Analysis of the mixing processes in the subtropical Advancetown Lake, Australia
NASA Astrophysics Data System (ADS)
Bertone, Edoardo; Stewart, Rodney A.; Zhang, Hong; O'Halloran, Kelvin
2015-03-01
This paper presents an extensive investigation of the mixing processes occurring in the subtropical monomictic Advancetown Lake, which is the main water body supplying the Gold Coast City in Australia. Meteorological, chemical and physical data were collected from weather stations, laboratory analysis of grab samples and an in-situ Vertical Profiling System (VPS), for the period 2008-2012. This comprehensive, high frequency dataset was utilised to develop a one-dimensional model of the vertical transport and mixing processes occurring along the water column. Multivariate analysis revealed that air temperature and rain forecasts enabled a reliable prediction of the strength of the lake stratification. Vertical diffusion is the main process driving vertical mixing, particularly during winter circulation. However, a high reservoir volume and warm winters can limit the degree of winter mixing, causing only partial circulation to occur, as was the case in 2013. This research study provides a comprehensive approach for understanding and predicting mixing processes for similar lakes, whenever high-frequency data are available from VPS or other autonomous water monitoring systems.
Examination of turbulent entrainment-mixing mechanisms using a combined approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, C.; Liu, Y.; Niu, S.
2011-10-01
Turbulent entrainment-mixing mechanisms are investigated by applying a combined approach to the aircraft measurements of three drizzling and two nondrizzling stratocumulus clouds collected over the U.S. Department of Energy's Atmospheric Radiation Measurement Southern Great Plains site during the March 2000 cloud Intensive Observation Period. Microphysical analysis shows that the inhomogeneous entrainment-mixing process occurs much more frequently than the homogeneous counterpart, and most cases of the inhomogeneous entrainment-mixing process are close to the extreme scenario, having drastically varying cloud droplet concentration but roughly constant volume-mean radius. It is also found that the inhomogeneous entrainment-mixing process can occur both near the cloudmore » top and in the middle level of a cloud, and in both the nondrizzling clouds and nondrizzling legs in the drizzling clouds. A new dimensionless number, the scale number, is introduced as a dynamical measure for different entrainment-mixing processes, with a larger scale number corresponding to a higher degree of homogeneous entrainment mixing. Further empirical analysis shows that the scale number that separates the homogeneous from the inhomogeneous entrainment-mixing process is around 50, and most legs have smaller scale numbers. Thermodynamic analysis shows that sampling average of filament structures finer than the instrumental spatial resolution also contributes to the dominance of inhomogeneous entrainment-mixing mechanism. The combined microphysical-dynamical-thermodynamic analysis sheds new light on developing parameterization of entrainment-mixing processes and their microphysical and radiative effects in large-scale models.« less
NASA Astrophysics Data System (ADS)
Kim, Ji-Hyun; Kim, Kyoung-Ho; Thao, Nguyen Thi; Batsaikhan, Bayartungalag; Yun, Seong-Taek
2017-06-01
In this study, we evaluated the water quality status (especially, salinity problems) and hydrogeochemical processes of an alluvial aquifer in a floodplain of the Red River delta, Vietnam, based on the hydrochemical and isotopic data of groundwater samples (n = 23) from the Kien Xuong district of the Thai Binh province. Following the historical inundation by paleo-seawater during coastal progradation, the aquifer has been undergone progressive freshening and land reclamation to enable settlements and farming. The hydrochemical data of water samples showed a broad hydrochemical change, from Na-Cl through Na-HCO3 to Ca-HCO3 types, suggesting that groundwater was overall evolved through the freshening process accompanying cation exchange. The principal component analysis (PCA) of the hydrochemical data indicates the occurrence of three major hydrogeochemical processes occurring in an aquifer, namely: 1) progressive freshening of remaining paleo-seawater, 2) water-rock interaction (i.e., dissolution of silicates), and 3) redox process including sulfate reduction, as indicated by heavy sulfur and oxygen isotope compositions of sulfate. To quantitatively assess the hydrogeochemical processes, the end-member mixing analysis (EMMA) and the forward mixing modeling using PHREEQC code were conducted. The EMMA results show that the hydrochemical model with the two-dimensional mixing space composed of PC 1 and PC 2 best explains the mixing in the study area; therefore, we consider that the groundwater chemistry mainly evolved by mixing among three end-members (i.e., paleo-seawater, infiltrating rain, and the K-rich groundwater). The distinct depletion of sulfate in groundwater, likely due to bacterial sulfate reduction, can also be explained by EMMA. The evaluation of mass balances using geochemical modeling supports the explanation that the freshening process accompanying direct cation exchange occurs through mixing among three end-members involving the K-rich groundwater. This study shows that the multiple end-members mixing model is useful to more successfully assess complex hydrogeochemical processes occurring in a salinized aquifer under freshening, as compared to the conventional interpretation using the theoretical mixing line based on only two end-members (i.e., seawater and rainwater).
Fully-coupled analysis of jet mixing problems. Part 1. Shock-capturing model, SCIPVIS
NASA Technical Reports Server (NTRS)
Dash, S. M.; Wolf, D. E.
1984-01-01
A computational model, SCIPVIS, is described which predicts the multiple cell shock structure in imperfectly expanded, turbulent, axisymmetric jets. The model spatially integrates the parabolized Navier-Stokes jet mixing equations using a shock-capturing approach in supersonic flow regions and a pressure-split approximation in subsonic flow regions. The regions are coupled using a viscous-characteristic procedure. Turbulence processes are represented via the solution of compressibility-corrected two-equation turbulence models. The formation of Mach discs in the jet and the interactive analysis of the wake-like mixing process occurring behind Mach discs is handled in a rigorous manner. Calculations are presented exhibiting the fundamental interactive processes occurring in supersonic jets and the model is assessed via comparisons with detailed laboratory data for a variety of under- and overexpanded jets.
An ultrashort mixing length micromixer: the shear superposition micromixer.
Bottausci, Frédéric; Cardonne, Caroline; Meinhart, Carl; Mezić, Igor
2007-03-01
We report for the first time a laminar high-performance continuous micromixing process of two fluids over a length of 200 microns in under 10 milliseconds achieved by an optimization of the control parameters amplitude and frequency in the mixing device denoted as 'Shear Superposition Micromixer'. We improve mixing time by approximately 5 orders of magnitude over diffusion-limited mixing. The data indicate that rapid mixing is a result of the combined action of Taylor-Aris dispersion in the main and secondary microchannels and unsteady vortex motion that occurs at finite Reynolds number, which occurs above a threshold amplitude and frequency. The mixing performance is quantified using micron-resolution particle image velocimetry (micro-PIV) and computational fluid dynamics (CFD) simulations.
The mixing effects for real gases and their mixtures
NASA Astrophysics Data System (ADS)
Gong, M. Q.; Luo, E. C.; Wu, J. F.
2004-10-01
The definitions of the adiabatic and isothermal mixing effects in the mixing processes of real gases were presented in this paper. Eight substances with boiling-point temperatures from cryogenic temperature to the ambient temperature were selected from the interest of low temperature refrigeration to study their binary and multicomponent mixing effects. Detailed analyses were made on the parameters of the mixing process to know their influences on mixing effects. Those parameters include the temperatures, pressures, and mole fraction ratios of pure substances before mixing. The results show that the maximum temperature variation occurs at the saturation state of each component in the mixing process. Those components with higher boiling-point temperatures have higher isothermal mixing effects. The maximum temperature variation which is defined as the adiabatic mixing effect can even reach up to 50 K, and the isothermal mixing effect can reach about 20 kJ/mol. The possible applications of the mixing cooling effect in both open cycle and closed cycle refrigeration systems were also discussed.
Mixed feed and its ingredients electron beam decontamination
NASA Astrophysics Data System (ADS)
Bezuglov, V. V.; Bryazgin, A. A.; Vlasov, A. Yu; Voronin, L. A.; Ites, Yu V.; Korobeynikov, M. V.; Leonov, S. V.; Leonova, M. A.; Tkachenko, V. O.; Shtarklev, E. A.; Yuskov, Yu G.
2017-01-01
Electron beam treatment is used for food processing for decades to prevent or minimize food losses and prolong storage time. This process is also named cold pasteurization. Mixed feed ingredients supplied in Russia regularly occur to be contaminated. To reduce contamination level the contaminated mixed feed ingredients samples were treated by electron beam with doses from 2 to 12 kGy. The contamination levels were decreased to the level that ensuring storage time up to 1 year.
Simulation of Ejecta Production and Mixing Process of Sn Sample under shock loading
NASA Astrophysics Data System (ADS)
Wang, Pei; Chen, Dawei; Sun, Haiquan; Ma, Dongjun
2017-06-01
Ejection may occur when a strong shock wave release at the free surface of metal material and the ejecta of high-speed particulate matter will be formed and further mixed with the surrounding gas. Ejecta production and its mixing process has been one of the most difficult problems in shock physics remain unresolved, and have many important engineering applications in the imploding compression science. The present paper will introduce a methodology for the theoretical modeling and numerical simulation of the complex ejection and mixing process. The ejecta production is decoupled with the particle mixing process, and the ejecta state can be achieved by the direct numerical simulation for the evolution of initial defect on the metal surface. Then the particle mixing process can be simulated and resolved by a two phase gas-particle model which uses the aforementioned ejecta state as the initial condition. A preliminary ejecta experiment of planar Sn metal Sample has validated the feasibility of the proposed methodology.
A Japanese Child's Use of Stative and Punctual Verbs.
ERIC Educational Resources Information Center
Cziko, Gary A.; Koda, Keiko
1987-01-01
Investigation of use of stative, process, punctual, and non-punctual verbs by a child acquiring Japanese as a first language found that sampled present progressive verb forms occurred with process verbs while these forms were never used with stative verbs. Most omissions of present progressive forms occurred with the early use of "mixed"…
Modeling complex chemical effects in turbulent nonpremixed combustion
NASA Technical Reports Server (NTRS)
Smith, Nigel S. A.
1995-01-01
Virtually all of the energy derived from the consumption of combustibles occurs in systems which utilize turbulent fluid motion. Since combustion is largely related to the mixing of fluids and mixing processes are orders of magnitude more rapid when enhanced by turbulent motion, efficiency criteria dictate that chemically powered devices necessarily involve fluid turbulence. Where combustion occurs concurrently with mixing at an interface between two reactive fluid bodies, this mode of combustion is called nonpremixed combustion. This is distinct from premixed combustion where flame-fronts propagate into a homogeneous mixture of reactants. These two modes are limiting cases in the range of temporal lag between mixing of reactants and the onset of reaction. Nonpremixed combustion occurs where this lag tends to zero, while premixed combustion occurs where this lag tends to infinity. Many combustion processes are hybrids of these two extremes with finite non-zero lag times. Turbulent nonpremixed combustion is important from a practical standpoint because it occurs in gas fired boilers, furnaces, waste incinerators, diesel engines, gas turbine combustors, and afterburners etc. To a large extent, past development of these practical systems involved an empirical methodology. Presently, efficiency standards and emission regulations are being further tightened (Correa 1993), and empiricism has had to give way to more fundamental research in order to understand and effectively model practical combustion processes (Pope 1991). A key element in effective modeling of turbulent combustion is making use of a sufficiently detailed chemical kinetic mechanism. The prediction of pollutant emission such as oxides of nitrogen (NO(x)) and sulphur (SO(x)) unburned hydrocarbons, and particulates demands the use of detailed chemical mechanisms. It is essential that practical models for turbulent nonpremixed combustion are capable of handling large numbers of 'stiff' chemical species equations.
Achieving Integration in Mixed Methods Designs—Principles and Practices
Fetters, Michael D; Curry, Leslie A; Creswell, John W
2013-01-01
Mixed methods research offers powerful tools for investigating complex processes and systems in health and health care. This article describes integration principles and practices at three levels in mixed methods research and provides illustrative examples. Integration at the study design level occurs through three basic mixed method designs—exploratory sequential, explanatory sequential, and convergent—and through four advanced frameworks—multistage, intervention, case study, and participatory. Integration at the methods level occurs through four approaches. In connecting, one database links to the other through sampling. With building, one database informs the data collection approach of the other. When merging, the two databases are brought together for analysis. With embedding, data collection and analysis link at multiple points. Integration at the interpretation and reporting level occurs through narrative, data transformation, and joint display. The fit of integration describes the extent the qualitative and quantitative findings cohere. Understanding these principles and practices of integration can help health services researchers leverage the strengths of mixed methods. PMID:24279835
Achieving integration in mixed methods designs-principles and practices.
Fetters, Michael D; Curry, Leslie A; Creswell, John W
2013-12-01
Mixed methods research offers powerful tools for investigating complex processes and systems in health and health care. This article describes integration principles and practices at three levels in mixed methods research and provides illustrative examples. Integration at the study design level occurs through three basic mixed method designs-exploratory sequential, explanatory sequential, and convergent-and through four advanced frameworks-multistage, intervention, case study, and participatory. Integration at the methods level occurs through four approaches. In connecting, one database links to the other through sampling. With building, one database informs the data collection approach of the other. When merging, the two databases are brought together for analysis. With embedding, data collection and analysis link at multiple points. Integration at the interpretation and reporting level occurs through narrative, data transformation, and joint display. The fit of integration describes the extent the qualitative and quantitative findings cohere. Understanding these principles and practices of integration can help health services researchers leverage the strengths of mixed methods. © Health Research and Educational Trust.
Electroosmotic mixing in microchannels.
Glasgow, Ian; Batton, John; Aubry, Nadine
2004-12-01
Mixing is an essential, yet challenging, process step for many Lab on a Chip (LOC) applications. This paper presents a method of mixing for microfluidic devices that relies upon electroosmotic flow. In physical tests and in computer simulations, we periodically vary the electric field with time to mix two aqueous solutions. Good mixing is shown to occur when the electroosmotic flow at the two inlets pulse out of phase, the Strouhal number is on the order of 1, and the pulse volumes are on the order of the intersection volume.
Geochemistry of the Amazon Estuary
Smoak, Joseph M.; Krest, James M.; Swarzenski, Peter W
2006-01-01
The Amazon River supplies more freshwater to the ocean than any other river in the world. This enormous volume of freshwater forces the estuarine mixing out of the river channel and onto the continental shelf. On the continental shelf, the estuarine mixing occurs in a very dynamic environment unlike that of a typical estuary. The tides, the wind, and the boundary current that sweeps the continental shelf have a pronounced influence on the chemical and biological processes occurring within the estuary. The dynamic environment, along with the enormous supply of water, solutes and particles makes the Amazon estuary unique. This chapter describes the unique features of the Amazon estuary and how these features influence the processes occurring within the estuary. Examined are the supply and cycling of major and minor elements, and the use of naturally occurring radionuclides to trace processes including water movement, scavenging, sediment-water interaction, and sediment accumulation rates. The biogeochemical cycling of carbon, nitrogen, and phosphorus, and the significances of the Amazon estuary in the global mass balance of these elements are examined.
ERIC Educational Resources Information Center
Nielsen, Karina; Randall, Raymond; Christensen, Karl B.
2017-01-01
A mixed methods approach was applied to examine the effects of a naturally occurring teamwork intervention supported with training. The first objective was to integrate qualitative process evaluation and quantitative effect evaluation to examine "how" and "why" the training influence intervention outcomes. The intervention (N =…
Guidance for using mixed methods design in nursing practice research.
Chiang-Hanisko, Lenny; Newman, David; Dyess, Susan; Piyakong, Duangporn; Liehr, Patricia
2016-08-01
The mixed methods approach purposefully combines both quantitative and qualitative techniques, enabling a multi-faceted understanding of nursing phenomena. The purpose of this article is to introduce three mixed methods designs (parallel; sequential; conversion) and highlight interpretive processes that occur with the synthesis of qualitative and quantitative findings. Real world examples of research studies conducted by the authors will demonstrate the processes leading to the merger of data. The examples include: research questions; data collection procedures and analysis with a focus on synthesizing findings. Based on experience with mixed methods studied, the authors introduce two synthesis patterns (complementary; contrasting), considering application for practice and implications for research. Copyright © 2015 Elsevier Inc. All rights reserved.
Conditional Moment Closure of Mixing and Reaction in Turbulent Nonpremixed Combustion
NASA Technical Reports Server (NTRS)
Smith, Nigel S. A.
1996-01-01
Nonpremixed combustion is the process whereby fuel and oxidizer species, which are each nonflammable in isolation, concurrently mix to burn a flammable mixture, and chemically react in the flammable mixture. In cases of practical industrial interest, the bulk of nonpremixed combustion occurs in a turbulent mixing regime where enhanced mass transfer rates flow the maximum power density to be achieved in any given thermochemical device.
A multistream model of visual word recognition.
Allen, Philip A; Smith, Albert F; Lien, Mei-Ching; Kaut, Kevin P; Canfield, Angie
2009-02-01
Four experiments are reported that test a multistream model of visual word recognition, which associates letter-level and word-level processing channels with three known visual processing streams isolated in macaque monkeys: the magno-dominated (MD) stream, the interblob-dominated (ID) stream, and the blob-dominated (BD) stream (Van Essen & Anderson, 1995). We show that mixing the color of adjacent letters of words does not result in facilitation of response times or error rates when the spatial-frequency pattern of a whole word is familiar. However, facilitation does occur when the spatial-frequency pattern of a whole word is not familiar. This pattern of results is not due to different luminance levels across the different-colored stimuli and the background because isoluminant displays were used. Also, the mixed-case, mixed-hue facilitation occurred when different display distances were used (Experiments 2 and 3), so this suggests that image normalization can adjust independently of object size differences. Finally, we show that this effect persists in both spaced and unspaced conditions (Experiment 4)--suggesting that inappropriate letter grouping by hue cannot account for these results. These data support a model of visual word recognition in which lower spatial frequencies are processed first in the more rapid MD stream. The slower ID and BD streams may process some lower spatial frequency information in addition to processing higher spatial frequency information, but these channels tend to lose the processing race to recognition unless the letter string is unfamiliar to the MD stream--as with mixed-case presentation.
Process development of starch hydrolysis using mixing characteristics of Taylor vortices.
Masuda, Hayato; Horie, Takafumi; Hubacz, Robert; Ohmura, Naoto; Shimoyamada, Makoto
2017-04-01
In food industries, enzymatic starch hydrolysis is an important process that consists of two steps: gelatinization and saccharification. One of the major difficulties in designing the starch hydrolysis process is the sharp change in its rheological properties. In this study, Taylor-Couette flow reactor was applied to continuous starch hydrolysis process. The concentration of reducing sugar produced via enzymatic hydrolysis was evaluated by varying operational variables: rotational speed of the inner cylinder, axial velocity (reaction time), amount of enzyme, and initial starch content in the slurry. When Taylor vortices were formed in the annular space, efficient hydrolysis occurred because Taylor vortices improved the mixing of gelatinized starch with enzyme. Furthermore, a modified inner cylinder was proposed, and its mixing performance was numerically investigated. The modified inner cylinder showed higher potential for enhanced mixing of gelatinized starch and the enzyme than the conventional cylinder.
Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites.
Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon; Brennan, Michael C; Morozov, Yurii V; Manser, Joseph S; Kamat, Prashant V; Schneider, William F; Kuno, Masaru
2017-08-04
Mixed halide hybrid perovskites, CH 3 NH 3 Pb(I 1-x Br x ) 3 , represent good candidates for low-cost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material's optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodide-rich phases. It additionally explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.Mixed halide hybrid perovskites possess tunable band gaps, however, under illumination they undergo phase separation. Using spectroscopic measurements and theoretical modelling, Draguta and Sharia et al. quantitatively rationalize the microscopic processes that occur during phase separation.
Evolution of mixing width induced by general Rayleigh-Taylor instability.
Zhang, You-Sheng; He, Zhi-Wei; Gao, Fu-Jie; Li, Xin-Liang; Tian, Bao-Lin
2016-06-01
Turbulent mixing induced by Rayleigh-Taylor (RT) instability occurs ubiquitously in many natural phenomena and engineering applications. As the simplest and primary descriptor of the mixing process, the evolution of mixing width of the mixing zone plays a notable role in the flows. The flows generally involve complex varying acceleration histories and widely varying density ratios, two dominant factors affecting the evolution of mixing width. However, no satisfactory theory for predicting the evolution has yet been established. Here a theory determining the evolution of mixing width in general RT flows is established to reproduce, first, all of the documented experiments conducted for diverse (i.e., constant, impulsive, oscillating, decreasing, increasing, and complex) acceleration histories and all density ratios. The theory is established in terms of the conservation principle, with special consideration given to the asymmetry of the volume-averaged density fields occurring in actual flows. The results reveal the sensitivity or insensitivity of the evolution of a mixing front of a neighboring light or heavy fluid to the degree of asymmetry and thus explain the distinct evolutions in two experiments with the same configurations.
2003-01-22
Still photographs taken over 16 hours on Nov. 13, 2001, on the International Space Station have been condensed into a few seconds to show the de-mixing -- or phase separation -- process studied by the Experiment on Physics of Colloids in Space. Commanded from the ground, dozens of similar tests have been conducted since the experiment arrived on ISS in 2000. The sample is a mix of polymethylmethacrylate (PMMA or acrylic) colloids, polystyrene polymers and solvents. The circular area is 2 cm (0.8 in.) in diameter. The phase separation process occurs spontaneously after the sample is mechanically mixed. The evolving lighter regions are rich in colloid and have the structure of a liquid. The dark regions are poor in colloids and have the structure of a gas. This behavior carnot be observed on Earth because gravity causes the particles to fall out of solution faster than the phase separation can occur. While similar to a gas-liquid phase transition, the growth rate observed in this test is different from any atomic gas-liquid or liquid-liquid phase transition ever measured experimentally. Ultimately, the sample separates into colloid-poor and colloid-rich areas, just as oil and vinegar separate. The fundamental science of de-mixing in this colloid-polymer sample is the same found in the annealing of metal alloys and plastic polymer blends. Improving the understanding of this process may lead to improving processing of these materials on Earth.
Mixed mechanisms of multi-site phosphorylation
Suwanmajo, Thapanar; Krishnan, J.
2015-01-01
Multi-site phosphorylation is ubiquitous in cell biology and has been widely studied experimentally and theoretically. The underlying chemical modification mechanisms are typically assumed to be distributive or processive. In this paper, we study the behaviour of mixed mechanisms that can arise either because phosphorylation and dephosphorylation involve different mechanisms or because phosphorylation and/or dephosphorylation can occur through a combination of mechanisms. We examine a hierarchy of models to assess chemical information processing through different mixed mechanisms, using simulations, bifurcation analysis and analytical work. We demonstrate how mixed mechanisms can show important and unintuitive differences from pure distributive and processive mechanisms, in some cases resulting in monostable behaviour with simple dose–response behaviour, while in other cases generating new behaviour-like oscillations. Our results also suggest patterns of information processing that are relevant as the number of modification sites increases. Overall, our work creates a framework to examine information processing arising from complexities of multi-site modification mechanisms and their impact on signal transduction. PMID:25972433
Downwelling dynamics of the western Adriatic Coastal Current
NASA Astrophysics Data System (ADS)
Geyer, W. R.; Mullenbach, B. L.; Kineke, G. C.; Sherwood, C. R.; Signell, R. P.; Ogston, A. S.; Puig, P.; Traykovski, P.
2004-12-01
The western Adriatic coastal current (WACC) flows for hundreds of kilometers along the east coast of Italy at speeds of 20 to 100 cm/s. It is fed by the buoyancy input from the Po River and other rivers of the northern Adriatic Sea, with typical freshwater discharge rates of 2000 m**3/s. The Bora winds provide the dominant forcing agent of the WACC during the winter months, resulting in peak southeastward flows reaching 100 cm/s. The energy input of the Bora is principally in the northern Adriatic, and the coastal current response is due mainly to the set up of the pressure field, although there is sometimes an accompanying local component of down-coast winds that further augments the coastal current. Downwelling conditions occur during Bora, with or without local wind-forcing, because the bottom Ekman transport occurs in either case. Downwelling results in destratification of the coastal current, due to both vertical mixing and straining of the cross-shore density gradient. The relative contributions of mixing and straining depends on the value of the Kelvin number K=Lf/(g_Oh)**1/2, where L is the width of the coastal current, f is the Coriolis parameter, g_O is reduced gravity, and h is the plume thickness. For a narrow coastal current (K<1), straining occurs more rapidly than vertical mixing. This is the case in the WACC during Bora events, with strain-induced destratification occurring in less than 24 hours. The straining process limits vertical mixing of the coastal current with the ambient Adriatic water, because once the isopycnals become vertical, no more mixing can occur. This limitation of mixing may explain the persistence of the density anomaly of the coastal current in the presence of high stresses. The straining process also has important implications for sediment transport: destratification allows sediment to be distributed throughout the water column during Bora events, resulting in enhanced down-coast fluxes. The influence of the downwelling dynamics on cross-shore sediment transport is still under examination.
Application of monotone integrated large eddy simulation to Rayleigh-Taylor mixing.
Youngs, David L
2009-07-28
Rayleigh-Taylor (RT) instability occurs when a dense fluid rests on top of a light fluid in a gravitational field. It also occurs in an equivalent situation (in the absence of gravity) when an interface between fluids of different density is accelerated by a pressure gradient, e.g. in inertial confinement fusion implosions. Engineering models (Reynolds-averaged Navier-Stokes models) are needed to represent the effect of mixing in complex applications. However, large eddy simulation (LES) currently makes an essential contribution to understanding the mixing process and calibration or validation of the engineering models. In this paper, three cases are used to illustrate the current role of LES: (i) mixing at a plane boundary, (ii) break-up of a layer of dense fluid due to RT instability, and (iii) mixing in a simple spherical implosion. A monotone integrated LES approach is preferred because of the need to treat discontinuities in the flow, i.e. the initial density discontinuities or shock waves. Of particular interest is the influence of initial conditions and how this needs to be allowed for in engineering modelling. It is argued that loss of memory of the initial conditions is unlikely to occur in practical applications.
ERIC Educational Resources Information Center
Aminabhavi, Tejraj M.
1983-01-01
Discusses a set of relations (addressing changes in volume and refractivity) for use in the study of binary systems. Suggests including such an experiment in undergraduate physical chemistry courses (measuring density/refractive index of pure compounds and their mixtures) to predict even small changes occurring during mixing process. (Author/JN)
Movie of phase separation during physics of colloids in space experiment
NASA Technical Reports Server (NTRS)
2002-01-01
Still photographs taken over 16 hours on Nov. 13, 2001, on the International Space Station have been condensed into a few seconds to show the de-mixing -- or phase separation -- process studied by the Experiment on Physics of Colloids in Space. Commanded from the ground, dozens of similar tests have been conducted since the experiment arrived on ISS in 2000. The sample is a mix of polymethylmethacrylate (PMMA or acrylic) colloids, polystyrene polymers and solvents. The circular area in the video is 2 cm (0.8 in.) in diameter. The phase separation process occurs spontaneously after the sample is mechanically mixed. The evolving lighter regions are rich in colloid and have the structure of a liquid. The dark regions are poor in colloids and have the structure of a gas. This behavior carnot be observed on Earth because gravity causes the particles to fall out of solution faster than the phase separation can occur. While similar to a gas-liquid phase transition, the growth rate observed in this test is different from any atomic gas-liquid or liquid-liquid phase transition ever measured experimentally. Ultimately, the sample separates into colloid-poor and colloid-rich areas, just as oil and vinegar separate. The fundamental science of de-mixing in this colloid-polymer sample is the same found in the annealing of metal alloys and plastic polymer blends. Improving the understanding of this process may lead to improving processing of these materials on Earth.
Phase separation during the Experiment on Physics of Colloids in Space
NASA Technical Reports Server (NTRS)
2003-01-01
Still photographs taken over 16 hours on Nov. 13, 2001, on the International Space Station have been condensed into a few seconds to show the de-mixing -- or phase separation -- process studied by the Experiment on Physics of Colloids in Space. Commanded from the ground, dozens of similar tests have been conducted since the experiment arrived on ISS in 2000. The sample is a mix of polymethylmethacrylate (PMMA or acrylic) colloids, polystyrene polymers and solvents. The circular area is 2 cm (0.8 in.) in diameter. The phase separation process occurs spontaneously after the sample is mechanically mixed. The evolving lighter regions are rich in colloid and have the structure of a liquid. The dark regions are poor in colloids and have the structure of a gas. This behavior carnot be observed on Earth because gravity causes the particles to fall out of solution faster than the phase separation can occur. While similar to a gas-liquid phase transition, the growth rate observed in this test is different from any atomic gas-liquid or liquid-liquid phase transition ever measured experimentally. Ultimately, the sample separates into colloid-poor and colloid-rich areas, just as oil and vinegar separate. The fundamental science of de-mixing in this colloid-polymer sample is the same found in the annealing of metal alloys and plastic polymer blends. Improving the understanding of this process may lead to improving processing of these materials on Earth.
Combustion Fundamentals Research
NASA Technical Reports Server (NTRS)
1984-01-01
The various physical processes that occur in the gas turbine combustor and the development of analytical models that accurately describe these processes are discussed. Aspects covered include fuel sprays; fluid mixing; combustion dynamics; radiation and chemistry and numeric techniques which can be applied to highly turbulent, recirculating, reacting flow fields.
Mixing Time Effects on the Dispersion Performance of Adhesive Mixtures for Inhalation
Grasmeijer, Floris; Hagedoorn, Paul; Frijlink, Henderik W.; de Boer, H. Anne
2013-01-01
This paper deals with the effects of mixing time on the homogeneity and dispersion performance of adhesive mixtures for inhalation. Interactions between these effects and the carrier size fraction, the type of drug and the inhalation flow rate were studied. Furthermore, it was examined whether or not changes in the dispersion performance as a result of prolonged mixing can be explained with a balance of three processes that occur during mixing, knowing drug redistribution over the lactose carrier; (de-) agglomeration of the drug (and fine lactose) particles; and compression of the drug particles onto the carrier surface. For this purpose, mixtures containing salmeterol xinafoate or fluticasone propionate were mixed for different periods of time with a fine or coarse crystalline lactose carrier in a Turbula mixer. Drug detachment experiments were performed using a classifier based inhaler at different flow rates. Scanning electron microscopy and laser diffraction techniques were used to measure drug distribution and agglomeration, whereas changes in the apparent solubility were measured as a means to monitor the degree of mechanical stress imparted on the drug particles. No clear trend between mixing time and content uniformity was observed. Quantitative and qualitative interactions between the effect of mixing time on drug detachment and the type of drug, the carrier size fraction and the flow rate were measured, which could be explained with the three processes mentioned. Generally, prolonged mixing caused drug detachment to decrease, with the strongest decline occurring in the first 120 minutes of mixing. For the most cohesive drug (salmeterol) and the coarse carrier, agglomerate formation seemed to dominate the overall effect of mixing time at a low inhalation flow rate, causing drug detachment to increase with prolonged mixing. The optimal mixing time will thus depend on the formulation purpose and the choice for other, interacting variables. PMID:23844256
Söderqvist, Karin
2017-01-01
As part of a trend toward healthy convenience foods, ready-to-eat (RTE) mixed-ingredient salads have become popular products among consumers. A mixed-ingredient salad contains combinations of raw ( e.g . leafy vegetables and tomatoes) and processed ( e.g . chicken, salmon, ham, pasta and couscous) ingredients. Contamination of leafy vegetables can occur during any step in the production chain and, since there is no step that kills pathogens, a completely safe final product can never be guaranteed. Meat ingredients, for example poultry meat and ham, are generally heat-treated before preparation, but may be contaminated after this treatment, e.g . when diced or sliced. When several ingredients are mixed together, cross-contamination may occur. Preparation of mixed-ingredient salads requires human handling, which presents an additional risk of bacterial contamination. With high-protein ingredients, e.g . cooked meat, the mixed-ingredient salad represents an excellent substrate for bacterial growth. This article reviews current knowledge regarding human bacterial pathogen prevalence in mixed-ingredient salads and the potential for pathogen growth in this product during storage.
Söderqvist, Karin
2017-01-01
ABSTRACT As part of a trend toward healthy convenience foods, ready-to-eat (RTE) mixed-ingredient salads have become popular products among consumers. A mixed-ingredient salad contains combinations of raw (e.g. leafy vegetables and tomatoes) and processed (e.g. chicken, salmon, ham, pasta and couscous) ingredients. Contamination of leafy vegetables can occur during any step in the production chain and, since there is no step that kills pathogens, a completely safe final product can never be guaranteed. Meat ingredients, for example poultry meat and ham, are generally heat-treated before preparation, but may be contaminated after this treatment, e.g. when diced or sliced. When several ingredients are mixed together, cross-contamination may occur. Preparation of mixed-ingredient salads requires human handling, which presents an additional risk of bacterial contamination. With high-protein ingredients, e.g. cooked meat, the mixed-ingredient salad represents an excellent substrate for bacterial growth. This article reviews current knowledge regarding human bacterial pathogen prevalence in mixed-ingredient salads and the potential for pathogen growth in this product during storage. PMID:29230273
Atomization and dense-fluid breakup regimes in liquid rocket engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oefelein, Joseph; Dahms, Rainer Norbert Uwe
Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less
Atomization and dense-fluid breakup regimes in liquid rocket engines
Oefelein, Joseph; Dahms, Rainer Norbert Uwe
2015-04-20
Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less
Chemical effects in ion mixing of a ternary system (metal-SiO2)
NASA Technical Reports Server (NTRS)
Banwell, T.; Nicolet, M.-A.; Sands, T.; Grunthaner, P. J.
1987-01-01
The mixing of Ti, Cr, and Ni thin films with SiO2 by low-temperature (- 196-25 C) irradiation with 290 keV Xe has been investigated. Comparison of the morphology of the intermixed region and the dose dependences of net metal transport into SiO2 reveals that long range motion and phase formation probably occur as separate and sequential processes. Kinetic limitations suppress chemical effects in these systems during the initial transport process. Chemical interactions influence the subsequent phase formation.
The alkaline zinc electrode as a mixed potential system
NASA Technical Reports Server (NTRS)
Fielder, W. L.
1979-01-01
Cathodic and anodic processes for the alkaline zinc electrode in 0.01 molar zincate electrolyte (9 molar hydroxide) were investigated. Cyclic voltammograms and current-voltage curves were obtained by supplying pulses through a potentiostat to a zinc rotating disk electrode. The data are interpreted by treating the system as one with a mixed potential; the processes are termed The zincate and corrosion reactions. The relative proportions of the two processes vary with the supplied potential. For the cathodic region, the cathodic corrosion process predominates at higher potentials while both processes occur simultaneously at a lower potential (i.e., 50 mV). For the anodic region, the anodic zincate process predominates at higher potentials while the anodic corrosion process is dominant at lower potential (i.e., 50 mV) if H2 is present.
An Examination of the Evolution of Radiation and Advection Fogs
1993-01-01
and fog diagnostic and prediction models have developed in sophistication so that they can reproduce fairly accurate one- or two-dimensional...occurred only by molecular diffusion near the interface created between the species during the mixing process. The rate of homogenization is minimal until...of excess vapor by molecular diffusion at the interfaces of nearly saturated air mixing in eddies is faster than the relaxation time of droplet
Scott M. Ferrenberg; Dylan W. Schwilk; Eric E. Knapp; Eric Groth; Jon E. Keeley
2006-01-01
Prior to fire suppression in the 20th century, the mixed-conifer forests of the Sierra Nevada, California, U.S.A., historically burned in frequent fires that typically occurred during the late summer and early fall. Fire managers have been attempting to restore natural ecosystem processes through prescription burning, and have often favored burning during the fall in...
Regression analysis of mixed recurrent-event and panel-count data
Zhu, Liang; Tong, Xinwei; Sun, Jianguo; Chen, Manhua; Srivastava, Deo Kumar; Leisenring, Wendy; Robison, Leslie L.
2014-01-01
In event history studies concerning recurrent events, two types of data have been extensively discussed. One is recurrent-event data (Cook and Lawless, 2007. The Analysis of Recurrent Event Data. New York: Springer), and the other is panel-count data (Zhao and others, 2010. Nonparametric inference based on panel-count data. Test 20, 1–42). In the former case, all study subjects are monitored continuously; thus, complete information is available for the underlying recurrent-event processes of interest. In the latter case, study subjects are monitored periodically; thus, only incomplete information is available for the processes of interest. In reality, however, a third type of data could occur in which some study subjects are monitored continuously, but others are monitored periodically. When this occurs, we have mixed recurrent-event and panel-count data. This paper discusses regression analysis of such mixed data and presents two estimation procedures for the problem. One is a maximum likelihood estimation procedure, and the other is an estimating equation procedure. The asymptotic properties of both resulting estimators of regression parameters are established. Also, the methods are applied to a set of mixed recurrent-event and panel-count data that arose from a Childhood Cancer Survivor Study and motivated this investigation. PMID:24648408
Investigating mixed phase clouds using a synergy of ground based remote sensing measurements
NASA Astrophysics Data System (ADS)
Gierens, Rosa; Kneifel, Stefan; Löhnert, Ulrich
2017-04-01
Low level mixed phase clouds occur frequently in the Arctic, and can persist from hours to several days. However, the processes that lead to the commonality and persistence of these clouds are not well understood. The aim of our work is to get a more detailed understanding of the dynamics of and the processes in Arctic mixed phase clouds using a combination of instruments operating at the AWIPEV station in Svalbard. In addition, an aircraft campaign collecting in situ measurements inside mixed phase clouds above the station is planned for May-June 2017. The in situ data will be used for developing and validating retrievals for microphysical properties from Doppler cloud radar measurements. Once observational data for cloud properties is obtained, it can be used for evaluating model performance, for studies combining modeling and observational approaches, and eventually lead to developing model parameterizations of mixed phase microphysics. To describe the low-level mixed phase clouds, and the atmospheric conditions in which they occur, we present a case study of a persistent mixed phase cloud observed above the AWIPEV station. In the frame of the Arctic Amplification: Climate Relevant Atmospheric and Surface Processes and Feedback Mechanisms ((AC)3) -project, a millimeter wavelength cloud radar was installed at the site in June 2016. The high vertical (4 m in the lowest layer) and temporal (2.5 sec) resolution allows for a detailed description of the structure of the cloud. In addition to radar reflectivity and mean vertical velocity, we also utilize the higher moments of the Doppler spectra, such as skewness and kurtosis. To supplement the radar measurements, a ceilometer is used to detect liquid layers inside the cloud. Liquid water path and integrated water vapor are estimated using a microwave radiometer, which together with soundings can also provide temperature and humidity profiles in the lower troposphere. Moreover, a three-dimensional wind field is be obtained from a Doppler wind lidar. Furthermore, the Cloudnet scheme (www.cloud-net.org), that combines radar, lidar and microwave radiometer observations with a forecast model to provide a best estimate of cloud properties, is used for identifying mixed phase clouds. The continuous measurements carried out at AWIPEV make it possible to characterize the macro- and micro- physical properties of mixed-phase clouds on a long-term, statistical basis. The Arctic observations are compared to a 5-year observational data set from Jülich Observatory for Cloud Evolution (JOYCE) in Western Germany. The occurrence of different types of clouds (with focus on mixed-phase and super-cooled clouds), the distribution of ice and liquid within the clouds, the turbulent environment as well as the temperatures where the different phases are occurring are investigated.
Robust Fault Detection for Aircraft Using Mixed Structured Singular Value Theory and Fuzzy Logic
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G.
2000-01-01
The purpose of fault detection is to identify when a fault or failure has occurred in a system such as an aircraft or expendable launch vehicle. The faults may occur in sensors, actuators, structural components, etc. One of the primary approaches to model-based fault detection relies on analytical redundancy. That is the output of a computer-based model (actually a state estimator) is compared with the sensor measurements of the actual system to determine when a fault has occurred. Unfortunately, the state estimator is based on an idealized mathematical description of the underlying plant that is never totally accurate. As a result of these modeling errors, false alarms can occur. This research uses mixed structured singular value theory, a relatively recent and powerful robustness analysis tool, to develop robust estimators and demonstrates the use of these estimators in fault detection. To allow qualitative human experience to be effectively incorporated into the detection process fuzzy logic is used to predict the seriousness of the fault that has occurred.
Primitive andesites from the Taupo Volcanic Zone formed by magma mixing
NASA Astrophysics Data System (ADS)
Beier, Christoph; Haase, Karsten M.; Brandl, Philipp A.; Krumm, Stefan H.
2017-05-01
Andesites with Mg# >45 erupted at subduction zones form either by partial melting of metasomatized mantle or by mixing and assimilation processes during melt ascent. Primitive whole rock basaltic andesites from the Pukeonake vent in the Tongariro Volcanic Centre in New Zealand's Taupo Volcanic Zone contain olivine, clino- and orthopyroxene, and plagioclase xeno- and antecrysts in a partly glassy matrix. Glass pools interstitial between minerals and glass inclusions in clinopyroxene, orthopyroxene and plagioclase as well as matrix glasses are rhyolitic to dacitic indicating that the melts were more evolved than their andesitic bulk host rock analyses indicate. Olivine xenocrysts have high Fo contents up to 94%, δ18O(SMOW) of +5.1‰, and contain Cr-spinel inclusions, all of which imply an origin in equilibrium with primitive mantle-derived melts. Mineral zoning in olivine, clinopyroxene and plagioclase suggest that fractional crystallization occurred. Elevated O isotope ratios in clinopyroxene and glass indicate that the lavas assimilated sedimentary rocks during stagnation in the crust. Thus, the Pukeonake andesites formed by a combination of fractional crystallization, assimilation of crustal rocks, and mixing of dacite liquid with mantle-derived minerals in a complex crustal magma system. The disequilibrium textures and O isotope compositions of the minerals indicate mixing processes on timescales of less than a year prior to eruption. Similar processes may occur in other subduction zones and require careful study of the lavas to determine the origin of andesite magmas in arc volcanoes situated on continental crust.
Effects of seawater mixing on the mobility of trace elements in acid phosphogypsum leachates.
Papaslioti, Evgenia-Maria; Pérez-López, Rafael; Parviainen, Annika; Sarmiento, Aguasanta M; Nieto, José M; Marchesi, Claudio; Delgado-Huertas, Antonio; Garrido, Carlos J
2018-02-01
This research reports the effects of pH increase on contaminant mobility in phosphogypsum leachates by seawater mixing, as occurs with dumpings on marine environments. Acid leachates from a phosphogypsum stack located in the Estuary of Huelva (Spain) were mixed with seawater to achieve gradually pH7. Concentrations of Al, Fe, Cr, Pb and U in mixed solutions significantly decreased with increasing pH by sorption and/or precipitation processes. Nevertheless, this study provides insight into the high contribution of the phosphogypsum stack to the release of other toxic elements (Co, Ni, Cu, Zn, As, Cd and Sb) to the coastal areas, as 80-100% of their initial concentrations behaved conservatively in mixing solutions with no participation in sorption processes. Stable isotopes ruled out connexion between different phosphogypsum-related wastewaters and unveiled possible weathering inputs of estuarine waters to the stack. The urgency of adopting effective restoration measures in the study area is also stressed. Copyright © 2018 Elsevier Ltd. All rights reserved.
URANIUM LEACHING AND RECOVERY PROCESS
McClaine, L.A.
1959-08-18
A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.
Yoshikawa, Hirokazu; Weisner, Thomas S; Kalil, Ariel; Way, Niobe
2008-03-01
Multiple methods are vital to understanding development as a dynamic, transactional process. This article focuses on the ways in which quantitative and qualitative methodologies can be combined to enrich developmental science and the study of human development, focusing on the practical questions of "when" and "how." Research situations that may be especially suited to mixing qualitative and quantitative approaches are described. The authors also discuss potential choices for using mixed quantitative- qualitative approaches in study design, sampling, construction of measures or interview protocols, collaborations, and data analysis relevant to developmental science. Finally, they discuss some common pitfalls that occur in mixing these methods and include suggestions for surmounting them.
Evaluation of hot in-place recycle.
DOT National Transportation Integrated Search
2010-06-01
This report documents the construction of hot in-place recycled (HIPR) pavement on SR 542. : HIPR is a process by which rehabilitation of the existing HMA pavement occurs on site in one : operation. HIPR project selection, mix design, construction an...
NASA Astrophysics Data System (ADS)
Malakyan, Yu P.
1990-04-01
A new effect is considered: self-induced suppression of electron stimulated Raman scattering involving generation of two new fields from the Stokes radiation as a result of four-wave mixing, interfering destructively with electron stimulated Raman scattering and suppressing it, which in turn suppresses the mixing process. The effect occurs in the steady-state case and not under transient conditions. The results account in a simple manner for the generation of the Stokes radiation in barium vapor as a result of different transitions, depending on the duration of the pump pulse.
Mixing in seasonally stratified shelf seas: a shifting paradigm.
Rippeth, Tom P
2005-12-15
Although continental shelf seas make up a relatively small fraction (ca 7%) of the world ocean's surface, they are thought to contribute significantly (20-50% of the total) to the open-ocean carbon dioxide storage through processes collectively known as the shelf sea pump. The global significance of these processes is determined by the vertical mixing, which drives the net CO(2) drawdown (which can occur only in stratified water). In this paper, we focus on identifying the processes that are responsible for mixing across the thermocline in seasonally stratified shelf seas. We present evidence that shear instability and internal wave breaking are largely responsible for thermocline mixing, a clear development from the first-order paradigm for the water column structure in continental shelf seas. The levels of dissipation observed are quantitatively consistent with the observed dissipation rates of the internal tide and near-inertial oscillations. It is perhaps because these processes make such a small contribution to the total energy dissipated in shelf seas that they are not well represented in current state-of-the-art numerical models of continental shelf seas. The results thus present a clear challenge to oceanographic models.
Combustion research for gas turbine engines
NASA Technical Reports Server (NTRS)
Mularz, E. J.; Claus, R. W.
1985-01-01
Research on combustion is being conducted at Lewis Research Center to provide improved analytical models of the complex flow and chemical reaction processes which occur in the combustor of gas turbine engines and other aeropropulsion systems. The objective of the research is to obtain a better understanding of the various physical processes that occur in the gas turbine combustor in order to develop models and numerical codes which can accurately describe these processes. Activities include in-house research projects, university grants, and industry contracts and are classified under the subject areas of advanced numerics, fuel sprays, fluid mixing, and radiation-chemistry. Results are high-lighted from several projects.
Regression analysis of mixed recurrent-event and panel-count data.
Zhu, Liang; Tong, Xinwei; Sun, Jianguo; Chen, Manhua; Srivastava, Deo Kumar; Leisenring, Wendy; Robison, Leslie L
2014-07-01
In event history studies concerning recurrent events, two types of data have been extensively discussed. One is recurrent-event data (Cook and Lawless, 2007. The Analysis of Recurrent Event Data. New York: Springer), and the other is panel-count data (Zhao and others, 2010. Nonparametric inference based on panel-count data. Test 20: , 1-42). In the former case, all study subjects are monitored continuously; thus, complete information is available for the underlying recurrent-event processes of interest. In the latter case, study subjects are monitored periodically; thus, only incomplete information is available for the processes of interest. In reality, however, a third type of data could occur in which some study subjects are monitored continuously, but others are monitored periodically. When this occurs, we have mixed recurrent-event and panel-count data. This paper discusses regression analysis of such mixed data and presents two estimation procedures for the problem. One is a maximum likelihood estimation procedure, and the other is an estimating equation procedure. The asymptotic properties of both resulting estimators of regression parameters are established. Also, the methods are applied to a set of mixed recurrent-event and panel-count data that arose from a Childhood Cancer Survivor Study and motivated this investigation. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Broadband photon pair generation in green fluorescent proteins through spontaneous four-wave mixing
Shi, Siyuan; Thomas, Abu; Corzo, Neil V.; Kumar, Prem; Huang, Yuping; Lee, Kim Fook
2016-01-01
Recent studies in quantum biology suggest that quantum mechanics help us to explore quantum processes in biological system. Here, we demonstrate generation of photon pairs through spontaneous four-wave mixing process in naturally occurring fluorescent proteins. We develop a general empirical method for analyzing the relative strength of nonlinear optical interaction processes in five different organic fluorophores. Our results indicate that the generation of photon pairs in green fluorescent proteins is subject to less background noises than in other fluorophores, leading to a coincidence-to-accidental ratio ~145. As such proteins can be genetically engineered and fused to many biological cells, our experiment enables a new platform for quantum information processing in a biological environment such as biomimetic quantum networks and quantum sensors. PMID:27076032
NASA Astrophysics Data System (ADS)
Slama, Fairouz; Bouhlila, Rachida
2017-11-01
Groundwater sampling and piezometric measurements were carried out along two flow paths (corresponding to two transects) in Korba coastal plain (Northeast of Tunisia). The study aims to identify hydrochemical processes occurring when seawater and freshwater mix. Those processes can be used as indicators of seawater intrusion progression and freshwater flushing into seawater accompanying Submarine Groundwater Discharge (SGD). Seawater fractions in the groundwater were calculated using the chloride concentration. Hierarchical cluster analysis (HCA) was applied to isolate wells potentially affected by seawater. In addition, PHREEQC was used to simulate the theoretical mixing between two end members: seawater and a fresh-brackish groundwater sample. Geochemical conventional diagrams showed that the groundwater chemistry is explained by a mixing process between two end members. Results also revealed the presence of other geochemical processes, correlated to the hydrodynamic flow paths. Direct cation exchange was linked to seawater intrusion, and reverse cation exchange was associated to the freshwater flushing into seawater. The presence of these processes indicated that seawater intrusion was in progress. An excess of Ca, that could not be explained by only cation exchange processes, was observed in both transects. Dedolomitization combined to gypsum leaching is the possible explanation of the groundwater Ca enrichment. Finally, redox processes were also found to contribute to the groundwater composition along flow paths.
NASA Astrophysics Data System (ADS)
Hernandez-Gonzalez, L. M.; Roche, K. R.; Xie, M.; Packman, A. I.
2014-12-01
Important biological, physical and chemical processes, such as fluxes of oxygen, nutrients and contaminants, occur across sediment-water interfaces. These processes are influenced by bioturbation activities of benthic animals. Bioturbation is thought to be significant in releasing metals to the water column from contaminated sediments, but metals contamination also affects organism activity. Consequently, the aim of this study was to consider the interactions of biological activity, sediment chemistry, pore water transport, and chemical reactions in sediment mixing and the flux and toxicity of metals in sediments. Prior studies have modeled bioturbation as a diffusive process. However, diffusion models often do not describe accurately sediment mixing due to bioturbation. To this end, we used the continuous time random walk (CTRW) model to assess sediment mixing caused by bioturbation activity of Lumbriculus variegatus worms. We performed experiments using fine-grained sediments with different levels of zinc contamination from Lake DePue, which is a Superfund Site in Illinois. The tests were conducted in an aerated fresh water chamber. Fluorescent particulate tracers were added to the sediment surface to quantify mixing processes and the influence of metals contaminants on L. variegatus bioturbation activity. We observed sediment mixing and organism activity by time-lapse photography over 14 days. Then, we analyzed the images to characterize the fluorescent particle concentration as a function of sediment depth and time. Results reveal that sediment mixing caused by L. variegatus is subdiffusive in time and superdiffusive in space. These results suggest that anomalous sediment mixing is probably a ubiquitous process, as this behavior has only been observed previously in marine sediments. Also, the experiments indicate that bioturbation and sediment mixing decreased in the presence of higher metals concentrations in sediments. This process is expected to decrease efflux of metals from highly contaminated sediments by reducing biological activity.
Lagrangian mixed layer modeling of the western equatorial Pacific
NASA Technical Reports Server (NTRS)
Shinoda, Toshiaki; Lukas, Roger
1995-01-01
Processes that control the upper ocean thermohaline structure in the western equatorial Pacific are examined using a Lagrangian mixed layer model. The one-dimensional bulk mixed layer model of Garwood (1977) is integrated along the trajectories derived from a nonlinear 1 1/2 layer reduced gravity model forced with actual wind fields. The Global Precipitation Climatology Project (GPCP) data are used to estimate surface freshwater fluxes for the mixed layer model. The wind stress data which forced the 1 1/2 layer model are used for the mixed layer model. The model was run for the period 1987-1988. This simple model is able to simulate the isothermal layer below the mixed layer in the western Pacific warm pool and its variation. The subduction mechanism hypothesized by Lukas and Lindstrom (1991) is evident in the model results. During periods of strong South Equatorial Current, the warm and salty mixed layer waters in the central Pacific are subducted below the fresh shallow mixed layer in the western Pacific. However, this subduction mechanism is not evident when upwelling Rossby waves reach the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific due to episodes of strong wind and light precipitation associated with the El Nino-Southern Oscillation. Comparison of the results between the Lagrangian mixed layer model and a locally forced Eulerian mixed layer model indicated that horizontal advection of salty waters from the central Pacific strongly affects the upper ocean salinity variation in the western Pacific, and that this advection is necessary to maintain the upper ocean thermohaline structure in this region.
Modeling reactive transport with particle tracking and kernel estimators
NASA Astrophysics Data System (ADS)
Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier
2015-04-01
Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.
On the potential influence of ice nuclei on surface-forced marine stratocumulus cloud dynamics
NASA Astrophysics Data System (ADS)
Harrington, Jerry Y.; Olsson, Peter Q.
2001-11-01
The mixed phase cloudy boundary layer that occurs during off-ice flow in the marine Arctic was simulated in an environment with a strong surface heat flux (nearly 800 W m-2). A two-dimensional, eddy-resolving model coupled to a detailed cloud microphysical model was used to study both liquid phase and mixed phase stratocumulus clouds and boundary layer (BL) dynamics in this environment. Since ice precipitation may be important to BL dynamics, and ice nuclei (IN) concentrations modulate ice precipitation rates, the role of IN in cloud and BL development was explored. The results of several simulations illustrate how mixed phase microphysical processes affect the evolution of the cloudy BL in this environment. In agreement with past studies, BLs with mixed phase clouds had weaker convection, shallower BL depths, and smaller cloud fractions than BLs with clouds restricted to the liquid phase only. It is shown that the weaker BL convection is due to strong ice precipitation. Ice precipitation reduces convective strength directly by stabilizing downdrafts and more indirectly by sensibly heating the BL and inhibiting vertical mixing of momentum thereby reducing surface heat fluxes by as much as 80 W m-2. This feedback between precipitation and surface fluxes was found to have a significant impact on cloud/BL morphology, producing oscillations in convective strength and cloud fraction that did not occur if surface fluxes were fixed at constant values. Increases in IN concentrations in mixed phase clouds caused a more rapid Bergeron-Findeisen process leading to larger precipitation fluxes, reduced convection and lower cloud fraction. When IN were removed from the BL through precipitation, fewer crystals were nucleated at later simulation times leading to progressively weaker precipitation rates, greater cloud fraction, and stronger convective BL eddies.
Competing four-wave mixing processes in dispersion oscillating telecom fiber.
Finot, Christophe; Fatome, Julien; Sysoliatin, Alexej; Kosolapov, A; Wabnitz, Stefan
2013-12-15
We experimentally study the dynamics of the generation of multiple sidebands by means of a quasi-phase-matched four-wave mixing (FWM) process occurring in a dispersion-oscillating, highly nonlinear optical fiber. The fiber under test is pumped by a ns microchip laser operating in the normal average group-velocity dispersion regime and in the telecom C band. We reveal that the growth of higher-order sidebands is strongly influenced by the competition with cascade FWM between the pump and the first-order quasi-phase matched sidebands. The properties of these competing FWM processes are substantially affected when a partially coherent pump source is used, leading to a drastic reduction of the average power needed for sideband generation.
Ayotte, J.D.; Szabo, Z.; Focazio, M.J.; Eberts, S.M.
2011-01-01
The effects of human-induced alteration of groundwater flow patterns on concentrations of naturally-occurring trace elements were examined in five hydrologically distinct aquifer systems in the USA. Although naturally occurring, these trace elements can exceed concentrations that are considered harmful to human health. The results show that pumping-induced hydraulic gradient changes and artificial connection of aquifers by well screens can mix chemically distinct groundwater. Chemical reactions between these mixed groundwaters and solid aquifer materials can result in the mobilization of trace elements such as U, As and Ra, with subsequent transport to water-supply wells. For example, in the High Plains aquifer near York, Nebraska, mixing of shallow, oxygenated, lower-pH water from an unconfined aquifer with deeper, confined, anoxic, higher-pH water is facilitated by wells screened across both aquifers. The resulting higher-O2, lower-pH mixed groundwater facilitated the mobilization of U from solid aquifer materials, and dissolved U concentrations were observed to increase significantly in nearby supply wells. Similar instances of trace element mobilization due to human-induced mixing of groundwaters were documented in: (1) the Floridan aquifer system near Tampa, Florida (As and U), (2) Paleozoic sedimentary aquifers in eastern Wisconsin (As), (3) the basin-fill aquifer underlying the California Central Valley near Modesto (U), and (4) Coastal Plain aquifers of New Jersey (Ra). Adverse water-quality impacts attributed to human activities are commonly assumed to be related solely to the release of the various anthropogenic contaminants to the environment. The results show that human activities including various land uses, well drilling, and pumping rates and volumes can adversely impact the quality of water in supply wells, when associated with naturally-occurring trace elements in aquifer materials. This occurs by causing subtle but significant changes in geochemistry and associated trace element mobilization as well as enhancing advective transport processes.
NASA Astrophysics Data System (ADS)
Hasegawa, K.; Lim, C. S.; Ogure, K.
2003-09-01
We propose a two-zero-texture general Zee model, compatible with the large mixing angle Mikheyev-Smirnov-Wolfenstein solution. The washing out of the baryon number does not occur in this model for an adequate parameter range. We check the consistency of a model with the constraints coming from flavor changing neutral current processes, the recent cosmic microwave background observation, and the Z-burst scenario.
NASA Astrophysics Data System (ADS)
Ma, Bin; Jin, Menggui; Liang, Xing; Li, Jing
2018-02-01
Hydrogeochemistry and environmental tracers (2H, 18O, 87Sr/86Sr) in precipitation, river and reservoir water, and groundwater have been used to determine groundwater recharge sources, and to identify mixing characteristics and mineralization processes in the Manas River Basin (MRB), which is a typical mountain-oasis-desert ecosystem in arid northwest China. The oasis component is artificial (irrigation). Groundwater with enriched stable isotope content originates from local precipitation and surface-water leakage in the piedmont alluvial-oasis plain. Groundwater with more depleted isotopes in the north oasis plain and desert is recharged by lateral flow from the adjacent mountains, for which recharge is associated with high altitude and/or paleo-water infiltrating during a period of much colder climate. Little evaporation and isotope exchange between groundwater and rock and soil minerals occurred in the mountain, piedmont and oasis plain. Groundwater δ2H and δ18O values show more homogeneous values along the groundwater flow direction and with well depths, indicating inter-aquifer mixing processes. A regional contrast of groundwater allows the 87Sr/86Sr ratios and δ18O values to be useful in a combination with Cl, Na, Mg, Ca and Sr concentrations to distinguish the groundwater mixing characteristics. Two main processes are identified: groundwater lateral-flow mixing and river leakage in the piedmont alluvial-oasis plain, and vertical mixing in the north oasis plain and the desert. The 87Sr/86Sr ratios and selected ion ratios reveal that carbonate dissolution and mixing with silicate from the southern mountain area are primarily controlling the strontium isotope hydrogeochemistry.
Efficient mixing of the solar nebula from uniform Mo isotopic composition of meteorites.
Becker, Harry; Walker, Richard J
2003-09-11
The abundances of elements and their isotopes in our Galaxy show wide variations, reflecting different nucleosynthetic processes in stars and the effects of Galactic evolution. These variations contrast with the uniformity of stable isotope abundances for many elements in the Solar System, which implies that processes efficiently homogenized dust and gas from different stellar sources within the young solar nebula. However, isotopic heterogeneity has been recognized on the subcentimetre scale in primitive meteorites, indicating that these preserve a compositional memory of their stellar sources. Small differences in the abundance of stable molybdenum isotopes in bulk rocks of some primitive and differentiated meteorites, relative to terrestrial Mo, suggest large-scale Mo isotopic heterogeneity between some inner Solar System bodies, which implies physical conditions that did not permit efficient mixing of gas and dust. Here we report Mo isotopic data for bulk samples of primitive and differentiated meteorites that show no resolvable deviations from terrestrial Mo. This suggests efficient mixing of gas and dust in the solar nebula at least to 3 au from the Sun, possibly induced by magnetohydrodynamic instabilities. These mixing processes must have occurred before isotopic fractionation of gas-phase elements and volatility-controlled chemical fractionations were established.
Method for continuous synthesis of metal oxide powders
Berry, David A.; Haynes, Daniel J.; Shekhawat, Dushyant; Smith, Mark W.
2015-09-08
A method for the rapid and continuous production of crystalline mixed-metal oxides from a precursor solution comprised of a polymerizing agent, chelated metal ions, and a solvent. The method discharges solution droplets of less than 500 .mu.m diameter using an atomizing or spray-type process into a reactor having multiple temperature zones. Rapid evaporation occurs in a first zone, followed by mixed-metal organic foam formation in a second zone, followed by amorphous and partially crystalline oxide precursor formation in a third zone, followed by formation of the substantially crystalline mixed-metal oxide in a fourth zone. The method operates in a continuous rather than batch manner and the use of small droplets as the starting material for the temperature-based process allows relatively high temperature processing. In a particular embodiment, the first zone operates at 100-300.degree. C., the second zone operates at 300-700.degree. C., and the third operates at 700-1000.degree. C., and fourth zone operates at at least 700.degree. C. The resulting crystalline mixed-metal oxides display a high degree of crystallinity and sphericity with typical diameters on the order of 50 .mu.m or less.
7 CFR 457.111 - Pear crop insurance provisions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... alternating or mixed pattern. Marketable. Pear production acceptable for processing or other human consumption... irrigation water supply, if caused by an insured peril that occurs during the insurance period. (b) In... provisions of the Basic Provisions are not applicable. 13. Pear Quality Adjustment Endorsement (a) This...
DOT National Transportation Integrated Search
1997-01-01
The purpose of this study was to design experimental laboratory equipment and perform experiments to investigate the basic physical processes that occur in concrete for periods of several hours to several days after mixing. The study was conducted in...
NASA Astrophysics Data System (ADS)
Lopez, J. P.; de Almeida, A. J. F.; Tabosa, J. W. R.
2018-03-01
We report on the observation of subharmonic resonances in high-order wave mixing associated with the quantized vibrational levels of atoms trapped in a one-dimensional optical lattice created by two intense nearly counterpropagating coupling beams. These subharmonic resonances, occurring at ±1 /2 and ±1 /3 of the frequency separation between adjacent vibrational levels, are observed through phase-match angularly resolved six- and eight-wave mixing processes. We investigate how these resonances evolve with the intensity of the incident probe beam, which couples with one of the coupling beams to create anharmonic coherence gratings between adjacent vibrational levels. Our experimental results also show evidence of high-order processes associated with coherence involving nonadjacent vibrational levels. Moreover, we also demonstrate that these induced high-order coherences can be stored in the medium and the associated optical information retrieved after a controlled storage time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazar, I.; Voicu, A.; Dobrota, S.
1995-12-31
In Romania after more than 135 years of oil production and processing, some severe environmental pollution problems have accumulated. In this context a joint research group from Institute of Biology Bucharest and S.C. Petrostar S.A. Ploiesti became involved in a research project on bioremediation of an environment contaminated with hydrocarbon waste. In the first stage of this project, investigations on microbial communities occurring in environments contaminated with oil were carried out. In the second stage, the hundreds of bacterial strains and populations isolated from soils, slops, and water sites contaminated with waste oil and water waste oil mix were submittedmore » to a screening program, to select a naturally occurring mixed culture with a high ability to degrade hydrocarbons.« less
Satellite mapping of Nile Delta coastal changes
NASA Technical Reports Server (NTRS)
Blodget, H. W.; Taylor, P. T.; Roark, J. H.
1989-01-01
Multitemporal, multispectral scanner (MSS) landsat data have been used to monitor erosion and sedimentation along the Rosetta Promontory of the Nile Delta. These processes have accelerated significantly since the completion of the Aswan High Dam in 1964. Digital differencing of four MSS data sets, using standard algorithms, show that changes observed over a single year period generally occur as strings of single mixed pixels along the coast. Therefore, these can only be used qualitatively to indicate areas where changes occur. Areas of change recorded over a multi-year period are generally larger and thus identified by clusters of pixels; this reduces errors introduced by mixed pixels. Satellites provide a synoptic perspective utilizing data acquired at frequent time intervals. This permits multiple year monitoring of delta evolution on a regional scale.
Detection of deep water formation from remote sensing chlorophyll in the NW Mediterranean Sea
NASA Astrophysics Data System (ADS)
Bernardello, Raffaele; Bahamon, Nixon; Ahumada, Miguel-Angel; Martin, Adrian; Henson, Stephanie
2015-04-01
The Northwestern Mediterranean Sea is one of the few regions in the world where Deep Water Formation (DWF) occurs. During wintertime cold and dry winds that typically occur in strong bursts lasting a few days, are able to erode the near-surface stability over this area, exposing the weakly stratified underwaters and initiate a phase of violent mixing and deep convection. DWF is not a steady-state process that recurs every year. Variations in wind stress and heat flux over the winter can induce a marked interannual variability: during some years the process is specially intense and completely absent during others. The extent of the area over which DWF occurs is also uncertain. The interannual variability of the DWF process is also associated to the variability in the seasonal phytoplankton dynamics over the area. The extent of the vertical mixing set the total amount of nutrients available for the phytoplankton during the following spring bloom. However, before the bloom, when deep convection is still active, surface chlorophyll (an index for phytoplankton biomass) is vertically diluted showing low surface concentration. The occurrence of these patches of anomalously low chlorophyll concentration can, in principle, be associated to the presence of active deep convection. In this study we investigate the possibility of exploiting such association in order to quantify the duration of deep convection and the extent of the area over which it occurs. These goals will be achieved through the analysis of remote sensing chlorophyll data and in-situ Argo-floats profiles.
The Benjamin Shock Tube Problem in KULL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulitsky, M
2005-08-26
The goal of the EZturb mix model in KULL is to predict the turbulent mixing process as it evolves from Rayleigh-Taylor, Richtmyer-Meshkov, or Kelvin-Helmholtz instabilities. In this report we focus on a simple example of the Richtmyer-Meshkov instability (which occurs when a shock hits an interface between fluids of different densities) without the complication of reshock. The experiment by Benjamin et al. involving a Mach 1.21 incident shock striking an air / SF6 interface, is a good one to model and understand before moving onto shock tubes that follow the growth of the turbulent mixing zone from first shock throughmore » well after reshock.« less
Hawaii Ocean Mixing Experiment: Program Summary
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Chao, Benjamin F. (Technical Monitor)
2002-01-01
It is becoming apparent that insufficient mixing occurs in the pelagic ocean to maintain the large scale thermohaline circulation. Observed mixing rates fall a factor of ten short of classical indices such as Munk's "Abyssal Recipe." The growing suspicion is that most of the mixing in the sea occurs near topography. Exciting recent observations by Polzin et al., among others, fuel this speculation. If topographic mixing is indeed important, it must be acknowledged that its geographic distribution, both laterally and vertically, is presently unknown. The vertical distribution of mixing plays a critical role in the Stommel Arons model of the ocean interior circulation. In recent numerical studies, Samelson demonstrates the extreme sensitivity of flow in the abyssal ocean to the spatial distribution of mixing. We propose to study the topographic mixing problem through an integrated program of modeling and observation. We focus on tidally forced mixing as the global energetics of this process have received (and are receiving) considerable study. Also, the well defined frequency of the forcing and the unique geometry of tidal scattering serve to focus the experiment design. The Hawaiian Ridge is selected as a study site. Strong interaction between the barotropic tide and the Ridge is known to take place. The goals of the Hawaiian Ocean Mixing Experiment (HOME) are to quantify the rate of tidal energy loss to mixing at the Ridge and to identify the mechanisms by which energy is lost and mixing generated. We are challenged to develop a sufficiently comprehensive picture that results can be generalized from Hawaii to the global ocean. To achieve these goals, investigators from five institutions have designed HOME, a program of historic data analysis, modeling and field observation. The Analysis and Modeling efforts support the design of the field experiments. As the program progresses, a global model of the barotropic (depth independent) tide, and two models of the baroclinic (depth varying) tide, all validated with near-Ridge data, will be applied, to reveal the mechanisms of tidal energy conversion along the Ridge, and allow spatial and temporal integration of the rate of conversion. Field experiments include a survey to identify "hot spots" of enhanced mixing and barotropic to baroclinic conversion, a Nearfield study identifying the dominant mechanisms responsible for topographic mixing, and a Farfield program which quantifies the barotropic energy flux convergence at the Ridge and the flux divergence associated with low mode baroclinic waves radiation. The difference is a measure of the tidal power available for mixing at the Ridge. Field work is planned from years 2000 through 2002, with analysis and modeling efforts extending through early 2006. If successful, HOME will yield an understanding of the dominant topographic mixing processes applicable throughout the global ocean. It will advance understanding of two central problems in ocean science, the maintenance of the abyssal stratification, and the dissipation of the tides. HOME data will be used to improve the parameterization of dissipation in models which presently assimilate TOPEX-POSEIDON observations. The improved understanding of the dynamics and spatial distribution of mixing processes will benefit future long-term programs such as CLIVAR.
USDA-ARS?s Scientific Manuscript database
Endogenous glucose production (EGP) occurs via hepatic glycogenolysis (GLY) and gluconeogenesis (GNG) and plays an important role in maintaining euglycemia. Rates of GLY and GNG increase during exercise in athletes following a mixed macronutrient diet; however these processes have not been investiga...
Seasonal timing of fire alters biomass and species composition of northern mixed prairie
USDA-ARS?s Scientific Manuscript database
Fire plays a central role in influencing ecosystem patterns and processes. However, documentation of fire seasonality and plant community response is limited in semi-arid grasslands. Most prescribed burns occur during spring and fall, when windows of safe burning conditions are often broad. Burnin...
USDA-ARS?s Scientific Manuscript database
Botanical cotton trash mixed with lint reduces cotton’s marketability and appearance. During cotton harvesting, ginning, and processing, trash size reduction occurs, thus complicating its removal and identification. This trash causes problems by increasing ends down in yarn formation and thus proce...
Yang, Li; Li, Shanshan; Liu, Jixiao; Cheng, Jingmeng
2018-02-01
To explore and utilize the advantages of droplet-based microfluidics, hydrodynamics, and mixing process within droplets traveling though the T junction channel and convergent-divergent sinusoidal microchannels are studied by numerical simulations and experiments, respectively. In the T junction channel, the mixing efficiency is significantly influenced by the twirling effect, which controls the initial distributions of the mixture during the droplet formation stage. Therefore, the internal recirculating flow can create a convection mechanism, thus improving mixing. The twirling effect is noticeably influenced by the velocity of the continuous phase; in the sinusoidal channel, the Dean vortices and droplet deformation are induced by centrifugal force and alternative velocity gradient, thus enhancing the mixing efficiency. The best mixing occurred when the droplet size is comparable with the channel width. Finally, we propose a unique optimized structure, which includes a T junction inlet joined to a sinusoidal channel. In this structure, the mixing of fluids in the droplets follows two routes: One is the twirling effect and symmetric recirculation flow in the straight channel. The other is the asymmetric recirculation and droplet deformation in the winding and variable cross-section. Among the three structures, the optimized structure has the best mixing efficiency at the shortest mixing time (0.25 ms). The combination of the twirling effect, variable cross-section effect, and Dean vortices greatly intensifies the chaotic flow. This study provides the insight of the mixing process and may benefit the design and operations of droplet-based microfluidics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Buoyancy-induced mixing during wash and elution steps in expanded bed adsorption.
Fee, C J; Liten, A D
2001-01-01
Buoyancy-induced mixing occurs during expanded bed adsorption processes when the feed stream entering the bottom of the system has a lower density than that of the fluid above it. In the absence of a headspace, mixing in the expanded bed can be modeled as a single, well-mixed vessel, with first-order dynamics. In the presence of a headspace, the system exhibits second-order dynamics for the densities typically encountered in protein chromatography, and can be modeled as two well-mixed vessels (the expanded bed and the headspace) arranged in series. In this paper, the mixing dynamics of the expanded bed are described and a mathematical model of the system is presented. Experimental measurements of density changes during the dilution of sucrose and salt solutions in a STREAMLINE 25 column are presented. These show excellent agreement with predictions using the model. A number of strategies for wash and elution in expanded mode, both in the presence and absence of headspace, are discussed.
