Science.gov

Sample records for mixtures involving blowing

  1. Blowing up the Earth

    NASA Astrophysics Data System (ADS)

    Benge, Raymond

    2006-10-01

    An occasional theme in science fiction involves blowing up a planet. In ``Star Wars,'' the Death Star blows up Alderan. In ``The Hitchhiker's Guide to the Galaxy,'' a Vorgon destructor fleet blows up Earth to make room for a cosmic bypass. So, as an exercise for upper division students, or the more advance first year calculus based physics students, the energy needed to disassemble Earth can be computed. Assuming that advanced scifi aliens get their energy from matter-antimatter interactions, students can then compute the amount of antimatter needed to accomplish the task.

  2. Analysis and computer tools for separation processes involving nonideal mixtures

    SciTech Connect

    Lucia, A.

    1992-05-01

    The objectives of this research, were to continue to further both the theoretical understanding of and the development of computer tools (algorithms) for separation processes involving nonideal mixtures. These objectives were divided into three interrelated major areas -- the mathematical analysis of the number of steady-state solutions to multistage separation processes, the numerical analysis of general, related fixed-point methods, and the development and implementation of computer tools for process simulation.

  3. Diurnal patterns of blowing sand

    USDA-ARS?s Scientific Manuscript database

    The diurnal pattern of blowing sand results from a complex process that involves the interaction between the sun, wind, and earth. During the day, solar heating produces thermal instability, which enhances the convective mixing of high momentum winds from the upper levels of the atmosphere to the s...

  4. Monte Carlo simulations of mixtures involving ketones and aldehydes by a direct bubble pressure calculation.

    PubMed

    Ferrando, Nicolas; Lachet, Véronique; Boutin, Anne

    2010-07-08

    Ketone and aldehyde molecules are involved in a large variety of industrial applications. Because they are mainly present mixed with other compounds, the prediction of phase equilibrium of mixtures involving these classes of molecules is of first interest particularly to design and optimize separation processes. The main goal of this work is to propose a transferable force field for ketones and aldehydes that allows accurate molecular simulations of not only pure compounds but also complex mixtures. The proposed force field is based on the anisotropic united-atoms AUA4 potential developed for hydrocarbons, and it introduces only one new atom, the carbonyl oxygen. The Lennard-Jones parameters of this oxygen atom have been adjusted on saturated thermodynamic properties of both acetone and acetaldehyde. To simulate mixtures, Monte Carlo simulations are carried out in a specific pseudoensemble which allows a direct calculation of the bubble pressure. For polar mixtures involved in this study, we show that this approach is an interesting alternative to classical calculations in the isothermal-isobaric Gibbs ensemble. The pressure-composition diagrams of polar + polar and polar + nonpolar binary mixtures are well reproduced. Mutual solubilities as well as azeotrope location, if present, are accurately predicted without any empirical binary interaction parameters or readjustment. Such result highlights the transferability of the proposed force field, which is an essential feature toward the simulation of complex oxygenated mixtures of industrial interest.

  5. Five Blows to Mankind's Narcissism.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    1978-01-01

    Freud identified three blows to mankind's narcissism--cosmological, biological, and psychological. Conjectural fourth and fifth blows might be universological (the discovery of other intelligent beings) and earthological (the demise of this planet via waste, pollution, etc.). (Author/JC)

  6. Five Blows to Mankind's Narcissism.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    1978-01-01

    Freud identified three blows to mankind's narcissism--cosmological, biological, and psychological. Conjectural fourth and fifth blows might be universological (the discovery of other intelligent beings) and earthological (the demise of this planet via waste, pollution, etc.). (Author/JC)

  7. Liquid Mixtures Involving Hydrogenated and Fluorinated Alcohols: Thermodynamics, Spectroscopy, and Simulation.

    PubMed

    Morgado, Pedro; Garcia, Ana Rosa; Ilharco, Laura M; Marcos, João; Anastácio, Martim; Martins, Luís F G; Filipe, Eduardo J M

    2016-09-19

    This article reports a combined thermodynamic, spectroscopic, and computational study on the interactions and structure of binary mixtures of hydrogenated and fluorinated substances that simultaneously interact through strong hydrogen bonding. Four binary mixtures of hydrogenated and fluorinated alcohols have been studied, namely, (ethanol + 2,2,2-trifluoroethanol (TFE)), (ethanol + 2,2,3,3,4,4,4-heptafluoro-1-butanol), (1-butanol (BuOH) + TFE), and (BuOH + 2,2,3,3,4,4,4-heptafluoro-1-butanol). Excess molar volumes and vibrational spectra of all four binary mixtures have been measured as a function of composition at 298 K, and molecular dynamics simulations have been performed. The systems display a complex behavior when compared with mixtures of hydrogenated alcohols and mixtures of alkanes and perfluoroalkanes. The combined analysis of the results from different approaches indicates that this results from a balance between preferential hydrogen bonding between the hydrogenated and fluorinated alcohols and the unfavorable dispersion forces between the hydrogenated and fluorinated chains. As the chain length increases, the contribution of dispersion increases and overcomes the contribution of H-bonds. In terms of the liquid structure, the simulations suggest the possibility of segregation between the hydrogenated and fluorinated segments, a hypothesis corroborated by the spectroscopic results. Furthermore, a quantitative analysis of the infrared spectra reveals that the presence of fluorinated groups induces conformational changes in the hydrogenated chains from the usually preferred all-trans to more globular arrangements involving gauche conformations. Conformational rearrangements at the CCOH dihedral angle upon mixing are also disclosed by the spectra.

  8. Blowing DNA bubbles.

    PubMed

    Severin, N; Zhuang, W; Ecker, C; Kalachev, A A; Sokolov, I M; Rabe, J P

    2006-11-01

    We report here experimental observations which indicate that topologically or covalently formed polymer loops embedded in an ultrathin liquid film on a solid substrate can be "blown" into circular "bubbles" during scanning force microscopy (SFM) imaging. In particular, supercoiled vector DNA has been unraveled, moved, stretched, and overstretched to two times its B-form length and then torn apart. We attribute the blowing of the DNA bubbles to the interaction of the tapping SFM tip with the ultrathin liquid film.

  9. Thar she blows! A novel method for DNA collection from cetacean blow.

    PubMed

    Frère, Céline H; Krzyszczyk, Ewa; Patterson, Eric M; Hunter, Sue; Ginsburg, Alison; Mann, Janet

    2010-08-25

    Molecular tools are now widely used to address crucial management and conservation questions. To date, dart biopsying has been the most commonly used method for collecting genetic data from cetaceans; however, this method has some drawbacks. Dart biopsying is considered inappropriate for young animals and has recently come under scrutiny from ethical boards, conservationists, and the general public. Thus, identifying alternative genetic collection techniques for cetaceans remains a priority, especially for internationally protected species. In this study, we investigated whether blow-sampling, which involves collecting exhalations from the blowholes of cetaceans, could be developed as a new less invasive method for DNA collection. Our current methodology was developed using six bottlenose dolphins, Tursiops truncatus, housed at the National Aquarium, Baltimore (USA), from which we were able to collect both blow and blood samples. For all six individuals, we found that their mitochondrial and microsatellite DNA profile taken from blow, matched their corresponding mitochondrial and microsatellite DNA profile collected from blood. This indicates that blow-sampling is a viable alternative method for DNA collection. In this study, we show that blow-sampling provides a viable and less invasive method for collection of genetic data, even for small cetaceans. In contrast to dart biopsying, the advantage of this method is that it capitalizes on the natural breathing behaviour of dolphins and can be applied to even very young dolphins. Both biopsy and blow-sampling require close proximity of the boat, but blow-sampling can be achieved when dolphins voluntarily bow-ride and involves no harmful contact.

  10. Blowing Agents for Fabrication of Polyimide Foams

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Sorathia, U. A. K.; Lee, R.

    1982-01-01

    Polyimide resin can be foamed by agent generated within matrix of powder precursor. Blowing agent is mixture of water and methanol that are byproducts of condensation/polymerization reaction in resin. Expansion of these two compounds produces cellular foam structure that is flexible and resilient but that tends to have very-fine cellular structure. More open structure with lower density can be attained by modifying mechanism of foam formation. Foams have applications as fillers for seat cushions, wall panels, floor sheets, and thermal and acoustical insulation.

  11. Flap-Edge Blowing Experiments

    NASA Technical Reports Server (NTRS)

    Gaeta, R. J.; Englar, R. J.; Ahuja, K. K.

    2003-01-01

    This Appendix documents the salient results from an effort to mitigate the so-called flap-edge noise generated at the split between a flap edge that is deployed and the undeployed flap. Utilizing a Coanda surface installed at the flap edge, steady blowing was used in an attempt to diminish the vortex strength resulting from the uneven lift distribution. The strength of this lifting vortex was augmented by steady blowing over the deployed flap. The test article for this study was the same 2D airfoil used in the steady blowing program reported earlier (also used in pulsed blowing tests, see Appendix G), however its trailing edge geometry was modified. An exact duplicate of the airfoil shape was made out of fiberglass with no flap, and in the clean configuration. It was attached to the existing airfoil to make an airfoil that has half of its flap deployed and half un-deployed. Figure 1 shows a schematic of the planform showing the two areas where steady blowing was introduced. The flap-edge blowing or the auxiliary blowing was in the direction normal to the freestream velocity vector. Slot heights for the blowing chambers were on the order of 0.0 14 inches.

  12. A theory for lateral wing-tip blowing

    NASA Technical Reports Server (NTRS)

    Tavella, D.; Roberts, L.

    1985-01-01

    The concept of lateral blowing consists in utilizing thin jets of air, which are ejected in the spanwise direction from slots at the tips of straight and swept wings, or along the leading edges of delta wings, to generate aerodynamic forces without the assistance of deflecting solid surfaces. For weak intensities of blowing the so-generated forces could be used for roll and lateral control of aircraft. In this work a theory for this concept as applied to straight wings is presented, revealing the analytical relationship between blowing and aerodynamic forces. The approach is based on perturbing the span of an elliptically loaded wing. Scaling laws involving blowing intensity, aspect ratio, and angle of attack are derived and compared with experiments. It is concluded that this concept has potential as a novel roll and lateral control device.

  13. Blowing cosmic bubbles

    NASA Image and Video Library

    2017-04-17

    This entrancing image shows a few of the tenuous threads that comprise Sh2-308, a faint and wispy shell of gas located 5200 light-years away in the constellation of Canis Major (The Great Dog). Sh2-308 is a large bubble-like structure wrapped around an extremely large, bright type of star known as a Wolf-Rayet Star — this particular star is called EZ Canis Majoris. These type of stars are among the brightest and most massive stars in the Universe, tens of times more massive than our own Sun, and they represent the extremes of stellar evolution. Thick winds continually poured off the progenitors of such stars, flooding their surroundings and draining the outer layers of the Wolf-Rayet stars. The fast wind of a Wolf-Rayet star therefore sweeps up the surrounding material to form bubbles of gas. EZ Canis Majoris is responsible for creating the bubble of Sh2-308 — the star threw off its outer layers to create the strands visible here. The intense and ongoing radiation from the star pushes the bubble out further and further, blowing it bigger and bigger. Currently the edges of Sh2-308 are some 60 light-years apart! Beautiful as these cosmic bubbles are, they are fleeting. The same stars that form them will also cause their death, eclipsing and subsuming them in violent supernova explosions.

  14. Blowing Flap Experiment: PIV Measurements

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Stead, Daniel J.; Bremmer, David M.

    2004-01-01

    PIV measurements of the flow in the region of a flap side edge are presented for several flap configurations. The test model is a NACA 63(sub 2)-215 Hicks Mod-B main element airfoil with a half-span Fowler flap. Air is blown from small slots located along the flap side edge on either the top, bottom or side surfaces. The test set up is described and flow measurements for a baseline and three blowing flap configurations are presented. The effects that the flap tip jets have on the structure of the flap side edge flow are discussed for each of the flap configurations tested. The results indicate that blowing air from a slot located along the top surface of the flap greatly weakened the top vortex system and pushed it further off the top surface. Blowing from the bottom flap surface kept the strong side vortex further outboard while blowing from the side surface only strengthened the flap vortex system. It is concluded that blowing from the top or bottom surfaces of the flap may lead to a reduction of flap side edge noise.

  15. Proton-transfer laser. Dual wavelength lasing action in binary dye mixtures involving 3-hydroxyflavone

    SciTech Connect

    Chou, P.; Aartsma, T.J.

    1986-02-27

    Amplified spontaneous emission is observed from 3-hydroxyflavone and from a laser dye simultaneously in a binary mixture. This observation is interpreted in terms of a rapid tautomerization in the 3-hydroxyflavone ground state, minimizing reabsorption between 400 and 500 nm. 8 references, 4 figures, 1 table.

  16. Shooting method for solution of boundary-layer flows with massive blowing

    NASA Technical Reports Server (NTRS)

    Liu, T.-M.; Nachtsheim, P. R.

    1973-01-01

    A modified, bidirectional shooting method is presented for solving boundary-layer equations under conditions of massive blowing. Unlike the conventional shooting method, which is unstable when the blowing rate increases, the proposed method avoids the unstable direction and is capable of solving complex boundary-layer problems involving mass and energy balance on the surface.

  17. Shooting method for solution of boundary-layer flows with massive blowing

    NASA Technical Reports Server (NTRS)

    Liu, T.-M.; Nachtsheim, P. R.

    1973-01-01

    A modified, bidirectional shooting method is presented for solving boundary-layer equations under conditions of massive blowing. Unlike the conventional shooting method, which is unstable when the blowing rate increases, the proposed method avoids the unstable direction and is capable of solving complex boundary-layer problems involving mass and energy balance on the surface.

  18. Analysis and computer tools for separation processes involving nonideal mixtures. Progress report, December 1, 1989--November 30, 1992

    SciTech Connect

    Lucia, A.

    1992-05-01

    The objectives of this research, were to continue to further both the theoretical understanding of and the development of computer tools (algorithms) for separation processes involving nonideal mixtures. These objectives were divided into three interrelated major areas -- the mathematical analysis of the number of steady-state solutions to multistage separation processes, the numerical analysis of general, related fixed-point methods, and the development and implementation of computer tools for process simulation.

  19. The Early Years: Blowing Bubbles

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2016-01-01

    Blowing bubbles is not only a favorite summer activity for young children. Studying bubbles that are grouped together, or "foam," is fun for children and fascinating to many real-world scientists. Foam is widely used--from the bedroom (mattresses) to outer space (insulating panels on spacecraft). Bubble foam can provide children a…

  20. The Early Years: Blowing Bubbles

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2016-01-01

    Blowing bubbles is not only a favorite summer activity for young children. Studying bubbles that are grouped together, or "foam," is fun for children and fascinating to many real-world scientists. Foam is widely used--from the bedroom (mattresses) to outer space (insulating panels on spacecraft). Bubble foam can provide children a…

  1. 21 CFR 868.5220 - Blow bottle.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blow bottle. 868.5220 Section 868.5220 Food and... ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5220 Blow bottle. (a) Identification. A blow bottle is a device that is intended for medical purposes to induce a forced expiration from a patient. The patient...

  2. 21 CFR 868.5220 - Blow bottle.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blow bottle. 868.5220 Section 868.5220 Food and... ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5220 Blow bottle. (a) Identification. A blow bottle is a device that is intended for medical purposes to induce a forced expiration from a patient. The patient...

  3. 21 CFR 868.5220 - Blow bottle.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blow bottle. 868.5220 Section 868.5220 Food and... ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5220 Blow bottle. (a) Identification. A blow bottle is a device that is intended for medical purposes to induce a forced expiration from a patient. The patient...

  4. 21 CFR 868.5220 - Blow bottle.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blow bottle. 868.5220 Section 868.5220 Food and... ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5220 Blow bottle. (a) Identification. A blow bottle is a device that is intended for medical purposes to induce a forced expiration from a patient. The patient...

  5. Control of Cavity Resonance Using Oscillatory Blowing

    NASA Technical Reports Server (NTRS)

    Scarfe, Alison Lamp; Chokani, Ndaona

    2000-01-01

    The near-zero net mass oscillatory blowing control of a subsonic cavity flow has been experimentally investigated. An actuator was designed and fabricated to provide both steady and oscillatory blowing over a range of blowing amplitudes and forcing frequencies. The blowing was applied just upstream of the cavity front Wall through interchangeable plate configurations These configurations enabled the effects of hole size, hole shape, and blowing angle to be examined. A significant finding is that in terms of the blowing amplitude, the near zero net mass oscillatory blowing is much more effective than steady blowing; momentum coefficients Lip two orders of magnitude smaller than those required for steady blowing are sufficient to accomplish the same control of cavity resonance. The detailed measurements obtained in the experiment include fluctuating pressure data within the cavity wall, and hot-wire measurements of the cavity shear layer. Spectral and wavelet analysis techniques are applied to understand the dynamics and mechanisms of the cavity flow with control. The oscillatory blowing, is effective in enhancing the mixing in the cavity shear layer and thus modifying the feedback loop associated with the cavity resonance. The nonlinear interactions in the cavity flow are no longer driven by the resonant cavity modes but by the forcing associated with the oscillatory blowing. The oscillatory blowing does not suppress the mode switching behavior of the cavity flow, but the amplitude modulation is reduced.

  6. Lasing characteristics of gas mixtures involving UFG: Application to nuclear pumping of lasers

    NASA Technical Reports Server (NTRS)

    Verdeyen, J. T.; Eden, J. G.

    1980-01-01

    Intense blue-green fluorescence from a structured band centered at lambda approximately 484 nm was observed from Ar, CF3I and NF3 gas mixtures excited by an electron beam. This emission was tentatively assigned to the E yields A transition of the iodine monofluoride (IF) molecule. The fluorescence efficiency of the IF(E yields A) band and the IF (E) state radiative lifetime were estimated to be approximately 6% and 15 ns, respectively. The emission band structure, the short IF(E) radiative lifetime and the Franck-Condon shift between the E and A states suggest that IF is an attractive candidate for a blue-green laser.

  7. Preventing Blow up by Convective Terms in Dissipative PDE's

    NASA Astrophysics Data System (ADS)

    Bilgin, Bilgesu; Kalantarov, Varga; Zelik, Sergey

    2016-09-01

    We study the impact of the convective terms on the global solvability or finite time blow up of solutions of dissipative PDEs. We consider the model examples of 1D Burger's type equations, convective Cahn-Hilliard equation, generalized Kuramoto-Sivashinsky equation and KdV type equations. The following common scenario is established: adding sufficiently strong (in comparison with the destabilizing nonlinearity) convective terms to equation prevents the solutions from blowing up in a finite time and makes the considered system globally well-posed and dissipative and for weak enough convective terms the finite time blow up may occur similar to the case, when the equation does not involve convective term. This kind of result has been previously known for the case of Burger's type equations and has been strongly based on maximum principle. In contrast to this, our results are based on the weighted energy estimates which do not require the maximum principle for the considered problem.

  8. Blowing the whistle on healthcare fraud: should I?

    PubMed

    Hannigan, Norma Stephens

    2006-11-01

    The purpose of this article is to explore some of the factors involved when a nurse practitioner (NP) is confronted with a healthcare fraud situation. Ethical concepts and decision-making strategies are provided, as well as practical legal considerations. Government Internet Web sites; healthcare management, ethics, and nursing journals. There are many forms of healthcare fraud. Healthcare fraud saps financial resources from the healthcare system and from individuals. The decision to blow the whistle on a colleague or organization is not an easy one and has potential for great discomfort. There are ethical decision-making strategies and practical considerations for the process of whistle-blowing should it become necessary. NPs may be confronted daily with billing and reimbursement issues. Being prepared to recognize healthcare fraud and knowing the ramifications of whistle-blowing are important tools to have in one's practice repertoire.

  9. Let Them Blow Bubbles.

    ERIC Educational Resources Information Center

    Korenic, Eileen

    1988-01-01

    Describes a series of activities and demonstrations involving the science of soap bubbles. Starts with a recipe for bubble solution and gives instructions for several activities on topics such as density, interference colors, optics, static electricity, and galaxy formation. Contains some background information to help explain some of the effects.…

  10. Let Them Blow Bubbles.

    ERIC Educational Resources Information Center

    Korenic, Eileen

    1988-01-01

    Describes a series of activities and demonstrations involving the science of soap bubbles. Starts with a recipe for bubble solution and gives instructions for several activities on topics such as density, interference colors, optics, static electricity, and galaxy formation. Contains some background information to help explain some of the effects.…

  11. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help

  12. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help

  13. Flush or blow lines adequately

    SciTech Connect

    Junique, J.C.

    1988-07-01

    During the commissioning of new plants, before initial startup, an important step is to clean debris from pipes and equipment. This is usually done by flushing with water or blowing with steam or air. It is not the intention of this article to give recommendation about how to proceed, but rather to give a general method to estimate the effectiveness of this operation. The method is based on the general theory of particle dynamics and the concept of drag force - the force needed to displace particles and move them along through the system. We want to make sure the degree of cleanliness obtained at the end of flushing or blowing is such that, later, in the most critical case during operation or operational upset, the particles which are left in the pipework or equipment will not move further. Therefore, the notion of drag force is useful to make comparisons between normal operation and cleaning operation. The concept can also be used to compare the efficiency of different cleaning media; for example, whether to use air blowing or water flushing.

  14. Fluorescence- and magnetic-activated cell sorting strategies to separate spermatozoa involving plural contributors from biological mixtures for human identification

    PubMed Central

    Xu, Yan; Xie, Jianhui; Chen, Ronghua; Cao, Yu; Ping, Yuan; Xu, Qingwen; Hu, Wei; Wu, Dan; Gu, Lihua; Zhou, Huaigu; Chen, Xin; Zhao, Ziqin; Zhong, Jiang; Li, Rui

    2016-01-01

    No effective method has been developed to distinguish sperm cells originating from different men in multi-suspect sexual assault cases. Here we combined MACS and FACS to isolate single donor sperm cells from forensic mixture samples including female vaginal epithelial cells and sperm cells from multiple contributors. Sperms from vaginal swab were isolated by MACS using FITC-conjugated A kinase anchor protein 3 (AKAP3) antibody; target individual sperm cells involving two or three donors were separated by FACS using FITC-labeled blood group A/B antigen antibody. This procedure was further tested in two mock multi-suspect sexual assault samples and one practical casework sample. Our results showed that complete single donor STR profiles could be successfully obtained from sperm/epithelial cell and sperm mixtures from two contributors. For unbalanced sperm/epithelial cells and sperm cells mixtures, sensitivity results revealed that target cells could be detected at as low as 1:32 and 1:8 mixed ratios, respectively. Although highly relies on cell number and blood types or secretor status of the individuals, this procedure would still be useful tools for forensic DNA analysis of multi-suspect sexual assault cases by the combined use of FACS and MACS based on sperm-specific AKAP3 antigen and human blood type antigen. PMID:27857155

  15. Blow molding of melt processible rubber

    SciTech Connect

    Abell, W.R.; Stuart, R.E.; Myrick, R.E.

    1991-07-01

    This article discusses the advantages of making hollow rubber parts by blow molding thermoplastic elastomers (TPEs) versus conventional rubber processing. It describes the various types of blow molding processes and it provides some insight into the rheological properties of melt processible rubber (MPR) and how MPR should be molded by each of these processes. A number of blow molded applications for MPR are also discussed.

  16. Pulsed single-blow regenerator testing

    NASA Technical Reports Server (NTRS)

    Oldson, J. C.; Knowles, T. R.; Rauch, J.

    1992-01-01

    A pulsed single-blow method has been developed for testing of Stirling regenerator materials performance. The method uses a tubular flow arrangement with a steady gas flow passing through a regenerator matrix sample that packs the flow channel for a short distance. A wire grid heater spanning the gas flow channel is used to heat a plug of gas by approximately 2 K for approximately 350 ms. Foil thermocouples monitor the gas temperature entering and leaving the sample. Data analysis based on a 1D incompressible-flow thermal model allows the extraction of Stanton number. A figure of merit involving heat transfer and pressure drop is used to present results for steel screens and steel felt. The observations show a lower figure of merit for the materials tested than is expected based on correlations obtained by other methods.

  17. Bernoulli Suction Effect on Soap Bubble Blowing?

    NASA Astrophysics Data System (ADS)

    Davidson, John; Ryu, Sangjin

    2015-11-01

    As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

  18. Pulsed single-blow regenerator testing

    NASA Technical Reports Server (NTRS)

    Oldson, J. C.; Knowles, T. R.; Rauch, J.

    1992-01-01

    A pulsed single-blow method has been developed for testing of Stirling regenerator materials performance. The method uses a tubular flow arrangement with a steady gas flow passing through a regenerator matrix sample that packs the flow channel for a short distance. A wire grid heater spanning the gas flow channel is used to heat a plug of gas by approximately 2 K for approximately 350 ms. Foil thermocouples monitor the gas temperature entering and leaving the sample. Data analysis based on a 1D incompressible-flow thermal model allows the extraction of Stanton number. A figure of merit involving heat transfer and pressure drop is used to present results for steel screens and steel felt. The observations show a lower figure of merit for the materials tested than is expected based on correlations obtained by other methods.

  19. Blowing Circulation Control on a Seaplane Airfoil

    NASA Astrophysics Data System (ADS)

    Guo, B. D.; Liu, P. Q.; Qu, Q. L.

    2011-09-01

    RANS simulations are presented for blowing circulation control on a seaplane airfoil. Realizable k-epsilon turbulent model and pressure-based coupled algorithm with second-order discretization were adopted to simulate the compressible flow. Both clear and simple flap configuration were simulated with blowing momentum coefficient Cμ = 0, 0.15 and 0.30. The results show that blowing near the airfoil trailing edge could enhance the Coanda effect, delay the flow separation, and increase the lift coefficient dramatically. The blowing circulation control is promising to apply to taking off and landing of an amphibious aircraft or seaplane.

  20. An inverse blow-up problem

    NASA Astrophysics Data System (ADS)

    Kamimura, Yutaka; Usami, Hiroyuki

    2016-12-01

    This paper studies an inverse problem to determine a nonlinearity of an autonomous equation from blow-up time of solutions to the equation. Firstly we prove a global continuation result showing that a nonlinearity realizing blow-up time for large initial data can be continued in the direction of smaller data as long as the blow-up time is Lipschitz continuous. Secondly we develop a method based upon a Wiener-Hopf structure by which the existence and uniqueness of a nonlinearity realizing blow-up time for large initial data is shown. These enable us to establish a global existence and uniqueness result for the inverse problem.

  1. Blowing Polymer Bubbles in an Acoustic Levitator

    NASA Technical Reports Server (NTRS)

    Lee, M. C.

    1985-01-01

    In new manufacturing process, small gas-filled polymer shells made by injecting gas directly into acoustically levitated prepolymer drops. New process allows sufficient time for precise control of shell geometry. Applications foreseen in fabrication of deuterium/tritium-filled fusion targets and in pharmaceutical coatings. New process also useful in glass blowing and blow molding.

  2. A Mathematical Model for Reactions During Top-Blowing in the AOD Process: Validation and Results

    NASA Astrophysics Data System (ADS)

    Visuri, Ville-Valtteri; Järvinen, Mika; Kärnä, Aki; Sulasalmi, Petri; Heikkinen, Eetu-Pekka; Kupari, Pentti; Fabritius, Timo

    2017-06-01

    In earlier work, a fundamental mathematical model was proposed for side-blowing operation in the argon oxygen decarburization (AOD) process. In the preceding part "Derivation of the Model," a new mathematical model was proposed for reactions during top-blowing in the AOD process. In this model it was assumed that reactions occur simultaneously at the surface of the cavity caused by the gas jet and at the surface of the metal droplets ejected from the metal bath. This paper presents validation and preliminary results with twelve industrial heats. In the studied heats, the last combined-blowing stage was altered so that oxygen was introduced from the top lance only. Four heats were conducted using an oxygen-nitrogen mixture (1:1), while eight heats were conducted with pure oxygen. Simultaneously, nitrogen or argon gas was blown via tuyères in order to provide mixing that is comparable to regular practice. The measured carbon content varied from 0.4 to 0.5 wt pct before the studied stage to 0.1 to 0.2 wt pct after the studied stage. The results suggest that the model is capable of predicting changes in metal bath composition and temperature with a reasonably high degree of accuracy. The calculations indicate that the top slag may supply oxygen for decarburization during top-blowing. Furthermore, it is postulated that the metal droplets generated by the shear stress of top-blowing create a large mass exchange area, which plays an important role in enabling the high decarburization rates observed during top-blowing in the AOD process. The overall rate of decarburization attributable to top-blowing in the last combined-blowing stage was found to be limited by the mass transfer of dissolved carbon.

  3. Blowing in the Wind Animations

    NASA Technical Reports Server (NTRS)

    2008-01-01

    These are two separate, side-by-side animations made from the same nine images the Surface Stereo Imager (SSI) on NASA's Phoenix Mars Lander took looking into the sky after 5:17 p.m. local time on Sol 8 (June 2, 2008), the eighth Martian day of the mission. The SSI was pointed almost straight up, toward the southwest. Zenith is near the top of the center frame.

    In the left animation, the images were stretched to enhance contrast. The right animation highlights variations between each image and the next. The variations are likely dust blown by winds passing through the SSI's field of view. The images suggest the dust is blowing from west to east.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Treatment of Orbital Roof Blow-Up Fracture Using a Superior Blepharoplasty Incision.

    PubMed

    Matsuzaki, Kyoichi; Enomoto, Sayaka; Aoki, Tomoko

    2015-06-01

    In orbital roof blow-up fractures, reduction can be achieved easily using an approach from the anterior cranial fossa but the procedure is highly invasive. In contrast, an orbital approach using a superior blepharoplasty incision is minimally invasive. However, if bone fragments are adhered to the dura mater, there is a risk of dura mater injury when fragments are moved for reduction. In blow-in fractures, reduction is performed by pushing the bone fragments against the anterior cranial fossa. In contrast, the procedure is difficult for blow-up fractures because bone fragments must be pulled out into the orbit through the anterior cranial fossa. Orbital blow-up fractures are often associated with intracranial injuries and frequently treated by an approach from the anterior cranial fossa. There has not yet been a report that discusses whether reduction of bone fragments should be performed in blow-up fracture without intracranial injury. In this report, we describe two cases of orbital roof blow-up fracture that did not require treatment for intracranial injury and that were treated using an orbital approach. The treatment involved only the release of orbital fat entrapped between bone fragments and did not involve reduction. The treatment outcomes were good in both cases.

  5. FEASTING BLACK HOLE BLOWS BUBBLES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  6. FEASTING BLACK HOLE BLOWS BUBBLES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  7. Blowing momentum and duty cycle effect on aerodynamic performance of flap by pulsed blowing

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Wang, Yankui; Wang, Jinjun; Sha, Yongxiang

    2017-04-01

    Control surface, which is often located in the trailing edge of wings, is important in the attitude control of an aircraft. However, the efficiency of the control surface declines severely under the high deflect angle of the control surface because of the flow separation. To improve the efficiency of control surface, this study discusses a flow-control technique aimed at suppressing the flow separation by pulsed blowing at the leading edge of the control surface. Results indicated that flow separation over the control surface can be suppressed by pulsed blowing, and the maximum average lift coefficient of the control surface can be 95% times higher than that of without blowing when average blowing momentum coefficient is 0.03 relative to that of without blowing. Finally, this study shows that the average blowing momentum coefficient and non-dimensional frequency of pulsed blowing are two of the key parameters of the pulsed blowing control technique. Otherwise, duty cycle also has influence on the effect of pulsed blowing. Numerical simulation is used in this study.

  8. Controlled emittance blow up in the Tevatron

    SciTech Connect

    Tan, C.Y.; Steimel, J.; /Fermilab

    2009-04-01

    We have designed and commissioned a system which blows up the transverse emittance of the anti-proton beam without affecting the proton beam. It consists of a bandwidth limited noise source centered around the betatron tune, a power amplifier and a directional stripline kicker. The amount of blow up is controlled by the amount of energy delivered to the anti-protons betatron bands.

  9. Augmentation of maneuver performance by spanwise blowing

    NASA Technical Reports Server (NTRS)

    Erickson, G. E.; Campbell, J. F.

    1977-01-01

    A generalized wind tunnel model was tested to investigate new component concepts utilizing spanwise blowing to provide improved maneuver characteristics for advanced fighter aircraft. Primary emphasis was placed on high angle of attack performance, stability, and control at subsonic speeds. Spanwise blowing on a 44 deg swept trapezoidal wing resulted in leading edge vortex enhancement with subsequent large vortex-induced lift increments and drag polar improvements at the higher angles of attack. Small deflections of a leading edge flap delayed these lift and drag benefits to higher angles of attack. In addition, blowing was more effective at higher Mach numbers. Spanwise blowing in conjunction with a deflected trailing edge flap resulted in lift and drag benefits that exceeded the summation of the effects of each high lift device acting alone. Asymmetric blowing was an effective lateral control device at the higher angles of attack. Spanwise blowing on the wing reduced horizontal tail loading and improved the lateral-directional stability characteristics of a wing-horizontal tail-vertical tail configuration.

  10. PIV Measurements on a Blowing Flap

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Stead, Daniel J.

    2004-01-01

    PIV measurements of the flow in the region of a flap side edge are presented for several blowing flap configurations. The test model is a NACA 63(sub 2)-215 Hicks Mod-B main-element airfoil with a half-span Fowler flap. Air is blown from small slots located along the flap side edge on either the top, bottom or side surfaces. The test set up is described and flow measurements for a baseline and three blowing flap configurations are presented. The effects that the flap tip jets have on the structure of the flap side edge flow are discussed for each of the flap configurations tested. The results indicate that blowing air from a slot located along the top surface of the flap greatly weakened the top vortex system and pushed it further off the top surface. Blowing from the bottom flap surface kept the strong side vortex further outboard while blowing from the side surface only strengthened the vortex system or accelerated the merging of the side vortex to the flap top surface. It is concluded that blowing from the top or bottom surfaces of the flap may lead to a reduction of flap side edge noise.

  11. Blowing Snow Over the Antarctic Plateau

    NASA Technical Reports Server (NTRS)

    Mahesh, Ashwin; Eager, Rebecca; Campbell, James R.; Spinhirne, James D.

    2002-01-01

    Studies of blowing snow over Antarctica have been limited greatly by the remoteness and harsh conditions of the region. Space-based observations are also of lesser value than elsewhere, given the similarities between ice clouds and snow-covered surfaces, both at infrared and visible wavelengths. It is only in recent years that routine ground-based observation programs have acquired sufficient data to overcome the gap in our understanding of surface blowing snow. In this paper, observations of blowing snow from visual observers' records as well as ground-based spectral and lidar programs at South Pole station are analyzed to obtain the first climatology of blowing snow over the Antarctic plateau. Occurrence frequencies, correlation with wind direction and speed, typical layer heights, as well as optical depths are determined. Blowing snow is seen in roughly one third of the visual observations and occurs under a narrow range of wind directions. The near-surface layers typically a few hundred meters thick emit radiances similar to those from thin clouds. Because blowing snow remains close to the surface and is frequently present, it will produce small biases in space-borne altimetry; these must be properly estimated and corrected.

  12. Identification of CFC and HCFC substitutes for blowing polyurethane foam insulation products. Final report, September 1993-November 1994

    SciTech Connect

    Howard, P.H.; Tunkel, J.L.; Banerjee, S.

    1995-10-01

    The report gives results of a cooperative effort to identify chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) substitutes for blowing polyurethane foam insulation products. More than 100 chemicals have been identified and ranked as polyurethane foam blowing agent candidates. The systematic investigation involved the analysis of vapor thermal conductivity predictive models and utilizing this methodology to identify and screen potential new foam blowing agents. Collection of physical/chemical properties of the new candidates enabled an overall evaluation. Based on the vapor thermal conductivity, boiling point, and other important properties, the chemical compounds were ranked to identify the most promising new blowing agent candidates. To efficiently evaluate new foam blowing agents, the compounds were placed and evaluated in 14 groups based on chemical structure.

  13. Computational analysis of forebody tangential slot blowing

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Agosta-Greenman, Roxana M.; Rizk, Yehia M.; Schiff, Lewis B.; Cummings, Russell M.

    1994-01-01

    An overview of the computational effort to analyze forebody tangential slot blowing is presented. Tangential slot blowing generates side force and yawing moment which may be used to control an aircraft flying at high-angle-of-attack. Two different geometries are used in the analysis: (1) The High Alpha Research Vehicle; and (2) a generic chined forebody. Computations using the isolated F/A-18 forebody are obtained at full-scale wind tunnel test conditions for direct comparison with available experimental data. The effects of over- and under-blowing on force and moment production are analyzed. Time-accurate solutions using the isolated forebody are obtained to study the force onset timelag of tangential slot blowing. Computations using the generic chined forebody are obtained at experimental wind tunnel conditions, and the results compared with available experimental data. This computational analysis compliments the experimental results and provides a detailed understanding of the effects of tangential slot blowing on the flow field about simple and complex geometries.

  14. Kinematic viscosities of binary and ternary liquid mixtures involving chloroform, 2-propanol, and 2-butanol at several temperatures

    SciTech Connect

    Sovilj, M.N.

    1995-09-01

    A knowledge of the viscosity of liquids and liquid mixtures is required for the solution of many engineering problems concerning heat transfer, mass transfer, and fluid flow. Experimental kinematic viscosity data are presented for chloroform + 2-propanol + 2-butanol and also for the three constituent binary mixtures at 20, 25, 30, and 35 C. The binary kinematic viscosities have been correlated by the empirical equation obtained by extension of the model of ideal kinematic viscosity of a liquid mixtures. Predicted data agree fairly well with the experimental observations. The ternary kinematic viscosities were fitted by correlations suggested by Al-Besharah et al., Vijayaraghavan et al., and Iulian et al. The best fit was obtained with the relation by Al-Besharah et al.

  15. Aerodynamic control using forebody blowing and suction

    NASA Technical Reports Server (NTRS)

    Ng, T. Terry; Malcolm, Gerald N.

    1991-01-01

    Aerodynamic control using pneumatic forebody flow control was studied. Three methods of control were investigated: (1) blowing from a localized jet, (2) blowing from a slot, and (3) surface suction. Flow visualization and yawing moment measurements were performed on F/A-18 models in a water tunnel. The results show that all the methods were effective in controlling the forebody flow over a wide range of angles of attack and sideslip. The advantages and limitations of each of the control methods were discussed. The experiments suggested that all the control methods work basically on the principle of separation control. Based on the results of the water tunnel tests, the blowing or suction mass flow requirements appear to be within the limits of typical engine-bleed available from a modern fighter engine.

  16. Distributed upper-surface blowing concept

    NASA Technical Reports Server (NTRS)

    Fournier, P. G.; Coe, P. L., Jr.

    1976-01-01

    A low speed investigation was conducted in the Langley V/STOL tunnel to determine the powered lift aerodynamic performance of a distributed upper surface blown propulsive lift transport model. The model used blowing slots across the span of the wing to produce a thin jet efflux near the leading edge and at the knee of the trailing edge flap (internally blown jet flap). Results indicate that these concepts have both good propulsive related lift and low drag due to lift characteristics because of uniform spanwise propulsive thrust. The leading edge blowing concept provides low speed lift characteristics which are competitive with the flap-hinge-line blowing concept and does not require additional leading edge treatment for prevention of abrupt stall.

  17. Ground effects on USB configurations. [Upper Surface Blowing

    NASA Technical Reports Server (NTRS)

    Lan, C. E.

    1979-01-01

    Recent investigations of ground effects on aerodynamic characteristics have been stimulated by the interest in powered-lift STOL airplanes. The ground effects on upper-surface-blowing (USB) configurations may involve change in both the circulation forces and the jet reaction forces. In this note, a theoretical method is proposed for predicting these effects. It is shown that the predicted results agree well with available experimental data. In particular, the wing-alone method is shown to be incapable of predicting the ground effects of USB configurations.

  18. Development of polyimide foams with blowing agents

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Sorathia, Usman A. K. (Inventor); Lee, Raymond (Inventor)

    1985-01-01

    A method of preparing a polyimide foam which includes the steps of: preparing, foaming, and curing a precursor containing at least one alkyl ester of 3,3'4,4'-benzophenonetetracarboxylic acid; a meta- or para-substituted aromatic diamine; a heterocyclic diamine; an aliphatic diamine; and a solid blowing agent. The blowing agent is added to said precursor in a concentration which is sufficient to effect at least one of the following attributes of the foam: cell size, proportion of open cells, cell density, and indentation load deflection.

  19. 2. GENERAL VIEW OF BLOWING ENGINE HOUSE, LOOKING NORTH; BOILER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW OF BLOWING ENGINE HOUSE, LOOKING NORTH; BOILER HOUSE ON LEFT; BLAST FURNACE, OVENS AND CASTING HOUSE BEYOND. - U.S. Steel Corporation, Clairton Works, Blast Furnace Blowing Engine Building, 400 State Street, Clairton, Allegheny County, PA

  20. 5. DETAIL VIEW LOOKING AT FLYWHEEL HUB OF BLOWING ENGINE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL VIEW LOOKING AT FLYWHEEL HUB OF BLOWING ENGINE. (THE MAN IS MR. FIELD CURRY). - U.S. Steel Corporation, Clairton Works, Blast Furnace Blowing Engine Building, 400 State Street, Clairton, Allegheny County, PA

  1. New insight into phase equilibria involving imidazolium bistriflamide ionic liquids and their mixtures with alcohols and water.

    PubMed

    Pereiro, Ana B; Deive, Francisco J; Rodríguez, Ana; Ruivo, Diana; Canongia Lopes, José N; Esperança, José M S S; Rebelo, Luís P N

    2010-07-15

    The fluid phase equilibria (liquid-liquid demixing behavior (LLE)) of mixtures of ionic liquids of the 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide family, [C(n)mim][NTf(2)], with 2-methylpropanol or n-octanol were investigated. Binary mixtures of [C(4)mim][NTf(2)] + alcohol and [C(6)mim][NTf(2)] + alcohol were compared to pseudobinary mixtures of (0.5[C(2)mim] + 0.5[C(6)mim])[NTf(2)] + alcohol and (0.5[C(2)mim] + 0.5[C(10)mim])[NTf(2)] + alcohol, respectively. Additionally, the presence of water in the studied alcohols or as a third component in the system was analyzed in order to check any possible deviation from the LLE observed for the anhydrous systems. Systems containing small fractions of ionic liquid show similar LLE between the corresponding binary and pseudobinary systems; however, large differences are observed in the presence of water when the IL mass fraction is increased.

  2. 21 CFR 868.5220 - Blow bottle.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blow bottle. 868.5220 Section 868.5220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... into the device to move a column of water from one bottle to another. (b) Classification. Class I...

  3. Dinural patterns of blowing sand and dust

    USDA-ARS?s Scientific Manuscript database

    The diurnal pattern of blowing sand results from a complex interaction between the sun, the atmosphere, and the sand surface. During the day, solar heating produces thermal instability, which enhances convective mixing of high momentum winds from the upper levels of the atmosphere to the surface la...

  4. Whistle-Blowing Intentions of Prospective Teachers: Education Evidence

    ERIC Educational Resources Information Center

    Gökçe, Asiye Toker

    2013-01-01

    This study investigates whistle-blowing intentions of prospective teachers. Firstly, overall ethical awareness of the participants was examined, and then their underlying ethical reasons of whistle-blowing were investigated. Besides, impact on the intention to blow whistle to internal or external parties offering their job guarantee were searched.…

  5. Drifting and blowing snow, measurements and modelling

    NASA Astrophysics Data System (ADS)

    Gordon, Mark

    2007-12-01

    Blowing snow is a frequent and significant winter weather event, and there is currently a need for more observations and measurements of blowing snow, especially in arctic and subarctic environments. A camera system has been developed to measure the size and velocity of blowing snow particles. A second camera system has been developed to measure the relative blowing snow density profile near the snow surface. These systems have been used, along with standard meteorological instruments and optical particle counters, during field campaigns at Franklin Bay, NWT, and at Churchill, MB. An electric field mill was also deployed at Franklin Bay. Results demonstrate that the particle diameters follow a Gamma distribution with 103 < d¯ < 172 mum below a height of 0.15 m and 120 < d¯ < 154 mum between 0.2 m and 1.1 m. Within the saltation layer, the mass density can be approximated by a power-law (rhos ∝ z -gamma) with an exponent of gamma ≈ 1.5 for z < 40 mm. Between 40 < z < 100 mm, in the lower suspension layer, the value of the exponent increases to a range of 1.5 < gamma < 8. At greater heights, z > 100 mm, the exponent approaches gamma ≈ l. The height of saltation shows a very weak dependence on the friction velocity, a strong dependence on temperature and relative humidity, and a weak dependence on snow age. Electric field strengths as high as 2000 V m-1 were measured at a height of 0.5 m. A model to determine electric field strength based on the distribution of blowing snow particles shows a weak agreement with measurements. Results suggest the charge is most likely generated due to either fragmentation or asymmetric rubbing, which are both strongly dependent on wind speed. Modelling studies with the Canadian Land Surface Scheme (CLASS) and previous measurements of snow depth at Goose Bay, Hay River, the Beaufort Sea, Franklin Bay, and Resolute demonstrate that blowing snow sublimation can have a substantial effect on snow depth. Adding a blowing snow

  6. Molecular identification of blow flies recovered from human cadavers during crime scene investigations in Malaysia.

    PubMed

    Kavitha, Rajagopal; Nazni, Wasi Ahmad; Tan, Tian Chye; Lee, Han Lim; Isa, Mohd Noor Mat; Azirun, Mohd Sofian

    2012-12-01

    Forensic entomology applies knowledge about insects associated with decedent in crime scene investigation. It is possible to calculate a minimum postmortem interval (PMI) by determining the age and species of the oldest blow fly larvae feeding on decedent. This study was conducted in Malaysia to identify maggot specimens collected during crime scene investigations. The usefulness of the molecular and morphological approach in species identifications was evaluated in 10 morphologically identified blow fly larvae sampled from 10 different crime scenes in Malaysia. The molecular identification method involved the sequencing of a total length of 2.2 kilo base pairs encompassing the 'barcode' fragments of the mitochondrial cytochrome oxidase I (COI), cytochrome oxidase II (COII) and t-RNA leucine genes. Phylogenetic analyses confirmed the presence of Chrysomya megacephala, Chrysomya rufifacies and Chrysomya nigripes. In addition, one unidentified blow fly species was found based on phylogenetic tree analysis.

  7. Relationship between Whistle-Blowing and Job Satisfaction and Organizational Loyalty at Schools in Turkey

    ERIC Educational Resources Information Center

    Gokce, Asiye Toker

    2013-01-01

    This paper examines whistle-blowing at schools in Turkey. Firstly, wrongdoings observed by teachers at schools, and their preference for reporting these were analyzed. Then, differences between the teachers, who blew whistle and the others who did not were examined according to the research variables. The study group involved 283 teachers. The…

  8. Culture Shock!! "Lesson" the Blow.

    ERIC Educational Resources Information Center

    Duffin, Ken

    1996-01-01

    Designing, developing, and implementing an electronic document management system involves preparation. Areas to consider when facilitating technological change include staff input and business and customer needs and wants. Further discussion addresses value assessment of document type, providing a pilot system for staff experiment and practice,…

  9. Culture Shock!! "Lesson" the Blow.

    ERIC Educational Resources Information Center

    Duffin, Ken

    1996-01-01

    Designing, developing, and implementing an electronic document management system involves preparation. Areas to consider when facilitating technological change include staff input and business and customer needs and wants. Further discussion addresses value assessment of document type, providing a pilot system for staff experiment and practice,…

  10. Control of Cavity Resonance Using Steady and Oscillatory Blowing

    NASA Technical Reports Server (NTRS)

    Lamp, Alison M.; Chokani, Ndaona

    1999-01-01

    An experimental study to investigate the effect of steady and oscillatory (with zero net mass flux) blowing on cavity resonance is undertaken. The objective is to study the basic mechanisms of the control of cavity resonance. An actuator is designed and calibrated to generate either steady blowing or oscillatory blowing with A zero net mass flux. The results of the experiment show that both steady and oscillatory blowing are effective, and reduce the amplitude of the dominant resonant mode by 1OdB. The oscillatory blowing is however found to be more superior in that the same effectiveness could be accomplished with a momentum coefficient an order of magnitude smaller than for steady blowing. The experiment also confirms the results of previous computations that suggest the forcing frequency for oscillatory blowing must not be at harmonic frequencies of the cavity resonant modes.

  11. Natural mixtures of POPs affected body weight gain and induced transcription of genes involved in weight regulation and insulin signaling.

    PubMed

    Lyche, Jan L; Nourizadeh-Lillabadi, Rasoul; Karlsson, Camilla; Stavik, Benedicte; Berg, Vidar; Skåre, Janneche Utne; Alestrøm, Peter; Ropstad, Erik

    2011-04-01

    Obesity is reaching epidemic proportions worldwide, and is associated with chronic illnesses such as diabetes, cardiovascular disease, hypertension and dyslipidemias (metabolic syndrome). Commonly held causes of obesity are overeating coupled with a sedentary lifestyle. However, it has also been postulated that exposure to endocrine disrupting chemicals (EDCs) may be related to the significant increase in the prevalence of obesity and associated diseases. In the present study, developmental and reproductive effects of lifelong exposure to environmentally relevant concentrations of two natural mixtures of persistent organic pollutants (POPs) were investigated using classical and molecular methods in a controlled zebrafish model. The mixtures used were extracted from burbot (Lota lota) liver originating from freshwater systems in Norway (Lake Mjøsa and Lake Losna). The concentration of POPs in the zebrafish ranged from levels detected in wild fish (Lake Mjøsa and Lake Losna), to concentrations reported in human and wildlife populations. Phenotypic effects observed in both exposure groups included (1) earlier onset of puberty, (2) elevated male/female sex ratio, and (3) increased body weight at 5 months of age. Interestingly, genome-wide transcription profiling identified functional networks of genes, in which key regulators of weight homeostasis (PPARs, glucocoricoids, CEBPs, estradiol), steroid hormone functions (glucocoricoids, estradiol, NCOA3) and insulin signaling (HNF4A, CEBPs, PPARG) occupied central positions. The increased weight and the regulation of genes associated with weight homeostasis and insulin signaling observed in the present study suggest that environmental pollution may affect the endocrine regulation of the metabolism, possibly leading to increased weight gain and obesity.

  12. Blow-down and blow-in of Inland`s No. 7 blast furnace

    SciTech Connect

    Ricketts, J.; Quisenberry, P.; Carter, W.

    1995-12-01

    After extensive and detailed planning, a mini-reline of the 13.7 meter No. 7 Blast Furnace was executed in November 1993. The furnace lining had 18 million metric tons of production and the bosh, belly and lower stack lining were being maintained through a scheduled grouting practice. The mini-reline was planned for 33 days and the reline work included (a) replacing the bosh, belly and lower stack alumina lining with graphite brick, (b) gunning the middle and upper stack, (c) rebuilding the furnace top, stove burners and tapholes and (d) minor repairs to other auxiliary equipment. During this 33 day reline period the two 8 meter furnaces could only produce 40% of the normal production requirement, therefore the blow-down, quench, salamander tap and blow-in activities were critical to meeting the planned schedule. The planning of these activities was started in the spring of 1993 and included review of Inland`s past blow-down and blow-in performance as well as bench marking the performance of other large blast furnaces in North America, Japan and Europe. The development of the 1993 procedures focused on opportunities to accelerate the blow-down, quench, salamander tap and blow-in as well as having a clean hearth and stack which could also save time during the demolition phase of the reline. Any time that could be saved in these activities directly translated to an early start-up and more plantwide production. This paper will cover the successful planning and implementation of these activities which resulted in a 2 day reduction in the reline schedule, an accelerated production curve and an earlier than planned use of PCI during blow-in.

  13. Tampa General Hospital "blows the whistle on violence".

    PubMed

    1995-01-01

    At Tampa General Hospital, the professionals in the marketing and media relations department know how to stage a press conference and to get the attention of the media. It goes to the adage when you're buying real estate: location, location, location. Once the journalists were assembled, Tampa General launched its campaign to fight street violence: "Blow the Whistle on Violence." Their timing was aided by the release of the FBI's annual Preliminary Crime Report citing Tampa as the second most dangerous city in which to live. Tampa General's news media specialist Stacey Winn reported that "the day went together just like a puzzle with all the pieces coming together." Those pieces and more are detailed in this issue's cover story on community involvement. Street crime and violence are not unique to Tampa, of course. But with so many victims ending up in Tampa General's emergency room, Winn noted that physicians and nurses felt personally responsible for contributing toward the prevention of cases ending up there. One important element in the hospital's press conference was an appearance by one of the victims of the violence they're striving to prevent. Her appearance and statement to the assembled media representatives significantly enhanced the presentation. "Blow the Whistle on Violence" was a low-cost program with a high return. The potential benefits are enormous.

  14. Divisional Air Defense: The Shield of Blows

    DTIC Science & Technology

    1992-12-19

    destroy missions. The early tactics used by the Hinds indicated a total lack of respect for the resistance fighters. The aircraft engaged the ground ...AD-A264 505 SDivisional Air Defense: The Shield of Blows DTI ELECTE MAY 19 1993 A Monograph U A by Major Cornell T. McGhee Air Defense Artillery...blank) " 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED Monograph 4. TITLE AND SUBTITLE "S. FUNDING NUMBERS Divisional Air Defense: The Shield of

  15. Asian elephants acquire inaccessible food by blowing.

    PubMed

    Mizuno, Kaori; Irie, Naoko; Hiraiwa-Hasegawa, Mariko; Kutsukake, Nobuyuki

    2016-01-01

    Many animals acquire otherwise inaccessible food with the aid of sticks and occasionally water. As an exception, some reports suggest that elephants manipulate breathing through their trunks to acquire inaccessible food. Here, we report on two female Asian elephants (Elephas maximus) in Kamine Zoo, Japan, who regularly blew to drive food within their reach. We experimentally investigated this behaviour by placing foods in inaccessible places. The elephants blew the food until it came within accessible range. Once the food was within range, the elephants were increasingly less likely to blow as the distance to the food became shorter. One subject manipulated her blowing duration based on food distance: longer when the food was distant. These results suggest that the elephants used their breath to achieve goals: that is, they used it not only to retrieve the food but also to fine-tune the food position for easy grasping. We also observed individual differences in the elephants' aptitude for this technique, which altered the efficiency of food acquisition. Thus, we added a new example of spontaneous behaviour for achieving a goal in animals. The use of breath to drive food is probably unique to elephants, with their dexterous trunks and familiarity with manipulating the act of blowing, which is commonly employed for self-comfort and acoustic communication.

  16. Effectiveness of Micro-Blowing Technique in Adverse Pressure Gradients

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Larosiliere, Louis M.; Hwang, Danny P.; Wood, Jerry R.

    2001-01-01

    The impact of the micro-blowing technique (MBT) on the skin friction and total drag of a strut in a turbulent, strong adverse-pressure-gradient flow is assessed experimentally over a range of subsonic Mach numbers (0.3 less than M less than 0.7) and reduced blowing fractions (0 less than or equal to 2F/C (sub f,o) less than or equal to 1.75). The MBT-treated strut is situated along the centerline of a symmetric 2-D diffuser with a static pressure rise coefficient of 0.6. In agreement with presented theory and earlier experiments in zero-pressure-gradient flows, the effusion of blowing air reduces skin friction significantly (e.g., by 60% at reduced blowing fractions near 1.75). The total drag of the treated strut with blowing is significantly lower than that of the treated strut in the limit of zero-blowing; further, the total drag is reduced below that of the baseline (solid-plate) strut, provided that the reduced blowing fractions are sufficiently high. The micro-blowing air is, however, deficient in streamwise momentum and the blowing leads to increased boundary-layer and wake thicknesses and shape factors. Diffuser performance metrics and wake surveys are used to discuss the impact of various levels of micro-blowing on the aerodynamic blockage and loss.

  17. Thermodynamic and Experimental Study of the Energetic Cost Involved in the Capture of Carbon Dioxide by Aqueous Mixtures of Commonly Used Primary and Tertiary Amines.

    PubMed

    Arcis, Hugues; Coulier, Yohann; Coxam, Jean-Yves

    2016-01-05

    The capture of carbon dioxide with chemical solvents is one solution to mitigate greenhouse gas emissions from anthropogenic sources and thus tackle climate change. Recent research has been focused on optimizing new kinds of advanced absorbents including aqueous amine blends, but critical downsides such as the large energetic cost involved with the industrial process remain. To address this issue, a better understanding of the energetic interactions existing in solution is necessary. In this paper, we report direct experimental measurements of the energy cost involved in the solvation of CO2 in two aqueous amine blends at different temperatures. The chemical solvents were designed as aqueous mixtures of commonly used primary and tertiary amines to study the influence of the different chemical properties inferred by the amine class. We have also applied a thermodynamic model to represent the energetic effects that take place in solution during CO2 dissolution in these mixtures, where all parameters were taken from previous studies focused on single amine absorbents. The noteworthy agreement observed with the reported experimental heats of absorption and with literature vapor liquid equilibrium properties confirmed the relevance of the underlying molecular mechanisms considered in our model, and suggest that this model would prove useful to investigate CO2 dissolution in other amine blends.

  18. Forebody tangential blowing for control at high angles of attack

    NASA Technical Reports Server (NTRS)

    Kroo, I.; Rock, S.; Roberts, L.

    1991-01-01

    A feasibility study to determine if the use of tangential leading edge blowing over the forebody could produce effective and practical control of the F-18 HARV aircraft at high angles of attack was conducted. A simplified model of the F-18 configuration using a vortex-lattice model was developed to obtain a better understanding of basic aerodynamic coupling effects and the influence of forebody circulation on lifting surface behavior. The effect of tangential blowing was estimated using existing wind tunnel data on normal forebody blowing and analytical studies of tangential blowing over conical forebodies. Incorporation of forebody blowing into the flight control system was investigated by adding this additional yaw control and sideforce generating actuator into the existing F-18 HARV simulation model. A control law was synthesized using LQG design methods that would schedule blowing rates as a function of vehicle sideslip, angle of attack, and roll and yaw rates.

  19. MR imaging of orbital blow-out fractures.

    PubMed

    McArdle, C B; Amparo, E G; Mirfakhraee, M

    1986-01-01

    We report on a case of orbital blow-out fractures involving the medial and inferior walls. In this case conventional multiplanar 8 mm thick sections with magnetic resonance (MR) imaging proved to be more helpful than 1.5 mm axial thin sections with CT in demonstrating the extent of orbital floor herniation of fat. Entrapment of muscle was excluded. Oblique sagittal views were most helpful in evaluating the orbital floor, since the full course of the inferior rectus muscle is seen. Additionally, the optic nerve is seen along its entire length. Masking of intraorbital contents by isodense hemorrhage on CT studies apparently is not a problem with MR imaging if hemorrhage is small or nonacute.

