Sample records for mlh3 missense mutations

  1. Analysis of hMLH1 missense mutations in East Asian patients with suspected hereditary nonpolyposis colorectal cancer.

    PubMed

    Fan, Yimei; Wang, Wei; Zhu, Ming; Zhou, Jiji; Peng, Jingyuan; Xu, Lizhi; Hua, Zichun; Gao, Xiang; Wang, Yaping

    2007-12-15

    Germ line mutations in the DNA mismatch repair gene hMLH1 are a frequent cause of hereditary nonpolyposis colorectal cancer and about one-third of these are missense mutations. Several missense mutations in hMLH1 have frequently been detected in East Asian patients with suspected hereditary nonpolyposis colorectal cancer, but their pathogenic role has not been extensively assessed. The aim of this study was to perform functional analyses of these variants and their association with gastrointestinal cancer in East Asians. Altogether, 10 hMLH1 variants were analyzed by yeast two-hybrid and coimmunoprecipitation assays. The carboxyl-terminal replacements Q542L, L549P, L574P, and P581L in hMLH1 resulted in complete loss of activity in both yeast two-hybrid and coimmunoprecipitation tests and thus might be considered as pathogenic. The amino-terminal variants S46I, G65D, G67R, and R217C did not affect complex formation with hPMS2 in coimmunoprecipitation, but partly or fully lost their activity in yeast two-hybrid assay, and we suggested that these variants might reduce the efficiency of the heterodimer to go into the nucleus and thus the mismatch repair function might be blocked or reduced. The V384D and the Q701K variant resulted in the interaction of hMLH1 with hPMS2 at reduced efficiency and might raise the gastrointestinal cancer risk of the mutation carriers. This work availably evaluated the functional consequences of some missense mutations not previously determined in the hMLH1 gene and might be useful for the clinical diagnosis of hereditary gastrointestinal cancer, especially in East Asians.

  2. Missense mutations of MLH1 and MSH2 genes detected in patients with gastrointestinal cancer are associated with exonic splicing enhancers and silencers

    PubMed Central

    ZHU, MING; CHEN, HUI-MEI; WANG, YA-PING

    2013-01-01

    The MLH1 and MSH2 genes in DNA mismatch repair are important in the pathogenesis of gastrointestinal cancer. Recent studies of normal and alternative splicing suggest that the deleterious effects of missense mutations may in fact be splicing-related when they are located in exonic splicing enhancers (ESEs) or exonic splicing silencers (ESSs). In this study, we used ESE-finder and FAS-ESS software to analyze the potential ESE/ESS motifs of the 114 missense mutations detected in the two genes in East Asian gastrointestinal cancer patients. In addition, we used the SIFT tool to functionally analyze these mutations. The amount of the ESE losses (68) was 51.1% higher than the ESE gains (45) of all the mutations. However, the amount of the ESS gains (27) was 107.7% higher than the ESS losses (13). In total, 56 (49.1%) mutations possessed a potential exonic splicing regulator (ESR) error. Eighty-one mutations (71.1%) were predicted to be deleterious with a lower tolerance index as detected by the Sorting Intolerant from Tolerant (SIFT) tool. Among these, 38 (33.3%) mutations were predicted to be functionally deleterious and possess one potential ESR error, while 18 (15.8%) mutations were predicted to be functionally deleterious and exhibit two potential ESR errors. These may be more likely to affect exon splicing. Our results indicated that there is a strong correlation between missense mutations in MLH1 and MSH2 genes detected in East Asian gastrointestinal cancer patients and ESR motifs. In order to correctly understand the molecular nature of mutations, splicing patterns should be compared between wild-type and mutant samples. PMID:23760103

  3. MLH1 mutations differentially affect meiotic functions in Saccharomyces cerevisiae.

    PubMed Central

    Hoffmann, Eva R; Shcherbakova, Polina V; Kunkel, Thomas A; Borts, Rhona H

    2003-01-01

    To test whether missense mutations in the cancer susceptibility gene MLH1 adversely affect meiosis, we examined 14 yeast MLH1 mutations for effects on meiotic DNA transactions and gamete viability in the yeast Saccharomyces cerevisiae. Mutations analogous to those associated with hereditary nonpolyposis colorectal cancer (HNPCC) or those that reduce Mlh1p interactions with ATP or DNA all impair replicative mismatch repair as measured by increased mutation rates. However, their effects on meiotic heteroduplex repair, crossing over, chromosome segregation, and gametogenesis vary from complete loss of meiotic functions to no meiotic defect, and mutants defective in one meiotic process are not necessarily defective in others. DNA binding and ATP binding but not ATP hydrolysis are required for meiotic crossing over. The results reveal clear separation of different Mlh1p functions in mitosis and meiosis, and they suggest that some, but not all, MLH1 mutations may be a source of human infertility. PMID:12618391

  4. Missense variants in hMLH1 identified in patients from the German HNPCC consortium and functional studies.

    PubMed

    Hardt, Karin; Heick, Sven Boris; Betz, Beate; Goecke, Timm; Yazdanparast, Haniyeh; Küppers, Robin; Servan, Kati; Steinke, Verena; Rahner, Nils; Morak, Monika; Holinski-Feder, Elke; Engel, Christoph; Möslein, Gabriela; Schackert, Hans-Konrad; von Knebel Doeberitz, Magnus; Pox, Christian; Hegemann, Johannes H; Royer-Pokora, Brigitte

    2011-06-01

    Missense mutations of the DNA mismatch repair gene MLH1 are found in a significant fraction of patients with Lynch syndrome (hereditary nonpolyposis colorectal cancer, HNPCC) and their pathogenicity often remains unclear. We report here all 88 MLH1 missense variants identified in families from the German HNPCC consortium with clinical details of these patients/families. We investigated 23 MLH1 missense variants by two functional in vivo assays in yeast; seven map to the ATPase and 16 to the protein interaction domain. In the yeast-2-hybrid (Y2H) assay three variants in the ATPase and twelve variants in the interaction domain showed no or a reduced interaction with PMS2; seven showed a normal and one a significantly higher interaction. Using the Lys2A (14) reporter system to study the dominant negative mutator effect (DNE), 16 variants showed no or a low mutator effect, suggesting that these are nonfunctional, three were intermediate and four wild type in this assay. The DNE and Y2H results were concordant for all variants in the interaction domain, whereas slightly divergent results were obtained for variants in the ATPase domain. Analysis of the stability of the missense proteins in yeast and human embryonic kidney cells (293T) revealed a very low expression for seven of the variants in yeast and for nine in human cells. In total 15 variants were classified as deleterious, five were classified as variants of unclassified significance (VUS) and three were basically normal in the functional assays, P603R, K618R, Q689R, suggesting that these are neutral.

  5. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations.

    PubMed

    Flores-Rozas, H; Kolodner, R D

    1998-10-13

    The Saccharomyces cerevisiae genome encodes four MutL homologs. Of these, MLH1 and PMS1 are known to act in the MSH2-dependent pathway that repairs DNA mismatches. We have investigated the role of MLH3 in mismatch repair. Mutations in MLH3 increased the rate of reversion of the hom3-10 allele by increasing the rate of deletion of a single T in a run of 7 Ts. Combination of mutations in MLH3 and MSH6 caused a synergistic increase in the hom3-10 reversion rate, whereas the hom3-10 reversion rate in an mlh3 msh3 double mutant was the same as in the respective single mutants. Similar results were observed when the accumulation of mutations at frameshift hot spots in the LYS2 gene was analyzed, although mutation of MLH3 did not cause the same extent of affect at every LYS2 frameshift hot spot. MLH3 interacted with MLH1 in a two-hybrid system. These data are consistent with the idea that a proportion of the repair of specific insertion/deletion mispairs by the MSH3-dependent mismatch repair pathway uses a heterodimeric MLH1-MLH3 complex in place of the MLH1-PMS1 complex.

  6. Functional examination of MLH1, MSH2, and MSH6 intronic mutations identified in Danish colorectal cancer patients.

    PubMed

    Petersen, Sanne M; Dandanell, Mette; Rasmussen, Lene J; Gerdes, Anne-Marie; Krogh, Lotte N; Bernstein, Inge; Okkels, Henrik; Wikman, Friedrik; Nielsen, Finn C; Hansen, Thomas V O

    2013-10-03

    Germ-line mutations in the DNA mismatch repair genes MLH1, MSH2, and MSH6 predispose to the development of colorectal cancer (Lynch syndrome or hereditary nonpolyposis colorectal cancer). These mutations include disease-causing frame-shift, nonsense, and splicing mutations as well as large genomic rearrangements. However, a large number of mutations, including missense, silent, and intronic variants, are classified as variants of unknown clinical significance. Intronic MLH1, MSH2, or MSH6 variants were investigated using in silico prediction tools and mini-gene assay to asses the effect on splicing. We describe in silico and in vitro characterization of nine intronic MLH1, MSH2, or MSH6 mutations identified in Danish colorectal cancer patients, of which four mutations are novel. The analysis revealed aberrant splicing of five mutations (MLH1 c.588 + 5G > A, MLH1 c.677 + 3A > T, MLH1 c.1732-2A > T, MSH2 c.1276 + 1G > T, and MSH2 c.1662-2A > C), while four mutations had no effect on splicing compared to wild type (MLH1 c.117-34A > T, MLH1 c.1039-8 T > A, MSH2 c.2459-18delT, and MSH6 c.3439-16C > T). In conclusion, we classify five MLH1/MSH2 mutations as pathogenic, whereas four MLH1/MSH2/MSH6 mutations are classified as neutral. This study supports the notion that in silico prediction tools and mini-gene assays are important for the classification of intronic variants, and thereby crucial for the genetic counseling of patients and their family members.

  7. Haplotype analysis suggest that the MLH1 c.2059C > T mutation is a Swedish founder mutation.

    PubMed

    von Salomé, Jenny; Liu, Tao; Keihäs, Markku; Morak, Moni; Holinski-Feder, Elke; Berry, Ian R; Moilanen, Jukka S; Baert-Desurmont, Stéphanie; Lindblom, Annika; Lagerstedt-Robinson, Kristina

    2017-12-29

    Lynch syndrome (LS) predisposes to a spectrum of cancers and increases the lifetime risk of developing colorectal- or endometrial cancer to over 50%. Lynch syndrome is dominantly inherited and is caused by defects in DNA mismatch-repair genes MLH1, MSH2, MSH6 or PMS2, with the vast majority detected in MLH1 and MSH2. Recurrent LS-associated variants observed in apparently unrelated individuals, have either arisen de novo in different families due to mutation hotspots, or are inherited from a founder (a common ancestor) that lived several generations back. There are variants that recur in some populations while also acting as founders in other ethnic groups. Testing for founder mutations can facilitate molecular diagnosis of Lynch Syndrome more efficiently and more cost effective than screening for all possible mutations. Here we report a study of the missense mutation MLH1 c.2059C > T (p.Arg687Trp), a potential founder mutation identified in eight Swedish families and one Finnish family with Swedish ancestors. Haplotype analysis confirmed that the Finnish and Swedish families shared a haplotype of between 0.9 and 2.8 Mb. While MLH1 c.2059C > T exists worldwide, the Swedish haplotype was not found among mutation carriers from Germany or France, which indicates a common founder in the Swedish population. The geographic distribution of MLH1 c.2059C > T in Sweden suggests a single, ancient mutational event in the northern part of Sweden.

  8. Germline mutations in PMS2 and MLH1 in individuals with solitary loss of PMS2 expression in colorectal carcinomas from the Colon Cancer Family Registry Cohort

    PubMed Central

    Rosty, Christophe; Clendenning, Mark; Walsh, Michael D; Eriksen, Stine V; Southey, Melissa C; Winship, Ingrid M; Macrae, Finlay A; Boussioutas, Alex; Parry, Susan; Arnold, Julie; Young, Joanne P; Casey, Graham; Haile, Robert W; Gallinger, Steven; Le Marchand, Loïc; Newcomb, Polly A; Potter, John D; DeRycke, Melissa; Lindor, Noralane M; Thibodeau, Stephen N; Baron, John A; Win, Aung Ko; Hopper, John L; Jenkins, Mark A; Buchanan, Daniel D

    2016-01-01

    Objectives Immunohistochemistry for DNA mismatch repair proteins is used to screen for Lynch syndrome in individuals with colorectal carcinoma (CRC). Although solitary loss of PMS2 expression is indicative of carrying a germline mutation in PMS2, previous studies reported MLH1 mutation in some cases. We determined the prevalence of MLH1 germline mutations in a large cohort of individuals with a CRC demonstrating solitary loss of PMS2 expression. Design This cohort study included 88 individuals affected with a PMS2-deficient CRC from the Colon Cancer Family Registry Cohort. Germline PMS2 mutation analysis (long-range PCR and multiplex ligation-dependent probe amplification) was followed by MLH1 mutation testing (Sanger sequencing and multiplex ligation-dependent probe amplification). Results Of the 66 individuals with complete mutation screening, we identified a pathogenic PMS2 mutation in 49 (74%), a pathogenic MLH1 mutation in 8 (12%) and a MLH1 variant of uncertain clinical significance predicted to be damaging by in silico analysis in 3 (4%); 6 (9%) carried variants likely to have no clinical significance. Missense point mutations accounted for most alterations (83%; 9/11) in MLH1. The MLH1 c.113A> G p.Asn38Ser mutation was found in 2 related individuals. One individual who carried the MLH1 intronic mutation c.677+3A>G p.Gln197Argfs*8 leading to the skipping of exon 8, developed 2 tumours, both of which retained MLH1 expression. Conclusions A substantial proportion of CRCs with solitary loss of PMS2 expression are associated with a deleterious MLH1 germline mutation supporting the screening for MLH1 in individuals with tumours of this immunophenotype, when no PMS2 mutation has been identified. PMID:26895986

  9. Germline mutations in PMS2 and MLH1 in individuals with solitary loss of PMS2 expression in colorectal carcinomas from the Colon Cancer Family Registry Cohort.

    PubMed

    Rosty, Christophe; Clendenning, Mark; Walsh, Michael D; Eriksen, Stine V; Southey, Melissa C; Winship, Ingrid M; Macrae, Finlay A; Boussioutas, Alex; Poplawski, Nicola K; Parry, Susan; Arnold, Julie; Young, Joanne P; Casey, Graham; Haile, Robert W; Gallinger, Steven; Le Marchand, Loïc; Newcomb, Polly A; Potter, John D; DeRycke, Melissa; Lindor, Noralane M; Thibodeau, Stephen N; Baron, John A; Win, Aung Ko; Hopper, John L; Jenkins, Mark A; Buchanan, Daniel D

    2016-02-19

    Immunohistochemistry for DNA mismatch repair proteins is used to screen for Lynch syndrome in individuals with colorectal carcinoma (CRC). Although solitary loss of PMS2 expression is indicative of carrying a germline mutation in PMS2, previous studies reported MLH1 mutation in some cases. We determined the prevalence of MLH1 germline mutations in a large cohort of individuals with a CRC demonstrating solitary loss of PMS2 expression. This cohort study included 88 individuals affected with a PMS2-deficient CRC from the Colon Cancer Family Registry Cohort. Germline PMS2 mutation analysis (long-range PCR and multiplex ligation-dependent probe amplification) was followed by MLH1 mutation testing (Sanger sequencing and multiplex ligation-dependent probe amplification). Of the 66 individuals with complete mutation screening, we identified a pathogenic PMS2 mutation in 49 (74%), a pathogenic MLH1 mutation in 8 (12%) and a MLH1 variant of uncertain clinical significance predicted to be damaging by in silico analysis in 3 (4%); 6 (9%) carried variants likely to have no clinical significance. Missense point mutations accounted for most alterations (83%; 9/11) in MLH1. The MLH1 c.113A> G p.Asn38Ser mutation was found in 2 related individuals. One individual who carried the MLH1 intronic mutation c.677+3A>G p.Gln197Argfs*8 leading to the skipping of exon 8, developed 2 tumours, both of which retained MLH1 expression. A substantial proportion of CRCs with solitary loss of PMS2 expression are associated with a deleterious MLH1 germline mutation supporting the screening for MLH1 in individuals with tumours of this immunophenotype, when no PMS2 mutation has been identified. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. MLH1-deficient Colorectal Carcinoma With Wild-type BRAF and MLH1 Promoter Hypermethylation Harbor KRAS Mutations and Arise From Conventional Adenomas.

    PubMed

    Farchoukh, Lama; Kuan, Shih-Fan; Dudley, Beth; Brand, Randall; Nikiforova, Marina; Pai, Reetesh K

    2016-10-01

    Between 10% and 15% of colorectal carcinomas demonstrate sporadic DNA mismatch-repair protein deficiency as a result of MLH1 promoter methylation and are thought to arise from sessile serrated adenomas, termed the serrated neoplasia pathway. Although the presence of the BRAF V600E mutation is indicative of a sporadic cancer, up to 30% to 50% of colorectal carcinomas with MLH1 promoter hypermethylation will lack a BRAF mutation. We report the clinicopathologic and molecular features of MLH1-deficient colorectal carcinoma with wild-type BRAF and MLH1 promoter hypermethylation (referred to as MLH1-hypermethylated BRAF wild-type colorectal carcinoma, n=36) in comparison with MLH1-deficient BRAF-mutated colorectal carcinoma (n=113) and Lynch syndrome-associated colorectal carcinoma (n=36). KRAS mutations were identified in 31% of MLH1-hypermethylated BRAF wild-type colorectal carcinomas compared with 0% of MLH1-deficient BRAF-mutated colorectal carcinomas and 37% of Lynch syndrome-associated colorectal carcinomas. When a precursor polyp was identified, MLH1-hypermethylated BRAF wild-type colorectal carcinomas arose from precursor polyps resembling conventional tubular/tubulovillous adenomas in contrast to MLH1-deficient BRAF-mutated colorectal carcinomas, which arose from precursor sessile serrated adenomas (P<0.001). Both MLH1-hypermethylated BRAF wild-type colorectal carcinoma and MLH1-deficient BRAF-mutated colorectal carcinoma had a predilection for the right colon compared with Lynch syndrome-associated colorectal carcinoma (86% vs. 92% vs. 49%, P<0.001). There was no significant difference in mucinous differentiation, tumor-infiltrating lymphocytes, Crohn-like reaction, and medullary differentiation between the 3 tumor groups. Using Kaplan-Meier survival functions, there was no significant difference in disease-specific survival between the 3 patient groups (P>0.05). In conclusion, our results indicate that MLH1-hypermethylated BRAF wild-type colorectal carcinomas

  11. BRCA2, EGFR, and NTRK mutations in mismatch repair-deficient colorectal cancers with MSH2 or MLH1 mutations.

    PubMed

    Deihimi, Safoora; Lev, Avital; Slifker, Michael; Shagisultanova, Elena; Xu, Qifang; Jung, Kyungsuk; Vijayvergia, Namrata; Ross, Eric A; Xiu, Joanne; Swensen, Jeffrey; Gatalica, Zoran; Andrake, Mark; Dunbrack, Roland L; El-Deiry, Wafik S

    2017-06-20

    Deficient mismatch repair (MMR) and microsatellite instability (MSI) contribute to ~15% of colorectal cancer (CRCs). We hypothesized MSI leads to mutations in DNA repair proteins including BRCA2 and cancer drivers including EGFR. We analyzed mutations among a discovery cohort of 26 MSI-High (MSI-H) and 558 non-MSI-H CRCs profiled at Caris Life Sciences. Caris-profiled MSI-H CRCs had high mutation rates (50% vs 14% in non-MSI-H, P < 0.0001) in BRCA2. Of 1104 profiled CRCs from a second cohort (COSMIC), MSH2/MLH1-mutant CRCs showed higher mutation rates in BRCA2 compared to non-MSH2/MLH1-mutant tumors (38% vs 6%, P < 0.0000001). BRCA2 mutations in MSH2/MLH1-mutant CRCs included 75 unique mutations not known to occur in breast or pancreatic cancer per COSMIC v73. Only 5 deleterious BRCA2 mutations in CRC were previously reported in the BIC database as germ-line mutations in breast cancer. Some BRCA2 mutations were predicted to disrupt interactions with partner proteins DSS1 and RAD51. Some CRCs harbored multiple BRCA2 mutations. EGFR was mutated in 45.5% of MSH2/MLH1-mutant and 6.5% of non-MSH2/MLH1-mutant tumors (P < 0.0000001). Approximately 15% of EGFR mutations found may be actionable through TKI therapy, including N700D, G719D, T725M, T790M, and E884K. NTRK gene mutations were identified in MSH2/MLH1-mutant CRC including NTRK1 I699V, NTRK2 P716S, and NTRK3 R745L. Our findings have clinical relevance regarding therapeutic targeting of BRCA2 vulnerabilities, EGFR mutations or other identified oncogenic drivers such as NTRK in MSH2/MLH1-mutant CRCs or other tumors with mismatch repair deficiency.

  12. Systematic Review of Cysteine-Sparing NOTCH3 Missense Mutations in Patients with Clinical Suspicion of CADASIL.

    PubMed

    Muiño, Elena; Gallego-Fabrega, Cristina; Cullell, Natalia; Carrera, Caty; Torres, Nuria; Krupinski, Jurek; Roquer, Jaume; Montaner, Joan; Fernández-Cadenas, Israel

    2017-09-13

    CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) is caused by mutations in the NOTCH3 gene, affecting the number of cysteines in the extracellular domain of the receptor, causing protein misfolding and receptor aggregation. The pathogenic role of cysteine-sparing NOTCH3 missense mutations in patients with typical clinical CADASIL syndrome is unknown. The aim of this article is to describe these mutations to clarify if any could be potentially pathogenic. Articles on cysteine-sparing NOTCH3 missense mutations in patients with clinical suspicion of CADASIL were reviewed. Mutations were considered potentially pathogenic if patients had: (a) typical clinical CADASIL syndrome; (b) diffuse white matter hyperintensities; (c) the 33 NOTCH3 exons analyzed; (d) mutations that were not polymorphisms; and (e) Granular osmiophilic material (GOM) deposits in the skin biopsy. Twenty-five different mutations were listed. Four fulfill the above criteria: p.R61W; p.R75P; p.D80G; and p.R213K. Patients carrying these mutations had typical clinical CADASIL syndrome and diffuse white matter hyperintensities, mostly without anterior temporal pole involvement. Cysteine-sparing NOTCH3 missense mutations are associated with typical clinical CADASIL syndrome and typical magnetic resonance imaging (MRI) findings, although with less involvement of the anterior temporal lobe. Hence, these mutations should be further studied to confirm their pathological role in CADASIL.

  13. Genetic Analysis of mlh3 Mutations Reveals Interactions Between Crossover Promoting Factors During Meiosis in Baker’s Yeast

    PubMed Central

    Brown, Megan Sonntag; Lim, Elisha; Chen, Cheng; Nishant, K. T.; Alani, Eric

    2013-01-01

    Crossing over between homologous chromosomes occurs during the prophase of meiosis I and is critical for chromosome segregation. In baker’s yeast, two heterodimeric complexes, Msh4-Msh5 and Mlh1-Mlh3, act in meiosis to promote interference-dependent crossing over. Mlh1-Mlh3 also plays a role in DNA mismatch repair (MMR) by interacting with Msh2-Msh3 to repair insertion and deletion mutations. Mlh3 contains an ATP-binding domain that is highly conserved among MLH proteins. To explore roles for Mlh3 in meiosis and MMR, we performed a structure−function analysis of eight mlh3 ATPase mutants. In contrast to previous work, our data suggest that ATP hydrolysis by both Mlh1 and Mlh3 is important for both meiotic and MMR functions. In meiotic assays, these mutants showed a roughly linear relationship between spore viability and genetic map distance. To further understand the relationship between crossing over and meiotic viability, we analyzed crossing over on four chromosomes of varying lengths in mlh3Δ mms4Δ strains and observed strong decreases (6- to 17-fold) in crossing over in all intervals. Curiously, mlh3Δ mms4Δ double mutants displayed spore viability levels that were greater than observed in mms4Δ strains that show modest defects in crossing over. The viability in double mutants also appeared greater than would be expected for strains that show such severe defects in crossing over. Together, these observations provide insights for how Mlh1-Mlh3 acts in crossover resolution and MMR and for how chromosome segregation in Meiosis I can occur in the absence of crossing over. PMID:23316435

  14. PIK3CA missense mutation is associated with unfavorable outcome in grade 3 endometrioid carcinoma but not in serous endometrial carcinoma.

    PubMed

    McIntyre, John B; Nelson, Gregg S; Ghatage, Prafull; Morris, Don; Duggan, Máire A; Lee, Cheng-Han; Doll, Corinne M; Köbel, Martin

    2014-01-01

    To evaluate the outcome association of PIK3CA mutational status within histological types of rigorously classified high-grade endometrial carcinomas. We assessed PIK3CA mutational status in exon 9 and exon 20 hot spots by Sanger sequencing of DNA derived from formalin fixed paraffin embedded tissue of 57 grade 3 endometrioid, 26 serous, 11 clear cell and 5 dedifferentiated carcinomas. We correlated PIK3CA mutation status with clinicopathological and other molecular parameters. Univariate and multivariate disease specific survival analysis was performed using Kaplan-Meier and Cox regression analyses. PIK3CA exon 9 or exon 20 missense mutations were identified in 20 of 99 (20%) high-grade endometrial carcinomas without significant difference across histological types (p=0.22). Presence of PIK3CA exon 9 or exon 20 missense mutations was associated with shorter disease specific survival within grade 3 endometrioid (p=0.0029) but not endometrial serous (p=0.57) carcinoma based on univariate analysis. Within grade 3 endometrioid carcinoma, PIK3CA exon 9 or exon 20 missense mutations were more commonly observed in cases that were deficient for mismatch repair protein expression (p=0.0058) and showed loss of ARID1A expression (p=0.037). PIK3CA exon 9 or exon 20 missense mutations are present across all histological types of high-grade endometrial carcinomas but a significant outcome association is only seen in grade 3 endometrioid carcinoma, suggesting a greater biological importance in this tumor type. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. In silico analysis of a novel MKRN3 missense mutation in familial central precocious puberty.

    PubMed

    Neocleous, Vassos; Shammas, Christos; Phelan, Marie M; Nicolaou, Stella; Phylactou, Leonidas A; Skordis, Nicos

    2016-01-01

    The onset of puberty is influenced by the interplay of stimulating and restraining factors, many of which have a genetic origin. Premature activation of the GnRH secretion in central precocious puberty (CPP) may arise either from gain-of-function mutations of the KISS1 and KISS1R genes or from loss-of-function manner mutations of the MKRN3 gene leading to MKRN3 deficiency. To explore the genetic causes responsible for CPP and the potential role of the RING finger protein 3 (MKRN3) gene. We investigated potential sequence variations in the intronless MKRN3 gene by Sanger sequencing of the entire 507 amino acid coding region of exon 1 in a family with two affected girls presented with CPP at the age of 6 and 5·7 years, respectively. A novel heterozygous g.Gly312Asp missense mutation in the MKRN3 gene was identified in these siblings. The imprinted MKRN3 missense mutation was also identified as expected in the unaffected father and followed as expected an imprinted mode of inheritance. In silico analysis of the altered missense variant using the computational algorithms Polyphen2, SIFT and Mutation Taster predicted a damage and pathogenic alteration causing CPP. The pathogenicity of the alteration at the protein level via an in silico structural model is also explored. A novel mutation in the MKRN3 gene in two sisters with CPP was identified, supporting the fundamental role of this gene in the suppression of the hypothalamic GnRH neurons. © 2015 John Wiley & Sons Ltd.

  16. High Mutation Levels are Compatible with Normal Embryonic Development in Mlh1-Deficient Mice.

    PubMed

    Fan, Xiaoyan; Li, Yan; Zhang, Yulong; Sang, Meixiang; Cai, Jianhui; Li, Qiaoxia; Ozaki, Toshinori; Ono, Tetsuya; He, Dongwei

    2016-10-01

    To elucidate the role of the mismatch repair gene Mlh1 in genome instability during the fetal stage, spontaneous mutations were studied in Mlh1-deficient lacZ-transgenic mouse fetuses. Mutation levels were high at 9.5 days post coitum (dpc) and gradually increased during the embryonic stage, after which they remained unchanged. In addition, mutations that were found in brain, liver, spleen, small intestine and thymus showed similar levels and no statistically significant difference was found. The molecular nature of mutations at 12.5 dpc in fetuses of Mlh1 +/+ and Mlh1 -/- mice showed their own unique spectra, suggesting that deletion mutations were the main causes in the deficiency of the Mlh1 gene. Of note, fetuses of irradiated mice exhibited marked differences such as post-implantation loss and Mendelian distribution. Collectively, these results strongly suggest that high mutation ofMlh1 -/- -deficient fetuses has little effect on the fetuses during their early developmental stages, whereas Mlh1 -/- -deficient fetuses from X-ray irradiated mothers are clearly effected.

  17. A novel MKRN3 missense mutation causing familial precocious puberty.

    PubMed

    de Vries, L; Gat-Yablonski, G; Dror, N; Singer, A; Phillip, M

    2014-12-01

    Central precocious puberty may be familial in about a quarter of the idiopathic cases. However, little is known about the genetic causes responsible for the disorder. In this report we describe a family with central precocious puberty associated with a mutation in the makorin RING-finger protein 3 (MKRN3) gene. A novel missense mutation (p.H420Q) in the imprinted MKRN3 gene was identified in the four affected siblings, in their unaffected father and in his affected mother. An in silico mutant MKRN3 model predicts that the mutation p.H420Q leads to reduced zinc binding and, subsequently, impaired RNA binding. These findings support the fundamental role of the MKRN3 protein in determining pubertal timing. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Ovarian metastasis from uveal melanoma with MLH1/PMS2 protein loss in a patient with germline MLH1 mutated Lynch syndrome: consequence or coincidence?