An overview of physical and ecological processes in the Rio de la Plata Estuary
NASA Astrophysics Data System (ADS)
Marcelo Acha, E.; Mianzan, Hermes; Guerrero, Raúl; Carreto, José; Giberto, Diego; Montoya, Norma; Carignan, Mario
2008-07-01
The Rio de la Plata is a large-scale estuary located at 35°S on the Atlantic coast of South America. This system is one of the most important estuarine environments in the continent, being a highly productive area that sustains valuable artisanal and coastal fisheries in Uruguay and Argentina. The main goals of this paper are to summarize recent knowledge on this estuary, integrating physical, chemical and biological studies, and to explore the sources and ecological meaning of estuarine variability associated to the stratification/mixing alternateness in the estuary. We summarized unpublished data and information from several bibliographic sources. From study cases representing different stratification conditions, we draw a holistic view of physical patterns and ecological processes of the stratification/mixing alternateness. This estuary is characterized by strong vertical salinity stratification most of the time (the salt-wedge condition). The head of the estuary is characterized by a well-developed turbidity front. High turbidity constrains their photosynthesis. Immediately offshore the turbidity front, water becomes less turbid and phytoplankton peaks. As a consequence, trophic web in the estuary could be based on two sources of organic matter: phytoplankton and plant detritus. Dense plankton aggregations occur below the halocline and at the tip of the salt wedge. The mysid Neomysis americana, a key prey for juvenile fishes, occurs all along the turbidity front. A similar spatial pattern is shown by one of the most abundant benthic species, the clam Mactra isabelleana. These species could be taken advantage of the particulate organic matter and/or phytoplankton concentrated near the front. Nekton is represented by a rich fish community, with several fishes breeding inside the estuary. The most important species in terms of biomass is Micropogonias furnieri, the main target for the coastal fisheries of Argentina and Uruguay. Two processes have been identified as producing partially stratified conditions: persistent moderate winds (synoptic scale), or low freshwater runoff (interannual scale). Less frequently, total mixing of the salt wedge occurs after several hours of strong winds. The co-dominance of diatoms (which proliferate in highly turbulent environments) and red tides dinoflagellates and other bloom taxa (better adapted to stratified conditions), would indicate great variability in the turbulence strength, probably manifested as pulses. Microplankton and ichthyoplankton assemblages defined for the stratified condition are still recognized during the partially mixed condition, but in this case they occupy the entire water column: vertical structure of the plankton featuring the stratified condition become lost. Bottom fish assemblages, on the contrary, shows persistence under the different stratification conditions, though the dominant species of the groups show some variations. Summarizing, the Río de la Plata Estuary is a highly variable environment, strongly stratified most of the time but that can be mixed in some few hours by strong wind events that occur in an unpredictable manner, generating stratification/partially mixed (less frequently totally mixed) pulses all along the year. At larger temporal scales, the system is under the effects of river discharge variations associated to the ENSO cycle, but their ecological consequences are not fully studied.
Tidal Energy Available for Deep Ocean Mixing: Bounds from Altimetry Data
NASA Technical Reports Server (NTRS)
Egbert, Gary D.; Ray, Richard D.
1999-01-01
Maintenance of the large-scale thermohaline circulation has long presented a problem to oceanographers. Observed mixing rates in the pelagic ocean are an order of magnitude too small to balance the rate at which dense bottom water is created at high latitudes. Recent observational and theoretical work suggests that much of this mixing may occur in hot spots near areas of rough topography (e.g., mid-ocean ridges and island arcs). Barotropic tidal currents provide a very plausible source of energy to maintain these mixing processes. Topex/Poseidon (T/P) satellite altimetry data have made precise mapping of open ocean tidal elevations possible for the first time. We can thus obtain empirical, spatially localized, estimates of barotropic tidal dissipation. These provide an upper bound on the amount of tidal energy that is dissipated in the deep ocean, and hence is available for deep mixing. We will present and compare maps of open ocean tidal energy flux divergence, and estimates of tidal energy flux into shallow seas, derived from T/P altimetry data using both formal data assimilation methods and empirical approaches. With the data assimilation methods we can place formal error bars on the fluxes. Our results show that 20-25% of tidal energy dissipation occurs outside of the shallow seas, the traditional sink for tidal energy. This suggests that up to 1 TW of energy may be available from the tides (lunar and solar) for mixing the deep ocean. The dissipation indeed appears to be concentrated over areas of rough topography.
Tidal Energy Available for Deep Ocean Mixing: Bounds From Altimetry Data
NASA Technical Reports Server (NTRS)
Egbert, Gary D.; Ray, Richard D.
1999-01-01
Maintenance of the large-scale thermohaline circulation has long presented a problem to oceanographers. Observed mixing rates in the pelagic ocean are an order of magnitude too small to balance the rate at which dense bottom water is created at high latitudes. Recent observational and theoretical work suggests that much of this mixing may occur in hot spots near areas of rough topography (e.g., mid-ocean ridges and island arcs). Barotropic tidal currents provide a very plausible source of energy to maintain these mixing processes. Topex/Poseidon satellite altimetry data have made precise mapping of open ocean tidal elevations possible for the first time. We can thus obtain empirical, spatially localized, estimates of barotropic tidal dissipation. These provide an upper bound on the amount of tidal energy that is dissipated in the deep ocean, and hence is available for deep mixing. We will present and compare maps of open ocean tidal energy flux divergence, and estimates of tidal energy flux into shallow seas, derived from T/P altimetry data using both formal data assimilation methods and empirical approaches. With the data assimilation methods we can place formal error bars on the fluxes. Our results show that 20-25% of tidal energy dissipation occurs outside of the shallow seas, the traditional sink for tidal energy. This suggests that up to 1 TW of energy may be available from the tides (lunar and solar) for mixing the deep ocean. The dissipation indeed appears to be concentrated over areas of rough topography.
Tidal Energy Available for Deep Ocean Mixing: Bounds from Altimetry Data
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Egbert, Gary D.
1999-01-01
Maintenance of the large-scale thermohaline circulation has long presented an interesting problem. Observed mixing rates in the pelagic ocean are an order of magnitude too small to balance the rate at which dense bottom water is created at high latitudes. Recent observational and theoretical work suggests that much of this mixing may occur in hot spots near areas of rough topography (e.g., mid-ocean ridges and island arcs). Barotropic tidal currents provide a very plausible source of energy to maintain these mixing processes. Topex/Poseidon satellite altimetry data have made precise mapping of open ocean tidal elevations possible for the first time. We can thus obtain empirical, spatially localized, estimates of barotropic tidal dissipation. These provide an upper bound on the amount of tidal energy that is dissipated in the deep ocean, and hence is available for deep mixing. We will present and compare maps of open ocean tidal energy flux divergence, and estimates of tidal energy flux into shallow seas, derived from T/P altimetry data using both formal data assimilation methods and empirical approaches. With the data assimilation methods we can place formal error bars on the fluxes. Our results show that 20-25% of tidal energy dissipation occurs outside of the shallow seas, the traditional sink for tidal energy. This suggests that up to 1 TW of energy may be available from the tides (lunar and solar) for mixing the deep ocean. The dissipation indeed appears to be concentrated over areas of rough topography.
Cloud and boundary layer interactions over the Arctic sea-ice in late summer
NASA Astrophysics Data System (ADS)
Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.; Tjernström, M.; Sedlar, J.; Mauritsen, T.; Sjogren, S.; Leck, C.
2013-05-01
Observations from the Arctic Summer Cloud Ocean Study (ASCOS), in the central Arctic sea-ice pack in late summer 2008, provide a detailed view of cloud-atmosphere-surface interactions and vertical mixing processes over the sea-ice environment. Measurements from a suite of ground-based remote sensors, near surface meteorological and aerosol instruments, and profiles from radiosondes and a helicopter are combined to characterize a week-long period dominated by low-level, mixed-phase, stratocumulus clouds. Detailed case studies and statistical analyses are used to develop a conceptual model for the cloud and atmosphere structure and their interactions in this environment. Clouds were persistent during the period of study, having qualities that suggest they were sustained through a combination of advective influences and in-cloud processes, with little contribution from the surface. Radiative cooling near cloud top produced buoyancy-driven, turbulent eddies that contributed to cloud formation and created a cloud-driven mixed layer. The depth of this mixed layer was related to the amount of turbulence and condensed cloud water. Coupling of this cloud-driven mixed layer to the surface boundary layer was primarily determined by proximity. For 75% of the period of study, the primary stratocumulus cloud-driven mixed layer was decoupled from the surface and typically at a warmer potential temperature. Since the near-surface temperature was constrained by the ocean-ice mixture, warm temperatures aloft suggest that these air masses had not significantly interacted with the sea-ice surface. Instead, back trajectory analyses suggest that these warm airmasses advected into the central Arctic Basin from lower latitudes. Moisture and aerosol particles likely accompanied these airmasses, providing necessary support for cloud formation. On the occasions when cloud-surface coupling did occur, back trajectories indicated that these air masses advected at low levels, while mixing processes kept the mixed layer in equilibrium with the near-surface environment. Rather than contributing buoyancy forcing for the mixed-layer dynamics, the surface instead simply appeared to respond to the mixed-layer processes aloft. Clouds in these cases often contained slightly higher condensed water amounts, potentially due to additional moisture sources from below.
Cloud and boundary layer interactions over the Arctic sea ice in late summer
NASA Astrophysics Data System (ADS)
Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.; Tjernström, M.; Sedlar, J.; Mauritsen, T.; Sjogren, S.; Leck, C.
2013-09-01
Observations from the Arctic Summer Cloud Ocean Study (ASCOS), in the central Arctic sea-ice pack in late summer 2008, provide a detailed view of cloud-atmosphere-surface interactions and vertical mixing processes over the sea-ice environment. Measurements from a suite of ground-based remote sensors, near-surface meteorological and aerosol instruments, and profiles from radiosondes and a helicopter are combined to characterize a week-long period dominated by low-level, mixed-phase, stratocumulus clouds. Detailed case studies and statistical analyses are used to develop a conceptual model for the cloud and atmosphere structure and their interactions in this environment. Clouds were persistent during the period of study, having qualities that suggest they were sustained through a combination of advective influences and in-cloud processes, with little contribution from the surface. Radiative cooling near cloud top produced buoyancy-driven, turbulent eddies that contributed to cloud formation and created a cloud-driven mixed layer. The depth of this mixed layer was related to the amount of turbulence and condensed cloud water. Coupling of this cloud-driven mixed layer to the surface boundary layer was primarily determined by proximity. For 75% of the period of study, the primary stratocumulus cloud-driven mixed layer was decoupled from the surface and typically at a warmer potential temperature. Since the near-surface temperature was constrained by the ocean-ice mixture, warm temperatures aloft suggest that these air masses had not significantly interacted with the sea-ice surface. Instead, back-trajectory analyses suggest that these warm air masses advected into the central Arctic Basin from lower latitudes. Moisture and aerosol particles likely accompanied these air masses, providing necessary support for cloud formation. On the occasions when cloud-surface coupling did occur, back trajectories indicated that these air masses advected at low levels, while mixing processes kept the mixed layer in equilibrium with the near-surface environment. Rather than contributing buoyancy forcing for the mixed-layer dynamics, the surface instead simply appeared to respond to the mixed-layer processes aloft. Clouds in these cases often contained slightly higher condensed water amounts, potentially due to additional moisture sources from below.
Revealing the Location of the Mixing Layer in a Hot Bubble
NASA Astrophysics Data System (ADS)
Guerrero, M. A.; Fang, X.; Chu, Y.-H.; Toalá, J. A.; Gruendl, R. A.
2017-10-01
The fast stellar winds can blow bubbles in the circumstellar material ejected from previous phases of stellar evolution. These are found at different scales, from planetary nebulae (PNe) around stars evolving to the white dwarf stage, to Wolf-Rayet (WR) bubbles and up to large-scale bubbles around massive star clusters. In all cases, the fast stellar wind is shock-heated and a hot bubble is produced. Processes of mass evaporation and mixing of nebular material and heat conduction occurring at the mixing layer between the hot bubble and the optical nebula are key to determine the thermal structure of these bubbles and their evolution. In this contribution we review our current understanding of the X-ray observations of hot bubbles in PNe and present the first spatially-resolved study of a mixing layer in a PN.
Dynamics and Thermochemistry of Oxygen Uptake by a Mixed Ce-Pr Oxide
NASA Astrophysics Data System (ADS)
Sinev, M. Yu.; Fattakhova, Z. T.; Bychkov, V. Yu.; Lomonosov, V. I.; Gordienko, Yu. A.
2018-03-01
The dynamics of oxygen uptake by mixed Ce0.55Pr0.45O2-x oxide is studied in a pulsed oxygen supply mode using in situ high-temperature heat flow differential scanning calorimetry. It is stated that the oxidation proceeds in two regimes: a fast one at the beginning of the oxidation process, and a slow one, which is controlled by the diffusion of oxygen through the bulk of the solid at the later stages of the process. Analysis of the shape of calorimetric profiles reveals some processes, accompanied by heat release, that occur in the sample in the absence of oxygen in the gas phase. These could be due to both the redistribution of consumed oxygen in the oxide lattice and the lattice relaxation associated with the transformation of phases with different arrangements of oxygen vacancies in them. The heat effect (which diminishes from 60 to 40 kJ/mol in the course of oxygen uptake) associated with the oxidation of the reduced form of mixed Ce-Pr oxide, corresponds to the oxidation of praseodymium ions from (3+) to (4+).
Epidemics on interconnected networks
NASA Astrophysics Data System (ADS)
Dickison, Mark; Havlin, S.; Stanley, H. E.
2012-06-01
Populations are seldom completely isolated from their environment. Individuals in a particular geographic or social region may be considered a distinct network due to strong local ties but will also interact with individuals in other networks. We study the susceptible-infected-recovered process on interconnected network systems and find two distinct regimes. In strongly coupled network systems, epidemics occur simultaneously across the entire system at a critical infection strength βc, below which the disease does not spread. In contrast, in weakly coupled network systems, a mixed phase exists below βc of the coupled network system, where an epidemic occurs in one network but does not spread to the coupled network. We derive an expression for the network and disease parameters that allow this mixed phase and verify it numerically. Public health implications of communities comprising these two classes of network systems are also mentioned.
Two-beam-excited conical emission.
Kauranen, M; Maki, J J; Gaeta, A L; Boyd, R W
1991-06-15
We describe a conical emission process that occurs when two beams of near-resonant light intersect as they pass through sodium vapor. The light is emitted on the surface of a circular cone that is centered on the bisector of the two applied beams and has an angular extent equal to the crossing angle of the two applied beams. We ascribe the origin of this effect to a perfectly phase-matched four-wave mixing process.
Main processes of the Atlantic cold tongue interannual variability
NASA Astrophysics Data System (ADS)
Planton, Yann; Voldoire, Aurore; Giordani, Hervé; Caniaux, Guy
2018-03-01
The interannual variability of the Atlantic cold tongue (ACT) is studied by means of a mixed-layer heat budget analysis. A method to classify extreme cold and warm ACT events is proposed and applied to ten various analysis and reanalysis products. This classification allows 5 cold and 5 warm ACT events to be selected over the period 1982-2007. Cold (warm) ACT events are defined by the presence of negative (positive) sea surface temperature (SST) anomalies at the center of the equatorial Atlantic in late boreal spring, preceded by negative (positive) zonal wind stress anomalies in the western equatorial Atlantic. An ocean general circulation model capable of reconstructing the interannual variability of the ACT correctly is used to demonstrate that cold ACT events develop rapidly from May to June mainly due to intense cooling by vertical mixing and horizontal advection. The simulated cooling at the center of the basin is the result of the combined effects of non-local and local processes. The non-local process is an upwelling associated with an eastward-propagating Kelvin wave, which makes the mixed-layer more shallow and preconditions the upper layers to be cooled by an intense heat loss at the base of the mixed-layer, which is amplified by a stronger local injection of energy from the atmosphere. The early cooling by vertical mixing in March is also shown to be a good predictor of June cooling. In July, horizontal advection starts to warm the mixed-layer abnormally and damps SST anomalies. The advection anomalies, which result from changes in the horizontal temperature gradient, are associated in some cases with the propagation of Rossby waves along the equator. During warm ACT events, processes are reversed, generating positive SST anomalies: a downwelling Kelvin wave triggers stratification anomalies and mixed-layer depth anomalies, amplified by a weaker injection of energy from the atmosphere in May-June. In July, warm ACT events are abnormally cooled due to negative horizontal advection anomalies resulting from processes similar to those that occur during cold ACT events. This additional cooling process extends the period of cooling of the ACT, reducing SST anomalies.
Contribution of topographically generated submesoscale turbulence to Southern Ocean overturning
NASA Astrophysics Data System (ADS)
Ruan, Xiaozhou; Thompson, Andrew F.; Flexas, Mar M.; Sprintall, Janet
2017-11-01
The ocean's global overturning circulation regulates the transport and storage of heat, carbon and nutrients. Upwelling across the Southern Ocean's Antarctic Circumpolar Current and into the mixed layer, coupled to water mass modification by surface buoyancy forcing, has been highlighted as a key process in the closure of the overturning circulation. Here, using twelve high-resolution hydrographic sections in southern Drake Passage, collected with autonomous ocean gliders, we show that Circumpolar Deep Water originating from the North Atlantic, known as Lower Circumpolar Deep Water, intersects sloping topography in narrow and strong boundary currents. Observations of strong lateral buoyancy gradients, enhanced bottom turbulence, thick bottom mixed layers and modified water masses are consistent with growing evidence that topographically generated submesoscale flows over continental slopes enhance near-bottom mixing, and that cross-density upwelling occurs preferentially over sloping topography. Interactions between narrow frontal currents and topography occur elsewhere along the path of the Antarctic Circumpolar Current, which leads us to propose that such interactions contribute significantly to the closure of the overturning in the Southern Ocean.
Integrated lunar materials manufacturing process
NASA Technical Reports Server (NTRS)
Gibson, Michael A. (Inventor); Knudsen, Christian W. (Inventor)
1990-01-01
A manufacturing plant and process for production of oxygen on the moon uses lunar minerals as feed and a minimum of earth-imported, process materials. Lunar feed stocks are hydrogen-reducible minerals, ilmenite and lunar agglutinates occurring in numerous, explored locations mixed with other minerals in the pulverized surface layer of lunar soil known as regolith. Ilmenite (FeTiO.sub.3) and agglutinates contain ferrous (Fe.sup.+2) iron reducible by hydrogen to yield H.sub.2 O and metallic Fe at about 700.degree.-1,200.degree. C. The H.sub.2 O is electrolyzed in gas phase to yield H.sub.2 for recycle and O.sub.2 for storage and use. Hydrogen losses to lunar vacuum are minimized, with no net hydrogen (or any other earth-derived reagent) consumption except for small leaks. Feed minerals are surface-mined by front shovels and transported in trucks to the processing area. The machines are manned or robotic. Ilmenite and agglutinates occur mixed with silicate minerals which are not hydrogen-reducible at 700.degree.-1,200.degree. C. and consequently are separated and concentrated before feeding to the oxygen generation process. Solids rejected from the separation step and reduced solids from the oxygen process are returned to the mine area. The plant is powered by nuclear or solar power generators. Vapor-phase water electrolysis, a staged, countercurrent, fluidized bed reduction reactor and a radio-frequency-driven ceramic gas heater are used to improve thermal efficiency.
Mechanistic Processes Controlling Gas Sorption in Shale Reservoirs
NASA Astrophysics Data System (ADS)
Schaef, T.; Loring, J.; Ilton, E. S.; Davidson, C. L.; Owen, T.; Hoyt, D.; Glezakou, V. A.; McGrail, B. P.; Thompson, C.
2014-12-01
Utilization of CO2 to stimulate natural gas production in previously fractured shale-dominated reservoirs where CO2 remains in place for long-term storage may be an attractive new strategy for reducing the cost of managing anthropogenic CO2. A preliminary analysis of capacities and potential revenues in US shale plays suggests nearly 390 tcf in additional gas recovery may be possible via CO2 driven enhanced gas recovery. However, reservoir transmissivity properties, optimum gas recovery rates, and ultimate fate of CO2 vary among reservoirs, potentially increasing operational costs and environmental risks. In this paper, we identify key mechanisms controlling the sorption of CH4 and CO2 onto phyllosilicates and processes occurring in mixed gas systems that have the potential of impacting fluid transfer and CO2 storage in shale dominated formations. Through a unique set of in situ experimental techniques coupled with molecular-level simulations, we identify structural transformations occurring to clay minerals, optimal CO2/CH4 gas exchange conditions, and distinguish between adsorbed and intercalated gases in a mixed gas system. For example, based on in situ measurements with magic angle spinning NMR, intercalation of CO2 within the montmorillonite structure occurs in CH4/CO2 gas mixtures containing low concentrations (<5 mol%) of CO2. A stable montmorillonite structure dominates during exposure to pure CH4 (90 bar), but expands upon titration of small fractions (1-3 mol%) of CO2. Density functional theory was used to quantify the difference in sorption behavior between CO2 and CH4 and indicates complex interactions occurring between hydrated cations, CH4, and CO2. The authors will discuss potential impacts of these experimental results on CO2-based hydrocarbon recovery processes.
The Solid Phase Curing Time Effect of Asbuton with Texapon Emulsifier at the Optimum Bitumen Content
NASA Astrophysics Data System (ADS)
Sarwono, D.; Surya D, R.; Setyawan, A.; Djumari
2017-07-01
Buton asphalt (asbuton) could not be utilized optimally in Indonesia. Asbuton utilization rate was still low because the processed product of asbuton still have impracticable form in the term of use and also requiring high processing costs. This research aimed to obtain asphalt products from asbuton practical for be used through the extraction process and not requiring expensive processing cost. This research was done with experimental method in laboratory. The composition of emulsify asbuton were 5/20 grain, premium, texapon, HCl, and aquades. Solid phase was the mixture asbuton 5/20 grain and premium with 3 minutes mixing time. Liquid phase consisted texapon, HCl and aquades. The aging process was done after solid phase mixing process in order to reaction and tie of solid phase mixed become more optimal for high solubility level of asphalt production. Aging variable time were 30, 60, 90, 120, and 150 minutes. Solid and liquid phase was mixed for emulsify asbuton production, then extracted for 25 minutes. Solubility level of asphalt, water level, and asphalt characteristic was tested at extraction result of emulsify asbuton with most optimum ashphal level. The result of analysis tested data asphalt solubility level at extract asbuton resulted 94.77% on 120 minutes aging variable time. Water level test resulted water content reduction on emulsify asbuton more long time on occurring of aging solid phase. Examination of asphalt characteristic at extraction result of emulsify asbuton with optimum asphalt solubility level, obtain specimen that have rigid and strong texture in order that examination result have not sufficient ductility and penetration value.
Verifying mixing in dilution tunnels How to ensure cookstove emissions samples are unbiased
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Daniel L.; Rapp, Vi H.; Caubel, Julien J.
A well-mixed diluted sample is essential for unbiased measurement of cookstove emissions. Most cookstove testing labs employ a dilution tunnel, also referred to as a “duct,” to mix clean dilution air with cookstove emissions before sampling. It is important that the emissions be well-mixed and unbiased at the sampling port so that instruments can take representative samples of the emission plume. Some groups have employed mixing baffles to ensure the gaseous and aerosol emissions from cookstoves are well-mixed before reaching the sampling location [2, 4]. The goal of these baffles is to to dilute and mix the emissions stream withmore » the room air entering the fume hood by creating a local zone of high turbulence. However, potential drawbacks of mixing baffles include increased flow resistance (larger blowers needed for the same exhaust flow), nuisance cleaning of baffles as soot collects, and, importantly, the potential for loss of PM2.5 particles on the baffles themselves, thus biasing results. A cookstove emission monitoring system with baffles will collect particles faster than the duct’s walls alone. This is mostly driven by the available surface area for deposition by processes of Brownian diffusion (through the boundary layer) and turbophoresis (i.e. impaction). The greater the surface area available for diffusive and advection-driven deposition to occur, the greater the particle loss will be at the sampling port. As a layer of larger particle “fuzz” builds on the mixing baffles, even greater PM2.5 loss could occur. The micro structure of the deposited aerosol will lead to increased rates of particle loss by interception and a tendency for smaller particles to deposit due to impaction on small features of the micro structure. If the flow stream could be well-mixed without the need for baffles, these drawbacks could be avoided and the cookstove emissions sampling system would be more robust.« less
The Run-up to Volcanic Eruption Unveiled by Forensic Petrology and Geophysical Observations
NASA Astrophysics Data System (ADS)
Rasmussen, D. J.; Plank, T. A.; Roman, D. C.
2017-12-01
Volcanoes often warn of impending eruptions. However, one of the greatest challenges in volcano research is translating precursory geophysical signals into physical magmatic processes. Petrology offers powerful tools to study eruption run-up that benefit from direct response to magmatic forcings. Developing these tools, and tying them to geophysical observations, will help us identify eruption triggers (e.g., magmatic recharge, gas build-up, tectonic events) and understand the significance of monitored signals of unrest. We present an overview of petrologic tools used for studying eruption run-up, highlighting results from our study of the 1999 eruption of Shishaldin volcano. Olivine crystals contain chemical gradients, the consequence of diffusion following magma mixing events, which is modeled to determine mixing timescales. Modeled timescales provide strong evidence for at least three mixing events, which were triggered by magmatic recharge. Petrologic barometers indicate these events occurred at very shallow depths (within the volcanic edifice). The first mixing event occurred nine months before eruption, which was signaled by a swarm of deep-long period earthquake. Minor recharge events followed over two months, which are indicated by a second deep-long period earthquake swarm and a change in the local stress orientation measured by shear-wave splitting. Following these events, the system was relatively quiet until a large mixing event occurred 45 days prior to eruption, which was heralded by a large earthquake (M5.2). Following this event, geophysical signals of unrest intensified and became continuous. The final mixing event, beginning roughly a week before eruption, represents the final perturbation to the system before eruption. Our findings point to a relatively long run-up, which was subtle at first and intensified several weeks before eruption. This study highlights the strong link between geophysical signals of volcanic unrest and magmatic events, and helps open the door for the application of forensic petrology to unmonitored eruptions.
Insights of Mixing on the Assembly of DNA Nanoparticles
NASA Astrophysics Data System (ADS)
Williams, Manda S.
Size is a crucial parameter in the delivery of nanoparticle therapeutics, affecting mechanisms such as tissue delivery, clearance, and cellular uptake. The morphology of nanoparticles is dependent both upon chemistry and the physical process of assembly. Polyplexes, a major class of non-viral gene delivery vectors, are conventionally prepared by vortex mixing, resulting in non-uniform nanoparticles and poor reproducibility. Better understanding and control of the physical process of assembly, and mixing in particular, will produce polyplexes of a more uniform and reliable size, optimizing their efficiency for laboratory and clinical use. "Mixing" is the reduction of length scale of a system to accelerate diffusion until a uniform concentration is achieved. Vortex mixing is poorly characterized and sensitive to protocols. Microfluidic systems are notable for predictable fluid behavior, and are ideal for analyzing and controlling the physical interaction of reagents on the microscale, realm where mixing occurs. Several microdevices for the preparation of DNA polyplexes are explored here. Firstly, the staggered herringbone mixer, a chaotic advection micromixer, is used to observe the effects of mixing time on nanoparticle size. Next, a novel device to surround the reagent flows with a sheath of buffer, preventing interaction with the walls and confining the complexation to a zone of lower, less variable shear and residence time, is used to demonstrate the role of shear in nanoparticle assembly. Lastly, uneven diffusion between ion pairs produces a small separation of charge at fluid interfaces; this short-lived electric field has a significant impact on the transport of DNA over the time scales of mixing and complexation. The effects of common buffers on the transport of DNA are examined for possible applications to mixing and complexation. These three investigations demonstrate the importance of the physical process in polyplex assembly, and indicate several important considerations in the development of new protocols and devices.
Unique, Non-Earthlike, Meteoritic Ion Behavior in Upper Atmosphere of Mars
NASA Technical Reports Server (NTRS)
Grebowsky, J. M.; Benna, M.; Plane, J. M. C.; Collinson, G. A.; Mahaffy, P. R.; Jakosky, B. M.
2017-01-01
Abstract Interplanetary dust particles have long been expected to produce permanent ionospheric metal ion layers at Mars, as on Earth, but the two environments are so different that uncertainty existed as to whether terrestrial-established understanding would apply to Mars. The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission made the first in situ detection of the continuous presence of Na+, Mg+, and Fe+ at Mars and indeed revealed non-Earthlike features/processes. There is no separation of the light Mg+ and the heavy Fe+ with increasing altitude as expected for gravity control. The metal ions are well-mixed with the neutral atmosphere at altitudes where no mixing process is expected. Isolated metal ion layers mimicking Earths sporadic E layers occur despite the lack of a strong magnetic field as required at Earth. Further, the metal ion distributions are coherent enough to always show atmospheric gravity wave signatures. All features and processes are unique to Mars.
Efficient non-linear two-photon effects from the Cesium 6D manifold
NASA Astrophysics Data System (ADS)
Haluska, Nathan D.; Perram, Glen P.; Rice, Christopher A.
2018-02-01
We report several non-linear process that occur when two-photon pumping the cesium 6D states. Cesium vapor possess some of the largest two-photon pump cross sections in nature. Pumping these cross sections leads to strong amplified spontaneous emission that we observe on over 17 lasing lines. These new fields are strong enough to couple with the pump to create additional tunable lines. We use a heat pipe with cesium densities of 1014 to 1016 cm-3 and 0 to 5 Torr of helium buffer gas. The cesium 6D States are interrogated by both high energy pulses and low power CW sources. We observe four-wave mixing, six-wave mixing, potential two-photon lasing, other unknown nonlinear processes, and the persistence of some processes at low thresholds. This system is also uniquely qualified to support two-photon lasing under the proper conditions.
Mixing of Pure Air Jets with a Reacting Fuel-Rich Crossflow
NASA Technical Reports Server (NTRS)
Leong, M. Y.; Samuelsen, G. S.; Holdeman, J. D.
1997-01-01
Jets in a crossflow play an integral role in practical combustion systems such as can and annular gas turbine combustors in conventional systems, and the Rich-burn/Quick-mix/Lean-burn (RQL) combustor utilized in stationary applications and proposed for advanced subsonic and supersonic transports. The success of the RQL combustor rests with the performance of the quick-mixing section that bridges the rich and lean zones. The mixing of jet air with a rich crossflow to bring the reaction to completion in the lean zone must be performed rapidly and thoroughly in order to decrease the extent of near-stoichiometric fluid pocket formation. Fluid pockets at near-stoichiometric equivalence ratios are undesirable because the high temperatures attained accelerate pollutant formation kinetics associated with nitric oxide (NO). The present study develops a model experiment designed to reveal the processes that occur when jet air is introduced into hot effluent emanating from a fuel-rich reaction zone.
Modification of Asian-dust particles transported by different routes - A case study
NASA Astrophysics Data System (ADS)
Zaizen, Yuji; Naoe, Hiroaki; Takahashi, Hiroshi; Okada, Kikuo
2014-11-01
Two separate Asian dust events occurred before and after the passage of a cold front over Japan on 21 March 2010. According to back trajectories and a model simulation, the two dusty air-masses originated from the same region in Mongoria or northern China and were transported over different routes to Japan. Samples of aerosol particles from both airmasses were collected at Tsukuba and Mt. Haruna and examined by single-particle analysis using a transmission electron microscope and an energy dispersive X-ray analyzer. The mixing properties of mineral aerosol were quite different in the two airmasses and size ranges. In the prefrontal airmass, which were associated with pollution, most of fine (<1 μm) mineral aerosol was internally mixed with sulfate. On the contrary, mineral aerosols in the postfront airmass, which were relatively natural, were mostly externally mixed. In the latter case, the internal mixing was associated with Ca, however in the former case, mixing processes not concerning mineralogy was suggested.
Perirheic mixing and biogeochemical processing in flow-through and backwater floodplain wetlands
NASA Astrophysics Data System (ADS)
Jones, C. Nathan; Scott, Durelle T.; Edwards, Brandon L.; Keim, Richard F.
2014-09-01
Inundation hydrology and associated processes control biogeochemical processing in floodplains. To better understand how hydrologic connectivity, residence time, and intrafloodplain mixing vary in floodplain wetlands, we examined how water quality of two contrasting areas in the floodplain of the Atchafalaya River—a flow-through and a backwater wetland—responded to an annual flood pulse. Large, synoptic sampling campaigns occurred in both wetlands during the rising limb, peak, and falling limb of the hydrograph. Using a combination of conservative and reactive tracers, we inferred three dominant processes that occurred over the course of the flood pulse: flushing (rising limb), advective transport (peak), and organic matter accumulation (falling limb). Biogeochemistry of the two wetlands was similar during the peak while the river overflowed into both. However, during the rising and falling limbs, flow in the backwater wetland experienced much greater residence time. This led to the accumulation of dissolved organic matter and dissolved phosphorus. There were also elevated ratios of dissolved organic carbon to nitrate in the backwater wetland, suggesting nitrogen removal was limited by nitrate transported into the floodplain there. Collectively, our results suggest inclusion of a temporal component into the perirheic concept more fully describes inundation hydrology and biogeochemistry in large river floodplain. This article was corrected on 6 OCT 2014. See the end of the full text for details
Synoptic-to-planetary scale wind variability enhances phytoplankton biomass at ocean fronts
NASA Astrophysics Data System (ADS)
Whitt, D. B.; Taylor, J. R.; Lévy, M.
2017-06-01
In nutrient-limited conditions, phytoplankton growth at fronts is enhanced by winds, which drive upward nutrient fluxes via enhanced turbulent mixing and upwelling. Hence, depth-integrated phytoplankton biomass can be 10 times greater at isolated fronts. Using theory and two-dimensional simulations with a coupled physical-biogeochemical ocean model, this paper builds conceptual understanding of the physical processes driving upward nutrient fluxes at fronts forced by unsteady winds with timescales of 4-16 days. The largest vertical nutrient fluxes occur when the surface mixing layer penetrates the nutricline, which fuels phytoplankton in the mixed layer. At a front, mixed layer deepening depends on the magnitude and direction of the wind stress, cross-front variations in buoyancy and velocity at the surface, and potential vorticity at the base of the mixed layer, which itself depends on past wind events. Consequently, mixing layers are deeper and more intermittent in time at fronts than outside fronts. Moreover, mixing can decouple in time from the wind stress, even without other sources of physical variability. Wind-driven upwelling also enhances depth-integrated phytoplankton biomass at fronts; when the mixed layer remains shallower than the nutricline, this results in enhanced subsurface phytoplankton. Oscillatory along-front winds induce both oscillatory and mean upwelling. The mean effect of oscillatory vertical motion is to transiently increase subsurface phytoplankton over days to weeks, whereas slower mean upwelling sustains this increase over weeks to months. Taken together, these results emphasize that wind-driven phytoplankton growth is both spatially and temporally intermittent and depends on a diverse combination of physical processes.
NASA Astrophysics Data System (ADS)
Chae, Gi-Tak; Yun, Seong-Taek; Kim, Kangjoo; Mayer, Bernhard
2006-04-01
The Pocheon spa-land area, South Korea occurs in a topographically steep, fault-bounded basin and is characterized by a hydraulic upwelling flow zone of thermal water (up to 44 °C) in its central part. Hydrogeochemical and environmental isotope data for groundwater in the study area suggested the occurrence of two distinct water types, a Ca-HCO 3 type and a Na-HCO 3 type. The former water type is characterized by relatively high concentrations of Ca, SO 4 and NO 3, which show significant temporal variation indicating a strong influence by surface processes. In contrast, the Na-HCO 3 type waters have high and temporally constant temperature, pH, TDS, Na, Cl, HCO 3 and F, indicating the attainment of a chemical steady state with respect to the host rocks (granite and gneiss). Oxygen, hydrogen and tritium isotope data also indicate the differences in hydrologic conditions between the two groups: the relatively lower δ 18O, δD and tritium values for Na-HCO 3 type waters suggest that they recharged at higher elevations and have comparatively long mean residence times. Considering the geologic and hydrogeologic conditions of the study area, Na-HCO 3 type waters possibly have evolved from Ca-HCO 3 type waters. Mass balance modeling revealed that the chemistry of Na-HCO 3 type water was regulated by dissolution of silicates and carbonates and concurrent ion exchange. Particularly, low Ca concentrations in Na-HCO 3 water was mainly caused by cation exchange. Multivariate mixing and mass balance modeling (M3 modeling) was performed to evaluate the hydrologic mixing and mass transfer between discrete water masses occurring in the shallow peripheral part of the central spa-land area, where hydraulic upwelling occurs. Based on Q-mode factor analysis and mixing modeling using PHREEQC, an ideal mixing among three major water masses (surface water, shallow groundwater of Ca-HCO 3 type, deep groundwater of Na-HCO 3 type) was proposed. M3 modeling suggests that all the groundwaters in the spa area can be described as mixtures of these end-members. After mixing, the net mole transfer by geochemical reaction was less than that without mixing. Therefore, it is likely that in the hydraulic mixing zone geochemical reactions are of minor importance and, therefore, that mixing regulates the groundwater geochemistry.
Development of Tripropellant CFD Design Code
NASA Technical Reports Server (NTRS)
Farmer, Richard C.; Cheng, Gary C.; Anderson, Peter G.
1998-01-01
A tripropellant, such as GO2/H2/RP-1, CFD design code has been developed to predict the local mixing of multiple propellant streams as they are injected into a rocket motor. The code utilizes real fluid properties to account for the mixing and finite-rate combustion processes which occur near an injector faceplate, thus the analysis serves as a multi-phase homogeneous spray combustion model. Proper accounting of the combustion allows accurate gas-side temperature predictions which are essential for accurate wall heating analyses. The complex secondary flows which are predicted to occur near a faceplate cannot be quantitatively predicted by less accurate methodology. Test cases have been simulated to describe an axisymmetric tripropellant coaxial injector and a 3-dimensional RP-1/LO2 impinger injector system. The analysis has been shown to realistically describe such injector combustion flowfields. The code is also valuable to design meaningful future experiments by determining the critical location and type of measurements needed.
Effect on Non-Newtonian Rheology on Mixing in Taylor-Couette Flow
NASA Astrophysics Data System (ADS)
Cagney, Neil; Balabani, Stavroula
2017-11-01
Mixing processes within many industry applications are strongly affected by the rheology of the working fluid. This is particularly relevant for pharmaceutical, food and waste treatment industries, where the working fluids are often strongly non-Newtonian, and significant variations in rheology between batches may occur. We approach the question of how rheology affects mixing by focussing on a the classical case of Taylor-Couette flow, which exhibits a number of instabilities and flow regimes as a function of Reynolds number. We examine Taylor-Couette flow generated for a range of aqueous solutions of xantham gum or corn starch, such that the rheology varies from shear-thinning to shear-thickening. For each case, we measure the power consumption using a torque meter and the flow field using high speed, time-resolved Particle-Image Velocimetry. The mixing characteristics are quantified using a number of Lagrangian and Eulerian approaches, including the coarse grained density method and vortex strength. By comparing these metrics to the power number, we discuss how the mixing efficiency (ratio of mixing effectiveness to power input) varies with the flow index of the fluid.
Modeling hyporheic zone processes
Runkel, Robert L.; McKnight, Diane M.; Rajaram, Harihar
2003-01-01
Stream biogeochemistry is influenced by the physical and chemical processes that occur in the surrounding watershed. These processes include the mass loading of solutes from terrestrial and atmospheric sources, the physical transport of solutes within the watershed, and the transformation of solutes due to biogeochemical reactions. Research over the last two decades has identified the hyporheic zone as an important part of the stream system in which these processes occur. The hyporheic zone may be loosely defined as the porous areas of the stream bed and stream bank in which stream water mixes with shallow groundwater. Exchange of water and solutes between the stream proper and the hyporheic zone has many biogeochemical implications, due to differences in the chemical composition of surface and groundwater. For example, surface waters are typically oxidized environments with relatively high dissolved oxygen concentrations. In contrast, reducing conditions are often present in groundwater systems leading to low dissolved oxygen concentrations. Further, microbial oxidation of organic materials in groundwater leads to supersaturated concentrations of dissolved carbon dioxide relative to the atmosphere. Differences in surface and groundwater pH and temperature are also common. The hyporheic zone is therefore a mixing zone in which there are gradients in the concentrations of dissolved gasses, the concentrations of oxidized and reduced species, pH, and temperature. These gradients lead to biogeochemical reactions that ultimately affect stream water quality. Due to the complexity of these natural systems, modeling techniques are frequently employed to quantify process dynamics.
Investigation of Damage with Cluster Ion Beam Irradiation Using HR-RBS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seki, Toshio; Aoki, Takaaki; Matsuo, Jiro
2008-11-03
Cluster ion beam can process targets with shallow damage because of the very low irradiation energy per atom. However, it is needed to investigate the damage with cluster ion beam irradiation, because recent applications demand process targets with ultra low damage. The shallow damage can be investigated from depth profiles of specific species before and after ion irradiation. They can be measured with secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectroscopy (RBS). High resolution Rutherford backscattering spectroscopy (HR-RBS) is a non destructive measurement method and depth profiles can be measured with nano-resolution. The cluster ion beam mixing of thinmore » Ni layer in carbon targets can be investigated with HR-RBS. The mixing depth with cluster ion irradiation at 10 keV was about 10 nm. The mixing depth with cluster ion irradiation at 1 keV and 5 keV were less than 1 nm and 5 nm, respectively. The number of displaced Ni atoms with cluster ion irradiation was very larger than that with monomer ion irradiation of same energy. This result shows that violent mixing occurs with single cluster impact.« less
Mixed Material Plasma-Surface Interactions in ITER: Recent Results from the PISCES Group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tynan, George R.; Baldwin, Matthew; Doerner, Russell
This paper summarizes recent PISCES studies focused on the effects associated with mixed species plasmas that are similar in composition to what one might expect in ITER. Formation of nanometer scale whiskerlike features occurs in W surfaces exposed to pure He and mixed D/He plasmas and appears to be associated with the formation of He nanometer-scaled bubbles in the W surface. Studies of Be-W alloy formation in Be-seeded D plasmas suggest that this process may be important in ITER all metal wall operational scenarios. Studies also suggest that BeD formation via chemical sputtering of Be walls may be an importantmore » first wall erosion mechanism. D retention in ITER mixed materials has also been studied. The D release behavior from beryllium co-deposits does not appear to be a diffusion dominated process, but instead is consistent with thermal release from a number of variable trapping energy sites. As a result, the amount of tritium remaining in codeposits in ITER after baking will be determined by the maximum temperature achieved, rather than by the duration of the baking cycle.« less
Interface dissolution control of the 14C profile in marine sediment
Keir, R.S.; Michel, R.L.
1993-01-01
The process of carbonate dissolution at the sediment-water interface has two possible endmember boundary conditions. Either the carbonate particles dissolve mostly before they are incorporated into the sediment by bioturbation (interface dissolution), or the vertical mixing is rapid relative to their extermination rate (homogeneous dissolution). In this study, a detailed radiocarbon profile was determined in deep equatorial Pacific sediment that receives a high rate of carbonate supply. In addition, a box model of sediment mixing was used to simulate radiocarbon, carbonate content and excess thorium profiles that result from either boundary process following a dissolution increase. Results from homogeneous dissolution imply a strong, very recent erosional event, while interface dissolution suggests that moderately increased dissolution began about 10,000 years ago. In order to achieve the observed mixed layer radiocarbon age, increased homogeneous dissolution would concentrate a greater amount of clay and 230Th than is observed, while for interface dissolution the predicted concentrations are too small. These results together with small discontinuities beneath the mixed layer in 230Th profiles suggest a two-stage increase in interface dissolution in the deep Pacific, the first occurring near the beginning of the Holocene and the second more recently, roughly 5000 years ago. ?? 1993.
Modelling exhaust plume mixing in the near field of an aircraft
NASA Astrophysics Data System (ADS)
Garnier, F.; Brunet, S.; Jacquin, L.
1997-11-01
A simplified approach has been applied to analyse the mixing and entrainment processes of the engine exhaust through their interaction with the vortex wake of an aircraft. Our investigation is focused on the near field, extending from the exit nozzle until about 30 s after the wake is generated, in the vortex phase. This study was performed by using an integral model and a numerical simulation for two large civil aircraft: a two-engine Airbus 330 and a four-engine Boeing 747. The influence of the wing-tip vortices on the dilution ratio (defined as a tracer concentration) shown. The mixing process is also affected by the buoyancy effect, but only after the jet regime, when the trapping in the vortex core has occurred. In the early wake, the engine jet location (i.e. inboard or outboard engine jet) has an important influence on the mixing rate. The plume streamlines inside the vortices are subject to distortion and stretching, and the role of the descent of the vortices on the maximum tracer concentration is discussed. Qualitative comparison with contrail photograph shows similar features. Finally, tracer concentration of inboard engine centreline of B-747 are compared with other theoretical analyses and measured data.
Transport and mixing of a volume of fluid in a complex geometry
NASA Astrophysics Data System (ADS)
Gavelli, Filippo
This work presents the results of the experimental investigation of an entire sequence of events, leading to an unwanted injection of boron-depleted water into the core of a PWR. The study is subdivided into three tasks: the generation of a dilute volume in the primary system, its transport to the core, and the mixing encountered along the path. Experiments conducted at the University of Maryland (UM) facility show that, during a Small-Break LOCA transient, volumes of dilute coolant are segregated in the system, by means of phase-separating energy transport from the core to the steam generators (Boiler Condenser Mode). Two motion-initiating mechanisms are considered: the resumption of natural circulation during the recovery of the primary liquid inventory, and the reactor coolant pump startup under BCM conditions. During the inventory recovery, various phenomena are observed, that contribute to the mixing of the dilute volumes prior to the resumption of flow. The pump activation, instead, occurs in a stagnant system, therefore, no mixing of the unborated liquid has occurred. Since an unmixed slug has the potential for a larger reactivity excursion than a partially mixed one, the pump-initiated flow resumption represents the worst-case scenario. The impulse - response method is applied, for the first time, to the problem of mixing in the downcomer. This allows to express the mixing in terms of two parameters, the dispersion number and the residence time, characteristics of the flow distribution in the complex annular geometry. Other important results are obtained from the analysis of the experimental data with this procedure. It is shown that the turbulence generated by the pump impeller has a significant impact on the overall mixing. Also, the geometric discontinuities in the downcomer (in particular, the gap enlargement below the cold leg elevation) are shown to be the cause of vortex structures that highly enhance the mixing process.
Mixing and NO(x) Emission Calculations of Confined Reacting Jet Flows in a Cylindrical Duct
NASA Technical Reports Server (NTRS)
Holdeman, James D. (Technical Monitor); Oechsle, Victor L.
2003-01-01
Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A 3-dimensional tool has been used to predict the mixing flow field characteristics and NOx emission in a quench section of an RQL combustor, Eighteen configurations have been analyzed in a circular geometry in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying three parameters: 1) jet-to-mainstream momentum-flux ratio (J), 2) orifice shape or orifice aspect ratio, and 3) slot slant angle. The results indicate that the mixing flow field significantly varies with the value of the jet penetration and subsequently, slanting elongated slots generally improve the mixing uniformity at high J conditions. Round orifices produce more uniform mixing and low NO(x) emissions at low J due to the strong and adequate jet penetration. No significant correlation was found between the NO(x) production rates and the mixing deviation parameters, however, strong correlation was found between NO(x) formation and jet penetration. In the computational results, most of the NO(x) formation occurred behind the orifice starting at the orifice wake region. Additional NO(x) is formed upstream of the orifice in certain configurations with high J conditions due to the upstream recirculation.
Jacobs, Ian E.; Aasen, Erik W.; Oliveira, Julia L.; ...
2016-03-23
Doping polymeric semiconductors often drastically reduces the solubility of the polymer, leading to difficulties in processing doped films. Here, we compare optical, electrical, and morphological properties of P3HT films doped with F4TCNQ, both from mixed solutions and using sequential solution processing with orthogonal solvents. We demonstrate that sequential doping occurs rapidly (<1 s), and that the film doping level can be precisely controlled by varying the concentration of the doping solution. Furthermore, the choice of sequential doping solvent controls whether dopant anions are included or excluded from polymer crystallites. Atomic force microscopy (AFM) reveals that sequential doping produces significantly moremore » uniform films on the nanoscale than the mixed-solution method. In addition, we show that mixed-solution doping induces the formation of aggregates even at low doping levels, resulting in drastic changes to film morphology. Sequentially coated films show 3–15 times higher conductivities at a given doping level than solution-doped films, with sequentially doped films processed to exclude dopant anions from polymer crystallites showing the highest conductivities. In conclusion, we propose a mechanism for doping induced aggregation in which the shift of the polymer HOMO level upon aggregation couples ionization and solvation energies. To show that the methodology is widely applicable, we demonstrate that several different polymer:dopant systems can be prepared by sequential doping.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Ian E.; Aasen, Erik W.; Oliveira, Julia L.
Doping polymeric semiconductors often drastically reduces the solubility of the polymer, leading to difficulties in processing doped films. Here, we compare optical, electrical, and morphological properties of P3HT films doped with F4TCNQ, both from mixed solutions and using sequential solution processing with orthogonal solvents. We demonstrate that sequential doping occurs rapidly (<1 s), and that the film doping level can be precisely controlled by varying the concentration of the doping solution. Furthermore, the choice of sequential doping solvent controls whether dopant anions are included or excluded from polymer crystallites. Atomic force microscopy (AFM) reveals that sequential doping produces significantly moremore » uniform films on the nanoscale than the mixed-solution method. In addition, we show that mixed-solution doping induces the formation of aggregates even at low doping levels, resulting in drastic changes to film morphology. Sequentially coated films show 3–15 times higher conductivities at a given doping level than solution-doped films, with sequentially doped films processed to exclude dopant anions from polymer crystallites showing the highest conductivities. In conclusion, we propose a mechanism for doping induced aggregation in which the shift of the polymer HOMO level upon aggregation couples ionization and solvation energies. To show that the methodology is widely applicable, we demonstrate that several different polymer:dopant systems can be prepared by sequential doping.« less
NASA Astrophysics Data System (ADS)
Rossi, Stefano; Morgavi, Daniele; Vetere, Francesco; Petrelli, Maurizio; Perugini, Diego
2017-04-01
keywords: Magma mixing, chaotic dynamics, time series experiments Magma mixing is a petrologic phenomenon which is recognized as potential trigger of highly explosive eruptions and its evidence is commonly observable in natural rocks. Here we tried to replicate the dynamic conditions of mixing performing a set of chaotic mixing experiments between shoshonitic and rhyolitic magmas from Vulcano island. Vulcano is the southernmost island of the Aeolian Archipelago (Aeolian Islands, Italy); it is completely built by volcanic rocks with variable degree of evolution ranging from basalt to rhyolite (e.g. Keller 1980; Ellam et al. 1988; De Astis 1995; De Astis et al. 2013) and its magmatic activity dates back to about 120 ky. Last eruption occurred in 1888-1890. The chaotic mixing experiments were performed by using the new ChaOtic Magma Mixing Apparatus (COMMA), held at the Department of Physics and Geology, University of Perugia. This new experimental device allows to track the evolution of the mixing process and the associated modulation of chemical composition between different magmas. Experiments were performed at 1200°C and atmospheric pressure with a viscosity ratio higher than three orders of magnitude. The experimental protocol was chosen to ensure the occurrence of chaotic dynamics in the system and the run duration was progressively increased (e.g. 10.5 h, 21 h, 42 h). The products of each experiment are crystal-free glasses in which the variation of major elements was investigated along different profiles using electron microprobe (EMPA) at Institute für Mineralogie, Leibniz Universität of Hannover (Germany). The efficiency of the mixing process is estimated by calculating the decrease of concentration variance in time and it is shown that the variance of major elements exponentially decays. Our results confirm and quantify how different chemical elements homogenize in the melt at differing rates. It is also observable that the mixing structures generated during the mixing experiments are topologically identical to those observed in natural mixed volcanic rocks.
Bartsch, L.A.; Richardson, W.B.; Sandheinrich, M.B.
2003-01-01
We conducted a factorial experiment, in outdoor mesocosms, on the effects of zebra mussels and water column mixing (i.e., turbulence) on the diet, growth, and survival of larval fathead minnows (Pimephales promelas). Significant (P < 0.05) larval mortality occurred by the end of the experiment with the highest mortality (90%) occurring in the presence of both turbulence and zebra mussels, whereas mortality was 37% in treatment with turbulence and 17% and 18% in the zebra mussels treatment, and the control, respectively. The size of individual fish was significantly different among treatments at the end of the experiment and was inversely related to survival. Levels of trophic resources (i.e., phyto and zooplankton) varied among treatments and were treatment specific. Turbulent mixing facilitated removal of phytoplankton by zebra mussels by making the entire water column of the tanks available to these benthic filter feeders. Early in the experiment (Day = 0 to 14) the physical process of turbulent mixing likely caused a reduction in standing stocks of zooplankton. The interactive effect of turbulence and mussels reduced copepod and rotifer stocks, through physical processes and through filtration by zebra mussels, relative to the turbulence treatment. The reductions in the number of total zooplankton in the turbulent mixing mesocosms and the further reduction of rotifer and copepod in the turbulence and mussels treatment coincided with a period of increased reliance of larval fathead minnows on these prey. Estimates of consumption from bioenergetics modeling and measured prey standing stocks indicated caloric resources of suitable prey in turbulence treatments during the early weeks of the experiment were insufficient to prevent starvation. Early mortality in the turbulence and mussels treatment likely released surviving fish from intense intraspecific competition and resulted in higher individual growth rates. A combination of high abundance of zebra mussels in an environment with a well-mixed water column can have significant effects on larval fish survival and growth.
Bartsch, L.A.; Richardson, W.B.; Sandheinrich, M.B.
2003-01-01
We conducted a factorial experiment, in outdoor mesocosms, on the effects of zebra mussels and water column mixing (i.e., turbulence) on the diet, growth, and survival of larval fathead minnows (Pimephales promelas). Significant (P < 0.05) larval mortality occurred by the end of the experiment with the highest mortality (90%) occurring in the presence of both turbulence and zebra mussels, whereas mortality was 37% in treatment with turbulence and 17% and 18% in the zebra mussels treatment, and the control, respectively. The size of individual fish was significantly different among treatments at the end of the experiment and was inversely related to survival. Levels of trophic resources (i.e., phyto and zooplankton) varied among treatments and were treatment specific. Turbulent mixing facilitated removal of phytoplankton by zebra mussels by making the entire water column of the tanks available to these benthic filter feeders. Early in the experiment (Day = 0 to 14) the physical process of turbulent mixing likely caused a reduction in standing stocks of zooplankton. The interactive effect of turbulence and mussels reduced copepod and rotifer stocks, through physical processes and through filtration by zebra mussels, relative to the turbulence treatment. The reductions in the number of total zooplankton in the turbulent mixing mesocosms and the further reduction of rotifer and copepod in the turbulence and mussels treatment coincided with a period of increased reliance of larval fathead minnows on these prey. Estimates of consumption from bioenergetics modeling and measured prey standing stocks indicated caloric resources of suitable prey in turbulence treatments during the early weeks of the experiment were insufficient to prevent starvation. Early mortality in the turbulence and mussels treatment likely released surviving fish from intense intraspecific competition and resulted in higher individual growth rates. A combination of high abundance of zebra mussels in an environment with a well-mixed water column can have significant effects on larval fish survival and growth.
NASA Astrophysics Data System (ADS)
Seroka, G. N.; Miles, T. N.; Glenn, S. M.; Xu, Y.; Forney, R.; Roarty, H.; Schofield, O.; Kohut, J. T.
2016-02-01
Any landfalling tropical cyclone (TC) must first traverse the coastal ocean. TC research, however, has focused over the deep ocean, where TCs typically spend the vast majority of their lifetime. This paper will show that the ocean's response to TCs can be different between deep and shallow water, and that the additional shallow water processes must be included in coupled models for accurate air-sea flux treatment and TC intensity prediction. The authors will present newly observed coastal ocean processes that occurred in response to Hurricane Irene (2011), due to the presence of a coastline, an ocean bottom, and highly stratified conditions. These newly observed processes led to enhanced ahead-of-eye SST cooling that significantly impacted air-sea heat fluxes and Irene's operationally over-predicted storm intensity. Using semi-idealized modeling, we find that in shallow water in Irene, only 6% of cooling due to air-sea heat fluxes, 17% of cooling due to 1D vertical mixing, and 50% of cooling due to all processes (1D mixing, air-sea heat fluxes, upwelling, and advection) occurred ahead-of-eye—consistent with previous studies. Observations from an underwater glider and buoys, however, indicated 75-100% of total SST cooling over the continental shelf was ahead-of-eye. Thus, the new coastal ocean cooling processes found in this study must occur almost completely ahead-of-eye. We show that Irene's intense cooling was not captured by basic satellite SST products and coupled ocean-atmosphere hurricane models, and that including the cooling in WRF modeling mitigated the high bias in model predictions. Finally, we provide evidence that this SST cooling—not track, wind shear, or dry air intrusion—was the key missing contribution to Irene's decay just prior to NJ landfall. Ongoing work is exploring the use of coupled WRF-ROMS modeling in the coastal zone.
Aerosol-cloud interactions in mixed-phase convective clouds - Part 1: Aerosol perturbations
NASA Astrophysics Data System (ADS)
Miltenberger, Annette K.; Field, Paul R.; Hill, Adrian A.; Rosenberg, Phil; Shipway, Ben J.; Wilkinson, Jonathan M.; Scovell, Robert; Blyth, Alan M.
2018-03-01
Changes induced by perturbed aerosol conditions in moderately deep mixed-phase convective clouds (cloud top height ˜ 5 km) developing along sea-breeze convergence lines are investigated with high-resolution numerical model simulations. The simulations utilise the newly developed Cloud-AeroSol Interacting Microphysics (CASIM) module for the Unified Model (UM), which allows for the representation of the two-way interaction between cloud and aerosol fields. Simulations are evaluated against observations collected during the COnvective Precipitation Experiment (COPE) field campaign over the southwestern peninsula of the UK in 2013. The simulations compare favourably with observed thermodynamic profiles, cloud base cloud droplet number concentrations (CDNC), cloud depth, and radar reflectivity statistics. Including the modification of aerosol fields by cloud microphysical processes improves the correspondence with observed CDNC values and spatial variability, but reduces the agreement with observations for average cloud size and cloud top height. Accumulated precipitation is suppressed for higher-aerosol conditions before clouds become organised along the sea-breeze convergence lines. Changes in precipitation are smaller in simulations with aerosol processing. The precipitation suppression is due to less efficient precipitation production by warm-phase microphysics, consistent with parcel model predictions. In contrast, after convective cells organise along the sea-breeze convergence zone, accumulated precipitation increases with aerosol concentrations. Condensate production increases with the aerosol concentrations due to higher vertical velocities in the convective cores and higher cloud top heights. However, for the highest-aerosol scenarios, no further increase in the condensate production occurs, as clouds grow into an upper-level stable layer. In these cases, the reduced precipitation efficiency (PE) dominates the precipitation response and no further precipitation enhancement occurs. Previous studies of deep convective clouds have related larger vertical velocities under high-aerosol conditions to enhanced latent heating from freezing. In the presented simulations changes in latent heating above the 0°C are negligible, but latent heating from condensation increases with aerosol concentrations. It is hypothesised that this increase is related to changes in the cloud field structure reducing the mixing of environmental air into the convective core. The precipitation response of the deeper mixed-phase clouds along well-established convergence lines can be the opposite of predictions from parcel models. This occurs when clouds interact with a pre-existing thermodynamic environment and cloud field structural changes occur that are not captured by simple parcel model approaches.
NASA Astrophysics Data System (ADS)
Vescovi, Diego; Busso, Maurizio; Palmerini, Sara; Trippella, Oscar
2018-01-01
The nucleosynthesis of 7Li is one of the most crucial problems in nuclear as- trophysics, as its observations in several sites are hard to be explained. Concerning the Sun, the most common interpretations of the low Li abundance invoke either burning in early stages or non-convective mixing below the envelope. Here we apply a diffusive mechanism of mixing, together with a recent estimate of the rate for e-captures on 7Be, to establish whether the solar Li destruction should be attributed to purely pre-Main Se- quence (MS) nuclear processes or if the coupling of mixing and nucleosynthesis on the MS can account for it. Our preliminary results indicate that, whether Li survives the pre- MS phase, the changes of the 7Be e--capture rate do not affect its production/destruction. The low Li abundance should then depend only on diffusion processes from the bottom of the convective envelope to the lowerlying tachocline zone. We suggest that, if diffusive processes occurred over the age of the Sun, they required diffusive mass transfers of a few 10-13 M⊙/yr to explain the Li drop. This is a high estimate: future works will tell us if it is realistic or not. In this second case, pre-MS burning would remain the only alternative.
NASA Astrophysics Data System (ADS)
Quick, J. E.; Hinkley, T. K.; Reimer, G. M.; Hedge, C. E.
1991-11-01
The assertion that deuterium-deuterium fusion may occur at low temperature suggests a potential new source of geothermal heat. If a cold-fusion-like process occurs within the Earth, then a test for its existence would be a search for anomalous tritium in volcanic emissions. The Pu'u O'o crater is the first point at which large amounts of water are degassed from the magma that feeds the Kilauea system. The magma is probably not contaminated by meteoric-source ground water prior to degassing at Pu'u O'o, although mixing of meteoric and magmatic H 2O occurs within the crater. Tritium contents of samples from within the crater are lower than in samples taken simultaneously from the nearby upwind crater rim. These results provide no evidence in support of a cold-fusion-like process in the Earth's interior.
Quick, J.E.; Hinkley, T.K.; Reimer, G.M.; Hedge, C.E.
1991-01-01
The assertion that deuterium-deuterium fusion may occur at low temperature suggests a potential new source of geothermal heat. If a cold-fusion-like process occurs within the Earth, then a test for its existence would be a search for anomalous tritium in volcanic emissions. The Pu'u O'o crater is the first point at which large amounts of water are degassed from the magma that feeds the Kilauea system. The magma is probably not contaminated by meteoric-source ground water prior to degassing at Pu'u O'o, although mixing of meteoric and magmatic H2O occurs within the crater. Tritium contents of samples from within the crater are lower than in samples taken simultaneously from the nearby upwind crater rim. These results provide no evidence in support of a cold-fusion-like process in the Earth's interior. ?? 1991.
NASA Astrophysics Data System (ADS)
Stegen, J.; Johnson, T. C.; Fredrickson, J.; Wilkins, M.; Konopka, A.; Nelson, W.; Arntzen, E.; Chrisler, W.; Chu, R. K.; Fansler, S.; Kennedy, D.; Resch, T.; Tfaily, M. M.
2015-12-01
The hyporheic zone (HZ) is a critical ecosystem component that links terrestrial, surface water, and groundwater ecosystems. A dominant feature of the HZ is groundwater-surface water mixing and the input of terrestrially—as well as aquatically—derived organic carbon. In many systems the HZ has a relatively small spatial extent, but in larger riverine systems groundwater-surface water mixing can occur 100s of meters beyond the surface water shoreline; we consider these more distal locations to be within the 'subsurface interaction zone' (SIZ) as they are beyond the traditional HZ. Microbial communities in the HZ and SIZ drive biogeochemical processes in these system components, yet relatively little is known about the ecological processes that drive HZ and SIZ microbial communities. Here, we applied ecological theory, aqueous biogeochemistry, DNA sequencing, and ultra-high resolution organic carbon profiling to field samples collected through space (400m spatial extent) and time (7 month temporal extent) within the Hanford Site 300 Area. These data streams were integrated to evaluate how the influence of groundwater-surface water mixing on microbial communities changes when moving from the HZ to the broader SIZ. Our results indicate that groundwater-surface water mixing (i) consistently stimulated heterotrophic respiration, but only above a threshold of surface water intrusion, (ii) did not stimulate denitrification, (iii) caused deterministic shifts in HZ microbial communities due to changes in organic carbon composition, and (iv) did not cause shifts in SIZ microbial communities. These results suggest that microbial communities and the biogeochemical processes they drive are impacted by groundwater-surface water mixing primarily in the HZ and to a lesser extent in the SIZ.
NASA Technical Reports Server (NTRS)
Twohy, Cynthia H.; Hudson, James G.
1995-01-01
In a cloud formed during adiabatic expansion, the droplet size distribution will be systematically related to the critical supersaturation of the cloud condensation nuclei (CNN), but this relationship can be complicated in entraining clouds. Useful information about cloud processes, such as mixing, can be obtained from direct measurements of the CNN involved in droplet nucleation. This was accomplished by interfacing two instruments for a series of flights in maritime cumulus clouds. One instrument, the counterflow virtual impactor, collected cloud droplets, and the nonvolatile residual nuclei of the droplets was then passed to a CCN spectrometer, which measured the critical supersaturation (S(sub c)) spectrum of the droplet nuclei. The measured S(sub c) spectra of the droplet nuclei were compared with the S(sub c) spectra of ambient aerosol particles in order to identify which CCN were actually incorporated into droplets and to determine when mixing processes were active at different cloud levels. The droplet nuclei nearly always exhibited lower median S(sub c)'s than the ambient aerosol, as expected since droplets nucleate perferentially on particles with lower critical supersaturations. Critical supersaturation spectra from nuclei of droplets near cloud base were similar to those predicted for cloud regions formed adiabatically, but spectra of droplet nuclei from middle cloud levels showed some evidence that mixing had occurred. Near cloud top, the greatest variation in the spectra of the droplet nuclei was observed, and nuclei with high S(sub c)'s were sometimes present even within relatively large droplets. This suggests that the extent of mixing increases with height in cumulus clouds and that inhomogeneous mixing may be important near cloud top. These promising initial results suggest improvements to the experimental technique that will permit more quantitative results in future experiments.
NASA Technical Reports Server (NTRS)
Schock, H. J.
1984-01-01
The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed.
NASA Technical Reports Server (NTRS)
Gomberg, R. I.; Stewart, R. B.
1976-01-01
As part of a continuing study of the environmental effects of solid rocket motor (SRM) operations in the troposphere, a numerical model was used to simulate the afterburning processes occurring in solid rocket motor plumes and to predict the quantities of potentially harmful chemical species which are created. The calculations include the effects of finite-rate chemistry and turbulent mixing. It is found that the amount of NO produced is much less than the amount of HCl present in the plume, that chlorine will appear predominantly in the form of HCl although some molecular chlorine is present, and that combustion is complete as is evident from the predominance of carbon dioxide over carbon monoxide.
Striebel, Maren; Kirchmaier, Leo; Hingsamer, Peter
2014-01-01
Over the past four decades, mesocosm studies have been successfully used for a wide range of applications and have provided a lot of information on trophic interactions and biogeochemical cycling of aquatic ecosystem. However, the setup of such mesocosms (e.g., dimensions and duration of experiments) needs to be adapted to the relevant biological processes being investigated. Mixing of the water column is an important factor to be considered in mesocosm experiments because enclosing water in an artificial chamber always alters the mixing regime. Various approaches have been applied to generate mixing in experimental ecosystems, including pure mechanical mixing (e.g., using a disc), airlifts, bubbling with compressed air, and pumping. In this study, we tested different mixing techniques for outdoor mesocosms and their impact on plankton biomass and community composition. We compared mesocosms mixed with a disc, an airlift-system, and bubbling, and used a nonactively mixed mesocosm as a control. We investigated phytoplankton, ciliate, and zooplankton communities during a 19-d mesocosm experiment. Based on our results, we concluded that mechanical mixing with a disc was the most effective technique due to the undertow produced by lowering and lifting the disc. While no mixing technique affected seston biomass, zooplankton biomass was highest in the treatments mixed with the disc. The airlift treatments had the lowest relative share of small flagellates. However, no further differences in phytoplankton community composition occurred and no differences in zooplankton community composition existed between all actively mixed treatments. PMID:25729335
Recent Advances in Hyporheic Zone Science
NASA Astrophysics Data System (ADS)
Hester, E. T.
2017-12-01
The hyporheic zone exists beneath and adjacent to streams and rivers where surface water and groundwater interact. It provides unique habitat for aquatic organisms, can buffer surface water temperatures, and can be highly reactive, processing nutrients and improving water quality. The hyporheic zone is the subject of considerable research and the past year in WRR witnessed important conceptual advances. A key focus was rigorous evaluation of mixing between surface water and groundwater that occurs within hyporheic sediments. Field observations indicate that greater mixing occurs in the hyporheic zone than in deeper groundwater, and this distinction has been explored by recent numerical modeling studies, but more research is needed to fully understand the causes. A commentary this year in WRR proposed that hyporheic mixing is enhanced by a combination of fluctuating boundary conditions and multiscale physical and chemical spatial heterogeneity but confirmation is left to future research. This year also witnessed the boundaries of knowledge pushed back in a number of other key areas. Field quantification of hyporheic exchange and reactions benefited from advances including the use and interpretation of high frequency nutrient sensors, actively heater fiber optic sensors, isotope tracers, and geophysical methods such as electrical resistivity imaging. Conceptual advances were made in understanding the effects of unsteady environmental conditions (e.g., tides and storms) and preferential flow on hyporheic processes. Finally, hyporheic science is being brought increasingly to bear on applied issues such as informing nutrient removal crediting for stream restoration practices, for example in the Chesapeake Bay watershed.
ERIC Educational Resources Information Center
Schreiber, Joseph; Benger, Jennifer; Salls, Joyce; Marchetti, Gregory; Reed, Lindsey
2011-01-01
Health care providers have adopted a family-centered care (FCC) approach. Parent satisfaction is an indicator of the effectiveness of FCC. The purpose of this project was to describe parent perceptions of the extent to which FCC behaviors occurred in an outpatient pediatric rehabilitation facility. The Measure of Processes of Care (MPOC)-20, a…
Role of head of turbulent 3-D density currents in mixing during slumping regime
NASA Astrophysics Data System (ADS)
Bhaganagar, Kiran
2017-02-01
A fundamental study was conducted to shed light on entrainment and mixing in buoyancy-driven Boussinesq density currents. Large-eddy simulation was performed on lock-exchange (LE) release density currents—an idealized test bed to generate density currents. As dense fluid was released over a sloping surface into an ambient lighter fluid, the dense fluid slumps to the bottom and forms a characteristic head of the current. The dynamics of the head dictated the mixing processes in LE currents. The key contribution of this study is to resolve an ongoing debate on mixing: We demonstrate that substantial mixing occurs in the early stages of evolution in an LE experiment and that entrainment is highly inhomogeneous and unsteady during the slumping regime. Guided by the flow physics, entrainment is calculated using two different but related perspectives. In the first approach, the entrainment parameter (E) is defined as the fraction of ambient fluid displaced by the head that entrains into the current. It is an indicator of the efficiency in which ambient fluid is displaced into the current and it serves as an important metric to compare the entrainment of dense currents over different types of surfaces, e.g., roughness configuration. In the second approach, E measures the net entrainment in the current at an instantaneous time t over the length of the current. Net entrainment coefficient is a metric to compare the effects of flow dynamical conditions, i.e., lock-aspect ratio that dictates the fraction of buoyancy entering the head, and also the effect of the sloping angle. Together, the entrainment coefficient and the net entrainment coefficient provide an insight into the entrainment process. The "active" head of the current acts as an engine that mixes the ambient fluid with the existing dense fluid, the 3-D lobes and clefts on the frontal end of the current causes recirculation of the ambient fluid into the current, and Kelvin-Helmholtz rolls are the mixers that entrain the ambience into the current. Buoyancy and shear production occur at the interface in the head region of the current, and transport of turbulence kinetic energy (TKE) by Reynolds stresses results in high TKE.
NASA Astrophysics Data System (ADS)
Sullivan, Sylvia; Hoose, Corinna; Nenes, Athanasios
2016-04-01
Measurements of in-cloud ice crystal number concentrations can be three or four orders of magnitude greater than the in-cloud ice nuclei number concentrations. This discrepancy can be explained by various secondary ice formation processes, which occur after initial ice nucleation, but the relative importance of these processes, and even the exact physics of each, is still unclear. A simple bin microphysics model (2IM) is constructed to investigate these knowledge gaps. 2IM extends the time-lag collision parameterization of Yano and Phillips, 2011 to include rime splintering, ice-ice aggregation, and droplet shattering and to incorporate the aspect ratio evolution as in Jensen and Harrington, 2015. The relative contribution of the secondary processes under various conditions are shown. In particular, temperature-dependent efficiencies are adjusted for ice-ice aggregation versus collision around -15°C, when rime splintering is no longer active, and the effect of aspect ratio on the process weighting is explored. The resulting simulations are intended to guide secondary ice formation parameterizations in larger-scale mixed-phase cloud schemes.