  20. Reducing secondary losses by blowing cold air in a turbine

    NASA Technical Reports Server (NTRS)

    Koschel, W.

    1977-01-01

    Local blowing on the profile suction side of the turbine guide wheel blades can be effective in preventing the propagation of secondary flows that is, the transport of casing and hub boundary layers by pressure gradients. Some preliminary results on how the blowing should be accomplished in order to influence the secondary flows in the desired manner are given. The effectiveness of blowing is demonstrated. Blowing is also seen to be more effective than using boundary layer slots as far as diminishing losses in the rim zones is concerned.

  1. Development of an Automatic Blowing Snow station

    NASA Astrophysics Data System (ADS)

    Nishimura, K.

    2010-12-01

    On the Antarctic ice sheet, strong katabatic winds blow throughout the year and a large but unknown fraction of the snow which falls on it is removed continuously. This constitutes a significant factor in mass and energy balance and is all the more important when predicting the likely effects of global climate change. Further, recent experimental work has indicated that the snowdrift sublimation can lead to significant mass losses during strong winds and can be also an important factor in the surface mass balance of the Antarctic ice sheets. Nishimura and Nemoto (2005) carried out the blowing snow observations at Mizuho station, Antarctica in 2000 with the snow particle counters (SPC) that can sense not only the number of snow particles but also their diameters. SPC worked properly and the data obtained revealed profiles of mass flux and particle size distributions as a function of the friction velocity. However, the SPC requires rather high power supply and the data is stored in PC; it is not always suitable for the unmanned observations under the severe Antarctic conditions. Thus, we have developed a simpler device by measuring the attenuation of the light intensity, which strongly depends on the blowing snow flux. A small wind turbine and a cold-proof buttery were utilized as a power source. Firstly, its performance was tested with comparing the SPC in a cold wind tunnel system and it proved adequately fit for practical use by combining the output of the anemometer. In 2009/2010 winter, three systems have been set at Ishikari, Col du Lac blanc in France, and S17 near Syowa station in Antarctica, and the tests are still continuing.

  2. Nonlinear flight control using forebody tangential blowing

    NASA Astrophysics Data System (ADS)

    Takahara, Yuji

    This dissertation is on the development and experimental demonstration of a new nonlinear approach to developing control laws for the lateral-directional dynamics of aircraft at high angles of attack using Forebody Tangential Blowing (FTB). FTB is a pneumatic device that modifies the vortical flow over the forebody. The modified vortical flow in turn creates roll and yaw moments for control. FTB has been shown to be a very powerful means of generating forces and moments on aircraft operating in flight regimes where the effectiveness of conventional aerodynamic surfaces is reduced (e.g. post stall). Consequently, it provides a mechanism that could greatly expand the flight envelope of future aircraft systems. One major factor that currently limits the use of FTB is that it is a highly nonlinear and uncertain effector. In particular, FTB can provide very powerful effects (e.g. forces and moments) at low levels of blowing but the characteristic relating input to output is highly nonlinear in this region. On the other hand, if higher levels of blowing are used, the characteristics become well behaved. Hence, the trade-off between robustness and control usage is particularly acute. The goal of this thesis is to develop a technique that will yield for the first time robust control at small levels of blowing thus enabling a new level of efficiency in the use of FTB as a device for flight control at high angles of attack. The approach developed is based on combining High-Gain Control (HGC) and Lyapunov techniques. By employing a robust inversion of uncertain static nonlinearities, the new control law can be applied to a class of systems represented by a cascade connection of a nonlinear system and an uncertain linear system. In particular, the nonlinear control approach is applied to the control of an aircraft utilizing FTB and can fully exploit the FTB efficiency. Simulation and experimental results are provided that demonstrate the effectiveness of the approach. Further

  3. Transition control by periodic suction-blowing

    NASA Technical Reports Server (NTRS)

    Biringen, S.; Nutt, W. E.; Caruso, M. J.

    1985-01-01

    The applicability of active control of transition by period suction-blowing is investigated via direct numerical simulations of the Navier-Stokes equations. The time-evolution of finite-amplitude disturbances in plane channel flow is compared in detail with and without control. The analysis indicates that for relatively small three-dimensional amplitudes, a two-dimensional control effectively reduces disturbance growth rates even for linearly unstable Reynolds numbers. After the flow goes through secondary instability, three-dimensional control seems necessary to stabilize the flow. An investigation of the temperature field suggests that passive temperature contamination is operative to reflect the vorticity dynamics during transition.

  4. Measurements on wing-tip blowing

    NASA Technical Reports Server (NTRS)

    Tavella, D.; Wood, N.; Harrits, P.

    1985-01-01

    The aerodynamics of a rectangular wing with a jet exhausting in the spanwise direction from the tips has been explored experimentally. By effectively changing the span of the wing as well as outwardly displacing the tip vortices, such jets can induce aerodynamic forces that could be used for roll and lateral control of aircraft. The concept has been investigated for a variety of jet intensities, angles of attack, and aspect ratios. The results appear to confirm theoretically predicted scaling laws for lift gain and moment generation due to blowing.

  5. Heterogeneity in the Relationship of Substance Use to Risky Sexual Behavior Among Justice-Involved Youth: A Regression Mixture Modeling Approach.

    PubMed

    Schmiege, Sarah J; Bryan, Angela D

    2016-04-01

    Justice-involved adolescents engage in high levels of risky sexual behavior and substance use, and understanding potential relationships among these constructs is important for effective HIV/STI prevention. A regression mixture modeling approach was used to determine whether subgroups could be identified based on the regression of two indicators of sexual risk (condom use and frequency of intercourse) on three measures of substance use (alcohol, marijuana and hard drugs). Three classes were observed among n = 596 adolescents on probation: none of the substances predicted outcomes for approximately 18 % of the sample; alcohol and marijuana use were predictive for approximately 59 % of the sample, and marijuana use and hard drug use were predictive in approximately 23 % of the sample. Demographic, individual difference, and additional sexual and substance use risk variables were examined in relation to class membership. Findings are discussed in terms of understanding profiles of risk behavior among at-risk youth.

  6. THIRD-GENERATION FOAM BLOWING AGENTS FOR FOAM INSULATION

    EPA Science Inventory

    The report gives results of a study of third-generation blowing agents for foam insulation. (NOTE: the search for third-generation foam blowing agents has led to the realization that, as the number of potential substitutes increases, new concerns, such as their potential to act a...

  7. THIRD-GENERATION FOAM BLOWING AGENTS FOR FOAM INSULATION

    EPA Science Inventory

    The report gives results of a study of third-generation blowing agents for foam insulation. (NOTE: the search for third-generation foam blowing agents has led to the realization that, as the number of potential substitutes increases, new concerns, such as their potential to act a...

  8. 1. GENERAL VIEW OF BLOWING ENGINE HOUSE LOOKING NORTH; THREE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF BLOWING ENGINE HOUSE LOOKING NORTH; THREE TANKS AT RIGHT ADJACENT TO BUILDING ARE FOR SOFTENING BOILER WATER (LIME TREATMENT): TRUNCATED AND BOILER HOUSE, ONE OVEN AND ORE BRIDGE AT LEFT. - U.S. Steel Corporation, Clairton Works, Blast Furnace Blowing Engine Building, 400 State Street, Clairton, Allegheny County, PA

  9. 74. View of small steam tank used in 'blowing down' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. View of small steam tank used in 'blowing down' or cleaning boilers; in background can be seen the bottom of cylindrical water tank located in setback at southeast corner of blowing engine house. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  10. The Consequences of Whistle-blowing: An Integrative Review.

    PubMed

    Lim, Charmaine R; Zhang, Melvyn W B; Hussain, Syeda F; Ho, Roger C M

    2017-06-30

    Whistle-blowing provides an avenue for healthcare workers to express their concerns when there is a breach of patients' safety. Most healthcare organizations have policies in place to prevent reprisals on whistle-blowers. Despite these protective measures, whistle-blowing often leads to negative consequences. A search of articles on whistle-blowing was conducted on MEDLINE (PubMed). Articles were included if they described the consequences of whistle-blowing in the following 3 areas: medical, nursing, and research/pharmaceutical research (Fig. 1). The initial search criteria retrieved 1168 articles, 670 of which were identified for full-text review. A total of 82 studies were included in the final set of literature. Negative consequences to whistle-blowers include occupational, legal, financial, socioemotional, and other (e.g., physical health, character assassination) effects. Positive consequences to clinical services include improvements to patient safety and in successes of employment tribunal claims, settlements, and court injunctions. Positive consequences in research include retraction of articles (with fraudulent data) and changes to medical journal publication rules. Consequences of no whistle-blowing include investigations of individuals for not reporting and negative emotions such as guilt. Whistle-blowing is an avenue to improving patient safety in healthcare. The findings from this integrated review will help shape new whistle-blowing policies. Future whistle-blowing policies must minimize negative consequences to whistle-blowers while enhancing levels of patient safety and quality of care rendered.

  11. An Implicit Finite Difference Solution to the Viscous Radiating Shock Layer with Strong Blowing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.

    1971-01-01

    An implicit finite difference scheme is developed for the fully coupled solution of the viscous radiating stagnation line equations, including strong blowing. Solutions are presented for both air injection and carbon phenolic ablation products injection into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized.

  12. Involvement of α-, γ- and δ-Tocopherol Isomers from
Pumpkin (Cucurbita pepo L.) Seed Oil or Oil Mixtures in
the Biphasic DPPH˙ Disappearance Kinetics

    PubMed Central

    Broznić, Dalibor; Milin, Čedomila

    2016-01-01

    Summary The antioxidant activity of three types of pumpkin seed oil or oil mixtures (cold- -pressed, produced from roasted seed paste and salad) produced in the northern part of Croatia and the kinetics of their behaviour as free radical scavengers were investigated using DPPH˙. In addition, the involvement of oil tocopherol isomers (α-, γ- and δ-) in different steps of DPPH˙ disappearance and their impact on the rate of reaction were analysed. The kinetics of DPPH˙ disappearance is a two-step process. In the first step, rapid disappearance of DPPH˙ occurs during the first 11 min of the reaction, depending on the oil type, followed by a slower decline in the second step. To describe DPPH˙ disappearance kinetics, six mathematical models (mono- and biphasic) were tested. Our findings showed that γ- and δ-tocopherols affected DPPH˙ disappearance during the first step, and α-tocopherol in the second step of the reaction. Moreover, α-tocopherol demonstrated 30 times higher antioxidant activity than γ- and δ-tocopherols. The results indicated the biphasic double-exponential behaviour of DPPH˙ disappearance in oil samples, due to the complexity of reactions that involve different tocopherol isomers and proceed through different chemical pathways. PMID:27904410

  13. Upper surface blowing aerodynamic and acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Ryle, D. M., Jr.; Braden, J. A.; Gibson, J. S.

    1977-01-01

    Aerodynamic performance at cruise, and noise effects due to variations in nacelle and wing geometry and mode of operation are studied using small aircraft models that simulate upper surface blowing (USB). At cruise speeds ranging from Mach .50 to Mach .82, the key determinants of drag/thrust penalties are found to be nozzle aspect ratio, boattailing angle, and chordwise position; number of nacelles; and streamlined versus symmetric configuration. Recommendations are made for obtaining favorable cruise configurations. The acoustic studies, which concentrate on the noise created by the jet exhaust flow and its interaction with wing and flap surfaces, isolate several important sources of USB noise, including nozzle shape, exit velocity, and impingement angle; flow pathlength; and flap angle and radius of curvature. Suggestions for lessening noise due to trailing edge flow velocity, flow pathlength, and flow spreading are given, though compromises between some design options may be necessary.

  14. African Dust Blows over the Caribbean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Shuttle astronauts frequently track Saharan dust storms as they blow from north Africa across the Atlantic Ocean. Dust palls blowing from Africa take about a week to cross the Atlantic. Recently, researchers have linked Saharan dust to coral disease, allergic reactions in humans, and red tides. The top photograph, a classic image showing African dust over the Caribbean, was taken at a time when few scientists had considered the possibility. The image was taken by Space Shuttle astronauts on July 11, 1994 (STS065-75-47). This photograph looks southwest over the northern edge of a large trans-Atlantic dust plume that blew off the Sahara desert in Africa. In this view, Caicos Island in the Bahamas and the mountainous spines of Haiti are partly obscured by the dust. Closer to the foreground, (about 26 degrees north latitude), the skies are clear. The lower photograph (STS105-723-7) was taken by Space Shuttle astronauts while docked to the International Space Station on August 19, 2001. The spacecraft is over the Atlantic Ocean at roughly 45oN, 60oW. The astronauts were looking obliquely to the south; the boundaries of the dust plumes can be traced visually by the abrupt change from clear to hazy atmosphere-the hazy line marks the northern edge of the dust pall near the Caribbean. Images provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  15. African Dust Blows over the Caribbean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Shuttle astronauts frequently track Saharan dust storms as they blow from north Africa across the Atlantic Ocean. Dust palls blowing from Africa take about a week to cross the Atlantic. Recently, researchers have linked Saharan dust to coral disease, allergic reactions in humans, and red tides. The top photograph, a classic image showing African dust over the Caribbean, was taken at a time when few scientists had considered the possibility. The image was taken by Space Shuttle astronauts on July 11, 1994 (STS065-75-47). This photograph looks southwest over the northern edge of a large trans-Atlantic dust plume that blew off the Sahara desert in Africa. In this view, Caicos Island in the Bahamas and the mountainous spines of Haiti are partly obscured by the dust. Closer to the foreground, (about 26 degrees north latitude), the skies are clear. The lower photograph (STS105-723-7) was taken by Space Shuttle astronauts while docked to the International Space Station on August 19, 2001. The spacecraft is over the Atlantic Ocean at roughly 45oN, 60oW. The astronauts were looking obliquely to the south; the boundaries of the dust plumes can be traced visually by the abrupt change from clear to hazy atmosphere-the hazy line marks the northern edge of the dust pall near the Caribbean. Images provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  16. Control of VR-7 Dynamic Stall by Strong Steady Blowing

    NASA Technical Reports Server (NTRS)

    Weaver, D.; McAlister, K. W.; Tso, J.

    2004-01-01

    An experiment was performed in a water tunnel on a Boeing-Vertol VR-7 airfoil to study the effects of tangential blowing over the upper surface. Blowing was applied at the quarter-chord location during sinusoidal pitching oscillations described by alpha = alpha(sub m) + 10 deg sin omega t. Results were obtained for a Reynolds number of 1 x 10(exp 5), mean angles of 10 and 15 deg, reduced frequencies ranging from 0.005 to 0.15, and blowing rates from C(sub mu) = 0.16 to 0.66. Unsteady lift, drag, and pitching moment loads are reported, along with fluorescent-dye flow visualizations. Strong steady blowing was found to prevent the bursting of the leading-edge separation bubble at several test points. When this occurred, the lift was increased significantly, stall was averted, and the shape of the moment response showed a positive damping in pitch. In almost all cases, steady blowing reduced the hysteresis amplitudes present in the loads, but the benefits diminished as the reduced frequency and mean angle of oscillation increased. A limited number of pulsed blowing cases indicated that for low blowing rates, the greatest gains were achieved at F(sup +) = 0.9.

  17. INTERIOR VIEW SHOWING QBOP FURNACE IN BLOW. OXYGEN AND NATURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING Q-BOP FURNACE IN BLOW. OXYGEN AND NATURAL GAS ARE BLOWN INTO THE FURNACE THROUGH THE TUYERES TO CHARGE 460,000 LBS. OF HOT METAL, 100,000 LBS. OF SCRAP WITH 30,000 LBS. OF LIME. BLOW TIME IS 16 MINUTES. THE TIME TO BLOW AND TAP THE FURNACES OF THE RESULTING 205,000 TONS OF STEEL AND SLAG IS 35 MINUTES. - U.S. Steel, Fairfield Works, Q-Bop Furnace, North of Valley Road & West of Ensley, Pleasant Grove Road, Fairfield, Jefferson County, AL

  18. First results on the subgrid scale variability of blowing snow

    NASA Astrophysics Data System (ADS)

    Diebold, M.; Weijs, S. V.; Parlange, M. B.

    2012-04-01

    Blowing snow is an important factor to understand snow depth variability as well as to forecast avalanches. In this presentation, observations of blowing snow monitored in the Val Ferret valley (Valias, Switzerland) using automated cameras and sonic anemometers are presented. This survey was undertaken during the entire winter of 2011 - 2012 to understand better the relationship between snow transport and wind turbulence intensity. The results of this field campaign will be compared with large eddy simulation cases where the blowing of the snow occurs in the typically subgrid region near the snow surface. First results are presented from this winter season.

  19. Superplastic forming of 7475 Al alloy by variable-pressure blowing

    SciTech Connect

    Yang, C.F.; Chiu, L.H.; Lee, S.C.

    1996-05-15

    Although the bulge forming technique is currently employed in commercial superplastic forming (SPF) processes, the uniaxial tensile test is still the most commonly used method for the evaluations of the superplasticity of materials due to its simplicity in testing. The bulge forming of domes is usually involved in the early stages of superplastic forming processes and hence attracted many research attentions. In this study the superplastic bulge forming of 7475 Al alloy by the constant-pressure blowing and the constant strain rate variable-pressure blowing were studied. In addition, a step-change pressure forming process to shorten the forming time spans required for specific amounts of forming strain by several easy step changes of forming pressure were proposed and examined. The purpose of this work is to characterize the forming behaviors of 7475 Al alloy by these forming processes and to compare the forming efficiency of variable-pressure forming processes to those of constant-pressure forming ones.

  20. 46 CFR 162.018-5 - Blow-down adjustment and popping tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Blow-down adjustment and popping tolerance. 162.018-5... Compressed Gas § 162.018-5 Blow-down adjustment and popping tolerance. (a) Safety relief valves shall be so... adjustable blow-down construction shall be adjusted to close after blowing down not more than 5 percent...

  1. 46 CFR 162.018-5 - Blow-down adjustment and popping tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Blow-down adjustment and popping tolerance. 162.018-5... Compressed Gas § 162.018-5 Blow-down adjustment and popping tolerance. (a) Safety relief valves shall be so... adjustible blow-down construction shall be adjusted to close after blowing down not more than 5 percent...

  2. 46 CFR 162.018-5 - Blow-down adjustment and popping tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Blow-down adjustment and popping tolerance. 162.018-5... Compressed Gas § 162.018-5 Blow-down adjustment and popping tolerance. (a) Safety relief valves shall be so... adjustible blow-down construction shall be adjusted to close after blowing down not more than 5 percent...

  3. 46 CFR 162.018-5 - Blow-down adjustment and popping tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Blow-down adjustment and popping tolerance. 162.018-5... Compressed Gas § 162.018-5 Blow-down adjustment and popping tolerance. (a) Safety relief valves shall be so... adjustible blow-down construction shall be adjusted to close after blowing down not more than 5 percent...

  4. 46 CFR 162.018-5 - Blow-down adjustment and popping tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Blow-down adjustment and popping tolerance. 162.018-5... Compressed Gas § 162.018-5 Blow-down adjustment and popping tolerance. (a) Safety relief valves shall be so... adjustible blow-down construction shall be adjusted to close after blowing down not more than 5 percent of...

  5. 34. NORTHEAST VIEW OF BLOW ENGINE HOUSE No. 2 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. NORTHEAST VIEW OF BLOW ENGINE HOUSE No. 2 AND COLD BLAST AIR MANIFOLD. THE OUTDOOR ELECTRIC SUBSTATION IS IN THE FOREGROUND. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  6. AERIAL VIEW OF SINTERING PLANT CONVEYORS, BLOWING ENGINE HOUSE, ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW OF SINTERING PLANT CONVEYORS, BLOWING ENGINE HOUSE, ORE YARD, BLAST FURNACE 1 & 2 & SHARED CAST HOUSE, & CENTRAL STEAM PLANT (LEFT TO RIGHT). - Pittsburgh Steel Company, Monessen Works, Donner Avenue, Monessen, Westmoreland County, PA

  7. 72. View of reservoir adjacent to south wall of blowing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. View of reservoir adjacent to south wall of blowing engine house where water from furnaces was allowed to cool. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  8. Treatment Costs Can Be Another Blow to Cancer Patients

    MedlinePlus

    ... Costs Can Be Another Blow to Cancer Patients Obamacare has improved access to therapies, but finances are ... under the Affordable Care Act, also known as Obamacare, expenses such as deductibles, co-pays and co- ...

  9. 79. View inside blowing engine room looking down walkway with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. View inside blowing engine room looking down walkway with engine flywheels at left. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  10. 37. INTERIOR VIEW OF BLOW ENGINE HOUSE No. 2 LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. INTERIOR VIEW OF BLOW ENGINE HOUSE No. 2 LOOKING EAST. CENTRIFUGAL TURBOBLOWER No. 1 IN FOREGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  11. 40. LOOKING EAST IN BLOW ENGINE HOUSE No. 2 AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. LOOKING EAST IN BLOW ENGINE HOUSE No. 2 AT CASING FOR CENTRIFUGAL TURBOBLOWER No. 3. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  12. Polypropylenes foam consisting of thermally expandable microcapsule as blowing agent

    NASA Astrophysics Data System (ADS)

    Jeoung, Sun Kyung; Hwang, Ye Jin; Lee, Hyun Wook; Kwak, Sung Bok; Han, In-Soo; Ha, Jin Uk

    2016-03-01

    The structure of thermally expandable microcapsule (TEMs) is consisted of a thermoplastic shell which is filled with liquid hydrocarbon at core. The shell of TEMs becomes soft when the temperature is higher than boiling temperature of liquid hydrocarbon. The shell of TEMs is expanded under the high temperature because the inner pressure of TEMs is increased by vaporization of hydrocarbon core. Therefore, the TEMs are applicable for blowing agents and light weight fillers. In this research, we fabricated the polypropylene (PP) foam by using the TEMs and chemical blowing agents and compared to their physical properties. The density of the specimen was decreased when the contents of chemical blowing agents and TEMs were increased. In addition, the mechanical properties (i.e. tensile strength and impact strength) of specimens were deteriorated with increasing amount of chemical blowing agents and TEMs. However, PP foam produced with TEMs showed higher impact strength than the one with the chemical blowing agent. In order to clarify the dependence of impact strength of PP foam as the blowing agent, the morphology difference of the PP foams was investigated. Expanding properties of PP foams produced with TEMs was changed with TEMs content of PP foams. Processing conditions also influenced the mechanical properties of PP foam containing TEMs.

  13. Clinical characteristics and treatment of blow-out fracture accompanied by canalicular laceration.

    PubMed

    Lee, Hwa; Ahn, Jaemoon; Lee, Tae Eun; Lee, Jong Mi; Shin, Hyungho; Chi, Mijung; Park, Minsoo; Baek, Sehyun

    2012-09-01

    Blow-out fracture and canalicular laceration can occur simultaneously as a result of the same trauma. Despite its importance, little research has been conducted to identify clinical characteristics or surgical techniques for repair of a blow-out fracture accompanied by canalicular laceration. The aim of this study was to evaluate the clinical characteristics, the surgical approach, and the outcomes. Thirty-four eyes of 34 patients who underwent simultaneous repair of canalicular laceration using silicone tube intubation and reconstruction of blow-out fracture were included. Medical records were retrospectively reviewed for patient demographics, nature of injury, affected canaliculus, location, and severity of blow-out fracture, associated facial bone fracture, ophthalmic diagnosis, length of follow-up period, and surgical outcome. Mean patient age was 40.0 years (range, 17-71 y). The mean follow-up was 7.3 months. Fist to the orbital area (10 patients, 29.4%) was the most common cause. There were 24 lower canalicular lacerations (70.6%), 6 upper canalicular lacerations (17.6%), and 4 upper and lower canalicular lacerations (11.8%). Isolated medial wall fractures were most common (area A4: 20/34, 58.8%). Fractures involving both the floor and medial wall and maxillo-ethmoidal strut (areas A1, A2, A3, and A4) were the second most common (6/34, 17.6%), and floor and medial wall with intact strut (areas A1, A2, and A4) were injured in 6 patients (17.6%). Pure inferior wall fractures were least frequent (areas A1 and A2: 2/34, 5.9%). The severity of the fracture was severe in most patients except for 1 linear fracture with tissue entrapment and 1 moderate medial wall fracture (32/34, 94.1%). There was lid laceration in 20 patients (58.8%). Nasal bone fracture (5/34, 14.7%) was the most common facial bone fracture. Tubes were removed at a mean of 3.3 months (range, 3-4 mo). In total, 31 patients (91.2%) achieved complete success in canalicular laceration and blow

  14. Blow-up solutions for L 2 supercritical gKdV equations with exactly k blow-up points

    NASA Astrophysics Data System (ADS)

    Lan, Yang

    2017-08-01

    In this paper we consider the slightly L 2-supercritical gKdV equations \\partialt u+(uxx+u\\vert u\\vert p-1)_x=0 , with the nonlinearity 5 and 0<\\varepsilon\\ll 1 . In the previous work of the author, we know that there exists a stable self-similar blow-up dynamics for slightly L 2-supercritical gKdV equations. Such solutions can be viewed as solutions with a single blow-up point. In this paper we will prove the existence of solutions with multiple blow-up points, and give a description of the formation of the singularity near the blow-up time.

  15. Numerical study of delta wing leading edge blowing

    NASA Technical Reports Server (NTRS)

    Yeh, David; Tavella, Domingo; Roberts, Leonard

    1988-01-01

    Spanwise and tangential leading edge blowing as a means of controlling the position and strength of the leading edge vortices are studied by numerical solution of the three-dimensional Navier-Stokes equations. The leading edge jet is simulated by defining a permeable boundary, corresponding to the jet slot, where suitable boundary conditions are implemented. Numerical results are shown to compare favorably with experimental measurements. It is found that the use of spanwise leading edge blowing at moderate angle of attack magnifies the size and strength of the leading edge vortices, and moves the vortex cores outboard and upward. The increase in lift primarily comes from the greater nonlinear vortex lift. However, spanwise blowing causes earlier vortex breakdown, thus decreasing the stall angle. The effects of tangential blowing at low to moderate angles of attack tend to reduce the pressure peaks associated with leading edge vortices and to increase the suction peak around the leading edge, so that the integrated value of the surface pressure remains about the same. Tangential leading edge blowing in post-stall conditions is shown to re-establish vortical flow and delay vortex bursting, thus increasing C sub L sub max and stall angle.

  16. Near surface flow over a dimpled surface with blowing

    NASA Astrophysics Data System (ADS)

    Borchetta, Colby; Martin, Alexandre; Bailey, Sean

    2016-11-01

    Near surface flow over a perforated hexagonal dimpled surface was investigated experimentally. A parametric study was conducted among Reynolds numbers (Re) and Blowing Ratios (BR). The objective of this work was to investigate and understand the modifications to flow structure with blowing through snapshot Proper Orthogonal Decomposition (POD) analysis. At the lowest Re , the flow was laminar with a layering of shear layer structures formed by the ridges of the dimples. With no blowing, these structures remained attached to the surface, merging with downstream layers as they advect over it. POD analysis revealed that inversely correlated interaction between adjacent dimples was the most energetic mode. For the BR = 0 . 5 % case, a transition to turbulence was observed and, although similar structures were found, their interactions became more complex. For the blowing cases, shear layers structures became detached from the surface, forming larger structures further away from it which become the most energetic POD modes. As blowing was increased to nearly 1 % , a more developed turbulent state was observed. The shear layers became further displaced from the surface, and were shown to be less coherent across the flow direction. This research is supported by NASA Award NNX13AN04A.

  17. Proteus mirabilis interkingdom swarming signals attract blow flies

    PubMed Central

    Ma, Qun; Fonseca, Alicia; Liu, Wenqi; Fields, Andrew T; Pimsler, Meaghan L; Spindola, Aline F; Tarone, Aaron M; Crippen, Tawni L; Tomberlin, Jeffery K; Wood, Thomas K

    2012-01-01

    Flies transport specific bacteria with their larvae that provide a wider range of nutrients for those bacteria. Our hypothesis was that this symbiotic interaction may depend on interkingdom signaling. We obtained Proteus mirabilis from the salivary glands of the blow fly Lucilia sericata; this strain swarmed significantly and produced a strong odor that attracts blow flies. To identify the putative interkingdom signals for the bacterium and flies, we reasoned that as swarming is used by this bacterium to cover the food resource and requires bacterial signaling, the same bacterial signals used for swarming may be used to communicate with blow flies. Using transposon mutagenesis, we identified six novel genes for swarming (ureR, fis, hybG, zapB, fadE and PROSTU_03490), then, confirming our hypothesis, we discovered that fly attractants, lactic acid, phenol, NaOH, KOH and ammonia, restore swarming for cells with the swarming mutations. Hence, compounds produced by the bacterium that attract flies also are utilized for swarming. In addition, bacteria with the swarming mutation rfaL attracted fewer blow flies and reduced the number of eggs laid by the flies. Therefore, we have identified several interkingdom signals between P. mirabilis and blow flies. PMID:22237540

  18. Proteus mirabilis interkingdom swarming signals attract blow flies.

    PubMed

    Ma, Qun; Fonseca, Alicia; Liu, Wenqi; Fields, Andrew T; Pimsler, Meaghan L; Spindola, Aline F; Tarone, Aaron M; Crippen, Tawni L; Tomberlin, Jeffery K; Wood, Thomas K

    2012-07-01

    Flies transport specific bacteria with their larvae that provide a wider range of nutrients for those bacteria. Our hypothesis was that this symbiotic interaction may depend on interkingdom signaling. We obtained Proteus mirabilis from the salivary glands of the blow fly Lucilia sericata; this strain swarmed significantly and produced a strong odor that attracts blow flies. To identify the putative interkingdom signals for the bacterium and flies, we reasoned that as swarming is used by this bacterium to cover the food resource and requires bacterial signaling, the same bacterial signals used for swarming may be used to communicate with blow flies. Using transposon mutagenesis, we identified six novel genes for swarming (ureR, fis, hybG, zapB, fadE and PROSTU_03490), then, confirming our hypothesis, we discovered that fly attractants, lactic acid, phenol, NaOH, KOH and ammonia, restore swarming for cells with the swarming mutations. Hence, compounds produced by the bacterium that attract flies also are utilized for swarming. In addition, bacteria with the swarming mutation rfaL attracted fewer blow flies and reduced the number of eggs laid by the flies. Therefore, we have identified several interkingdom signals between P. mirabilis and blow flies.

  19. PLIF Visualization of Active Control of Hypersonic Boundary Layers Using Blowing

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Inman, Jennifer A.; Alderfer, David W.; Berry, Scott A.

    2008-01-01

    Planar laser-induced fluorescence (PLIF) imaging was used to visualize the boundary layer flow on a 1/3-scale Hyper-X forebody model. The boundary layer was perturbed by blowing out of orifices normal to the model surface. Two blowing orifice configurations were used: a spanwise row of 17-holes spaced at 1/8 inch, with diameters of 0.020 inches and a single-hole orifice with a diameter of 0.010 inches. The purpose of the study was to visualize and identify laminar and turbulent structures in the boundary layer and to make comparisons with previous phosphor thermography measurements of surface heating. Jet penetration and its influence on the boundary layer development was also examined as was the effect of a compression corner on downstream boundary layer transition. Based upon the acquired PLIF images, it was determined that global surface heating measurements obtained using the phosphor thermography technique provide an incomplete indicator of transitional and turbulent behavior of the corresponding boundary layer flow. Additionally, the PLIF images show a significant contribution towards transition from instabilities originating from the underexpanded jets. For this experiment, a nitric oxide/nitrogen mixture was seeded through the orifices, with nitric oxide (NO) serving as the fluorescing gas. The experiment was performed in the 31-inch Mach 10 Air Tunnel at NASA Langley Research Center.

  20. Experimental Investigation of Process Conditions in Injection Stretch Blow Moulding

    NASA Astrophysics Data System (ADS)

    Salomeia, Y.; Menary, G.; Armstrong, C. G.

    2007-04-01

    Various processing parameters influence the final product properties in the stretch blow moulding process. These properties are highly dependent on the balance between the stretching of the polymer and blowing times as well as the level of the pressure inside the bottle. A data acquisition system capable of accurately measuring the process conditions within an industrial environment is discussed. Experimental work has been conducted on an industrial stretch blow moulding machine by means of replacing the original stretch rod with one that contains a force cell and a pressure transducer. Correlation between the stretching force, displacement of the rod and the pressure inside the bottle give a better understanding of the process and should allow a more precise final element simulation of the process to be developed.

  1. Understanding the bacterial communities of hard cheese with blowing defect.

    PubMed

    Bassi, Daniela; Puglisi, Edoardo; Cocconcelli, Pier Sandro

    2015-12-01

    The environment of hard cheese encourages bacterial synergies and competitions along the ripening process, which might lead in defects such as clostridial blowing. In this study, Denaturing Gradient Gel Electrophoresis (DGGE), a quantitative Clostridium tyrobutyricum PCR and next-generation Illumina-based sequencing of 16S rRNA gene were applied to study 83 Grana Padano spoiled samples. The aim was to investigate the community of clostridia involved in spoilage, the ecological relationships with the other members of the cheese microbiota, and the effect of lysozyme. Three main genera were dominant in the analysed cheeses, Lactobacillus, Streptococcus and Clostridium, and the assignment at the species level was of 94.3% of 4,477,326 high quality sequences. C. tyrobutyricum and C. butyricum were the most prevalent clostridia. Hierarchical clustering based on the abundance of bacterial genera, revealed three main clusters: one characterized by the highest proportion of Clostridium, a second where Lactobacillus was predominant and the last, dominated by Streptococcus thermophilus. Ecological relationships among species were found: cheeses characterized by an high abundance of S. thermophilus and L. rhamnosus were spoiled by C. tyrobutyricum while, when L. delbrueckii was the most abundant Lactobacillus, C. butyricum was the dominant spoiling species. Lysozyme also shaped the bacterial community, reducing C. tyrobutyricum in favour of C. butyricum. Moreover, this preservative increased the proportion of L. delbrueckii and obligate heterofermentative lactobacilli and lowered L. helveticus and non-starter species, such as L. rhamnosus and L. casei.

  2. SYMBIOTIC STAR BLOWS BUBBLES INTO SPACE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A tempestuous relationship between an unlikely pair of stars may have created an oddly shaped, gaseous nebula that resembles an hourglass nestled within an hourglass. Images taken with Earth-based telescopes have shown the larger, hourglass-shaped nebula. But this picture, taken with NASA's Hubble Space Telescope, reveals a small, bright nebula embedded in the center of the larger one (close-up of nebula in inset). Astronomers have dubbed the entire nebula the 'Southern Crab Nebula' (He2-104), because, from ground-based telescopes, it looks like the body and legs of a crab. The nebula is several light-years long. The possible creators of these shapes cannot be seen at all in this Wide Field and Planetary Camera 2 image. It's a pair of aging stars buried in the glow of the tiny, central nebula. One of them is a red giant, a bloated star that is exhausting its nuclear fuel and is shedding its outer layers in a powerful stellar wind. Its companion is a hot, white dwarf, a stellar zombie of a burned-out star. This odd duo of a red giant and a white dwarf is called a symbiotic system. The red giant is also a Mira Variable, a pulsating red giant, that is far away from its partner. It could take as much as 100 years for the two to orbit around each other. Astronomers speculate that the interaction between these two stars may have sparked episodic outbursts of material, creating the gaseous bubbles that form the nebula. They interact by playing a celestial game of 'catch': as the red giant throws off its bulk in a powerful stellar wind, the white dwarf catches some of it. As a result, an accretion disk of material forms around the white dwarf and spirals onto its hot surface. Gas continues to build up on the surface until it sparks an eruption, blowing material into space. This explosive event may have happened twice in the 'Southern Crab.' Astronomers speculate that the hourglass-shaped nebulae represent two separate outbursts that occurred several thousand years apart

  3. SYMBIOTIC STAR BLOWS BUBBLES INTO SPACE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A tempestuous relationship between an unlikely pair of stars may have created an oddly shaped, gaseous nebula that resembles an hourglass nestled within an hourglass. Images taken with Earth-based telescopes have shown the larger, hourglass-shaped nebula. But this picture, taken with NASA's Hubble Space Telescope, reveals a small, bright nebula embedded in the center of the larger one (close-up of nebula in inset). Astronomers have dubbed the entire nebula the 'Southern Crab Nebula' (He2-104), because, from ground-based telescopes, it looks like the body and legs of a crab. The nebula is several light-years long. The possible creators of these shapes cannot be seen at all in this Wide Field and Planetary Camera 2 image. It's a pair of aging stars buried in the glow of the tiny, central nebula. One of them is a red giant, a bloated star that is exhausting its nuclear fuel and is shedding its outer layers in a powerful stellar wind. Its companion is a hot, white dwarf, a stellar zombie of a burned-out star. This odd duo of a red giant and a white dwarf is called a symbiotic system. The red giant is also a Mira Variable, a pulsating red giant, that is far away from its partner. It could take as much as 100 years for the two to orbit around each other. Astronomers speculate that the interaction between these two stars may have sparked episodic outbursts of material, creating the gaseous bubbles that form the nebula. They interact by playing a celestial game of 'catch': as the red giant throws off its bulk in a powerful stellar wind, the white dwarf catches some of it. As a result, an accretion disk of material forms around the white dwarf and spirals onto its hot surface. Gas continues to build up on the surface until it sparks an eruption, blowing material into space. This explosive event may have happened twice in the 'Southern Crab.' Astronomers speculate that the hourglass-shaped nebulae represent two separate outbursts that occurred several thousand years apart

  4. IDENTIFICATION OF CFC AND HCFC SUBSTITUTES FOR BLOWING POLYURETHANE FOAM INSULATION PRODUCTS

    EPA Science Inventory

    The report gives results of a cooperative effort to identiry chlorofluorocarbons and hydrochlorofluorocarbon substitutes for blowing polyurethane foam insulation products. The substantial ongoing effort is identifying third-generation blowing agets for polyurethane foams to repla...

  5. IDENTIFICATION OF CFC AND HCFC SUBSTITUTES FOR BLOWING POLYURETHANE FOAM INSULATION PRODUCTS

    EPA Science Inventory

    The report gives results of a cooperative effort to identiry chlorofluorocarbons and hydrochlorofluorocarbon substitutes for blowing polyurethane foam insulation products. The substantial ongoing effort is identifying third-generation blowing agets for polyurethane foams to repla...

  6. Reduction of airfoil trailing edge noise by trailing edge blowing

    NASA Astrophysics Data System (ADS)

    Gerhard, T.; Erbslöh, S.; Carolus, T.

    2014-06-01

    The paper deals with airfoil trailing edge noise and its reduction by trailing edge blowing. A Somers S834 airfoil section which originally was designed for small wind turbines is investigated. To mimic realistic Reynolds numbers the boundary layer is tripped on pressure and suction side. The chordwise position of the blowing slot is varied. The acoustic sources, i.e. the unsteady flow quantities in the turbulent boundary layer in the vicinity of the trailing edge, are quantified for the airfoil without and with trailing edge blowing by means of a large eddy simulation and complementary measurements. Eventually the far field airfoil noise is measured by a two-microphone filtering and correlation and a 40 microphone array technique. Both, LES-prediction and measurements showed that a suitable blowing jet on the airfoil suction side is able to reduce significantly the turbulence intensity and the induced surface pressure fluctuations in the trailing edge region. As a consequence, trailing edge noise associated with a spectral hump around 500 Hz could be reduced by 3 dB. For that a jet velocity of 50% of the free field velocity was sufficient. The most favourable slot position was at 90% chord length.

  7. Solution blow spinning of food-grade gelatin nanofibers

    USDA-ARS?s Scientific Manuscript database

    The primary advantage of nanofibers over larger diameter fibers is the larger surface area to volume ratio. This study evaluated solution blow spinning (SBS) processing conditions for obtaining food-grade gelatin nanofibers from mammalian and fishery by-products, such as pork skin gelatins (PGs) and...

  8. Levitating a strip of paper by blowing over it

    NASA Astrophysics Data System (ADS)

    Lipscombe, Trevor C.; Mungan, Carl E.

    2016-11-01

    It is shown that if you blow vigorously over a curved strip of paper, it levitates into the shape of a catenary. This result quantifies a common classroom demonstration and is a pedagogically useful addition to other studies of catenaries in an intermediate classical mechanics course.

  9. 41. INTERIOR OF LEANTO AT THE SOUTHERN WALL OF BLOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. INTERIOR OF LEAN-TO AT THE SOUTHERN WALL OF BLOW ENGINE HOUSE No. 2 WITH VIEW OF STEAM ENGINE DRIVEN AIR COMPRESSOR. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  10. 42. NORTHEAST VIEW OF BLOW ENGINE HOUSE No. 3, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. NORTHEAST VIEW OF BLOW ENGINE HOUSE No. 3, WITH FILTER CAKE HOSUE IN CENTER FOREGROUND, AND EVAPORATIVE WASTE WATER TREATMENT COOLING TOWER TO THE LEFT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  11. 67. View looking east up walkway between blowing engine house ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    67. View looking east up walkway between blowing engine house at left and boilers at right showing base of stack for boilers No. 5 and 6. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  12. Seismotectonic implications of sand blows in the southern Mississippi Embayment

    USGS Publications Warehouse

    Cox, R.T.; Hill, A.A.; Larsen, D.; Holzer, T.; Forman, S.L.; Noce, T.; Gardner, C.; Morat, J.

    2007-01-01

    We explore seismically-induced sand blows from the southern Mississippi Embayment and their implications in resolving the question of near or distal epicentral source region. This was accomplished using aerial photography, field excavations, and cone penetration tests. Our analysis shows that three sand blow fields exhibit a distinct chronology of strong ground motion for the southern embayment: (1) The Ashley County, Arkansas sand blow field, near the Arkansas/Louisiana state border, experienced four Holocene sand venting episodes; (2) to the north, the Desha County field experienced at least three episodes of liquefaction; and (3) the Lincoln-Jefferson Counties field experienced at least one episode. Cone penetration tests (CPT) conducted in and between the sand blow fields suggest that the fields may not be distal liquefaction associated with New Madrid seismic zone earthquakes but rather are likely associated with strong earthquakes on local faults. This conclusion is consistent with the differences in timing of the southern embayment sand venting episodes and those in the New Madrid seismic zone. These results suggest that active tectonism and strong seismicity in intraplate North America may not be localized at isolated weak spots, but rather widespread on fault systems that are favorably oriented for slip in the contemporary stress field. ?? 2006 Elsevier B.V. All rights reserved.

  13. 39. SOUTHERN INTERIOR VIEW OF BLOW ENGINE HOUSE No. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. SOUTHERN INTERIOR VIEW OF BLOW ENGINE HOUSE No. 2 WITH THE STEAM TURBINE BLADES OF AXIAL TURBOBLOWER No. 4. THE STATOR BLADES OF AXIAL TURBOBLOWER No. 4. THE STATOR BLADES AT THE COMPRESSOR END OF AXIAL TURBOBLOWER No. 4 ARE IN THE BACKGROUND. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  14. Preparation of zein fibers using solution blow spinning method

    USDA-ARS?s Scientific Manuscript database

    Zein fibers were successfully fabricated via solution blow spinning (SBS) using acetic acid as solvent. Surface tension, viscosity and modulus of zein solutions were respectively determined by force tensiometer and rheometer. Increases of these properties were observed with an increase of concentrat...

  15. PLA fibers with antimicrobial properties developed by solution blow spinning

    USDA-ARS?s Scientific Manuscript database

    The present work reports on the development and characterization of novel Poly(lactic acid) hybrid fibers with antimicrobial properties produced by solution blow spinning. This technique presents additional advantages over conventional electrospinning, such as reduced cost and higher rate of fiber p...

  16. Active control of transition by periodic suction-blowing

    NASA Technical Reports Server (NTRS)

    Biringen, S.

    1984-01-01

    A numerical study is conducted to investigate a new method of transition control by periodic suction-blowing. It is shown that significant reduction in the amplitudes of two- and three-dimensional finite-amplitude disturbances can be obtained by the application of this method to transition in plane channel flow.

  17. How often do normal persons sneeze and blow the nose?

    PubMed

    Hansen, Bjarne; Mygind, Niels

    2002-03-01

    Rhinitis is defined as an inflammatory disease, but in clinical practice the diagnosis is based on the occurrence of nasal symptoms. As all persons occasionally sneeze and blow the nose, it is necessary to define what is normal. In this study the daily number of sneezes and of nose blowing were recorded in diary-cards over a 14 day period by 80 hospital employees and medical students, who considered themselves not to suffer from rhinitis. The results showed that more than 95% of the normal persons sneezed and blew the nose less than 4 times a day, on average. It is concluded that it is normal to sneeze and blow the nose less than 4 times daily while a higher number can be a sign of rhinitis. It is recommended that counting of sneezes and of nose blowing is used in clinical trials in order to define the study population. Together with an objective measurement of nasal patency this can be useful in defining the effect profile of different types of treatment.

  18. Proteus mirabilis interkingdom swarming signals attract blow flies

    USDA-ARS?s Scientific Manuscript database

    Flies transport specific bacteria with their larvae which provides a wider range of nutrients for those bacteria. Our hypothesis was that this symbiotic interaction may depend on interkingdom signaling. We obtained Proteus mirabilis from the salivary glands of the blow fly Lucilia sericat. This s...

  19. CR-39 track etching and blow-up method

    DOEpatents

    Hankins, Dale E.

    1987-01-01

    This invention is a method of etching tracks in CR-39 foil to obtain uniformly sized tracks. The invention comprises a step of electrochemically etching the foil at a low frequency and a "blow-up" step of electrochemically etching the foil at a high frequency.

  20. Blow fly responses to semiochemicals produced by decaying carcasses.

    PubMed

    Johansen, H; Solum, M; Knudsen, G K; Hågvar, E B; Norli, H R; Aak, A

    2014-03-01

    Volatiles from mouse carcasses in decay stages ranging from fresh to 33 days old were used to investigate oriented flight and landings in male and female blow flies of Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae). Oriented flight increased significantly from 36% towards fresh carcasses to 68%, 61% and 65% towards carcasses aged 3 days, 6 days and 9 days, respectively. Carcasses aged 20 days and 33 days were significantly less attractive, achieving 51% and 41% attraction, respectively. No differences emerged between the sexes in oriented flight, but a significant increase in female landings at the most attractive carcasses was observed. Headspace collections from the different stages of decay showed a succession in the volatile profile emitted from the carcasses and identified nine chemicals which peak in quantity in concurrence with the most attractive stages of decay. Three of these chemicals also showed dose-response effects as indicated by a significant correlation between the amount present and the proportion of flies responding. Blow flies are important pests and efficient traps are needed. The significant interaction between fly sex and carcass age highlights behavioural differences between male and female blow flies which can be exploited in blow fly trapping. Three new volatile chemicals, butylated hydroxyl toluene, 3-hydroxy-2-butanone and nonanal, emitted from dead mice are suggested as potential attractants. © 2013 The Royal Entomological Society.

  1. Whistle-Blowing and the Code of Silence in Police Agencies: Policy and Structural Predictors

    ERIC Educational Resources Information Center

    Rothwell, Gary R.; Baldwin, J. Norman

    2007-01-01

    This article reports the findings from a study that investigates predictors of police willingness to blow the whistle and police frequency of blowing the whistle on seven forms of misconduct. It specifically investigates the capacity of nine policy and structural variables to predict whistle-blowing. The results indicate that two variables, a…

  2. Whistle-Blowing and the Code of Silence in Police Agencies: Policy and Structural Predictors

    ERIC Educational Resources Information Center

    Rothwell, Gary R.; Baldwin, J. Norman

    2007-01-01

    This article reports the findings from a study that investigates predictors of police willingness to blow the whistle and police frequency of blowing the whistle on seven forms of misconduct. It specifically investigates the capacity of nine policy and structural variables to predict whistle-blowing. The results indicate that two variables, a…

  3. Chiral mixtures

    NASA Astrophysics Data System (ADS)

    Petitjean, Michel

    2002-08-01

    An index evaluating the amount of chirality of a mixture of colored random variables is defined. Properties are established. Extreme chiral mixtures are characterized and examples are given. Connections between chirality, Wasserstein distances, and least squares Procrustes methods are pointed out.

  4. Role of Negative Vector Orbit in Orbital Blow-Out Fractures.

    PubMed

    Choi, Soo Youn; Lee, Hwa; Baek, Sehyun

    2017-09-12

    Negative vector orbit is defined as the most anterior globe portion protrudes past the malar eminence. The aim of the study was to evaluate the relationship between negative vector orbit and blow-out fracture location analyzing the distance between the anterior corneal surface and orbital bone with facial soft tissue in medial and orbital floor blow out fractures using orbital computed tomography (CT). Seventy-seven patients diagnosed with blow-out fractures involving the medial or orbital floor were included. Distances from the anterior cornea to lower lid fat, inferior orbital wall, inferior orbital rim, and anterior cheek mass were measured using orbital CT scans. The proportion of negative vector orbit and measured distanced were compared between medial wall fracture and orbital floor fracture. Medical records including age, sex, concomitant ophthalmic diagnosis, and nature of injury were retrospectively reviewed. Forty-three eyes from 43 patients diagnosed with medial wall fracture and 34 eyes from 34 patients diagnosed with orbital floor fracture were included. There was no significant difference in the distance from the anterior cornea to lower lid fat (P = 0.574), inferior orbital wall (P = 0.494), or orbital rim (P = 0.685). The distance from anterior cornea to anterior cheek mass was significantly different in medial wall fracture (-0.19 ± 3.49 mm) compared with orbital floor fracture (-1.69 ± 3.70 mm), P = 0.05. Negative vector orbit was significantly higher in orbital floor fracture patients (24 among 34 patients, 70.6%) compared with those with medial wall fractures (19 among 43 patients, 44.2%) (P = 0.04). Patients presenting with a negative vector orbit relationship when the most anterior portion of globe protruded past the anterior cheek mass and malar eminence were more likely to develop orbital floor fracture than medial wall fracture.

  5. Numerical study of bituminous coal combustion in a boiler furnace with bottom blowing

    NASA Astrophysics Data System (ADS)

    Zroychikov, N. A.; Kaverin, A. A.

    2016-11-01

    Results obtained by the numerical study of a solid fuel combustion scheme with bottom blowing using Ekibastuz and Kuznetsk bituminous coals of different fractional makeup are presented. Furnace chambers with bottom blowing provide high-efficiency combustion of coarse-grain coals with low emissions of nitrogen oxides. Studying such a combustion scheme, identification of its technological capabilities, and its further improvement are topical issues. As the initial object of study, we selected P-57-R boiler plant designed for burning of Ekibastuz bituminous coal in a prismatic furnace with dry-ash (solid slag) removal. The proposed modernization of the furnace involves a staged air inflow under the staggered arrangement of directflow burners (angled down) and bottom blowing. The calculation results revealed the specific aerodynamics of the flue gases, the trajectories of solid particles in the furnace chamber, and the peculiarities of the fuel combustion depending on the grinding fineness. It is shown that, for coal grinding on the mill, the overall residue on the screen plate of 90 µm ( R 90 ≤ 27% for Ekibastuz coal and R 90 ≤ 15% for Kuznetsk coal) represents admissible values for fuel grind coarsening in terms of economic efficiency and functional reliability of a boiler. The increase in these values leads to the excess of regulatory heat losses and unburned combustible losses. It has been established that the change in the grade of the burned coal does not significantly affect the flow pattern of the flue gases, and the particles trajectory is essentially determined by the elemental composition of the fuel.

  6. HOLOCENE AND LATE PLEISTOCENE(? ) EARTHQUAKE-INDUCED SAND BLOWS IN COASTAL SOUTH CAROLINA.

    USGS Publications Warehouse

    Obermeier, S.F.; Jacobson, R.B.; Powars, D.S.; Weems, R.E.; Hallbick, D.C.; Gohn, G.S.; Markewich, H.W.

    1986-01-01

    Multiple generations of prehistoric sand blows, interpreted as earthquake induced, have been discovered throughout coastal South Carolina. These sand blows extend far beyond 1886 earthquake induced sand blows, in sediments having approximately the same liquefaction susceptibility. The seismic source zone for the prehistoric sand blows is unknown. The different distributions of prehistoric and 1886 sand blows have two possible explanations: (1) moderate to strong earthquakes originated in different seismic source locations through time or (2) at least one earthquake much stronger than the 1886 event also originated from the same seismic source as the 1886 earthquake.

  7. Delta wing vortex manipulation using pulsed and steady blowing during ramp pitching

    NASA Technical Reports Server (NTRS)

    Moreira, J.; Johari, H.

    1995-01-01

    The effectiveness of steady and pulsed blowing as a method of controlling delta wing vortices during ramp pitching has been investigated in flow visualization experiments conducted in a water tunnel. The recessed angled spanwise blowing technique was utilized for vortex manipulation. This technique was implemented on a beveled 60 delta wing using a pair of blowing ports located beneath the vortex core at 40% chord. The flow was injected primarily in the spanwise direction but was also composed of a component normal to the wing surface. The location of vortex burst was measured as a function of blowing intensity and pulsing frequency under static conditions, and the optimum blowing case was applied at three different wing pitching rates. Experimental results have shown that, when the burst location is upstream of the blowing port, pulsed blowing delays vortex breakdown in static and dynamic cases. Dynamic tests verified the existence of a hysteresis effect and demonstrated the improvements offered by pulsed blowing over both steady blowing and no-blowing scenarios. The application of blowing, at the optimum pulsing frequency, made the vortex breakdown location comparable in static and ramp pitch-up conditions.

  8. Blow-by gas processing arrangement for automotive internal combustion engines

    SciTech Connect

    Anno, N.; Arai, T.

    1987-07-21

    This patent describes a blow-by gas processing arrangement for an internal combustion engine, comprising: a cylinder block having a chamber for collecting a blow-by gas, a blow-by gas passage communicating with the chamber, and spaced journal walls for supporting a crankshaft; a relatively large oil mist separating passage defined in the cylinder block and laterally extending into one of the journal walls beyond the blow-by gas passage. The oil mist separates passage communicating with the blow-by gas passage for preliminary separating an oil mist from the blow-by gas supplied from the chamber; an oil separator communicating with the oil mist separates passage for separating an oil mist from the blow-by gas supplied from the oil mist separating passage; and a PCV valve is connected to the oil mist separator; and an intake manifold connected to the PCV valve.

  9. Stator Loading Measurements Behind a Fan With Trailing Edge Blowing

    NASA Technical Reports Server (NTRS)

    Waitz, Ian A.

    2000-01-01

    The problem of aircraft noise pollution around airports has become increasingly important as those areas have become more densely populated. Currently, the removal of older noisier aircraft from operation is reducing noise levels around airports; however, with air traffic projected to increase by about 5% over the next decade the number of commercial aircraft operating in the world is expected to be about 17,700 by the year 2007. To keep noise levels around airports from increasing as a result of traffic increases, it is important to investigate new methods of noise reduction. The objective of this work is to provide a better understanding of the effects that trailing edge blowing has on stator unsteady loading. This is done by presenting flowfield and stator loading data from experiments conducted with and without trailing edge blowing.

  10. Computational investigation of slot blowing for fuselage forebody flow control

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Rizk, Yehia M.; Schiff, Lewis B.; Cummings, Russell M.

    1992-01-01

    This paper presents a computational investigation of a tangential slot blowing concept for generating lateral control forces on an aircraft fuselage forebody. The effects of varying both the jet width and jet exit velocity for a fixed location slot are analyzed. This work is aimed at aiding researchers in designing future experimental and computational models of tangential slot blowing. The primary influence on the resulting side force of the forebody is seen to be the jet mass flow rate. This influence is sensitive to different combinations of slot widths and jet velocities over the range of variables considered. Both an actuator plane and an overset grid technique are used to model the tangential slot. The overset method successfully resolves the details of the actual slot geometry, extending the generality of the numerical method. The actuator plane concept predicts side forces similar to those produced by resolving the actual slot geometry.

  11. Solution blowing of submicron-scale cellulose fibers.

    PubMed

    Zhuang, Xupin; Yang, Xiaocan; Shi, Lei; Cheng, Bowen; Guan, Ketian; Kang, Weimin

    2012-10-01

    Solution blowing is an innovative process for spinning micro-/nano-fibers from polymer solutions using high-velocity gas flow as fiber forming driving force. Submicron-scale cellulose fibers were successfully solution blown by two improvement measures. First, cellulose solution was directly blown to fibers of 260-1900 nm in diameter by raising the air temperature along the spinning line which was proved to accelerate the evaporation of solvent and fiber forming. Second, coaxial solution blowing technique was established with cellulose solution and polyethylene oxide (PEO) solution used as core and shell liquids, respectively. The core-shell structures of the fibers were examined by SEM and TEM. Cellulose fibers with diameter between 160 nm and 960 nm were further obtained after removing PEO shell. X-ray diffraction studies showed that the two kinds of submicron-scale cellulose fibers are mostly amorphous.

  12. Intraguild predation influences oviposition behavior of blow flies (Diptera: Calliphoridae).

    PubMed

    Galindo, Luciane A; Moral, Rafael A; Moretti, Thiago C; Godoy, Wesley A C; Demétrio, Clarice G B

    2016-05-01

    The objective of the present study was to determine whether blow flies (Diptera: Calliphoridae) are able to identify larvae of an intraguild predator species in the substrate and avoid laying eggs there. Blow flies oviposited in traps with different treatments: substrate only and substrate with larvae of Chrysomya albiceps (Wiedemann, 1819), Chrysomya megacephala (Fabricius, 1794), or Chrysomya putoria (Wiedemann, 1830). Ch. megacephala, Ch. putoria, and Lucilia eximia (Wiedemann, 1819) avoided laying eggs in the trap containing Ch. albiceps larvae. Cochliomyia macellaria (Fabricius, 1775) did not oviposit differently in each substrate but had overall low abundance. The prevalence of species on corpses may be influenced by the ability of the species to detect the presence of other species, mainly predators. In this sense, intraguild predation may result in misinterpretations of a crime scene and should be considered when assessing the minimum postmortem interval.

  13. Quantifying pteridines in the heads of blow flies (Diptera: Calliphoridae): Application for forensic entomology.

    PubMed

    Cammack, J A; Reiskind, M H; Guisewite, L M; Denning, S S; Watson, D W

    2017-09-12

    In forensic cases involving entomological evidence, establishing the postcolonization interval (post-CI) is a critical component of the investigation. Traditional methods of estimating the post-CI rely on estimating the age of immature blow flies (Diptera: Calliphoridae) collected from remains. However, in cases of delayed discovery (e.g., when remains are located indoors), these insects may have completed their development and be present in the environment as adults. Adult fly collections are often ignored in cases of advanced decomposition because of a presumed little relevance to the investigation; herein we present information on how these insects can be of value. In this study we applied an age-grading technique to estimate the age of adults of Chrysomya megacephala (Fabricius), Cochliomyia macellaria (Fabricius), and Phormia regina (Meigen), based on the temperature-dependent accumulation of pteridines in the compound eyes, when reared at temperatures ranging from 5 to 35°C. Age could be estimated for all species*sex*rearing temperature combinations (mean r(2)±SE: 0.90±0.01) for all but P. regina reared at 5.4°C. These models can be used to increase the precision of post-CI estimates for remains found indoors, and the high r(2) values of 22 of the 24 regression equations indicates that this is a valid method for estimating the age of adult blow flies at temperatures ≥15°C. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Lift augmentation via spanwise tip blowing - A numerical study

    NASA Technical Reports Server (NTRS)

    Childs, R. E.