    PubMed

    Lobo, João; Pinto, Carla; Freitas, Micaela; Pinheiro, Manuela; Vizcaino, Rámon; Oliva, Esther; Teixeira, Manuel R; Jerónimo, Carmen; Bartosch, Carla

    2017-03-01

    Currently, uveal melanoma is not considered within the Lynch syndrome tumor spectrum. However, there are studies suggesting a contribution of microsatellite instability in sporadic uveal melanoma tumorigenesis. We report a 45-year-old woman who was referred for genetic counseling due to a family history of Lynch syndrome caused by a MLH1 mutation. She originally underwent enucleation of the right eye secondary to a uveal spindle cell melanoma diagnosed at age 25. The tumor recurred 22 years later presenting as an ovarian metastasis and concurrently a microscopic endometrial endometrioid carcinoma, grade 1/3 was diagnosed. Subsequent studies highlighted that the uveal melanoma showed high microsatellite instability and loss of MLH1 and PMS2 protein expression, with no MLH1 promoter methylation or BRAF mutation. Additionally, a GNAQ mutation was found. We conclude that our patient's uveal melanoma is most likely related to MLH1 germline mutation and thus Lynch syndrome related. To the best of our knowledge, this is the first report of uveal melanoma showing MLH1/PMS2 protein loss in the context of Lynch syndrome.

  19. AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and missense mutation significance.

    PubMed

    Spanakis, Elias; Milord, Edrice; Gragnoli, Claudia

    2008-12-01

    Almost 90% of nephrogenic diabetes insipidus (NDI) is due to mutations in the arginine-vasopressin receptor 2 gene (AVPR2). We retrospectively examined all the published mutations/variants in AVPR2. We planned to perform a comprehensive review of all the AVPR2 mutations/variants and to test whether any amino acid change causing a missense mutation is significantly more or less common than others. We performed a Medline search and collected detailed information regarding all AVPR2 mutations and variants. We performed a frequency comparison between mutated and wild-type amino acids and codons. We predicted the mutation effect or reported it based on published in vitro studies. We also reported the ethnicity of each mutation/variant carrier. In summary, we identified 211 AVPR2 mutations which cause NDI in 326 families and 21 variants which do not cause NDI in 71 NDI families. We described 15 different types of mutations including missense, frameshift, inframe deletion, deletion, insertion, nonsense, duplication, splicing and combined mutations. The missense mutations represent the 55.83% of all the NDI published families. Arginine and tyrosine are significantly (P = 4.07E-08 and P = 3.27E-04, respectively) the AVPR2 most commonly mutated amino acids. Alanine and glutamate are significantly (P = 0.009 and P = 0.019, respectively) the least mutated AVPR2 amino acids. The spectrum of mutations varies from rare gene variants or polymorphisms not causing NDI to rare mutations causing NDI, among which arginine and tyrosine are the most common missense. The AVPR2 mutations are spread world-wide. Our study may serve as an updated review, comprehensive of all AVPR2 variants and specific gene locations. J. Cell. Physiol. 217: 605-617, 2008. (c) 2008 Wiley-Liss, Inc.

  20. Endometrial tumour BRAF mutations and MLH1 promoter methylation as predictors of germline mismatch repair gene mutation status: a literature review.

    PubMed

    Metcalf, Alexander M; Spurdle, Amanda B

    2014-03-01

    Colorectal cancer (CRC) that displays high microsatellite instability (MSI-H) can be caused by either germline mutations in mismatch repair (MMR) genes, or non-inherited transcriptional silencing of the MLH1 promoter. A correlation between MLH1 promoter methylation, specifically the 'C' region, and BRAF V600E status has been reported in CRC studies. Germline MMR mutations also greatly increase risk of endometrial cancer (EC), but no systematic review has been undertaken to determine if these tumour markers may be useful predictors of MMR mutation status in EC patients. Endometrial cancer cohorts meeting review inclusion criteria encompassed 2675 tumours from 20 studies for BRAF V600E, and 447 tumours from 11 studies for MLH1 methylation testing. BRAF V600E mutations were reported in 4/2675 (0.1%) endometrial tumours of unknown MMR mutation status, and there were 7/823 (0.9%) total sequence variants in exon 11 and 27/1012 (2.7%) in exon 15. Promoter MLH1 methylation was not observed in tumours from 32 MLH1 mutation carriers, or for 13 MSH2 or MSH6 mutation carriers. MMR mutation-negative individuals with tumour MLH1 and PMS2 IHC loss displayed MLH1 methylation in 48/51 (94%) of tumours. We have also detailed specific examples that show the importance of MLH1 promoter region, assay design, and quantification of methylation. This review shows that BRAF mutations occurs so infrequently in endometrial tumours they can be discounted as a useful marker for predicting MMR-negative mutation status, and further studies of endometrial cohorts with known MMR mutation status are necessary to quantify the utility of tumour MLH1 promoter methylation as a marker of negative germline MMR mutation status in EC patients.

  1. Age and origin of two common MLH1 mutations predisposing to hereditary colon cancer.

    PubMed

    Moisio, A L; Sistonen, P; Weissenbach, J; de la Chapelle, A; Peltomäki, P

    1996-12-01

    Two mutations in the DNA mismatch repair gene MLH1, referred to as mutations 1 and 2, are frequent among Finnish kindreds with hereditary nonpolyposis colorectal cancer (HNPCC). In order to assess the ages and origins of these mutations, we constructed a map of 15 microsatellite markers around MLH1 and used this information in haplotype analyses of 19 kindreds with mutation 1 and 6 kindreds with mutation 2. All kindreds with mutation 1 showed a single allele for the intragenic marker D3S1611 that was not observed on any unaffected chromosome. They also shared portions of a haplotype of 4-15 markers encompassing 2.0-19.0 cM around MLH1. All kindreds with mutation 2 shared another allele for D3S1611 and a conserved haplotype of 5-14 markers spanning 2.0-15.0 cM around MLH1. The degree of haplotype conservation was used to estimate the ages of these two mutations. While some recessive disease genes have been estimated to have existed and spread for as long as thousands of generations worldwide and hundreds of generations in the Finnish population, our analyses suggest that the spread of mutation 1 started 16-43 generations (400-1,075 years) ago and that of mutation 2 some 5-21 generations (125-525 years) ago. These datings are compatible with our genealogical results identifying a common ancestor born in the 16th and 18th century, respectively. Overall, our results indicate that all Finnish kindreds studied to date showing either mutation 1 or mutation 2 are due to single ancestral founding mutations relatively recent in origin in the population. Alternatively, the mutations arose elsewhere earlier and were introduced in Finland more recently.

  2. Comprehensive assessment of cancer missense mutation clustering in protein structures.

    PubMed

    Kamburov, Atanas; Lawrence, Michael S; Polak, Paz; Leshchiner, Ignaty; Lage, Kasper; Golub, Todd R; Lander, Eric S; Getz, Gad

    2015-10-06

    Large-scale tumor sequencing projects enabled the identification of many new cancer gene candidates through computational approaches. Here, we describe a general method to detect cancer genes based on significant 3D clustering of mutations relative to the structure of the encoded protein products. The approach can also be used to search for proteins with an enrichment of mutations at binding interfaces with a protein, nucleic acid, or small molecule partner. We applied this approach to systematically analyze the PanCancer compendium of somatic mutations from 4,742 tumors relative to all known 3D structures of human proteins in the Protein Data Bank. We detected significant 3D clustering of missense mutations in several previously known oncoproteins including HRAS, EGFR, and PIK3CA. Although clustering of missense mutations is often regarded as a hallmark of oncoproteins, we observed that a number of tumor suppressors, including FBXW7, VHL, and STK11, also showed such clustering. Beside these known cases, we also identified significant 3D clustering of missense mutations in NUF2, which encodes a component of the kinetochore, that could affect chromosome segregation and lead to aneuploidy. Analysis of interaction interfaces revealed enrichment of mutations in the interfaces between FBXW7-CCNE1, HRAS-RASA1, CUL4B-CAND1, OGT-HCFC1, PPP2R1A-PPP2R5C/PPP2R2A, DICER1-Mg2+, MAX-DNA, SRSF2-RNA, and others. Together, our results indicate that systematic consideration of 3D structure can assist in the identification of cancer genes and in the understanding of the functional role of their mutations.

  3. Comprehensive assessment of cancer missense mutation clustering in protein structures

    PubMed Central

    Kamburov, Atanas; Lawrence, Michael S.; Polak, Paz; Leshchiner, Ignaty; Lage, Kasper; Golub, Todd R.; Lander, Eric S.; Getz, Gad

    2015-01-01

    Large-scale tumor sequencing projects enabled the identification of many new cancer gene candidates through computational approaches. Here, we describe a general method to detect cancer genes based on significant 3D clustering of mutations relative to the structure of the encoded protein products. The approach can also be used to search for proteins with an enrichment of mutations at binding interfaces with a protein, nucleic acid, or small molecule partner. We applied this approach to systematically analyze the PanCancer compendium of somatic mutations from 4,742 tumors relative to all known 3D structures of human proteins in the Protein Data Bank. We detected significant 3D clustering of missense mutations in several previously known oncoproteins including HRAS, EGFR, and PIK3CA. Although clustering of missense mutations is often regarded as a hallmark of oncoproteins, we observed that a number of tumor suppressors, including FBXW7, VHL, and STK11, also showed such clustering. Beside these known cases, we also identified significant 3D clustering of missense mutations in NUF2, which encodes a component of the kinetochore, that could affect chromosome segregation and lead to aneuploidy. Analysis of interaction interfaces revealed enrichment of mutations in the interfaces between FBXW7-CCNE1, HRAS-RASA1, CUL4B-CAND1, OGT-HCFC1, PPP2R1A-PPP2R5C/PPP2R2A, DICER1-Mg2+, MAX-DNA, SRSF2-RNA, and others. Together, our results indicate that systematic consideration of 3D structure can assist in the identification of cancer genes and in the understanding of the functional role of their mutations. PMID:26392535

  4. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches.

    PubMed

    Pinto, Ricardo Mouro; Dragileva, Ella; Kirby, Andrew; Lloret, Alejandro; Lopez, Edith; St Claire, Jason; Panigrahi, Gagan B; Hou, Caixia; Holloway, Kim; Gillis, Tammy; Guide, Jolene R; Cohen, Paula E; Li, Guo-Min; Pearson, Christopher E; Daly, Mark J; Wheeler, Vanessa C

    2013-10-01

    The Huntington's disease gene (HTT) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease Hdh(Q111) mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.Hdh(Q111) ) than on a 129 background (129.Hdh(Q111) ). Linkage mapping in (B6x129).Hdh(Q111) F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR) gene Mlh1 as the most likely candidate modifier. Crossing B6.Hdh(Q111) mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. Hdh(Q111) somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1-MLH3) complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2-MSH3). The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest that MLH1

  5. Mismatch Repair Genes Mlh1 and Mlh3 Modify CAG Instability in Huntington's Disease Mice: Genome-Wide and Candidate Approaches

    PubMed Central

    Pinto, Ricardo Mouro; Dragileva, Ella; Kirby, Andrew; Lloret, Alejandro; Lopez, Edith; St. Claire, Jason; Panigrahi, Gagan B.; Hou, Caixia; Holloway, Kim; Gillis, Tammy; Guide, Jolene R.; Cohen, Paula E.; Li, Guo-Min; Pearson, Christopher E.; Daly, Mark J.; Wheeler, Vanessa C.

    2013-01-01

    The Huntington's disease gene (HTT) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease HdhQ111 mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.HdhQ111) than on a 129 background (129.HdhQ111). Linkage mapping in (B6x129).HdhQ111 F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR) gene Mlh1 as the most likely candidate modifier. Crossing B6.HdhQ111 mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. HdhQ111 somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1–MLH3) complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2–MSH3). The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest that MLH1 protein

  6. Comparison of the effects of a truncating and a missense MYBPC3 mutation on contractile parameters of engineered heart tissue.

    PubMed

    Wijnker, Paul J M; Friedrich, Felix W; Dutsch, Alexander; Reischmann, Silke; Eder, Alexandra; Mannhardt, Ingra; Mearini, Giulia; Eschenhagen, Thomas; van der Velden, Jolanda; Carrier, Lucie

    2016-08-01

    Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by left ventricular hypertrophy, diastolic dysfunction and myocardial disarray. The most frequently mutated gene is MYBPC3, encoding cardiac myosin-binding protein-C (cMyBP-C). We compared the pathomechanisms of a truncating mutation (c.2373_2374insG) and a missense mutation (c.1591G>C) in MYBPC3 in engineered heart tissue (EHT). EHTs enable to study the direct effects of mutants without interference of secondary disease-related changes. EHTs were generated from Mybpc3-targeted knock-out (KO) and wild-type (WT) mouse cardiac cells. MYBPC3 WT and mutants were expressed in KO EHTs via adeno-associated virus. KO EHTs displayed higher maximal force and sensitivity to external [Ca(2+)] than WT EHTs. Expression of WT-Mybpc3 at MOI-100 resulted in ~73% cMyBP-C level but did not prevent the KO phenotype, whereas MOI-300 resulted in ≥95% cMyBP-C level and prevented the KO phenotype. Expression of the truncating or missense mutation (MOI-300) or their combination with WT (MOI-150 each), mimicking the homozygous or heterozygous disease state, respectively, failed to restore force to WT level. Immunofluorescence analysis revealed correct incorporation of WT and missense, but not of truncated cMyBP-C in the sarcomere. In conclusion, this study provides evidence in KO EHTs that i) haploinsufficiency affects EHT contractile function if WT cMyBP-C protein levels are ≤73%, ii) missense or truncating mutations, but not WT do not fully restore the disease phenotype and have different pathogenic mechanisms, e.g. sarcomere poisoning for the missense mutation, iii) the direct impact of (newly identified) MYBPC3 gene variants can be evaluated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A novel missense-mutation-related feature extraction scheme for 'driver' mutation identification.

    PubMed

    Tan, Hua; Bao, Jiguang; Zhou, Xiaobo

    2012-11-15

    It becomes widely accepted that human cancer is a disease involving dynamic changes in the genome and that the missense mutations constitute the bulk of human genetic variations. A multitude of computational algorithms, especially the machine learning-based ones, has consequently been proposed to distinguish missense changes that contribute to the cancer progression ('driver' mutation) from those that do not ('passenger' mutation). However, the existing methods have multifaceted shortcomings, in the sense that they either adopt incomplete feature space or depend on protein structural databases which are usually far from integrated. In this article, we investigated multiple aspects of a missense mutation and identified a novel feature space that well distinguishes cancer-associated driver mutations from passenger ones. An index (DX score) was proposed to evaluate the discriminating capability of each feature, and a subset of these features which ranks top was selected to build the SVM classifier. Cross-validation showed that the classifier trained on our selected features significantly outperforms the existing ones both in precision and robustness. We applied our method to several datasets of missense mutations culled from published database and literature and obtained more reasonable results than previous studies. The software is available online at http://www.methodisthealth.com/software and https://sites.google.com/site/drivermutationidentification/. xzhou@tmhs.org. Supplementary data are available at Bioinformatics online.

  8. HER2 missense mutations have distinct effects on oncogenic signaling and migration

    PubMed Central

    Zabransky, Daniel J.; Yankaskas, Christopher L.; Cochran, Rory L.; Wong, Hong Yuen; Croessmann, Sarah; Chu, David; Kavuri, Shyam M.; Red Brewer, Monica; Rosen, D. Marc; Dalton, W. Brian; Cimino-Mathews, Ashley; Cravero, Karen; Button, Berry; Kyker-Snowman, Kelly; Cidado, Justin; Erlanger, Bracha; Parsons, Heather A.; Manto, Kristen M.; Bose, Ron; Lauring, Josh; Arteaga, Carlos L.; Konstantopoulos, Konstantinos; Park, Ben Ho

    2015-01-01

    Recurrent human epidermal growth factor receptor 2 (HER2) missense mutations have been reported in human cancers. These mutations occur primarily in the absence of HER2 gene amplification such that most HER2-mutant tumors are classified as “negative” by FISH or immunohistochemistry assays. It remains unclear whether nonamplified HER2 missense mutations are oncogenic and whether they are targets for HER2-directed therapies that are currently approved for the treatment of HER2 gene-amplified breast cancers. Here we functionally characterize HER2 kinase and extracellular domain mutations through gene editing of the endogenous loci in HER2 nonamplified human breast epithelial cells. In in vitro and in vivo assays, the majority of HER2 missense mutations do not impart detectable oncogenic changes. However, the HER2 V777L mutation increased biochemical pathway activation and, in the context of a PIK3CA mutation, enhanced migratory features in vitro. However, the V777L mutation did not alter in vivo tumorigenicity or sensitivity to HER2-directed therapies in proliferation assays. Our results suggest the oncogenicity and potential targeting of HER2 missense mutations should be considered in the context of cooperating genetic alterations and provide previously unidentified insights into functional analysis of HER2 mutations and strategies to target them. PMID:26508629

  9. mlh3 mutations in baker’s yeast alter meiotic recombination outcomes by increasing noncrossover events genome-wide

    PubMed Central

    Al-Sweel, Najla; Raghavan, Vandana; Khondakar, Nabila; Manhart, Carol M.; Surtees, Jennifer A.

    2017-01-01

    Mlh1-Mlh3 is an endonuclease hypothesized to act in meiosis to resolve double Holliday junctions into crossovers. It also plays a minor role in eukaryotic DNA mismatch repair (MMR). To understand how Mlh1-Mlh3 functions in both meiosis and MMR, we analyzed in baker’s yeast 60 new mlh3 alleles. Five alleles specifically disrupted MMR, whereas one (mlh3-32) specifically disrupted meiotic crossing over. Mlh1-mlh3 representatives for each class were purified and characterized. Both Mlh1-mlh3-32 (MMR+, crossover-) and Mlh1-mlh3-45 (MMR-, crossover+) displayed wild-type endonuclease activities in vitro. Msh2-Msh3, an MSH complex that acts with Mlh1-Mlh3 in MMR, stimulated the endonuclease activity of Mlh1-mlh3-32 but not Mlh1-mlh3-45, suggesting that Mlh1-mlh3-45 is defective in MSH interactions. Whole genome recombination maps were constructed for wild-type and MMR+ crossover-, MMR- crossover+, endonuclease defective and null mlh3 mutants in an S288c/YJM789 hybrid background. Compared to wild-type, all of the mlh3 mutants showed increases in the number of noncrossover events, consistent with recombination intermediates being resolved through alternative recombination pathways. Our observations provide a structure-function map for Mlh3 that reveals the importance of protein-protein interactions in regulating Mlh1-Mlh3’s enzymatic activity. They also illustrate how defective meiotic components can alter the fate of meiotic recombination intermediates, providing new insights for how meiotic recombination pathways are regulated. PMID:28827832

  10. Lynch syndrome-associated endometrial carcinoma with MLH1 germline mutation and MLH1 promoter hypermethylation: a case report and literature review.

    PubMed

    Yokoyama, Takanori; Takehara, Kazuhiro; Sugimoto, Nao; Kaneko, Keika; Fujimoto, Etsuko; Okazawa-Sakai, Mika; Okame, Shinichi; Shiroyama, Yuko; Yokoyama, Takashi; Teramoto, Norihiro; Ohsumi, Shozo; Saito, Shinya; Imai, Kazuho; Sugano, Kokichi

    2018-05-21

    Lynch syndrome is an autosomal dominant inherited disease caused by germline mutations in mismatch repair genes. Analysis for microsatellite instability (MSI) and immunohistochemistry (IHC) of protein expressions of disease-associated genes is used to screen for Lynch syndrome in endometrial cancer patients. When losses of both MLH1 and PMS2 proteins are observed by IHC, MLH1 promoter methylation analysis is conducted to distinguish Lynch syndrome-associated endometrial cancer from sporadic cancer. Here we report a woman who developed endometrial cancer at the age of 49 years. She had a family history of colorectal cancer (first-degree relative aged 52 years) and stomach cancer (second-degree relative with the age of onset unknown). No other family history was present, and she failed to meet the Amsterdam II criteria for the diagnosis of Lynch syndrome. Losses of MLH1 and PMS2, but not MSH2 and MSH6, proteins were observed by IHC in endometrial cancer tissues. Because MLH1 promoter hypermethylation was detected in endometrial cancer tissue samples, the epigenetic silencing of MLH1 was suspected as the cause of the protein loss. However, because of the early onset of endometrial cancer and the positive family history, a diagnosis of Lynch syndrome was also suspected. Therefore, we provided her with genetic counseling. After obtaining her consent, MLH1 promoter methylation testing and genetic testing of peripheral blood were performed. MLH1 promoter methylation was not observed in peripheral blood. However, genetic testing revealed a large deletion of exon 5 in MLH1; thus, we diagnosed the presence of Lynch syndrome. Both MLH1 germline mutation and MLH1 promoter hypermethylation may be observed in endometrial cancer. Therefore, even if MLH1 promoter hypermethylation is detected, a diagnosis of Lynch syndrome cannot be excluded.

  11. Concomitant mutation and epimutation of the MLH1 gene in a Lynch syndrome family.

    PubMed

    Cini, Giulia; Carnevali, Ileana; Quaia, Michele; Chiaravalli, Anna Maria; Sala, Paola; Giacomini, Elisa; Maestro, Roberta; Tibiletti, Maria Grazia; Viel, Alessandra

    2015-04-01

    Lynch syndrome (LS) is an inherited predisposition cancer syndrome, typically caused by germline mutations in the mismatch repair genes MLH1, MSH2, MSH6 and PMS2. In the last years, a role for epimutations of the same genes has also been reported. MLH1 promoter methylation is a well known mechanism of somatic inactivation in tumors, and more recently, several cases of constitutional methylation have been identified. In four subjects affected by multiple tumors and belonging to a suspected LS family, we detected a novel secondary MLH1 gene epimutation. The methylation of MLH1 promoter was always linked in cis with a 997 bp-deletion (c.-168_c.116+713del), that removed exon 1 and partially involved the promoter of the same gene. Differently from cases with constitutional primary MLH1 inactivation, this secondary methylation was allele-specific and CpGs of the residual promoter region were totally methylated, leading to complete allele silencing. In the colon tumor of the proband, MLH1 and PMS2 expression was completely lost as a consequence of a pathogenic somatic point mutation (MLH1 c.199G>A, p.Gly67Arg) that also abrogated local methylation by destroying a CpG site. The evidences obtained highlight how MLH1 mutations and epimutations can reciprocally influence each other and suggest that an altered structure of the MLH1 locus results in epigenetic alteration. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. De novo REEP2 missense mutation in pure hereditary spastic paraplegia.

    PubMed

    Roda, Ricardo H; Schindler, Alice B; Blackstone, Craig

    2017-05-01

    Alterations in proteins that regulate endoplasmic reticulum morphology are common causes of hereditary spastic paraplegia (SPG1-78, plus others). Mutations in the REEP1 gene that encodes an endoplasmic reticulum-shaping protein are well-known causes of SPG31, a common autosomal dominant spastic paraplegia. A closely-related gene, REEP2, is mutated in SPG72, with both autosomal and recessive inheritances. Here, we report a patient with a pure hereditary spastic paraplegia due to a de novo missense mutation (c.119T > G, p.Met40Arg) in REEP2 at a highly-conserved residue very close to another known pathogenic missense change. This represents only the second autosomal dominant SPG72 missense mutation reported.

  13. De novo constitutional MLH1 epimutations confer early-onset colorectal cancer in two new sporadic Lynch syndrome cases, with derivation of the epimutation on the paternal allele in one

    PubMed Central

    Goel, Ajay; Nguyen, Thuy-Phuong; Leung, Hon-Chiu E.; Nagasaka, Takeshi; Rhees, Jennifer; Hotchkiss, Erin; Arnold, Mildred; Banerji, Pia; Koi, Minoru; Kwok, Chau-To; Packham, Deborah; Lipton, Lara; Boland, C. Richard; Ward, Robyn L.; Hitchins, Megan P.

    2013-01-01

    Lynch syndrome is an autosomal dominant cancer predisposition syndrome classically caused by germline mutations of the mismatch repair genes, MLH1, MSH2, MSH6 and PMS2. Constitutional epimutations of the MLH1 gene, characterized by soma-wide methylation of a single allele of the promoter and allelic transcriptional silencing, have been identified in a subset of Lynch syndrome cases lacking a sequence mutation in MLH1. We report two individuals with no family history of colorectal cancer who developed that disease at age 18 and 20 years. In both cases, cancer had arisen because of the de novo occurrence of a constitutional MLH1 epimutation and somatic loss-of-heterozygosity of the functional allele in the tumors. We show for the first time that the epimutation in one case arose on the paternally inherited allele. Analysis of 13 tumors from seven individuals with constitutional MLH1 epimutations showed eight tumors had lost the second MLH1 allele, two tumors had a novel pathogenic missense mutation and three had retained heterozygosity. Only 1 of 12 tumors demonstrated the BRAF V600E mutation and 3 of 11 tumors harbored a mutation in KRAS. The finding that epimutations can originate on the paternal allele provides important new insights into the mechanism of origin of epimutations. It is clear that the second hit in MLH1 epimutation-associated tumors typically has a genetic not epigenetic basis. Individuals with mismatch repair–deficient cancers without the BRAF V600E mutation are candidates for germline screening for sequence or methylation changes in MLH1. PMID:20473912

  14. MSH3 protein expression and nodal status in MLH1-deficient colorectal cancers.

    PubMed

    Laghi, Luigi; Bianchi, Paolo; Delconte, Gabriele; Celesti, Giuseppe; Di Caro, Giuseppe; Pedroni, Monica; Chiaravalli, Anna Maria; Jung, Barbara; Capella, Carlo; de Leon, Maurizio Ponz; Malesci, Alberto

    2012-06-01

    Patients with colorectal cancers (CRC) and high microsatellite instability (MSI) have a better outcome than their chromosome-unstable counterpart. Given the heterogeneity of microsatellite-unstable CRCs, we wanted to see whether any MSI-associated molecular features are specifically associated with prognosis. One hundred and nine MSI-high CRCs were typed for primary mismatch repair (MMR) defect and for secondary loss of MMR proteins. Frameshifts at seven target genes, mutations in the RAS pathway, and methylation at MLH1/CDKN2A promoters were also searched. The interplay of molecular findings with clinicopathologic features and patient survival was analyzed. Of 84 MLH1-deficient CRCs, 31 (36.9%) had MSH3 and 11 (13.1%) had MSH6 loss (P < 0.001), biallelic frameshift mutations at mononucleotide repeats accounting for most (78%) MSH3 losses. As compared with MSH3-retaining cancers, MLH1-deficient tumors with MSH3 loss showed a higher number of mutated target genes (3.94 ± 1.56 vs. 2.79 ± 1.75; P = 0.001), absence of nodal involvement at pathology [N0; OR, 0.11; 95% confidence interval (CI), 0.04-0.43, P < 0.001], and better disease-free survival (P = 0.06). No prognostic value was observed for KRAS status and for MLH1/CDKN2A promoter methylation. The association between MSH3 loss and N0 was confirmed in an independent cohort of 71 MLH1-deficient CRCs (OR, 0.23; 95% CI, 0.06-0.83, P = 0.02). MLH1-deficient CRCs not expressing MSH3 have a more severe MSI, a lower rate of nodal involvement, and a better postsurgical outcome.

  15. Novel DNA variants and mutation frequencies of hMLH1 and hMSH2 genes in colorectal cancer in the Northeast China population.

    PubMed

    Hu, Fulan; Li, Dandan; Wang, Yibaina; Yao, Xiaoping; Zhang, Wencui; Liang, Jing; Lin, Chunqing; Ren, Jiaojiao; Zhu, Lin; Wu, Zhiwei; Li, Shuying; Li, Ye; Zhao, Xiaojuan; Cui, Binbin; Dong, Xinshu; Tian, Suli; Zhao, Yashuang

    2013-01-01

    Research on hMLH1 and hMSH2 mutations tend to focus on Lynch syndrome (LS) and LS-like colorectal cancer (CRC). No studies to date have assessed the role of hMLH1 and hMSH2 genes in mass sporadic CRC (without preselection by MSI or early age of onset). We aimed to identify novel hMLH1 and hMSH2 DNA variants, to determine the mutation frequencies and sites in both sporadic and LS CRC and their relationships with clinicopathological characteristics of CRC in Northeast of China. 452 sporadic and 21 LS CRC patients were screened for germline and somatic mutations in hMLH1 and hMSH2 genes with PCR-SSCP sequencing. We identified 11 hMLH1 and seven hMSH2 DNA variants in our study cohort. Six of them were novel: four in hMLH1 gene (IVS8-16 A>T, c.644 GAT>GTT, c.1529 CAG>CGG and c.1831 ATT>TTT) and two in hMSH2 gene (-39 C>T, insertion AACAACA at c.1127 and deletion AAG at c.1129). In sporadic CRC, germline and somatic mutation frequencies of hMLH1/hMSH2 gene were 15.59% and 17.54%, respectively (p = 0.52). Germline mutations present in hMLH1 and hMSH2 genes were 5.28% and 10.78%, respectively (p<0.01). Somatic mutations in hMLH1 and hMSH2 genes were 6.73% and 11.70%, respectively (p = 0.02). In LS CRC, both germline and somatic mutation frequencies of hMLH1/hMSH2 gene were 28.57%. The most prevalent germline mutation site in hMSH2 gene was c.1168 CTT>TTT (3.90%), a polymorphism. Somatic mutation frequency of hMLH1/hMSH2 gene was significantly different in proximal, distal colon and rectal cancer (p = 0.03). Our findings elucidate the mutation spectrum and frequency of hMLH1 and hMSH2 genes in sporadic and LS CRC, and their relationships with clinicopathological characteristics of CRC.