NASA Astrophysics Data System (ADS)
Adrover, Alessandra; Giona, Massimiliano; Pagnanelli, Francesca; Toro, Luigi
2007-04-01
We analyze the influence of surface heterogeneity, inducing a random ζ-potential at the walls in electroosmotic incompressible flows. Specifically, we focus on how surface heterogeneity modifies the physico-chemical processes (transport, chemical reaction, mixing) occurring in microchannel and microreactors. While the macroscopic short-time features associated with solute transport (e.g. chromatographic patterns) do not depend significantly on ζ-potential heterogeneity, spatial randomness in the surface ζ-potential modifies the spectral properties of the advection-diffusion operator, determining different long-term properties of transport/reaction phenomena compared to the homogeneous case. Examples of physical relevance (chromatography, infinitely fast reactions) are addressed.
NASA Technical Reports Server (NTRS)
Dash, S. M.; Wolf, D. E.
1983-01-01
A new computational model, SCIPVIS, has been developed to predict the multiple-cell wave/shock structure in under or over-expanded turbulent jets. SCIPVIS solves the parabolized Navier-Stokes jet mixing equations utilizing a shock-capturing approach in supersonic regions of the jet and a pressure-split approach in subsonic regions. Turbulence processes are represented by the solution of compressibility corrected two-equation turbulence models. The formation of Mach discs in the jet and the interactive turbulent mixing process occurring behind the disc are handled in a detailed fashion. SCIPVIS presently analyzes jets exhausting into a quiescent or supersonic external stream for which a single-pass spatial marching solution can be obtained. The iterative coupling of SCIPVIS with a potential flow solver for the analysis of subsonic/transonic external streams is under development.
Combined Microfluidic-Eectric Diffused Mixing of Living Cells in Continuous Flow
NASA Astrophysics Data System (ADS)
Ming-Wen Wang,
2010-02-01
The mixing process is a crucially important stage in the operation of biological and chemical microfluidic devices. If the mixing is inadequate, reactants do not fully interact with each other, and the device may not operate properly. This paper describes a simplified microfluidic mixer (different from a chaotic mixer) which can uniformly mix a buffer solution with living cells by applying an AC electric charge. Diffusion of the living cells into the buffer solution occurs rapidly following the interface of the flow stream with the electric charge; no further agitating step is needed. To accomplish this, an asymmetric pair of electrodes was integrated at the inlets of the buffer solution and the cells fluid. When the buffer solution and the cells fluid were introduced into one flow path, they remained limited to that flow stream. When the electrodes were charged, however, the cells in a short distance were efficiently moved into the solution flow, and the original fluids were mixed. The mixing efficiency depends on the polarizability of the cells, and this in turn is governed by the dielectric properties of the cells, the medium, and the solvent. This micro device, capable of efficiently mixing living cells with a buffer solution, may potentially allow biological mixing to be done outside of hospitals, in facilities without biological analyzing instruments.
NASA Astrophysics Data System (ADS)
Cunningham, E.; Cribb, J. W.
2017-12-01
The northern Oregon Cascade Range has been dominated by andesite to rhyodacite lavas at both Mt. Jefferson (Conrey, 1991) and at Mt. Hood (Cribb and Barton, 1996) during the Quaternary period. Eruptive sequences at both Mt. Hood and Mt. Jefferson have been attributed to open-system mama mixing (Kent et al., 2010) (Ferrell et al., 2015), and the narrow range of lavas erupted at both centers has been derived from repeated cycles of magma mixing-fractionation (Cribb and Barton, 1996). This research examines major and trace element geochemistry as well as the petrographic characteristics of Clear Lake Butte (CLB), Pinhead Butte (PB), and Olallie Butte (OB), all of which are located between Mt. Hood and Mt. Jefferson, and have ben active in the Quaternary period. The research investigates whether the same type of open-system magma mixing known to have occurred at Mt. Hood and Mt. Jefferson has also occurred at CLB, PB, or OB, or whether those systems were closed to mixing and dominated by fractional crystallization. One of the main goals of this project is to highlight the similarities and differences exhibited by neighboring magmatic systems of similar age, but different scale. Disequilibrium textures observed in thin sections from CLB, OB, and PB suggest open-system magma mixing is likely occurring beneath all three buttes. This petrographic evidence includes plagioclase and pyroxene zoning, embayed margins, sieving, and reaction rims. Major element oxide trends at all three buttes are consistent with fractional crystallization, but show narrow concentrations and non-overlapping compositions between PB, CLB, and OB. All three buttes are characterized by narrow ranges of incompatible and compatible trace element concentrations. CLB, PB, and OB all exhibit LREE enrichment and lack significant HFSE depletions, with PB exhibiting greatest enrichment in REE.
High-resolution imaging of the supercritical antisolvent process
NASA Astrophysics Data System (ADS)
Bell, Philip W.; Stephens, Amendi P.; Roberts, Christopher B.; Duke, Steve R.
2005-06-01
A high-magnification and high-resolution imaging technique was developed for the supercritical fluid antisolvent (SAS) precipitation process. Visualizations of the jet injection, flow patterns, droplets, and particles were obtained in a high-pressure vessel for polylactic acid and budesonide precipitation in supercritical CO2. The results show two regimes for particle production: one where turbulent mixing occurs in gas-like plumes, and another where distinct droplets were observed in the injection. Images are presented to demonstrate the capabilities of the method for examining particle formation theories and for understanding the underlying fluid mechanics, thermodynamics, and mass transport in the SAS process.
Xin, Baoping; Zhang, Di; Zhang, Xian; Xia, Yunting; Wu, Feng; Chen, Shi; Li, Li
2009-12-01
The bioleaching mechanism of Co and Li from spent lithium-ion batteries by mixed culture of sulfur-oxidizing and iron-oxidizing bacteria was investigated. It was found that the highest release of Li occurred at the lowest pH of 1.54 with elemental sulfur as an energy source, the lowest occurred at the highest pH of 1.69 with FeS(2). In contrast, the highest release of Co occurred at higher pH and varied ORP with S + FeS(2), the lowest occurred at almost unchanged ORP with S. It is suggested that acid dissolution is the main mechanism for Li bioleaching independent of energy matters types, however, apart from acid dissolution, Fe(2+) catalyzed reduction takes part in the bioleaching process as well. Co(2+) was released by acid dissolution after insoluble Co(3+) was reduced into soluble Co(2+) by Fe(2+) in both FeS(2) and FeS(2) + S systems. The proposed bioleaching mechanism mentioned above was confirmed by the further results obtained from the experiments of bioprocess-stimulated chemical leaching and from the changes in structure and component of bioleaching residues characterized by XPS, SEM and EDX.
NASA Astrophysics Data System (ADS)
Gogoi, Bibhuti; Saikia, Ashima; Ahmad, Mansoor
2016-04-01
The emulsion texture is a rare magma mixing feature in which rounded bodies of one magmatic phase remain dispersed in the other coherent phase (Freundt and Schmincke, 1992). This type of special texture in hybrid rocks can significantly contribute toward understanding the mechanisms facilitating magma mixing and magma chamber dynamics involving two disparate magmas as the exact processes by which mixing occurs still remain unclear. Recent developments in microfluidics have greatly helped us to understand the complex processes governing magma mixing occurring at micro-level. Presented work uses some of the results obtained from microfluidic experiments with a view to understand the formation mechanism of emulsions preserved in the hybrid rocks of the Ghansura Rhyolite Dome (GRD) of Proterozoic Chotanagpur Granite Gneiss Complex (CGGC), Eastern India. The GRD has preserved hybrid rocks displaying emulsion texture that formed due to the interaction of a phenocryst-rich basaltic magma and host rhyolite magma. The emulsions are more or less spherical in shape and dominantly composed of amphibole having biotite rinds set in a matrix of biotite, plagioclase, K-feldspar and quartz. Amphibole compositions were determined from the core of the emulsions to the rim with a view to check for cationic substitutions. The amphibole constituting the emulsions is actinolite in composition, and commonly shows tschermakite (Ts) and pargasite (Prg) substitutions. From petrographical and mineral-chemical analyses we infer that when mafic magma, containing phenocrysts of augite, came in contact with felsic magma, diffusion of cations like H+, Al3+and others occurred from the felsic to the mafic system. These cations reacted with the clinopyroxene phenocrysts in the mafic magma to form amphibole (actinolite) crystals. The formation of amphibole crystals in the mafic system greatly increased the viscosity of the system allowing the amphibole crystals to venture into the adjacent felsic magma as veins. As these veins traversed in the felsic medium they underwent sinuous perturbations as a result of the competition between the viscous torque, due to difference in drag on each side of the veins, and the dynamic viscous bending resistance (Cubaud and Mason, 2009). Further downstream, the undulations amplified and swirls started to develop on the sinuous veins by accumulating the high viscosity mafic phase into central bulbs and depleting the regions in between them forming tails. Gradually the tails thinned out and blended into the surrounding felsic melt forming discrete viscous emulsions/swirls. After separation, the amphibole constituting the emulsions started interacting with the surrounding felsic magma forming biotite at the periphery of the emulsions. Eventually, biotite is eroded away and new rinds simultaneously form on freshly eroded surfaces of emulsions facilitating the mixing process (Farner et al., 2014). Cubaud T and Mason TG (2009) New J. Phys. 11, 075029. Farner et al. (2014) Earth and Planetary Science Letters 393, 49-59. Freundt A and Schmincke HU (1992) Contrib Mineral Petrol 112, 1-19.
Groundwater ages and mixing in the Piceance Basin natural gas province, Colorado
McMahon, Peter B.; Thomas, Judith C.; Hunt, Andrew G.
2013-01-01
Reliably identifying the effects of energy development on groundwater quality can be difficult because baseline assessments of water quality completed before the onset of energy development are rare and because interactions between hydrocarbon reservoirs and aquifers can be complex, involving both natural and human processes. Groundwater age and mixing data can strengthen interpretations of monitoring data from those areas by providing better understanding of the groundwater flow systems. Chemical, isotopic, and age tracers were used to characterize groundwater ages and mixing with deeper saline water in three areas of the Piceance Basin natural gas province. The data revealed a complex array of groundwater ages (50,000 years) and mixing patterns in the basin that helped explain concentrations and sources of methane in groundwater. Age and mixing data also can strengthen the design of monitoring programs by providing information on time scales at which water quality changes in aquifers might be expected to occur. This information could be used to establish maximum allowable distances of monitoring wells from energy development activity and the appropriate duration of monitoring.
NASA Astrophysics Data System (ADS)
Fan, Jiwen; Ghan, Steven; Ovchinnikov, Mikhail; Liu, Xiaohong; Rasch, Philip J.; Korolev, Alexei
2011-01-01
Two types of Arctic mixed-phase clouds observed during the ISDAC and M-PACE field campaigns are simulated using a 3-dimensional cloud-resolving model (CRM) with size-resolved cloud microphysics. The modeled cloud properties agree reasonably well with aircraft measurements and surface-based retrievals. Cloud properties such as the probability density function (PDF) of vertical velocity (w), cloud liquid and ice, regimes of cloud particle growth, including the Wegener-Bergeron-Findeisen (WBF) process, and the relationships among properties/processes in mixed-phase clouds are examined to gain insights for improving their representation in General Circulation Models (GCMs). The PDF of the simulated w is well represented by a Gaussian function, validating, at least for arctic clouds, the subgrid treatment used in GCMs. The PDFs of liquid and ice water contents can be approximated by Gamma functions, and a Gaussian function can describe the total water distribution, but a fixed variance assumption should be avoided in both cases. The CRM results support the assumption frequently used in GCMs that mixed phase clouds maintain water vapor near liquid saturation. Thus, ice continues to grow throughout the stratiform cloud but the WBF process occurs in about 50% of cloud volume where liquid and ice co-exist, predominantly in downdrafts. In updrafts, liquid and ice particles grow simultaneously. The relationship between the ice depositional growth rate and cloud ice strongly depends on the capacitance of ice particles. The simplified size-independent capacitance of ice particles used in GCMs could lead to large deviations in ice depositional growth.
NASA Astrophysics Data System (ADS)
Wang, Xiaowei; Jing, Bo; Tan, Fang; Ma, Jiabi; Zhang, Yunhong; Ge, Maofa
2017-10-01
Although water uptake of aerosol particles plays an important role in the atmospheric environment, the effects of interactions between components on chemical composition and hygroscopicity of particles are still not well constrained. The hygroscopic properties and phase transformation of oxalic acid (OA) and mixed particles composed of ammonium sulfate (AS) and OA with different organic to inorganic molar ratios (OIRs) have been investigated by using confocal Raman spectroscopy. It is found that OA droplets first crystallize to form OA dihydrate at 71 % relative humidity (RH), and further lose crystalline water to convert into anhydrous OA around 5 % RH during the dehydration process. The deliquescence and efflorescence point for AS is determined to be 80.1 ± 1.5 % RH and 44.3 ± 2.5 % RH, respectively. The observed efflorescence relative humidity (ERH) for mixed OA / AS droplets with OIRs of 1 : 3, 1 : 1 and 3 : 1 is 34.4 ± 2.0, 44.3 ± 2.5 and 64.4 ± 3.0 % RH, respectively, indicating the elevated OA content appears to favor the crystallization of mixed systems at higher RH. However, the deliquescence relative humidity (DRH) of AS in mixed OA / AS particles with OIRs of 1 : 3 and 1 : 1 is observed to occur at 81.1 ± 1.5 and 77 ± 1.0 % RH, respectively. The Raman spectra of mixed OA / AS droplets indicate the formation of ammonium hydrogen oxalate (NH4HC2O4) and ammonium hydrogen sulfate (NH4HSO4) from interactions between OA and AS in aerosols during the dehydration process on the time scale of hours, which considerably influence the subsequent deliquescence behavior of internally mixed particles with different OIRs. The mixed OA / AS particles with an OIR of 3 : 1 exhibit no deliquescence transition over the RH range studied due to the considerable transformation of (NH4)2SO4 into NH4HC2O4 with a high DRH. Although the hygroscopic growth of mixed OA / AS droplets is comparable to that of AS or OA at high RH during the dehydration process, Raman growth factors of mixed particles after deliquescence are substantially lower than those of mixed OA / AS droplets during the efflorescence process and further decrease with elevated OA content. The discrepancies for Raman growth factors of mixed OA / AS particles between the dehydration and hydration process at high RH can be attributed to the significant formation of NH4HC2O4 and residual OA, which remain solid at high RH and thus result in less water uptake of mixed particles. These findings improve the understanding of the role of reactions between dicarboxylic acid and inorganic salt in the chemical and physical properties of aerosol particles, and might have important implications for atmospheric chemistry.
Bedform Dimensions and Suspended Sediment Observations in a Mixed Sand-Mud Intertidal Environment
NASA Astrophysics Data System (ADS)
Lichtman, I. D.; Amoudry, L.; Peter, T.; Jaco, B.
2016-02-01
Small-scale bedforms, such as ripples, can profoundly modify near-bed hydrodynamics, near-bed sediment transport and resuspension, and benthic-pelagic fluxes. Knowledge of their dimensions is important for a number of applications. Fundamentally different processes can occur depending on the dimensions of ripples: for low and long ripples, the bed remains dynamically flat and diffusive processes dominate sediment entrainment; for steep ripples, flow separation occurs above the ripples creating vortices, which are far more efficient at entraining sediment into the water column. Recent laboratory experiments for mixtures of sand and mud have shown that bedform dimensions decrease with increasing sediment mud content. However, these same experiments also showed that mud is selectively taken into suspension when bedforms are created and migrate on the bed, leaving sandy bedforms. This entrainment process, selectively suspending fine sediment, is referred to as winnowing. To improve our understanding of bedform and entrainment dynamics of mixed sediments, in situ observations were made on intertidal flats in the Dee Estuary, United Kingdom. A suite of instruments were deployed collecting co-located measurements of the near-bed hydrodynamics, waves, small-scale bed morphology and suspended sediment. Three sites were occupied consecutively, over a Spring-Neap cycle, collecting data for different bed compositions, tide levels and wind conditions. Bed samples were taken when the flats became exposed at low water and a sediment trap collected suspended load when inundated. This study will combine these measurements to investigate the interactions between small-scale bed morphology, near-bed hydrodynamics and sediment entrainment. We will examine bedform development in the complex hydrodynamic and wave climate of tidal flats, in relation to standard ripple predictors. We will also relate the variability in small-scale bedforms to variation in hydrodynamic and wave conditions, and to suspension and entrainment processes for mixed sediments.
NASA Astrophysics Data System (ADS)
Morgavi, Daniele; Arzilli, Fabio; Pritchard, Chad; Perugini, Diego; Mancini, Lucia; Larson, Peter; Dingwell, Donald B.
2016-09-01
Magma mixing is a widespread petrogenetic process. It has long been suspected to operate in concert with fractional crystallization and assimilation to produce chemical and temperature gradients in magmas. In particular, the injection of mafic magmas into felsic magma chambers is widely regarded as a key driver in the sudden triggering of what often become highly explosive volcanic eruptions. Understanding the mechanistic event chain leading to such hazardous events is a scientific goal of high priority. Here we investigate a mingling event via the evidence preserved in mingled lavas using a combination of X-ray computed microtomographic and electron microprobe analyses, to unravel the complex textures and attendant chemical heterogeneities of the mixed basaltic and rhyolitic eruption of Grizzly Lake in the Norris-Mammoth corridor of the Yellowstone Plateau volcanic field (YVF). We observe evidence that both magmatic viscous inter-fingering of magmas and disequilibrium crystallization/dissolution processes occur. Furthermore, these processes constrain the timescale of interaction between the two magmatic components prior to their eruption. X-ray microtomography images show variegated textural features, involving vesicle and crystal distributions, filament morphology, the distribution of enclaves, and further textural features otherwise obscured in conventional 2D observations and analyses. Although our central effort was applied to the determination of mixing end members, analysis of the hybrid portion has led to the discovery that mixing in the Grizzly Lake system was also characterized by the disintegration and dissolution of mafic crystals in the rhyolitic magma. The presence of mineral phases in both end member, for example, forsteritic olivine, sanidine, and quartz and their transport throughout the magmatic mass, by a combination of both mixing dynamics and flow imposed by ascent of the magmatic mass and its eruption, might have acted as a "geometric perturbation" of flow fields further fuelling mass exchange between magmas in terms of both chemical diffusion and crystal transfer. These results illuminate the complexity of mixing in natural magmatic systems, identifying several reaction-related textural factors that must be understood more deeply in order to advance our understanding of this igneous process.
Southern Ocean bottom water characteristics in CMIP5 models
NASA Astrophysics Data System (ADS)
Heuzé, CéLine; Heywood, Karen J.; Stevens, David P.; Ridley, Jeff K.
2013-04-01
Southern Ocean deep water properties and formation processes in climate models are indicative of their capability to simulate future climate, heat and carbon uptake, and sea level rise. Southern Ocean temperature and density averaged over 1986-2005 from 15 CMIP5 (Coupled Model Intercomparison Project Phase 5) climate models are compared with an observed climatology, focusing on bottom water. Bottom properties are reasonably accurate for half the models. Ten models create dense water on the Antarctic shelf, but it mixes with lighter water and is not exported as bottom water as in reality. Instead, most models create deep water by open ocean deep convection, a process occurring rarely in reality. Models with extensive deep convection are those with strong seasonality in sea ice. Optimum bottom properties occur in models with deep convection in the Weddell and Ross Gyres. Bottom Water formation processes are poorly represented in ocean models and are a key challenge for improving climate predictions.
Space processing experimental apparatus - A survey
NASA Technical Reports Server (NTRS)
Siebel, M. P.
1977-01-01
The processing of materials in a low-g environment was started approximately 10 years ago. This article surveys the apparatus developed during that period. A low-g environment occurs naturally in a free-flying spacecraft (e.g., in manned flights such as Apollo, Skylab, and ASTP); low-g conditions also occur in other free-falling bodies such as sounding rockets and drop tower capsules. Apparatus has been developed for all these craft. Most of the apparatus described serves to melt and resolidify materials in low g; the material may be contained or, by virtue of the environment, freely floating. Other apparatus for separation of intimately mixed components or species is also described. A general conclusion is drawn that the apparatus addresses only a few of the possibilities available, is still at the experimental stage, and is of laboratory scale. It is predicted that processes showing promise will be scaled up to derive economic advantages in the Shuttle era of space flight.
Investigating co-combustion characteristics of bamboo and wood.
Liang, Fang; Wang, Ruijuan; Jiang, Changle; Yang, Xiaomeng; Zhang, Tao; Hu, Wanhe; Mi, Bingbing; Liu, Zhijia
2017-11-01
To investigate co-combustion characteristics of bamboo and wood, moso bamboo and masson pine were torrefied and mixed with different blend ratios. The combustion process was examined by thermogravimetric analyzer (TGA). The results showed the combustion process of samples included volatile emission and oxidation combustion as well as char combustion. The main mass loss of biomass blends occurred at volatile emission and oxidation combustion stage, while that of torrefied biomass occurred at char combustion stage. With the increase of bamboo content, characteristic temperatures decreased. Compared with untreated biomass, torrefied biomass had a higher initial and burnout temperature. With the increase of heating rates, combustion process of samples shifted to higher temperatures. Compared with non-isothermal models, activation energy obtained from isothermal model was lower. The result is helpful to promote development of co-combustion of bamboo and masson pine wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Michalchuk, Adam A L; Hope, Karl S; Kennedy, Stuart R; Blanco, Maria V; Boldyreva, Elena V; Pulham, Colin R
2018-04-17
Resonant acoustic mixing (RAM) is a new technology designed for intensive mixing of powders that offers the capability to process powders with minimal damage to particles. This feature is particularly important for mixing impact-sensitive materials such as explosives and propellants. While the RAM technique has been extensively employed for the mixing of powders and viscous polymers, comparatively little is known about its use for mechanosynthesis. We present here the first in situ study of RAM-induced co-crystallisation monitored using synchrotron X-ray powder diffraction. The phase profile of the reaction between nicotinamide and carbamazepine in the presence of a small amount of water was monitored at two different relative accelerations of the mixer. In marked contrast to ball-milling techniques, the lack of milling bodies in the RAM experiment does not hinder co-crystallisation of the two starting materials, which occurred readily and was independent of the frequency of oscillation. The reaction could be optimised by enhancing the number of reactive contacts through mixing and comminution. These observations provide new insight into the role of various experimental parameters in conventional mechanochemistry using liquid-assisted grinding techniques.
Kohl, K S; Farley, T A
2000-12-01
An outbreak of salmonellosis occurred among 63 wedding participants. The outbreak was investigated through cohort, laboratory, and environmental studies. Consumption of rice-dressing made from a commercially cooked, meat-based, rice-dressing mix was strongly associated with illness. Nineteen patient isolates, six company/grocery store isolates cultured from the rice-dressing mix, and one environmental isolate from a pump in the production line were of an identical outbreak strain of Salmonella Infantis characterized by pulsed-field gel electrophoresis. In the production line, cooked rice-dressing mix tested negative for S. Infantis before and positive after contact with the contaminated pump. The dressing-mix had an estimated 200 colony-forming units of salmonella per gram of product, and > 180,000 pounds were distributed in 9 states for > or = 2 months before contamination was recognized. Food manufacturers should be required to use systematic, hazard analysis critical control point risk management practices for all processed meat products, validated by periodic microbiologic monitoring of the end product.
Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon
Mixed halide hybrid perovskites, CH 3NH 3Pb(I 1-xBrx) 3' represent good candidates for lowcost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material’s optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodiderich phases. It additionallymore » explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.« less
Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites
Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon; ...
2017-08-04
Mixed halide hybrid perovskites, CH 3NH 3Pb(I 1-xBrx) 3' represent good candidates for lowcost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material’s optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodiderich phases. It additionallymore » explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.« less
Multiple levels of bilingual language control: evidence from language intrusions in reading aloud.
Gollan, Tamar H; Schotter, Elizabeth R; Gomez, Joanne; Murillo, Mayra; Rayner, Keith
2014-02-01
Bilinguals rarely produce words in an unintended language. However, we induced such intrusion errors (e.g., saying el instead of he) in 32 Spanish-English bilinguals who read aloud single-language (English or Spanish) and mixed-language (haphazard mix of English and Spanish) paragraphs with English or Spanish word order. These bilinguals produced language intrusions almost exclusively in mixed-language paragraphs, and most often when attempting to produce dominant-language targets (accent-only errors also exhibited reversed language-dominance effects). Most intrusion errors occurred for function words, especially when they were not from the language that determined the word order in the paragraph. Eye movements showed that fixating a word in the nontarget language increased intrusion errors only for function words. Together, these results imply multiple mechanisms of language control, including (a) inhibition of the dominant language at both lexical and sublexical processing levels, (b) special retrieval mechanisms for function words in mixed-language utterances, and (c) attentional monitoring of the target word for its match with the intended language.
NASA Technical Reports Server (NTRS)
Hintsa, E. J.; Boering, K. A.; Weinstock, E. M.; Anderson, J. G.; Gary, B. L.; Pfister, L.; Daube, B. C.; Wofsy, S. C.; Loewenstein, M.; Podolske, J.R.;
1998-01-01
The origin of air in the lowermost stratosphere is investigated with measurements from the NASA ER-2 aircraft. Air with high water vapor mixing ratios was observed in the stratosphere at theta-330-380 K near 40 N in May 1995, indicating the influence of intrusions of tropospheric air. Assuming that observed tracer-tracer relationships reflect mixing lines between tropospheric and stratospheric air masses, we calculate mixing ratios of H2O (12-24 ppmv) and CO2 for the admixed tropospheric air at theta=352-364 K. Temperatures on the 355 K surface at 20-40 N were low enough to dehydrate air to these values. While most ER-2 CO2 data in both hemispheres are consistent with tropical or subtropical air entering the lowermost stratosphere, measurements from May 1995 for theta<362 K suggest that entry of air from the midlatitude upper troposphere can occur in conjunction with mixing processes near the tropopause.
NASA Technical Reports Server (NTRS)
Hintsa, E. J.; Boering, K. A.; Weinstock, E. M.; Anderson, J. G.; Gary, B. L.; Pfister, L.; Daube, B. C.; Wofsy, S. C.; Loewenstein, M.; Podolske, J. R.
1998-01-01
The origin of air in the lowermost stratosphere is investigated with measurements from the NASA ER-2 aircraft. Air with high water vapor mixing ratios was observed in the stratosphere at theta = 330-380 K near 40 N in May 1995, indicating the influence of intrusions of tropospheric air. Assuming that observed tracer-tracer relationships reflect mixing lines between tropospheric and stratospheric air masses, we calculate mixing ratios of H2O (12-24 ppmv) and CO2 for the admixed tropospheric air at theta = 352-364 K. Temperatures on the 355 K surface at 20-40 N were low enough to dehydrate air to these values. While most ER-2 CO2 data in both hemispheres are consistent with tropical or subtropical air entering the lowermost stratosphere, measurements from May 1995 for theta < 362 K suggest that entry of air from the midlatitude upper troposphere can occur in conjunction with mixing processes near the tropopause.
NASA Technical Reports Server (NTRS)
Hintsa, E. J.; Boering, K. A.; Weinstock, E. M.; Anderson, J. G.; Gary, B. L.; Pfister, L.; Daube, B. C.; Wofsy, S. C.; Loewenstein, M.; Podolske, J. R.;
1998-01-01
The origin of air in the lowermost stratosphere is investigated with measurements from the NASA ER-2 aircraft. Air with high water vapor mixing ratios was observed in the stratosphere at theta approximately 330-380 K near 40 N in May 1995, indicating the influence of intrusions of tropospheric air. Assuming that observed tracer-tracer relationships reflect mixing lines between tropospheric and stratospheric air masses, we calculate mixing ratios of H2O (12-24 ppmv) and CO2 for the admixed tropospheric air at theta = 352-364 K. Temperatures on the 355 K surface 20-40 N were low enough to dehydrate air to these values. While most ER-2 CO2 data in both hemispheres are consistent with tropical or subtropical air entering the lowermost stratosphere, measurements from May 1995 for theta < 362 K suggest that entry of air from the midlatitude upper troposphere can occur in conjunction with mixing processes near the tropopause.
NASA Technical Reports Server (NTRS)
Hintsa, E. J.; Boering, K. A.; Weinstock, E. M.; Anderson, J. G.; Gary, B. L.; Pfister, L.; Daube, B. C.; Wofsy, S. C.; Loewenstein, M.; Podolske, J. R.;
1998-01-01
The origin of air in the lowermost stratosphere is investigated with measurements from the NASA ER-2 aircraft. Air with high water vapor mixing ratios was observed in the stratosphere at theta about 330-380 K near 40N in May 1995, indicating the influence of intrusions of tropospheric air. Assuming that observed tracer-tracer relationships reflect mixing lines between tropospheric and stratospheric air masses, we calculate mixing ratios of H2O (12-24 ppmv) and CO2 for the admixed tropospheric air at theta =352-364 K. Temperatures on the 355 K surface at 20-40 N were low enough to dehydrate air to these values. while most ER-2 CO2 data in both hemispheres are consistent with tropical or subtropical air entering the lowermost stratosphere, measurements from May 1995 for theta <362 K suggest that entry of air from the midlatitude upper troposphere can occur in conjunction with mixing processes near the tropopause.
Improving atomic displacement and replacement calculations with physically realistic damage models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordlund, Kai; Zinkle, Steven J.; Sand, Andrea E.
Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor ofmore » 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.« less
Improving atomic displacement and replacement calculations with physically realistic damage models
Nordlund, Kai; Zinkle, Steven J.; Sand, Andrea E.; ...
2018-03-14
Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor ofmore » 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.« less
Demixing of aqueous polymer two-phase systems in low gravity
NASA Technical Reports Server (NTRS)
Bamberger, S.; Harris, J. M.; Baird, J. K.; Boyce, J.; Vanalstine, J. M.; Snyder, R. S.; Brooks, D. E.
1986-01-01
When polymers such as dextran and poly(ethylene glycol) are mixed in aqueous solution biphasic systems often form. On Earth the emulsion formed by mixing the phases rapidly demixes because of phase density differences. Biological materials can be purified by selective partitioning between the phases. In the case of cells and other particulates the efficiency of these separations appears to be somewhat compromised by the demixing process. To modify this process and to evaluate the potential of two-phase partitioning in space, experiments on the effects of gravity on phase emulsion demixing were undertaken. The behavior of phase systems with essentially identical phase densities was studied at one-g and during low-g parabolic aircraft maneuvers. The results indicate the demixing can occur rather rapidly in space, although more slowly than on Earth. The demixing process was examined from a theoretical standpoint by applying the theory of Ostwald ripening. This theory predicts demizing rates many orders of magnitude lower than observed. Other possible demixing mechanisms are considered.
Improving atomic displacement and replacement calculations with physically realistic damage models.
Nordlund, Kai; Zinkle, Steven J; Sand, Andrea E; Granberg, Fredric; Averback, Robert S; Stoller, Roger; Suzudo, Tomoaki; Malerba, Lorenzo; Banhart, Florian; Weber, William J; Willaime, Francois; Dudarev, Sergei L; Simeone, David
2018-03-14
Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor of 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.
NASA Astrophysics Data System (ADS)
Gall, H. D.; Cipar, J. H.; Crispin, K. L.; Kürkçüoğlu, B.; Furman, T.
2017-12-01
We elucidate crystal recycling and magma recharge processes at Hasandağ by investigating compositional zoning patterns and textural variation in plagioclase crystals from Quaternary basaltic andesite through dacite lavas. Previous work on Hasandağ intermediate compositions identified thermochemical disequilibrium features and showed abundant evidence for magma mixing1,2. We expand on this work through detailed micro-texture and mineral diffusion analysis to explore the mechanisms and timescales of crystal transport and mixing processes. Thermobarometric calculations constrain the plumbing system to 1.2-2 kbar and 850-950°C, corresponding to a felsic magma chamber at 4.5 km. Electron microprobe results reveal plagioclase phenocrysts from all lava types have common core (An33-46) and rim (An36-64) compositions, with groundmass laths (An57-67) resembling the phenocryst rims. Low An cores are ubiquitous, regardless of bulk rock chemistry, and suggest a consistent composition within the magma reservoir prior to high An rim growth. High An rims are regularly enriched in Mg, Fe, Ti and Sr, which we attribute to mafic recharge and magma mixing. We assess mixing timescales by inverse diffusion modeling of Mg profiles across the core-rim boundaries. Initial results suggest mixing to eruption processes occur on the order of days to months. Heterogeneous calculated timescales within thin sections indicate crystal populations with different growth histories. Crystals often display prominent sieve-textured zones just inside the rim, as well as other disequilibrium features such as oscillatory zoning or resorbed and patchy-zoned cores. We interpret these textures to indicate mobilization of a homogeneous dacitic reservoir with abundant An35 plagioclase crystals by frequent injection of mafic magma. Variability in observed textures and calculated timescales manifests during defrosting of a highly crystalline felsic mush, through different degrees of magma mixing. This process results in distinct crystal populations, some of which record punctuated ascent and storage, while others are erupted rapidly after the influx of new magma. Aydar, E., & Gourgaud, A. (1998). J. Volcanol. Geotherm. Res., 85(1), 129-152. Ustunisik, G., & Kilinc, A. (2011). Lithos, 125(3), 984-993.
Tough, processable simultaneous semi-interpenetrating polyimides
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
1996-01-01
A high temperature semi-interpenetrating polymer network (semi-IPN) was developed which had significantly improved processability, damage tolerance and mechanical performance, when compared to the commercial Thermid.RTM. materials. This simultaneous semi-IPN was prepared by mixing a thermosetting polyimide with a thermoplastic monomer precursor solution (NR-15082) and allowing them to react upon heating. This reaction occurs at a rate which decreases the flow and broadens the processing window. Upon heating at a higher temperature, there is an increase in flow. Because of the improved flow properties, broadened processing window and enhanced toughness, high strength polymer matrix composites, adhesives and molded articles can now be prepared from the acetylene endcapped polyimides which were previously inherently brittle and difficult to process.
Process for preparing titanium nitride powder
Bamberger, C.E.
1988-06-17
A process for making titanium nitride powder by reaction of titanium phosphates with sodium cyanide. The process of this invention may comprise mixing one or more phosphates of Ti with a cyanide salt in the absence of oxygen and heating to a temperature sufficient to cause reaction to occur. In the preferred embodiment the ratio of cyanide salt to Ti should be at least 2 which results in the major Ti-containing product being TiN rather than sodium titanium phosphate byproducts. The process is an improvement over prior processes since the byproducts are water soluble salts of sodium which can easily be removed from the preferred TiN product by washing. 2 tabs.
Davis, Ryan D; Jacobs, Michael I; Houle, Frances A; Wilson, Kevin R
2017-11-21
In-depth investigations of the kinetics of aqueous chemistry occurring in microdroplet environments require experimental techniques that allow a reaction to be initiated at a well-defined point in time and space. Merging microdroplets of different reactants is one such approach. The mixing dynamics of unconfined (airborne) microdroplets have yet to be studied in detail, which is an essential step toward widespread use and application of merged droplet microreactors for monitoring chemical reactions. Here, we present an on-demand experimental approach for initiating chemical reactions in and characterizing the mixing dynamics of colliding airborne microdroplets (40 ± 5 μm diameter) using a streak-based fluorescence microscopy technique. The advantages of this approach include the ability to generate two well-controlled monodisperse microdroplet streams and collide (and thus mix) the microdroplets with high spatial and temporal control while consuming small amounts of sample (<0.1 μL/s). Mixing times are influenced not only by the velocity at which microdroplets collide but also the geometry of the collision (i.e., head-on vs off-center collision). For head-on collisions, we achieve submillisecond mixing times ranging from ∼900 μs at a collision velocity of 0.1 m/s to <200 μs at ∼6 m/s. For low-velocity (<1 m/s) off-center collisions, mixing times were consistent with the head-on cases. For high-velocity (i.e., > 1 m/s) off-center collisions, mixing times increased by as much as a factor of 6 (e.g., at ∼6 m/s, mixing times increased from <200 μs for head-on collisions to ∼1200 μs for highly off-center collisions). At collision velocities >7 m/s, droplet separation and fragmentation occurred, resulting in incomplete mixing. These results suggest a limited range of collision velocities over which complete and rapid mixing can be achieved when using airborne merged microdroplets to, e.g., study reaction kinetics when reaction times are short relative to typical bulk reactor mixing times. We benchmark our reactor using an aqueous-phase oxidation reaction: iron-catalyzed hydroxyl radical production from hydrogen peroxide (Fenton's reaction) and subsequent aqueous-phase oxidation of organic species in solution. Kinetic simulations of our measurements show that quantitative agreement can be obtained using known bulk-phase kinetics for bimolecular reactions in our colliding-droplet microreactor.
Davis, Ryan D.; Jacobs, Michael I.; Houle, Frances A.; ...
2017-10-30
In-depth investigations of the kinetics of aqueous chemistry occurring in microdroplet environments require experimental techniques that allow a reaction to be initiated at a well-defined point in time and space. Merging microdroplets of different reactants is one such approach. The mixing dynamics of unconfined (airborne) microdroplets have yet to be studied in detail, which is an essential step toward widespread use and application of merged droplet microreactors for monitoring chemical reactions. Here, we present an on-demand experimental approach for initiating chemical reactions in and characterizing the mixing dynamics of colliding airborne microdroplets (40 ± 5 μm diameter) using a streak-basedmore » fluorescence microscopy technique. The advantages of this approach include the ability to generate two well-controlled monodisperse microdroplet streams and collide (and thus mix) the microdroplets with high spatial and temporal control while consuming small amounts of sample (<0.1 μL/s). Mixing times are influenced not only by the velocity at which microdroplets collide but also the geometry of the collision (i.e., head-on vs off-center collision). For head-on collisions, we achieve submillisecond mixing times ranging from ~900 μs at a collision velocity of 0.1 m/s to <200 μs at ~6 m/s. For low-velocity (<1 m/s) off-center collisions, mixing times were consistent with the head-on cases. For high-velocity (i.e., > 1 m/s) off-center collisions, mixing times increased by as much as a factor of 6 (e.g., at ~6 m/s, mixing times increased from <200 μs for head-on collisions to ~1200 μs for highly off-center collisions). At collision velocities >7 m/s, droplet separation and fragmentation occurred, resulting in incomplete mixing. These results suggest a limited range of collision velocities over which complete and rapid mixing can be achieved when using airborne merged microdroplets to, e.g., study reaction kinetics when reaction times are short relative to typical bulk reactor mixing times. We benchmark our reactor using an aqueous-phase oxidation reaction: iron-catalyzed hydroxyl radical production from hydrogen peroxide (Fenton's reaction) and subsequent aqueous-phase oxidation of organic species in solution. In conclusion, kinetic simulations of our measurements show that quantitative agreement can be obtained using known bulk-phase kinetics for bimolecular reactions in our colliding-droplet microreactor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Ryan D.; Jacobs, Michael I.; Houle, Frances A.
In-depth investigations of the kinetics of aqueous chemistry occurring in microdroplet environments require experimental techniques that allow a reaction to be initiated at a well-defined point in time and space. Merging microdroplets of different reactants is one such approach. The mixing dynamics of unconfined (airborne) microdroplets have yet to be studied in detail, which is an essential step toward widespread use and application of merged droplet microreactors for monitoring chemical reactions. Here, we present an on-demand experimental approach for initiating chemical reactions in and characterizing the mixing dynamics of colliding airborne microdroplets (40 ± 5 μm diameter) using a streak-basedmore » fluorescence microscopy technique. The advantages of this approach include the ability to generate two well-controlled monodisperse microdroplet streams and collide (and thus mix) the microdroplets with high spatial and temporal control while consuming small amounts of sample (<0.1 μL/s). Mixing times are influenced not only by the velocity at which microdroplets collide but also the geometry of the collision (i.e., head-on vs off-center collision). For head-on collisions, we achieve submillisecond mixing times ranging from ~900 μs at a collision velocity of 0.1 m/s to <200 μs at ~6 m/s. For low-velocity (<1 m/s) off-center collisions, mixing times were consistent with the head-on cases. For high-velocity (i.e., > 1 m/s) off-center collisions, mixing times increased by as much as a factor of 6 (e.g., at ~6 m/s, mixing times increased from <200 μs for head-on collisions to ~1200 μs for highly off-center collisions). At collision velocities >7 m/s, droplet separation and fragmentation occurred, resulting in incomplete mixing. These results suggest a limited range of collision velocities over which complete and rapid mixing can be achieved when using airborne merged microdroplets to, e.g., study reaction kinetics when reaction times are short relative to typical bulk reactor mixing times. We benchmark our reactor using an aqueous-phase oxidation reaction: iron-catalyzed hydroxyl radical production from hydrogen peroxide (Fenton's reaction) and subsequent aqueous-phase oxidation of organic species in solution. In conclusion, kinetic simulations of our measurements show that quantitative agreement can be obtained using known bulk-phase kinetics for bimolecular reactions in our colliding-droplet microreactor.« less
Ellis, Mark; Holloway, Steven R.; Wright, Richard; Fowler, Christopher S.
2014-01-01
This article explores the effects of mixed-race household formation on trends in neighborhood-scale racial segregation. Census data show that these effects are nontrivial in relation to the magnitude of decadal changes in residential segregation. An agent-based model illustrates the potential long-run impacts of rising numbers of mixed-race households on measures of neighborhood-scale segregation. It reveals that high rates of mixed-race household formation will reduce residential segregation considerably. This occurs even when preferences for own-group neighbors are high enough to maintain racial separation in residential space in a Schelling-type model. We uncover a disturbing trend, however; levels of neighborhood-scale segregation of single-race households can remain persistently high even while a growing number of mixed-race households drives down the overall rate of residential segregation. Thus, the article’s main conclusion is that parsing neighborhood segregation levels by household type—single versus mixed race—is essential to interpret correctly trends in the spatial separation of racial groups, especially when the fraction of households that are mixed race is dynamic. More broadly, the article illustrates the importance of household-scale processes for urban outcomes and joins debates in geography about interscalar relationships. PMID:25082984
Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; ...
2014-09-09
Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T₂-gas filled CH-shell implosions equipped with 4 μm thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within themore » CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 μm have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly-radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.« less
NASA Astrophysics Data System (ADS)
Tsai, I.-Chun; Chen, Jen-Ping; Lin, Yi-Chiu; Chung-Kuang Chou, Charles; Chen, Wei-Nai
2015-05-01
A statistical-numerical aerosol parameterization was incorporated into the Community Multiscale Air Quality modeling system to study the coagulation mixing process focusing on a dust storm event that occurred over East Asia. Simulation results show that the coagulation mixing process tends to decrease aerosol mass, surface area, and number concentrations over the dust source areas. Over the downwind oceanic areas, aerosol concentrations generally increased due to enhanced sedimentation as particles became larger upon coagulation. The mixture process can reduce the overall single-scattering albedo by up to 10% as a result of enhanced core with shell absorption by dust and reduction in the number of scattering particles. The enhanced dry deposition speed also altered the vertical distribution. In addition, the ability of aerosol particles to serve as cloud condensation nuclei (CCN) increased from around 107 m-3 to above 109 m-3 over downwind areas because a large amount of mineral dust particles became effective CCN with solute coating, except over the highly polluted areas where multiple collections of hygroscopic particles by dust in effect reduced CCN number. This CCN effect is much stronger for coagulation mixing than by the uptake of sulfuric acid gas on dust, although the nitric acid gas uptake was not investigated. The ability of dust particles to serve as ice nuclei may decrease or increase at low or high subzero temperatures, respectively, due to the switching from deposition nucleation to immersion freezing or haze freezing.
Ligand Rearrangements at Fe/S Cofactors: Slow Isomerization of a Biomimetic [2Fe-2S] Cluster.
Bergner, Marie; Roy, Lisa; Dechert, Sebastian; Neese, Frank; Ye, Shengfa; Meyer, Franc
2017-04-18
Ligand exchange plays an important role in the biogenesis of Fe/S clusters, most prominently during cluster transfer from a scaffold protein to its target protein. Although in vivo and in vitro studies have provided some insight into this process, the microscopic details of the ligand exchange steps are mostly unknown. In this work, the kinetics of the ligand rearrangement in a biomimetic [2Fe-2S] cluster with mixed S/N capping ligands have been studied. Two geometrical isomers of the cluster are present in solution, and mechanistic insight into the isomerization process was obtained by variable-temperature 1 H NMR spectroscopy. Combined experimental and computational results reveal that this is an associative process that involves the coordination of a solvent molecule to one of the ferric ions. The cluster isomerizes at least two orders of magnitude faster in its protonated and mixed-valent states. These findings may contribute to a deeper understanding of cluster transfer and sensing processes occurring in Fe/S cluster biogenesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yau, Kah Wai; Schätzle, Philipp; Tortosa, Elena; Pagès, Stéphane; Holtmaat, Anthony; Kapitein, Lukas C; Hoogenraad, Casper C
2016-01-27
In cultured vertebrate neurons, axons have a uniform arrangement of microtubules with plus-ends distal to the cell body (plus-end-out), whereas dendrites contain mixed polarity orientations with both plus-end-out and minus-end-out oriented microtubules. Rather than non-uniform microtubules, uniparallel minus-end-out microtubules are the signature of dendrites in Drosophila and Caenorhabditis elegans neurons. To determine whether mixed microtubule organization is a conserved feature of vertebrate dendrites, we used live-cell imaging to systematically analyze microtubule plus-end orientations in primary cultures of rat hippocampal and cortical neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neurons in the somatosensory cortex of living mice. In vitro and in vivo, all microtubules had a plus-end-out orientation in axons, whereas microtubules in dendrites had mixed orientations. When dendritic microtubules were severed by laser-based microsurgery, we detected equal numbers of plus- and minus-end-out microtubule orientations throughout the dendritic processes. In dendrites, the minus-end-out microtubules were generally more stable and comparable with plus-end-out microtubules in axons. Interestingly, at early stages of neuronal development in nonpolarized cells, newly formed neurites already contained microtubules of opposite polarity, suggesting that the establishment of uniform plus-end-out microtubules occurs during axon formation. We propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization. Live-cell imaging was used to systematically analyze microtubule organization in primary cultures of rat hippocampal neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neuron in somatosensory cortex of living mice. In vitro and in vivo, all microtubules have a plus-end-out orientation in axons, whereas microtubules in dendrites have mixed orientations. Interestingly, newly formed neurites of nonpolarized neurons already contain mixed microtubules, and the specific organization of uniform plus-end-out microtubules only occurs during axon formation. Based on these findings, the authors propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization. Copyright © 2016 the authors 0270-6474/16/361072-15$15.00/0.
Faille, C; Bénézech, T; Midelet-Bourdin, G; Lequette, Y; Clarisse, M; Ronse, G; Ronse, A; Slomianny, C
2014-06-01
Bacillus strains are often isolated from biofilms in the food industries. Previous works have demonstrated that sporulation could occur in biofilms, suggesting that biofilms would be a significant source of food contamination with spores. In this study, we investigated the properties of mono-species and mixed Bacillus biofilms and the ability of Bacillus strains to sporulate inside biofilms. Bacillus strains were able to form mono-species biofilms on stainless steel coupons, with up to 90% spores after a 48 h-incubation. These spores were highly resistant to cleaning but were easily transferred to agar, mimicking the cross-contamination of food, thereby suggesting that biofilms would be of particular concern due to a potential for Bacillus spore food contamination. This hypothesis was strengthened by the fact that Bacillus strains were able to form mixed biofilms with resident strains and that sporulation still occurred easily in these complex structures. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liquid jet breakup regimes at supercritical pressures
Oefelein, Joseph C.; Dahms, Rainer Norbert Uwe
2015-07-23
Previously, a theory has been presented that explains how discrete vapor–liquid interfaces become diminished at certain high-pressure conditions in a manner that leads to well known qualitative trends observed from imaging in a variety of experiments. Rather than surface tension forces, transport processes can dominate over relevant ranges of conditions. In this paper, this framework is now generalized to treat a wide range of fuel-oxidizer combinations in a manner consistent with theories of capillary flows and extended corresponding states theory. Different flow conditions and species-specific molecular properties are shown to produce distinct variations of interfacial structures and local free molecularmore » paths. These variations are shown to occur over the operating ranges in a variety of propulsion and power systems. Despite these variations, the generalized analysis reveals that the envelope of flow conditions at which the transition from classical sprays to diffusion-dominated mixing occurs exhibits a characteristic shape for all liquid–gas combinations. As a result, for alkane-oxidizer mixtures, it explains that these conditions shift to higher pressure flow conditions with increasing carbon number and demonstrates that, instead of widely assumed classical spray atomization, diffusion-dominated mixing may occur under relevant high-pressure conditions in many modern devices.« less
Mixing and the dynamics of the deep chlorophyll maximum in Lake Tahoe
NASA Technical Reports Server (NTRS)
Abbott, M. R.; Denman, K. L.; Powell, T. M.; Richerson, P. J.; Richards, R. C.; Goldman, C. R.
1984-01-01
Chlorophyll-temperature profiles were measured across Lake Tahoe about every 10 days from April through July 1980. Analysis of the 123 profiles and associated productivity and nutrient data identified three important processes in the formation and dynamics of the deep chlorophyll maximum (DCM): turbulent diffusion, nutrient supply rate, and light availability. Seasonal variation in these three processes resulted in three regimes: a diffusion-dominated regime with a weak DCM, a variable-mixing regime with a pronounced, nutrient supply-dominated DCM, and a stable regime with a deep, moderate light availability-dominated DCM. The transition between the first two regimes occurred in about 10 days, the transition between the last two more gradually over about 3 weeks. The degree of spatial variability of the DCM was highest in the second regime and lowest in the third. These data indicate that the DCM in Lake Tahoe is constant in neither time nor space.
Detox{sup SM} wet oxidation system studies for engineering scale up
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, D.T.; Moslander, J.E.; Zigmond, J.A.
1995-12-31
Catalyzed wet oxidation utilizing iron(III) has been shown to have promise for treating many hazardous and mixed wastes. The reaction occurs at the surface of contact between an aqueous iron(III) solution and organic material. Studies with liquid- and vapor-phase organic waste surrogates have established reaction kinetics and the limits of reaction rate based on organic concentration and iron(III) diffusion. Continuing engineering studies have concentrated on reaction vessel agitator and solids feed configurations, an improved bench scale reflux condenser and reflux condenser calculations, sparging of organic compounds from the process condensate water, filtration of solids from the process solution, and flammabilitymore » limits for volatile organic compounds in the headspace of the reaction vessel under the reaction conditions. Detailed engineering design and fabrication of a demonstration unit for treatment of mixed waste is in progress.« less
Isosorbide, a green plasticizer for thermoplastic starch that does not retrogradate.
Battegazzore, Daniele; Bocchini, Sergio; Nicola, Gabriele; Martini, Eligio; Frache, Alberto
2015-03-30
Isosorbide is a non-toxic biodegradable diol derived from bio-based feedstock. It can be used for preparing thermoplastic starch through a semi-industrial process of extrusion. Isosorbide allows some technological advantages with respect to classical plasticizers: namely, direct mixing with starch, energy savings for the low processing temperature required and lower water uptake. Indeed, maize starch was directly mixed with the solid plasticizer and direct fed in the main hopper of a co-rotating twin screw extruder. Starch plasticization was assessed by X-ray diffraction (XRD) and dynamic-mechanical analysis (DMTA). Oxygen permeability, water uptake and mechanical properties were measured at different relative humidity (R.H.) values. These three properties turned out to be highly depending on the R.H. No retrogradation and changing of the material properties were occurred from XRD and DMTA after 9 months. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A.
2015-12-29
A method and system includes generating a first coded acoustic signal including pulses each having a modulated signal at a central frequency; and a second coded acoustic signal each pulse of which includes a modulated signal a central frequency of which is a fraction d of the central frequency of the modulated signal for the corresponding pulse in the first plurality of pulses. A receiver detects a third signal generated by a non-linear mixing process in the mixing zone and the signal is processed to extract the third signal to obtain an emulated micro-seismic event signal occurring at the mixingmore » zone; and to characterize properties of the medium or creating a 3D image of the properties of the medium, or both, based on the emulated micro-seismic event signal.« less
One-dimensional Turbulence Models of Type I X-ray Bursts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Chen
Type I X-ray bursts are caused by thermonuclear explosions occurring on the surface of an accreting neutron star in a binary star system. Observations and simulations of these phenomena are of great importance for understanding the fundamental properties of neutron stars and dense matter because the equation of state for cold dense matter can be constrained by the mass-radius relationship of neutron stars. During the bursts, turbulence plays a key role in mixing the fuels and driving the unstable nuclear burning process. This dissertation presents one-dimensional models of photospheric radius expansion bursts with a new approach to simulate turbulent advection.more » Compared with the traditional mixing length theory, the one-dimensional turbulence (ODT) model represents turbulent motions by a sequence of maps that are generated according to a stochastic process. The light curves I obtained with the ODT models are in good agreement with those of the KEPLER model in which the mixing length theory and various diffusive processes are applied. The abundance comparison, however, indicates that the differences in turbulent regions and turbulent diffusivities result in more 12C survival during the bursts in the ODT models, which can make a difference in the superbursts phenomena triggered by unstable carbon burning.« less
Cellular Decision Making by Non-Integrative Processing of TLR Inputs.
Kellogg, Ryan A; Tian, Chengzhe; Etzrodt, Martin; Tay, Savaş
2017-04-04
Cells receive a multitude of signals from the environment, but how they process simultaneous signaling inputs is not well understood. Response to infection, for example, involves parallel activation of multiple Toll-like receptors (TLRs) that converge on the nuclear factor κB (NF-κB) pathway. Although we increasingly understand inflammatory responses for isolated signals, it is not clear how cells process multiple signals that co-occur in physiological settings. We therefore examined a bacterial infection scenario involving co-stimulation of TLR4 and TLR2. Independent stimulation of these receptors induced distinct NF-κB dynamic profiles, although surprisingly, under co-stimulation, single cells continued to show ligand-specific dynamic responses characteristic of TLR2 or TLR4 signaling rather than a mixed response, comprising a cellular decision that we term "non-integrative" processing. Iterating modeling and microfluidic experiments revealed that non-integrative processing occurred through interaction of switch-like NF-κB activation, receptor-specific processing timescales, cell-to-cell variability, and TLR cross-tolerance mediated by multilayer negative feedback. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Refractive index of liquid mixtures: theory and experiment.
Reis, João Carlos R; Lampreia, Isabel M S; Santos, Angela F S; Moita, Maria Luísa C J; Douhéret, Gérard
2010-12-03
An innovative approach is presented to interpret the refractive index of binary liquid mixtures. The concept of refractive index "before mixing" is introduced and shown to be given by the volume-fraction mixing rule of the pure-component refractive indices (Arago-Biot formula). The refractive index of thermodynamically ideal liquid mixtures is demonstrated to be given by the volume-fraction mixing rule of the pure-component squared refractive indices (Newton formula). This theoretical formulation entails a positive change of refractive index upon ideal mixing, which is interpreted in terms of dissimilar London dispersion forces centred in the dissimilar molecules making up the mixture. For real liquid mixtures, the refractive index of mixing and the excess refractive index are introduced in a thermodynamic manner. Examples of mixtures are cited for which excess refractive indices and excess molar volumes show all of the four possible sign combinations, a fact that jeopardises the finding of a general equation linking these two excess properties. Refractive indices of 69 mixtures of water with the amphiphile (R,S)-1-propoxypropan-2-ol are reported at five temperatures in the range 283-303 K. The ideal and real refractive properties of this binary system are discussed. Pear-shaped plots of excess refractive indices against excess molar volumes show that extreme positive values of excess refractive index occur at a substantially lower mole fraction of the amphiphile than extreme negative values of excess molar volume. Analysis of these plots provides insights into the mixing schemes that occur in different composition segments. A nearly linear variation is found when Balankina's ratios between excess and ideal values of refractive indices are plotted against ratios between excess and ideal values of molar volumes. It is concluded that, when coupled with volumetric properties, the new thermodynamic functions defined for the analysis of refractive indices of liquid mixtures give important complementary information on the mixing process over the whole composition range.
High static stability in the mixing layer above the extratropical tropopause
NASA Astrophysics Data System (ADS)
Kunz, A.; Konopka, P.; Müller, R.; Pan, L. L.; Schiller, C.; Rohrer, F.
2009-08-01
The relationship between the static stability N2 and the mixing in the tropopause inversion layer (TIL) is investigated using in situ aircraft observations during SPURT (trace gas transport in the tropopause region). With a new simple measure of mixing degree based on O3-CO tracer correlations, high N2 related to an enhanced mixing in the extratropical mixing layer is found. This relation becomes even more pronounced if fresh mixing events are excluded, indicating that mixing within the TIL occurs on a larger than synoptic timescale. A temporal variance analysis of N2 suggests that processes responsible for the composition of the TIL take place on seasonal timescales. Using radiative transfer calculations, we simulate the influence of a change in O3 and H2O vertical gradients on the temperature gradient and thus on the static stability above the tropopause, which are contrasted in an idealized nonmixed atmosphere and in a reference mixed atmosphere. The results show that N2 increases with enhanced mixing degree near the tropopause. At the same time, the temperature above the tropopause decreases together with the development of an inversion and the TIL. In the idealized case of nonmixed profiles the TIL vanishes. Furthermore, the results suggest that H2O plays a major role in maintaining the temperature inversion and the TIL structure compared to O3. The results substantiate the link between the extratropical mixing layer and the TIL.
Parametric resonant triad interactions in a free shear layer
NASA Technical Reports Server (NTRS)
Mallier, R.; Maslowe, S. A.
1993-01-01
We investigate the weakly nonlinear evolution of a triad of nearly-neutral modes superimposed on a mixing layer with velocity profile u bar equals Um + tanh y. The perturbation consists of a plane wave and a pair of oblique waves each inclined at approximately 60 degrees to the mean flow direction. Because the evolution occurs on a relatively fast time scale, the critical layer dynamics dominate the process and the amplitude evolution of the oblique waves is governed by an integro-differential equation. The long-time solution of this equation predicts very rapid (exponential of an exponential) amplification and we discuss the pertinence of this result to vortex pairing phenomena in mixing layers.
NASA Astrophysics Data System (ADS)
Cortesi, A. B.; Smith, B. L.; Yadigaroglu, G.; Banerjee, S.
1999-01-01
The direct numerical simulation (DNS) of a temporally-growing mixing layer has been carried out, for a variety of initial conditions at various Richardson and Prandtl numbers, by means of a pseudo-spectral technique; the main objective being to elucidate how the entrainment and mixing processes in mixing-layer turbulence are altered under the combined influence of stable stratification and thermal conductivity. Stratification is seen to significantly modify the way by which entrainment and mixing occur by introducing highly-localized, convective instabilities, which in turn cause a substantially different three-dimensionalization of the flow compared to the unstratified situation. Fluid which was able to cross the braid region mainly undisturbed (unmixed) in the unstratified case, pumped by the action of rib pairs and giving rise to well-formed mushroom structures, is not available with stratified flow. This is because of the large number of ribs which efficiently mix the fluid crossing the braid region. More efficient entrainment and mixing has been noticed for high Prandtl number computations, where vorticity is significantly reinforced by the baroclinic torque. In liquid sodium, however, for which the Prandtl number is very low, the generation of vorticity is very effectively suppressed by the large thermal conduction, since only small temperature gradients, and thus negligible baroclinic vorticity reinforcement, are then available to counterbalance the effects of buoyancy. This is then reflected in less efficient entrainment and mixing. The influence of the stratification and the thermal conductivity can also be clearly identified from the calculated entrainment coefficients and turbulent Prandtl numbers, which were seen to accurately match experimental data. The turbulent Prandtl number increases rapidly with increasing stratification in liquid sodium, whereas for air and water the stratification effect is less significant. A general law for the entrainment coefficient as a function of the Richardson and Prandtl numbers is proposed, and critically assessed against experimental data.
The formation of Greenland Sea Deep Water: double diffusion or deep convection?
NASA Astrophysics Data System (ADS)
Clarke, R. Allyn; Swift, James H.; Reid, Joseph L.; Koltermann, K. Peter
1990-09-01
An examination of the extensive hydrographic data sets collected by C.S.S. Hudson and F.S. Meteor in the Norwegian and Greenland Seas during February-June 1982 reveals property distributions and circulation patterns broadly similar to those seen in earlier data sets. These data sets, however, reveal the even stronger role played by topography, with evidence of separate circulation patterns and separate water masses in each of the deep basins. The high precision temperature, salinity and oxygen data obtained reveals significant differences in the deep and bottom waters found in the various basins of the Norwegian and Greenland Seas. A comparison of the 1982 data set with earlier sets shows that the renewal of Greenland Sea Deep Water must have taken place sometime over the last decade; however there is no evidence that deep convective renewal of any of the deep and bottom waters in this region was taking place at the time of the observations. The large-scale density fields, however, do suggest that deep convection to the bottom is most likely to occure in the Greenland Basin due to its deep cyclonic circulation. The hypothesis that Greenland Sea Deep Water (GSDW) is formed through dipycnal mixing processes acting on the warm salty core of Atlantic Water entering the Greenland Sea is examined. θ-S correlations and oxygen concentrations suggest that the salinity maxima in the Greenland Sea are the product of at least two separate mixing processes, not the hypothesized single mixing process leading to GSDW. A simple one-dimensional mixed layer model with ice growth and decay demonstrates that convective renewal of GSDW would have occurred within the Greenland Sea had the winter been a little more severe. The new GSDW produced would have only 0.003 less salt and less than 0.04 ml 1 -1 greater oxygen concentration than that already in the basin. Consequently, detection of whether new deep water has been produced following a winter cooling season could be difficult even with the best of modern accuracy.
NASA Astrophysics Data System (ADS)
Johnson, Brian K.
This dissertation provides a method and the understanding required to produce nanoparticles of organic actives using Flash NanoPrecipitation . The process comprises mixing a solvent phase containing molecularly dissolved amphiphilic block copolymer and an organic active with an anti-solvent. One block of the copolymer precipitates to alter the nucleation and growth of the organic active while the other remains in solution for particle stabilization. A custom built confined impinging jets (CIJ) mixer provides optimum micromixing at the laboratory or full scale within milliseconds. Comparison to other reactor designs is provided. The resulting nanoparticles have functional surfaces tailored to meet the needs of pharmaceutical or specialty chemical formulations. Example beta-carotene nanoparticles with a polyethylene oxide surface are produced at high concentration, high yield, low stabilizer content, and a size suitable for sterile filtration or larger. The technical challenges in nanoparticle production are explained via the characteristic times for mixing, copolymer aggregation, and organic active particle formation. The time for Flash NanoPrecipitation is shown to depend strongly on the time for copolymer aggregation, and control of the organic nucleation versus growth is critical to achieve nanoparticles. Mixing operating lines explain the impact of solubility differences between the colloidal stabilizer and the organic active as function of mixing rate. Techniques to measure the solubility of the copolymer and DeltaG° , DeltaH°, and DeltaS° of micellization are demonstrated. An analytical CIJ mixer is developed by quantifying the characteristic time and physical mechanism of mixing. The methodology described to find an absolute mixing lifetime is also applied to a vortex mixer at a spectrum of flow ratios away from one. Dimensional analysis using the process Damkohler number, defined as the ratio of the mixing to the process time, is applied to precipitation to quantify the induction time through knowledge of the mixing lifetime. Copolymer aggregation without an organic active to kinetically frozen nanoparticles occurs by a "fusion only" mechanism. By analogy to classical precipitation kinetics, the interfacial free energy of a diblock copolymer nanoparticle is determined for the first time. The composite dissertation provides a clear picture of Flash NanoPrecipitation for future research and applications.
Removal of Hazardous Pollutants from Wastewaters: Applications of TiO 2 -SiO 2 Mixed Oxide Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasalingam, Shivatharsiny; Peng, Rui; Koodali, Ranjit T.
The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP) have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the application ofmore » TiO 2 -SiO 2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.« less
Removal of Hazardous Pollutants from Wastewaters: Applications of TiO 2 -SiO 2 Mixed Oxide Materials
Rasalingam, Shivatharsiny; Peng, Rui; Koodali, Ranjit T.
2014-01-01
The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP) have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the application ofmore » TiO 2 -SiO 2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.« less
Linear Mixed Models: Gum and Beyond
NASA Astrophysics Data System (ADS)
Arendacká, Barbora; Täubner, Angelika; Eichstädt, Sascha; Bruns, Thomas; Elster, Clemens
2014-04-01
In Annex H.5, the Guide to the Evaluation of Uncertainty in Measurement (GUM) [1] recognizes the necessity to analyze certain types of experiments by applying random effects ANOVA models. These belong to the more general family of linear mixed models that we focus on in the current paper. Extending the short introduction provided by the GUM, our aim is to show that the more general, linear mixed models cover a wider range of situations occurring in practice and can be beneficial when employed in data analysis of long-term repeated experiments. Namely, we point out their potential as an aid in establishing an uncertainty budget and as means for gaining more insight into the measurement process. We also comment on computational issues and to make the explanations less abstract, we illustrate all the concepts with the help of a measurement campaign conducted in order to challenge the uncertainty budget in calibration of accelerometers.
Modeling nearshore-offshore exchange in Lake Superior
Tokos, Kathy S.; Matsumoto, Katsumi
2018-01-01
Lake Superior′s ecosystem includes distinct nearshore and offshore food webs linked by hydrodynamic processes that transport water and tracers along and across shore. The scales over which these processes occur and their sensitivity to increasing summer surface temperatures are not well understood. This study investigated horizontal mixing between nearshore and offshore areas of Lake Superior over the 10-year period from 2003 to 2012 using a realistically forced three-dimensional numerical model and virtual tracers. An age tracer was used to characterize the time scales of horizontal mixing between nearshore areas of the lake where water depth is less than 100 m and deeper areas. The age of water in nearshore areas increased and decreased in an annual cycle corresponding to the lake′s dimictic cycle of vertical mixing and stratification. Interannual variability of mixing in the isothermal period was significantly correlated to average springtime wind speed, whereas variability during the stratified season was correlated to the average summer surface temperature. Dispersal of a passive tracer released from nine locations around the model lake’s perimeter was more extensive in late summer when stratification was established lakewide than in early summer. The distribution of eddies resolved in the model reflected differences between the early and late summer dispersal patterns. In the eastern part of the lake dispersal was primarily alongshore, reflecting counterclockwise coastal circulation. In the western part of the lake, cross-shore mixing was enhanced by cross-basin currents. PMID:29447286
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tench, D.M.; Kendig, M.W.; Jeanjaquet, S.
1993-06-01
The overall objective of this project was to develop a process for direct electrodeposition of Y-Ba-Cu superconducting oxides from a molten salt at relatively low temperatures (300-550 deg C). An important finding was that cathodic deposition of metallic oxides, rather than free metals, generally occurs from nitrate melts, apparently via reduction of metal nitrato complexes. Oxide deposition was confirmed for Cu as CuO, Y as Y2O3, and Co as Co3O4, and apparently also occurs for Ba. Deposition of mixed Ba-Y-Cu oxides was demonstrated on both Cu and Pt substrates. Data were compiled that provide a good basis for designing schemesmore » for deposition of various mixed oxides from nitrate melts. A sequential anodic injection method was conceived for depositing ultrathin mixed oxide layers, which can be viewed as an analog of molecular beam epitaxy. Results obtained with this approach were encouraging but were inconclusive because of contamination with Gd from the Y injection anode. Based on the results of this program and literature studies, cathodic metal oxide deposition from nitrate melts is a general phenomenon that could ultimately prove to be a practical means of preparing a variety of single and mixed anhydrous metal oxide films. It is recommended that future work focus initially on deposition of perovskite materials, which are of considerable practical interest and involve only two metallic components so that the required deposition schemes are inherently simpler.« less
Subgrain Rotation Behavior in Sn3.0Ag0.5Cu-Sn37Pb Solder Joints During Thermal Shock
NASA Astrophysics Data System (ADS)
Han, Jing; Tan, Shihai; Guo, Fu
2018-01-01
Ball grid array (BGA) samples were soldered on a printed circuit board with Sn37Pb solder paste to investigate the recrystallization induced by subgrain rotation during thermal shock. The composition of the solder balls was Sn3.0Ag0.5Cu-Sn37Pb, which comprised mixed solder joints. The BGA component was cross-sectioned before thermal shock. The microstructure and grain orientations were obtained by a scanning electron microscope equipped with an electron back-scattered diffraction system. Two mixed solder joints at corners of the BGA component were selected as the subjects. The results showed that recrystallization occurred at the corner of the solder joints after 200 thermal shock cycles. The recrystallized subgrains had various new grain orientations. The newly generated grain orientations were closely related to the initial grain orientations, which indicated that different subgrain rotation behaviors could occur in one mixed solder joint with the same initial grain orientation. When the misorientation angles were very small, the rotation axes were about Sn [100], [010] and [001], as shown by analyzing the misorientation angles and subgrain rotation axes, while the subgrain rotation behavior with large misorientation angles in the solder joints was much more complicated. As Pb was contained in the solder joints and the stress was concentrated on the corner of the mixed solder joints, concaves and cracks were formed. When the adjacent recrystallized subgrains were separated, and the process of the continuous recrystallization was limited.
The electrical properties of zero-gravity processed immiscibles
NASA Technical Reports Server (NTRS)
Lacy, L. L.; Otto, G. H.
1974-01-01
When dispersed or mixed immiscibles are solidified on earth, a large amount of separation of the constituents takes place due to differences in densities. However, when the immiscibles are dispersed and solidified in zero-gravity, density separation does not occur, and unique composite solids can be formed with many new and promising electrical properties. By measuring the electrical resistivity and superconducting critical temperature, Tc, of zero-g processed Ga-Bi samples, it has been found that the electrical properties of such materials are entirely different from the basic constituents and the ground control samples. Our results indicate that space processed immiscible materials may form an entirely new class of electronic materials.
Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes
NASA Astrophysics Data System (ADS)
Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon
2014-04-01
Decline of the Arctic summer minimum sea ice extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort Seas, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack ice, thereby causing flexural swell and failure of the sea ice. This process shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects sea ice dynamic and thermodynamic processes. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort Sea region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the ice pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of ice floes was identified in affected areas. The impact of this process in future Arctic sea ice melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining sea ice cover. We conclude that this process is an important positive feedback to Arctic sea ice loss, and timing of initiation is critical in how it affects sea ice thermodynamic and dynamic processes.
Marini, Francesco; Demeter, Elise; Roberts, Kenneth C.; Chelazzi, Leonardo
2016-01-01
Given the information overload often imparted to human cognitive-processing systems, suppression of irrelevant and distracting information is essential for successful behavior. Using a hybrid block/event-related fMRI design, we characterized proactive and reactive brain mechanisms for filtering distracting stimuli. Participants performed a flanker task, discriminating the direction of a target arrow in the presence versus absence of congruent or incongruent flanking distracting arrows during either Pure blocks (distracters always absent) or Mixed blocks (distracters on 80% of trials). Each Mixed block had either 20% or 60% incongruent trials. Activations in the dorsal frontoparietal attention network during Mixed versus Pure blocks evidenced proactive (blockwise) recruitment of a distraction-filtering mechanism. Sustained activations in right middle frontal gyrus during 60% Incongruent blocks correlated positively with behavioral indices of distraction-filtering (slowing when distracters might occur) and negatively with distraction-related behavioral costs (incongruent vs congruent trials), suggesting a role in coordinating proactive filtering of potential distracters. Event-related analyses showed that incongruent trials elicited greater reactive activations in 20% (vs 60%) Incongruent blocks for counteracting distraction and conflict, including in the insula and anterior cingulate. Context-related effects in occipitoparietal cortex consisted of greater target-evoked activations for distracter-absent trials (central-target-only) in Mixed versus Pure blocks, suggesting enhanced attentional engagement. Functional-localizer analyses in V1/V2/V3 revealed less distracter-processing activity in 60% (vs 20%) Incongruent blocks, presumably reflecting tonic suppression by proactive filtering mechanisms. These results delineate brain mechanisms underlying proactive and reactive filtering of distraction and conflict, and how they are orchestrated depending on distraction probability, thereby aiding task performance. SIGNIFICANCE STATEMENT Irrelevant stimuli distract people and impair their attentional performance. Here, we studied how the brain deals with distracting stimuli using a hybrid block/event-related fMRI design and a task that varied the probability of the occurrence of such distracting stimuli. The results suggest that when distraction is likely, a region in right frontal cortex proactively implements attentional control mechanisms to help filter out any distracting stimuli that might occur. In contrast, when distracting input occurs infrequently, this region is more reactively engaged to help limit the negative consequences of the distracters on behavioral performance. Our results thus help illuminate how the brain flexibly responds under differing attentional demands to engender effective behavior. PMID:26791226
LITERATURE REVIEW OF BORIC ACID SOLUBILITY DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crapse, K.; Kyser, E.