    1986-01-01

    Numerical simulations of a low aspect ratio wing with and without a spanwise directed jet issuing from the wing tip have been performed. The results show that the tip vortex is displaced outward and upward by the blowing. This gives rise to a local lift augmentation mechanism, vortex lift caused by the vortex core being above the wing, and a global mechanism, the reduction of induced velocities due to greater apparent spin.

  15. Lift augmentation via spanwise tip blowing - A numerical study

    NASA Technical Reports Server (NTRS)

    Childs, R. E.

    1986-01-01

    Numerical simulations of a low aspect ratio wing with and without a spanwise directed jet issuing from the wing tip have been performed. The results show that the tip vortex is displaced outward and upward by the blowing. This gives rise to a local lift augmentation mechanism, vortex lift caused by the vortex core being above the wing, and a global mechanism, the reduction of induced velocities due to greater apparent spin.

  16. A theoretical investigation of over-wing-blowing aerodynamics

    NASA Technical Reports Server (NTRS)

    Lan, C. E.

    1976-01-01

    A theoretical method is established for determining the aerodynamic characteristics of over-wing-blowing configurations. The method accounts for both jet entrainment and jet interaction effects because of the differences in freestream and jet dynamic pressures and Mach numbers. The predicted lift increments agree well with available data. It is shown that the lift is underpredicted with entrainment effect alone when the jet is close to the wing surface.

  17. Blow-up regimes in failure of rock specimens

    NASA Astrophysics Data System (ADS)

    Smolin, I. Yu.; Kulkov, A. S.; Makarov, P. V.; Eremin, M. O.; Bakeev, R. A.; Krasnoveykin, V. A.

    2016-11-01

    For damage evaluation, the stage of superfast catastrophic failure of a medium and its mechanical behavior in a state of self-organized criticality prior to the onset of a blow-up fracture mode is of great interest for identification of its precursors. In this work, the data of experimental and numerical investigations of mechanical behavior of a medium before its catastrophic failure and the onset of a blow-up fracture mode are presented. Rock samples and ceramic specimens are subjected to three-point bending and uniaxial compression testing. Surface velocities of the loaded specimens are registered using a laser Doppler vibrometer. The blow-up regime duration is measured to be about 10-20 ms. The specimens' mechanical behavior is numerically simulated under experimental conditions, including the regime of catastrophic fracture. The model parameters of damage accumulation are determined from a comparison with the experimental data. A number of features of the material mechanical response before the catastrophic fracture are identified, which could be treated as failure precursors.

  18. Active control of wing rock of a delta wing at post-stall using tangential leading edge blowing

    NASA Technical Reports Server (NTRS)

    Wong, G. S.; Rock, S. M.; Wood, N. J.; Roberts, L.

    1993-01-01

    Post-stall roll control utilizing tangential leading edge blowing is demonstrated in a wind tunnel on a delta wing model that exhibited wing rock. The dampening effect of symmetric blowing alone on wing rock is found to be effective up to a certain maximum amount of blowing. A moderate amount of symmetric blowing was shown to be effective in linearizing the asymmetric blowing static rolling moment responses.

  19. Active control of wing rock of a delta wing at post-stall using tangential leading edge blowing

    NASA Technical Reports Server (NTRS)

    Wong, G. S.; Rock, S. M.; Wood, N. J.; Roberts, L.

    1993-01-01

    Post-stall roll control utilizing tangential leading edge blowing is demonstrated in a wind tunnel on a delta wing model that exhibited wing rock. The dampening effect of symmetric blowing alone on wing rock is found to be effective up to a certain maximum amount of blowing. A moderate amount of symmetric blowing was shown to be effective in linearizing the asymmetric blowing static rolling moment responses.

  20. Spatial and temporal variations of blowing dust events in the Taklimakan Desert

    NASA Astrophysics Data System (ADS)

    Yang, Xinghua; Shen, Shuanghe; Yang, Fan; He, Qing; Ali, Mamtimin; Huo, Wen; Liu, Xinchun

    2016-08-01

    The Taklimakan Desert is the source of most blowing dust events in China. However, previous studies of sandstorms in this region have not included data from the inner desert because of the difficulty in making observations in this area. In this study, the spatial and temporal variations of blowing dust events, including sandstorms and blowing sand, and its relations with climatic parameters in the Taklimakan Desert were analyzed using data from ten desert-edge meteorological stations during 1961 to 2010 and two inner-desert meteorological stations during 1988 to 1990, 1996 to 2010, and 1992 to 2010. The results identified two regions (Pishan-Hotan-Minfeng and Xiaotang-Tazhong) where blowing dust events occur on average more than 80 days per year. The regions with the highest occurrence of sandstorms, blowing sand, and blowing dust events were different, with sandstorms centered in the north of the desert (Xiaotang, 46.9 days), whereas the central location for blowing sand (Pishan, 86.4 days) and blowing dust events (Minfeng, 113.5 days) activity was located at the southwestern and southern edges of the desert, respectively. The occurrence of sandstorms generally decreased from 1961 to 2010, while the occurrence of blowing sand increased from 1961 to 1979 and then generally decreased. The temporal variation of blowing dust events was mainly affected by the occurrence of strong wind and daily temperature, with average correlation coefficients of 0.46 and -0.41 for these variables across the whole desert.

  1. Condensate Mixtures and Tunneling

    SciTech Connect

    Timmermans, E.

    1998-09-14

    The experimental study of condensate mixtures is a particularly exciting application of the recently developed atomic-trap Bose-Einstein condensate (BEC) technology: such multiple condensates represent the first laboratory systems of distinguishable boson superfluid mixtures. In addition, as the authors point out in this paper, the possibility of inter-condensate tunneling greatly enhances the richness of the condensate mixture physics. Not only does tunneling give rise to the oscillating particle currents between condensates of different chemical potentials, such as those studied extensively in the condensed matter Josephson junction experiments, it also affects the near-equilibrium dynamics and stability of the condensate mixtures. In particular, the stabilizing influence of tunneling with respect to spatial separation (phase separation) could be of considerable practical importance to the atomic trap systems. Furthermore, the creation of mixtures of atomic and molecular condensates could introduce a novel type of tunneling process, involving the conversion of a pair of atomic condensate bosons into a single molecular condensate boson. The static description of condensate mixtures with such type of pair tunneling suggests the possibility of observing dilute condensates with the liquid-like property of a self-determined density.

  2. COMPLEX MIXTURES AND GROUNDWATER QUALITY

    EPA Science Inventory

    Experience has shown that many soil and ground-water contamination problems involve complex mixtures of chemicals. his manuscript identifies and discusses, in a generic sense, some of the important processes which must be considered when dealing with complex mixtures in the subsu...

  3. Analysis of tangential slot blowing on F/A-18 isolated forebody

    NASA Technical Reports Server (NTRS)

    Gee, K.; Rizk, Y.; Schiff, L.

    1994-01-01

    Generation of significant side forces and yawing moments on an F/A-18 fuselage through tangential slot blowing is analyzed using computational fluid dynamics. The effects of freestream Mach number, jet exit conditions, jet length, and jet location are studied. The effects of over- and under-blowing on force and moment production are analyzed. Non-time-accurate solutions are obtained to determine the steady-state side forces, yawing moments, and surface pressure distributions generated by tangential slot blowing. Time-accurate solutions are obtained to study the force onset time lag of tangential slot blowing. Comparison with available experimental data from full-scale wind tunnel and sub-scale wind tunnel tests are made. This computational analysis complements the experimental results and provides a detailed understanding of the effects of tangential slot blowing on the flow field about the isolated F/A-18 forebody. Additionally, it extends the slot-blowing database to transonic maneuvering Mach numbers.

  4. Video analysis of head blows leading to concussion in competition Taekwondo.

    PubMed

    Koh, Jae O; Watkinson, E Jane; Yoon, Yong-Jin

    2004-12-01

    To analyse the situational and contextual factors surrounding concussions and head blows in Taekwondo. Prospective design. Direct observation, subject interview and videotape recording used. A total of 2328 competitors participated in the 2001 tournament, South Korea. All matches were recorded on videotape. All recipients of head blows were interviewed by athletic therapists and the researcher immediately after the match. The videotapes of concussions and head blows were analysed. A total of 1009 head blows including concussions were analysed. Head blows and concussions were most evident when the attacker was situated in a closed stance and received a single roundhouse kick. The most frequent anatomical site of the head impact was the temporal region. The frequency of head blows and concussions is high in Taekwondo. Development of blocking skills, safety education, rigorous enforcement of the competition rules and improvement of head-gear are recommended.

  5. Blow-up properties in the parabolic problems with anisotropic nonstandard growth conditions

    NASA Astrophysics Data System (ADS)

    Liu, Bingchen; Yang, Jie

    2016-03-01

    In this paper, we study the parabolic problems with anisotropic nonstandard growth nonlinearities. We first give the existence and uniqueness of weak solutions in variable Sobolev spaces. Second, we use the energy methods to show the existence of blow-up solutions with negative or positive initial energy, respectively. Both the variable exponents and the coefficients make important roles in Fujita blow-up phenomena. Moreover, asymptotic properties of the blow-up solutions are determined.

  6. Sexual Harassment Reporting and Whistle-Blowing: A Proposed Model of Predictors and Outcomes

    DTIC Science & Technology

    2002-01-01

    To) 19/Feb/2002 MAJOR REPORT 1 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER SEXUAL HARASSMENT REPORTING AND WHISTLE BLOWING: A PROPSED MODEL OF...TELEPHONE NUMBER (Include area code) Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Sexual Harassment Reporting and Whistle-blowing: A...Funding for this study was provided by the Coleman Chair of the Kelley School of Business. Sexual Harassment Reporting and Whistle-blowing: A

  7. Experimental investigation of the aerodynamic effects of distributed spanwise blowing on a fighter configuration

    NASA Technical Reports Server (NTRS)

    Huffman, J. K.; Hahne, D. E.; Johnson, T. D., Jr.

    1948-01-01

    The results of wind tunnel tests at NASA Langley targeted at the performance and configurational characteristics of 0.1 and 0.13 scale model spanwise blowing (SWB) jet wing concepts are reported. The concept involves redirection of engine compressor bleed air to provide SWB at the fuselage-wing juncture near the wing leading edge. The tests covered the orientation of the outer panel nozzles, the effects of SWB operation on the performance of leading and trailing edge flaps and the effects of SWB on lateral stability. The trials were run at low speeds and angles of attack from 24-45 deg (landing). Both lift and longitudinal stability improved with the SWB, stall and leading edge vortex breakdown were delayed and performance increased with the SWB rate. Lateral stability was degraded below 20 deg angle of attack while instabilities were delayed above 20 deg due to roll damping.

  8. Uniqueness of boundary blow-up solutions on exterior domain of RN

    NASA Astrophysics Data System (ADS)

    Dong, Wei; Pang, Changci

    2007-06-01

    In this paper, we consider the existence and uniqueness of positive solutions of the degenerate logistic type elliptic equation where N[greater-or-equal, slanted]2, D[subset of]RN is a bounded domain with smooth boundary and a(x), b(x) are continuous functions on RN with b(x)[greater-or-equal, slanted]0, b(x)[not identical with]0. We show that under rather general conditions on a(x) and b(x) for large x, there exists a unique positive solution. Our results improve the corresponding ones in [W. Dong, Y. Du, Unbounded principal eigenfunctions and the logistic equation on RN, Bull. Austral. Math. Soc. 67 (2003) 413-427] and [Y. Du, L. Ma, Logistic type equations on RN by a squeezing method involving boundary blow-up solutions, J. London Math. Soc. (2) 64 (2001) 107-124].

  9. Experimental investigation of the aerodynamic effects of distributed spanwise blowing on a fighter configuration

    NASA Technical Reports Server (NTRS)

    Huffman, J. K.; Hahne, D. E.; Johnson, T. D., Jr.

    1948-01-01

    The results of wind tunnel tests at NASA Langley targeted at the performance and configurational characteristics of 0.1 and 0.13 scale model spanwise blowing (SWB) jet wing concepts are reported. The concept involves redirection of engine compressor bleed air to provide SWB at the fuselage-wing juncture near the wing leading edge. The tests covered the orientation of the outer panel nozzles, the effects of SWB operation on the performance of leading and trailing edge flaps and the effects of SWB on lateral stability. The trials were run at low speeds and angles of attack from 24-45 deg (landing). Both lift and longitudinal stability improved with the SWB, stall and leading edge vortex breakdown were delayed and performance increased with the SWB rate. Lateral stability was degraded below 20 deg angle of attack while instabilities were delayed above 20 deg due to roll damping.

  10. Controlled vortical flow on delta wings through unsteady leading edge blowing

    NASA Technical Reports Server (NTRS)

    Lee, K. T.; Roberts, Leonard

    1990-01-01

    The vortical flow over a delta wing contributes an important part of the lift - the so called nonlinear lift. Controlling this vortical flow with its favorable influence would enhance aircraft maneuverability at high angle of attack. Several previous studies have shown that control of the vortical flow field is possible through the use of blowing jets. The present experimental research studies vortical flow control by applying a new blowing scheme to the rounded leading edge of a delta wing; this blowing scheme is called Tangential Leading Edge Blowing (TLEB). Vortical flow response both to steady blowing and to unsteady blowing is investigated. It is found that TLEB can redevelop stable, strong vortices even in the post-stall angle of attack regime. Analysis of the steady data shows that the effect of leading edge blowing can be interpreted as an effective change in angle of attack. The examination of the fundamental time scales for vortical flow re-organization after the application of blowing for different initial states of the flow field is studied. Different time scales for flow re-organization are shown to depend upon the effective angle of attack. A faster response time can be achieved at angles of attack beyond stall by a suitable choice of the initial blowing momentum strength. Consequently, TLEB shows the potential of controlling the vortical flow over a wide range of angles of attack; i.e., in both for pre-stall and post-stall conditions.

  11. Computational Analysis of Forebody Tangential Slot Blowing on the F/A-18

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Rizk, Yehia M.; Schiff, Lewis B.; Kutler, Paul (Technical Monitor)

    1994-01-01

    An overview of the computational effort to analyze forebody tangential slot blowing for use on the F/A-18 aircraft is presented. Tangential slot blowing generates side force and yawing moment which may be used to control the aircraft flying at high angle of attack. Computations using the isolated forebody are obtained at full-scale wind tunnel test conditions for direct comparison with available experimental data. The effects of jet exit conditions, jet length, and jet location are also studied using the isolated forebody. In addition, these computations are used to predict the effect of slot blowing at transonic maneuvering flight conditions. The effects of over- and under-blowing on force and moment production are analyzed. Non-time-accurate solutions are obtained to determine the steady-state side force and yawing moments generated by tangential slot blowing. Time-accurate solutions are obtained to study the force onset time lag of tangential slot blowing. The effect of blowing on the burst point location are then analyzed by obtaining computations using the aircraft geometry, which includes the wing, empennage, and faired-over inlets. The effect of blowing on the buffet loads on the vertical tails are analyzed using time-accurate computations. Comparison with available experimental data from full-scale wind tunnel and sub-scale wind tunnel tests are made. This computational analysis compliments the experimental results and provides a detailed understanding of the effects of tangential slot blowing on the flow field about the F/A-18.

  12. A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence

    NASA Technical Reports Server (NTRS)

    Kibbey, Timothy P.

    2014-01-01

    A derivation of turbulent flow parameters, combined with data from erosive burning test motors and blowing wall tests results in erosive burning model candidates useful in one-dimensional internal ballistics analysis capable of scaling across wide ranges of motor size. The real-time burn rate data comes from three test campaigns of subscale segmented solid rocket motors tested at two facilities. The flow theory admits the important effect of the blowing wall on the turbulent friction coefficient by using blowing wall data to determine the blowing wall friction coefficient. The erosive burning behavior of full-scale motors is now predicted more closely than with other recent models.

  13. Simple Repair of a Blow-Out Fracture by the Modified Caldwell-Luc Approach.

    PubMed

    Park, Min Woo; Kim, Soung Min; Amponsah, Emmanuel Kofi; Lee, Suk Keun

    2015-06-01

    Here we report a patient with a blow-out fracture of the orbital floor that was treated by an intraoral transmaxillary approach. This 38-year-old man suffered a sudden blow to the periorbital area, which caused prolapse of the orbital contents into the maxillary sinus. The modified Caldwell-Luc approach was used to repair the orbital blow-out fracture and the maxillary sinus during was packed with Frazin gauze for 7 days to prevent recurrence of the prolapse. This was an easy and minimally invasive technique for the management of a blow-out fracture of the orbital floor.

  14. Sustained prediction ability of net analyte preprocessing methods using reduced calibration sets. Theoretical and experimental study involving the spectrophotometric analysis of multicomponent mixtures.

    PubMed

    Goicoechea, H C; Olivieri, A C

    2001-07-01

    A newly developed multivariate method involving net analyte preprocessing (NAP) was tested using central composite calibration designs of progressively decreasing size regarding the multivariate simultaneous spectrophotometric determination of three active components (phenylephrine, diphenhydramine and naphazoline) and one excipient (methylparaben) in nasal solutions. Its performance was evaluated and compared with that of partial least-squares (PLS-1). Minimisation of the calibration predicted error sum of squares (PRESS) as a function of a moving spectral window helped to select appropriate working spectral ranges for both methods. The comparison of NAP and PLS results was carried out using two tests: (1) the elliptical joint confidence region for the slope and intercept of a predicted versus actual concentrations plot for a large validation set of samples and (2) the D-optimality criterion concerning the information content of the calibration data matrix. Extensive simulations and experimental validation showed that, unlike PLS, the NAP method is able to furnish highly satisfactory results when the calibration set is reduced from a full four-component central composite to a fractional central composite, as expected from the modelling requirements of net analyte based methods.

  15. Low-Speed Fan Noise Reduction With Trailing Edge Blowing

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Tweedt, Daniel L.; Fite, E. Brian; Envia, Edmane

    2002-01-01

    An experimental proof-of-concept test was conducted to demonstrate reduction of rotor-stator interaction noise through rotor-trailing edge blowing. The velocity deficit from the viscous wake of the rotor blades was reduced by injecting air into the wake from a trailing edge slot. Composite hollow rotor blades with internal flow passages were designed based on analytical codes modeling the internal flow. The hollow blade with interior guide vanes creates flow channels through which externally supplied air flows from the root of the blade to the trailing edge. The impact of the rotor wake-stator interaction on the acoustics was also predicted analytically. The Active Noise Control Fan, located at the NASA Glenn Research Center, was used as the proof- of-concept test bed. In-duct mode and farfield directivity acoustic data were acquired at blowing rates (defined as mass supplied to trailing edge blowing system divided by fan mass flow) ranging from 0.5 to 2.0 percent. The first three blade passing frequency harmonics at fan rotational speeds of 1700 to 1900 rpm were analyzed. The acoustic tone power levels (PWL) in the inlet and exhaust were reduced 11.5 and -0.1, 7.2 and 11.4, 11.8 and 19.4 PWL dB, respectively. The farfield tone power levels at the first three harmonics were reduced 5.4, 10.6, and 12.4 dB PWL. At selected conditions, two-component hotwire and stator vane unsteady surface pressures were acquired. These measurements illustrate the physics behind the noise reduction.

  16. Modeling of Droplet Generation in a Top Blowing Steelmaking Process

    NASA Astrophysics Data System (ADS)

    Rout, Bapin Kumar; Brooks, Geoff; Subagyo; Rhamdhani, M. Akbar; Li, Zushu

    2016-12-01

    Quantification of metal droplets ejected due to impinging gas jet on the surface of liquid metal is an important parameter for the understanding and for the modeling of the refining kinetics of reactions in slag-metal emulsion zone. In the present work, a numerical study has been carried out to critically examine the applicability of droplet generation rate correlation previously proposed by Subagyo et al. on the basis of dimensionless blowing number ( N B). The blowing number was re-evaluated at the impingement point of jet with taking into account the temperature effect of change in density and velocity of the gas jet. The result obtained from the work shows that the modified blowing number N B,T at the furnace temperature of 1873 K (1600 °C) is approximately double in magnitude compared to N B calculated by Subagyo and co-workers. When N B,T has been employed to the Subagyo's empirical correlation for droplet generation, a wide mismatch is observed between the experimental data obtained from cold model and hot model experiments. The reason for this large deviation has been investigated in the current study, and a theoretical approach to estimate the droplet generation rate has been proposed. The suitability of the proposed model has been tested by numerically calculating the amount of metals in slag. The study shows that the weight of metals in emulsion falls in the range of 0 to 21 wt pct of hot metal weight when droplet generation rate has been calculated at ambient furnace temperature of 1873 K (1600 °C).

  17. Implementation of a Blowing Boundary Condition in the LAURA Code

    NASA Technical Reports Server (NTRS)

    Thompson, Richard a.; Gnoffo, Peter A.

    2008-01-01

    Preliminary steps toward modeling a coupled ablation problem using a finite-volume Navier-Stokes code (LAURA) are presented in this paper. Implementation of a surface boundary condition with mass transfer (blowing) is described followed by verification and validation through comparisons with analytic results and experimental data. Application of the code to a carbon-nosetip ablation problem is demonstrated and the results are compared with previously published data. It is concluded that the code and coupled procedure are suitable to support further ablation analyses and studies.

  18. Spatial simulation of instability control by periodic suction blowing

    NASA Technical Reports Server (NTRS)

    Danabasoglu, G.; Biringen, S.; Streett, C. L.

    1991-01-01

    The applicability of active control by periodic suction blowing in spatially evolving plane Poiseuille flow is investigated by the direct simulation of the three-dimensional, incompressible Navier-Stokes equations. The results reveal that significant reductions in perturbation amplitudes can be obtained by a proper choice of the control wave amplitude and phase. The upstream influence of the control wave is shown to be confined to a region in the vicinity of the control slot with no apparent effect on the flow development.

  19. Spatial simulation of instability control by periodic suction blowing

    NASA Technical Reports Server (NTRS)

    Danabasoglu, G.; Biringen, S.; Streett, C. L.

    1991-01-01

    The applicability of active control by periodic suction blowing in spatially evolving plane Poiseuille flow is investigated by the direct simulation of the three-dimensional, incompressible Navier-Stokes equations. The results reveal that significant reductions in perturbation amplitudes can be obtained by a proper choice of the control wave amplitude and phase. The upstream influence of the control wave is shown to be confined to a region in the vicinity of the control slot with no apparent effect on the flow development.

  20. Two blowing concepts for roll and lateral control of aircraft

    NASA Technical Reports Server (NTRS)

    Tavella, D. A.; Wood, N. J.; Lee, C. S.; Roberts, L.

    1986-01-01

    Two schemes to modulate aerodynamic forces for roll and lateral control of aircraft have been investigated. The first scheme, called the lateral blowing concept, consists of thin jets of air exiting spanwise, or at small angle with the spanwise direction, from slots at the tips of straight wings. For this scheme, in addition to experimental measurements, a theory was developed showing the analytical relationship between aerodynamic forces and jet and wing parameters. Experimental results confirmed the theoretically derived scaling laws. The second scheme, which was studied experimentally, is called the jet spoiler concept and consists of thin jets exiting normally to the wing surface from slots aligned with the spanwise direction.

  1. An implicit finite-difference solution to the viscous shock layer, including the effects of radiation and strong blowing

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.; Smith, G. L.; Perkins, J. N.

    1972-01-01

    An implicit finite-difference scheme is developed for the fully coupled solution of the viscous, radiating stagnation-streamline equations, including strong blowing. Solutions are presented for both air injection and injection of carbon-phenolic ablation products into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative-transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized in the study. With minimum number of assumptions for the initially unknown parameters and profile distributions, convergent solutions to the full stagnation-line equations are rapidly obtained by a method of successive approximations. Damping of selected profiles is required to aid convergence of the solutions for massive blowing. It is shown that certain finite-difference approximations to the governing differential equations stabilize and improve the solutions. Detailed comparisons are made with the numerical results of previous investigations. Results of the present study indicate lower radiative heat fluxes at the wall for carbonphenolic ablation than previously predicted.

  2. Genomic approach to studying nutritional requirements of Clostridium tyrobutyricum and other Clostridia causing late blowing defects.

    PubMed

    Storari, Michelangelo; Kulli, Sandra; Wüthrich, Daniel; Bruggmann, Rémy; Berthoud, Hélène; Arias-Roth, Emmanuelle

    2016-10-01

    Clostridium tyrobutyricum is the main microorganism responsible for the late blowing defect in hard and semi-hard cheeses, causing considerable economic losses to the cheese industry. Deeper knowledge of the metabolic requirements of this microorganism can lead to the development of more effective control approaches. In this work, the amino acids and B vitamins essential for sustaining the growth of C. tyrobutyricum were investigated using a genomic approach. As the first step, the genomes of four C. tyrobutyricum strains were analyzed for the presence of genes putatively involved in the biosynthesis of amino acids and B vitamins. Metabolic pathways could be reconstructed for all amino acids and B vitamins with the exception of biotin (vitamin B7) and folate (vitamin B9). The biotin pathway was missing the enzyme amino-7-oxononanoate synthase that catalyzes the condensation of pimeloyl-ACP and l-alanine to 8-amino-7-oxononanoate. In the folate pathway, the missing genes were those coding for para-aminobenzoate synthase and aminodeoxychorismate lyase enzymes. These enzymes are responsible for the conversion of chorismate into para-aminobenzoate (PABA). Two C. tyrobutyircum strains whose genome was analyzed in silico as well as other 10 strains isolated from cheese were tested in liquid media to confirm these observations. 11 strains showed growth in a defined liquid medium containing biotin and PABA after 6-8 days of incubation. No strain showed growth when only one or none of these compounds were added, confirming the observations obtained in silico. Furthermore, the genome analysis was extended to genomes of single strains of other Clostridium species potentially causing late blowing, namely Clostridium beijerinckii, Clostridium sporogenes and Clostridium butyricum. Only the biotin biosynthesis pathway was incomplete for C. butyricum and C. beijerincki. In contrast, C. sporogenes showed missing enzymes in biosynthesis pathways of several amino acids as well

  3. Microchip-based 3D-Cell Culture Using Polymer Nanofibers Generated by Solution Blow Spinning.

    PubMed

    Chen, Chengpeng; Townsend, Alexandra D; Sell, Scott A; Martin, R Scott

    2017-06-14

    Polymer nano/micro fibers have found many applications including 3D cell culture and the creation of wound dressings. The fibers can be produced by a variety of techniques that include electrospinning, the primary disadvantage of which include the requirement for a high voltage supply (which may cause issues such as polymer denaturation) and lack of portability. More recently, solution blow spinning, where a high velocity sheath gas is used instead of high voltage, has been used to generate polymer fibers. In this work, we used blow spinning to create nano/microfibers for microchip-based 3D cell culture. First, we thoroughly investigated fiber generation from a 3D printed gas sheath device using two polymers that are amenable to cell culture (polycaprolactone, PCL and polystyrene, PS) as well as the parameters that can affect PCL and PS fiber quality. Using the 3D printed sheath device, it was found that the pressure of the sheath N2 and the concentration of polymer solutions determine if fibers can be produced as well as the resulting fiber morphology. In addition, we showed how these fibers can be used for 3D cell culture by directly depositing PCL fibers in petri dishes and well plates. It is shown the fibers have good compatibility with RAW 264.7 macrophages and the PCL fiber scaffold can be as thick as 178 ± 14 μm. PCL fibers created from solution blow spinning (with the 3D printed sheath device) were then integrated with a microfluidic device for the first time to fabricate a 3D cell culture scaffold with a flow component. After culturing and stimulating macrophages on the fluidic device, it was found that the integrated 3D fibrous scaffold is a better mimic of the extracellular matrix (as opposed to a flat, 2D substrate), with enhanced nitrite accumulation (product of nitric oxide release) from macrophages stimulated with lipopolysaccharide. PS fibers were also made and integrated in a microfluidic device for 3D culture of endothelial cells, which stayed

  4. Finite Element Modeling of Reheat Stretch Blow Molding of PET

    NASA Astrophysics Data System (ADS)

    Krishnan, Dwarak; Dupaix, Rebecca B.

    2004-06-01

    Poly (ethylene terephthalate) or PET is a polymer used as a packaging material for consumer products such as beverages, food or other liquids, and in other applications including drawn fibers and stretched films. Key features that make it widely used are its transparency, dimensional stability, gas impermeability, impact resistance, and high stiffness and strength in certain preferential directions. These commercially useful properties arise from the fact that PET crystallizes upon deformation above the glass transition temperature. Additionally, this strain-induced crystallization causes the deformation behavior of PET to be highly sensitive to processing conditions. It is thus crucial for engineers to be able to predict its performance at various process temperatures, strain rates and strain states so as to optimize the manufacturing process. In addressing these issues; a finite element analysis of the reheat blow molding process with PET has been carried out using ABAQUS. The simulation employed a constitutive model for PET developed by Dupaix and Boyce et al.. The model includes the combined effects of molecular orientation and strain-induced crystallization on strain hardening when the material is deformed above the glass transition temperature. The simulated bottles were also compared with actual blow molded bottles to evaluate the validity of the simulation.

  5. Resistance blow-up effect in micro-circuit engineering

    NASA Astrophysics Data System (ADS)

    Tan, Michael L. P.; Saxena, Tanuj; Arora, Vijay K.

    2010-12-01

    The nonlinearity in the I- V characteristics of a scaled-down micro/nano-scale resistive channel is shown to elevate the DC and signal resistance as current approaches its saturation value. The deviation from traditional circuit engineering takes place when the applied voltage is increased beyond the critical voltage V c = ( V t/ ℓ) L, where V t is the thermal voltage, ℓ is the ohmic mean free path, and L is the length of the conducting channel. This resistance blow-up is more pronounced for a smaller-length resistor in a micro-circuit of two resistors with same ohmic value. The power consumed P = VI not only is lower but also is a linear function of voltage V as compared to the quadratic rise with V in the ohmic regime. The resistance blow-up effect also gives enhanced RC time constant for transients when a digital signal switches from low to high or vice versa. These results are of immense value to circuit designers and those doing device characterization to extract parasitic and transport parameters.

  6. Forebody Tangential Slot Blowing on an Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Rizk, Yehia M.; Schiff, Lewis B.

    1994-01-01

    The effect of forebody tangential slot blowing on the flowfield about an F/A-18 aircraft is investigated numerically using solutions of the Navier-Stokes equations. Computed solutions are obtained for an aircraft geometry which includes the fuselage, a wing with deflected leading-edge flap, empennage, and a faired-over engine inlet. The computational slot geometry corresponds to that used in full-scale wind-tunnel tests. Solutions are computed using flight test conditions and jet mass flow ratios equivalent to wind-tunnel test conditions. The effect of slot location is analyzed by computing two nontime-accurate solutions with a 16-in. slot located 3 in. and 11 in. aft of the nose of the aircraft. These computations resolve the trends observed in the full-scale wind-tunnel test data. The flow aft of the leading-edge extension vortex burst is unsteady. A time-accurate solution is obtained to investigate the flow characteristics aft of the vortex burst, including the effect of blowing on tail buffet.

  7. Numerical Analysis of Film Cooling at High Blowing Ratio

    NASA Technical Reports Server (NTRS)

    El-Gabry, Lamyaa; Heidmann, James; Ameri, Ali

    2009-01-01

    Computational Fluid Dynamics is used in the analysis of a film cooling jet in crossflow. Predictions of film effectiveness are compared with experimental results for a circular jet at blowing ratios ranging from 0.5 to 2.0. Film effectiveness is a surface quantity which alone is insufficient in understanding the source and finding a remedy for shortcomings of the numerical model. Therefore, in addition, comparisons are made to flow field measurements of temperature along the jet centerline. These comparisons show that the CFD model is accurately predicting the extent and trajectory of the film cooling jet; however, there is a lack of agreement in the near-wall region downstream of the film hole. The effects of main stream turbulence conditions, boundary layer thickness, turbulence modeling, and numerical artificial dissipation are evaluated and found to have an insufficient impact in the wake region of separated films (i.e. cannot account for the discrepancy between measured and predicted centerline fluid temperatures). Analyses of low and moderate blowing ratio cases are carried out and results are in good agreement with data.

  8. Coupling dynamic blow down and pool evaporation model for LNG.

    PubMed

    Woodward, John L

    2007-02-20

    Treating the dynamic effects of accidental discharges of liquefied natural gas (LNG) is important for realistic predictions of pool radius. Two phenomena have important influence on pool spread dynamics, time-varying discharge (blow down) and pool ignition. Time-varying discharge occurs because a punctured LNG tanker or storage tank drains with a decreasing liquid head and decreasing head-space pressure. Pool ignition increases the evaporation rate of a pool and consequently decreases the ultimate pool area. This paper describes an approach to treat these phenomena in a dynamic pool evaporation model. The pool evaporation model developed here has two separate regimes. Early in the spill, momentum forces dominate and the pool spreads independently of pool evaporation rate and the corresponding heat transfer rate. After the average pool depth drops below a minimum value, momentum forces are largely dissipated and the thin edges of the pool completely evaporate, so pool area is established by the heat transfer rate. The maximum extent of a burning pool is predicted to be significantly less than that of an unignited pool because the duration of the first regime is reduced by higher heat transfer rates. The maximum extent of an LNG pool is predicted to be larger upon accounting for blow down compared with using a constant average discharge rate. However, the maximum pool extent occurs only momentarily before retreating.

  9. Effect of suction and blowing on boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Saric, W. S.; Reed, H. L.

    1983-01-01

    The effects of wall blowing and suction on boundary-layer stability and transition are studied on a flat plate. Titanium panels, in which 0.063 mm diameter holes were drilled on 0.635 mm centers, are inserted on the plate. Suction level and distribution are variable. Disturbances are introduced by means of a vibrating ribbon and measurements of both mean-flow and disturbance-flow velocities are made with a hot wire. Disturbance amplitudes are measured as a function of Reynolds number, frequency, and suction characteristics and compared with the previous Dynapore results of Reynolds and Saric. Transition measurements under natural and forced conditions are also made. The stabilizing effects of suction are documented. It is also shown that very high local flow rates through the suction holes (which approach a hole Reynolds number of 300) do not destabilize the flow. On the other hand, weak blowing lowers the transition Reynolds number but is found not to cause serious problems.

  10. Adaptive Suction and Blowing for Twin-Tail Buffet Control

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Yang, Zhi

    1999-01-01

    Adaptive active flow control for twin-tail buffet alleviation is investigated. The concept behind this technique is to place control ports on the tail outer and inner surfaces with flow suction or blowing applied through these ports in order to minimize the pressure difference across the tail. The suction or blowing volume flow rate from each port is proportional to the pressure difference across the tail at this location. A parametric study of the effects of the number and location of these ports on the buffet response is carried out. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. This complex multidisciplinary problem is solved sequentially using three sets of equations for the fluid flow, aeroelastic response and grid deformation, using a dynamic multi-block grid structure. The computational model is pitched at 30 deg angle of attack. The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. The model is investigated for the inboard position of the twin tails, which corresponds to a separation distance between the twin tails of 33% of the wing span. Comparison of the time history and power spectral density responses of the tails for various distributions of the control ports are presented and discussed.

  11. Gas Blowing: Mass Transfer in Gas and Melt

    NASA Astrophysics Data System (ADS)

    Sortland, Øyvind Sunde; Tangstad, Merete

    2014-09-01

    Metallurgical routes for solar grade silicon production are being developed as alternatives to chemical processes for their potential to achieve cost reductions, increased production volume, and reduced environmental and safety concerns. An important challenge in the development of metallurgical routes relates to the higher impurity concentrations in the silicon product, particularly for boron and other elements that are not efficiently segregated in solidification techniques. The reactive gas refining process is studied for its potential to remove boron below the solar grade silicon target concentration in a single step by blowing steam and hydrogen gas jets onto the melt surface. Boron in a silicon melt is extracted to HBO gas in parallel to active oxidation of silicon. The literature is not unified regarding the rate determining step in this process. Relevant theories and equations for gas blowing in induction furnaces are combined and used to explain mass transfer in experiments. Mass transfer in the melt and gas is investigated by comparing resistance and induction heating of the melt, and varying gas flow rate, crucible diameter, diameter of the gas lance, and the position of the gas lance above the melt surface. The rate of boron removal is found to increase with increasing gas flow rate and crucible diameter. A relatively high fraction of the reactive gas is utilized in the process, and supply of steam in the bulk gas is the only identified rate determining step.

  12. Droplet-born air blowing: novel dissolving microneedle fabrication.

    PubMed

    Kim, Jung Dong; Kim, Miroo; Yang, Huisuk; Lee, Kwang; Jung, Hyungil

    2013-09-28

    The microneedle-mediated drug delivery system has been developed to provide painless self-administration of drugs in a patient-friendly manner. Current dissolving microneedle fabrication methods, however, require harsh conditions for biological drugs and also have problems standardizing the drug dose. Here, we suggested the droplet-born air blowing (DAB) method, which provides gentle (4-25 °C) and fast (≤10min) microneedle fabrication conditions without drug loss. The amount of drug in the microneedle can be controlled by the pressure and time of droplet dispenser and the air blowing shapes this droplet to the microneedle, providing a force sufficient to penetrate skin. Also, the introduction of a base structure of two layered DAB-microneedle could provide complete drug delivery without wasting of drug. The DAB-based insulin loaded microneedle shows similar bioavailability (96.6±2.4%) and down regulation of glucose level compared with subcutaneous injection. We anticipate that DAB described herein will be suitable to design dissolving microneedles for use in biological drug delivery to patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Blowing Effects on Heat and Mass Transfer for Different Geometrical Configurations

    DTIC Science & Technology

    2003-03-01

    cylinder is addressed. BLOWING THROUGH A FLATE PLATE The blowing principles are presented in figure 1 : Mass, Heat and Momentum transfer Conduction ... Convection Hot Main Flow Convection + Radiative transfers Cold fluid (outlet) Cold fluid (exit) Convection + Radiative Transfers Porous Wall Boundary

  14. A modified blow-gun syringe for remote injection of captive wildlife.

    PubMed

    Warren, R J; Schauer, N L; Jones, J T; Scanlon, P F; Kirkpatrick, R L

    1979-10-01

    A modified syringe capable of automatic injection and suitable for use with a blow-gun is described. The syringe has been used successfully with white-tailed deer (Odocoileus virginianus) under confined conditions. Desirable characteristics for blow-gun syringes are discussed.

  15. Awareness and Ethical Orientation of Alternatively Certified Prospective Teachers to Intention for Whistle Blowing

    ERIC Educational Resources Information Center

    Toker Gokce, Asiye

    2013-01-01

    This study inquires whistle blowing intentions of alternatively certified prospective teachers, investigating their moral reasoning to blow the whistle. Specifically three hypotheses were tested: Overall ethical awareness of the alternatively certified prospective teachers is high; the participants will identify reasons related to philosophical…

  16. Motion of Particles in a Gas Stream in the Presence of Tangential and Axial Blowing

    NASA Astrophysics Data System (ADS)

    Teplitskii, Yu. S.; Pitsukha, E. A.; Prokopovich, O. V.

    2016-03-01

    Radial distributions of the velocity components of particles in a vertical vortex chamber in the presence of axial (bottom) blowing under conditions of quasi-solid rotation are considered, and the dependence of the particle rotation frequency on the Stokes number and the fraction of bottom blowing has been established.

  17. A Study of Pulsed Blowing Effect on Flow Separation over Flap

    NASA Astrophysics Data System (ADS)

    Wang, Yankui; Zhou, Ping; Li, Qian

    2015-11-01

    With the development of the modern aircraft, such as tailless flying configuration, traditional flaps are also the main control surfaces for flight controlling. However, the efficiency of the flap is not only descent quickly due to flow separation over itself under higher deflection angle of flap, but also is evidently influenced by the flow coming down from the upstream wing. A novel flow control technique to improve the flow separation over the flap by pulsed blowing is investigated in this paper by wind tunnel test under Reynolds number of 0.6* 10E6 2.4* 10E6. To begin with, the control performance for flow separation over the flap is very sensitive to the blowing position and direction and the flow separation can be recovered by the pulsed blowing evidently. Secondly, the pulsed blowing efficiency is 30% higher than that of continuous blowing with the same consumption. In addition, the pulsed blowing efficiency increases quickly with the increasing of pulsed blowing frequency and keep constant gradually when the pulsed blowing Stroul number is bigger than 0.6. National Natural Science Foundation of China (11272035).

  18. Awareness and Ethical Orientation of Alternatively Certified Prospective Teachers to Intention for Whistle Blowing

    ERIC Educational Resources Information Center

    Toker Gokce, Asiye

    2013-01-01

    This study inquires whistle blowing intentions of alternatively certified prospective teachers, investigating their moral reasoning to blow the whistle. Specifically three hypotheses were tested: Overall ethical awareness of the alternatively certified prospective teachers is high; the participants will identify reasons related to philosophical…

  19. Ratio of nose blow results to intakes during the decommissioning of a facility at Dounreay.

    PubMed

    Spencer, David; Bull, Richard K; White, Simon

    2007-01-01

    During the decommissioning of a large glove box facility at Dounreay, in addition to engineering and administration controls, workers wore pressurised suits to minimise their intake of radionuclides. The workers provided nose blows after each suited operation to provide an indication of the effectiveness of protective measures. The nose blows were also used as indicators of radiological significant intakes. This paper examines the distribution of ratios of nose blow to assessed intake. A geometric mean and variance of the ratio of nose blows to intakes have been derived. The nose blows were provided over a period of 2 y and the alpha-emitting nuclides present are 239Pu, 241Am and 238Pu. Twenty-two nose blow results each with follow-up urine and faecal results are included in the study. The effectiveness of nose blows as an indicator of radiological conditions and as a trigger for the investigation of significant doses is considered. The ratio between assessed intake and nose blow result was shown to be very large.

  20. Solution blow-up for a class of parabolic equations with double nonlinearity

    SciTech Connect

    Korpusov, Maxim O

    2013-03-31

    We consider a class of parabolic-type equations with double nonlinearity and derive sufficient conditions for finite time blow-up of its solutions in a bounded domain under the homogeneous Dirichlet condition. To prove the solution blow-up we use a modification of Levine's method. Bibliography: 13 titles.

  1. Computational Investigation of Tangential Slot Blowing on a Generic Chined Forebody

    NASA Technical Reports Server (NTRS)

    Agosta-Greenman, Roxana M.; Gee, Ken; Cummings, Russell M.; Schiff, Lewis B.

    1995-01-01

    The effect of tangential slot blowing on the flowfield about a generic chined forebody at high angles of attack is investigated numerically using solutions of the thin-layer, Reynolds-averaged, Navier-Stokes equations. The effects of jet mass now ratios, angle of attack, and blowing slot location in the axial and circumferential directions are studied. The computed results compare well with available wind-tunnel experimental data. Computational results show that for a given mass now rate, the yawing moments generated by slot blowing increase as the body angle of attack increases. It is observed that greater changes in the yawing moments are produced by a slot located closest to the lip of the nose. Also, computational solutions show that inboard blowing across the top surface is more effective at generating yawing moments than blowing outboard from the bottom surface.

  2. Flow visualization studies of blowing from the tip of a swept wing

    NASA Technical Reports Server (NTRS)

    Smith, Jeannette W.; Mineck, Raymond E.; Neuhart, Dan H.

    1990-01-01

    Flow visualization studies of blowing from the tip of a swept wing were conducted in the Langley 16- by 24-inch water tunnel. Four wing tips, each with two independent blowing slots, were tested. The two slots were located one behind the other in the chordwise direction. The wing tips were designed to vary systematically the jet length, the jet in-plane exhaust direction (sweep), and the jet out-of-plane exhaust direction (anhedral). Each blowing slot was tested separately at two angles of attack and at four ratios of jet to free stream velocity ratios. Limited tests were conducted with blowing from both slots simultaneously. Blowing from the tip inhibited inboard spanwise flow on the upper wing surface near the tip. The jet path moved farther away from the tip with increasing jet to free stream velocity ratio and moved closer to the tip with increasing angle of attack.

  3. Tangential blowing for control of strong normal shock - Boundary layer interactions on inlet ramps

    NASA Technical Reports Server (NTRS)

    Schwendemann, M. F.; Sanders, B. W.

    1982-01-01

    The use of tangential blowing from a row of holes in an aft facing step is found to provide good control of the ramp boundary layer, normal shock interaction on a fixed geometry inlet over a wide range of inlet mass flow ratios. Ramp Mach numbers of 1.36 and 1.96 are investigated. The blowing geometry is found to have a significant effect on system performance at the highest Mach number. The use of high-temperature air in the blowing system, however, has only a slight effect on performance. The required blowing rates are significantly high for the most severe test conditions. In addition, the required blowing coefficient is found to be proportional to the normal shock pressure rise.

  4. Physical Simulation of Critical Blowing Rate of Slag Entrapment of 80 Tons Ladle

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Bao, Yanping; Li, Yihong; Zhao, Aichun; Ji, Yafeng; Hu, Xiao; Huang, Qingxue; Liu, Jiansheng

    The slag entrapment under different conditions of 80t blowing argon ladle furnace was investigated by physical simulation. The water was used to simulate liquid steel and liquid paraffin was for slag. The processing of slag entrapment under different blowing structures was analyzed and the critical velocity and critical droplets diameter of describing it was obtained. Based on the experiments, the relationship between the interface flow velocity and the critical blowing rate (CBR) was deduced. In the real process, it is suggested that the bottom blowing rate is from 40 L/min to 180L/min when the interface tension is 0.12 1.2 N/m during the soft argon blowing.

  5. Analysis of Tangential Slot Blowing on F/A-18 Isolated Forebody

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Rizk, Yehia M.; Schiff, Lewis B.

    1995-01-01

    The generation of significant side forces and yawing moments on an F/A-18 fuselage through tangential slot blowing is analyzed using computational fluid dynamics. The effects of freestream Mach number, jet exit conditions, jet length, and jet location are studied. The effects of over- and underblowing on force and moment production are analyzed. Non-time-accurate solutions are obtained to determine the steady-state side forces, yawing moments, and surface pressure distributions generated by tangential slot blowing. Time-accurate solutions are obtained to study the force onset time lag of tangential slot blowing. Comparison with available experimental data from full-scale wind-tunnel and subscale wind-tunnel tests are made. This computational analysis complements the experimental results and provides a detailed understanding of the effects of tangential slot blowing on the flowfield about the isolated F/A-18 forebody. Additionally, it extends the slot-blowing database to transonic maneuvering Mach numbers.

  6. Some blow-up problems for a semilinear parabolic equation with a potential

    NASA Astrophysics Data System (ADS)

    Cheng, Ting; Zheng, Gao-Feng

    The blow-up rate estimate for the solution to a semilinear parabolic equation u=Δu+V(x)|u in Ω×(0,T) with 0-Dirichlet boundary condition is obtained. As an application, it is shown that the asymptotic behavior of blow-up time and blow-up set of the problem with nonnegative initial data u(x,0)=Mφ(x) as M goes to infinity, which have been found in [C. Cortazar, M. Elgueta, J.D. Rossi, The blow-up problem for a semilinear parabolic equation with a potential, preprint, arXiv: math.AP/0607055, July 2006], is improved under some reasonable and weaker conditions compared with [C. Cortazar, M. Elgueta, J.D. Rossi, The blow-up problem for a semilinear parabolic equation with a potential, preprint, arXiv: math.AP/0607055, July 2006].

  7. Testosterone and progesterone concentrations in blow samples are biologically relevant in belugas (Delphinapterus leucas).

    PubMed

    Richard, Justin T; Robeck, Todd R; Osborn, Steven D; Naples, Lisa; McDermott, Alexa; LaForge, Robert; Romano, Tracy A; Sartini, Becky L

    2016-12-16

    Steroid hormone analysis in blow (respiratory vapor) may provide a minimally invasive way to assess the reproductive status of wild cetaceans. Biological validation of the method is needed to allow for the interpretation of hormone measurements in blow samples. Utilizing samples collected from trained belugas (Delphinapterus leucas, n=20), enzyme immunoassays for testosterone and progesterone were validated for use with beluga blow samples. Testosterone concentrations in 40 matched blood and blow samples collected from 4 male belugas demonstrated a positive correlation (R(2)=0.52, p<0.0001). Progesterone concentrations in 64 matching blood and blow samples from 11 females were also positively correlated (R(2)=0.60, p<0.0001). Testosterone concentrations (mean±SD) in blow samples collected from adult males (119.3±14.2pg/ml) were higher (p<0.01) than that of a juvenile male (<8years) (59.4±6.5pg/ml) or female belugas (54.1±25.7pg/ml). Among adult males, testosterone concentrations in blow demonstrated a seasonal pattern of secretion, with peak secretion occurring during the breeding season (February-April, 136.95±33.8pg/ml). Progesterone concentrations in blow varied by reproductive status; pregnant females (410.6±87.8pg/ml) and females in the luteal phase of the estrous cycle (339.5±51.0pg/ml) had higher (p<0.0001) blow progesterone concentrations than non-pregnant females without a corpus luteum (242.5±27.3pg/ml). Results indicate that blow sample analysis can be used to detect variation in reproductive states associated with large differences in circulating testosterone or progesterone in belugas.

  8. Transport, Chemistry, and Blowing Snow: Antarctic Aerosol sources and processes

    NASA Astrophysics Data System (ADS)

    DeCarlo, P. F.; Giordano, M.; Kalnajs, L.

    2016-12-01

    Due to access to the southernmost continent and the harsh environment, Antarctic aerosol remains one of the least studied aerosol populations. Observations are necessary to understand the sources and evolution of the Antarctic aerosol population. The 2ODIAC (2-Season Ozone Depletion and Interaction with Aerosols Campaign) field campaign saw the first ever deployment of a real-time, high resolution aerosol mass spectrometer (AMS) to the continent. Using the AMS with a suite of other meteorological, aerosol, and gas phase instrumentation provided novel measurements on the size and composition of the coastal Antarctic aerosol population as a function of season. This presentation will discuss the role of long range transport, atmospheric chemistry, and blowing snow in shaping the aerosol composition and population in this region from two field measurement seasons.

  9. Blow-down analysis of helium from a cryogenic dewar

    NASA Technical Reports Server (NTRS)

    Khan, H. J.; Zhang, Q. Q.; Rhee, M.; Figueroa, O.

    1992-01-01

    NASA is currently developing Space Shuttle-based refilling of helium using superfluid helium on-orbit transfer (SHOOT). All the critical components of SHOOT need to be developed through ground-based tests. The helium dewar is one of these components. The Dewar consists of a vacuum vessel enclosing a superinsulated tank. The space between the vacuum vessel and the liquid tank is considered a common vacuum space. In the event that the vacuum is lost, the heat transfers to the dewar and the pressure inside the dewar increases rapidly, resulting in rupture of the dewar due to excessive pressure. Therefore, an emergency vent line is required for release of helium to prevent the dewar from rupturing. The study describes a numerical model for blow-down analysis in an emergency. This qualifies the design of the emergency vent line to be adequate for the assumed heat loads to the helium dewar.

  10. 22. Blow Down Valve for Unit 1, view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Blow Down Valve for Unit 1, view to the southwest. This valve allows the water in the draft chest to be lowered (i.e., 'blown down') so that the unit can be motored (i.e., run like an electric motor rather than an electric power generator). The valve is operated by pressure from the instrument air system (part of which is visible in photograph MT-105-A-17 above), but the unit draws on the station air system (see photograph MT-105-A-24 below) to lower the water in the draft chest. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  11. Soot blower using fuel gas as blowing medium

    DOEpatents

    Tanca, Michael C.

    1982-01-01

    A soot blower assembly (10) for use in combination with a coal gasifier (14). The soot blower assembly is adapted for use in the hot combustible product gas generated in the gasifier as the blowing medium. The soot blower lance (20) and the drive means (30) by which it is moved into and out of the gasifier is housed in a gas tight enclosure (40) which completely surrounds the combination. The interior of the enclosure (40) is pressurized by an inert gas to a pressure level higher than that present in the gasifier so that any combustible product gas leaking from the soot blower lance (20) is forced into the gasifier rather than accumulating within the enclosure.

  12. Blow-down analysis of helium from a cryogenic dewar

    NASA Astrophysics Data System (ADS)

    Khan, H. J.; Zhang, Q. Q.; Rhee, M.; Figueroa, O.

    NASA is currently developing Space Shuttle-based refilling of helium using superfluid helium on-orbit transfer (SHOOT). All the critical components of SHOOT need to be developed through ground-based tests. The helium dewar is one of these components. The Dewar consists of a vacuum vessel enclosing a superinsulated tank. The space between the vacuum vessel and the liquid tank is considered a common vacuum space. In the event that the vacuum is lost, the heat transfers to the dewar and the pressure inside the dewar increases rapidly, resulting in rupture of the dewar due to excessive pressure. Therefore, an emergency vent line is required for release of helium to prevent the dewar from rupturing. The study describes a numerical model for blow-down analysis in an emergency. This qualifies the design of the emergency vent line to be adequate for the assumed heat loads to the helium dewar.

  13. Skin Friction Reduction by Micro-Blowing Technique

    NASA Technical Reports Server (NTRS)

    Hwang, Danny P. (Inventor)

    1998-01-01

    A system and method for reducing skin friction of an object in relative motion to a fluid. A skin forming a boundary between the object and the fluid, the skin having holes through which micro-blowing of air is blown and a transmitting mechanism for transmitting air through the skin. The skin has an inner layer and an outer layer. the inner layer being a low permeable porous sheet, the outer layer being a plate having high aspect ratio high porosity. and small holes. The system may further include a suction apparatus for suctioning air from the outer layer. The method includes the steps of transmitting air through the inner layer and passing the air transmitted through the inner layer to the outer layer. The method may further include the step of bleeding air off the outer layer using the suction apparatus.

  14. Reduction of Flap Side Edge Noise - the Blowing Flap

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, THomas F.

    2005-01-01

    A technique to reduce the noise radiating from a wing-flap side edge is being developed. As an airplane wing with an extended flap is exposed to a subsonic airflow, air is blown outward through thin rectangular chord-wise slots at various locations along the side edges and side surface of the flap to weaken and push away the vortices that originate in that region of the flap and are responsible for important noise emissions. Air is blown through the slots at up to twice the local flow velocity. The blowing is done using one or multiple slots, where a slot is located along the top, bottom or side surface of the flap along the side edge, or also along the intersection of the bottom (or top) and side surfaces.

  15. Blow-down analysis of helium from a cryogenic dewar

    NASA Technical Reports Server (NTRS)

    Khan, H. J.; Zhang, Q. Q.; Rhee, M.; Figueroa, O.

    1992-01-01

    NASA is currently developing Space Shuttle-based refilling of helium using superfluid helium on-orbit transfer (SHOOT). All the critical components of SHOOT need to be developed through ground-based tests. The helium dewar is one of these components. The Dewar consists of a vacuum vessel enclosing a superinsulated tank. The space between the vacuum vessel and the liquid tank is considered a common vacuum space. In the event that the vacuum is lost, the heat transfers to the dewar and the pressure inside the dewar increases rapidly, resulting in rupture of the dewar due to excessive pressure. Therefore, an emergency vent line is required for release of helium to prevent the dewar from rupturing. The study describes a numerical model for blow-down analysis in an emergency. This qualifies the design of the emergency vent line to be adequate for the assumed heat loads to the helium dewar.

  16. Wagon loads of sand blows in White County, Illinois

    USGS Publications Warehouse

    Hough, S.E.; Bilham, R.; Mueller, K.; Stephenson, W.; Williams, R.; Odum, J.

    2005-01-01

    Several anecdotal accounts provide compelling evidence that liquefaction occurred at several sites in Illinois during the 1811-1812 New Madrid sequence, as much as 250 km north of the New Madrid seismic zone (NMSZ). At one Wabash Valley location, sand blows are still evident near Big Prairie, Illinois, a location described in a particularly detailed and precise historic account. This account includes descriptions of substantial liquefaction (sand blows) as well as a two-mile-long east-west-trending "crack" along which two feet of south-side-down displacement occurred. An offset can no longer be seen at this location, which has been extensively farmed and plowed for decades. Field reconnaissance verifies many of the details provided in the account, however. We conducted a seismic-reflection experiment at this location and observed a modest offset in the Paleozoic strata at this location. The offset is opposite to that described in the historic account, consistent with the hypothesis that large midcontinent earthquakes occur on faults reactivated in a Holocene stress regime different from the one in which they were formed. Only two explanations can account for these observations: Either large NMSZ events triggered substantial liquefaction at distances greater than hitherto realized, or at least one large "New Madrid" event occurred significantly north of the NMSZ. We explore these possibilities and conclude that, while neither one can be ruled out, several disparate lines of evidence suggest that the 23 January 1812 "New Madrid mainshock" occurred in White County, Illinois, near the location of the mb 5.5 1968 southern Illinois earthquake and recent microearthquake activity.

  17. Blowing Snow Detection and Speed Estimation in Antarctica Using ZY-3 Multi-view Satellite Images

    NASA Astrophysics Data System (ADS)

    Liu, S.; Tong, X.; Wu, C.; Li, R.; Xie, H.

