficiency, lower temperature of operation and lack of greenhouse emissions. One of the major impediments in the commercialization of polymer electrolyte membrane fuel cells is the insufficient catalytic reactivity and higher cost of Pt electrocatalysts which are utilized for the electroreduction of oxygen from air. This dissertation focuses primarily on a family of Pt alloy fuel cell electrocatalysts referred to as de-alloyed core-shell electrocatalysts. These materials are bimetallic or multimetallic nanoparticles, mostly supported on conductive supports which were first described in a dissertation by Dr. S. Koh earlier in 2009.1 De-alloyed Pt nanoparticle electrocatalysts are formed from base metal rich binary Pt-M and ternary Pt-M1-M 2 (M, M1, M2 = Cu, Co, Ni, Fe and Cr) alloy nanoparticle precursors. The precursors are transformed and activated by electrochemical selective dissolution of the less noble metal component of the precursors (de-alloying). They have shown exceptional activity for oxygen reduction reaction (ORR) in idealized electrochemical half cell measurements, in particular rotating disk electrode experiments. However, these materials were never tested or implemented in realistic Membrane Electrode Assemblies (MEA) and single PEM fuel cells. The objective of this work was to implement de-alloyed Pt particle catalysts in realistic fuel cell electrode layers as well as a detailed characterization of their behavior and stability. The major challenges of MEA implementation consists of the behavior of the new nanostructured electrocatalysts inside the complex three-phase interface of polymer membrane ionomer, liquid water, metal catalyst, support, and reactant gas. Activity measurements were followed by medium and long-term durability analysis by potential cycling of the membrane electrode assemblies to high potentials. These de-alloyed catalysts show improved resistance to electro-chemical surface area degradation as compared to state of the art available commercial Pt/C catalysts. TEM imaging with combination of electrochemical characterization helps in determining the mechanisms for particle growth and failures. Anomalous small angle x-ray scattering (ASAXS) and x-ray diffraction (XRD) techniques were also used in the characterization of these materials.
Electrolyte composition for electrochemical cell
Vissers, Donald R.; Tomczuk, Zygmunt; Anderson, Karl E.; Roche, Michael F.
1979-01-01
A high-temperature, secondary electrochemical cell that employs FeS as the positive electrode reactant and lithium or lithium alloy as the negative electrode reactant includes an improved electrolyte composition. The electrolyte comprises about 60-70 mole percent LiCl and 30-40 percent mole percent KCl which includes LiCl in excess of the eutectic composition. The use of this electrolyte suppresses formation of the J phase and thereby improves the utilization of positive electrode active material during cell cycling.
Self-Regulating Water-Separator System for Fuel Cells
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; McCurdy, Kerri; Bradley, Karla F.
2007-01-01
proposed system would perform multiple coordinated functions in regulating the pressure of the oxidant gas (usually, pure oxygen) flowing to a fuelcell stack and in removing excess product water that is generated in the normal fuel-cell operation. The system could function in the presence or absence of gravitation, and in any orientation in a gravitational field. Unlike some prior systems for removing product water, the proposed system would not depend on hydrophobicity or hydrophilicity of surfaces that are subject to fouling and, consequently, to gradual deterioration in performance. Also unlike some prior systems, the proposed system would not include actively controlled electric motors for pumping; instead, motive power for separation and pumping away of product water would be derived primarily from the oxidant flow and perhaps secondarily from the fuel flow. The net effect of these and other features would be to make the proposed system more reliable and safer, relative to the prior systems. The proposed system (see figure) would include a pressure regulator and sensor in the oxidant supply just upstream from an ejector reactant pump. The pressure of the oxidant supply would depend on the consumption flow. In one of two control subsystems, the pressure of oxidant flowing from the supply to the ejector would be sensed and used to control the speed of a set of a reciprocating constant-displacement pump so that the volumetric flow of nominally incompressible water away from the system would slightly exceed the rate at which water was produced by the fuel cell(s). The two-phase (gas/liquid water) outlet stream from the fuel cell(s) would enter the water separator, a turbinelike centrifugal separator machine driven primarily by the oxidant gas stream. A second control subsystem would utilize feedback derived from the compressibility of the outlet stream: As the separator was emptied of liquid water, the compressibility of the pumped stream would increase. The compressibility would be sensed, and an increase in compressibility beyond a preset point (signifying a decrease in water content below an optimum low level) would cause the outflow from the reciprocating pump to be diverted back to the separator to recycle some water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giner, J.; Cropley, C.C.
Technology for the direct desulfurization of unprocessed diesel fuel using regenerable copper-based mixed metal oxide sorbents was developed for incorporation in modular phosphoric acid fuel cell (PAFC) generators. Removal of greater 60% of the sulfur in diesel fuel was demonstrated, and sorbent sulfur loadings of approximately 1 wt% were attained. Preliminary studies indicated that the sorbents are regenerable, with up to 70% of the sorbed sulfur removed during regeneration. Incorporation of this technology into a PAFC power plant should reduce the weight of the sulfur removal unit by a minimum of 25%.
Electrochemical cell utilizing molten alkali metal electrode-reactant
Virkar, Anil V.; Miller, Gerald R.
1983-11-04
An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.
Diffusion Limited Supercritical Water Oxidation (SCWO) in Microgravity Environments
NASA Technical Reports Server (NTRS)
Hicks, M. C.; Lauver, R. W.; Hegde, U. G.; Sikora, T. J.
2006-01-01
Tests designed to quantify the gravitational effects on thermal mixing and reactant injection in a Supercritical Water Oxidation (SCWO) reactor have recently been performed in the Zero Gravity Facility (ZGF) at NASA s Glenn Research Center. An artificial waste stream, comprising aqueous mixtures of methanol, was pressurized to approximately 250 atm and then heated to 450 C. After uniform temperatures in the reactor were verified, a controlled injection of air was initiated through a specially designed injector to simulate diffusion limited reactions typical in most continuous flow reactors. Results from a thermal mapping of the reaction zone in both 1-g and 0-g environments are compared. Additionally, results of a numerical model of the test configuration are presented to illustrate first order effects on reactant mixing and thermal transport in the absence of gravity.
Optimization of armored spherical tanks for storage on the lunar surface
NASA Technical Reports Server (NTRS)
Bents, D. J.; Knight, D. A.
1992-01-01
A redundancy strategy for reducing micrometeroid armoring mass is investigated, with application to cryogenic reactant storage for a regenerative fuel cell (RFC) on the lunar surface. In that micrometeoroid environment, the cryogenic fuel must be protected from loss due to tank puncture. The tankage must have a sufficiently high probability of survival over the length of the mission so that the probability of system failure due to tank puncture is low compared to the other mission risk factors. Assuming that a single meteoroid penetration can cause a storage tank to lose its contents, two means are available to raise the probability of surviving micrometeoroid attack to the desired level. One can armor the tanks to a thickness sufficient to reduce probability of penetration of any tank to the desired level or add extra capacity in the form of space tanks that results in survival of a given number out of the ensemble at the desired level. A combination of these strategies (armor and redundancy) is investigated.
Kumar, Ravinder; Singh, Lakhveer; Wahid, Zularisam Ab; Mahapatra, Durga Madhab; Liu, Hong
2018-04-01
The aim of this work was to evaluate the comparative performance of hybrid metal oxide nanorods i.e. MnCo 2 O 4 nanorods (MCON) and single metal oxide nanorods i.e. Co 3 O 4 nanorods (CON) as oxygen reduction catalyst in microbial fuel cells (MFC). Compared to the single metal oxide, the hybrid MCON exhibited a higher BET surface area and provided additional positively charged ions, i.e., Co 2+ /Co 3+ and Mn 3+ /Mn 4+ on its surfaces, which increased the electro-conductivity of the cathode and improved the oxygen reduction kinetics significantly, achieved an i o of 6.01 A/m 2 that was 12.4% higher than CON. Moreover, the porous architecture of MCON facilitated the diffusion of electrolyte, reactants and electrons during the oxygen reduction, suggested by lower diffusion (R d ), activation (R act ) and ohmic resistance (R ohm ) values. This enhanced oxygen reduction by MCON boosted the power generation in MFC, achieving a maximum power density of 587 mW/m 2 that was ∼29% higher than CON. Published by Elsevier Ltd.
Metastable Metal Hydrides for Hydrogen Storage
Graetz, Jason
2012-01-01
The possibility of using hydrogen as a reliable energy carrier for both stationary and mobile applications has gained renewed interest in recent years due to improvements in high temperature fuel cells and a reduction in hydrogen production costs. However, a number of challenges remain and new media are needed that are capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides offer some hope of overcoming these challenges; however, many of the high capacity “reversible” hydrides exhibit a large endothermic decomposition enthalpy making it difficult to release the hydrogen at low temperatures. Onmore » the other hand, the metastable hydrides are characterized by a low reaction enthalpy and a decomposition reaction that is thermodynamically favorable under ambient conditions. The rapid, low temperature hydrogen evolution rates that can be achieved with these materials offer much promise for mobile PEM fuel cell applications. However, a critical challenge exists to develop new methods to regenerate these hydrides directly from the reactants and hydrogen gas. This spotlight paper presents an overview of some of the metastable metal hydrides for hydrogen storage and a few new approaches being investigated to address the key challenges associated with these materials.« less
Electricity Generation in Microbial Fuel Cell (MFC) by Bacterium Isolated from Rice Paddy Field Soil
NASA Astrophysics Data System (ADS)
Fakhirruddin, Fakhriah; Amid, Azura; Salim, Wan Wardatul Amani Wan; Suhaida Azmi, Azlin
2018-03-01
Microbial fuel cell (MFC) is an alternative approach in generating renewable energy by utilising bacteria that will oxidize organic or inorganic substrates, producing electrons yielded as electrical energy. Different species of exoelectrogenic bacteria capable of generating significant amount of electricity in MFC has been identified, using various organic compounds for fuel. Soil sample taken from rice paddy field is proven to contain exoelectrogenic bacteria, thus electricity generation using mixed culture originally found in the soil, and pure culture isolated from the soil is studied. This research will isolate the exoelectrogenic bacterial species in the rice paddy field soil responsible for energy generation. Growth of bacteria isolated from the MFC is observed by measuring the optical density (OD), cell density weight (CDW) and viable cell count. Mixed bacterial species found in paddy field soil generates maximum power of 77.62 μW and 0.70 mA of current. In addition, the research also shows that the pure bacterium in rice paddy field soil can produce maximum power and current at 51.32 μW and 0.28 mA respectively.
The Marble Experiment: Overview and Simulations
NASA Astrophysics Data System (ADS)
Douglas, M. R.; Murphy, T. J.; Cobble, J. A.; Fincke, J. R.; Haines, B. M.; Hamilton, C. E.; Lee, M. N.; Oertel, J. A.; Olson, R. E.; Randolph, R. B.; Schmidt, D. W.; Shah, R. C.; Smidt, J. M.; Tregillis, I. L.
2015-11-01
The Marble ICF platform has recently been launched on both OMEGA and NIF with the goal to investigate the influence of heterogeneous mix on fusion burn. The unique separated reactant capsule design consists of an ``engineered'' CH capsule filled with deuterated plastic foam that contains pores or voids that are filled with tritium gas. Initially the deuterium and tritium are separated, but as the implosion proceeds, the D and T mix, producing a DT signature. The results of these experiments will be used to inform a probability density function (PDF) burn modelling approach for un-resolved cell morphology. Initial targets for platform development have consisted of either fine-pore foams or gas mixtures, with the goal to field the engineered foams in 2016. An overview of the Marble experimental campaign will be presented and simulations will be discussed. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.
Large-Eddy / Reynolds-Averaged Navier-Stokes Simulations of a Dual-Mode Scramjet Combustor
NASA Technical Reports Server (NTRS)
Fulton, Jesse A.; Edwards, Jack R.; Hassan, Hassan A.; Rockwell, Robert; Goyne, Christopher; McDaniel, James; Smith, Chad; Cutler, Andrew; Johansen, Craig; Danehy, Paul M.;
2012-01-01
Numerical simulations of reacting and non-reacting flows within a scramjet combustor configuration experimentally mapped at the University of Virginia s Scramjet Combustion Facility (operating with Configuration A ) are described in this paper. Reynolds-Averaged Navier-Stokes (RANS) and hybrid Large Eddy Simulation / Reynolds-Averaged Navier-Stokes (LES / RANS) methods are utilized, with the intent of comparing essentially blind predictions with results from non-intrusive flow-field measurement methods including coherent anti-Stokes Raman spectroscopy (CARS), hydroxyl radical planar laser-induced fluorescence (OH-PLIF), stereoscopic particle image velocimetry (SPIV), wavelength modulation spectroscopy (WMS), and focusing Schlieren. NC State's REACTMB solver was used both for RANS and LES / RANS, along with a 9-species, 19- reaction H2-air kinetics mechanism by Jachimowski. Inviscid fluxes were evaluated using Edwards LDFSS flux-splitting scheme, and the Menter BSL turbulence model was utilized in both full-domain RANS simulations and as the unsteady RANS portion of the LES / RANS closure. Simulations were executed and compared with experiment at two equivalence ratios, PHI = 0.17 and PHI = 0.34. Results show that the PHI = 0.17 flame is hotter near the injector while the PHI = 0.34 flame is displaced further downstream in the combustor, though it is still anchored to the injector. Reactant mixing was predicted to be much better at the lower equivalence ratio. The LES / RANS model appears to predict lower overall heat release compared to RANS (at least for PHI = 0.17), and its capability to capture the direct effects of larger turbulent eddies leads to much better predictions of reactant mixing and combustion in the flame stabilization region downstream of the fuel injector. Numerical results from the LES/RANS model also show very good agreement with OH-PLIF and SPIV measurements. An un-damped long-wave oscillation of the pre-combustion shock train, which caused convergence problems in some RANS simulations, was also captured in LES / RANS simulations, which were able to accommodate its effects accurately.