2011-09-22
A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system replaces the current dilute nitric acid strip solution with 0.01 M boric acid. This literature study is performed to determine if there is a potential for boric acid to crystallize in the lines with emphasis on the transfer lines to the Defense Waste Processing Facility. This report focuses on the aqueous phase chemistry of boric acid under conditions relevant to MCU and SWPF. Operating and transfer conditions examined for the purpose ofmore » this review include temperatures between 13 C (McLeskey, 2008) and 45 C (Fondeur, 2007) and concentrations from 0 to 3M in nitric acid as well as exposure of small amounts of entrained boric acid in the organic phase to the sodium hydroxide caustic wash stream. Experiments were also conducted to observe any chemical reactions and off-gas generation that could occur when 0.01 M boric acid solution mixes with 3 M nitric acid solution and vice versa. Based on the low concentration (0.01M) of boric acid in the MCU/SWPF strip acid and the moderate operating temperatures (13 C to 45 C), it is unlikely that crystallization of boric acid will occur in the acid strip solution under process or transfer conditions. Mixing experiments of boric and nitric acid show no measurable gas generation (< 1 cc of gas per liter of solution) under similar process conditions.« less
NASA Astrophysics Data System (ADS)
Valocchi, A. J.; Laleian, A.; Werth, C. J.
2017-12-01
Perturbation of natural subsurface systems by fluid inputs may induce geochemical or microbiological reactions that change porosity and permeability, leading to complex coupled feedbacks between reaction and transport processes. Some examples are precipitation/dissolution processes associated with carbon capture and storage and biofilm growth associated with contaminant transport and remediation. We study biofilm growth due to mixing controlled reaction of multiple substrates. As biofilms grow, pore clogging occurs which alters pore-scale flow paths thus changing the mixing and reaction. These interactions are challenging to quantify using conventional continuum-scale porosity-permeability relations. Pore-scale models can accurately resolve coupled reaction, biofilm growth and transport processes, but modeling at this scale is not feasible for practical applications. There are two approaches to address this challenge. Results from pore-scale models in generic pore structures can be used to develop empirical relations between porosity and continuum-scale parameters, such as permeability and dispersion coefficients. The other approach is to develop a multiscale model of biofilm growth in which non-overlapping regions at pore and continuum spatial scales are coupled by a suitable method that ensures continuity of flux across the interface. Thus, regions of high reactivity where flow alteration occurs are resolved at the pore scale for accuracy while regions of low reactivity are resolved at the continuum scale for efficiency. This approach thus avoids the need for empirical upscaling relations in regions with strong feedbacks between reaction and porosity change. We explore and compare these approaches for several two-dimensional cases.
Tough, processable simultaneous semi-interpenetrating polyimides
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
1994-01-01
A high temperature semi-interpenetrating polymer network (semi-IPN) was developed which had significantly improved processability, damage tolerance, and mechanical performance when compared to the commercial Thermid materials. This simultaneous semi-IPN was prepared by mixing a thermosetting polyimide with a thermoplastic monomer precursor solution (NR150B2) and allowing them to react upon heating. This reaction occurs at a rate which decreases the flow and broadens the processing window. Upon heating at a higher temperature, there is an increase in flow. Because of the improved flow properties, broadened processing window and enhanced toughness, high strength polymer matrix composites, adhesives and molded articles can now be prepared from the acetylene endcapped polyimides which were previously inherently brittle and difficult to process.
Gillespie, Cheska; Kennedy, Alan R; Edwards, Darren; Dowden, Lee; Daublain, Pierre; Halling, Peter
2013-09-01
Storage of pharmaceutical discovery compounds dissolved in dimethylsulfoxide (DMSO) is commonplace within industry. Often, the DMSO stock solution is added to an aqueous system (e.g. in bioassay or kinetic solubility testing)- since most test compounds are hydrophobic, precipitation could occur. Little is known about the factors affecting this precipitation process at the low (µM) concentrations used in screening analyses. Here, a poorly water soluble test compound (tolnaftate) was used to compare manual and automated pipetting, and explore the effect of mixing variables on precipitation. The amount of drug present in the supernatant after precipitation and centrifugation of the samples was quantified. An unusual result was obtained in three different laboratories: results of experiments performed initially were statistically significantly higher than those performed after a few days in the same lab. No significant differences were found between automated and manual pipetting, including in variability. Vortex mixing was found to give significantly lower supernatant amounts compared to milder mixing types. The mixing employed affects the particle growth of the precipitate. These findings are of relevance to discovery stage bioassay and kinetic solubility analyses.
Simulation of fluid flows during growth of organic crystals in microgravity
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Sutter, James K.; Balasubramaniam, R.; Fowlis, William K.; Radcliffe, M. D.; Drake, M. C.
1987-01-01
Several counter diffusion type crystal growth experiments were conducted in space. Improvements in crystal size and quality are attributed to reduced natural convection in the microgravity environment. One series of experiments called DMOS (Diffusive Mixing of Organic Solutions) was designed and conducted by researchers at the 3M Corporation and flown by NASA on the space shuttle. Since only limited information about the mixing process is available from the space experiments, a series of ground based experiments was conducted to further investigate the fluid dynamics within the DMOS crystal growth cell. Solutions with density differences in the range of 10 to the -7 to 10 to the -4 power g/cc were used to simulate microgravity conditions. The small density differences were obtained by mixing D2O and H2O. Methylene blue dye was used to enhance flow visualization. The extent of mixing was measured photometrically using the 662 nm absorbance peak of the dye. Results indicate that extensive mixing by natural convection can occur even under microgravity conditions. This is qualitatively consistent with results of a simple scaling analysis. Quantitave results are in close agreement with ongoing computational modeling analysis.
NASA Astrophysics Data System (ADS)
Bateman, R.
1995-09-01
While hybridized granitoid magmas are readily identifiable, the mechanisms of hybridization in large crustal magma chambers are so not clearly understood. Characteristic features of hybrid granitoids are (1) both the granitoid and included enclaves are commonly hybrids, as shown by mineralogy, geochemistry and isotopes; (2) mixing seen in zoned plutons and synplutonic dykes and enclaves occurred early; (3) zoned plagioclase phenocrysts commonly show very complex life histories of growth and dissolution; (4) mafic end-members in hybrids are commonly fractionated magmas and (5) stratification in subvolcanic granitoid magma chambers is not uncommon, and stratification has been identified in some deeper level plutons. Hybridization must overcome the tendency to form a stable stratification of dense mafic magma underlying less dense felsic magma. Experimental work with magma analogues and theoretical considerations reveal very severe thermal, rheological and dynamical limitations on mixing: only very similar (composition, temperature) magmas are likely to mix to homogeneity, and only moderately silicic hybrids are likely to be produced. However, "impossibly" silicic hybrids do exist. Synchronous, interactive fractional crystallization and hybridization may provide a mechanism for hybridization of magmas, in the following manner. A mafic magma intrudes into the base of a stratified felsic magma and is cooled against it. Crystallization of the upper boundary layer of the mafic magma yields an eventually buoyant residual melt that overturns and mixes with an adjacent stratum of the felsic magma chamber. Subsequently, melt released by crystallization pf this, now-hybrid zone mixes with adjacent, more felsic zones. Thus, a suite of hybrid magmas are progressively formed. Density inhibitions are overcome by the generation of relatively low density residual melts. As crystallization proceeds, later injections are preserved as dykes and enclaves composed of hybrid magma. In this process, only physically adjacent and dynamically-thermally similar magmas directly interact, and so may mix to homogeneity. Finally, not simply felsic and mafic endmembers mix, but a whole suite of "intermediate" endmembers participate, ranging from relatively mafic through to felsic pairs of magmas. Direct mixing between the primary magmas only occurs at the beginning.
NASA Astrophysics Data System (ADS)
Cook, Peter G.; Rodellas, Valentí; Stieglitz, Thomas C.
2018-03-01
Tracer approaches to estimate both porewater exchange (the cycling of water between surface water and sediments, with zero net water flux) and groundwater inflow (the net flow of terrestrially derived groundwater into surface water) are commonly based on solute mass balances. However, this requires appropriate characterization of tracer end-member concentrations in exchanging or discharging water. Where either porewater exchange or groundwater inflow to surface water occur in isolation, then the water flux is easily estimated from the net tracer flux if the end-member is appropriately chosen. However, in most natural systems porewater exchange and groundwater inflow will occur concurrently. Our analysis shows that if groundwater inflow (Qg) and porewater exchange (Qp) mix completely before discharging to surface water, then the combined water flux (Qg + Qp) can be approximated by dividing the combined tracer flux by the difference between the porewater and surface water concentrations, (cp - c). If Qg and Qp do not mix prior to discharge, then (Qg + Qp) can only be constrained by minimum and maximum values. The minimum value is obtained by dividing the net tracer flux by the groundwater concentration, and the maximum is obtained by dividing by (cp - c). Dividing by the groundwater concentration gives a maximum value for Qg. If porewater exchange and groundwater outflow occur concurrently, then dividing the net tracer flux by (cp - c) will provide a minimum value for Qp. Use of multiple tracers, and spatial and temporal replication should provide a more complete picture of exchange processes and the extent of subsurface mixing.
NASA Astrophysics Data System (ADS)
Marazuela, M. A.; Vázquez-Suñé, E.; Custodio, E.; Palma, T.; García-Gil, A.; Ayora, C.
2018-06-01
Salt flat brines are a major source of minerals and especially lithium. Moreover, valuable wetlands with delicate ecologies are also commonly present at the margins of salt flats. Therefore, the efficient and sustainable exploitation of the brines they contain requires detailed knowledge about the hydrogeology of the system. A critical issue is the freshwater-brine mixing zone, which develops as a result of the mass balance between the recharged freshwater and the evaporating brine. The complex processes occurring in salt flats require a three-dimensional (3D) approach to assess the mixing zone geometry. In this study, a 3D map of the mixing zone in a salt flat is presented, using the Salar de Atacama as an example. This mapping procedure is proposed as the basis of computationally efficient three-dimensional numerical models, provided that the hydraulic heads of freshwater and mixed waters are corrected based on their density variations to convert them into brine heads. After this correction, the locations of lagoons and wetlands that are characteristic of the marginal zones of the salt flats coincide with the regional minimum water (brine) heads. The different morphologies of the mixing zone resulting from this 3D mapping have been interpreted using a two-dimensional (2D) flow and transport numerical model of an idealized cross-section of the mixing zone. The result of the model shows a slope of the mixing zone that is similar to that obtained by 3D mapping and lower than in previous models. To explain this geometry, the 2D model was used to evaluate the effects of heterogeneity in the mixing zone geometry. The higher the permeability of the upper aquifer is, the lower the slope and the shallower the mixing zone become. This occurs because most of the freshwater lateral recharge flows through the upper aquifer due to its much higher transmissivity, thus reducing the freshwater head. The presence of a few meters of highly permeable materials in the upper part of these hydrogeological systems, such as alluvial fans or karstified evaporites that are frequently associated with the salt flats, is enough to greatly modify the geometry of the saline interface.
NASA Astrophysics Data System (ADS)
Aluwihare, L.
2016-12-01
The 2016 "State of the Lake Report" for Lake Tahoe notes that surface waters of have warmed 15 times faster in the last four years as compared to the long trend. Lake mixing depth has decreased with only 4 instances of full-lake mixing ( 450 m) recorded since 2000, none since 2011, and the shallowest depth of mixing on record, 80 m, was observed in 2015. Snowpack in the region shows a long-term decline, and April snowpack in 2015 was the lowest recorded in nearly 100 years. Lake biomass peaks shortly after mixing occurs, which demonstrates the dependence of lake primary production on this process. Lake mixing also oxygenates deep waters of the lake. Mixing, organic matter production, and vertical gradients in nutrient and oxygen concentrations profoundly impact the depth distribution of microbial communities and metabolisms. Spring melt also brings nutrients into the lake including organic matter; and in other high elevation lake systems it has been shown that streamflow seeds the lake's microbiome. Here we present data from an year long observation of monthly changes in microbial (including phytoplankton) community composition to examine how the seasonally segregated processes of runoff, lake mixing, and surface primary production affect Lake Tahoe's microbial ecology. Members of certain phylogenetic groups showed trends that we are currently exploring in the context of their metabolic capabilities. For example, Chlorobi and Chloroflexi primarily appear in surface waters during deep mixing, consistent with some of them being sensitive to oxygen. Similarly, common but poorly characterized clades of Actinobacteria exhibited negative responses to discharge, while certain clades of Betaproteobacteria exhibited a positive response during and following discharge events at LT. Actinobacteria have been found to be abundant in numerous lake systems suggesting that their metabolic capabilities maybe particularly telling of the dominant species sorting mechanisms at play in large lakes. Some members of the lake's microbial community appeared sensitive to the loading of terrestrial DOM. However, other members were abundant during times of high primary production. These latter populations may be more vulnerable to processes that decrease overall lake productivity.
Numerical modelling of processes that occur in the selective waste disassembly installation
NASA Astrophysics Data System (ADS)
Cherecheş, T.; Lixandru, P.; Dragnea, D.; Cherecheş, D. M.
2017-08-01
This paper is the result of the attempts of quantitative approach of some of the processes that are occurring in the selective fragmentation with high voltage pulses installation. It has been formulated a methodology which customizes the general methods for the issue of transient electric field in mixed environments. The electromagnetic processes inside the fragmentation installation, the initiation and formation of the discharge channels, the thermodynamic and mechanical effects in the process vessel are complex, transient and very quick. One of the underlying principles of the fragmentation process consists in the differentiated reaction of materials in an electric field. Generally in the process vessel there can be found together three types of materials: dielectrics, metal, electrolytes. The conductivity of dielectric materials is virtually zero. Metallic materials conduct very well through electronic conductivity. Electrolytes have a more modest conductivity since they conduct through electrochemical processes. The electrical current, in this case, is the movement of ions having sizes and the masses different from the electrons. Here, the electric current includes displacements of ions and molecules, collisions and chemical reactions. Part of the electrical field’s energy is absorbed by the electrolyte in the form of mechanical and chemical energy.
NASA Astrophysics Data System (ADS)
Dahms, Rainer N.; Oefelein, Joseph C.
2013-09-01
A theory that explains the operating pressures where liquid injection processes transition from exhibiting classical two-phase spray atomization phenomena to single-phase diffusion-dominated mixing is presented. Imaging from a variety of experiments have long shown that under certain conditions, typically when the pressure of the working fluid exceeds the thermodynamic critical pressure of the liquid phase, the presence of discrete two-phase flow processes become diminished. Instead, the classical gas-liquid interface is replaced by diffusion-dominated mixing. When and how this transition occurs, however, is not well understood. Modern theory still lacks a physically based model to quantify this transition and the precise mechanisms that lead to it. In this paper, we derive a new model that explains how the transition occurs in multicomponent fluids and present a detailed analysis to quantify it. The model applies a detailed property evaluation scheme based on a modified 32-term Benedict-Webb-Rubin equation of state that accounts for the relevant real-fluid thermodynamic and transport properties of the multicomponent system. This framework is combined with Linear Gradient Theory, which describes the detailed molecular structure of the vapor-liquid interface region. Our analysis reveals that the two-phase interface breaks down not necessarily due to vanishing surface tension forces, but due to thickened interfaces at high subcritical temperatures coupled with an inherent reduction of the mean free molecular path. At a certain point, the combination of reduced surface tension, the thicker interface, and reduced mean free molecular path enter the continuum length scale regime. When this occurs, inter-molecular forces approach that of the multicomponent continuum where transport processes dominate across the interfacial region. This leads to a continuous phase transition from compressed liquid to supercritical mixture states. Based on this theory, a regime diagram for liquid injection is developed that quantifies the conditions under which classical sprays transition to dense-fluid jets. It is shown that the chamber pressure required to support diffusion-dominated mixing dynamics depends on the composition and temperature of the injected liquid and ambient gas. To illustrate the method and analysis, we use conditions typical of diesel engine injection. We also present a companion set of high-speed images to provide experimental validation of the presented theory. The basic theory is quite general and applies to a wide range of modern propulsion and power systems such as liquid rockets, gas turbines, and reciprocating engines. Interestingly, the regime diagram associated with diesel engine injection suggests that classical spray phenomena at typical injection conditions do not occur.
NASA Astrophysics Data System (ADS)
Turnbull, M. T.; Petrov, P. G.; Embrey, C. S.; Marino, A. M.; Boyer, V.
2013-09-01
Nondegenerate forward four-wave mixing in hot atomic vapors has been shown to produce strong quantum correlations between twin beams of light [McCormick , Opt. Lett.OPLEDP0146-959210.1364/OL.32.000178 32, 178 (2007)], in a configuration which minimizes losses by absorption. In this paper, we look at the role of the phase-matching condition in the trade-off that occurs between the efficiency of the nonlinear process and the absorption of the twin beams. To this effect, we develop a semiclassical model by deriving the atomic susceptibilities in the relevant double-Λ configuration and by solving the classical propagation of the twin-beam fields for parameters close to those found in typical experiments. These theoretical results are confirmed by a simple experimental study of the nonlinear gain experienced by the twin beams as a function of the phase mismatch. The model shows that the amount of phase mismatch is key to the realization of the physical conditions in which the absorption of the twin beams is minimized while the cross coupling between the twin beams is maintained at the level required for the generation of strong quantum correlations. The optimum is reached when the four-wave mixing process is not phase matched for fully resonant four-wave mixing.
Electrokinetic instability micromixing.
Oddy, M H; Santiago, J G; Mikkelsen, J C
2001-12-15
We have developed an electrokinetic process to rapidly stir micro- and nanoliter volume solutions for microfluidic bioanalytical applications. We rapidly stir microflow streams by initiating a flow instability, which we have observed in sinusoidally oscillating, electroosmotic channel flows. As the effect occurs within an oscillating electroosmotic flow, we refer to it here as an electrokinetic instability (EKI). The rapid stretching and folding of material lines associated with this instability can be used to stir fluid streams with Reynolds numbers of order unity, based on channel depth and rms electroosmotic velocity. This paper presents a preliminary description of the EKI and the design and fabrication of two micromixing devices capable of rapidly stirring two fluid streams using this flow phenomenon. A high-resolution CCD camera is used to record the stirring and diffusion of fluorescein from an initially unmixed configuration. Integration of fluorescence intensity over measurement volumes (voxels) provides a measure of the degree to which two streams are mixed to within the length scales of the voxels. Ensemble-averaged probability density functions and power spectra of the instantaneous spatial intensity profiles are used to quantify the mixing processes. Two-dimensional spectral bandwidths of the mixing images are initially anisotropic for the unmixed configuration, broaden as the stirring associated with the EKI rapidly stretches and folds material lines (adding high spatial frequencies to the concentration field), and then narrow to a relatively isotropic spectrum at the well-mixed conditions.
Maturano, Yolanda Paola; Assof, Mariela; Fabani, María Paula; Nally, María Cristina; Jofré, Viviana; Rodríguez Assaf, Leticia Anahí; Toro, María Eugenia; Castellanos de Figueroa, Lucía Inés; Vazquez, Fabio
2015-11-01
During certain wine fermentation processes, yeasts, and mainly non-Saccharomyces strains, produce and secrete enzymes such as β-glucosidases, proteases, pectinases, xylanases and amylases. The effects of enzyme activity on the aromatic quality of wines during grape juice fermentation, using different co-inoculation strategies of non-Saccharomyces and Saccharomyces cerevisiae yeasts, were assessed in the current study. Three strains with appropriate enological performance and high enzymatic activities, BSc562 (S. cerevisiae), BDv566 (Debaryomyces vanrijiae) and BCs403 (Candida sake), were assayed in pure and mixed Saccharomyces/non-Saccharomyces cultures. β-Glucosidase, pectinase, protease, xylanase and amylase activities were quantified during fermentations. The aromatic profile of pure and mixed cultures was determined at the end of each fermentation. In mixed cultures, non-Saccharomyces species were detected until day 4-5 of the fermentation process, and highest populations were observed in MSD2 (10% S. cerevisiae/90% D. vanrijiae) and MSC1 (1% S. cerevisiae/99% C. sake). According to correlation and multivariate analysis, MSD2 presented the highest concentrations of terpenes and higher alcohols which were associated with pectinase, amylase and xylanase activities. On the other hand, MSC1 high levels of β-glucosidase, proteolytic and xylanolytic activities were correlated to esters and fatty acids. Our study contributes to a better understanding of the effect of enzymatic activities by yeasts on compound transformations that occur during wine fermentation.
The importance of fluctuations in fluid mixing.
Kadau, Kai; Rosenblatt, Charles; Barber, John L; Germann, Timothy C; Huang, Zhibin; Carlès, Pierre; Alder, Berni J
2007-05-08
A ubiquitous example of fluid mixing is the Rayleigh-Taylor instability, in which a heavy fluid initially sits atop a light fluid in a gravitational field. The subsequent development of the unstable interface between the two fluids is marked by several stages. At first, each interface mode grows exponentially with time before transitioning to a nonlinear regime characterized by more complex hydrodynamic mixing. Unfortunately, traditional continuum modeling of this process has generally been in poor agreement with experiment. Here, we indicate that the natural, random fluctuations of the flow field present in any fluid, which are neglected in continuum models, can lead to qualitatively and quantitatively better agreement with experiment. We performed billion-particle atomistic simulations and magnetic levitation experiments with unprecedented control of initial interface conditions. A comparison between our simulations and experiments reveals good agreement in terms of the growth rate of the mixing front as well as the new observation of droplet breakup at later times. These results improve our understanding of many fluid processes, including interface phenomena that occur, for example, in supernovae, the detachment of droplets from a faucet, and ink jet printing. Such instabilities are also relevant to the possible energy source of inertial confinement fusion, in which a millimeter-sized capsule is imploded to initiate nuclear fusion reactions between deuterium and tritium. Our results suggest that the applicability of continuum models would be greatly enhanced by explicitly including the effects of random fluctuations.
NASA Astrophysics Data System (ADS)
Moustaoui, Mohamed; Joseph, Binson; Teitelbaum, Hector
2004-12-01
A plausible mechanism for the formation of mixing layers in the lower stratosphere above regions of tropical convection is demonstrated numerically using high-resolution, two-dimensional (2D), anelastic, nonlinear, cloud-resolving simulations. One noteworthy point is that the mixing layer simulated in this study is free of anvil clouds and well above the cloud anvil top located in the upper troposphere. Hence, the present mechanism is complementary to the well-known process by which overshooting cloud turrets causes mixing within stratospheric anvil clouds. The paper is organized as a case study verifying the proposed mechanism using atmospheric soundings obtained during the Central Equatorial Pacific Experiment (CEPEX), when several such mixing layers, devoid of anvil clouds, had been observed. The basic dynamical ingredient of the present mechanism is (quasi stationary) gravity wave critical level interactions, occurring in association with a reversal of stratospheric westerlies to easterlies below the tropopause region. The robustness of the results is shown through simulations at different resolutions. The insensitivity of the qualitative results to the details of the subgrid scheme is also evinced through further simulations with and without subgrid mixing terms. From Lagrangian reconstruction of (passive) ozone fields, it is shown that the mixing layer is formed kinematically through advection by the resolved-scale (nonlinear) velocity field.
The idea of magma mixing: History of a struggle for acceptance
Wilcox, R.E.
1999-01-01
In 1851, chemist Robert Bunsen suggested that the mixing of two magmas, one mafic and the other felsic, in various proportions might account for the wide range of chemical compositions of igneous rocks. Based on flaws in several of its secondary provisions, the whole hypothesis was rejected by a succession of influential critics and remained in disrepute for a hundred years. Meanwhile, studies of composite dikes and sills indicated that, indeed, mafic and felsic magmas had coexisted at close quarters and had been emplaced in quick succession. This interpretation was also used by some investigators to explain the intimate association of mafic and felsic rock types in the commonly occurring igneous complexes. Others believed that the mafic components of these complexes were derived from geologically older mafic formations. By the early 1900s it had become apparent that mafic magmas crystallized at higher temperatures than felsic magmas. This knowledge was not immediately applied to the problem of magma mixing, however, due in part to the popularity of the newly validated process of fractional crystallization and to the implication that the diversity of igneous rocks could be accounted for by that process alone. Not until the 1950s was the attention of the geological community drawn to the fact that disparate magmas mix in a special manner: they mingle, the mafic magma being quenched to a fracturable solid upon contact with the cooler felsic magma. This explanation set in motion a series of studies of other igneous complexes, confirming the concept and adding other identifying features of the process.
NASA Astrophysics Data System (ADS)
St. Laurent, Louis; Clayson, Carol Anne
2015-04-01
The near-surface oceanic boundary layer is generally regarded as convectively unstable due to the effects of wind, evaporation, and cooling. However, stable conditions also occur often, when rain or low-winds and diurnal warming provide buoyancy to a thin surface layer. These conditions are prevalent in the tropical and subtropical latitude bands, and are underrepresented in model simulations. Here, we evaluate cases of oceanic stable boundary layers and their turbulent processes using a combination of measurements and process modeling. We focus on the temperature, salinity and density changes with depth from the surface to the upper thermocline, subject to the influence of turbulent processes causing mixing. The stabilizing effects of freshwater from rain as contrasted to conditions of high solar radiation and low winds will be shown, with observations providing surprising new insights into upper ocean mixing in these regimes. Previous observations of freshwater lenses have demonstrated a maximum of dissipation near the bottom of the stable layer; our observations provide a first demonstration of a similar maximum near the bottom of the solar heating-induced stable layer and a fresh-water induced barrier layer. Examples are drawn from recent studies in the tropical Atlantic and Indian oceans, where ocean gliders equipped with microstructure sensors were used to measure high resolution hydrographic properties and turbulence levels. The limitations of current mixing models will be demonstrated. Our findings suggest that parameterizations of near-surface mixing rates during stable stratification and low-wind conditions require considerable revision, in the direction of larger diffusivities.
Classification of Arctic, midlatitude and tropical clouds in the mixed-phase temperature regime
NASA Astrophysics Data System (ADS)
Costa, Anja; Meyer, Jessica; Afchine, Armin; Luebke, Anna; Günther, Gebhard; Dorsey, James R.; Gallagher, Martin W.; Ehrlich, Andre; Wendisch, Manfred; Baumgardner, Darrel; Wex, Heike; Krämer, Martina
2017-10-01
The degree of glaciation of mixed-phase clouds constitutes one of the largest uncertainties in climate prediction. In order to better understand cloud glaciation, cloud spectrometer observations are presented in this paper, which were made in the mixed-phase temperature regime between 0 and -38 °C (273 to 235 K), where cloud particles can either be frozen or liquid. The extensive data set covers four airborne field campaigns providing a total of 139 000 1 Hz data points (38.6 h within clouds) over Arctic, midlatitude and tropical regions. We develop algorithms, combining the information on number concentration, size and asphericity of the observed cloud particles to classify four cloud types: liquid clouds, clouds in which liquid droplets and ice crystals coexist, fully glaciated clouds after the Wegener-Bergeron-Findeisen process and clouds where secondary ice formation occurred. We quantify the occurrence of these cloud groups depending on the geographical region and temperature and find that liquid clouds dominate our measurements during the Arctic spring, while clouds dominated by the Wegener-Bergeron-Findeisen process are most common in midlatitude spring. The coexistence of liquid water and ice crystals is found over the whole mixed-phase temperature range in tropical convective towers in the dry season. Secondary ice is found at midlatitudes at -5 to -10 °C (268 to 263 K) and at higher altitudes, i.e. lower temperatures in the tropics. The distribution of the cloud types with decreasing temperature is shown to be consistent with the theory of evolution of mixed-phase clouds. With this study, we aim to contribute to a large statistical database on cloud types in the mixed-phase temperature regime.
NASA Astrophysics Data System (ADS)
Skemer, P. A.; Cross, A. J.; Bercovici, D.
2016-12-01
(Ultra)mylonites from plate boundary shear zones are characterized by severe grain-size reduction and well-mixed mineral phases. The evolution from relatively undeformed tectonite protoliths to highly deformed (ultra)mylonites via the formation of new grain and phase boundaries is described as microstructural `damage.' Microstructural damage is important for two reasons: grain-size reduction is thought to result in significant rheological weakening, while phase mixing inhibits mechanical recovery and preserves the zone of weakness to be reactivated repeatedly throughout the tectonic cycle. Grain-size reduction by dynamic recrystallization has been studied extensively in both geologic and engineered materials, yet the progressive mixing of mineral phases during high pressure/temperature shear - the other essential element of damage or mylonitization - is not well understood. In this contribution we present new experimental results and theory related to two distinct phase mixing processes. First, we describe high strain torsion experiments on calcite and anhydrite mixtures and a simple geometric mixing model related to the stretching and thinning of monophase domains. Second, we describe a grain-switching mechanism that is driven by the surface-tension driven migration of newly formed interphase triple junctions. Unlike dynamic recrystallization, which occurs at relatively small strains, both phase mixing mechanisms described here appear to require extremely large strains, a prediction that is consistent with geologic observations. These data suggest that ductile shear zones experience long, transient intervals of microstructural evolution during which rheology is not at steady state. Microstructural damage may be interpreted as the product of several interconnected physical processes, which are collectively essential to the preservation of long-lived, Earth-like plate tectonics.
Modeling and simulation of large scale stirred tank
NASA Astrophysics Data System (ADS)
Neuville, John R.
The purpose of this dissertation is to provide a written record of the evaluation performed on the DWPF mixing process by the construction of numerical models that resemble the geometry of this process. There were seven numerical models constructed to evaluate the DWPF mixing process and four pilot plants. The models were developed with Fluent software and the results from these models were used to evaluate the structure of the flow field and the power demand of the agitator. The results from the numerical models were compared with empirical data collected from these pilot plants that had been operated at an earlier date. Mixing is commonly used in a variety ways throughout industry to blend miscible liquids, disperse gas through liquid, form emulsions, promote heat transfer and, suspend solid particles. The DOE Sites at Hanford in Richland Washington, West Valley in New York, and Savannah River Site in Aiken South Carolina have developed a process that immobilizes highly radioactive liquid waste. The radioactive liquid waste at DWPF is an opaque sludge that is mixed in a stirred tank with glass frit particles and water to form slurry of specified proportions. The DWPF mixing process is composed of a flat bottom cylindrical mixing vessel with a centrally located helical coil, and agitator. The helical coil is used to heat and cool the contents of the tank and can improve flow circulation. The agitator shaft has two impellers; a radial blade and a hydrofoil blade. The hydrofoil is used to circulate the mixture between the top region and bottom region of the tank. The radial blade sweeps the bottom of the tank and pushes the fluid in the outward radial direction. The full scale vessel contains about 9500 gallons of slurry with flow behavior characterized as a Bingham Plastic. Particles in the mixture have an abrasive characteristic that cause excessive erosion to internal vessel components at higher impeller speeds. The desire for this mixing process is to ensure the agitation of the vessel is adequate to produce a homogenous mixture but not so high that it produces excessive erosion to internal components. The main findings reported by this study were: (1) Careful consideration of the fluid yield stress characteristic is required to make predictions of fluid flow behavior. Laminar Models can predict flow patterns and stagnant regions in the tank until full movement of the flow field occurs. Power Curves and flow patterns were developed for the full scale mixing model to show the differences in expected performance of the mixing process for a broad range of fluids that exhibit Herschel--Bulkley and Bingham Plastic flow behavior. (2) The impeller power demand is independent of the flow model selection for turbulent flow fields in the region of the impeller. The laminar models slightly over predicted the agitator impeller power demand produced by turbulent models. (3) The CFD results show that the power number produced by the mixing system is independent of size. The 40 gallon model produced the same power number results as the 9300 gallon model for the same process conditions. (4) CFD Results show that the Scale-Up of fluid motion in a 40 gallon tank should compare with fluid motion at full scale, 9300 gallons by maintaining constant impeller Tip Speed.
Development of a Field Laundry Wastewater Recycling System
1986-04-01
carbon were added and mixed. Flocculation and settling--the first step of the treatment process--occurred here (Figures I and 4). Diatomaceous Earth ...was used to prepare a diatomite slurry needed to precoat the septums in the diatomaceous earth filter. II 6 If Sx COLLECTION TANK (CT) Figure 3...34 *#* " *- ’. /’ ,pa•4q *S * .’ % % % q DIATOMACEOUS EARTH FILTER (DE) COATING TANK TREATMENT & SETTLING * TANK (TST) Figure 4. Laundry wastewater treatment
Time-Filtered Navier-Stokes Approach and Emulation of Turbulence-Chemistry Interaction
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey; Wey, Thomas; Shih, Tsan-Hsing
2013-01-01
This paper describes the time-filtered Navier-Stokes approach capable of capturing unsteady flow structures important for turbulent mixing and an accompanying subgrid model directly accounting for the major processes in turbulence-chemistry interaction. They have been applied to the computation of two-phase turbulent combustion occurring in a single-element lean-direct-injection combustor. Some of the preliminary results from this computational effort are presented in this paper.
Morgan L. Wiechmann; Matthew D. Hurteau; Malcolm P. North; George W. Koch; Lucie Jerabkova
2015-01-01
Forests sequester carbon from the atmosphere, helping mitigate climate change. In fire-prone forests, burn events result in direct and indirect emissions of carbon. High fire-induced tree mortality can cause a transition from a carbon sink to source, but thinning and prescribed burning can reduce fire severity and carbon loss when wildfire occurs. However, treatment...
NASA Astrophysics Data System (ADS)
Fridlind, A. M.; Avramov, A.; Ackerman, A. S.; Alpert, P. A.; Knopf, D. A.; DeMott, P. J.; Brooks, S. D.; Glen, A.
2015-12-01
It has been argued on the basis of some laboratory data sets, observed mixed-phase cloud systems, and numerical modeling studies that weakly active or slowly consumed ice forming nuclei (IFN) may be important to natural cloud systems. It has also been argued on the basis of field measurements that ice nucleation under mixed-phase conditions appears to occur predominantly via a liquid-phase mechanism, requiring the presence of liquid droplets prior to substantial ice nucleation. Here we analyze the response of quasi-Lagrangian large-eddy simulations of mixed-phase cloud layers to IFN operating via a liquid-phase mode using assumptions that result in either slow or rapid depletion of IFN from the cloudy boundary layer. Using several generalized case studies that do not exhibit riming or drizzle, based loosely on field campaign data, we vary environmental conditions such that the cloud-top temperature trend varies. One objective of this work is to identify differing patterns in ice formation intensity that may be distinguishable from ground-based or satellite platforms.
NASA Astrophysics Data System (ADS)
Rahbarimanesh, Saeed; Brinkerhoff, Joshua
2017-11-01
The mutual interaction of shear layer instabilities and phase change in a two-dimensional cryogenic cavitating mixing layer is investigated using a numerical model. The developed model employs the homogeneous equilibrium mixture (HEM) approach in a density-based framework to compute the temperature-dependent cavitation field for liquefied natural gas (LNG). Thermal and baroclinic effects are captured via iterative coupled solution of the governing equations with dynamic thermophysical models that accurately capture the properties of LNG. The mixing layer is simulated for vorticity-thickness Reynolds numbers of 44 to 215 and cavitation numbers of 0.1 to 1.1. Attached cavity structures develop on the splitter plate followed by roll-up of the separated shear layer via the well-known Kelvin-Helmholtz mode, leading to streamwise accumulation of vorticity and eventual shedding of discrete vortices. Cavitation occurs as vapor cavities nucleate and grow from the low-pressure cores in the rolled-up vortices. Thermal effects and baroclinic vorticity production are found to have significant impacts on the mixing layer instability and cavitation processes.
FAST TRACK COMMUNICATION: 'Evaporation' of a flavor-mixed particle from a gravitational potential
NASA Astrophysics Data System (ADS)
Medvedev, Mikhail V.
2010-09-01
We demonstrate that a stable particle with flavor mixing, confined in a gravitational potential can gradually and irreversibly escape—or 'evaporate'—from it. This effect is due to mass eigenstate conversions which occur in interactions (scattering) of mass states with other particles even when the energy exchange between them is vanishing. The evaporation and conversion are quantum effects not related to flavor oscillations, particle decay, quantum tunneling or other well-known processes. Apart from their profound academic interest, these effects should have tremendous implications for cosmology, e.g., (1) the cosmic neutrino background distortion is predicted and (2) the softening of central cusps in dark matter halos and smearing out or destruction of dwarf halos were suggested.
Modelling non-hydrostatic processes in sill regions
NASA Astrophysics Data System (ADS)
Souza, A.; Xing, J.; Davies, A.; Berntsen, J.
2007-12-01
We use a non-hydrostatic model to compute tidally induced flow and mixing in the region of bottom topography representing the sill at the entrance to Loch Etive (Scotland). This site is chosen since detailed measurements were recently made there. With non-hydrostatic dynamics in the model our results showed that the model could reproduce the observed flow characteristics, e.g., hydraulic transition, flow separation and internal waves. However, when calculations were performed using the model in the hydrostatic form, significant artificial convective mixing occurred. This influenced the computed temperature and flow field. We will discuss in detail the effects of non-hydrostatic dynamics on flow over the sill, especially investigate non-linear and non-hydrostatic contributions to modelled internal waves and internal wave energy fluxes.
Scleroderma renal crisis in a case of mixed connective tissue disease.
Vij, Mukul; Agrawal, Vinita; Jain, Manoj
2014-07-01
Mixed connective tissue disease (MCTD) is an overlap syndrome first defined in 1972 by Sharp et al. In this original study, the portrait emerged of a connective tissue disorder sharing features of systemic lupus erythematosus, systemic sclerosis (scleroderma) and polymyositis. Scleroderma renal crisis (SRC) is an extremely infrequent but serious complication that can occur in MCTD. The histologic picture of SRC is that of a thrombotic micro-angiopathic process. Renal biopsy plays an important role in confirming the clinical diagnosis, excluding overlapping/superimposed diseases that might lead to acute renal failure in MCTD patients, helping to predict the clinical outcome and optimizing patient management. We herewith report a rare case of SRC in a patient with MCTD and review the relevant literature.
NASA Astrophysics Data System (ADS)
Anazadehsayed, A.; Barzegar Gerdroodbary, M.; Amini, Y.; Moradi, R.
2017-08-01
In this study, the influences of the micro air jet on the mixing of the sonic transverse hydrogen through micro-jets subjected to a supersonic crossflow are investigated. A three-dimensional numerical study has been performed to reveal the affects of micro air jet on mixing of the hydrogen jet in a Mach 4.0 crossflow with a global equivalence ratio of 0.5. Parametric studies were conducted on the various air jet conditions by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Complex jet interactions were found in the downstream region with a variety of flow features depending upon the angle of micro air jet. These flow features were found to have subtle effects on the mixing of hydrogen jets. Results indicate a different flow structure as air jet is presented in the downstream of the fuel jet. According to the results, without air, mixing occurs at a low rate. When the air jet is presented in the downstream of fuel jet, significant increase (up to 300%) occurs in the mixing performance of the hydrogen jet at downstream. In multi fuel jets, the mixing performance of the fuel jet is increased more than 200% when the micro air jet is injected. Consequently, an enhanced mixing zone occurs downstream of the injection slots which leads to flame-holding.
Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange
Lewis, A.E.; Braun, R.L.; Mallon, R.G.; Walton, O.R.
1983-09-21
A cascading bed retorting process and apparatus are disclosed in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.
Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange
Lewis, Arthur E.; Braun, Robert L.; Mallon, Richard G.; Walton, Otis R.
1986-01-01
A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.
Haines, Brian Michael; Grim, Gary P.; Fincke, James R.; ...
2016-07-29
Here, we present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a “CD Mixcap,” is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employmore » any adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long-wavelength asymmetries degrade TT yield more than the DT yield and thus bring DT/TT neutron yield ratios into agreement with experiment. Finally, we present a detailed comparison of the flows in 2D and 3D simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, Brian M., E-mail: bmhaines@lanl.gov; Fincke, James R.; Shah, Rahul C.
We present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a “CD Mixcap,” is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employ anymore » adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long-wavelength asymmetries degrade TT yield more than the DT yield and thus bring DT/TT neutron yield ratios into agreement with experiment. Finally, we present a detailed comparison of the flows in 2D and 3D simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, Brian Michael; Grim, Gary P.; Fincke, James R.
Here, we present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a “CD Mixcap,” is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employmore » any adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long-wavelength asymmetries degrade TT yield more than the DT yield and thus bring DT/TT neutron yield ratios into agreement with experiment. Finally, we present a detailed comparison of the flows in 2D and 3D simulations.« less
NASA Astrophysics Data System (ADS)
Haines, Brian M.; Grim, Gary P.; Fincke, James R.; Shah, Rahul C.; Forrest, Chad J.; Silverstein, Kevin; Marshall, Frederic J.; Boswell, Melissa; Fowler, Malcolm M.; Gore, Robert A.; Hayes-Sterbenz, Anna C.; Jungman, Gerard; Klein, Andreas; Rundberg, Robert S.; Steinkamp, Michael J.; Wilhelmy, Jerry B.
2016-07-01
We present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a "CD Mixcap," is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employ any adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long-wavelength asymmetries degrade TT yield more than the DT yield and thus bring DT/TT neutron yield ratios into agreement with experiment. Finally, we present a detailed comparison of the flows in 2D and 3D simulations.
NASA Astrophysics Data System (ADS)
Lynn, Kendra J.
Olivine compositions and zoning patterns have been widely used to investigate the evolution of magmas from their source to the Earthfs surface. Modeling the formation of compositional zoning in olivine crystals has been used to retrieve timescales of magma residence, mixing, and transit. This dissertation is composed of three projects that apply diffusion chronometry principles to investigate how zoned olivine phenocrysts record magmatic processes at Hawaiian volcanoes. Olivine phenocrysts from K.lauea, the most active and thoroughly studied volcano in Hawaiei, are used to develop a better understanding of how Hawaiian olivine crystals record magmatic histories. This work begins by examining how crustal processes such as magma mixing and diffusive reequilibration can modify olivine compositions inherited from growth in parental magmas (Chapter 2). Diffusive re-equilibration of Fe-Mg, Mn, and Ni in olivine crystals overprints the chemical relationships inherited during growth, which strongly impacts interpretations about mantle processes and source components. These issues are further complicated by sectioning effects, where small (400 ƒEm along the c-axis) olivine crystals are more susceptible to overprinting compared to large (800 ƒEm) crystals. Olivine compositions and zoning patterns are then used to show that magmas during K.laueafs explosive Keanak.koei Tephra period (1500-1823 C.E.) were mixed and stored in crustal reservoirs for weeks to months prior to eruption (Chapter 3). Fe-Mg disequilibrium between olivine rims and their surrounding glasses show that a late-stage mixing event likely occurred hours to days prior to eruption, but the exact timescale is difficult to quantify using Fe-Mg and Ni diffusion. Lithium, a rapidly diffusing trace element in olivine, is modeled for the first time in a natural volcanic system to quantify this late-stage, short-duration mixing event (Chapter 4). Lithium zoning in olivine records both growth and diffusion processes that are affected by charge balancing requirements with growth zoning of P. Timescales from modeling diffuse Li zoning range from a few hours to three weeks, but most record short storage durations of four days or less. These timescales correspond to short storage periods after mixing. Thus, Li probably records the final perturbation of a magmatic system prior to eruption.
Modin, Oskar; Saheb Alam, Soroush; Persson, Frank; Wilén, Britt-Marie
2015-01-01
New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC) per g volatile suspend solids (VSS) for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215–230 nm were also rapidly removed. PMID:25768429
The Acoculco caldera magmas: genesis, evolution and relation with the Acoculco geothermal system
NASA Astrophysics Data System (ADS)
Sosa-Ceballos, G.; Macías, J. L.; Avellán, D.
2017-12-01
The Acoculco Caldera Complex (ACC) is located at the eastern part of the Trans Mexican Volcanic Belt; México. This caldera complex have been active since 2.7 Ma through reactivations of the system or associated magmatism. Therefore the ACC is an excellent case scenario to investigate the relation between the magmatic heat supply and the evolution processes that modified magmatic reservoirs in a potential geothermal field. We investigated the origin and the magmatic processes (magma mixing, assimilation and crystallization) that modified the ACC rocks by petrography, major oxides-trace element geochemistry, and isotopic analysis. Magma mixing is considered as the heat supply that maintain active the magmatic system, whereas assimilation yielded insights about the depth at which processes occurred. In addition, we performed a series of hydrothermal experiments in order to constrain the storage depth for the magma tapped during the caldera collapse. Rocks from the ACC were catalogued as pre, syn and post caldera. The post caldera rocks are peralkaline rhyolites, in contrast to all other rocks that are subalkaline. Our investigation is focus to investigate if the collapse modified the plumbing system and the depth at which magmas stagnate and recorded the magmatic processes.
7 CFR 58.619 - Mix processing room.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 3 2013-01-01 2013-01-01 false Mix processing room. 58.619 Section 58.619 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....619 Mix processing room. The rooms used for combining mix ingredients and processing the mix shall...
7 CFR 58.619 - Mix processing room.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 3 2014-01-01 2014-01-01 false Mix processing room. 58.619 Section 58.619 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....619 Mix processing room. The rooms used for combining mix ingredients and processing the mix shall...
7 CFR 58.619 - Mix processing room.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 3 2012-01-01 2012-01-01 false Mix processing room. 58.619 Section 58.619 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....619 Mix processing room. The rooms used for combining mix ingredients and processing the mix shall...
NASA Astrophysics Data System (ADS)
Rucitra, A. L.
2018-03-01
Pusat Koperasi Induk Susu (PKIS) Sekar Tanjung, East Java is one of the modern dairy industries producing Ultra High Temperature (UHT) milk. A problem that often occurs in the production process in PKIS Sekar Tanjung is a mismatch between the production process and the predetermined standard. The purpose of applying Analytical Hierarchy Process (AHP) was to identify the most potential cause of failure in the milk production process. Multi Attribute Failure Mode Analysis (MAFMA) method was used to eliminate or reduce the possibility of failure when viewed from the failure causes. This method integrates the severity, occurrence, detection, and expected cost criteria obtained from depth interview with the head of the production department as an expert. The AHP approach was used to formulate the priority ranking of the cause of failure in the milk production process. At level 1, the severity has the highest weight of 0.41 or 41% compared to other criteria. While at level 2, identifying failure in the UHT milk production process, the most potential cause was the average mixing temperature of more than 70 °C which was higher than the standard temperature (≤70 ° C). This failure cause has a contributes weight of 0.47 or 47% of all criteria Therefore, this study suggested the company to control the mixing temperature to minimise or eliminate the failure in this process.
Liang, Chenghao; Guo, Liang; Chen, Wan; Wang, Hua
2005-08-01
The electrochemical mechanism of austenitic stainless steel (SUS316L and SUS317L) coronary stents in flowing artificial body fluid has been investigated with electrochemical technologies. The results indicated that the flowing medium coursed the samples' pitting potential Eb shift negatively, increased the pitting corrosion sensitivity, accelerated its anodic dissolution, but had little effects on repassivated potential. The flowing environment had great effects on cathodic process. The oxygen reaction on the samples' surface became faster as the cathodic process was not controlled by oxygen diffusion but by mixed diffusion and electrochemical process. With the increase of velocity of solution, the pitting corrosion becomes liable to occur under this circumstance.
NASA Technical Reports Server (NTRS)
Kritz, Mark A.; Rosner, Stefan W.; Kelly, Kenneth K.; Loewenstein, Max; Chan, K. R.
1993-01-01
During the tropical experiment of NASA's Stratosphere-Troposphere Exchange Program (STEP), in situ radon and other trace constituent measurements were made aboard a NASA ER-2 high-altitude research aircraft to investigate the mechanisms of irreversible transfers from the troposphere into the tropical stratosphere. Observations made in and downwind of the cirrus shields of three large tropical cyclones and downwind of the cirrus anvil of a large cumulonimbus cloud cluster showed several clear instances of elevated radon activity occurring simultaneously with low total water mixing ratios. These observations are unambiguous evidence of an effective dehydration process, capable of reducing total water vapor mixing ratios to less than 2.5 ppmv, occurring in conjunction with troposphere-to-stratosphere transport and indicate that rapid localized convection, rather than slow regional mean motions, was responsible for the observed transports and associated with the accompanying dehydration. Radon activities measured in regions of active or recent troposphere-to-stratosphere transport were consistent with the 17 pCi/scm mean value needed to support the observed abundance of stratospheric 210 Pb.
Modeling soil gas dynamics in the context of noble gas tracer applications
NASA Astrophysics Data System (ADS)
Jenner, Florian; Mayer, Simon; Aeschbach, Werner; Peregovich, Bernhard; Machado, Carlos
2017-04-01
Noble gas tracer applications show a particular relevance for the investigation of gas dynamics in the unsaturated zone, but also for a treatment of soil contamination as well as concerning exchange processes between soil and atmosphere. In this context, reliable conclusions require a profound understanding of underlying biogeochemical processes. With regard to noble gas tracer applications, the dynamics of reactive and inert gases in the unsaturated zone is investigated. Based on long-term trends and varying climatic conditions, this is the first study providing general insights concerning the role of unsaturated zone processes. Modeling approaches are applied, in combination with an extensive set of measured soil air composition data from appropriate sampling sites. On the one hand, a simple modeling approach allows to identify processes which predominantly determine inert gas mixing ratios in soil air. On the other hand, the well-proven and sophisticated modeling routine Min3P is applied to describe the measured data by accounting for the complex nature of subsurface gas dynamics. Both measured data and model outcomes indicate a significant deviation of noble gas mixing ratios in soil air from the respective atmospheric values, occurring on seasonal scale. Observed enhancements of noble gas mixing ratios are mainly caused by an advective balancing of depleted sum values of O2+CO2, resulting from microbial oxygen depletion in combination with a preferential dissolution of CO2. A contrary effect, meaning an enhanced sum value of O2+CO2, is shown to be induced at very dry conditions due to the different diffusivities of O2 and CO2. Soil air composition data show a yearlong mass-dependent fractionation, occurring as a relative enhancement of heavier gas species with respect to lighter ones. The diffusive balancing of concentration gradients between soil air and atmosphere is faster for lighter gas species compared to heavier ones. The rather uniform fractionation is a consequence of the time scale of diffusive transport which is decoupled from the typically stronger fluctuating advective impact.
NASA Astrophysics Data System (ADS)
Kelly, Keegan John
The overall theme of this thesis is the advancement of nuclear astrophysics via the analysis of stellar processes in the presence of varying levels of precision in the available nuclear data. With regard to classical novae, the level of mixing that occurs between the outer layers of the white dwarf core and the solar accreted material in oxygen-neon novae is presently undetermined by stellar models, but the nuclear data relevant to these explosive phenomena are fairly precise. This precision allowed for the identification of a series of elemental ratios indicative of the level of mixing occurring in novae. Direct comparisons of the modelled elemental ratios to observations showed that there is likely to be much less of this mixing than was previously assumed. Thus, our understanding of classical novae was altered via the investigation of the nuclear reactions relevant to this phenomenon. However, this level of experimental precision is rare and large nuclear reaction uncertainties can hinder our understanding of certain astrophysical phenomena. For example, it is commonly believed that uncertainties in the 22Ne(p,g)23Na reaction rate at temperatures relevant to thermally-pulsing asymptotic giant branch stars are largely responsible for our inability to explain the observed sodium-oxygen anti-correlation in globular clusters. With this motivation, resonances in the 22Ne(p,g) 23Na reaction at E_{c.m.} = 458, 417, 178, and 151 keV were measured. The direct-capture contribution was also measured at E_{lab} = 425 keV. It was determined that the 22Ne(p,g)23Na reaction rate in the astrophysically relevant temperature range is dominated by the resonances at 178 and 151 keV and that the total reaction rate is greater than the previously assumed rate by a factor of approximately ˜40 at 0.15 GK. This increased reaction rate impacts the expected nucleosynthesis that occurs in these stars and will shed light onto the origin of this anti-correlation as it is incorporated into sophisticated stellar models in the future. In both of these cases the available nuclear data were used to probe stellar processes. This analysis of stellar processes through nuclear reactions is an extremely useful technique that is crucial for the advancement of astrophysics.
The weak coherence account: detail-focused cognitive style in autism spectrum disorders.
Happé, Francesca; Frith, Uta
2006-01-01
"Weak central coherence" refers to the detail-focused processing style proposed to characterise autism spectrum disorders (ASD). The original suggestion of a core deficit in central processing resulting in failure to extract global form/meaning, has been challenged in three ways. First, it may represent an outcome of superiority in local processing. Second, it may be a processing bias, rather than deficit. Third, weak coherence may occur alongside, rather than explain, deficits in social cognition. A review of over 50 empirical studies of coherence suggests robust findings of local bias in ASD, with mixed findings regarding weak global processing. Local bias appears not to be a mere side-effect of executive dysfunction, and may be independent of theory of mind deficits. Possible computational and neural models are discussed.
Tough, processable semi-interpenetrating polymer networks from monomer reactants
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
1994-01-01
A high temperature semi-interpenetrating polymer network (semi-IPN) was developed which had significantly improved processability, damage tolerance, and mechanical performance, when compared to the commercial Thermid materials. This simultaneous semi-IPN was prepared by mixing the monomer precursors of Thermid AL-600 (a thermoset) and NR-150B2 (a thermoplastic) and allowing the monomers to react randomly upon heating. This reaction occurs at a rate which decreases the flow and broadens the processing window. Upon heating at a higher temperature, there is an increase in flow. Because of the improved flow properties, broadened processing window and enhanced toughness, high strength polymer matrix composites, adhesives and molded articles can now be prepared from the acetylene end-capped polyimides which were previously inherently brittle and difficult to process.
Quick-Mixing Studies Under Reacting Conditions
NASA Technical Reports Server (NTRS)
Leong, May Y.; Samuelsen, G. S.
1996-01-01
The low-NO(x) emitting potential of rich-burn/quick-mix/lean-burn )RQL) combustion makes it an attractive option for engines of future stratospheric aircraft. Because NO(x) formation is exponentially dependent on temperature, the success of the RQL combustor depends on minimizing high temperature stoichiometric pocket formation in the quick-mixing section. An experiment was designed and built, and tests were performed to characterize reaction and mixing properties of jets issuing from round orifices into a hot, fuel-rich crossflow confined in a cylindrical duct. The reactor operates on propane and presents a uniform, non-swirling mixture to the mixing modules. Modules consisting of round orifice configurations of 8, 9, 10, 12, 14, and 18 holes were evaluated at a momentum-flux ratio of 57 and jet-to-mainstream mass-flaw ratio of 2.5. Temperatures and concentrations of O2, CO2, CO, HC, and NO(x) were obtained upstream, down-stream, and within the orifice plane to determine jet penetration as well as reaction processes. Jet penetration was a function of the number of orifices and affected the mixing in the reacting system. Of the six configurations tested, the 14-hole module produced jet penetration close to the module half-radius and yielded the best mixing and most complete combustion at a plane one duct diameter from the orifice leading edge. The results reveal that substantial reaction and heat release occur in the jet mixing zone when the entering effluent is hot and rich, and that the experiment as designed will serve to explore satisfactorily jet mixing behavior under realistic reacting conditions in future studies.
Spray and High-Pressure Flow Computations in the National Combustion Code (NCC) Improved
NASA Technical Reports Server (NTRS)
Raju, Manthena S.
2002-01-01
Sprays occur in a wide variety of industrial and power applications and in materials processing. A liquid spray is a two-phase flow with a gas as the continuous phase and a liquid as the dispersed phase in the form of droplets or ligaments. The interactions between the two phases--which are coupled through exchanges of mass, momentum, and energy--can occur in different ways at disparate time and length scales involving various thermal, mass, and fluid dynamic factors. An understanding of the flow, combustion, and thermal properties of a rapidly vaporizing spray requires careful modeling of the ratecontrolling processes associated with turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates of the spray, among many other factors. With the aim of developing an efficient solution procedure for use in multidimensional combustor modeling, researchers at the NASA Glenn Research Center have advanced the state-of-the-art in spray computations in several important ways.
Controls on Mixing-Dependent Denitrification in Hyporheic Zones
NASA Astrophysics Data System (ADS)
Hester, E. T.; Young, K. I.; Widdowson, M. A.
2013-12-01
Interaction of surface water and groundwater in hyporheic sediments of river systems is known to create unique biogeochemical conditions that can attenuate contaminants flowing downstream. Oxygen, carbon, and the contaminants themselves (e.g., excess nitrate) often advect together through the hyporheic zone from sources in surface water. However, the ability of the hyporheic zone to attenuate contaminants in upwelling groundwater plumes as they exit to rivers is less known. Such reactions may be more dependent on mixing of carbon and oxygen sources from surface water with contaminants from deeper groundwater. We simulated hyporheic flow cells and upwelling groundwater together with mixing-dependent denitrification of an upwelling nitrate plume in shallow riverbed sediments using MODFLOW and SEAM3D. For our first set of model scenarios, we set biogeochemical boundary conditions to be consistent with situations where only mixing-dependent denitrification occurred within the model domain. This occurred where dissolved organic carbon (DOC) advecting from surface water through hyporheic flow cells meets nitrate upwelling from deeper groundwater. This would be common where groundwater is affected by septic systems which contribute nitrate that upwells into streams that do not have significant nitrate sources from upstream. We conducted a sensitivity analysis that showed that mixing-dependent denitrification increased with parameters that increase mixing itself, such as the degree of heterogeneity of sediment hydraulic conductivity (K). Mixing-dependent denitrification also increased with certain biogeochemical boundary concentrations such as increasing DOC or decreasing dissolved oxygen (DO) advecting from surface water. For our second set of model scenarios, we set biogeochemical boundary conditions to be consistent with common situations where non-mixing-dependent denitrification also occurred within the model domain. For example, when nitrate concentrations are substantial in water advecting from surface water, non-mixing-dependent denitrification can occur within the hyporheic flow cells. This would be common where surface water and groundwater have high nitrate concentrations in agricultural areas. We conducted a sensitivity analysis for this set of model scenarios as well, to evaluate controls on the relative balance of mixing-dependent and non-mixing-dependent denitrification. We found that non-mixing-dependent denitrification often has higher potential to consume nitrate than mixing-dependent denitrification. This is because non-mixing-dependent denitrification is not confined to the relatively small mixing zone between upwelling groundwater and hyporheic flow cells, and hence often has longer residence times available for consumption of existing oxygen followed by consumption of nitrate. Nevertheless, the potential for hyporheic zones to attenuate upwelling nitrate plumes appears to be substantial, yet is variable depending on geomorphic, hydraulic, and biogeochemical conditions.
HAARP-based Investigations of Lightning-induced Nonlinearities within the D-Region Ionosphere
NASA Astrophysics Data System (ADS)
Moore, R. C.
2015-12-01
It is well-documented that energetic lightning can produce fantastical events with the lower ionosphere. Although the High-frequency Active Auroral Research Program (HAARP) transmitter is not as powerful as lightning, it can be used to investigate the nonlinear interactions that occur within the lower ionosphere, many of which also occur during lightning-induced ionospheric events. This paper presents the best experimental results obtained during D-region modification experiments performed by the University of Florida at the HAARP observatory between 2007 and 2014, including ELF/VLF wave generation experiments, wave-wave mixing experiments, and cross-modulation experiments. We emphasize the physical processes important for lightning-ionosphere interactions that can be directly investigated using HAARP.
NASA Astrophysics Data System (ADS)
Baker, C. W.
1984-06-01
The determination of some of the naturally-occurring, alpha-emitting radionuclides in marine environmental materials, is of interest for several reasons. Radium and radon nuclides are potentially useful as oceanographic tracers. Lead and thorium nuclides may be used to study sedimentation rates, mixing processes and bioturbation in sediments. Radium and polonium nuclides are incorporated into food chains and the data may provide a perspective against which to assess the significance, for marine organisms, of exposure to radiation in a marine radioactive waste disposal situation. This paper discusses the manner in which samples are taken, and the radiochemical methods which have been employed to measure the nuclides, together with some data produced.
Lunar regolith dynamics based on analysis of the cosmogenic radionuclides Na-22, Al-26, and Mn-53
NASA Technical Reports Server (NTRS)
Fruchter, J. S.; Rancitelli, L. A.; Laul, J. C.; Perkins, R. W.
1977-01-01
Depth profiles of Na-22 and Al-26 in the upper portions of five lunar cores are analyzed. From the analyses, it is concluded that the natural gardening processes on the lunar surface result in mixing of the regolith to a depth of 2-3 cm over a time period which is short compared with the half-life of Al-26 (0.73 m.y.). It is also concluded that the rotary drill processes which were used to obtain the deep drill samples generally resulted in loss and/or mixing of the upper portions of the cores. In contrast, the near-surface regions of the drive tube cores appear to have a well-preserved stratigraphy. Analysis of Mn-53 in samples of six lunar rocks helps substantiate the accuracy of age date estimates by other means, and provides definite information that the total lunar surface exposure of two of these rocks has occurred during a single surface event which continued to their collection.
Atomistic study of mixing at high Z / low Z interfaces at Warm Dense Matter Conditions
NASA Astrophysics Data System (ADS)
Haxhimali, Tomorr; Glosli, James; Rudd, Robert; Lawrence Livermore National Laboratory Team
2016-10-01
We use atomistic simulations to study different aspects of mixing occurring at an initially sharp interface of high Z and low Z plasmas in the Warm/Hot Dense Matter regime. We consider a system of Diamond (the low Z component) in contact with Ag (the high Z component), which undergoes rapid isochoric heating from room temperature up to 10 eV, rapidly changing the solids into warm dense matter at solid density. We simulate the motion of ions via the screened Coulomb potential. The electric field, the electron density and ionizations level are computed on the fly by solving Poisson equation. The spatially varying screening lengths computed from the electron cloud are included in this effective interaction; the electrons are not simulated explicitly. We compute the electric field generated at the Ag-C interface as well as the dynamics of the ions during the mixing process occurring at the plasma interface. Preliminary results indicate an anomalous transport of high Z ions (Ag) into the low Z component (C); a phenomenon that is partially related to the enhanced transport of ions due to the generated electric field. These results are in agreement with recent experimental observation on Au-diamond plasma interface. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.
Fu, Zhihong; Holtzapple, Mark T
2010-09-01
Sugarcane bagasse and chicken manure were anaerobically fermented to carboxylic acids using a mixed culture of marine microorganisms at 55 degrees C. Using the MixAlco process--an example of consolidated bioprocessing--the resulting carboxylate salts can be converted to mixed alcohol fuels or gasoline. To enhance digestibility, sugarcane bagasse was lime pretreated with 0.1 g Ca(OH)(2)/g dry biomass at 100 degrees C for 2 h. Four-stage countercurrent fermentation of 80% sugarcane bagasse/20% chicken manure was performed at various volatile solids (VS) loading rates and liquid residence times. Calcium carbonate was used as a buffer during fermentation. The highest acid productivity of 0.79 g/(L day) occurred at a total acid concentration of 21.5 g/L. The highest conversion (0.59 g VS digested/g VS fed) and yield (0.18 g total acids/g VS fed) occurred at a total acid concentration of 15.5 g/L. The continuum particle distribution model (CPDM) predicted the experimental total acid concentrations and conversions at an average error of 10.14% and 12.68%, respectively. CPDM optimizations show that high conversion (>80%) and total acid concentration of 21.3 g/L are possible with 300 g substrate/(L liquid), 30 days liquid residence time, and 3 g/(L day) solid loading rate. Thermophilic fermentation has a higher acetate content (approximately 63 wt%) than mesophilic fermentation (approximately 39 wt%).
2006-06-01
to any specific commercial product , process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or...conditions observed at P17 and Southeast Loch are interesting from the standpoint that these areas are generally closer to industrial and non-point...metals that commonly co-occur in both industrial sources and non-point source. An examination of all fluxes suggests that the surface mixed layer may
Mixing and NOx Emission Calculations of Confined Reacting Jet Flows in Cylindrical and Annular Ducts
NASA Technical Reports Server (NTRS)
Oechsle, Victor L.; Connor, Christopher H.; Holdeman, James D. (Technical Monitor)
2000-01-01
Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A three-dimensional computational fluid dynamics (CFD) code has been used to predict the mixing flow field characteristics and NOx emission in a quench section of a rich-burn/quick-mix/lean-burn (RQL) combustor. Sixty configurations have been analyzed in both circular and annular geometries in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying the number of orifices per row and orifice shape. Other parameters such as J (momentum-flux ratio), MR (mass flowrate ratio), DR (density ratio), and mixer sector orifice ACd (effective orifice area) were maintained constant throughout the entire study. The results indicate that the mixing flow field can be correlated with the NOx production if they are referenced with the stoichiometric equivalence ratio value and not the equilibrium value. The mixing flowfields in both circular and annular mixers are different. The penetration of equal jets in both annular and circular geometries is vastly different which significantly affects the performance of the mixing section. In the computational results with the circular mixer, most of the NOx formation occurred behind the orifice starting at the orifice wake region. General trends have been observed in the NOx production as the number of orifices is changed and this appears to be common for all hole configurations and mixer types (circular or annular). The performance of any orifice shape (in producing minimum NOx) appears to be acceptable if the number of orifices can be freely varied in order to attain the optimum jet penetration.
Barbara J. Bentz; Celia Boone; Kenneth F. Raffa
2015-01-01
Mountain pine beetle (Dendroctonus ponderosae) is an important disturbance agent in Pinus ecosystems of western North America, historically causing significant tree mortality. Most recorded outbreaks have occurred in mid elevation lodgepole pine (Pinus contorta). In warm years, tree mortality also occurs at higher elevations in mixed species stands.
Experiments on δ34S mixing between organic and inorganic sulfur species during thermal maturation
Amrani, Alon; Said-Ahamed, Ward; Lewan, Michael D.; Aizenshtat, Zeev
2006-01-01
Reduced sulfur species were studied to constrain isotopic exchange-mixing with synthetic polysulfide cross-linked macromolecules (PCLM), model sulfur containing molecules and natural sulfur-rich kerogen, asphalt and oil of the Dead Sea area. PCLM represents protokerogens that are rich in sulfur and thermally unstable. Mixing rates of PCLM with HS-(aq) (added as (NH4)2S(aq)) at low to moderate temperatures (50–200 °C) are rapid. Elemental sulfur and H2S(gas) fully mix isotopes with PCLM during pyrolysis conditions at 200 °C. During these reactions significant structural changes of the PCLM occur to form polysulfide dimers, thiolanes and thiophenes. As pyrolysis temperatures or reaction times increase, the PCLM thermal products are transformed to more aromatic sulfur compounds. Isotopic mixing rates increase with increasing pyrolysis temperature and time. Polysulfide bonds (S–S) in the PCLM are responsible for most of these structural and isotopic changes because of their low stability. Conversely, sulfur isotope mixing does not occur between dibenzothiophene (aromatic S) or hexadecanthiol (C–SH) and HS-(aq) at 200 °C after 48 h. This shows that rates of sulfur isotope mixing are strongly dependent on the functionality of the sulfur in the organic matter. The order of isotopic mixing rates for organic matter is kerogen > asphalt > oil, which is inverse to their sulfur thermal stability. Asphalt and oil with more refractory sulfur show significantly lower isotopes mixing rates than the kerogen with more labile sulfur. Based on the findings of the present study we suggest that sulfur isotopes mixing can occur from early diagenesis into catagenesis and result in isotopic homogenization of the inorganic and organic reduced sulfur pools.
Lerch, R.N.; Thurman, E.M.; Kruger, E.L.
1997-01-01
This study tested the hypothesis that sorption of hydroxylated atrazine degradation products (HADPs: hydroxyatrazine, HA; deethylhydroxyatrazine, DEHA; and deisopropylhydroxyatrazine, DIHA) to soils occurs by mixed-mode binding resulting from two simultaneous mechanisms: (1) cation exchange and (2) hydrophobic interaction. The objective was to use liquid chromatography and soil extraction experiments to show that mixed-mode binding is the mechanism controlling HADP sorption to soils and is also a mechanism for bound residue. Overall, HADP binding to solid-phase extraction (SPE) sorbents occurred in the order: cation exchange >> octadecyl (C18) >> cyanopropyl. Binding to cation exchange SPE and to a high-performance liquid chromatograph octyl (C8) column showed evidence for mixed-mode binding. Comparison of soil extracted by 0.5 M KH2P04, pH 7.5, or 25% aqueous CH3CN showed that, for HA and DIHA, cation exchange was a more important binding mechanism to soils than hydrophobic interaction. Based on differences between several extractants, the extent of HADP mixed-mode binding to soil occurred in the following order: HA > DIHA > DEHA. Mixed-mode extraction recovered 42.8% of bound atrazine residues from aged soil, and 88% of this fraction was identified as HADPs. Thus, a significant portion of bound atrazine residues in soils is sorbed by the mixed-mode binding mechanisms.
NASA Astrophysics Data System (ADS)
Ogle, S. E.; Tamsitt, V.; Josey, S. A.; Gille, S. T.; Cerovečki, I.; Talley, L. D.; Weller, R. A.
2018-05-01
The Ocean Observatories Initiative air-sea flux mooring deployed at 54.08°S, 89.67°W, in the southeast Pacific sector of the Southern Ocean, is the farthest south long-term open ocean flux mooring ever deployed. Mooring observations (February 2015 to August 2017) provide the first in situ quantification of annual net air-sea heat exchange from one of the prime Subantarctic Mode Water formation regions. Episodic turbulent heat loss events (reaching a daily mean net flux of -294 W/m2) generally occur when northeastward winds bring relatively cold, dry air to the mooring location, leading to large air-sea temperature and humidity differences. Wintertime heat loss events promote deep mixed layer formation that lead to Subantarctic Mode Water formation. However, these processes have strong interannual variability; a higher frequency of 2 σ and 3 σ turbulent heat loss events in winter 2015 led to deep mixed layers (>300 m), which were nonexistent in winter 2016.
Continental shelves as potential resource of rare earth elements.
Pourret, Olivier; Tuduri, Johann
2017-07-19
The results of this study allow the reassessment of the rare earth elements (REE) external cycle. Indeed, the river input to the oceans has relatively flat REE patterns without cerium (Ce) anomalies, whereas oceanic REE patterns exhibit strong negative Ce anomalies and heavy REE enrichment. Indeed, the processes at the origin of seawater REE patterns are commonly thought to occur within the ocean masses themselves. However, the results from the present study illustrate that seawater-like REE patterns already occur in the truly dissolved pool of river input. This leads us to favor a partial or complete removal of the colloidal REE pool during estuarine mixing by coagulation, as previously shown for dissolved humic acids and iron. In this latter case, REE fractionation occurs because colloidal and truly dissolved pools have different REE patterns. Thus, the REE patterns of seawater could be the combination of both intra-oceanic and riverine processes. In this study, we show that the Atlantic continental shelves could be considered potential REE traps, suggesting further that shelf sediments could potentially become a resource for REE, similar to metalliferous deep sea sediments.
Numerical simulation of a non-equilibrium electrokinetic micro/nano fluidic mixer
NASA Astrophysics Data System (ADS)
Hadidi, H.; Kamali, R.
2016-03-01
In this study we numerically simulate a novel micromixer that utilizes vortex generation from the non-equilibrium electrokinetics near the micro/nanochannels interface. After mixing in combined pressure-driven and electroosmotic flows was compared with mixing in a pure pressure-driven flow, the superior mixing performance of the former was evident: for a specific case study, 90% mixing of two fluid streams for a short mixing length was achieved. The results of our numerical study were very similar to those of previously reported experiments. In this paper we explain the phenomenon occurring adjacent to the nano-junctions by plotting the electrical field components, the velocity contours and the concentration distribution in the micromixer. The vortices at the micro/nanochannel interface were obviously indicators of non-equilibrium behaviour in these regions. At the end, the mixing performance was evaluated by the investigation of different applied voltages, Reynolds numbers and surface charge densities using the mixing index parameter, and the results showed that more efficient mixing occurred when the applied voltage and surface charge density magnitude were increased and the Reynolds number was decreased.
Grove, T.L.; Kinzler, R.J.; Baker, M.B.; Donnelly-Nolan, J. M.; Lesher, C.E.