  16. Epitope-positive truncating MLH1 mutation and loss of PMS2: implications for IHC-directed genetic testing for Lynch syndrome.

    PubMed

    Zighelboim, Israel; Powell, Matthew A; Babb, Sheri A; Whelan, Alison J; Schmidt, Amy P; Clendenning, Mark; Senter, Leigha; Thibodeau, Stephen N; de la Chapelle, Albert; Goodfellow, Paul J

    2009-01-01

    We assessed mismatch repair by immunohistochemistry (IHC) and microsatellite instability (MSI) analysis in an early onset endometrial cancer and a sister's colon cancer. We demonstrated high-level MSI and normal expression for MLH1, MSH2 and MSH6. PMS2 failed to stain in both tumors, strongly implicating a PMS2 defect. This family did not meet clinical criteria for Lynch syndrome. However, early onset endometrial cancers in the proband and her sister, a metachronous colorectal cancer in the sister as well as MSI in endometrial and colonic tumors suggested a heritable mismatch repair defect. PCR-based direct exonic sequencing and multiplex ligation-dependent probe amplification (MLPA) were undertaken to search for PMS2 mutations in the germline DNA from the proband and her sister. No mutation was identified in the PMS2 gene. However, PMS2 exons 3, 4, 13, 14, 15 were not evaluated by MLPA and as such, rearrangements involving those exons cannot be excluded. Clinical testing for MLH1 and MSH2 mutation revealed a germline deletion of MLH1 exons 14 and 15. This MLH1 germline deletion leads to an immunodetectable stable C-terminal truncated MLH1 protein which based on the IHC staining must abrogate PMS2 stabilization. To the best of our knowledge, loss of PMS2 in MLH1 truncating mutation carriers that express MLH1 in their tumors has not been previously reported. This family points to a potential limitation of IHC-directed gene testing for suspected Lynch syndrome and the need to consider comprehensive MLH1 testing for individuals whose tumors lack PMS2 but for whom PMS2 mutations are not identified.

  17. De novo constitutional MLH1 epimutations confer early-onset colorectal cancer in two new sporadic Lynch syndrome cases, with derivation of the epimutation on the paternal allele in one.

    PubMed

    Goel, Ajay; Nguyen, Thuy-Phuong; Leung, Hon-Chiu E; Nagasaka, Takeshi; Rhees, Jennifer; Hotchkiss, Erin; Arnold, Mildred; Banerji, Pia; Koi, Minoru; Kwok, Chau-To; Packham, Deborah; Lipton, Lara; Boland, C Richard; Ward, Robyn L; Hitchins, Megan P

    2011-02-15

    Lynch syndrome is an autosomal dominant cancer predisposition syndrome classically caused by germline mutations of the mismatch repair genes, MLH1, MSH2, MSH6 and PMS2. Constitutional epimutations of the MLH1 gene, characterized by soma-wide methylation of a single allele of the promoter and allelic transcriptional silencing, have been identified in a subset of Lynch syndrome cases lacking a sequence mutation in MLH1. We report two individuals with no family history of colorectal cancer who developed that disease at age 18 and 20 years. In both cases, cancer had arisen because of the de novo occurrence of a constitutional MLH1 epimutation and somatic loss-of-heterozygosity of the functional allele in the tumors. We show for the first time that the epimutation in one case arose on the paternally inherited allele. Analysis of 13 tumors from seven individuals with constitutional MLH1 epimutations showed eight tumors had lost the second MLH1 allele, two tumors had a novel pathogenic missense mutation and three had retained heterozygosity. Only 1 of 12 tumors demonstrated the BRAF V600E mutation and 3 of 11 tumors harbored a mutation in KRAS. The finding that epimutations can originate on the paternal allele provides important new insights into the mechanism of origin of epimutations. It is clear that the second hit in MLH1 epimutation-associated tumors typically has a genetic not epigenetic basis. Individuals with mismatch repair-deficient cancers without the BRAF V600E mutation are candidates for germline screening for sequence or methylation changes in MLH1. Copyright © 2010 UICC.

  18. In silico investigation of molecular effects caused by missense mutations in creatine transporter protein

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Schwatz, Charles; Alexov, Emil

    2011-03-01

    Creatine transporter (CT) protein, which is encoded by SLC6A8 gene, is essential for taking up the creatine in the cell, which in turn plays a key role in the spatial and temporal maintenance of energy in skeletal and cardiac muscle cells. It was shown that some missense mutations in CT cause mental retardation, while others are harmless non-synonymous single nucleoside polymorphism (nsSNP). Currently fifteen missense mutations in CT are known, among which twelve are disease-causing. Sequence analysis reveals that there is no clear trend distinguishing disease-causing from harmless missense mutations. Because of that, we built 3D model of the CT using highly homologous template and use the model to investigate the effects of mutations of CT stability and hydrogen bond network. It is demonstrated that disease-causing mutations affect the folding free energy and ionization states of titratable group in much greater extend as compared with harmless mutations. Supported by grants from NLM, NIH, grant numbers 1R03LM009748 and 1R03LM009748-S1.

  19. MLH1-Silenced and Non-Silenced Subgroups of Hypermutated Colorectal Carcinomas Have Distinct Mutational Landscapes

    PubMed Central

    Donehower, Lawrence A.; Creighton, Chad J.; Schultz, Nikolaus; Shinbrot, Eve; Chang, Kyle; Gunaratne, Preethi H.; Muzny, Donna; Sander, Chris; Hamilton, Stanley R.; Gibbs, Richard A.; Wheeler, David

    2014-01-01

    Approximately 15% of colorectal carcinomas (CRC) exhibit a hypermutated genotype accompanied by high levels of microsatellite instability (MSI-H) and defects in DNA mismatch repair. These tumors, unlike the majority of colorectal carcinomas, are often diploid, exhibit frequent epigenetic silencing of the MLH1 DNA mismatch repair gene, and have a better clinical prognosis. As an adjunct study to The Cancer Genome Atlas consortium that recently analyzed 224 colorectal cancers by whole exome sequencing, we compared the 35 CRC (15.6%) with a hypermutated genotype to those with a non-hypermutated genotype. We found that 22 (63%) of hypermutated CRC exhibited transcriptional silencing of the MLH1 gene, a high frequency of BRAF V600E gene mutations and infrequent APC and KRAS mutations, a mutational pattern significantly different from their non-hypermutated counterparts. However, the remaining 13 (37%) hypermutated CRC lacked MLH1 silencing, contained tumors with the highest mutation rates (“ultramutated” CRC), and exhibited higher incidences of APC and KRAS mutations, but infrequent BRAF mutations. These patterns were confirmed in an independent validation set of 250 exome-sequenced CRC. Analysis of mRNA and microRNA expression signatures revealed that hypermutated CRC with MLH1 silencing had greatly reduced levels of WNT signaling and increased BRAF signaling relative non-hypermutated CRC. Our findings suggest that hypermutated CRC include one subgroup with fundamentally different pathways to malignancy than the majority of CRC. Examination of MLH1 expression status and frequencies of APC, KRAS, and BRAF mutation in CRC may provide a useful diagnostic tool that could supplement the standard microsatellite instability assays and influence therapeutic decisions. PMID:22899370

  20. Contribution of MLH1 constitutional methylation for Lynch syndrome diagnosis in patients with tumor MLH1 downregulation.

    PubMed

    Pinto, Diana; Pinto, Carla; Guerra, Joana; Pinheiro, Manuela; Santos, Rui; Vedeld, Hege Marie; Yohannes, Zeremariam; Peixoto, Ana; Santos, Catarina; Pinto, Pedro; Lopes, Paula; Lothe, Ragnhild; Lind, Guro Elisabeth; Henrique, Rui; Teixeira, Manuel R

    2018-02-01

    Constitutional epimutation of the two major mismatch repair genes, MLH1 and MSH2, has been identified as an alternative mechanism that predisposes to the development of Lynch syndrome. In the present work, we aimed to investigate the prevalence of MLH1 constitutional methylation in colorectal cancer (CRC) patients with abnormal expression of the MLH1 protein in their tumors. In a series of 38 patients who met clinical criteria for Lynch syndrome genetic testing, with loss of MLH1 expression in the tumor and with no germline mutations in the MLH1 gene (35/38) or with tumors presenting the BRAF p.Val600Glu mutation (3/38), we screened for constitutional methylation of the MLH1 gene promoter using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) in various biological samples. We found four (4/38; 10.5%) patients with constitutional methylation in the MLH1 gene promoter. RNA studies demonstrated decreased MLH1 expression in the cases with constitutional methylation when compared with controls. We could infer the mosaic nature of MLH1 constitutional hypermethylation in tissues originated from different embryonic germ layers, and in one family we could show that it occurred de novo. We conclude that constitutional MLH1 methylation occurs in a significant proportion of patients who have loss of MLH1 protein expression in their tumors and no MLH1 pathogenic germline mutation. Furthermore, we provide evidence that MLH1 constitutional hypermethylation is the molecular mechanism behind about 3% of Lynch syndrome families diagnosed in our institution, especially in patients with early onset or multiple primary tumors without significant family history. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  1. A novel missense HGD gene mutation, K57N, in a patient with alkaptonuria.

    PubMed

    Grasko, Jonathan M; Hooper, Amanda J; Brown, Jeffrey W; McKnight, C James; Burnett, John R

    2009-05-01

    Alkaptonuria is a rare recessive disorder of phenylalanine/tyrosine metabolism due to a defect in the enzyme homogentisate 1,2-dioxygenase (HGD) caused by mutations in the HGD gene. We report the case of a 38 year-old male with known alkaptonuria who was referred to an adult metabolic clinic after initially presenting to an emergency department with renal colic and subsequently passing black ureteric calculi. He complained of severe debilitating lower back pain, worsening over the last few years. A CT scan revealed marked degenerative changes and severe narrowing of the disc spaces along the entire lumbar spine. Sequencing of the HGD gene revealed that he was a compound heterozygote for a previously described missense mutation in exon 13 (G360R) and a novel missense mutation in exon 3 (K57N). Lys(57) is conserved among species and mutation of this residue is predicted to affect HGD protein function by interfering with substrate traffic at the active site. In summary, we describe an alkaptonuric patient and report a novel missense HGD mutation, K57N.

  2. The Germline MLH1 K618A Variant and Susceptibility to Lynch Syndrome-Associated Tumors

    PubMed Central

    Medeiros, Fabiola; Lindor, Noralane M.; Couch, Fergus J.; Highsmith, W. Edward

    2013-01-01

    Missense variants discovered during sequencing of cancer susceptibility genes can be problematic for clinical interpretation. MLH1 K618A, which results from a 2-bp alteration (AAG→GCG) leading to a substitution of lysine to alanine in codon 618, has variously been interpreted as a pathogenic mutation, a variant of unknown significance, and a benign polymorphism. We evaluated the role of MLH1 K618A in predisposition to cancer by genotyping 1512 control subjects to assess its frequency in the general population. We also reviewed the literature concerning MLH1 K618A in families with colorectal cancer. The measured allele frequency of the K618A variant was 0.40%, which is remarkably close to the 0.44% summarized from 2491 control subjects in the literature. K618A was over-represented in families with suspected Lynch syndrome. In 1366 families, the allele frequency was 0.88% (OR = 2.1, 95% CI = 1.3 to 3.5; P = 0.006). In studies of sporadic cancers of the type associated with Lynch syndrome, K618A was over-represented in 1742 cases (allele frequency of 0.83) (OR = 2.0, 95% CI = 1.2 to 3.2; P = 0.008). We conclude that MLH1 K618A is not a fully penetrant Lynch syndrome mutation, although it is not without effect, appearing to increase the risk of Lynch syndrome-associated tumors approximately twofold. Our systematic assessment approach may be useful for variants in other genes. PMID:22426235

  3. Analysis of human MutS homolog 2 missense mutations in patients with colorectal cancer.

    PubMed

    Zhang, Xiaomei; Chen, Senqing; Yu, Jun; Zhang, Yuanying; Lv, Min; Zhu, Ming

    2018-05-01

    Germline mutations of DNA mismatch repair gene human MutS homolog 2 ( hMSH2 ) are associated with hereditary nonpolyposis colorectal cancer (HNPCC). A total of one-third of these mutations are missense mutations. Several hMSH2 missense mutations have been identified in patients in East Asia, although their function has not been evaluated. In the present study, the role of ten hMSH2 missense mutations in the pathogenesis of colorectal cancer was examined. The hMSH2/hMSH6 protein interaction system was established using yeast two-hybrid screening. Next, the missense mutations were analyzed for their ability to affect the protein interaction of hMSH2 with its partner hMSH6. Additionally, the Sorting Intolerant from Tolerant tool was applied to predict the effects of different amino acid substitutions. The results demonstrated that certain hMSH2 mutations (L173R and C199R) caused a significant functional change in the human hMutSα complex and were identified to be pathological mutations. The Y408C, D603Y, P696L and S703Y mutations partially affected interaction and partly affected the function of hMSH2. The remaining four variants, T8M, I169V, A370T and Q419K, may be non-functional polymorphisms or could affect protein function through other molecular mechanisms. The present study evaluated the functional consequences of previously unknown missense mutations in hMSH2 , and may contribute to improved clinical diagnosis and mutation screening of HNPCC.

  4. A missense mutation in ALDH1A3 causes isolated microphthalmia/anophthalmia in nine individuals from an inbred Muslim kindred.

    PubMed

    Mory, Adi; Ruiz, Francesc X; Dagan, Efrat; Yakovtseva, Evgenia A; Kurolap, Alina; Parés, Xavier; Farrés, Jaume; Gershoni-Baruch, Ruth

    2014-03-01

    Nine affected individuals with isolated anophthalmia/microphthalmia from a large Muslim-inbred kindred were investigated. Assuming autosomal-recessive mode of inheritance, whole-genome linkage analysis, on DNA samples from four affected individuals, was undertaken. Homozygosity mapping techniques were employed and a 1.5-Mbp region, homozygous in all affected individuals, was delineated. The region contained nine genes, one of which, aldehyde dehydrogenase 1 (ALDH1A3), was a clear candidate. This gene seems to encode a key enzyme in the formation of a retinoic-acid gradient along the dorsoventral axis during an early eye development and the development of the olfactory system. Sanger sequence analysis revealed a missense mutation, causing a substitution of valine (Val) to methionine (Met) at position 71. Analyzing the p.Val71Met missense mutation using standard open access software (MutationTaster online, PolyPhen, SIFT/PROVEAN) predicts this variant to be damaging. Enzymatic activity, studied in vitro, showed no changes between the mutated and the wild-type ALDH1A3 protein.

  5. A missense mutation in ALDH1A3 causes isolated microphthalmia/anophthalmia in nine individuals from an inbred Muslim kindred

    PubMed Central

    Mory, Adi; Ruiz, Francesc X; Dagan, Efrat; Yakovtseva, Evgenia A; Kurolap, Alina; Parés, Xavier; Farrés, Jaume; Gershoni-Baruch, Ruth

    2014-01-01

    Nine affected individuals with isolated anophthalmia/microphthalmia from a large Muslim-inbred kindred were investigated. Assuming autosomal-recessive mode of inheritance, whole-genome linkage analysis, on DNA samples from four affected individuals, was undertaken. Homozygosity mapping techniques were employed and a 1.5-Mbp region, homozygous in all affected individuals, was delineated. The region contained nine genes, one of which, aldehyde dehydrogenase 1 (ALDH1A3), was a clear candidate. This gene seems to encode a key enzyme in the formation of a retinoic-acid gradient along the dorsoventral axis during an early eye development and the development of the olfactory system. Sanger sequence analysis revealed a missense mutation, causing a substitution of valine (Val) to methionine (Met) at position 71. Analyzing the p.Val71Met missense mutation using standard open access software (MutationTaster online, PolyPhen, SIFT/PROVEAN) predicts this variant to be damaging. Enzymatic activity, studied in vitro, showed no changes between the mutated and the wild-type ALDH1A3 protein. PMID:23881059

  6. A novel missense mutation of the paired box 3 gene in a Turkish family with Waardenburg syndrome type 1

    PubMed Central

    Ozturk, A.Taylan; Adibelli, Hamit; Unal, Nurettin; Tukun, Ajlan

    2013-01-01

    Purpose Screening of mutations in the paired box 3 (PAX3) gene in three generations of a Turkish family with Waardenburg syndrome type 1 (WS1). Methods WS1 was diagnosed in a 13-month-old girl according to the WS Consortium criteria. Detailed family history of the proband revealed eight affected members in three generations. Routine clinical and audiological examination and ophthalmologic evaluation were performed on eight affected and five healthy members of the study family. Dystopia canthorum was detected in all affected patients; however, a brilliant blue iris was present in five patients who also had mild retinal hypopigmentation. Genomic DNA was extracted from the peripheral blood of affected and unaffected individuals in the family as well as 50 unrelated healthy volunteers. All coding exons and adjacent intronic regions of PAX3 were sequenced directly. Results A novel missense heterozygous c.788T>G mutation was identified in eight patients. This nucleotide alteration was not found in unaffected members of the study family or in the 50 unrelated control subjects. The mutation causes V263G amino-acid substitution in the homeodomain of the PAX3 protein, which represents the 45th residue of helix 3. Conclusions We identified a novel missense c.788T>G mutation in PAX3 in a family with Waardenburg syndrome with intrafamilial phenotypic heterogeneity. PMID:23378733

  7. A novel missense mutation of the paired box 3 gene in a Turkish family with Waardenburg syndrome type 1.

    PubMed

    Hazan, Filiz; Ozturk, A Taylan; Adibelli, Hamit; Unal, Nurettin; Tukun, Ajlan

    2013-01-01

    Screening of mutations in the paired box 3 (PAX3) gene in three generations of a Turkish family with Waardenburg syndrome type 1 (WS1). WS1 was diagnosed in a 13-month-old girl according to the WS Consortium criteria. Detailed family history of the proband revealed eight affected members in three generations. Routine clinical and audiological examination and ophthalmologic evaluation were performed on eight affected and five healthy members of the study family. Dystopia canthorum was detected in all affected patients; however, a brilliant blue iris was present in five patients who also had mild retinal hypopigmentation. Genomic DNA was extracted from the peripheral blood of affected and unaffected individuals in the family as well as 50 unrelated healthy volunteers. All coding exons and adjacent intronic regions of PAX3 were sequenced directly. A novel missense heterozygous c.788T>G mutation was identified in eight patients. This nucleotide alteration was not found in unaffected members of the study family or in the 50 unrelated control subjects. The mutation causes V263G amino-acid substitution in the homeodomain of the PAX3 protein, which represents the 45(th) residue of helix 3. We identified a novel missense c.788T>G mutation in PAX3 in a family with Waardenburg syndrome with intrafamilial phenotypic heterogeneity.

  8. Efficient molecular screening of Lynch syndrome by specific 3' promoter methylation of the MLH1 or BRAF mutation in colorectal cancer with high-frequency microsatellite instability.

    PubMed

    Nakagawa, Hitoshi; Nagasaka, Takeshi; Cullings, Harry M; Notohara, Kenji; Hoshijima, Naoko; Young, Joanne; Lynch, Henry T; Tanaka, Noriaki; Matsubara, Nagahide

    2009-06-01

    It is sometimes difficult to diagnose Lynch syndrome by the simple but strict clinical criteria, or even by the definitive genetic testing for causative germline mutation of mismatch repair genes. Thus, some practical and efficient screening strategy to select highly possible Lynch syndrome patients is exceedingly desirable. We performed a comprehensive study to evaluate the methylation status of whole MLH1 promoter region by direct bisulfite sequencing of the entire MLH1 promoter regions on Lynch and non-Lynch colorectal cancers (CRCs). Then, we established a convenient assay to detect methylation in key CpG islands responsible for the silencing of MLH1 expression. We studied the methylation status of MLH1 as well as the CpG island methylator phenotype (CIMP) and immunohistochemical analysis of mismatch repair proteins on 16 cases of Lynch CRC and 19 cases of sporadic CRCs with high-frequency microsatellite instability (MSI-H). Sensitivity to detect Lynch syndrome by MLH1 (CCAAT) methylation was 88% and the specificity was 84%. Positive likelihood ratio (PLR) was 5.5 and negative likelihood ratio (NLR) was 0.15. Sensitivity by mutational analysis of BRAF was 100%, specificity was 84%, PLR was 6.3 and NLR was zero. By CIMP analysis; sensitivity was 88%, specificity was 79%, PLR was 4.2, and NLR was 0.16. BRAF mutation or MLH1 methylation analysis combined with MSI testing could be a good alternative to screen Lynch syndrome patients in a cost effective manner. Although the assay for CIMP status also showed acceptable sensitivity and specificity, it may not be practical because of its rather complicated assay.

  9. MAFA missense mutation causes familial insulinomatosis and diabetes mellitus

    PubMed Central

    Iacovazzo, Donato; Flanagan, Sarah E.; Walker, Emily; Quezado, Rosana; de Sousa Barros, Fernando Antonio; Johnson, Matthew B.; Wakeling, Matthew; Brändle, Michael; Guo, Min; Dang, Mary N.; Gabrovska, Plamena; Niederle, Bruno; Christ, Emanuel; Jenni, Stefan; Sipos, Bence; Nieser, Maike; Frilling, Andrea; Dhatariya, Ketan; Konukiewitz, Björn; Klöppel, Günter; Stein, Roland; Korbonits, Márta; Ellard, Sian

    2018-01-01

    The β-cell–enriched MAFA transcription factor plays a central role in regulating glucose-stimulated insulin secretion while also demonstrating oncogenic transformation potential in vitro. No disease-causing MAFA variants have been previously described. We investigated a large pedigree with autosomal dominant inheritance of diabetes mellitus or insulinomatosis, an adult-onset condition of recurrent hyperinsulinemic hypoglycemia caused by multiple insulin-secreting neuroendocrine tumors of the pancreas. Using exome sequencing, we identified a missense MAFA mutation (p.Ser64Phe, c.191C>T) segregating with both phenotypes of insulinomatosis and diabetes. This mutation was also found in a second unrelated family with the same clinical phenotype, while no germline or somatic MAFA mutations were identified in nine patients with sporadic insulinomatosis. In the two families, insulinomatosis presented more frequently in females (eight females/two males) and diabetes more often in males (12 males/four females). Four patients from the index family, including two homozygotes, had a history of congenital cataract and/or glaucoma. The p.Ser64Phe mutation was found to impair phosphorylation within the transactivation domain of MAFA and profoundly increased MAFA protein stability under both high and low glucose concentrations in β-cell lines. In addition, the transactivation potential of p.Ser64Phe MAFA in β-cell lines was enhanced compared with wild-type MAFA. In summary, the p.Ser64Phe missense MAFA mutation leads to familial insulinomatosis or diabetes by impacting MAFA protein stability and transactivation ability. The human phenotypes associated with the p.Ser64Phe MAFA missense mutation reflect both the oncogenic capacity of MAFA and its key role in islet β-cell activity. PMID:29339498

  10. Selected missense mutations impair frataxin processing in Friedreich ataxia.

    PubMed

    Clark, Elisia; Butler, Jill S; Isaacs, Charles J; Napierala, Marek; Lynch, David R

    2017-08-01

    Frataxin (FXN) is a highly conserved mitochondrial protein. Reduced FXN levels cause Friedreich ataxia, a recessive neurodegenerative disease. Typical patients carry GAA repeat expansions on both alleles, while a subgroup of patients carry a missense mutation on one allele and a GAA repeat expansion on the other. Here, we report that selected disease-related FXN missense mutations impair FXN localization, interaction with mitochondria processing peptidase, and processing. Immunocytochemical studies and subcellular fractionation were performed to study FXN import into the mitochondria and examine the mechanism by which mutations impair FXN processing. Coimmunoprecipitation was performed to study the interaction between FXN and mitochondrial processing peptidase. A proteasome inhibitor was used to model traditional therapeutic strategies. In addition, clinical profiles of subjects with and without point mutations were compared in a large natural history study. FXN I 154F and FXN G 130V missense mutations decrease FXN 81-210 levels compared with FXN WT , FXN R 165C , and FXN W 155R , but do not block its association with mitochondria. FXN I 154F and FXN G 130V also impair FXN maturation and enhance the binding between FXN 42-210 and mitochondria processing peptidase. Furthermore, blocking proteosomal degradation does not increase FXN 81-210 levels. Additionally, impaired FXN processing also occurs in fibroblasts from patients with FXN G 130V . Finally, clinical data from patients with FXN G 130V and FXN I 154F mutations demonstrates a lower severity compared with other individuals with Friedreich ataxia. These data suggest that the effects on processing associated with FXN G 130V and FXN I 154F mutations lead to higher levels of partially processed FXN, which may contribute to the milder clinical phenotypes in these patients.

  11. BRCA1/2 missense mutations and the value of in-silico analyses.

    PubMed

    Sadowski, Carolin E; Kohlstedt, Daniela; Meisel, Cornelia; Keller, Katja; Becker, Kerstin; Mackenroth, Luisa; Rump, Andreas; Schröck, Evelin; Wimberger, Pauline; Kast, Karin

    2017-11-01

    The clinical implications of genetic variants in BRCA1/2 in healthy and affected individuals are considerable. Variant interpretation, however, is especially challenging for missense variants. The majority of them are classified as variants of unknown clinical significance (VUS). Computational (in-silico) predictive programs are easy to access, but represent only one tool out of a wide range of complemental approaches to classify VUS. With this single-center study, we aimed to evaluate the impact of in-silico analyses in a spectrum of different BRCA1/2 missense variants. We conducted mutation analysis of BRCA1/2 in 523 index patients with suspected hereditary breast and ovarian cancer (HBOC). Classification of the genetic variants was performed according to the German Consortium (GC)-HBOC database. Additionally, all missense variants were classified by the following three in-silico prediction tools: SIFT, Mutation Taster (MT2) and PolyPhen2 (PPH2). Overall 201 different variants, 68 of which constituted missense variants were ranked as pathogenic, neutral, or unknown. The classification of missense variants by in-silico tools resulted in a higher amount of pathogenic mutations (25% vs. 13.2%) compared to the GC-HBOC-classification. Altogether, more than fifty percent (38/68, 55.9%) of missense variants were ranked differently. Sensitivity of in-silico-tools for mutation prediction was 88.9% (PPH2), 100% (SIFT) and 100% (MT2). We found a relevant discrepancy in variant classification by using in-silico prediction tools, resulting in potential overestimation and/or underestimation of cancer risk. More reliable, notably gene-specific, prediction tools and functional tests are needed to improve clinical counseling. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain

    PubMed Central

    Lee, Jeffrey C; Vivanco, Igor; Beroukhim, Rameen; Huang, Julie H. Y; Feng, Whei L; DeBiasi, Ralph M; Yoshimoto, Koji; King, Jennifer C; Nghiemphu, Phioanh; Yuza, Yuki; Xu, Qing; Greulich, Heidi; Thomas, Roman K; Paez, J. Guillermo; Peck, Timothy C; Linhart, David J; Glatt, Karen A; Getz, Gad; Onofrio, Robert; Ziaugra, Liuda; Levine, Ross L; Gabriel, Stacey; Kawaguchi, Tomohiro; O'Neill, Keith; Khan, Haumith; Liau, Linda M; Nelson, Stanley F; Rao, P. Nagesh; Mischel, Paul; Pieper, Russell O; Cloughesy, Tim; Leahy, Daniel J; Sellers, William R; Sawyers, Charles L; Meyerson, Matthew; Mellinghoff, Ingo K

    2006-01-01

    Background Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy. Methods and Findings Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR) kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132) of glioblastomas and 12.5% (1/8) of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors. Conclusions Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma. PMID:17177598

  13. Four novel germline mutations in the MLH1 and PMS2 mismatch repair genes in patients with hereditary nonpolyposis colorectal cancer.

    PubMed

    Montazer Haghighi, Mahdi; Radpour, Ramin; Aghajani, Katayoun; Zali, Narges; Molaei, Mahsa; Zali, Mohammad Reza

    2009-08-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is the most common cause of early onset hereditary colorectal cancer. In the majority of HNPCC families, microsatellite instability (MSI) and germline mutation in one of the DNA mismatch repair (MMR) genes are found. The entire coding sequence of MMR genes (MLH1, MLH2, MLH6, and PMS2) was analyzed using direct sequencing. Also, tumor tests were done as MSI and immunohistochemistry testing. We were able to find three novel MLH1 and one novel PMS2 germline mutations in three Iranian HNPCC patients. The first was a transversion mutation c.346A>C (T116P) and happened in the highly conserved HATPase-c region of MLH1 protein. The second was a transversion mutation c.736A>T (I246L), which caused an amino acid change of isoleucine to leucine. The third mutation (c.2145,6 delTG) was frameshift and resulted in an immature stop codon in five codons downstream. All of these three mutations were detected in the MLH1 gene. The other mutation was a transition mutation, c.676G>A (G207E), which has been found in exon six of the PMS2 gene and caused an amino acid change of glycine to glutamic acid. MSI assay revealed high instability in microsatellite for two patients and microsatellite stable for one patient. In all patients, an abnormal expression of the MMR proteins in HNPCC was related to the above novel mutations.