Reactor for producing large particles of materials from gases
NASA Technical Reports Server (NTRS)
Flagan, Richard C. (Inventor); Alam, Mohammed K. (Inventor)
1987-01-01
A method and apparatus is disclosed for producing large particles of material from gas, or gases, containing the material (e.g., silicon from silane) in a free-space reactor comprised of a tube (20) and controlled furnace (25). A hot gas is introduced in the center of the reactant gas through a nozzle (23) to heat a quantity of the reactant gas, or gases, to produce a controlled concentration of seed particles (24) which are entrained in the flow of reactant gas, or gases. The temperature profile (FIG. 4) of the furnace is controlled for such a slow, controlled rate of reaction that virtually all of the material released condenses on seed particles and new particles are not nucleated in the furnace. A separate reactor comprised of a tube (33) and furnace (30) may be used to form a seed aerosol which, after passing through a cooling section (34) is introduced in the main reactor tube (34) which includes a mixer (36) to mix the seed aerosol in a controlled concentration with the reactant gas or gases.
Electrochemical devices utilizing molten alkali metal electrode-reactant
Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.
1986-01-01
Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.
Electrochemical devices utilizing molten alkali metal electrode-reactant
Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.
1985-07-10
Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.
Low current plasmatron fuel converter having enlarged volume discharges
Rabinovich, Alexander; Alexeev, Nikolai; Bromberg, Leslie; Cohn, Daniel R.; Samokhin, Andrei
2005-04-19
A novel apparatus and method is disclosed for a plasmatron fuel converter (""plasmatron"") that efficiently uses electrical energy to produce hydrogen rich gas. The volume and shape of the plasma discharge is controlled by a fluid flow established in a plasma discharge volume. A plasmatron according to this invention produces a substantially large effective plasma discharge volume allowing for substantially greater volumetric efficiency in the initiation of chemical reactions within a volume of bulk fluid reactant flowing through the plasmatron.
Low current plasmatron fuel converter having enlarged volume discharges
Rabinovich, Alexander [Swampscott, MA; Alexeev, Nikolai [Moscow, RU; Bromberg, Leslie [Sharon, MA; Cohn, Daniel R [Chestnut Hill, MA; Samokhin, Andrei [Moscow, RU
2009-10-06
A novel apparatus and method is disclosed for a plasmatron fuel converter ("plasmatron") that efficiently uses electrical energy to produce hydrogen rich gas. The volume and shape of the plasma discharge is controlled by a fluid flow established in a plasma discharge volume. A plasmatron according to this invention produces a substantially large effective plasma discharge volume allowing for substantially greater volumetric efficiency in the initiation of chemical reactions within a volume of bulk fluid reactant flowing through the plasmatron.
Catalytic distillation process
Smith, Jr., Lawrence A.
1982-01-01
A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.
Catalytic distillation process
Smith, L.A. Jr.
1982-06-22
A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackerman, David M.; Wang, Jing; Evans, James W.
2012-05-30
Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The RDE elucidate the nonexponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth.
Ackerman, David M; Wang, Jing; Evans, James W
2012-06-01
Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The RDE elucidate the nonexponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth.
NASA Astrophysics Data System (ADS)
Villacorta, Rashida
Gas diffusion layers (GDLs) are a critical and essential part of proton exchange membrane fuel cells (PEMFCs). They carry out various important functions such as transportation of reactants to and from the reaction sites. The material properties and structural characteristics of the substrate and the microporous layer strongly influence fuel cell performance. The microporous layer of the GDLs was fabricated with the carbon slurry dispersed in water containing ammonium lauryl sulfate (ALS) using the wire rod coating method. GDLs were fabricated with different materials to compose the microporous layer and evaluated the effects on PEMFC power output performance. The consistency of the carbon slurry was achieved by adding 25 wt. % of PTFE, a binding agent with a 75:25 ratio of carbon (Pureblack and vapor grown carbon fiber). The GDLs were investigated in PEMFC under various relative humidity (RH) conditions using H2/O2 and H2/Air. GDLs were also fabricated with the carbon slurry dispersed in water containing sodium dodecyl sulfate (SDS) and multiwalled carbon nanotubes (MWCNTs) with isopropyl alcohol (IPA) based for fuel cell performance comparison. MWCNTs and SDS exhibits the highest performance at 60% and 70% RH with a peak power density of 1100 mW.cm-2 and 850 mW.cm-2 using air and oxygen as an oxidant. This means that the gas diffusion characteristics of these two samples were optimum at 60 and 70 % RH with high limiting current density range. It was also found that the composition of the carbon slurry, specifically ALS concentration has the highest peak power density of 1300 and 500mW.cm-2 for both H2/O 2 and H2/Air at 100% RH. However, SDS and MWCNTs demonstrates the lowest power density using air and oxygen as an oxidants at 100% RH.
Method for preparing a sodium/sulfur cell
Weiner, Steven A.
1978-01-01
A method for preparing a sodium/sulfur cell comprising (A) inserting a solid sodium slug, adapted to be connected to an external circuit, into the anodic reaction zone of a cell subassembly maintained within an inert atmosphere, said cell subassembly comprising a cell container and a tubular cation-permeable barrier disposed within said container such that a first reaction zone is located within cation-permeable barrier and a second reaction zone is located between the outer surface of said cation-permeable barrier and the inner surface of said container, one of said reaction zones being said anodic reaction zone and the other of said reaction zone being a cathodic reaction zone containing a precast composite cathodic reactant comprising a sulfur impregnated porous conductive material connected to said cation permeable barrier and adapted to be connected to said external circuit; and (B) providing closure means for said subassembly and sealing the same to said subassembly at a temperature less than about 100.degree. C. The method of the invention overcomes deficiencies of the prior art methods by allowing preparation of a sodium/sulfur cell without the use of molten reactants and the fill spouts which are required when the cell is filled with molten reactants.
Negative electrode catalyst for the iron chromium redox energy storage system
NASA Technical Reports Server (NTRS)
Gahn, R. F.; Hagedorn, N. H. (Inventor)
1985-01-01
A redox cell which operates at elevated temperatures and which utilizes the same two metal couples in each of the two reactant fluids is disclosed. Each fluid includes a bismuth salt and may also include a lead salt. A low cost, cation permselective membrane separates the reactant fluids.
Numerical modelling of emissions of nitrogen oxides in solid fuel combustion.
Bešenić, Tibor; Mikulčić, Hrvoje; Vujanović, Milan; Duić, Neven
2018-06-01
Among the combustion products, nitrogen oxides are one of the main contributors to a negative impact on the environment, participating in harmful processes such as tropospheric ozone and acid rains production. The main source of emissions of nitrogen oxides is the human combustion of fossil fuels. Their formation models are investigated and implemented with the goal of obtaining a tool for studying the nitrogen-containing pollutant production. In this work, numerical simulation of solid fuel combustion was carried out on a three-dimensional model of a drop tube furnace by using the commercial software FIRE. It was used for simulating turbulent fluid flow and temperature field, concentrations of the reactants and products, as well as the fluid-particles interaction by numerically solving the integro-differential equations describing these processes. Chemical reactions mechanisms for the formation of nitrogen oxides were implemented by the user functions. To achieve reasonable calculation times for running the simulations, as well as efficient coupling with the turbulent mixing process, the nitrogen scheme is limited to sufficiently few homogeneous reactions and species. Turbulent fluctuations that affect the reaction rates of nitrogen oxides' concentration are modelled by probability density function approach. Results of the implemented model for nitrogen oxides' formation from coal and biomass are compared to the experimental data. Temperature, burnout and nitrogen oxides' concentration profiles are compared, showing satisfactory agreement. The new model allows the simulation of pollutant formation in the real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Colman, John A.; Carlson, Carl S.; Robinson, C.
2015-01-01
Chemical reaction was controlled by the rate of mixing of freshwater and saltwater, which contained the reactants nitrate and dissolved organic matter, respectively, necessary for nitrogen attenuation reactions to take place. Reaction occurred in both the deep saltwater wedge and in an increased denitrification. However, mixing may also have been enhanced partly by numerical dispersion.
Mixing of gaseous reactants in chemical generation of atomic iodine for COIL: two-dimensional study
NASA Astrophysics Data System (ADS)
Jirasek, Vit; Spalek, Otomar; Kodymova, Jarmila; Censky, Miroslav
2003-11-01
Two-dimensional CFD model was applied for the study of mixing and reaction between gaseous chlorine dioxide and nitrogen monoxide diluted with nitrogen during atomic iodine generation. The influence of molecular diffusion on the production of atomic chlorine as a precursor of atomic iodine was predominantly studied. The results were compared with one-dimensional modeling of the system.
Complex-Shaped Microcomponents by the Reactive Conversion of Biology Templates
2003-12-15
luminescent Eu-doped BaTiO3) and as structures for microfluidic mixing devices (e.g., based on electroosmotic flow). Optimization of the MgO conversion...ends of the iron tube. The tube was then crimped in the middle (to avoid physical mixing of the reactants) and the ends were welded shut. Upon heating...luminescent coatings (i.e., Eu-doped BaTiO 3 coatings on MgO), and ii) 3-D micro-structures for incorporation in electro-osmotic mixing devices (i.e., to
Bedeaux, Dick; Kjelstrup, Signe; Öttinger, Hans Christian
2014-09-28
We show how the Butler-Volmer and Nernst equations, as well as Peltier effects, are contained in the general equation for nonequilibrium reversible and irreversible coupling, GENERIC, with a unique definition of the overpotential. Linear flux-force relations are used to describe the transport in the homogeneous parts of the electrochemical system. For the electrode interface, we choose nonlinear flux-force relationships. We give the general thermodynamic basis for an example cell with oxygen electrodes and electrolyte from the solid oxide fuel cell. In the example cell, there are two activated chemical steps coupled also to thermal driving forces at the surface. The equilibrium exchange current density obtains contributions from both rate-limiting steps. The measured overpotential is identified at constant temperature and stationary states, in terms of the difference in electrochemical potential of products and reactants. Away from these conditions, new terms appear. The accompanying energy flux out of the surface, as well as the heat generation at the surface are formulated, adding to the general thermodynamic basis.
NASA Astrophysics Data System (ADS)
Bedeaux, Dick; Kjelstrup, Signe; Öttinger, Hans Christian
2014-09-01
We show how the Butler-Volmer and Nernst equations, as well as Peltier effects, are contained in the general equation for nonequilibrium reversible and irreversible coupling, GENERIC, with a unique definition of the overpotential. Linear flux-force relations are used to describe the transport in the homogeneous parts of the electrochemical system. For the electrode interface, we choose nonlinear flux-force relationships. We give the general thermodynamic basis for an example cell with oxygen electrodes and electrolyte from the solid oxide fuel cell. In the example cell, there are two activated chemical steps coupled also to thermal driving forces at the surface. The equilibrium exchange current density obtains contributions from both rate-limiting steps. The measured overpotential is identified at constant temperature and stationary states, in terms of the difference in electrochemical potential of products and reactants. Away from these conditions, new terms appear. The accompanying energy flux out of the surface, as well as the heat generation at the surface are formulated, adding to the general thermodynamic basis.
Electricity Generation in Microbial Fuel Cells Using Neutral Red as an Electronophore
Park, Doo Hyun; Zeikus, J. Gregory
2000-01-01
Neutral red (NR) was utilized as an electron mediator in microbial fuel cells consuming glucose to study both its efficiency during electricity generation and its role in altering anaerobic growth and metabolism of Escherichia coli and Actinobacillus succinogenes. A study of chemical fuel cells in which NADH, NR, and ferricyanide were the electron donor, the electronophore, and the electron acceptor, respectively, showed that electrical current produced from NADH was proportional to the concentration of NADH. Fourfold more current was produced from NADH in chemical fuel cells when NR was the electron mediator than when thionin was the electron mediator. In microbial fuel cells in which E. coli resting cells were used the amount of current produced from glucose when NR was the electron mediator (3.5 mA) was 10-fold more than the amount produced when thionin was the electron mediator (0.4 mA). The amount of electrical energy generated (expressed in joules per mole of substrate) and the amount of current produced from glucose (expressed in milliamperes) in NR-mediated microbial fuel cells containing either E. coli or A. succinogenes were about 10- and 2-fold greater, respectively, when resting cells were used than when growing cells were used. Cell growth was inhibited substantially when these microbial fuel cells were making current, and more oxidized end products were formed under these conditions. When sewage sludge (i.e., a mixed culture of anaerobic bacteria) was used in the fuel cell, stable (for 120 h) and equivalent levels of current were obtained with glucose, as observed in the pure-culture experiments. These results suggest that NR is better than other electron mediators used in microbial fuel cells and that sludge production can be decreased while electricity is produced in fuel cells. Our results are discussed in relation to factors that may improve the relatively low electrical efficiencies (1.2 kJ/mol) obtained with microbial fuel cells. PMID:10742202
Investigation into the effects of sulfur on syngas reforming inside a solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Li, Ting Shuai; Xu, Min; Gao, Chongxin; Wang, Baoqing; Liu, Xiyun; Li, Baihai; Wang, Wei Guo
2014-07-01
The electrochemical performance and long-term durability of a solid oxide fuel cell have been evaluated with a simulated coal syngas containing 2 ppm H2S as fuel. The resulting impedance spectra indicate that no observable power loss is caused by the addition of 2 ppm H2S, and the cell shows stability of nearly 500 h at 0.625 A cm-2. The composition of mixed gas is analyzed both at a current load of 0.625 A cm-2 and open circuit state. Hydrogen and carbon monoxide are directly consumed as fuels at the anode side, whereas methane stays unchanged during the operation. It seems the internal carbohydrate reforming and impurity poisoning interacts and weakens the poisoning effects. The oxidation of H2 and the water gas shift reaction take advantages over methane reforming at the cell operational conditions.
System and method for determining an ammonia generation rate in a three-way catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Min; Perry, Kevin L; Kim, Chang H
A system according to the principles of the present disclosure includes a rate determination module, a storage level determination module, and an air/fuel ratio control module. The rate determination module determines an ammonia generation rate in a three-way catalyst based on a reaction efficiency and a reactant level. The storage level determination module determines an ammonia storage level in a selective catalytic reduction (SCR) catalyst positioned downstream from the three-way catalyst based on the ammonia generation rate. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the ammonia storage level.