1988-01-01
At Medicine Lake volcano, California, andesite of the Holocene Burnt Lava flow has been produced by fractional crystallization of parental high alumina basalt (HAB) accompanied by assimilation of granitic crustal material. Burnt Lava contains inclusions of quenched HAB liquid, a potential parent magma of the andesite, highly melted granitic crustal xenoliths, and xenocryst assemblages which provide a record of the fractional crystallization and crustal assimilation process. Samples of granitic crustal material occur as xenoliths in other Holocene and Pleistocene lavas, and these xenoliths are used to constrain geochemical models of the assimilation process. A large amount of assimilation accompanied fractional crystallization to produce the contaminated Burnt lava andesites. Models which assume that assimilation and fractionation occurred simultaneously estimate the ratio of assimilation to fractional crystallization (R) to be >1 and best fits to all geochemical data are at an R value of 1.35 at F=0.68. Petrologic evidence, however, indicates that the assimilation process did not involve continuous addition of granitic crust as fractionation occurred. Instead, heat and mass transfer were separated in space and time. During the assimilation process, HAB magma underwent large amounts of fractional crystallization which was not accompanied by significant amounts of assimilation. This fractionation process supplied heat to melt granitic crust. The models proposed to explain the contamination process involve fractionation, replenishment by parental HAB, and mixing of evolved and parental magmas with melted granitic crust. ?? 1988 Springer-Verlag.
Combined use of 15N and 18O of nitrate and 11B to evaluate nitrate contamination in groundwater
Seiler, R.L.
2005-01-01
Isotopic composition of NO3 (??15NNO3 and ??18ONO3) and B (??11B) were used to evaluate NO3 contamination and identify geochemical processes occurring in a hydrologically complex Basin and Range valley in northern Nevada with multiple potential sources of NO3. Combined use of these isotopes may be a useful tool in identifying NO3 sources because NO3 and B co-migrate in many environmental settings, their isotopes are fractionated by different environmental processes, and because wastewater and fertilizers may have distinct isotopic signatures for N and B. The principal cause of elevated NO3 concentrations in residential parts of the study area is wastewater and not natural NO3 or fertilizers. This is indicated by some samples with elevated NO3 concentrations plotting along ??15NNO3 and NO3 mixing lines between natural NO3 from the study area and theoretical septic-system effluent. This conclusion is supported by the presence of caffeine in one sample and the absence of samples with elevated NO3 concentrations that fall along mixing lines between natural NO3 and theoretical percolate below fertilized lawns. Nitrogen isotopes alone could not be used to determine NO3 sources in several wells because denitrification blurred the original isotopic signatures. The range of ??11B values in native ground water in the study area (-8.2??? to +21.2???) is large. The samples with the low ??11B values have a geochemical signature characteristic of hydrothermal systems. Physical and chemical data suggest B is not being strongly fractionated by adsorption onto clays. ??11B values from local STP effluent (-2.7???) and wash water from a domestic washing machine (-5.7???) were used to plot mixing lines between wastewater and native ground water. In general, wells with elevated NO3 concentrations fell along mixing lines between wastewater and background water on plots of ??11B against 1/B and Cl/B. Combined use of ??15N and ??11B in the study area was generally successful in identifying contaminant sources and processes that are occurring, however, it is likely to be more successful in simpler settings with a well-characterized ??11B value for background wells.
Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael; ...
2016-09-27
This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with a specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include biomass-to-syngas via indirect gasification, syngas clean-up, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: (i) mixedmore » alcohols over a MoS 2 catalyst, (ii) mixed oxygenates (a mixture of C 2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and (iii) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: (i) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and (ii) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2000 tonnes/day (2205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from 3.40 dollars to 5.04 dollars per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Altogether, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael
This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with a specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include biomass-to-syngas via indirect gasification, syngas clean-up, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: (i) mixedmore » alcohols over a MoS 2 catalyst, (ii) mixed oxygenates (a mixture of C 2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and (iii) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: (i) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and (ii) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2000 tonnes/day (2205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from 3.40 dollars to 5.04 dollars per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Altogether, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less
NASA Astrophysics Data System (ADS)
Swart, Peter K.; Oehlert, Amanda M.
2018-02-01
A positive correlation between the δ13C and δ18O values of carbonate rocks is a screening tool widely used to identify the overprint of meteoric diagenesis on the original isotopic composition of a sample. In particular, it has been suggested that systematic change from negative to positive δ13C and δ18O values with increasing depth in the core is an indicator of alteration within the zone of mixing between meteoric and marine waters. In this paper, we propose that such covariance is not generated within the traditionally defined mixing zone, and that positive correlations between δ13C and δ18O values in marine carbonates are not necessarily indicators of meteoric alteration. This new interpretation is based on data collected from the shallow sub-surface of the Bahamas, a region unequivocally influenced by meteoric waters to depths of at least 200 m below the current sediment-water interface. The classic interpretation of the diagenetic environments, based on changes in the δ13C and δ18O values, would suggest the maximum penetration of freshwater occurs between 65 and 100 m below seafloor. Below these depths, a strong positive covariation between the δ13C and δ18O values exists, and would traditionally be defined as the mixing zone. However, based upon known changes in sea level, the penetration of the freshwater lens extends significantly below this limit. We contend that the zone showing covariance of δ13C and δ18O values is actually altered within the freshwater lens, and not the mixing zone as previously proposed. The co-varying trend in δ13C and δ18O values is the result of diagenetic processes occurring at the interface between vadose and phreatic zones. Significantly greater rates of recrystallization and neomorphism are driven by the increased rates of oxidation of organic matter at this transition with progressively less alteration occurring with increasing depth. As sea level oscillates, the position of this interface moves through the deposit, causing cumulative alteration throughout the section. Hence, we propose that the covariation between δ13C and δ18O values is a consequence of varying degrees of alteration, rather than the result of diagenesis occurring within the zone where marine and freshwater fluids mix. Furthermore, within the pervasively altered vadose zone, there is little correlation between δ13C and δ18O values, and therefore covariation between δ13C and δ18O values is not an unequivocal indicator of meteoric diagenesis.
Kakkar, Aanchal; Sharma, Mehar C; Yadav, Rajni; Panwar, Rajesh; Mathur, Sandeep R; Iyer, Venkateswaran K; Sahni, Peush
2016-08-01
Mixed serous neuroendocrine neoplasms are extremely rare tumors that are usually seen in female patients and are often associated with von Hippel Lindau (VHL) disease. We describe the case of a 38-year-old male who presented with complaints of anorexia, weight loss, and abdominal pain. CT abdomen showed a mass in the head of the pancreas, multiple small nodules in the body of pancreas, and bilateral adrenal masses. Fine needle aspiration cytology (FNAC) from the mass showed features of a neuroendocrine tumor, with many of the cells demonstrating abundant clear cytoplasm. Histopathological examination of the pancreaticoduodenectomy specimen showed a mixed serous neuroendocrine neoplasm with two components viz. serous cystadenoma and neuroendocrine tumor (NET) World Health Organization (WHO) grade 2. In addition, he was diagnosed to have bilateral pheochromocytomas and a paraganglioma. The synchronicity of these tumors suggested the possibility of VHL disease. Thus, identification of a NET with clear cells or of a mixed serous neuroendocrine neoplasm should raise suspicion of VHL disease. In a mixed tumor, FNAC may identify only one of the two components. Thorough processing of all pancreatic serous tumors for pathological examination is recommended, as NET may occur as a small nodule within the serous cystadenoma. Copyright © 2016 Elsevier GmbH. All rights reserved.
Atomic mixing induced by swift heavy ion irradiation of Fe/Zr multilayers
NASA Astrophysics Data System (ADS)
Jaouen, C.; Michel, A.; Pacaud, J.; Dufour, C.; Bauer, Ph.; Gervais, B.
1999-01-01
The mechanism of ion induced mixing and phase change was studied for Fe/Zr multilayers, and specifically for the case of swift heavy ions giving rise to a very large electronic excitation of the target. The multilayers had a modulation of 7.6 nm and an overall composition Fe 69Zr 31. The Zr layers were amorphous whereas the Fe ones were crystalline (bcc) with a very strong (1 1 0) texture in the growth direction. The phase transformation and the composition changes were analysed using the structural and magnetic properties of the Fe component by means of a detailed analysis of the X-ray diffraction profiles and with the aid of backscattering Mössbauer spectroscopy. A complete mixing was observed at a fluence of 10 13 U/cm 2. Both phenomena, the dose dependence of the ion beam mixed amorphous non-magnetic phase and the quantitative evolution of the crystalline iron layer thickness, suggest that mixing occurs in a two-stage process. At an initial stage, an anisotropic diffusion of iron atoms in the amorphous zirconium layers takes place along the interface, while subsequent ion bombardment leads to a generalised transformation through the whole of the Fe layer. Finally, the implications of these observations are discussed in comparison to the plastic deformation phenomena reported for amorphous alloys.
NASA Astrophysics Data System (ADS)
Joubert, W. R.; Swart, S.; Tagliabue, A.; Thomalla, S. J.; Monteiro, P. M. S.
2014-03-01
The seasonal cycle of primary productivity is impacted by seasonal and intra-seasonal dynamics of the mixed layer through the changing balance between mixing and buoyancy forcing, which regulates nutrient supply and light availability. Of particular recent interest is the role of synoptic scale events in supplying nutrients, particularly iron, to the euphotic zone in the Sub Antarctic Zone (SAZ), where phytoplankton blooms occur throughout summer. In this study, we present high resolution measurements of net community production (NCP) constrained by ΔO2/Ar ratios, and mixed layer depth (MLD) in the Atlantic SAZ. We found a non-linear relationship between NCP and MLD, with the highest and most variable NCP observed in shallow MLDs (< 45 m). We propose that NCP variability in the SAZ may be driven by alternating states of synoptic-scale deepening of the mixed layer, leading to the entrainment of iron (dFe), followed by restratification, allowing rapid growth in an iron replete, high light environment. Synoptic iron fluxes into the euphotic zone based on water column dFe profiles and high resolution glider MLD data, reveal a potentially significant contribution of "new iron" which could sustain NCP throughout summer. Future process studies will help elaborate these findings further.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael
This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass to syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: 1)more » mixed alcohols over a MoS2 catalyst, 2) mixed oxygenates (a mixture of C2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and 3) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: 1) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and 2) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2,000 tonnes/day (2,205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from $3.40 to $5.04 per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Overall, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less
Stable isotope deltas: Tiny, yet robust signatures in nature
Brand, Willi A.; Coplen, Tyler B.
2012-01-01
Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including 14C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. 13C, 2H, and 18O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as−25 per mil can be written as−25 mUr (or−2.5 cUr or−0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg ‘units’ are easily included (e.g. either+0.015 ‰ or+15 per meg can be written as+15 μUr.
NASA Astrophysics Data System (ADS)
Gonzalez-Meler, M. A.; Sturchio, N. C.; Sanchez-de Leon, Y.; Blanc-Betes, E.; Taneva, L.; Poghosyan, A.; Norby, R. J.; Filley, T. R.; Guilderson, T. P.; Welker, J. M.
2010-12-01
Biogeochemical carbon-cycle feedbacks to climate are apparent but uncertain, primarily because of gaps in mechanistic understanding on the ecosystem processes that drive carbon cycling and storage in terrestrial ecosystems, particularly in soils. Recent findings are increasingly recognizing the interaction between soil biota and the soil physical environment. Soil carbon turnover is partly determined by burial of organic matter and its physical and chemical protection. These factors are potentially affected by changes in climate (freezing-thawing or wet-drying cycles) or ecosystem structure including biological invasions. A major impediment to understanding dynamics of soil C in terrestrial systems is our inability to measure soil physical processes such as soil mixing rates or turnover of soil structures, including aggregates. Here we present a multiple radioisotope tracer approach (naturally occurring and man-made) to measure soil mixing rates in response to global change. We will present evidence of soil mixing rate changes in a temperate forest exposed to increased levels of atmospheric CO2 and in a tundra ecosystem exposed to increased thermal insulation. In both cases, radioisotope tracers proved to be an effective way to measure effects of global change on pedoturbation. Results also provided insights into the specific mechanisms involved in the responses. Elevated CO2 resulted in deeper soil mixing cells (increased by about 5cm on average) when compared to control soils as a consequence of changes in biota (increased root growth, higher earthworm density). In the tundra, soil warming induced higher rates of cryoturbation, resulting in what appears to be a net uplift of organic matter to the surface thereby exposing deeper C to decomposers. In both cases, global change factors affected the vertical distribution of C and changed the amount of bulk soil actively involved in soil processes. As a consequence, comparisons of C budgets to a given soil depth in response to global change factors may be misleading if they do not account for the depth change in the soil mixing cells.
The importance of fluctuations in fluid mixing
Kadau, Kai; Rosenblatt, Charles; Barber, John L.; Germann, Timothy C.; Huang, Zhibin; Carlès, Pierre; Alder, Berni J.
2007-01-01
A ubiquitous example of fluid mixing is the Rayleigh–Taylor instability, in which a heavy fluid initially sits atop a light fluid in a gravitational field. The subsequent development of the unstable interface between the two fluids is marked by several stages. At first, each interface mode grows exponentially with time before transitioning to a nonlinear regime characterized by more complex hydrodynamic mixing. Unfortunately, traditional continuum modeling of this process has generally been in poor agreement with experiment. Here, we indicate that the natural, random fluctuations of the flow field present in any fluid, which are neglected in continuum models, can lead to qualitatively and quantitatively better agreement with experiment. We performed billion-particle atomistic simulations and magnetic levitation experiments with unprecedented control of initial interface conditions. A comparison between our simulations and experiments reveals good agreement in terms of the growth rate of the mixing front as well as the new observation of droplet breakup at later times. These results improve our understanding of many fluid processes, including interface phenomena that occur, for example, in supernovae, the detachment of droplets from a faucet, and ink jet printing. Such instabilities are also relevant to the possible energy source of inertial confinement fusion, in which a millimeter-sized capsule is imploded to initiate nuclear fusion reactions between deuterium and tritium. Our results suggest that the applicability of continuum models would be greatly enhanced by explicitly including the effects of random fluctuations. PMID:17470811
Deepwater dynamics and mixing processes during a major inflow event in the central Baltic Sea
NASA Astrophysics Data System (ADS)
Holtermann, Peter L.; Prien, Ralf; Naumann, Michael; Mohrholz, Volker; Umlauf, Lars
2017-08-01
Intrusions of large amounts of dense and oxygen-rich waters during so-called Major Baltic Inflows (MBIs) form an essential component of the Baltic Sea overturning circulation and deepwater ventilation. Despite their importance, however, detailed observations of the processes occurring in the central basins during an MBI are virtually lacking. Here data from a long-term deployment of an autonomous profiling platform located in the center of one of the main basins are presented, providing the first direct and detailed view of the deepwater modifications and dynamics induced by one of the largest MBIs ever recorded (MBI 2014/2015). Approximately, 21 Gmol of oxygen were imported during three distinct inflow phases with an unexpectedly large contribution of oxic intrusions at intermediate depth. Oxygen consumption rates during the stagnation period immediately following the inflow phase was found to be 87 g m-2 yr-1 with a dominant contribution of sedimentary oxygen demand. The most energetic deepwater processes (topographic and near-inertial waves) were only marginally affected by the inflow; however, subinertial energy levels associated with intrusions and eddies were strongly enhanced. Turbulence microstructure data revealed that the deep interior regions remain essentially nonturbulent even during the energetic conditions of an MBI, emphasizing the importance of boundary mixing. Warm intrusions frequently showed a temperature fine structure with vertical scales of the order of 0.1 m, without any signs of active turbulence. At the upper flanks of these intrusions, double-diffusive staircases were often found to develop, suggesting an important alternative mixing process during inflow conditions.
Unfiltered Talk--A Challenge to Categories.
ERIC Educational Resources Information Center
McCormick, Kay
A study investigated how and why code switching and mixing occurs between English and Afrikaans in a region of South Africa. In District Six, non-standard Afrikaans seems to be a mixed code, and it is unclear whether non-standard English is a mixed code. Consequently, it is unclear when codes are being switched or mixed. The analysis looks at…
Apparatus for oil shale retorting
Lewis, Arthur E.; Braun, Robert L.; Mallon, Richard G.; Walton, Otis R.
1986-01-01
A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.
1989-01-01
England while waiting for an outbreak of cold air (Larson, 1988). Even before the arrival of the storm trailing the cold air behind it, both shear and...and simulation of storm -induced mixed-layer deepening. J. Phys. Oceanogr., 8. 582-599. 217 Riley, J.J., and R.W. Metcalf: 1987. Direct numerical...the severe downslope wind storm which occurs in the lee of major mountain barriers (Lilly and Kennedy, 1973: Lilly. 1978) under suitable atmospheric
NASA Astrophysics Data System (ADS)
Tang, W. M.; Liu, H. L.; Wang, Y. X.; Xu, G. O.; Zheng, Z. X.
2012-05-01
Nanocrystalline powders of alloy Fe - 28% Al - 5% Cr (at.%) obtained by mechanical alloying from powdered iron, aluminum, and preliminarily alloyed Fe - 20% Cr are studied. The chemical composition is shown to be homogenized. The changes in the structure and in the morphology of the particles in the process of ball milling and subsequent heat treatment are determined. The alloying is shown to occur by the mechanism of continuous diffusion mixing.
Effect of Refining Variables on the Properties and Composition of JP-5.
1980-11-01
specific fuel system components. This is believed to be caused by the removal of naturally occurring impurities such as organic acids and some polynuclear...PADs 3 and 5 would require additional downstream processing to remove aromatics and/or mercaptans in order to make acceptable grade JP-5. The MTY of JP...made.) Now that the mandatory allocation of kerosine jet fuel has been removed , it will be important to see if the refinery mix that will provide JP
Storm-driven Mixing and Potential Impact on the Arctic Ocean
NASA Technical Reports Server (NTRS)
Yang, Jiayan; Comiso, Josefino; Walsh, David; Krishfield, Richard; Honjo, Susumu; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
Observations of the ocean, atmosphere, and ice made by Ice-Ocean Environmental Buoys (IOEBs) indicate that mixing events reaching the depth of the halocline have occurred in various regions in the Arctic Ocean. Our analysis suggests that these mixing events were mechanically forced by intense storms moving across the buoy sites. In this study, we analyzed these mixing events in the context of storm developments that occurred in the Beaufort Sea and in the general area just north of Fram Strait, two areas with quite different hydrographic structures. The Beaufort Sea is strongly influenced by inflow of Pacific water through Bering Strait, while the area north of Fram Strait is directly affected by the inflow of warm and salty North Atlantic water. Our analyses of the basin-wide evolution of the surface pressure and geostrophic wind fields indicate that the characteristics of the storms could be very different. The buoy-observed mixing occurred only in the spring and winter seasons when the stratification was relatively weak. This indicates the importance of stratification, although the mixing itself was mechanically driven. We also analyze the distribution of storms, both the long-term climatology as well as the patterns for each year in the last two decades. The frequency of storms is also shown to be correlated- (but not strongly) to Arctic Oscillation indices. This study indicates that the formation of new ice that leads to brine rejection is unlikely the mechanism that results in the type of mixing that could overturn the halocline. On the other hand, synoptic-scale storms can force mixing deep enough to the halocline and thermocline layer. Despite a very stable stratification associated with the Arctic halocline, the warm subsurface thermocline water is not always insulated from the mixed layer.
Amplitudes for multiphoton quantum processes in linear optics
NASA Astrophysics Data System (ADS)
Urías, Jesús
2011-07-01
The prominent role that linear optical networks have acquired in the engineering of photon states calls for physically intuitive and automatic methods to compute the probability amplitudes for the multiphoton quantum processes occurring in linear optics. A version of Wick's theorem for the expectation value, on any vector state, of products of linear operators, in general, is proved. We use it to extract the combinatorics of any multiphoton quantum processes in linear optics. The result is presented as a concise rule to write down directly explicit formulae for the probability amplitude of any multiphoton process in linear optics. The rule achieves a considerable simplification and provides an intuitive physical insight about quantum multiphoton processes. The methodology is applied to the generation of high-photon-number entangled states by interferometrically mixing coherent light with spontaneously down-converted light.
Synchrotron X-Ray Interrogation of Turbulent Gas–Liquid Mixing in Cryogenic Rocket Sprays
Radke, Christopher D.; McManamen, J. Patrick; Kastengren, Alan L.; ...
2017-07-31
The atomization and vaporization of liquid jets within turbulent gaseous flows are characterized by the mixing phenomena occurring over a wide range of spatiotemporal scales. This creates a complex, turbid medium that is not easily interrogated using conventional optical-measurement techniques. In the current study, the optically dense, multiphase flow created by a cryogenic liquid jet injected into a turbulent gaseous coflow is probed using high-speed (MHz) X-ray radiography from a focused, narrowband synchrotron source to resolve the internal cascade of scales and the evolution to isotropic, homogeneous turbulence. Changes in the spectral characteristics for different flow conditions are furthermore correlatedmore » with changes in the spatial distributions of the liquid and gas phases within the spray using simultaneous X-ray radiography and tracer (krypton) fluorescence. It is found that an increase in entrainment and mixing infers an evolution in spectral characteristics toward the well-known -5/3 law of energy dissipation in the context of the classical Kolmogorov theory. Finally, these data demonstrate the utility of the synchrotron-based X-ray radiography and fluorescence for uncovering the internal, turbulent mixing processes in multiphase and optically dense flows.« less
Chromium silicide formation by ion mixing
NASA Technical Reports Server (NTRS)
Shreter, U.; So, F. C. T.; Nicolet, M.-A.
1984-01-01
The formation of CrSi2 by ion mixing was studied as a function of temperature, silicide thickness and irradiated interface. Samples were prepared by annealing evaporated couples of Cr on Si and Si on Cr at 450 C for short times to form Si/CrSi2/Cr sandwiches. Xenon beams with energies up to 300 keV and fluences up to 8 x 10 to the 15th per sq cm were used for mixing at temperatures between 20 and 300 C. Penetrating only the Cr/CrSi2 interface at temperatures above 150 C induces further growth of the silicide as a uniform stoichiometric layer. The growth rate does not depend on the thickness of the initially formed silicide at least up to a thickness of 150 nm. The amount of growth depends linearly on the density of energy deposited at the interface. The growth is temperature dependent with an apparent activation energy of 0.2 eV. Irradiating only through the Si/CrSi2 interface does not induce silicide growth. It is concluded that the formation of CrSi2 by ion beam mixing is an interface-limited process and that the limiting reaction occurs at the Cr/CrSi2 interface.
Synchrotron X-Ray Interrogation of Turbulent Gas–Liquid Mixing in Cryogenic Rocket Sprays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radke, Christopher D.; McManamen, J. Patrick; Kastengren, Alan L.
The atomization and vaporization of liquid jets within turbulent gaseous flows are characterized by the mixing phenomena occurring over a wide range of spatiotemporal scales. This creates a complex, turbid medium that is not easily interrogated using conventional optical-measurement techniques. In the current study, the optically dense, multiphase flow created by a cryogenic liquid jet injected into a turbulent gaseous coflow is probed using high-speed (MHz) X-ray radiography from a focused, narrowband synchrotron source to resolve the internal cascade of scales and the evolution to isotropic, homogeneous turbulence. Changes in the spectral characteristics for different flow conditions are furthermore correlatedmore » with changes in the spatial distributions of the liquid and gas phases within the spray using simultaneous X-ray radiography and tracer (krypton) fluorescence. It is found that an increase in entrainment and mixing infers an evolution in spectral characteristics toward the well-known -5/3 law of energy dissipation in the context of the classical Kolmogorov theory. Finally, these data demonstrate the utility of the synchrotron-based X-ray radiography and fluorescence for uncovering the internal, turbulent mixing processes in multiphase and optically dense flows.« less
NASA Astrophysics Data System (ADS)
Egli, Ramon; Zhao, Xiangyu
2015-04-01
We present a general theory on the acquisition of natural remanent magnetizations (NRM) in sediment under the influence of (a) magnetic torques, (b) randomizing torques (e.g. from bioturbation), and (c) torques resulting from interaction forces between remanence carriers and other particles. Dynamic equilibrium between (a) and (b) in the water column and sediment-water interface produce a detrital remanent magnetization (DRM), while much stronger randomizing forces occur in the mixed layer of sediment due to bioturbation forces. These generate a so-called mixing remanent magnetization (MRM), which is stabilized by interaction forces. During the time required to cross the mixed layer, DRM is lost and MRM is acquired at a rate that depends on bioturbation intensity. Both processes are governed by the same MRM lock-in function. The final NRM intensity is controlled mainly by a single parameter defined as the product of rotational diffusion constant and mixed layer thickness, divided by the sedimentation rate. This parameter defines three regimes: (1) slow mixing, leading to DRM preservation and insignificant MRM acquisition, (2) fast mixing with MRM acquisition and full randomization of the original DRM, and (3) intermediate mixing. Because the acquisition efficiency of DRM is expectedly larger than that of a MRM, MRM is particularly sensitive to the mixing rate in case of intermediate regimes, and generates variable NRM acquisition efficiencies. Our model explains (1) lock-in delays that can be matched with empirical reconstructions from paleomagnetic records, (2) the existence of small lock-in depths leading to DRM preservation, (3) NRM acquisition efficiencies of magnetofossil-rich sediments, and (4) relative paleointensity artifacts reported in some recent studies.
Problem of the thermodynamic status of the mixed-layer minerals
Zen, E.-A.
1962-01-01
Minerals that show mixed layering, particularly with the component layers in random sequence, pose problems because they may behave thermodynamically as single phases or as polyphase aggregates. Two operational criteria are proposed for their distinction. The first scheme requires two samples of mixed-layer material which differ only in the proportions of the layers. If each of these two samples are allowed to equilibrate with the same suitably chosen monitoring solution, then the intensive parameters of the solution will be invariant if the mixed-layer sample is a polyphase aggregate, but not otherwise. The second scheme makes use of the fact that portions of many titration curves of clay minerals show constancy of the chemical activities of the components in the equilibrating solutions, suggesting phase separation. If such phase separation occurs for a mixed-layer material, then, knowing the number of independent components in the system, it should be possible to decide on the number of phases the mixed-layer material represents. Knowledge of the phase status of mixed-layer material is essential to the study of the equilibrium relations of mineral assemblages involving such material, because a given mixed-layer mineral will be plotted and treated differently on a phase diagram, depending on whether it is a single phase or a polyphase aggregate. Extension of the titration technique to minerals other than the mixed-layer type is possible. In particular, this method may be used to determine if cryptoperthites and peristerites are polyphase aggregates. In general, for any high-order phase separation, the method may be used to decide just at what point in this continuous process the system must be regarded operationally as a polyphase aggregate. ?? 1962.
NASA Technical Reports Server (NTRS)
Deardorff, J. W.; Ueyoshi, K.; Han, Y.-J.
1984-01-01
Han et al. (1982) have found in a previous numerical study of terrain-induced mesoscale motions that the orography caused a steady-state flow pattern to occur. The study was concerned with a simplified case in which no surface heating occurred. The present investigation considers an extension of this study to the more realistic case of a heated, growing daytime mixed layer containing horizontal variations of potential temperature as well as velocity. The model is also extended to include three layers above the mixed layer. It is found for a heated, growing mixed layer, that the mesoscale form drag is a thermal-anomaly or buoyancy effect associated with horizontal variations of potential temperature within the layer.
Flow field topology of transient mixing driven by buoyancy
NASA Technical Reports Server (NTRS)
Duval, Walter M B.
2004-01-01
Transient mixing driven by buoyancy occurs through the birth of a symmetric Rayleigh-Taylor morphology (RTM) structure for large length scales. Beyond its critical bifurcation the RTM structure exhibits self-similarity and occurs on smaller and smaller length scales. The dynamics of the RTM structure, its nonlinear growth and internal collision, show that its genesis occurs from an explosive bifurcation which leads to the overlap of resonance regions in phase space. This event shows the coexistence of regular and chaotic regions in phase space which is corroborated with the existence of horseshoe maps. A measure of local chaos given by the topological entropy indicates that as the system evolves there is growth of uncertainty. Breakdown of the dissipative RTM structure occurs during the transition from explosive to catastrophic bifurcation; this event gives rise to annihilation of the separatrices which drives overlap of resonance regions. The global bifurcation of explosive and catastrophic events in phase space for the large length scale of the RTM structure serves as a template for which mixing occurs on smaller and smaller length scales. Copyright 2004 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Gavrilenko, Maxim; Ozerov, Alexey; Kyle, Philip R.; Carr, Michael J.; Nikulin, Alex; Vidito, Christopher; Danyushevsky, Leonid
2016-07-01
A series of large caldera-forming eruptions (361-38 ka) transformed Gorely volcano, southern Kamchatka Peninsula, from a shield-type system dominated by fractional crystallization processes to a composite volcanic center, exhibiting geochemical evidence of magma mixing. Old Gorely, an early shield volcano (700-361 ka), was followed by Young Gorely eruptions. Calc-alkaline high magnesium basalt to rhyolite lavas have been erupted from Gorely volcano since the Pleistocene. Fractional crystallization dominated evolution of the Old Gorely magmas, whereas magma mixing is more prominent in the Young Gorely eruptive products. The role of recharge-evacuation processes in Gorely magma evolution is negligible (a closed magmatic system); however, crustal rock assimilation plays a significant role for the evolved magmas. Most Gorely magmas differentiate in a shallow magmatic system at pressures up to 300 MPa, ˜3 wt% H2O, and oxygen fugacity of ˜QFM + 1.5 log units. Magma temperatures of 1123-1218 °C were measured using aluminum distribution between olivine and spinel in Old and Young Gorely basalts. The crystallization sequence of major minerals for Old Gorely was as follows: olivine and spinel (Ol + Sp) for mafic compositions (more than 5 wt% of MgO); clinopyroxene and plagioclase crystallized at ˜5 wt% of MgO (Ol + Cpx + Plag) and magnetite at ˜3.5 wt% of MgO (Ol + Cpx + Plag + Mt). We show that the shallow magma chamber evolution of Old Gorely occurs under conditions of decompression and degassing. We find that the caldera-forming eruption(s) modified the magma plumbing geometry. This led to a change in the dominant magma evolution process from fractional crystallization to magma mixing. We further suggest that disruption of the magma chamber and accompanying change in differentiation process have the potential to transform a shield volcanic system to that of composite cone on a global scale.
NASA Technical Reports Server (NTRS)
Rosfjord, T. J.; Padget, F. C.; Tacina, Robert R. (Technical Monitor)
2001-01-01
In support of Pratt & Whitney efforts to define the Rich burn/Quick mix/Lean burn (RQL) combustor for the High Speed Civil Transport (HSCT) aircraft engine, UTRC conducted a flametube-scale study of the RQL concept. Extensive combustor testing was performed at the Supersonic Cruise (SSC) condition of a HSCT engine cycle, Data obtained from probe traverses near the exit of the mixing section confirmed that the mixing section was the critical component in controlling combustor emissions. Circular-hole configurations, which produced rapidly-, highly-penetrating jets, were most effective in limiting NOx. The spatial profiles of NOx and CO at the mixer exit were not directly interpretable using a simple flow model based on jet penetration, and a greater understanding of the flow and chemical processes in this section are required to optimize it. Neither the rich-combustor equivalence ratio nor its residence time was a direct contributor to the exit NOx. Based on this study, it was also concluded that (1) While NOx formation in both the mixing section and the lean combustor contribute to the overall emission, the NOx formation in the mixing section dominates. The gas composition exiting the rich combustor can be reasonably represented by the equilibrium composition corresponding to the rich combustor operating condition. Negligible NOx exits the rich combustor. (2) At the SSC condition, the oxidation processes occurring in the mixing section consume 99 percent of the CO exiting the rich combustor. Soot formed in the rich combustor is also highly oxidized, with combustor exit SAE Smoke Number <3. (3) Mixing section configurations which demonstrated enhanced emissions control at SSC also performed better at part-power conditions. Data from mixer exit traverses reflected the expected mixing behavior for off-design jet to crossflow momentum-flux ratios. (4) Low power operating conditions require that the RQL combustor operate as a lean-lean combustor to achieve low CO and high efficiency. (5) A RQL combustor can achieve the emissions goal of EINOX = 5 at the Supersonic Cruise operating condition for a HSCT engine.
NASA Technical Reports Server (NTRS)
Tacina, Robert R. (Technical Monitor); Rosfjord, T. J.; Padget, F. C.
2001-01-01
In support of Pratt & Whitney efforts to define the Rich burn/Quick mix/Lean burn (RQL) combustor for the High Speed Civil Transport (HSCT) aircraft engine, UTRC conducted a flametube-scale study of the RQL concept. Extensive combustor testing was performed at the Supersonic Cruise (SSC) condition of an HSCT engine cycle. Data obtained from probe traverses near the exit of the mixing section confirmed that the mixing section was the critical component in controlling combustor emissions. Circular-hole configurations, which produced rapidly-, highly-penetrating jets, were most effective in limiting NO(x). The spatial profiles of NO(x) and CO at the mixer exit were not directly interpretable using a simple flow model based on jet penetration, and a greater understanding of the flow and chemical processes in this section are required to optimize it. Neither the rich-combustor equivalence ratio nor its residence time was a direct contributor to the exit NO(x). Based on this study, it was also concluded that: (1) While NO(x) formation in both the mixing section and the lean combustor contribute to the overall emission, the NOx formation in the mixing section dominates. The gas composition exiting the rich combustor can be reasonably represented by the equilibrium composition corresponding to the rich combustor operating condition. Negligible NO(x) exits the rich combustor. (2) At the SSC condition, the oxidation processes occurring in the mixing section consume 99 percent of the CO exiting the rich combustor. Soot formed in the rich combustor is also highly oxidized, with combustor exit SAE Smoke Number <3. (3) Mixing section configurations which demonstrated enhanced emissions control at SSC also performed better at part-power conditions. Data from mixer exit traverses reflected the expected mixing behavior for off-design jet to crossflow momentum-flux ratios. (4) Low power operating conditions require that the RQL combustor operate as a lean-lean combustor to achieve low CO and high efficiency. (5) An RQL combustor can achieve the emissions goal of EINO(x) = 5 at the Supersonic Cruise operating condition for an HSCT engine.
Sediment chronology in San Francisco Bay, California, defined by 210Pb, 234Th, 137Cs, and 239,340Pu
Fuller, C.C.; van Geen, Alexander; Baskaran, M.; Anima, R.
1999-01-01
Sediment chronologies based on radioisotope depth profiles were developed at two sites in the San Francisco Bay estuary to provide a framework for interpreting historical trends in organic compound and metal contaminant inputs. At Richardson Bay near the estuary mouth, sediments are highly mixed by biological and/or physical processes. Excess penetration ranged from 2 to more than 10 cm at eight coring sites, yielding surface sediment mixing coefficients ranging from 12 to 170 cm2/year. At the site chosen for contaminant analyses, excess activity was essentially constant over the upper 25 cm of the core with an exponential decrease below to the supported activity between 70 and 90 cm. Both and penetrated to 57-cm depth and have broad subsurface maxima between 33 and 41 cm. The best fit of the excess profile to a steady state sediment accumulation and mixing model yielded an accumulation rate of 0.825 g/cm2/year (0.89 cm/year at sediment surface), surface mixing coefficient of 71 cm2/year, and 33-cm mixed zone with a half-Gaussian depth dependence parameter of 9 cm. Simulations of and profiles using these parameters successfully predicted the maximum depth of penetration and the depth of maximum and activity. Profiles of successive 1-year hypothetical contaminant pulses were generated using this parameter set to determine the age distribution of sediments at any depth horizon. Because of mixing, sediment particles with a wide range of deposition dates occur at each depth. A sediment chronology was derived from this age distribution to assign the minimum age of deposition and a date of maximum deposition to a depth horizon. The minimum age of sediments in a given horizon is used to estimate the date of first appearance of a contaminant from its maximum depth of penetration. The date of maximum deposition is used to estimate the peak year of input for a contaminant from the depth interval with the highest concentration of that contaminant. Because of the extensive mixing, sediment-bound constituents are rapidly diluted with older material after deposition. In addition, contaminants persist in the mixed zone for many years after deposition. More than 75 years are required to bury 90% of a deposited contaminant below the mixed zone. Reconstructing contaminant inputs is limited to changes occurring on a 20-year time scale. In contrast, mixing is much lower relative to accumulation at a site in San Pablo Bay. Instead, periods of rapid deposition and/or erosion occurred as indicated by frequent sand-silt laminae in the X-radiograph. , , and excess activity all penetrated to about 120 cm. The distinct maxima in the fallout radionuclides at 105–110 cm yielded overall linear sedimentation rates of 3.9 to 4.1 cm/year, which are comparable to a rate of 4.5±1.5 cm/year derived from the excess profile.
NASA Astrophysics Data System (ADS)
Ujianto, O.; Jollands, M.; Kao, N.
2018-03-01
A comparative study on effect of internal mixer on high density Polyethylene (HDPE)/clay nanocomposites preparation was done. Effect of temperature, rotor rotation (rpm), and mixing time, as well as rotor type (Roller and Banbury) on mechanical properties and morphology of HDPE/clay nanocomposites were studied using Box-Behnken experimental design. The model was developed according to secant modulus and confirmed to morphology analysis using Transmission Electron Microscopy (TEM). The finding suggests that there is different mechanisms occurred in each rotor to improve the mechanical properties. The mechanism in Roller is medium shear and medium diffusion, while Banbury is high shear and low diffusion. The difference in mechanism to disperse the clay particles attribute to the different optimum processing conditions in each rotor. The settings for roller samples are predicted around mid temperature, mid speed, and mid mixing time. There is no optimum setting for Banbury within the processing boundaries. The best settings for Banbury are at low, high, low settings. The morphology results showed a hybrid composite structure, with some exfoliations and some intercalations. There was a correlation between better mechanical properties and morphology with more exfoliation and thinner intercalated particles.
Osmium Isotope Evidence for an S-Process Carrier in Primitive Chondrites
NASA Technical Reports Server (NTRS)
Brandon, A. D.; Puchtel, I. S.; Humayun, M.; Zolensky, M.
2005-01-01
The degree of isotopic mixing in the solar nebula and the nature of pre-solar components that have contributed to our solar system remain subjects of vigorous debate. Isotopic anomalies have been identified in Ca-Al inclusions in chondrites [1-4]. This indicates that refractory pre-solar components were not completely homogenized or processed away at the high temperatures experienced by CAIs. Pre-solar grains (SiC, C, etc.) are prevalent in primitive chondrites, and preserve isotopic heterogeneity resulting from the nucleosynthetic processes occurring in the stars from which these grains formed [2,4]. Several recent studies employing precise techniques for measuring Ru, Mo and Zr isotopes in bulk meteorites, have come up with varying conclusions on the degree of effectiveness of nebular mixing on the scale of bulk meteorite material. Some of these studies have reported isotopic anomalies in Mo and Ru [3,5-7], while others have not observed anomalies in Mo, Ru, or Zr [8-10]. Debate over the quality of the data, the normalization techniques employed, the absence or presence of isobaric interferences during the measurements on different types of instruments (e.g. TIMS versus ICP-MS), and other factors, has ensued [11,12].
Wallace, Ellen; Dranow, David; Laible, Philip D.; Christensen, Jeff; Nollert, Peter
2011-01-01
The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive crystallization parameters. Finally, we provide a model that explains the incorporation of the membrane protein from solution into the lipid phase via a portal lamellar phase. PMID:21909395
NASA Astrophysics Data System (ADS)
Grocke, S. B.; Andrews, B. J.; Manga, M.; Quinn, E. T.
2015-12-01
Dacite lavas from Chaos Crags, Lassen Volcanic Center, CA contain inclusions of more mafic magmas, suggesting that mixing or mingling of magmas occurred just prior to lava dome extrusion, and perhaps triggered the eruption. The timescales between the mixing event and eruption are unknown, but reaction rims on biotite grains hosted in the Chaos Crags dacite may provide a record of the timescale (i.e., chronometer) between mixing and eruption. To quantify the effect of pre-eruptive heating on the formation of reaction rims on biotite, we conducted isobaric (150 MPa), H2O-saturated, heating experiments on the dacite end-member. In heating experiments, we held the natural dacite at 800°C and 150MPa for 96 hours and then isobarically heated the experiments to 825 and 850°C (temperatures above the biotite liquidus, <815°C at 150MPa) for durations ≤96 hours. We analyzed run products using high-resolution SEM imaging and synchrotron-based X-ray tomography, which provides a 3-dimensional rendering of biotite breakdown reaction products and textures. X-ray tomography images of experimental run products reveal that in all heating experiments, biotite breakdown occurs and reaction products include orthopyroxenes, Fe-Ti oxides, and vapor (inferred from presence of bubbles). Experiments heated to 850°C for 96 h show extensive breakdown, consisting of large orthopyroxene crystals, Fe-Ti oxide laths (<100μm), and bubbles. When the process of biotite breakdown goes to completion, the resulting H2O bubble comprises roughly the equivalent volume of the original biotite crystal. This observation suggests that biotite breakdown can add significant water to the melt and lead to extensive bubble formation. Although bubble expansion and magma flow may disrupt the reaction products in some magmas, our experiments suggest that biotite breakdown textures in natural samples can be used as a chronometer for pre-eruptive magma mixing.
Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.
Beddow, H; Black, S; Read, D
2006-01-01
In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution.
Copper and nitrophenol pollutants removal by Na-montmorillonite/alginate microcapsules.
Ely, Abdellahi; Baudu, Michel; Basly, Jean-Philippe; Kankou, Mohamed Ould Sid'Ahmed Ould
2009-11-15
The use of renewable bioresources allows the development of low cost adsorbents that are versatile. In the present paper, the affinity and the removal capacity of montmorillonite/alginate microcapsules for a hydrophobic organic pollutant (4-nitrophenol) and an inorganic pollutant (copper) were evaluated. The physicochemical processes through sorption and kinetic experiments under different ratios of montmorillonite vs. alginate and initial contaminant concentrations were investigated. The total weight loss and diameter decrease during the drying process were 90-96% and 64%, respectively. A significant decrease in beads diameter, related to water elimination, has been observed during the first 24h. Structural modifications that occur during the drying process were evaluated using thermal analysis. From correlation coefficients, the second-order equation depicts properly the adsorption of copper by the microbeads adsorption capacity increases to saturation with time; 3 and 6h were needed to reach equilibrium on wet and dry mixed microcapsules. The pseudo-second order model properly depicts the adsorption process of 4-NP onto Na-mont and (Na-mont/SA) mixed microcapsules but failed to reproduce the data observed for the alginate beads. Isotherms data were fitted with good correlation using the Langmuir model; alginate and montmorillonite adsorption capacities (q(m)/wet beads) agree with those obtained by various studies.
The intrinsic role of nanoconfinement in chemical equilibrium: evidence from DNA hybridization.
Rubinovich, Leonid; Polak, Micha
2013-05-08
Recently we predicted that when a reaction involving a small number of molecules occurs in a nanometric-scale domain entirely segregated from the surrounding media, the nanoconfinement can shift the position of equilibrium toward products via reactant-product reduced mixing. In this Letter, we demonstrate how most-recently reported single-molecule fluorescence measurements of partial hybridization of ssDNA confined within nanofabricated chambers provide the first experimental confirmation of this entropic nanoconfinement effect. Thus, focusing separately on each occupancy-specific equilibrium constant, quantitatively reveals extra stabilization of the product upon decreasing the chamber occupancy or size. Namely, the DNA hybridization under nanoconfined conditions is significantly favored over the identical reaction occurring in bulk media with the same reactant concentrations. This effect, now directly verified for DNA, can be relevant to actual biological processes, as well as to diverse reactions occurring within molecular capsules, nanotubes, and other functional nanospaces.
CORMIX: AN EXPERT SYSTEM FOR MIXING ZONE ANALYSIS
United States water quality policy includes the concept of a fixing zone, a limited area where initial dilution of a discharge occurs. urrent practice in mixing zone analysis is plagued by a number of problems--mixing zone definitions vary widely, there is a diversity of discharg...
EXPERT SYSTEMS FOR MIXING-ZONE ANALYSIS AND DESIGN OF POLLUTANT DISCHARGES
Water-quality policy in the United States includes the concept of a mixing zone, a limited area or volume of water where initial dilution of an aqueous pollutant discharge occurs. iven a myriad of possible discharge configurations, ambient environments, and mixing zone definition...
KINETICS OF CHROMATE REDUCTION DURING NAPHTHALENE DEGRADATION IN A MIXED CULTURE
A mixed culture of Bacillus sp. K1 and Sphingomonas paucimobilis EPA 505 was exposed to chromate and naphthalene. Batch experiments showed that chromate was reduced and naphthalene was degraded by the mixed culture. Chromate reduction occurred initially at a high rate followed by...
Monoclonal antibody fragment removal mediated by mixed mode resins.
O'Connor, Ellen; Aspelund, Matthew; Bartnik, Frank; Berge, Mark; Coughlin, Kelly; Kambarami, Mutsa; Spencer, David; Yan, Huiming; Wang, William
2017-05-26
Efforts to increase monoclonal antibody expression in cell culture can result in the presence of fragmented species requiring removal in downstream processing. Capto adhere, HEA Hypercel, and PPA Hypercel anion exchange/hydrophobic interaction mixed mode resins were evaluated for their fragment removal capabilities and found to separate large hinge IgG1 antibody fragment (LHF) from monomer. Removal of greater than 75% of LHF population occurred at pH 8 and low conductivity. The mechanism of fragment removal was investigated in two series of experiments. The first experimental series consisted of comparison to chromatographic behavior on corresponding single mode resins. Both single mode anion exchange and hydrophobic interaction resins failed to separate LHF. The second experimental series studied the impact of phase modifiers, ethylene glycol, urea, and arginine on the mixed mode mediated removal. The addition of ethylene glycol decreased LHF removal by half. Further decreases in LHF separation were seen upon incubation with urea and arginine. Therefore, it was discovered that the purification is the result of a mixed mode phenomena dominated by hydrophobic interaction and hydrogen bonding effects. The site of interaction between the LHF and mixed mode resin was determined by chemical labeling of lysine residues with sulfo-NHS acetate. The labeling identified the antibody hinge and light chain regions as mediating the fragment separation. Sequence analysis showed that under separation conditions, a hydrophobic proline patch and hydrogen bonding serine and threonine residues mediate the hinge interaction with the Capto adhere ligand. Additionally, a case study is presented detailing the optimization of fragment removal using Capto adhere resin to achieve purity and yield targets in a manufacturing facility. This study demonstrated that mixed mode resins can be readily integrated into commercial antibody platform processes when additional chromatographic abilities are required. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
On the origins of night-time NO at a rural measurement site
NASA Astrophysics Data System (ADS)
Helas, Günter; Broll, Angelika; Rumpel, Karl-Josef; Warneck, Peter
Mixing ratios for NO and NO 2 were measured during 1980/1981 at Deuselbach, a rural site in Germany. The data are analyzed with regard to the occurrence of nocturnal NO signals and their origins. Anthropogenic influences arising from road traffic and home heating activities are identified by their dependence on wind direction. An additional non-directional component is found to exist. It shows up most frequently in summer and when it occurs, the NO mixing ratio increases with rising temperature indicating a biological origin of night-time NO. The temporal behavior of night-time NO is usually correlated with that of CO 2 but anticorrelated to that of O 3. This shows that NO is brought upwards to the air intake of the NO x monitor from lower levels and that the source of the non-directional component of nocturnal NO is the earth's surface. The release of NO from soils is known from other work and this process is probably also responsible for the present observations. A flux estimate agrees with soil fluxes reported by other authors. The accumulation of NO in the surface air layer under stagnant conditions leads to the appearance of a morning peak of NO after sunrise when increased vertical mixing brings NO rich air up to the monitoring level. During summer, the morning peak may override the NO peak expected to occur at noon due to the photodissociation of NO 2.
Light emission mechanism of mixed host organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Song, Wook; Lee, Jun Yeob
2015-03-01
Light emission mechanism of organic light-emitting diodes with a mixed host emitting layer was studied using an exciplex type mixed host and an exciplex free mixed host. Monitoring of the current density and luminance of the two type mixed host devices revealed that the light emission process of the exciplex type mixed host was dominated by energy transfer, while the light emission of the exciplex free mixed host was controlled by charge trapping. Mixed host composition was also critical to the light emission mechanism, and the contribution of the energy transfer process was maximized at 50:50 mixed host composition. Therefore, it was possible to manage the light emission process of the mixed host devices by managing the mixed host composition.
Disturbance Regimes Predictably Alter Diversity in an Ecologically Complex Bacterial System
Scholz, Monika; Hutchison, Alan L.; Dinner, Aaron R.; Gilbert, Jack A.; Coleman, Maureen L.
2016-01-01
ABSTRACT Diversity is often associated with the functional stability of ecological communities from microbes to macroorganisms. Understanding how diversity responds to environmental perturbations and the consequences of this relationship for ecosystem function are thus central challenges in microbial ecology. Unimodal diversity-disturbance relationships, in which maximum diversity occurs at intermediate levels of disturbance, have been predicted for ecosystems where life history tradeoffs separate organisms along a disturbance gradient. However, empirical support for such peaked relationships in macrosystems is mixed, and few studies have explored these relationships in microbial systems. Here we use complex microbial microcosm communities to systematically determine diversity-disturbance relationships over a range of disturbance regimes. We observed a reproducible switch between community states, which gave rise to transient diversity maxima when community states were forced to mix. Communities showed reduced compositional stability when diversity was highest. To further explore these dynamics, we formulated a simple model that reveals specific regimes under which diversity maxima are stable. Together, our results show how both unimodal and non-unimodal diversity-disturbance relationships can be observed as a system switches between two distinct microbial community states; this process likely occurs across a wide range of spatially and temporally heterogeneous microbial ecosystems. PMID:27999158
NASA Astrophysics Data System (ADS)
Gálisová, Lucia; Strečka, Jozef
2018-05-01
The ground state, zero-temperature magnetization process, critical behaviour and isothermal entropy change of the mixed-spin Ising model on a decorated triangular lattice in a magnetic field are exactly studied after performing the generalized decoration-iteration mapping transformation. It is shown that both the inverse and conventional magnetocaloric effect can be found near the absolute zero temperature. The former phenomenon can be found in a vicinity of the discontinuous phase transitions and their crossing points, while the latter one occurs in some paramagnetic phases due to a spin frustration to be present at zero magnetic field. The inverse magnetocaloric effect can also be detected slightly above continuous phase transitions following the power-law dependence | - ΔSisomin | ∝hn, where n depends basically on the ground-state spin ordering.
NASA Astrophysics Data System (ADS)
Gallart, M.; Ziegler, M.; Crégut, O.; Feltin, E.; Carlin, J.-F.; Butté, R.; Grandjean, N.; Hönerlage, B.; Gilliot, P.
2017-07-01
Applying four-wave mixing spectroscopy to a high-quality GaN/AlGaN single quantum well, we report on the experimental determination of excitonic dephasing times at different temperatures and exciton densities in III-nitride heterostructures. By comparing the evolution with the temperature of the dephasing and the spin-relaxation rate, we conclude that both processes are related to the rate of excitonic collisions. When spin relaxation occurs in the motional-narrowing regime, it remains constant over a large temperature range as the spin-precession frequency increases linearly with temperature, hence compensating for the observed decrease in the dephasing time. From those measurements, a value of the electron-hole exchange interaction strength of 0.45 meV at T =10 K is inferred.
Plasma transport in the Io torus - The importance of microscopic diffusion
NASA Technical Reports Server (NTRS)
Mei, YI; Thorne, Richard M.
1991-01-01
This paper considers the question of whether the distribution of mass in the Io plasma torus is consistent with the concept of interchange eddy transport. Specifically, the flux tube content exhibits a gradual decrease with increasing radial distance from the source near Io without any evidence for substantial density irregularity associated with the plasma source or loss. Using a simple one-dimensional numerical model to simulate macroscopic interchange eddy transport, it is demonstrated that this smooth equilibrium distribution of mass can occur but only with the inclusion of a minimal level of small scale microscopic mixing at a rate approaching Bohm diffusion. Otherwise, the system exhibits a chaotic appearance which never approaches an equilibrium distribution. Various physical mechanisms for the microscopic diffusion process which is required to provide a sufficiently rapid mixing of material between the macroscopic eddies are discussed.
von Laer, Ana Eucares; de Lima, Andréia Saldanha; Trindade, Paula dos Santos; Andriguetto, Cristiano; Destro, Maria Teresa; da Silva, Wladimir Padilha
2009-01-01
Listeria monocytogenes is a bacterium capable to adhere to the surfaces of equipment and utensils and subsequently form biofilms. It can to persist in the food processing environmental for extended periods of time being able to contaminate the final product. The aim of this study was to trace the contamination route of L. monocytogenes on a fresh mixed sausage processing line, from raw material to the final product. The isolates obtained were characterized by serotyping and molecular typing by pulsed-field gel electrophoresis (PFGE) using the restriction enzymes ApaI and AscI. L. monocytogenes was detected in 25% of the samples. The samples of raw material were not contaminated, however, the microorganism was detected in 21% of the environmental samples (food contact and non-food contact), 20.8% of the equipments, 20% of the food worker’s hands, 40% of the mass ready to packaging and in all the final products samples, demonstrating that the contamination of final product occurred during the processing and the importance of cross contamination. PFGE yielded 22 pulsotypes wich formed 7 clusters, and serotyping yielded 3 serotypes and 1 serogroup, however, the presence of serotypes 4b and 1/2b in the final product is of great concern for public health. The tracing of contamination showed that some strains are adapted and persisted in the processing environment in this industry. PMID:24031402
Phytoplankton bloom dynamics in temperate, turbid, stressed estuaries: a model study
NASA Astrophysics Data System (ADS)
de Swart, Huib E.; Liu, Bo; de Jonge, Victor
2017-04-01
To gain insight into mechanisms underlying phytoplankton bloom dynamics in temperature, turbid estuaries, experiments were conducted with an idealised model that couples physical and biological processes. Results show that the model is capable of producing the main features of the observed blooms in the Ems estuary (Northwest Germany), viz. in the lower reach a spring bloom occur, which is followed by a secondary bloom in autumn. The along-estuary distribution of suspended sediment concentration (SSC) and the along-estuary distance between the nutrient source and the seaward bound of the turbidity zone control both the along-estuary locations and intensities of the blooms. Results of further sensitivity studies reveal that in a shallow, well-mixed estuary, under temporally-constant suspended sediment conditions, the seasonally-varying water temperature has larger impact on the timing of spring blooms than the seasonally-varying incident light intensity. The occurrence of the secondary bloom is caused by the fact that the growth rate of phytoplankton attains a maximum at an optimum water temperature. Bloom intensities are also modulated by the advective processes related to subtidal current because the latter regulates the seaward transport of nutrient from riverine source. Large-scale deepening of navigation channels leads to later spring blooms due to increased mixing depth. Finally, phytoplankton blooms are unlikely to occur in the upper reach due to the elevated SSC and the landward expansion of turbidity zone related to large-scale deepening.
Scalar mixing and strain dynamics methodologies for PIV/LIF measurements of vortex ring flows
NASA Astrophysics Data System (ADS)
Bouremel, Yann; Ducci, Andrea
2017-01-01
Fluid mixing operations are central to possibly all chemical, petrochemical, and pharmaceutical industries either being related to biphasic blending in polymerisation processes, cell suspension for biopharmaceuticals production, and fractionation of complex oil mixtures. This work aims at providing a fundamental understanding of the mixing and stretching dynamics occurring in a reactor in the presence of a vortical structure, and the vortex ring was selected as a flow paradigm of vortices commonly encountered in stirred and shaken reactors in laminar flow conditions. High resolution laser induced fluorescence and particle imaging velocimetry measurements were carried out to fully resolve the flow dissipative scales and provide a complete data set to fully assess macro- and micro-mixing characteristics. The analysis builds upon the Lamb-Oseen vortex work of Meunier and Villermaux ["How vortices mix," J. Fluid Mech. 476, 213-222 (2003)] and the engulfment model of Baldyga and Bourne ["Simplification of micromixing calculations. I. Derivation and application of new model," Chem. Eng. J. 42, 83-92 (1989); "Simplification of micromixing calculations. II. New applications," ibid. 42, 93-101 (1989)] which are valid for diffusion-free conditions, and a comparison is made between three methodologies to assess mixing characteristics. The first method is commonly used in macro-mixing studies and is based on a control area analysis by estimating the variation in time of the concentration standard deviation, while the other two are formulated to provide an insight into local segregation dynamics, by either using an iso-concentration approach or an iso-concentration gradient approach to take into account diffusion.
Magma Mixing: Why Picrites are Not So Hot
NASA Astrophysics Data System (ADS)
Natland, J. H.
2010-12-01
Oxide gabbros or ferrogabbros are the late, low-temperature differentiates of tholeiitic magma and usually form as cumulates that can have 2-30% of the magmatic oxides, ilmenite and magnetite. They are common in the ocean crust and are likely ubiquitous wherever extensive tholeiitic magmatism has occurred, especially beneath thick lava piles such as at Hawaii, Iceland, oceanic plateaus, island arcs and ancient continental crust. When intruded by hot primitive magma including picrite, the oxide-bearing portions of these rocks are readily partially melted or assimilated into the magma and contribute to it a degree of iron and titanium enrichment that is not reflective of the mantle source of the primitive magma. The most extreme examples of such mixing are meimechites and ferropicrites, but this type of end-member mixing is even common in MORB. To the extent this process occurs, the eruptive picrite cannot be used to estimate compositions of partial melts of mantle rocks, nor their eruptive or potential temperatures, using olivine-liquid FeO-MgO backtrack procedures. Most picrites have glasses with compositions approximating those expected from low-pressure multiphase cotectic crystallization, and olivine that on average crystallized from liquids of nearly those compositions. The hallmark of such rocks is the presence of minerals other than olivine among phenocrysts (plagioclase at Iceland, clinopyroxene at many oceanic islands), Fe- and Ti-rich chromian spinel (ankaramites, ferropicrites and meimichites), and in some cases the presence of iron-rich olivine (hortonolite ~Fo65 in ferropicrites), Ti-rich kaersutitic amphibole and even apatite (meimechites); the latter two derive from late-stage, hydrous and geochemically enriched metamorphic or alkalic assimilants. This type of mixing, however, does not necessarily involve depleted and enriched mixing components. To avoid such mixing, primitive melts have to rise primarily through upper mantle rocks of near-zero melt porosity in regions where crustal-level magma chambers and flanking rift zones do not have a chance to form. Low-magma supply is favored. In the ocean basins, such upper mantle mainlining occurs only at certain fracture zones, deep propagating rifts at microplates, or ultra-slow spreading ridges, but no liquids (glasses) with >10% MgO occur at any of these places. On continents, rift structures through cratons might allow this, but so far no picrite, ferropicrite, or meimichite that has been adequately described from these places lacks evidence for end-member mixing. Low-temperature iron-rich magmas can accumulate in the deep lower crust and later rise to form substantial intrusions (e.g. Skaergaard) or erupt as flood basalts (Columbia River). Some komatiites might represent high-temperature liquids, but many are so altered that original liquid compositions cannot be deduced (e.g., Gorgona). The hottest intraplate volcano is Kilauea, Hawaii, where rare picrite glass with 15% MgO has an estimated eruptive temperature (1) of ~1350C and a potential temperature at 1 GPa of ~1420C. Lavas at all other linear island chains, Iceland and even west Greenland where picrites are abundant, are cooler than this. (1) Beattie, P., 1993. CMP 115: 103-111.
Terzano, Claudio; Di Stefano, Fabio; Conti, Vittoria; Di Nicola, Marta; Paone, Gregorino; Petroianni, Angelo; Ricci, Alberto
2012-01-01
Hypercapnic Chronic Obstructive Pulmonary Disease (COPD) exacerbation in patients with comorbidities and multidrug therapy is complicated by mixed acid-base, hydro-electrolyte and lactate disorders. Aim of this study was to determine the relationships of these disorders with the requirement for and duration of noninvasive ventilation (NIV) when treating hypercapnic respiratory failure. Sixty-seven consecutive patients who were hospitalized for hypercapnic COPD exacerbation had their clinical condition, respiratory function, blood chemistry, arterial blood gases, blood lactate and volemic state assessed. Heart and respiratory rates, pH, PaO(2) and PaCO(2) and blood lactate were checked at the 1st, 2nd, 6th and 24th hours after starting NIV. Nine patients were transferred to the intensive care unit. NIV was performed in 11/17 (64.7%) mixed respiratory acidosis-metabolic alkalosis, 10/36 (27.8%) respiratory acidosis and 3/5 (60%) mixed respiratory-metabolic acidosis patients (p = 0.026), with durations of 45.1 ± 9.8, 36.2 ± 8.9 and 53.3 ± 4.1 hours, respectively (p = 0.016). The duration of ventilation was associated with higher blood lactate (p<0.001), lower pH (p = 0.016), lower serum sodium (p = 0.014) and lower chloride (p = 0.038). Hyponatremia without hypervolemic hypochloremia occurred in 11 respiratory acidosis patients. Hypovolemic hyponatremia with hypochloremia and hypokalemia occurred in 10 mixed respiratory acidosis-metabolic alkalosis patients, and euvolemic hypochloremia occurred in the other 7 patients with this mixed acid-base disorder. Mixed acid-base and lactate disorders during hypercapnic COPD exacerbations predict the need for and longer duration of NIV. The combination of mixed acid-base disorders and hydro-electrolyte disturbances should be further investigated.
Terzano, Claudio; Di Stefano, Fabio; Conti, Vittoria; Di Nicola, Marta; Paone, Gregorino; Petroianni, Angelo; Ricci, Alberto
2012-01-01
Background Hypercapnic Chronic Obstructive Pulmonary Disease (COPD) exacerbation in patients with comorbidities and multidrug therapy is complicated by mixed acid-base, hydro-electrolyte and lactate disorders. Aim of this study was to determine the relationships of these disorders with the requirement for and duration of noninvasive ventilation (NIV) when treating hypercapnic respiratory failure. Methods Sixty-seven consecutive patients who were hospitalized for hypercapnic COPD exacerbation had their clinical condition, respiratory function, blood chemistry, arterial blood gases, blood lactate and volemic state assessed. Heart and respiratory rates, pH, PaO2 and PaCO2 and blood lactate were checked at the 1st, 2nd, 6th and 24th hours after starting NIV. Results Nine patients were transferred to the intensive care unit. NIV was performed in 11/17 (64.7%) mixed respiratory acidosis–metabolic alkalosis, 10/36 (27.8%) respiratory acidosis and 3/5 (60%) mixed respiratory-metabolic acidosis patients (p = 0.026), with durations of 45.1±9.8, 36.2±8.9 and 53.3±4.1 hours, respectively (p = 0.016). The duration of ventilation was associated with higher blood lactate (p<0.001), lower pH (p = 0.016), lower serum sodium (p = 0.014) and lower chloride (p = 0.038). Hyponatremia without hypervolemic hypochloremia occurred in 11 respiratory acidosis patients. Hypovolemic hyponatremia with hypochloremia and hypokalemia occurred in 10 mixed respiratory acidosis–metabolic alkalosis patients, and euvolemic hypochloremia occurred in the other 7 patients with this mixed acid-base disorder. Conclusions Mixed acid-base and lactate disorders during hypercapnic COPD exacerbations predict the need for and longer duration of NIV. The combination of mixed acid-base disorders and hydro-electrolyte disturbances should be further investigated. PMID:22539963
Hadean silicate differentiation revealed by anomalous 142Nd in the Réunion hotspot source
NASA Astrophysics Data System (ADS)
Peters, B. J.; Carlson, R.; Day, J. M.; Horan, M.
2017-12-01
Geochemical and geophysical data show that volcanic hotspots can tap ancient domains sequestered in Earth's deep mantle. Evidence from stable and long-lived radiogenic isotope systems has demonstrated that many of these domains result from tectonic and differentiation processes that occurred more than two billion years ago. Recent advances in the analysis of short-lived radiogenic isotopes have further shown that some hotspot sources preserve evidence for metal-silicate differentiation occurring within the first one percent of Earth's history. Despite these discoveries, efforts to detect variability in the lithophile 146Sm-142Nd (t1/2 = 103 Ma) system in Phanerozoic hotspot lavas have not yet detected significant global variation. We report 142Nd/144Nd ratios in Réunion Island basalts that are statistically distinct from the terrestrial Nd standard ranging to both higher and lower 142Nd/144Nd. Variations in 142Nd/144Nd, which total nearly 15 ppm on Réunion, are correlated with 3He/4He among both anomalous and non-anomalous samples. Such behavior implies that there were analogous changes in Sm/Nd and (U+Th)/3He that occurred during a Hadean silicate differentiation event and were not completely overprinted by the depleted mantle. Variations in the 142Nd-143Nd compositions of Réunion basalts can be explained by a single Hadean melting event producing enriched and depleted domains that partially re-mixed after 146Sm was no longer extant. Assuming differentiation occurred at pressures where perovskite is stable, anomalies of the magnitude observed in Réunion basalts require melting of at least 50% across a wide depth range, and up to 90% for melting at pressures near those of the deepest mantle. Models with best fits to Nd isotope data suggest this differentiation occurred around 4.40 Ga and mixing occurred after 4 Ga. This two-stage differentiation process nearly erased the ancient, anomalous 142Nd composition of the Réunion source and produced the relatively invariant 143Nd signature that is a hallmark of Réunion hotspot lavas. Given growing evidence that the Réunion hotspot source represents an unusually ancient, primitive mantle domain, these new data argue that Réunion is a critical source of information regarding the formation and preservation of ancient heterogeneities in Earth's deep interior.
Do rivermouths alter nutrient and seston delivery to the nearshore?
Larson, James H.; Frost, Paul C.; Vallazza, Jon M.; Nelson, John; Richardson, William B.
2016-01-01
Tributary inputs to lakes and seas are often measured at riverine gages, upstream of lentic influence. Between these riverine gages and the nearshore zones of large waterbodies lie rivermouths, which may retain, transform and contribute materials to the nearshore zone. However, the magnitude and timing of these rivermouth effects have rarely been measured.During the summer of 2011, 23 tributary systems of the Laurentian Great Lakes were sampled from river to nearshore for dissolved and particulate carbon (C), nitrogen (N) and phosphorus (P) concentrations, as well as bulk seston and chlorophyll a concentrations. Three locations per system were sampled: in the upstream river, in the nearshore zone and at the outflow from the rivermouth to the lake. Using stable oxygen isotopes, a water-mixing model was developed to estimate the nutrient concentration that would occur at the rivermouth if mixing was strictly conservative (i.e. if no processing occurred within the rivermouth). Deviations between these conservative mixing estimates and measured nutrient concentrations were identified as rivermouth effects on nutrient concentrations.Rivermouths had higher concentration of C and P than nearshore areas and more chlorophyll athan upstream river waters. Compared to the conservative mixing model, rivermouths as a class appeared to be summer-time sources of N, P and chlorophyll a. Substantial among rivermouth variation occurred both in the effect size and direction for all constituents.Using principal component analysis, two groups of rivermouths were identified: rivermouths that had a large effect on most constituents and those that had very little effect on any of the measured constituents. ‘High-effect’ rivermouths had more abundant upstream croplands, which were presumably the sources of inorganic nutrients. Cross-validated models built using characteristics of the rivermouth were not good predictors of variation in rivermouth effects on most constituents.For consumers feeding on seston and microbes and vascular autotrophs directly taking up dissolved nutrients, rivermouths are more resource-rich than upstream riverine or nearby Great Lakes waters. Given declines over time in open-lake productivity within the Great Lakes, rivermouths may contribute more productivity than their size would suggest to the Great Lakes food web.
Isotopic insights into microbial sulfur cycling in oil reservoirs
Hubbard, Christopher G.; Cheng, Yiwei; Engelbrekston, Anna; Druhan, Jennifer L.; Li, Li; Ajo-Franklin, Jonathan B.; Coates, John D.; Conrad, Mark E.
2014-01-01
Microbial sulfate reduction in oil reservoirs (biosouring) is often associated with secondary oil production where seawater containing high sulfate concentrations (~28 mM) is injected into a reservoir to maintain pressure and displace oil. The sulfide generated from biosouring can cause corrosion of infrastructure, health exposure risks, and higher production costs. Isotope monitoring is a promising approach for understanding microbial sulfur cycling in reservoirs, enabling early detection of biosouring, and understanding the impact of souring. Microbial sulfate reduction is known to result in large shifts in the sulfur and oxygen isotope compositions of the residual sulfate, which can be distinguished from other processes that may be occurring in oil reservoirs, such as precipitation of sulfate and sulfide minerals. Key to the success of this method is using the appropriate isotopic fractionation factors for the conditions and processes being monitored. For a set of batch incubation experiments using a mixed microbial culture with crude oil as the electron donor, we measured a sulfur fractionation factor for sulfate reduction of −30‰. We have incorporated this result into a simplified 1D reservoir reactive transport model to highlight how isotopes can help discriminate between biotic and abiotic processes affecting sulfate and sulfide concentrations. Modeling results suggest that monitoring sulfate isotopes can provide an early indication of souring for reservoirs with reactive iron minerals that can remove the produced sulfide, especially when sulfate reduction occurs in the mixing zone between formation waters (FW) containing elevated concentrations of volatile fatty acids (VFAs) and injection water (IW) containing elevated sulfate. In addition, we examine the role of reservoir thermal, geochemical, hydrological, operational and microbiological conditions in determining microbial souring dynamics and hence the anticipated isotopic signatures. PMID:25285094
NASA Technical Reports Server (NTRS)
Paden, Cynthia A.; Winant, Clinton D.; Abbott, Mark R.
1991-01-01
SST variability in the northern Gulf of California is examined on the basis of findings of two years of satellite infrared imagery (1984-1986). Empirical orthogonal functions of the temporal and spatial SST variance for 20 monthly mean images show that the dominant SST patterns are generated by spatially varying tidal mixing in the presence of seasonal heating and cooling. Atmospheric forcing of the northern gulf appears to occur over large spatial scales. Area-averaged SSTs for the Guaymas Basin, island region, and northern basin exhibit significant fluctuations which are highly correlated. These fluctuations in SST correspond to similar fluctuations in the air temperature which are related to synoptic weather events over the gulf. A regression analysis of the SST relative to the fortnightly tidal range shows that tidal mixing occurs over the sills in the island region as well as on the shallow northern shelf. Mixing over the sills occurs as a result of large breaking internal waves of internal hydraulic jumps which mix over water in the upper 300-500 m.
Evidence for magma mixing within the Laacher See magma chamber (East Eifel, Germany)
Worner, G.; Wright, T.L.
1984-01-01
The final pyroclastic products of the late Quaternary phonolitic Laacher See volcano (East Eifel, W.-Germany) range from feldspar-rich gray phonolite to dark olivine-bearing rocks with variable amounts of feldspar and Al-augite megacrysts. Petrographically and chemically homogeneous clasts occur along with composite lapilli spanning the compositional range from phonolite (MgO 0.9%) to mafic hybrid rock (MgO 7.0%) for all major and trace elements. Both a basanitic and a phonolitic phenocryst paragenesis occur within individual clasts. The phonolite-derived phenocrysts are characterized by glass inclusions of evolved composition, rare inverse zoning and strong resorption indicating disequilibrium with the mafic hybrid matrix. Basanitic (magnesian) clinopyroxene and olivine, in contrast, show skeletal (normally zoned) overgrowths indicative of post-mixing crystallization. In accord with petrographical and other chemical evidence, mass balance calculations suggest mixing of an evolved Laacher See phonolite containing variable amounts of mineral cumulates and a megacryst-bearing basanite magma. Magma mixing occurred just prior to eruption (hours) of the lowermost magma layer of the Laacher See magma chamber but did not trigger the volcanic activity. ?? 1984.
Thermobaricity, cabbeling, and water-mass conversion
NASA Astrophysics Data System (ADS)
McDougall, Trevor J.
1987-05-01
The efficient mixing of heat and salt along neutral surfaces (by mesoscale eddies) is shown to lead to vertical advection through these neutral surfaces. This is due to the nonlinearities of the equation of state of seawater through terms like ∂2ρ/∂θ∂p (thermobaric effect) and ∂2ρ/∂ θ2 (cabbeling). Cabbeling always causes a sinking or downwelling of fluid through neutral surfaces, whereas thermobaricity can lead to a vertical velocity (relative to neutral surfaces) of either sign. In this paper it is shown that for reasonable values of the lateral scalar diffusivity (especially below a depth of 1000 m), these two processes cause vertical velocities of the order of 10-7 m s-1 through neutral surfaces (usually downward!) and cause water-mass conversion of a magnitude equal to that caused by a vertical diffusivity of 10-4 m2 s-1 (often equivalent to a negative diffusivity). Both thermobaricity and cabbeling can occur in the presence of any nonzero amount of small-scale turbulence and so will not be detected by microstructure measurements. The conservation equations for tracers are considered in a nonorthogonal coordinate frame that moves with neutral surfaces in the ocean. Since only mixing processes cause advection across neutral surfaces, it is useful to regard this vertical advection as a symptom of various mixing processes rather than as a separate physical process. It is possible to derive conservative equations for scalars that do not contain the vertical advective term explicity. In these conservation equations, the terms that represent mixing processes are substantially altered. It is argued that this form of the conservation equations is the most appropriate when considering water-mass transformation, and some examples are given of its application in the North Atlantic. It is shown that the variation of the vertical diffusivity with height does not cause water-mass transformation. Also, salt fingering is often 3-4 times more effective at changing the potential temperature of a water mass than would be implied by simply calculating the vertical derivative of the fingering heat flux.