    2016-12-01

    The phenomenon of uplift and horizontal transport of snow by wind, referred to as blowing snow, occurs frequently in Antarctica in winter (Palm et al., 2011). In addition to its adverse effects on transportation and life, blowing snow is important in many aspects including surface mass balance (Dery and Yau, 2002) and water budget in high-latitude regions. It also brings in uncertainty for mass balance estimation (Scarchilli et al., 2010). In our study, a stereo photogrammetric technique is proposed for the detection of the blowing snow and estimation of its speed using multi-view stereo images acquired by the ZY-3 satellite, which is the first civilian high-resolution stereo mapping satellite of China. ZY-3 is equipped with a three-line-scanning panchromatic camera system, recording images at a resolution of 2.1m at nadir and 3.5m at forward & backward directions. The three-line-scanning camera acquires three-fold repeated images with a time lag of 30 seconds between the different viewing angles. Thus it has the capability of detecting fast moving objects on ground, such as blowing snow. The detection and speed estimation of the blowing snow is implemented through a series of processing techniques including ortho-rectification of multi-view images, detection and height estimation of blowing snow billows, interactive extraction of blowing snow features, and speed estimation. An experiment using a strip of ZY-3 multi-view images covering an area of about 800 km×50 km in East Antarctica for blowing snow detection and speed estimation has validated the proposed method. The results show that the height of the detected blowing snow billows reached 130 m and the average horizontal speed was 13m/s, which are consistent with the reported characteristics of blowing snow events. References Palm, S. P., Y. Yang, J. D. Spinhirne, and A. Marshak (2011), Satellite remote sensing of blowing snow properties over Antarctica, J. Geophys. Res., 116, D16123. Déry, S. J., and M. K

  18. The development of three-dimensional adjoint method for flow control with blowing in convergent-divergent nozzle flows

    NASA Astrophysics Data System (ADS)

    Sikarwar, Nidhi

    The noise produced by the low bypass ratio turbofan engines used to power fighter aircraft is a problem for communities near military bases and for personnel working in close proximity to the aircraft. For example, carrier deck personnel are subject to noise exposure that can result in Noise-Induced Hearing Loss which in-turn results in over a billion dollars of disability payments by the Veterans Administration. Several methods have been proposed to reduce the jet noise at the source. These methods include microjet injection of air or water downstream of the jet exit, chevrons, and corrugated nozzle inserts. The last method involves the insertion of corrugated seals into the diverging section of a military-style convergent-divergent jet nozzle (to replace the existing seals). This has been shown to reduce both the broadband shock-associated noise as well as the mixing noise in the peak noise radiation direction. However, the original inserts were designed to be effective for a take-off condition where the jet is over-expanded. The nozzle performance would be expected to degrade at other conditions, such as in cruise at altitude. A new method has been proposed to achieve the same effects as corrugated seals, but using fluidic inserts. This involves injection of air, at relatively low pressures and total mass flow rates, into the diverging section of the nozzle. These fluidic inserts" deflect the flow in the same way as the mechanical inserts. The fluidic inserts represent an active control method, since the injectors can be modified or turned off depending on the jet operating conditions. Noise reductions in the peak noise direction of 5 to 6 dB have been achieved and broadband shock-associated noise is effectively suppressed. There are multiple parameters to be considered in the design of the fluidic inserts. This includes the number and location of the injectors and the pressures and mass flow rates to be used. These could be optimized on an ad hoc basis with

  19. Effect of blowing agents on the oxidation resistance of carbon foams prepared from molten sucrose

    NASA Astrophysics Data System (ADS)

    Narasimman, R.; Prabhakaran, K.

    2013-06-01

    We have prepared low density carbon foams from molten sucrose using aluminium nitrate and boric acid blowing agents. A comparative study of the oxidation resistance of the carbon foams prepared using the two blowing agents are reported in the present paper. Oxidation of the carbon foams was evaluated under isothermal and non-isothermal conditions in air atmosphere using thermogravimetric analysis (TGA). We have observed that the alumina produced from the aluminium nitrate blowing agent acts as a catalyst whereas the boron produced from boric acid inhibits the oxidation of the carbon foams. The oxidation resistance of carbon foams increases with boron concentration. The oxidation onset temperature for the carbon foams prepared using boric acid blowing agent was nearly 60°C higher than that prepared using aluminium nitrate blowing agent. Carbon foams prepared using aluminium nitrate blowing agent undergoes complete oxidation at temperature less than 700°C. Whereas that prepared using boric acid blowing agent leave ˜ 50 wt.% residue at 900°C. Further evidence is provided by the kinetic analysis of the TGA using Coats-Redfern (CR) equation.

  20. Roll-yaw control at high angle of attack by forebody tangential blowing

    NASA Technical Reports Server (NTRS)

    Pedreiro, N.; Rock, S. M.; Celik, Z. Z.; Roberts, L.

    1995-01-01

    The feasibility of using forebody tangential blowing to control the roll-yaw motion of a wind tunnel model is experimentally demonstrated. An unsteady model of the aerodynamics is developed based on the fundamental physics of the flow. Data from dynamic experiments is used to validate the aerodynamic model. A unique apparatus is designed and built that allows the wind tunnel model two degrees of freedom, roll and yaw. Dynamic experiments conducted at 45 degrees angle of attack reveal the system to be unstable. The natural motion is divergent. The aerodynamic model is incorporated into the equations of motion of the system and used for the design of closed loop control laws that make the system stable. These laws are proven through dynamic experiments in the wind tunnel using blowing as the only actuator. It is shown that asymmetric blowing is a highly non-linear effector that can be linearized by superimposing symmetric blowing. The effects of forebody tangential blowing and roll and yaw angles on the flow structure are determined through flow visualization experiments. The transient response of roll and yaw moments to a step input blowing are determined. Differences on the roll and yaw moment dependence on blowing are explained based on the physics of the phenomena.

  1. Roll-Yaw control at high angle of attack by forebody tangential blowing

    NASA Technical Reports Server (NTRS)

    Pedreiro, N.; Rock, S. M.; Celik, Z. Z.; Roberts, L.

    1995-01-01

    The feasibility of using forebody tangential blowing to control the roll-yaw motion of a wind tunnel model is experimentally demonstrated. An unsteady model of the aerodynamics is developed based on the fundamental physics of the flow. Data from dynamic experiments is used to validate the aerodynamic model. A unique apparatus is designed and built that allows the wind tunnel model two degrees of freedom, roll and yaw. Dynamic experiments conducted at 45 degrees angle of attack reveal the system to be unstable. The natural motion is divergent. The aerodynamic model is incorporated into the equations of motion of the system and used for the design of closed loop control laws that make the system stable. These laws are proven through dynamic experiments in the wind tunnel using blowing as the only actuator. It is shown that asymmetric blowing is a highly non-linear effector that can be linearized by superimposing symmetric blowing. The effects of forebody tangential blowing and roll and yaw angles on the flow structure are determined through flow visualization experiments. The transient response of roll and yaw moments to a step input blowing are determined. Differences on the roll and yaw moment dependence on blowing are explained based on the physics of the phenomena.

  2. Turbulent boundary layer control at moderate Reynolds numbers by means of uniform blowing/suction

    NASA Astrophysics Data System (ADS)

    Kametani, Yukinori; Fukagata, Koji; Orlu, Ramis; Schlatter, Philipp

    2015-11-01

    The effect of uniform blowing or suction from the wall on a spatially developing turbulent boundary layer has been studied in order to use them ultimately for flow control on the surface of high-speed vehicles. In the present study, a series of large eddy simulations is performed to investigate the effects of uniform blowing/suction on the skin friction drag as well as the scale of turbulent structures at moderate Reynolds numbers up to Reθ = 2500, based on free-stream velocity, U∞, and momentum thickness, θ. The amplitude of blowing or suction is fixed to 0.1% of U∞with different streamwise ranges of the control region. While the Reynolds shear and normal stresses and their spectral energy distributions are increased by blowing and decreased by suction, in particular, in the outer region, the FIK identity reveals that drag reduction (DR) or enhancement (DE) are mainly linked to changes in the spatial development of the mean wall-normal convection term rather than the contribution from the Reynolds shear stress. Despite the weak amplitude of the control, over 10% of DR and DE are achieved by blowing and suction, respectively. In case of blowing, the mean DR rate increases as the blowing region extends because the local reduction rate grows in the streamwise direction. Grant-in-Aid for Scientific Research (C) (No. 25420129), Grant-in-Aid for JSPS Fellow (No. 24-3450), the Knut an Alice Wallenberg Foundation.

  3. Suppression of Dynamic Stall by Steady and Pulsed Upper-Surface Blowing

    NASA Technical Reports Server (NTRS)

    Weaver, D.; McAlister, K. W.; Tso, J.

    1996-01-01

    The Boeing-Vertol VR-7 airfoil was experimentally studied with steady and pulsed upper-surface blowing for sinusoidal pitching oscillations described by alpha = alpha(sub m) + 10 deg sin(omega t). The tests were conducted in the U.S. Army Aeroflightdynamics Directorate's Water Tunnel at NASA Ames Research Center. The experiment was performed at a Reynolds number of 100,000. Pitch oscillations with alpha(sub m) = 10 deg and 15 deg and with reduced frequencies ranging from k = 0.005 to 0.15 were examined. Blowing conditions ranged from C(sub mu) = 0.03 to 0.66 and F(+) = 0 to 3. Unsteady lift, drag, and pitching-moment loads were measured, and fluorescent-dye flow visualizations were obtained. Steady, upper-surface blowing was found to be capable of trapping a separation bubble near the leading edge during a portion of the airfoil's upward rotation. When this occurred, the lift was increased significantly and stall was averted. In all cases, steady blowing reduced the hysteresis amplitudes present in the loads and produced a large thrust force. The benefits of steady blowing diminished as the reduced frequency and mean angle of oscillation increased. Pulsed blowing showed only marginal benefits for the conditions tested. The greatest gains from pulsed blowing were achieved at F(+) = 0.9.

  4. Influence of particles shape on the vertical profile of blowing snow concentration

    NASA Astrophysics Data System (ADS)

    Vionnet, Vincent; Trouvilliez, Alexandre; Naaim-Bouvet, Florence; Guyomarc'h, Gilbert

    2013-04-01

    In alpine regions, blowing snow events strongly influence the temporal and spatial evolution of the snow cover throughout the winter season. In Antarctica, blowing snow is an essential surface mass balance process and plays a non-negligible role in the annual accumulation. The vertical profile of blowing snow concentration determines the quantity of snow transported in turbulent suspension. A power law is often used to represent this vertical profile. It serves as an analytical solution representing an equilibrium between vertical turbulent diffusion and gravitational settling. In this work, we study how the exponent of the power law depends on the type of transported particles. Vertical profiles of blowing snow concentration have been collected at the experimental site of Col du Lac Blanc (French Alps) in 2011 and 2012 and near the research station of Cap Prud'homme (Antarctica) in 2010 and 2011. We used mechanical gauges (butterfly nets) and optical devices (Snow Particles Counters). Profiles collected during blowing snow events with precipitation have been corrected to account for the contribution of snowfall. Results show that profiles collected during blowing snow without snowfall differ from the corrected profiles collected during snowfall. At a given wind speed, particles transported during snowfall have a lower settling velocity than particles transported without snowfall. This difference confirms earlier observations (Takahashi, 1985) and can be explained by the change of drag coefficient between dendritic and rounded particles. This difference pertains several hours after the end of the snowfall illustrating the fragmentation of snow grains during blowing snow events.

  5. Foam injection molding of thermoplastic elastomers: Blowing agents, foaming process and characterization of structural foams

    NASA Astrophysics Data System (ADS)

    Ries, S.; Spoerrer, A.; Altstaedt, V.

    2014-05-01

    Polymer foams play an important role caused by the steadily increasing demand to light weight design. In case of soft polymers, like thermoplastic elastomers (TPE), the haptic feeling of the surface is affected by the inner foam structure. Foam injection molding of TPEs leads to so called structural foam, consisting of two compact skin layers and a cellular core. The properties of soft structural foams like soft-touch, elastic and plastic behavior are affected by the resulting foam structure, e.g. thickness of the compact skins and the foam core or density. This inner structure can considerably be influenced by different processing parameters and the chosen blowing agent. This paper is focused on the selection and characterization of suitable blowing agents for foam injection molding of a TPE-blend. The aim was a high density reduction and a decent inner structure. Therefore DSC and TGA measurements were performed on different blowing agents to find out which one is appropriate for the used TPE. Moreover a new analyzing method for the description of processing characteristics by temperature dependent expansion measurements was developed. After choosing suitable blowing agents structural foams were molded with different types of blowing agents and combinations and with the breathing mold technology in order to get lower densities. The foam structure was analyzed to show the influence of the different blowing agents and combinations. Finally compression tests were performed to estimate the influence of the used blowing agent and the density reduction on the compression modulus.

  6. Numerical study of the trailing vortex of a wing with wing-tip blowing

    NASA Technical Reports Server (NTRS)

    Lim, Hock-Bin

    1994-01-01

    Trailing vortices generated by lifting surfaces such as helicopter rotor blades, ship propellers, fixed wings, and canard control surfaces are known to be the source of noise, vibration, cavitation, degradation of performance, and other hazardous problems. Controlling these vortices is, therefore, of practical interest. The formation and behavior of the trailing vortices are studied in the present research. In addition, wing-tip blowing concepts employing axial blowing and spanwise blowing are studied to determine their effectiveness in controlling these vortices and their effects on the performance of the wing. The 3D, unsteady, thin-layer compressible Navier-Stokes equations are solved using a time-accurate, implicit, finite difference scheme that employs LU-ADI factorization. The wing-tip blowing is simulated using the actuator plane concept, thereby, not requiring resolution of the jet slot geometry. Furthermore, the solution blanking feature of the chimera scheme is used to simplify the parametric study procedure for the wing-tip blowing. Computed results are shown to compare favorably with experimental measurements. It is found that axial wing-tip blowing, although delaying the rolling-up of the trailing vortices and the near-field behavior of the flowfield, does not dissipate the circulation strength of the trailing vortex farther downstream. Spanwise wing-tip blowing has the effect of displacing the trailing vortices outboard and upward. The increased 'wing-span' due to the spanwise wing-tip blowing has the effect of lift augmentation on the wing and the strengthening of the trailing vortices. Secondary trailing vortices are created at high spanwise wing-tip blowing intensities.

  7. An experimental investigation of leading-edge vortex augmentation by blowing

    NASA Technical Reports Server (NTRS)

    Bradley, R. G.; Wray, W. O.; Smith, C. W.

    1974-01-01

    A wind tunnel test was conducted to determine the effects of over-the-wing blowing as a means of augmenting the leading-edge vortex flow of several pointed-tip, sharp-edged planforms. Arrow, delta, and diamond wings with leading-edge sweeps of 30 and 45 degrees were mounted on a body-of-revolution fuselage and tested in a low-speed wind tunnel at a Mach number of 0.2. Nozzle location data, pitch data, and flow-visualization pictures were obtained for a range of blowing rates. Results show pronounced increases in vortex lift due to the blowing.

  8. Global existence and finite time blow-up for a class of thin-film equation

    NASA Astrophysics Data System (ADS)

    Dong, Zhihua; Zhou, Jun

    2017-08-01

    This paper deals with a class of thin-film equation, which was considered in Li et al. (Nonlinear Anal Theory Methods Appl 147:96-109, 2016), where the case of lower initial energy (J(u_0)≤ d and d is a positive constant) was discussed, and the conditions on global existence or blow-up are given. We extend the results of this paper on two aspects: Firstly, we consider the upper and lower bounds of blow-up time and asymptotic behavior when J(u_0)blow-up when J(u_0)>d.

  9. On the blow-up solutions for the nonlinear fractional Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Zhu, Shihui

    2016-07-01

    This paper is dedicated to the blow-up solutions for the nonlinear fractional Schrödinger equation arising from pseudorelativistic Boson stars. First, we compute the best constant of a gG-N inequality by the profile decomposition theory and variational arguments. Then, we find the sharp threshold mass of the existence of finite-time blow-up solutions. Finally, we study the dynamical properties of finite-time blow-up solutions around the sharp threshold mass by giving a refined compactness lemma.

  10. Stable Self-Similar Blow-Up Dynamics for Slightly {L^2}-Supercritical Generalized KDV Equations

    NASA Astrophysics Data System (ADS)

    Lan, Yang

    2016-07-01

    In this paper we consider the slightly {L^2}-supercritical gKdV equations {partial_t u+(u_{xx}+u|u|^{p-1})_x=0}, with the nonlinearity {5 < p < 5+\\varepsilon} and {0 < \\varepsilon≪ 1}. We will prove the existence and stability of a blow-up dynamics with self-similar blow-up rate in the energy space {H^1} and give a specific description of the formation of the singularity near the blow-up time.

  11. Effect of Pylon Wake with and Without Pylon Blowing on Propeller Thrust

    NASA Technical Reports Server (NTRS)

    Gentry, Garl L., Jr.; Booth, Earl R., Jr.; Takallu, M. A.

    1990-01-01

    Pylon trailing edge blowing was investigated as a means of alleviating the effects of the pylon wake on a pusher arrangement of an advanced single-rotation turboprop. Measurements were made of steady-state propeller thrust and pylon wake pressures and turbulence levels with and without blowing. Results show that the pylon trailing edge blowing practically eliminated the pylon wake, significantly reduced the pylon wake turbulence, and had a relatively small effect on the steady-state propeller thrust. The data are presented with a minimum of analysis.

  12. Flap noise measurements for STOL configurations using external upper surface blowing

    NASA Technical Reports Server (NTRS)

    Dorsch, R. G.; Reshotko, M.; Olsen, W. A.

    1972-01-01

    Screening tests of upper surface blowing on externally blown flaps configurations were conducted. Noise and turning effectiveness data were obtained with small-scale, engine-over-the-wing models. One large model was tested to determine scale effects. Nozzle types included circular, slot, D-shaped, and multilobed. Tests were made with and without flow attachment devices. For STOL applications the particular multilobed mixer and the D-shaped nozzles tested were found to offer little or no noise advantage over the round convergent nozzle. High aspect ratio slot nozzles provided the quietest configurations. In general, upper surface blowing was quieter than lower surface blowing for equivalent EBF models.

  13. Oxygen and carbon discovered in exoplanet atmosphere `blow-off'

    NASA Astrophysics Data System (ADS)

    2004-02-01

    Oxygen and carbon discovered in exoplanet atmosphere ‘blow-off’ hi-res Size hi-res: 1096 kb Credits: ESA/Alfred Vidal-Madjar (Institut d’Astrophysique de Paris, CNRS, France) Oxygen and carbon discovered in exoplanet atmosphere ‘blow-off’ This artist’s impression shows an extended ellipsoidal envelope - the shape of a rugby-ball - of oxygen and carbon discovered around the well-known extrasolar planet HD 209458b. An international team of astronomers led by Alfred Vidal-Madjar (Institut d’Astrophysique de Paris, CNRS, France) observed the first signs of oxygen and carbon in the atmosphere of a planet beyond our Solar System for the first time using the NASA/ESA Hubble Space Telescope. The atoms of carbon and oxygen are swept up from the lower atmosphere with the flow of escaping atmospheric atomic hydrogen - like dust in a supersonic whirlwind - in a process called atmospheric ‘blow off’. Oxygen and carbon have been detected in the atmosphere of a planet beyond our Solar System for the first time. Scientists using the NASA/ESA Hubble Space Telescope have observed the famous extrasolar planet HD 209458b passing in front of its parent star, and found oxygen and carbon surrounding the planet in an extended ellipsoidal envelope - the shape of a rugby-ball. These atoms are swept up from the lower atmosphere with the flow of the escaping atmospheric atomic hydrogen, like dust in a supersonic whirlwind. The team led by Alfred Vidal-Madjar (Institut d’Astrophysique de Paris, CNRS, France) reports this discovery in a forthcoming issue of Astrophysical Journal Letters. The planet, called HD 209458b, may sound familiar. It is already an extrasolar planet with an astounding list of firsts: the first extrasolar planet discovered transiting its sun, the first with an atmosphere, the first observed to have an evaporating hydrogen atmosphere (in 2003 by the same team of scientists) and now the first to have an atmosphere containing oxygen and carbon. Furthermore

  14. Polymer crystalline texture controlled through film blowing and block copolymerization

    NASA Astrophysics Data System (ADS)

    Lee, Li-Bong Wei

    Polymer properties can be manipulated through processing or chemical modification. Both methods are explored here, by (a) elucidating the origin of directional tear behavior in polyethylene (PE) films processed under different conditions, and (b) synthesizing new block copolymers, whose architectures permit precise control over crystal thickness and melting temperature. Directional tear in films of PE and its copolymers was traced to the orientation imparted during film blowing, quantified through x-ray scattering. The blow-up ratio (BUR) was the most significant process parameter controlling crystal orientation. The Keller-Machin I structure was observed in low-density polyethylene (LDPE) films, which tore preferentially in the transverse direction (TD). Conversely, the Keller-Machin II structure was observed in ethylene-methacrylic acid copolymer films at low BUR, which also tore TD, but the orientation rotated 90° at high BUR, leading to preferred tear in the machine direction (MD). High-density and linear low-density PE films also exhibited the Keller-Machin I structure (as in LDPE) but tore either along MD (HDPE) or isotropically (LLDPE). These differences in tear behavior between chemically similar but architecturally distinct polymers, differing greatly in the type and level of branching, stem from intercrystallite tie molecules. In the second area, crystalline-amorphous diblock copolymers were synthesized through ring-opening metathesis polymerization and subsequent hydrogenation, where the amorphous block was hydrogenated poly(ethylidene norbornene), hPEN, and the crystalline block was either hydrogenated polycyclopentene, hPCP (identical to HDPE) or hydrogenated polynorbornene, hPN. Acyclic metathesis discovered during the PCP synthesis focused the study on block copolymers containing hPN, which is atactic yet highly crystalline. The hPN crystal structure was solved as monoclinic-beta (space group C2/c), with a = 6.936 A, b = 9.596 A, c = 12.420 A, and

  15. Blow-up in p-Laplacian heat equations with nonlinear boundary conditions

    NASA Astrophysics Data System (ADS)

    Ding, Juntang; Shen, Xuhui

    2016-10-01

    In this paper, we investigate the blow-up of solutions to the following p-Laplacian heat equations with nonlinear boundary conditions: {l@{quad}l}(h(u))_t =nabla\\cdot(|nabla u|pnabla u)+k(t)f(u) &{in } Ω×(0,t^{*}), |nabla u|ppartial u/partial n=g(u) &on partialΩ×(0,t^{*}), u(x,0)=u0(x) ≥ 0 & {in } overline{Ω},. where {p ≥ 0} and {Ω} is a bounded convex domain in {RN}, {N ≥ 2} with smooth boundary {partialΩ}. By constructing suitable auxiliary functions and using a first-order differential inequality technique, we establish the conditions on the nonlinearities and data to ensure that the solution u( x, t) blows up at some finite time. Moreover, the upper and lower bounds for the blow-up time, when blow-up does occur, are obtained.

  16. Numerical analysis of the rescaling method for parabolic problems with blow-up in finite time

    NASA Astrophysics Data System (ADS)

    Nguyen, V. T.

    2017-01-01

    In this work, we study the numerical solution for parabolic equations whose solutions have a common property of blowing up in finite time and the equations are invariant under the following scaling transformation

  17. Asymptotic blow-up analysis for singular Liouville type equations with applications

    NASA Astrophysics Data System (ADS)

    Bartolucci, D.; Tarantello, G.

    2017-04-01

    We generalize the pointwise estimates obtained in [2,19] and [34] concerning blow-up solutions of the Liouville type equation: Next, we refine our blow up analysis to cover a class of planar Liouville type problems (see (1.27)-(1.28) below) arising from the study of Cosmic Strings (cfr. [28,35]). In this context, we are able to distinguish between a single blow-up radial profile and the case of multiple blow-up profiles, typical of non radial solutions. As a consequence we obtain a (radial) symmetry result which is interesting in itself but also contributes towards the "sharp" solvability issue for the planar problem (1.27)-(1.28).

  18. Similarity transformation for equilibrium boundary layers, including effects of blowing and suction

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Hussain, Fazle

    2017-03-01

    We present a similarity transformation for the mean velocity profiles in sink flow turbulent boundary layers, including effects of blowing and suction. It is based on symmetry analysis which transforms the governing partial differential equations (for mean mass and momentum) into an ordinary differential equation and yields a new result including an exact, linear relation between the mean normal (V ) and streamwise (U ) velocities. A characteristic length function is further introduced which, under a first order expansion (whose coefficient is η ) in wall blowing and suction velocity, leads to the similarity transformation for U with the value of η ≈-1 /9 . This transformation is shown to be a group invariant and maps different U profiles under different blowing and suction conditions into a (universal) profile for no blowing or suction. Its inverse transformation enables predictions of all mean quantities in the mean mass and momentum equations, in good agreement with DNS data.

  19. A molecular key for the identification of blow flies in southeastern Nebraska.

    PubMed

    Samarakoon, Upeka; Skoda, Steven R; Baxendale, Frederick P; Foster, John E

    2013-01-01

    Immature blow flies (Calliphoridae) are typically the first colonizers of cadavers. Identification of the early instars using traditional, morphology-based keys is difficult because of their small size, similarity, and simplicity in external morphology. Information derived from molecular genetic data would augment the accurate identification of immature flies. Nine species of blow flies commonly found in southeastern Nebraska were used to examine the utility of molecular-based keys. Polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) were investigated with 10 common, inexpensive, restriction enzymes from an amplicon of approximately 1500 bp spanning the mitochondrial cytochrome oxidase I gene. A simple molecular taxonomic key, comprising RFLP from the restriction enzymes HinfI and DraI, enabled the differentiation of all species used. Further development of PCR-RFLP, including more extensive and intensive examination of blow flies, would benefit forensic laboratories in the accurate identification of evidence consisting of immature blow flies.

  20. On lower bounds for possible blow-up solutions to the periodic Navier-Stokes equation

    SciTech Connect

    Cortissoz, Jean C. Montero, Julio A. Pinilla, Carlos E.

    2014-03-15

    We show a new lower bound on the H{sup .3/2} (T{sup 3}) norm of a possible blow-up solution to the Navier-Stokes equation, and also comment on the extension of this result to the whole space. This estimate can be seen as a natural limiting result for Leray's blow-up estimates in L{sup p}(R{sup 3}), 3 < p < ∞. We also show a lower bound on the blow-up rate of a possible blow-up solution of the Navier-Stokes equation in H{sup .5/2} (T{sup 3}), and give the corresponding extension to the case of the whole space.

  1. Towards improving efficiency of control for blowing into a boundary layer through a permeable wall

    NASA Astrophysics Data System (ADS)

    Fomin, V. M.; Kornilov, V. I.; Boiko, A. V.

    2016-08-01

    The results of experimental and numerical investigations of the efficiency of control by an incompressible turbulent boundary layer with the help air blowing through a permeable wall fabricated with maintenance of most of the necessary requirements for the quality and configuration of microapertures and having a low effective roughness are analyzed. Various cases of modeling the process of air blowing into the boundary layer through a specified hi-tech finely perforated surface are considered, and the data for average parameters and characteristics of turbulence of the flow types under investigation are presented. A substantial decrease in the skin-friction coefficient along the model length, which can achieve 90% with increasing the blowing coefficient, is shown. The estimate of the energy consumption for the process of blowing under terrestrial conditions testifies to the high potential of this method of control capable to provide 4-5% gain in the total aerodynamic drag of a simple modeling configuration.

  2. 78. Side view of 1902 AllisChalmers blowing engine showing flywheel, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. Side view of 1902 Allis-Chalmers blowing engine showing flywheel, main-rod and top of cylinder. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  3. A sodium bicarbonate-acid powered blow-gun syringe for remote injection of wildlife.

    PubMed

    Lochmiller, R L; Grant, W E

    1983-01-01

    An automatic blow-gun syringe which uses carbon dioxide gas as the injecting force is described. Upon striking the animal, carbon dioxide gas is released by the chemical combination of sodium bicarbonate (baking soda) and acid (vinegar), within the blow-gun syringe. The syringe has been used successfully with captive collared peccaries (Dicotyles tajacu). It has the advantages of longer stability, dependable gas expansion, reduction of drug loss, and consistent drug injection.

  4. Evaluation of variational principle based model for LDPE large scale film blowing process

    NASA Astrophysics Data System (ADS)

    Kolarik, Roman; Zatloukal, Martin

    2013-04-01

    In this work, variational principle based film blowing model combined with Pearson and Petrie formulation, considering non-isothermal processing conditions and novel generalized Newtonian model allowing to capture steady shear and uniaxial extensional viscosities has been validated by using experimentally determined bubble shape and velocity profile for LDPE sample on large scale film blowing line. It has been revealed that the minute change in the flow activation energy can significantly influence the film stretching level.

  5. Blowing dust and highway safety in the southwestern US

    NASA Astrophysics Data System (ADS)

    Li, Junran; Lee, Jeff; Gill, Thomas

    2015-04-01

    Windblown dust poses a significant hazard to highway safety. In the southwestern US, dust related chain-reaction traffic accidents occurred every year, however, no known studies have specifically investigated this issue in this area. Remote sensing and field observations reveal that wind erosion in this region typically occurs in localized source areas, characterized as "hot spots", while most of the landscape does not erode. However, the spatial and temporal patterns of the hot spots and their relations to the occurrence of blowing dust to the highways are poorly understood. The lack of this critical information hinders highway managers to make informed and timely management decisions when wind events strike. Projected global changes, including changes in climate, land use, and land cover, will likely bring more frequent and extreme dust emissions to the southwestern US, including a majority of the Southern Plains, posing a serious threat to transportation safety in this region in the coming decades. Our preliminary investigation in west Texas indicated that a majority of the sources that contribute dust to the highways are located on sandy surface within a few kilometers of the highways and more than half of them are from cultivated cropland.

  6. Action of Ants on Vertebrate Carcasses and Blow Flies (Calliphoridae).

    PubMed

    Paula, Michele C; Morishita, Gustavo M; Cavarson, Carolina H; Gonçalves, Cristiano R; Tavares, Paulo R A; Mendonça, Angélica; Súarez, Yzel R; Antonialli-Junior, William F

    2016-11-01

    Forensic entomology is a science that uses insect fauna as a tool to assist in criminal investigations and civil proceedings. Although the most researched insects are the Diptera and Coleoptera, ants may be present in all stages of decomposition. The aim of this study was to evaluate the role of ants and their action on blow flies during the decomposition process. Experiments were performed in which four pig carcasses were exposed in the cold and dry season (November/2012 and March/2013) and four in the hot and wet season (May/2013 and August/2013). Flies were the first insects to detect and interact with the carcasses, and six species of the Calliphoridae family were identified. Ants (Hymenoptera: Formicidae) were the second group, with six subfamilies identified. Myrmycinae represented 42% of the species, followed by Formicinae (28%), Ectatominae and Ponerinae (both 10%), and Ecitoninae and Dolichoderinae (both 5%). The ants acted on the carcasses as predators of visiting species, omnivores, and necrophagous, in all cases significantly affecting the decomposition time, slowing it down when the ants preyed on adult and immature insects consuming the carcass, or accelerating it by consuming the carcass and creating holes that could serve as gateways for the action of other organisms. The ants also generated artifacts that could lead to forensic misinterpretation.

  7. Flutter Stability Verified for the Trailing Edge Blowing Fan

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh

    2005-01-01

    The TURBO-AE aeroelastic code has been used to verify the flutter stability of the trailing edge blowing (TEB) fan, which is a unique technology demonstrator being designed and fabricated at the NASA Glenn Research Center for testing in Glenn s 9- by 15-Foot Low-Speed Wind Tunnel. Air can be blown out of slots near the trailing edges of the TEB fan blades to fill in the wakes downstream of the rotating blades, which reduces the rotor-stator interaction (tone) noise caused by the interaction of wakes with the downstream stators. The TEB fan will demonstrate a 1.6-EPNdB reduction in tone noise through wake filling. Furthermore, the reduced blade-row interaction will decrease the possibility of forced-response vibrations and enable closer spacing of blade rows, thus reducing engine length and weight. The detailed aeroelastic analysis capability of the three-dimensional Navier-Stokes TURBO-AE code was used to check the TEB fan rotor blades for flutter stability. Flutter calculations were first performed with no TEB flow; then select calculations were repeated with TEB flow turned on.

  8. Landauer's blow-torch effect in systems with entropic potential

    NASA Astrophysics Data System (ADS)

    Das, Moupriya; Ray, Deb Shankar

    2015-11-01

    We consider local heating of a part of a two-dimensional bilobal enclosure of a varying cross section confining a system of overdamped Brownian particles. Since varying cross section in higher dimension results in an entropic potential in lower dimension, local heating alters the relative stability of the entropic states. We show that this blow-torch effect modifies the entropic potential in a significant way so that the resultant effective entropic potential carries both the features of variation of width of the confinement and variation of temperature along the direction of transport. The reduced probability distribution along the direction of transport calculated by full numerical simulations in two dimensions agrees well with our analytical findings. The extent of population transfer in the steady state quantified in terms of the integrated probability of residence of the particles in either of the two lobes exhibits interesting variation with the mean position of the heated region. Our study reveals that heating around two particular zones of a given lobe maximizes population transfer to the other.

  9. Sorption of antimicrobial agents in blow-fill-seal packs.

    PubMed

    Amin, Aeshna; Chauhan, Sateesh; Dare, Manish; Bansal, Arvind Kumar

    2012-01-01

    The present work studies the interaction of methyl paraben (MPB) and propyl paraben (PPB), two widely used antimicrobial agents in multi-dose ophthalmic formulations, with 5 mL, low density polyethylene (LDPE) and polypropylene (PP) blow-fill-seal (BFS) packs, by subjecting the systems to accelerated stability conditions of 40°C/25% RH. The effect of pH, paraben concentration, and relative humidity (RH) on the sorption loss of both the parabens was studied. Additionally, the effects of buffer species and buffer strength on MPB sorption were studied. LDPE packs showed significantly higher loss compared to PP packs which showed < 5% loss in all cases. PPB showed a significantly higher loss (40-50%) than MPB (9-16%) in LDPE. pH (3.0, 5.0, 7.0) did not have a statistically significant effect on sorption. However, concentration, humidity and buffer at pH 7 affected paraben sorption. The application of the power law suggested that the MPB followed non-Fickian diffusion while PPB showed non-Fickian to Case II diffusion in LDPE packs. In conclusion, caution should be exercised while using parabens in LDPE BFS packs because substantial losses of the antimicrobial agent during the shelf-life can compromise the preservative effectiveness against 'in-use' contamination.

  10. High speed aerodynamics of upper surface blowing aircraft configurations

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Larry D.

    1992-01-01

    An experimental investigation of the high speed aerodynamics of Upper Surface Blowing (USB) aircraft configurations has been conducted to accurately define the magnitude and causes of the powered configuration cruise drag. A highly instrumented wind tunnel model of a realistic USB configuration was used which permitted parametric variations in the number and spanwise location of the nacelles and was powered with two turbofan engine simulators. The tests conducted in the Ames 14 Foot Transonic Wind Tunnel examined 10 different configurations at Mach numbers from 0.5 to 0.775, fan nozzle pressure ratios from 1.1 to 2.1 and angles of attack from -4 to 6 degrees. Measured force data is presented which indicates the cruise drag penalty associated with each configuration and surface pressure contour plots are used to illustrate the underlying flowfield physics. It was found that all of the tested configurations suffered from a severe drag penalty which increased with freestream Mach number, power setting and angle of attack and was associated with the presence of strong shocks and regions of separated flow in the wing/nacelle junction regions.

  11. Solution Blow Spinning of Food-Grade Gelatin Nanofibers.

    PubMed

    Liu, Fei; Avena-Bustillos, Roberto J; Bilbao-Sainz, Cristina; Woods, Rachelle; Chiou, Bor-Sen; Wood, Delilah; Williams, Tina; Yokoyama, Wallace; Glenn, Gregory M; McHugh, Tara H; Zhong, Fang

    2017-06-01

    The primary advantage of nanofibers over larger diameter fibers is the larger surface area to volume ratio. This study evaluated solution blow spinning (SBS) processing conditions for obtaining food-grade gelatin nanofibers from mammalian and fishery byproducts, such as pork skin gelatins (PGs) and high molecular weight fish skin gelatin (HMWFG). HMWFG had a highest intact collagen structure compared to PGs. PGs with different Bloom values, solution viscosities, and surface tensions were compared with HMWFG for their ability to produce nanofibers through SBS. Only HMWFG fibers were obtained irrespective of processing conditions, which looked like fluffy cotton candy. HMWFG nanofibers had round morphologies with a narrower diameter distribution and lower average fiber diameter (AFD) under medium gelatin concentrations, medium air pressures, and medium feed rates. The highest glass transition temperature (Tg ) values were obtained at medium concentrations, medium air pressure, and either high or low feed rate. The thinnest HMWFG nanofibers with an AFD of 80.1 nm and the highest Tg value of 59.0 °C could be formed by combining a concentration of 17.6% (w/v), an air pressure of 0.379 MPa, and a feed rate of 0.06 mL/min from the response surface analysis. HMWFG Brunauer, Emmett, and Teller surface area increased from 221 to 237 m(2) /g, indicating their potential applicability for active compound carrier. © 2017 Institute of Food Technologists®.

  12. Generating Soap Bubbles by Blowing on Soap Films

    NASA Astrophysics Data System (ADS)

    Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent

    2016-02-01

    Making soap bubbles by blowing air on a soap film is an enjoyable activity, yet a poorly understood phenomenon. Working either with circular bubble wands or long-lived vertical soap films having an adjustable steady state thickness, we investigate the formation of such bubbles when a gas is blown through a nozzle onto a film. We vary film size, nozzle radius, space between the film and nozzle, and gas density, and we measure the gas velocity threshold above which bubbles are formed. The response is sensitive to containment, i.e., the ratio between film and jet sizes, and dissipation in the turbulent gas jet, which is a function of the distance from the film to the nozzle. We rationalize the observed four different regimes by comparing the dynamic pressure exerted by the jet on the film and the Laplace pressure needed to create the curved surface of a bubble. This simple model allows us to account for the interplay between hydrodynamic, physicochemical, and geometrical factors.

  13. Generating Soap Bubbles by Blowing on Soap Films.

    PubMed

    Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent

    2016-02-19

    Making soap bubbles by blowing air on a soap film is an enjoyable activity, yet a poorly understood phenomenon. Working either with circular bubble wands or long-lived vertical soap films having an adjustable steady state thickness, we investigate the formation of such bubbles when a gas is blown through a nozzle onto a film. We vary film size, nozzle radius, space between the film and nozzle, and gas density, and we measure the gas velocity threshold above which bubbles are formed. The response is sensitive to containment, i.e., the ratio between film and jet sizes, and dissipation in the turbulent gas jet, which is a function of the distance from the film to the nozzle. We rationalize the observed four different regimes by comparing the dynamic pressure exerted by the jet on the film and the Laplace pressure needed to create the curved surface of a bubble. This simple model allows us to account for the interplay between hydrodynamic, physicochemical, and geometrical factors.

  14. Lean Blow-out Studies in a Swirl Stabilized Annular Gas Turbine Combustor

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Kishore Kumar, S.; Chandel, Sunil

    2015-05-01

    Lean blow out characteristics in a swirl stabilized aero gas turbine combustor have been studied using computational fluid dynamics. For CFD analysis, a 22.5° sector of an annular combustor is modeled using unstructured tetrahedral meshes comprising 1.2 × 106 elements. The governing equations are solved using the eddy dissipation combustion model in CFX. The primary combustion zone is analyzed by considering it as a well stirred reactor. The analysis has been carried out for different operating conditions of the reactants entering into the control volume. The results are treated as the base-line or reference values. Combustion lean blow-out limits are further characterized studying the behavior of combustion zone during transient engine operation. The validity of the computational study has been established by experimental study on a full-scale annular combustor in an air flow test facility that is capable of simulating different conditions at combustor inlet. The experimental result is in a good agreement with the analytical predictions. Upon increasing the combustor mass flow, the lean blow out limit increases, i.e., the blow out occurs at higher fuel-air ratios. In addition, when the operating pressure decreases, the lean blow out limit increases, i.e., blow out occurs at higher fuel-air ratios.

  15. Fledging success is a poor indicator of the effects of bird blow flies on ovenbird survival

    USGS Publications Warehouse

    Peterson, Sean M.; Streby, Henry M.; Kapfer, Paul M.

    2009-01-01

    Infestations of bird blow flies (Protocalliphora spp. and Trypocalliphora braueri) have various negative effects on the condition of nestling birds. In the absence of other stressors such as inclement weather, however, infestation alone rarely reduces fledging success. Previous studies have documented effects of blow flies on nestling condition and fledging success. Without information regarding fledgling survival, the full effect of blow-fly infestation remains unclear. To fully investigate the effect of blow-fly infestation on reproductive success of the Ovenbird (Seiurus aurocapilla), we monitored infested and non-infested nests and monitored fledglings from each by using radio telemetry. Blow flies did not affect birds during the nestling period, as brood size, mean nestling mass, fledging success, and time to fledging in infested and non-infested nests were no different. Fledgling survival and minimum distance traveled the first day after fledging, however, were significantly lower for infected fledglings than for those that were not infected. We conclude that the stress of the early fledgling period combined with recent or concurrent blow-fly infection increases mortality in young Oven-birds. Our results demonstrate the importance of including the post-fledging period in investigations of the effects of ectoparasitic infestations on birds.

  16. Occurrence of blow fly species (Diptera: calliphoridae) in Phitsanulok Province, Northern Thailand.

    PubMed

    Bunchu, Nophawan; Sukontason, Kom; Sanit, Sangob; Chidburee, Polprecha; Kurahashi, Hiromu; Sukontason, Kabkaew L

    2012-12-01

    Based on the current forensic importance of blow flies (Diptera: Calliphoridae), their biological aspects have been studied increasingly worldwide. The blow fly fauna in Phitsanulok Province, Northern Thailand was studied from May 2009 to April 2010 in the residential, agricultural, mountainous and forested areas of Muang, Wat Bot, Nakhon Thai and Wang Thong districts, respectively, in order to know the occurrence of blow flies in this province. Collections were carried out monthly using commercial funnel fly traps and sweeping methods, with 1-day tainted pork viscera as bait. Identification of adult blow flies exhibited 14 634 specimens, comprising of 5 subfamilies, 14 genera and 36 species. Chrysomya megacephala (Fabricius, 1794) and Achoetandrus rufifacies (Macquart, 1843) were the most and second most abundant species trapped, respectively. These two species of carrion flies prevailed in all the types of land investigated. We calculated and compared the diversity indices, species evenness and richness, and similarity coefficients of the blow fly species in various areas. The data from this study may be used to identify the potential of forensicallyimportant fly species within Phitsanulok Province and fulfill the information on blow fly fauna in Thailand.

  17. Exploring confidentiality in the context of nurse whistle blowing: issues for nurse managers.

    PubMed

    Jackson, Debra; Peters, Kath; Hutchinson, Marie; Edenborough, Michel; Luck, Lauretta; Wilkes, Lesley

    2011-07-01

    The aim of this paper is to reveal the experiences and meaning of confidentiality for Australian nurses in the context of whistle blowing. Despite the ethical, legal and moral importance of confidentiality within the health-care context, little work has addressed the implications of confidentially related to whistle-blowing events. The study used qualitative narrative inquiry. Eighteen Australian nurses, with first-hand experience of whistle blowing, consented to face-to-face semi-structured interviews. Four emergent themes relating to confidentiality were identified: (1) confidentiality as enforced silence; (2) confidentiality as isolating and marginalizing; (3) confidentiality as creating a rumour mill; and (4) confidentiality in the context of the public's 'right to know'. The interpretation and application of confidentiality influences the outcomes of whistle blowing within the context of health-care services. Conversely, confidentially can be a protective mechanism for health-care institutions. It is beholden upon nurse manager to carefully risk manage whistle-blowing events. It is important that nurse managers are aware of the consequences of their interpretation and application of confidentiality to whistle-blowing events, and the potentially competing outcomes for individuals and the institution. © 2011 The Authors. Journal compilation © 2011 Blackwell Publishing Ltd.

  18. First Satellite-detected Perturbations of Outgoing Longwave Radiation Associated with Blowing Snow Events over Antarctica

    NASA Technical Reports Server (NTRS)

    Yang, Yuekui; Palm, Stephen P.; Marshak, Alexander; Wu, Dong L.; Yu, Hongbin; Fu, Qiang

    2014-01-01

    We present the first satellite-detected perturbations of the outgoing longwave radiation (OLR) associated with blowing snow events over the Antarctic ice sheet using data from Cloud-Aerosol Lidar with Orthogonal Polarization and Clouds and the Earth's Radiant Energy System. Significant cloud-free OLR differences are observed between the clear and blowing snow sky, with the sign andmagnitude depending on season and time of the day. During nighttime, OLRs are usually larger when blowing snow is present; the average difference in OLRs between without and with blowing snow over the East Antarctic Ice Sheet is about 5.2 W/m2 for the winter months of 2009. During daytime, in contrast, the OLR perturbation is usually smaller or even has the opposite sign. The observed seasonal variations and day-night differences in the OLR perturbation are consistent with theoretical calculations of the influence of blowing snow on OLR. Detailed atmospheric profiles are needed to quantify the radiative effect of blowing snow from the satellite observations.

  19. Study on the conditions necessary for blowing snow to occur in which multiple meteorological elements are considered

    NASA Astrophysics Data System (ADS)

    Omiya, S.; Takechi, H.; Kokubu, T.; Harada, Y.; Matsuzawa, M.

    2015-12-01

    Elucidation of the conditions under which blowing snow occurs is important not only in mitigating snowstorm-related disasters but also in discussing the mass balance of water. The major factor for the occurrence of blowing snow is strong winds. However, the conditions that cause blowing snow are complicated, because temperature, the condition of the snow surface, and the presence or absence of falling snow affect blowing snow occurrence. We created a formula for determining the conditions under which blowing snow will occur, based on multiple meteorological elements. In this presentation, we report the results of analysis on the occurrence conditions of blowing snow without concurrent falling snow. The observation data used in the analysis were obtained in Hokkaido, northern Japan, from December 2012 to April 2013. The observed items were air temperature, wind velocity, intensity of solar radiation, snow depth and the mass flux of blowing snow particles. In addition to the above, videos were taken to determine the presence of blowing snow. After the blowing snow events were extracted, each meteorological element was compared with the frequency of blowing snow occurrence. The analysis found that the frequency tended to be low when 12 or more hours had passed after a snowfall event or when the maximum air temperature exceeded 2 °C. It is thought that the snow particles sinter together and the surface of the snow pack hardens, and that such sintering makes it difficult for the particles fly off from the snow surface. It was shown that the frequency of blowing snow occurrence is high when large amounts of fresh snow are on the ground. Based on the above examinations, a formula for determining the occurrence of blowing snow was created using the discriminate analysis method. An accuracy verification test found the formula to have a hit ratio of 92.3%. The verification test showed the formula to be useful in determining the occurrence of blowing snow.

  20. A Review of the Fundamental Principles and Applications of Solution Blow Spinning.

    PubMed

    Daristotle, John L; Behrens, Adam M; Sandler, Anthony D; Kofinas, Peter

    2016-12-28

    Solution blow spinning (SBS) is a technique that can be used to deposit fibers in situ at low cost for a variety of applications, which include biomedical materials and flexible electronics. This review is intended to provide an overview of the basic principles and applications of SBS. We first describe a method for creating a spinnable polymer solution and stable polymer solution jet by manipulating parameters such as polymer concentration and gas pressure. This method is based on fundamental insights, theoretical models, and empirical studies. We then discuss the unique bundled morphology and mechanical properties of fiber mats produced by SBS, and how they compare with electrospun fiber mats. Applications of SBS in biomedical engineering are highlighted, showing enhanced cell infiltration and proliferation versus electrospun fiber scaffolds and in situ deposition of biodegradable polymers. We also discuss the impact of SBS in applications involving textiles and electronics, including ceramic fibers and conductive composite materials. Strategies for future research are presented that take advantage of direct and rapid polymer deposition via cost-effective methods.

  1. Preparation of Zein Fibers Using Solution Blow Spinning Method.

    PubMed

    Liu, Fei; Avena-Bustillos, Roberto J; Woods, Rachelle; Chiou, Bor-Sen; Williams, Tina G; Wood, Delilah F; Bilbao-Sainz, Cristina; Yokoyama, Wallace; Glenn, Gregory M; McHugh, Tara H; Zhong, Fang

    2016-12-01

    Zein fibers were successfully fabricated via solution blow spinning (SBS) using acetic acid as solvent. Surface tension, viscosity and modulus of zein solutions were respectively determined by force tensiometer and rheometer. Increases of these properties were observed with an increase of concentration from 20% to 35% (w/w). The fabrication conditions of zein fibers were initially investigated as a function of zein concentration (25% to 35% w/w), feed rate (0.04 to 0.1 mL/min) and air pressure (0.28 to 0.62 MPa). The average fiber diameter (AFD) ranged from 174 to 9595 nm based on scanning electron microscopy (SEM). A Box-Behnken experimental design (BBD) was further performed to identify and quantify the significance of above parameters. The statistical analysis showed that the linear coefficient of concentration, the quadratic term of concentration as well as the interaction between concentration and air pressure were demonstrated statistically significant. Optimal conditions, with an AFD of 138 nm, could be obtained in the SBS of zein fibers by combining a concentration of 23% (w/w), a feed rate of 0.04 mL/min and an air pressure of 0.38 MPa. The moisture sorption capacity of fibers increased slightly as AFD decreased from ∼550 to ∼200 nm, with an increase of BET surface area from 116.5 to 140.0 m(2) /g. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  2. Blow Collection as a Non-Invasive Method for Measuring Cortisol in the Beluga (Delphinapterus leucas)

    PubMed Central

    Thompson, Laura A.; Spoon, Tracey R.; Goertz, Caroline E. C.; Hobbs, Roderick C.; Romano, Tracy A.

    2014-01-01

    Non-invasive sampling techniques are increasingly being used to monitor glucocorticoids, such as cortisol, as indicators of stressor load and fitness in zoo and wildlife conservation, research and medicine. For cetaceans, exhaled breath condensate (blow) provides a unique sampling matrix for such purposes. The purpose of this work was to develop an appropriate collection methodology and validate the use of a commercially available EIA for measuring cortisol in blow samples collected from belugas (Delphinapterus leucas). Nitex membrane stretched over a petri dish provided the optimal method for collecting blow. A commercially available cortisol EIA for measuring human cortisol (detection limit 35 pg ml−1) was adapted and validated for beluga cortisol using tests of parallelism, accuracy and recovery. Blow samples were collected from aquarium belugas during monthly health checks and during out of water examination, as well as from wild belugas. Two aquarium belugas showed increased blow cortisol between baseline samples and 30 minutes out of water (Baseline, 0.21 and 0.04 µg dl−1; 30 minutes, 0.95 and 0.14 µg dl−1). Six wild belugas also showed increases in blow cortisol between pre and post 1.5 hour examination (Pre 0.03, 0.23, 0.13, 0.19, 0.13, 0.04 µg dl−1, Post 0.60, 0.31, 0.36, 0.24, 0.14, 0.16 µg dl−1). Though this methodology needs further investigation, this study suggests that blow sampling is a good candidate for non-invasive monitoring of cortisol in belugas. It can be collected from both wild and aquarium animals efficiently for the purposes of health monitoring and research, and may ultimately be useful in obtaining data on wild populations, including endangered species, which are difficult to handle directly. PMID:25464121

  3. Blow collection as a non-invasive method for measuring cortisol in the beluga (Delphinapterus leucas).

    PubMed

    Thompson, Laura A; Spoon, Tracey R; Goertz, Caroline E C; Hobbs, Roderick C; Romano, Tracy A

    2014-01-01

    Non-invasive sampling techniques are increasingly being used to monitor glucocorticoids, such as cortisol, as indicators of stressor load and fitness in zoo and wildlife conservation, research and medicine. For cetaceans, exhaled breath condensate (blow) provides a unique sampling matrix for such purposes. The purpose of this work was to develop an appropriate collection methodology and validate the use of a commercially available EIA for measuring cortisol in blow samples collected from belugas (Delphinapterus leucas). Nitex membrane stretched over a petri dish provided the optimal method for collecting blow. A commercially available cortisol EIA for measuring human cortisol (detection limit 35 pg ml-1) was adapted and validated for beluga cortisol using tests of parallelism, accuracy and recovery. Blow samples were collected from aquarium belugas during monthly health checks and during out of water examination, as well as from wild belugas. Two aquarium belugas showed increased blow cortisol between baseline samples and 30 minutes out of water (Baseline, 0.21 and 0.04 µg dl-1; 30 minutes, 0.95 and 0.14 µg dl-1). Six wild belugas also showed increases in blow cortisol between pre and post 1.5 hour examination (Pre 0.03, 0.23, 0.13, 0.19, 0.13, 0.04 µg dl-1, Post 0.60, 0.31, 0.36, 0.24, 0.14, 0.16 µg dl-1). Though this methodology needs further investigation, this study suggests that blow sampling is a good candidate for non-invasive monitoring of cortisol in belugas. It can be collected from both wild and aquarium animals efficiently for the purposes of health monitoring and research, and may ultimately be useful in obtaining data on wild populations, including endangered species, which are difficult to handle directly.

  4. Computational analysis of forebody tangential slot blowing on the high alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Gee, Ken

    1995-01-01

    A numerical analysis of forebody tangential slot blowing as a means of generating side force and yawing moment is conducted using an aircraft geometry. The Reynolds-averaged, thin-layer, Navier-Stokes equations are solved using a partially flux-split, approximately-factored algorithm. An algebraic turbulence model is used to determine the turbulent eddy viscosity values. Solutions are obtained using both patched and overset grid systems. In the patched grid model, and actuator plane is used to introduce jet variables into the flow field. The overset grid model is used to model the physical slot geometry and facilitate modeling of the full aircraft configuration. A slot optimization study indicates that a short slot located close to the nose of the aircraft provided the most side force and yawing moment per unit blowing coefficient. Comparison of computed surface pressure with that obtained in full-scale wind tunnel tests produce good agreement, indicating the numerical method and grid system used in the study are valid. Full aircraft computations resolve the changes in vortex burst point due to blowing. A time-accurate full-aircraft solution shows the effect of blowing on the changes in the frequency of the aerodynamic loads over the vertical tails. A study of the effects of freestream Mach number and various jet parameters indicates blowing remains effective through the transonic Mach range. An investigation of the force onset time lag associated with forebody blowing shows the lag to be minimal. The knowledge obtained in this study may be applied to the design of a forebody tangential slot blowing system for use on flight aircraft.

  5. Identification of CFC and HCFC substitutes for blowing polyurethane foam insulation products. Report for September 1993-August 1994

    SciTech Connect

    Howard, P.H.; Tunkel, J.L.; Hendriks, R.V.

    1996-04-01

    The paper gives results of a systematic search to identify additional candidates as third-generation blowing agents, chemical compounds that are not stratospheric ozone depleters that can be used as substitutes for chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) blowing agents in rigid polyurethane foam insulating materials. To identify the most promising substitutes, potential third-generation blowing agents were ranked using a methodology developed for this project.

  6. Numerical study of blow-up and dispersive shocks in solutions to generalized Korteweg-de Vries equations

    NASA Astrophysics Data System (ADS)

    Klein, C.; Peter, R.

    2015-06-01

    We present a detailed numerical study of solutions to general Korteweg-de Vries equations with critical and supercritical nonlinearity, both in the context of dispersive shocks and blow-up. We study the stability of solitons and show that they are unstable against being radiated away and blow-up. In the L2 critical case, the blow-up mechanism by Martel, Merle and Raphaël can be numerically identified. In the limit of small dispersion, it is shown that a dispersive shock always appears before an eventual blow-up. In the latter case, always the first soliton to appear will blow up. It is shown that the same type of blow-up as for the perturbations of the soliton can be observed which indicates that the theory by Martel, Merle and Raphaël is also applicable to initial data with a mass much larger than the soliton mass. We study the scaling of the blow-up time t∗ in dependence of the small dispersion parameter ɛ and find an exponential dependence t∗(ɛ) and that there is a minimal blow-up time t0∗ greater than the critical time of the corresponding Hopf solution for ɛ → 0. To study the cases with blow-up in detail, we apply the first dynamic rescaling for generalized Korteweg-de Vries equations. This allows to identify the type of the singularity.

  7. Simulation on Decarburization and Inclusion Removal Process in the Ruhrstahl-Heraeus (RH) Process with Ladle Bottom Blowing

    NASA Astrophysics Data System (ADS)

    Geng, Dian-Qiao; Zheng, Jin-Xing; Wang, Kai; Wang, Ping; Liang, Ru-Quan; Liu, Hai-Tao; Lei, Hong; He, Ji-Cheng

    2015-03-01

    To enhance the refining efficiency of the Ruhrstahl-Heraeus (RH) process, the ladle bottom blowing was employed in RH degasser and a numerical method was employed to investigate the decarburization and inclusion removal in RH with ladle bottom blowing. The results showed that the decarburization rate in RH with ladle bottom blowing is greater than that in traditional RH. The larger mass fraction of carbon at the recirculation zone under up snorkel disappears because of the gas bubbles from ladle bottom blowing in an RH degasser. For RH with ladle bottom blowing, the decarburization at argon bubble surface accounts for the majority of the removed carbon, and it is approximately two times greater than that in the inner site of the vacuum chamber. Besides, the inclusion removal rate in RH with ladle bottom blowing is greater than that in traditional RH, and the maximum inclusion characteristic radius is much less in RH with ladle bottom blowing than that in traditional RH. Besides, the accumulation of inclusions in ladle between sidewall and up snorkel and the recirculation zone under up snorkel, which can be found in traditional RH, disappears in RH with ladle bottom blowing. For RH with ladle bottom blowing, the average number density of inclusions decreases more drastically than that in traditional RH and the average terminal number density of inclusions is much smaller than that in traditional RH.

  8. Process Dissociation and Mixture Signal Detection Theory

    ERIC Educational Resources Information Center

    DeCarlo, Lawrence T.

    2008-01-01

    The process dissociation procedure was developed in an attempt to separate different processes involved in memory tasks. The procedure naturally lends itself to a formulation within a class of mixture signal detection models. The dual process model is shown to be a special case. The mixture signal detection model is applied to data from a widely…

  9. Computational film cooling effectiveness of dual trench configuration on flat plate at moderate blowing ratios

    NASA Astrophysics Data System (ADS)

    Abdala, Antar M. M.; Zheng, Qun; Elwekeel, Fifi N. M.; Dong, Ping

    2013-06-01

    In the present work, computational simulations was made using ANSYS CFX to predict the improvements in film cooling performance with dual trench. Dual-trench configuration consists of two trenches together, one wider trench and the other is narrow trench that extruded from the wider one. Several blowing ratios in the range (0.5:5) were investigated. The pitch-to-diameter ratio of 2.775 is used. By using the dual trench configuration, the coolant jet impacted the trench wall two times allowing increasing the spreading of coolant laterally in the trench, reducing jet velocity and jet completely covered on the surface. The results indicate that this configuration increased adiabatic effectiveness as blowing ratio increased. The spatially averaged adiabatic effectiveness reached 57.6% for at M= 2. No observed film blow-off at all blowing ratios. The adiabatic film effectiveness of dual trench case outperformed the narrow trench case, laidback fan-shaped hole, fan-shaped hole and cylinder hole at different blowing ratios.

  10. Lateral control at high angles of attack using pneumatic blowing through a chined forebody

    NASA Technical Reports Server (NTRS)

    Arena, A. S., Jr.; Nelson, R. C.; Schiff, L. B.

    1993-01-01

    Directional control through the use of pneumatic blowing was investigated on a generic subscale model with a chined forebody with blowing through a chine slot in a direction normal to the forebody surface. Comparisons are made with a vertical tail on and off, and with control through rudder deflection. Force and moment data were obtained for various blowing coefficients over a 0-75 deg alpha range, and flow visualization was also conducted in order to see qualitative effects on the flowfield. Blowing through a chined forebody generates yaw moments at large alpha where control surfaces lose their effectiveness; these moments are much larger than obtained by jet thrust alone, since the forebody flowfield is modified through the interaction of the jet with the chine vortices. Directional control increased with angle of attack for a given blowing coefficient until a maximum was reached. Further increases in angle of attack results in a rapid loss of effectiveness. For angles of attack above 60 deg, yaw moments are generated by simple jet thrust effect. The effectiveness of the pneumatic system depended on tail configuration.