A three-dimensional non-isothermal model for a membraneless direct methanol redox fuel cell
NASA Astrophysics Data System (ADS)
Wei, Lin; Yuan, Xianxia; Jiang, Fangming
2018-05-01
In the membraneless direct methanol redox fuel cell (DMRFC), three-dimensional electrodes contribute to the reduction of methanol crossover and the open separator design lowers the system cost and extends its service life. In order to better understand the mechanisms of this configuration and further optimize its performance, the development of a three-dimensional numerical model is reported in this work. The governing equations of the multi-physics field are solved based on computational fluid dynamics methodology, and the influence of the CO2 gas is taken into consideration through the effective diffusivities. The numerical results are in good agreement with experimental data, and the deviation observed for cases of large current density may be related to the single-phase assumption made. The three-dimensional electrode is found to be effective in controlling methanol crossover in its multi-layer structure, while it also increases the flow resistance for the discharging products. It is found that the current density distribution is affected by both the electronic conductivity and the concentration of reactants, and the temperature rise can be primarily attributed to the current density distribution. The sensitivity and reliability of the model are analyzed through the investigation of the effects of cell parameters, including porosity values of gas diffusion layers and catalyst layers, methanol concentration and CO2 volume fraction, on the polarization characteristics.
High-Yield Hydrogen Production from Starch and Water by a Synthetic Enzymatic Pathway
Zhang, Y.-H. Percival; Evans, Barbara R.; Mielenz, Jonathan R.; Hopkins, Robert C.; Adams, Michael W.W.
2007-01-01
Background The future hydrogen economy offers a compelling energy vision, but there are four main obstacles: hydrogen production, storage, and distribution, as well as fuel cells. Hydrogen production from inexpensive abundant renewable biomass can produce cheaper hydrogen, decrease reliance on fossil fuels, and achieve zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. Methodology/Principal Findings Here we demonstrate a synthetic enzymatic pathway consisting of 13 enzymes for producing hydrogen from starch and water. The stoichiometric reaction is C6H10O5 (l)+7 H2O (l)→12 H2 (g)+6 CO2 (g). The overall process is spontaneous and unidirectional because of a negative Gibbs free energy and separation of the gaseous products with the aqueous reactants. Conclusions Enzymatic hydrogen production from starch and water mediated by 13 enzymes occurred at 30°C as expected, and the hydrogen yields were much higher than the theoretical limit (4 H2/glucose) of anaerobic fermentations. Significance The unique features, such as mild reaction conditions (30°C and atmospheric pressure), high hydrogen yields, likely low production costs ($∼2/kg H2), and a high energy-density carrier starch (14.8 H2-based mass%), provide great potential for mobile applications. With technology improvements and integration with fuel cells, this technology also solves the challenges associated with hydrogen storage, distribution, and infrastructure in the hydrogen economy. PMID:17520015
Method for preparing actinide nitrides
Bryan, G.H.; Cleveland, J.M.; Heiple, C.R.
1975-12-01
Actinide nitrides, and particularly plutonium and uranium nitrides, are prepared by reacting an ammonia solution of an actinide compound with an ammonia solution of a reactant or reductant metal, to form finely divided actinide nitride precipitate which may then be appropriately separated from the solution. The actinide nitride precipitate is particularly suitable for forming nuclear fuels.
NASA Astrophysics Data System (ADS)
Granet, M.; Nonell, A.; Favre, G.; Chartier, F.; Isnard, H.; Moureau, J.; Caussignac, C.; Tran, B.
2008-11-01
In the general frameworks of the nuclear fuel cycle and environmental research field, the Cs isotopic composition must be known with high precision and accuracy. The direct determination of Cs isotopes by mass spectrometry techniques is generally hampered by the presence of Ba isobaric interferences however. Here we present a new method which takes advantage of the collision-reaction cell based Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) and allows to analyse Cs isotopes in the presence of Ba without prior separation step. The addition of N 2O gas in the cell leads to an antagonistic behavior of Cs + and Ba + as the latter reacts with the gas to form BaO + and BaOH + products whereas Cs + remains unreactive. The efficiency of the method was demonstrated for an UOx sample by comparing the results obtained (1) from the measurements of pure Cs fractions and (2) from Fission Products fractions containing more than 30 ionisable elements in addition to Cs, Ba, and where U and Pu were previously removed by using ion exchange resin. An excellent agreement is achieved between each set of experiments with an external reproducibility always better than 0.5% (RSD, k = 2). This study confirms the strong potential of collision-reaction cell to measure Cs isotopes in presence of interfering Ba, precluding therefore former systematic chemical separations.
Production of ZrC Matrix for Use in Gas Fast Reactor Composite Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasudevamurthy, Gokul; Knight, Travis W.; Roberts, Elwyn
2007-07-01
Zirconium carbide is being considered as a candidate for inert matrix material in composite nuclear fuel for Gas fast reactors due to its favorable characteristics. ZrC can be produced by the direct reaction of pure zirconium and graphite powders. Such a reaction is exothermic in nature. The reaction is self sustaining once initial ignition has been achieved. The heat released during the reaction is high enough to complete the reaction and achieve partial sintering without any external pressure applied. External heat source is required to achieve ignition of the reactants and maintain the temperature close to the adiabatic temperature tomore » achieve higher levels of sintering. External pressure is also a driving force for sintering. In the experiments described, cylindrical compacts of ZrC were produced by direct combustion reaction. External induction heating combined with varying amounts of external applied pressure was employed to achieve varying degrees of density/porosity. The effect of reactant particle size on the product characteristics was also studied. The samples were characterized for density/porosity, composition and microstructure. (authors)« less
Fossil fuel combined cycle power generation method
Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN
2008-10-21
A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.
Effects of gravity on sheared and nonsheared turbulent nonpremixed flames
NASA Technical Reports Server (NTRS)
Elghobashi, Said; Lee, Yong-Yao; Zhong, Rongbin
1995-01-01
The present numerical study is concerned with the fundamental physics of the multiway interaction between turbulence, chemical reaction, and buoyancy in a nonpremixed flame. The method of direct numerical simulation (DNS) is used to solve the instantaneous, three-dimensional governing equations. Because of the present supercomputer limitations, we consider two simple flow geometries, namely an initially uniform flow without shear (equivalent to grid-generated turbulence) and an initially uniform shear flow. In each flow, the fuel and oxidant initially exist as two separate streams. As the reactants mix, chemical reaction takes place and exothermic energy is released causing variations in density. In the presence of a gravity field, the spatial and temporal distributions of the induced buoyancy forces depend on the local density gradients and the direction of the gravitational acceleration. The effects of buoyancy include the generation of local shear, baroclinic production or destruction of vorticity, and countergradient heat and mass transport. Increased vorticity and small-scale turbulence promote further mixing and reaction. However, if the strain-rates become too high, local flame extinction can occur. Our objective is to gain an understanding of the complex interactions between the physical phenomena involved, with particular attention to the effects of buoyancy on the turbulence structure, flame behavior, and factors influencing flame extinction.
Bracamonte, M Victoria; Melchionna, Michele; Stopin, Antoine; Giulani, Angela; Tavagnacco, Claudio; Garcia, Yann; Fornasiero, Paolo; Bonifazi, Davide; Prato, Maurizio
2015-09-01
The development of new electrocatalysts for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) at physiological pH is critical for several fields, including fuel cells and biological applications. Herein, the assembly of an electrode based on carboxyl-functionalised hydrophilic multiwalled carbon nanotubes (MWCNTs) filled with Fe phases and their excellent performance as electrocatalysts for ORR and HER at physiological pH are reported. The encapsulated Fe dramatically enhances the catalytic activity, and the graphitic shells play a double role of efficiently mediating the electron transfer to O2 and H2 O reactants and providing a cocoon that prevents uncontrolled Fe oxidation or leaching. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Space Tug Avionics Definition Study. Volume 5: Cost and Programmatics
NASA Technical Reports Server (NTRS)
1975-01-01
The baseline avionics system features a central digital computer that integrates the functions of all the space tug subsystems by means of a redundant digital data bus. The central computer consists of dual central processor units, dual input/output processors, and a fault tolerant memory, utilizing internal redundancy and error checking. Three electronically steerable phased arrays provide downlink transmission from any tug attitude directly to ground or via TDRS. Six laser gyros and six accelerometers in a dodecahedron configuration make up the inertial measurement unit. Both a scanning laser radar and a TV system, employing strobe lamps, are required as acquisition and docking sensors. Primary dc power at a nominal 28 volts is supplied from dual lightweight, thermally integrated fuel cells which operate from propellant grade reactants out of the main tanks.
Owsianiak, Mikołaj; Szulc, Alicja; Chrzanowski, Łukasz; Cyplik, Paweł; Bogacki, Mariusz; Olejnik-Schmidt, Agnieszka K; Heipieper, Hermann J
2009-09-01
In this study, we elucidated the role of cell surface hydrophobicity (microbial adhesion to hydrocarbons method, MATH) and the effect of anionic rhamnolipids and nonionic Triton X-100 surfactants on biodegradation of diesel fuel employing 218 microbial consortia isolated from petroleum-contaminated soils. Applied enrichment procedure with floating diesel fuel as a sole carbon source in liquid cultures resulted in consortia of varying biodegradation potential and diametrically different cell surface properties, suggesting that cell surface hydrophobicity is a conserved parameter. Surprisingly, no correlations between cell surface hydrophobicity and biodegradation of diesel fuel were found. Nevertheless, both surfactants altered cell surface hydrophobicity of the consortia in similar manner: increased for the hydrophilic and decreased for the hydrophobic cultures. In addition to this, the surfactants exhibited similar influence on diesel fuel biodegradation: Increase was observed for initially slow-degrading cultures and the opposite for fast degraders. This indicates that in the surfactant-mediated biodegradation, effectiveness of surfactants depends on the specification of microorganisms and not on the type of surfactant. In contrary to what was previously reported for pure strains, cell surface hydrophobicity, as determined by MATH, is not a good descriptor of biodegrading potential for mixed cultures.
Angosto, J M; Fernández-López, J A; Godínez, C
2015-01-01
This work aims at the comparison of the electrical and chemical performance of microbial fuel cells (MFCs) fed with several types of brewery and manure industrial wastewaters. Experiments were conducted in a single-cell MFC with the cathode exposed to air operated in batch and fed-batch modes. In fed-batch mode, after 4 days of operation, a standard MFC was refilled with crude wastewater to regenerate the biofilm and recreate initial feeding conditions. Brewery wastewater (CV1) mixed with pig-farm liquid manure (PU sample) gave the highest voltage (199.8 mV) and power density (340 mW/m3) outputs than non-mixed brewery waste water. Also, coulombic efficiency is much larger in the mixture (11%) than in the others (2-3%). However, in terms of chemical oxygen demand removal, the performance showed to be poorer (53%) for the mixed sample than in the pure brewery sample (93%). Fed-batch operation showed to be a good alternate for quasi-continuous operation, with equivalent electrical and chemical yields as compared with normal batchwise operation.
NASA Astrophysics Data System (ADS)
Liu, Lin; Choi, Seokheun
2017-04-01
Among many energy harvesting techniques with great potential, microbial fuel cell (MFC) technology is arguably the most underdeveloped. Even so, excitement is building, as microorganisms can harvest electrical power from any biodegradable organic source (e.g. wastewater) that is readily available in resource-limited settings. Nevertheless, the requirement for endless introduction of organic matter imposes a limiting factor to this technology, demanding an active feeding system and additional power. Here, we demonstrated self-sustaining bioelectricity generation from a microliter-scale microbial fuel cell (MFC) by using the syntrophic interaction between heterotrophic exoelectrogenic bacteria and phototrophs. The MFC continuously generated light-responsive electricity from the heterotrophic bacterial metabolic respiration with the organic substrates produced by photosynthetic bacteria. Without additional organic fuel, the mixed culture in a 90-μL-chamber MFC generated self-sustained current for more than 13 days, while the heterotrophic culture produced current that decreased dramatically within a few hours. The current from the mixed culture was about 70 times greater than that of the device with only photosynthetic bacteria. The miniaturization provided a short start-up time, a well-controlled environment, and small internal resistance. Those advantages will become the general design platform for micropower generation.
Novel mixed matrix membranes for sulfur removal and for fuel cell applications
NASA Astrophysics Data System (ADS)
Lin, Ligang; Wang, Andong; Zhang, Longhui; Dong, Meimei; Zhang, Yuzhong
2012-12-01
Sulfur removal is significant for fuels used as hydrogen source for fuel cell applications and to avoid sulfur poisoning of therein used catalysts. Novel mixed matrix membranes (MMMs) with well-defined transport channels are proposed for sulfur removal. MMMs are fabricated using polyimide (PI) as matrix material and Y zeolites as adsorptive functional materials. The influence of architecture conditions on the morphology transition from finger-like to sponge-like structure and the “short circuit” effect are investigated. The adsorption and regeneration behavior of MMMs is discussed, combining the detailed analysis of FT-IR, morphology, XPS, XRD and thermal properties of MMMs, the process-structure-function relationship is obtained. The results show that the functional zeolites are incorporated into three-dimensional network and the adsorption capacity of MMMs comes to 8.6 and 9.5 mg S g-1 for thiophene and dibenzothiophene species, respectively. And the regeneration behavior suggests that the spent membranes can recover about 88% and 96% of the desulfurization capacity by solvent washing and thermal treating regeneration, respectively. The related discussions provide some general suggestions in promoting the novel application of MMMs on the separation of organic-organic mixtures, and a potential alternative for the production of sulfur-free hydrogen source for fuel cell applications.
Incomplete Mixing and Reactions - A Lagrangian Approach in a Pure Shear Flow
NASA Astrophysics Data System (ADS)
Paster, A.; Aquino, T.; Bolster, D.