Spatial Patterns of Groundwater Biogeochemical Reactivity in an Intertidal Beach Aquifer
NASA Astrophysics Data System (ADS)
Kim, Kyra H.; Heiss, James W.; Michael, Holly A.; Cai, Wei-Jun; Laattoe, Tariq; Post, Vincent E. A.; Ullman, William J.
2017-10-01
Beach aquifers host a dynamic and reactive mixing zone between fresh and saline groundwater of contrasting origin and composition. Seawater, driven up the beachface by waves and tides, infiltrates into the aquifer and meets the seaward-discharging fresh groundwater, creating and maintaining a reactive intertidal circulation cell. Within the cell, land-derived nutrients delivered by fresh groundwater are transformed or attenuated. We investigated this process by collecting pore water samples from multilevel wells along a shore-perpendicular transect on a beach near Cape Henlopen, Delaware, and analyzing solute and particulate concentrations. Pore water incubation experiments were conducted to determine rates of oxygen consumption and nitrogen gas production. A numerical model was employed to support field and laboratory interpretations. Results showed that chemically sensitive parameters such as pH and ORP diverged from salinity distribution patterns, indicating biogeochemical reactivity within the circulation cell. The highest respiration rates were found in the landward freshwater-saltwater mixing zone, supported by high dissolved inorganic carbon. Chlorophyll a, a proxy for phytoplankton, and particulate carbon did not co-occur with the highest respiration rates but were heterogeneously distributed in deeper and hypoxic areas of the cell. The highest rates of N2 production were also found in the mixing zone coinciding with elevated O2 consumption rates but closer to the lower discharge point. Model results were consistent with these observations, showing heightened denitrification in the mixing zone. The results of this work emphasize the relationship between the physical flow processes of the circulation cell and its biogeochemical reactivity and highlight the environmental significance of sandy beaches.
Sewage sludge treatment system
NASA Technical Reports Server (NTRS)
Kalvinskas, John J. (Inventor); Mueller, William A. (Inventor)
1976-01-01
Raw sewage may be presently treated by mixing screened raw sewage with activated carbon. The mixture is then allowed to stand in a first tank for a period required to settle the suspended matter to the bottom of the tank as a sludge. Thereafter, the remaining liquid is again mixed with activated carbon and the mixture is transferred to a secondary settling tank, where it is permitted to stand for a period required for the remaining floating material to settle as sludge and for adsorption of sewage carbon as well as other impurities to take place. The sludge from the bottom of both tanks is removed and pyrolyzed to form activated carbon and ash, which is mixed with the incoming raw sewage and also mixed with the liquid being transferred from the primary to the secondary settling tank. It has been found that the output obtained by the pyrolysis process contains an excess amount of ash. Removal of this excess amount of ash usually also results in removing an excess amount of carbon thereby requiring adding carbon to maintain the treatment process. By separately pyrolyzing the respective sludges from the first and second settling tanks, and returning the separately obtained pyrolyzed material to the respective first and second tanks from which they came, it has been found that the adverse effects of the excessive ash buildup is minimized, the carbon yield is increased, and the sludge from the secondary tank can be pyrolyzed into activated carbon to be used as indicated many more times than was done before exhaustion occurs.
A Model of the Turbulent Electric Dynamo in Multi-Phase Media
NASA Astrophysics Data System (ADS)
Dementyeva, Svetlana; Mareev, Evgeny
2016-04-01
Many terrestrial and astrophysical phenomena witness the conversion of kinetic energy into electric energy (the energy of the quasi-stationary electric field) in conducting media, which is natural to treat as manifestations of electric dynamo by analogy with well-known theory of magnetic dynamo. Such phenomena include thunderstorms and lightning in the Earth's atmosphere and atmospheres of other planets, electric activity caused by dust storms in terrestrial and Martian atmospheres, snow storms, electrical discharges occurring in technological setups, connected with intense mixing of aerosol particles like in the milling industry. We have developed a model of the large-scale turbulent electric dynamo in a weakly conducting medium, containing two heavy-particle components. We have distinguished two main classes of charging mechanisms (inductive and non-inductive) in accordance with the dependence or independence of the electric charge, transferred during a particle collision, on the electric field intensity and considered the simplified models which demonstrate the possibility of dynamo realization and its specific peculiarities for these mechanisms. Dynamo (the large-scale electric field growth) appears due to the charge separation between the colliding and rebounding particles. This process is may be greatly intensified by the turbulent mixing of particles with different masses and, consequently, different inertia. The particle charge fluctuations themselves (small-scale dynamo), however, do not automatically mean growth of the large-scale electric field without a large-scale asymmetry. Such an asymmetry arises due to the dependence of the transferred charge magnitude on the electric field intensity in the case of the inductive mechanism of charge separation, or due to the gravity and convection for non-inductive mechanisms. We have found that in the case of the inductive mechanism the large-scale dynamo occurs if the medium conductivity is small enough while the electrification process determined by the turbulence intensity and particles sizes is strong enough. The electric field strength grows exponentially. For the non-inductive mechanism we have found the conditions when the electric field strength grows but linearly in time. Our results show that turbulent electric dynamo could play a substantial role in the electrification processes for different mechanisms of charge generation and separation. Thunderstorms and lightning are the most frequent and spectacular manifestations of electric dynamo in the atmosphere, but turbulent electric dynamo may also be the reason of electric discharges occurring in dust and snow storms or even in technological setups with intense mixing of small particles.
Determination of the electric field strength of filamentary DBDs by CARS-based four-wave mixing
NASA Astrophysics Data System (ADS)
Böhm, P.; Kettlitz, M.; Brandenburg, R.; Höft, H.; Czarnetzki, U.
2016-10-01
It is demonstrated that a four-wave mixing technique based on coherent anti-Stokes Raman spectroscopy (CARS) can determine the electric field strength of a pulsed-driven filamentary dielectric barrier discharge (DBD) of 1 mm gap, using hydrogen as a tracer medium in nitrogen at atmospheric pressure. The measurements are presented for a hydrogen admixture of 10%, but even 5% H2 admixture delivers sufficient infrared signals. The lasers do not affect the discharge by photoionization or by other radiation-induced processes. The absolute values of the electric field strength can be determined by the calibration of the CARS setup with high voltage amplitudes below the ignition threshold of the arrangement. This procedure also enables the determination of the applied breakdown voltage. The alteration of the electric field is observed during the internal polarity reversal and the breakdown process. One advantage of the CARS technique over emission-based methods is that it can be used independently of emission, e.g. in the pre-phase and in between two consecutive discharges, where no emission occurs at all.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Throckmorton, Heather M.; Newman, Brent D.; Heikoop, Jeffrey M.
Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO 2 and CH 4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ 2H and δ 18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface activemore » layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ 2H vs δ 18O). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. In conclusion, this research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models.« less
Throckmorton, Heather M.; Newman, Brent D.; Heikoop, Jeffrey M.; ...
2016-04-16
Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO 2 and CH 4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ 2H and δ 18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface activemore » layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ 2H vs δ 18O). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. In conclusion, this research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models.« less
NASA Astrophysics Data System (ADS)
Xu, Tiwen; Jia, Zhixin; Luo, Yuanfang; Jia, Demin; Peng, Zheng
2015-02-01
The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress-strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.
Margolis, Ellis; Malevich, Steven B.
2016-01-01
Anthropogenic alteration of ecosystem processes confounds forest management and conservation of rare, declining species. Restoration of forest structure and fire hazard reduction are central goals of forest management policy in the western United States, but restoration priorities and treatments have become increasingly contentious. Numerous studies have documented changes in fire regimes, forest stand structure and species composition following a century of fire exclusion in dry, frequent-fire forests of the western U.S. (e.g., ponderosa pine and dry mixed-conifer). In contrast, wet mixed-conifer forests are thought to have historically burned infrequently with mixed- or high-severity fire—resulting in reduced impacts from fire exclusion and low restoration need—but data are limited. In this study we quantified the current forest habitat of the federally endangered, terrestrial Jemez Mountains salamander (Plethodon neomexicanus) and compared it to dendroecological reconstructions of historical habitat (e.g., stand structure and composition), and fire regime parameters along a gradient from upper ponderosa pine to wet mixed-conifer forests. We found that current fire-free intervals in Jemez Mountains salamander habitat (116–165 years) are significantly longer than historical intervals, even in wet mixed-conifer forests. Historical mean fire intervals ranged from 10 to 42 years along the forest gradient. Low-severity fires were historically dominant across all forest types (92 of 102 fires). Although some mixed- or highseverity fire historically occurred at 67% of the plots over the last four centuries, complete mortality within 1.0 ha plots was rare, and asynchronous within and among sites. Climate was an important driver of temporal variability in fire severity, such that mixed- and high-severity fires were associated with more extreme drought than low-severity fires. Tree density in dry conifer forests historically ranged from open (90 trees/ha) to moderately dense (400 trees/ha), but has doubled on average since fire exclusion. Infill of fire-sensitive tree species has contributed to the conversion of historically dry mixedconifer to wet mixed-conifer forest. We conclude that low-severity fire, which has been absent for over a century, was a critical ecosystem process across the forest gradient in Jemez Mountains salamander habitat, and thus is an important element of ecosystem restoration, resilience, and rare species recovery.
Unzipping and movement of Lomer-type edge dislocations in Ge/GeSi/Si(0 0 1) heterostructures
NASA Astrophysics Data System (ADS)
Bolkhovityanov, Yu. B.; Deryabin, A. S.; Gutakovskii, A. K.; Sokolov, L. V.
2018-02-01
Edge dislocations in face-centered crystals are formed from two mixed dislocations gliding along intersecting {1 -1 1} planes, forming the so-called Lomer locks. This process, which is called zipping, is energetically beneficial. It is experimentally demonstrated in this paper that a reverse process may occur in Ge/GeSi strained buffer/Si(0 0 1) heterostructures under certain conditions, namely, decoupling of two 60° dislocations that formed the Lomer-type dislocation, i.e., unzipping. It is assumed that the driving force responsible for separation of Lomer dislocations into two 60° dislocations is the strain remaining in the GeSi buffer layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, Casildo A.
Crenulative turbulence is a nonlinear extension of the Bell-Plesset instability, usually observed in a converging system in which there is a nonhomogeneous response of stress to strain and/or strain rate. In general, crenelation occurs in any circumstance in which the mean flow streamlines converge the material more strongly than the compressibility can accommodate. Elements of the material slip past each other, resulting in local fluctuations in velocity from that of the mean flow, producing a type of turbulence that is more kinematic than inertial. For a homogeneous material, crenelation occurs at the atomic or molecular scale. With nonhomogeneous stress responsemore » at larger scales, the crenulative process can also occur at those larger scales. The results are manifested by a decrease in the rate of dissipation to heat, and by the configurationally-irreversible mixing of nonhomogeneities across any mean-flow-transported interface. We obtain a mathematical description of the crenulative process by means of Reynolds decomposition of the appropriate variables, and the derivation of transport equations for the second-order moments that arise in the mean-flow momentum and energy equations. The theory is illustrated by application to the spherical convergence of an incompressible fluid with nonhomogeneous distribution of kinematic viscosity.« less
Huang, Long; Chen, Zhiqiang; Wen, Qinxue; Zhao, Lizhi; Lee, Duu-Jong; Yang, Lian; Wang, Yao
2017-12-18
The Feast-Famine (FF) process has been frequently used to select polyhydroxyalkanoate (PHA)-accumulating mixed cultures (MCs), but there has been little insight into the ecophysiology of the microbial community during the selection process. In three FF systems with well-defined conditions, synchronized variations in higher-order properties of MCs and complicate microbial community succession mainly including enrichment and elimination of non-top competitors and unexpected turnover of top competitors, were observed. Quantification of PHA-accumulating function genes (phaC) revealed that the top competitors maintained the PHA synthesis by playing consecutive roles when the highly dynamic turnover occurred. Due to its specific physiological characteristics during the PHA-accumulating process, Thauera strain OTU 7 was found to be responsible for the fluctuating SVI, which threatened the robustness of the FF system. This trait was also responsible for its later competitive exclusion by the other PHA-producer, Paracoccus strain OTU 1. Deterministic processes dominated the entire FF system, resulting in the inevitable microbial community succession in the acclimation phase and maintenance of the stable PHA-accumulating function in the maturation phase. However, neutral processes, likely caused by predation from bacterial phages, also occurred, which led to the unpredictable temporal dynamics of the top competitors. Copyright © 2017. Published by Elsevier Ltd.
Sambai, Ami; Coltheart, Max; Uno, Akira
2018-04-01
In English, the size of the regularity effect on word reading-aloud latency decreases across position of irregularity. This has been explained by a sublexical serially operating reading mechanism. It is unclear whether sublexical serial processing occurs in reading two-character kanji words aloud. To investigate this issue, we studied how the position of atypical character-to-sound correspondences influenced reading performance. When participants read inconsistent-atypical words aloud mixed randomly with nonwords, reading latencies of words with an inconsistent-atypical correspondence in the initial position were significantly longer than words with an inconsistent-atypical correspondence in the second position. The significant difference of reading latencies for inconsistent-atypical words disappeared when inconsistent-atypical words were presented without nonwords. Moreover, reading latencies for words with an inconsistent-atypical correspondence in the first position were shorter than for words with a typical correspondence in the first position. This typicality effect was absent when the atypicality was in the second position. These position-of-atypicality effects suggest that sublexical processing of kanji occurs serially and that the phonology of two-character kanji words is generated from both a lexical parallel process and a sublexical serial process.
NASA Astrophysics Data System (ADS)
Dütsch, Marina; Pfahl, Stephan; Meyer, Miro; Wernli, Heini
2018-02-01
Stable water isotopes are naturally available tracers of moisture in the atmosphere. Due to isotopic fractionation, they record information about condensation and evaporation processes during the transport of air parcels, and therefore present a valuable means for studying the global water cycle. However, the meteorological processes driving isotopic variations are complex and not very well understood so far, in particular on short (hourly to daily) timescales. This study presents a Lagrangian method for attributing the isotopic composition of air parcels to meteorological processes, which provides new insight into the isotopic history of air parcels. It is based on the temporal evolution of the isotope ratios, the humidity, the temperature, and the location of the air parcels. Here these values are extracted along 7-day backward trajectories started every 6 hours from near the surface in a 30-year regional climate simulation over Europe with the isotope-enabled version of the model of the Consortium for Small-Scale Modelling (COSMOiso). The COSMOiso simulation has a horizontal resolution of 0.25° and is driven at the lateral boundaries by a T106 global climate simulation with the isotope-enabled version of the European Centre Hamburg model (ECHAMwiso). Both simulations are validated against measurements from the Global Network of Isotopes in Precipitation (GNIP), which shows that nesting COSMOiso within ECHAMwiso improves the representation of δ2H and deuterium excess in monthly accumulated precipitation. The method considers all isotopic changes that occur inside the COSMOiso model domain, which, on average, correspond to more than half of the mean and variability in both δ2H and deuterium excess at the air parcels' arrival points. Along every trajectory, the variations in the isotope values are quantitatively decomposed into eight process categories (evaporation from the ocean, evapotranspiration from land, mixing with moister air, mixing with drier air, liquid cloud formation, mixed phase cloud formation, ice cloud formation, and no process). The results show that for air parcels arriving over the ocean, evaporation from the ocean is the primary factor controlling δ2H and deuterium excess. Over land, evapotranspiration from land and mixing with moister air are similarly important. Liquid and mixed phase cloud formation contribute to the variability of δ2H and deuterium excess, especially over continental Europe. In summary, the presented method helps to better understand the linkage between the meteorological history of air parcels and their isotopic composition, and may support the interpretation of stable water isotope measurements in future.
Mass and momentum turbulent transport experiments with confined swirling coaxial jets
NASA Technical Reports Server (NTRS)
Roback, R.; Johnson, B. V.
1983-01-01
Swirling coaxial jets mixing downstream, discharging into an expanded duct was conducted to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the combustion community. A combination of laser velocimeter (LV) and laser induced fluorescence (LIF) techniques was employed to obtain mean and fluctuating velocity and concentration distributions which were used to derive mass and momentum turbulent transport parameters currently incorporated into various combustor flow models. Flow visualization techniques were also employed to determine qualitatively the time dependent characteristics of the flow and the scale of turbulence. The results of these measurements indicated that the largest momentum turbulent transport was in the r-z plane. Peak momentum turbulent transport rates were approximately the same as those for the nonswirling flow condition. The mass turbulent transport process for swirling flow was complicated. Mixing occurred in several steps of axial and radial mass transport and was coupled with a large radial mean convective flux. Mixing for swirling flow was completed in one-third the length required for nonswirling flow.
Oursel, B; Garnier, C; Durrieu, G; Mounier, S; Omanović, D; Lucas, Y
2013-04-15
Quantification and characterization of chronic inputs of trace metals and organic carbon in a coastal Mediterranean area (the city of Marseille) during the dry season was carried out. The 625 km(2) watershed includes two small coastal rivers whose waters are mixed with treated wastewater (TWW) just before their outlet into the sea. Dissolved and particulate Cu, Pb, Cd, Zn, Co, Ni and organic carbon concentrations in the rivers were comparable to those in other Mediterranean coastal areas, whereas at the outlet, 2- to 18-fold higher concentrations reflected the impact of the TWW. A non-conservative behavior observed for most of the studied metals in the mixing zone was validated by a remobilization experiment performed in the laboratory. The results showed that sorption/desorption processes could occur with slow kinetics with respect to the mixing time in the plume, indicating non-equilibrium in the dissolved/particulate metal distribution. Thus, a sample filtration immediately after sampling is strictly required. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ceperley, N. C.; Mande, T.; Barrenetxea, G.; Repetti, A.; Yacouba, H.; Tyler, S. W.; Parlange, M. B.
2011-12-01
A hydro-meteorological field campaign (joint EPFL-2iE) in a mixed agricultural and forest region in the southern Burkina Faso Savanna aims to identify and understand convective rainfall processes and the link to soil moisture. A simple slab Mixed Layer and Lifting Condensation Level model is implemented to separate convective and nonconvective rainfall. Data for this research were acquired during the 2010 rainy season using an array of wireless weather stations (SensorScope) as well as surface energy balance stations that based upon eddy correlation heat flux measurements. The precipitation was found to be variable over the basin with some 200 mm of difference in total seasonal rainfall between agricultural fields and savanna forest. Convective rainfall represents more than 30% of the total rainfall. The convective rainfall events are short (less than hour), intense (greater than 3 mm/minute) and occur both in the early morning and in the afternoons. These events can have an important impact on soil erosion, which we discuss in more detail along with seasonal stream-aquifer interactions.
Kaboré, Théodore Wind-Tinbnoma; Houot, Sabine; Hien, Edmond; Zombré, Prosper; Hien, Victor; Masse, Dominique
2010-02-01
The effect of raw materials and their proportions in initial mixtures on organic matter (OM) stabilization and nitrogen (N) availability during pit composting in Sub-Saharan Africa was assessed using biochemical fractionation and laboratory incubations to characterize composts sampled throughout the composting process. Stabilization of OM occurred more rapidly in mixtures with slaughter-house wastes, it was progressive in mixture with household refuses while tree leaves compost remained unstable. Carbon mineralization from compost samples was positively correlated to water soluble and hemicellulose-like organic fractions. Mixtures containing large proportions of household refuses reached the highest stability and total N but available N remained weak. Slaughter-house wastes in the initial mixtures made possible to reach good OM stabilization and the largest N availability. The nature of initial mixing influenced composting parameters, OM stabilization and N availability. It is suggested mixing household refuses and slaughter-house wastes with tree leaves to reach better amending and fertilizer qualities of composts.
The Vetter-Sturtevant Shock Tube Problem in KULL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulitsky, M S
2005-10-06
The goal of the EZturb mix model in KULL is to predict the turbulent mixing process as it evolves from Rayleigh-Taylor, Richtmyer-Meshkov, or Kelvin-Helmholtz instabilities. In this report we focus on an example of the Richtmyer-Meshkov instability (which occurs when a shock hits an interface between fluids of different densities) with the additional complication of reshock. The experiment by Vetter & Sturtevant (VS) [1], involving a Mach 1.50 incident shock striking an air/SF{sub 6} interface, is a good one to model, now that we understand how the model performs for the Benjamin shock tube [2] and a prototypical incompressible Rayleigh-Taylormore » problem [3]. The x-t diagram for the VS shock tube is quite complicated, since the transmitted shock hits the far wall at {approx}2 millisec, reshocks the mixing zone slightly after 3 millisec (which sets up a release wave that hits the wall at {approx}4 millisec), and then the interface is hit with this expansion wave around 5 millisec. Needless to say, this problem is much more difficult to model than the Bejamin shock tube.« less
Spinor Bose-Einstein Condensates of Positronium
NASA Astrophysics Data System (ADS)
Wang, Yi-Hsieh; Anderson, Brandon; Clark, Charles
2014-05-01
Bose-Einstein condensates (BECs) of positronium (Ps) have been of experimental and theoretical interest due to their potential application as the gain medium of a γ-ray laser. Ps BECs are intrinsically spinor due to the presence of ortho-positronium (o-Ps) and para-positronium (p-Ps), whose annihilation lifetimes differ by three orders of magnitude. In this paper, we study the spinor dynamics and annihilation processes in the p-Ps/o-Ps system using both solutions of the time-dependent Gross-Pitaevskii equations and a semiclassical rate-equation approach. The spinor interactions have an O (4) symmetry which is broken to SO (3) by an internal energy difference between o-Ps and p-Ps. For an initially unpolarized condensate, there is a threshold density of ~1019 cm-3 at which spin mixing between o-Ps and p-Ps occurs. Beyond this threshold, there are unstable spatial modes accompanied by spin mixing. To ensure a high production yield above the critical density, a careful choice of external field must be made to avoid the spin mixing instability. NSF Physics Frontiers Center, ARO Atomtronics MURI, DARPA OLE.
Conservation laws in baroclinic inertial-symmetric instabilities
NASA Astrophysics Data System (ADS)
Grisouard, Nicolas; Fox, Morgan B.; Nijjer, Japinder
2017-04-01
Submesoscale oceanic density fronts are structures in geostrophic and hydrostatic balance, but are more prone to instabilities than mesoscale flows. As a consequence, they are believed to play a large role in air-sea exchanges, near-surface turbulence and dissipation of kinetic energy of geostrophically and hydrostatically balanced flows. We will present two-dimensional (x, z) Boussinesq numerical experiments of submesoscale baroclinic fronts on the f-plane. Instabilities of the mixed inertial and symmetric types (the actual name varies across the literature) develop, with the absence of along-front variations prohibiting geostrophic baroclinic instabilities. Two new salient facts emerge. First, contrary to pure inertial and/or pure symmetric instability, the potential energy budget is affected, the mixed instability extracting significant available potential energy from the front and dissipating it locally. Second, in the submesoscale regime, the growth rate of this mixed instability is sufficiently large that significant radiation of near-inertial internal waves occurs. Although energetically small compared to e.g. local dissipation within the front, this process might be a significant source of near-inertial energy in the ocean.
NASA Technical Reports Server (NTRS)
Karakas, Amanda I.; vanRaai, Mark A.; Lugaro, Maria; Sterling, Nicholas C.; Dinerstein, Harriet L.
2008-01-01
Type I planetary nebulae (PNe) have high He/H and N/O ratios and are thought to be descendants of stars with initial masses of approx. 3-8 Stellar Mass. These characteristics indicate that the progenitor stars experienced proton-capture nucleosynthesis at the base of the convective envelope, in addition to the slow neutron capture process operating in the He-shell (the s-process). We compare the predicted abundances of elements up to Sr from models of intermediate-mass asymptotic giant branch (AGB) stars to measured abundances in Type I PNe. In particular, we compare predictions and observations for the light trans-iron elements Se and Kr, in order to constrain convective mixing and the s-process in these stars. A partial mixing zone is included in selected models to explore the effect of a C-13 pocket on the s-process yields. The solar-metallicity models produce enrichments of [(Se, Kr)/Fe] less than or approx. 0.6, consistent with Galactic Type I PNe where the observed enhancements are typically less than or approx. 0.3 dex, while lower metallicity models predict larger enrichments of C, N, Se, and Kr. O destruction occurs in the most massive models but it is not efficient enough to account for the greater than or approx. 0.3 dex O depletions observed in some Type I PNe. It is not possible to reach firm conclusions regarding the neutron source operating in massive AGB stars from Se and Kr abundances in Type I PNe; abundances for more s-process elements may help to distinguish between the two neutron sources. We predict that only the most massive (M grester than or approx.5 Stellar Mass) models would evolve into Type I PNe, indicating that extra-mixing processes are active in lower-mass stars (3-4 Stellar Mass), if these stars are to evolve into Type I PNe.
NASA Astrophysics Data System (ADS)
Karakas, Amanda I.; van Raai, Mark A.; Lugaro, Maria; Sterling, N. C.; Dinerstein, Harriet L.
2009-01-01
Type I planetary nebulae (PNe) have high He/H and N/O ratios and are thought to be descendants of stars with initial masses of ~3-8 M sun. These characteristics indicate that the progenitor stars experienced proton-capture nucleosynthesis at the base of the convective envelope, in addition to the slow neutron capture process operating in the He-shell (the s-process). We compare the predicted abundances of elements up to Sr from models of intermediate-mass asymptotic giant branch (AGB) stars to measured abundances in Type I PNe. In particular, we compare predictions and observations for the light trans-iron elements Se and Kr, in order to constrain convective mixing and the s-process in these stars. A partial mixing zone is included in selected models to explore the effect of a 13C pocket on the s-process yields. The solar-metallicity models produce enrichments of [(Se, Kr)/Fe] lsim0.6, consistent with Galactic Type I PNe where the observed enhancements are typically lsim0.3 dex, while lower metallicity models predict larger enrichments of C, N, Se, and Kr. O destruction occurs in the most massive models but it is not efficient enough to account for the gsim0.3 dex O depletions observed in some Type I PNe. It is not possible to reach firm conclusions regarding the neutron source operating in massive AGB stars from Se and Kr abundances in Type I PNe; abundances for more s-process elements may help to distinguish between the two neutron sources. We predict that only the most massive (M gsim 5 M sun) models would evolve into Type I PNe, indicating that extra-mixing processes are active in lower-mass stars (3-4 M sun), if these stars are to evolve into Type I PNe. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.
Ethanol production in fermentation of mixed sugars containing xylose
Viitanen, Paul V [West Chester, PA; Mc Cutchen, Carol M [Wilmington, DE; Li,; Xu, [Newark, DE; Emptage, Mark [Wilmington, DE; Caimi, Perry G [Kennett Square, PA; Zhang, Min [Lakewood, CO; Chou, Yat-Chen [Lakewood, CO; Franden, Mary Ann [Centennial, CO
2009-12-08
Xylose-utilizing Z. mobilis strains were found to have improved ethanol production when grown in medium containing mixed sugars including xylose if sorbitol or mannitol was included in the medium. The effect was seen in concentrations of mixed sugars where no growth lag period occurs, as well as in higher sugars concentrations.
The toxicity of brominated and mixed-halogenated dibenzo-p-dioxins and dibenzofurans: An overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, L.W.D.; Greim, H.
1997-02-21
Brominated dibenzo-p-dioxins and dibenzofurans can be formed under laboratory conditions by pyrolysis of flame retardants based on polybrominated biphenyls and biphenyl ethers. Their occurrence in the environment, however, is due to combustion processes such as municipal waste incineration and internal combustion engines. As these processes generally take place in the presence of an excess of chlorine, predominantly mixed brominated and chlorinated compounds have been identified so far in environmental samples. Brominated dibenzo-p-dioxins or dibenzofurans bind to the cytosolic Ah receptor about as avidly as their chlorinated congeners and induce hepatic microsomal enzymes with comparable potency. The same holds true formore » mixed brominated-chlorinated compounds. Gross pathologic symptoms-hypothyroidism, thymic atrophy, wasting of body mass, lethality-also occur at doses that, on a molar concentration basis, are virtually identical to those seen with the chlorinated compounds. Their potency to induce malformations in mice following prenatal exposure is equivalent to that of chlorinated dibenzo-p-dioxins and dibenzofurans. Possible activities as (co)carcinogens and endocrine disrupters have not been evaluated, but are likely to exist. Considering the overall similarity in action of chlorinated and brominated dibenzo-p-dioxins and dibenzofurans, environmental and health assessment should be based on molar body burdens without discrimination for the nature of the halogen. 107 refs., 1 fig., 7 tabs.« less
Strain dynamics for vortex ring mixing process
NASA Astrophysics Data System (ADS)
Bouremel, Yann; Yianneskis, Michael; Ducci, Andrea
2009-11-01
Simultaneous PIV-PLIF measurements were carried out to investigate the mixing occurring in a laminar vortex ring flow during the formation stage (Re=357-1072). In the first part of the work a control volume analysis was used to determine the variation in time of the scalar concentration mean, variance, and probability density function. In the second part the advection-diffusion differential equations of the scalar, ξ, and of its energy, 0.5 2̂, were studied in depth to gain insight into the effect of the strain rate tensor, S, on the local scalar concentration for increasing Re. The measurements were obtained with a high spatial resolution (12 μm for the PLIF) in order to resolve the scalar dissipative scales. Reliable estimates of the scalar dissipation rate (∇ξ.∇ξ), and of the symmetric contraction term (∇ξ.S .∇ξ), shown in equation 1, were obtained. ∇ξ.S .∇ξ accounts for the reduction of scalar dissipation due to the straining component directed as the local scalar gradient (see Southerland et al.footnotetextSoutherland K B., Porter III J. R., Dahm, W. J. A., Buch K. A., An experimental study of the molecular mixing process in an axisymmetric laminar vortex ring, Phys. Fluids A 3 (5), May 1991) Equation 1: ( t+u.∇+1ReSc∇^2 )12( ∇ξ.∇ξ )=-( ∇ξ.S.∇ξ )-1ReSc∇(∇ξ):∇(∇ξ)
Analysis of membrane fusion as a two-state sequential process: evaluation of the stalk model.
Weinreb, Gabriel; Lentz, Barry R
2007-06-01
We propose a model that accounts for the time courses of PEG-induced fusion of membrane vesicles of varying lipid compositions and sizes. The model assumes that fusion proceeds from an initial, aggregated vesicle state ((A) membrane contact) through two sequential intermediate states (I(1) and I(2)) and then on to a fusion pore state (FP). Using this model, we interpreted data on the fusion of seven different vesicle systems. We found that the initial aggregated state involved no lipid or content mixing but did produce leakage. The final state (FP) was not leaky. Lipid mixing normally dominated the first intermediate state (I(1)), but content mixing signal was also observed in this state for most systems. The second intermediate state (I(2)) exhibited both lipid and content mixing signals and leakage, and was sometimes the only leaky state. In some systems, the first and second intermediates were indistinguishable and converted directly to the FP state. Having also tested a parallel, two-intermediate model subject to different assumptions about the nature of the intermediates, we conclude that a sequential, two-intermediate model is the simplest model sufficient to describe PEG-mediated fusion in all vesicle systems studied. We conclude as well that a fusion intermediate "state" should not be thought of as a fixed structure (e.g., "stalk" or "transmembrane contact") of uniform properties. Rather, a fusion "state" describes an ensemble of similar structures that can have different mechanical properties. Thus, a "state" can have varying probabilities of having a given functional property such as content mixing, lipid mixing, or leakage. Our data show that the content mixing signal may occur through two processes, one correlated and one not correlated with leakage. Finally, we consider the implications of our results in terms of the "modified stalk" hypothesis for the mechanism of lipid pore formation. We conclude that our results not only support this hypothesis but also provide a means of analyzing fusion time courses so as to test it and gauge the mechanism of action of fusion proteins in the context of the lipidic hypothesis of fusion.
NASA Astrophysics Data System (ADS)
Mudunuru, M. K.; Karra, S.; Vesselinov, V. V.
2017-12-01
The efficiency of many hydrogeological applications such as reactive-transport and contaminant remediation vastly depends on the macroscopic mixing occurring in the aquifer. In the case of remediation activities, it is fundamental to enhancement and control of the mixing through impact of the structure of flow field which is impacted by groundwater pumping/extraction, heterogeneity, and anisotropy of the flow medium. However, the relative importance of these hydrogeological parameters to understand mixing process is not well studied. This is partially because to understand and quantify mixing, one needs to perform multiple runs of high-fidelity numerical simulations for various subsurface model inputs. Typically, high-fidelity simulations of existing subsurface models take hours to complete on several thousands of processors. As a result, they may not be feasible to study the importance and impact of model inputs on mixing. Hence, there is a pressing need to develop computationally efficient models to accurately predict the desired QoIs for remediation and reactive-transport applications. An attractive way to construct computationally efficient models is through reduced-order modeling using machine learning. These approaches can substantially improve our capabilities to model and predict remediation process. Reduced-Order Models (ROMs) are similar to analytical solutions or lookup tables. However, the method in which ROMs are constructed is different. Here, we present a physics-informed ML framework to construct ROMs based on high-fidelity numerical simulations. First, random forests, F-test, and mutual information are used to evaluate the importance of model inputs. Second, SVMs are used to construct ROMs based on these inputs. These ROMs are then used to understand mixing under perturbed vortex flows. Finally, we construct scaling laws for certain important QoIs such as degree of mixing and product yield. Scaling law parameters dependence on model inputs are evaluated using cluster analysis. We demonstrate application of the developed method for model analyses of reactive-transport and contaminant remediation at the Los Alamos National Laboratory (LANL) chromium contamination sites. The developed method is directly applicable for analyses of alternative site remediation scenarios.
Impact of chemistry on Standard High Solids Vessel Design mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M.
2016-03-02
The plan for resolving technical issues regarding mixing performance within vessels of the Hanford Waste Treatment Plant Pretreatment Facility directs a chemical impact study to be performed. The vessels involved are those that will process higher (e.g., 5 wt % or more) concentrations of solids. The mixing equipment design for these vessels includes both pulse jet mixers (PJM) and air spargers. This study assesses the impact of feed chemistry on the effectiveness of PJM mixing in the Standard High Solids Vessel Design (SHSVD). The overall purpose of this study is to complement the Properties that Matter document in helping tomore » establish an acceptable physical simulant for full-scale testing. The specific objectives for this study are (1) to identify the relevant properties and behavior of the in-process tank waste that control the performance of the system being tested, (2) to assess the solubility limits of key components that are likely to precipitate or crystallize due to PJM and sparger interaction with the waste feeds, (3) to evaluate the impact of waste chemistry on rheology and agglomeration, (4) to assess the impact of temperature on rheology and agglomeration, (5) to assess the impact of organic compounds on PJM mixing, and (6) to provide the technical basis for using a physical-rheological simulant rather than a physical-rheological-chemical simulant for full-scale vessel testing. Among the conclusions reached are the following: The primary impact of precipitation or crystallization of salts due to interactions between PJMs or spargers and waste feeds is to increase the insoluble solids concentration in the slurries, which will increase the slurry yield stress. Slurry yield stress is a function of pH, ionic strength, insoluble solids concentration, and particle size. Ionic strength and chemical composition can affect particle size. Changes in temperature can affect SHSVD mixing through its effect on properties such as viscosity, yield stress, solubility, and vapor pressure, or chemical reactions that occur at high temperatures. Organic compounds will affect SHSVD mixing through their effect on properties such as rheology, particle agglomeration/size, particle density, and particle concentration.« less
2003-03-07
An unusual mix of textures is featured in this image from NASA Mars Odyssey spacecraft of a surface east of the Phlegra Montes. Scabby mounds, commonly occurring around degraded craters, mix with a more muted, knobby terrain.
Conformational selection in protein binding and function
Weikl, Thomas R; Paul, Fabian
2014-01-01
Protein binding and function often involves conformational changes. Advanced nuclear magnetic resonance (NMR) experiments indicate that these conformational changes can occur in the absence of ligand molecules (or with bound ligands), and that the ligands may “select” protein conformations for binding (or unbinding). In this review, we argue that this conformational selection requires transition times for ligand binding and unbinding that are small compared to the dwell times of proteins in different conformations, which is plausible for small ligand molecules. Such a separation of timescales leads to a decoupling and temporal ordering of binding/unbinding events and conformational changes. We propose that conformational-selection and induced-change processes (such as induced fit) are two sides of the same coin, because the temporal ordering is reversed in binding and unbinding direction. Conformational-selection processes can be characterized by a conformational excitation that occurs prior to a binding or unbinding event, while induced-change processes exhibit a characteristic conformational relaxation that occurs after a binding or unbinding event. We discuss how the ordering of events can be determined from relaxation rates and effective on- and off-rates determined in mixing experiments, and from the conformational exchange rates measured in advanced NMR or single-molecule fluorescence resonance energy transfer experiments. For larger ligand molecules such as peptides, conformational changes and binding events can be intricately coupled and exhibit aspects of conformational-selection and induced-change processes in both binding and unbinding direction. PMID:25155241
New approach to the design of Schottky barrier diodes for THz mixers
NASA Technical Reports Server (NTRS)
Jelenski, A.; Grueb, A.; Krozer, V.; Hartnagel, H. L.
1992-01-01
Near-ideal GaAs Schottky barrier diodes especially designed for mixing applications in the THz frequency range are presented. A diode fabrication process for submicron diodes with near-ideal electrical and noise characteristics is described. This process is based on the electrolytic pulse etching of GaAs in combination with an in-situ platinum plating for the formation of the Schottky contacts. Schottky barrier diodes with a diameter of 1 micron fabricated by the process have already shown excellent results in a 650 GHz waveguide mixer at room temperature. A conversion loss of 7.5 dB and a mixer noise temperature of less than 2000 K have been obtained at an intermediate frequency of 4 GHz. The optimization of the diode structure and the technology was possible due to the development of a generalized Schottky barrier diode model which is valid also at high current densities. The common diode design and optimization is discussed on the basis of the classical theory. However, the conventional fomulas are valid only in a limited forward bias range corresponding to currents much smaller than the operating currents under submillimeter mixing conditions. The generalized new model takes into account not only the phenomena occurring at the junction such as current dependent recombination and drift/diffusion velocities, but also mobility and electron temperature variations in the undepleted epi-layer. Calculated diode I/V and noise characteristics are in excellent agreement with the measured values. Thus, the model offers the possibility of optimizing the diode structure and predicting the diode performance under mixing conditions at THz frequencies.
Pile mixing increases greenhouse gas emissions during composting of dairy manure.
Ahn, H K; Mulbry, W; White, J W; Kondrad, S L
2011-02-01
The effect of pile mixing on greenhouse gas (GHG) emissions during dairy manure composting was determined using large flux chambers designed to completely cover replicate pilot-scale compost piles. GHG emissions from compost piles that were mixed four times during the 80 day trial were approximately 20% higher than emissions from unmixed (static) piles. For both treatments, carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) accounted for 75-80%, 18-21%, and 2-4% of GHG emissions, respectively. Seventy percent of CO(2) emissions and 95% of CH(4) emissions from all piles occurred within first 23 days. By contrast, 80-95% of N(2)O emissions occurred after this period. Mixed and static piles released 2 and 1.6 kg GHG (CO(2)-Eq.) for each kg of degraded volatile solids (VS), respectively. Our results suggest that to minimize GHG emissions, farmers should store manure in undisturbed piles or delay the first mixing of compost piles for approximately 4 weeks. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
St.John, D.; Samuelsen, G. S.
2000-01-01
The mixing of air jets into hot, fuel-rich products of a gas turbine primary zone is an important step in staged combustion. Often referred to as "quick quench," the mixing occurs with chemical conversion and substantial heat release. An experiment has been designed to simulate and study this process, and the effect of varying the entry angle (0 deg, 22.5 deg and 45 deg from normal) and number of the air jets (7, 9, and 11) into the main flow, while holding the jet-to-crossflow mass-low ratio, MR, and momentum-flux ratio, J, constant (MR = 2.5;J = 25). The geometry is a crossflow confined in a cylindrical duct with side-wall injection of jets issuing from orifices equally spaced around the perimeter. A specially designed reactor, operating on propane, presents a uniform mixture to a module containing air jet injection tubes that can be changed to vary orifice geometry. Species concentrations of O2, CO, CO2, NO(x) and HC were obtained one duct diameter upstream (in the rich zone), and primarily one duct radius downstream. From this information, penetration of the jet, the spatial extent of chemical reaction, mixing, and the optimum jet injection angle and number of jets can be deduced.
Maamari, Olivia; Mouaffak, Lara; Kamel, Ramza; Brandam, Cedric; Lteif, Roger; Salameh, Dominique
2016-03-01
Many studies show that the treatment of Infectious Health Care Waste (IHCW) in steam sterilization devices at usual operating standards does not allow for proper treatment of Infectious Health Care Waste (IHCW). Including a grinding component before sterilization allows better waste sterilization, but any hard metal object in the waste can damage the shredder. The first objective of the study is to verify that efficient IHCW treatment can occur at standard operating parameters defined by the contact time-temperature couple in steam treatment systems without a pre-mixing/fragmenting or pre-shredding step. The second objective is to establish scientifically whether the standard operation conditions for a steam treatment system including a step of pre-mixing/fragmenting were sufficient to destroy the bacterial spores in IHCW known to be the most difficult to treat. Results show that for efficient sterilization of dialysis cartridges in a pilot 60L steam treatment system, the process would require more than 20 min at 144°C without a pre-mixing/fragmenting step. In a 720L steam treatment system including pre-mixing/fragmenting paddles, only 10 min at 144°C are required to sterilize IHCW proved to be sterilization challenges such as dialysis cartridges and diapers in normal conditions of rolling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Faye, Serigne; Maloszewski, Piotr; Stichler, Willibald; Trimborn, Peter; Cissé Faye, Seynabou; Bécaye Gaye, Cheikh
2005-05-01
The hydrochemistry of minor elements bromide (Br), boron (B), strontium (Sr), environmental stable isotopes (18O and 2H) together with major-ion chemistry (chloride, sodium, calcium) has been used to constrain the source(s), relative age, and processes of salinization in the Continental Terminal (CT) aquifer in the Saloum (mid-west Senegal) region. Seventy-one groundwater wells which include 24 wells contaminated by saltwater and three sites along the hypersaline Saloum River were sampled to obtain additional information on the hydrochemical characteristics of the groundwater defined in previous studies. Use of Br against Cl confirms the Saloum River saline water intrusion up to a contribution of 7% into the aquifer. In addition to this recent intrusion, a relatively ancient intrusion of the Saloum River water which had reached at least as far as 20 km south from the source was evidenced. The high molar ratio values of Sr/Cl and Sr/Ca indicate an additional input of strontium presumably derived from carbonate precipitation/dissolution reactions and also via adsorption reactions. The variable B concentrations (7-650 microg/L) found in the groundwater samples were tested against the binary mixing model to evaluate the processes of salinization which are responsible for the investigated system. Sorption of B and depletion of Na occur as the Saloum river water intrudes the aquifer (salinization) in the northern part of the region, whereas B desorption and Na enrichment occur as the fresh groundwater flushing displaces the saline waters in the coastal strip (refreshening). In the central zone where ancient intrusion prevailed, the process of freshening of the saline groundwater is indicated by the changes in major-ion chemistry as well as B desorption and Na enrichment. In addition to these processes, stable isotopes reveal that mixing with recently infiltrating waters and evaporation contribute to the changes in isotopic signature.
Fixation of strategies with the Moran and Fermi processes in evolutionary games
NASA Astrophysics Data System (ADS)
Liu, Xuesong; He, Mingfeng; Kang, Yibin; Pan, Qiuhui
2017-10-01
A model of stochastic evolutionary game dynamics with finite population was built. It combines the standard Moran and Fermi rules with two strategies cooperation and defection. We obtain the expressions of fixation probabilities and fixation times. The one-third rule which has been found in the frequency dependent Moran process also holds for our model. We obtain the conditions of strategy being an evolutionarily stable strategy in our model, and then make a comparison with the standard Moran process. Besides, the analytical results show that compared with the standard Moran process, fixation occurs with higher probabilities under a prisoner's dilemma game and coordination game, but with lower probabilities under a coexistence game. The simulation result shows that the fixation time in our mixed process is lower than that in the standard Fermi process. In comparison with the standard Moran process, fixation always takes more time on average in spatial populations, regardless of the game. In addition, the fixation time decreases with the growth of the number of neighbors.
2012-03-01
water and ozone across the EIL. The scalar variables from this flight (not shown) suggest significant horizontal variation in the free- troposphere ...near the cloud top where mixing occurs between dry free- troposphere air and moist turbulent air. Although the concept of the entrainment zone is...mixing occurs between dry free- troposphere air and moist turbulent air. Although the concept of the entrainment zone is clear, defining the top and
U.S. water quality policy includes the concept of a mixing zone, a limited area or volume of water where the initial dilution of a discharge occurs. he Cornell Mixing Zone Expert System (CORMIX1) was developed to predict the dilution and trajectory of a submerged single port disc...
Identification of a New Spinel-Rich Lunar Rock Type by the Moon Mineralogy Mapper (M (sup 3))
NASA Technical Reports Server (NTRS)
Pieters, C. M.; Boardman, J.; Buratti, B.; Clark, R.; Combe, J. P.; Green, R.; Goswami, J. N.; Head, J. W., III; Hicks, M.; Isaacson, P.;
2010-01-01
The canonical characterization of the lunar crust is based principally on available Apollo, Luna, and meteorite samples. The crust is described as an anorthosite-rich cumulate produced by the lunar magma ocean that has been infused with a mix of Mgsuite components. These have been mixed and redistributed during the late heavy bombardment and basin forming events. We report a new rock-type detected on the farside of the Moon by the Moon Mineralogy Mapper (M3) on Chandrayaan-1 that does not easily fit with current crustal evolution models. The rock-type is dominated by Mg-spinel with no detectible pyroxene or olivine present (<5%). It occurs along the western inner ring of Moscoviense Basin as one of several discrete areas that exhibit unusual compositions relative to their surroundings but without morphological evidence for separate processes leading to exposure.
Nature-inspired polymer actuators for micro-fluidic mixing.
NASA Astrophysics Data System (ADS)
den Toonder, Jaap M. J.; Bos, Femke; de Goede, Judith; Anderson, Patrick
2007-11-01
One particular micro-fluidics manipulation mechanism ``designed'' by nature is that due to a covering of beating cilia over the external surface of micro-organisms (e.g. Paramecium). A cilium can be viewed as a small hair or flexible rod (in protozoa: typical length 10 microns and diameter 0.1 microns) which is attached to the surface. We have developed polymer micro-actuators, made with standard micro-technology processing, which respond to an applied electrical or magnetic field by changing their shape. The shape and size of the polymer actuators mimics that of cilia occurring in nature. Flow visualization experiments show that the cilia can generate substantial fluid velocities, in the order of 1 mm/s. In addition, using specially designed geometrical configurations of the cilia, very efficient mixing is obtained. Since the artificial cilia can be actively controlled using electrical signals, they have exciting applications in micro-fluidic devices.
NASA Astrophysics Data System (ADS)
Huang, Yuan; Liu, Hao; Gong, Li; Hou, Yanglong; Li, Quan
2017-04-01
Introducing Mg2+ to LiFePO4 and reduced graphene oxide composite via mechanical mixing and annealing leads to largely improved rate performance of the cathode (e.g. ∼78 mA h g-1 at 20 C for LiFePO4 and reduced graphene oxide composite with Mg2+ introduction vs. ∼37 mA h g-1 at 20 C for LiFePO4 and reduced graphene oxide composite). X-ray photoelectron spectroscopy unravels that the enhanced reduction of Fe2+ to Fe0 occurs in the simultaneous presence of Mg2+ and reduced graphene oxide, which is beneficial for the rate capability of cathode. The simple fabrication process provides a simple and effective means to improve the rate performance of the LiFePO4 and reduced graphene oxide composite cathode.
Fate of SDS-insoluble glutenin polymers from semolina to dry pasta.
Joubert, Marianne; Lullien-Pellerin, Valérie; Morel, Marie-Hélène
2018-02-01
Pasta cooking quality is well known to be related to semolina protein content and composition, however impact of the unextractable polymeric protein content (%UPP) remains disputed. In this work different semolina samples, of variable protein contents (10.5-14.2%) and %UPP (20.2-46.3%) are studied. The changes in %UPP induced by the successive pasta processing steps (mixing, extrusion, drying) but also those occurring during resting periods at 35°C, applied in-between them, were investigated. Effect of a resting period was moderate after mixing, but pronounced after extrusion. Resting of extruded pasta at 35°C significantly increased %UPP, which can even grow beyond that of the semolina. No relationship was found between pasta viscoelastic index (VI) and semolina %UPP or protein content. However, cooked pasta VI was found related to the calculated %UPP of rested fresh pasta. Copyright © 2017 Elsevier Ltd. All rights reserved.
Toward the Characterization of Mixed-Phase Clouds Using Remote Sensing
NASA Astrophysics Data System (ADS)
Andronache, C.
2015-12-01
Mixed-phase clouds consist of a mixture of ice particles and liquid droplets at temperatures below 0 deg C. They are present in all seasons in many regions of the world, account for about 30% of the global cloud coverage, and are linked to cloud electrification and aircraft icing. The mix of ice particles, liquid droplets, and water vapor is unstable, and such clouds are thought to have a short lifetime. A characteristic parameter is the phase composition of mixed-phase clouds. It affects the cloud life cycle and the rate of precipitation. This parameter is important for cloud parameters retrievals by radar, lidar, and satellite and is relevant for climate modeling. The phase transformation includes the remarkable Wegener-Bergeron-Findeisen (WBF) process. The direction and the rate of the phase transformations depend on the local thermodynamic and microphysical properties. Cloud condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and the dynamic response of clouds to aerosols. The complexity of dynamics and microphysics involved in mixed-phase clouds requires a set of observational and modeling tools that continue to be refined. Among these techniques, the remote sensing methods provide an increasing number of parameters, covering large regions of the world. Thus, a series of studies were dedicated to stratiform mixed-phase clouds revealing longer lifetime than previously thought. Satellite data and aircraft in situ measurements in deep convective clouds suggest that highly supercooled water often occurs in vigorous continental convective storms. In this study, we use cases of convective clouds to discuss the feasibility of mixed-phase clouds characterization and potential advantages of remote sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prather, B.E.
Formation of regionally extensive dolostone reservoir rocks in the Smackover can be understood despite the possible effects of recrystallization. Geochemical and petrographic data suggest that dolomitization took place in (1) seawater-seepage, (2) reflux, (3) near-surface mixed-water, (4) shallow-burial mixed-water, and (5) deeper burial environments, which overlapped in time and space to form a platform-scale' dolostone body composed of a complex mixture of dolomites. Seawater-seepage and reflux dolomitization occurred in the near surface penecontemporaneously with deposition of the Smackover and overlying Haynesville Formations. Dolomitization by seawater seepage occurred within an oolite grainstone sill which separated an intraplatform salt basin from themore » open sea. Seawater flowed landward through the sill in response to evaporitic drawdown of brines in the isolated intraplatform basin. Isolation of the salt basin occurred during the Oxfordian when the shoreline retreated from the Conecuh embayment. Dolomite located at the top of the Smackover enriched in {sup 18}O suggests additional dolomitization by reflux of hypersaline brines. Reflux occurred as Buckner coastal sabkhas prograded over Smackover oolite grainstone shoreface deposits. Vugs lined with shallow-burial calcite and dolomite cements indicate flushing of the Smackover grainstone aquifer with fresh water. Freshwater intrusion probably occurred following sea level lowstands during the Late Jurassic and Early Cretaceous. Leaching in the proximal portion of the freshwater aquifer produced excellent limestone reservoir rocks in the updip Smackover. Dolomitization in the contemporaneous downdip mixed connate/freshwater zone formed dolostone reservoir rocks with depleted isotopic compositions consistent with a shallow-burial mixed-water origin.« less
Wan, Dongjin; Liu, Yongde; Niu, Zhenhua; Xiao, Shuhu; Li, Daorong
2016-02-01
Hydrogen autotrophic reduction of perchlorate have advantages of high removal efficiency and harmless to drinking water. But so far the reported information about the microbial community structure was comparatively limited, changes in the biodiversity and the dominant bacteria during acclimation process required detailed study. In this study, perchlorate-reducing hydrogen autotrophic bacteria were acclimated by hydrogen aeration from activated sludge. For the first time, high-throughput sequencing was applied to analyze changes in biodiversity and the dominant bacteria during acclimation process. The Michaelis-Menten model described the perchlorate reduction kinetics well. Model parameters q(max) and K(s) were 2.521-3.245 (mg ClO4(-)/gVSS h) and 5.44-8.23 (mg/l), respectively. Microbial perchlorate reduction occurred across at pH range 5.0-11.0; removal was highest at pH 9.0. The enriched mixed bacteria could use perchlorate, nitrate and sulfate as electron accepter, and the sequence of preference was: NO3(-) > ClO4(-) > SO4(2-). Compared to the feed culture, biodiversity decreased greatly during acclimation process, the microbial community structure gradually stabilized after 9 acclimation cycles. The Thauera genus related to Rhodocyclales was the dominated perchlorate reducing bacteria (PRB) in the mixed culture.
Niphadkar, Madhura; Nagendra, Harini; Tarantino, Cristina; Adamo, Maria; Blonda, Palma
2017-01-01
The establishment of invasive alien species in varied habitats across the world is now recognized as a genuine threat to the preservation of biodiversity. Specifically, plant invasions in understory tropical forests are detrimental to the persistence of healthy ecosystems. Monitoring such invasions using Very High Resolution (VHR) satellite remote sensing has been shown to be valuable in designing management interventions for conservation of native habitats. Object-based classification methods are very helpful in identifying invasive plants in various habitats, by their inherent nature of imitating the ability of the human brain in pattern recognition. However, these methods have not been tested adequately in dense tropical mixed forests where invasion occurs in the understorey. This study compares a pixel-based and object-based classification method for mapping the understorey invasive shrub Lantana camara (Lantana) in a tropical mixed forest habitat in the Western Ghats biodiversity hotspot in India. Overall, a hierarchical approach of mapping top canopy at first, and then further processing for the understorey shrub, using measures such as texture and vegetation indices proved effective in separating out Lantana from other cover types. In the first method, we implement a simple parametric supervised classification for mapping cover types, and then process within these types for Lantana delineation. In the second method, we use an object-based segmentation algorithm to map cover types, and then perform further processing for separating Lantana. The improved ability of the object-based approach to delineate structurally distinct objects with characteristic spectral and spatial characteristics of their own, as well as with reference to their surroundings, allows for much flexibility in identifying invasive understorey shrubs among the complex vegetation of the tropical forest than that provided by the parametric classifier. Conservation practices in tropical mixed forests can benefit greatly by adopting methods which use high resolution remotely sensed data and advanced techniques to monitor the patterns and effective functioning of native ecosystems by periodically mapping disturbances such as invasion. PMID:28620400
NASA Astrophysics Data System (ADS)
DeHart, Jennifer C.
Airborne radar reflectivity data and numerical simulations are examined to determine how tropical cyclone precipitation processes are impacted by landfall over a continental mountain range. Analysis of the high-resolution radar data collected within Hurricane Karl (2010) during the Genesis and Rapid Intensification Processes (GRIP) shows that radar reflectivity enhancement in regions of upslope flow is constrained to low-levels. Reflectivity enhancement is not uniform and discrete regions of enhanced precipitation are embedded within a broad echo. In conjunction with an upstream dropsonde that exhibits weak instability, the radar data suggest a mix of gentle ascent and shallow convection occur. Regions of downslope flow are characterized by precipitation originating further aloft with little modification near low levels. Satellite data further indicate that deep convection develops after the high clouds dissipate, indicating that the evolving thermodynamic environment favors orographic modification processes beyond collection of orographically-generated cloud water. Numerical simulations examine how modification processes controlling precipitation are affected by the height of an idealized plateau. When terrain is minimal, the tropical cyclone decays slowly, the upper-level warm core remains robust, the moist neutral environment persists, and precipitation processes are largely concentrated within the eyewall and rainband. Movement over a tall topographic barrier induces rapid decay, which erodes the warm core and moist neutral environment. A mix of forced ascent and buoyant motions contribute to enhanced warm rain processes over the terrain. Overall, all microphysical quantities are greater for the tall plateau storm, but concentrations within the innermost core decay rapidly along with the storm. It is shown that the simulated tropical cyclone precipitation is heavily influenced by overestimated graupel production, which is a common problem of microphysical schemes. Surface precipitation is comparable between the two experiments, suggesting that strong decay of the storm affects the upper limit of precipitation. Similar precipitation patterns between the observations and tall plateau simulation suggest that the model obtains realistic precipitation through incorrect microphysical processes, but a lack of microphysical observations prevent full assessment of that hypothesis. Overall, this dissertation demonstrates that decay due to landfall over complex terrain affects the inner core thermodynamic and kinematic environment, which in turn affects the type and organization of precipitation processes that occur.
Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly
Peacock, Lori; Ferris, Vanessa; Sharma, Reuben; Sunter, Jack; Bailey, Mick; Carrington, Mark; Gibson, Wendy
2011-01-01
Elucidating the mechanism of genetic exchange is fundamental for understanding how genes for such traits as virulence, disease phenotype, and drug resistance are transferred between pathogen strains. Genetic exchange occurs in the parasitic protists Trypanosoma brucei, T. cruzi, and Leishmania major, but the precise cellular mechanisms are unknown, because the process has not been observed directly. Here we exploit the identification of homologs of meiotic genes in the T. brucei genome and demonstrate that three functionally distinct, meiosis-specific proteins are expressed in the nucleus of a single specific cell type, defining a previously undescribed developmental stage occurring within the tsetse fly salivary gland. Expression occurs in clonal and mixed infections, indicating that the meiotic program is an intrinsic but hitherto cryptic part of the developmental cycle of trypanosomes. In experimental crosses, expression of meiosis-specific proteins usually occurred before cell fusion. This is evidence of conventional meiotic division in an excavate protist, and the functional conservation of the meiotic machinery in these divergent organisms underlines the ubiquity and basal evolution of meiosis in eukaryotes. PMID:21321215
Characterization of mode 1 and mixed-mode failure of adhesive bonds between composite adherends
NASA Technical Reports Server (NTRS)
Mall, S.; Johnson, W. S.
1985-01-01
A combined experimental and analytical investigation of an adhesively bonded composite joint was conducted to characterize both the static and fatigue beyond growth mechanism under mode 1 and mixed-mode 1 and 2 loadings. Two bonded systems were studied: graphite/epoxy adherends bonded with EC 3445 and FM-300 adhesives. For each bonded system, two specimen types were tested: a double-cantilever-beam specimen for mode 1 loading and a cracked-lapshear specimen for mixed-mode 1 and 2 loading. In all specimens tested, failure occurred in the form of debond growth. Debonding always occurred in a cohesive manner with EC 3445 adhesive. The FM-300 adhesive debonded in a cohesive manner under mixed-mode 1 and 2 loading, but in a cohesive, adhesive, or combined cohesive and adhesive manner under mode 1 loading. Total strain-energy release rate appeared to be the driving parameter for debond growth under static and fatigue loadings.
Transverse ageostrophic circulations associated with elevated mixed layers
NASA Technical Reports Server (NTRS)
Keyser, D.; Carlson, T. N.
1984-01-01
The nature of the frontogenetically forced transverse ageostrophic circulations connected with elevated mixed layer structure is investigated as a first step toward diagnosing the complex vertical circulation patterns occurring in the vicinity of elevated mixed layers within a severe storm environment. The Sawyer-Eliassen ageostrophic circulation equation is reviewed and applied to the elevated mixed layer detected in the SESAME IV data set at 2100 GMT of May 9, 1979. The results of the ageostrophic circulation diagnosis are confirmed and refined by considering an analytic specification for the elevated mixed layer structure.
Freshwater-Brine Mixing Zone Hydrodynamics in Salt Flats (Salar de Atacama)
NASA Astrophysics Data System (ADS)
Marazuela, M. A.; Vázquez-Suñé, E.; Custodio, E.; Palma, T.; García-Gil, A.
2017-12-01
The increase in the demand of strategic minerals for the development of medicines and batteries require detailed knowledge of the salt flats freshwater-brine interface to make its exploitation efficient. The interface zone is the result of a physical balance between the recharged and evaporated water. The sharp interface approach assumes the immiscibility of the fluids and thus neglects the mixing between them. As a consequence, for miscible fluids it is more accurate and often needed to use the mixing zone concept, which results from the dynamic equilibrium of flowing freshwater and brine. In this study, we consider two and three-dimensional scale approaches for the management of the mixing zone. The two-dimensional approach is used to understand the dynamics and the characteristics of the salt flat mixing zone, especially in the Salar de Atacama (Atacama salt flat) case. By making use of this model we analyze and quantify the effects of the aquitards on the mixing zone geometry. However, the understanding of the complex physical processes occurring in the salt flats and the management of these environments requires the adoption of three-dimensional regional scale numerical models. The models that take into account the effects of variable density represent the best management tool, but they require large computational resources, especially in the three-dimensional case. In order to avoid these computational limitations in the modeling of salt flats and their valuable ecosystems, we propose a three-step methodology, consisting of: (1) collection, validation and interpretation of the hydrogeochemical data, (2) identification and three-dimensional mapping of the mixing zone on the land surface and in depth, and (3) application of a water head correction to the freshwater and mixed water heads in order to compensate the density variations and to transform them to brine water heads. Finally, an evaluation of the sensibility of the mixing zone to anthropogenic and climate changes is included.
Simulating the Cyclone Induced Turbulent Mixing in the Bay of Bengal using COAWST Model
NASA Astrophysics Data System (ADS)
Prakash, K. R.; Nigam, T.; Pant, V.
2017-12-01
Mixing in the upper oceanic layers (up to a few tens of meters from surface) is an important process to understand the evolution of sea surface properties. Enhanced mixing due to strong wind forcing at surface leads to deepening of mixed layer that affects the air-sea exchange of heat and momentum fluxes and modulates sea surface temperature (SST). In the present study, we used Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model to demonstrate and quantify the enhanced cyclone induced turbulent mixing in case of a severe cyclonic storm. The COAWST model was configured over the Bay of Bengal (BoB) and used to simulate the atmospheric and oceanic conditions prevailing during the tropical cyclone (TC) Phailin that occurred over the BoB during 10-15 October 2013. The model simulated cyclone track was validated with IMD best-track and model SST validated with daily AVHRR SST data. Validation shows that model simulated track & intensity, SST and salinity were in good agreement with observations and the cyclone induced cooling of the sea surface was well captured by the model. Model simulations show a considerable deepening (by 10-15 m) of the mixed layer and shoaling of thermocline during TC Phailin. The power spectrum analysis was performed on the zonal and meridional baroclinic current components, which shows strongest energy at 14 m depth. Model results were analyzed to investigate the non-uniform energy distribution in the water column from surface up to the thermocline depth. The rotary spectra analysis highlights the downward direction of turbulent mixing during the TC Phailin period. Model simulations were used to quantify and interpret the near-inertial mixing, which were generated by cyclone induced strong wind stress and the near-inertial energy. These near-inertial oscillations are responsible for the enhancement of the mixing operative in the strong post-monsoon (October-November) stratification in the BoB.
Jubin, Robert T.; Randolph, John D.
1991-01-01
The invention is directed to a centrifugal contactor for solvent extraction systems. The centrifugal contactor is provided with an annular vertically oriented mixing chamber between the rotor housing and the rotor for mixing process liquids such as the aqueous and organic phases of the solvent extraction process used for nuclear fuel reprocessing. A set of stationary helically disposed vanes carried by the housing is in the lower region of the mixing chamber at a location below the process-liquid inlets for the purpose of urging the liquids in an upward direction toward the inlets and enhancing the mixing of the liquids and mass transfer between the liquids. The upper region of the mixing vessel above the inlets for the process liquids is also provided with a set helically disposed vanes carried by the housing for urging the process liquids in a downward direction when the liquid flow rates through the inlets are relatively high and the liquids contact the vane set in the upper region. The use of these opposing vane sets in the mixing zone maintains the liquid in the mixing zone at suitable levels.
NASA Astrophysics Data System (ADS)
Bullen, T.; Izbicki, J.
2007-12-01
Chromium (Cr) is a common contaminant in groundwater, used in electroplating, leather tanning, wood preservation, and as an anti-corrosion agent. Cr occurs in two oxidation states in groundwater: Cr(VI) is highly soluble and mobile, and is a carcinogen; Cr(III) is generally insoluble, immobile and less toxic than Cr(VI). Reduction of Cr(VI) to Cr(III) is thus a central issue in approaches to Cr(VI) contaminant remediation in aquifers. Aqueous Cr(VI) occurs mainly as the chromate (CrO22-) and bichromate (HCrO2-) oxyanions, while Cr(III) is mainly "hexaquo" Cr(H2O)63+. Cr has four naturally-occurring stable isotopes: 50Cr, 52Cr, 53Cr and 54Cr. When Cr(VI) is reduced to Cr(III), the strong Cr-O bond must be broken, resulting in isotopic selection. Ellis et al. (2002) demonstrated that for reduction of Cr(VI) on magnetite and in natural sediment slurries, the change of isotopic composition of the remnant Cr(VI) pool was described by a Rayleigh fractionation model having fractionation factor ɛCr(VI)-Cr(III) = 3.4‰. We attempted to use Cr isotopes as a monitor of Cr(VI) reduction at a field site in Hinkley, California (USA) where groundwater contaminated with Cr(VI) has been under assessment for remediation. Groundwater containing up to 5 ppm Cr(VI) has migrated down-gradient from the contamination source through the fluvial to alluvial sediments to form a well-defined plume. Uncontaminated groundwater in the aquifer immediately adjacent to the plume has naturally-occurring Cr(VI) of 4 ppb or less (CH2M-Hill). In early 2006, colleagues from CH2M-Hill collected 17 samples of groundwater from within and adjacent to the plume. On a plot of δ53Cr vs. log Cr(VI), the data array is strikingly linear and differs markedly from the trend predicted for reduction of Cr(VI) in the contaminated water. There appear to be two groups of data: four samples with δ53Cr >+2‰ and Cr(VI) <4 ppb, and 13 samples with δ53Cr <+2‰ and Cr(VI) >15 ppb. Simple mixing lines between the groundwater samples having <4 ppb Cr(VI), taken to be representative of regional groundwater, and the contaminated water do not pass through the remainder of the data, discounting a simple advective mixing scenario. We hypothesize a more likely scenario that involves both Cr(VI) reduction and advective mixing. As the plume initially expands downgradient, Cr(VI) in water at the leading edge encounters reductant in the aquifer resulting in limited Cr(VI) reduction. As a result of reduction, δ53Cr of Cr(VI) remaining in solution at the leading edge increases along the "reduction" trend from 0 to ~+2‰. Inevitable mixing of this water at the leading edge with regional groundwater results in a suitable mixing end-member to combine with Cr(VI) within the plume in order to explain the bulk of the remaining data. Neither Cr(VI) reduction nor advective mixing of plume and regional groundwaters can explain the data on their own, implying an interplay of at least these two processes during plume evolution. Ellis, A.S., Johnson, T.M. and Bullen, T.D. 2002, Science, 295, 2060-2062.
NASA Astrophysics Data System (ADS)
Festa, A.; Dilek, Y.; Pini, G. A.; Codegone, G.; Ogata, K.
2012-09-01
The terms mélange and broken formation have been used in different ways in the literature. The lack of agreement on their definition often leads to confusion and misinterpretations. An evaluation of the various uses of these terms allows us to consider several types of chaotic rock bodies originated by tectonic, sedimentary and diapiric processes in different tectonic settings. Our review of stratal disruption and mixing processes shows that there exists a continuum of deformation structures and processes in the generation of mélanges and broken formations. This continuum is directly controlled by the increase of the degree of consolidation with burial. In tectonically active environments, at the shallow structural levels, the occurrence of poorly consolidated sediments favors gravitational deformation. At deeper structural levels, the deformation related to tectonic forces becomes gradually more significant with depth. Sedimentary (and diapiric) mélanges and broken formations represent the products of punctuated stratal disruption mechanisms recording the instantaneous physical conditions in the geological environment at the time of their formation. The different kinematics, the composition and lithification degree of sediments, the geometry and morphology of the basins, and the mode of failure propagation control the transition between different types of mass-transported chaotic bodies, the style of stratal disruption, and the amount of rock mixing. Tectonically broken formations and mélanges record a continuum of deformation that occurs through time and different degrees of lithification during a progressive increase of the degree of consolidation and of the diagenetic and metamorphic mineral transformation. Systematic documentation of the mechanisms and processes of the formation of different broken formations and mélanges and their interplay in time and space are highly important to increase the understanding of the evolutionary history of accretionary wedges and orogenic belts.
NASA Astrophysics Data System (ADS)
Robertson, J.; Metcalfe, G.; Wang, S.; Barnes, S. J.
2014-12-01
The concentration of bubbles, crystals or droplets into small volumes of magma is a key trigger for many interesting magmatic processes. For example, gas slugs driving Strombolian eruptions form from the coalesence of exsolved bubbles within a volcanic conduit, while Ni-Cu-PGE magmatic sulfide deposits require a concentration of dense sulfide droplets from a large volume of magma to form a massive ore body. However the physical mechanism for this clustering remains unresolved - especially since small particles in active magma flows are expected to mostly track flow streamlines rather than clustering. We have uncovered a previously unreported clustering mechanism which is applicable to magmatic flows. This mechanism involves the interaction of particles with two kinds of chaotic flow structure: (a) high-strain regions within the well-mixed chaotic zones of the flow, and (b) unmixed islands of stability within the chaotic flow, known as Kolmogorov-Arnold-Moser (KAM) regions. The first figure shows the difference between chaotic and KAM regions in a chaotic laminar pipe flow. Trapping occurs when particles are scattered from high-strain regions in the chaotic zones and become trapped in the KAM regions, leading to a rapid concentration of particles relative to their original distribution (shown in the second series of figures). Using a combination of these analogue experiments and theoretical analysis we outline the conditions under which this clustering process can occur. We examine the onset of secondary density-related instabilities and the effects of increased particle-particle interaction within the clustered particles, and highlight the impact of particle clustering on the dynamics of magma ascent and emplacement.
2012-01-01
Background Facilitation is emerging as an important strategy in the uptake of evidence. However, it is not entirely clear from a practical perspective how facilitation occurs to help move research evidence into nursing practice. The Canadian Partnership Against Cancer, also known as the 'Partnership,' is a Pan-Canadian initiative supporting knowledge translation activity for improved care through guideline use. In this case-series study, five self-identified groups volunteered to use a systematic methodology to adapt existing clinical practice guidelines for Canadian use. With 'Partnership' support, local and external facilitators provided assistance for groups to begin the process by adapting the guidelines and planning for implementation. Methods To gain a more comprehensive understanding of the nature of facilitation, we conducted a mixed-methods study. Specifically, we examined the role and skills of individuals actively engaged in facilitation as well as the actual facilitation activities occurring within the 'Partnership.' The study was driven by and builds upon a focused literature review published in 2010 that examined facilitation as a role and process in achieving evidence-based practice in nursing. An audit tool outlining 46 discrete facilitation activities based on results of this review was used to examine the facilitation noted in the documents (emails, meeting minutes, field notes) of three nursing-related cases participating in the 'Partnership' case-series study. To further examine the concept, six facilitators were interviewed about their practical experiences. The case-audit data were analyzed through a simple content analysis and triangulated with participant responses from the focus group interview to understand what occurred as these cases undertook guideline adaptation. Results The analysis of the three cases revealed that almost all of the 46 discrete, practical facilitation activities from the literature were evidenced. Additionally, case documents exposed five other facilitation-related activities, and a combination of external and local facilitation was apparent. Individuals who were involved in the case or group adapting the guideline(s) also performed facilitation activities, both formally and informally, in conjunction with or in addition to appointed external and local facilitators. Conclusions Facilitation of evidence-based practice is a multifaceted process and a team effort. Communication and relationship-building are key components. The practical aspects of facilitation explicated in this study validate what has been previously noted in the literature and expand what is known about facilitation process and activity. PMID:22309743
Complex Protostellar Chemistry
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Johnson, Natasha M.