  11. On the effect of leading edge blowing on circulation control airfoil aerodynamics

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.

    1987-01-01

    In the present context the term circulation control is used to denote a method of lift generation that utilizes tangential jet blowing over the upper surface of a rounded trailing edge airfoil to determine the location of the boundary layer separation points, thus setting an effective Kutta condition. At present little information exists on the flow structure generated by circulation control airfoils under leading edge blowing. Consequently, no theoretical methods exist to predict airfoil performance under such conditions. An experimental study of the flow field generated by a two dimensional circulation control airfoil under steady leading and trailing edge blowing was undertaken. The objective was to fundamentally understand the overall flow structure generated and its relation to airfoil performance. Flow visualization was performed to define the overall flow field structure. Measurements of the airfoil forces were also made to provide a correlation of the observed flow field structure to airfoil performance. Preliminary results are presented, specifically on the effect on the flow field structure of leading edge blowing, alone and in conjunction with trailing edge blowing.

  12. Transonic Drag Reduction Through Trailing-Edge Blowing on the FAST-MAC Circulation Control Model

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Jones, Gregory S.; Milholen, William E., II; Goodliff, Scott L.

    2017-01-01

    A third wind tunnel test of the FAST-MAC circulation control semi-span model was completed in the National Transonic Facility at the NASA Langley Research Center where the model was configured for transonic testing of the cruise configuration with 0deg flap detection to determine the potential for transonic drag reduction with the circulation control blowing. The model allowed independent control of four circulation control plenums producing a high momentum jet from a blowing slot near the wing trailing edge that was directed over a 15% chord simple-hinged ap. Recent upgrades to transonic semi-span flow control testing at the NTF have demonstrated an improvement to overall data repeatability, particularly for the drag measurement, that allows for increased confidence in the data results. The static thrust generated by the blowing slot was removed from the wind-on data using force and moment balance data from wind-o thrust tares. This paper discusses the impact of the trailing-edge blowing to the transonic aerodynamics of the FAST-MAC model in the cruise configuration, where at flight Reynolds numbers, the thrust-removed corrected data showed that an overall drag reduction and increased aerodynamic efficiency was realized as a consequence of the blowing.

  13. Numerical analysis of tangential slot blowing on a generic chined forebody

    NASA Technical Reports Server (NTRS)

    Agosta, Roxana M.

    1994-01-01

    A numerical study is performed to investigate the effects of tangential slot blowing on a generic chined forebody. The Reynolds-averaged, thin-layer, Navier-Stokes equations are solved to obtain the high-angle-of-attack viscous flow field about a generic chined forebody. Tangential slot blowing is investigated as a means of forebody flow control to generate side force and yawing moment on the forebody. The effects of jet mass flow ratios, angle of attack, and blowing slot location in the axial and circumferential directions are studied. The computed results are compared with available wind tunnel experimental data. The solutions with and without blowing are also analyzed using helicity density contours, surface flow patterns, and off-surface instantaneous streamlines. The results of this analysis provide details of the flow field about the generic chined forebody, as well as show that tangential slot blowing can be used as a means of forebody flow control to generate side force and yawing moment.

  14. Lateral control at high angles of attack using pneumatic blowing through a chined forebody

    NASA Technical Reports Server (NTRS)

    Arena, A. S., Jr.; Nelson, R. C.; Schiff, L. B.

    1993-01-01

    Directional control through the use of pneumatic blowing was investigated on a generic subscale model with a chined forebody with blowing through a chine slot in a direction normal to the forebody surface. Comparisons are made with a vertical tail on and off, and with control through rudder deflection. Force and moment data were obtained for various blowing coefficients over a 0-75 deg alpha range, and flow visualization was also conducted in order to see qualitative effects on the flowfield. Blowing through a chined forebody generates yaw moments at large alpha where control surfaces lose their effectiveness; these moments are much larger than obtained by jet thrust alone, since the forebody flowfield is modified through the interaction of the jet with the chine vortices. Directional control increased with angle of attack for a given blowing coefficient until a maximum was reached. Further increases in angle of attack results in a rapid loss of effectiveness. For angles of attack above 60 deg, yaw moments are generated by simple jet thrust effect. The effectiveness of the pneumatic system depended on tail configuration.

  15. Change of the orbital volume ratio in pure blow-out fractures depending on fracture location.

    PubMed

    Oh, Sang Ah; Aum, Jae Ho; Kang, Dong Hee; Gu, Ja Hea

    2013-07-01

    The purposes of this study were to observe bony orbital volume (OV) changes in pure blow-out fractures according to fracture location using a facial computed tomographic scan and to investigate whether the OV measurements can be used as a quantitative value for the evaluation of the surgical results of the acute blow-out fracture.Forty-five patients with unilateral pure blow-out fracture were divided into 3 groups: inferior (group I), inferior medial (group IM), and medial (group M) orbital wall fracture. The OV and the orbital volume ratio (OVR) were prospectively measured before and 6 months after surgery with the use of 3-dimensional computed tomographic scans, and the Hertel scale was measured with a Hertel exothalmometer.The preoperative OVR increased to the greatest extent in group IM, and the mean preoperative OVR was 121.46. The mean preoperative OVR in group I was significantly higher than that of group M (P = 0.005). The OV and OVR revealed a statistically significant decrease after the surgery (P = 0.000). The Hertel scale improved from -1.04 mm before the surgery to -0.78 mm after the surgery, but no significant difference was observed (P = 0.051).The OVR was useful as a quantitative value to evaluate pure blow-out fractures, compared with that of the Hertel scale. Fracture location-associated OVR studies are needed to make volume guidelines of blow-out fracture surgery.

  16. Computational analysis of forebody tangential slot blowing on the high alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Gee, Ken

    1994-01-01

    Current and future fighter aircraft can maneuver in the high-angle-of-attack flight regime while flying at low subsonic and transonic freestream Mach numbers. However, at any flight speed, the ability of the vertical tails to generate yawing moment is limited in high-angle-of-attack flight. Thus, any system designed to provide the pilot with additional side force and yawing moment must work in both low subsonic and transonic flight. However, previous investigations of the effectiveness of forebody tangential slot blowing in generating the desired control forces and moments have been limited to the low subsonic freestream flow regime. In order to investigate the effectiveness of tangential slot blowing in transonic flight, a computational fluid dynamics analysis was carried out during the grant period. Computational solutions were obtained at three different freestream Mach numbers and at various jet mass flow ratios. All results were obtained using the isolated F/A-18 forebody grid geometry at 30.3 degrees angle of attack. One goal of the research was to determine the effect of freestream Mach number on the effectiveness of forebody tangential slot blowing in generating yawing moment. The second part of the research studied the force onset time lag associated with blowing. The time required for the yawing moment to reach a steady-state value from the onset of blowing may have an impact on the implementation of a pneumatic system on a flight vehicle.

  17. Computational study of the aerodynamics and control by blowing of asymmetric vortical flows over delta wings

    NASA Technical Reports Server (NTRS)

    Craig, Ken

    1991-01-01

    Some of the work is described which was done in a study of the flow field produced by tangential leading edge blowing on a 60 deg. delta wing. The flow is studied computationally by solving the Thin Layer Navier-Stokes equations. Steady state flow fields are calculated for various angles of attack and yaw, with and without the presence of tangential leading edge blowing. The effectiveness of blowing as a rolling moment control mechanism to extend the envelope of controllability is illustrated at pre- and post-stall angles of attack. The numerical grid is generated using algebraic grid generation and various interpolation and blending techniques. The jet emanates from a slot with linearly varying thickness and is introduced into the flow field using the concept of an actuator plane, thereby not requiring resolution of the jet slot geometry. The Baldwin-Lomax algebraic turbulence model is used to provide turbulent closure. The computational results are compared with those of experiments.

  18. Discrimination of falls and blows in blunt head trauma: a multi-criteria approach.

    PubMed

    Guyomarc'h, Pierre; Campagna-Vaillancourt, Maude; Kremer, Célia; Sauvageau, Anny

    2010-03-01

    In the discrimination of falls versus blows, the hat brim line (HBL) rule is mentioned in several textbooks as the most useful single criterion. Recent studies, however, have found that the HBL rule is only moderately valid and that its use on its own is not recommended. The purpose of this 6-year retrospective study was to find additional individually useful criteria in the distinction of falls from blows. Overall, the following criteria were found to point toward blows: more than three lacerations, laceration length of 7 cm or more, comminuted or depressed calvarial fractures, lacerations or fractures located above the HBL, left-side lateralization of lacerations or fractures, more than four facial contusions or lacerations, presence of ear lacerations, presence of facial fractures, and presence of postcranial osseous and/or visceral trauma. Based on the most discriminating criteria, a decision tree was constructed to be potentially applicable to future cases.

  19. Impact of pulsed blowing jet on aerodynamic characteristics of wind turbine airfoils

    NASA Astrophysics Data System (ADS)

    Bobonea, Andreea

    2012-11-01

    Wind turbine growth in size and weight made it impossible to control turbines passively as they were controlled in the past. Current efforts focus on increasing their aerodynamic efficiency and operational range through active flow control methods. One of the main methods of active flow control is the usage of blowing devices with constant or pulsed jets. By adding stored high-momentum air through slots into the boundary layer, they overcome adverse pressure gradients and postpone separation. Pulsed blowing sends short pulses rather than a continuous jet of fluid into the boundary layer and has been found to be more effective. Through CFD simulations over a 2D wind turbine airfoil, this research highlights the impact of different slot geometries with constant/pulsed blowing, on the effectiveness of this active flow control technique.

  20. Control of turbulent boundary layer through air blowing due to external-flow resources

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.; Boiko, A. V.; Kavun, I. N.

    2015-07-01

    The possibility to control turbulent incompressible boundary layer using air blowing through a finely perforated wall presenting part of the streamlined flat-plate surface was examined. The control was exercised via an action on the state and characteristics of the near-wall flow exerted by controlled (through variation of external-pressure-flow velocity) blowing of air through an air intake installed on the idle side of the plate. A stable reduction of the local values of skin friction coefficient along the model, reaching 50 % at the end of the perforated area, has been demonstrated. The obtained experimental and calculated data are indicative of a possibility to model the process of turbulentboundary-layer control by air blowing due to external-flow resources.

  1. Developing and teaching the virtue-ethics foundations of healthcare whistle blowing.

    PubMed

    Faunce, Thomas

    2004-10-01

    Healthcare whistle blowing, despite the benefits it has brought to healthcare systems in many developed countries, remains generally regarded as a pariah activity by many of the most influential healthcare professionals and regulatory institutions. Few if any medical schools or law department health law and bioethics classes, teach whistle blowing in a formal sense. Yet without exception, public inquiries initiated by healthcare whistle blowers have validated their central allegations and demonstrated that the whistle blowers themselves were sincere in their desire to implement the fundamental virtues and principles of medical ethics, bioethics and public health law. In many jurisdictions, the law, this time remarkably in advance of professional opinion, has offered legislative protection for reasonable allegations of whistleblowers made in good faith and in the public interest concerning a substantial and imminent threat to public safety. One reason for this paradoxical position, explored here, is that healthcare whistle blowing lacks a firm virtue-based theoretical bioethical and jurisprudential foundation. The hypothesis discussed is that the lack of this bioethical and jurisprudential substrate has contributed to a situation where healthcare whistle blowing suffers in terms of institutional support due to its lack of academic legitimacy. This article commences the process of redressing this imbalance by attempting to lay the theoretical foundations for healthcare whistle blowing. As a case study, this article concludes by discussing the Personal and Professional Development course at the ANU Medical School where healthcare whistle blowing is a formal part of a virtue-based curriculum that emphasises the foundational importance of conscience. Illustrative elements of that program are discussed.

  2. Microbial effects on the development of forensically important blow fly species.

    PubMed

    Crooks, Esther R; Bulling, Mark T; Barnes, Kate M

    2016-09-01

    Colonisation times and development rates of specific blow fly species are used to estimate the minimum Post Mortem Interval (mPMI). The presence or absence of bacteria on a corpse can potentially affect the development and survival of blow fly larvae. Therefore an understanding of microbial-insect interactions is important for improving the interpretation of mPMI estimations. In this study, the effect of two bacteria (Escherichia coli and Staphylococcus aureus) on the growth rate and survival of three forensically important blow fly species (Lucilia sericata, Calliphora vicina and Calliphora vomitoria) was investigated. Sterile larvae were raised in a controlled environment (16:8h day: night light cycle, 23:21°C day: night temperature cycle and a constant 35% relative humidity) on four artificial diets prepared with 100μl of 10(5) CFU bacterial solutions as follows: (1) E. coli, (2) S. aureus, (3) a 50:50 E. coli:S. aureus mix and (4) a sterile bacteria-free control diet. Daily measurements (length, width and weight) were taken from first instar larvae through to the emergence of adult flies. Survival rates were also determined at pupation and adult emergence. Results indicate that bacteria were not essential for the development of any of the blow fly species. However, larval growth rates were affected by bacterial diet, with effects differing between blow fly species. Peak larval weights also varied according to species-diet combination; C. vomitoria had the largest weight on E. coli and mixed diets, C. vicina had the largest weight on S. aureus diets, and treatment had no significant effect on the peak larval weight of L. sericata. These results indicate the potential for the bacteria that larvae are exposed to during development on a corpse to alter both developmental rates and larval weight in some blow fly species.

  3. Does nose blowing improve hearing in serous otitis? A community study.

    PubMed Central

    Heaf, M; Hutchings, S; Bunch, K

    1991-01-01

    Otitis media with serous effusion (glue ear) is one of the most common problems seen by family doctors. In order to evaluate the effect of regular nose blowing on the resolution of serous otitis a randomized trial was carried out in a community health audiology department in Oxfordshire over the period 1983-87. A total of 84 children aged three and a half to four and a half years, found to have a conductive hearing loss owing to serous otitis were included in the study. The hearing test combined a discrimination test of seven named toys and full audiometry with earphones. The children's ears were examined by otoscope and Rinne's tuning fork test was performed. Randomly selected children were advised to blow their noses or were given no advice. The children were retested two months later and the outcome determined for children who were or were not given advice and who were or were not naturally good nose blowers. A record was made of any surgical intervention by insertion of ventilating tubes carried out before the children started school and of the results of the children's routine hearing tests on school entry. No significant differences in the proportion of children passing the second hearing test were found between children advised to blow their noses and those given no advice or between those children who were naturally good at nose blowing and those who were not. Neither was there any association between the proportion of children passing the school audiometry test and nose blowing advice being given, nose blowing ability or surgical intervention.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1793648

  4. Noise Benefits of Rotor Trailing Edge Blowing for a Model Turbofan

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Fite, E. Brian; Podboy, Gary G.

    2007-01-01

    An advanced model turbofan was tested in the NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) to explore far field acoustic effects associated with rotor Trailing-Edge-Blowing (TEB) for a modern, 1.294 stage pressure ratio turbofan model. The TEB rotor (Fan9) was designed to be aerodynamically similar to the previously tested Fan1, and used the same stator and nacelle hardware. Fan9 was designed with trailing edge blowing slots using an external air supply directed through the rotor hub. The TEB flow was heated to approximate the average fan exit temperature at each fan test speed. Rotor root blockage inserts were used to block TEB to all but the outer 40 and 20% span in addition to full-span blowing. A configuration with full-span TEB on alternate rotor blades was also tested. Far field acoustic data were taken at takeoff/approach conditions at 0.10 tunnel Mach. Far-field acoustic results showed that full-span blowing near 2.0% of the total flow could reduce the overall sound power level by about 2 dB. This noise reduction was observed in both the rotor-stator interaction tones and for the spectral broadband noise levels. Blowing only the outer span region was not very effective for lowering noise, and actually increased the far field noise level in some instances. Full-span blowing of alternate blades at 1.0% of the overall flow rate (equivalent to full-span blowing of all blades at 2.0% flow) showed a more modest noise decrease relative to full-span blowing of all blades. Detailed hot film measurements of the TEB rotor wake at 2.0% flow showed that TEB was not every effective for filling in the wake defect at approach fan speed toward the tip region, but did result in overfilling the wake toward the hub. Downstream turbulence measurements supported this finding, and support the observed reduction in spectral broadband noise.

  5. Aerodynamic analysis of VTOL inlets and definition of a short, blowing-lip inlet

    NASA Technical Reports Server (NTRS)

    Syberg, J.; Jones, A. L.

    1982-01-01

    The results indicated that, without boundary layer control, either a very long inlet or an inlet with a very high contraction ratio lip will be required to meet the stringent design requirements. It is shown that active boundary layer control is an effective means of preventing separation and that a significant reduction in inlet size can be achieved by removing only a small amount of bleed in the throat region of the inlet. A short, blowing-lip model was designed and fabricated. This model features an adjustable, blowing slot located near the hilite on the windward side of the inlet.

  6. Blow-up conditions for two dimensional modified Euler-Poisson equations

    NASA Astrophysics Data System (ADS)

    Lee, Yongki

    2016-09-01

    The multi-dimensional Euler-Poisson system describes the dynamic behavior of many important physical flows, yet as a hyperbolic system its solution can blow-up for some initial configurations. This article strives to advance our understanding on the critical threshold phenomena through the study of a two-dimensional modified Euler-Poisson system with a modified Riesz transform where the singularity at the origin is removed. We identify upper-thresholds for finite time blow-up of solutions for the modified Euler-Poisson equations with attractive/repulsive forcing.

  7. Self-Inflicted Hammer Blows to the Cranial Vault: An Interdisciplinary Challenge.

    PubMed

    Kim, Seong Woong; Putzke, Michael; Uhl, Eberhard; Krishnan, Kartik G

    2016-01-01

    Depression is predicted to be the most common cause of disability in the coming decade. Self-inflicted hammer blow to the cranium is a rare phenomenon seen in patients with a history of attempted suicide. The resulting comminuted depressed skull fracture of the midline vertex is life threatening. Rapid interdisciplinary communication and intervention are essential to reduce morbidity and mortality. We present a case of self-inflicted hammer blows to the head, review the relevant literature on this topic, and discuss neurosurgical and psychiatric implications.

  8. Linearized transfer between coplanar circular orbits using blow down propulsion system

    NASA Technical Reports Server (NTRS)

    Kechichian, J. A.; White, L. K.

    1982-01-01

    A closed form solution is presented for the coplanar transfer between nearby circular orbits for spacecraft using their own blow down propulsion system. The decaying thrust is applied along the local horizontal and the linearized equation of motion in the orbital elements formulation are used to describe the transfer which consists of a thrust-coast-relight program. Sensitivity partials are also presented analytically in order to study the effect of maneuver execution errors and various other parameters affecting the blow down propulsion system characteristics on the transfer. This strategy is applied to study the transfer of the TOPEX spacecraft from the Shuttle parking orbit to its final operational orbit.

  9. Blow-up phenomena and persistence property for the modified b-family of equations

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhu, Min

    2017-02-01

    In this paper, we study the blow-up mechanism and persistence property of solutions to the modified b-family of equations. The dynamics of the blow-up quantity along the characteristics is established by the Riccati-type differential inequality with various parameters. The key feature of the method is to refine the analysis on the growth rate of the relative ratio between solution and its gradient by performing a vertical shift. Furthermore, the persistence results for the solution are established in weighted spaces.

  10. Asymptotic analysis of reaction-diffusion-advection problems: Fronts with periodic motion and blow-up

    NASA Astrophysics Data System (ADS)

    Nefedov, Nikolay

    2017-02-01

    This is an extended variant of the paper presented at MURPHYS-HSFS 2016 conference in Barcelona. We discuss further development of the asymptotic method of differential inequalities to investigate existence and stability of sharp internal layers (fronts) for nonlinear singularly perturbed periodic parabolic problems and initial boundary value problems with blow-up of fronts for reaction-diffusion-advection equations. In particular, we consider periodic solutions with internal layer in the case of balanced reaction. For the initial boundary value problems we prove the existence of fronts and give their asymptotic approximation including the new case of blowing-up fronts. This case we illustrate by the generalised Burgers equation.

  11. Investigations on the processing of solid silicon rubber in blow moulding

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Funk, A.; Windeck, C.

    2015-05-01

    Complex hollow parts made of thermoplastics are often produced in the extrusion blow moulding process. This cost-efficient production technique with a high reproducibility, a high degree of automation and short cycle times has not been adapted for rubber processing until now. Current research activities at IKV focus on the processing of silicone rubber in extrusion blow moulding with an adapted processing and rapid cross-linking systems. The blow moulding process allows an automated and effective production of complex hollow parts made of solid silicone rubber in one step. The use of expensive core techniques, which lead to comparatively high reject rates in injection moulding, is not necessary. Expensive and time-consuming assembly steps can be reduced. This substantially increases the efficiency of the process. A systematic material selection of different solid silicone rubber compounds and cross-linking systems for the extrusion blow moulding process is a major focus of investigation. In this context, the term blow mouldability of polymers is defined and the suitability of solid silicone rubbers in combination with cross-linking systems for the blow moulding process is analysed. Characteristic mechanical and physical properties allow the identification of suitable material systems and give advice for the implementation of the new process. Extrusion blow moulding of solid silicone rubber is a new and innovative manufacturing concept to produce elastomeric hollow parts. Influences on the forming process are not known for silicone rubber yet. Therefore, to obtain a detailed process description is another focus of the research project. This includes the forming process, the processing and the influences of the material and the curing reaction on the processing. In the first instance, the investigation and description of the forming process as well as the detailed analysis of the processing parameters, such as curing time, mould temperature, wall thickness of the

  12. On the sublimation of blowing snow and of snow in canopies

    NASA Astrophysics Data System (ADS)

    Taylor, P. A.; Simon, K.; Gordon, M.; Weng, W.

    2003-04-01

    Tests have been made within the Canadian Land Surface Scheme (CLASS) of various parameterizations of sublimation of blowing snow, and tested in the context of data from weather stations (Goose Bay and Resolute) in northern Canada. We will focus on parameterization schemes based on results obtained with the PIEKTUK model of blowing snow. In addition we will present preliminary results concerning the parameterization of sublimation of snow caught in tree canopies, using schemes similar to those for evaporation from wet canopies. This is considered to be a major factor in the water budgets of forested areas in northern Canada.

  13. Self-Inflicted Hammer Blows to the Cranial Vault: An Interdisciplinary Challenge

    PubMed Central

    Kim, Seong Woong; Putzke, Michael; Uhl, Eberhard; Krishnan, Kartik G.

    2016-01-01

    Depression is predicted to be the most common cause of disability in the coming decade. Self-inflicted hammer blow to the cranium is a rare phenomenon seen in patients with a history of attempted suicide. The resulting comminuted depressed skull fracture of the midline vertex is life threatening. Rapid interdisciplinary communication and intervention are essential to reduce morbidity and mortality. We present a case of self-inflicted hammer blows to the head, review the relevant literature on this topic, and discuss neurosurgical and psychiatric implications. PMID:27722022

  14. NASA RapidScat Observes El Nino Blowing in the Winds

    NASA Image and Video Library

    2016-01-21

    While El Niño events have a significant impact on the entire Earth System, they are most easily visible in measurements of sea surface temperature (SST), sea surface height (SSH) and ocean winds near the surface. In fact, the precursor and the main driver of El Niño events is manifested in the weakening of the normally westward blowing trade winds, or even their complete reversal to blow from west to east, in the Western and Central tropical Pacific. http://photojournal.jpl.nasa.gov/catalog/PIA20365

  15. Reducing the RF Voltage Swing by Blowing up the Initial Energy Spread

    SciTech Connect

    Parzen, G.

    1988-07-16

    The high frequency rf system can have a large range in voltage requirements; e.g. from V=12 to V=11 MV. This large range can be reduced by blowing up the initial energy spread, σpo. However this increase in σpo is limited by the following effects due to intrabeam scattering. The following IBS results show that by blowing up σpo one can get by with a rf voltage swing of v=1.5 to v=12 MV.

  16. Remarks on the blow-up criterion of the three-dimensional Euler equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho

    2005-05-01

    In this paper we prove that the finite time blow-up of classical solutions of the three-dimensional homogeneous incompressible Euler equations are controlled by the Besov space, \\dot{B}^0_{\\infty, 1} , norm of the two components of the vorticity. For the axisymmetric flows with swirl we deduce that the blow-up of solution is controlled by the same Besov space norm of the angular component of the vorticity. For a proof of these results we use the Beale-Kato-Majda criterion, and the special structure of the vortex stretching term in the vorticity formulation of the Euler equations.

  17. On global existence, energy decay and blow-up criteria for the Hall-MHD system

    NASA Astrophysics Data System (ADS)

    Wan, Renhui; Zhou, Yong

    2015-12-01

    In this paper, we obtain global existence and energy decay for 3D Hall-magnetohydrodynamics (Hall-MHD) system with - Δu and - ΔB. Besides the classical energy method and Besov space techniques, the interpolating inequalities are crucial in the proof of decay estimates. Then two Osgood type blow-up criteria are established. Our results improve the corresponding theorems in [3] and [4]. In addition, we establish two Beale-Kato-Majda blow-up criterion for the generalized version of Hall-MHD with - Δu and (- Δ) β B, β > 1.

  18. Linearized transfer between coplanar circular orbits using blow down propulsion system

    NASA Technical Reports Server (NTRS)

    Kechichian, J. A.; White, L. K.

    1982-01-01

    A closed form solution is presented for the coplanar transfer between nearby circular orbits for spacecraft using their own blow down propulsion system. The decaying thrust is applied along the local horizontal and the linearized equation of motion in the orbital elements formulation are used to describe the transfer which consists of a thrust-coast-relight program. Sensitivity partials are also presented analytically in order to study the effect of maneuver execution errors and various other parameters affecting the blow down propulsion system characteristics on the transfer. This strategy is applied to study the transfer of the TOPEX spacecraft from the Shuttle parking orbit to its final operational orbit.

  19. Investigations of transonic buffet control on civil aircraft wing with the use of tangential jet blowing

    NASA Astrophysics Data System (ADS)

    Abramova, K. A.; Petrov, A. V.; Potapchick, A. V.; Soudakov, V. G.

    2016-10-01

    Numerical and experimental investigations of transonic buffet control by tangential jet blowing are presented. To suppress the shock-induced boundary layer separation and the buffet at transonic speeds, compressed air jet is blown through a small slot nozzle tangentially to the upper surface of the supercritical airfoil. Numerical simulations were carried out on the basis of the unsteady Reynolds averaged Navier-Stokes (URANS) equations. Experimental studies of the tangential jet blowing were performed in the transonic wind tunnel T-112 of TsAGI. Results show that the jet moves the shock downstream, increases lift, suppresses flow separation under shock foot and delays buffet onset.

  20. Development of fine-celled bio-fiber composite foams using physical blowing agents and nano-particles

    NASA Astrophysics Data System (ADS)

    Guo, Gangjian

    As one of eco-friendly bio-fibers, wood-fiber has been incorporated in plastics to make wood-fiber/plastic composites (WPC) with an increased stiffness, durability and lowered cost. However, these improvements are usually accompanied by loss in the ductility and impact strength of the composites. These shortcomings can be significantly improved by incorporating a fine-cell foam structure in the composites. This thesis presents the development of the foaming technology for the manufacture of fine-cell WPC foams with environmentally benign physical blowing agents (PBAs), and focuses on the elucidation of the fundamental foaming mechanisms and the related issues involved. One critical issue comes from the volatiles evolved from the wood-fiber during high temperature processing. The volatiles, as a blowing agent, can contribute to the foaming process. However, they lead to gross deterioration of the cell structure of WPC foams. The presence of volatiles makes foaming of WPC "a poorly understood black art". With the use of PBAs, a strategy of lowering processing temperature becomes feasible, to suppress the generation of volatiles. A series of PBA-based experiments were designed using a statistical design of experiments (DOE) technique, and were performed to establish the relationship of processing and material variables with the structure of WPC foams. Fundamental foaming behaviors for two different PBAs and two different polymer systems were identified. WPC foams with a fine-cell morphology and a desired density were successfully obtained at the optimized conditions. Another limitation for the wider application of WPC is their flammability. Innovative use of a small amount of nano-clay in WPC significantly improved the flame-retarding property of WPC, and the key issue was to achieve a high degree of exfoliation of nano-particles in the polymer matrix, to achieve a desired flammability reduction. The synergistic effects of nano-particles in foaming of WPC were

  1. Research and Analysis on the Physical and Chemical Properties of Molten Bath with Bottom-Blowing in EAF Steelmaking Process

    NASA Astrophysics Data System (ADS)

    Wei, Guangsheng; Zhu, Rong; Dong, Kai; Ma, Guohong; Cheng, Ting

    2016-10-01

    Bottom-blowing technology is widely adopted in electric arc furnace (EAF) steelmaking to promote the molten bath fluid flow, accelerate the metallurgical reaction, and improve the quality of molten steel. In this study, a water model experiment and a computational fluid dynamics model were established to investigate the effects of bottom-blowing gas flow rate on the fluid flow characteristics in the EAF molten bath. The results show that the interaction among the bottom-blowing gas streams influences the molten bath flow field, and increasing the bottom-blowing gas flow rate can accelerate the fluid flow and decrease the volume of the dead zone. Based on industrial application research, the physical and chemical properties of the molten bath with bottom-blowing were analyzed. Compared with traditional melting conditions without bottom-blowing, bottom-blowing technology demonstrates obvious advantages in promoting the heat transfer and metallurgical reactions in the molten bath. With the bottom-blowing arrangement, the dephosphorization and decarburization rates are accelerated, the contents of FeO and T. Fe in endpoint slag are decreased, and the endpoint carbon-oxygen equilibrium of molten steel is improved.

  2. Near-surface snow particle dynamics from particle tracking velocimetry and turbulence measurements during alpine blowing snow storms

    NASA Astrophysics Data System (ADS)

    Aksamit, Nikolas O.; Pomeroy, John W.

    2016-12-01

    Many blowing snow conceptual and predictive models have been based on simplified two-phase flow dynamics derived from time-averaged observations of bulk flow conditions in blowing snow storms. Measurements from the first outdoor application of particle tracking velocimetry (PTV) of near-surface blowing snow yield new information on mechanisms for blowing snow initiation, entrainment, and rebound, whilst also confirming some findings from wind tunnel observations. Blowing snow particle movement is influenced by complex surface flow dynamics, including saltation development from creep that has not previously been measured for snow. Comparisons with 3-D atmospheric turbulence measurements show that blowing snow particle motion immediately above the snow surface responds strongly to high-frequency turbulent motions. Momentum exchange from wind to the dense near-surface particle-laden flow appears significant and makes an important contribution to blowing snow mass flux and saltation initiation dynamics. The more complete and accurate description of near-surface snow particle motions observable using PTV may prove useful for improving blowing snow model realism and accuracy.

  3. Huge "Superbubble" of Gas Blowing Out of Milky Way

    NASA Astrophysics Data System (ADS)

    2006-01-01

    out of the plane has to have been unusually violent," he added. The scientists speculate that the gas may be blown outward by the strong stellar winds and supernova explosions from numerous massive young stars in a cluster. "One theoretical model shows that young stars could power an outflow that matches what we see very closely," Pidopryhora said. According to that model, the superbubble probably is 10-30 million years old. "Finding this superbubble practically in our back yard is quite exciting, because these superbubbles are very important factors in how galaxies evolve," Lockman said. Superbubbles, powered by supernova explosions and young stellar winds, control the way heavy elements, produced only in the cores of stars, are distributed throughout the galaxy, the scientists said. Those heavy elements are then incorporated into the next generation of stars -- and planets -- to form. "The formation of our own Sun and planets probably was heavily influenced, if not triggered, by a nearby supernova explosion," Lockman said. In addition, if the outflow from superbubbles is energetic enough, it could blow the gas into intergalactic space, never to return to the galaxy. "This would shut down the formation of new stars in the galaxy," Pidopryhora explained. The Green Bank Telescope, dedicated in 2000, is the largest fully-steerable radio telescope in the world, with more than two acres of collecting area in its giant dish. Located within the National Radio Quiet Zone in West Virginia, the GBT provides extraordinary sensitivity for observing faint radio-emitting objects in the distant Universe. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  4. How to Blow a Bubble in a Galaxy

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    outflow from a startburst concentrated near the nuclei. Either of these outflows could blow a bubble as it first interacts with the interstellar medium.The authors show that the first category is disfavored based on observational and energetics arguments. In addition, the western-most nucleus and the bubble both align exactly with the axis of the large-scale outflows of the galaxy. Unlikely to be due to chance, this alignment is strong support in favor of the second category.Thus, its probable that the bubble is blown by an outflow that originates from the inner ~100pc around one of the nuclei, either due to a jet or a starburst wind. Further observations should be able to differentiate between these two mechanisms.CitationKelly E. Lockhart et al 2015 ApJ 810 149. doi:10.1088/0004-637X/810/2/149

  5. Two persistent organic pollutants which act through different xenosensors (alpha-endosulfan and 2,3,7,8 tetrachlorodibenzo-p-dioxin) interact in a mixture and downregulate multiple genes involved in human hepatocyte lipid and glucose metabolism.

    PubMed

    Ambolet-Camoit, Ariane; Ottolenghi, Chris; Leblanc, Alix; Kim, Min Ji; Letourneur, Franck; Jacques, Sébastien; Cagnard, Nicolas; Guguen-Guillouzo, Christiane; Barouki, Robert; Aggerbeck, Martine

    2015-09-01

    Individuals, typically, are exposed to mixtures of environmental xenobiotics affecting multiple organs and acting through different xenosensors and pathways in species and cell-type specific manners. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and α-endosulfan are Persistent Organic Pollutants (POPs) and endocrine disruptors which act through different xenosensors and accumulate in the liver. Our objective in this HEALS study was to investigate the effects of the mixture of these POPs on gene expression in a human-derived hepatocyte cell line, HepaRG. We found that, in spite of having largely uncorrelated effects, TCDD and α-endosulfan, when mixed, alter the expression of genes. The combined effects of the mixture of the POPs significantly altered the expression of 100 genes (42 up- and 58 down-regulated) whereas the same concentration of either POP alone did not alter significantly the expression of these genes. For 32 other genes, selective inhibitory crosstalk between TCDD and α-endosulfan was observed. One of the POPs inhibited the effect, on gene expression, of the other in the mixture although, when used alone, that POP did not affect expression. The expression of another 82 genes was significantly altered (up- or down-regulated) by a single POP. The addition of the second POP either increased, in the same direction, the effect on gene expression or had no further effect. At low concentrations (0.2 nM TCDD and 1 μM α-endosulfan), the POPs still had significant effects and the levels of expression of the corresponding proteins were found to be affected for some genes. Particularly striking was the 80-90% inhibition, by the mixture, of the expression of a number of genes of several hepatic intermediary metabolic pathways (glycerolipid metabolism, FXR/RXR activation, glycolysis/gluconeogenesis, retinoid and bile acid biosynthesis), whereas each pollutant alone had only a moderate effect. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie

  6. Experimental investigation of tangential blowing for control of the strong shock boundary layer interaction on inlet ramps

    NASA Technical Reports Server (NTRS)

    Schwendemann, M. F.

    1981-01-01

    A 0.165-scale isolated inlet model was tested in the NASA Lewis Research Center 8-ft by 6-ft Supersonic Wind Tunnel. Ramp boundary layer control was provided by tangential blowing from a row of holes in an aft-facing step set into the ramp surface. Testing was performed at Mach numbers from 1.36 to 1.96 using both cold and heated air in the blowing system. Stable inlet flow was achieved at all Mach numbers. Blowing hole geometry was found to be significant at 1.96M. Blowing air temperature was found to have only a small effect on system performance. High blowing levels were required at the most severe test conditions.

  7. Experimental results of the control of a vortical flow by tangential blowing

    NASA Technical Reports Server (NTRS)

    Wood, N. J.; Roberts, L.

    1986-01-01

    The results of a wind tunnel test to investigate the controlling effects of tangential, leading edge blowing on the vortical flow over a delta wing are given. Blowing is used to directly control the crossflow separation points at the rounded leading edge and hence, the trajectory of the feeding sheet and the location of the vortex. Experiments were conducted for both co-flowing and counter-flowing configurations over a range of angles of attack from 0 to 90 degrees. Results in the form of pressure distributions, overall force coefficients and flow mappings were obtained. The emphasis is on data presentation rather than detailed analysis. The initial results indicate that the co-flowing configuration was capable of extending the regime of stable, controlled vortical flow over the upper surface by approximately 30 degrees angle of attack for modest blowing requirements. Increases in maximum normal force coefficient of approximately 30% were achieved and significant rolling moments produced at angles of attack from 30 to 60 degrees. The counter-flowing configuration indicated only minor lift augmentation with the exception of an isolated occurrence at 20 degrees angle of attack. At that condition, with very weak blowing, a lift augmentation of approximately 20 was measured.

  8. Compressed Air System Modifications Improve Efficiency at a Plastics Blow Molding Plant (Southeastern Container Plant)

    SciTech Connect

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the plastics blow molding plant project.

  9. A Molecular Key for the Identification of Blow Flies in Southeastern Nebraska

    USDA-ARS?s Scientific Manuscript database

    The identification of blow flies (Calliphoridae) (typically the first colonizers of cadavers) is difficult, especially in the earlier instars because of their small size, similarity and simplicity in external morphology. We consider how taxonomic keys based on molecular genetic data facilitate accur...

  10. What Actions Can Be Taken to Increase Whistle-Blowing in the Classroom?

    ERIC Educational Resources Information Center

    Bernardi, Richard A.; Landry, Alexandra C.; Landry, Erynne E.; Buonafede, Mitchell R.; Berardi, Marissa E.

    2016-01-01

    This study surveyed undergraduate business students on various issues concerning the potential of students whistle-blowing when they observe other students cheating. Developing the courage of one's conviction in our accounting students is important to accounting educators as we are also emphasizing traits such as integrity, skepticism, and…

  11. The American Economy: A Fuse About to Blow? Fundamentals of Free Enterprise, No. 6.

    ERIC Educational Resources Information Center

    American Fletcher National Bank and Trust Co., Indianapolis, IN.

    Designed for high school economics students as a public service project of the American Fletcher National Bank, the booklet examines the heavy burdens placed on our political-economic system and compares our economy to an overloaded electrical system about to "blow a fuse." In the last two decades, America has become a self-indulgent…

  12. BEARDSLEY AND PIPER (B&P) CORE BLOWING MACHINE. VIRGINIA BLAKELY MANUALLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BEARDSLEY AND PIPER (B&P) CORE BLOWING MACHINE. VIRGINIA BLAKELY MANUALLY FILLING SAND MAGAZINE THAT WILL ROTATE WITH THE CORE BOX, FILLING IT UNDER PRESSURE SIMILAR TO THE CORE MACHINE IN THE BACKGROUND. - Southern Ductile Casting Company, Core Making, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  13. Unsavory Problems at Tasty's: A Role-Play about Whistle-Blowing

    ERIC Educational Resources Information Center

    Comer, Debra R.; Vega, Gina

    2006-01-01

    This article presents a role-play exercise to make the topic of whistle-blowing personally salient to undergraduates. Students identify with the prospective whistle-blower, whose decision affects several stakeholders. The protagonist merely suspects her manager of stealing, until she hears concrete evidence of his thefts from her assistant…

  14. Whistle-Blowing as a Form of Advocacy: Guidelines for the Practitioner and Organization

    ERIC Educational Resources Information Center

    Greene, Annette D.; Latting, Jean Kantambu

    2004-01-01

    Advocacy has been an inherent component of social work since the mid-1800s. The NASW Code of Ethics explicitly promotes advocacy as an ethical stance against inhumane conditions. Whistle-blowing, on the other hand, occurs mostly in the business and public administration disciplines and is relatively unknown in the social work profession. Using…

  15. Investigating influence of the magnetic arc blow in multi-break vacuum circuit breakers

    NASA Astrophysics Data System (ADS)

    Liao, Minfu; Ge, Guowei; Duan, Xiongying; Huang, Zhihui; Zou, Jiyan

    2016-12-01

    This paper investigates the influence of the interactive magnetic field in multi-break vacuum circuit breakers (VCBs) on the arc plasma and the post-arc characteristics. The magnetic field of multi-break VCBs is asymmetric and off-center because of the interactive magnetic field, which is also called bias magnetic field (BMF). The BMF distribution of double-break VCBs is gained by electromagnetic analysis. The test circuit of the magnetic arc blow in multi-break VCBs is established by simplifying as the interaction between the vacuum arc and the BMF. The influence of the magnetic arc blow on the arc plasma is studied by the high-speed CMOS camera and the post-arc current measure. While the vacuum arc is in the direction of the Ampere force with the BMF at 200 mT, it is in the retrograde direction when the BMF is below 100 mT, which results in the post-arc charge obviously varying from 9 μC to 50 μC. The relationship between the BMF and the post arc charge is gained. The mechanism of the magnetic arc blow in multi-break VCBs is discussed. Therefore, this paper can provide the base of construct and configuration to avoid the influence of the magnetic arc blow.

  16. Blow-up of solutions to quantum hydrodynamic models in half space

    NASA Astrophysics Data System (ADS)

    Guo, Boling; Wang, Guangwu

    2017-03-01

    In this paper, we prove that any smooth solutions of quantum hydrodynamic model which satisfies suitable conditions will blow up in finite time in half space. This model can be considered as the compressible Euler equation with quantum potential. The main ideal is based on the construction of energy inequality.

  17. A review of bacterial interactions with blow flies (Diptera: Calliphoridae) of medical, veterinary, and forensic importance

    USDA-ARS?s Scientific Manuscript database

    Blow flies are commonly associated with decomposing material. In most cases, the larvae are found feeding on decomposing vertebrate remains. However, some species have specialized to feed on living tissue or can survive on other alternate resources like feces. Because of their affiliation with su...

  18. Resection and primary anastomosis with or without modified blow-hole colostomy for sigmoid volvulus

    PubMed Central

    Coban, Sacid; Yilmaz, Mehmet; Terzi, Alpaslan; Yildiz, Fahrettin; Ozgor, Dincer; Ara, Cengiz; Yologlu, Saim; Kirimlioglu, Vedat

    2008-01-01

    AIM: To evaluate the efficacy of resection and primary anastomosis (RPA) and RPA with modified blow-hole colostomy for sigmoid volvulus. METHODS: From March 2000 to September 2007, 77 patients with acute sigmoid volvulus were treated. A total of 47 patients underwent RPA or RPA with modified blow-hole colostomy. Twenty-five patients received RPA (Group A), and the remaining 22 patients had RPA with modified blow-hole colostomy (Group B). The clinical course and postoperative complications of the two groups were compared. RESULTS: The mean hospital stay, wound infection and mortality did not differ significantly between the groups. Superficial wound infection rate was higher in group A (32% vs 9.1%). Anastomotic leakage was observed only in group A, with a rate of 6.3%. The difference was numerically impressive but was statistically not significant. CONCLUSION: RPA with modified blow-hole colostomy provides satisfactory results. It is easy to perform and may become a method of choice in patients with sigmoid volvulus. Further studies are required to further establish its role in the treatment of sigmoid volvulus. PMID:18810779

  19. Microstructural evolution of PET under stretching and during stretch blow moulding

    NASA Astrophysics Data System (ADS)

    Picard, Martine; Billon, Noëlle

    2007-04-01

    Strain induced crystallisation of PET designed for stretch blow molding is studied combining well-controlled tensile tests and free blowing on a stretch blow prototype. Microstructure evolution is followed by WAXS and SAXS. Observations on blown parts clearly show that the microstructure can differ along the bottle and from processing conditions to another. Difference can be observed on crystalline orientation, periodic arrangement at the level of lamellae and long period. Range of long period, 8.5 to 13 nm is in agreement with literature. In certain case lamellar organisation disappears. Despite of high level of strain and evidence for strain hardening to occur during blowing no perfect crystalline pattern is observed, except in very thick zones. Interrupted tensile tests followed by quenching demonstrates that strain hardening is not correlated to prefect crystallisation. Microstructure clearly depends on the three parameters: temperature, strain rate and strain. It is concluded that strain hardening is mainly controlled by first stages of crystallisation and that actual crystallisation occurs during a following relaxation step. This later is then highly dependent upon cooling step.

  20. The American Economy: A Fuse About to Blow? Fundamentals of Free Enterprise, No. 6.

    ERIC Educational Resources Information Center

    American Fletcher National Bank and Trust Co., Indianapolis, IN.

    Designed for high school economics students as a public service project of the American Fletcher National Bank, the booklet examines the heavy burdens placed on our political-economic system and compares our economy to an overloaded electrical system about to "blow a fuse." In the last two decades, America has become a self-indulgent…

  1. A test of Automatic Blowing snow Station (ABS) in the French Alps

    NASA Astrophysics Data System (ADS)

    Ito, Yoichi; Naaim-Bouvet, Florence; Nishimura, Kouichi; Bellot, Hervé; Fontaine, Firmin

    2015-04-01

    Blowing snow is a significant factor to estimate snow distribution in alpine, Arctic and Antarctic regions. The Snow Particle Counter (SPC) is well used for mass flux measurement of the blowing snow, however, the SPC deployment is not always possible for automatic observation under harsh conditions. Recently Automatic Blowing snow Station (ABS), which is a simpler device than the SPC, have been developed in Japan. We installed the ABS system with the SPCs at the Lac Blanc Pass in the French Alps (2700 m a.s.l.) to examine the relationship between the ABS output and snow particle mass flux. The ABS worked well, without problems, for the entire 4-month period in the winter 2014. The ABS output was converted to mass flux using wind-dependent power function which obtained from calibration procedure in a cold wind-tunnel. The mass flux obtained from the ABS showed a good agreement with the SPC, particularly around the peak of blowing snow event. Based on tests under controlled (cold wind-tunnel) and field conditions, we conclude that the ABS is suitable for practical use.

  2. Academic Misconduct: A Goals-Plans-Action Approach to Peer Confrontation and Whistle-Blowing

    ERIC Educational Resources Information Center

    Henningsen, Mary Lynn Miller; Valde, Kathleen S.; Denbow, Jessica

    2013-01-01

    Academic misconduct is a serious, pervasive, communication phenomenon on college campuses. In this study, the goals-plans-action model (Dillard, 1990) was used as a theoretical framework to investigate peer confrontation of cheating and whistle-blowing to a course instructor. In an experiment, participants were asked to respond to measures of…

  3. What Actions Can Be Taken to Increase Whistle-Blowing in the Classroom?

    ERIC Educational Resources Information Center

    Bernardi, Richard A.; Landry, Alexandra C.; Landry, Erynne E.; Buonafede, Mitchell R.; Berardi, Marissa E.

    2016-01-01

    This study surveyed undergraduate business students on various issues concerning the potential of students whistle-blowing when they observe other students cheating. Developing the courage of one's conviction in our accounting students is important to accounting educators as we are also emphasizing traits such as integrity, skepticism, and…

  4. Unsavory Problems at Tasty's: A Role-Play about Whistle-Blowing

    ERIC Educational Resources Information Center

    Comer, Debra R.; Vega, Gina

    2006-01-01

    This article presents a role-play exercise to make the topic of whistle-blowing personally salient to undergraduates. Students identify with the prospective whistle-blower, whose decision affects several stakeholders. The protagonist merely suspects her manager of stealing, until she hears concrete evidence of his thefts from her assistant…

  5. Straightforward factors for predicting the prognosis of blow-out fractures.

    PubMed

    Higashino, Takuya; Hirabayashi, Shinichi; Eguchi, Tomoaki; Kato, Yuki

    2011-07-01

    In blow-out fractures, some nonoperative cases have a poor outcome, and a method for accurate prognosis is required. To address this need, we retrospectively reviewed blow-out fractures presenting at Teikyo University Hospital between July 2004 and May 2007 and conducted a survey regarding diplopia and enophthalmos for nonoperative cases. Computed tomographic scan findings were divided according to fracture width and the degree of protrusion of the inferior rectus muscle into the maxillary sinus. We had 106 patients presenting with blow-out fractures, and 89 patients had been treated nonoperatively. In medial orbital wall fractures, no patient had diplopia, and 1 patient had enophthalmos after nonoperative treatment. In punched-out orbital floor fractures, all cases had diplopia when the fracture width was less than half the diameter of the globe, and the protrusion of the inferior rectus muscle into the maxillary sinus was half or more of its section. Even if the fracture width was less than half the diameter of the globe, 2 of 3 patients had enophthalmos when the protrusion of the inferior rectus muscle into the maxillary sinus was half or more of its section. Among the linear orbital floor fractures, 1 case required an emergency operation. We suggest a new algorithm for treatment of blow-out fractures based on computed tomographic scan findings that can also contribute to making a prognosis.

  6. Solution blow spun Poly(lactic acid)/Hydroxypropyl methylcellulose nanofibers with antimicrobial properties

    USDA-ARS?s Scientific Manuscript database

    Poly(lactic acid) (PLA) nanofibers containing hydroxypropyl methylcellulose (HPMC) and tetracycline hydrochloride (THC) were solution blow spun from two different solvents, chloroform/acetone (CA, 80:20 v/v) and 2,2,2-triflouroethanol (TFE). The diameter distribution, chemical, thermal, thermal stab...

  7. Environmental factors affecting early carcass attendance by four species of blow flies (Diptera: Calliphoridae) in Texas.

    PubMed

    Mohr, Rachel M; Tomberlin, Jeffery K

    2014-05-01

    As the most common primary colonizer of carrion, adult blow flies (Diptera: Calliphoridae) play an important role in initiating arthropod-mediated breakdown of soft tissue; however, their timing is highly variable. This variability complicates the estimation of precolonization intervals or periods of insect activity by forensic entomologists. In this study, the size of the adult blow fly on swine carcasses was compared with various environmental conditions including time of day, temperature, wind speed, and light levels. Four trials were conducted: two in August and September 2008, one in January 2009, and one in February-March 2010. Of the measured variables, time of day was the only consistent factor explaining the population size of blow fly on a carcass, although precipitation and high winds affected winter-active Calliphora vicina Robineau-Desvoidy. Male flies were also collected, suggesting that carcasses may play additional roles in adult blow fly ecology beyond that of a simple oviposition site. For both sexes of flies, a strong diel pattern of behavior emerged, which could be useful in estimating precolonization intervals by considering the environmental conditions at a scene, and thus forensic entomologists may be better able to estimate the likelihood of adult activity at a carcass.

  8. Identification of Forensically Important Blow Flies (Diptera: Calliphoridae) in China Based on COI.

    PubMed

    Meng, Fanming; Ren, Lipin; Wang, Ziyue; Deng, Jianqiang; Guo, Yadong; Chen, Chao; Finkelbergs, Dmitrijs; Cai, Jifeng

    2017-09-01

    Blow flies are among the most important insects in forensic entomology casework. Identification of blow fly species can be a time consuming and difficult task, especially at their early development stages. Present DNA-based technologies provide a promising identification method for these forensically important calliphorids. The cytochrome oxidase subunit I (COI) sequence has been applied as a suitable DNA marker in calliphorid identification for many years; however, limitation exists in using short sequence to determine genetically close species. In this study, COI long sequences were utilized in species-level identification. Seventy-two specimens were collected from 27 locations across 22 Chinese provinces, and unambiguously determined as 16 species under seven genera of Calliphoridae. Analysis of long mitochondrial COI sequence (1,021-1,382 bp) data from forensically relevant blow flies collected in the inland region of China provided a reliable marker for accurate identification. Our data provide genetic diversity and reference for global forensic-related blow fly species identification, and conductive meaning on future utilization of Chinese calliphorids used in forensic entomological practice. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. A Paradigm for Operant Conditioning in Blow Flies ("Phormia Terrae Novae" Robineau-Desvoidy, 1830)

    ERIC Educational Resources Information Center

    Sokolowski, Michel B. C.; Disma, Gerald; Abramson, Charles I.

    2010-01-01

    An operant conditioning situation for the blow fly ("Protophormia terrae novae") is described. Individual flies are trained to enter and reenter a hole as the operant response. Only a few sessions of contingent reinforcement are required to increase response rates. When the response is no longer followed by food, the rate of entering the hole…

  10. Laboratory colonization of the blow flies, Chrysomya megacephala (Diptera: Calliphoridae) and Chrysomya rufifacies (Diptera: Calliphoridae)

    USDA-ARS?s Scientific Manuscript database

    Chrysomya rufifacies is a blow fly commonly found in corpses at crime scene investigations. This study was designed to develop laboratory colonization methods for Ch. rufifacies and utilize Chrysomya megacephala as its larval food source. Both fly species were collected in the wild and easily colon...

  11. On the Blow-up Criterion of 3D-NSE in Sobolev-Gevrey Spaces

    NASA Astrophysics Data System (ADS)

    Benameur, Jamel; Jlali, Lotfi

    2016-12-01

    In Benameur (Methods Appl 103:87-97, 2014), Benameur proved a blow-up result of the non regular solution of ( NSE) in the Sobolev-Gevrey spaces. In this paper we improve this result, precisely we give an exponential type explosion in Sobolev-Gevrey spaces with less regularity on the initial condition. Fourier analysis and standard techniques are used.

  12. Optimization of bump and blowing to control the flow through a transonic compressor blade cascade

    NASA Astrophysics Data System (ADS)

    Mazaheri, K.; Khatibirad, S.

    2017-06-01

    Shock control bump (SCB) and blowing are two flow control methods, used here to improve the aerodynamic performance of transonic compressors. Both methods are applied to a NASA rotor 67 blade section and are optimized to minimize the total pressure loss. A continuous adjoint algorithm is used for multi-point optimization of a SCB to improve the aerodynamic performance of the rotor blade section, for a range of operational conditions around its design point. A multi-point and two single-point optimizations are performed in the design and off-design conditions. It is shown that the single-point optimized shapes have the best performance for their respective operating conditions, but the multi-point one has an overall better performance over the whole operating range. An analysis is given regarding how similarly both single- and multi-point optimized SCBs change the wave structure between blade sections resulting in a more favorable flow pattern. Interactions of the SCB with the boundary layer and the wave structure, and its effects on the separation regions are also studied. We have also introduced the concept of blowing for control of shock wave and boundary-layer interaction. A geometrical model is introduced, and the geometrical and physical parameters of blowing are optimized at the design point. The performance improvements of blowing are compared with the SCB. The physical interactions of SCB with the boundary layer and the shock wave are analyzed. The effects of SCB on the wave structure in the flow domain outside the boundary-layer region are investigated. It is shown that the effects of the blowing mechanism are very similar to the SCB.

  13. Orbital blow-out fractures: correlation of preoperative computed tomography and postoperative ocular motility.

    PubMed Central

    Harris, G J; Garcia, G H; Logani, S C; Murphy, M L; Sheth, B P; Seth, A K

    1998-01-01

    BACKGROUND/PURPOSE: Although the management of orbital blow-out fractures was controversial for many years, refined imaging with computed tomography (CT) helped to narrow the poles of the debate. Many orbital surgeons currently recommend repair if fracture size portends late enophthalmos, or if diplopia has not substantially resolved within 2 weeks of the injury. While volumetric considerations have been generally well-served by this approach, ocular motility outcomes have been less than ideal. In one series, almost 50% of patients had residual diplopia 6 months after surgery. A fine network of fibrous septa that functionally unites the periosteum of the orbital floor, the inferior fibrofatty tissues, and the sheaths of the inferior rectus and oblique muscles was demonstrated by Koornneef. Entrapment between bone fragments of any of the components of this anatomic unit can limit ocular motility. Based on the pathogenesis of blow-out fractures, in which the fibrofatty-muscular complex is driven to varying degrees between bone fragments, some measure of soft tissue damage might be anticipated. Subsequent intrinsic fibrosis and contraction can tether globe movement, despite complete reduction of herniated orbital tissue from the fracture site. We postulated that the extent of this soft tissue damage might be estimated from preoperative imaging studies. METHODS: Study criteria included: retrievable coronal CT scans; fractures of the orbital floor without rim involvement, with or without extension into the medial wall; preoperative diplopia; surgical repair by a single surgeon; complete release of entrapped tissues; and postoperative ocular motility outcomes documented with binocular visual fields (BVFs). Thirty patients met all criteria. The CT scans and BVFs were assessed by different examiners among the authors. Fractures were classified into 3 general categories and 2 subtypes to reflect the severity of soft tissue damage within each category. "Trap-door" injuries

  14. The Effects of Blowing Over Various Trailing-edge Flaps on an NACA 0006 Airfoil Section, Comparisons with Various Types of Flaps on other Airfoil Sections, and an Analysis of Flow and Power Relationships for Blowing Systems

    NASA Technical Reports Server (NTRS)

    Dods, J. B., Jr.; Watson, E. C.

    1976-01-01

    The results are presented of a two-dimensional investigation conducted to determine the effect of blowing over various types of trailing-edge flaps on a wing having the NACA 0006 airfoil section and a drooped-nose flap. The position and profile of the trailing-edge flap, the nozzle height, and the location of the flap with respect to the nozzle were found to be important variables. Data from many investigations were used to make an evaluation of the effects of blowing on lift. An analysis was made of flow and power relationships for blowing systems.

  15. Experiments in Aircraft Roll-Yaw Control using Forebody Tangential Blowing

    NASA Technical Reports Server (NTRS)

    Pedreiro, Nelson

    1997-01-01

    Advantages of flight at high angles of attack include increased maneuverability and lift capabilities. These are beneficial not only for fighter aircraft, but also for future supersonic and hypersonic transport aircraft during take-off and landing. At high angles of attack the aerodynamics of the vehicle are dominated by separation, vortex shedding and possibly vortex breakdown. These phenomena severely compromise the effectiveness of conventional control surfaces. As a result, controlled flight at high angles of attack is not feasible for current aircraft configurations. Alternate means to augment the control of the vehicle at these flight regimes are therefore necessary. The present work investigates the augmentation of an aircraft flight control system by the injection of a thin sheet of air tangentially to the forebody of the vehicle. This method, known as Forebody Tangential Blowing (FTB), has been proposed as an effective means of increasing the controllability of aircraft at high angles of attack. The idea is based on the fact that a small amount of air is sufficient to change the separation lines on the forebody. As a consequence, the strength and position of the vortices are altered causing a change on the aerodynamic loads. Although a very effective actuator, forebody tangential blowing is also highly non-linear which makes its use for aircraft control very difficult. In this work, the feasibility of using FTB to control the roll-yaw motion of a wind tunnel model was demonstrated both through simulations and experimentally. The wind tunnel model used in the experiments consists of a wing-body configuration incorporating a delta wing with 70-degree sweep angle and a cone-cylinder fuselage. The model is equipped with forebody slots through which blowing is applied. There are no movable control surfaces, therefore blowing is the only form of actuation. Experiments were conducted at a nominal angle of attack of 45 degrees. A unique apparatus that constrains

  16. On the blow-up phenomena of solutions for the full compressible Euler equations in {{{R}}^{N}}

    NASA Astrophysics Data System (ADS)

    Wu, Xinglong

    2016-11-01

    In fluid dynamics, blow-up phenomena of solutions is interesting and challenging to physicists and mathematicians. The present paper is devoted to studying blow-up phenomena of the spherically symmetric solutions for the full compressible Euler equations in {{{R}}N}, N≥slant 1 . The approach is to a construct special explicit solution with spherical symmetry to study certain blow-up phenomena of solutions to the full compressible Euler equation in {{{R}}N} . We also discuss steady-state smooth solutions of spherical symmetry to equation (1.1).