2014-12-01
Incomplete mixing of reactive solutes is well known to slow down reaction rates relative to what would be expected from assuming perfect mixing. As reactions progress in a system and deplete reactant concentrations, initial fluctuations in the concentrations of reactions can be amplified relative to mean background concentrations and lead to spatial segregation of reactants. As the system evolves, in the absence of sufficient mixing, this segregation will increase, leading to a persistence of incomplete mixing that fundamentally changes the effective rate at which overall reactions will progress. On the other hand, non-uniform fluid flows are known to affect mixing between interacting solutes. Thus a natural question arises: Can non-uniform flows sufficiently enhance mixing to suppress incomplete mixing effects, and if so, under what conditions? In this work we address this question by considering one of the simplest possible flows, a laminar pure shear flow, which is known to significantly enhance mixing relative to diffusion alone. To study this system we adapt a novel Lagrangian particle-based random walk method, originally designed to simulate reactions in purely diffusive systems, to the case of advection and diffusion in a shear flow. To interpret the results we develop a semi-analytical solution, by proposing a closure approximation that aims to capture the effect of incomplete mixing. The results obtained via the Lagrangian model and the semi-analytical solutions consistently highlight that if shear effects in the system are not sufficiently strong, incomplete mixing effects initially similar to purely diffusive systems will occur, slowing down the overall reaction rate. Then, at some later time, dependent on the strength of the shear, the system will return to behaving as if it were well-mixed, but represented by a reduced effective reaction rate. If shear effects are sufficiently strong, the incomplete mixing regime never emerges and the system can behave as well-mixed at all times.
Incomplete Mixing and Reactions - A Lagrangian Approach in a Pure Shear Flow
NASA Astrophysics Data System (ADS)
Paster, Amir; Bolster, Diogo; Aquino, Tomas
2015-04-01
Incomplete mixing of reactive solutes is well known to slow down reaction rates relative to what would be expected from assuming perfect mixing. As reactions progress in a system and deplete reactant concentrations, initial fluctuations in the concentrations of reactions can be amplified relative to mean background concentrations and lead to spatial segregation of reactants. As the system evolves, in the absence of sufficient mixing, this segregation will increase, leading to a persistence of incomplete mixing that fundamentally changes the effective rate at which overall reactions will progress. On the other hand, nonuniform fluid flows are known to affect mixing between interacting solutes. Thus a natural question arises: Can non-uniform flows sufficiently enhance mixing to suppress incomplete mixing effects, and if so, under what conditions? In this work we address this question by considering one of the simplest possible flows, a laminar pure shear flow, which is known to significantly enhance mixing relative to diffusion alone. To study this system we adapt a novel Lagrangian particle-based random walk method, originally designed to simulate reactions in purely diffusive systems, to the case of advection and diffusion in a shear flow. To interpret the results we develop a semi-analytical solution, by proposing a closure approximation that aims to capture the effect of incomplete mixing. The results obtained via the Lagrangian model and the semi-analytical solutions consistently highlight that if shear effects in the system are not sufficiently strong, incomplete mixing effects initially similar to purely diffusive systems will occur, slowing down the overall reaction rate. Then, at some later time, dependent on the strength of the shear, the system will return to behaving as if it were well-mixed, but represented by a reduced effective reaction rate. If shear effects are sufficiently strong, the incomplete mixing regime never emerges and the system can behave as well-mixed at all times.
NASA Astrophysics Data System (ADS)
Yan, X. H.; Zhao, T. S.; Zhao, G.; An, L.; Zhou, X. L.
2015-10-01
Passive direct methanol fuel cells (DMFCs) operating with neat methanol can achieve the maximum system energy density. However, the anodic methanol oxidation reaction requires reactant water, which is completely supplied by water generated at the cathode, causing the system to experience a critical issue known as water starvation. A solution to this problem involves increasing the water recovery flux to meet the rate of water consumption of the anodic reaction, and increase the local water concentration as high as possible at the anode catalyst layer (CL) to improve the anodic kinetics. In the present work, a new microporous layer (MPL) consisting of a hydrophilic layer and a hydrophobic layer is proposed. The purposes of these two layers are to, respectively, trap and retain water and to create capillary pressure to prevent water loss. Our experiments have shown that the use of this novel MPL at the anode and cathode can increase the rate of water recovery and water retention, resulting in an increase in the local water concentration. As a result, the use of this dual-layer MPL to either electrode of a passive DMFC operating with neat methanol leads to a significant performance boost.
Novel anode catalyst for direct methanol fuel cells.
Basri, S; Kamarudin, S K; Daud, W R W; Yaakob, Z; Kadhum, A A H
2014-01-01
PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2-5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g(-1) catalyst.
Novel Anode Catalyst for Direct Methanol Fuel Cells
Basri, S.; Kamarudin, S. K.; Daud, W. R. W.; Yaakob, Z.; Kadhum, A. A. H.
2014-01-01
PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1 catalyst. PMID:24883406
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, D. J.; Almer, J.; Cruse, T.
2010-01-01
A key feature of planar solid oxide fuel cells (SOFCs) is the feasibility of using metallic interconnects made of high temperature ferritic stainless steels, which reduce system cost while providing excellent electric conductivity. Such interconnects, however, contain high levels of chromium, which has been found to be associated with SOFC cathode performance degradation at SOFC operating temperatures; a phenomenon known as Cr poisoning. Here, we demonstrate an accurate measurement of the phase and concentration distributions of Cr species in a degraded SOFC, as well as related properties including deviatoric strain, integrated porosity, and lattice parameter variation, using high energy microbeammore » X-ray diffraction and radiography. We unambiguously identify (MnCr){sub 3}O{sub 4} and Cr{sub 2}O{sub 3} as the two main contaminant phases and find that their concentrations correlate strongly with the cathode layer composition. Cr{sub 2}O{sub 3} deposition within the active cathode region reduces porosity and produces compressive residual strains, which hinders the reactant gas percolation and can cause structural breakdown of the SOFC cathode. The information obtained through this study can be used to better understand the Cr-poisoning mechanism and improve SOFC design.« less
Copper-phospholipid interaction at cell membrane model hydrophobic surfaces.
Mlakar, Marina; Cuculić, Vlado; Frka, Sanja; Gašparović, Blaženka
2018-04-01
Detailed investigation of Cu (II) binding with natural lipid phosphatidylglycerol (PG) in aqueous solution was carried out by voltammetric measurements at the mercury drop electrode, complemented by monolayer studies in a Langmuir trough and electrophoretic measurements, all used as models for hydrophobic cell membranes. Penetration of copper ions into the PG layer was facilitated by the formation of hydrophilic Cu-Phenanthroline (Phen) complex in the subphase, followed by the mixed ligand Cu-Phen-PG complex formation at the hydrophobic interface. Electrophoretic measurements indicated a comparatively low abundance of the formed mixed ligand complex within the PG vesicles, resulting it the zeta potential change of +0.83mV, while monolayer studies confirmed their co-existence at the interface. The Cu-Phen-PG complex was identified in the pH range from 6 to 9. The stoichiometry of the complex ([PhenCuOHPG]), as well as its stability and kinetics of formation, were determined at the mercury drop electrode. Cu-Phen-PG reduces quasireversibly at about -0.7V vs. Ag/AgCl including reactant adsorption, followed by irreversible mixed complex dissociation, indicating a two-electron transfer - chemical reaction (EC mechanism). Consequently, the surface concentration (γ) of the adsorbed [PhenCuOHPG] complex at the hydrophobic electrode surface was calculated to be (3.35±0.67)×10 -11 molcm -2 . Information on the mechanism of Cu (II) - lipid complex formation is a significant contribution to the understanding of complex processes at natural cell membranes. Copyright © 2017 Elsevier B.V. All rights reserved.
‘Greener’ Chemical Syntheses Using Mechanochemical Mixing or Microwave and Ultrasound Irradiation
Various emerging ‘greener’ strategic pathways researched primarily in the author’s own laboratory are summarized. They include solvent-free mechanochemical methods and microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of less-expensive and recyclabl...
System for operating solid oxide fuel cell generator on diesel fuel
NASA Technical Reports Server (NTRS)
Singh, Prabhu (Inventor); George, Raymond A. (Inventor)
1997-01-01
A system is provided for operating a solid oxide fuel cell generator on diesel fuel. The system includes a hydrodesulfurizer which reduces the sulfur content of commercial and military grade diesel fuel to an acceptable level. Hydrogen which has been previously separated from the process stream is mixed with diesel fuel at low pressure. The diesel/hydrogen mixture is then pressurized and introduced into the hydrodesulfurizer. The hydrodesulfurizer comprises a metal oxide such as ZnO which reacts with hydrogen sulfide in the presence of a metal catalyst to form a metal sulfide and water. After desulfurization, the diesel fuel is reformed and delivered to a hydrogen separator which removes most of the hydrogen from the reformed fuel prior to introduction into a solid oxide fuel cell generator. The separated hydrogen is then selectively delivered to the diesel/hydrogen mixer or to a hydrogen storage unit. The hydrogen storage unit preferably comprises a metal hydride which stores hydrogen in solid form at low pressure. Hydrogen may be discharged from the metal hydride to the diesel/hydrogen mixture at low pressure upon demand, particularly during start-up and shut-down of the system.
Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts
Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne
2014-08-12
Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.
NASA Technical Reports Server (NTRS)
Valdez, Thomas I.; Firdosy, S.; Koel, B. E.; Narayanan, S. R.
2005-01-01
Dissolution of ruthenium was observed in the 80-cell stack. Duration testing was performed in single cell MEAs to determine the pathway of cell degradation. EDAX analysis on each of the single cell MEAs has shown that the Johnson Matthey commercial catalyst is stable in DMFC operation for 250 hours, no ruthenium dissolution was observed. Changes in the hydrophobicity of the cathode backing papers was minimum. Electrode polarization analysis revealed that the MEA performance loss is attributed to changes in the cathode catalyst layer. Ruthenium migration does not seem to occur during cell operation but can occur when methanol is absent from the anode compartment, the cathode compartment has access to air, and the cells in the stack are electrically connected to a load (Shunt Currents). The open-to-air cathode stack design allowed for: a) The MEAs to have continual access to oxygen; and b) The stack to sustain shunt currents. Ruthenium dissolution in a DMFC stack can be prevented by: a) Developing an internally manifolded stacks that seal reactant compartments when not in operation; b) Bringing the cell voltages to zero quickly when not in operation; and c) Limiting the total number of cells to 25 in an effort to limit shunt currents.
Interaction of turbulent premixed flames with combustion products: Role of stoichiometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coriton, Bruno Rene Leon; Frank, Jonathan H.; Gomez, Alessandro
Stabilization methods of turbulent flames often involve mixing of reactants with hot products of combustion. The stabilizing effect of combustion product enthalpy has been long recognized, but the role played by the chemical composition of the product gases is typically overlooked. We employ a counterflow system to pinpoint the effects of the combustion product stoichiometry on the structure of turbulent premixed flames under conditions of both stable burning and local extinction. To that end, a turbulent jet of lean-to-rich, CH 4/O 2/N 2-premixed reactants at a turbulent Reynolds number of 1050 was opposed to a stream of hot products ofmore » combustion that were generated in a preburner. While the combustion product stream temperature was kept constant, its stoichiometry was varied independently from that of the reactant stream, leading to reactant-to-product stratification of relevance to practical combustion systems. The detailed structure of the turbulent flame front was analyzed in two series of experiments using laser-induced fluorescence (LIF): joint CH 2O LIF and OH LIF measurements and joint CO LIF and OH LIF measurements. Results revealed that a decrease in local CH 2O+OH and CO+OH reaction rates coincide with the depletion of OH radicals in the vicinity of the combustion product stream. These critical combustion reaction rates were more readily quenched in the presence of products of combustion from a stoichiometric flame, whereas they were favored by lean combustion products. As a result, stoichiometric combustion products contributed to a greater occurrence of local extinction. Furthermore, they limited the capacity of premixed reactants to ignite and of the turbulent premixed flames to stabilize. In contrast, lean and rich combustion products facilitated flame ignition and stability and reduced the rate of local extinction. The influence of the combustion product stream on the turbulent flame front was limited to a zone of approximately two millimeters from the gas mixing layer interface (GMLI) of the product stream. As a result, flame fronts that were separated from the GMLI by larger distances were unaffected by the product stream stoichiometry.« less
Interaction of turbulent premixed flames with combustion products: Role of stoichiometry
Coriton, Bruno Rene Leon; Frank, Jonathan H.; Gomez, Alessandro
2016-05-30
Stabilization methods of turbulent flames often involve mixing of reactants with hot products of combustion. The stabilizing effect of combustion product enthalpy has been long recognized, but the role played by the chemical composition of the product gases is typically overlooked. We employ a counterflow system to pinpoint the effects of the combustion product stoichiometry on the structure of turbulent premixed flames under conditions of both stable burning and local extinction. To that end, a turbulent jet of lean-to-rich, CH 4/O 2/N 2-premixed reactants at a turbulent Reynolds number of 1050 was opposed to a stream of hot products ofmore » combustion that were generated in a preburner. While the combustion product stream temperature was kept constant, its stoichiometry was varied independently from that of the reactant stream, leading to reactant-to-product stratification of relevance to practical combustion systems. The detailed structure of the turbulent flame front was analyzed in two series of experiments using laser-induced fluorescence (LIF): joint CH 2O LIF and OH LIF measurements and joint CO LIF and OH LIF measurements. Results revealed that a decrease in local CH 2O+OH and CO+OH reaction rates coincide with the depletion of OH radicals in the vicinity of the combustion product stream. These critical combustion reaction rates were more readily quenched in the presence of products of combustion from a stoichiometric flame, whereas they were favored by lean combustion products. As a result, stoichiometric combustion products contributed to a greater occurrence of local extinction. Furthermore, they limited the capacity of premixed reactants to ignite and of the turbulent premixed flames to stabilize. In contrast, lean and rich combustion products facilitated flame ignition and stability and reduced the rate of local extinction. The influence of the combustion product stream on the turbulent flame front was limited to a zone of approximately two millimeters from the gas mixing layer interface (GMLI) of the product stream. As a result, flame fronts that were separated from the GMLI by larger distances were unaffected by the product stream stoichiometry.« less
Neat methanol fuel cell power plant
NASA Astrophysics Data System (ADS)
Abens, S.; Farooque, M.