2012-01-01
Two decades ago, our understanding chemistry in protostars was simple -- matter either fell into the central star or was trapped in planetary-scale objects. Some minor chemical changes might occur as the dust and gas fell inward, but such effects were overwhelmed by the much larger-scale processes that occurred even in bodies as small as asteroids. The chemistry that did occur in the nebula was relatively easy to model because the fall from the cold molecular cloud into the growing star was a one-way trip down a well-known temperature pressure gradient; the only free variable was time. However, just over 10 years ago it was suggested that some material could be processed in the inner nebula, flow outward, and become incorporated into comets. This outward flow was confirmed when the Stardust mission returned crystalline mineral fragments from Comet Wild 2 that must have been processed close to the Sun before they were incorporated into the comet. In this week's Science Express, Ciesla and Sandford demonstrate that even the outermost regions of the solar nebula can be a chemically active environment. Their finding could have consequences for the rest of the nebula. Our understanding of the chemistry in protostellar systems has made enormous progress over the last few decades, fueled by an increased awareness of the complex dynamics of these evolving energetic nebulae. We can no longer consider just the simple local environment to explain the composition of a planet, asteroid, or comet as was done in the past, but must now consider chemical processes that might take place within the nebula as a whole as well as the probability of transport and mixing the products of such reactions throughout the system. just as we now find it impossible to explain the complex chemistry of the terrestrial atmosphere without reference to detailed transport models that interconnect highly dissimilar chemical environments, so chemical models of protostars and of the solar nebula must eventually treat these environments as tightly coupled, interactive systems. The demonstration that the chemistry on the surfaces of outward-flowing, dynamically mixing icy grain surfaces both mimics the chemistry in cold cloud cores and strikes at the central assumption of the photochemical self-shielding model for oxygen isotopes in solar system solids only adds emphasis to this conclusion.
NASA Astrophysics Data System (ADS)
Kalesse, Heike; de Boer, Gijs; Solomon, Amy; Oue, Mariko; Ahlgrimm, Maike; Zhang, Damao; Shupe, Matthew; Luke, Edward; Protat, Alain
2016-04-01
In the Arctic, a region particularly sensitive to climate change, mixed-phase clouds occur as persistent single or multiple stratiform layers. For many climate models, the correct partitioning of hydrometeor phase (liquid vs. ice) remains a challenge. However, this phase partitioning plays an important role for precipitation processes and the radiation budget. To better understand the partitioning of phase in Arctic clouds, observations using a combination of surface-based remote sensors are useful. In this study, the focus is on a persistent low-level single-layer stratiform Arctic mixed-phase cloud observed during March 11-12, 2013 at the US Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) permanent site in Barrow, Alaska. This case is of particular interest due to two significant shifts in observed precipitation intensity over a 36 hour period. For the first 12 hours of this case, the observed liquid portion of the cloud cover featured a stable cloud top height with a gradually descending liquid cloud base and continuous ice precipitation. Then the ice precipitation intensity significantly decreased. A second decrease in ice precipitation intensity was observed a few hours later coinciding with the advection of a cirrus over the site. Through analysis of the data collected by extensive ground-based remote-sensing and in-situ observing systems as well as Nested Weather Research and Forecasting (WRF) simulations and ECMWF radiation scheme simulations, we try to shed light on the processes responsible for these rapid changes in precipitation rates. A variety of parameters such as the evolution of the internal dynamics and microphysics of the low-level mixed-phase cloud and the influence of the cirrus cloud are evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, T. K. M.; Eriksson, S.; Hasegawa, H.
When the interplanetary magnetic field (IMF) is strongly northward, a boundary layer that contains a considerable amount of plasma of magnetosheath origin is often observed along and earthward of the low-latitude magnetopause. Such a pre-existing boundary layer, with a higher density than observed in the adjacent magnetosphere, reduces the local Alfvén speed and allows the Kelvin-Helmholtz instability (KHI) to grow more strongly. We employ a three-dimensional fully kinetic simulation to model an event observed by the Magnetospheric Multiscale (MMS) mission in which the spacecraft detected substantial KH waves between a pre-existing boundary layer and the magnetosheath during strong northward IMF.more » Initial results of this simulation [Nakamura et al., 2017] have successfully demonstrated ion-scale signatures of magnetic reconnection induced by the non-linearly developed KH vortex, which are quantitatively consistent with MMS observations. Furthermore, we quantify the simulated mass and energy transfer processes driven by this vortex-induced reconnection (VIR) and show that during this particular MMS event (i) mass enters a new mixing layer formed by the VIR more efficiently from the pre-existing boundary layer side than from the magnetosheath side, (ii) mixed plasmas within the new mixing layer convect tailward along the magnetopause at more than half the magnetosheath flow speed, and (iii) energy dissipation in localized VIR dissipation regions results in a strong parallel electron heating within the mixing layer. Finally, the quantitative agreements between the simulation and MMS observations allow new predictions that elucidate how the mass and energy transfer processes occur near the magnetopause during strong northward IMF.« less
NASA Astrophysics Data System (ADS)
Meng, R.; Wu, J.; Zhao, F. R.; Kathy, S. L.; Dennison, P. E.; Cook, B.; Hanavan, R. P.; Serbin, S.
2016-12-01
As a primary disturbance agent, fire significantly influences forest ecosystems, including the modification or resetting of vegetation composition and structure, which can then significantly impact landscape-scale plant function and carbon stocks. Most ecological processes associated with fire effects (e.g. tree damage, mortality, and vegetation recovery) display fine-scale, species specific responses but can also vary spatially within the boundary of the perturbation. For example, both oak and pine species are fire-adapted, but fire can still induce changes in composition, structure, and dominance in a mixed pine-oak forest, mainly because of their varying degrees of fire adaption. Evidence of post-fire shifts in dominance between oak and pine species has been documented in mixed pine-oak forests, but these processes have been poorly investigated in a spatially explicit manner. In addition, traditional field-based means of quantifying the response of partially damaged trees across space and time is logistically challenging. Here we show how combining high resolution satellite imagery (i.e. Worldview-2,WV-2) and airborne imaging spectroscopy and LiDAR (i.e. NASA Goddard's Lidar, Hyperspectral and Thermal airborne imager, G-LiHT) can be effectively used to remotely quantify spatial and temporal patterns of vegetation recovery following a top-killing fire that occurred in 2012 within mixed pine-oak forests in the Long Island Central Pine Barrens Region, New York. We explore the following questions: 1) what are the impacts of fire on species composition, dominance, plant health, and vertical structure; 2) what are the recovery trajectories of forest biomass, structure, and spectral properties for three years following the fire; and 3) to what extent can fire impacts be captured and characterized by multi-sensor remote sensing techniques from active and passive optical remote sensing.
Nakamura, T. K. M.; Eriksson, S.; Hasegawa, H.; ...
2017-10-23
When the interplanetary magnetic field (IMF) is strongly northward, a boundary layer that contains a considerable amount of plasma of magnetosheath origin is often observed along and earthward of the low-latitude magnetopause. Such a pre-existing boundary layer, with a higher density than observed in the adjacent magnetosphere, reduces the local Alfvén speed and allows the Kelvin-Helmholtz instability (KHI) to grow more strongly. We employ a three-dimensional fully kinetic simulation to model an event observed by the Magnetospheric Multiscale (MMS) mission in which the spacecraft detected substantial KH waves between a pre-existing boundary layer and the magnetosheath during strong northward IMF.more » Initial results of this simulation [Nakamura et al., 2017] have successfully demonstrated ion-scale signatures of magnetic reconnection induced by the non-linearly developed KH vortex, which are quantitatively consistent with MMS observations. Furthermore, we quantify the simulated mass and energy transfer processes driven by this vortex-induced reconnection (VIR) and show that during this particular MMS event (i) mass enters a new mixing layer formed by the VIR more efficiently from the pre-existing boundary layer side than from the magnetosheath side, (ii) mixed plasmas within the new mixing layer convect tailward along the magnetopause at more than half the magnetosheath flow speed, and (iii) energy dissipation in localized VIR dissipation regions results in a strong parallel electron heating within the mixing layer. Finally, the quantitative agreements between the simulation and MMS observations allow new predictions that elucidate how the mass and energy transfer processes occur near the magnetopause during strong northward IMF.« less
NASA Astrophysics Data System (ADS)
Suzuki, Yuki; Yasuda, Atsushi; Hokanishi, Natsumi; Kaneko, Takayuki; Nakada, Setsuya; Fujii, Toshitsugu
2013-05-01
The 2011 Shinmoe-dake eruption started with a phreatomagmatic eruption (Jan 19), followed by climax sub-Plinian events and subsequent explosions (Jan 26-28), lava accumulation in the crater (end of January), and vulcanian eruptions (February-April). We have studied a suite of ejecta to investigate the magmatic system beneath the volcano and remobilization processes in the silicic magma mush. Most of the ejecta, including brown and gray colored pumice clasts (Jan 26-28), ballistically ejected dense lava (Feb 1), and juvenile particles in ash from the phreatomagmatic and vulcanian events are magma mixing products (SiO2 = 57-58 wt.%; 960-980 °C). Mixing occurred between silicic andesite (SA) and basaltic andesite (BA) magmas at a fixed ratio (40%-30% SA and 60%-70% BA). The SA magma had SiO2 = 62-63 wt.% and a temperature of 870 °C, and contains 43 vol.% phenocrysts of pyroxene, plagioclase, and Fe-Ti oxide. The BA magma had SiO2 = 55 wt.% and a temperature of 1030 °C, and contains 9 vol.% phenocrysts of olivine and plagioclase. The SA magma partly erupted without mixing as white parts of pumices and juvenile particles. The two magmatic end-members crystallized at different depths, requiring the presence of two separate magma reservoirs; shallower SA reservoir and deeper BA reservoir. An experimental study reveals that the SA magma had been stored at a pressure of 125 MPa, corresponding to a depth of 5 km. The textures and forms of phenocrysts from the BA magma indicate rapid crystallization directly related to the 2011 eruptive activity. The wide range of H2O contents of olivine melt inclusions (5.5-1.6 wt.%) indicates that rapid crystallization was induced by decompression, with olivine crystallization first (≤ 250 MPa), followed by plagioclase addition. The limited occurrence of olivine melt inclusions trapped at depths of < 5 km is consistent with the proposed magma system model, because olivine crystallization ceased after magma mixing. Our petrological model is consistent with a geophysical model that explains whole crustal deformation as being due to a single source located 7-8 km northwest of the Shinmoe-dake summit. However, even the shallowest estimated source of this deformation (7.5-6.2 km) is deeper than the SA reservoir, which thus requires a contribution of deeper BA magmas to the observed deformation. Remobilization of mush-like SA magma occurred in two stages before the early sub-Plinian event. Firstly, precursor mixing with BA magma and associated heating occurred (925-871 °C; stage-1 of ≥ 350 h), followed by final mixing with BA magma (stage-2). MgO profiles of magnetite phenocrysts define timescales of 0.7-15.2 h from this final mixing to eruption. The mixed and heated magmas, and stagnant mush that existed in the SA reservoir in the precursor stage, were finally erupted together. Magnetite phenocrysts in the Feb 18 ash reveal the occurrence of continuous erosion of the stagnant mush during the course of the 2011 eruptive activity.
Conelea, Christine A.; Ramanujam, Krishnapriya; Walther, Michael R.; Freeman, Jennifer B.; Garcia, Abbe M.
2014-01-01
Stress is the contextual variable most commonly implicated in tic exacerbations. However, research examining associations between tics, stressors, and the biological stress response has yielded mixed results. This study examined whether tics occur at a greater frequency during discrete periods of heightened physiological arousal. Children with co-occurring tic and anxiety disorders (n = 8) completed two stress induction tasks (discussion of family conflict, public speech). Observational (tic frequencies) and physiological (heart rate) data were synchronized using The Observer XT, and tic frequencies were compared across periods of high and low heart rate. Tic frequencies across the entire experiment did not increase during periods of higher heart rate. During the speech task, tic frequencies were significantly lower during periods of higher heart rate. Results suggest that tic exacerbations may not be associated with heightened physiological arousal and highlight the need for further tic research using integrated measurement of behavioral and biological processes. PMID:24662238
Conelea, Christine A; Ramanujam, Krishnapriya; Walther, Michael R; Freeman, Jennifer B; Garcia, Abbe M
2014-03-01
Stress is the contextual variable most commonly implicated in tic exacerbations. However, research examining associations between tics, stressors, and the biological stress response has yielded mixed results. This study examined whether tics occur at a greater frequency during discrete periods of heightened physiological arousal. Children with co-occurring tic and anxiety disorders (n = 8) completed two stress-induction tasks (discussion of family conflict, public speech). Observational (tic frequencies) and physiological (heart rate [HR]) data were synchronized using The Observer XT, and tic frequencies were compared across periods of high and low HR. Tic frequencies across the entire experiment did not increase during periods of higher HR. During the speech task, tic frequencies were significantly lower during periods of higher HR. Results suggest that tic exacerbations may not be associated with heightened physiological arousal and highlight the need for further tic research using integrated measurement of behavioral and biological processes. © The Author(s) 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, W.P.; Bushaw, B.A.; McCarthy, M.I.
1996-10-01
The Department of Energy is undertaking the enormous task of remediating defense wastes and environmental insults which have occurred over 50 years of nuclear weapons production. It is abundantly clear that significant technology advances are needed to characterize, process, and store highly radioactive waste and to remediate contaminated zones. In addition to the processing and waste form issues, analytical technologies needed for the characterization of solids, and for monitoring storage tanks and contaminated sites do not exist or are currently expensive labor-intensive tasks. This report describes progress in developing sensitive, rapid, and widely applicable laser-based mass spectrometry techniques for analysismore » of mixed chemical wastes and contaminated soils.« less
Yogurt fermentation in the presence of starch-lipid composite.
Singh, M; Kim, S
2009-03-01
The fermentation of yogurt in the presence of 0.5%, 1.0%, 1.5%, and 2.0% starch-lipid composite (SLC) was investigated. The pH, viscosity, and morphology of the mix were monitored during the fermentation process. The rate of drop in pH with time during incubation was not affected by the addition of SLC. However, it was found that the presence of SLC caused faster aggregation, which was clearly evidenced by the viscosity variation during the process of fermentation. An examination of the morphologies confirmed that aggregation occurred earlier in the presence of SLC and SLC did not form phase-separated domains. This study concludes that SLC would serve as a good additive (fat replacer and stabilizer) for the production of yogurt.
Features of Red Sea Water Masses
NASA Astrophysics Data System (ADS)
Kartadikaria, Aditya; Hoteit, Ibrahim
2015-04-01
Features of Red Sea water mass can be divided into three types but best to be grouped into two different classes that are split at the potential density line σθ=27.4. The surface water (0-50 m) and the intermediate water (50-200 m) have nearly identical types of water mass. They appear as a maxima salinity layer for the water mass that has σθ > 26.0, and as a minimum salinity layer for water mass that has σθ < 26.0. These types of water masses are strongly affected by mixing that is controlled by seasonal variability, fresh water intrusion of the Gulf of Aden Intermediate Water (GAIW), and eddies variability. Two types of mixing; isopycnal and diapycnal mixing are part of important physical phenomena that explain the change of water mass in the Red Sea. The isopycnal mixing occurs at the neutral potential density line, connecting the Red Sea with its adjacent channel, the Gulf of Aden. Diapycnal mixing is found as a dominant mixing mode in the surface of the Red Sea Water and mainly due to energetic eddy activity. Density gradients, across which diapycnal mixing occurs, in the Red Sea are mainly due to large variations in salinity. The isolation of an extreme haline water mass below the thermocline contributes to the generation of the latitudinal shift and low diapycnal mixing. This finding further explains the difference of spatial kinetic mixing between the RSW and the Indian Ocean basin.
NASA Astrophysics Data System (ADS)
Girishkumar, M. S.; Joseph, J.; Thangaprakash, V. P.; Pottapinjara, V.; McPhaden, M. J.
2017-11-01
Composite analyses of mixed layer temperature (MLT) budget terms from near-surface meteorological and oceanic observations in the central Bay of Bengal are utilized to evaluate the modulation of air-sea interactions and MLT processes in response to the summer monsoon intraseasonal oscillation (MISO). For this purpose, we use moored buoy data at 15°N, 12°N, and 8°N along 90°E together with TropFlux meteorological parameters and the Ocean Surface Current Analyses Real-time (OSCAR) current product. Our analysis shows a strong cooling tendency in MLT with maximum amplitude in the central and northern BoB during the northward propagation of enhanced convective activity associated with the active phase of the MISO; conversely, warming occurs during the suppressed phase of the MISO. The surface mixed layer is generally heated during convectively inactive phases of the MISO primarily due to increased net surface heat flux into the ocean. During convectively active MISO phases, the surface mixed layer is cooled by the combined influence of net surface heat loss to the atmosphere and entrainment cooling at the base of mixed layer. The variability of net surface heat flux is primarily due to modulation of latent heat flux and shortwave radiation. Shortwave is mostly controlled by an enhancement or reduction of cloudiness during the active and inactive MISO phases and latent heat flux is mostly controlled by variations in air-sea humidity difference.
Moist entropy and water isotopologues in a Walker-type circulation framework of the MJO
NASA Astrophysics Data System (ADS)
Hurley, J. V.; Noone, D.
2017-12-01
The MJO is the principal source of tropical intraseasonal variability, yet we struggle to accurately simulate its observed convective behavior and eastward propagation. There is continued need for evaluating the role of water within the MJO, including evaporation, vertical transport, precipitation, and latent heating of the coupled atmosphere-ocean system. Isotopes are particularly useful for investigating these aspects of the water cycle. Recent contribution to resolve this includes analyses of the joint distribution of water vapor and isotopologue concentrations (dDv), to identify shortcomings in modeling MJO humidity, clouds or convection. Here, we complement the mixing ratio versus isotope approach with analyses of moist entropy, to distinguish the roles of convective and large-scale dynamic processes through the phases of the MJO. We do this in the classic MJO framework of the tropical Walker-type circulations. In this framework, the MJO can be characterized by strengthening and eastward expansion, and subsequent weakening and contraction, of the tropical stream function over the Indian Ocean. Low troposphere westerlies converge with easterlies, giving rise to uplift, convection, and precipitation, at a longitude that propagates east from 88°E to 136°E . In composite structure of the MJO, wet equivalent potential temperature (θq) anomalies have maximum expression at 500 hPa, and westward tilts with altitude. A positive θq anomaly occurs over the uplift and precipitation, and negative θq anomalies both trail and lead the convective center, along subsiding branches of the stream function anomalies. Out of phase with θq, dDv anomalies are positive east of and negative trailing or west of the convective center, suggesting moistening of the atmosphere with limited precipitation efficiency. MJO phase tendencies show θq is coherent with precipitation, and dDv are coherent with the tropical stream function, thus tying moist entropy to convective processes and isotope ratios to the large-scale dynamics. Joint distributions of MJO mixing ratio versus dDv are near or below Rayleigh curves, but θq is higher than would be expected for simple Rayleigh fractionation. To resolve this, we assess MJO θq versus mixing ratio and find vertical mixing likely occurs between the stratosphere and lower troposphere.
Lipin, Bruce R.
1993-01-01
This paper explores the hypothesis that chromite seams in the Stillwater Complex formed in response to periodic increases in total pressure in the chamber. Total pressure increased because of the positive δV of nucleation of CO2 bubbles in the melt and their subsequent rise through the magma chamber, during which the bubbles increased in volume by a factor of 4–6. By analogy with the pressure changes in the summit chambers of Kilauea and Krafla volcanoes, the maximum variation was 0⋅2–0⋅25 kbar, or 5–10% of the total pressure in the Stillwater chamber. An evaluation of the likelihood of fountaining and mixing of a new, primitive liquid that entered the chamber with the somewhat more evolved liquid already in the chamber is based upon calculations using observed and inferred velocities and flow rates of basaltic magmas moving through volcanic fissures. The calculations indicate that hot, dense magma would have oozed, rather than fountained into the chamber, and early mixing of the new and residual magmas that could have resulted in chromite crystallizing alone did not take place.Mixing was an important process in the Stillwater magma chamber, however. After the new magma in the chamber underwent ˜5% fractional crystallization, its composition, temperature, and density approached those of the overlying liquid in the chamber and the liquids then mixed. If this process occurred many times over the course of the development of the Ultramafic series, a thick column of magma with orthopyroxene on its liquidus would have been the result. Thus, the sequence of multiple injections, fractionation, and mixing with previously fractionated magma could have been the mechanism that produced the thick bronzite cumulate layer (the Bronzitite zone) above the cyclic units.
Evaluation of soil modification mixing procedures
DOT National Transportation Integrated Search
2001-01-01
Lime is routinely used as a soil modification agent in Kansas to improve the performance of subgrade soils with the primary goal of reducing volume change. Effective mixing of lime and soil is critical to ensuring that the expected improvements occur...
Impact of potassium bromate and potassium iodate in a pound cake system.
Wilderjans, Edith; Lagrain, Bert; Brijs, Kristof; Delcour, Jan A
2010-05-26
This study investigates the impact of the oxidants potassium bromate and potassium iodate (8, 16, 32, 64, and 128 micromol/g dry matter of egg white protein) on pound cake making. The impact of the oxidants on egg white characteristics was studied in a model system. Differential scanning calorimetry showed that the oxidants caused egg white to denature later. During heating in a rapid visco analyzer, the oxidants caused the free sulfhydryl (SH) group levels to decrease more intensively and over a smaller temperature range. The oxidants made the proteins more resistant to decreases in protein extractability in sodium dodecyl sulfate containing buffer during cake recipe mixing and less resistant to such decreases during cake baking. We assume that, during baking, the degree to which SH/disulfide exchange and SH oxidation can occur depends on the properties of the protein at the onset of the process. In our view, the prevention of extractability loss during mixing increased the availability of SH groups and caused more such loss during baking. During cooling, all cakes baked with added oxidants showed less collapse. On the basis of the presented data, we put forward that only those protein reactions that occur during baking contribute to the formation of a network that supports final cake structure and prevents collapse.
Analysis of earthquake clustering and source spectra in the Salton Sea Geothermal Field
NASA Astrophysics Data System (ADS)
Cheng, Y.; Chen, X.
2015-12-01
The Salton Sea Geothermal field is located within the tectonic step-over between San Andreas Fault and Imperial Fault. Since the 1980s, geothermal energy exploration has resulted with step-like increase of microearthquake activities, which mirror the expansion of geothermal field. Distinguishing naturally occurred and induced seismicity, and their corresponding characteristics (e.g., energy release) is important for hazard assessment. Between 2008 and 2014, seismic data recorded by a local borehole array were provided public access from CalEnergy through SCEC data center; and the high quality local recording of over 7000 microearthquakes provides unique opportunity to sort out characteristics of induced versus natural activities. We obtain high-resolution earthquake location using improved S-wave picks, waveform cross-correlation and a new 3D velocity model. We then develop method to identify spatial-temporally isolated earthquake clusters. These clusters are classified into aftershock-type, swarm-type, and mixed-type (aftershock-like, with low skew, low magnitude and shorter duration), based on the relative timing of largest earthquakes and moment-release. The mixed-type clusters are mostly located at 3 - 4 km depth near injection well; while aftershock-type clusters and swarm-type clusters also occur further from injection well. By counting number of aftershocks within 1day following mainshock in each cluster, we find that the mixed-type clusters have much higher aftershock productivity compared with other types and historic M4 earthquakes. We analyze detailed spatial variation of 'b-value'. We find that the mixed-type clusters are mostly located within high b-value patches, while large (M>3) earthquakes and other types of clusters are located within low b-value patches. We are currently processing P and S-wave spectra to analyze the spatial-temporal correlation of earthquake stress parameter and seismicity characteristics. Preliminary results suggest that the mixed-type clusters and high b-value patches are spatially correlated with low stress drop earthquakes, indicating high-productivity microearthquakes within low differential stress region, potentially due to deeper injection activities.
Mixing and residence times of stormwater runoff in a detection system
Martin, Edward H.
1989-01-01
Five tracer runs were performed on a detention pond and wetlands system to determine mixing and residence times in the system. The data indicate that at low discharges and with large amounts of storage, the pond is moderately mixed with residence times not much less than the theoretical maximum possible under complete mixing. At higher discharges and with less storage in the pond, short-circuiting occurs, reducing the amount of mixing in the pond and appreciably reducing the residence times. The time between pond outlet peak concentrations and wetlands outlet peak concentrations indicate that in the wetlands, mixing increases with decreasing discharge and increasing storage.
A Martingale Characterization of Mixed Poisson Processes.
1985-10-01
03LA A 11. TITLE (Inciuae Security Clanafication, ",A martingale characterization of mixed Poisson processes " ________________ 12. PERSONAL AUTHOR... POISSON PROCESSES Jostification .......... . ... . . Di.;t ib,,jtion by Availability Codes Dietmar Pfeifer* Technical University Aachen Dist Special and...Mixed Poisson processes play an important role in many branches of applied probability, for instance in insurance mathematics and physics (see Albrecht
Chemical fractionation of siderophile elements in impactites from Australian meteorite craters
NASA Technical Reports Server (NTRS)
Attrep, A., Jr.; Orth, C. J.; Quintana, L. R.; Shoemaker, C. S.; Shoemaker, E. M.; Taylor, S. R.
1991-01-01
The abundance pattern of siderophile elements in terrestrial and lunar impact melt rocks was used extensively to infer the nature of the impacting projectiles. An implicit assumption made is that the siderophile abundance ratios of the projectiles are approximately preserved during mixing of the projectile constituents with the impact melts. As this mixture occurs during flow of strongly shocked materials at high temperatures, however there are grounds for suspecting that the underlying assumption is not always valid. In particular, fractionation of the melted and partly vaporized material of the projectile might be expected because of differences in volatility, solubility in silicate melts, and other characteristics of the constituent elements. Impactites from craters with associated meteorites offer special opportunities to test the assumptions on which projectile identifications are based and to study chemical fractionation that occurred during the impact process.
Review of factors affecting recovery of freshwater stored in saline aquifers
Merritt, Michael L.
1989-01-01
A simulation analysis reported previously, and summarized herein, identified the effects of various geohydrologic and operational factors on recoverability of the injected water. Buoyancy stratification, downgradient advection, and hydrodynamic dispersion are the principal natural processes that reduce the amount of injected water that can be recovered. Buoyancy stratification is shown to depend on injection-zone permeability and the density contrast between injected and saline native water. Downgradient advection occurs as a result of natural or induced hydraulic gradients in the aquifer. Hydrodynamic dispersion reduces recovery efficiency by mixing some of the injected water with native saline aquifer water. In computer simulations, the relation of recovery efficiency to volume injected and its improvement during successive injection-recovery cycles was shown to depend on changes in the degree of hydrodynamic dispersion that occurs. Additional aspects of the subject are discussed.
Microcrystalline silicon growth for heterojunction solar cells
NASA Technical Reports Server (NTRS)
Iles, P. A.; Leung, D. C.; Fang, P. H.
1984-01-01
A single source of evaporation with B mixed with highly doped Si is used instead of the coevaporation of separate Si and B sources to reduce possible carbon contamination. The results of both the heterojunction or heteroface structures, however, are similar when evaporation is used. The best Voc of the heterojunction is about 460mV and no improvement in Voc in the heteroface structure is observed. Slight Voc degradation occurred. A study of the p m-Si/p c-Si structure showed a negative Voc in many cases. The interface properties between the two materials are such that instead of repelling minority carriers from the substrate carrier, collection actually occurred. Another study of cells made in the part of substrates not covered by n-Si results in performance lower than the controls. This indicates possible substrate degradation in the process.
Interaction between Fresh and Sea Water in Tidal Influenced Navigation Channel
NASA Astrophysics Data System (ADS)
Hwang, J. H. H.; Nam-Hoon, K.
2016-02-01
Nam-Hoon, Kim 1, Jin-Hwan, Hwang 2, Hyeyun-Ku 31,2,3 Department of Civil and Environmental Engineering, Seoul National University, Republic of Korea; 1nhkim0426@snu.ac.kr; 2jinhwang@snu.ac.kr; 3hyeyun.ku@gmail.com; We have conducted field observations after freshwater discharges of sea dike during ebb tide in Geum River Estuary, Korea to understand the interaction between fresh and sea water. To measure spatial variability of the stratified flow, an Acoustic Doppler Current Profiler (ADCP) and a portable free-fall tow-yo instrument, Yoing Ocean Data Acquisition Profiler (YODA profiler) which can continuously measures three-dimensional velocity profiles and vertical profiles of the fine-scale features, respectively, within water column were used in a vessel moving at a speed of 1-2 m/s. The flow observations show the strong stratification and dispersion occurred near field region because of the ebb tide advection (Fig. 1). As moving toward the far field region, the stratification and dispersion was getting thin and weak but still remaining. The presence of mixing process between fresh and sea water was represented by the gradient Richardson Number. The mixing occurred throughout the near field region and potentially mixed in the far field region. This study have been conducted to serve as a basic research of understanding the Region Of Freshwater Influence (ROFI) in the tidal influenced navigation channel. We are going to perform a few more observations in the future. Key words: Richardson number, stratification, mixing, ROFI, ADCP, CTDFigure 1. High-resolution observation data of salinity (psu) from YODA Profiler Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled as "Developing total management system for the Keum river estuary and coast" and "Integrated management of marine environment and ecosystems around Saemangeum". We also thank to the administrative supports of Integrated Research Institute of Construction and Environmental Engineering at Seoul National University.
Turbulent mixing layers in the interstellar medium of galaxies
NASA Technical Reports Server (NTRS)
Slavin, J. D.; Shull, J. M.; Begelman, M. C.
1993-01-01
We propose that turbulent mixing layers are common in the interstellar medium (ISM). Injection of kinetic energy into the ISM by supernovae and stellar winds, in combination with density and temperature inhomogeneities, results in shear flows. Such flows will become turbulent due to the high Reynolds number (low viscosity) of the ISM plasma. These turbulent boundary layers will be particularly interesting where the shear flow occurs at boundaries of hot (approximately 10(exp 6) K) and cold or warm (10(exp 2) - 10(exp 4) K) gas. Mixing will occur in such layers producing intermediate-temperature gas at T is approximately equal to 10(exp 5.0) - 10(exp 5.5) that radiates strongly in the optical, ultraviolet, and EUV. We have modeled these layers under the assumptions of rapid mixing down to the atomic level and steady flow. By including the effects of non-equilibrium ionization and self-photoionization of the gas as it cools after mixing, we predict the intensities of numerous optical, infrared, and ultraviolet emission lines, as well as absorption column densities of C 4, N 5, Si 4, and O 6.
NASA Astrophysics Data System (ADS)
Haeffelin, Martial
2016-04-01
Radiation fog formation is largely influenced by the chemical composition, size and number concentration of cloud condensation nuclei and by heating/cooling and drying/moistening processes in a shallow mixing layer near the surface. Once a fog water layer is formed, its development and dissipation become predominantly controlled by radiative cooling/heating, turbulent mixing, sedimentation and deposition. Key processes occur in the atmospheric surface layer, directly in contact with the soil and vegetation, and throughout the atmospheric column. Recent publications provide detailed descriptions of these processes for idealized cases using very high-resolution models and proper representation of microphysical processes. Studying these processes in real fog situations require atmospheric profiling capabilities to monitor the temporal evolution of key parameters at several heights (surface, inside the fog, fog top, free troposphere). This could be done with in-situ sensors flown on tethered balloons or drones, during dedicated intensive field campaigns. In addition Backscatter Lidars, Doppler Lidars, Microwave Radiometers and Cloud Doppler Radars can provide more continuous, yet precise monitoring of key parameters throughout the fog life cycle. The presentation will describe how Backscatter Lidars can be used to study the height and kinetics of aerosol activation into fog droplets. Next we will show the potential of Cloud Doppler Radar measurements to characterize the temporal evolution of droplet size, liquid water content, sedimentation and deposition. Contributions from Doppler Lidars and Microwave Radiometers will be discussed. This presentation will conclude on the potential to use Lidar and Radar remote sensing measurements to support operational fog nowcasting.
Sarode, Ashish; Wang, Peng; Cote, Catherine; Worthen, David R
2013-03-01
Hydroxypropylcellulose (HPC)-SL and -SSL, low-viscosity hydroxypropylcellulose polymers, are versatile pharmaceutical excipients. The utility of HPC polymers was assessed for both dissolution enhancement and sustained release of pharmaceutical drugs using various processing techniques. The BCS class II drugs carbamazepine (CBZ), hydrochlorthiazide, and phenytoin (PHT) were hot melt mixed (HMM) with various polymers. PHT formulations produced by solvent evaporation (SE) and ball milling (BM) were prepared using HPC-SSL. HMM formulations of BCS class I chlorpheniramine maleate (CPM) were prepared using HPC-SL and -SSL. These solid dispersions (SDs) manufactured using different processes were evaluated for amorphous transformation and dissolution characteristics. Drug degradation because of HMM processing was also assessed. Amorphous conversion using HMM could be achieved only for relatively low-melting CBZ and CPM. SE and BM did not produce amorphous SDs of PHT using HPC-SSL. Chemical stability of all the drugs was maintained using HPC during the HMM process. Dissolution enhancement was observed in HPC-based HMMs and compared well to other polymers. The dissolution enhancement of PHT was in the order of SE>BM>HMM>physical mixtures, as compared to the pure drug, perhaps due to more intimate mixing that occurred during SE and BM than in HMM. Dissolution of CPM could be significantly sustained in simulated gastric and intestinal fluids using HPC polymers. These studies revealed that low-viscosity HPC-SL and -SSL can be employed to produce chemically stable SDs of poorly as well as highly water-soluble drugs using various pharmaceutical processes in order to control drug dissolution.
Development of laboratory mix design procedures for RAP mixes.
DOT National Transportation Integrated Search
2013-12-01
The objective of this study was to evaluate the amount of blending that occurs between RAP and virgin asphalt : binders in plant produced HMA in which RAP is incorporated. This objective was accomplished by testing plant : produced mixture from three...
DOT National Transportation Integrated Search
2000-04-01
Approximately 500 million tons of hot mix asphalt (HMA) are placed in the United States each year. With this large quantity of HMA, it is expected that some construction problems will occur from time to time. One problem that has been observed for ye...
A physiologically-based pharmacokinetic (PBPK) model incorporating mixed enzyme inhibition was used to determine mechanism of the metabolic interactions occurring during simultaneous inhalation exposures to the organic solvents chloroform and trichloroethylene (TCE).
V...
Omohyoid Muscle Syndrome in a Mixed Martial Arts Athlete
Lee, Alexander D.; Yu, Alexander; Young, Shayne B.; Battaglia, Patrick J.; Ho, C. John
2015-01-01
Omohyoid muscle syndrome is a rare cause of an X-shaped bulging lateral neck mass that occurs on swallowing. This is a diagnostic case report of a 22-year-old mixed martial arts athlete who acquired this condition. PMID:26502424
A physiologically-based pharmacokinetic (PBPK) model incorporating mixed enzyme inhibition was used to determine the mechanism of metabolic interactions occurring during simultaneous exposures to the organic solvents chloroform and trichloroethylene (TCE). Visualization-based se...
NASA Astrophysics Data System (ADS)
Osman, M. K.; Hocking, W. K.; Tarasick, D. W.
2016-06-01
Vertical diffusion and mixing of tracers in the upper troposphere and lower stratosphere (UTLS) are not uniform, but primarily occur due to patches of turbulence that are intermittent in time and space. The effective diffusivity of regions of patchy turbulence is related to statistical parameters describing the morphology of turbulent events, such as lifetime, number, width, depth and local diffusivity (i.e., diffusivity within the turbulent patch) of the patches. While this has been recognized in the literature, the primary focus has been on well-mixed layers, with few exceptions. In such cases the local diffusivity is irrelevant, but this is not true for weakly and partially mixed layers. Here, we use both theory and numerical simulations to consider the impact of intermediate and weakly mixed layers, in addition to well-mixed layers. Previous approaches have considered only one dimension (vertical), and only a small number of layers (often one at each time step), and have examined mixing of constituents. We consider a two-dimensional case, with multiple layers (10 and more, up to hundreds and even thousands), having well-defined, non-infinite, lengths and depths. We then provide new formulas to describe cases involving well-mixed layers which supersede earlier expressions. In addition, we look in detail at layers that are not well mixed, and, as an interesting variation on previous models, our procedure is based on tracking the dispersion of individual particles, which is quite different to the earlier approaches which looked at mixing of constituents. We develop an expression which allows determination of the degree of mixing, and show that layers used in some previous models were in fact not well mixed and so produced erroneous results. We then develop a generalized model based on two dimensional random-walk theory employing Rayleigh distributions which allows us to develop a universal formula for diffusion rates for multiple two-dimensional layers with general degrees of mixing. We show that it is the largest, most vigorous and less common turbulent layers that make the major contribution to global diffusion. Finally, we make estimates of global-scale diffusion coefficients in the lower stratosphere and upper troposphere. For the lower stratosphere, κeff ≈ 2x10-2 m2 s-1, assuming no other processes contribute to large-scale diffusion.
Jun, Yong Woong; Wang, Taejun; Hwang, Sekyu; Kim, Dokyoung; Ma, Donghee; Kim, Ki Hean; Kim, Sungjee; Jung, Junyang; Ahn, Kyo Han
2018-06-05
Vesicles exchange its contents through membrane fusion processes-kiss-and-run and full-collapse fusion. Indirect observation of these fusion processes using artificial vesicles enhanced our understanding on the molecular mechanisms involved. Direct observation of the fusion processes in a real biological system, however, remains a challenge owing to many technical obstacles. We disclose a ratiometric two-photon probe offering real-time tracking of lysosomal ATP with quantitative information for the first time. By applying the probe to two-photon live-cell imaging technique, lysosomal membrane fusion process in cells has been directly observed along with the concentration of its content-lysosomal ATP. Results show that the kiss-and-run process between lysosomes proceeds through repeating transient interactions with gradual content mixing, whereas the full-fusion process occurs at once. Furthermore, it is confirmed that both the fusion processes proceed with conservation of the content. Such a small-molecule probe exerts minimal disturbance and hence has potential for studying various biological processes associated with lysosomal ATP. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Can Earthworm "mix up" Soil Carbon Budgets in Temperate Forests Under Elevated Carbon Dioxide?
NASA Astrophysics Data System (ADS)
Sánchez-de León, Y.; González-Meler, M.; Sturchio, N. C.; Wise, D. H.; Norby, R. J.
2008-12-01
The effects of global change on earthworms and their associated feedbacks on soil and ecosystem processes have been largely overlooked. We studied how the responses of a temperate deciduous forest to elevated carbon dioxide atmospheric concentrations (e[CO2]) influence earthworms and the soil processes affected by them. Our objectives were to: i) identify soil layers of active soil mixing under e[CO2] and current carbon dioxide atmospheric concentrations (c[CO2]) using fallout cesium (137Cs), ii) study how e[CO2] affects earthworm populations, iii) understand the relationship between soil mixing and earthworms at our study site, and iv) identify the implications of earthworm-mediated soil mixing for the carbon budget of a temperate forest. To study soil mixing, we measured vertical 137Cs activity in soil cores (0-24 cm depth) collected in replicated e[CO2] and c[CO2] sweetgum (Liquidambar styraciflua) plots (n = 2) in a Free Air CO2 Enrichment (FACE) ecosystem experiment at Oak Ridge National Laboratory. We measured earthworm density and fresh weight in the plots in areas adjacent to where soil cores were taken. Preliminary results on the vertical distribution of 137Cs in the c[CO2] treatments showed that higher 137Cs activity was located from 8-16 cm depth and no 137Cs activity was measured below 20 cm. In contrast, in the e[CO2] treatment, peak 137Cs activity was slightly deeper (10-18 cm), and 137Cs activity was still measured below 22 cm. Mean earthworm density was higher in e[CO2] than c[CO2] treatments (168 m-2 and 87 m-2, respectively; p = 0.046); earthworm fresh weights, however, did not differ significantly between treatments (32 g m-2 and 18 g m-2, respectively; p = 0.182). The 137Cs vertical distribution suggest that soil mixing occurs deeper in e[CO2] than in c[CO2] treatments, which is consistent with higher earthworm densities in e[CO2] than in c[CO2] treatments. Mixing deeper low carbon content soil with shallower high carbon soil may result in a dilution of net carbon inputs in forest soils exposed to e[CO2]. Vertical dilution of new carbon may explain why carbon accrual is detected only near the surface at this FACE site. By identifying the depths of active soil mixing and possible soil mixing mechanisms (e.g. earthworms), accounting of new organic carbon accrual could be more reliably determined for forest soils in response to e[CO2] conditions.
NASA Astrophysics Data System (ADS)
Dengler, M.; Brandt, P.; McPhaden, M. J.; Thomsen, S.; Krahmann, G.; Fischer, T.; Freitag, P.; Hummels, R.
2012-04-01
An extensive measurement program within the Atlantic Cold Tongue (ACT) region was carried out during the ACT onset in boreal summer 2011. During two consecutive cruises shipboard microstructure profiles, conductivity-temperature-depth-O2 (CTD-O2) profiles and shipboard velocity profiles were collected between mid-May and mid-July. The shipboard measurements were complemented by a Glider swarm experiment during which 5400 CTD-O2 profiles were collected along specified transects within the ACT region. One of those Gliders was equipped with a MicroRider turbulence package and collected a 5-week microstructure time series of about hourly-resolution in the center of the cold tongue on the equator at 10°W. The MicroRider/Glider package was circling a PIRATA mooring from which additionally high-resolution acoustic Doppler current profiles are available for this time period to allow analysis of the background conditions. In this contribution we use a subset from the above data to detail mixing processes in the upper stratified ocean and describe the background conditions favoring enhanced mixing. From end of May to mid-July, sea surface temperature decreased from 26°C to below 22°C at 10°W. During the whole period of autonomous microstructure observations, strong bursts of turbulence were observed extending from the mixed layer into the upper thermocline. These bursts lasted for 3-5 hours and were found to penetrate to about 30m below the base of the mixed layer. They were observed to occur predominately during night-time while during day-time they were less frequent. Dissipation rates of turbulent kinetic energy (ɛ) during these bursts were above 3x10-6Wkg-1 in the upper stratified water column and turbulent eddy diffusivities (Kρ) often reached 1x10-3m2s-1. The data set suggests that strength and frequency of occurrence of the turbulent bursts is modulated by the presents of Tropical Instability Waves which additionally enhance background shear at the equator. The presents of internal waves having frequencies close to the buoyancy frequency during enhanced mixing events will be discussed. From the first 6 days of microstructure data, a diapycnal heat flux divergence from the mixed layer into the upper stratified ocean of 80Wm-2 was inferred. Other contributions to the mixed layer heat balance will be examined to evaluate their relevance during ACT onset.
NASA Astrophysics Data System (ADS)
Elangovan, R.; Krishna, Kumar; Vishwakarma, Neeraj; Hari, K. R.; Ram Mohan, M.
2017-10-01
Field and petrographic studies are carried out to characterize the interactions of mafic and felsic magmas from Pithora region of the northeastern part of the Bastar Craton. The MMEs, syn-plutonic mafic dykes, cuspate contacts, magmatic flow textures, mingling and hybridization suggest the coeval emplacement of end member magmas. Petrographic evidences such as disequilibrium assemblages, resorption textures, quartz ocelli, rapakivi and poikilitic textures suggest magma mingling and mixing phenomena. Such features of mingling and mixing of the felsic and mafic magma manifest the magma chamber processes. Introduction of mafic magmas into the felsic magmas before initiation of crystallization of the latter, results in hybrid magmas under the influence of thermal and chemical exchange. The mechanical exchange occurs between the coexisting magmas due to viscosity contrast, if the mafic magma enters slightly later into the magma chamber, then the felsic magma starts to crystallize. Blobs of mafic magma form as MMEs in the felsic magma and they scatter throughout the pluton due to convection. At a later stage, if mafic magma enters the system after partial crystallization of felsic phase, mechanical interaction between the magmas leads to the formation of fragmented dyke or syn-plutonic mafic dyke. All these features are well-documented in the study area. Field and petrographic evidences suggest that the textural variations from Pithora region of Bastar Craton are the outcome of magma mingling, mixing and hybridization processes.
Strontium isotopes as an indicator for groundwater salinity sources in the Kirkuk region, Iraq.
Sahib, Layth Y; Marandi, Andres; Schüth, Christoph
2016-08-15
The Kirkuk region in northern Iraq hosts some of the largest oil fields in the Middle East. Several anticline structures enabled vertical migration and entrapment of the oil. Frequently, complex fracture systems and faults cut across the Eocene and middle Oligocene reservoirs and the cap rock, the Fatha Formation of Miocene age. Seepage of crude oil and oil field brines are therefore a common observation in the anticline axes and contamination of shallow groundwater resources is a major concern. In this study, 65 water samples were collected in the Kirkuk region to analyze and distinguish mixing processes between shallow groundwater resources, uprising oil field brines, and dissolution of gypsum and halite from the Fatha Formation. Hydrochemical analyses of the water samples included general hydrochemistry, stable water isotopes, as well as strontium concentrations and for 22 of the samples strontium isotopes ((87)Sr/(86)Sr). Strontium concentrations increased close to the anticline axes with highest concentrations in the oil field brines (300mg/l). Strontium isotopes proved to be a valuable tool to distinguish mixing processes as isotope signatures of the oil field brines and of waters from the Fatha Formation are significantly different. It could be shown, that mixing of shallow groundwater with oil field brines is occurring close to the major fault zones in the anticlines but high concentrations of strontium in the water samples are mainly due to dissolution from the Fatha Formation. Copyright © 2016 Elsevier B.V. All rights reserved.
Jayaprakash, Paul T
2015-01-01
Establishing identification during skull-photo superimposition relies on correlating the salient morphological features of an unidentified skull with those of a face-image of a suspected dead individual using image overlay processes. Technical progression in the process of overlay has included the incorporation of video cameras, image-mixing devices and software that enables real-time vision-mixing. Conceptual transitions occur in the superimposition methods that involve 'life-size' images, that achieve orientation of the skull to the posture of the face in the photograph and that assess the extent of match. A recent report on the reliability of identification using the superimposition method adopted the currently prevalent methods and suggested an increased rate of failures when skulls were compared with related and unrelated face images. The reported reduction in the reliability of the superimposition method prompted a review of the transition in the concepts that are involved in skull-photo superimposition. The prevalent popular methods for visualizing the superimposed images at less than 'life-size', overlaying skull-face images by relying on the cranial and facial landmarks in the frontal plane when orienting the skull for matching and evaluating the match on a morphological basis by relying on mix-mode alone are the major departures in the methodology that may have reduced the identification reliability. The need to reassess the reliability of the method that incorporates the concepts which have been considered appropriate by the practitioners is stressed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
When Language Switching has No Apparent Cost: Lexical Access in Sentence Context
Gullifer, Jason W.; Kroll, Judith F.; Dussias, Paola E.
2013-01-01
We report two experiments that investigate the effects of sentence context on bilingual lexical access in Spanish and English. Highly proficient Spanish-English bilinguals read sentences in Spanish and English that included a marked word to be named. The word was either a cognate with similar orthography and/or phonology in the two languages, or a matched non-cognate control. Sentences appeared in one language alone (i.e., Spanish or English) and target words were not predictable on the basis of the preceding semantic context. In Experiment 1, we mixed the language of the sentence within a block such that sentences appeared in an alternating run in Spanish or in English. These conditions partly resemble normally occurring inter-sentential code-switching. In these mixed-language sequences, cognates were named faster than non-cognates in both languages. There were no effects of switching the language of the sentence. In Experiment 2, with Spanish-English bilinguals matched closely to those who participated in the first experiment, we blocked the language of the sentences to encourage language-specific processes. The results were virtually identical to those of the mixed-language experiment. In both cases, target cognates were named faster than non-cognates, and the magnitude of the effect did not change according to the broader context. Taken together, the results support the predictions of the Bilingual Interactive Activation + Model (Dijkstra and van Heuven, 2002) in demonstrating that bilingual lexical access is language non-selective even under conditions in which language-specific cues should enable selective processing. They also demonstrate that, in contrast to lexical switching from one language to the other, inter-sentential code-switching of the sort in which bilinguals frequently engage, imposes no significant costs to lexical processing. PMID:23750141
Single-channel mixed signal blind source separation algorithm based on multiple ICA processing
NASA Astrophysics Data System (ADS)
Cheng, Xiefeng; Li, Ji
2017-01-01
Take separating the fetal heart sound signal from the mixed signal that get from the electronic stethoscope as the research background, the paper puts forward a single-channel mixed signal blind source separation algorithm based on multiple ICA processing. Firstly, according to the empirical mode decomposition (EMD), the single-channel mixed signal get multiple orthogonal signal components which are processed by ICA. The multiple independent signal components are called independent sub component of the mixed signal. Then by combining with the multiple independent sub component into single-channel mixed signal, the single-channel signal is expanded to multipath signals, which turns the under-determined blind source separation problem into a well-posed blind source separation problem. Further, the estimate signal of source signal is get by doing the ICA processing. Finally, if the separation effect is not very ideal, combined with the last time's separation effect to the single-channel mixed signal, and keep doing the ICA processing for more times until the desired estimated signal of source signal is get. The simulation results show that the algorithm has good separation effect for the single-channel mixed physiological signals.
Mixing of the Interstellar and Solar Plasmas at the Heliospheric Interface
Pogorelov, N. V.; Borovikov, S. N.
2015-10-12
From the ideal MHD perspective, the heliopause is a tangential discontinuity that separates the solar wind plasma from the local interstellar medium plasma. There are physical processes, however, that make the heliopause permeable. They can be subdivided into kinetic and MHD categories. Kinetic processes occur on small length and time scales, and cannot be resolved with MHD equations. On the other hand, MHD instabilities of the heliopause have much larger scales and can be easily observed by spacecraft. The heliopause may also be a subject of magnetic reconnection. In this paper, we discuss mechanisms of plasma mixing at the heliopausemore » in the context of Voyager 1 observations. Numerical results are obtained with a Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS), which is a package of numerical codes capable of performing adaptive mesh refinement simulations of complex plasma flows in the presence of discontinuities and charge exchange between ions and neutral atoms. The flow of the ionized component is described with the ideal MHD equations, while the transport of atoms is governed either by the Boltzmann equation or multiple Euler gas dynamics equations. The code can also treat nonthermal ions and turbulence produced by them.« less
Bojolly, Daline; Doyen, Périne; Le Fur, Bruno; Christaki, Urania; Verrez-Bagnis, Véronique; Grard, Thierry
2017-02-01
Bigeye tuna (Thunnus obesus) and yellowfin tuna (Thunnus albacares) are among the most widely used tuna species for canning purposes. Not only substitution but also mixing of tuna species is prohibited by the European regulation for canned tuna products. However, as juveniles of bigeye and yellowfin tunas are very difficult to distinguish, unintentional substitutions may occur during the canning process. In this study, two mitochondrial markers from NADH dehydrogenase subunit 2 and cytochrome c oxidase subunit II genes were used to identify bigeye tuna and yellowfin tuna, respectively, utilizing TaqMan qPCR methodology. Two different qPCR-based methods were developed to quantify the percentage of flesh of each species used for can processing. The first one was based on absolute quantification using standard curves realized with these two markers; the second one was founded on relative quantification with the universal 12S rRNA gene as the endogenous gene. On the basis of our results, we conclude that our methodology could be applied to authenticate these two closely related tuna species when used in a binary mix in tuna cans.
Clustering and entrainment effects on the evaporation of dilute droplets in a turbulent jet
NASA Astrophysics Data System (ADS)
Dalla Barba, Federico; Picano, Francesco
2018-03-01
The evaporation of droplets within turbulent sprays involves unsteady, multiscale, and multiphase processes which make its comprehension and modeling capabilities still limited. The present work aims to investigate the dynamics of droplet vaporization within a turbulent spatial developing jet in dilute, nonreacting conditions. We address the problem considering a turbulent jet laden with acetone droplets and using the direct numerical simulation framework based on a hybrid Eulerian-Lagrangian approach and the point droplet approximation. A detailed statistical analysis of both phases is presented. In particular, we show how crucial is the preferential sampling of the vapor phase induced by the inhomogeneous localization of the droplets through the flow. Strong droplet preferential segregation develops suddenly downstream from the inflow section both within the turbulent core and the jet mixing layer. Two distinct mechanisms have been found to drive this phenomenon: the inertial small-scale clustering in the jet core and the intermittent dynamics of droplets across the turbulent-nonturbulent interface in the mixing layer, where dry air entrainment occurs. These phenomenologies strongly affect the overall vaporization process and lead to an impressive widening of the droplet size and vaporization rate distributions in the downstream evolution of the turbulent spray.
James M. Guildin
2007-01-01
Shortleaf pine (Pinus echinata Mill.) is the only naturally-occurring pine ~Distributed throughout the Ozark-Ouachita Highlands. Once dominant on south-facing and ridgetop stands and important in mixed stands, it is now restricted to south- and southwestfacing ~slopes in the Ouachita and southern Ozark Mountains, and to isolated pure and mixed stands...
James M. Guldin
2007-01-01
Shortleaf pine (Pinus echinata Mill.) is the only naturally-occurring pine distributed throughout the Ozark-Ouachita Highlands. Once dominant on south-facing and ridgetop stands and important in mixed stands, it is now restricted to south- and southwestfacing slopes in the Ouachita and southern Ozark Mountains, and to isolated pure and mixed stands...
Tree mortality in drought-stressed mixed-conifer and ponderosa pine forests, Arizona, USA
Joseph L. Ganey; Scott C. Vojta
2011-01-01
We monitored tree mortality in northern Arizona (USA) mixed-conifer and ponderosa pine (Pinus ponderosa Dougl. ex Laws) forests from 1997 to 2007, a period of severe drought in this area. Mortality was pervasive, occurring on 100 and 98% of 53 mixed-conifer and 60 ponderosa pine plots (1-ha each), respectively. Most mortality was attributable to a suite of forest...
Nanostructured layers of thermoelectric materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urban, Jeffrey J.; Lynch, Jared; Coates, Nelson
This disclosure provides systems, methods, and apparatus related to thermoelectric materials. In one aspect, a method includes providing a plurality of nanostructures. The plurality of nanostructures comprise a thermoelectric material, with each nanostructure of the plurality of nanostructures having first ligands disposed on a surface of the nanostructure. The plurality of nanostructures is mixed with a solution containing second ligands and a ligand exchange process occurs in which the first ligands disposed on the plurality of nanostructures are replaced with the second ligands. The plurality of nanostructures is deposited on a substrate to form a layer. The layer is thermallymore » annealed.« less
Gerba, Charles P; Riley, Kelley R; Nwachuku, Nena; Ryu, Hodon; Abbaszadegan, Morteza
2003-07-01
The removal of the Microsporidia, Encephalitozoon intestinalis, feline calicivirus and coliphages MS-2, PRD-1, and Fr were evaluated during conventional drinking water treatment in a pilot plant. The treatment consisted of coagulation, sedimentation, and mixed media filtration. Fr coliphage was removed the most (3.21 log), followed by feline calicivirus (3.05 log), E. coli (2.67 log), E. intestinalis (2.47 log), MS-2 (2.51 log). and PRD-1 (1.85 log). With the exception of PRD-1 the greatest removal of the viruses occurred during the flocculation step of the water treatment process.
Combustion modeling and performance evaluation in a full-scale rotary kiln incinerator.
Chen, K S; Hsu, W T; Lin, Y C; Ho, Y T; Wu, C H
2001-06-01
This work summarizes the results of numerical investigations and in situ measurements for turbulent combustion in a full-scale rotary kiln incinerator (RKI). The three-dimensional (3D) governing equations for mass, momentum, energy, and species, together with the kappa - epsilon turbulence model, are formulated and solved using a finite volume method. Volatile gases from solid waste were simulated by gaseous CH4 distributed nonuniformly along the kiln bed. The combustion process was considered to be a two-step stoichiometric reaction for primary air mixed with CH4 gas in the combustion chamber. The mixing-controlled eddy-dissipation model (EDM) was employed to predict the conversion rates of CH4, O2, CO2, and CO. The results of the prediction show that reverse flows occur near the entrance of the first combustion chamber (FCC) and the turning point at the entrance to the second combustion chamber (SCC). Temperature and species are nonuniform and are vertically stratified. Meanwhile, additional mixing in the SCC enhances postflame oxidation. A combustion efficiency of up to 99.96% can be achieved at approximately 150% excess air and 20-30% secondary air. Reasonable agreement is achieved between numerical predictions and in situ measurements.
Rinderknecht, H. G.; Rosenberg, M. J.; Zylstra, A. B.; ...
2015-08-25
In deuterium-filled inertial confinement fusion implosions, the secondary fusion processes D( 3He,p) 4He and D(T,n) 4He occur, as the primary fusion products 3He and T react in flight with thermal deuterons. In implosions with moderate fuel areal density (~ 5–100 mg/cm 2), the secondary D- 3He reaction saturates, while the D-T reaction does not, and the combined information from these secondary products is used to constrain both the areal density and either the plasma electron temperature or changes in the composition due to mix of shell material into the fuel. The underlying theory of this technique is developed and appliedmore » to three classes of implosions on the National Ignition Facility: direct-drive exploding pushers, indirect-drive 1-shock and 2-shock implosions,and polar direct-drive implosions. In the 1- and 2-shock implosions, the electron temperature is inferred to be 0.65 x and 0.33 x the burn-averaged ion temperature, respectively. The inferred mixed mass in the polar direct-drive implosions is in agreement with measurements using alternative techniques.« less
Separation of Hydrogen from Carbon Dioxide through Porous Ceramics
Shimonosono, Taro; Imada, Hikari; Maeda, Hikaru; Hirata, Yoshihiro
2016-01-01
The gas permeability of α-alumina, yttria-stabilized zirconia (YSZ), and silicon carbide porous ceramics toward H2, CO2, and H2–CO2 mixtures were investigated at room temperature. The permeation of H2 and CO2 single gases occurred above a critical pressure gradient, which was smaller for H2 gas than for CO2 gas. When the Knudsen number (λ/r ratio, λ: molecular mean free path, r: pore radius) of a single gas was larger than unity, Knudsen flow became the dominant gas transportation process. The H2 fraction for the mixed gas of (20%–80%) H2–(80%–20%) CO2 through porous Al2O3, YSZ, and SiC approached unity with decreasing pressure gradient. The high fraction of H2 gas was closely related to the difference in the critical pressure gradient values of H2 and CO2 single gas, the inlet mixed gas composition, and the gas flow mechanism of the mixed gas. Moisture in the atmosphere adsorbed easily on the porous ceramics and affected the critical pressure gradient, leading to the increased selectivity of H2 gas. PMID:28774051
Cementitious waste option scoping study report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.E.; Taylor, D.D.
1998-02-01
A Settlement Agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering and Environmental Laboratory (INEEL) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This study investigates the nonseparations Cementitious Waste Option (CWO) as a means to achieve this goal. Under this option all liquid sodium-bearing waste (SBW) and existing HLW calcine would be recalcined with sucrose, grouted, canisterized, and interim stored asmore » a mixed-HLW for eventual preparation and shipment off-Site for disposal. The CWO waste would be transported to a Greater Confinement Disposal Facility (GCDF) located in the southwestern desert of the US on the Nevada Test Site (NTS). All transport preparation, shipment, and disposal facility activities are beyond the scope of this study. CWO waste processing, packaging, and interim storage would occur over a 5-year period between 2013 and 2017. Waste transport and disposal would occur during the same time period.« less
Radiation injury to the temporal bone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guida, R.A.; Finn, D.G.; Buchalter, I.H.
1990-01-01
Osteoradionecrosis of the temporal bone is an unusual sequela of radiation therapy to the head and neck. Symptoms occur many years after the radiation is administered, and progression of the disease is insidious. Hearing loss (sensorineural, conductive, or mixed), otalgia, otorrhea, and even gross tissue extrusion herald this condition. Later, intracranial complications such as meningitis, temporal lobe or cerebellar abscess, and cranial neuropathies may occur. Reported here are five cases of this rare malady representing varying degrees of the disease process. They include a case of radiation-induced necrosis of the tympanic ring with persistent squamous debris in the external auditorymore » canal and middle ear. Another case demonstrates the progression of radiation otitis media to mastoiditis with bony sequestration. Further progression of the disease process is seen in a third case that evolved into multiple cranial neuropathies from skull base destruction. Treatment includes systemic antibiotics, local wound care, and debridement in cases of localized tissue involvement. More extensive debridement with removal of sequestrations, abscess drainage, reconstruction with vascularized tissue from regional flaps, and mastoid obliteration may be warranted for severe cases. Hyperbaric oxygen therapy has provided limited benefit.« less
Ultraviolet photochemistry of cyanoacetylene: Application to Titan. [Abstract only
NASA Technical Reports Server (NTRS)
Clarke, D. W.; Ferris, J. P.
1994-01-01
Cyanoacetylene is believed to have had a central role in the formation of the pyrimidines essential for RNA synthesis leading to the origin of life on Earth. Cyanoacetylene has also been detected on Titan, Saturn's largest moon, and the only moon in the solar system that possesses a dense atmosphere. It is generally accepted that photochemistry plays a major role in the formation of the complex organic molecules and aerosols found in Titan's atmosphere. Because of its long wavelength absorption and low dissociation threshold it is expected that cyanoacetylene is an important part of these photochemical processes. Since cyanoacetylene would also have been subject to ultraviolet light in the atmosphere of early Earth, an investigation of cyanoacetylene photochemistry on Titan might lead to a better understanding of both the photochemical reactions occurring on primitive earth and the processes of chemical evolution as they occur in planetary atmospheres. The effects of irradiation wavelength, mixing with Titan's atmospheric gases, reducing the temperature and lowering cyanoacetylene partial pressures on product formation and polymer composition have been determined with the ultimate goal of understanding the chemical transformations taking place in Titan's atmosphere.
Major hydrogeochemical processes in an acid mine drainage affected estuary.
Asta, Maria P; Calleja, Maria Ll; Pérez-López, Rafael; Auqué, Luis F
2015-02-15
This study provides geochemical data with the aim of identifying and quantifying the main processes occurring in an Acid Mine Drainage (AMD) affected estuary. With that purpose, water samples of the Huelva estuary were collected during a tidal half-cycle and ion-ion plots and geochemical modeling were performed to obtain a general conceptual model. Modeling results indicated that the main processes responsible for the hydrochemical evolution of the waters are: (i) the mixing of acid fluvial water with alkaline ocean water; (ii) precipitation of Fe oxyhydroxysulfates (schwertmannite) and hydroxides (ferrihydrite); (iii) precipitation of Al hydroxysulfates (jurbanite) and hydroxides (amorphous Al(OH)3); (iv) dissolution of calcite; and (v) dissolution of gypsum. All these processes, thermodynamically feasible in the light of their calculated saturation states, were quantified by mass-balance calculations and validated by reaction-path calculations. In addition, sorption processes were deduced by the non-conservative behavior of some elements (e.g., Cu and Zn). Copyright © 2014 Elsevier Ltd. All rights reserved.
Set as an instance of a real-world visual-cognitive task.
Nyamsuren, Enkhbold; Taatgen, Niels A
2013-01-01
Complex problem solving is often an integration of perceptual processing and deliberate planning. But what balances these two processes, and how do novices differ from experts? We investigate the interplay between these two in the game of SET. This article investigates how people combine bottom-up visual processes and top-down planning to succeed in this game. Using combinatorial and mixed-effect regression analysis of eye-movement protocols and a cognitive model of a human player, we show that SET players deploy both bottom-up and top-down processes in parallel to accomplish the same task. The combination of competition and cooperation of both types of processes is a major factor of success in the game. Finally, we explore strategies players use during the game. Our findings suggest that within-trial strategy shifts can occur without the need of explicit meta-cognitive control, but rather implicitly as a result of evolving memory activations. Copyright © 2012 Cognitive Science Society, Inc.
Brunner, Matthias; Braun, Philipp; Doppler, Philipp; Posch, Christoph; Behrens, Dirk; Herwig, Christoph; Fricke, Jens
2017-07-01
Due to high mixing times and base addition from top of the vessel, pH inhomogeneities are most likely to occur during large-scale mammalian processes. The goal of this study was to set-up a scale-down model of a 10-12 m 3 stirred tank bioreactor and to investigate the effect of pH perturbations on CHO cell physiology and process performance. Short-term changes in extracellular pH are hypothesized to affect intracellular pH and thus cell physiology. Therefore, batch fermentations, including pH shifts to 9.0 and 7.8, in regular one-compartment systems are conducted. The short-term adaption of the cells intracellular pH are showed an immediate increase due to elevated extracellular pH. With this basis of fundamental knowledge, a two-compartment system is established which is capable of simulating defined pH inhomogeneities. In contrast to state-of-the-art literature, the scale-down model is included parameters (e.g. volume of the inhomogeneous zone) as they might occur during large-scale processes. pH inhomogeneity studies in the two-compartment system are performed with simulation of temporary pH zones of pH 9.0. The specific growth rate especially during the exponential growth phase is strongly affected resulting in a decreased maximum viable cell density and final product titer. The gathered results indicate that even short-term exposure of cells to elevated pH values during large-scale processes can affect cell physiology and overall process performance. In particular, it could be shown for the first time that pH perturbations, which might occur during the early process phase, have to be considered in scale-down models of mammalian processes. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Chin-Tsan; Hu, Yuh-Chung; Hu, Tzu-Yang
2009-01-01
In this study a biophysical passive micromixer with channel anamorphosis in a space of 370 μm, which is shorter than traditional passive micromixers, could be created by mimicing features of vascular flow networks and executed with Reynolds numbers ranging from 1 to 90. Split and recombination (SAR) was the main mixing method for enhancing the convection effect and promoting the mixing performance in the biophysical channel. The 2D numerical results reveal that good mixing efficiency of the mixer was possible, with ε(mixing) = 0.876 at Reynolds number ration Re(r) = 0.85. Generally speaking, increasing the Reynolds number will enhance the mixing. In addition, the sidewall effect will influence the mixing performance and an optimal mixing performance with ε(mixing) = 0.803 will occur at an aspect ratio of AR = 2. These findings will be useful for enhancing mixing performance for passive micromixers.
21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.
Code of Federal Regulations, 2012 CFR
2012-04-01
... chemical reactions, other than addition reactions, occur when they are mixed. (2) Polymers identified in...; provided that no chemical reactions, other than addition reactions, occur when they are combined. Such..., other than addition reactions, occur among the vinyl chloride polymers and the modifying polymers...
21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.
Code of Federal Regulations, 2013 CFR
2013-04-01
... chemical reactions, other than addition reactions, occur when they are mixed. (2) Polymers identified in...; provided that no chemical reactions, other than addition reactions, occur when they are combined. Such..., other than addition reactions, occur among the vinyl chloride polymers and the modifying polymers...
Foam generator and viscometer apparatus and process
Reed, Troy D.; Pickell, Mark B.; Volk, Leonard J.
2004-10-26
An apparatus and process to generate a liquid-gas-surfactant foam and to measure its viscosity and enable optical and or electronic measurements of physical properties. The process includes the steps of pumping selected and measured liquids and measured gases into a mixing cell. The mixing cell is pressurized to a desired pressure and maintained at a desired pressure. Liquids and gas are mixed in the mixing cell to produce a foam of desired consistency. The temperature of the foam in the mixing cell is controlled. Foam is delivered from the mixing cell through a viscometer under controlled pressure and temperature conditions where the viscous and physical properties of the foam are measured and observed.
Wu, Yonghao; Hu, Huamin; Hu, Jinming; Liu, Tao; Zhang, Guoying; Liu, Shiyong
2013-03-19
We report on thermo- and light-regulated formation and disintegration of double hydrophilic block copolymer (DHBC) micelles associated with tunable fluorescence emissions by employing two types of DHBCs covalently labeled with fluorescence resonance energy transfer (FRET) donor and acceptor moieties, respectively, within the light and temperature dually responsive block. Both DHBCs are molecularly soluble at room temperature in their aqueous mixture, whereas, upon heating to above the critical micellization temperature (CMT, ~31 °C), they coassemble into mixed micelles possessing hydrophilic coronas and mixed cores containing FRET donors and acceptors. Accordingly, the closer spatial proximity between the FRET pair (NBDAE and RhBEA moieties) within micellar cores leads to substantially enhanced FRET efficiency, compared to that in the non-aggregated unimer state. Moreover, upon UV irradiation, the light-reactive moieties undergo light-cleavage reaction and transform into negatively charged carboxylate residues, leading to elevated CMT (∼46 °C). Thus, thermo-induced mixed micelles in the intermediate temperature range (31 °C < T < 46 °C) undergo light-triggered disintegration into unimers, accompanied with the decrease of FRET efficiency. Overall, the coassembly and disassembly occurring in the mixed DHBC solution can be dually regulated by temperature and UV irradiation, and most importantly, these processes can be facilely monitored via changes in FRET efficiency and distinct emission colors.
NASA Astrophysics Data System (ADS)
Koltai, Péter; Renger, D. R. Michiel
2018-06-01
One way to analyze complicated non-autonomous flows is through trying to understand their transport behavior. In a quantitative, set-oriented approach to transport and mixing, finite time coherent sets play an important role. These are time-parametrized families of sets with unlikely transport to and from their surroundings under small or vanishing random perturbations of the dynamics. Here we propose, as a measure of transport and mixing for purely advective (i.e., deterministic) flows, (semi)distances that arise under vanishing perturbations in the sense of large deviations. Analogously, for given finite Lagrangian trajectory data we derive a discrete-time-and-space semidistance that comes from the "best" approximation of the randomly perturbed process conditioned on this limited information of the deterministic flow. It can be computed as shortest path in a graph with time-dependent weights. Furthermore, we argue that coherent sets are regions of maximal farness in terms of transport and mixing, and hence they occur as extremal regions on a spanning structure of the state space under this semidistance—in fact, under any distance measure arising from the physical notion of transport. Based on this notion, we develop a tool to analyze the state space (or the finite trajectory data at hand) and identify coherent regions. We validate our approach on idealized prototypical examples and well-studied standard cases.
Modelling melting in crustal environments, with links to natural systems in the Nepal Himalayas
NASA Astrophysics Data System (ADS)
Isherwood, C.; Holland, T.; Bickle, M.; Harris, N.
2003-04-01
Melt bodies of broadly granitic character occur frequently in mountain belts such as the Himalayan chain which exposes leucogranitic intrusions along its entire length (e.g. Le Fort, 1975). The genesis and disposition of these bodies have considerable implications for the development of tectonic evolution models for such mountain belts. However, melting processes and melt migration behaviour are influenced by many factors (Hess, 1995; Wolf &McMillan, 1995) which are as yet poorly understood. Recent improvements in internally consistent thermodynamic datasets have allowed the modelling of simple granitic melt systems (Holland &Powell, 2001) at pressures below 10 kbar, of which Himalayan leucogranites provide a good natural example. Model calculations such as these have been extended to include an asymmetrical melt-mixing model based on the Van Laar approach, which uses volumes (or pseudovolumes) for the different end-members in a mixture to control the asymmetry of non-ideal mixing. This asymmetrical formalism has been used in conjunction with several different entropy of mixing assumptions in an attempt to find the closest fit to available experimental data for melting in simple binary and ternary haplogranite systems. The extracted mixing data are extended to more complex systems and allow the construction of phase relations in NKASH necessary to model simple haplogranitic melts involving albite, K-feldspar, quartz, sillimanite and {H}2{O}. The models have been applied to real bulk composition data from Himalayan leucogranites.
Tanaka, Motomasa; Matsuura, Koji; Yoshioka, Shiro; Takahashi, Satoshi; Ishimori, Koichiro; Hori, Hiroshi; Morishima, Isao
2003-01-01
To observe the formation process of compound I in horseradish peroxidase (HRP), we developed a new freeze-quench device with ∼200 μs of the mixing-to-freezing time interval and observed the reaction between HRP and hydrogen peroxide (H2O2). The developed device consists of a submillisecond solution mixer and rotating copper or silver plates cooled at 77 K; it freezes the small droplets of mixed solution on the surface of the rotating plates. The ultraviolet-visible spectra of the sample quenched at ∼1 ms after the mixing of HRP and H2O2 suggest the formation of compound I. The electron paramagnetic resonance spectra of the same reaction quenched at ∼200 μs show a convex peak at g = 2.00, which is identified as compound I due to its microwave power and temperature dependencies. The absence of ferric signals in the electron paramagnetic resonance spectra of the quenched sample indicates that compound I is formed within ∼200 μs after mixing HRP and H2O2. We conclude that the activation of H2O2 in HRP at ambient temperature completes within ∼200 μs. The developed device can be generally applied to investigate the electronic structures of short-lived intermediates of metalloenzymes. PMID:12609902
The numerical modelling of mixing phenomena of nanofluids in passive micromixers
NASA Astrophysics Data System (ADS)
Milotin, R.; Lelea, D.