  17. Synergistic Separation Behavior of Boron in Metallurgical Grade Silicon Using a Combined Slagging and Gas Blowing Refining Technique

    NASA Astrophysics Data System (ADS)

    Wu, Jijun; Zhou, Yeqiang; Ma, Wenhui; Xu, Min; Yang, Bin

    2017-02-01

    A combined slagging and gas blowing refining technique for boron removal from metallurgical grade silicon using the CaO-SiO2-CaCl2 slag and the mixed Ar-O2-H2O gas is investigated. The oxygen gas blowing in combination with water vapor shows a wonderful removal efficiency of boron compared with the single oxygen or the single water vapor blowing. It is analyzed from the thermodynamics that a synergistic separation behavior of boron is resulted from CaCl2 and O2. Boron is removed and reduced from 22 to 0.75 ppmw with a removal efficiency of 96.6 pct.

  18. Stagnation point flow, heat transfer and species transfer over a shrinking sheet with coupled Stefan blowing effects from species transfer

    NASA Astrophysics Data System (ADS)

    Hamid, Rohana Abdul; Nazar, Roslinda; Pop, Ioan

    2016-11-01

    The problem of stagnation-point flow and heat transfer with the effect of the blowing from species transfer over an impermeable shrinking sheet is studied. The governing boundary layer equations are transformed into the ordinary differential equations using the similarity transformations which are then solved numerically using the bvp4c function in Matlab. The focus of this study is the effect of the blowing parameter to the velocity of the flow, the rate of heat transfer and the mass of species transfer over a flat surface of shrinking sheet. From the numerical results, it is found that the blowing parameter substantially affects the flow, heat and mass transfer characteristics.

  19. Separation of organic azeotropic mixtures by pervaporation

    SciTech Connect

    Baker, R.W.

    1991-12-01

    Distillation is a commonly used separation technique in the petroleum refining and chemical processing industries. However, there are a number of potential separations involving azetropic and close-boiling organic mixtures that cannot be separated efficiently by distillation. Pervaporation is a membrane-based process that uses selective permeation through membranes to separate liquid mixtures. Because the separation process is not affected by the relative volatility of the mixture components being separated, pervaporation can be used to separate azetropes and close-boiling mixtures. Our results showed that pervaporation membranes can be used to separate azeotropic mixtures efficiently, a result that is not achievable with simple distillation. The membranes were 5--10 times more permeable to one of the components of the mixture, concentrating it in the permeate stream. For example, the membrane was 10 times more permeable to ethanol than methyl ethyl ketone, producing 60% ethanol permeate from an azeotropic mixture of ethanol and methyl ethyl ketone containing 18% ethanol. For the ethyl acetate/water mixture, the membranes showed a very high selectivity to water (> 300) and the permeate was 50--100 times enriched in water relative to the feed. The membranes had permeate fluxes on the order of 0.1--1 kg/m{sup 2}{center dot}h in the operating range of 55--70{degrees}C. Higher fluxes were obtained by increasing the operating temperature.

  20. Symmetric normal mixtures

    NASA Technical Reports Server (NTRS)

    Turmon, Michael

    2004-01-01

    We consider mixture density estimation under the symmetry constraint x = Az for an orthogonal matrix A. This distributional constraint implies a corresponding constraint on the mixture parameters. Focusing on the gaussian case, we derive an expectation-maximization (EM) algorithm to enforce the constraint and show results for modeling of image feature vectors.

  1. Near azeotropic mixture substitute

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1996-01-01

    The present invention comprises a refrigerant mixture consisting of a first mole fraction of 1,1,1,2-tetrafluoroethane (R134a) and a second mole fraction of a component selected from the group consisting of a mixture of CHClFCF.sub.3 (R124) and CH.sub.3 CClF.sub.2 (R142b); a mixture of CHF.sub.2 CH.sub.3 (R152a) and CHClFCF.sub.3 (R124); a mixture of CHF.sub.2 CH.sub.3 (R152a) and CH.sub.3 CClF.sub.2 (R142b); and a mixture of CHClFCF.sub.3 (R124), CH.sub.3 CClF.sub.2 (R142b) and CHF.sub.2 CH.sub.3 (R152a).

  2. Single-stage evaluation of highly-loaded high-Mach-number compressor stages 5. Data and performance of baseline, corner-blow wall suction and combined corner blow wall suction stator

    NASA Technical Reports Server (NTRS)

    Nikkanen, J. P.; Brooky, J. P.

    1972-01-01

    A single-stage compressor with a rotor tip speed of 1600 ft/sec and a 0.5 hub tip ratio was used to investigate the effects of several stator endwall treatment methods on stage range and performance. These endwall treatment methods consisted of stator corner-blow, annular wall suction upstream of stator leading edge, and combined corner-blow and annular wall suction. The overall stage performance with corner blow was essentially the same as the baseline performance. The performance for the annular wall suction and the combined corner-blow and wall suction showed a reduction in peak efficiency of 2.5 percentage points compared to the baseline data.

  3. Chinese Herbal Mixture, Tien-Hsien Liquid, Induces G2/M Cycle Arrest and Radiosensitivity in MCF-7 Human Breast Cancer Cells through Mechanisms Involving DNMT1 and Rad51 Downregulation

    PubMed Central

    Chow, Jyh-Ming; Yang, Chia-Ming; Kuo, Hui-Ching; Chang, Chia-Lun; Lee, Hsin-Lun; Lai, I-Chun; Chuang, Shuang-En

    2016-01-01

    The Chinese herbal mixture, Tien-Hsien Liquid (THL), has been proven to suppress the growth and invasiveness of cancer cells and is currently regarded as a complementary medicine for the treatment of cancer. Our previous study using acute promyelocytic leukemia cells uncovered its effect on the downregulation of DNA methyltransferase 1 (DNMT1) which is often overexpressed in cancer cells resulting in the repression of tumor suppressors via hypermethylation. Herein, we explored the effects of THL in MCF-7 breast cancer cells that also demonstrate elevated DNMT1. The results show that THL dose-dependently downregulated DNMT1 accompanied by the induction of tumor suppressors such as p21 and p15. THL arrested cell cycle in G2/M phase and decreased the protein levels of cyclin A, cyclin B1, phospho-pRb, and AKT. DNMT1 inhibition was previously reported to exert a radiosensitizing effect in cancer cells through the repression of DNA repair. We found that THL enhanced radiation-induced clonogenic cell death in MCF-7 cells and decreased the level of DNA double-strand break repair protein, Rad51. Our observations may be the result of DNMT1 downregulation. Due to the fact that DNMT1 inhibition is now a mainstream strategy for anticancer therapy, further clinical trials of THL to confirm its clinical efficacy are warranted. PMID:27525019

  4. A Comparison Study of the Oxygen-Rich Side Blow Furnace and the Oxygen-Rich Bottom Blow Furnace for Liquid High Lead Slag Reduction

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Hao, Zhandong; Yang, Tianzu; Liu, Weifeng; Zhang, Duchao; Zhang, Li; Bin, Shu; Bin, Wanda

    2015-05-01

    This work investigates the characteristics of the oxygen-rich side blow furnace (OSBF) and the oxygen-rich bottom blow furnace (OBBF) as the reductive smelting reactor for molten high lead slag. The slags were collected from different sampling points of these furnaces during a regular high lead slag reduction process and analyzed. It is disclosed that lead content of the melt in the OSBF shows dramatic fluctuations, while melt from different sampling points of the furnace behave similarly, exhibiting the characteristics of batch reactor. An obvious axial lead content gradient is detected in the OBBF, showing the characteristics of a plug flow reactor. The industrial performances of these furnaces are also compared. The results indicate that 1.38% higher lead recovery can be achieved by using the OSBF instead of the OBBF. Unit energy consumptions of the OBBF-OSBF and OBBF-OBBF processes can be reduced to 230 kgce/ t crude lead, which is 70 kgce/ t crude lead less than that of the tradition Shuikoushan (SKS) process.

  5. The blow-up problem for a semilinear parabolic equation with a potential

    NASA Astrophysics Data System (ADS)

    Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.

    2007-11-01

    Let [Omega] be a bounded smooth domain in . We consider the problem ut=[Delta]u+V(x)up in [Omega]×[0,T), with Dirichlet boundary conditions u=0 on [not partial differential][Omega]×[0,T) and initial datum u(x,0)=M[phi](x) where M[greater-or-equal, slanted]0, [phi] is positive and compatible with the boundary condition. We give estimates for the blow-up time of solutions for large values of M. As a consequence of these estimates we find that, for M large, the blow-up set concentrates near the points where [phi]p-1V attains its maximum.

  6. Navier-Stokes computation of wing leading edge tangential blowing for a tilt rotor in hover

    NASA Technical Reports Server (NTRS)

    Fejtek, Ian; Roberts, Leonard

    1992-01-01

    The effect of a thin tangential jet located at the leading edge of the wing of a tilt rotor configuration in hover is computed using the thin-layer Navier-stokes equations. Computations showed that leading edge tangential blowing is effective in reducing the download caused by the impingement of the rotor download caused by the impingement of the rotor downwash on the wing. Results from the numerical model support previous experimental findings that download reduction is due mainly to a decrease in upper surface pressure and not an increase in pressure on the lower surface. The numerical solution clearly shows that because of the three-dimensionality of the flow field, the download could be reduced further by allowing a spanwise variation in blowing strength.

  7. RDX and TNT residues from live-fire and blow-in-place detonations.

    PubMed

    Hewitt, Alan D; Jenkins, Thomas F; Walsh, Marianne E; Walsh, Michael R; Taylor, Susan

    2005-11-01

    Snow was used as a collection medium to examine 1,3,5-hexahydro-1,3,5-trinitrotriazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues post-detonation of 60-, 81-, and 120-mm mortar rounds, 105- and 155-mm howitzer rounds, M67 hand grenades, 40-mm rifle grenades, and blocks of C4. Residue-covered snow samples were collected, processed, and analyzed for explosives without cross-contamination from previous detonations and other potential matrix interferences. Detonation trials were performed following standard military live-fire and blow-in-place techniques. When possible, replicate munitions were detonated under similar conditions to provide a more reliable estimation of the mass of unconsumed high explosive residues. Overall the amount of energetic residues deposited from live-fire detonations were considerably less than the energetic residues deposited by blow-in-place detonations.

  8. Simulation on the Effect of Bottle Wall Thickness Distribution using Blow Moulding Technique

    NASA Astrophysics Data System (ADS)

    Suraya, S.; Azman, M. D.; Fatchurrohman, N.; Jaafar, A. A.; Yusoff, A. R.

    2016-02-01

    The aims of this study are to assess the deformation behavior of a polymeric material during a blow moulding process. Transient computations of two dimensional model of a PP bottle were performed using ANSYS Polyflow computer code to predict the wall thickness distribution at four different parison's diameter; 8mm, 10mm, 18mm, and 20mm. Effects on the final wall thickness diameter and time step are studied. The simulated data shows that the inflation performance degrades with increasing parison diameter. It is concluded that the blow moulding process using 10mm parison successfully meet the product processing requirements. Factors that contribute to the variation in deformation behaviour of the plastic during the manufacturing process are discussed.

  9. Discrimination of falls and blows in blunt head trauma: assessment of predictability through combined criteria.

    PubMed

    Kremer, Célia; Sauvageau, Anny

    2009-07-01

    The discrimination of falls from homicidal blows in blunt head injuries is a common but difficult problem in both forensic anthropology and pathology. Three criteria have been previously proposed for this distinction: the hat brim line rule, side lateralization of fractures, and number of lacerations. The aim of the present study was to achieve a better distinction rate by combining those criteria and assess the predictability of these combined criteria tools. Over a 6-year period, a total of 114 cases (92 males and 22 females) were studied: 21 cases of downstairs falls, 29 cases of falls from one's own height, and 64 cases of head trauma by a blunt weapon. The results revealed predictability rates varying from 62.5 to 83.3% for criteria pointing towards a fall. As for combined criteria in favor of a blow, the assumption was accurate in all cases (100%).

  10. Numerical study of the effect of tangential leading edge blowing on delta wing vortical flow

    NASA Technical Reports Server (NTRS)

    Yeh, David T.; Tavella, Domingo A.; Roberts, Leonard; Fujii, Kozo

    1989-01-01

    A numerical simulation of tangential blowing along the leading edge of a delta wing is analyzed as a means of controlling the position and strength of the leading-edge vortices. The computation is done by numerical solutions of the three-dimensional thin-layer Navier-Stokes equations. Numerical results are shown to compare favorably with experimental measurements. It is found that the use of tangential leading-edge blowing at low to moderate angles of attack tends to reduce the pressure peaks associated with leading-edge vortices and to increase the suction peak around the leading edge, such that the integrated value of the surface pressure remains about the same.

  11. Methanogenic Blow-up in the End-Permian Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Rothman, D.; Fournier, G.; French, K. L.; Alm, E.; Boyle, E. A.; Cao, C.; Summons, R. E.

    2012-12-01

    The end-Permian extinction is associated with a mysterious disruption to Earth's carbon cycle. Here we identify causal mechanisms via three observations. First, we show that geochemical signals indicate an incipient singular blow-up of the marine inorganic carbon reservoir, coincident with the extinction and consistent with the evolutionary expansion of a new microbial metabolic pathway. Second, we show that the fast acetoclastic pathway in Methanosarcina, limited by nickel and responsible for most modern biogenic methane, emerged at a time statistically indistinguishable from the extinction. Finally, we show that nickel concentrations in South China sediments increased sharply at the extinction, probably as a consequence of massive Siberian volcanism and enabling the blow-up. Collectively, these results suggest that a specific microbial innovation instigated Earth's greatest mass extinction.

  12. Random Field Sampling for a Simplified Model of Melt-Blowing Considering Turbulent Velocity Fluctuations

    NASA Astrophysics Data System (ADS)

    Hübsch, Florian; Marheineke, Nicole; Ritter, Klaus; Wegener, Raimund

    2013-03-01

    In melt-blowing very thin liquid fiber jets are spun due to high-velocity air streams. In literature there is a clear, unsolved discrepancy between the measured and computed jet attenuation (thinning). In this paper we will verify numerically that the turbulent velocity fluctuations causing a random aerodynamic drag on the fiber jets—that has been neglected so far—are the crucial effect to close this gap. For this purpose, we model the velocity fluctuations as vector Gaussian random fields on top of a k- ɛ turbulence description and develop an efficient sampling procedure. Taking advantage of the special covariance structure the effort of the sampling is linear in the discretization and makes the realization possible. Numerical results are discussed for a simplified melt-blowing model consisting of a system of random ordinary differential equations.

  13. Direct drag measurement on thin-element riblets with suction and blowing

    NASA Technical Reports Server (NTRS)

    Wilkinson, Stephen P.

    1988-01-01

    Turbulent, direct drag has been measured for a series of riblet models in air with continuous, low-level suction or blowing applied through narrow streamwise slots located at the peak, base, or valley of the rectangularly shaped riblets. Riblet spacing was approximately that of low-speed wall streaks. The models were designed to test whether wall vortices which are known to occur along widely spaced riblets are integral to turbulence production by attempting to alter them with localized suction or blowing. The drag data show trends that are consistent with reduced or enhanced inflectional breakdown of wall vortices. The trends, however, may also be explained by more fundamental mean-flow effects.

  14. Gene expression during blow fly development: improving the precision of age estimates in forensic entomology.

    PubMed

    Tarone, Aaron M; Foran, David R

    2011-01-01

    Forensic entomologists use size and developmental stage to estimate blow fly age, and from those, a postmortem interval. Since such estimates are generally accurate but often lack precision, particularly in the older developmental stages, alternative aging methods would be advantageous. Presented here is a means of incorporating developmentally regulated gene expression levels into traditional stage and size data, with a goal of more precisely estimating developmental age of immature Lucilia sericata. Generalized additive models of development showed improved statistical support compared to models that did not include gene expression data, resulting in an increase in estimate precision, especially for postfeeding third instars and pupae. The models were then used to make blind estimates of development for 86 immature L. sericata raised on rat carcasses. Overall, inclusion of gene expression data resulted in increased precision in aging blow flies.

  15. Experimental Evaluation of the Penalty Associated With Micro-Blowing for Reducing Skin Friction

    NASA Technical Reports Server (NTRS)

    Hwang, Danny P.; Biesiadny, Tom J.

    1997-01-01

    A micro-blowing technique (MBT) experiment was conducted in the Advanced Nozzle and Engine Components Test Facility at the NASA Lewis Research Center. The objectives of the test were to evaluate the pressure-drag penalty associated with the MBT and to provide additional information about the porous plates used for micro-blowing. The results showed that 1 of 12 plates tested could reduce the total drag (skin-friction drag plus pressure drag) below a solid flat plate value. The results of this experiment and prior data showed that a total drag reduction below a solid flat plate value was possible. More tests are needed to find an optimal MBT skin and to find a technique to reduce pressure drag.

  16. Investigation of trailing-edge-flap, spanwise-blowing concepts on an advanced fighter configuration

    NASA Technical Reports Server (NTRS)

    Paulson, J. W., Jr.; Quinto, P. F.; Banks, D. W.

    1984-01-01

    The aerodynamic effects of spanwise blowing on the trailing edge flap of an advanced fighter aircraft configuration were determined in the 4 by 7 Meter Tunnel. A series of tests were conducted with variations in spanwise-blowing vector angle, nozzle exit area, nozzle location, thrust coefficient, and flap deflection in order to determine a superior configuration for both an underwing cascade concept and an overwing port concept. This screening phase of the testing was conducted at a nominal approach angle of attack from 12 deg to 16 deg; and then the superior configurations were tested over a more complete angle of attack range from 0 deg to 20 deg at tunnel free stream dynamic pressures from 20 to 40 lbf/sq ft at thrust coefficients from 0 to 2.

  17. Analysis of a fixed-pitch X-wing rotor employing lower surface blowing

    NASA Technical Reports Server (NTRS)

    Schwartz, Alan W.; Rogers, Ernest O.

    1987-01-01

    Lower surface blowing (LSB) is investigated as an alternative to the variable blade pitch requirement for the X-wing Circulation Control (CC) rotor concept. Addition trailing edge blowing slots on the lower surfaces of CC airfoils provide a bidirectional lift capability that effectively doubles the control range. The operational requirements of this rotor system are detailed and compared to the projected performance attributes of LSB airfoils. Analysis shows that, aerodynamically, LSB supplies a fixed pitch rotor system with the equivalent lift efficiency and rotor control of present CC rotor designs that employ variable blade pitch. Aerodynamic demands of bidirectional lift production are predicted to be within the capabilities of current CC airfoil design methodology. Emphasis in this analysis is given to the high speed rotary wing flight regime unique to stoppable rotor aircraft. The impact of a fixed pitch restriction in hover and low speed flight is briefly discussed.

  18. Navier-Stokes computation of wing leading edge tangential blowing for a tilt rotor in hover

    NASA Technical Reports Server (NTRS)

    Fejtek, Ian; Roberts, Leonard

    1992-01-01

    The effect of a thin tangential jet located at the leading edge of the wing of a tilt rotor configuration in hover is computed using the thin-layer Navier-stokes equations. Computations showed that leading edge tangential blowing is effective in reducing the download caused by the impingement of the rotor download caused by the impingement of the rotor downwash on the wing. Results from the numerical model support previous experimental findings that download reduction is due mainly to a decrease in upper surface pressure and not an increase in pressure on the lower surface. The numerical solution clearly shows that because of the three-dimensionality of the flow field, the download could be reduced further by allowing a spanwise variation in blowing strength.

  19. Effect of a simulated engine jet blowing above an arrow wing at Mach 2.0

    NASA Technical Reports Server (NTRS)

    Shrout, B. L.; Hayes, C.

    1977-01-01

    The effects of a gas jet simulating a turbojet engine exhaust blowing above a cambered and twisted arrow wing were investigated. Tests were conducted in the Langley 4-foot supersonic pressure tunnel at a Mach number of 2.0. Nozzle pressure ratios from 1 to 64 were tested with both helium and air used as jet gases. The tests were conducted at angles of attack from -2 deg to 8 deg at a Reynolds number of 9,840,000 per meter. Only the forces and moments on the wing were measured. Results of the investigation indicated that the jet blowing over the wing caused reductions in maximum lift-drag ratio of about 4 percent for helium and 6 percent for air at their respective design nozzle pressure ratios, relative to jet-off data. Moderate changes in the longitudinal, vertical, or angular positions of the jet relative to the wing had little effect on the wing aerodynamic characteristics.

  20. Identities for Generalized Appell Functions and the Blow-up Formula

    NASA Astrophysics Data System (ADS)

    Bringmann, Kathrin; Manschot, Jan; Rolen, Larry

    2016-10-01

    In this paper, we prove identities for a class of generalized Appell functions which are based on the {A_2} root lattice. The identities are reminiscent of periodicity relations for the classical Appell function and are proven using only analytical properties of the functions. Moreover, they are a consequence of the blow-up formula for generating functions of invariants of moduli spaces of semi-stable sheaves of rank 3 on rational surfaces. Our proof confirms that in the latter context, different routes to compute the generating function (using the blow-up formula and wall-crossing) do arrive at identical q-series. The proof also gives a clear procedure on how to prove analogous identities for generalized Appell functions appearing in generating functions for sheaves with rank {r>3}.

  1. Critical air/water blow-down in safety valves at low qualities.

    PubMed

    Moncalvo, D; Friedel, L

    2011-02-28

    Critical air/water blow-downs in safety valves for qualities from 0.01 to 0.113 and mass flow rates from 1.5 up to 4.3 kg/s have been observed in our test facility. These critical blow-downs are characterized by a large void fraction and by an intense mixing of the phases both in the valve body and in the outlet pipe. A qualitative estimation of the flow pattern in the outlet pipe using the map of Taitel and Dukler suggests that these air/water flows are intermittent flows--presumably slug flows--evolving to annular flows for qualities above 0.1. Intermittent flows are also predicted for critical air/water and air/glycerine flows taken from the literature for the same safety valve at slightly larger relieving pressures. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Reconstruction of orbital floor blow-out fractures with autogenous iliac crest bone: a retrospective study including maxillofacial and ophthalmology perspectives.

    PubMed

    O'Connell, John Edward; Hartnett, Claire; Hickey-Dwyer, Marie; Kearns, Gerard J

    2015-03-01

    This is a 10-year retrospective study of patients with an isolated unilateral orbital floor fracture reconstructed with an autogenous iliac crest bone graft. The following inclusion criteria applied: isolated orbital floor fracture without involvement of the orbital rim or other craniofacial injuries, pre-/post-operative ophthalmological/orthoptic follow-up, pre-operative CT. Variables recorded were patient age and gender, aetiology of injury, time to surgery, follow-up period, surgical morbidity, diplopia pre- and post-operatively (Hess test), eyelid position, visual acuity, and the presence of en-/or exophthalmos (Hertel exophthalmometer). Twenty patients met the inclusion criteria. The mean age was 29 years. The mean follow up period was 26 months. No patient experienced significant donor site morbidity. There were no episodes of post-operative infection or graft extrusion. Three patients had diplopia in extremes of vision post-operatively, but no interference with activities of daily living. One patient had post-operative enophthalmos. Isolated orbital blow-out fractures may be safely and predictably reconstructed using autogenous iliac crest bone. The rate of complications in the group of patients studied was low. The value of pre- and post-operative ophthalmology consultation cannot be underestimated, and should be considered the standard of care in all patients with orbitozygomatic fractures, in particular those with blow-out fractures. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  3. Optimization of total vaporization solid-phase microextraction (TV-SPME) for the determination of lipid profiles of Phormia regina, a forensically important blow fly species.

    PubMed

    Kranz, William; Carroll, Clinton; Dixon, Darren; Picard, Christine; Goodpaster, John

    2017-08-29

    A new method has been developed for the determination of fatty acids, sterols, and other lipids which naturally occur within pupae of the blow fly Phormia regina. The method relies upon liquid extraction in non-polar solvent, followed by derivatization using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) w/ 1% trimethylchlorsilane (TMCS) carried out inside the sample vial. The analysis is facilitated by total vaporization solid-phase microextraction (TV-SPME), with gas chromatography-mass spectrometry (GC-MS) serving as the instrumentation for analysis. The TV-SPME delivery technique is approximately a factor of five more sensitive than traditional liquid injection, which may alleviate the need for rotary evaporation, reconstitution, collection of high performance liquid chromatography fractions, and many of the other pre-concentration steps that are commonplace in the current literature. Furthermore, the ability to derivatize the liquid extract in a single easy step while increasing sensitivity represents an improvement over current derivatization methods. The most common lipids identified in fly pupae were various saturated and unsaturated fatty acids ranging from lauric acid (12:0) to arachinoic acid (20:4), as well as cholesterol. The concentrations of myristic acid (14:0), palmitelaidic acid (16:2), and palmitoleic acid (16:1) were the most reliable indicators of the age of the pupae. Graphical abstract Blow fly pupae were extracted prior to emerging as adults. The extracts were analyzed via total vaporization solid-phase microextraction (TV-SPME), revealing a complex mixture of lipids that could be associated with the age of the insect. This information may assist in determining a post-mortum interval (PMI) in a death investigation.

  4. Perception of trigeminal mixtures.

    PubMed

    Filiou, Renée-Pier; Lepore, Franco; Bryant, Bruce; Lundström, Johan N; Frasnelli, Johannes

    2015-01-01

    The trigeminal system is a chemical sense allowing for the perception of chemosensory information in our environment. However, contrary to smell and taste, we lack a thorough understanding of the trigeminal processing of mixtures. We, therefore, investigated trigeminal perception using mixtures of 3 relatively receptor-specific agonists together with one control odor in different proportions to determine basic perceptual dimensions of trigeminal perception. We found that 4 main dimensions were linked to trigeminal perception: sensations of intensity, warmth, coldness, and pain. We subsequently investigated perception of binary mixtures of trigeminal stimuli by means of these 4 perceptual dimensions using different concentrations of a cooling stimulus (eucalyptol) mixed with a stimulus that evokes warmth perception (cinnamaldehyde). To determine if sensory interactions are mainly of central or peripheral origin, we presented stimuli in a physical "mixture" or as a "combination" presented separately to individual nostrils. Results showed that mixtures generally yielded higher ratings than combinations on the trigeminal dimensions "intensity," "warm," and "painful," whereas combinations yielded higher ratings than mixtures on the trigeminal dimension "cold." These results suggest dimension-specific interactions in the perception of trigeminal mixtures, which may be explained by particular interactions that may take place on peripheral or central levels.

  5. Hypersonic Boundary Layer Measurements with Variable Blowing Rates Using Molecular Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Johansen, Craig T.; Jones, Stephen B.; Goyne, Christopher P.

    2012-01-01

    Measurements of mean and instantaneous streamwise velocity profiles in a hypersonic boundary layer with variable rates of mass injection (blowing) of nitrogen dioxide (NO2) were obtained over a 10-degree half-angle wedge model. The NO2 was seeded into the flow from a slot located 29.4 mm downstream of the sharp leading edge. The top surface of the wedge was oriented at a 20 degree angle in the Mach 10 flow, yielding an edge Mach number of approximately 4.2. The streamwise velocity profiles and streamwise fluctuating velocity component profiles were obtained using a three-laser NO2->NO photolysis molecular tagging velocimetry method. Observed trends in the mean streamwise velocity profiles and profiles of the fluctuating component of streamwise velocity as functions of the blowing rate are described. An effort is made to distinguish between the effect of blowing rate and wall temperature on the measured profiles. An analysis of the mean velocity profiles for a constant blowing rate is presented to determine the uncertainty in the measurement for different probe laser delay settings. Measurements of streamwise velocity were made to within approximately 120 gm of the model surface. The streamwise spatial resolution in this experiment ranged from 0.6 mm to 2.6 mm. An improvement in the spatial precision of the measurement technique has been made, with spatial uncertainties reduced by about a factor of 2 compared to previous measurements. For the quiescent flow calibration measurements presented, uncertainties as low as 2 m/s are obtained at 95% confidence for long delay times (25 gs). For the velocity measurements obtained with the wind tunnel operating, average single-shot uncertainties of less than 44 m/s are obtained at 95% confidence with a probe laser delay setting of 1 gs. The measurements were performed in the 31-inch Mach 10 Air Tunnel at the NASA Langley Research Center.

  6. Blow-up of the smooth solution to quantum hydrodynamic models in Rd

    NASA Astrophysics Data System (ADS)

    Guo, Boling; Wang, Guangwu

    2016-10-01

    In this paper we firstly investigate the local-in-time existence of smooth solution for the quantum hydrodynamic models (QHD) in Rd. Then we prove that any smooth solution of the QHD model which satisfies suitable conditions will blow up in finite time. The model can be derived from nonlinear Schrödinger equation by a Madelung transformation. The main idea is based on the construction of approximate solution and energy inequality.

  7. The exact asymptotic behavior of boundary blow-up solutions to infinity Laplacian equations

    NASA Astrophysics Data System (ADS)

    Wan, Haitao

    2016-08-01

    In this paper, we study the asymptotic behavior of viscosity solutions to boundary blow-up elliptic problem {Δ_{∞}u=b(x)f(u), xinΩ, u|_{partialΩ}=+∞,} where {Ω} is a bounded domain with C 2-boundary in {{R}N}, {bin C(bar{Ω})} is positive in {Ω}, which may be vanishing on the boundary, {fin C1([0, ∞))} is regularly varying or is rapidly varying at infinity.

  8. Heat Build-Up and Blow-Out of Rubber Blocks

    DTIC Science & Technology

    1988-05-01

    heated without being subjected to mechanical working. (ii) Blow-out due only to heating Samples of an SBR compound (SBR2), a natural rubber compound...stiffness, extensibility, or resistance to tearing? Does repeated stressing play a direct role in causing the failure, as in mechanical fatigue of rubber...or is it merely a mechanism for raising the internal temperature to the level at which rapid decomposition takes place? In an attempt to answer some of

  9. High-Lift Capability of Low Aspect Ratio Wings Utilizing Circulation Control and Upper Surface Blowing

    DTIC Science & Technology

    1980-07-01

    the Upper Surface Blowing (USB) and the Circulation Control Wing (CCW). Both concepts use the Coanda effect as a means of augmenting aerodynamic lift...USB), and a unique combination of the two (CCW/USB). Wing tip sails were used as a means of increasing th(, effective aspect ratio of these wings...wing tip sails are effective in reducing the induced drag of these powered- lift low aspect ratio wings under high-lift conditions. The induced drag

  10. Numerical method for boundary layers with blowing - The exponential box scheme

    NASA Technical Reports Server (NTRS)

    El-Mistikawy, T. M.; Werle, M. J.

    1978-01-01

    The paper describes a new numerical scheme based on exponential difference operator concepts combined with Keller's (1968) box scheme approach to produce a stable second-order accurate finite-difference scheme for convection-diffusion problems arising in boundary layer flows in the presence of massive injection through a porous surface. The technique is demonstrated by application to the self-similar boundary layer equations with massive blowing at the surface.

  11. Oxidation Processes in Blowing Steel With Inert Gas into the Ladle

    NASA Astrophysics Data System (ADS)

    Gizatulin, R. A.; Valuev, D. V.; Trifonov, V. A.; Valueva, A. V.; Serikbol, A.

    2015-09-01

    This work reports the possible development of oxidative processes in a metal when treating the melt in the ladle under intensive stirring with an inert gas. The industrial data have been received, confirming the possibility of reducing the concentration of silicon and aluminum in the metal, as well as changing the slag chemical composition with the bath blowing with the inert gas through the top submerged lance.

  12. [Correction of enophthalmos deformity caused by orbital blow-out fractures using medpor implantation].

    PubMed

    Li, Teng; Min, Ren; Lai, Gui

    2005-07-01

    To study the surgical reconstruction for correction of enophthalmos deformity caused by orbital blow-out fractures. From December 1996 to March 2004, 56 cases of enophthalmos deformity caused by orbital blow-out fracture were repaired. There were 37 cases diplopia, 35 cases with worsened visual acuity than pre-trauma. Typical sub-ciliary incision was employed to expose the fractured area. The dissection was done beneath the medial and inferior orbital periosteum. The fracture areas were exposed and the tissues protrusion to maxillary sinus were released through the space between fractured bones. After the medial and inferior orbital walls and orbital floors were exposed,the herniated orbital contents were released and reduced to the orbital cavity. The fractured orbital walls were repaired precisely with Medpor which were fixed to the area beneath the periosteum with 2 plates at least. All 56 cases of enophthalmos deformity caused by orbital blow-out fracture repaired with this technique recovered well and their facial appearance improved greatly. With a follow-up ranged from 2 months to 5 years, the degree of enophthalmos stabilized at within 2 mm, no relapse and other complications occurred. Of 34 patients with diplopia, 27 were improved. Of the 35 cases with worsened visual acuity, 9 were improved with different degree. No diplopia or visual acuity worsening occurred. It is safe and effective to correct the orbital blow-out fractures. The earlier it is repaired, the better the effect will be. Medpor with its advantages like better histocompatibility, easier sculpturing, moderate hardness, lower absorptivity, fewer complications and permanence effect is the preferable implantation material for correcting enophthalmos deformity.

  13. N-soliton formula and blow-up result of the Wadati-Konno-Ichikawa equation

    NASA Astrophysics Data System (ADS)

    Liu, Hsiao-Fan; Shimabukuro, Yusuke

    2017-08-01

    We formulate the N soliton solution of the Wadati-Konno-Ichikawa equation that is determined by purely algebraic equations. Derivation is based on the matrix Riemann-Hilbert problem. We give examples of one soliton solution that include smooth soliton, bursting soliton, and loop type soliton. In addition, we give an explicit example for a two soliton solution that blows up in a finite time.

  14. Estimating the Number of Eggs in Blow Fly (Diptera: Calliphoridae) Egg Masses Using Photographic Analysis.

    PubMed

    Rosati, J Y; Pacheco, V A; Vankosky, M A; Vanlaerhoven, S L

    2015-07-01

    Little work has been done to quantify the number of eggs oviposited by blow flies (Diptera: Calliphoridae) in studies examining colonization behavior. Egg counting methods currently available are time-consuming and destructive. This study used ImageJ software and analysis of covariance to relate the volume of egg masses to the number of eggs laid by three different blow fly species: Lucilia sericata (Meigen), Phormia regina (Meigen), and Chrysomya rufifacies (Macquart). Egg mass volume, species, and the interaction of species and egg mass volume all affected the number of blow fly eggs deposited in egg masses. Both species identity and egg mass volume are important when predicting egg number, as such a single regression equation cannot be used to estimate egg number for these three species. Therefore, simple linear regression equations were determined for each species. The volume of individual eggs was incorporated into the model, yet differences between species were observed, suggesting that the orientation of the eggs oviposited by multiple conspecific females within egg masses influences egg estimates. Based on our results, we expect that imaging software can be used for other blow fly species, as well as other insect species; however, equations specific to each species must be developed. This study describes an important tool for quantifying egg deposition in a nondestructive manner, which is important in studying the colonization behavior and life history of insects of ecological and forensic importance. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Severe diffuse axon injury in chronic alcoholic rat medulla oblongata following a concussion blow.

    PubMed

    Luo, Jianming; Chen, Guang; Wei, Lai; Qian, Hong; Lai, Xiaoping; Wang, Dian; Lv, Junyao; Yu, Xiaojun

    2014-01-01

    We investigated the axonal morphological changes and expression of both tau protein and β-APP following concussion to the medulla oblongata, in a rat model of chronic alcoholism. Fifty-nine male Sprague-Dawley rats were randomly divided into EtOH, EtOH-TBI and control groups (water group, water-TBI group). To establish chronic alcoholic rats, rats were intragastrically given edible spirituous liquor twice daily. Rats also received a blow on the occipital tuberosity with an iron pendulum. Morphological changes and expression of tau and β-APP proteins in the medulla oblongata were examined. (a) Nerve fibre thickening and twisting were observed in alcoholic rats, with nerve fibre changes becoming more significant following a concussion blow, which leads to some nerve fibres fracturing. (b) Transmission electron microscopy revealed that the nerve fibre myelin became loosened and displayed lamellar separation, which became more significant following concussion. (c) The integral optical density (IOD) sum value of β-APP of the EtOH-TBI group was lower than that in the EtOH group (P < 0.05); the Tau IOD sum value of the EtOH-TBI group was higher than that in the EtOH group (P < 0.05). (a) Chronic alcoholism caused nerve fibre and neuronal morphology damage in the rat medulla oblongata, with structural damage becoming more significant following concussion. (b) Concussion changed the expression of β-APP and tau protein in chronic alcoholic rat medulla oblongata, suggesting that chronic alcoholism can lead to severe axonal injury following a concussion blow. (c) The effect of chronic alcoholism may be synergistic the concussion blow to promote animal injury and death.

  16. Blow-off momentum from melt and vapor in nuclear deflection scenarios

    NASA Astrophysics Data System (ADS)

    Howley, Kirsten; Managan, Robert; Wasem, Joseph

    2014-10-01

    For Earth-impacting objects that are large in size or have short warning times nuclear explosives are an effective threat mitigation response. Nuclear-based deflection works by means of conservation of momentum: as material is heated by incoming photons and neutrons it is ejected from the body which imparts momentum to the remaining mass of the asteroid. Predicting the complete response of a particular object is difficult, since the ejecta size and velocity distributions rely heavily on the unknown, complicated internal structure of the body. However, lower bounds on the blow-off momentum can be estimated using the melted and vaporized surface material. In this paper, we model the response of a one-dimensional SiO2 surface to monoenergetic soft X-ray, hard X-ray and neutron sources using Arbitrary Lagrangian-Eulerian radiation/hydrodynamic simulations. Errors in the blow-off momentum due to our hydrodynamic mesh resolution are quantified and inform zone sizing that balances numerical discretization error with computational efficiency. We explore deposited energy densities ranging from 1.1 to 200 times the melt energy density for SiO2, and develop an approximate relation that gives the mesh resolution needed for a desired percent error in the blow-off momentum as a function of deposited energy density and melt depth. Using these mesh constraints, the response of our one-dimensional SiO2 surface to the energy sources is simulated, and lower bounds are placed on the melt/vapor blow-off momentum as a function of deposited energy density and source energy type.

  17. Checklist and distribution maps of the blow flies of Venezuela (Diptera, Calliphoridae, Mesembrinellidae).

    PubMed

    Velásquez, Yelitza; Martínez-Sánchez, Ana Isabel; Thomas, Arianna; Rojo, Santos

    2017-01-01

    A checklist of the 39 species of blow flies (Calliphoridae and Mesembrinellidae) so far known to occur in Venezuela is provided, based on a thorough literature review and the examination of ca. 500 specimens deposited in the main entomological collections of the country. Data from the literature and museum collections were used to generate distribution maps for 37 species. Three species are recorded from Venezuela for the first time: Chrysomya putoria (Wiedemann, 1830), Mesembrinella spicata Aldrich, 1925 and Mesembrinella umbrosa Aldrich, 1922.

  18. Reduction of profile drag by blowing out through peg holes in areas of streamline separation bubbles

    NASA Technical Reports Server (NTRS)

    Horstmann, K. H.; Quast, A.

    1981-01-01

    Streamline separation bubbles on aircraft profiles and fuselages were investigated. The additional drag was examined in relation to increased angle of incidence and unusually high wall sheer stress. A reduction of the separation bubble and a decrease in drag is obtained with pneumatic turbulators that blow ram air out of 0.6mm pilot tubes at a distance of 16 mm. The pneumatic models are implemented at various positions and are found to be effective after the position of separation.

  19. Effect of jenny milk addition on the inhibition of late blowing in semihard cheese.

    PubMed

    Cosentino, C; Paolino, R; Valentini, V; Musto, M; Ricciardi, A; Adduci, F; D'Adamo, C; Pecora, G; Freschi, P

    2015-08-01

    The occurrence of late blowing defects in cheese produces negative effects on the quality and commercial value of the product. In this work, we verified whether the addition of raw jenny milk to bulk cow milk reduced the late blowing defects in semihard cheeses. During cheesemaking, different aliquots of jenny milk were poured into 2 groups of 4 vats, each containing a fixed amount of cow milk. A group of cheeses was created by deliberately contaminating the 4 vats with approximately 3 log10 cfu/mL milk of Clostridium tyrobutyricum CLST01. The other 4 vats, which were not contaminated, were used for a second group of cheeses. After 120 d of ripening, some physical, chemical, and microbiological parameters were evaluated on the obtained semihard cheeses. Differences in sensory properties among cheeses belonging to the uncontaminated group were evaluated by 80 regular consumers of cheese. Our results showed that the increasing addition of jenny milk to cow milk led to a reduction of pH and total bacterial count in both cheese groups, as well as C. tyrobutyricum spores that either grew naturally or artificially inoculated. We observed a progressive reduction of the occurrence of late blowing defects in cheese as consequence of the increasing addition of jenny milk during cheese making. Moreover, the addition of jenny milk did not affect the acceptability of the product, as consumers found no difference among cheeses concerning sensorial aspects. In conclusion, the important antimicrobial activity of lysozyme contained in jenny milk has been confirmed in the current research. It is recommend for use as a possible and viable alternative to egg lysozyme for controlling late blowing defects in cheese.

  20. Plasma etchant mixture

    SciTech Connect

    Zafiropoulo, A.W.; Mayer, J.A. Jr.

    1984-09-25

    Method and apparatus for masked etching of a polysilicon surface layer or film to expose a dielectric underlying layer or film on a semiconductor material using ion bombardment from an ionized mixture of a fluorine based gas with a chlorine or bromine containing gas. A particularly useful gas is a mixture of sulfur hexafluoride and Freon 115 gases (C/sub 2/C1F/sub 5/). The mixture of gases achieves the result of highly selective etching through the polysilicon film without significantly attacking the underlying dielectric film and without significant undercutting in the polysilicon film or etching of the masking layer.

  1. SEPARATION OF FLUID MIXTURES

    DOEpatents

    Lipscomb, R.; Craig, A.; Labrow, S.; Dunn, J.F.

    1958-10-28

    An apparatus is presented for separating gaseous mixtures by selectively freezing a constituent of the mixture and subsequently separating the frozen gas. The gas mixture is passed through a cylinder fltted with a cooling jacket, causing one gas to freeze on the walls of the cylinder. A set of scraper blades are provided in the interior of the cyllnder, and as the blades oscillate, the frozen gas is scraped to the bottom of the cylinder. Means are provided for the frozen material to pass into a heating chamber where it is vaporized and the product gas collected.

  2. The effect of blow flies (Diptera: Calliphoridae) on the size and weight of mangos (Mangifera indica L.).

    PubMed

    Saeed, Shafqat; Naqqash, Muhammad Nadir; Jaleel, Waqar; Saeed, Qamar; Ghouri, Fozia

    2016-01-01

    Pollination has a great effect on the yield of fruit trees. Blow flies are considered as an effective pollinator compared to hand pollination in fruit orchards. Therefore, this study was designed to evaluate the effect of different pollination methods in mango orchards. The impact of pollination on quantity and quality of mango yield by blow flies was estimated by using three treatments, i.e., open pollinated trees, trees were covered by a net in the presence of blow flies for pollination, and trees were covered with a net but without insects. The maximum number of flowers was recorded in irregular types of inflorescence, i.e., 434.80 flowers/inflorescence. Fruit setting (bud) was higher in open pollinated mango trees (i.e. 37.00/inflorescence) than enclosed pollination by blow flies (i.e. 22.34/inflorescence). The size of the mango fruit was the highest (5.06 mm) in open pollinated tree than those pollinated by blow flies (3.93 mm) and followed by without any pollinator (3.18 mm) at marble stage. We found that the maximum weight of mango fruit (201.19 g) was in open pollinated trees. The results demonstrated that blow flies can be used as effective mango pollinators along with other flies and bees. The blow flies have shown a positive impact on the quality and quantity of mango. This study will be helpful in future and also applicable at farm level to use blow flies as pollinators that are cheap and easy to rear.

  3. The effect of blow flies (Diptera: Calliphoridae) on the size and weight of mangos (Mangifera indica L.)

    PubMed Central

    Naqqash, Muhammad Nadir; Saeed, Qamar; Ghouri, Fozia

    2016-01-01

    Background: Pollination has a great effect on the yield of fruit trees. Blow flies are considered as an effective pollinator compared to hand pollination in fruit orchards. Therefore, this study was designed to evaluate the effect of different pollination methods in mango orchards. Methodology: The impact of pollination on quantity and quality of mango yield by blow flies was estimated by using three treatments, i.e., open pollinated trees, trees were covered by a net in the presence of blow flies for pollination, and trees were covered with a net but without insects. Results: The maximum number of flowers was recorded in irregular types of inflorescence, i.e., 434.80 flowers/inflorescence. Fruit setting (bud) was higher in open pollinated mango trees (i.e. 37.00/inflorescence) than enclosed pollination by blow flies (i.e. 22.34/inflorescence). The size of the mango fruit was the highest (5.06 mm) in open pollinated tree than those pollinated by blow flies (3.93 mm) and followed by without any pollinator (3.18 mm) at marble stage. We found that the maximum weight of mango fruit (201.19 g) was in open pollinated trees. Discussion: The results demonstrated that blow flies can be used as effective mango pollinators along with other flies and bees. The blow flies have shown a positive impact on the quality and quantity of mango. This study will be helpful in future and also applicable at farm level to use blow flies as pollinators that are cheap and easy to rear. PMID:27441107

  4. Distributed Blowing and Suction for the Purpose of Streak Control in a Boundary Layer Subjected to a Favorable Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Forgoston, Eric; Tumin, Anatoli; Ashpis, David E.

    2005-01-01

    An analysis of the optimal control by blowing and suction in order to generate stream- wise velocity streaks is presented. The problem is examined using an iterative process that employs the Parabolized Stability Equations for an incompressible uid along with its adjoint equations. In particular, distributions of blowing and suction are computed for both the normal and tangential velocity perturbations for various choices of parameters.

  5. Blow-up rates for higher-order semilinear parabolic equations and systems and some Fujita-type theorems

    NASA Astrophysics Data System (ADS)

    Pan, Hongjing; Xing, Ruixiang

    2008-03-01

    In this paper, we derive blow-up rates for higher-order semilinear parabolic equations and systems. Our proof is by contradiction and uses a scaling argument. This procedure reduces the problems of blow-up rate to Fujita-type theorems. In addition, we also give some new Fujita-type theorems for higher-order semilinear parabolic equations and systems with the time variable on . These results are not restricted to positive solutions.

  6. Experimental study on sulfur removal from ladle furnace refining slag in hot state by blowing air

    NASA Astrophysics Data System (ADS)

    Zhao, Li-hua; Lin, Lu; Wu, Qi-fan

    2016-01-01

    In view of the present problem of sulfur enrichment in the metallurgical recycling process of ladle furnace (LF) refining slag, a simple and efficient method of removing sulfur from this slag was proposed. The proposed method is compatible with current steelmaking processes. Sulfur removal from LF refining slag for SPHC steel (manufactured at a certain steel plant in China) by blowing air in the hot state was studied by using hot-state experiments in a laboratory. The FactSage software, a carbon/sulfur analyzer, and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy were used to test and analyze the sulfur removal effect and to investigate factors influencing sulfur removal rate. The results show that sulfur ions in LF refining slag can be oxidized into SO2 by O2 at high temperature by blowing air into molten slag; SO2 production was observed to reach a maximum with a small amount of blown O2 when the temperature exceeded 1350°C. At 1370°C and 1400°C, experimental LF refining slag is in the liquid state and exhibits good fluidity; under these conditions, the sulfur removal effect by blowing air is greater than 90wt% after 60 min. High temperature and large air flow rate are beneficial for removing sulfur from LF refining slag; compared with air flow rate, temperature has a greater strongly influences on the sulfur removal.

  7. Augmentation of Fighter-Aircraft Performance by Spanwise Blowing over the Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Salomon, M.

    1983-01-01

    Spanwise blowing over the wing and canard of a 1:35 model of a close-coupled-canard fighter airplane configuration (similar to the Kfir-C2) was investigated experimentally in low-speed flow. Tests were conducted at airspeeds of 30 m/sec (Reynolds number of 1.8 x 10 to the 5th power based on mean aerodynamic chord) with angle-of-attack sweeps from -8 to 60 deg, and yaw-angle sweeps from -8 to 36 deg at fixed angles of attack 0, 10, 20, 25, 30, and 35 deg. Significant improvement in lift-curve slope, maximum lift, drag polar and lateral/directional stability was found, enlarging the flight envelope beyond its previous low-speed/maximum-lift limit. In spite of the highly swept (60 deg) leading edge, the efficiency of the lift augmentation by blowing was relatively high and was found to increase with increasing blowing momentum on the close-coupled-canard configuration. Interesting possibilities of obtaining much higher efficiencies with swirling jets were indicated.

  8. Blow-up problems for the heat equation with a local nonlinear Neumann boundary condition

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Zhou, Zhengfang

    2016-09-01

    This paper estimates the blow-up time for the heat equation ut = Δu with a local nonlinear Neumann boundary condition: The normal derivative ∂ u / ∂ n =uq on Γ1, one piece of the boundary, while on the rest part of the boundary, ∂ u / ∂ n = 0. The motivation of the study is the partial damage to the insulation on the surface of space shuttles caused by high speed flying subjects. We show the finite time blow-up of the solution and estimate both upper and lower bounds of the blow-up time in terms of the area of Γ1. In many other work, they need the convexity of the domain Ω and only consider the problem with Γ1 = ∂ Ω. In this paper, we remove the convexity condition and only require ∂Ω to be C2. In addition, we deal with the local nonlinearity, namely Γ1 can be just part of ∂Ω.

  9. Augmentation of fighter-aircraft performance by spanwise blowing over the wing leading edge

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Salomon, M.

    1983-01-01

    Spanwise blowing over the wing and canard of a 1:35 model of a close-coupled-canard fighter-airplane configuration (similar to the Kfir-C2) was investigated experimentally in low-speed flow. Tests were conducted at airspeeds of 30 m/sec (Reynolds number of 1.8 x 10 to the 5th power based on mean aerodynamic chord) with angle-of-attack sweeps from -8 deg to 60 deg, and yaw-angle sweeps from -8 deg to 36 deg at fixed angles of attack 0 deg, 10 deg, 20 deg, 25 deg, 30 deg, and 35 deg. Significant improvement in lift-curve slope, maximum lift, drag polar and lateral/directional stability was found, enlarging the flight envelope beyond its previous low-speed/maximum-lift limit. In spite of the highly swept (60 deg) leading edge, the efficiency of the lift augmentation by blowing was relatively high and was found to increase with increasing blowing momentum on the close-coupled-canard configuration. Interesting possibilities of obtaining much higher efficiencies with swirling jets were indicated.

  10. Broadband Noise Reduction of a Low-Speed Fan Noise Using Trailing Edge Blowing

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2005-01-01

    An experimental proof-of-concept test was conducted to demonstrate reduction of rotor-stator interaction noise through the use of rotor-trailing edge blowing. The velocity deficit from the viscous wake of the rotor blades was reduced by injecting air into the wake from a continuous trailing edge slot. Hollow blades with interior guide vanes create flow channels through which externally supplied air flows from the blade root to the trailing edge. A previous paper documented the substantial tonal reductions of this Trailing Edge Rotor Blowing (TERB) fan. This report documents the broadband characteristics of TERB. The Active Noise Control Fan (ANCF), located at the NASA Glenn Research Center, was used as the proof-of-concept test bed. Two-component hotwire data behind the rotor, unsteady surface pressures on the stator vane, and farfield directivity acoustic data were acquired at blowing rates of 1.1, 1.5, and 1.8 percent of the total fan mass flow. The results indicate a substantial reduction in the rotor wake turbulent velocity and in the stator vane unsteady surface pressures. Based on the physics of the noise generation, these indirect measurements indicate the prospect of broadband noise reduction. However, since the broadband noise generated by the ANCF is rotor-dominated, any change in the rotor-stator interaction broadband noise levels is barely distinguishable in the farfield measurements.

  11. Interaction of Suction and Pulsed Blowing with a Laminar Boundary Layer

    NASA Astrophysics Data System (ADS)

    Seifert, Avraham; Marom, Liad

    2015-11-01

    The presentation will describe a fundamental study of active flow control (AFC) using the steady suction and oscillatory blowing actuator (SaOB), identifying its effects on a laminar boundary layer. Recent experiments showed this effective and efficient actuator as a drag reduction device .......[e.g., Wilson et al., AIAA J, 2013]. However, improved fundamental understanding of the boundary layer (BL) interaction with suction and oscillatory blowing and the combination of these two effects in close proximity is desired. The current experiment, performed in a laminar flow, will result in improved efficiency of the actuator and will enable development of a reliable predictive capability of this flow control method. The interaction with a laminar BL is crucial for the project due to the lack of interaction with the random turbulence, the thicker BL and lower skin-friction that enables greater effect of the controlled BL. Furthermore, fundamental interaction principles could be easier to identify and understand in laminar flows, where critical trends will not be masked by turbulence, and the averaging process will better represent the time dependent flow. The results demonstrate that while the oscillatory blowing is robust and has a strong effect on the flow evolution, the steady suction introduced upstream has a crucial role in the efficient operation of the AFC system.

  12. Effects of environmental temperature on oviposition behavior in three blow fly species of forensic importance.

    PubMed

    Ody, Helen; Bulling, Mark T; Barnes, Kate M

    2017-03-14

    A number of factors are known to affect blow fly behavior with respect to oviposition. Current research indicates that temperature is the most significant factor. However temperature thresholds for oviposition in forensically important blow flies have not been well studied. Here, the oviposition behavior of three species of forensically important blow fly species (Calliphora vicina, Calliphora vomitoria and Lucilia sericata,) was studied under controlled laboratory conditions over a range of temperatures (10-40°C). Lower temperature thresholds for oviposition of 16°C and 17.5°C were established for C. vomitoria and L. sericata respectively, whilst C. vicina continued to lay eggs at 10°C. C. vomitoria and L. sericata both continued to lay eggs at 40°C, whilst the highest temperature at which oviposition occurred in C. vicina was 35°C. Within these thresholds there was considerable variation in the number of surviving pupae, with a general pattern of a single peak within the range of temperatures at which eggs were laid, but with the pattern being much less distinct for L. sericata.

  13. LES-based characterization of a suction and oscillatory blowing fluidic actuator

    NASA Astrophysics Data System (ADS)

    Kim, Jeonglae; Moin, Parviz

    2015-11-01

    Recently, a novel fluidic actuator using steady suction and oscillatory blowing was developed for control of turbulent flows. The suction and oscillatory blowing (SaOB) actuator combines steady suction and pulsed oscillatory blowing into a single device. The actuation is based upon a self-sustained mechanism of confined jets and does not require any moving parts. The control output is determined by a pressure source and the geometric details, and no additional input is needed. While its basic mechanisms have been investigated to some extent, detailed characteristics of internal turbulent flows are not well understood. In this study, internal flows of the SaOB actuator are simulated using large-eddy simulation (LES). Flow characteristics within the actuator are described in detail for a better understanding of the physical mechanisms and improving the actuator design. LES predicts the self-sustained oscillations of the turbulent jet. Switching frequency, maximum velocity at the actuator outlets, and wall pressure distribution are in good agreement with the experimental measurements. The computational results are used to develop simplified boundary conditions for numerical experiments of active flow control. Supported by the Boeing company.

  14. DNA-Based Identification of Forensically Important Blow Flies (Diptera: Calliphoridae) From India.

    PubMed

    Bharti, Meenakshi; Singh, Baneshwar

    2017-09-01

    Correct species identification is the first and the most important criteria in entomological evidence-based postmortem interval (PMI) estimation. Although morphological keys are available for species identification of adult blow flies, keys for immature stages are either lacking or are incomplete. In this study, cytochrome oxidase subunit 1 (COI) reference data were developed from nine species (belonging to three subfamilies, namely, Calliphorinae, Luciliinae, and Chrysomyinae) of blow flies from India. Seven of the nine species included in this study were found suitable for DNA-based identification using COI gene, because they showed nonoverlapping intra- (0.0-0.3%) and inter-(1.96-18.14%) specific diversity, and formed well-supported monophyletic clade in phylogenetic analysis. The remaining two species (i.e., Chrysomya megacephala (Fabricius) and Chrysomya chani Kurahashi) cannot be distinguished reliably using our database because they had a very low interspecific diversity (0.11%), and Ch. megacephala was paraphyletic with respect to Ch. chani in the phylogenetic analysis. We conclude that the COI gene is a useful marker for DNA-based identification of blow flies from India. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Controlled longitudinal emittance blow-up using band-limited phase noise in CERN PSB

    NASA Astrophysics Data System (ADS)

    Quartullo, D.; Shaposhnikova, E.; Timko, H.

    2017-07-01

    Controlled longitudinal emittance blow-up (from 1 eVs to 1.4 eVs) for LHC beams in the CERN PS Booster is currently achievied using sinusoidal phase modulation of a dedicated high-harmonic RF system. In 2021, after the LHC injectors upgrade, 3 eVs should be extracted to the PS. Even if the current method may satisfy the new requirements, it relies on low-power level RF improvements. In this paper another method of blow-up was considered, that is the injection of band-limited phase noise in the main RF system (h=1), never tried in PSB but already used in CERN SPS and LHC, under different conditions (longer cycles). This technique, which lowers the peak line density and therefore the impact of intensity effects in the PSB and the PS, can also be complementary to the present method. The longitudinal space charge, dominant in the PSB, causes significant synchrotron frequency shifts with intensity, and its effect should be taken into account. Another complication arises from the interaction of the phase loop with the injected noise, since both act on the RF phase. All these elements were studied in simulations of the PSB cycle with the BLonD code, and the required blow-up was achieved.

  16. Beyond blow-up in excitatory integrate and fire neuronal networks: Refractory period and spontaneous activity.

    PubMed

    Cáceres, María J; Perthame, Benoît

    2014-06-07

    The Network Noisy Leaky Integrate and Fire equation is among the simplest model allowing for a self-consistent description of neural networks and gives a rule to determine the probability to find a neuron at the potential v. However, its mathematical structure is still poorly understood and, concerning its solutions, very few results are available. In the midst of them, a recent result shows blow-up in finite time for fully excitatory networks. The intuitive explanation is that each firing neuron induces a discharge of the others; thus increases the activity and consequently the discharge rate of the full network. In order to better understand the details of the phenomena and show that the equation is more complex and fruitful than expected, we analyze further the model. We extend the finite time blow-up result to the case when neurons, after firing, enter a refractory state for a given period of time. We also show that spontaneous activity may occur when, additionally, randomness is included on the firing potential VF in regimes where blow-up occurs for a fixed value of VF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Investigating the potential of fluorescent fingerprint powders as a marker for blow fly larvae (Diptera: calliphoridae).