1985-12-01
Attention is given to a fuel cell development effort which has been directed, by ease-of-supply, low weight, and low volume criteria toward the use of undiluted methanol. Partial oxidation and internal water recovery concepts are incorporated, allowing the onboard dilution of methanol fuel through mixing with exhaust-recovered water. This scheme is successfully demonstrated for the case of a 3 kW unit employing commercial cross flow heat exchangers, as well as for a 5 kW reformer flue exhaust water recovery design with U.S. Air force baseload stationary applications. The USAF powerplant has an overall thermal efficiency of 32 percent at rated load.
Scaling of cell size in cellular instabilities of nonpremixed jet flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo Jacono, D.; Monkewitz, P.A.
2007-10-15
Systematic experiments have been undertaken to study the parameter dependence of cellular instability and in particular the scaling of the resulting cell size in CO{sub 2}-diluted H{sub 2}-O{sub 2} jet diffusion flames. Cellular flames are known to arise near the extinction limit when reactant Lewis numbers are relatively low. The Lewis numbers of the investigated near-extinction mixtures, based on the initial mixture strength {phi}{sub m} and ambient conditions, varied in the ranges [1.1-1.3] for oxygen and [0.25-0.29] for hydrogen ({phi}{sub m} is defined here as the fuel-to-oxygen mass ratio, normalized by the stoichiometric ratio). The experiments were carried out bothmore » in an axisymmetric jet (AJ) burner and in a two-dimensional slot burner known as a Wolfhard-Parker (WP) burner with an oxidizer co-flow (mostly 100% O{sub 2}) of fixed low velocity. First, the region of cellular flames adjacent to the extinction limit was characterized in terms of initial H{sub 2} concentration and fuel jet velocity, with all other parameters fixed. Then, the wavelength of the cellular instability, i.e., the cell size, was determined as a function of the fuel jet velocity and the initial mixture strength {phi}{sub m}. For conditions not too close to extinction, this wavelength is found to increase with the square root of the vorticity thickness of the jet shear layer and roughly the 1/5 power of {phi}{sub m}. Very close to extinction, this scaling breaks down and will likely switch to a scaling with the flame thickness, i.e., involving the Damkoehler number. (author)« less
NASA Astrophysics Data System (ADS)
Crepaldi, M.; Chiolerio, A.; Tommasi, T.; Hidalgo, D.; Canavese, G.; Stassi, S.; Demarchi, D.; Pirri, F. C.
2013-05-01
Microbial Fuel Cells (MFCs) are energy sources which generate electrical charge thanks to bacteria metabolism. Although functionally similar to chemical fuel cells (both including reactants and two electrodes, and anode and cathode), they have substantial advantages, e.g. 1) operation at ambient temperature and pressure; 2) use of neutral electrolytes and avoidance of expensive catalysts (e.g. platinum); 3) operation using organic wastes. An MFC can be effectively used in environments where ubiquitous networking requires the wireless monitoring of energy sources. We then report on a simple monitoring system for MFC comprising an ultra-low-power Impulse-Radio Ultra-Wide-Band Transmitter (TX) operating in the low 0-960MHz band and a nanostructured piezoresistive pressure sensor connected to a discrete component digital read-out circuit. The sensor comprises an insulating matrix of polydimethylsiloxane and nanostructured multi-branched copper microparticles as conductive filler. Applied mechanical stress induces a sample deformation that modulates the mean distance between particles, i.e. the current flow. The read-out circuit encodes pressure as a pulse rate variation, with an absolute sensitivity to the generated MFC voltage. Pulses with variable repetition frequency can encode battery health: the pressure sensor can be directly connected to the cells membrane to read excessive pressure. A prototype system comprises two MFCs connected in series to power both the UWB transmitter which consumes 40μW and the read-out circuit. The two MFC generate an open circuit voltage of 1.0+/-0.1V. Each MFC prototype has a total volume of 0.34L and is formed by two circular Poly(methyl methacrylate) (PMMA) chambers (anode and cathode) separated by a cation exchange membrane. The paper reports on the prototype and measurements towards a final solution which embeds all functionalities within a MFC cell. Our solution is conceived to provide energy sources integrating energy management and health monitoring capabilities to sensor nodes which are not connected to the energy grid.
Platinum-free catalysts for low temperature fuel cells
NASA Astrophysics Data System (ADS)
Lastovina, Tatiana; Pimonova, Julia; Budnyk, Andriy
2017-04-01
In this work, we have successfully prepared Zn/Co-N/C and Zn/Co-Fe/N/C composites, both derived from single zeolitic imidazolate framework (ZIF) precursor Zn/Co-ZIF containing equivalent quantities of Zn and Co metal sites. The composites were formed by pyrolysis of the precursor at 700 °C in inert gas atmosphere as such and after mixing it with Fe(II) salt and 1,10-phenontraline in ethanol. Catalytic tests for oxygen reduction reaction (ORR) in electrochemical cell demonstrated promising results allowing us to consider these composites as potential Pt-free catalysts for low temperature fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Robert S.; Holladay, Johnathan E.
Here, we have adapted and characterized electrolysis reactors to complement the conversion of regional- and community-scale quantities of waste into fuel or chemicals. The overall process must be able to contend with a wide range of feedstocks, must be inherently safe, and should not rely on external facilities for co-reactants or heat rejection and supply. Our current approach is based on the upgrading of bio-oil produced by the hydrothermal liquefaction (HTL) of carbon-containing waste feedstocks. HTL can convert a variety of feedstocks into a bio-oil that requires much less upgrading than the products of other ways of deconstructing biomass. Wemore » are now investigating the use of electrochemical processes for the further conversions needed to transform the bio-oil from HTL into fuel or higher value chemicals. We, and others, have shown that electrochemical reduction can offer adequate reaction rates and at least some of the necessary generality. In addition, an electrochemical reactor necessarily both oxidizes (removes electrons) on one side of the reactor and reduces (adds electrons) on the other side. Therefore, the two types of reactions could, in principle, be coupled to upgrade the bio-oil and simultaneously polish the water that is employed as a reactant and a carrier in the upstream HTL. Here, we overview a notional process, the possible conversion chemistry, and the economics of an HTL-electrochemical process.« less
Weber, Robert S.; Holladay, Johnathan E.
2018-05-22
Here, we have adapted and characterized electrolysis reactors to complement the conversion of regional- and community-scale quantities of waste into fuel or chemicals. The overall process must be able to contend with a wide range of feedstocks, must be inherently safe, and should not rely on external facilities for co-reactants or heat rejection and supply. Our current approach is based on the upgrading of bio-oil produced by the hydrothermal liquefaction (HTL) of carbon-containing waste feedstocks. HTL can convert a variety of feedstocks into a bio-oil that requires much less upgrading than the products of other ways of deconstructing biomass. Wemore » are now investigating the use of electrochemical processes for the further conversions needed to transform the bio-oil from HTL into fuel or higher value chemicals. We, and others, have shown that electrochemical reduction can offer adequate reaction rates and at least some of the necessary generality. In addition, an electrochemical reactor necessarily both oxidizes (removes electrons) on one side of the reactor and reduces (adds electrons) on the other side. Therefore, the two types of reactions could, in principle, be coupled to upgrade the bio-oil and simultaneously polish the water that is employed as a reactant and a carrier in the upstream HTL. Here, we overview a notional process, the possible conversion chemistry, and the economics of an HTL-electrochemical process.« less
Guo, Fei; Fu, Guokai; Zhang, Zhi
2015-03-01
Mixed-species biocathode microbial fuel cells (MFCs) were constructed. Mustard tuber wastewater (MTWW) was used as catholyte. Simultaneous organic matters and nitrogen removal at the cathode was observed, and majority of contaminants reduced were accomplished within acclimating period (AP). Concerning nitrogen removal, aerobic and anaerobic microenvironment could be formed within the cathodic biofilms, and both heterotrophic denitrification and bioelectrochemical denitrification were involved. Also, it was demonstrated that organic matters and ammonium could have detrimental effects on voltage output, but it could retrieve finally. Similar maximum power densities were obtained during stage1 (1.20Wm(-3)), stage2 (1.24Wm(-3)) and stage3 (1.32Wm(-3)). However, overpotential for oxygen reduction was investigated due to lower bacteria activity at cathode, which could major limitation for energy recovery. Considering similar performance of MFCs during different stages, it could be concluded that MTWW was adequately self-buffered when used as catholyte at mixed-species biocathodes. Copyright © 2015. Published by Elsevier Ltd.
Spontaneous repulsion in the A +B →0 reaction on coupled networks
NASA Astrophysics Data System (ADS)
Lazaridis, Filippos; Gross, Bnaya; Maragakis, Michael; Argyrakis, Panos; Bonamassa, Ivan; Havlin, Shlomo; Cohen, Reuven
2018-04-01
We study the transient dynamics of an A +B →0 process on a pair of randomly coupled networks, where reactants are initially separated. We find that, for sufficiently small fractions q of cross couplings, the concentration of A (or B ) particles decays linearly in a first stage and crosses over to a second linear decrease at a mixing time tx. By numerical and analytical arguments, we show that for symmetric and homogeneous structures tx∝(
Mixing and chemical reaction in sheared and nonsheared homogeneous turbulence
NASA Technical Reports Server (NTRS)
Leonard, Andy D.; Hill, James C.
1992-01-01
Direct numerical simulations were made to examine the local structure of the reaction zone for a moderately fast reaction between unmixed species in decaying, homogeneous turbulence and in a homogeneous turbulent shear flow. Pseudospectral techniques were used in domains of 64 exp 3 and higher wavenumbers. A finite-rate, single step reaction between non-premixed reactants was considered, and in one case temperature-dependent Arrhenius kinetics was assumed. Locally intense reaction rates that tend to persist throughout the simulations occur in locations where the reactant concentration gradients are large and are amplified by the local rate of strain. The reaction zones are more organized in the case of a uniform mean shear than in isotropic turbulence, and regions of intense reaction rate appear to be associated with vortex structures such as horseshoe vortices and fingers seen in mixing layers. Concentration gradients tend to align with the direction of the most compressive principal strain rate, more so in the isotropic case.
Mixing-dependent Reactions in the Hyporheic Zone: Laboratory and Numerical Experiments
NASA Astrophysics Data System (ADS)
Santizo, K. Y.; Eastes, L. A.; Hester, E. T.; Widdowson, M.
2017-12-01
The hyporheic zone is the surface water-groundwater interface surrounding the river's perimeter. Prior research demonstrates the ability of the hyporheic zone to attenuate pollutants when surface water cycles through reactive sediments (non-mixing-dependent reactions). However, the colocation of both surface and ground water within hyporheic sediments also allows mixing-dependent reactions that require mixing of reactants from these two water sources. Recent modeling studies show these mixing zones can be small under steady state homogeneous conditions, but do not validate those results in the laboratory or explore the range of hydrological characteristics that control the extent of mixing. Our objective was to simulate the mixing zone, quantify its thickness, and probe its hydrological controls using a "mix" of laboratory and numerical experiments. For the lab experiments, a hyporheic zone was simulated in a sand mesocosm, and a mixing-dependent abiotic reaction of sodium sulfite and dissolved oxygen was induced. Oxygen concentration response and oxygen consumption were visualized via planar optodes. Sulfate production by the mixing-dependent reaction was measured by fluid samples and a spectrophometer. Key hydrologic controls varied in the mesocosm included head gradient driving hyporheic exchange and hydraulic conductivity/heterogeneity. Results show a clear mixing area, sulfate production, and oxygen gradient. Mixing zone length (hyporheic flow cell size) and thickness both increase with the driving head gradient. For the numerical experiments, transient surface water boundary conditions were implemented together with heterogeneity of hydraulic conductivity. Results indicate that both fluctuating boundary conditions and heterogeneity increase mixing-dependent reaction. The hyporheic zone is deemed an attenuation hotspot by multiple studies, but here we demonstrate its potential for mixing-dependent reactions and the influence of important hydrological parameters.
Fuel cell anode configuration for CO tolerance
Uribe, Francisco A.; Zawodzinski, Thomas A.
2004-11-16
A polymer electrolyte fuel cell (PEFC) is designed to operate on a reformate fuel stream containing oxygen and diluted hydrogen fuel with CO impurities. A polymer electrolyte membrane has an electrocatalytic surface formed from an electrocatalyst mixed with the polymer and bonded on an anode side of the membrane. An anode backing is formed of a porous electrically conductive material and has a first surface abutting the electrocatalytic surface and a second surface facing away from the membrane. The second surface has an oxidation catalyst layer effective to catalyze the oxidation of CO by oxygen present in the fuel stream where at least the layer of oxidation catalyst is formed of a non-precious metal oxidation catalyst selected from the group consisting of Cu, Fe, Co, Tb, W, Mo, Sn, and oxides thereof, and other metals having at least two low oxidation states.
Ignition, Burning, and Extinction of a Strained Fuel Strip
NASA Technical Reports Server (NTRS)
Selerland, T.; Karagozian, A. R.
1996-01-01
Flame structure and ignition and extinction processes associated with a strained fuel strip are explored numerically using detailed transport and complex kinetics for a propane-air reaction. Ignition modes are identified that are similar to those predicted by one-step activation energy asymptotics, i.e., modes in which diffusion flames can ignite as independent or dependent interfaces, and modes in which single premixed or partially premixed flames ignite. These ignition modes are found to be dependent on critical combinations of strain rate, fuel strip thickness, and initial reactant temperatures. Extinction in this configuration is seen to occur due to fuel consumption by adjacent flames, although viscosity is seen to have the effect of delaying extinction by reducing the effective strain rate and velocity field experienced by the flames.
Liu, Dandan; Liu, Yunqi; Dai, Fangna; Zhao, Jinchong; Yang, Kang; Liu, Chenguang
2015-10-07
In this paper, an efficient method to fabricate Al-based metal organic framework (Al-MOF) MIL-96 crystals with controllable size and morphology, by mixing other forms of reactants to replace the coordination modulators or capping agents, is presented. The size and morphology of the MIL-96 crystals can be selectively varied by simply altering the ratio of dual reactants via their hydrolysis reaction. All the samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA) and nitrogen sorption. Then based on the BFDH theory, a mechanism for the impact of hydrolysis of reactants on the crystal size and morphology is presented and discussed. We also evaluated the performance of these MOFs as sorbents for capturing CO2, and they all show enhanced adsorption properties compared with the bulk material, displaying high adsorption capacities on CO2 at atmospheric pressure and ambient temperature.