2018-01-01
The paper deals with the rapid mixing phenomena in micro-mixing devices with four tangential injections and converging tube, considering nanoparticles and water as the base fluid. Several parameters like Reynolds number (Re = 6 - 284) or fluid temperature are considered in order to optimize the process and obtain fundamental insight in mixing phenomena. The set of partial differential equations is considered based on conservation of momentum and species. Commercial package software Ansys-Fluent is used for solution of differential equations, based on a finite volume method. The results reveal that mixing index and mixing process is strongly dependent both on Reynolds number and heat flux. Moreover there is a certain Reynolds number when flow instabilities are generated that intensify the mixing process due to the tangential injections of the fluids.
Climate Response of Direct Radiative Forcing of Anthropogenic Black Carbon
NASA Technical Reports Server (NTRS)
Chung, Serena H.; Seinfeld,John H.
2008-01-01
The equilibrium climate effect of direct radiative forcing of anthropogenic black carbon (BC) is examined by 100-year simulations in the Goddard Institute for Space Studies General Circulation Model II-prime coupled to a mixed-layer ocean model. Anthropogenic BC is predicted to raise globally and annually averaged equilibrium surface air temperature by 0.20 K if BC is assumed to be externally mixed. The predicted increase is significantly greater in the Northern Hemisphere (0.29 K) than in the Southern Hemisphere (0.11 K). If BC is assumed to be internally mixed with the present day level of sulfate aerosol, the predicted annual mean surface temperature increase rises to 0.37 K globally, 0.54 K for the Northern Hemisphere, and 0.20 K for the Southern Hemisphere. The climate sensitivity of BC direct radiative forcing is calculated to be 0.6 K W (sup -1) square meters, which is about 70% of that of CO2, independent of the assumption of BC mixing state. The largest surface temperature response occurs over the northern high latitudes during winter and early spring. In the tropics and midlatitudes, the largest temperature increase is predicted to occur in the upper troposphere. Direct radiative forcing of anthropogenic BC is also predicted to lead to a change of precipitation patterns in the tropics; precipitation is predicted to increase between 0 and 20 N and decrease between 0 and 20 S, shifting the intertropical convergence zone northward. If BC is assumed to be internally mixed with sulfate instead of externally mixed, the change in precipitation pattern is enhanced. The change in precipitation pattern is not predicted to alter the global burden of BC significantly because the change occurs predominantly in regions removed from BC sources.
Properties of frozen dairy desserts processed by microfluidization of their mixes.
Olson, D W; White, C H; Watson, C E
2003-04-01
Sensory properties and rate of meltdown of nonfat (0% fat) and low-fat (2% fat) vanilla ice creams processed either by conventional valve homogenization or microfluidization of their mixes were compared with each other and to ice cream (10% fat) processed by conventional valve homogenization. Mixes for frozen dairy desserts containing 0, 2, and 10% fat were manufactured. Some of the nonfat and low-fat ice cream mixes were processed by microfluidization at 50, 100, 150, and 200 MPa, and the remaining nonfat and low-fat ice cream mixes and all of the ice cream mix were processed by conventional valve homogenization at 13.8 MPa, first stage, and 3.4 MPa, second stage. The finished frozen and hardened products were evaluated at d 1 and 45 for meltdown rate and for flavor and body and texture by preference testing. Nonfat and low-fat ice creams that usually had a slower meltdown were produced when processing their mixes by microfluidization instead of by conventional valve homogenization. Sensory scores for the ice cream were significantly higher than sensory scores for the nonfat and low-fat ice creams, but the sensory scores for the conventional valve homogenized controls for the nonfat ice cream and low-fat ice cream were not significantly different from the sensory scores for the nonfat ice cream and low-fat ice cream processed by microfluidization of the mixes, respectively. Microfluidization produced nonfat and low-fat ice creams that usually had a slower meltdown without affecting sensory properties.
Kneeshaw, T.A.; McGuire, J.T.; Smith, E.W.; Cozzarelli, I.M.
2007-01-01
This paper presents small-scale push-pull tests designed to evaluate the kinetic controls on SO42 - reduction in situ at mixing interfaces between a wetland and aquifer impacted by landfill leachate at the Norman Landfill research site, Norman, OK. Quantifying the rates of redox reactions initiated at interfaces is of great interest because interfaces have been shown to be zones of increased biogeochemical transformations and thus may play an important role in natural attenuation. To mimic the aquifer-wetland interface and evaluate reaction rates, SO42 --rich anaerobic aquifer water (??? 100 mg / L SO42 -) was introduced into SO42 --depleted wetland porewater via push-pull tests. Results showed SO42 - reduction was stimulated by the mixing of these waters and first-order rate coefficients were comparable to those measured in other push-pull studies. However, rate data were complex involving either multiple first-order rate coefficients or a more complex rate order. In addition, a lag phase was observed prior to SO42 - reduction that persisted until the mixing interface between test solution and native water was recovered, irrespective of temporal and spatial constraints. The lag phase was not eliminated by the addition of electron donor (acetate) to the injected test solution. Subsequent push-pull tests designed to elucidate the nature of the lag phase support the importance of the mixing interface in controlling terminal electron accepting processes. These data suggest redox reactions may occur rapidly at the mixing interface between injected and native waters but not in the injected bulk water mass. Under these circumstances, push-pull test data should be evaluated to ensure the apparent rate is actually a function of time and that complexities in rate data be considered. ?? 2007 Elsevier Ltd. All rights reserved.
Wang, Lu; Yang, Hai Jun; Li, Ling; Nan, Xiao Fei; Zhang, Zhen Xing; Li, Kun
2017-11-01
Annually, about 70% of the streams in the Changbai Mountains are frosted during November to April, with manifest seasonal freeze-thaw characters. By using monoculture and mixing leaf litters of Tilia amurensis, Acer mono and Quecus mongolica, this research attempted to disentangle the relationship between leaf litter decomposition and colonization of macroinvertebrates in the stream during early frost period. A 35-day investigation was carried out in a headwater stream of the Changbai Mountains. Nylon bags with two hole sizes (5 mm and 0.3 mm) were used to examine decomposition of the litters. The results showed that the mass losses were significantly different among the three kinds of leaf litters in monoculture, whose decomposition rates descended as A. mono, T. amurensis, and Q. mongolica, however, there existed no significant difference among the litter mixing. Mass losses in both mesh bags all showed little difference, except T. amurensis and the mixed litters. Litter mixing effects occurred in the coarse mesh bags with A. mono and Q. mongolica, but no mixture effects for others. Community structures of the macroinvertebrates colonizing in the litter bags differed with each other, but shredders' density had no significant difference among the three litters, and the mixing effects on shredders were poor. Our results implied that microbes play the major decomposers of leaf litters, and macroinvertebrates contribute little to the decomposition in the early frost period. Despite shredder's density is lower, they determine the mixing effects of litters. Macroinvertebrates are selective to food and habitats, however, due to the short term colonizing, and the influence of leaf litters on shredders is still unsure. Our results might contribute to understanding the cold season ecological processes and related management issues of headwater stream ecosystem.
Klein, Frieder; Humphris, Susan E; Guo, Weifu; Schubotz, Florence; Schwarzenbach, Esther M; Orsi, William D
2015-09-29
Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type hydrothermal system at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite-calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon (up to 0.5 wt.% of the total carbon) but depleted in (13)C (δ(13)C(TOC) = -19.4‰). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinization systems have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments.
Klein, Frieder; Humphris, Susan E.; Guo, Weifu; Schubotz, Florence; Schwarzenbach, Esther M.; Orsi, William D.
2015-01-01
Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type hydrothermal system at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite−calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite−calcite veins that are strongly enriched in organic carbon (up to 0.5 wt.% of the total carbon) but depleted in 13C (δ13CTOC = −19.4‰). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinization systems have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments. PMID:26324888
Parametric study on mixing process in an in-plane spiral micromixer utilizing chaotic advection.
Vatankhah, Parham; Shamloo, Amir
2018-08-31
Recent advances in the field of microfabrication have made the application of high-throughput microfluidics feasible. Mixing which is an essential part of any miniaturized standalone system remains the key challenge. This paper proposes a geometrically simple micromixer for efficient mixing for high-throughput microfluidic devices. The proposed micromixer utilizes a curved microchannel (spiral microchannel) to induce chaotic advection and enhance the mixing process. It is shown that the spiral microchannel is more efficient in comparison to a straight microchannel, mixing wise. The pressure drop in the spiral microchannel is only slightly higher than that in the straight microchannel. It is found that the mixing process in the spiral microchannel enhances with increasing the inlet velocity, unlike what happens in the straight microchannel. It is also realized that the initial radius of the spiral microchannel plays a prominent role in enhancing the mixing process. Studying different cross sections, it is gathered that the square cross section yields a higher mixing quality. Copyright © 2018 Elsevier B.V. All rights reserved.
Diagnostic tools for mixing models of stream water chemistry
Hooper, Richard P.
2003-01-01
Mixing models provide a useful null hypothesis against which to evaluate processes controlling stream water chemical data. Because conservative mixing of end‐members with constant concentration is a linear process, a number of simple mathematical and multivariate statistical methods can be applied to this problem. Although mixing models have been most typically used in the context of mixing soil and groundwater end‐members, an extension of the mathematics of mixing models is presented that assesses the “fit” of a multivariate data set to a lower dimensional mixing subspace without the need for explicitly identified end‐members. Diagnostic tools are developed to determine the approximate rank of the data set and to assess lack of fit of the data. This permits identification of processes that violate the assumptions of the mixing model and can suggest the dominant processes controlling stream water chemical variation. These same diagnostic tools can be used to assess the fit of the chemistry of one site into the mixing subspace of a different site, thereby permitting an assessment of the consistency of controlling end‐members across sites. This technique is applied to a number of sites at the Panola Mountain Research Watershed located near Atlanta, Georgia.
NASA Astrophysics Data System (ADS)
Porter, D. F.; Springer, S. R.; Padman, L.; Fricker, H. A.; Bell, R. E.
2017-12-01
The upper layers of the Southern Ocean where it meets the Antarctic ice sheet undergoes a large seasonal cycle controlled by surface radiation and by freshwater fluxes, both of which are strongly influenced by sea ice. In regions where seasonal sea ice and icebergs limit use of ice-tethered profilers and conventional moorings, autonomous profiling floats can sample the upper ocean. The deployment of seven Apex floats (by sea) and six ALAMO floats (by air) provides unique upper ocean hydrographic data in the Ross Sea close to the Ross Ice Shelf front. A novel choice of mission parameters - setting parking depth deeper than the seabed - limits their drift, allowing us to deploy the floats close to the ice shelf front, while sea ice avoidance algorithms allow the floats to to sample through winter under sea ice. Hydrographic profiles show the detailed development of the seasonal mixed layer close to the Ross front, and interannual variability of the seasonal mixed layer and deeper water masses on the central Ross Sea continental shelf. After the sea ice breakup in spring, a warm and fresh surface mixed layer develops, further warming and deepening throughout the summer. The mixed layer deepens, with maximum temperatures exceeding 0ºC in mid-February. By March, the surface energy budget becomes negative and sea ice begins to form, creating a cold, saline and dense surface layer. Once these processes overcome the stable summer stratification, convection erodes the surface mixed layer, mixing some heat downwards to deeper layers. There is considerable interannual variability in the evolution and strength of the surface mixed layer: summers with shorter ice-free periods result in a cooler and shallower surface mixed layer, which accumulates less heat than the summers with longer ice-free periods. Early ice breakup occurred in all floats in 2016/17 summer, enhancing the absorbed solar flux leading to a warmer surface mixed layer. Together, these unique measurements from autonomous profilers provide insight into the hydrographic state of the Ross Sea at the start of the spring period of sea-ice breakup, and how ocean mixing and sea ice interact to initiate the summer open-water season.
Metal-Catalyzed Aqueous Oxidation Processes in Merged Microdroplets
NASA Astrophysics Data System (ADS)
Davis, R. D.; Wilson, K. R.
2017-12-01
Iron-catalyzed production of reactive oxygen species (ROS) from hydrogen peroxide (Fenton's reaction) is a fundamental process throughout nature, from groundwater to cloud droplets. In recent years, Fenton's chemistry has gained further interest in atmospheric science as a potentially important process in the oxidation of aqueous secondary organic aerosol (e.g., Chu et al., Sci. Rep., 2017), with some observations indicating that Fenton's reaction proceeds at a higher rate at aerosol interfaces compared to in the bulk (Enami et al., PNAS, 2014). However, a fundamental-level mechanistic understanding of this process remains elusive and the relative importance of interfacial versus bulk chemistry for aqueous organic processing via Fenton's has yet to be fully established. Here, we present a microreactor experimental approach to studying aqueous-phase Fenton's chemistry in microdroplets by rapidly mixing droplets of different composition. Utilizing two on-demand droplet generators, a stream of microdroplets containing aqueous iron chloride were merged with a separate stream of microdroplets containing aqueous hydrogen peroxide and a range of aromatic organic compounds, initiating ROS production and subsequent aqueous-phase oxidation reactions. Upon merging, mixing of the microdroplets occurred in submillisecond timescales, thus allowing the reaction progress to be monitored with high spatial and temporal resolution. For relatively large microreactor (droplet) sizes (50 µm diameter post-merging), the Fenton-initiated aqueous oxidation of aromatic organic compounds in merged microdroplets was consistent with bulk predictions with hydroxyl radicals as the ROS. The microdroplet-size dependence of this observation, along with the role of other ROS species produced from Fenton and Fenton-like processes, will be discussed in the context of relative importance to aqueous organic processing of atmospheric particles.
A Decreasing Failure Rate, Mixed Exponential Model Applied to Reliability.
1981-06-01
Trident missile systems have been observed. The mixed exponential distribu- tion has been shown to fit the life data for the electronic equipment on...these systems . This paper discusses some of the estimation problems which occur with the decreasing failure rate mixed exponential distribution when...assumption of constant or increasing failure rate seemed to be incorrect. 2. However, the design of this electronic equipment indicated that
Hydraulic Control and Mixing in Chesapeake Bay
NASA Astrophysics Data System (ADS)
Ott, M. W.
2006-05-01
Properly modeling the exchange rate at the mouths of estuarine bays is critical to understanding the effects of freshwater and pollutants on the hydrographic and biological conditions within these bays. There is evidence that hydraulic control occurs at certain locations in the deeper channels of Chesapeake Bay and may be a mechanism in limiting the exchange rate. In addition, the vertical and horizontal mixing associated with the resulting hydraulic jumps has implications both for the hydrographic conditions and circulation, as well as for primary productivity within Chesapeake Bay. Shipboard acoustic Doppler current profiler (ADCP) data, as well as conductivity-temperature-depth (CTD) profiles were collected during the spring of 2005 at various locations within Chesapeake Bay to better understand the occurrence and strength of hydraulic controls in relation to the phases of the fortnightly and semi-diurnal tidal cycles as well as to topography. Mixing is shown to occur alternatively over both hollows and bumps, depending on the tidal phase, and the strength and effects if this mixing is compared.
Failla, Mark L; Chitchumroonchokchai, Chureeporn; Siritunga, Dimuth; De Moura, Fabiana F; Fregene, Martin; Manary, Mark J; Sayre, Richard T
2012-04-18
Cassava is a root crop that serves as a primary caloric source for many African communities despite its low content of β-carotene (βC). Carotenoid content of roots from wild type (WT) and three transgenic lines with high βC were compared after cooking and preparation of nonfermented and fermented flours according to traditional African methods. The various methods of processing all decreased βC content per gram dry weight regardless of genotype. The greatest loss of βC occurred during preparation of gari (dry fermentation followed by roasting) from WT and transgenic lines. The quantities of βC in cooked transgenic cassava root that partitioned into mixed micelles during in vitro digestion and transported into Caco-2 cells were significantly greater than those for identically processed WT root. These results suggest that transgenic high βC cassava will provide individuals with greater quantities of bioaccessible βC.
Rethinking the process of detrainment: jets in obstructed natural flows
NASA Astrophysics Data System (ADS)
Mossa, Michele; de Serio, Francesca
2016-12-01
A thorough understanding of the mixing and diffusion of turbulent jets released in porous obstructions is still lacking in literature. This issue is undoubtedly of interest because it is not strictly limited to vegetated flows, but also includes outflows which come from different sources and which spread among oyster or wind farms, as well as aerial pesticide treatments sprayed onto orchards. The aim of the present research is to analyze this process from a theoretical point of view. Specifically, by examining the entrainment coefficient, it is deduced that the presence of a canopy prevents a momentum jet from having an entrainment process, but rather promotes its detrainment. In nature, detrainment is usually associated with buoyancy-driven flows, such as plumes or density currents flowing in a stratified environment. The present study proves that detrainment occurs also when a momentum-driven jet is issued in a not-stratified obstructed current, such as a vegetated flow.
NASA Astrophysics Data System (ADS)
Romanelli, Maurizio; Di Benedetto, Francesco; Fornaciai, Gabriele; Innocenti, Massimo; Montegrossi, Giordano; Pardi, Luca A.; Zoleo, Alfonso; Capacci, Fabio
2015-05-01
A study is undertaken to ascertain whether changes in the speciation of inorganic radicals are occurring during the ceramic industrial production that involves abundant silica powders as raw material. Industrial dusts were sampled in two ceramic firms, immediately after the wet mixing stage, performed with the aid of a relevant pressure. The dusts were then characterised by means of X-ray diffraction, analysis of the trace elements through chemical methods, granulometry, continuous-wave electron paramagnetic resonance (EPR) and pulsed electron spin echo envelope modulation (ESEEM) spectroscopies. The results of the characterisation point to a relevant change in the speciation of the two samples; namely, a prevailing contribution due to an inorganic radical different from that pertaining to pure quartz is pointed out. The combined interpretation of EPR and ESEEM data suggests the attribution of the main paramagnetic contribution to the A-centre in kaolinite, a constituent that is added to pure quartz at the initial stage of the ceramic production. In one of the two samples, a second weak EPR signal is attributed to the quartz's hAl species. By taking into account the relative quantities of quartz and kaolinite mixed in the two samples, and the relative abundances of the two radical species, we propose that the partial or complete suppression of the hAl species in favour of the A-centre of kaolinite has occurred. Although this change is apparently fostered by the mixture between quartz and another radical-bearing raw material, kaolinite, the suppression of the hAl centre of quartz is ascribed to the role played by the pressure and the wet environment during the industrial mixing procedure. This suppression provides a net change of radical speciation associated with quartz, when this phase is in contact with workers' respiratory system.
Tritium in the western Mediterranean Sea during 1981 Phycemed cruise
NASA Astrophysics Data System (ADS)
Andrie, Chantal; Merlivat, Liliane
1988-02-01
We report on simultaneous hydrological and tritium data taken in the western Mediterranean Sea during April 1981 and which implement our knowledge of the spatial and temporal variability of the convection process occurring in the Northern Basin (Gulf of Lion, Ligurian Sea). The renewal time of the deep waters in the Medoc area is calculated to be 11 ± 2 years using a box-model assymption. An important local phenomenon of "cascading" off the Ebro River near the Spanish coast is, noticeable by the use of tritium data. In the Sardinia Straits area tritium data indicate very active mixing between 100 and 500 m depth. The tritium subsurface maxima in Sardinia Straits suggests the influence of not only the Levantine Intermediate Water (LIW) but also an important shallower component. In waters deeper than 500m, an active mixing occurs between the deep water and the LIW via an intermediate water mass from the Tyrrhenian Sea by "salt-fingering". Assuming a two end-member mixing. We determine the deep tritium content in the Sardinia Channel to be 1.8 TU. For comparison, the deep tritium content of the Northern Basin is equal to 1.3 TU. Tritium data relative to the Alboran Sea show that a layer of high tritium content persists all along its path from Sardifia to Gibraltar on a density surface shallower than the intermediate water. The homogeneity of the deep tritium concentrations between 1200 m depth and the bottom corroborate the upward "pumping" and westward circulation of deep waters along the continental slope of the North African Shelf. From the data measured in the Sardinia Straits and in the Alboran Sea, and upper limit of the deep advection rate of the order of 0.5 cm s-1 is estimated.
Computerized Provider Order Entry Reduces Length of Stay in a Community Hospital
Peters, K.; Shaha, S.H.
2014-01-01
Summary Objective Does computerized provider order entry (CPOE) improve clinical, cost, and efficiency outcomes as quantified in shortened hospital length of stay (LOS)? Most prior studies were done in university settings with home-grown electronic records, and are now 20 years old. This study asked whether CPOE exerts a downward force on LOS in the current era of HITECH incentives, using a vendor product in a community hospital. Methods The methodology retrospectively evaluated correlation between CPOE and LOS on a perpatient, per-visit basis over 22 consecutive quarters, organized by discipline. All orders from all areas were eligible, except verbals, and medication orders in the emergency department which were not available via CPOE. These results were compared with quarterly case mix indices organized by discipline. Correlational and regression analyses were cross-checked to ensure validity of R-square coefficients, and data were smoothed for ease of display. Standard models were used to calculate the inflection point. Results Gains in CPOE adoption occurred iteratively house-wide, and in each discipline. LOS decreased in a sigmoid shaped curve. The inflection point shows that once CPOE adoption approaches 60%, further lowering of LOS accelerates. Overall there was a 20.2% reduction in LOS correlated with adoption of CPOE. Case mix index increased during the study period showing that reductions in LOS occurred despite increased patient complexity and resource utilization. Conclusions There was a 20.2% reduction in LOS correlated with rising adoption of CPOE. CPOE contributes to improved clinical, cost, and efficiency outcomes as quantified in reduced LOS, over and above other processes introduced to lower LOS. CPOE enabled a reduction in LOS despite an increase in the case mix index during the time frame of this study. PMID:25298809
Time scales of circulation and mixing processes of San Francisco Bay waters
Walters, R.A.; Cheng, R.T.; Conomos, T.J.
1985-01-01
Conceptual models for tidal period and low-frequency variations in sea level, currents, and mixing processes in the northern and southern reaches of San Francisco Bay describe the contrasting characteristics and dissimilar processes and rates in these embayments: The northern reach is a partially mixed estuary whereas the southern reach (South Bay) is a tidally oscillating lagoon with density-driven exchanges with the northern reach. The mixed semidiurnal tides are mixtures of progressive and standing waves. The relatively simple oscillations in South Bay are nearly standing waves, with energy propagating down the channels and dispersing into the broad shoal areas. The tides of the northern reach have the general properties of a progressive wave but are altered at the constriction of the embayments and gradually change in an upstream direction to a mixture of progressive and standing waves. The spring and neap variations of the tides are pronounced and cause fortnightly varying tidal currents that affect mixing and salinity stratification in the water column. Wind stress on the water surface, freshwater inflow, and tidal currents interacting with the complex bay configuration are the major local forcing mechanisms creating low-frequency variations in sea level and currents. These local forcing mechanisms drive the residual flows which, with tidal diffusion, control the water-replacement rates in the estuary. In the northern reach, the longitudinal density gradient drives an estuarine circulation in the channels, and the spatial variation in tidal amplitude creates a tidally-driven residual circulation. In contrast, South Bay exhibits a balance between wind-driven circulation and tidally-driven residual circulation for most of the year. During winter, however, there can be sufficient density variations to drive multilayer (2 to 3) flows in the channel of South Bay. Mixing models (that include both diffusive and dispersive processes) are based on time scales associated with salt variations at the boundaries and those associated with the local forcing mechanisms, while the spatial scales of variations are dependent upon the configuration of the embayments. In the northern reach, where the estuarine circulation is strong, the salt flux is carried by the mean advection of the mean salt field. Where large salinity gradients are present, the tidal correlation part of the salt flux is of the same order as the advective part. Our knowledge of mixing and exchange rates in South Bay is poor. As this embayment is nearly isohaline, the salt flux is dominated entirely by the mean advection of the mean salt field. During and after peaks in river discharge, water mixing becomes more dynamic, with a strong density-driven current creating a net exchange of both water mass and salt. These exchanges are stronger during neap tides. Residence times of the water masses vary seasonally and differ between reaches. In the northern reach, residence times are on the order of days for high winter river discharge and of months for summer periods. The residence times for South Bay are fairly long (on the order of several months) during summer, and typically shorter (less than a month) during winter when density-driven exchanges occur. ?? 1985 Dr W. Junk Publishers.
A numerical study of mixing enhancement in supersonic reacting flow fields. [in scramjets
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Mukunda, H. S.
1988-01-01
NASA Langley has intensively investigated the components of ramjet and scramjet systems for endoatmospheric, airbreathing hypersonic propulsion; attention is presently given to the optimization of scramjet combustor fuel-air mixing and reaction characteristics. A supersonic, spatially developing and reacting mixing layer has been found to serve as an excellent physical model for the mixing and reaction process. Attention is presently given to techniques that have been applied to the enhancement of the mixing processes and the overall combustion efficiency of the mixing layer. A fuel injector configuration has been computationally designed which significantly increases mixing and reaction rates.
Structure and stability of hexa-aqua V(III) cations in vanadium redox flow battery electrolytes.
Vijayakumar, M; Li, Liyu; Nie, Zimin; Yang, Zhenguo; Hu, JianZhi
2012-08-07
The vanadium(III) cation structure in mixed acid based electrolyte solution from vanadium redox flow batteries is studied by (17)O and (35/37)Cl nuclear magnetic resonance (NMR) spectroscopy, electronic spectroscopy and density functional theory (DFT) based computational modelling. Both computational and experimental results reveal that the V(III) species can complex with counter anions (sulfate/chlorine) depending on the composition of its solvation sphere. By analyzing the powder precipitate it was found that the formation of sulfate complexed V(III) species is the crucial process in the precipitation reaction. The precipitation occurs through nucleation of neutral species formed through deprotonation and ion-pair formation process. However, the powder precipitate shows a multiphase nature which warrants multiple reaction pathways for precipitation reaction.
NASA Astrophysics Data System (ADS)
Serena, S.; Caballero, A.; Turrillas, X.; Martin, D.; Sainz, M. A.
2009-05-01
Calcium zirconate-magnesium oxide material was obtained by solid-state reaction from mixed dolomite (CaMg(CO3)2) and zirconia (m-ZrO2) nanopowders. The nanopowders were obtained by high-energy milling, which produced an increase of the superficial free energy of the particles. The role of nanoparticles in the reaction process of monoclinic-zirconia and dolomite was analysed for the first time using neutron thermodiffraction and differential thermal analysis-thermogravimetric techniques. The neutron thermodiffraction of this mixture provides a clear description in situ of the different decomposition and reaction processes that occur in the nanopowders mixture. The results make it possible to analyze the effect of the nanoparticles on the reaction behaviour of these materials.
Processes and subdivisions in diogenites, a multivariate statistical analysis
NASA Technical Reports Server (NTRS)
Harriott, T. A.; Hewins, R. H.
1984-01-01
Multivariate statistical techniques used on diogenite orthopyroxene analyses show the relationships that occur within diogenites and the two orthopyroxenite components (class I and II) in the polymict diogenite Garland. Cluster analysis shows that only Peckelsheim is similar to Garland class I (Fe-rich) and the other diogenites resemble Garland class II. The unique diogenite Y 75032 may be related to type I by fractionation. Factor analysis confirms the subdivision and shows that Fe does not correlate with the weakly incompatible elements across the entire pyroxene composition range, indicating that igneous fractionation is not the process controlling total diogenite composition variation. The occurrence of two groups of diogenites is interpreted as the result of sampling or mixing of two main sequences of orthopyroxene cumulates with slightly different compositions.
Wet calcining of trona (sodium sesquicarbonate) and bicarbonate in a mixed solvent
NASA Astrophysics Data System (ADS)
Gärtner, R. S.; Witkamp, G. J.
2002-04-01
Trona ore is used in large amounts for the production of soda ash. A key step in this process is the conversion of trona (sodium sesquicarbonate: Na 2CO 3·NaHCO 3·2H 2O) into soda (sodium carbonate anhydrate: Na 2CO 3). Currently, this conversion is done industrially by calcining of the raw ore in rotary calciners at ca. 120°C or higher (Natural Soda Ash—Occurrences, Processing, and Use, Van Nostrand Reinhold, New York, 1991, p. 267). Trona can however be converted at lower temperatures by using a "wet calcining" technique. In this technique, trona is contacted with an organic or mixed organic-aqueous solvent at a conversion temperature that depends on the water activity of the used solvent. In pure ethylene glycol this temperature can be as low as 55°C. The conversion by "wet calcining" occurs very similar to that in the regular dry calcining process via a solid phase conversion. The anhydrate crystals form directly from the solid trona. This produces pseudomorphs (J. Chem. Eng. Data 8(3) (1963) 301), i.e. agglomerates of fine anhydrate crystals (1-10 μm). At high temperatures, dense, finely pored agglomerates are formed, while the outer shape of the agglomerate retains the prism shape of the trona crystal. At low conversion temperatures, loosely packed or even unstable agglomerates are found.
Natural dissolved organic matter dynamics in karstic aquifer: O'Leno Sink-Rise system, Florida, USA
NASA Astrophysics Data System (ADS)
Jin, J.; Zimmerman, A. R.
2010-12-01
Natural dissolved organic matter (NDOM) dynamics in karstic aquifer remain poorly understood due to the inaccessibility and heterogeneity of the subsurface. Because the Santa Fe River sinks into the Floridan Aquifer and emerges 6 km down gradient, the O'Leno Sink-Rise system in Northern Florida provides an ideal setting to study NDOM transformation in groundwater. Water samples were collected at both high and low temporal resolutions over 3 years from the River Sink, Rise, and a series of shallow and deep wells. Analyses of dissolved organic and inorganic carbon, stable isotopic, and spectrophotometry (excitation-emission matrix or EEM) show that reversals of hydrologic head gradient in the conduit and matrix are closely related to the delivery of NDOM to the aquifer. In addition, the relative influence of biotic and abiotic processes varies along spatiotemporal gradients; regions of the aquifer with greatest connectivity to surface water (new NDOM and terminal electron acceptor supply) see the most microbial transformation of NDOM, while those with least connectivity see relatively greater abiotic transformation of NDOM. A source water mixing model was established for the Sink-Rise system using Mg2+ and SO42- concentrations from three end-members identified as allogenic recharge, upwelling deep water, and shallow groundwater of the Upper Floridan Aquifer. Biogeochemical processes were quantified after accounting for changes that occurred due to source water mixing, according to the model. In addition to NDOM remineralization by subsurface microbes which occurred mostly during wet periods, adsorption of NDOM onto aquifer materials as well as release of NDOM from aquifer materials was also observed. During wet periods when DOC-rich conduit water entered the matrix, progressive NDOM remineralization was found along the preferential flow paths from the conduits into the matrices. Both biotic and abiotic NDOM transformation processes were found to control channel dissolution and thus the subsurface geomorphology, all of which are linked to hydrology and climate patterns.
A sensitivity study of s-process: the impact of uncertainties from nuclear reaction rates
NASA Astrophysics Data System (ADS)
Vinyoles, N.; Serenelli, A.
2016-01-01
The slow neutron capture process (s-process) is responsible for the production of about half the elements beyond the Fe-peak. The production sites and the conditions under which the different components of s-process occur are relatively well established. A detailed quantitative understanding of s-process nucleosynthesis may yield light in physical processes, e.g. convection and mixing, taking place in the production sites. For this, it is important that the impact of uncertainties in the nuclear physics is well understood. In this work we perform a study of the sensitivity of s-process nucleosynthesis, with particular emphasis in the main component, on the nuclear reaction rates. Our aims are: to quantify the current uncertainties in the production factors of s-process elements originating from nuclear physics and, to identify key nuclear reactions that require more precise experimental determinations. In this work we studied two different production sites in which s-process occurs with very different neutron exposures: 1) a low-mass extremely metal-poor star during the He-core flash (nn reaching up to values of ∼ 1014cm-3); 2) the TP-AGB phase of a M⊙, Z=0.01 model, the typical site of the main s-process component (nn up to 108 — 109cm-3). In the first case, the main variation in the production of s-process elements comes from the neutron poisons and with relative variations around 30%-50%. In the second, the neutron poison are not as important because of the higher metallicity of the star that actually acts as a seed and therefore, the final error of the abundances are much lower around 10%-25%.
NASA Astrophysics Data System (ADS)
Gascuel-Odoux, C.; Rouxel, M.; Molenat, J.; Ruiz, L.; Aquilina, L.; Faucheux, M.; Labasque, T.; Sebilo, M.
2012-04-01
Shallow groundwater that develops on hillslopes is the main compartment in headwater catchments for flow and solute transport to rivers. Although spatial and temporal variations in its chemical composition are reported in the literature, there is no coherent description of the way these variations are organized, nor is there an accepted conceptual model for the recharge mechanisms and flows in the groundwater involved. We instrumented an intensive farming and subsurface dominant catchment located in Oceanic Western Europe (Kerbernez, Brittany, France), a headwater catchment included in the Observatory for Research on Environment AgrHyS (Agro-Hydro-System) and a part of the French Network of catchments for environmental research (SOERE RBV focused on the Critical Zone). These systems are strongly constrained by anthropogenic pressures (agriculture) and are characterized by a clear non-equilibrium status. A network of 42 nested piezometers was installed along a 200 m hillslope allowing water sampling along two transects in the permanent water table as well as in what we call the "fluctuating zone", characterized by seasonal alternance of saturated and unsaturated conditions. Water composition was monitored at high frequency (weekly) over a 3-year period for major anion composition and over a one year period for detailed 15N, CFC, SF6 and other dissolved gases. The results demonstrated that (i) the anionic composition in water table fluctuation zone varied significantly compared to deeper portions of the aquifer on the hillslope, confirming that this layer constitutes a main compartment for the mixing of new recharge water and old groundwater, (ii) seasonally, the variations of 15N and CFC are much higher during the recharge period than during the recession period, confirming the preferential flow during early recharge events, iii) variations of nitrate 15N and O18 composition was suggesting any significant denitrification process in the fluctuating zone, confirming the dominance of the mixing processes in the fluctuating zone, iv) deeper parts of the aquifer exhibited seasonal variations with structured hysteretic patterns, suggesting that mixing process also occurred at greater depths and v) these hysteretic patterns were dampered from upslope to downslope, indicating an increased influence of lateral flow downslope. A first modeling approach has been tested adding to a convection-dispersion model a mobile-immobile model, representing a mixing process between the pre-recharge water and the recharge water, and therefore taken into account the mixing processes varying from the surface to depth.As of now, we can deduce from these results that the residence times calculated from end member approaches considering the groundwater as homogeneous lumped reservoir are likely to be highly underestimated. We can also dedude that the water sampled in the shallow groundwater during the first part of the recharge period is chemically different from the water sampled after. Instrumented observatories including spatial and temporal monitoring of the hillslope groundwater are required to understand the anthropogenic and environmental processes and their interactions, to model and predict the effect and the response time of such systems under different constraints. This work is funded by AN-08-STRA-01 (National research Agency). Legout, C.; Molenat, J.; Aquilina, L.; Gascuel-Odoux, C.; Faucheux, M.; Fauvel, Y.; Bariac, T. 2007. Solute transfer in the unsaturated zone-groundwater continuum of a headwater catchment. Journal of Hydrology. 332 (2-4), 427-441. Rouxel, M., Molenat, J., Ruiz, L., Legout C., Faucheux, M., Gascuel-Odoux C., 2011. Seasonal and spatial variation in groundwater quality at the hillslope scale: study in an agricultural headwater catchment in Brittany (France). Hydrological Processes, 25, 831-841.
Influence of Landscape Morphology and Vegetation Cover on the Sampling of Mixed Igneous Bodies
NASA Astrophysics Data System (ADS)
Perugini, Diego; Petrelli, Maurizio; Poli, Giampiero
2010-05-01
A plethora of evidence indicates that magma mixing processes can take place at any evolutionary stage of magmatic systems and that they are extremely common in both plutonic and volcanic environments (e.g. Bateman, 1995). Furthermore, recent studies have shown that the magma mixing process is governed by chaotic dynamics whose evolution in space and time generates complex compositional patterns that can span several length scales producing fractal domains (e.g. Perugini et al., 2003). The fact that magma mixing processes can produce igneous bodies exhibiting a large compositional complexity brings up the key question about the potential pitfalls that may be associated with the sampling of these systems for petrological studies. In particular, since commonly only exiguous portions of the whole magmatic system are available as outcrops for sampling, it is important to address the point whether the sampling may be considered representative of the complexity of the magmatic system. We attempt to address this crucial point by performing numerical simulations of chaotic magma mixing processes in 3D. The numerical system used in the simulations is the so-called ABC (Arnold-Beltrami-Childress) flow (e.g. Galluccio and Vulpiani, 1994), which is able to generate the contemporaneous occurrence of chaotic and regular streamlines in which the mixing efficiency is differently modulated. This numerical system has already been successfully utilized as a kinematic template to reproduce magma mixing structures observed on natural outcrops (Perugini et al., 2007). The best conditions for sampling are evaluated considering different landscape morphologies and percentages of vegetation cover. In particular, synthetic landscapes with different degree of roughness are numerically reproduced using the Random Mid-point Displacement Method (RMDM; e.g. Fournier et al., 1982) in two dimensions and superimposed to the compositional fields generated by the magma mixing simulation. Vegetation cover is generated using a random Brownian motion process in 2D. Such an approach allows us to produce vegetation patches that closely match the general topology of natural vegetation (e.g., Mandelbrot, 1982). Results show that the goodness of sampling is strongly dependant on the roughness of the landscape, with highly irregular morphologies being the best candidates to give the most complete information on the whole magma body. Conversely, sampling on flat or nearly flat surfaces should be avoided because they may contain misleading information about the magmatic system. Contrary to common sense, vegetation cover does not appear to significantly influence the representativeness of sampling if sample collection occurs on topographically irregular outcrops. Application of the proposed method for sampling area selection is straightforward. The irregularity of natural landscapes and the percentage of vegetation can be estimated by using natural landscapes extracted from digital elevation models (DEM) of the Earth's surface and satellite images by employing a variety of methods (e.g., Develi and Babadagli, 1998), thus giving one the opportunity to select a priori the best outcrops for sampling. References Bateman R (1995) The interplay between crystallization, replenishment and hybridization in large felsic magma chambers. Earth Sci Rev 39: 91-106 Develi K, Babadagli T (1998) Quantfication of natural fracture surfaces using fractal geometry. Math Geol 30: 971-998 Fournier A, Fussel D, Carpenter L (1982) Computer rendering of stochastic models. Comm ACM 25: 371-384 Galluccio S, Vulpiani A (1994) Stretching of material lines and surfaces in systems with Lagrangian chaos. Physica A 212: 75-98 Mandelbrot BB (1982) The fractal geometry of nature. W. H. Freeman, San Francisco Perugini D, Petrelli M, Poli G (2007) A Virtual Voyage through 3D Structures Generated by Chaotic Mixing of Magmas and Numerical Simulations: a New Approach for Understanding Spatial and Temporal Complexity of Magma Dynamics, Visual Geosciences, 10.1007/s10069-006-0004-x Perugini D, Poli G, Mazzuoli R (2003) Chaotic advection, fractals and diffusion during mixing of magmas: evidences from lava flows. J Volcanol Geotherm Res 124: 255-279
NASA Astrophysics Data System (ADS)
Gnanadesikan, Anand
1996-05-01
As carbon monoxide within the oceanic surface layer is produced by solar radiation, diluted by mixing, consumed by biota, and outgassed to the atmosphere, it exhibits a diurnal cycle. The effect of dilution and mixing on this cycle is examined using a simple model for production and consumption, coupled to three different mixed layer models. The magnitude and timing of the peak concentration, the magnitude of the average concentration, and the air-sea flux are considered. The models are run through a range of heating and wind stress and compared to experimental data reported by Kettle [1994]. The key to the dynamics is the relative size of four length scales; Dmix, the depth to which mixing occurs over the consumption time; L, the length scale over which production occurs; Lout, the depth to which the mixed layer is ventilated over the consumption time; and Lcomp, the depth to which the diurnal production can maintain a concentration in equilibrium with the atmosphere. If Dmix ≫ L, the actual model parameterization can be important. If the mixed layer is maintained by turbulent diffusion, Dmix can be substantially less than the mixed layer depth. If the mixed layer is parameterized as a homogeneous slab, Dmix is equivalent to the mixed layer depth. If Dmix > Lout, production is balanced by consumption rather than outgassing. The ratio between Dmix and Lcomp determines whether the ocean is a source or a sink for CO. The main thermocline depth H sets an upper limit for Dmix and hence Dmix/L, Dmix/Lout, and Dmix/Lcomp. The models are run to simulate a single day of observations. The mixing parameterization is shown to be very important, with a model which mixes using small-scale diffusion, producing markedly larger surface concentrations than models which homogenize the mixed layer completely and instantaneously.
Investigating goal conflict as a source of mixed emotions.
Berrios, Raul; Totterdell, Peter; Kellett, Stephen
2015-01-01
This research investigated whether (1) the experience of mixed emotions is a consequence of activating conflicting goals and (2) mixed emotions are distinct from emotional conflict. A preliminary experiment (Study 1, N = 35) showed that an elicited goal conflict predicted more mixed emotions than a condition where the same goals were not in conflict. The second experiment was based on naturally occurring goal activation (Study 2, N = 57). This illustrated that mixed emotions were experienced more following conflicting goals compared with a facilitating goals condition-on both a direct self-report measure of mixed emotions and a minimum index measure. The results also showed that mixed emotions were different to emotional conflict. Overall, goal conflict was found to be a source of mixed emotions, and it is feasible that such states have a role in resolving personal dilemmas.
NASA Technical Reports Server (NTRS)
Baecker, B.; Cohen, Barbara A.
2016-01-01
Mesosiderites (MES) are a group of enigmatic stony-iron meteorites exhibiting fragmental matrix breccias and irregular textures; e.g. [1-3]. Mesosiderites contain roughly equal volumes metal (Fe-Ni) and silicates often intimately mixed together (Fig.1). The silicates mostly consist of basaltic, gabbroic, and pyroxenitic components, and appear similar to eucrites and howardites; [4-8]. But unlike HEDs - and other differentiated parent body meteorite groups e.g. ureilites - mesosiderites contain high metal abundances. Several studies have been published to reveal the processes leading to the formation of mesosiderites and attempt to classifiy them [1], [2], [10-15]. Because the silicate inclusions in mesosiderites are often strongly metamorphosed after formation, it is difficult to assess the origin of the silicates and implications for the differentiation process of their parent body [15-17]. Several workers have advanced a formation hypothesis for the mesosiderites where an impact between differentiated bodies occurred prior to 4.47 Ga ago (e.g. [13,18], which could explain the possible incomplete dispersal of the colliding bodies due to their low cosmic ray exposure ages and their special thermal history. However, [13] discuss and favor the model for formation of mesosiderites with the collision of two differentiated bodies, along with disruption events and gravitational re-assembly. The mesosiderites have numerous gabbroid melt clasts with anomalous rare-earth- element (REE) - especially positive Eu - values [19, 20]. HEDs do not show the same. However, the heating mechanisms of both mesosiderites and HED's are puzzling. Mesosiderites are remarkable, they consist of a mix of basalts, which are only found on or near planetary surfaces and undifferentiated metal [1,2]. The probable model is that an asteroid containing a metallic magma impacted onto a second asteroid covered with basalt [18,21]. The mix was then buried under an insulating regolith, and cooled slowly. During cooling and at low temperatures the redox reactions continued to occur and proceed (J.T. Wasson; in pers. comm. 2015).
The immersion freezing behavior of mineral dust particles mixed with biological substances
NASA Astrophysics Data System (ADS)
Augustin-Bauditz, S.; Wex, H.; Denjean, C.; Hartmann, S.; Schneider, J.; Schmidt, S.; Ebert, M.; Stratmann, F.
2015-10-01
Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INM). It has been suggested that these INM maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INM in e.g., soils, resulting in an internal mixture of mineral dust and INM. If particles from such soils which contain biological INM are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above -20 up to almost 0 °C. To explore this hypothesis, we performed a measurement campaign within the research unit INUIT, where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). To characterize the mixing state of the generated aerosol we used different methods which will also be discussed. We found that internally mixed particles, containing ice active biological material, follow the ice nucleation behavior observed for the purely biological particles, i.e. freezing occurs at temperatures at which mineral dusts themselves are not yet ice active. It can be concluded that INM located on a mineral dust particle determine the freezing behavior of that particle.
Differences in Student Reasoning about Belief-Relevant Arguments: A Mixed Methods Study
ERIC Educational Resources Information Center
McCrudden, Matthew T.; Barnes, Ashleigh
2016-01-01
This mixed methods study investigated high school students' evaluations of scientific arguments. Myside bias occurs when individuals evaluate belief-consistent information more favorably than belief-inconsistent information. In the quantitative phase, participants (n = 72 males) rated belief-consistent arguments more favorably than…
Omohyoid Muscle Syndrome in a Mixed Martial Arts Athlete: A Case Report.
Lee, Alexander D; Yu, Alexander; Young, Shayne B; Battaglia, Patrick J; Ho, C John
2015-01-01
Omohyoid muscle syndrome is a rare cause of an X-shaped bulging lateral neck mass that occurs on swallowing. This is a diagnostic case report of a 22-year-old mixed martial arts athlete who acquired this condition. © 2014 The Author(s).
IDENTIFICATION OF SOURCES OF GROUND-WATER SALINIZA- TION USING GEOCHEMICAL TECHNIQUES
This report deals with salt-water sources that commonly mix and deteriorate fresh ground water. It reviews characteristics of salt-water sources and geochemical techniques that can be used to identify these sources after mixing has occurred. The report is designed to assist inves...
NASA Astrophysics Data System (ADS)
Lee, H.-H.; Chen, S.-H.; Kleeman, M. J.; Zhang, H.; DeNero, S. P.; Joe, D. K.
2015-11-01
The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include warm cloud processes and applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-dimensional chemical variable (X, Z, Y, Size Bins, Source Types, Species) through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and longwave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol-radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into CCN at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3-5 W m-2 and surface temperature by as much as 0.25 K in the daytime.
NASA Technical Reports Server (NTRS)
Raju, Manthena S.
1998-01-01
Sprays occur in a wide variety of industrial and power applications and in the processing of materials. A liquid spray is a phase flow with a gas as the continuous phase and a liquid as the dispersed phase (in the form of droplets or ligaments). Interactions between the two phases, which are coupled through exchanges of mass, momentum, and energy, can occur in different ways at different times and locations involving various thermal, mass, and fluid dynamic factors. An understanding of the flow, combustion, and thermal properties of a rapidly vaporizing spray requires careful modeling of the rate-controlling processes associated with the spray's turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates, as well as other phenomena. In an attempt to advance the state-of-the-art in multidimensional numerical methods, we at the NASA Lewis Research Center extended our previous work on sprays to unstructured grids and parallel computing. LSPRAY, which was developed by M.S. Raju of Nyma, Inc., is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo probability density function (PDF) solver. The LSPRAY solver accommodates the use of an unstructured mesh with mixed triangular, quadrilateral, and/or tetrahedral elements in the gas-phase solvers. It is used specifically for fuel sprays within gas turbine combustors, but it has many other uses. The spray model used in LSPRAY provided favorable results when applied to stratified-charge rotary combustion (Wankel) engines and several other confined and unconfined spray flames. The source code will be available with the National Combustion Code (NCC) as a complete package.
A comparison of eutrophication impacts in two harbours in Hong Kong with different hydrodynamics
NASA Astrophysics Data System (ADS)
Xu, J.; Yin, K.; Liu, H.; Lee, J. H. W.; Anderson, D. M.; Ho, A. Y. T.; Harrison, P. J.
2010-11-01
Eutrophication impacts may vary spatially and temporally due to different physical processes. Using a 22-year time series data set (1986-2007), a comparison was made of eutrophication impacts between the two harbours with very different hydrodynamic conditions. Victoria Harbour (Victoria) receives sewage effluent and therefore nutrients are abundant. In the highly-flushed Victoria, the highest monthly average Chl a (13 μg L -1) occurred during the period of strongest stratification in summer as a result of rainfall, runoff and the input of the nutrient-rich Pearl River estuarine waters, but the high flushing rate restricted nutrient utilization and further accumulation of algal biomass. In other seasons, vertical mixing induced light limitation and horizontal dilution led to low Chl a (< 2 μg L -1) and no spring bloom. Few hypoxic events (DO < 2 mg L -1) occurred due to re-aeration and limited accumulation at depth due to flushing and vertical mixing. Therefore, Victoria is resilient to nutrient enrichment. In contrast, in the weakly-flushed Tolo Harbour (Tolo), year long stratification, long residence times and weak tidal currents favored algal growth, resulting in a spring diatom bloom and high Chl a (10-30 μg L -1) all year and frequent hypoxic events in summer. Hence, Tolo is susceptible to nutrient enrichment and responded to nutrient reduction after sewage diversion in 1997. Sewage diversion from Tolo resulted in a 32-38% decrease in algal biomass in Tolo, but not in Victoria. There has been a significant increase (11-22%) in bottom DO in both harbours. Our findings demonstrate that an understanding of the role of physical processes is critical in order to predict the effectiveness of sewage management strategies in reducing eutrophication impacts.
Possible explanation of the solar-neutrino puzzle
NASA Technical Reports Server (NTRS)
Bethe, H. A.
1986-01-01
A new derivation of the Mikheyev and Smirnov (1985) mechanism for the conversion of electron neutrinos into mu neutrinos when traversing the sun is presented, and various hypotheses set forth. It is assumed that this process is responsible for the detection of fewer solar neutrinos than expected, with neutrinos below a minimum energy, E(m), being undetectable. E(m) is found to be about 6 MeV, and the difference of the squares of the respective neutrino masses is calculated to be 6 X 10 to the - 5th sq eV. A restriction on the neutrino mixing angle is assumed such that the change of density near the crossing point is adiabatic. It is predicted that no resonance conversion of neutrinos will occur in the dense core of supernovae, but conversion of electron neutrinos to mu neutrinos will occur as they escape outward through a density region around 100.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Projectmore » at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards.« less
Nucleosynthesis in the first massive stars
NASA Astrophysics Data System (ADS)
Choplin, Arthur; Meynet, Georges; Maeder, André; Hirschi, Raphael; Chiappini, Cristina
2018-01-01
The nucleosynthesis in the first massive stars may be constrained by observing the surface composition of long-lived very iron-poor stars born around 10 billion years ago from material enriched by their ejecta. Many interesting clues on physical processes having occurred in the first stars can be obtained based on nuclear aspects. First, in these first massive stars, mixing must have occurred between the H-burning and the He-burning zone during their nuclear lifetimes; Second, only the outer layers of these massive stars have enriched the material from which the very iron-poor stars, observed today in the halo of the MilkyWay, have formed. These two basic requirements can be obtained by rotating stellar models at very low metallicity. In the present paper, we discuss the arguments supporting this view and illustrate the sensitivity of the results concerning the [Mg/Al] ratio on the rate of the reaction 23Na(p,γ)24Mg.
NASA Astrophysics Data System (ADS)
Kudinov, I. V.; Kudinov, V. A.
2014-09-01
The differential equation of damped string vibrations was obtained with the finite speed of extension and strain propagation in the Hooke's law formula taken into account. In contrast to the well-known equations, the obtained equation contains the first and third time derivatives of the displacement and the mixed derivative with respect to the space and time variables. Separation of variables was used to obtain its exact closed-form solution, whose analysis showed that, for large values of the relaxation coefficient, the string return to the initial state after its escape from equilibrium is accompanied by high-frequency low-amplitude damped vibrations, which occur on the initial time interval only in the region of positive displacements. And in the limit, for some large values of the relaxation coefficient, the string return to the initial state occurs practically without any oscillatory process.
An Insidious Mode of Oxidative Degradation in a SiC-SiC Composite
NASA Technical Reports Server (NTRS)
Ogbuji, Linus U. J. T.
1997-01-01
The oxidative durability of a SiC-SiC composite with Hi-Nicalon fiber and BN interphase was investigated at 800 C (where pesting is known to occur in SiC-SiC composites) for exposure durations of up to 500 hours and in a variety of oxidant mixes and flow rates, ranging from quasi-stagnant room air, through slow flowing O2 containing 30-90% H2O, to the high-velocity flame of a burner rig. Degradation of the composite was determined from residual strength and fracture strain in post-exposure mechanical tests and correlated with microstructural evidence of damage to fiber and interphase. The severest degradation of composite behavior was found to occur in the bumer rig, and is shown to be connected with the high oxidant velocity and substantial moisture content, as well as a thin sublayer of carbon indicated to form between fiber and interphase during composite processing.
Spectral Mixing in Nervous Systems: Experimental Evidenceand Biologically Plausible Circuits
NASA Astrophysics Data System (ADS)
Kleinfeld, D.; Mehta, S. B.
The ability to compute the difference frequency for two periodic signals depends on a nonlinear operation that mixes those signals. Behavioral and psychophysical evidence suggest that such mixing is likely to occur in the vertebrate nervous system as a means to compare rhythmic sensory signals, such as occurs in human audition, and as a means to lock an intrinsic rhythm to a sensory input. Electrophysiological data from electroreceptors in the immobilized electric fish and somatosensory cortex in the anesthetized rat yield direct evidence for such mixing, providing a neurological substrate for the modulation and demodulation of rhythmic neuronal signals. We consider an analytical model of spectral mixing that makes use of the threshold characteristics of neuronal firing and which has features consistent with the experimental observations. This model serves as a guide for constructing circuits that isolate given mixture components. In particular, such circuits can generate nearly pure difference tones from sinusoidal inputs without the use of band-pass filters, in analogy to an image-reject mixer in communications engineering. We speculate that such computations may play a role in coding of sensory input and feedback stabilization of motor output in nervous systems.
NASA Astrophysics Data System (ADS)
Taylor, Nathan John
In the liquid-feed flame spray pyrolysis (LF-FSP) process, alcohol solutions of metalloorganic precursors are aerosolized by O2 and combusted. The metal oxide combustion products are rapidly quenched (< 10 ms) from flame temperatures of 1500°C to temperatures < 400° C, limiting particle growth. The resulting nanopowders are typically agglomerated but unaggregated. Here, we demonstrate two processing approaches to dense materials: nanopowders with the exact composition, and mixed single metal oxide nanopowders. The effect of the initial degree of phase separation on the final microstructures was determined by sintering studies. Our first studies included the production of yttrium aluminum garnet, Y3Al5O12 (YAG), tubes which we extruded from a thermoplastic/ceramic blend. At equivalent final densities, we found finer grain sizes in the from the mixed Y2O3 and Al2 O3 nanopowders, which was attributed to densification occurring before full transformation to the YAG phase. The enhanced densification in production of pure YAG from the reactive sintering process led us to produce composites in the YAG/alpha-Al 2O3 system. Finally, a third Y2O3 stabilized ZrO2 (YSZ) phase was added to further refine grain sizes using the same two processing approaches. In a separate study, single-phase metastable Al2O3 rich spinels with the composition MO•3Al 2O3 where M = Mg, Ni, and Co were sintered to produce dense MAl2O4/alpha-Al2O3 composites. All of these studies provide a test of the bottom-up approach; that is, how the initial length scale of mixing affects the final composite microstructure. Overall, the length scale of mixing is highly dependent upon the specific oxide composites studied. This work provides a processing framework to be adopted by other researchers to further refine microstructural size. LF-FSP flame temperatures were mapped using different alcohols with different heats of combustion: methanol, ethanol, 1-propanol, and n-butanol. The effect of different alcohols on particle size and phase was determined through studies on Al2O3, Y2O3 and TiO2 nanopowders. The final studies describe the morphology of composite nanopowders produced in the WO3-TiO2 and CuO-TiO2 systems. The composite nanopowders have novel morphology, and may offer novel electronic, optical, or catalytic properties.
Radiotracer Technology in Mixing Processes for Industrial Applications
Othman, N.; Kamarudin, S. K.
2014-01-01
Many problems associated with the mixing process remain unsolved and result in poor mixing performance. The residence time distribution (RTD) and the mixing time are the most important parameters that determine the homogenisation that is achieved in the mixing vessel and are discussed in detail in this paper. In addition, this paper reviews the current problems associated with conventional tracers, mathematical models, and computational fluid dynamics simulations involved in radiotracer experiments and hybrid of radiotracer. PMID:24616642
NASA Astrophysics Data System (ADS)
Zhang, Dongdong; Tan, Jianguo; Lv, Liang
2015-12-01
The mixing process has been an important issue for the design of supersonic combustion ramjet engine, and the mixing efficiency plays a crucial role in the improvement of the combustion efficiency. In the present study, nanoparticle-based planar laser scattering (NPLS), particle image velocimetry (PIV) and large eddy simulation (LES) are employed to investigate the flow and mixing characteristics of supersonic mixing layer under different forced vibration conditions. The indexes of fractal dimension, mixing layer thickness, momentum thickness and scalar mixing level are applied to describe the mixing process. Results show that different from the development and evolution of supersonic mixing layer without vibration, the flow under forced vibration is more likely to present the characteristics of three-dimensionality. The laminar flow region of mixing layer under forced vibration is greatly shortened and the scales of rolled up Kelvin-Helmholtz vortices become larger, which promote the mixing process remarkably. The fractal dimension distribution reveals that comparing with the flow without vibration, the turbulent fluctuation of supersonic mixing layer under forced vibration is more intense. Besides, the distribution of mixing layer thickness, momentum thickness and scalar mixing level are strongly influenced by forced vibration. Especially, when the forcing frequency is 4000 Hz, the mixing layer thickness and momentum thickness are 0.0391 m and 0.0222 m at the far field of 0.16 m, 83% and 131% higher than that without vibration at the same position, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riihimaki, Laura D.; Comstock, Jennifer M.; Luke, Edward
To understand the microphysical processes that impact diabatic heating and cloud lifetimes in convection, we need to characterize the spatial distribution of supercooled liquid water. To address this observational challenge, vertically pointing active sensors at the Darwin Atmospheric Radiation Measurement (ARM) site are used to classify cloud phase within a deep convective cloud in a shallow to deep convection transitional case. The cloud cannot be fully observed by a lidar due to signal attenuation. Thus we develop an objective method for identifying hydrometeor classes, including mixed-phase conditions, using k-means clustering on parameters that describe the shape of the Doppler spectramore » from vertically pointing Ka band cloud radar. This approach shows that multiple, overlapping mixed-phase layers exist within the cloud, rather than a single region of supercooled liquid, indicating complexity to how ice growth and diabatic heating occurs in the vertical structure of the cloud.« less
Friedman, B; Shortell, S
1988-01-01
This article analyzes determinants of cost and profitability, including the influence of Medicare prospective payment (PPS), between 1983 and 1985 for nearly 300 hospitals belonging to investor-owned (IO) and not-for-profit (NFP) systems. Using approaches that assure comparability of financial data, and including case mix, quality, competition, and regulation measures, the findings indicate that (1) in both years, competitive environment, case mix, age of facility, and scope of diversified services were important determinants of average cost, while a process measure of quality was insignificant and the independent effect of ownership type was insignificant for cost; (2) effects of HMO competition and hospital strategy were stronger in 1985 than in 1983; (3) operating margins for all types of hospitals showed increases, with a somewhat greater improvement for NFP system members; and (4) significantly greater declines in volume of care occurred for IO system members. Implications for future research are discussed. PMID:3133323
Simulation of radiation driven fission gas diffusion in UO 2, ThO 2 and PuO 2
Cooper, Michael William D.; Stanek, Christopher Richard; Turnbull, James Anthony; ...
2016-12-01
Below 1000 K it is thought that fission gas diffusion in nuclear fuel during irradiation occurs through atomic mixing due to radiation damage. Here we present a molecular dynamics (MD) study of Xe, Kr, Th, U, Pu and O diffusion due to irradiation. It is concluded that the ballistic phase does not sufficiently account for the experimentally observed diffusion. Thermal spike simulations are used to confirm that electronic stopping remedies the discrepancy with experiment and the predicted diffusivities lie within the scatter of the experimental data. Here, our results predict that the diffusion coefficients are ordered such that D* 0more » > D* Kr > D* Xe > D* U. For all species >98.5% of diffusivity is accounted for by electronic stopping. Fission gas diffusivity was not predicted to vary significantly between ThO 2, UO 2 and PuO 2, indicating that this process would not change greatly for mixed oxide fuels.« less
The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink.
Abelmann, Andrea; Gersonde, Rainer; Knorr, Gregor; Zhang, Xu; Chapligin, Bernhard; Maier, Edith; Esper, Oliver; Friedrichsen, Hans; Lohmann, Gerrit; Meyer, Hanno; Tiedemann, Ralf
2015-09-18
Reduced surface-deep ocean exchange and enhanced nutrient consumption by phytoplankton in the Southern Ocean have been linked to lower glacial atmospheric CO2. However, identification of the biological and physical conditions involved and the related processes remains incomplete. Here we specify Southern Ocean surface-subsurface contrasts using a new tool, the combined oxygen and silicon isotope measurement of diatom and radiolarian opal, in combination with numerical simulations. Our data do not indicate a permanent glacial halocline related to melt water from icebergs. Corroborated by numerical simulations, we find that glacial surface stratification was variable and linked to seasonal sea-ice changes. During glacial spring-summer, the mixed layer was relatively shallow, while deeper mixing occurred during fall-winter, allowing for surface-ocean refueling with nutrients from the deep reservoir, which was potentially richer in nutrients than today. This generated specific carbon and opal export regimes turning the glacial seasonal sea-ice zone into a carbon sink.
Polyhydroxybutyrate synthesis on biodiesel wastewater using mixed microbial consortia.
Dobroth, Zachary T; Hu, Shengjun; Coats, Erik R; McDonald, Armando G
2011-02-01
Crude glycerol (CG), a by-product of biodiesel production, is an organic carbon-rich substrate with potential as feedstock for polyhydroxyalkanoate (PHA) production. PHA is a biodegradable thermoplastic synthesized by microorganisms as an intracellular granule. In this study we investigated PHA production on CG using mixed microbial consortia (MMC) and determined that the enriched MMC produced exclusively polyhydroxybutyrate (PHB) utilizing the methanol fraction. PHB synthesis appeared to be stimulated by a macronutrient deficiency. Intracellular concentrations remained relatively constant over an operational cycle, with microbial growth occurring concurrent with polymer synthesis. PHB average molecular weights ranged from 200-380 kDa, while thermal properties compared well with commercial PHB. The resulting PHB material properties and characteristics would be suitable for many commercial uses. Considering full-scale process application, it was estimated that a 38 million L (10 million gallon) per year biodiesel operation could potentially produce up to 19 metric ton (20.9t on) of PHB per year. Copyright © 2010 Elsevier Ltd. All rights reserved.
The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink
Abelmann, Andrea; Gersonde, Rainer; Knorr, Gregor; Zhang, Xu; Chapligin, Bernhard; Maier, Edith; Esper, Oliver; Friedrichsen, Hans; Lohmann, Gerrit; Meyer, Hanno; Tiedemann, Ralf
2015-01-01
Reduced surface–deep ocean exchange and enhanced nutrient consumption by phytoplankton in the Southern Ocean have been linked to lower glacial atmospheric CO2. However, identification of the biological and physical conditions involved and the related processes remains incomplete. Here we specify Southern Ocean surface–subsurface contrasts using a new tool, the combined oxygen and silicon isotope measurement of diatom and radiolarian opal, in combination with numerical simulations. Our data do not indicate a permanent glacial halocline related to melt water from icebergs. Corroborated by numerical simulations, we find that glacial surface stratification was variable and linked to seasonal sea-ice changes. During glacial spring–summer, the mixed layer was relatively shallow, while deeper mixing occurred during fall–winter, allowing for surface-ocean refueling with nutrients from the deep reservoir, which was potentially richer in nutrients than today. This generated specific carbon and opal export regimes turning the glacial seasonal sea-ice zone into a carbon sink. PMID:26382319
Physical Modelling of the Effect of Slag and Top-Blowing on Mixing in the AOD Process
NASA Astrophysics Data System (ADS)
Haas, Tim; Visuri, Ville-Valtteri; Kärnä, Aki; Isohookana, Erik; Sulasalmi, Petri; Eriç, Rauf Hürman; Pfeifer, Herbert; Fabritius, Timo
The argon-oxygen decarburization (AOD) process is the most common process for refining stainless steel. High blowing rates and the resulting efficient mixing of the steel bath are characteristic of the AOD process. In this work, a 1:9-scale physical model was used to study mixing in a 150 t AOD vessel. Water, air and rapeseed oil were used to represent steel, argon and slag, respectively, while the dynamic similarity with the actual converter was maintained using the modified Froude number and the momentum number. Employing sulfuric acid as a tracer, the mixing times were determined on the basis of pH measurements according to the 97.5% criterion. The gas blowing rate and slag-steel volume ratio were varied in order to study their effect on the mixing time. The effect of top-blowing was also investigated. The results suggest that mixing time decreases as the modified Froude number of the tuyères increases and that the presence of a slag layer increases the mixing time. Furthermore, top-blowing was found to increase the mixing time both with and without the slag layer.
Szabó, Ádám György; Farkas, Kinga; Marosi, Csilla; Kozák, Lajos R; Rudas, Gábor; Réthelyi, János; Csukly, Gábor
2017-12-08
Schizophrenia has a negative effect on the activity of the temporal and prefrontal cortices in the processing of emotional facial expressions. However no previous research focused on the evaluation of mixed emotions in schizophrenia, albeit they are frequently expressed in everyday situations and negative emotions are frequently expressed by mixed facial expressions. Altogether 37 subjects, 19 patients with schizophrenia and 18 healthy control subjects were enrolled in the study. The two study groups did not differ in age and education. The stimulus set consisted of 10 fearful (100%), 10 happy (100%), 10 mixed fear (70% fear and 30% happy) and 10 mixed happy facial expressions. During the fMRI acquisition pictures were presented in a randomized order and subjects had to categorize expressions by button press. A decreased activation was found in the patient group during fear, mixed fear and mixed happy processing in the right ventrolateral prefrontal cortex (VLPFC) and the right anterior insula (RAI) at voxel and cluster level after familywise error correction. No difference was found between study groups in activations to happy facial condition. Patients with schizophrenia did not show a differential activation between mixed happy and happy facial expression similar to controls in the right dorsolateral prefrontal cortex (DLPFC). Patients with schizophrenia showed decreased functioning in right prefrontal regions responsible for salience signaling and valence evaluation during emotion recognition. Our results indicate that fear and mixed happy/fear processing are impaired in schizophrenia, while happy facial expression processing is relatively intact.
Recycling of mixed wastes using Quantum-CEP{trademark}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sameski, B.
1997-02-01
The author describes the process that M4 Environmental Management, Inc., is commercializing for the treatment of mixed wastes. He summarizes the types of wastes which the process can be applied to, the products which come out of the process, and examples of various waste streams which have been processed. The process is presently licensed to treat mixed wastes and the company has in place contracts for such services. The process uses a molten metal bath to catalyze reactions which break the incoming products down to an atomic level, and allow different process steams to be tapped at the output end.
Mediterranean Magmatism: Bimodal Melting Patterns Inferred By Numerical Models
NASA Astrophysics Data System (ADS)
Gogus, O.; Ueda, K.; Gerya, T.
2017-12-01
Melt production by the decompression melting of the asthenospheric mantle occurs in the course of the lithospheric foundering process. The magmatic imprints of such foundering process are often described as anorogenic magmatism and this is usually followed by the orogenic magmatism, related to the subduction events in the Mediterranean region. Here, by using numerical geodynamic experiments we explore various styles of magmatism, their interaction with each other and the amount of magma production in the ocean subduction to slab peel away/delamination configuration. Model results show that the early stage of the ocean subduction under the continental lithosphere is associated with the short pulse of wet melting-orogenic magmatism and then the melting process is mostly dominated by dry melting-anorogenic magmatism, until the slab break-off occurs. While the melt types mixes/alternates during the evolution of the model, the wet melting facilitates the production of dry melting because of its uprising and emplacement under the crust where dry melting is present. The melt production pattern and the amount does not change significantly with different depths of the slab break-off (160-200 km). Model results can explain the transition from the calc-alkaline to alkaline volcanism in the western Mediterranean (Alboran domain) where ocean subduction to delamination has been interpreted.
The response of Lake Tahoe to climate change
Sahoo, G.B.; Schladow, S.G.; Reuter, J.E.; Coats, R.; Dettinger, M.; Riverson, J.; Wolfe, B.; Costa-Cabral, M.
2013-01-01
Meteorology is the driving force for lake internal heating, cooling, mixing, and circulation. Thus continued global warming will affect the lake thermal properties, water level, internal nutrient loading, nutrient cycling, food-web characteristics, fish-habitat, aquatic ecosystem, and other important features of lake limnology. Using a 1-D numerical model - the Lake Clarity Model (LCM) - together with the down-scaled climatic data of the two emissions scenarios (B1 and A2) of the Geophysical Fluid Dynamics Laboratory (GFDL) Global Circulation Model, we found that Lake Tahoe will likely cease to mix to the bottom after about 2060 for A2 scenario, with an annual mixing depth of less than 200 m as the most common value. Deep mixing, which currently occurs on average every 3-4 years, will (under the GFDL B1 scenario) occur only four times during 2061 to 2098. When the lake fails to completely mix, the bottom waters are not replenished with dissolved oxygen and eventually dissolved oxygen at these depths will be depleted to zero. When this occurs, soluble reactive phosphorus (SRP) and ammonium-nitrogen (both biostimulatory) are released from the deep sediments and contribute approximately 51 % and 14 % of the total SRP and dissolved inorganic nitrogen load, respectively. The lake model suggests that climate change will drive the lake surface level down below the natural rim after 2085 for the GFDL A2 but not the GFDL B1 scenario. The results indicate that continued climate changes could pose serious threats to the characteristics of the Lake that are most highly valued. Future water quality planning must take these results into account.
ERIC Educational Resources Information Center
Brown, K. M.; Elliott, S. J.; Leatherdale, S. T.; Robertson-Wilson, J.
2015-01-01
The environments in which population health interventions occur shape both their implementation and outcomes. Hence, when evaluating these interventions, we must explore both intervention content and context. Mixed methods (integrating quantitative and qualitative methods) provide this opportunity. However, although criteria exist for establishing…
Mixed Methodology in Group Research: Lessons Learned
ERIC Educational Resources Information Center
Shannonhouse, Laura R.; Barden, Sejal M.; McDonald, C. Peeper
2017-01-01
Mixed methods research (MMR) is a useful paradigm for group work as it allows exploration of both participant outcomes and "how" or "why" such changes occur. Unfortunately, the group counseling literature is not replete with MMR studies. This article reviews the application of MMR to group contexts and summarizes the corpus of…
Cross-Modulation Interference with Lateralization of Mixed-Modulated Waveforms
ERIC Educational Resources Information Center
Hsieh, I-Hui; Petrosyan, Agavni; Goncalves, Oscar F.; Hickok, Gregory; Saberi, Kourosh
2010-01-01
Purpose: This study investigated the ability to use spatial information in mixed-modulated (MM) sounds containing concurrent frequency-modulated (FM) and amplitude-modulated (AM) sounds by exploring patterns of interference when different modulation types originated from different loci as may occur in a multisource acoustic field. Method:…
Matacchiera, F; Manes, C; Beaven, R P; Rees-White, T C; Boano, F; Mønster, J; Scheutz, C
2018-02-13
The measurement of methane emissions from landfills is important to the understanding of landfills' contribution to greenhouse gas emissions. The Tracer Dispersion Method (TDM) is becoming widely accepted as a technique, which allows landfill emissions to be quantified accurately provided that measurements are taken where the plumes of a released tracer-gas and landfill-gas are well-mixed. However, the distance at which full mixing of the gases occurs is generally unknown prior to any experimental campaign. To overcome this problem the present paper demonstrates that, for any specific TDM application, a simple Gaussian dispersion model (AERMOD) can be run beforehand to help determine the distance from the source at which full mixing conditions occur, and the likely associated measurement errors. An AERMOD model was created to simulate a series of TDM trials carried out at a UK landfill, and was benchmarked against the experimental data obtained. The model was used to investigate the impact of different factors (e.g. tracer cylinder placements, wind directions, atmospheric stability parameters) on TDM results to identify appropriate experimental set ups for different conditions. The contribution of incomplete vertical mixing of tracer and landfill gas on TDM measurement error was explored using the model. It was observed that full mixing conditions at ground level do not imply full mixing over the entire plume height. However, when full mixing conditions were satisfied at ground level, then the error introduced by variations in mixing higher up were always less than 10%. Copyright © 2018. Published by Elsevier Ltd.
Lagrangian pathways of upwelling in the Southern Ocean
NASA Astrophysics Data System (ADS)
Viglione, Giuliana A.; Thompson, Andrew F.
2016-08-01
The spatial and temporal variability of upwelling into the mixed layer in the Southern Ocean is studied using a 1/10