    PubMed

    Rosati, Jennifer Y; Robinson, Scott D; Devine, Richard

    2015-05-01

    Four fluorescent fingerprint powders (RedWop(™) , GreenWop(™) , Basic Yellow(™) , and Yellow Powder(™) ) were evaluated as a marker for blow fly larvae. Administration methods included ingestion (high vs. low concentration) or topical. Ingestion of high concentrations of Basic Yellow(™) and RedWop(™) caused higher larval mortality. Basic Yellow(™) delayed development and adult emergence while RedWop(™) and Yellow Powder(™) had a significant effect on particular stages of development, however, emergence time was not altered. Optimal administration is through ingestion at low concentration levels (<10%) or topically, with GreenWop(™) demonstrating minimal adverse effects. Optimum wavelength for discrimination between powders was 450 nm. This research can aid in investigative training to increase visibility of larval and pupal blow flies. It can also be used in entomological studies to differentiate between larval blow flies (or other dipteran) species or individuals to further understand complex interactions and behavior during larval development. © 2015 American Academy of Forensic Sciences.

  18. Evaluation of HFC 245ca and HFC 236ea as foam blowing agents

    NASA Technical Reports Server (NTRS)

    Sharpe, Jon; Macarthur, Doug; Kollie, Tom; Graves, Ron; Liu, Matthew; Hendriks, Robert V.

    1995-01-01

    Hydrochlorofluorocarbon (HCFC) 141b has been selected as the interim blowing agent for use in urethane insulations on NASA's Space Shuttle External Tank. Due to the expected limited commercial lifetime of this material, research efforts at the NASA Thermal Protection Systems Materials Research Laboratory at the Marshall Space Flight Center are now being devoted to the identification and development of alternatives with zero ozone depletion potential. Physical blowing agents identified to date have included hydrocarbons, fluorocarbons, hydrofluoroethers, and more predominantly, hydrofluorocarbons (HFCs). The majority of the HFC evaluations in industry have focused on the more readily available, low boiling candidates such as HFC 134a. Higher boiling HFC candidates that could be handled at ambient conditions and use current processing equipment would be more desirable. This paper will describe results from a research program of two such candidate HFC's performed as a cooperative effort between Martin Marietta Manned Space Systems, the U.S. Environmental Protection Agency, and Oak Ridge National Laboratories. The purpose of this effort was to perform a cursory evaluation of the developmental HFC's 245ca and 236ea as blowing agents in urethane based insulations. These two materials were selected from screening tests of 37 C2, C3, and C4 isomers based on physical properties, atmospheric lifetime, flammability, estimated toxicity, difficulty of synthesis, suitability for dual use as a refrigerant, and other factors. Solubility of the two materials in typical foam components was tested, pour foaming trials were performed, and preliminary data were gathered regarding foam insulation performance.

  19. The effect of air-blowing duration on all-in-one systems.

    PubMed

    Fu, Jiale; Pan, Feng; Kakuda, Shinichi; Sharanbir, K Sidhu; Ikeda, Takatsumi; Nakaoki, Yasuko; Selimovic, Denis; Sano, Hidehiko

    2012-01-01

    The purpose of this study was to evaluate the effect of air-blowing duration on the bonding performance of all-in-one systems using the same pressure (0.25 MPa). Three all-in-one systems were: EB (Easy Bond, 3M ESPE, USA), BB (BeautiBond, Shofu Inc., Japan) and GBp (G-Bond plus, GC Corporation, Japan). After adhesive application, the 3 systems were air-blown thereafter using 7 different durations (5 s, 10 s, 15 s, 20 s, 25 s, 30 s and 35 s). Bond strengths to dentin were determined using µTBS test after 24 h water storage. In addition, evaluation of both the resin-dentin interface and the fractured surface on the dentin side were performed by SEM. The maximum µTBS for each system, BB (40.4±14.8 MPa), EB (79.8±16.5 MPa), and GBp (47.3±17.6 MPa), were recorded with 15 s, 15 s and 25 s air-blowing duration respectively. Under the same air-pressure, the air-blowing duration could affect evaporation and the thickness of the adhesive layer, which contributed to the different bond strengths.

  20. The Effects of Bottom Blowing Gas Flow Rate Distribution During the Steelmaking Converter Process on Mixing Efficiency

    NASA Astrophysics Data System (ADS)

    Chu, Kuan-Yu; Chen, Hsing-Hao; Lai, Po-Han; Wu, Hsuan-Chung; Liu, Yung-Chang; Lin, Chi-Cheng; Lu, Muh-Jung

    2016-04-01

    Featuring the advantages of top-blown and bottom-blown oxygen converters, top and bottom combined blown converters are mainstream devices used in steelmaking converter. This study adopted the FLUENT software to develop a numerical model that simulates 3D multiphase flows of gas (air and argon), liquid steel, and slag. Ten numerical experiments were conducted to analyze the effects that the bottom blowing gas flow rate distribution patterns (uniform, linear fixed total flow rate, linear fixed maximal flow rate, and V-type) and bottom blowing gas flow distribution gradients of combined blown converters exert on slag surface stirring heights, flow field patterns, simulation system dynamic pressures, mixing time, and liquid steel-slag interface velocity. The simulation results indicated that the mixing efficiency was highest for the linear fixed total flow rate, followed by the linear fixed maximal flow rate, V-type, and uniform patterns. The bottom blowing gas flow rate distribution exhibited linear patterns and large gradients, and high bottom blowing total flow rates increased the mixing efficiency substantially. In addition, the results suggested that even when bottom blowing total flow rate was reduced, adopting effective bottom blowing gas flow rate distribution patterns and gradients could improve the mixing efficiency.

  1. Students' attitudes and potential behaviour with regard to whistle blowing as they pass through a modern medical curriculum.

    PubMed

    Goldie, John; Schwartz, Lisa; McConnachie, Alex; Morrison, Jillian

    2003-04-01

    To examine students' attitudes and potential behaviour with regard to whistle blowing as they progress through a modern undergraduate medical curriculum. Cohort design. University of Glasgow Medical School. A cohort of students entering Glasgow University's new learner-centred, integrated medical curriculum in October 1996. Students' pre- and post-Year 1, post-Year 3 and post-Year 5 responses to the whistle blowing vignette of the Ethics in Health Care Instrument (EHCI) were examined quantitatively and qualitatively. Analysis of students' multichoice answers enabled measurement of movement towards professional consensus opinion. Analysis of written justifications helped determine whether their reasoning was consistent with professional consensus and enabled measurement of change in knowledge content and recognition of the values inherent in the vignette. Themes in students' reasoning behind their decisions of whether or not to whistle blow were also identified. There was little improvement in students' performance as they progressed through the curriculum in terms of their proposed behaviour on meeting the whistle blowing scenario. There was also no improvement in the quality of justifications provided. Students' reasoning on whether or not to whistle blow was found to change as the curriculum progressed. The EHCI has the potential to elicit students' attitudes towards ethical issues at entry to medical school and to measure change as they progress through the curriculum. Students should be encouraged to contemplate dilemmas from all ethical standpoints and consider relevant legal implications. Whistle blowing should be addressed as part of the wider domain of professionalism.

  2. Assessment of Potential Aerodynamic Benefits from Spanwise Blowing at the Wing Tip. Ph.D. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond Edward

    1992-01-01

    A comprehensive set of experimental and analytical investigations have been conducted to assess the potential aerodynamic benefits from spanwise blowing at the tip of a moderate aspect ratio, swept wing. An analytical model has been developed to simulate a jet exhausting from the wing tip. An experimental study of a subsonic jet exhausting from the wing tip was conducted to investigate the effect of spanwise blowing from the tip on the aerodynamic characteristics of a moderate aspect ratio, swept wing. Wing force and moment data and surface pressure data were measured at Mach numbers up to 0.72. Results indicate that small amounts of blowing from small jets increase the lift curve slope a small amount, but have no effect on drag. Larger amounts of blowing from longer jets blowing increases lift near the tip and reduce drag at low Mach numbers. These benefits decrease with increasing Mach number, and vanish at Mach 0.5. A Navier-Stokes solver with modified boundary conditions at the tip was used to extrapolate the results to a Mach number of 0.72. With current technology and conventional wing shapes, spanwise blowing at the wing tip does not appear to be a practical means of reducing drag of moderate aspect ratio wings at high subsonic Mach numbers.

  3. Navier-Stokes Computations of a Wing-Flap Model With Blowing Normal to the Flap Surface

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.

    2005-01-01

    A computational study of a generic wing with a half span flap shows the mean flow effects of several blown flap configurations. The effort compares and contrasts the thin-layer, Reynolds averaged, Navier-Stokes solutions of a baseline wing-flap configuration with configurations that have blowing normal to the flap surface through small slits near the flap side edge. Vorticity contours reveal a dual vortex structure at the flap side edge for all cases. The dual vortex merges into a single vortex at approximately the mid-flap chord location. Upper surface blowing reduces the strength of the merged vortex and moves the vortex away from the upper edge. Lower surface blowing thickens the lower shear layer and weakens the merged vortex, but not as much as upper surface blowing. Side surface blowing forces the lower surface vortex farther outboard of the flap edge by effectively increasing the aerodynamic span of the flap. It is seen that there is no global aerodynamic penalty or benefit from the particular blowing configurations examined.

  4. Study of potential aerodynamic benefits from spanwise blowing at wingtip. Ph.D. Thesis - George Washington Univ., 1992

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.

    1995-01-01

    Comprehensive experimental and analytical studies have been conducted to assess the potential aerodynamic benefits from spanwise blowing at the tip of a moderate-aspect-ratio swept wing. Previous studies on low-aspect-ratio wings indicated that blowing from the wingtip can diffuse the tip vortex and displace it outward. The diffused and displaced vortex will induce a smaller downwash at the wing, and consequently the wing will have increased lift and decreased induced drag at a given angle of attack. Results from the present investigation indicated that blowing from jets with a short chord had little effect on lift or drag, but blowing from jets with a longer chord increased lift near the tip and reduced drag at low Mach numbers. A Navier-Stokes solver with modified boundary conditions at the tip was used to extrapolate the results to a Mach number of 0.72. Calculations indicated that lift and drag increase with increasing jet momentum coefficient. Because the momentum of the jet is typically greater than the reduction in the wing drag and the increase in the wing lift due to spanwise blowing is small, spanwise blowing at the wingtip does not appear to be a practical means of improving the aerodynamic efficiency of moderate-aspectratio swept wings at high subsonic Mach numbers.

  5. Carbonaceous materials water mixtures

    SciTech Connect

    Papalos, J.G.; Sinka, J.V.

    1985-04-30

    Particulate carbonaceous materials water mixtures are prepared by adding a condensate which is a condensation product of an aldehyde having from about 1 to about 7 carbon atoms, a benzene derivative such as benzene sulfonic acid, an alkyl benzene sulfonic acid having at least one alkyl group of from about 1 to about 20 carbon atoms and mixtures thereof, and optionally, and a naphthalene derivative such as naphthalene sulfonic acid, an alkyl naphthalene sulfonic acid having at least one alkyl group of from about 1 to about 12 carbon atoms and mixtures thereof. The condensate is added in an amount sufficient to reduce viscosity of the water mixture of carbonaceous materials, to stabilize carbonaceous materials in the water network and to improve pumpability. An acid form of the condensate or a salt may be added.

  6. An investigation of the effects of aft blowing on a 3.0 caliber tangent ogive body at high angles of attack. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Gittner, Nathan M.

    1992-01-01

    An experimental investigation of the effects of aft blowing on the asymmetric vortex flow of a slender, axisymmetric body at high angles of attack was conducted. A 3.0 caliber tangent ogive body fitted with a cylindrical afterbody was tested in a wind tunnel under subsonic, laminar flow test conditions. Asymmetric blowing from both a single nozzle and a double nozzle configuration, positioned near the body apex, was investigated. Aft blowing was observed to alter the vortex asymmetry by moving the blowing-side vortex closer to the body surface while moving the non-blowing-side vortex further away from the body. The effect of increasing the blowing coefficient was to move the blowing-side vortex closer to the body surface at a more upstream location. The data also showed that blowing was more effective in altering the initial vortex asymmetry at the higher angles of attack than at the lower. The effects of changing the nozzle exit geometry were investigated and it was observed that blowing from a nozzle with a low, broad exit geometry was more effective in reducing the vortex asymmetry than blowing from a high, narrow exit geometry.

  7. Health Risk Assessment of Chemical Mixtures | Science ...

    EPA Pesticide Factsheets

    The implementation of Superfund requires a methodology for estimating health risk from multi-chemical contamination at ambient levels. Most often, the chemical composition of these mixtures is poorly characterized, exposure data are uncertain and toxicologic data on the known components of the mixture are limited. However, a potential human health hazard may exist and the U.S.EPA, state and local governments need to be able to assess the total hazard in order to make decisions on appropriate action. This report describes a procedure for assessing the risks from chemical mixtures that includes options when different kinds of data are available. Good-quality information on the mixture of concern or a similar mixture should always be used. Less desirable, but still useful approach, is to utilize data on components and their interactions. The quality of exposure and toxicity data must be determined and the uncertainties involved in each risk assessment must be thoroughly discussed. ater contamination is briefly discussed since it is of vital concern as the primary exposure medium for chemical mixtures. The methodology for estimating the human health risk from single chemicals, both carcinogens and systemic toxicants, is reviewed as it forms the basis for the assessment of mixtures. The Implementation of Superfund requires a methodology for estimating health risk from multi-chemical contamination at ambient levels. Most often, the chemical composition of these mix

  8. The transient roll moment response due to forebody tangential blowing at high angles of attack

    NASA Astrophysics Data System (ADS)

    Chow, Jonathan Kwokching

    The sustained ability for controlled flight at high angles of attack is desirable for future aircraft. For combat aircraft, enhancing maneuverability is important to increasing its survivability. For future supersonic commercial aircraft, an increase in lift at high angles of attack leads to improved performance during take-offs and landing, and a reduction in noise pollution. However, nonlinear and unsteady phenomena, such as flow separation and vortex shedding dominate the aerodynamics in the high angle of attack regime. These phenomena cause the onset of lateral loads and decrease the effectiveness of conventional control surfaces. For conventional aircraft, controlled flight at high angle of attack is difficult or unfeasible without augmented means of control and a good understanding of their impact on vehicle characteristics and dynamics. The injection of thin sheets of air tangentially to the forebody of the vehicle has been found to be an extremely promising method for augmenting the control of a flight vehicle at high angles of attack. Forebody Tangential Blowing (FTB) allows the flow structure to be altered in a rational manner and increase the controllability of the vehicle under these flight conditions. The feasibility of using FTB to control the roll-yaw motion of flight vehicles has been demonstrated. Existing knowledge of FTB's nonlinear impact on the aerodynamic moment responses is limited. Currently available dynamic models predict the general trends in the behavior but do not capture important transient effects that dominate the responses when small amounts of blowing is used. These transients can be large in comparison to the steady-state values. This thesis summarizes the experimental and theoretical results of an investigation into the transient effects of Forebody Tangential Blowing. The relationship between the aerodynamic roll moment, vortical flowfield, and blowing strength is examined to obtain a fundamental understanding of the physics of

  9. Experiments in aircraft roll-yaw control using forebody tangential blowing

    NASA Astrophysics Data System (ADS)

    Pedreiro, Nelson

    Flight at high angles of attack can provide improved maneuverability for fighter aircraft and increased lift capabilities for future supersonic and hypersonic transport aircraft during take-off and landing. At high angles of attack the aerodynamics of the vehicle are dominated by separation, vortex shedding and breakdown, which compromise the effectiveness of conventional control surfaces. As a result, controlled flight at high angles of attack is not feasible for current aircraft configurations. Alternate means to augment the control of the vehicle at these flight regimes are therefore necessary. In this work, the feasibility of using Forebody Tangential Blowing to control the roll-yaw motion of a wind tunnel model at high angles of attack is demonstrated. The method consists of injecting a thin sheet of air tangentially to the forebody of the vehicle to change the separation lines over the forebody and alter the aerodynamic loads. A unique model was developed that describes the unsteady aerodynamic moments generated by both vehicle motion and the applied blowing. This aerodynamic model is sufficiently detailed to predict transient motion of the wind-tunnel model, and is simple enough to be suitable for control logic design and implementation. Successful closed-loop control was demonstrated experimentally for a delta wing body model with a cone-cylinder fuselage. Experiments were performed at 45 degrees nominal angle of attack. At this condition, the natural motion of the system is divergent. A discrete vortex method was developed to help understand the main physics of the flow. The method correctly captures the interactions between forebody and wing vortices. Moreover, the trends in static loads and flow structure are correctly represented. Flow visualization results revealed the vortical structure of the flow to be asymmetric even for symmetric flight conditions. The effects of blowing, roll and yaw angles on the flow structure were determined. It was shown that

  10. FE-Analysis of Stretch-Blow Moulded Bottles Using an Integrative Process Simulation

    NASA Astrophysics Data System (ADS)

    Hopmann, C.; Michaeli, W.; Rasche, S.

    2011-05-01

    The two-stage stretch-blow moulding process has been established for the large scale production of high quality PET containers with excellent mechanical and optical properties. The total production costs of a bottle are significantly caused by the material costs. Due to this dominant share of the bottle material, the PET industry is interested in reducing the total production costs by an optimised material efficiency. However, a reduced material inventory means decreasing wall thicknesses and therewith a reduction of the bottle properties (e.g. mechanical properties, barrier properties). Therefore, there is often a trade-off between a minimal bottle weight and adequate properties of the bottle. In order to achieve the objectives Computer Aided Engineering (CAE) techniques can assist the designer of new stretch-blow moulded containers. Hence, tools such as the process simulation and the structural analysis have become important in the blow moulding sector. The Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany, has developed an integrative three-dimensional process simulation which models the complete path of a preform through a stretch-blow moulding machine. At first, the reheating of the preform is calculated by a thermal simulation. Afterwards, the inflation of the preform to a bottle is calculated by finite element analysis (FEA). The results of this step are e.g. the local wall thickness distribution and the local biaxial stretch ratios. Not only the material distribution but also the material properties that result from the deformation history of the polymer have significant influence on the bottle properties. Therefore, a correlation between the material properties and stretch ratios is considered in an integrative simulation approach developed at IKV. The results of the process simulation (wall thickness, stretch ratios) are transferred to a further simulation program and mapped on the bottles FE mesh. This approach allows a local

  11. A Proof of Concept Experiment for Reducing Skin Friction by Using a Micro-Blowing Technique

    NASA Technical Reports Server (NTRS)

    Hwang, Danny P.

    1996-01-01

    A proof of concept experiment for reducing skin friction has been conducted in the Advanced Nozzle and Engine Components Test Facility at the NASA Lewis Research Center. In this unique concept, called the micro-blowing technique (MBT), an extremely small amount of air was blown vertically through very small holes to reduce the surface roughness and to control the gradient of the flow velocity profile on the surface thereby reducing skin friction. Research revealed that the skin was the most important factor to make this concept achievable. The proposed skin consisted of two layers. The inner layer was a low permeable porous skin for distributing the blowing air evenly while the outer layer with small holes controlled the vertical or nearly vertical blowing air. Preliminary experimental results showed that the MBT has the potential of a very large reduction in skin friction below the skin friction of a nonporous plain flat plate. Of the skins tested, three have been identified as the MBT skins. They provided very low unblown skin friction such that a large skin friction reduction, below a flat plate value, was achieved with very small amounts of blowing air. The reduction in skin friction of 55 percent was achieved at the Mach number of 0.3 for the exhaust pressure of 0.85 atm, and 60 percent reduction was obtained for the exhaust pressure of 0.24 atm (corresponding to 10 700-m altitude) at the same Mach number. A significant reduction in skin friction of over 25 percent was achieved for the exhaust pressure of 0.24 atm at the Mach number of 0.7. This implied that the MBT could be applied to a wide range of flight conditions. It is also believed that additional 10 percent reduction could be obtained by eliminating the gap between the inner layer and the outer layer. The aspect ratio of the vertical small holes for the outer layer of the MBT skin should be larger than 4 based on the preliminary conclusion from this test. Many experiments are needed to find out the

  12. Blow-by as potential therapy for uncooperative children: an in-vitro study.

    PubMed

    Mansour, Mohamed Mohsen; Smaldone, Gerald C

    2012-12-01

    Blow-by, a common form of nebulizer therapy, in which the device is held away from a child's face, has been dismissed as ineffective because studies have demonstrated incremental aerosol drop-off with increasing distances from the face. Many of these studies do not take into account differences among nebulizer systems. Using common, commercially available nebulizer systems, we defined the interaction of system components (nebulizer type, face mask configuration, and compressor characteristics) on aerosol delivery with and without blow-by. A pediatric model consisting of a ventilated mannequin fitted with a filter (inhaled mass), and 3 commercial nebulizer/compressor/face mask systems (Pari Sprint, Respironics Sidestream, and Salter 8900) were used to nebulize budesonide (1.0 mg/2 mL) at 0, 2, and 4 cm from the face. Inhaled mass and the deposition on face, eyes, and mask were measured using high-performance liquid chromatography and reported as a percent of nebulizer charge. At 0 cm, inhaled mass for the Pari, Respironics, and Salter systems was 5.33%, 1.14%, and 3.50%, respectively; at 4 cm from the face, inhaled mass decreased to 1.83%, 0.13%, and 1.14%. Facial (1.12%, 0.63%, and 2.94%) and eye (0.35%, 0.12%, and 0.68%) deposition varied significantly. Pari compressor/nebulizer flow rate was lower than Respironics and Salter (3.5 L/min vs 5.7 L/min and 5.9 L/min), resulting in longer run time (7.7 min vs 4.0 min and 5.3 min). At 4 cm, the Pari system delivered more drug than Respironics at 0 cm, suggesting adequate therapy during blow-by for some systems. Our results indicate that pediatric aerosol delivery is a strong function of the nebulizer system as a whole, and not simply a function of blow-by distance from the face or nebulizer efficiency. In uncooperative children, blow-by can be an effective means of drug delivery with the appropriate nebulizer system.

  13. Assessing exposures to inhaled complex mixtures.

    PubMed Central

    Leaderer, B P; Lioy, P J; Spengler, J D

    1993-01-01

    In the course of daily activities, individuals spend varying amounts of time in different spaces where they are exposed to a complex mixture of gas, vapor, and particulate contaminants. The term complex is used in this paper to refer to binary mixtures as well as truly complex mixtures of three or more constituents. The diversity of the environments where pollution may occur, the number of pollutants that may be present, and the nature of the activity in the environment combine to pose a challenge to investigators of the health effects of air pollutants. This article discusses several methods of measuring or assessing exposure to complex mixture air contaminants that include time-activity assessments, personal monitoring, biomarkers of exposure, and microenvironmental models that can be employed singly or in combination in a protocol for exposure assessment. The use of nested designs, involving more intensive data collection from samples or subjects, is also considered. PMID:8206025

  14. Remarking on a blackened eye: Persifor Frazer's blow-by-blow account of a fistfight with his dear friend Edward Drinker Cope.

    PubMed

    Brinkman, Paul D

    2015-01-01

    Edward Drinker Cope, a brilliant and prolific American naturalist, was notoriously combative. His infamous feud with Yale paleontologist Othniel Charles Marsh, which played out publicly on the front pages of the New York Herald, was one of the worst scandals of nineteenth-century American science. Cope did not fight exclusively with his pen, however. In 1888, for example, he traded blows with his close friend Persifor Frazer over a matter of honor at the entrance of Philadelphia's hallowed Philosophical Hall, just as a meeting of the American Philosophical Society was getting under way. A six-page letter, handwritten by Persifor Frazer and housed in the Frazer Family Papers at the University of Pennsylvania, details the circumstances of their quarrel. An annotated transcription of Frazer's letter appears here.

  15. Seasonal and Geographic Variation in Biodiversity of Forensically Important Blow Flies (Diptera: Calliphoridae) in New Jersey, USA.

    PubMed

    Weidner, L M; Jennings, D E; Tomberlin, J K; Hamilton, G C

    2015-09-01

    Determining the time of colonization of human or other animal remains by blow flies (Diptera: Calliphoridae) can play an important role in criminal investigations. However, blow fly presence in a given area is strongly influenced by abiotic and biotic variables such as temperature and habitat. We wanted to assess the biodiversity of adult blow flies in New Jersey, USA, where very little is known about these taxa. Toward that end we collected adult blow flies biweekly from traps baited with bovine liver and placed across three regions in New Jersey over a 2-yr period (2011-2013). We collected and identified 9,257 adult calliphorids, comprising six genera and 12 species. Blow fly assemblages composed of these species varied by season, but community composition did not vary among regions within a given season. Three species, Lucilia coeruleiviridis (Macquart), Lucilia sericata (Meigen), and Phormia regina (Meigen) comprised 88.5% of all adult blow flies collected (42.6, 25.9, 20.0%, respectively). Combining all regions, the dominant species for both spring and summer was L. coeruleiviridis comprising 35.1% of all adults caught in spring and 64.1% in summer. P. regina was the dominant species in fall, totaling 40.1% of all adults caught and Calliphora vicina (Robineau-Desvoidy) was the dominant species for winter, totaling 44.8% of all adults caught. Our findings provide the first assessment of blow fly communities in New Jersey, and these results can be applied to surrounding states where data are severely lacking for forensic application.

  16. Blow-Out Velocities of Solutions of Hydrocarbons and Boron Hydride - Hydrocarbon Reaction Products in a 1 7/8-Inch-Diameter Combustor

    NASA Technical Reports Server (NTRS)

    Morris, James F.; Lord, Albert M.

    1957-01-01

    Blow-out velocities were determined for JP-4 solutions containing: (1) 10 % ethylene - decaborane reaction product, (2) 10% and 20% acetylene - diborane reaction product, and (3) 5.5%, 15.7%, and 30.7% methylacetylene - diborane reaction product. These were compared with blow-out velocities for JP-4, propylene oxide, and neohexane and previously reported data for JP-4 solutions of pentaborane. For those reaction products investigated, the blow-out velocities at a fixed equivalence ratio were higher for those materials containing higher boron concentrations; that is, blow-out velocity increased in the following order: (1) methylacetylene - diborane, (2) acetylene - diborane, and (3) ethylene - decaborane reaction products.

  17. Design integration and noise studies for jet STOL aircraft. Task 7C: Augmentor wing cruise blowing valveless system. Volume 1: Static testing of augmentor noise and performance

    NASA Technical Reports Server (NTRS)

    Campbell, J. M.; Harkonen, D. L.; Okeefe, J. V.

    1973-01-01

    Static performance and acoustic tests were conducted on a two-dimensional one-third-scale augmentor flap model that simulated a cruise blowing augmentor system designed for a scale augmentor flap model that simulated a cruise blowing augmentor, which offers a degree of 150-passenger STOL airplane. The cruise blowing augmentor, which offers a degree of simplicity by requiring no fan air diverter valves, was simulated by fitting existing lobe suppressor nozzles with new nozzle fairings. Flow turning performance of the cruise blowing augmentor was measured through a large range of flap deflection angles. The noise suppression characteristics of a multilayer acoustic lining installed in the augmentor were also measured.

  18. Diplopia and ocular motility in orbital blow-out fractures: 10-year retrospective study.

    PubMed

    Alhamdani, Faaiz; Durham, Justin; Greenwood, Mark; Corbett, Ian

    2015-09-01

    To investigate diplopia (binocular single vision [BSV] test) and ocular motility (uniocular field of fixation [UFOF] test) characteristics in blow-out fractures of the orbit and their value in fracture management. Patients with isolated blow-out fractures treated from 2000 to 2010 were included. BSV scores were stratified into three categories: low BSV category (0-60); moderate BSV category (61-80), and high BSV category (81-100). UFOF scores were also divided into three categories: low score (60-240), moderate score (241-270), and high score (271-365) categories. A total of 183 patients (106 surgically and 77 conservatively managed) met the inclusion criteria. There was no significant improvement in BSV postoperatively in surgically managed patients with preoperatively high BSV, whereas there was significant improvement (p < 0.05) for the high BSV category in the conservative group. Preoperative BSV was found to be significantly related (p < 0.05) to postoperative BSV, subjective diplopia outcome, follow-up time, and number of follow-up visits. However, improvement of BSV score in the surgical group was not found to be significantly correlated with subjective outcome in relation to diplopia. Preoperative UFOF score has no influence on subjective outcome in relation to diplopia. Surgical timing, approach, and choice of implant material were not found to be statistically related to final diplopia outcome, follow-up time, or number of follow-up visits. BSV is better correlated with diplopia outcome, follow-up time, and number of follow-up visits than is UFOF. On the basis of this study, surgical intervention would not be recommended for blow-out fracture cases with BSV score >80% for correction of diplopia alone. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  19. Solution blow spun polymer: A novel preclinical surgical sealant for bowel anastomoses.

    PubMed

    Kern, Nora G; Behrens, Adam M; Srinivasan, Priya; Rossi, Christopher T; Daristotle, John L; Kofinas, Peter; Sandler, Anthony D

    2017-08-01

    Solution blow spinning is a technique for depositing polymer fibers with promising potential use as a surgical sealant. This study assessed the feasibility and efficacy of solution blow spun polymer (BSP) for sealing bowel perforations in a mouse model of partial cecal transection. We then evaluated its use for reinforcing a surgical anastomosis in a preclinical piglet model. Three commercially available surgical sealants (fibrin glue, polyethylene glycol (PEG) hydrogel, and cyanoacrylate) were compared to BSP in the ability to seal partially transected cecum in mice. For anastomosis feasibility testing in a piglet model, piglets were subjected to small bowel transection with sutured anastomosis reinforced with BSP application. Outcome measures included anastomotic burst pressure, anastomotic leak rate, 14-day survival, and complication rate. For the mouse model, the survival rates for the sealants were 30% for fibrin glue, 20% for PEG hydrogel, 78% for cyanoacrylate, and 67% for BSP. Three of 9 mice died after BSP administration because of perforation leak, failure to thrive with partial obstruction at the perforation site, and unknown causes. All other mice died of perforation leak. The mean burst pressure at 24h was significantly higher for BSP (81mm Hg) when compared to fibrin glue (6mm Hg, p=0.047) or PEG hydrogel (10mm Hg, p=0.047), and comparable to cyanoacrylate (64mm Hg, p=0.91). For piglets, 4 of 4 animals survived at 14days. Mean burst pressures at time of surgery were 37±5mm Hg for BSP and 11±9mm Hg for suture-only controls (p=0.09). Solution blow spinning may be an effective technique as an adjunct for sealing of gastrointestinal anastomosis. Further preclinical testing is warranted to better understand BSP properties and alternative surgical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Wing morphometrics as a tool in species identification of forensically important blow flies of Thailand.

    PubMed

    Sontigun, Narin; Sukontason, Kabkaew L; Zajac, Barbara K; Zehner, Richard; Sukontason, Kom; Wannasan, Anchalee; Amendt, Jens

    2017-05-10

    Correct species identification of blow flies is a crucial step for understanding their biology, which can be used not only for designing fly control programs, but also to determine the minimum time since death. Identification techniques are usually based on morphological and molecular characters. However, the use of classical morphology requires experienced entomologists for correct identification; while molecular techniques rely on a sound laboratory expertise and remain ambiguous for certain taxa. Landmark-based geometric morphometric analysis of insect wings has been extensively applied in species identification. However, few wing morphometric analyses of blow fly species have been published. We applied a landmark-based geometric morphometric analysis of wings for species identification of 12 medically and forensically important blow fly species of Thailand. Nineteen landmarks of each right wing of 372 specimens were digitised. Variation in wing size and wing shape was analysed and evaluated for allometric effects. The latter confirmed the influence of size on the shape differences between species and sexes. Wing shape variation among genera and species were analysed using canonical variates analysis followed by a cross-validation test. Wing size was not suitable for species discrimination, whereas wing shape can be a useful tool to separate taxa on both, genus and species level depending on the analysed taxa. It appeared to be highly reliable, especially for classifying Chrysomya species, but less robust for a species discrimination in the genera Lucilia and Hemipyrellia. Allometry did not affect species separation but had an impact on sexual shape dimorphism. A landmark-based geometric morphometric analysis of wings is a useful additional method for species discrimination. It is a simple, reliable and inexpensive method, but it can be time-consuming locating the landmarks for a large scale study and requires non-damaged wings for analysis.

  1. Bottle-blowing in hospital-treated patients with community-acquired pneumonia.

    PubMed

    Björkqvist, M; Wiberg, B; Bodin, L; Bárány, M; Holmberg, H

    1997-01-01

    A study was carried out to determine whether bottle-blowing has any positive effects in patients with pneumonia. In a prospective open study 145 adults with untreated community-acquired pneumonia requiring hospitalization were randomized to early mobilization (group A), to sit up and take 20 deep breaths on 10 occasions daily (group B), or to sit up and to blow bubbles in a bottle containing 10 cm water through a plastic tube 20 times on 10 occasions daily (group C). Peak expiratory flow (PEF), vital capacity (VC), forced expiratory volume in 1 sec (FEV1) and serum concentration of C-reactive protein (CRP) were determined on admission, and on days 4 and 42. Fever duration and hospital stay were recorded. In a subset of 16 patients, single breath diffusion capacity of carbon monoxide was measured on 3 occasions. The patients in group A were hospitalized for a mean of 5.3 days, group B for 4.6 days and group C for 3.9 days. Treatment was a significant factor (p = 0.037) in a Cox regression model, with group C significantly better than group A (p = 0.01). The number of days with fever was 2.3, 1.7 and 1.6 in groups A, B and C respectively. These differences were not significant (p = 0.28). No significant differences were found between the groups regarding CRP, PEF, VC, FEV1, or diffusion capacity. Intensive bottle-blowing shortens the hospital stay in patients with pneumonia. The underlying mechanism is not clear.

  2. Thermo-mechanical simulation of liquid-supported stretch blow molding

    NASA Astrophysics Data System (ADS)

    Zimmer, J.; Stommel, M.

    2015-05-01

    Stretch blow molding is the well-established plastics forming method to produce Polyehtylene therephtalate (PET) bottles. An injection molded preform is heated up above the PET glass transition temperature (Tg˜85°C) and subsequently inflated by pressurized air into a closed cavity. In the follow-up filling process, the resulting bottle is filled with the final product. A recently developed modification of the process combines the blowing and filling stages by directly using the final liquid product to inflate the preform. In a previously published paper, a mechanical simulation and successful evaluation of this liquid-driven stretch blow molding process was presented. In this way, a realistic process parameter dependent simulation of the preform deformation throughout the forming process was enabled, whereas the preform temperature evolution during forming was neglected. However, the formability of the preform is highly reduced when the temperature sinks below Tg during forming. Experimental investigations show temperature-induced failure cases due to the fast heat transfer between hot preform and cold liquid. Therefore, in this paper, a process dependent simulation of the temperature evolution during processing to avoid preform failure is presented. For this purpose, the previously developed mechanical model is used to extract the time dependent thickness evolution. This information serves as input for the heat transfer simulation. The required material parameters are calibrated from preform cooling experiments recorded with an infrared-camera. Furthermore, the high deformation ratios during processing lead to strain induced crystallization. This exothermal reaction is included into the simulation by extracting data from preform measurements at different stages of deformation via Differential Scanning Calorimetry (DSC). Finally, the thermal simulation model is evaluated by free forming experiments, recorded by a high-speed infrared camera.

  3. Thermo-mechanical simulation of liquid-supported stretch blow molding

    SciTech Connect

    Zimmer, J.; Stommel, M.

    2015-05-22

    Stretch blow molding is the well-established plastics forming method to produce Polyehtylene therephtalate (PET) bottles. An injection molded preform is heated up above the PET glass transition temperature (Tg∼85°C) and subsequently inflated by pressurized air into a closed cavity. In the follow-up filling process, the resulting bottle is filled with the final product. A recently developed modification of the process combines the blowing and filling stages by directly using the final liquid product to inflate the preform. In a previously published paper, a mechanical simulation and successful evaluation of this liquid-driven stretch blow molding process was presented. In this way, a realistic process parameter dependent simulation of the preform deformation throughout the forming process was enabled, whereas the preform temperature evolution during forming was neglected. However, the formability of the preform is highly reduced when the temperature sinks below Tg during forming. Experimental investigations show temperature-induced failure cases due to the fast heat transfer between hot preform and cold liquid. Therefore, in this paper, a process dependent simulation of the temperature evolution during processing to avoid preform failure is presented. For this purpose, the previously developed mechanical model is used to extract the time dependent thickness evolution. This information serves as input for the heat transfer simulation. The required material parameters are calibrated from preform cooling experiments recorded with an infrared-camera. Furthermore, the high deformation ratios during processing lead to strain induced crystallization. This exothermal reaction is included into the simulation by extracting data from preform measurements at different stages of deformation via Differential Scanning Calorimetry (DSC). Finally, the thermal simulation model is evaluated by free forming experiments, recorded by a high-speed infrared camera.

  4. Trailing Edge Blowing on a Two-Dimensional Six-Percent Thick Elliptical Circulation Control Airfoil Up to Transonic Conditions

    NASA Technical Reports Server (NTRS)

    Alexander, Michael G.; Anders, Scott G.; Johnson, Stuart K.; Florance, Jennifer P.; Keller, Donald F.

    2005-01-01

    A wind tunnel test was conducted in the NASA Langley Transonic Dynamics Tunnel (TDT) on a six percent thick slightly cambered elliptical circulation control airfoil with both upper and lower surface blowing capability. Parametric evaluations of jet slot heights and Coanda surface shapes were conducted at momentum coefficients (Cm) from 0.0 to 0.12. Test data were acquired at Mach numbers of 0.3, 0.5, 0.7, 0.8, and 0.84 at Reynolds numbers per foot of 2.43 x 105 to 1.05 x 106. For a transonic condition, (Mach = 0.8 at alpha = 3 degrees), it was generally found the smaller slot and larger Coanda surface combination was overall more effective than other slot/Coanda surface combinations. Lower surface blowing was not as effective as the upper surface blowing over the same range of momentum coefficients. No appreciable Coanda surface, slot height, or slot blowing position preference was indicated transonically with the dual slot blowing.

  5. Flow visualization of leading-edge vortex enhancement by spanwise blowing. [swept wings - wind tunnel stability tests

    NASA Technical Reports Server (NTRS)

    Erickson, G. E.; Campbell, J. F.

    1975-01-01

    Flow visualization studies were conducted in a small pilot wind tunnel to determine qualitative effects of blowing a discrete jet essentially parallel to the leading edge of a 45 deg-swept trapezoidal wing featuring leading- and trailing-edge flaps. Test parameters included wing angle-of-attack, jet momentum coefficient, leading- and trailing-edge flap deflections, and nozzle chordwise displacement. Results of this study indicate that blowing from a reflection plane over the wing enhances the leading-edge vortex and delays vortex bursting to higher angles-of-attack and greater span distances. Increased blowing rates decrease vortex size, growth rate, and vertical displacement above the wing surface at a given span station and also extend the spanwise effectiveness of lateral blowing. Deflection of a leading-edge flap delays the beneficial effects of spanwise blowing to higher angles-of-attack. Nozzle chordwise locations investigated for the wing with and without leading-edge flap deflection appear equally effective in enhancing the separated leading-edge flow.

  6. Measurement Of Thermal Contact Resistance Between The Mold And The Polymer For The Stretch-blow Molding Process

    NASA Astrophysics Data System (ADS)

    Bordival, M.; Schmidt, F. M.; Le Maoult, Y.; Coment, E.

    2007-04-01

    In the stretch-blow molding process, the heat transfer between the polymer and the mold is of prime interest. Although the time of contact is very short (typically around 0.5 s), the heat transfer affects the mechanical properties of the bottle, and the quality of final parts. In order to model heat transfers at the interface, a classical approach — generally adopted in numerical softwares — is to impose the heat flux density boundary condition thanks to a parameter called Thermal Contact Resistance (TCR). This paper focuses on describing the experimental method developed in order to measure evolution of this thermal parameter (TCR) versus time, as well as results obtained on the CROMeP blowing machine. In this study, a mold has been instrumented with two different sensors. The first probe allows to estimate the heat flux density and temperature at the mold surface temperature, using a linear inverse heat condution problem (Function Specification Method). The second device is used to measure the surface temperature of the PET during the blowing. This measurement is non intrusive, and can be applied within an industrial environment during the blowing step. In addition, air pressure inside the preform is also measured during the blowing. This work is part of the European project "APT_PACK" (Advanced knowledge of Polymer deformation for Tomorrow's PACKaging).

  7. Cloning, recombinant expression and inhibitor profiles of dihydrofolate reductase from the Australian sheep blow fly, Lucilia cuprina.

    PubMed

    Kotze, A C; Bagnall, N H; Ruffell, A P; Pearson, R

    2014-09-01

    While dihydrofolate reductase (DHFR) is an important drug target in mammals, bacteria and protozoa, no inhibitors of this enzyme have been developed as commercial insecticides. We therefore examined the potential of this enzyme as a drug target in an important ectoparasite of livestock, the Australian sheep blow fly, Lucilia cuprina (Diptera: Calliphoridae) (Wiedemann). The non-specific DHFR inhibitors aminopterin and methotrexate significantly inhibited the growth of L. cuprina larvae, with IC50 values at µg levels. Trimethoprim and pyrimethamine were 5-30-fold less active. Relative IC50 values for the inhibition of recombinant L. cuprina DHFR by various inhibitors were in accordance with their relative effects on larval growth. The active-site amino acid residues of L. cuprina DHFR differed by between 34% and 50% when compared with two mammalian species, as well as two bacteria and two protozoa. There were significant charge and size differences in specific residues between the blow fly and human DHFR enzymes, notably the L. cuprina Asn21, Lys31 and Lys63 residues. This study provides bioassay evidence to highlight the potential of blow fly DHFR as an insecticide target, and describes differences in active site residues between blow flies and other organisms which could be exploited in the design of blow fly control chemicals. © 2014 The Royal Entomological Society.

  8. Highly Flexible Indium Tin Oxide Nanofiber Transparent Electrodes by Blow Spinning.

    PubMed

    Wang, Haolun; Liao, Suiyang; Bai, Xiaopeng; Liu, Zhenglian; Fang, Minghao; Liu, Tao; Wang, Ning; Wu, Hui

    2016-12-07

    Transparent conductive film (TCF) has found wide applications. Indium tin oxide (ITO) is currently the most widely used transparent electrode. However, major problem of ITO is the lacking of flexibility, which totally limits its applications. Here, we report a highly flexible transparent electrode consisting of freestanding ITO nanofiber network fabricated by blow spinning, the advantage of which is its high-efficiency, low cost and safety. When the bending radius decreased to 0.5 mm, the resistance of the transparent electrodes only increased by 18.4%. Furthermore, the resistance was almost unchanged after thousands of bending cycles at 3.5 mm bending radius.

  9. Analysis of the single-blow transient testing technique for perforated plate heat exchangers

    NASA Technical Reports Server (NTRS)

    Rodriguez, Jose I.; Mills, Anthony F.

    1990-01-01

    An analysis of the single-blow transient testing technique for heat exchanger surfaces is made for perforated plate and similar discontinuous surfaces. The model assumes that there is no temperature variation across each plate, and allows for axial conduction in spacers: the resulting axial fluid temperature profile is discontinuous, rather than the usual continuous profile. Numerical solutions are obtained to the resulting set of coupled first-order differential equations for a step change in inlet fluid temperature. Results are presented in tabular form, which allow the heat transfer coefficients to be calculated from test data using the maximum slope technique.

  10. A numerical study of transition control by periodic suction-blowing

    NASA Technical Reports Server (NTRS)

    Biringen, Sedat

    1987-01-01

    The applicability of active control of transition by periodic suction-blowing is investigated via direct numerical simulations of the Navier-Stokes equations. The time-evolution of finite-amplitude disturbances in plane channel flow is compared in detail with and without control. The analysis indicates that, for relatively small three dimensional amplitudes, a two dimensional control effectively reduces disturbance growth rates even for linearly unstable Reynolds numbers. After the flow goes through secondary instability, three dimensional control seems necessary to stabilize the flow. An investigation of the temperature field suggests that passive temperature contamination is operative to reflect the flow dynamics during transition.

  11. The Investigation of Blowing Parameter Similarity for Controlling Flow Separation over Control Surface

    NASA Astrophysics Data System (ADS)

    Wang, Y. K.; Wu, P.; Deng, X. Y.; Zheng, W. L.; Zhang, Y. H.

    2011-09-01

    Because the flight performance of aircraft is so dependent on aerodynamic efficiency of elevator, it is very important to improve the flow separation over the control surfaces at high deflection angle in order to keep the aircraft having good flight capability, especially for the modern aircraft with tailless aerodynamic configuration. A new flow control technique to improve the flow separation over the control surface by microblowing at the flow separated position is discussed in this paper. Furthermore, the effect of the various blowing parameters are also investigated in detail, and based on these studies, the parameter similarity about this flow control technique is discussed.

  12. Checklist and distribution maps of the blow flies of Venezuela (Diptera, Calliphoridae, Mesembrinellidae)

    PubMed Central

    Velásquez, Yelitza; Martínez-Sánchez, Ana Isabel; Thomas, Arianna; Rojo, Santos

    2017-01-01

    Abstract A checklist of the 39 species of blow flies (Calliphoridae and Mesembrinellidae) so far known to occur in Venezuela is provided, based on a thorough literature review and the examination of ca. 500 specimens deposited in the main entomological collections of the country. Data from the literature and museum collections were used to generate distribution maps for 37 species. Three species are recorded from Venezuela for the first time: Chrysomya putoria (Wiedemann, 1830), Mesembrinella spicata Aldrich, 1925 and Mesembrinella umbrosa Aldrich, 1922. PMID:28228670

  13. A wing-jet interaction theory for USB configurations. [Upper Surface Blowing

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Campbell, J. F.

    1976-01-01

    The aerodynamic interaction between the wing and an inviscid upper-surface blowing (USB) thick jet with Mach number nonuniformity is treated within the framework of a linear inviscid subsonic compressible flow theory. A two-vortex-sheet model for the jet surface is used to represent the induced flowfields inside and outside the jet. Comparison of the predicted results with experimental data shows good agreement in lift, induced drag, and pitching moment. It is shown that the thin jet flap theory is inadequate for USB configurations with thick jet.

  14. A wing-jet interaction theory for USB configurations. [Upper Surface Blowing

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Campbell, J. F.

    1976-01-01

    The aerodynamic interaction between the wing and an inviscid upper-surface blowing (USB) thick jet with Mach number nonuniformity is treated within the framework of a linear inviscid subsonic compressible flow theory. A two-vortex-sheet model for the jet surface is used to represent the induced flowfields inside and outside the jet. Comparison of the predicted results with experimental data shows good agreement in lift, induced drag, and pitching moment. It is shown that the thin jet flap theory is inadequate for USB configurations with thick jet.

  15. Effect of placement of a speech appliance on levator veli palatini muscle activity during blowing.

    PubMed

    Tachimura, T; Nohara, K; Hara, H; Wada, T

    1999-05-01

    We have observed clinically that some speakers wearing a speech appliance for correction of velopharyngeal incompetence can blow with variable intensity without nasal air escape. This clinical finding suggests that tightness of velopharyngeal closure may be regulated in accordance with oral air pressure during blowing. The purposes of this electromyographic study were (1) to examine whether levator vell palatini muscle activity can be changed in relation to oral air pressure during blowing when the speech appliance is removed, (2) to clarify whether or not the change is related to the severity of velopharyngeal incompetence, and (3) to examine whether placement of a speech appliance can alter levator muscle activity into the equivalent of that of normal speakers during blowing. Eight patients with repaired cleft palate, who routinely wear a palatal lift prosthesis (PLP) or a hybrid speech appliance of a pharyngeal bulb and palatal lift (bulb-PLP), served as subjects. Subjects were classified into one of two groups according to their speech appliance (PLP group and bulb-PLP group). Electromyography of the levator veli palatini muscle was recorded with a speech appliance in place and then with the speech appliance removed as the subject blew through a tube at three different effort levels. In the removed condition, the change in levator activity in relation to oral air pressure was variable across subjects in the bulb-PLP group, whereas levator activity changed in relation to oral air pressure change for all subjects in the PLP group. However, levator activity changed in relation to oral air pressure with either speech appliance in place for all subjects irrespective of their speech appliance types. The severity of velopharyngeal incompetence might be related in part to change in levator activity in association with oral air pressure. The effect of a speech appliance to correct velopharyngeal incompetence might consist not only of mechanical obturation of the

  16. Fast imaging of laser-blow-off plume: Lateral confinement in ambient environment

    SciTech Connect

    George, Sony; Nampoori, V. P. N.; Kumar, Ajai; Singh, R. K.

    2009-04-06

    The dynamics of plasma plume, formed by the laser-blow-off of multicomponent LiF-C thin film under various ambient pressures ranging from high vacuum to argon pressure of 3 Torr, has been studied using fast imaging technique. In vacuum, the plume has ellipsoidal shape. With the increase in the ambient pressure, sharp plume boundary is developed showing a focusing-like (confinement in the lateral space) behavior in the front end, which persists for long times. At higher ambient pressure (>10{sup -1} Torr), structures are developed in the plasma plume due to hydrodynamic instability/turbulences.

  17. A paradigm for operant conditioning in blow flies (Phormia terrae novae Robineau-Desvoidy, 1830).

    PubMed

    Sokolowski, Michel B C; Disma, Gérald; Abramson, Charles I

    2010-01-01

    An operant conditioning situation for the blow fly (Protophormia terrae novae) is described. Individual flies are trained to enter and reenter a hole as the operant response. Only a few sessions of contingent reinforcement are required to increase response rates. When the response is no longer followed by food, the rate of entering the hole decreases. Control procedures revealed that rate of responding is not a simple overall result of feeding or of aging. The flies entered into the hole only if the response was required to obtain the food.

  18. Sea-floor methane blow-out and global firestorm at the K-T boundary

    USGS Publications Warehouse

    Max, M.D.; Dillon, William P.; Nishimura, C.; Hurdle, B.G.

    1999-01-01

    A previously unsuspected source of fuel for the global firestorm recorded by soot in the Cretaceous-Tertiary impact layer may have resided in methane gas associated with gas hydrate in the end-Cretaceous seafloor. End-Cretaceous impact-generated shock and megawaves would have had the potential to initiate worldwide oceanic methane gas blow-outs from these deposits. The methane would likely have ignited and incompletely combusted. This large burst of methane would have been followed by longer-term methane release as a part of a positive thermal feedback in the disturbed ocean-atmosphere system.

  19. Analysis of the single-blow transient testing technique for perforated plate heat exchangers

    NASA Technical Reports Server (NTRS)

    Rodriguez, Jose I.; Mills, Anthony F.

    1990-01-01

    An analysis of the single-blow transient testing technique for heat exchanger surfaces is made for perforated plate and similar discontinuous surfaces. The model assumes that there is no temperature variation across each plate, and allows for axial conduction in spacers: the resulting axial fluid temperature profile is discontinuous, rather than the usual continuous profile. Numerical solutions are obtained to the resulting set of coupled first-order differential equations for a step change in inlet fluid temperature. Results are presented in tabular form, which allow the heat transfer coefficients to be calculated from test data using the maximum slope technique.

  20. The Turbulent Boundary Layer on a Rough, Porous Plate: Experimental Heat Transfer with Uniform Blowing

    DTIC Science & Technology

    1974-05-01

    blowing at F - .004 over the first two feet of the test sectioni. The boundary layer was then allowed to relax into its natural state. Stanton number...form a natural extension of the unblown 90 fps data. The roughness Reynolds 58 number at the end of the test section for the 18.8 fps r-un was only 14...these experiments were allowed natural tran- sitions wi’hout a boundary layer trip. There are two advantages of ’trippini’ the boundary layer and having

  1. Mixture including hydrogen and hydrocarbon having pressure-temperature stability

    NASA Technical Reports Server (NTRS)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2009-01-01

    The invention relates to a method of storing hydrogen that employs a mixture of hydrogen and a hydrocarbon that can both be used as fuel. In one embodiment, the method involves maintaining a mixture including hydrogen and a hydrocarbon in the solid state at ambient pressure and a temperature in excess of about 10 K.

  2. A Mathematical Model for Reactions During Top-Blowing in the AOD Process: Derivation of the Model

    NASA Astrophysics Data System (ADS)

    Visuri, Ville-Valtteri; Järvinen, Mika; Kärnä, Aki; Sulasalmi, Petri; Heikkinen, Eetu-Pekka; Kupari, Pentti; Fabritius, Timo

    2017-06-01

    In an earlier work, a fundamental mathematical model was proposed for side-blowing operation in the argon-oxygen decarburization (AOD) process. The purpose of this work is to present a new model, which focuses on the reactions during top-blowing in the AOD process. The model considers chemical reaction rate phenomena between the gas jet and the metal bath as well as between the gas jet and metal droplets. The rate expressions were formulated according to a law of mass action-based method, which accounts for the mass-transfer resistances in the liquid metal, gas, and slag phases. The generation rate of the metal droplets was related to the blowing number theory. This paper presents the description of the model, while validation and preliminary results are presented in the second part of this work.

  3. Removal of Boron in Silicon by H2-H2O Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Andersson, Stefan; Nordstrand, Erlend; Tangstad, Merete

    2012-08-01

    The removal of boron in pure silicon by gas mixtures has been examined in the laboratory. Water-vapor-saturated hydrogen was used to remove boron doped in electronic-grade silicon in a vacuum frequency furnace. Boron concentrations in silicon were reduced from 52 ppm initially to 0.7 ppm and 3.4 ppm at 1450°C and 1500°C, respectively, after blowing a H2-3.2%H2O gas mixture for 180 min. The experimental results indicate that the boron removal as a function of gas-blowing time follows the law of exponential decay. After 99% of the boron is removed, approximately 90% of the silicon can be recovered. In order to better understand the gaseous refining mechanism, the quantum chemical coupled cluster with single and double excitations and a perturbative treatment of triple excitations method was used to accurately predict the enthalpy and entropy of formation of the HBO molecule. A simple refining model was then used to describe the boron refining process. This model can be used to optimize the refining efficiency.

  4. Aerodynamic drag reduction of a simplified squareback vehicle using steady blowing

    NASA Astrophysics Data System (ADS)

    Littlewood, R. P.; Passmore, M. A.

    2012-08-01

    A large contribution to the aerodynamic drag of a vehicle arises from the failure to fully recover pressure in the wake region, especially on squareback configurations. A degree of base pressure recovery can be achieved through careful shape optimisation, but the freedom of an automotive aerodynamicist to implement significant shape changes is limited by a variety of additional factors such styling, ergonomics and loading capacity. Active flow control technologies present the potential to create flow field modifications without the need for external shape changes and have received much attention in previous years within the aeronautical industry and, more recently, within the automotive industry. In this work the influence of steady blowing applied at a variety of angles on the roof trailing edge of a simplified ¼ scale squareback style vehicle has been investigated. Hot-wire anemometry, force balance measurements, surface pressure measurements and PIV have been used to investigate the effects of the steady blowing on the vehicle wake structures and the resulting body forces. The energy consumption of the steady jet is calculated and is used to deduce an aerodynamic drag power change. Results show that overall gains can be achieved; however, the large mass flow rate required restricts the applicability of the technique to road vehicles. Means by which the mass flow rate requirements of the jet may be reduced are discussed and suggestions for further work put forward.

  5. Investigation of heat transfer in 9-layer film blowing process by using variational principles

    NASA Astrophysics Data System (ADS)

    Kolarik, Roman; Zatloukal, Martin

    2013-04-01

    In this work, coextrusion experiments utilizing an industrial 9-layer Brampton Engineering coextrusion film blowing line has been performed under different processing conditions (low/high air cooling intensity) in order to evaluate variational principles based modeling approach using energy equation utilizing variable heat transfer coefficient along the multi-layer bubble. It has been revealed that the variational principle based model can describe the bubble shape and temperature profile reasonably well even if the multi-layer film has been viewed as the static elastic membrane characterized only by one material parameter - bubble compliance J, which was not allow to vary along the bubble. Moreover, it has been found that if the freezeline height becomes long, heat transfer coefficient starts to vary significantly along the bubble which has crucial impact on the temperature profile along the multi-layer bubble. The performed theoretical parametric study revealed that increase in blow-up ratio or decrease in bubble curvature and air temperature causing bubble cooling efficiency increases, which allows to cooled down the multi-layer bubble for the given freezeline height to solidification temperature by smaller amount of the air volume flow rate.

  6. Biomechanical investigation of the supraorbital arch - a transient FEA study on the impact of physical blows

    PubMed Central

    2014-01-01

    Introduction As fractures of the supraorbital region are far less common than midfacial or orbital fractures, a study was initiated to investigate whether fist blows could lead to fractures similar to those often seen in the midface. Methods A detailed skull model and an impactor resembling a fist were created and a fist blow to the supraorbital region was simulated. A transient finite element analysis was carried out to calculate von Mises stresses, peak force, and impact time. Results Within the contact zone of skull and impactor critical stress values could be seen which lay at the lower yield border for potential fractures. A second much lower stress zone was depicted in the anterior-medial orbital roof. Conclusions In this simulation a fist punch, which could generate distinct fractures in the midface and naso-ethmoid-orbital region, would only reach the limits of a small fracture in the supraorbital region. The reason is seen in the strong bony architecture. Much higher forces are needed to create severe trauma in the upper face which is supported by clinical findings. Finite element analysis is the method of choice to investigate the impact of trauma on the human skeleton. PMID:24745339

  7. Biomechanical investigation of the supraorbital arch - a transient FEA study on the impact of physical blows.

    PubMed

    Huempfner-Hierl, Heike; Schaller, Andreas; Hierl, Thomas

    2014-04-21

    As fractures of the supraorbital region are far less common than midfacial or orbital fractures, a study was initiated to investigate whether fist blows could lead to fractures similar to those often seen in the midface. A detailed skull model and an impactor resembling a fist were created and a fist blow to the supraorbital region was simulated. A transient finite element analysis was carried out to calculate von Mises stresses, peak force, and impact time. Within the contact zone of skull and impactor critical stress values could be seen which lay at the lower yield border for potential fractures. A second much lower stress zone was depicted in the anterior-medial orbital roof. In this simulation a fist punch, which could generate distinct fractures in the midface and naso-ethmoid-orbital region, would only reach the limits of a small fracture in the supraorbital region. The reason is seen in the strong bony architecture. Much higher forces are needed to create severe trauma in the upper face which is supported by clinical findings. Finite element analysis is the method of choice to investigate the impact of trauma on the human skeleton.