Design of a new static micromixer having simple structure and excellent mixing performance.
Kamio, Eiji; Ono, Tsutomu; Yoshizawa, Hidekazu
2009-06-21
A novel micromixer with simple construction and excellent mixing performance is developed. The micromixer is composed of two stainless steel tubes with different diameters: one is an outer tube and another is an inner tube which fits in the outer tube. In this micromixer, one reactant fluid flows in the mixing zone from the inner tube and the other flows from the outer tube. The excellent mixing performance is confirmed by comparing the results of a Villermaux/Dushman reaction with those for the other micromixers. The developed micromixer has a mixing cascade with multiple means and an asymmetric structure to achieve effective mixing. The excellent mixing performance of the developed micromixer suggests that serial addition of multiple phenomena for mixing will give us an efficient micromixing.
Method of preparing a positive electrode for an electrochemical cell
Tomczuk, Zygmunt
1979-01-01
A method of preparing an electrochemical cell including a metal sulfide as the positive electrode reactant and lithium alloy as the negative electrochemical reactant with an alkali metal, molten salt electrolyte is disclosed which permits the assembly to be accomplished in air. The electrode reactants are introduced in the most part as a sulfide of lithium and the positive electrode metal in a single-phase compound. For instance, Li.sub.2 FeS.sub.2 is a single-phase compound that is produced by the reaction of Li.sub.2 S and FeS. This compound is an intermediate in the positive electrode cycle from FeS.sub.2 to Fe and Li.sub.2 S. Its use minimizes volumetric changes from the assembled to the charged and discharged conditions of the electrode and minimizes electrode material interaction with air and moisture during assembly.
Premixed direct injection disk
York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho
2013-04-23
A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.
NASA Astrophysics Data System (ADS)
Eisler, Matthew Nicholas
The record of fuel cell research and development is one of the great enigmas in the history of science and technology. For years, this electrochemical power source, which combines hydrogen and oxygen to produce electricity and waste water, excited the imaginations of researchers in many countries. Because fuel cells directly convert chemical into electrical energy, people have long believed them exempt from the so-called Carnot cycle limitation on heat engines, which dictates that such devices must operate at less than 100 per cent efficiency owing to the randomization of energy as heat. Fuel cells have thus struck some scientists and engineers as the "magic bullet" of energy technologies. This dissertation explores why people have not been able to develop a cheap, durable commercial fuel cell despite more than 50 years of concerted effort since the end of Second World War. I argue this is so mainly because expectations have always been higher than the knowledge base. I investigate fuel cell research and development communities as central nodes of expectation generation. They have functioned as a nexus where the physical realities of fuel cell technology meet external factors, those political, economic and cultural pressures that create a "need" for a "miracle" power source. The unique economic exigencies of these communities have shaped distinct material practices that have done much to inform popular ideas of the capabilities of fuel cell technology. After the Second World War, the fuel cell was relatively unknown in industrial and governmental science and technology circles. Researchers in most leading industrialized countries, above all the United States, sought to raise the technology's profile through dramatic demonstrations in reductive circumstances, employing notional fuel cells using pure hydrogen and oxygen. Researchers paid less attention to cost and durability, concentrating on increasing power output, a criterion that could be met relatively easily in controlled conditions. While such demonstrations typically led to short-term investments in further research, they also generated expectations for long-lived and affordable fuel cells using hydrocarbons. However, developing commercial fuel cell technology was an expensive and arduous process, one that few sponsors were willing to support for long in the absence of rapid progress. Despite this mixed record, the fuel cell has become a powerful symbol of technological perfection that continues to inspire further research and dreams of energy plenitude.
Supply of reactants for Redox bulk energy storage systems
NASA Technical Reports Server (NTRS)
Gahn, R. F.
1978-01-01
World resources, reserves, production, and costs of reactant materials, iron, chromium, titanium and bromine for proposed redox cell bulk energy storage systems are reviewed. Supplying required materials for multimegawatt hour systems appears to be feasible even at current production levels. Iron and chromium ores are the most abundant and lowest cost of four reactants. Chromium is not a domestic reserve, but redox system installations would represent a small fraction of U.S. imports. Vast quantities of bromine are available, but present production is low and therefore cost is high. Titanium is currently available at reasonable cost, with ample reserves available for the next fifty years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiau, Huai-Suen; Zenyuk, Iryna V.; Weber, Adam Z.
Water management is a serious concern for alkaline-exchange-membrane fuel cells (AEMFCs) because water is a reactant in the alkaline oxygen-reduction reaction and hydroxide conduction in alkaline-exchange membranes is highly hydration dependent. Here in this article, we develop and use a multiphysics, multiphase model to explore water management in AEMFCs. We demonstrate that the low performance is mostly caused by extremely non-uniform distribution of water in the ionomer phase. A sensitivity analysis of design parameters including humidification strategies, membrane properties, and water transport resistance was undertaken to explore possible optimization strategies. Furthermore, the strategy and issues of reducing bicarbonate/carbonate buildup inmore » the membrane-electrode assembly with CO 2 from air is demonstrated based on the model prediction. Overall, mathematical modeling is used to explore trends and strategies to overcome performance bottlenecks and help enable AEMFC commercialization.« less
Biologic Potential of Calcium Phosphate Biopowders Produced via Decomposition Combustion Synthesis
Vollmer, N.; King, K.B.; Ayers, R.
2015-01-01
The aim of this research was to evaluate the biologic potential of calcium phosphate (CaP) biopowders produced with a novel reaction synthesis system. Decomposition combustion synthesis (DCS) is a modified combustion synthesis method capable of producing CaP powders for use in bone tissue engineering applications. During DCS, the stoichiometric ratio of reactant salt to fuel was adjusted to alter product chemistry and morphology. In vitro testing methods were utilized to determine the effects of controlling product composition on cytotoxicity, proliferation, biocompatibility and biomineralization. In vitro, human fetal osteoblasts (ATCC, CRL-11372) cultured with CaP powder displayed a flattened morphology, and uniformly encompassed the CaP particulates. Matrix vesicles containing calcium and phosphorous budded from the osteoblast cells. CaP powders produced via DCS are a source of biologically active, synthetic, bone graft substitute materials PMID:26034341
Prospecting Rovers for Lunar Exploration
NASA Technical Reports Server (NTRS)
Graham, Jerry B.; Vaughn, Jason A.; Farmer, Jeffery T.
2007-01-01
A study of lunar rover options for exploring the permanently shadowed regions of the lunar environment is presented. The potential for nearly continuous solar illumination coupled with the potential for water ice, focus exploration planner's attention on the polar regions of the moon. These regions feature craters that scientists have reason to believe may contain water ice. Water ice can be easily converted to fuel cell reactants, breathing oxygen, potable water, and rocket propellant. For these reasons, the NASA Robotic Lunar Exploration Program (RLEP) sponsored a study of potential prospecting rover concepts as one part of the RLEP-2 Pre-Phase A. Numerous vehicle configurations and power, thermal, and communication options are investigated. Rover options in the 400kg to 530kg class are developed which are capable of either confirming the presence of water ice at the poles, or conclusively demonstrating its absence.
Design of an autonomous lunar construction utility vehicle
NASA Technical Reports Server (NTRS)
1990-01-01
In order to prepare a site for a lunar base, an autonomously operated construction vehicle is necessary. Discussed here is a Lunar Construction Utility Vehicle (LCUV), which uses interchangeable construction implements. Design of an elastic loop track system has advanced to the testing stage. A standard coupling device has been designed to insure a proper connection between the different construction tools and the LCUV. Autonomous control of the track drive motors was simulated successfully through the use of a joystick and a computer interface. A study of hydrogen-oxygen fuel cells produced estimates of reactant and product requirements and identified multilayer insulation needs. Research on the 100-kW heat rejection system determined that it is necessary to transport the radiator panel on a utility trailer. Extensive logistical support for the 720 hour use cycle requires further study.
NASA Astrophysics Data System (ADS)
Luo, Yu; Shi, Yixiang; Li, Wenying; Cai, Ningsheng
2018-03-01
CO/CO2 are the major gas reactant/product in the fuel electrode of reversible solid oxide cells (RSOC). This study proposes a two-charge-transfer-step mechanism to describe the reaction and transfer processes of CO-CO2 electrochemical conversion on a patterned Ni electrode of RSOC. An elementary reaction model is developed to couple two charge transfer reactions, C(Ni)+O2-(YSZ) ↔ CO(Ni)+(YSZ) +2e- and CO(Ni)+O2-(YSZ) ↔ CO2(Ni)+(YSZ)+2e-, with adsorption/desorption, surface chemical reactions and surface diffusion. This model well validates in both solid oxide electrolysis cell (SOEC) and solid oxide fuel cell (SOFC) modes by the experimental data from a patterned Ni electrode with 10 μm stripe width at different pCO (0-0.25 atm), pCO2 (0-0.35 atm) and operating temperature (600-700 °C). This model indicates SOEC mode is dominated by charge transfer step C(Ni)+O2-(YSZ)↔CO(Ni)+(YSZ) +2e-, while SOFC mode by CO(Ni)+ O2-(YSZ)↔CO2(Ni)+(YSZ)+2e- on the patterned Ni electrode. The sensitivity analysis shows charge transfer step is the major rate-determining step for RSOC, besides, surface diffusion of CO and CO2 as well as CO2 adsorption also plays a significant role in the electrochemical reaction of SOEC while surface diffusion of CO and CO2 desorption could be co-limiting in SOFC.
HOMER® Energy Modeling Software 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, Tom
2003-12-31
The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.
HOMER® Energy Modeling Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, Tom
2000-12-31
The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.
NASA Astrophysics Data System (ADS)
Vogler, Marcel; Horiuchi, Michio; Bessler, Wolfgang G.
A detailed computational model of a direct-flame solid oxide fuel cell (DFFC) is presented. The DFFC is based on a fuel-rich methane-air flame stabilized on a flat-flame burner and coupled to a solid oxide fuel cell (SOFC). The model consists of an elementary kinetic description of the premixed methane-air flame, a stagnation-point flow description of the coupled heat and mass transport within the gas phase, an elementary kinetic description of the electrochemistry, as well as heat, mass and charge transport within the SOFC. Simulated current-voltage characteristics show excellent agreement with experimental data published earlier (Kronemayer et al., 2007 [10]). The model-based analysis of loss processes reveals that ohmic resistance in the current collection wires dominates polarization losses, while electronic loss currents in the mixed conducting electrolyte have only little influence on the polarized cell. The model was used to propose an optimized cell design. Based on this analysis, power densities of above 200 mW cm -2 can be expected.
Optimization of armored spherical tanks for storage on the lunar surface
NASA Technical Reports Server (NTRS)
Bents, D. J.; Knight, D. A.
1992-01-01
A redundancy strategy for reducing micrometeroid armoring mass is investigated, with application to cryogenic reactant storage for a regenerative fuel cell (RFC) on the lunar surface. In that micrometeoroid environment, the cryogenic fuel must be protected from loss due to tank puncture. The tankage must have a sufficiently high probability of survival over the length of the mission so that the probability of system failure due to tank puncture is low compared to the other mission risk factors. Assuming that a single meteoroid penetration can cause a storage tank to lose its contents, two means are available to raise the probability of surviving micrometeoroid attack to the desired level. One can armor the tanks to a thickness sufficient to reduce probability of penetration of any tank to the desired level or add extra capacity in the form of spare tanks that results in survival of a given number out of the ensemble at the desired level. A combination of these strategies (armoring and redundancy) is investigated. The objective is to find the optimum combination which yields the lowest shielding mass per cubic meter of surviving fuel out of the original ensemble. The investigation found that, for the volumes of fuel associated with multikilowatt class cryo storage RFC's, and the armoring methodology and meteoroid models used, storage should be fragmented into small individual tanks. Larger installations (more fuel) pay less of a shielding penalty than small installations. For the same survival probability over the same time period, larger volumes will require less armoring mass per unit volume protected.
Manual of phosphoric acid fuel cell power plant optimization model and computer program
NASA Technical Reports Server (NTRS)
Lu, C. Y.; Alkasab, K. A.
1984-01-01
An optimized cost and performance model for a phosphoric acid fuel cell power plant system was derived and developed into a modular FORTRAN computer code. Cost, energy, mass, and electrochemical analyses were combined to develop a mathematical model for optimizing the steam to methane ratio in the reformer, hydrogen utilization in the PAFC plates per stack. The nonlinear programming code, COMPUTE, was used to solve this model, in which the method of mixed penalty function combined with Hooke and Jeeves pattern search was chosen to evaluate this specific optimization problem.
Cycling Performance of the Iron-Chromium Redox Energy Storage System
NASA Technical Reports Server (NTRS)
Gahn, R. F.; Hagedorn, N. H.; Johnson, J. A.
1985-01-01
Extended charge-discharge cycling of this electrochemical storage system at 65 C was performed on 14.5 sq cm single cells and a four cell, 867 sq cm bipolar stack. Both the anolyte and catholyte reactant fluids contained 1 molar concentrations of iron and chromium chlorides in hydrochloric acid and were separated by a low-selectivity, cation-exchange membrane. The effect of cycling on the chromium electrode and the cation-exchange membrane was determined. Bismuth and bismuth-lead catalyzed chromium electrodes and a radiation-grafted polyethylene membrane were evaluated by cycling between 5 and 85 percent state-of-charge at 80 mA/sq cm and by periodic charge-discharge polarization measurements to 140 mA/sq cm. Gradual performance losses were observed during cycling but were recoverable by completely discharging the system. Good scale-up to the 867 sq cm stack was achieved. The only difference appeared to be an unexplained resistive-type loss which resulted in a 75 percent W-hr efficiency (at 80 mA/sq cm versus 81 percent for the 14.5 sq cm cell). A new rebalance cell was developed to maintain reactant ionic balance. The cell successfully reduced ferric ions in the iron reactant stream to ferrous ions while chloride ions were oxidized to chlorine gas.
Cycling performance of the iron-chromium redox energy storage system
NASA Technical Reports Server (NTRS)
Gahn, R. F.; Hagedorn, N. H.; Johnson, J. A.