  14. Pathogenicity of missense mutations in SURF1 deficiency inducing the Leigh syndrome. Importance in diagnosis.

    PubMed

    Dubot, A; Hervouet, E; Mandon, G; Zabot, M T; Godinot, C

    2004-06-01

    Leigh syndrome with cytochrome oxidase (COX) deficiency has been associated with SURF1 mutations. For patient diagnosis, distinction between neutral polymorphisms and pathogenic missense SURF1 mutations in Leigh syndrome is essential. We show that several missense SURF1 mutations did not allow a stable protein to be expressed. Absence of immunologically reactive SURF1 is, therefore, helpful to demonstrate their pathogenicity. In addition, we show that out of two previously described missense mutations housed by the same allele, only one, the T737 C was pathogenic. Indeed, transfection of T737 C mutated SURF1 in SURF1-deficient cells did not restore normal SURF1 stability and COX activity. On the contrary, the G604 C-mutated SURF1 did it and, hence, is a neutral variant.

  15. [Evaluation of performance of five bioinformatics software for the prediction of missense mutations].

    PubMed

    Chen, Qianting; Dai, Congling; Zhang, Qianjun; Du, Juan; Li, Wen

    2016-10-01

    To study the prediction performance evaluation with five kinds of bioinformatics software (SIFT, PolyPhen2, MutationTaster, Provean, MutationAssessor). From own database for genetic mutations collected over the past five years, Chinese literature database, Human Gene Mutation Database, and dbSNP, 121 missense mutations confirmed by functional studies, and 121 missense mutations suspected to be pathogenic by pedigree analysis were used as positive gold standard, while 242 missense mutations with minor allele frequency (MAF)>5% in dominant hereditary diseases were used as negative gold standard. The selected mutations were predicted with the five software. Based on the results, the performance of the five software was evaluated for their sensitivity, specificity, positive predict value, false positive rate, negative predict value, false negative rate, false discovery rate, accuracy, and receiver operating characteristic curve (ROC). In terms of sensitivity, negative predictive value and false negative rate, the rank was MutationTaster, PolyPhen2, Provean, SIFT, and MutationAssessor. For specificity and false positive rate, the rank was MutationTaster, Provean, MutationAssessor, SIFT, and PolyPhen2. For positive predict value and false discovery rate, the rank was MutationTaster, Provean, MutationAssessor, PolyPhen2, and SIFT. For area under the ROC curve (AUC) and accuracy, the rank was MutationTaster, Provean, PolyPhen2, MutationAssessor, and SIFT. The prediction performance of software may be different when using different parameters. Among the five software, MutationTaster has the best prediction performance.

  16. Modeling the effect of 3 missense AGXT mutations on dimerization of the AGT enzyme in primary hyperoxaluria type 1.

    PubMed

    Robbiano, Angela; Frecer, Vladimir; Miertus, Jan; Zadro, Cristina; Ulivi, Sheila; Bevilacqua, Elena; Mandrile, Giorgia; De Marchi, Mario; Miertus, Stanislav; Amoroso, Antonio

    2010-01-01

    Mutations of the AGXT gene encoding the alanine:glyoxylate aminotransferase liver enzyme (AGT) cause primary hyperoxaluria type 1 (PH1). Here we report a molecular modeling study of selected missense AGXT mutations: the common Gly170Arg and the recently described Gly47Arg and Ser81Leu variants, predicted to be pathogenic using standard criteria. Taking advantage of the refined 3D structure of AGT, we computed the dimerization energy of the wild-type and mutated proteins. Molecular modeling predicted that Gly47Arg affects dimerization with a similar effect to that shown previously for Gly170Arg through classical biochemical approaches. In contrast, no effect on dimerization was predicted for Ser81Leu. Therefore, this probably demonstrates pathogenic properties via a different mechanism, similar to that described for the adjacent Gly82Glu mutation that affects pyridoxine binding. This study shows that the molecular modeling approach can contribute to evaluating the pathogenicity of some missense variants that affect dimerization. However, in silico studies--aimed to assess the relationship between structural change and biological effects--require the integrated use of more than 1 tool.

  17. An integrated computational approach can classify VHL missense mutations according to risk of clear cell renal carcinoma

    PubMed Central

    Gossage, Lucy; Pires, Douglas E. V.; Olivera-Nappa, Álvaro; Asenjo, Juan; Bycroft, Mark; Blundell, Tom L.; Eisen, Tim

    2014-01-01

    Mutations in the von Hippel–Lindau (VHL) gene are pathogenic in VHL disease, congenital polycythaemia and clear cell renal carcinoma (ccRCC). pVHL forms a ternary complex with elongin C and elongin B, critical for pVHL stability and function, which interacts with Cullin-2 and RING-box protein 1 to target hypoxia-inducible factor for polyubiquitination and proteasomal degradation. We describe a comprehensive database of missense VHL mutations linked to experimental and clinical data. We use predictions from in silico tools to link the functional effects of missense VHL mutations to phenotype. The risk of ccRCC in VHL disease is linked to the degree of destabilization resulting from missense mutations. An optimized binary classification system (symphony), which integrates predictions from five in silico methods, can predict the risk of ccRCC associated with VHL missense mutations with high sensitivity and specificity. We use symphony to generate predictions for risk of ccRCC for all possible VHL missense mutations and present these predictions, in association with clinical and experimental data, in a publically available, searchable web server. PMID:24969085

  18. Germline MLH1 Mutations Are Frequently Identified in Lynch Syndrome Patients With Colorectal and Endometrial Carcinoma Demonstrating Isolated Loss of PMS2 Immunohistochemical Expression.

    PubMed

    Dudley, Beth; Brand, Randall E; Thull, Darcy; Bahary, Nathan; Nikiforova, Marina N; Pai, Reetesh K

    2015-08-01

    Current guidelines on germline mutation testing for patients suspected of having Lynch syndrome are not entirely clear in patients with tumors demonstrating isolated loss of PMS2 immunohistochemical expression. We analyzed the clinical and pathologic features of patients with tumors demonstrating isolated loss of PMS2 expression in an attempt to (1) determine the frequency of germline MLH1 and PMS2 mutations and (2) correlate mismatch-repair protein immunohistochemistry and tumor histology with germline mutation results. A total of 3213 consecutive colorectal carcinomas and 215 consecutive endometrial carcinomas were prospectively analyzed for DNA mismatch-repair protein expression by immunohistochemistry. In total, 32 tumors from 31 patients demonstrated isolated loss of PMS2 immunohistochemical expression, including 16 colorectal carcinomas and 16 endometrial carcinomas. Microsatellite instability (MSI) polymerase chain reaction was performed in 29 tumors from 28 patients with the following results: 28 tumors demonstrated high-level MSI, and 1 tumor demonstrated low-level MSI. Twenty of 31 (65%) patients in the study group had tumors demonstrating histopathology associated with high-level MSI. Seventeen patients underwent germline mutation analysis with the following results: 24% with MLH1 mutations, 35% with PMS2 mutations, 12% with PMS2 variants of undetermined significance, and 29% with no mutations in either MLH1 or PMS2. Three of the 4 patients with MLH1 germline mutations had a mutation that results in decreased stability and quantity of the MLH1 protein that compromises the MLH1-PMS2 protein complex, helping to explain the presence of immunogenic but functionally inactive MLH1 protein within the tumor. The high frequency of MLH1 germline mutations identified in our study has important implications for testing strategies in patients suspected of having Lynch syndrome and indicates that patients with tumors demonstrating isolated loss of PMS2 expression

  19. Identification of Lynch syndrome mutations in the MLH1-PMS2 interface that disturb dimerization and mismatch repair

    PubMed Central

    Kosinski, Jan; Hinrichsen, Inga; Bujnicki, Janusz M.; Friedhoff, Peter; Plotz, Guido

    2010-01-01

    Missense alterations of the mismatch repair gene MLH1 have been identified in a significant proportion of individuals suspected of having Lynch syndrome, a hereditary syndrome which predisposes for cancer of colon and endometrium. The pathogenicity of many of these alterations, however, is unclear. A number of MLH1 alterations are located in the C-terminal domain (CTD) of MLH1, which is responsible for constitutive dimerization with PMS2. We analyzed which alterations may result in pathogenic effects due to interference with dimerization. We used a structural model of CTD of MLH1-PMS2 heterodimer to select 19 MLH1 alterations located inside and outside two candidate dimerization interfaces in the MLH1-CTD. Three alterations (p.Gln542Leu, p.Leu749Pro, p.Tyr750X) caused decreased co-expression of PMS2, which is unstable in the absence of interaction with MLH1, suggesting that these alterations interfere with dimerization. All three alterations are located within the dimerization interface suggested by our model. They also compromised mismatch repair, suggesting that defects in dimerization abrogate repair and confirming that all three alterations are pathogenic. Additionally, we provided biochemical evidence that four alterations with uncertain pathogenicity (p.Ala586Pro, p.Leu636Pro, p.Thr662Pro, and p.Arg755Trp) are deleterious because of poor expression or poor repair efficiency, and confirm the deleterious effect of eight further alterations. PMID:20533529

  20. Identification of Lynch syndrome mutations in the MLH1-PMS2 interface that disturb dimerization and mismatch repair.

    PubMed

    Kosinski, Jan; Hinrichsen, Inga; Bujnicki, Janusz M; Friedhoff, Peter; Plotz, Guido

    2010-08-01

    Missense alterations of the mismatch repair gene MLH1 have been identified in a significant proportion of individuals suspected of having Lynch syndrome, a hereditary syndrome that predisposes for cancer of colon and endometrium. The pathogenicity of many of these alterations, however, is unclear. A number of MLH1 alterations are located in the C-terminal domain (CTD) of MLH1, which is responsible for constitutive dimerization with PMS2. We analyzed which alterations may result in pathogenic effects due to interference with dimerization. We used a structural model of CTD of MLH1-PMS2 heterodimer to select 19 MLH1 alterations located inside and outside two candidate dimerization interfaces in the MLH1-CTD. Three alterations (p.Gln542Leu, p.Leu749Pro, p.Tyr750X) caused decreased coexpression of PMS2, which is unstable in the absence of interaction with MLH1, suggesting that these alterations interfere with dimerization. All three alterations are located within the dimerization interface suggested by our model. They also compromised mismatch repair, suggesting that defects in dimerization abrogate repair and confirming that all three alterations are pathogenic. Additionally, we provided biochemical evidence that four alterations with uncertain pathogenicity (p.Ala586Pro, p.Leu636Pro, p.Thr662Pro, and p.Arg755Trp) are deleterious because of poor expression or poor repair efficiency, and confirm the deleterious effect of eight further alterations.

  1. First description of mutational analysis of MLH1, MSH2 and MSH6 in Algerian families with suspected Lynch syndrome.

    PubMed

    Ziada-Bouchaar, H; Sifi, K; Filali, T; Hammada, T; Satta, D; Abadi, N

    2017-01-01

    Hereditary non-polyposis colorectal cancer (HNPCC) is an autosomal dominant disorder characterized by the early onset of colorectal cancer (CRC) linked to germline defects in Mismatch Repair (MMR) genes. We present here, the first molecular study of the correlation between CRC and mutations occurring in these genes performed in twenty-one unrelated Algerian families. The presence of germline mutations in MMR genes, MLH1, MSH2 and MSH6 genes was tested by sequencing all exons plus adjacent intronic sequences and Multiplex ligand-dependent probe amplification (MLPA) for testing large genomic rearrangements. Pathogenic mutations were identified in 20 % of families with clinical suspicion on HNPCC. Two novel variants described for the first time in Algerian families were identified in MLH1, c.881_884delTCAGinsCATTCCT and a large deletion in MSH6 gene from a young onset of CRC. Moreover, the variants of MSH2 gene: c.942+3A>T, c.1030C>T, the most described ones, were also detected in Algerian families. Furthermore, the families HNPCC caused by MSH6 germline mutation may show an age of onset that is comparable to this of patients with MLH1 and MSH2 mutations. In this study, we confirmed that MSH2, MLH1, and MSH6 contribute to CRC susceptibility. This work represents the implementation of a diagnostic algorithm for the identification of Lynch syndrome patients in Algerian families.

  2. Mutational Analysis of Mismatch Repair Genes, hMLH1 and hMSH2, in Sporadic Endometrial Carcinomas with Microsatellite Instability

    PubMed Central

    Kobayashi, Kanji; Matsushima, Mieko; Koi, Sumiko; Saito, Hiroko; Sagae, Satoru; Kudo, Ryuichi

    1996-01-01

    Microsatellite instability, monitored by replication error (RER), bas been observed in both sporadic and hereditary types of endometrial carcinoma. In the hereditary tumors, this instability is considered to be caused by a germline defect in the DNA mismatch‐repair system. We previously reported that nearly one‐quarter of sporadic endometrial carcinomas examined revealed an RER‐positive phenotype at multiple microsatellite loci. To investigate the role of genetic alterations of DNA mismatch‐repair genes in sporadic endometrial carcinomas, we screened 18 RER(+) endometrial carcinomas for mutations of hMLH1 and hMSH2. Although we found no germline mutations, we detected two somatic mutations of hMLH1 in a single endometrial cancer; these two mutations had occurred on different alleles, suggesting that two separate mutational events had affected both copies of hMLH1 in this particular tumor. These data implied that mutations of hMLH1 or hMSH2 play limited roles in the development of sporadic endometrial carcinomas, and that the tumors with genetic instability might have alterations of other mismatch‐repair genes, such as hPMS1 and hPMS2, or of unknown genes related to the mismatch‐repair system. PMID:8609062

  3. Perturbed length-dependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations.

    PubMed

    Sequeira, Vasco; Wijnker, Paul J M; Nijenkamp, Louise L A M; Kuster, Diederik W D; Najafi, Aref; Witjas-Paalberends, E Rosalie; Regan, Jessica A; Boontje, Nicky; Ten Cate, Folkert J; Germans, Tjeerd; Carrier, Lucie; Sadayappan, Sakthivel; van Slegtenhorst, Marjon A; Zaremba, Ruud; Foster, D Brian; Murphy, Anne M; Poggesi, Corrado; Dos Remedios, Cris; Stienen, Ger J M; Ho, Carolyn Y; Michels, Michelle; van der Velden, Jolanda

    2013-05-24

    High-myofilament Ca(2+) sensitivity has been proposed as a trigger of disease pathogenesis in familial hypertrophic cardiomyopathy (HCM) on the basis of in vitro and transgenic mice studies. However, myofilament Ca(2+) sensitivity depends on protein phosphorylation and muscle length, and at present, data in humans are scarce. To investigate whether high myofilament Ca(2+) sensitivity and perturbed length-dependent activation are characteristics for human HCM with mutations in thick and thin filament proteins. Cardiac samples from patients with HCM harboring mutations in genes encoding thick (MYH7, MYBPC3) and thin (TNNT2, TNNI3, TPM1) filament proteins were compared with sarcomere mutation-negative HCM and nonfailing donors. Cardiomyocyte force measurements showed higher myofilament Ca(2+) sensitivity in all HCM samples and low phosphorylation of protein kinase A (PKA) targets compared with donors. After exogenous PKA treatment, myofilament Ca(2+) sensitivity was similar (MYBPC3mut, TPM1mut, sarcomere mutation-negative HCM), higher (MYH7mut, TNNT2mut), or even significantly lower (TNNI3mut) compared with donors. Length-dependent activation was significantly smaller in all HCM than in donor samples. PKA treatment increased phosphorylation of PKA-targets in HCM myocardium and normalized length-dependent activation to donor values in sarcomere mutation-negative HCM and HCM with truncating MYBPC3 mutations but not in HCM with missense mutations. Replacement of mutant by wild-type troponin in TNNT2mut and TNNI3mut corrected length-dependent activation to donor values. High-myofilament Ca(2+) sensitivity is a common characteristic of human HCM and partly reflects hypophosphorylation of PKA targets compared with donors. Length-dependent sarcomere activation is perturbed by missense mutations, possibly via posttranslational modifications other than PKA hypophosphorylation or altered protein-protein interactions, and represents a common pathomechanism in HCM.

  4. Germline MLH1, MSH2 and MSH6 variants in Brazilian patients with colorectal cancer and clinical features suggestive of Lynch Syndrome.

    PubMed

    Schneider, Nayê Balzan; Pastor, Tatiane; Paula, André Escremim de; Achatz, Maria Isabel; Santos, Ândrea Ribeiro Dos; Vianna, Fernanda Sales Luiz; Rosset, Clévia; Pinheiro, Manuela; Ashton-Prolla, Patricia; Moreira, Miguel Ângelo Martins; Palmero, Edenir Inêz

    2018-05-01

    Lynch syndrome (LS) is the most common hereditary colorectal cancer syndrome, caused by germline mutations in one of the major genes involved in mismatch repair (MMR): MLH1, MSH2, MSH6 and more rarely, PMS2. Recently, germline deletions in EPCAM have been also associated to the syndrome. Most of the pathogenic MMR mutations found in LS families occur in MLH1 or MSH2. Gene variants include missense, nonsense, frameshift mutations, large genomic rearrangements and splice-site variants and most of the studies reporting the molecular characterization of LS families have been conducted outside South America. In this study, we analyzed 60 unrelated probands diagnosed with colorectal cancer and LS criteria. Testing for germline mutations and/or rearrangements in the most commonly affected MMR genes (MLH1, MSH2, EPCAM and MSH6) was done by Sanger sequencing and MLPA. Pathogenic or likely pathogenic variants were identified in MLH1 or MSH2 in 21 probands (35.0%). Of these, approximately one-third were gene rearrangements. In addition, nine variants of uncertain significance (VUS) were identified in 10 (16.6%) of the sixty probands analyzed. Other four novel variants were identified, only in MLH1. Our results suggest that MSH6 pathogenic variants are not common among Brazilian LS probands diagnosed with CRC and that MMR gene rearrangements account for a significant proportion of the germline variants in this population underscoring the need to include rearrangement analysis in the molecular testing of Brazilian individuals with suspected Lynch syndrome. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  5. Missense mutation (E150K) of rhodopsin in autosomal recessive retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orth, U.; Oehlmann, R.; Gal, A.

    1994-09-01

    Missense or nonsense mutations of the rhodopsin gene have been implied in the pathogenesis of at least 3 different traits; autosomal dominant retinitis pigmentosa (adRP), congenital stationary night blindness (CSNB), and autosomal recessive retinitis pigmentosa (arRP). For the latter, a single patient has been reported with a nonsense mutation at codon 249 on both alleles. Heterozygous carriers of missense mutations of rhodopsin develop either adRP or CSNB depending on the particular amino acid substitution. Four of the 9 siblings from a consanguineous marriage in southern India were reported the have arRP. Mutational screening and sequencing of the rhodopsin gene revealedmore » a G-to-A transition of the first nucleotide at codon 150 in exon II, which alters glutamate to lysine. The E150K mutation was present in the 4 patients in homozygous form, whereas the parents and 2 of the siblings were heterozygotes. Two-point analysis produced a Zmax=3.46 at theta=0.00. Two unaffected siblings who are heterozygotes for the E150K mutation underwent a thorough ophthalmological and psychophysical examination. No clinical abnormalities were found although these individuals were over forty, whereas the onset of RP in their affected siblings was in the second decade. Collectively, both the genetic and clinical findings strongly suggest that the E150K mutation of rhodopsin is recessive in this family. Glu150 forms part of the CD cytoplasmic loop of rhodopsin, which has been implicated in the binding and activation of transducin. We speculate that E150K leads to RP because the mutant protein may be incapable of activating transducin. It is tempting to speculate that, in addition to mutations in the genes for rhodopsin and the {beta}-subunit of PDE, mutations in the genes for transducin may also result in arRP.« less

  6. Structural Impact of Three Parkinsonism-Associated Missense Mutations on Human DJ-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakshminarasimhan, M.; Maldonado, M.T.; Zhou, W.

    2009-05-20

    A number of missense mutations in the oxidative stress response protein DJ-1 are implicated in rare forms of familial Parkinsonism. The best-characterized Parkinsonian DJ-1 missense mutation, L166P, disrupts homodimerization and results in a poorly folded protein. The molecular basis by which the other Parkinsonism-associated mutations disrupt the function of DJ-1, however, is incompletely understood. In this study we show that three different Parkinsonism-associated DJ-1 missense mutations (A104T, E163K, and M26I) reduce the thermal stability of DJ-1 in solution by subtly perturbing the structure of DJ-1 without causing major folding defects or loss of dimerization. Atomic resolution X-ray crystallography shows thatmore » the A104T substitution introduces water and a discretely disordered residue into the core of the protein, E163K disrupts a key salt bridge with R145, and M26I causes packing defects in the core of the dimer. The deleterious effect of each Parkinsonism-associated mutation on DJ-1 is dissected by analysis of engineered substitutions (M26L, A104V, and E163K/R145E) that partially alleviate each of the defects introduced by the A104T, E163K and M26I mutations. In total, our results suggest that the protective function of DJ-1 can be compromised by diverse perturbations in its structural integrity, particularly near the junctions of secondary structural elements.« less

  7. Tumor mismatch repair immunohistochemistry and DNA MLH1 methylation testing of patients with endometrial cancer diagnosed at age younger than 60 years optimizes triage for population-level germline mismatch repair gene mutation testing.

    PubMed

    Buchanan, Daniel D; Tan, Yen Y; Walsh, Michael D; Clendenning, Mark; Metcalf, Alexander M; Ferguson, Kaltin; Arnold, Sven T; Thompson, Bryony A; Lose, Felicity A; Parsons, Michael T; Walters, Rhiannon J; Pearson, Sally-Ann; Cummings, Margaret; Oehler, Martin K; Blomfield, Penelope B; Quinn, Michael A; Kirk, Judy A; Stewart, Colin J; Obermair, Andreas; Young, Joanne P; Webb, Penelope M; Spurdle, Amanda B

    2014-01-10

    Clinicopathologic data from a population-based endometrial cancer cohort, unselected for age or family history, were analyzed to determine the optimal scheme for identification of patients with germline mismatch repair (MMR) gene mutations. Endometrial cancers from 702 patients recruited into the Australian National Endometrial Cancer Study (ANECS) were tested for MMR protein expression using immunohistochemistry (IHC) and for MLH1 gene promoter methylation in MLH1-deficient cases. MMR mutation testing was performed on germline DNA of patients with MMR-protein deficient tumors. Prediction of germline mutation status was compared for combinations of tumor characteristics, age at diagnosis, and various clinical criteria (Amsterdam, Bethesda, Society of Gynecologic Oncology, ANECS). Tumor MMR-protein deficiency was detected in 170 (24%) of 702 cases. Germline testing of 158 MMR-deficient cases identified 22 truncating mutations (3% of all cases) and four unclassified variants. Tumor MLH1 methylation was detected in 99 (89%) of 111 cases demonstrating MLH1/PMS2 IHC loss; all were germline MLH1 mutation negative. A combination of MMR IHC plus MLH1 methylation testing in women younger than 60 years of age at diagnosis provided the highest positive predictive value for the identification of mutation carriers at 46% versus ≤ 41% for any other criteria considered. Population-level identification of patients with MMR mutation-positive endometrial cancer is optimized by stepwise testing for tumor MMR IHC loss in patients younger than 60 years, tumor MLH1 methylation in individuals with MLH1 IHC loss, and germline mutations in patients exhibiting loss of MSH6, MSH2, or PMS2 or loss of MLH1/PMS2 with absence of MLH1 methylation.

  8. C1q deficiency: identification of a novel missense mutation and treatment with fresh frozen plasma.

    PubMed

    Topaloglu, Rezan; Taskiran, Ekim Z; Tan, Cagman; Erman, Baran; Ozaltin, Fatih; Sanal, Ozden

    2012-07-01

    A Turkish patient with C1q deficiency presented with a lupus-like disease, and a new missense mutation at A chain is presented. To characterize the genetic defect, all exons of the genes for the A, B, and C chains of C1q were sequenced in the patient. This revealed a missense mutation in the collagen-like domain of the A chain, p.Gly31 Arg. No other sequence variants, including the common silent mutations, were found in the three chains. Exon 1 of the C1q A chain was sequenced in 105 samples from healthy controls for this particular mutation. None of these carried the mutation. The C1q-deficient patient was treated with fresh frozen plasma infusions. Our findings showed that Turkish patients may have different mutations than the previously described common mutation, and once again, not only nonsense mutations but also missense mutations cause hereditary C1q deficiency. Regular fresh frozen plasma infusions to the patient have been clinically and therapeutically successful.

  9. Null missense ABCR (ABCA4) mutations in a family with stargardt disease and retinitis pigmentosa.

    PubMed

    Shroyer, N F; Lewis, R A; Yatsenko, A N; Lupski, J R

    2001-11-01

    To determine the type of ABCR mutations that segregate in a family that manifests both Stargardt disease (STGD) and retinitis pigmentosa (RP), and the functional consequences of the underlying mutations. Direct sequencing of all 50 exons and flanking intronic regions of ABCR was performed for the STGD- and RP-affected relatives. RNA hybridization, Western blot analysis, and azido-adenosine triphosphate (ATP) labeling was used to determine the effect of disease-associated ABCR mutations in an in vitro assay system. Compound heterozygous missense mutations were identified in patients with STGD and RP. STGD-affected individual AR682-03 was compound heterozygous for the mutation 2588G-->C and a complex allele, [W1408R; R1640W]. RP-affected individuals AR682-04 and-05 were compound heterozygous for the complex allele [W1408R; R1640W] and the missense mutation V767D. Functional analysis of the mutation V767D by Western blot and ATP binding revealed a severe reduction in protein expression. In vitro analysis of ABCR protein with the mutations W1408R and R1640W showed a moderate effect of these individual mutations on expression and ATP-binding; the complex allele [W1408R; R1640W] caused a severe reduction in protein expression. These data reveal that missense ABCR mutations may be associated with RP. Functional analysis reveals that the RP-associated missense ABCR mutations are likely to be functionally null. These studies of the complex allele W1408R; R1640W suggest a synergistic effect of the individual mutations. These data are congruent with a model in which RP is associated with homozygous null mutations and with the notion that severity of retinal disease is inversely related to residual ABCR activity.

  10. Dominant Mutations in S. cerevisiae PMS1 Identify the Mlh1-Pms1 Endonuclease Active Site and an Exonuclease 1-Independent Mismatch Repair Pathway

    PubMed Central

    Smith, Catherine E.; Mendillo, Marc L.; Bowen, Nikki; Hombauer, Hans; Campbell, Christopher S.; Desai, Arshad; Putnam, Christopher D.; Kolodner, Richard D.

    2013-01-01

    Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway. PMID:24204293

  11. Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway.

    PubMed

    Smith, Catherine E; Mendillo, Marc L; Bowen, Nikki; Hombauer, Hans; Campbell, Christopher S; Desai, Arshad; Putnam, Christopher D; Kolodner, Richard D

    2013-10-01

    Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway.

  12. The Saccharomyces cerevisiae Mlh1-Mlh3 Heterodimer Is an Endonuclease That Preferentially Binds to Holliday Junctions*

    PubMed Central

    Ranjha, Lepakshi; Anand, Roopesh; Cejka, Petr

    2014-01-01

    MutLγ, a heterodimer of the MutL homologues Mlh1 and Mlh3, plays a critical role during meiotic homologous recombination. The meiotic function of Mlh3 is fully dependent on the integrity of a putative nuclease motif DQHAX2EX4E, inferring that the anticipated nuclease activity of Mlh1-Mlh3 is involved in the processing of joint molecules to generate crossover recombination products. Although a vast body of genetic and cell biological data regarding Mlh1-Mlh3 is available, mechanistic insights into its function have been lacking due to the unavailability of the recombinant protein complex. Here we expressed the yeast Mlh1-Mlh3 heterodimer and purified it into near homogeneity. We show that recombinant MutLγ is a nuclease that nicks double-stranded DNA. We demonstrate that MutLγ binds DNA with a high affinity and shows a marked preference for Holliday junctions. We also expressed the human MLH1-MLH3 complex and show that preferential binding to Holliday junctions is a conserved capacity of eukaryotic MutLγ complexes. Specific DNA recognition has never been observed with any other eukaryotic MutL homologue. MutLγ thus represents a new paradigm for the function of the eukaryotic MutL protein family. We provide insights into the mode of Holliday junction recognition and show that Mlh1-Mlh3 prefers to bind the open unstacked Holliday junction form. This further supports the model where MutLγ is part of a complex acting on joint molecules to generate crossovers in meiosis. PMID:24443562

  13. The Saccharomyces cerevisiae Mlh1-Mlh3 heterodimer is an endonuclease that preferentially binds to Holliday junctions.

    PubMed

    Ranjha, Lepakshi; Anand, Roopesh; Cejka, Petr

    2014-02-28

    MutLγ, a heterodimer of the MutL homologues Mlh1 and Mlh3, plays a critical role during meiotic homologous recombination. The meiotic function of Mlh3 is fully dependent on the integrity of a putative nuclease motif DQHAX2EX4E, inferring that the anticipated nuclease activity of Mlh1-Mlh3 is involved in the processing of joint molecules to generate crossover recombination products. Although a vast body of genetic and cell biological data regarding Mlh1-Mlh3 is available, mechanistic insights into its function have been lacking due to the unavailability of the recombinant protein complex. Here we expressed the yeast Mlh1-Mlh3 heterodimer and purified it into near homogeneity. We show that recombinant MutLγ is a nuclease that nicks double-stranded DNA. We demonstrate that MutLγ binds DNA with a high affinity and shows a marked preference for Holliday junctions. We also expressed the human MLH1-MLH3 complex and show that preferential binding to Holliday junctions is a conserved capacity of eukaryotic MutLγ complexes. Specific DNA recognition has never been observed with any other eukaryotic MutL homologue. MutLγ thus represents a new paradigm for the function of the eukaryotic MutL protein family. We provide insights into the mode of Holliday junction recognition and show that Mlh1-Mlh3 prefers to bind the open unstacked Holliday junction form. This further supports the model where MutLγ is part of a complex acting on joint molecules to generate crossovers in meiosis.