  8. Injection blow moulding single stage process: Validation of the numerical simulation through tomography analysis

    NASA Astrophysics Data System (ADS)

    Biglione, Jordan; Béreaux, Yves; Charmeau, Jean-Yves

    2016-10-01

    The injection blow moulding single stage process has been made available on standard injection moulding machine. Both the injection moulding stage and the blow moulding stage are being taken care of in an injection mould. Thus the dimensions of this mould are those of a conventional injection moulding mould. The fact that the two stages are located in the same mould leads to a process more constrained than the conventional one. This process introduces temperature gradients, molecular orientation, high stretch rates and high cooling rates. These constraints lead to a small processing window. In practice, the preform has to remain sufficiently melted to be blown so that the process takes place between the melting temperature and the crystallization temperature. In our numerical approach, the polymer is supposed to be blown in its molten state. Hence we have identified the mechanical behaviour of the polymer in its molten state through dynamical rheology experiments. A viscous Cross model has been proved to be relevant to the problem. Thermal dependence is assumed by an Arrhenius law. The process is simulated through a finite element code (POLYFLOW software) in the Ansys Workbench framework. Thickness measurements using image analysis of tomography data are performed and comparisons with the simulation results show good agreements.

  9. Pattern injuries from blows with the muzzle end of a handgun.

    PubMed

    Geisenberger, D; Vogt, S; Pircher, R; Kramer, L; Pollak, S; Grosse Perdekamp, M

    2015-12-01

    Pistols, revolvers and blank guns are not only used to discharge cartridges, but also for hits to the victim. In such cases, the blows preferably affect the head and/or the interposed hands protecting the body. The impact is mostly exerted either by the grip of a pistol or the butt of a revolver. In vigorous thrusts inflicted with the muzzle end of the weapon, the edge of the barrel may produce circular punch lesions with central skin flaps roughly corresponding to the bore. As in other kinds of pistol-whipping, the scalp wounds may be associated with fractures of the skull and even with brain contusions. Using the example of a homicide committed by pistol-whipping, the morphological features of blunt injuries from a handgun's muzzle are presented. The characteristic wound pattern found on the victim's head could be reproduced experimentally by forceful blows to the forehead of a slaughtered pig. In the case presented, the dominant hand of the perpetrator showed friction blisters due to prolonged striking with an unhandy tool in the form of a pistol.

  10. Study of Mass Transfer in Gas Blowing Processes for Silicon Purification

    NASA Astrophysics Data System (ADS)

    Altenberend, Jochen; Chichignoud, Guy; Delannoy, Yves

    2017-03-01

    Boron removal processes are crucial to make the metallurgical route for silicon refining for solar cells competitive and thus reduce the cost of solar energy. The rate-limiting step was investigated in silicon purification processes for boron removal based on gas blowing, to gain better understanding that should help to improve the design of such processes. We calculate the boron concentration in the off-gas that corresponds to chemical equilibrium between the gas and silicon. The real concentration in the off-gas ranges between 9 and 30 pct of this theoretical value calculated using Gibbs free energies reported in literature. Purification experiments with varying temperature and hydrogen concentration were done to evaluate whether limited chemical reaction rates induce deviation from chemical equilibrium. The experiments and data from literature show that the chemical reactions at the surface of the melt are close to chemical equilibrium, thus the purification rate is limited by mass transfer in the gas phase near the interface. Based on this, recommendations for the design of a gas blowing purification process are given.

  11. Effect of forebody tangential slot blowing on flow about a full aircraft geometry

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Rizk, Yehia M.; Schiff, Lewis B.

    1993-01-01

    The effect of forebody tangential slot blowing on the flowfield about an F/A-18 aircraft is investigated numerically using solutions of the Navier-Stokes equations. Computed solutions are obtained for a full aircraft geometry, including the fuselage, wing with deflected leading-edge flap, empennage, and a faired-over engine inlet. The computational slot geometry corresponds to that used in full-scale wind tunnel tests. Solutions are computed using flight test conditions and jet mass flow ratios equivalent to wind tunnel test conditions. The effect of slot location is analyzed by computing two non-time-accurate solutions with a 16 in. slot located 3 in. and 11 in. aft of the nose of the aircraft. These computations resolve the trends observed in the full-scale wind tunnel test data. The flow aft of the leading edge extension (LEX) vortex burst is unsteady. A time-accurate solution is obtained to investigate the flow characteristics aft of the vortex burst, including the effect of blowing on tail buffet.

  12. Chemotaxonomic Profile and Intraspecific Variation in the Blow Fly of Forensic Interest Chrysomya megacephala (Diptera: Calliphoridae).

    PubMed

    Paula, Michele C; Antonialli-Junior, William F; Mendonça, Angélica; Michelutti, Kamylla B; Eulalio, Aylson D M M; Cardoso, Claudia A L; de Lima, Thiago; Von Zuben, Cláudio J

    2017-01-01

    Necrophagous insects such as blow flies (Diptera: Calliphoridae) are considered crucial in forensic entomology. Identification at species level and determination of larval stage are the basis for estimation of postmortem interval (PMI). Insect evidence can also be used in the determination of crime scenes, since body displacement is common. The aim of this study was to determine the chemotaxonomic profile and intraspecific variability of the forensically important blow fly Chrysomya megacephala (F. 1794). Adults were collected in the municipalities of Dourados-MS (Brazil) and Rio Claro-SP (Brazil), and then transferred to the laboratory for oviposition and development of the immature stages. Chemical analysis of cuticular compounds was performed by gas chromatography. Cuticular chemical profiles varied significantly between the two populations, as well as between developmental stages, supporting the use of these compounds as a complementary tool to help identify the species and its stages, along with geographical variability. This could greatly accelerate forensic investigations, eliminating the need to allow the fly larvae to develop until adult stage in order to confirm the species identity and sample origin.

  13. Morphology and identification of first instars of African blow flies (Diptera: Calliphoridae) commonly of forensic importance.

    PubMed

    Szpila, Krzysztof; Villet, Martin H

    2011-07-01

    Scanning electron microscopy images of the first instars of Calliphora croceipalpis Jaennicke, 1876; Chrysomya chloropyga (Wiedemann, 1818); Chrysomya marginalis (Wiedemann, 1830); and Chrysomya putoria (Wiedemann, 1830) (Diptera: Calliphoridae) are presented for the first time, and the following morphological structures are documented: pseudocephalon, antenna, maxillary palpus, facial mask, labial lobe, thoracic and abdominal spinulation, spiracular field, posterior spiracles, and anal pads. Light microscopy photographs and line illustrations are provided for the cephaloskeleton in lateral and ventral views, and the "ectostomal sclerite" and "chitinized teeth" of the cephaloskeleton are recognized as integral parts of the mouthhooks. New diagnostic features of the cephaloskeleton and the spinulation of the abdominal segments are described. These results allow refinement, clarification, and correction of earlier descriptions, which are reviewed. The relative taxonomic importance of various morphological characters of the first instars of necrophagous blow flies is discussed, and details of the cephaloskeleton and the spinulation of the abdominal segments are highlighted as the characters most useful for species identification. Finally, a key for identifying first instars of common African carrion blow flies is provided.

  14. Micro Blowing Simulations Using a Coupled Finite-Volume Lattice-Boltzman n L ES Approach

    NASA Technical Reports Server (NTRS)

    Menon, S.; Feiz, H.

    1990-01-01

    Three dimensional large-eddy simulations (LES) of single and multiple jet-in-cross-flow (JICF) are conducted using the 19-bit Lattice Boltzmann Equation (LBE) method coupled with a conventional finite-volume (FV) scheme. In this coupled LBE-FV approach, the LBE-LES is employed to simulate the flow inside the jet nozzles while the FV-LES is used to simulate the crossflow. The key application area is the use of this technique is to study the micro blowing technique (MBT) for drag control similar to the recent experiments at NASA/GRC. It is necessary to resolve the flow inside the micro-blowing and suction holes with high resolution without being restricted by the FV time-step restriction. The coupled LBE-FV-LES approach achieves this objectives in a computationally efficient manner. A single jet in crossflow case is used for validation purpose and the results are compared with experimental data and full LBE-LES simulation. Good agreement with data is obtained. Subsequently, MBT over a flat plate with porosity of 25% is simulated using 9 jets in a compressible cross flow at a Mach number of 0.4. It is shown that MBT suppresses the near-wall vortices and reduces the skin friction by up to 50 percent. This is in good agreement with experimental data.

  15. Foam injection molding of poly(lactic acid) with physical blowing agents

    NASA Astrophysics Data System (ADS)

    Pantani, R.; Sorrentino, A.; Volpe, V.; Titomanlio, G.

    2014-05-01

    Foam injection molding uses environmental friendly blowing agents under high pressure and temperature to produce parts having a cellular core and a compact solid skin (the so-called "structural foam"). The addition of a supercritical gas reduces the part weight and at the same time improves some physical properties of the material through the promotion of a faster crystallization; it also leads to the reduction of both the viscosity and the glass transition temperature of the polymer melt, which therefore can be injection molded adopting lower temperatures and pressures. These aspects are of extreme interest for biodegradable polymers, which often present a very narrow processing window, with the suitable processing temperatures close to the degradation conditions. In this work, foam injection molding was carried out by an instrumented molding machine, able to measure the pressure evolution in different positions along the flow-path. The material adopted was a biodegradable polymer, namely the Poly(lactic acid), PLA. The effect of a physical blowing agent (PBA) on the viscosity was measured. The density reduction and the morphology of parts obtained by different molding conditions was assessed.

  16. Hydrochlorofluorocarbon (HCFC) blowing agents for foam insulation of launch vehicle cryogenic propellant tanks

    SciTech Connect

    Strauss, L. ); Bzik, J.W. )

    1992-01-01

    This paper reports on two polyurethane spray-on foam insulations (SOFI) that were evaluated with five hydrochlorofluorocarbon (HCFC) blowing agents each (HCFC-141b, HCFC-123, and three blends). Foams were evaluated by measuring bond and flatwise tension strengths at four temperatures, compression at ambient temperature, and substrate strain compatibility at liquid helium temperature. Additionally, foams were characterized for density, closed-cell content, oxygen index, and ablation under radiant heating. Compression strengths of RDB-1-152 (polyether polyol) exceeded those of SS-1825 SOFI (polyester/polyether blend). Highest compression and tensile strengths were for foams sprayed with HCFC-141b and strengths decreased with increasing HCFC-123 content in the blowing agent. No foam failures occurred adhesively at the aluminum substrate, but a high incidence of premature failures occurred in the knitline between successive spray layers. Process optimization studies will be conducted with the two best SOFI systems, RDB-1-152/HCFC-141b and RDB-1-152/30% HCFC-123; 70 % HCFC-141b.

  17. Blow-out protector and fire control system for petroleum exploration

    SciTech Connect

    Caraway, M.F.; Caraway, B.L.

    1987-10-06

    A blow-out protector is described for an oil well comprising a housing having a vertical passageway therethrough for a Kelly. The housing has a lower end adapter flange to be connected to a well casing, an elastomeric body having an opening for the Kelly and carried on the Kelly for providing sealing contact with the Kelly and housing passageway, a catch ring secured to the Kelly and having a surface defined by a given diameter, a compressor ring plate positioned below the elastomeric body on the Kelly, means on an interior of the housing having a given diameter and preventing the compressor ring plate from falling down and yet providing engagement with the surface of the catch ring, the compressor ring plate having a hole for passage of the Kelly drive-mechanism for the drill pipe, the catch ring on the Kelly positioned below the compressor plate. The diameter of the catch ring is smaller than the diameter of the interior means on the housing so that when the Kelly is pulled up the catch ring will contact and force the compressor ring plate against the elastomeric body and force the elastomeric body into tight contact with both the Kelly and the housing thus sealing the space between the Kelly and the housing against a blow-out.

  18. Factors Affecting Species Identifications of Blow Fly Pupae Based upon Chemical Profiles and Multivariate Statistics

    PubMed Central

    Kranz, William; Carroll, Clinton; Dixon, Darren A.; Goodpaster, John V.; Picard, Christine J.

    2017-01-01

    Alternative methods for the identification of species of blow fly pupae have been developed over the years that consist of the analyses of chemical profiles. However, the effect of biotic and abiotic factors that could influence the predictive manner for the tests have not been evaluated. The lipids of blowfly pupae (Cochliomyia macellaria, Lucilia cuprina, Lucilia sericata, and Phormia regina) were extracted in pentane, derivatized, and analyzed by total-vaporization solid phase microextraction gas chromatography-mass spectrometry (TV-SPME GC-MS). Peak areas for 26 compounds were analyzed. Here we evaluated one biotic factor (colonization) on four species of blow flies to determine how well a model produced from lipid profiles of colonized flies predicted the species of flies of offspring of wild-caught flies and found very good species identification following 10 generations of inbreeding. When we evaluated four abiotic factors in our fly rearing protocols (temperature, humidity, pupation substrate, and diet), we found that the ability to assign the chemical profile to the correct species was greatly reduced. PMID:28398264

  19. Sea salt aerosol from blowing snow on sea ice - modeling vs observation

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Frey, Markus; Norris, Sarah; Brooks, Ian; Anderson, Philip; Jones, Anna; wolff, Eric; Legrand, Michel

    2016-04-01

    Blowing snow over sea ice, through a subsequent sublimation process of salt-containing blown snow particles, has been hypothesized as a significant sea salt aerosol (SSA) source in high latitudes. This mechanism has been strongly supported by a winter cruise in the Weddell Sea (during June-August 2013). The newly collected data, including both physical and chemical components, provide a unique way to test and validate the parameterisation used for describing the SSA production from blowing snow events. With updates to some key parameters such as snow salinity in a global Chemistry-transport model pTOMCAT, simulated SSA concentrations can be well compared with measured SSA data. In this presentation, I will report modeled SSA number density against collected data on board of Polarstern ship during the Weddell Sea cruise, as well as modeled SSA massive concentrations against those measured at both coastal sites such as Alert in the North and Dumont d'Urville (DDU) in the South and central Antarctic sites such as Concordia and Kohnen stations. Model experiments indicated that open ocean-sourced SSA could not explain the observed winter SSA peaks seen in most polar sites, while with sea ice-sourced SSA in the model, the winter peaks can be well improved indicating the importance of sea ice-sourced SSA as a significant contributor to the salts (Na+, Cl-) recorded in the ice core.

  20. Factors Affecting Species Identifications of Blow Fly Pupae Based upon Chemical Profiles and Multivariate Statistics.

    PubMed

    Kranz, William; Carroll, Clinton; Dixon, Darren A; Goodpaster, John V; Picard, Christine J

    2017-04-11

    Alternative methods for the identification of species of blow fly pupae have been developed over the years that consist of the analyses of chemical profiles. However, the effect of biotic and abiotic factors that could influence the predictive manner for the tests have not been evaluated. The lipids of blowfly pupae (Cochliomyia macellaria, Lucilia cuprina, Lucilia sericata, and Phormia regina) were extracted in pentane, derivatized, and analyzed by total-vaporization solid phase microextraction gas chromatography-mass spectrometry (TV-SPME GC-MS). Peak areas for 26 compounds were analyzed. Here we evaluated one biotic factor (colonization) on four species of blow flies to determine how well a model produced from lipid profiles of colonized flies predicted the species of flies of offspring of wild-caught flies and found very good species identification following 10 generations of inbreeding. When we evaluated four abiotic factors in our fly rearing protocols (temperature, humidity, pupation substrate, and diet), we found that the ability to assign the chemical profile to the correct species was greatly reduced.

  1. Short communication: jenny milk as an inhibitor of late blowing in cheese: a preliminary report.

    PubMed

    Cosentino, C; Paolino, R; Freschi, P; Calluso, A M

    2013-06-01

    Late blowing on semihard and hard cheese may have an important economic effect on dairy production. Many studies have attempted to prevent this defect by physical treatment, the use of additives, and the use of bacteriocins. In this paper, we look at the effect of jenny milk as an inhibitor of blowing caused by clostridia and coliforms in ewe cheese making. Bulk ewe and jenny milk samples were collected in the morning by mechanical milking and were refrigerated at 4°C. On the collected samples, the count of somatic cells, coliforms, Clostridium butyricum, and Escherichia coli were determined. The bulk raw milk was divided in two 45-L vats: vat 1 was used as a control, whereas 0.5L of jenny milk was added to vat 2. Four semihard cheeses, weighing about 2 kg each, were made from each vat. Cheese making was replicated twice. After a ripening period of 60 d, the count of coliforms and of C. butyricum was determined. In the treated group, a significant inhibition of coliform bacteria was observed. The addition of jenny milk in cheese making may prove to be a useful and innovative approach for the inhibition of spore-forming clostridia strains. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Modeling blowing snow accumulation downwind of an obstruction: The Ohara Eulerian particle distribution equation

    NASA Astrophysics Data System (ADS)

    Kinar, N. J.

    2017-05-01

    An equation was proposed to model the height of blowing snow accumulation downwind of an obstacle such as vegetation, a snow fence, a building, or a topographic feature. The equation does not require aerodynamic flow condition parameters such as wind speed, allowing for the spatial distribution of snow to be determined at locations where meteorological data is not available. However, snow particle diffusion, drift, and erosion coefficients must be estimated for application of the equation. These coefficients can be used to provide insight into the relative magnitude of blowing snow processes at a field location. Further research is required to determine efficient methods for coefficient estimation. The equation could be used with other models of wind-transported snow to predict snow accumulation downwind of an obstacle without the need for wind speed adjustments or correction equations. Applications for this equation include the design of snow fences, and the use of this equation with other hydrological models to predict snow distribution, climate change, drought, flooding, and avalanches.

  3. Propagation dynamics of laterally colliding plasma plumes in laser-blow-off of thin film

    SciTech Connect

    Kumar, Bhupesh; Singh, R. K.; Sengupta, Sudip; Kaw, P. K.; Kumar, Ajai

    2014-08-15

    We report a systematic investigation of two plume interactions at different spatial separation (3-7 mm) in laser-blow-off. The plasmas plumes are created using Laser-blow-off (LBO) scheme of a thin film. The fast imaging technique is used to record the evolution of seed plasmas and the interaction zone which is formed as a result of interaction of the two seed plasmas. Time resolved optical emission spectroscopy is used to study evolution of optical emissions of the species present in the different regions of the plasmas. Neutral Li emissions (Li I 670.8 nm (2s {sup 2}S{sub 1/2} ← 2p {sup 2}P{sub 3/2,1/2}) and Li I 610.3 nm (2p {sup 2}P{sub 3/2,1/2} ← 3d {sup 2}D{sub 3/2,5/2})) are dominant in the plasmas but significant differences are observed in the emission and estimated plasma parameters of the seed and the interaction zone. The transport of plasma species from the seed plasmas to the interaction zone is discussed in the terms of plume divergence, kinetic energy of particles, and ion acoustic speed. An attempt is made to understand the formation and dynamics of the interaction zone in the colliding LBO seed plasmas.

  4. A Numerical Study of Anti-Vortex Film Cooling Designs at High Blowing Ratio

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.

    2008-01-01

    A concept for mitigating the adverse effects of jet vorticity and liftoff at high blowing ratios for turbine film cooling flows has been developed and studied at NASA Glenn Research Center. This "anti-vortex" film cooling concept proposes the addition of two branched holes from each primary hole in order to produce a vorticity counter to the detrimental kidney vortices from the main jet. These vortices typically entrain hot freestream gas and are associated with jet separation from the turbine blade surface. The anti-vortex design is unique in that it requires only easily machinable round holes, unlike shaped film cooling holes and other advanced concepts. The anti-vortex film cooling hole concept has been modeled computationally for a single row of 30deg angled holes on a flat surface using the 3D Navier-Stokes solver Glenn-HT. A modification of the anti-vortex concept whereby the branched holes exit adjacent to the main hole has been studied computationally for blowing ratios of 1.0 and 2.0 and at density ratios of 1.0 and 2.0. This modified concept was selected because it has shown the most promise in recent experimental studies. The computational results show that the modified design improves the film cooling effectiveness relative to the round hole baseline and previous anti-vortex cases, in confirmation of the experimental studies.

  5. Evidence for a Significant Source of Sea Salt Aerosol from Blowing Snow Above Sea Ice in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Frey, M. M.; Brooks, I. M.; Anderson, P. A.; Nishimura, K.; Yang, X.; Jones, A. E.; Wolff, E. W.

    2014-12-01

    Over most of the Earth, sea salt aerosol (SSA) derives from sea spray and bubble bursting at the open ocean surface. SSA as the major component of marine aerosol contributes directly to the radiative balance and can act as cloud condensation nuclei. SSA can also significantly impact the lifetime of methane, ozone or mercury through the photochemical release of reactive halogens. A recent model study suggested that the sublimation of saline blowing snow above sea ice can generate more SSA than is produced from a similar area of open ocean. A winter cruise through the Weddell Sea during June - August 2013 provided unique access to a potential SSA source region in the Antarctic sea ice zone to test this hypothesis.Reported are first measurements of snow particle as well as aerosol concentrations, size distributions and chemical composition, during blowing snow events above sea ice. Snow particle spectra are found to be similar to those observed on the continent. Even though the salinity of surface and blowing snow was very low (<0.1 psu) a significant increase of aerosol in the SSA size range was observed during and after blowing snow events. This is consistent with model runs including a blowing snow parameterisation which suggest low sensitivity of SSA number densities to snow salinity within the observed range. First estimates of SSA flux from blowing snow using eddy correlation are significant, although falling below published values of the sea spray source function. We discuss the dependance of observed SSA production rates on ambient conditions as well as the significance to the Southern Ocean environment.

  6. Preliminary assessment of a previously unknown fault zone beneath the Daytona Beach sand blow cluster near Marianna, Arkansas

    USGS Publications Warehouse

    Odum, Jackson K.; Williams, Robert; Stephenson, William J.; Tuttle, Martitia P.; Al-Shukri, Hadar

    2016-01-01

    We collected new high‐resolution P‐wave seismic‐reflection data to explore for possible faults beneath a roughly linear cluster of early to mid‐Holocene earthquake‐induced sand blows to the south of Marianna, Arkansas. The Daytona Beach sand blow deposits are located in east‐central Arkansas about 75 km southwest of Memphis, Tennessee, and about 80 km south of the southwestern end of the New Madrid seismic zone (NMSZ). Previous studies of these sand blows indicate that they were produced between 10,500 and 5350 yr B.P. (before A.D. 1950). The sand blows are large and similar in size to those in the heart of the NMSZ produced by the 1811–1812 earthquakes. The seismic‐reflection profiles reveal a previously unknown zone of near‐vertical faults imaged in the 100–1100‐m depth range that are approximately coincident with a cluster of earthquake‐induced sand blows and a near‐linear surface lineament composed of air photo tonal anomalies. These interpreted faults are expressed as vertical discontinuities with the largest displacement fault showing about 40 m of west‐side‐up displacement at the top of the Paleozoic section at about 1100 m depth. There are about 20 m of folding on reflections within the Eocene strata at 400 m depth. Increasing fault displacement with depth suggests long‐term recurrent faulting. The imaged faults within the vicinity of the numerous sand blow features could be a causative earthquake source, although it does not rule out the possibility of other seismic sources nearby. These newly located faults add to a growing list of potentially active Pleistocene–Holocene faults discovered over the last two decades that are within the Mississippi embayment region but outside of the historical NMSZ.

  7. Antiadhesive effect of mixed solution of sodium hyaluronate and sodium carboxymethylcellulose after blow-out fracture repair.

    PubMed

    Lee, Jong Mi; Baek, Sehyun

    2012-11-01

    Treatment of blow-out fractures is aimed at the prevention of permanent diplopia and cosmetically unacceptable enophthalmos. Porous polyethylene sheets are one of the most common alloplastic implants for blow-out fracture repair. Because adhesion between the porous polyethylene and the orbital soft tissue can result in restrictions of ocular motility, prevention of postoperative adhesion is important in the reconstruction of blow-out fractures. The purpose of this study was to find out the effect of the mixed solution of sodium hyaluronate and sodium carboxymethylcellulose (HACMC) on postoperative adhesion in blow-out fracture repair in an animal model.Twenty-four New Zealand white rabbits were used. An 8-mm defect was made in the maxillary sinuses including the bone and mucosa. A 10-mm porous polyethylene sheet (Medpor; Porex Surgical Inc., Newnan, GA) was inserted in to the defect. The rabbits were divided into a control group and a HACMC group. In the HACMC group, HACMC solution was instilled onto the surface of the implant and then the implant was inserted. The implants were harvested at 1, 2, 4, and 8 weeks after surgery (3 implants each period). Hematoxylin and eosin, Masson trichrome, and CD31 (platelet endothelial cell adhesion molecule-1) stains were performed for evaluation of inflammation, fibrosis, and vascularization.Inflammation appeared less severe in the HACMC group, but the difference between the 2 groups was not statistically significant. The degree of fibrosis was more severe in the control group. There were significant differences in the degree of fibrosis between the 2 groups 4 and 8 weeks after surgery (P = 0.046). The amount of vascularization was similar in both groups.The HACMC solution seemed to be effective for reducing postoperative adhesion in reconstruction of blow-out fractures in a rabbit model. Our results suggest that the application of HACMC solution could be an effective adjunct for the repair of trap-door fractures or revision

  8. Submerged Gas Jet Penetration: A Study of Bubbling Versus Jetting and Side Versus Bottom Blowing in Copper Bath Smelting

    NASA Astrophysics Data System (ADS)

    Kapusta, Joël P. T.

    2017-06-01

    Although the bottom blowing ShuiKouShan process has now been widely implemented in China, in both lead and copper smelters, some doubts, questions, and concerns still seem to prevail in the metallurgical community outside China. In the author's opinion, part of these doubts and concerns could be addressed by a better general understanding of key concepts of submerged gas injection, including gas jet trajectory and penetration, and the concept, application, and benefits of sonic injection in jetting regime. To provide some answers, this article first offers a discussion on the historical developments of the theory and mathematical characterization of submerged gas jet trajectory, including the proposed criteria for the transition from bubbling to jetting regime and the application of the Prandtl-Meyer theory to submerged gas jets. A second part is devoted to a quantitative study of submerged gas jet penetration in copper bath smelting, including a comparison between bubbling and jetting regimes, and side versus bottom blowing. In the specific cases studied, the calculated gas jet axis trajectory length in jetting regime is 159 cm for bottom blowing, whereas it varies between 129 and 168 cm for side blowing for inclination angles of +18° to -30° to the horizontal. This means that side blowing in the jetting regime would provide a deeper penetration and longer gas jet trajectory than generally obtained by conventional bath smelting vessels such as the Noranda and Teniente reactors. The theoretical results of this study do corroborate the successful high-intensity practice of the slag make converting process at Glencore Nickel in Canada that operates under high oxygen shrouded injection in the jetting regime, and this would then suggest that retrofitting conventional low-pressure, side-blowing tuyeres of bath smelting and converting reactors with sonic injectors in jetting regime certainly appears as a valuable option for process intensification with higher oxygen

  9. A comparative study of IPPB, the incentive spirometer, and blow bottles: the prevention of atelectasis following cardiac surgery.

    PubMed

    Iverson, L I; Ecker, R R; Fox, H E; May, I A

    1978-03-01

    Following cardiac operations, 145 patients were treated with either intermittent positive-pressure breathing (IPPB), blod bottles, or an incentive spirometer in an attempt to alter the incidence of atelectasis. Pulmonary complications occurred in 30% of the patients receiving IPPB, 15% of those using an incentive spirometer, and 8% of those using blow bottles. Gastrointestinal side-effects occurred in 20% of the IPPB group and were rare in other groups. The cost of IPPB is also considerably greater than either incentive spirometry or blow bottles. IPPB is not essential to prevention of atelectasis in postoperative cardiac surgical patients and may be inferior to other methods.

  10. Blow-out fractures of the orbit: a comparison of computed tomography and conventional radiography with anatomic correlation

    SciTech Connect

    Hammeschlag, S.B.; Hughes, S.; O'Reilly, G.V.; Naheedy, M.H.; Rumbaugh, C.L.

    1982-05-01

    Orbital blow-out fractures were experimentally created in eight human cadavers. Each orbit underwent conventional radiographic studies, complex motion tomography, and computed tomographic examinations. A comparison of the three modalities was made. Anatomical correlation was obtained by dissecting the orbits. The significance of medial-wall fractures and enophthalmos is discussed. Limitation of inferior rectus muscle mobility is thought to be a result of muscle kinking associated with orbital fat-pad prolapse at the fracture site, rather than muscle incarceration. Blow-out fractures should be evaluated by computed tomographic computer reformations in the oblique sagittal plane.

  11. Blow-up of ion-sound waves in plasma with non-linear sources on the boundary

    NASA Astrophysics Data System (ADS)

    Korpusov, Maxim O.

    2012-04-01

    We consider a model equation of ion-sound waves in 'non-magnetized' plasma taking account of non-linear sources localized on the boundary. This generates a non-linear dynamical boundary condition which is 'close' to the non-linear Neumann-Dirichlet condition. We prove the existence of a weak generalized solution of this initial-boundary value problem and obtain sufficient conditions for the blow-up of this solution in finite time. We give an upper bound for the time of existence of the solution, which equals its blow-up time. We also obtain sufficient conditions for the existence of a strong generalized solution.

  12. An inverse Hölder inequality and its application in lower bound estimates for blow-up time

    NASA Astrophysics Data System (ADS)

    Guo, Bin

    2017-06-01

    This paper deals with the lower bound for blow-up solutions to a nonlinear viscoelastic hyperbolic equation. An inverse Hölder inequality with the correction constant is employed to overcome the difficulty caused by the failure of the embedding inequality W01,r (Ω) ↪L 2 α - 2 (Ω) (r*+2/2 < α blow-up time is obtained by establishing a first-order differential inequality. This result is a continuation of an earlier work [1].

  13. Blow-up analysis and existence results in the supercritical case for an asymmetric mean field equation with variable intensities

    NASA Astrophysics Data System (ADS)

    Jevnikar, Aleks

    2017-07-01

    A class of equations with exponential nonlinearities on a compact Riemannian surface is considered. More precisely, we study an asymmetric sinh-Gordon problem arising as a mean field equation of the equilibrium turbulence of vortices with variable intensities. We start by performing a blow-up analysis in order to derive some information on the local blow-up masses. As a consequence we get a compactness property in a supercritical range. We next introduce a variational argument based on improved Moser-Trudinger inequalities which yields existence of solutions for any choice of the underlying surface.

  14. Numerical study of blow-up and stability of line solitons for the Novikov-Veselov equation

    NASA Astrophysics Data System (ADS)

    Kazeykina, Anna; Klein, Christian

    2017-07-01

    We study numerically the evolution of perturbed Korteweg-de Vries solitons and of well localized initial data by the Novikov-Veselov (NV) equation at different levels of the ‘energy’ parameter E. We show that as \\vert E\\vert \\to ∞ , NV behaves, as expected, similarly to its formal limit, the Kadomtsev-Petviashvili equation. However at intermediate regimes, i.e. when \\vert E \\vert is not very large, more varied scenarios are possible, in particular, blow-ups are observed. The mechanism of the blow-up is studied.

  15. Transport in superfluid mixtures

    NASA Astrophysics Data System (ADS)

    Geracie, Michael

    2017-04-01

    We present a general method for constructing effective field theories for nonrelativistic superfluids, generalizing the previous approaches of Greiter, Witten, and Wilczek, and Son and Wingate to the case of several superfluids in solution. We investigate transport in mixtures with broken parity and find a parity-odd "Hall drag" in the presence of independent motion as well as a pinning of mass, charge, and energy to sites of nonzero relative velocity. Both effects have a simple geometric interpretation in terms of the signed volumes and directed areas of various subcomplexes of a "velocity polyhedron": the convex hull formed by the end points of the velocity vectors of a superfluid mixture. We also provide a simple quasi-one-dimensional model that exhibits nonzero Hall drag.

  16. Alimentary canal of the blow fly Chrysomya megacephala (F.) (Diptera: Calliphoridae): an emphasis on dissection and morphometry.

    PubMed

    Boonsriwong, Worachote; Sukontason, Kom; Vogtsberger, Roy C; Sukontason, Kabkaew L

    2011-06-01

    The alimentary canal is a major organ system that is often involved in the transmission of pathogens to humans from insects that serve as vectors of disease. In this study, we investigated the alimentary canal of the blow fly, Chrysomya megacephala (F.) (Diptera: Calliphoridae), highlighting the description for dissection and morphometric analysis of each organ. Dissection was performed in a phosphate buffer solution (pH=7.4) on 3(rd) instar larvae (three to four days old) and on both male and female adults (seven days old). Larval dissection was accomplished using two fine forceps to open the specimens from the posterior end and proceed anteriorly toward the cephalic segment. Meticulous dissection of the anterior end was vital for observation of the delicate salivary ducts, crop duct, and esophagus. Overall length of the 3(rd) instar alimentary canal measured 89.15 mm (range 81.40-99.70 mm). The midgut comprised the longest portion, measuring 46.35 mm (range 40.00-52.00 mm; n = 30) of the entire canal. Adult dissection was also performed from abdomen to head. Morphometric analyses revealed that the alimentary canal of males and females were relatively similar. No statistical differences were found between the entire length of the alimentary canal from mouth to anus (excluding all branches of the salivary glands, crop, and Malpighian tubules) of males and females. The alimentary canals of males measured 36.23 mm (range 32.60-41.20 mm) in length; whereas, those of females measured 37.23 mm (range 32.70-42.15 mm). Two-thirds of the entire canal length was comprised of midgut in each sex.

  17. Critical dynamics in mixtures

    NASA Astrophysics Data System (ADS)

    Folk, R.; Moser, G.

    1998-11-01

    We derive the nonasymptotic expressions for the frequency- and temperature-dependent sound velocity and sound absorption near a critical point in a mixture within renormalization group theory in one-loop order. The dynamic model considered is an extension of the corresponding model for pure fluids including concentration fluctuations. The theoretical result for the complex sound velocity is the same as at consolute points and gas-liquid critical points reflecting universality. Differences observed in the experiments at the two critical points mentioned are due to the different behavior of the sound velocity at Tc, which is finite in mixtures and zero in pure fluids, as well as due to nonasymptotic effects. Near the consolute point we compare our result with the phenomenological theory of Ferrell and Bhattacharjee [Phys. Rev. B 24, 4095 (1981); Phys. Rev. A 31, 1788 (1985)] and near the gas-liquid critical point with experiments in the 3He-4He mixture. A genuine dynamic parameter not considered so far and related to the critical enhancement of the thermal conductivity appears in the nonasymptotic expressions of the transport coefficients and the complex sound velocity. All nonuniversal background parameters of the complex sound velocity are fixed by a comparison of the corresponding theoretical expressions for the transport coefficients with experiments.

  18. Use of Chromatography Techniques to Separate a Mixture of Substances

    ERIC Educational Resources Information Center

    Donaldson, W.

    1976-01-01

    Explains the separation of the constituents of mixtures on one piece of chromatography paper. The example presented involves a vitamin C tablet, a disprin tablet, and a glucose tablet. Outlined are two methods for separating the constituents. (GS)

  19. Use of Chromatography Techniques to Separate a Mixture of Substances

    ERIC Educational Resources Information Center

    Donaldson, W.

    1976-01-01

    Explains the separation of the constituents of mixtures on one piece of chromatography paper. The example presented involves a vitamin C tablet, a disprin tablet, and a glucose tablet. Outlined are two methods for separating the constituents. (GS)

  20. Effects of spanwise blowing on the pressure field and vortex-lift characteristics of a 44 deg swept trapezoidal wing. [wind tunnel stability tests - aircraft models

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.

    1975-01-01

    Wind-tunnel data were obtained at a free-stream Mach number of 0.26 for a range of model angle of attack, jet thrust coefficient, and jet location. Results of this study show that the sectional effects to spanwise blowing are strongly dependent on angle of attack, jet thrust coefficient, and span location; the largest effects occur at the highest angles of attack and thrust coefficients and on the inboard portion of the wing. Full vortex lift was achieved at the inboard span station with a small blowing rate, but successively higher blowing rates were necessary to achieve full vortex lift at increased span distances. It is shown that spanwise blowing increases lift throughout the angle-of-attack range, delays wing stall to higher angles of attack, and improves the induced-drag polars. The leading-edge suction analogy can be used to estimate the section and total lifts resulting from spanwise blowing.

  1. Bromine release from blowing snow and its impact on tropospheric chemistry

    NASA Astrophysics Data System (ADS)

    Griffiths, Paul; Yang, Xin; Abraham, N. Luke; Archibald, Alexander; Pyle, John

    2016-04-01

    In the last two decades, significant depletion of boundary layer ozone (ozone depletion events, ODEs) has been observed in both Arctic and Antarctic spring. ODEs are attributed to catalytic destruction by bromine radicals (Br plus BrO), especially during bromine explosion events (BEs), when high concentrations of BrO periodically occur. The source of bromine and the mechanism that sustains the high BrO levels are still the subject of study. Recent work by Pratt et al. (2013) posits Br2 production within saline snow and sea ice which leads to sudden ODEs. Previously, Yang et al. (2008) suggested snow could provide a source of (depleted) sea-salt aerosol if wicked from the surface of ice. They suggest that rapid depletion of bromide from the aerosol will constitute a source of photochemical Bry. Given the large sea ice extent in polar regions, this may constitute a significant source of sea salt and bromine in the polar lower atmosphere. While bromine release from blowing snow is perhaps less likely to trigger sudden ODEs, it may make a contribution to regional scale processes affecting ozone levels. Currently, the model parameterisations of Yang et al. assumes that rapid release of bromine occurs from fresh snow on sea ice during periods of strong wind. The parameterisation depends on an assumed sea-salt aerosol distribution generated via sublimation of the snow above the boundary layer, as well as taking into account the salinity of the snow. In this work, we draw on recent measurements by scientists from the British Antarctic Survey during a cruise aboard the Polarstern in the southern oceans. This has provided an extensive set of measurements of the chemical and physical characteristics of blowing snow over sea ice, and of the aerosol associated with it. Based on the observations, we have developed an improved parameterisation of the release of bromine from blowing snow. The paper presents results from the simulation performed using the United Kingdom Chemistry

  2. The predictive factors of diplopia and extraocular movement limitations in isolated pure blow-out fracture.

    PubMed

    Kasaee, Abolfazl; Mirmohammadsadeghi, Arash; Kazemnezhad, Fatemeh; Eshraghi, Bahram; Akbari, Mohammad Reza

    2017-03-01

    To evaluate the predictive factors for development of diplopia and extraocular muscle movement (EOM) limitations in the patients with isolated pure blow-out fracture. One hundred thirty-two patients with isolated pure blow-out fracture were included. The diagnosis was done with computed tomography scan. Possible predictive factors were analyzed with logistic regression. The cases that underwent surgery were assigned in the surgical group, and other cases were assigned in the non-surgical group. Receiver operating characteristic (ROC) curve analysis was used in the surgical group to evaluate the power of time interval from trauma to the surgery to predict persistence of 6 months postoperative diplopia and EOM limitation. At the first visit, 45 of 60 cases (75%) in the surgical group and 15 of 72 cases (20.8%) in the nonsurgical group had diplopia. After 6 months follow-up, 7 cases (11.7%) in the surgical group and 1 case (1.4%) in the nonsurgical group had persistent diplopia. Type of fracture was significantly associated with first visit diplopia (P = 0.01) and EOM limitations (P = 0.06). In the surgical group, type of fracture (P = 0.02 for both) and time interval from trauma to the surgery (P = 0.006 and 0.004, respectively) were significantly associated with 1 month diplopia and EOM limitations. Only time interval from trauma to the surgery (P = 0.04) was significantly associated with 3 months EOM limitation. In the ROC curve analysis, if the surgery was done before 4.5 (sensitivity = 87.5% and specificity = 61.3%) and 7.5 (sensitivity = 87.5% and specificity = 66.9%) days, risk of 6 months postoperative diplopia and EOM limitation was reduced, respectively. In the early postoperative period, a higher rate of diplopia was observed in the patients with combined inferior and medial wall fractures and longer time intervals from trauma to the surgery. The best time for blow-out fracture surgery was within 4.5 days after the trauma.

  3. Computer simulation-molecular-thermodynamic framework to predict the micellization behavior of mixtures of surfactants: application to binary surfactant mixtures.

    PubMed

    Iyer, Jaisree; Mendenhall, Jonathan D; Blankschtein, Daniel

    2013-05-30

    We present a computer simulation-molecular-thermodynamic (CSMT) framework to model the micellization behavior of mixtures of surfactants in which hydration information from all-atomistic simulations of surfactant mixed micelles and monomers in aqueous solution is incorporated into a well-established molecular-thermodynamic framework for mixed surfactant micellization. In addition, we address the challenges associated with the practical implementation of the CSMT framework by formulating a simpler mixture CSMT model based on a composition-weighted average approach involving single-component micelle simulations of the mixture constituents. We show that the simpler mixture CSMT model works well for all of the binary surfactant mixtures considered, except for those containing alkyl ethoxylate surfactants, and rationalize this finding molecularly. The mixture CSMT model is then utilized to predict mixture CMCs, and we find that the predicted CMCs compare very well with the experimental CMCs for various binary mixtures of linear surfactants. This paper lays the foundation for the mixture CSMT framework, which can be used to predict the micellization properties of mixtures of surfactants that possess a complex chemical architecture, and are therefore not amenable to traditional molecular-thermodynamic modeling.

  4. Prevalence Incidence Mixture Models

    Cancer.gov

    The R package and webtool fits Prevalence Incidence Mixture models to left-censored and irregularly interval-censored time to event data that is commonly found in screening cohorts assembled from electronic health records. Absolute and relative risk can be estimated for simple random sampling, and stratified sampling (the two approaches of superpopulation and a finite population are supported for target populations). Non-parametric (absolute risks only), semi-parametric, weakly-parametric (using B-splines), and some fully parametric (such as the logistic-Weibull) models are supported.

  5. Whistle-blowing and workplace culture in older peoples' care: qualitative insights from the healthcare and social care workforce.

    PubMed

    Jones, Aled; Kelly, Daniel

    2014-09-01

    Inquiries in the UK into mistreatment of older people by healthcare employees over the last 30 years have focused on introducing or supporting employee whistle-blowing. Although whistle-blowers have made an important contribution to patient safety it remains a controversial activity. The fate of whistle-blowers is bleak, often resulting in personal and professional sacrifices. Here we draw on the views of healthcare and social care employees working with older people to explore perceptions of whistle-blowing as well as alternative strategies that may be used to raise concerns about the mistreatment of patients by co-workers. Whistle-blowing was perceived as a negative term. Managers said they promoted open cultures underpinned by regular team meetings and an open-door ethos. Others described workplace norms that were somewhat at odds with these open culture ideals. Whistle-blowing was considered risky, and this led to staff creating informal channels through which to raise concerns. Those who witnessed wrongdoing were aware that support was available from external agencies but preferred local solutions and drew upon personal ethics rather than regulatory edicts to shape their responses. We argue that the importance of workplace relationships and informal channels for raising concerns should be better understood to help prevent the mistreatment of vulnerable groups. © 2014 The Authors. Sociology of Health & Illness © 2014 Foundation for the Sociology of Health & Illness/John Wiley & Sons Ltd.

  6. Development of the Variable Atmosphere Testing Facility for Blow-Down Analysis of the Mars Hopper Prototype

    SciTech Connect

    Nathan D. Jerred; Robert C. O'Brien; Steven D. Howe; James E. O'Brien

    2013-02-01

    Recent developments at the Center for Space Nuclear Research (CSNR) on a Martian exploration probe have lead to the assembly of a multi-functional variable atmosphere testing facility (VATF). The VATF has been assembled to perform transient blow-down analysis of a radioisotope thermal rocket (RTR) concept that has been proposed for the Mars Hopper; a long-lived, long-ranged mobile platform for the Martian surface. This study discusses the current state of the VATF as well as recent blow-down testing performed on a laboratory-scale prototype of the Mars Hopper. The VATF allows for the simulation of Mars ambient conditions within the pressure vessel as well as to safely perform blow-down tests through the prototype using CO2 gas; the proposed propellant for the Mars Hopper. Empirical data gathered will lead to a better understanding of CO2 behavior and will provide validation of simulation models. Additionally, the potential of the VATF to test varying propulsion system designs has been recognized. In addition to being able to simulate varying atmospheres and blow-down gases for the RTR, it can be fitted to perform high temperature hydrogen testing of fuel elements for nuclear thermal propulsion.

  7. Direct numerical simulation of a compressible turbulent channel flow with uniform blowing and suction through isothermal walls

    NASA Astrophysics Data System (ADS)

    Kametani, Yukinori; Fukagata, Koji

    2014-11-01

    High-speed transports such as aircrafts and bullet trains support human activity in the modern society. In such applications, the turbulent friction drag is the major contributor to the energy loss. Kametani and Fukagata (J. Fluid Mech., 2011) investigated by means of direct numerical simulation (DNS) the drag reduction effect by blowing and the turbulence stabilization effect by suction in an incompressible spatially developing turbulent boundary layer, and quantitatively discussed different contributions to those effects. In this study, DNS of a compressible turbulent channel with uniform blowing and suction through the isothermal walls is performed. The Reynolds number based on the bulk mass flow rate, the viscosity on the wall and the channel half width is set to be 3000. The bulk Mach number is set to be 0.8 and 1.5 to compare the results in subsonic and supersonic cases. The drag reduction (enhancement) effect was confirmed on the blowing (suction) wall. As the Mach number increases, however, the control efficiency of blowing is found to be deteriorated because of the increased density near the wall. Japan Aerospace Exploration Agency, Japan Society for the Promotion of Science.

  8. In vitro antimicrobial activity of solution blow spun poly(lactic acid)/ polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil

    USDA-ARS?s Scientific Manuscript database

    In this study poly(lactic acid)(PLA) and polyvinylpyrrolidone (PVP) micro and nanofibers mats loaded with copaiba (Copaifera sp.) oil were produced by solution blow spinning (SBS). The copaiba (Copaifera sp.) oil was characterized by gas chromatography (GC). Neat PLA and four PLA/ PVP blends contain...

  9. Effect of solvent on the physical and morphological properties of poly(lactic acid) nanofibers obtained by solution blow spinning

    USDA-ARS?s Scientific Manuscript database

    Solution blow spinning (SBS) is a simple, safe, and inexpensive alternative to electrospinning for making nanofibers from polymer solutions. However, since SBS is a relatively new technique, there is a general lack of information on polymer solutions and properties that affect fiber morphology and i...

  10. Identification of Clostridium tyrobutyricum as the causative agent of late blowing in cheese by species-specific PCR amplification.

    PubMed

    Klijn, N; Nieuwenhof, F F; Hoolwerf, J D; van der Waals, C B; Weerkamp, A H

    1995-08-01

    Butyric acid fermentation, the late-blowing defect in cheese, caused by the outgrowth of clostridial spores present in raw milk, can create considerable loss of product, especially in the production of semihard cheeses like Gouda cheese, but also in grana and Gruyère cheeses. To demonstrate the causative relationship between Clostridium tyrobutyricum and late blowing in cheese, many cheesemaking experiments were performed to provoke this defect by using spores from several strains of the major dairy-related clostridia. A method of PCR amplification of a part of the 16S rRNA gene in combination with hybridization with species-specific DNA probes was developed to allow the specific detection of clostridial sequences in DNAs extracted from cheeses. The sensitivity was increased by using nested PCR. Late blowing was provoked in experimental cheeses with 28 of the 32 C. tyrobutyricum strains tested, whereas experimental cheeses made with spores from C. beijerinckii, C. butyricum, and C. sporogenes showed no signs of butyric acid fermentation. In all experimental and commercial cheeses with obvious signs of late blowing, DNA from C. tyrobutyricum was detected; in some cheeses, signals for C. beijerinckii were also found. It was concluded that only C. tyrobutyricum strains are able to cause butyric acid fermentation in cheese.

  11. Identification of Clostridium tyrobutyricum as the causative agent of late blowing in cheese by species-specific PCR amplification.

    PubMed Central

    Klijn, N; Nieuwenhof, F F; Hoolwerf, J D; van der Waals, C B; Weerkamp, A H

    1995-01-01

    Butyric acid fermentation, the late-blowing defect in cheese, caused by the outgrowth of clostridial spores present in raw milk, can create considerable loss of product, especially in the production of semihard cheeses like Gouda cheese, but also in grana and Gruyère cheeses. To demonstrate the causative relationship between Clostridium tyrobutyricum and late blowing in cheese, many cheesemaking experiments were performed to provoke this defect by using spores from several strains of the major dairy-related clostridia. A method of PCR amplification of a part of the 16S rRNA gene in combination with hybridization with species-specific DNA probes was developed to allow the specific detection of clostridial sequences in DNAs extracted from cheeses. The sensitivity was increased by using nested PCR. Late blowing was provoked in experimental cheeses with 28 of the 32 C. tyrobutyricum strains tested, whereas experimental cheeses made with spores from C. beijerinckii, C. butyricum, and C. sporogenes showed no signs of butyric acid fermentation. In all experimental and commercial cheeses with obvious signs of late blowing, DNA from C. tyrobutyricum was detected; in some cheeses, signals for C. beijerinckii were also found. It was concluded that only C. tyrobutyricum strains are able to cause butyric acid fermentation in cheese. PMID:7487024

  12. Sterilization of blow fly eggs, Chrysomya megacephala and Lucilia cuprina, (Diptera: Calliphoridae) for maggot debridement therapy application.

    PubMed

    Limsopatham, Kwankamol; Khamnoi, Phadungkiat; Sukontason, Kabkaew L; Boonyawan, Dheerawan; Chaiwong, Tarinee; Sukontason, Kom

    2017-05-01

    Maggot debridement therapy (MDT) is an application of sterile laboratory-reared blow fly larvae to remove necrotic tissue and disinfect wounds for medical conditions. For effective application, the blow fly larvae used in the wound treatment are required to be in aseptic condition. Here, we report the results of a detailed assessment of bacteria and fungi isolated from the eggs of two blow fly species, Chrysomya megacephala (F.) and Lucilia cuprina (Wiedemann) before and after sterilization by disinfectants Chlorhex-C, povidone-iodine, and sodium hypochlorite. We also assess the survival ability of larvae and their sterility after the cleansing process. The results indicate that the isolated microorganisms from the control group of both the species consisted of 10 species of gram-positive bacteria, 21 species of gram-negative bacteria, and 4 species of yeast. As for sterility testing, the eggs and the larvae of C. megacephala were found to have been completely sterilized after being subjected to thioglycollate medium for 5 days, leading to aseptic larvae. By contrast, some microorganisms from the bacterial culture were still detected in the L. cuprina larvae treated with Chlorhex-C and povidone-iodine. The survival ability of the larvae in both the species was not significantly different between the treated and the control groups. Due to its high disinfection efficacy in destroying microorganisms in both the blow fly eggs, sodium hypochlorite is recommended for preparing sterile larvae before using MDT.

  13. Instantaneous blow-up of classical solutions to the Cauchy problem for the Khokhlov-Zabolotskaya equation

    NASA Astrophysics Data System (ADS)

    Korpusov, M. O.; Mikhailenko, S.

    2017-07-01

    The Cauchy problem for a second-order nonlinear equation with mixed derivatives is considered. It is proved that its classical local-in-time solution does not exist. The blow-up of the solution is proved by applying S.I. Pohozaev and E.L. Mitidieri's nonlinear capacity method.

  14. Low-speed stability and control wind-tunnel investigations of effects of spanwise blowing on fighter flight characteristics at high angles of attack. [Langely 12-ft low-speed tunnel and 30- by 60-ft tunnel

    NASA Technical Reports Server (NTRS)

    Satran, D. R.; Gilbert, W. P.; Anglin, E. L.

    1985-01-01

    The effects of spanwise blowing on two configurations representative of current fighter airplanes were investigated. The two configurations differed only in wing planform, with one incorporating a trapezoidal wing and the other a 60 delta wing. Emphasis was on determining the lateral-directional characteristics, particularly in the stall/departure angle-of-attack range; however, the effects of spanwise blowing on the longitudinal aerodynamics were also determined. The-tunnel tests included measurement of static force and forced-oscillation aerodynamic data, visualization of the airflow changes created by the spanwise blowing, and free-flight model tests. The effects of blowing rate, chordwise location of the blowing ports, asymmetric blowing, and blowing on the conventional aerodynamic control characteristics were investigated. In the angle-of-attack regions in which the spanwise blowing substantially improved the wing upper-surface flow field (i.e., provided reattachment of the flow aft of the leading-edge vortex), improvements in both static and dynamic lateral-directional stability were observed. Blowing effects on stability could be proverse or adverse depending on blowing rate, blowing port loaction, and wing planform. Free-flight model tests of the trapezoidal wing confirmed the beneficial effects of spanwise blowing measured in the static and dynamic force tests.

  15. Wintertime enhancements of sea salt aerosol in polar regions consistent with a sea ice source from blowing snow

    NASA Astrophysics Data System (ADS)

    Huang, Jiayue; Jaeglé, Lyatt

    2017-03-01

    Sea salt aerosols (SSA) are generated via air bubbles bursting at the ocean surface as well as by wind mobilization of saline snow and frost flowers over sea-ice-covered areas. The relative magnitude of these sources remains poorly constrained over polar regions, affecting our ability to predict their impact on halogen chemistry, cloud formation, and climate. We implement a blowing snow and a frost flower emission scheme in the GEOS-Chem global chemical transport model, which we validate against multiyear (2001-2008) in situ observations of SSA mass concentrations at three sites in the Arctic, two sites in coastal Antarctica, and from the 2008 ICEALOT cruise in the Arctic. A simulation including only open ocean emissions underestimates SSA mass concentrations by factors of 2-10 during winter-spring for all ground-based and ship-based observations. When blowing snow emissions are added, the model is able to reproduce observed wintertime SSA concentrations, with the model bias decreasing from a range of -80 to -34 % for the open ocean simulation to -2 to +9 % for the simulation with blowing snow emissions. We find that the frost flower parameterization cannot fully explain the high wintertime concentrations and displays a seasonal cycle decreasing too rapidly in early spring. Furthermore, the high day-to-day variability of observed SSA is better reproduced by the blowing snow parameterization. Over the Arctic (> 60° N) (Antarctic, > 60° S), we calculate that submicron SSA emissions from blowing snow account for 1.0 Tg yr-1 (2.5 Tg yr-1), while frost flower emissions lead to 0.21 Tg yr-1 (0.25 Tg yr-1) compared to 0.78 Tg yr-1 (1.0 Tg yr-1) from the open ocean. Blowing snow emissions are largest in regions where persistent strong winds occur over sea ice (east of Greenland, over the central Arctic, Beaufort Sea, and the Ross and Weddell seas). In contrast, frost flower emissions are largest where cold air temperatures and open leads are co-located (over the Canadian

  16. Flap survey test of a combined surface blowing model: Flow measurements at static flow conditions

    NASA Technical Reports Server (NTRS)

    Fukushima, T.

    1978-01-01

    The Combined Surface Blowing (CSB) V/STOL lift/propulsion system consists of a blown flap system which deflects the exhaust from a turbojet engine over a system of flaps deployed at the trailing edge of the wing. Flow measurements consisting of velocity measurements using split film probes and total measure surveys using a miniature Kiel probe were made at control stations along the flap systems at two spanwise stations, the centerline of the nozzle and 60 percent of the nozzle span outboard of the centerline. Surface pressure measurements were made in the wing cove and the upper surface of the first flap element. The test showed a significant flow separation in the wing cove. The extent of the separation is so large that the flow into the first flap takes place only at the leading edge of the flap. The velocity profile measurements indicate that large spanwise (3 dimensional) flow may exist.

  17. Programmed cell death during metamorphosis in the blow-fly Calliphora vomitoria.

    PubMed

    Bowen, I D; Mullarkey, K; Morgan, S M

    1996-06-15

    During metamorphosis, the salivary glands of the blow-fly undergo programmed cell death. Data is presented indicating that this programmed cell death does not in many respects emulate classical apoptosis. The cells are seen to vacuolate and swell rather than condense and shrink. There appears to be a transient enhancement in autophagy and an increase in acid phosphatase activity. This is followed by the characteristic appearance of ribosomal and extracisternal sources of the enzyme leading to autolysis. There appears to be no lysosomal leakage of acid phosphatase. As in apoptosis, the mitochondria persist until the cell fragments. The nucleus, however, does not show the distinct chromatin margination and blebbing that is typical of apoptosis. These changes are compared with necrotic changes induced by experimental anoxia. Overall the results show that a programmed cell death distinct from classical apoptosis is taking place.

  18. Blow-Up of Solutions for a System of Petrovsky Equations with an Indirect Linear Damping

    NASA Astrophysics Data System (ADS)

    Liu, Wenjun

    2013-05-01

    In this paper, we consider a coupled system of Petrovsky equations in a bounded domain with clamped boundary conditions. Due to several physical considerations, a linear damping which is distributed everywhere in the domain under consideration appears only in the first equation whereas no damping term is applied to the second one (this is indirect damping). Many studies show that the solution of this kind of system has a polynomial rate of decay as time tends to infinity, but does not have exponential decay. For four different ranges of initial energy, we show here the blow-up of solutions and give the lifespan estimates by improving the method of Wu (Electron. J. Diff. Equ. 105, 1 (2009)) and Li et al. (Nonlin. Anal. 74, 1523 (2011)). From the applications point of view, our results may provide some qualitative analysis and intuition for the researchers in other fields such as engineering and mechanics when they study the concrete models of Petrovsky type.

  19. Top-blowing, bottom-stirring process for producing blister copper

    NASA Astrophysics Data System (ADS)

    Marcuson, Samuel W.; Díaz, Carlos; Davies, Haydn

    1994-08-01

    An oxygen top-blowing, nitrogen bottom-stirring process to convert semiblister (i.e., sulfur-saturated, nickel-contaminated copper), to low-sulfur and low-nickel blister has been developed by Inco. This process is complemented by a technique, also newly developed, for washing out residual nickel-copper oxide mush from the converter after casting the blister copper. Following laboratory and pilot-plant testing, this technology graduated to the smelter floor where it is now a key component of the new Copper Cliff Smelter flow sheet. Existing Peirce-Smith converters have been adapted to practice the new process. The modified vessels are equipped with porous plugs, the first application of this type of refractory in copper smelting.

  20. Advances in Pneumatic-Controlled High-Lift Systems Through Pulsed Blowing

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Englar, Robet J.

    2003-01-01

    Circulation Control technologies have been around for 65 years, and have been successfully demonstrated in laboratories and flight vehicles alike. Yet there are few production aircraft flying today that implement these advances. Circulation Control techniques may have been overlooked due to perceived unfavorable trade offs of mass flow, pitching moment, cruise drag, noise, etc. Improvements in certain aspects of Circulation Control technology are the focus of this paper. This report will describe airfoil and blown high lift concepts that also address cruise drag reduction and reductions in mass flow through the use of pulsed pneumatic blowing on a Coanda surface. Pulsed concepts demonstrate significant reductions in mass flow requirements for Circulation Control, as well as cruise drag concepts that equal or exceed conventional airfoil systems.