1985-01-01
Extended charge-discharge cycling of this electrochemical storage system at 65 C was performed on 14.5 sq cm single cells and a four cell, 867 sq cm bipolar stack. Both the anolyte and catholyte reactant fluids contained 1 molar concentrations of iron and chromium chlorides in hydrochloric acid and were separated by a low-selectivity, cation-exchange membrane. The effect of cycling on the chromium electrode and the cation-exchange membrane was determined. Bismuth and bismuth-lead catalyzed chromium electrodes and a radiation-grafted polyethylene membrane were evaluated by cycling between 5 and 85 percent state-of-charge at 80 mA/sq cm and by periodic charge-discharge polarization measurements to 140 mA/sq cm. Gradual performance losses were observed during cycling but were recoverable by completely discharging the system. Good scale-up to the 867 sq cm stack was achieved. The only difference appeared to be an unexplained resistive-type loss which resulted in a 75 percent W-hr efficiency (at 80 mA/sq cm versus 81 percent for the 14.5 sq cm cell). A new rebalance cell was developed to maintain reactant ionic balance. The cell successfully reduced ferric ions in the iron reactant stream to ferrous ions while chloride ions were oxidized to chlorine gas.
NASA Astrophysics Data System (ADS)
Guo, L.; Huang, H.; Gaston, D.; Redden, G. D.; Fox, D. T.; Fujita, Y.
2010-12-01
Inducing mineral precipitation in the subsurface is one potential strategy for immobilizing trace metal and radionuclide contaminants. Generating mineral precipitates in situ can be achieved by manipulating chemical conditions, typically through injection or in situ generation of reactants. How these reactants transport, mix and react within the medium controls the spatial distribution and composition of the resulting mineral phases. Multiple processes, including fluid flow, dispersive/diffusive transport of reactants, biogeochemical reactions and changes in porosity-permeability, are tightly coupled over a number of scales. Numerical modeling can be used to investigate the nonlinear coupling effects of these processes which are quite challenging to explore experimentally. Many subsurface reactive transport simulators employ a de-coupled or operator-splitting approach where transport equations and batch chemistry reactions are solved sequentially. However, such an approach has limited applicability for biogeochemical systems with fast kinetics and strong coupling between chemical reactions and medium properties. A massively parallel, fully coupled, fully implicit Reactive Transport simulator (referred to as “RAT”) based on a parallel multi-physics object-oriented simulation framework (MOOSE) has been developed at the Idaho National Laboratory. Within this simulator, systems of transport and reaction equations can be solved simultaneously in a fully coupled, fully implicit manner using the Jacobian Free Newton-Krylov (JFNK) method with additional advanced computing capabilities such as (1) physics-based preconditioning for solution convergence acceleration, (2) massively parallel computing and scalability, and (3) adaptive mesh refinements for 2D and 3D structured and unstructured mesh. The simulator was first tested against analytical solutions, then applied to simulating induced calcium carbonate mineral precipitation in 1D columns and 2D flow cells as analogs to homogeneous and heterogeneous porous media, respectively. In 1D columns, calcium carbonate mineral precipitation was driven by urea hydrolysis catalyzed by urease enzyme, and in 2D flow cells, calcium carbonate mineral forming reactants were injected sequentially, forming migrating reaction fronts that are typically highly nonuniform. The RAT simulation results for the spatial and temporal distributions of precipitates, reaction rates and major species in the system, and also for changes in porosity and permeability, were compared to both laboratory experimental data and computational results obtained using other reactive transport simulators. The comparisons demonstrate the ability of RAT to simulate complex nonlinear systems and the advantages of fully coupled approaches, over de-coupled methods, for accurate simulation of complex, dynamic processes such as engineered mineral precipitation in subsurface environments.
Low-stress silicon nitride layers for MEMS applications
NASA Astrophysics Data System (ADS)
Iliescu, Ciprian; Wei, Jiashen; Chen, Bangtao; Ong, Poh Lam; Tay, Francis E. H.
2006-12-01
The paper presents two deposition methods for generation of SiN x layers with "zero" residual stress in PECVD reactors: mixed frequency and high power in high frequency mode (13.56 MHz). Traditionally, mix frequency mode is commonly used to produce low stress SiN x layers, which alternatively applies the HF and LF mode. However, due to the low deposition rate of LF mode, the combined deposition rate of mix frequency is quite small in order to produce homogenous SiN x layers. In the second method, a high power which was up to 600 W has been used, may also produce low residual stress (0-20 MPa), with higher deposition rate (250 to 350 nm/min). The higher power not only leads to higher dissociation rates of gases which results in higher deposition rates, but also brings higher N bonding in the SiN x films and higher compressive stress from higher volume expansion of SiN x films, which compensates the tensile stress and produces low residual stress. In addition, the paper investigates the influence of other important parameters which have great impact to the residual stress and deposition rates, such as reactant gases flow rate and pressure. By using the final optimized recipe, masking layer for anisotropic wet etching in KOH and silicon nitride cantilever have been successfully fabricated based on the low stress SiN x layers. Moreover, nanoporous membrane with 400nm pores has also been fabricated and tested for cell culture. By cultivating the mouse D1 mesenchymal stem cells on top of the nanoporous membrane, the results showed that mouse D1 mesenchymal stem cells were able to grow well. This shows that the nanoporous membrane can be used as the platform for interfacing with living cells to become biocapsules for biomolecular separation.
Catalyst and electrode research for phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Antoine, A. C.; King, R. B.
1987-01-01
An account is given of the development status of phosphoric acid fuel cells' high performance catalyst and electrode materials. Binary alloys have been identified which outperform the baseline platinum catalyst; it has also become apparent that pressurized operation is required to reach the desired efficiencies, calling in turn for the use of graphitized carbon blacks in the role of catalyst supports. Efforts to improve cell performance and reduce catalyst costs have led to the investigation of a class of organometallic cathode catalysts represented by the tetraazaannulenes, and a mixed catalyst which is a mixture of carbons catalyzed with an organometallic and a noble metal.
Parametric Study of High Frequency Pulse Detonation Tubes
NASA Technical Reports Server (NTRS)
Cutler, Anderw D.
2008-01-01
This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.
Geochemical mole-balance modeling with uncertain data
Parkhurst, David L.
1997-01-01
Geochemical mole-balance models are sets of chemical reactions that quantitatively account for changes in the chemical and isotopic composition of water along a flow path. A revised mole-balance formulation that includes an uncertainty term for each chemical and isotopic datum is derived. The revised formulation is comprised of mole-balance equations for each element or element redox state, alkalinity, electrons, solvent water, and each isotope; a charge-balance equation and an equation that relates the uncertainty terms for pH, alkalinity, and total dissolved inorganic carbon for each aqueous solution; inequality constraints on the size of the uncertainty terms; and inequality constraints on the sign of the mole transfer of reactants. The equations and inequality constraints are solved by a modification of the simplex algorithm combined with an exhaustive search for unique combinations of aqueous solutions and reactants for which the equations and inequality constraints can be solved and the uncertainty terms minimized. Additional algorithms find only the simplest mole-balance models and determine the ranges of mixing fractions for each solution and mole transfers for each reactant that are consistent with specified limits on the uncertainty terms. The revised formulation produces simpler and more robust mole-balance models and allows the significance of mixing fractions and mole transfers to be evaluated. In an example from the central Oklahoma aquifer, inclusion of up to 5% uncertainty in the chemical data can reduce the number of reactants in mole-balance models from seven or more to as few as three, these being cation exchange, dolomite dissolution, and silica precipitation. In another example from the Madison aquifer, inclusion of the charge-balance constraint requires significant increases in the mole transfers of calcite, dolomite, and organic matter, which reduce the estimated maximum carbon 14 age of the sample by about 10,000 years, from 22,700 years to 12,600 years.
HOMER® Energy Modeling Software V2.63
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, Tom
2003-12-31
The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.
HOMER® Energy Modeling Software V2.64
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, Tom
2003-12-31
The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.
HOMER® Energy Modeling Software V2.65
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, Tom
2008-12-31
The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.
HOMER® Energy Modeling Software V2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, Tom
2003-12-31
The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.
HOMER® Energy Modeling Software V2.19
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, Tom
2008-12-31
The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.
HOMER® Energy Modeling Software V2.67
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, Tom
2008-12-31
The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.
NASA Astrophysics Data System (ADS)
Benoved, Nir; Kesler, O.
Air plasma spraying has been used to produce porous composite anodes based on Ce 0.8Sm 0.2O 1.9 (SDC) and Cu for use in solid oxide fuel cells (SOFCs). Preliminarily, a range of plasma conditions has been examined for the production of composite coatings from pre-mixed SDC and CuO powders. Plasma gas compositions were varied to obtain a range of plasma temperatures. After reduction in H 2, coatings were characterized for composition and microstructure using EDX and SEM. As a result of these tests, symmetrical sintered electrolyte-supported anode-anode cells were fabricated by air plasma spraying of the anodes, followed by in situ reduction of the CuO to Cu. Full cells deposited on SS430 porous substrates were then produced in one integrated process. Fine CuO and SDC powders have been used to produce homogeneously mixed anode coatings with higher surface area microstructures, resulting in area-specific polarization resistances of 4.8 Ω cm 2 in impedance tests in hydrogen at 712 °C.
Ghisalberti, Marco; Gold, David A.; Laflamme, Marc; Clapham, Matthew E.; Narbonne, Guy M.; Summons, Roger E.; Johnston, David T.; Jacobs, David K.
2015-01-01
Summary At Mistaken Point, Newfoundland, Canada, rangeomorph “fronds” dominate the earliest (579–565 million years ago) fossil communities of large (0.1 to 2 m height) multicellular benthic eukaryotes. They lived in low-flow environments, fueled by uptake [1–3] of dissolved reactants (osmotrophy). However, prokaryotes are effective osmotrophs, and the advantage of taller eukaryotic osmotrophs in this deepwater community context has not been addressed. We reconstructed flow-velocity profiles and vertical mixing using canopy flow models appropriate to the densities of the observed communities. Further modeling of processes at organismal surfaces documents increasing uptake with height in the community as a function of thinning of the diffusive boundary layer with increased velocity. The velocity profile, produced by canopy flow in the community, generates this advantage of upward growth. Alternative models of upward growth advantage based on redox/resource gradients fail, given the efficiency of vertical mixing. In benthic communities of osmotrophs of sufficient density, access to flow in low-flow settings provides an advantage to taller architecture, providing a selectional driver for communities of tall eukaryotes in contexts where phototropism cannot contribute to upward growth. These Ediacaran deep-sea fossils were preserved during the increasing oxygenation prior to the Cambrian radiation of animals and likely represent an important phase in the ecological and evolutionary transition to more complex eukaryotic forms. PMID:24462003
NASA Astrophysics Data System (ADS)
Nakajo, A.; Cocco, A. P.; DeGostin, M. B.; Peracchio, A. A.; Cassenti, B. N.; Cantoni, M.; Van herle, J.; Chiu, W. K. S.
2016-09-01
The performance of materials for electrochemical energy conversion and storage depends upon the number of electrocatalytic sites available for reaction and their accessibility by the transport of reactants and products. For solid oxide fuel/electrolysis cell materials, standard 3-D measurements such as connected triple-phase boundary (TPB) length and effective transport properties partially inform on how local geometry and network topology causes variability in TPB accessibility. A new measurement, the accessible TPB, is proposed to quantify these effects in detail and characterize material performance. The approach probes the reticulated pathways to each TPB using an analytical electrochemical fin model applied to a 3-D discrete representation of the heterogeneous structure provided by skeleton-based partitioning. The method is tested on artificial and real structures imaged by 3-D x-ray and electron microscopy. The accessible TPB is not uniform and the pattern varies depending upon the structure. Connected TPBs can be even passivated. The sensitivity to manipulations of the local 3-D geometry and topology that standard measurements cannot capture is demonstrated. The clear presence of preferential pathways showcases a non-uniform utilization of the 3-D structure that potentially affects the performance and the resilience to alterations due to degradation phenomena. The concepts presented also apply to electrochemical energy storage and conversion devices such as other types of fuel cells, electrolyzers, batteries and capacitors.
NASA Astrophysics Data System (ADS)
Chiogna, Gabriele; Bellin, Alberto
2013-05-01
The laboratory experiments of Gramling et al. (2002) showed that incomplete mixing at the pore scale exerts a significant impact on transport of reactive solutes and that assuming complete mixing leads to overestimation of product concentration in bimolecular reactions. Successively, several attempts have been made to model this experiment, either considering spatial segregation of the reactants, non-Fickian transport applying a Continuous Time Random Walk (CTRW) or an effective upscaled time-dependent kinetic reaction term. Previous analyses of these experimental results showed that, at the Darcy scale, conservative solute transport is well described by a standard advection dispersion equation, which assumes complete mixing at the pore scale. However, reactive transport is significantly affected by incomplete mixing at smaller scales, i.e., within a reference elementary volume (REV). We consider here the family of equilibrium reactions for which the concentration of the reactants and the product can be expressed as a function of the mixing ratio, the concentration of a fictitious non reactive solute. For this type of reactions we propose, in agreement with previous studies, to model the effect of incomplete mixing at scales smaller than the Darcy scale assuming that the mixing ratio is distributed within an REV according to a Beta distribution. We compute the parameters of the Beta model by imposing that the mean concentration is equal to the value that the concentration assumes at the continuum Darcy scale, while the variance decays with time as a power law. We show that our model reproduces the concentration profiles of the reaction product measured in the Gramling et al. (2002) experiments using the transport parameters obtained from conservative experiments and an instantaneous reaction kinetic. The results are obtained applying analytical solutions both for conservative and for reactive solute transport, thereby providing a method to handle the effect of incomplete mixing on multispecies reactive solute transport, which is simpler than other previously developed methods.
Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications
NASA Technical Reports Server (NTRS)
Firdosy, Samad A.; Ravi, Vilupanur A.; Valdez, Thomas I.; Kisor, Adam; Narayan, Sri R.