  14. The mutational profile and infiltration pattern of murine MLH1-/- tumors: concurrences, disparities and cell line establishment for functional analysis.

    PubMed

    Maletzki, Claudia; Beyrich, Franziska; Hühns, Maja; Klar, Ernst; Linnebacher, Michael

    2016-08-16

    Mice lines homozygous negative for one of the four DNA mismatch repair (MMR) genes (MLH1, MSH2, PMS2, MSH6) were generated as models for MMR deficient (MMR-D) diseases. Clinically, hereditary forms of MMR-D include Lynch syndrome (characterized by a germline MMR gene defect) and constitutional MMR-D, the biallelic form. MMR-D knockout mice may be representative for both diseases. Here, we aimed at characterizing the MLH1-/- model focusing on tumor-immune microenvironment and identification of coding microsatellite mutations in lymphomas and gastrointestinal tumors (GIT).All tumors showed microsatellite instability (MSI) in non-coding mononucleotide markers. Mutational profiling of 26 coding loci in MSI+ GIT and lymphomas revealed instability in half of the microsatellites, two of them (Rfc3 and Rasal2) shared between both entities. MLH1-/- tumors of both entities displayed a similar phenotype (high CD71, FasL, PD-L1 and CTLA-4 expression). Additional immunofluorescence verified the tumors' natural immunosuppressive character (marked CD11b/CD200R infiltration). Vice versa, CD3+ T cells as well as immune checkpoints molecules were detectable, indicative for an active immune microenvironment. For functional analysis, a permanent cell line from an MLH1-/- GIT was established. The newly developed MLH1-/- A7450 cells exhibit stable in vitro growth, strong invasive potential and heterogeneous drug response. Moreover, four additional MSI target genes (Nktr1, C8a, Taf1b, and Lig4) not recognized in the primary were identified in this cell line.Summing up, molecular and immunological mechanisms of MLH1-/- driven carcinogenesis correlate well with clinical features of MMR-D. MLH1-/- knockout mice combine characteristics of Lynch syndrome and constitutional MMR-D, making them suitable models for preclinical research aiming at MMR-D related diseases.

  15. The mutational profile and infiltration pattern of murine MLH1-/- tumors: concurrences, disparities and cell line establishment for functional analysis

    PubMed Central

    Hühns, Maja; Klar, Ernst; Linnebacher, Michael

    2016-01-01

    Mice lines homozygous negative for one of the four DNA mismatch repair (MMR) genes (MLH1, MSH2, PMS2, MSH6) were generated as models for MMR deficient (MMR-D) diseases. Clinically, hereditary forms of MMR-D include Lynch syndrome (characterized by a germline MMR gene defect) and constitutional MMR-D, the biallelic form. MMR-D knockout mice may be representative for both diseases. Here, we aimed at characterizing the MLH1-/- model focusing on tumor-immune microenvironment and identification of coding microsatellite mutations in lymphomas and gastrointestinal tumors (GIT). All tumors showed microsatellite instability (MSI) in non-coding mononucleotide markers. Mutational profiling of 26 coding loci in MSI+ GIT and lymphomas revealed instability in half of the microsatellites, two of them (Rfc3 and Rasal2) shared between both entities. MLH1-/- tumors of both entities displayed a similar phenotype (high CD71, FasL, PD-L1 and CTLA-4 expression). Additional immunofluorescence verified the tumors’ natural immunosuppressive character (marked CD11b/CD200R infiltration). Vice versa, CD3+ T cells as well as immune checkpoints molecules were detectable, indicative for an active immune microenvironment. For functional analysis, a permanent cell line from an MLH1-/- GIT was established. The newly developed MLH1-/- A7450 cells exhibit stable in vitro growth, strong invasive potential and heterogeneous drug response. Moreover, four additional MSI target genes (Nktr1, C8a, Taf1b, and Lig4) not recognized in the primary were identified in this cell line. Summing up, molecular and immunological mechanisms of MLH1-/- driven carcinogenesis correlate well with clinical features of MMR-D. MLH1-/- knockout mice combine characteristics of Lynch syndrome and constitutional MMR-D, making them suitable models for preclinical research aiming at MMR-D related diseases. PMID:27447752

  16. A novel missense mutation of NDP in a Chinese family with X-linked familial exudative vitreoretinopathy.

    PubMed

    Liu, Hong Yan; Huang, Jia; Wang, Rui Li; Wang, Yue; Guo, Liang Jie; Li, Tao; Wu, Dong; Wang, Hong Dan; Guo, Qian Nan; Dong, Dao Quan

    2016-11-01

    Familial exudative vitreoretinopathy (FEVR) is a hereditary ocular disorder characterized by a failure of peripheral retinal vascularization. In this report, we describe a novel missense mutation of the Norrie disease gene (NDP) in a Chinese family with X-linked FEVR. Ophthalmologic evaluation was performed on four male patients and seven unaffected individuals after informed consent was obtained. Venous blood was collected from the 11 members of this family, and genomic DNA was extracted using standard methods. The coding exons 2 and 3 and their corresponding exon-intron junctions of NDP were amplified by polymerase chain reaction and then subjected to direct DNA sequencing. A novel missense mutation (c.310A>C) in exon 3, leading to a lysine-to-glutamine substitution at position 104 (p.Lys104Gln), was identified in all four patients with X-linked FEVR. Three unaffected female individuals (III2, IV3, and IV11) were found to be carriers of the mutation. This mutation was not detected in other unaffected individuals. The mutation c.310A>C (p.Lys104Gln) in exon 3 of NDP is associated with FEVR in the studied family. This result further enriches the mutation spectrum of FEVR. Copyright © 2016. Published by Elsevier Taiwan LLC.

  17. Functional consequences and rescue potential of pathogenic missense mutations in tripeptidyl peptidase I.

    PubMed

    Walus, Mariusz; Kida, Elizabeth; Golabek, Adam A

    2010-06-01

    There are 35 missense mutations among 68 different mutations in the TPP1 gene, which encodes tripeptidyl peptidase I (TPPI), a lysosomal aminopeptidase associated with classic late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). To elucidate the molecular mechanisms underlying TPPI deficiency in patients carrying missense mutations and to test the amenability of mutant proteins to chemical chaperones and permissive temperature treatment, we introduced individually 14 disease-associated missense mutations into human TPP1 cDNA and analyzed the cell biology of these TPPI variants expressed in Chinese hamster ovary cells. Most TPPI variants displayed obstructed transport to the lysosomes, prolonged half-life of the proenzyme, and residual or no enzymatic activity, indicating folding abnormalities. Protein misfolding was produced by mutations located in both the prosegment (p.Gly77Arg) and throughout the length of the mature enzyme. However, the routes of removal of misfolded proteins by the cells varied, ranging from their efficient degradation by the ubiquitin/proteasome system to abundant secretion. Two TPPI variants demonstrated enhanced processing in response to folding improvement treatment, and the activity of one of them, p.Arg447His, showed a fivefold increase under permissive temperature conditions, which suggests that folding improvement strategies may ameliorate the function of some misfolding TPPI mutant proteins.

  18. A Novel Missense Mutation in Peripheral Myelin Protein-22 Causes Charcot-Marie-Tooth Disease.

    PubMed

    Li, Li-Xi; Dong, Hai-Lin; Xiao, Bao-Guo; Wu, Zhi-Ying

    2017-08-05

    Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy. A great number of causative genes have been described in CMT, and among them, the heterozygous duplication of peripheral myelin protein-22 (PMP22) is the major cause. Although the missense mutation in PMP22 is rarely reported, it has been demonstrated to be associated with CMT. This study described a novel missense mutation of PMP22 in a Chinese family with CMT phenotype. Targeted next-generation sequencing (NGS) was used to screen the causative genes in a family featured with an autosomal dominant demyelinating form of CMT. The potential variants identified by targeted NGS were verified by Sanger sequencing and classified according to the American College of Medical Genetics and Genomics standards and guidelines. Further cell transfection studies were performed to characterize the function of the novel variant. Using targeted NGS, a novel heterozygous missense variant in PMP22 (c.320G>A, p.G107D) was identified. In vitro cell functional studies revealed that mutant PMP22 protein carrying p.G107D mutation lost the ability to reach the plasma membrane, was mainly retained in the endoplasmic reticulum, and induced cell apoptosis. This study supported the notion that missense mutations in PMP22 give rise to a CMT phenotype, possibly through a toxic gain-of-function mechanism.

  19. I219V polymorphism in hMLH1 gene in patients affected with ulcerative colitis.

    PubMed

    Vietri, Maria Teresa; Riegler, Gabriele; De Paola, Marialaura; Simeone, Serena; Boggia, Maria; Improta, Alessia; Parisi, Mariarita; Molinari, Anna Maria; Cioffi, Michele

    2009-04-01

    hMLH1 gene, lying on chromosome 3p21-23, is a key factor of the mismatch repair (MMR) complex, which amends DNA replication errors. MMR alterations are involved in the development of both hereditary and sporadic forms of colorectal carcinoma related to ulcerative colitis (UC). I219V Polymorphism is located on exon 8 of hMLH1 and provides an aminoacidic substitution of isoleucine to valine, on the protein codon 219. This may affect the speed and fidelity of protein synthesis because of a tRNA paucity or changes in the mRNA secondary structure. Most of the hereditary nonpolyposis colon cancer-associated missense mutations of hMLH1 cause structural changes of the amino- or carboxy-terminal regions, involving the domains that interact with ATP and hPMS2. In this study, we analyzed the hMLH1 I219V polymorphism frequency in colectomized patients with UC. Venous blood from 100 ulcerative patients and 97 apparently healthy subjects has been collected. Out of 100 patients affected with UC, 75 noncolectomized showed an alternating course of disease, while 25 did not respond to the common drugs, and underwent colectomy. Genotyping was performed by polymerase chain reaction and following enzymatic digestion by BccI. No significant differences were found between patients with UC and controls both for genotype and allele frequencies. However, our data show a significant association when colectomized and noncolectomized patients are compared. The frequencies of G homozygosity were 28% in colectomized and 10.7% in noncolectomized patients (p < 0.05, chi(2) = 4.4, Odds ratio = 3.3). The allele frequencies of allele A were 52% in colectomized and 68% in noncolectomized patients; while those of allele G were 48% and 32%, respectively. I219V polymorphism in hMLH1 could influence the clinical course of the disease and lead to resistance to therapy.

  20. MLH1-93 G/a polymorphism is associated with MLH1 promoter methylation and protein loss in dysplastic sessile serrated adenomas with BRAFV600E mutation.

    PubMed

    Fennell, Lochlan J; Jamieson, Saara; McKeone, Diane; Corish, Tracie; Rohdmann, Megan; Furner, Tori; Bettington, Mark; Liu, Cheng; Kawamata, Futoshi; Bond, Catherine; Van De Pols, Jolieke; Leggett, Barbara; Whitehall, Vicki

    2018-01-05

    Sessile serrated adenomas with BRAF mutation progress rapidly to cancer following the development of dysplasia (SSAD). Approximately 75% of SSADs methylate the mismatch repair gene MLH1, develop mismatch repair deficiency and the resultant cancers have a good prognosis. The remaining SSADs and BRAF mutant traditional serrated adenomas (TSA) develop into microsatellite stable cancers with a poor prognosis. The reason for this dichotomy is unknown. In this study, we assessed the genotypic frequency of the MLH1-93 polymorphism rs1800734 in SSADs and TSAs to determine if the uncommon variant A allele predisposes to MLH1 promoter hypermethylation. We performed genotyping for the MLH1-93 polymorphism, quantitative methylation specific PCR, and MLH1 immunohistochemistry on 124 SSAD, 128 TSA, 203 BRAF mutant CRCs and 147 control subjects with normal colonoscopy. The minor A allele was significantly associated with a dose dependent increase in methylation at the MLH1 promoter in SSADs (p = 0.022). The AA genotype was only observed in SSADs with MLH1 loss. The A allele was also overrepresented in BRAF mutant cancers with MLH1 loss. Only one of the TSAs showed loss of MLH1 and the overall genotype distribution in TSAs did not differ from controls. The MLH1-93 AA genotype is significantly associated with promoter hypermethylation and MLH1 loss in the context of SSADs. BRAF mutant microsatellite stable colorectal cancers with the AA genotype most likely arise in TSAs since the A allele does not predispose to methylation in this context.

  1. Enhancement of MSH2-MSH3-mediated mismatch recognition by the yeast MLH1-PMS1 complex.

    PubMed

    Habraken, Y; Sung, P; Prakash, L; Prakash, S

    1997-10-01

    DNA mismatch repair has a key role in maintaining genomic stability. Defects in mismatch repair cause elevated spontaneous mutation rates and increased instability of simple repetitive sequences, while mutations in human mismatch repair genes result in hereditary nonpolyposis colorectal cancers. Mismatch recognition represents the first critical step of mismatch repair. Genetic and biochemical studies in yeast and humans have indicated a requirement for MSH2-MSH3 and MSH2-MSH6 heterodimers in mismatch recognition. These complexes have, to some extent, overlapping mismatch binding specificities. MLH1 and PMS1 are the other essential components of mismatch repair, but how they function in this process is not known. We have purified the yeast MLH1-PMS1 heterodimer to near homogeneity, and examined its effect on MSH2-MSH3 binding to DNA mismatches. By itself, the MLH1-PMS1 complex shows no affinity for mismatched DNA, but it greatly enhances the mismatch binding ability of MSH2-MSH3.

  2. A novel missense Norrie disease mutation associated with a severe ocular phenotype.

    PubMed

    Khan, Arif O; Shamsi, Farrukh A; Al-Saif, Amr; Kambouris, Marios

    2004-01-01

    Clinical findings and pedigree analysis led to the diagnosis of severe Norrie disease in two brothers. DNA sequencing demonstrated a novel missense mutation (703G>T) that significantly alters predicted protein structure. Less severe retinal developmental disease may be associated with milder mutations in the Norrie disease gene.

  3. Loss of mutL homolog-1 (MLH1) expression promotes acquisition of oncogenic and inhibitor-resistant point mutations in tyrosine kinases.

    PubMed

    Springuel, Lorraine; Losdyck, Elisabeth; Saussoy, Pascale; Turcq, Béatrice; Mahon, François-Xavier; Knoops, Laurent; Renauld, Jean-Christophe

    2016-12-01

    Genomic instability drives cancer progression by promoting genetic abnormalities that allow for the multi-step clonal selection of cells with growth advantages. We previously reported that the IL-9-dependent TS1 cell line sequentially acquired activating substitutions in JAK1 and JAK3 upon successive selections for growth factor independent and JAK inhibitor-resistant cells, suggestive of a defect in mutation avoidance mechanisms. In the first part of this paper, we discovered that the gene encoding mutL homolog-1 (MLH1), a key component of the DNA mismatch repair system, is silenced by promoter methylation in TS1 cells. By means of stable ectopic expression and RNA interference methods, we showed that the high frequencies of growth factor-independent and inhibitor-resistant cells with activating JAK mutations can be attributed to the absence of MLH1 expression. In the second part of this paper, we confirm the clinical relevance of our findings by showing that chronic myeloid leukemia relapses upon ABL-targeted therapy correlated with a lower expression of MLH1 messenger RNA. Interestingly, the mutational profile observed in our TS1 model, characterized by a strong predominance of T:A>C:G transitions, was identical to the one described in the literature for primitive cells derived from chronic myeloid leukemia patients. Taken together, our observations demonstrate for the first time a causal relationship between MLH1-deficiency and incidence of oncogenic point mutations in tyrosine kinases driving cell transformation and acquired resistance to kinase-targeted cancer therapies.

  4. A Recurrent Missense Mutation in ZP3 Causes Empty Follicle Syndrome and Female Infertility.

    PubMed

    Chen, Tailai; Bian, Yuehong; Liu, Xiaoman; Zhao, Shigang; Wu, Keliang; Yan, Lei; Li, Mei; Yang, Zhenglin; Liu, Hongbin; Zhao, Han; Chen, Zi-Jiang

    2017-09-07

    Empty follicle syndrome (EFS) is defined as the failure to aspirate oocytes from mature ovarian follicles during in vitro fertilization. Except for some cases caused by pharmacological or iatrogenic problems, the etiology of EFS remains enigmatic. In the present study, we describe a large family with a dominant inheritance pattern of female infertility characterized by recurrent EFS. Genome-wide linkage analyses and whole-exome sequencing revealed a paternally transmitted heterozygous missense mutation of c.400 G>A (p.Ala134Thr) in zona pellucida glycoprotein 3 (ZP3). The same mutation was identified in an unrelated EFS pedigree. Haplotype analysis revealed that the disease allele of these two families came from different origins. Furthermore, in a cohort of 21 cases of EFS, two were also found to have the ZP3 c.400 G>A mutation. Immunofluorescence and histological analysis indicated that the oocytes of the EFS female had degenerated and lacked the zona pellucida (ZP). ZP3 is a major component of the ZP filament. When mutant ZP3 was co-expressed with wild-type ZP3, the interaction between wild-type ZP3 and ZP2 was markedly decreased as a result of the binding of wild-type ZP3 and mutant ZP3, via dominant negative inhibition. As a result, the assembly of ZP was impeded and the communication between cumulus cells and the oocyte was prevented, resulting in oocyte degeneration. These results identified a genetic basis for EFS and oocyte degeneration and, moreover, might pave the way for genetic diagnosis of infertile females with this phenotype. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Performance of Lynch syndrome predictive models in quantifying the likelihood of germline mutations in patients with abnormal MLH1 immunoexpression.

    PubMed

    Cabreira, Verónica; Pinto, Carla; Pinheiro, Manuela; Lopes, Paula; Peixoto, Ana; Santos, Catarina; Veiga, Isabel; Rocha, Patrícia; Pinto, Pedro; Henrique, Rui; Teixeira, Manuel R

    2017-01-01

    Lynch syndrome (LS) accounts for up to 4 % of all colorectal cancers (CRC). Detection of a pathogenic germline mutation in one of the mismatch repair genes is the definitive criterion for LS diagnosis, but it is time-consuming and expensive. Immunohistochemistry is the most sensitive prescreening test and its predictive value is very high for loss of expression of MSH2, MSH6, and (isolated) PMS2, but not for MLH1. We evaluated if LS predictive models have a role to improve the molecular testing algorithm in this specific setting by studying 38 individuals referred for molecular testing and who were subsequently shown to have loss of MLH1 immunoexpression in their tumors. For each proband we calculated a risk score, which represents the probability that the patient with CRC carries a pathogenic MLH1 germline mutation, using the PREMM 1,2,6 and MMRpro predictive models. Of the 38 individuals, 18.4 % had a pathogenic MLH1 germline mutation. MMRpro performed better for the purpose of this study, presenting a AUC of 0.83 (95 % CI 0.67-0.9; P < 0.001) compared with a AUC of 0.68 (95 % CI 0.51-0.82, P = 0.09) for PREMM 1,2,6 . Considering a threshold of 5 %, MMRpro would eliminate unnecessary germline mutation analysis in a significant proportion of cases while keeping very high sensitivity. We conclude that MMRpro is useful to correctly predict who should be screened for a germline MLH1 gene mutation and propose an algorithm to improve the cost-effectiveness of LS diagnosis.

  6. A Novel Missense Mutation of Doublecortin: Mutation Analysis of Korean Patients with Subcortical Band Heterotopia

    PubMed Central

    Kim, Myeong-Kyu; Park, Man-Seok; Kim, Byeong-Chae; Cho, Ki-Hyun; Kim, Young-Seon; Kim, Jin-Hee; Heo, Tag; Kim, Eun-Young

    2005-01-01

    The neuronal migration disorders, X-linked lissencephaly syndrome (XLIS) and subcortical band heterotopia (SBH), also called "double cortex", have been linked to missense, nonsense, aberrant splicing, deletion, and insertion mutations in doublecortin (DCX) in families and sporadic cases. Most DCX mutations identified to date are located in two evolutionarily conserved domains. We performed mutation analysis of DCX in two Korean patients with SBH. The SBH patients had mild to moderate developmental delays, drug-resistant generalized seizures, and diffuse thick SBH upon brain MRI. Sequence analysis of the DCX coding region in Patient 1 revealed a c.386 C>T change in exon 3. The sequence variation results in a serine to leucine amino acid change at position 129 (S129L), which has not been found in other family members of Patient 1 or in a large panel of 120 control X-chromosomes. We report here a novel c.386 C>T mutation of DCX that is responsible for SBH. PMID:16100463

  7. Mlh1-Mlh3, a Meiotic Crossover and DNA Mismatch Repair Factor, Is a Msh2-Msh3-stimulated Endonuclease*

    PubMed Central

    Rogacheva, Maria V.; Manhart, Carol M.; Chen, Cheng; Guarne, Alba; Surtees, Jennifer; Alani, Eric

    2014-01-01

    Crossing over between homologous chromosomes is initiated in meiotic prophase in most sexually reproducing organisms by the appearance of programmed double strand breaks throughout the genome. In Saccharomyces cerevisiae the double-strand breaks are resected to form three prime single-strand tails that primarily invade complementary sequences in unbroken homologs. These invasion intermediates are converted into double Holliday junctions and then resolved into crossovers that facilitate homolog segregation during Meiosis I. Work in yeast suggests that Msh4-Msh5 stabilizes invasion intermediates and double Holliday junctions, which are resolved into crossovers in steps requiring Sgs1 helicase, Exo1, and a putative endonuclease activity encoded by the DNA mismatch repair factor Mlh1-Mlh3. We purified Mlh1-Mlh3 and showed that it is a metal-dependent and Msh2-Msh3-stimulated endonuclease that makes single-strand breaks in supercoiled DNA. These observations support a direct role for an Mlh1-Mlh3 endonuclease activity in resolving recombination intermediates and in DNA mismatch repair. PMID:24403070

  8. Mlh1-Mlh3, a meiotic crossover and DNA mismatch repair factor, is a Msh2-Msh3-stimulated endonuclease.

    PubMed

    Rogacheva, Maria V; Manhart, Carol M; Chen, Cheng; Guarne, Alba; Surtees, Jennifer; Alani, Eric

    2014-02-28

    Crossing over between homologous chromosomes is initiated in meiotic prophase in most sexually reproducing organisms by the appearance of programmed double strand breaks throughout the genome. In Saccharomyces cerevisiae the double-strand breaks are resected to form three prime single-strand tails that primarily invade complementary sequences in unbroken homologs. These invasion intermediates are converted into double Holliday junctions and then resolved into crossovers that facilitate homolog segregation during Meiosis I. Work in yeast suggests that Msh4-Msh5 stabilizes invasion intermediates and double Holliday junctions, which are resolved into crossovers in steps requiring Sgs1 helicase, Exo1, and a putative endonuclease activity encoded by the DNA mismatch repair factor Mlh1-Mlh3. We purified Mlh1-Mlh3 and showed that it is a metal-dependent and Msh2-Msh3-stimulated endonuclease that makes single-strand breaks in supercoiled DNA. These observations support a direct role for an Mlh1-Mlh3 endonuclease activity in resolving recombination intermediates and in DNA mismatch repair.

  9. Excess of extracolonic non-endometrial multiple primary cancers in MSH2 germline mutation carriers over MLH1.

    PubMed

    Lin-Hurtubise, Kevin M; Yheulon, Christopher G; Gagliano, Ronald A; Lynch, Henry T

    2013-12-01

    The lynch syndrome (LS) tumor spectrum involves colorectal cancer (CRC), endometrial cancer (EC), and less frequently various extracolonic non-endometrial cancers (non-EC). The organ-specific survival rates of these patients are well defined, however, the collective survival of all-cancers combined (CRC + EC + non-EC) are unclear. Fifty-two MSH2 patients and 68 MLH1 patients were followed for a median of 6.3 years after diagnosis of first cancer, regardless of type. The proportions of CRC only, EC, non-EC, and multiple primary cancers were compared between the two genotypes. Kaplan-Meier curves were developed for survival comparisons. MSH2 patients present less frequently with only CRC (37% MSH2, 62% MLH1, P = 0.0096), manifest more multiple primary cancers (38% MSH2, 18% MLH1, P = 0.013), develop more extracolonic cancers (62% MSH2, 38% MLH1, P = 0.003), non-EC only cancers (46% MSH2, 24% MLH1, P = 0.028) and carry a greater risk for urinary tract cancer (UTC) (13.4% MSH2, 1.5% MLH1, P = 0.024). There was no difference in 10-year survival between the two groups (P = 0.4). The additional propensity for UTC in MSH2 carriers argues in favor of UTC screening in MSH2 individuals. Other types of cancer screening should be tailored to the expression history of the specific LS mutation. © 2013 Wiley Periodicals, Inc.

  10. The silent mutation MLH1 c.543C>T resulting in aberrant splicing can cause Lynch syndrome: a case report.

    PubMed

    Yamaguchi, Tatsuro; Wakatsuki, Tomokazu; Kikuchi, Mari; Horiguchi, Shin-Ichiro; Akagi, Kiwamu

    2017-06-01

    The proband was a 67-year-old man with transverse and sigmoid colon cancer. Microsatellite instability analysis revealed a high frequency of microsatellite instability, and immunohistochemical staining showed the absence of both MLH1 and PMS2 proteins in the sigmoid colon cancer tissue specimens from the patient. DNA sequencing revealed a nucleotide substitution c.543C>T in MLH1, but this variant did not substitute an amino acid. The MLH1 c.543C>T variant was located 3 bases upstream from the end of exon 6 and created a new splice donor site 4 bases upstream from the end of exon 6. Consequently, the last 4 bases of exon 6 were deleted and frameshift occurred. Thus, the MLH1 c.543C>T silent mutation is considered 'pathogenic'. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Differential cellular responses to prolonged LDR-IR in MLH1-proficient and MLH1-deficient colorectal cancer HCT116 cells.

    PubMed

    Yan, Tao; Seo, Yuji; Kinsella, Timothy J

    2009-11-15

    MLH1 is a key DNA mismatch repair (MMR) protein involved in maintaining genomic stability by participating in the repair of endogenous and exogenous mispairs in the daughter strands during S phase. Exogenous mispairs can result following treatment with several classes of chemotherapeutic drugs, as well as with ionizing radiation. In this study, we investigated the role of the MLH1 protein in determining the cellular and molecular responses to prolonged low-dose rate ionizing radiation (LDR-IR), which is similar to the clinical use of cancer brachytherapy. An isogenic pair of MMR(+) (MLH1(+)) and MMR(-) (MLH1(-)) human colorectal cancer HCT116 cells was exposed to prolonged LDR-IR (1.3-17 cGy/h x 24-96 h). The clonogenic survival and gene mutation rates were examined. Cell cycle distribution was analyzed with flow cytometry. Changes in selected DNA damage repair proteins, DNA damage response proteins, and cell death marker proteins were examined with Western blotting. MLH1(+) HCT116 cells showed greater radiosensitivity with enhanced expression of apoptotic and autophagic markers, a reduced HPRT gene mutation rate, and more pronounced cell cycle alterations (increased late-S population and a G(2)/M arrest) following LDR-IR compared with MLH1(-) HCT116 cells. Importantly, a progressive increase in MLH1 protein levels was found in MLH1(+) cells during prolonged LDR-IR, which was temporally correlated with a progressive decrease in Rad51 protein (involved in homologous recombination) levels. MLH1 status significantly affects cellular responses to prolonged LDR-IR. MLH1 may enhance cell radiosensitivity to prolonged LDR-IR through inhibition of homologous recombination (through inhibition of Rad51).

  12. Prevalence of the Pro12Ala missense mutation in the PPARG2 gene in Kuwaiti patients with primary knee osteoarthritis

    PubMed Central

    Al-Jarallah, Khaled F.; Shehab, Diaa K.; Haider, Mohammad Z.

    2011-01-01

    BACKGROUND AND OBJECTIVES: Peroxisome proliferator–activated receptors (PPARs) play an important role in a number of cellular and metabolic functions. This study was carried out to determine the prevalence of a missense mutation (Pro12Ala) in the PPARG2 gene in Kuwaiti Arab patients with primary knee osteoarthritis (OA) and healthy controls with the aim of identifying a possible association. DESIGN AND SETTING: A prospective cross-sectional study carried out at three major teaching hospitals (referral centers) in the country over a one-year period. PATIENTS AND METHODS: The prevalence of PPARG2 gene Pro12Ala missense mutation was determined in 104 Kuwaiti Arab patients with primary knee OA and 111 ethnically matched healthy controls. The prevalence of this Pro12Ala missense mutation was also determined in clinical subgroups of OA patients divided on the basis of age at onset, function and radiologic grading. RESULTS The Pro-Pro genotype of the PPARG2 gene Pro12Ala missense mutation was detected in 95/104 (91.3%) cases compared to 111/111 (100%) in the control subjects. The heterozygous Pro-Ala genotype was detected in 9/104 (8.7%) of the OA patients, while it was not detected in any of the controls. The Ala-Ala genotype was not detected in any of the OA patients or the controls. No significant differences were detected in the PPARG2 gene Pro12Ala genotypes in the subgroups of patients classified on the basis of age at onset, functional assessment using Lequesne’s functional index, and radiological grading using Kellgren-Lawrence (K-L) grading. CONCLUSIONS This study found no significant association between the PPARG2 gene Pro12Ala missense mutation and knee OA. However, the presence of the Pro-Pro genotype of the PPARG2 gene mutation has a protective effect against development of OA. PMID:21245597

  13. Common pathogenic effects of missense mutations in the P-type ATPase ATP13A2 (PARK9) associated with early-onset parkinsonism.

    PubMed

    Podhajska, Agata; Musso, Alessandra; Trancikova, Alzbeta; Stafa, Klodjan; Moser, Roger; Sonnay, Sarah; Glauser, Liliane; Moore, Darren J

    2012-01-01

    Mutations in the ATP13A2 gene (PARK9) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome (KRS), a neurodegenerative disease characterized by parkinsonism. KRS mutations produce truncated forms of ATP13A2 with impaired protein stability resulting in a loss-of-function. Recently, homozygous and heterozygous missense mutations in ATP13A2 have been identified in subjects with early-onset parkinsonism. The mechanism(s) by which missense mutations potentially cause parkinsonism are not understood at present. Here, we demonstrate that homozygous F182L, G504R and G877R missense mutations commonly impair the protein stability of ATP13A2 leading to its enhanced degradation by the proteasome. ATP13A2 normally localizes to endosomal and lysosomal membranes in neurons and the F182L and G504R mutations disrupt this vesicular localization and promote the mislocalization of ATP13A2 to the endoplasmic reticulum. Heterozygous T12M, G533R and A746T mutations do not obviously alter protein stability or subcellular localization but instead impair the ATPase activity of microsomal ATP13A2 whereas homozygous missense mutations disrupt the microsomal localization of ATP13A2. The overexpression of ATP13A2 missense mutants in SH-SY5Y neural cells does not compromise cellular viability suggesting that these mutant proteins lack intrinsic toxicity. However, the overexpression of wild-type ATP13A2 may impair neuronal integrity as it causes a trend of reduced neurite outgrowth of primary cortical neurons, whereas the majority of disease-associated missense mutations lack this ability. Finally, ATP13A2 overexpression sensitizes cortical neurons to neurite shortening induced by exposure to cadmium or nickel ions, supporting a functional interaction between ATP13A2 and heavy metals in post-mitotic neurons, whereas missense mutations influence this sensitizing effect. Collectively, our study provides support for common loss-of-function effects of homozygous and heterozygous missense

  14. Common Pathogenic Effects of Missense Mutations in the P-Type ATPase ATP13A2 (PARK9) Associated with Early-Onset Parkinsonism

    PubMed Central

    Podhajska, Agata; Musso, Alessandra; Trancikova, Alzbeta; Stafa, Klodjan; Moser, Roger; Sonnay, Sarah; Glauser, Liliane; Moore, Darren J.

    2012-01-01

    Mutations in the ATP13A2 gene (PARK9) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome (KRS), a neurodegenerative disease characterized by parkinsonism. KRS mutations produce truncated forms of ATP13A2 with impaired protein stability resulting in a loss-of-function. Recently, homozygous and heterozygous missense mutations in ATP13A2 have been identified in subjects with early-onset parkinsonism. The mechanism(s) by which missense mutations potentially cause parkinsonism are not understood at present. Here, we demonstrate that homozygous F182L, G504R and G877R missense mutations commonly impair the protein stability of ATP13A2 leading to its enhanced degradation by the proteasome. ATP13A2 normally localizes to endosomal and lysosomal membranes in neurons and the F182L and G504R mutations disrupt this vesicular localization and promote the mislocalization of ATP13A2 to the endoplasmic reticulum. Heterozygous T12M, G533R and A746T mutations do not obviously alter protein stability or subcellular localization but instead impair the ATPase activity of microsomal ATP13A2 whereas homozygous missense mutations disrupt the microsomal localization of ATP13A2. The overexpression of ATP13A2 missense mutants in SH-SY5Y neural cells does not compromise cellular viability suggesting that these mutant proteins lack intrinsic toxicity. However, the overexpression of wild-type ATP13A2 may impair neuronal integrity as it causes a trend of reduced neurite outgrowth of primary cortical neurons, whereas the majority of disease-associated missense mutations lack this ability. Finally, ATP13A2 overexpression sensitizes cortical neurons to neurite shortening induced by exposure to cadmium or nickel ions, supporting a functional interaction between ATP13A2 and heavy metals in post-mitotic neurons, whereas missense mutations influence this sensitizing effect. Collectively, our study provides support for common loss-of-function effects of homozygous and heterozygous missense

  15. Testing computational prediction of missense mutation phenotypes: Functional characterization of 204 mutations of human cystathionine beta synthase

    PubMed Central

    Wei, Qiong; Wang, Liqun; Wang, Qiang; Kruger, Warren D.; Dunbrack, Roland L.

    2010-01-01

    Predicting the phenotypes of missense mutations uncovered by large-scale sequencing projects is an important goal in computational biology. High-confidence predictions can be an aid in focusing experimental and association studies on those mutations most likely to be associated with causative relationships between mutation and disease. As an aid in developing these methods further, we have derived a set of random mutations of the enzymatic domains of human cystathionine beta synthase. This enzyme is a dimeric protein that catalyzes the condensation of serine and homocysteine to produce cystathionine. Yeast missing this enzyme cannot grow on medium lacking a source of cysteine, while transfection of functional human CBS into yeast strains missing endogenous enzyme can successfully complement for the missing gene. We used PCR mutagenesis with error-prone Taq polymerase to produce 948 colonies, and compared cell growth in the presence or absence of a cysteine source as a measure of CBS function. We were able to infer the phenotypes of 204 single-site mutants, 79 of them deleterious and 125 neutral. This set was used to test the accuracy of six publicly available prediction methods for phenotype prediction of missense mutations: SIFT, PolyPhen, PMut, SNPs3D, PhD-SNP, and nsSNPAnalyzer. The top methods are PolyPhen, SIFT, and nsSNPAnalyzer, which have similar performance. Using kernel discriminant functions, we found that the difference in position-specific scoring matrix values is more predictive than the wild-type PSSM score alone, and that the relative surface area in the biologically relevant complex is more predictive than that of the monomeric proteins. PMID:20455263

  16. Frequent PIK3CA Mutations in Colorectal and Endometrial Cancer with Double Somatic Mismatch Repair Mutations

    PubMed Central

    Cohen, Stacey A.; Turner, Emily H.; Beightol, Mallory B.; Jacobson, Angela; Gooley, Ted A.; Salipante, Stephen J.; Haraldsdottir, Sigurdis; Smith, Christina; Scroggins, Sheena; Tait, Jonathan F.; Grady, William M.; Lin, Edward H.; Cohn, David E.; Goodfellow, Paul J.; Arnold, Mark W.; de la Chapelle, Albert; Pearlman, Rachel; Hampel, Heather; Pritchard, Colin C.

    2016-01-01

    Background & Aims Double somatic mutations in mismatch repair (MMR) genes have recently been described in colorectal and endometrial cancers with microsatellite instability (MSI) not attributable to MLH1 hypermethylation or germline mutation. We sought to define the molecular phenotype of this newly recognized tumor subtype. Methods From two prospective Lynch syndrome screening studies, we identified patients with colorectal and endometrial tumors harboring ≥2 somatic MMR mutations, but normal germline MMR testing (“double somatic”). We determined the frequencies of tumor PIK3CA, BRAF, KRAS, NRAS, and PTEN mutations by targeted next-generation sequencing and used logistic-regression models to compare them to: Lynch syndrome, MLH1 hypermethylated, and microsatellite stable (MSS) tumors. We validated our findings using independent datasets from The Cancer Genome Atlas (TCGA). Results Among colorectal cancer cases, we found that 14/21 (67%) of double somatic cases had PIK3CA mutations vs. 4/18 (22%) Lynch syndrome, 2/10 (20%) MLH1 hypermethylated, and 12/78 (15%) MSS tumors; p<0.0001. PIK3CA mutations were detected in 100% of 13 double somatic endometrial cancers (p=0.04). BRAF mutations were absent in double somatic and Lynch syndrome colorectal tumors. We found highly similar results in a validation cohort from TCGA (113 colorectal, 178 endometrial cancer), with 100% of double somatic cases harboring a PIK3CA mutation (p<0.0001). Conclusions PIK3CA mutations are present in double somatic mutated colorectal and endometrial cancers at substantially higher frequencies than other MSI subgroups. PIK3CA mutation status may better define an emerging molecular entity in colorectal and endometrial cancers, with the potential to inform screening and therapeutic decision making. PMID:27302833

  17. A novel missense mutation in the ACTG1 gene in a family with congenital autosomal dominant deafness: A case report.

    PubMed

    Lee, Cha Gon; Jang, Jahyeon; Jin, Hyun-Seok

    2018-06-01

    The ACTG1 gene encodes the cytoskeletal protein γ-actin, which functions in non‑muscle cells and is abundant in the auditory hair cells of the cochlea. Autosomal dominant missense mutations in ACTG1 are associated with DFNA20/26, a disorder that is typically characterized by post‑lingual progressive hearing loss. To date, 17 missense mutations in ACTG1 have been reported in 20 families with DFNA20/26. The present study described a small family with autosomal dominant nonsyndromic hearing loss. A novel heterozygous missense mutation, c.94C>T (p.Pro32Ser), in ACTG1 was identified using the TruSight One sequencing panel. Notably, congenital hearing loss in our proband was identified by newborn hearing screening at birth. In silico predictions of protein structure and function indicate that the p.Pro32Ser mutation may result in conformational changes in γ‑actin. The present study expands the understanding of the phenotypic effects of heterozygous missense mutations in the ACTG1 gene. In specific, the present results emphasize that mutations in ACTG1 result in a diverse spectrum of onset ages, including congenital in addition to post‑lingual onset.

  18. Prefoldin Promotes Proteasomal Degradation of Cytosolic Proteins with Missense Mutations by Maintaining Substrate Solubility

    PubMed Central

    Young, Barry P.; Loewen, Christopher J.; Mayor, Thibault

    2016-01-01

    Misfolded proteins challenge the ability of cells to maintain protein homeostasis and can accumulate into toxic protein aggregates. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. In this study, we employed a thermosensitive allele of the yeast Guk1 guanylate kinase as a model misfolded protein to investigate degradative protein quality control pathways. We performed a flow cytometry based screen to identify factors that promote proteasomal degradation of proteins misfolded as the result of missense mutations. In addition to the E3 ubiquitin ligase Ubr1, we identified the prefoldin chaperone subunit Gim3 as an important quality control factor. Whereas the absence of GIM3 did not impair proteasomal function or the ubiquitination of the model substrate, it led to the accumulation of the poorly soluble model substrate in cellular inclusions that was accompanied by delayed degradation. We found that Gim3 interacted with the Guk1 mutant allele and propose that prefoldin promotes the degradation of the unstable model substrate by maintaining the solubility of the misfolded protein. We also demonstrated that in addition to the Guk1 mutant, prefoldin can stabilize other misfolded cytosolic proteins containing missense mutations. PMID:27448207

  19. Screening for germline mutations of MLH1, MSH2, MSH6 and PMS2 genes in Slovenian colorectal cancer patients: implications for a population specific detection strategy of Lynch syndrome.

    PubMed

    Berginc, Gasper; Bracko, Matej; Ravnik-Glavac, Metka; Glavac, Damjan

    2009-01-01

    Microsatellite instability (MSI) is present in more than 90% of colorectal cancers of patients with Lynch syndrome, and is therefore a feasible marker for the disease. Mutations in MLH1, MSH2, MSH6 and PMS2, which are one of the main causes of deficient mismatch repair and subsequent MSI, have been linked to the disease. In order to establish the role of each of the 4 genes in Slovenian Lynch syndrome patients, we performed MSI analysis on 593 unselected CRC patients and subsequently searched for the presence of point mutations, larger genomic rearrangements and MLH1 promoter hypermethylation in patients with MSI-high tumours. We detected 43 (7.3%) patients with MSI-H tumours, of which 7 patients (1.3%) harboured germline defects: 2 in MLH1, 4 in MSH2, 1 in PMS2 and none in MSH6. Twenty-nine germline sequence variations of unknown significance and 17 deleterious somatic mutations were found. MLH1 promoter methylation was detected in 56% of patients without detected germline defects and in 1 (14%) suspected Lynch syndrome. Due to the minor role of germline MSH6 mutations, we adapted the Lynch syndrome detection strategy for the Slovenian population of CRC patients, whereby germline alterations should be first sought in MLH1 and MSH2 followed by a search for larger genomic rearrangements in these two genes. When no germline mutations are found tumors should be further tested for the presence of germline defects in PMS2 and MSH6. The choice about which gene should be tested first can be guided more accurately by the immunohistochemical analysis. Our study demonstrates that the incidence of MMR mutations in a population should be known prior to the application of one of several suggested strategies for detection of Lynch syndrome.

  20. MLH1 constitutional and somatic methylation in patients with MLH1 negative tumors fulfilling the revised Bethesda criteria.

    PubMed

    Crucianelli, Francesca; Tricarico, Rossella; Turchetti, Daniela; Gorelli, Greta; Gensini, Francesca; Sestini, Roberta; Giunti, Laura; Pedroni, Monica; Ponz de Leon, Maurizio; Civitelli, Serenella; Genuardi, Maurizio

    2014-10-01

    Lynch syndrome (LS) is a tumor predisposing condition caused by constitutional defects in genes coding for components of the mismatch repair (MMR) apparatus. While hypermethylation of the promoter of the MMR gene MLH1 occurs in about 15% of colorectal cancer samples, it has also been observed as a constitutional alteration, in the absence of DNA sequence mutations, in a small number of LS patients. In order to obtain further insights on the phenotypic characteristics of MLH1 epimutation carriers, we investigated the somatic and constitutional MLH1 methylation status of 14 unrelated subjects with a suspicion of LS who were negative for MMR gene constitutional mutations and whose tumors did not express the MLH1 protein. A novel case of constitutional MLH1 epimutation was identified. This patient was affected with multiple primary tumors, including breast cancer, diagnosed starting from the age of 55 y. Investigation of her offspring by allele specific expression revealed that the epimutation was not stable across generations. We also found MLH1 hypermethylation in cancer samples from 4 additional patients who did not have evidence of constitutional defects. These patients had some characteristics of LS, namely early age at onset and/or positive family history, raising the possibility of genetic influences in the establishment of somatic MLH1 methylation.

  1. NDST1 missense mutations in autosomal recessive intellectual disability.

    PubMed

    Reuter, Miriam S; Musante, Luciana; Hu, Hao; Diederich, Stefan; Sticht, Heinrich; Ekici, Arif B; Uebe, Steffen; Wienker, Thomas F; Bartsch, Oliver; Zechner, Ulrich; Oppitz, Cornelia; Keleman, Krystyna; Jamra, Rami Abou; Najmabadi, Hossein; Schweiger, Susann; Reis, André; Kahrizi, Kimia

    2014-11-01

    NDST1 was recently proposed as a candidate gene for autosomal recessive intellectual disability in two families. It encodes a bifunctional GlcNAc N-deacetylase/N-sulfotransferase with important functions in heparan sulfate biosynthesis. In mice, Ndst1 is crucial for embryonic development and homozygous null mutations are perinatally lethal. We now report on two additional unrelated families with homozygous missense NDST1 mutations. All mutations described to date predict the substitution of conserved amino acids in the sulfotransferase domain, and mutation modeling predicts drastic alterations in the local protein conformation. Comparing the four families, we noticed significant overlap in the clinical features, including both demonstrated and apparent intellectual disability, muscular hypotonia, epilepsy, and postnatal growth deficiency. Furthermore, in Drosophila, knockdown of sulfateless, the NDST ortholog, impairs long-term memory, highlighting its function in cognition. Our data confirm NDST1 mutations as a cause of autosomal recessive intellectual disability with a distinctive phenotype, and support an important function of NDST1 in human development. © 2014 Wiley Periodicals, Inc.

  2. Rare, evolutionarily unlikely missense substitutions in CHEK2 contribute to breast cancer susceptibility: results from a breast cancer family registry case-control mutation-screening study.

    PubMed

    Le Calvez-Kelm, Florence; Lesueur, Fabienne; Damiola, Francesca; Vallée, Maxime; Voegele, Catherine; Babikyan, Davit; Durand, Geoffroy; Forey, Nathalie; McKay-Chopin, Sandrine; Robinot, Nivonirina; Nguyen-Dumont, Tù; Thomas, Alun; Byrnes, Graham B; Hopper, John L; Southey, Melissa C; Andrulis, Irene L; John, Esther M; Tavtigian, Sean V

    2011-01-18

    Both protein-truncating variants and some missense substitutions in CHEK2 confer increased risk of breast cancer. However, no large-scale study has used full open reading frame mutation screening to assess the contribution of rare missense substitutions in CHEK2 to breast cancer risk. This absence has been due in part to a lack of validated statistical methods for summarizing risk attributable to large numbers of individually rare missense substitutions. Previously, we adapted an in silico assessment of missense substitutions used for analysis of unclassified missense substitutions in BRCA1 and BRCA2 to the problem of assessing candidate genes using rare missense substitution data observed in case-control mutation-screening studies. The method involves stratifying rare missense substitutions observed in cases and/or controls into a series of grades ordered a priori from least to most likely to be evolutionarily deleterious, followed by a logistic regression test for trends to compare the frequency distributions of the graded missense substitutions in cases versus controls. Here we used this approach to analyze CHEK2 mutation-screening data from a population-based series of 1,303 female breast cancer patients and 1,109 unaffected female controls. We found evidence of risk associated with rare, evolutionarily unlikely CHEK2 missense substitutions. Additional findings were that (1) the risk estimate for the most severe grade of CHEK2 missense substitutions (denoted C65) is approximately equivalent to that of CHEK2 protein-truncating variants; (2) the population attributable fraction and the familial relative risk explained by the pool of rare missense substitutions were similar to those explained by the pool of protein-truncating variants; and (3) post hoc power calculations implied that scaling up case-control mutation screening to examine entire biochemical pathways would require roughly 2,000 cases and controls to achieve acceptable statistical power. This study

  3. Effects of missense mutations in sortase A gene on enzyme activity in Streptococcus mutans.

    PubMed

    Zhuang, P L; Yu, L X; Tao, Y; Zhou, Y; Zhi, Q H; Lin, H C

    2016-04-11

    Streptococcus mutans (S. mutans) is the major aetiological agent of dental caries, and the transpeptidase Sortase A (SrtA) plays a major role in cariogenicity. The T168G and G470A missense mutations in the srtA gene may be linked to caries susceptibility, as demonstrated in our previous studies. This study aimed to investigate the effects of these missense mutations of the srtA gene on SrtA enzyme activity in S. mutans. The point mutated recombinant S.mutans T168G and G470A sortases were expressed in expression plasmid pET32a. S. mutans UA159 sortase coding gene srtA was used as the template for point mutation. Enzymatic activity was assessed by quantifying increases in the fluorescence intensity generated when a substrate Dabcyl-QALPNTGEE-Edans was cleaved by SrtA. The kinetic constants were calculated based on the curve fit for the Michaelis-Menten equation. SrtA△N40(UA159) and the mutant enzymes, SrtA△N40(D56E) and SrtA△N40(R157H), were expressed and purified. A kinetic analysis showed that the affinity of SrtA△N40(D56E) and SrtA△N40(R157H) remained approximately equal to the affinity of SrtA△N40(UA159), as determined by the Michaelis constant (K m ). However, the catalytic rate constant (k cat ) and catalytic efficiency (k cat /K m ) of SrtA△N40(D56E) were reduced compared with those of SrtA△N40(R157H) and SrtA△N40(UA159), whereas the k cat and k cat /K m values of SrtA△N40(R157H) were slightly lower than those of SrtA△N40(UA159). The findings of this study indicate that the T168G missense mutation of the srtA gene results in a significant reduction in enzymatic activity compared with S. mutans UA159, suggesting that the T168G missense mutation of the srtA gene may be related to low cariogenicity.

  4. Machine learning classifier for identification of damaging missense mutations exclusive to human mitochondrial DNA-encoded polypeptides.

    PubMed

    Martín-Navarro, Antonio; Gaudioso-Simón, Andrés; Álvarez-Jarreta, Jorge; Montoya, Julio; Mayordomo, Elvira; Ruiz-Pesini, Eduardo

    2017-03-07

    Several methods have been developed to predict the pathogenicity of missense mutations but none has been specifically designed for classification of variants in mtDNA-encoded polypeptides. Moreover, there is not available curated dataset of neutral and damaging mtDNA missense variants to test the accuracy of predictors. Because mtDNA sequencing of patients suffering mitochondrial diseases is revealing many missense mutations, it is needed to prioritize candidate substitutions for further confirmation. Predictors can be useful as screening tools but their performance must be improved. We have developed a SVM classifier (Mitoclass.1) specific for mtDNA missense variants. Training and validation of the model was executed with 2,835 mtDNA damaging and neutral amino acid substitutions, previously curated by a set of rigorous pathogenicity criteria with high specificity. Each instance is described by a set of three attributes based on evolutionary conservation in Eukaryota of wildtype and mutant amino acids as well as coevolution and a novel evolutionary analysis of specific substitutions belonging to the same domain of mitochondrial polypeptides. Our classifier has performed better than other web-available tested predictors. We checked performance of three broadly used predictors with the total mutations of our curated dataset. PolyPhen-2 showed the best results for a screening proposal with a good sensitivity. Nevertheless, the number of false positive predictions was too high. Our method has an improved sensitivity and better specificity in relation to PolyPhen-2. We also publish predictions for the complete set of 24,201 possible missense variants in the 13 human mtDNA-encoded polypeptides. Mitoclass.1 allows a better selection of candidate damaging missense variants from mtDNA. A careful search of discriminatory attributes and a training step based on a curated dataset of amino acid substitutions belonging exclusively to human mtDNA genes allows an improved

  5. The mismatch repair and meiotic recombination endonuclease Mlh1-Mlh3 is activated by polymer formation and can cleave DNA substrates in trans.

    PubMed

    Manhart, Carol M; Ni, Xiaodan; White, Martin A; Ortega, Joaquin; Surtees, Jennifer A; Alani, Eric

    2017-04-01

    Crossing over between homologs is initiated in meiotic prophase by the formation of DNA double-strand breaks that occur throughout the genome. In the major interference-responsive crossover pathway in baker's yeast, these breaks are resected to form 3' single-strand tails that participate in a homology search, ultimately forming double Holliday junctions (dHJs) that primarily include both homologs. These dHJs are resolved by endonuclease activity to form exclusively crossovers, which are critical for proper homolog segregation in Meiosis I. Recent genetic, biochemical, and molecular studies in yeast are consistent with the hypothesis of Mlh1-Mlh3 DNA mismatch repair complex acting as the major endonuclease activity that resolves dHJs into crossovers. However, the mechanism by which the Mlh1-Mlh3 endonuclease is activated is unknown. Here, we provide evidence that Mlh1-Mlh3 does not behave like a structure-specific endonuclease but forms polymers required to generate nicks in DNA. This conclusion is supported by DNA binding studies performed with different-sized substrates that contain or lack polymerization barriers and endonuclease assays performed with varying ratios of endonuclease-deficient and endonuclease-proficient Mlh1-Mlh3. In addition, Mlh1-Mlh3 can generate religatable double-strand breaks and form an active nucleoprotein complex that can nick DNA substrates in trans. Together these observations argue that Mlh1-Mlh3 may not act like a canonical, RuvC-like Holliday junction resolvase and support a novel model in which Mlh1-Mlh3 is loaded onto DNA to form an activated polymer that cleaves DNA.

  6. A case of recurrent encephalopathy with SCN2A missense mutation.

    PubMed

    Fukasawa, Tatsuya; Kubota, Tetsuo; Negoro, Tamiko; Saitoh, Makiko; Mizuguchi, Masashi; Ihara, Yukiko; Ishii, Atsushi; Hirose, Shinichi

    2015-06-01

    Voltage-gated sodium channels regulate neuronal excitability, as well as survival and the patterning of neuronal connectivity during development. Mutations in SCN2A, which encodes the Na(+) channel Nav1.2, cause epilepsy syndromes and predispose children to acute encephalopathy. Here, we report the case of a young male with recurrent acute encephalopathy who carried a novel missense mutation in the SCN2A gene. He was born by normal delivery and developed repetitive apneic episodes at 2days of age. Diffusion-weighted imaging revealed high-intensity areas in diffuse subcortical white matter, bilateral thalami, and basal nuclei. His symptoms improved gradually without any specific treatment, but he exhibited a motor milestone delay after the episode. At the age of 10months, he developed acute cerebellopathy associated with a respiratory syncytial viral infection. He received high-dose intravenous gammaglobulin and methylprednisolone pulse therapy and seemed to have no obvious sequelae after the episode. He then developed severe diffuse encephalopathy associated with gastroenteritis at the age of 14months. He received high-dose intravenous gammaglobulin and methylprednisolone pulse therapy but was left with severe neurological sequelae. PCR-based analysis revealed a novel de novo missense mutation, c.4979T>G (p.Leu1660Trp), in the SCN2A gene. This case suggests that SCN2A mutations might predispose children to repetitive encephalopathy with variable clinical and imaging findings. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  7. Loss of MSH3 protein expression is frequent in MLH1-deficient colorectal cancer and is associated with disease progression.

    PubMed

    Plaschke, Jens; Krüger, Stefan; Jeske, Birgit; Theissig, Franz; Kreuz, Friedmar R; Pistorius, Steffen; Saeger, Hans D; Iaccarino, Ingram; Marra, Giancarlo; Schackert, Hans K

    2004-02-01

    Mononucleotide repeat sequences are particularly prone to frameshift mutations in tumors with biallelic inactivation of the mismatch repair (MMR) genes MLH1 or MSH2. In these tumors, several genes harboring mononucleotide repeats in their coding region have been proposed as targets involved in tumor progression, among which are also the MMR genes MSH3 and MSH6. We have analyzed the expression of the MSH3 and MSH6 proteins by immunohistochemistry in 31 colorectal carcinomas in which MLH1 was inactivated. Loss of MSH3 expression was identified in 15 tumors (48.5%), whereas all tumors expressed MSH6. Frameshift mutations at coding microsatellites were more frequent in MSH3 (16 of 31) than in MSH6 (3 of 31; Fisher's exact test, P < 0.001). Frameshift mutations and allelic losses of MSH3 were more frequent in MSH3-negative tumors compared with those with normal expression (22 mutations in 30 alleles versus 8 mutations in 28 alleles; chi(2), P = 0.001). Biallelic inactivation was evident or inferred for 60% of MSH3-negative tumors but none of the tumors with normal MSH3 expression. In contrast, we did not identify frameshift mutations in the (A)8 tract of MSH3 in a control group of 18 colorectal carcinomas in which the MMR deficiency was based on the inactivation of MSH2. As it has been suggested that mutations of MSH3 might play a role in tumor progression, we studied the association between MSH3 expression and disease stage assessed by lymph node and distant metastases status. Dukes stages C and D were more frequent in primary tumors with loss of MSH3 expression (9 of 13), compared with tumors with retained expression (1 of 14; Fisher's exact test, P = 0.001), suggesting that MSH3 abrogation may be a predictor of metastatic disease or even favor tumor cell spread in MLH1-deficient colorectal cancers.

  8. Myosin storage myopathy associated with a heterozygous missense mutation in MYH7.

    PubMed

    Tajsharghi, Homa; Thornell, Lars-Eric; Lindberg, Christopher; Lindvall, Björn; Henriksson, Karl-Gösta; Oldfors, Anders

    2003-10-01

    Myosin constitutes the major part of the thick filaments in the contractile apparatus of striated muscle. MYH7 encodes the slow/beta-cardiac myosin heavy chain (MyHC), which is the main MyHC isoform in slow, oxidative, type 1 muscle fibers of skeletal muscle. It is also the major MyHC isoform of cardiac ventricles. Numerous missense mutations in the globular head of slow/beta-cardiac MyHC are associated with familial hypertrophic cardiomyopathy. We identified a missense mutation, Arg1845Trp, in the rod region of slow/beta-cardiac MyHC in patients with a skeletal myopathy from two different families. The myopathy was characterized by muscle weakness and wasting with onset in childhood and slow progression, but no overt cardiomyopathy. Slow, oxidative, type 1 muscle fibers showed large inclusions consisting of slow/beta-cardiac MyHC. The features were similar to a previously described entity: hyaline body myopathy. Our findings indicate that the mutated residue of slow/beta-cardiac MyHC is essential for the assembly of thick filaments in skeletal muscle. We propose the term myosin storage myopathy for this disease.

  9. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces.