2013-01-01
Oxygen reduction reactions (ORRs) at the cathode are the rate-limiting step in fuel cell performance. The ORR is 100 times slower than the corresponding hydrogen oxidation at the anode. Speeding up the reaction at the cathode will improve fuel cell efficiency. The cathode material is generally Pt powder painted onto a substrate (e.g., graphite paper). Recent efforts in the fuel cell area have focused on replacing Pt with Pt-X alloys (where X = Co, Ni, Zr, etc.) in order to (a) reduce cost, and (b) increase ORR rates. One of these strategies is to increase ORR rates by reducing the powder size, which would result in an increase in the surface area, thereby facilitating faster reaction rates. In this work, a process has been developed that creates Pt-Ni or Pt-Co alloys that are finely divided (on the nano scale) and provide equivalent performance at lower Pt loadings. Lower Pt loadings will translate to lower cost. Precursor salts of the metals are dissolved in water and mixed. Next, the salt mixtures are dried on a hot plate. Finally, the dried salt mixture is heattreated in a furnace under flowing reducing gas. The catalyst powder is then used to fabricate a membrane electrode assembly (MEA) for electrochemical performance testing. The Pt- Co catalyst-based MEA showed comparable performance to an MEA fabri cated using a standard Pt black fuel cell catalyst. The main objective of this program has been to increase the overall efficiencies of fuel cell systems to support power for manned lunar bases. This work may also have an impact on terrestrial programs, possibly to support the effort to develop a carbon-free energy source. This catalyst can be used to fabricate high-efficiency fuel cell units that can be used in space as regenerative fuel cell systems, and terrestrially as primary fuel cells. Terrestrially, this technology will become increasingly important when transition to a hydrogen economy occurs.
Raising H2 and Fuel Cell Awareness in Ohio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valente, Patrick R.
2013-03-31
The Ohio Fuel Cell Coalition was tasked with raising the awareness and understanding of Fuel Cells and the Hydrogen economy. This was done by increasing the understanding of hydrogen and fuel cell technologies among state and local governments using a target of more than 10% compared to 2004 baseline. We were also to target key populations by 20 percent compared to 2004 baseline. There are many barriers to an educated fuel cell population, including: a)Lack of Readily Available, Objective and Technical Accurate Information b)Mixed Messages c)Disconnect Between Hydrogen Information and Dissemination Networks d)Lack of Educated Trainers and Training Opportunities e)Regionalmore » Differences f)Difficulty of Measuring Success The approach we used for all the Community Leaders Forums were presentations by the Ohio Fuel Cell Coalition in conjunction with regional leaders. The presentations were followed by question and answers periods followed up by informal discussions on Fuel Cells and the Hydrogen Economy. This project held a total of 53 events with the following breakdown: From Aug 2009 through June 2010, the Ohio Fuel Cell Coalition held 19 community leaders forums and educated over 845 individuals, both from the State of Ohio and across the country: From July 2010 to June 2011 the OFCC held 23 community forum events and educated 915 individuals; From August 2011 to June 2012 there were 11 community forums educating 670 individuals. This report details each of those events, their date, location, purpose, and pertinent details to this report. In summary, as you see the Community Leader Forums have been very successful over the period of the grant with over 2,000 people being drawn to the forums. As always, we followed up the forums with a survey and the survey results were very positive in that the participants had a significant increase in knowledge and awareness of Fuel Cells and the Hydrogen Economy.« less
Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.
Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier
2009-12-01
This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.
Method of preparing electrolyte for use in fuel cells
Kinoshita, Kimio; Ackerman, John P.
1978-01-01
An electrolyte compact for fuel cells includes a particulate support material of lithium aluminate that contains a mixture of alkali metal compounds, such as carbonates or hydroxides, as the active electrolyte material. The porous lithium aluminate support structure is formed by mixing alumina particles with a solution of lithium hydroxide and another alkali metal hydroxide, evaporating the solvent from the solution and heating to a temperature sufficient to react the lithium hydroxide with alumina to form lithium aluminate. Carbonates are formed by reacting the alkali metal hydroxides with carbon dioxide gas in an exothermic reaction which may proceed simultaneously with the formation with the lithium aluminate. The mixture of lithium aluminate and alkali metal in an electrolyte active material is pressed or otherwise processed to form the electrolyte structure for assembly into a fuel cell.
Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.
2015-11-24
A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.
Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix J
NASA Technical Reports Server (NTRS)
El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2003-01-01
The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and 0) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and 02 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.
Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix B
NASA Technical Reports Server (NTRS)
El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2001-01-01
The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and O) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and O2 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.
NASA Astrophysics Data System (ADS)
Liu, Da-Jiang; Evans, James W.
2013-12-01
A realistic molecular-level description of catalytic reactions on single-crystal metal surfaces can be provided by stochastic multisite lattice-gas (msLG) models. This approach has general applicability, although in this report, we will focus on the example of CO-oxidation on the unreconstructed fcc metal (1 0 0) or M(1 0 0) surfaces of common catalyst metals M = Pd, Rh, Pt and Ir (i.e., avoiding regimes where Pt and Ir reconstruct). These models can capture the thermodynamics and kinetics of adsorbed layers for the individual reactants species, such as CO/M(1 0 0) and O/M(1 0 0), as well as the interaction and reaction between different reactant species in mixed adlayers, such as (CO + O)/M(1 0 0). The msLG models allow population of any of hollow, bridge, and top sites. This enables a more flexible and realistic description of adsorption and adlayer ordering, as well as of reaction configurations and configuration-dependent barriers. Adspecies adsorption and interaction energies, as well as barriers for various processes, constitute key model input. The choice of these energies is guided by experimental observations, as well as by extensive Density Functional Theory analysis. Model behavior is assessed via Kinetic Monte Carlo (KMC) simulation. We also address the simulation challenges and theoretical ramifications associated with very rapid diffusion and local equilibration of reactant adspecies such as CO. These msLG models are applied to describe adsorption, ordering, and temperature programmed desorption (TPD) for individual CO/M(1 0 0) and O/M(1 0 0) reactant adlayers. In addition, they are also applied to predict mixed (CO + O)/M(1 0 0) adlayer structure on the nanoscale, the complete bifurcation diagram for reactive steady-states under continuous flow conditions, temperature programmed reaction (TPR) spectra, and titration reactions for the CO-oxidation reaction. Extensive and reasonably successful comparison of model predictions is made with experimental data. Furthermore, we discuss the possible transition from traditional mean-field-type bistability and reaction kinetics for lower-pressure to multistability and enhanced fluctuation effects for moderate- or higher-pressure. Behavior in the latter regime reflects a stronger influence of adspecies interactions and also lower diffusivity in the higher-coverage mixed adlayer. We also analyze mesoscale spatiotemporal behavior including the propagation of reaction-diffusion fronts between bistable reactive and inactive states, and associated nucleation-mediated transitions between these states. This behavior is controlled by complex surface mass transport processes, specifically chemical diffusion in mixed reactant adlayers for which we provide a precise theoretical formulation. The msLG models together with an appropriate treatment of chemical diffusivity enable equation-free heterogeneous coupled lattice-gas (HCLG) simulations of spatiotemporal behavior. In addition, msLG + HCLG modeling can describe coverage variations across polycrystalline catalysts surfaces, pressure variations across catalyst surfaces in microreactors, and could be incorporated into a multiphysics framework to describe mass and heat transfer limitations for high-pressure catalysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Dajiang; Evans, James W.
2013-12-01
A realistic molecular-level description of catalytic reactions on single-crystal metal surfaces can be provided by stochastic multisite lattice-gas (msLG) models. This approach has general applicability, although in this report, we will focus on the example of CO-oxidation on the unreconstructed fcc metal (100) or M(100) surfaces of common catalyst metals M = Pd, Rh, Pt and Ir (i.e., avoiding regimes where Pt and Ir reconstruct). These models can capture the thermodynamics and kinetics of adsorbed layers for the individual reactants species, such as CO/M(100) and O/M(100), as well as the interaction and reaction between different reactant species in mixed adlayers,more » such as (CO + O)/M(100). The msLG models allow population of any of hollow, bridge, and top sites. This enables a more flexible and realistic description of adsorption and adlayer ordering, as well as of reaction configurations and configuration-dependent barriers. Adspecies adsorption and interaction energies, as well as barriers for various processes, constitute key model input. The choice of these energies is guided by experimental observations, as well as by extensive Density Functional Theory analysis. Model behavior is assessed via Kinetic Monte Carlo (KMC) simulation. We also address the simulation challenges and theoretical ramifications associated with very rapid diffusion and local equilibration of reactant adspecies such as CO. These msLG models are applied to describe adsorption, ordering, and temperature programmed desorption (TPD) for individual CO/M(100) and O/M(100) reactant adlayers. In addition, they are also applied to predict mixed (CO + O)/M(100) adlayer structure on the nanoscale, the complete bifurcation diagram for reactive steady-states under continuous flow conditions, temperature programmed reaction (TPR) spectra, and titration reactions for the CO-oxidation reaction. Extensive and reasonably successful comparison of model predictions is made with experimental data. Furthermore, we discuss the possible transition from traditional mean-field-type bistability and reaction kinetics for lower-pressure to multistability and enhanced fluctuation effects for moderate- or higher-pressure. Behavior in the latter regime reflects a stronger influence of adspecies interactions and also lower diffusivity in the higher-coverage mixed adlayer. We also analyze mesoscale spatiotemporal behavior including the propagation of reaction diffusion fronts between bistable reactive and inactive states, and associated nucleation-mediated transitions between these states. This behavior is controlled by complex surface mass transport processes, specifically chemical diffusion in mixed reactant adlayers for which we provide a precise theoretical formulation. The msLG models together with an appropriate treatment of chemical diffusivity enable equation-free heterogeneous coupled lattice-gas (HCLG) simulations of spatiotemporal behavior. In addition, msLG + HCLG modeling can describe coverage variations across polycrystalline catalysts surfaces, pressure variations across catalyst surfaces in microreactors, and could be incorporated into a multiphysics framework to describe mass and heat transfer limitations for high-pressure catalysis. (C) 2013 Elsevier Ltd. All rights reserved.« less
Solar Airplanes and Regenerative Fuel Cells
NASA Technical Reports Server (NTRS)
Bents, David J.
2007-01-01
A solar electric aircraft with the potential to "fly forever" has captured NASA's interest, and the concept for such an aircraft was pursued under Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project. Feasibility of this aircraft happens to depend on the successful development of solar power technologies critical to NASA's Exploration Initiatives; hence, there was widespread interest throughout NASA to bring these technologies to a flight demonstration. The most critical is an energy storage system to sustain mission power during night periods. For the solar airplane, whose flight capability is already limited by the diffuse nature of solar flux and subject to latitude and time of year constraints, the feasibility of long endurance flight depends on a storage density figure of merit better than 400-600 watt-hr per kilogram. This figure of merit is beyond the capability of present day storage technologies (other than nuclear) but may be achievable in the hydrogen-oxygen regenerative fuel cell (RFC). This potential has led NASA to undertake the practical development of a hydrogen-oxygen regenerative fuel cell, initially as solar energy storage for a high altitude UAV science platform but eventually to serve as the primary power source for NASAs lunar base and other planet surface installations. Potentially the highest storage capacity and lowest weight of any non-nuclear device, a flight-weight RFC aboard a solar-electric aircraft that is flown continuously through several successive day-night cycles will provide the most convincing demonstration that this technology's widespread potential has been realized. In 1998 NASA began development of a closed cycle hydrogen oxygen PEM RFC under the Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project and continued its development, originally for a solar electric airplane flight, through FY2005 under the Low Emissions Alternative Power (LEAP) project. Construction of the closed loop system began in 2002 at the NASA Glenn Research Center in Cleveland, Ohio. System checkout was completed, and testing began, in July of 2003. The initial test sequences were done with only a fuel cell or electrolyzer in the test rig. Those tests were used to verify the test apparatus, procedures, and software. The first complete cycles of the fully closed loop, regenerative fuel cell system were successfully completed in the following September. Following some hardware upgrades to increase reactant recirculation flow, the test rig was operated at full power in December 2003 and again in January 2004. In March 2004 a newer generation of fuel cell and electrolyzer stacks was substituted for the original hardware and these stacks were successfully tested at full power under cyclic operation in June of 2004.
Yi, Yue; Xie, Beizhen; Zhao, Ting; Liu, Hong
2018-06-13
Microbial fuel cell based biosensors (MFC-biosensors) utilize anode biofilms as biological recognition elements to monitor biochemical oxygen demand (BOD) and biotoxicity. However, the relatively poor sensitivity constrains the application of MFC-biosensors. To address this limitation, this study provided a systematic comparison of sensitivity between the MFC-biosensors constructed with two inocula. Higher biomass density and viability were both observed in the anode biofilm of the mixed culture MFC, which resulted in better sensitivity for BOD assessment. Compared with using mixed culture as inoculum, the anode biofilm developed with Shewanella loihica PV-4 presented lower content of extracellular polymeric substances and poorer ability to secrete protein under toxic shocks. Moreover, the looser structure in the S. loihica PV-4 biofilm further facilitated its susceptibilities to toxic agents. Therefore, the MFC-biosensor with a pure culture of S. loihica PV-4 delivered higher sensitivity for biotoxicity monitoring. This study proposed a new perspective to enhance sensor performance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Jin, Xinfang; Wang, Jie; Jiang, Long; ...
2016-03-25
A physics-based model is presented to simulate the electrochemical behavior of mixed ion and electron conducting (MIEC) cathodes for intermediate-temperature solid oxide fuel cells. Analytic solutions for both transient and impedance models based on a finite length cylinder are derived. These solutions are compared to their infinite length counterparts. The impedance solution is also compared to experimental electrochemical impedance spectroscopy data obtained from both a traditional well-established La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) cathode and a new SrCo 0.9Nb 0.1O 3-δ (SCN) porous cathode. Lastly, the impedance simulations agree well with the experimental values, demonstrating that the new modelsmore » can be used to extract electro-kinetic parameters of MIEC SOFC cathodes.« less
Chemically-modified cellulose paper as a microstructured catalytic reactor.
Koga, Hirotaka; Kitaoka, Takuya; Isogai, Akira
2015-01-15
We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.