    PubMed

    Engin, H Billur; Kreisberg, Jason F; Carter, Hannah

    2016-01-01

    Recently it has been shown that cancer mutations selectively target protein-protein interactions. We hypothesized that mutations affecting distinct protein interactions involving established cancer genes could contribute to tumor heterogeneity, and that novel mechanistic insights might be gained into tumorigenesis by investigating protein interactions under positive selection in cancer. To identify protein interactions under positive selection in cancer, we mapped over 1.2 million nonsynonymous somatic cancer mutations onto 4,896 experimentally determined protein structures and analyzed their spatial distribution. In total, 20% of mutations on the surface of known cancer genes perturbed protein-protein interactions (PPIs), and this enrichment for PPI interfaces was observed for both tumor suppressors (Odds Ratio 1.28, P-value < 10(-4)) and oncogenes (Odds Ratio 1.17, P-value < 10(-3)). To study this further, we constructed a bipartite network representing structurally resolved PPIs from all available human complexes in the Protein Data Bank (2,864 proteins, 3,072 PPIs). Analysis of frequently mutated cancer genes within this network revealed that tumor-suppressors, but not oncogenes, are significantly enriched with functional mutations in homo-oligomerization regions (Odds Ratio 3.68, P-Value < 10(-8)). We present two important examples, TP53 and beta-2-microglobulin, for which the patterns of somatic mutations at interfaces provide insights into specifically perturbed biological circuits. In patients with TP53 mutations, patient survival correlated with the specific interactions that were perturbed. Moreover, we investigated mutations at the interface of protein-nucleotide interactions and observed an unexpected number of missense mutations but not silent mutations occurring within DNA and RNA binding sites. Finally, we provide a resource of 3,072 PPI interfaces ranked according to their mutation rates. Analysis of this list highlights 282 novel candidate cancer

  10. MLH1 constitutional and somatic methylation in patients with MLH1 negative tumors fulfilling the revised Bethesda criteria

    PubMed Central

    Crucianelli, Francesca; Tricarico, Rossella; Turchetti, Daniela; Gorelli, Greta; Gensini, Francesca; Sestini, Roberta; Giunti, Laura; Pedroni, Monica; Ponz de Leon, Maurizio; Civitelli, Serenella; Genuardi, Maurizio

    2014-01-01

    Lynch syndrome (LS) is a tumor predisposing condition caused by constitutional defects in genes coding for components of the mismatch repair (MMR) apparatus. While hypermethylation of the promoter of the MMR gene MLH1 occurs in about 15% of colorectal cancer samples, it has also been observed as a constitutional alteration, in the absence of DNA sequence mutations, in a small number of LS patients. In order to obtain further insights on the phenotypic characteristics of MLH1 epimutation carriers, we investigated the somatic and constitutional MLH1 methylation status of 14 unrelated subjects with a suspicion of LS who were negative for MMR gene constitutional mutations and whose tumors did not express the MLH1 protein. A novel case of constitutional MLH1 epimutation was identified. This patient was affected with multiple primary tumors, including breast cancer, diagnosed starting from the age of 55 y. Investigation of her offspring by allele specific expression revealed that the epimutation was not stable across generations. We also found MLH1 hypermethylation in cancer samples from 4 additional patients who did not have evidence of constitutional defects. These patients had some characteristics of LS, namely early age at onset and/or positive family history, raising the possibility of genetic influences in the establishment of somatic MLH1 methylation. PMID:25437057

  11. Dominant missense mutations in ABCC9 cause Cantú syndrome.

    PubMed

    Harakalova, Magdalena; van Harssel, Jeske J T; Terhal, Paulien A; van Lieshout, Stef; Duran, Karen; Renkens, Ivo; Amor, David J; Wilson, Louise C; Kirk, Edwin P; Turner, Claire L S; Shears, Debbie; Garcia-Minaur, Sixto; Lees, Melissa M; Ross, Alison; Venselaar, Hanka; Vriend, Gert; Takanari, Hiroki; Rook, Martin B; van der Heyden, Marcel A G; Asselbergs, Folkert W; Breur, Hans M; Swinkels, Marielle E; Scurr, Ingrid J; Smithson, Sarah F; Knoers, Nine V; van der Smagt, Jasper J; Nijman, Isaac J; Kloosterman, Wigard P; van Haelst, Mieke M; van Haaften, Gijs; Cuppen, Edwin

    2012-05-18

    Cantú syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the 16 individuals with Cantú syndrome examined. The ABCC9 protein is part of an ATP-dependent potassium (K(ATP)) channel that couples the metabolic state of a cell with its electrical activity. All mutations altered amino acids in or close to the transmembrane domains of ABCC9. Using electrophysiological measurements, we show that mutations in ABCC9 reduce the ATP-mediated potassium channel inhibition, resulting in channel opening. Moreover, similarities between the phenotype of individuals with Cantú syndrome and side effects from the K(ATP) channel agonist minoxidil indicate that the mutations in ABCC9 result in channel opening. Given the availability of ABCC9 antagonists, our findings may have direct implications for the treatment of individuals with Cantú syndrome.

  12. The mismatch repair and meiotic recombination endonuclease Mlh1-Mlh3 is activated by polymer formation and can cleave DNA substrates in trans

    PubMed Central

    Manhart, Carol M.; Ni, Xiaodan; White, Martin A.; Ortega, Joaquin; Surtees, Jennifer A.

    2017-01-01

    Crossing over between homologs is initiated in meiotic prophase by the formation of DNA double-strand breaks that occur throughout the genome. In the major interference-responsive crossover pathway in baker’s yeast, these breaks are resected to form 3' single-strand tails that participate in a homology search, ultimately forming double Holliday junctions (dHJs) that primarily include both homologs. These dHJs are resolved by endonuclease activity to form exclusively crossovers, which are critical for proper homolog segregation in Meiosis I. Recent genetic, biochemical, and molecular studies in yeast are consistent with the hypothesis of Mlh1-Mlh3 DNA mismatch repair complex acting as the major endonuclease activity that resolves dHJs into crossovers. However, the mechanism by which the Mlh1-Mlh3 endonuclease is activated is unknown. Here, we provide evidence that Mlh1-Mlh3 does not behave like a structure-specific endonuclease but forms polymers required to generate nicks in DNA. This conclusion is supported by DNA binding studies performed with different-sized substrates that contain or lack polymerization barriers and endonuclease assays performed with varying ratios of endonuclease-deficient and endonuclease-proficient Mlh1-Mlh3. In addition, Mlh1-Mlh3 can generate religatable double-strand breaks and form an active nucleoprotein complex that can nick DNA substrates in trans. Together these observations argue that Mlh1-Mlh3 may not act like a canonical, RuvC-like Holliday junction resolvase and support a novel model in which Mlh1-Mlh3 is loaded onto DNA to form an activated polymer that cleaves DNA. PMID:28453523

  13. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis

    PubMed Central

    Ichikawa, Shoji; Imel, Erik A.; Kreiter, Mary L.; Yu, Xijie; Mackenzie, Donald S.; Sorenson, Andrea H.; Goetz, Regina; Mohammadi, Moosa; White, Kenneth E.; Econs, Michael J.

    2007-01-01

    Familial tumoral calcinosis is characterized by ectopic calcifications and hyperphosphatemia due to inactivating mutations in FGF23 or UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3). Herein we report a homozygous missense mutation (H193R) in the KLOTHO (KL) gene of a 13-year-old girl who presented with severe tumoral calcinosis with dural and carotid artery calcifications. This patient exhibited defects in mineral ion homeostasis with marked hyperphosphatemia and hypercalcemia as well as elevated serum levels of parathyroid hormone and FGF23. Mapping of H193R mutation onto the crystal structure of myrosinase, a plant homolog of KL, revealed that this histidine residue was at the base of the deep catalytic cleft and mutation of this histidine to arginine should destabilize the putative glycosidase domain (KL1) of KL, thereby attenuating production of membrane-bound and secreted KL. Indeed, compared with wild-type KL, expression and secretion of H193R KL were markedly reduced in vitro, resulting in diminished ability of FGF23 to signal via its cognate FGF receptors. Taken together, our findings provide what we believe to be the first evidence that loss-of-function mutations in human KL impair FGF23 bioactivity, underscoring the essential role of KL in FGF23-mediated phosphate and vitamin D homeostasis in humans. PMID:17710231

  14. Mouse models of two missense mutations in actin-binding domain 1 of dystrophin associated with Duchenne or Becker muscular dystrophy.

    PubMed

    McCourt, Jackie L; Talsness, Dana M; Lindsay, Angus; Arpke, Robert W; Chatterton, Paul D; Nelson, D'anna M; Chamberlain, Christopher M; Olthoff, John T; Belanto, Joseph J; McCourt, Preston M; Kyba, Michael; Lowe, Dawn A; Ervasti, James M

    2018-02-01

    Missense mutations in the dystrophin protein can cause Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) through an undefined pathomechanism. In vitro studies suggest that missense mutations in the N-terminal actin-binding domain (ABD1) cause protein instability, and cultured myoblast studies reveal decreased expression levels that can be restored to wild-type with proteasome inhibitors. To further elucidate the pathophysiology of missense dystrophin in vivo, we generated two transgenic mdx mouse lines expressing L54R or L172H mutant dystrophin, which correspond to missense mutations identified in human patients with DMD or BMD, respectively. Our biochemical, histologic and physiologic analysis of the L54R and L172H mice show decreased levels of dystrophin which are proportional to the phenotypic severity. Proteasome inhibitors were ineffective in both the L54R and L172H mice, yet mice homozygous for the L172H transgene were able to express even higher levels of dystrophin which caused further improvements in muscle histology and physiology. Given that missense dystrophin is likely being degraded by the proteasome but whole body proteasome inhibition was not possible, we screened for ubiquitin-conjugating enzymes involved in targeting dystrophin to the proteasome. A myoblast cell line expressing L54R mutant dystrophin was screened with an siRNA library targeting E1, E2 and E3 ligases which identified Amn1, FBXO33, Zfand5 and Trim75. Our study establishes new mouse models of dystrophinopathy and identifies candidate E3 ligases that may specifically regulate dystrophin protein turnover in vivo. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. A new missense mutation in the BCKDHB gene causes the classic form of maple syrup urine disease (MSUD).

    PubMed

    Miryounesi, Mohammad; Ghafouri-Fard, Soudeh; Goodarzi, Hamedreza; Fardaei, Majid

    2015-05-01

    Maple syrup urine disease (MSUD) is an autosomal recessive metabolic disease caused by mutations in the BCKDHA, BCKDHB, DBT and DLD genes, which encode the E1α, E1β, E2 and E3 subunits of the branched chain α ketoacid dehydrogenase (BCKD) complex, respectively. This complex is involved in the metabolism of branched-chain amino acids. In this study, we analyzed the DNA sequences of BCKDHA and BCKDHB genes in an infant who suffered from MSUD and died at the age of 6 months. We found a new missense mutation in exon 5 of BCKDHB gene (c.508C>T). The heterozygosity of the parents for the mentioned nucleotide change was confirmed by direct sequence analysis of the corresponding segment. Another missense mutation has been found in the same codon previously and shown by in silico analyses to be deleterious. This report provides further evidence that this amino acid change can cause classic MSUD.

  16. Not all neuroligin 3 and 4X missense variants lead to significant functional inactivation.

    PubMed

    Xu, Xiaojuan; Hu, Zhengmao; Zhang, Lusi; Liu, Hongfang; Cheng, Yuemei; Xia, Kun; Zhang, Xuehong

    2017-09-01

    Neuroligins are postsynaptic cell adhesion molecules that interact with neurexins to regulate the fine balance between excitation and inhibition of synapses. Recently, accumulating evidence, involving mutation analysis, cellular assays, and mouse models, has suggested that neuroligin (NLGN) mutations affect synapse maturation and function. Previously, four missense variations [p.G426S (NLGN3), p.G84R (NLGN4X), p.Q162K (NLGN4X), and p.A283T (NLGN4X)] in four different unrelated patients have been identified by PCR and direct sequencing. In this study, we analyzed the functional effect of these missense variations by in vitro experiment via the stable HEK293 cells expressing wild-type and mutant neuroligin. We found that the four mutations did not significantly impair the expression of neuroligin 3 and neuroligin 4X, and also did not measurably inhibit the neurexin 1-neuroligin interaction. These variants might play a modest role in the pathogenesis of autism or might simply be unreported infrequent polymorphisms. Our data suggest that these four previously described neuroligin mutations are not primary risk factors for autism.

  17. CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Cav3.2 T-type calcium channel activity and reticular thalamic neuron firing.

    PubMed

    Rzhepetskyy, Yuriy; Lazniewska, Joanna; Blesneac, Iulia; Pamphlett, Roger; Weiss, Norbert

    2016-11-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. In a recent study by Steinberg and colleagues, 2 recessive missense mutations were identified in the Cav3.2 T-type calcium channel gene (CACNA1H), in a family with an affected proband (early onset, long duration ALS) and 2 unaffected parents. We have introduced and functionally characterized these mutations using transiently expressed human Cav3.2 channels in tsA-201 cells. Both of these mutations produced mild but significant changes on T-type channel activity that are consistent with a loss of channel function. Computer modeling in thalamic reticular neurons suggested that these mutations result in decreased neuronal excitability of thalamic structures. Taken together, these findings implicate CACNA1H as a susceptibility gene in amyotrophic lateral sclerosis.

  18. The first missense mutation of NHS gene in a Tunisian family with clinical features of NHS syndrome including cardiac anomaly

    PubMed Central

    Chograni, Manèl; Rejeb, Imen; Jemaa, Lamia Ben; Châabouni, Myriam; Bouhamed, Habiba Chaabouni

    2011-01-01

    Nance-Horan Syndrome (NHS) or X-linked cataract-dental syndrome is a disease of unknown gene action mechanism, characterized by congenital cataract, dental anomalies, dysmorphic features and, in some cases, mental retardation. We performed linkage analysis in a Tunisian family with NHS in which affected males and obligate carrier female share a common haplotype in the Xp22.32-p11.21 region that contains the NHS gene. Direct sequencing of NHS coding exons and flanking intronic sequences allowed us to identify the first missense mutation (P551S) and a reported SNP-polymorphism (L1319F) in exon 6, a reported UTR–SNP (c.7422 C>T) and a novel one (c.8239 T>A) in exon 8. Both variations P551S and c.8239 T>A segregate with NHS phenotype in this family. Although truncations, frame-shift and copy number variants have been reported in this gene, no missense mutations have been found to segregate previously. This is the first report of a missense NHS mutation causing NHS phenotype (including cardiac defects). We hypothesize also that the non-reported UTR–SNP of the exon 8 (3′-UTR) is specific to the Tunisian population. PMID:21559051

  19. The first missense mutation of NHS gene in a Tunisian family with clinical features of NHS syndrome including cardiac anomaly.

    PubMed

    Chograni, Manèl; Rejeb, Imen; Jemaa, Lamia Ben; Châabouni, Myriam; Bouhamed, Habiba Chaabouni

    2011-08-01

    Nance-Horan Syndrome (NHS) or X-linked cataract-dental syndrome is a disease of unknown gene action mechanism, characterized by congenital cataract, dental anomalies, dysmorphic features and, in some cases, mental retardation. We performed linkage analysis in a Tunisian family with NHS in which affected males and obligate carrier female share a common haplotype in the Xp22.32-p11.21 region that contains the NHS gene. Direct sequencing of NHS coding exons and flanking intronic sequences allowed us to identify the first missense mutation (P551S) and a reported SNP-polymorphism (L1319F) in exon 6, a reported UTR-SNP (c.7422 C>T) and a novel one (c.8239 T>A) in exon 8. Both variations P551S and c.8239 T>A segregate with NHS phenotype in this family. Although truncations, frame-shift and copy number variants have been reported in this gene, no missense mutations have been found to segregate previously. This is the first report of a missense NHS mutation causing NHS phenotype (including cardiac defects). We hypothesize also that the non-reported UTR-SNP of the exon 8 (3'-UTR) is specific to the Tunisian population.

  20. Lynch syndrome associated with two MLH1 promoter variants and allelic imbalance of MLH1 expression.

    PubMed

    Hesson, Luke B; Packham, Deborah; Kwok, Chau-To; Nunez, Andrea C; Ng, Benedict; Schmidt, Christa; Fields, Michael; Wong, Jason W H; Sloane, Mathew A; Ward, Robyn L

    2015-06-01

    Lynch syndrome is a hereditary cancer syndrome caused by a constitutional mutation in one of the mismatch repair genes. The implementation of predictive testing and targeted preventative surveillance is hindered by the frequent finding of sequence variants of uncertain significance in these genes. We aimed to determine the pathogenicity of previously reported variants (c.-28A>G and c.-7C>T) within the MLH1 5'untranslated region (UTR) in two individuals from unrelated suspected Lynch syndrome families. We investigated whether these variants were associated with other pathogenic alterations using targeted high-throughput sequencing of the MLH1 locus. We also determined their relationship to gene expression and epigenetic alterations at the promoter. Sequencing revealed that the c.-28A>G and c.-7C>T variants were the only potentially pathogenic alterations within the MLH1 gene. In both individuals, the levels of transcription from the variant allele were reduced to 50% compared with the wild-type allele. Partial loss of expression occurred in the absence of constitutional epigenetic alterations within the MLH1 promoter. We propose that these variants may be pathogenic due to constitutional partial loss of MLH1 expression, and that this may be associated with intermediate penetrance of a Lynch syndrome phenotype. Our findings provide further evidence of the potential importance of noncoding variants in the MLH1 5'UTR in the pathogenesis of Lynch syndrome. © 2015 The Authors. **Human Mutation published by Wiley Periodicals, Inc.

  1. Phenotype-genotype analysis of cryopyrin-associated periodic syndromes (CAPS): description of a rare non-exon 3 and a novel CIAS1 missense mutation.

    PubMed

    Jesus, Adriana A; Silva, Clovis A; Segundo, Gesmar R; Aksentijevich, Ivona; Fujihira, Erika; Watanabe, Mônica; Carneiro-Sampaio, Magda; Duarte, Alberto J S; Oliveira, João B

    2008-03-01

    We describe in this paper the phenotype-genotype analysis of a Brazilian cohort of patients with cryopyrin-associated periodic syndromes (CAPS). Patient 1 presented with an urticarial rash and recurrent fever exacerbated by cold weather, arthritis, and anterior uveitis, thus, receiving a clinical diagnosis of familial cold autoinflammatory syndrome. CIAS1 sequencing identified the T436I mutation, previously associated to a clinical phenotype of chronic infantile neurological cutaneous and articular/neonatal onset multisystem inflammatory disease. Patient 2 developed a papular exanthema with daily fever shortly after birth, frontal bossing, patellae enlargement, and cognitive and motor impairments. Sequencing identified the exceedingly rare G755R CIAS1 mutation in exon 4. Patient 3 developed skin rash and articular symptoms 6 h after birth, followed by aseptic meningitis. He was found to have the novel C148Y missense mutation in CIAS1. This report expands the spectrum of CIAS1 mutations associated to clinical disease, suggests that the same mutation can be associated with different clinical syndromes, and supports the evidence that CAPS patients should always be screened for mutations outside exon 3.

  2. MLH1 function is context dependent in colorectal cancers.

    PubMed

    Jackson, Thomas; Ahmed, Mohamed A H; Seth, Rashmi; Jackson, Darryl; Ilyas, Mohammad

    2011-02-01

    Loss of mismatch repair (MMR) function in sporadic colorectal cancer occurs most commonly because of inactivation of MLH1, and it causes an increase in mutation rate. However, it is uncertain whether loss of MMR alters any other cellular function. The aim of this study was to investigate the role of MMR in regulating cell numbers and apoptosis. MLH1 protein levels were manipulated by (a) cloning and forcibly expressing MLH1 in HCT116 (a cell line with MLH1 mutation) and RKO (a cell line with MLH1 silencing), and (b) knockdown of MLH1 in SW480 (a cell line with normal MMR function). Cell number and apoptotic bodies were measured in standard and 'high stress' (ie, after staurosporine exposure) conditions. Restoration of MLH1 function in HCT116 and RKO resulted in increased cell number (p<0.001 for both cell lines) and decreased numbers of floating apoptotic bodies (p<0.01 in HCT116) in standard culture conditions. However, on induction of apoptotic stress, restoration of MLH1 resulted in reduced cell numbers (p<0.005). Knockdown of MLH1 in SW480 had no effect on cell numbers or apoptosis. MLH1 function may be context dependent: in 'low stress' conditions it may act to inhibit apoptosis, while in 'high stress' conditions it may induce apoptosis. However, within the context of chromosomal instability, the effect of MLH1 on cell numbers is limited.

  3. Mlh2 Is an Accessory Factor for DNA Mismatch Repair in Saccharomyces cerevisiae

    PubMed Central

    Srivatsan, Anjana; Bowen, Nikki; Gries, Kerstin; Desai, Arshad; Putnam, Christopher D.; Kolodner, Richard D.

    2014-01-01

    In Saccharomyces cerevisiae, the essential mismatch repair (MMR) endonuclease Mlh1-Pms1 forms foci promoted by Msh2-Msh6 or Msh2-Msh3 in response to mispaired bases. Here we analyzed the Mlh1-Mlh2 complex, whose role in MMR has been unclear. Mlh1-Mlh2 formed foci that often colocalized with and had a longer lifetime than Mlh1-Pms1 foci. Mlh1-Mlh2 foci were similar to Mlh1-Pms1 foci: they required mispair recognition by Msh2-Msh6, increased in response to increased mispairs or downstream defects in MMR, and formed after induction of DNA damage by phleomycin but not double-stranded breaks by I-SceI. Mlh1-Mlh2 could be recruited to mispair-containing DNA in vitro by either Msh2-Msh6 or Msh2-Msh3. Deletion of MLH2 caused a synergistic increase in mutation rate in combination with deletion of MSH6 or reduced expression of Pms1. Phylogenetic analysis demonstrated that the S. cerevisiae Mlh2 protein and the mammalian PMS1 protein are homologs. These results support a hypothesis that Mlh1-Mlh2 is a non-essential accessory factor that acts to enhance the activity of Mlh1-Pms1. PMID:24811092

  4. Missense mutation in GRN gene affecting RNA splicing and plasma progranulin level in a family affected by frontotemporal lobar degeneration.

    PubMed

    Luzzi, Simona; Colleoni, Lara; Corbetta, Paola; Baldinelli, Sara; Fiori, Chiara; Girelli, Francesca; Silvestrini, Mauro; Caroppo, Paola; Giaccone, Giorgio; Tagliavini, Fabrizio; Rossi, Giacomina

    2017-06-01

    Gene coding for progranulin, GRN, is a major gene linked to frontotemporal lobar degeneration. While most of pathogenic GRN mutations are null mutations leading to haploinsufficiency, GRN missense mutations do not have an obvious pathogenicity, and only a few have been revealed to act through different pathogenetic mechanisms, such as cytoplasmic missorting, protein degradation, and abnormal cleavage by elastase. The aim of this study was to disclose the pathogenetic mechanisms of the GRN A199V missense mutation, which was previously reported not to alter physiological progranulin features but was associated with a reduced plasma progranulin level. After investigating the family pedigree, we performed genetic and biochemical analysis on its members and performed RNA expression studies. We found that the mutation segregates with the disease and discovered that its pathogenic feature is the alteration of GRN mRNA splicing, actually leading to haploinsufficiency. Thus, when facing with a missense GRN mutation, its pathogenetic effects should be investigated, especially if associated with low plasma progranulin levels, to determine its nature of either benign polymorphism or pathogenic mutation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Low incidence of ADAMTS13 missense mutation R1060W in adult Egyptian patients with thrombotic thrombocytopenic purpura.

    PubMed

    El Sissy, Maha H; El Hafez, A Abd; El Sissy, A H

    2014-01-01

    Thrombotic thrombocytopenic purpura (TTP) is an acute life-threatening disorder, characterized by thrombocytopenia, microangiopathic hemolytic anemia, widespread microvascular thrombi and consequent clinical sequelae due to ischemic organ damage. TTP is most commonly associated with deficiency or inhibition of von Willebrand factor-cleaving protease (ADAMTS13) activity. ADAMTS13 mutations and polymorphisms have been reported in childhood congenital TTP, but their significance in adult-onset TTP is still under investigation. Two mutations stand out: the single base insertion 4143insA in exon 29 and the missense mutation R1060W in exon 24 have both been observed in several unrelated families, mainly in adult-onset TTP, and over a wide geographic area. Our objective in this study is to identify the prevalence of R1060W missense mutation in exon 24 ADAMTS13 in a sample of adult Egyptian TTP patients. Thirty-one adult-onset TTP patients were included in this study, with a male/female ratio of 1:4. Twenty-six cases (84%) presented with acute idiopathic TTP, 2 cases were drug abusers and 3 cases were pregnant. None of the study cases provided a history of suspicious TTP symptoms during childhood (2 cases gave a history of episodes of thrombocytopenia during childhood). All cases showed statistically significant decreased ADAMTS13 activity compared to normal controls (p < 0.001). The study revealed a high statistical difference regarding the ADAMTS13 inhibitor level in primary versus secondary cases (p = 0.003). None of our Egyptian cases or of the healthy normal controls are positive for exon 24 missense mutation. Larger studies and regional and national TTP registries are recommended. © 2013 S. Karger AG, Basel.

  6. Prediction of phenotypes of missense mutations in human proteins from biological assemblies.

    PubMed

    Wei, Qiong; Xu, Qifang; Dunbrack, Roland L

    2013-02-01

    Single nucleotide polymorphisms (SNPs) are the most frequent variation in the human genome. Nonsynonymous SNPs that lead to missense mutations can be neutral or deleterious, and several computational methods have been presented that predict the phenotype of human missense mutations. These methods use sequence-based and structure-based features in various combinations, relying on different statistical distributions of these features for deleterious and neutral mutations. One structure-based feature that has not been studied significantly is the accessible surface area within biologically relevant oligomeric assemblies. These assemblies are different from the crystallographic asymmetric unit for more than half of X-ray crystal structures. We find that mutations in the core of proteins or in the interfaces in biological assemblies are significantly more likely to be disease-associated than those on the surface of the biological assemblies. For structures with more than one protein in the biological assembly (whether the same sequence or different), we find the accessible surface area from biological assemblies provides a statistically significant improvement in prediction over the accessible surface area of monomers from protein crystal structures (P = 6e-5). When adding this information to sequence-based features such as the difference between wildtype and mutant position-specific profile scores, the improvement from biological assemblies is statistically significant but much smaller (P = 0.018). Combining this information with sequence-based features in a support vector machine leads to 82% accuracy on a balanced dataset of 50% disease-associated mutations from SwissVar and 50% neutral mutations from human/primate sequence differences in orthologous proteins. Copyright © 2012 Wiley Periodicals, Inc.

  7. Report of a patient with a constitutional missense mutation in SMARCB1, Coffin-Siris phenotype, and schwannomatosis.

    PubMed

    Gossai, Nathan; Biegel, Jaclyn A; Messiaen, Ludwine; Berry, Susan A; Moertel, Christopher L

    2015-12-01

    We report a patient with a constitutional missense mutation in SMARCB1, Coffin-Siris Syndrome (CSS), and schwannomatosis. CSS is a rare congenital syndrome with characteristic clinical findings. This thirty-three-year-old man was diagnosed early in life with the constellation of moderate intellectual disability, hypotonia, mild microcephaly, coarse facies, wide mouth with full lips, hypoplasia of the digits, and general hirsutism. At age 26, he was found to have schwannomatosis after presenting with acute spinal cord compression. Blood and tissue analysis of multiple subsequent schwannoma resections revealed a germline missense mutation of SMARCB1, acquired loss of 22q including SMARCB1 and NF2 and mutation of the remaining NF2 wild-type allele-thus completing the four-hit, three-event mechanism associated with schwannomatosis. Variations in five genes have been associated with the Coffin-Siris phenotype: ARID1A, ARID1B, SMARCA4, SMARCB1, and SMARCE1. Of these genes, SMARCB1 has a well-established association with schwannomatosis and malignancy. This is the first report of a patient with a constitutional missense mutation of SMARCB1 resulting in CSS and subsequent development of schwannomatosis. This finding demonstrates that a SMARCB1 mutation may be the initial "hit" (constitutional) for a genetic disorder with subsequent risk of developing schwannomas and other malignancies, and raises the possibility that other patients with switch/sucrose non-fermenting (SWI/SNF) mutations may be at increased risk for tumors. © 2015 Wiley Periodicals, Inc.

  8. Usher syndrome type 1 due to missense mutations on both CDH23 alleles: investigation of mRNA splicing.

    PubMed

    Becirovic, Elvir; Ebermann, Inga; Nagy, Ditta; Zrenner, Eberhart; Seeliger, Mathias Wolfgang; Bolz, Hanno Jörn

    2008-03-01

    Usher syndrome (USH) is an autosomal recessive condition characterized by sensorineural hearing loss, vestibular dysfunction, and visual impairment due to retinitis pigmentosa. Truncating mutations in the cadherin-23 gene (CDH23) result in Usher syndrome type 1D (USH1D), whereas missense mutations affecting strongly conserved motifs of the CDH23 protein cause non-syndromic deafness (DFNB12). Four missense mutations constitute an exception from this genotype-phenotype correlation: they have been described in USH1 patients in homozygous state. Using a minigene assay, we have investigated these changes (c.1450G>C, p.A484P; c.3625A>G, p.T1209A; c.4520G>A, p.R1507Q; and c.5237G>A, p.R1746Q) for a possible impact on mRNA splicing which could explain the syndromic phenotype. While in silico analysis suggested impairment of splicing in all four cases, we found aberrant splicing for only one mutation, p.R1746Q. However, splicing was normal in case of p.A484P, p.T1209A and p.R1507Q. These three latter CDH23 missense mutations could interfere with functions of both, the auditory and the visual system. Alternatively, they could represent rare non-pathogenic polymorphisms.

  9. A new de novo missense mutation in MYH2 expands clinical and genetic findings in hereditary myosin myopathies.

    PubMed

    D'Amico, A; Fattori, F; Bellacchio, E; Catteruccia, M; Servidei, S; Bertini, E

    2013-05-01

    Congenital myopathy related to mutations in myosin MyHC IIa gene (MYH2) is a rare neuromuscular disease. A single dominant missense mutation has been reported so far in a family in which the affected members had congenital joint contractures at birth, external ophthalmoplegia and proximal muscle weakness. Afterward only additional 4 recessive mutations have been identified in 5 patients presenting a mild non-progressive early-onset myopathy associated with ophthalmoparesis. We report a new de novo MYH2 missense mutation in a baby affected by a congenital myopathy characterized by severe dysphagia, respiratory distress at birth and external ophthalmoplegia. We describe clinical, histopathological and muscle imaging findings expanding the clinical and genetic spectrum of MYH2-related myopathy. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Distinct features between MLH1-methylated and unmethylated colorectal carcinomas with the CpG island methylator phenotype: implications in the serrated neoplasia pathway

    PubMed Central

    Cho, Nam-Yun; Kang, Gyeong Hoon

    2016-01-01

    The presence or absence of MLH1 methylation may critically affect the heterogeneity of colorectal carcinoma (CRC) with the CpG island methylator phenotype (CIMP). Here, we investigated the differential characteristics of CIMP-high (CIMP-H) CRCs according to MLH1 methylation status. To further confirm the MLH1-dependent features in CIMP-H CRC, an independent analysis was performed using data from The Cancer Genome Atlas (TCGA). In our CIMP-H CRC samples, MLH1-methylated tumors were characterized by older patient age, proximal colonic location, mucinous histology, intense lymphoid reactions, RUNX3/SOCS1 promoter methylation, BRAF mutations, and microsatellite instability-high (MSI-H) status. By contrast, MLH1-unmethylated tumors were associated with earlier age of onset, increased distal colorectal localization, adverse pathologic features, and KRAS mutations. In the TCGA dataset, the MLH1-silenced CIMP-H CRC demonstrated proximal location, MSI-H status, hypermutated phenotype, and frequent BRAF mutations, but the MLH1-non-silenced CIMP-H CRC was significantly associated with high frequencies of KRAS and APC mutations. In conclusion, the differential nature of CIMP-H CRCs depends primarily on the MLH1 methylation status. Based on the current knowledge, the sessile serrated adenoma/polyp may be the major precursor of MLH1-methylated CIMP-H CRCs, whereas MLH1-unmethylated CIMP-H CRCs may develop predominantly from KRAS-mutated traditional serrated adenomas and less commonly from BRAF-mutated traditional serrated adenomas and/or sessile serrated adenomas/polyps. PMID:26883113

  11. Distinct features between MLH1-methylated and unmethylated colorectal carcinomas with the CpG island methylator phenotype: implications in the serrated neoplasia pathway.

    PubMed

    Kim, Jung Ho; Bae, Jeong Mo; Cho, Nam-Yun; Kang, Gyeong Hoon

    2016-03-22

    The presence or absence of MLH1 methylation may critically affect the heterogeneity of colorectal carcinoma (CRC) with the CpG island methylator phenotype (CIMP). Here, we investigated the differential characteristics of CIMP-high (CIMP-H) CRCs according to MLH1 methylation status. To further confirm the MLH1-dependent features in CIMP-H CRC, an independent analysis was performed using data from The Cancer Genome Atlas (TCGA). In our CIMP-H CRC samples, MLH1-methylated tumors were characterized by older patient age, proximal colonic location, mucinous histology, intense lymphoid reactions, RUNX3/SOCS1 promoter methylation, BRAF mutations, and microsatellite instability-high (MSI-H) status. By contrast, MLH1-unmethylated tumors were associated with earlier age of onset, increased distal colorectal localization, adverse pathologic features, and KRAS mutations. In the TCGA dataset, the MLH1-silenced CIMP-H CRC demonstrated proximal location, MSI-H status, hypermutated phenotype, and frequent BRAF mutations, but the MLH1-non-silenced CIMP-H CRC was significantly associated with high frequencies of KRAS and APC mutations. In conclusion, the differential nature of CIMP-H CRCs depends primarily on the MLH1 methylation status. Based on the current knowledge, the sessile serrated adenoma/polyp may be the major precursor of MLH1-methylated CIMP-H CRCs, whereas MLH1-unmethylated CIMP-H CRCs may develop predominantly from KRAS-mutated traditional serrated adenomas and less commonly from BRAF-mutated traditional serrated adenomas and/or sessile serrated adenomas/polyps.

  12. Tumour MLH1 promoter region methylation testing is an effective prescreen for Lynch Syndrome (HNPCC).

    PubMed

    Newton, K; Jorgensen, N M; Wallace, A J; Buchanan, D D; Lalloo, F; McMahon, R F T; Hill, J; Evans, D G

    2014-12-01

    Lynch syndrome (LS) patients have DNA mismatch repair deficiency and up to 80% lifetime risk of colorectal cancer (CRC). Screening of mutation carriers reduces CRC incidence and mortality. Selection for constitutional mutation testing relies on family history (Amsterdam and Bethesda Guidelines) and tumour-derived biomarkers. Initial biomarker analysis uses mismatch repair protein immunohistochemistry and microsatellite instability. Abnormalities in either identify mismatch repair deficiency but do not differentiate sporadic epigenetic defects, due to MLH1 promoter region methylation (13% of CRCs) from LS (4% of CRCs). A diagnostic biomarker capable of making this distinction would be valuable. This study compared two biomarkers in tumours with mismatch repair deficiency; quantification of methylation of the MLH1 promoter region using a novel assay and BRAF c.1799T>A, p.(Val600Glu) mutation status in the identification of constitutional mutations. Tumour DNA was extracted (formalin fixed, paraffin embedded, FFPE tissue) and pyrosequencing used to test for MLH1 promoter methylation and presence of the BRAF c.1799T>A, p.(Val600Glu) mutation 71 CRCs from individuals with pathogenic MLH1 mutations and 73 CRCs with sporadic MLH1 loss. Specificity and sensitivity was compared. Unmethylated MLH1 promoter: sensitivity 94.4% (95% CI 86.2% to 98.4%), specificity 87.7% (95% CI 77.9% to 94.2%), Wild-type BRAF (codon 600): sensitivity 65.8% (95% CI 53.7% to 76.5%), specificity 98.6% (95% CI 92.4% to 100.0%) for the identification of those with pathogenic MLH1 mutations. Quantitative MLH1 promoter region methylation using pyrosequencing is superior to BRAF codon 600 mutation status in identifying constitutional mutations in mismatch repair deficient tumours. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Severe Clinical Course in a Patient with Congenital Amegakaryocytic Thrombocytopenia Due to a Missense Mutation of the c-MPL Gene.

    PubMed

    Ok Bozkaya, İkbal; Yaralı, Neşe; Işık, Pamir; Ünsal Saç, Rukiye; Tavil, Betül; Tunç, Bahattin

    2015-06-01

    Congenital amegakaryocytic thrombocytopenia (CAMT) generally begins at birth with severe thrombocytopenia and progresses to pancytopenia. It is caused by mutations in the thrombopoietin receptor gene, the myeloproliferative leukemia virus oncogene (c-MPL). The association between CAMT and c-MPL mutation type has been reported in the literature. Patients with CAMT have been categorized according to their clinical symptoms caused by different mutations. Missense mutations of c-MPL have been classified as type II and these patients have delayed onset of bone marrow failure compared to type I patients. Here we present a girl with severe clinical course of CAMT II having a missense mutation in exon 4 of the c-MPL gene who was admitted to our hospital with intracranial hemorrhage during the newborn period.

  14. Atypical Clinical Presentation of Xeroderma Pigmentosum in a Patient Harboring a Novel Missense Mutation in the XPC Gene: The Importance of Clinical Suspicion.

    PubMed

    Meneses, Marina; Chavez-Bourgeois, Marion; Badenas, Celia; Villablanca, Salvador; Aguilera, Paula; Bennàssar, Antoni; Alos, Llucia; Puig, Susana; Malvehy, Josep; Carrera, Cristina

    2015-01-01

    Xeroderma pigmentosum (XP) is a genodermatosis caused by abnormal DNA repair. XP complementation group C (XPC) is the most frequent type in Mediterranean countries. We describe a case with a novel mutation in the XPC gene. A healthy Caucasian male patient was diagnosed with multiple primary melanomas. Digital follow-up and molecular studies were carried out. During digital follow-up 8 more additional melanomas were diagnosed. Molecular studies did not identify mutations in CDKN2A, CDK4 or MITF genes. Two heterozygous mutations in the XPC gene were detected: c.2287delC (p.Leu763Cysfs*4) frameshift and c.2212A>G (p.Thr738Ala) missense mutations. The p.Thr738Ala missense mutation has not been previously described. Missense mutations in the XPC gene may allow partial functionality that could explain this unusual late onset XP. Atypical clinical presentation of XPC could be misdiagnosed when genetic aberrations allow partial DNA repair capacity. © 2015 S. Karger AG, Basel.

  15. Involvement of ER Stress in Dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 Missense Mutations Shown by iPSC-Derived Oligodendrocytes

    PubMed Central

    Numasawa-Kuroiwa, Yuko; Okada, Yohei; Shibata, Shinsuke; Kishi, Noriyuki; Akamatsu, Wado; Shoji, Masanobu; Nakanishi, Atsushi; Oyama, Manabu; Osaka, Hitoshi; Inoue, Ken; Takahashi, Kazutoshi; Yamanaka, Shinya; Kosaki, Kenjiro; Takahashi, Takao; Okano, Hideyuki

    2014-01-01

    Summary Pelizaeus-Merzbacher disease (PMD) is a form of X-linked leukodystrophy caused by mutations in the proteolipid protein 1 (PLP1) gene. Although PLP1 proteins with missense mutations have been shown to accumulate in the rough endoplasmic reticulum (ER) in disease model animals and cell lines transfected with mutant PLP1 genes, the exact pathogenetic mechanism of PMD has not previously been clarified. In this study, we established induced pluripotent stem cells (iPSCs) from two PMD patients carrying missense mutation and differentiated them into oligodendrocytes in vitro. In the PMD iPSC-derived oligodendrocytes, mislocalization of mutant PLP1 proteins to the ER and an association between increased susceptibility to ER stress and increased numbers of apoptotic oligodendrocytes were observed. Moreover, electron microscopic analysis demonstrated drastically reduced myelin formation accompanied by abnormal ER morphology. Thus, this study demonstrates the involvement of ER stress in pathogenic dysmyelination in the oligodendrocytes of PMD patients with the PLP1 missense mutation. PMID:24936452

  16. Effect of CHEK2 missense variant I157T on the risk of breast cancer in carriers of other CHEK2 or BRCA1 mutations.

    PubMed

    Cybulski, C; Górski, B; Huzarski, T; Byrski, T; Gronwald, J; Debniak, T; Wokolorczyk, D; Jakubowska, A; Serrano-Fernández, P; Dork, T; Narod, S A; Lubinski, J

    2009-02-01

    Carriers of heterozygous mutations in CHEK2 or BRCA1 are at increased risk of breast cancer. These mutations are rare and a very small number of women in a population will carry two mutations. However, it is of interest to estimate the breast cancer risks associated with carrying two mutations because this information may be informative for genetic counsellors and may provide clues to the carcinogenic process. We genotyped 7782 Polish breast cancer patients and 6233 controls for seven founder mutations in BRCA1 and CHEK2. Odds ratios (OR) and 95% confidence intervals (CI) were estimated for the mutations, singly and in combination. Of the 7782 women with breast cancer, 1091 had one mutation (14.0%) and 37 had two mutations (0.5%). Compared to controls, the odds ratio for a BRCA1 mutation in isolation was 13.1 (95% CI 8.2 to 21). The odds ratio was smaller for BRCA1 mutation carriers who also carried a CHEK2 mutation (OR 6.6, 95% CI 1.5 to 29), but the difference was not statistically significant. In contrast, the odds ratio for women who carried two CHEK2 mutations (OR 3.9, 95% CI 1.5 to 10) was greater than that for women who carried one CHEK2 mutation (OR 1.9, 95% CI 1.6 to 2.1). The odds ratio for women who carried both a truncating mutation and the missense mutation in CHEK2 was 7.0 (95% CI 0.9 to 56) and was greater than for women who carried the truncating mutation alone (OR 3.3, 95% CI 2.4 to 4.3) or the missense mutation alone (OR 1.6, 95% CI 1.4 to 1.9), but the difference was not statistically significant. Our study suggests that the risk of breast cancer in carriers of a deleterious CHEK2 mutation is increased if the second allele is the I157T missense variant. However, the presence of a CHEK2 mutation in women with a BRCA1 mutation may not increase their risk beyond that of the BRCA1 mutation alone. These suggestive findings need to be verified in other studies.

  17. The Promiscuous sumA Missense Suppressor from Salmonella enterica Has an Intriguing Mechanism of Action

    PubMed Central

    Cole, Ashley E.; Hani, Fatmah M.; Altman, Ronni; Meservy, Megan; Roth, John R.; Altman, Elliot

    2017-01-01

    While most missense suppressors have very narrow specificities and only suppress the allele against which they were isolated, the sumA missense suppressor from Salmonella enterica serovar Typhimurium is a promiscuous or broad-acting missense suppressor that suppresses numerous missense mutants. The sumA missense suppressor was identified as a glyV tRNA Gly3(GAU/C) missense suppressor that can recognize GAU or GAC aspartic acid codons and insert a glycine amino acid instead of aspartic acid. In addition to rescuing missense mutants caused by glycine to aspartic acid changes as expected, sumA could also rescue a number of other missense mutants as well by changing a neighboring (contacting) aspartic acid to glycine, which compensated for the other amino acid change. Thus the ability of sumA to rescue numerous missense mutants was due in part to the large number of glycine codons in genes that can be mutated to an aspartic acid codon and in part to the general tolerability and/or preference for glycine amino acids in proteins. Because the glyV tRNA Gly3(GAU/C) missense suppressor has also been extensively characterized in Escherichia coli as the mutA mutator, we demonstrated that all gain-of-function mutants isolated in a glyV tRNA Gly3(GAU/C) missense suppressor are transferable to a wild-type background and thus the increased mutation rates, which occur in glyV tRNA Gly3(GAU/C) missense suppressors, are not due to the suppression of these mutants. PMID:27974497

  18. Determining the role of missense mutations in the POU domain of HNF1A that reduce the DNA-binding affinity: A computational approach

    PubMed Central

    P., Sneha; D., Thirumal Kumar; C., George Priya Doss; R., Siva; Zayed, Hatem

    2017-01-01

    Maturity-onset diabetes of the young type 3 (MODY3) is a non-ketotic form of diabetes associated with poor insulin secretion. Over the past years, several studies have reported the association of missense mutations in the Hepatocyte Nuclear Factor 1 Alpha (HNF1A) with MODY3. Missense mutations in the POU homeodomain (POUH) of HNF1A hinder binding to the DNA, thereby leading to a dysfunctional protein. Missense mutations of the HNF1A were retrieved from public databases and subjected to a three-step computational mutational analysis to identify the underlying mechanism. First, the pathogenicity and stability of the mutations were analyzed to determine whether they alter protein structure and function. Second, the sequence conservation and DNA-binding sites of the mutant positions were assessed; as HNF1A protein is a transcription factor. Finally, the biochemical properties of the biological system were validated using molecular dynamic simulations in Gromacs 4.6.3 package. Two arginine residues (131 and 203) in the HNF1A protein are highly conserved residues and contribute to the function of the protein. Furthermore, the R131W, R131Q, and R203C mutations were predicted to be highly deleterious by in silico tools and showed lower binding affinity with DNA when compared to the native protein using the molecular docking analysis. Triplicate runs of molecular dynamic (MD) simulations (50ns) revealed smaller changes in patterns of deviation, fluctuation, and compactness, in complexes containing the R131Q and R131W mutations, compared to complexes containing the R203C mutant complex. We observed reduction in the number of intermolecular hydrogen bonds, compactness, and electrostatic potential, as well as the loss of salt bridges, in the R203C mutant complex. Substitution of arginine with cysteine at position 203 decreases the affinity of the protein for DNA, thereby destabilizing the protein. Based on our current findings, the MD approach is an important tool for

  19. Genotype-Phenotype Correlation in NF1: Evidence for a More Severe Phenotype Associated with Missense Mutations Affecting NF1 Codons 844-848.

    PubMed

    Koczkowska, Magdalena; Chen, Yunjia; Callens, Tom; Gomes, Alicia; Sharp, Angela; Johnson, Sherrell; Hsiao, Meng-Chang; Chen, Zhenbin; Balasubramanian, Meena; Barnett, Christopher P; Becker, Troy A; Ben-Shachar, Shay; Bertola, Debora R; Blakeley, Jaishri O; Burkitt-Wright, Emma M M; Callaway, Alison; Crenshaw, Melissa; Cunha, Karin S; Cunningham, Mitch; D'Agostino, Maria D; Dahan, Karin; De Luca, Alessandro; Destrée, Anne; Dhamija, Radhika; Eoli, Marica; Evans, D Gareth R; Galvin-Parton, Patricia; George-Abraham, Jaya K; Gripp, Karen W; Guevara-Campos, Jose; Hanchard, Neil A; Hernández-Chico, Concepcion; Immken, LaDonna; Janssens, Sandra; Jones, Kristi J; Keena, Beth A; Kochhar, Aaina; Liebelt, Jan; Martir-Negron, Arelis; Mahoney, Maurice J; Maystadt, Isabelle; McDougall, Carey; McEntagart, Meriel; Mendelsohn, Nancy; Miller, David T; Mortier, Geert; Morton, Jenny; Pappas, John; Plotkin, Scott R; Pond, Dinel; Rosenbaum, Kenneth; Rubin, Karol; Russell, Laura; Rutledge, Lane S; Saletti, Veronica; Schonberg, Rhonda; Schreiber, Allison; Seidel, Meredith; Siqveland, Elizabeth; Stockton, David W; Trevisson, Eva; Ullrich, Nicole J; Upadhyaya, Meena; van Minkelen, Rick; Verhelst, Helene; Wallace, Margaret R; Yap, Yoon-Sim; Zackai, Elaine; Zonana, Jonathan; Zurcher, Vickie; Claes, Kathleen; Martin, Yolanda; Korf, Bruce R; Legius, Eric; Messiaen, Ludwine M

    2018-01-04

    Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000-3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons-Leu844, Cys845, Ala846, Leu847, and Gly848-located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844-848 exists and will be valuable in the management and genetic counseling of a significant number of individuals. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Identification and functional analysis of SOX10 missense mutations in different subtypes of Waardenburg syndrome.

    PubMed

    Chaoui, Asma; Watanabe, Yuli; Touraine, Renaud; Baral, Viviane; Goossens, Michel; Pingault, Veronique; Bondurand, Nadege

    2011-12-01

    Waardenburg syndrome (WS) is a rare disorder characterized by pigmentation defects and sensorineural deafness, classified into four clinical subtypes, WS1-S4. Whereas the absence of additional features characterizes WS2, association with Hirschsprung disease defines WS4. WS is genetically heterogeneous, with six genes already identified, including SOX10. About 50 heterozygous SOX10 mutations have been described in patients presenting with WS2 or WS4, with or without myelination defects of the peripheral and central nervous system (PCWH, Peripheral demyelinating neuropathy-Central dysmyelinating leukodystrophy-Waardenburg syndrome-Hirschsprung disease, or PCW, PCWH without HD). The majority are truncating mutations that most often remove the main functional domains of the protein. Only three missense mutations have been thus far reported. In the present study, novel SOX10 missense mutations were found in 11 patients and were examined for effects on SOX10 characteristics and functions. The mutations were associated with various phenotypes, ranging from WS2 to PCWH. All tested mutations were found to be deleterious. Some mutants presented with partial cytoplasmic redistribution, some lost their DNA-binding and/or transactivation capabilities on various tissue-specific target genes. Intriguingly, several mutants were redistributed in nuclear foci. Whether this phenomenon is a cause or a consequence of mutation-associated pathogenicity remains to be determined, but this observation could help to identify new SOX10 modes of action. © 2011 Wiley-Liss, Inc.

  1. A Novel Missense Mutation p.Gly162Glu of the Gene MYL2 Involved in Hypertrophic Cardiomyopathy: A Pedigree Analysis of a Proband.

    PubMed

    Renaudin, Pauline; Janin, Alexandre; Millat, Gilles; Chevalier, Philippe

    2018-04-01

    Hypertrophic cardiomyopathy (HCM), a common and clinically heterogeneous disease characterized by unexplained ventricular myocardial hypertrophy, is mostly caused by mutations in sarcomeric genes. Identifying the genetic cause is important for management, therapy, and genetic counseling. A molecular diagnosis was performed on a 51-year-old woman diagnosed with HCM using a next-generation sequencing workflow based on a panel designed for sequencing the most prevalent cardiomyopathy-causing genes. Segregation analysis was performed on the woman's family. A novel myosin regulatory light chain (MYL2) missense variant, NM_000432.3:c485G>A, p.Gly162Glu, was identified and firstly considered as a putative pathogenic mutation. Among the 27 family members tested, 16 were carriers for the MYL2-p.Gly162Glu mutation, of whom 12 with the phenotype were positive. None of the 11 family members without mutation had cardiomyopathy. Genetic analysis combined with a segregation study allowed us to classify this novel MYL2 variation, p.Gly162Glu, as a novel pathogenic mutation leading to a familial form of HCM. Due to absence of fast in vitro approaches to evaluate the functional impact of missense variants on HCM-causing genes, segregation studies remain, when possible, the easiest approach to evaluate the putative pathogenicity of novel gene variants, more particularly missense ones.

  2. Missense dopamine transporter mutations associate with adult parkinsonism and ADHD

    PubMed Central

    Hansen, Freja H.; Skjørringe, Tina; Yasmeen, Saiqa; Arends, Natascha V.; Sahai, Michelle A.; Erreger, Kevin; Andreassen, Thorvald F.; Holy, Marion; Hamilton, Peter J.; Neergheen, Viruna; Karlsborg, Merete; Newman, Amy H.; Pope, Simon; Heales, Simon J.R.; Friberg, Lars; Law, Ian; Pinborg, Lars H.; Sitte, Harald H.; Loland, Claus; Shi, Lei; Weinstein, Harel; Galli, Aurelio; Hjermind, Lena E.; Møller, Lisbeth B.; Gether, Ulrik

    2014-01-01

    Parkinsonism and attention deficit hyperactivity disorder (ADHD) are widespread brain disorders that involve disturbances of dopaminergic signaling. The sodium-coupled dopamine transporter (DAT) controls dopamine homeostasis, but its contribution to disease remains poorly understood. Here, we analyzed a cohort of patients with atypical movement disorder and identified 2 DAT coding variants, DAT-Ile312Phe and a presumed de novo mutant DAT-Asp421Asn, in an adult male with early-onset parkinsonism and ADHD. According to DAT single-photon emission computed tomography (DAT-SPECT) scans and a fluoro-deoxy-glucose-PET/MRI (FDG-PET/MRI) scan, the patient suffered from progressive dopaminergic neurodegeneration. In heterologous cells, both DAT variants exhibited markedly reduced dopamine uptake capacity but preserved membrane targeting, consistent with impaired catalytic activity. Computational simulations and uptake experiments suggested that the disrupted function of the DAT-Asp421Asn mutant is the result of compromised sodium binding, in agreement with Asp421 coordinating sodium at the second sodium site. For DAT-Asp421Asn, substrate efflux experiments revealed a constitutive, anomalous efflux of dopamine, and electrophysiological analyses identified a large cation leak that might further perturb dopaminergic neurotransmission. Our results link specific DAT missense mutations to neurodegenerative early-onset parkinsonism. Moreover, the neuropsychiatric comorbidity provides additional support for the idea that DAT missense mutations are an ADHD risk factor and suggests that complex DAT genotype and phenotype correlations contribute to different dopaminergic pathologies. PMID:24911152

  3. GNE missense mutation in recessive familial amyotrophic lateral sclerosis.

    PubMed

    Köroğlu, Çiğdem; Yılmaz, Rezzak; Sorgun, Mine Hayriye; Solakoğlu, Seyhun; Şener, Özden

    2017-12-01

    Amyotrophic lateral sclerosis (ALS) is a motor neuron disease eventually leading to death from respiratory failure. Recessive inheritance is very rare. Here, we describe the clinical findings in a consanguineous family with five men afflicted with recessive ALS and the identification of the homozygous mutation responsible for the disorder. The onset of the disease ranged from 12 to 35 years of age, with variable disease progressions. We performed clinical investigations including metabolic and paraneoplastic screening, cranial and cervical imaging, and electrophysiology. We mapped the disease gene to 9p21.1-p12 with a LOD score of 5.2 via linkage mapping using genotype data for single-nucleotide polymorphism markers and performed exome sequence analysis to identify the disease-causing gene variant. We also Sanger sequenced all coding sequences of SIGMAR1, a gene reported as responsible for juvenile ALS in a family. We did not find any mutation in SIGMAR1. Instead, we identified a novel homozygous missense mutation p.(His705Arg) in GNE which was predicted as damaging by online tools. GNE has been associated with inclusion body myopathy and is expressed in many tissues. We propose that the GNE mutation underlies the pathology in the family.

  4. Tumour MLH1 promoter region methylation testing is an effective pre-screen for Lynch Syndrome (HNPCC)

    PubMed Central

    Newton, K; Jorgensen, NM; Wallace, AJ; Buchanan, DD; Lalloo, F; McMahon, RFT; Hill, J; Evans, DG

    2016-01-01

    Background & Aims Lynch syndrome patients have DNA mismatch repair deficiency and up to 80% life-time risk of colorectal cancer. Screening of mutation carriers reduces colorectal cancer incidence and mortality. Selection for constitutional mutation testing relies on family history (Amsterdam and Bethesda Guidelines) and tumour derived biomarkers. Initial biomarker analysis uses mismatch repair protein immunohistochemistry and microsatellite instability. Abnormalities in either identify mismatch repair deficiency but do not differentiate sporadic epigenetic defects, due to MLH1 promoter region methylation (13% of CRCs) from Lynch Syndrome (4% of CRCs). A diagnostic biomarker capable of making this distinction would be valuable. This study compared two biomarkers in tumours with mismatch repair deficiency; quantification of methylation of the MLH1 promoter region using a novel assay and BRAF c.1799T>A, p.(Val600Glu) mutation status in the identification of constitutional mutations. Methods Tumour DNA was extracted (FFPE tissue) and pyrosequencing used to test for MLH1 promoter methylation and presence of the BRAF c.1799T>A, p.(Val600Glu) mutation 71 CRCs from individuals with pathogenic MLH1 mutations and 73 CRCs with sporadic MLH1 loss. Specificity and sensitivity was compared. Findings Unmethylated MLH1 promoter: sensitivity 94.4% (95% CI 86.2–98.4%), specificity 87.7% (95% CI 77.9–94.2%), Wild-type BRAF (codon 600): sensitivity 65.8% (95% CI 53.7–76.5%), specificity 98.6% (95% CI 92.4–100.0%) for the identification of those with pathogenic MLH1 mutations. Conclusions Quantitative MLH1 promoter region methylation using pyrosequencing is superior to BRAF codon 600 mutation status in identifying constitutional mutations in mismatch repair deficient tumours. PMID:25280751

  5. Missense mutation of the cholecystokinin B receptor gene: Lack of association with panic disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Tadafumi; Wang, Zhe Wu; Crowe, R.R.

    1996-07-26

    Cholecystokinin tetrapeptide (CCK{sub 4}) is known to induce panic attacks in patients with panic disorder at a lower dose than in normal controls. Therefore, the cholecystokinin B (CCK{sub B}) receptor gene is a candidate gene for panic disorder. We searched for mutations in the CCK{sub B} gene in 22 probands of panic disorder pedigrees, using single-strand conformation polymorphism (SSCP) analysis. Two polymorphisms were detected. A polymorphism in an intron (2491 C{yields}A) between exons 4 and 5 was observed in 10 of 22 probands. A missense mutation in the extracellular loop of exon 2 (1550 G{yields}A, Val{sup 125}{yields}Ile) was found inmore » only one proband. This mutation was also examined in additional 34 unrelated patients with panic disorder and 112 controls. The prevalence rate of this mutation was 8.8% in patients with panic disorder (3/34) and 4.4% in controls (5/112). The mutation did not segregate with panic disorder in two families where this could be tested. These results suggest no pathophysiological significance of this mutation in panic disorder. 21 refs., 4 figs., 1 tab.« less

  6. In Silico and In Vitro Investigations of the Mutability of Disease-Causing Missense Mutation Sites in Spermine Synthase

    PubMed Central

    Zhang, Zhe; Norris, Joy; Schwartz, Charles; Alexov, Emil

    2011-01-01

    Background Spermine synthase (SMS) is a key enzyme controlling the concentration of spermidine and spermine in the cell. The importance of SMS is manifested by the fact that single missense mutations were found to cause Snyder-Robinson Syndrome (SRS). At the same time, currently there are no non-synonymous single nucleoside polymorphisms, nsSNPs (harmless mutations), found in SMS, which may imply that the SMS does not tolerate amino acid substitutions, i.e. is not mutable. Methodology/Principal Findings To investigate the mutability of the SMS, we carried out in silico analysis and in vitro experiments of the effects of amino acid substitutions at the missense mutation sites (G56, V132 and I150) that have been shown to cause SRS. Our investigation showed that the mutation sites have different degree of mutability depending on their structural micro-environment and involvement in the function and structural integrity of the SMS. It was found that the I150 site does not tolerate any mutation, while V132, despite its key position at the interface of SMS dimer, is quite mutable. The G56 site is in the middle of the spectra, but still quite sensitive to charge residue replacement. Conclusions/Significance The performed analysis showed that mutability depends on the detail of the structural and functional factors and cannot be predicted based on conservation of wild type properties alone. Also, harmless nsSNPs can be expected to occur even at sites at which missense mutations were found to cause diseases. PMID:21647366

  7. A Novel Homozygous Missense Mutation in HOXC13 Leads to Autosomal Recessive Pure Hair and Nail Ectodermal Dysplasia.

    PubMed

    Li, Xiaoxiao; Orseth, Meredith Lee; Smith, J Michael; Brehm, Mary Abigail; Agim, Nnenna Gebechi; Glass, Donald Alexander

    2017-03-01

    Pure hair and nail ectodermal dysplasia (PHNED) is a rare disorder that presents with hypotrichosis and nail dystrophy while sparing other ectodermal structures such as teeth and sweat glands. We describe a homozygous novel missense mutation in the HOXC13 gene that resulted in autosomal recessive PHNED in a Hispanic child. The mutation c.812A>G (p.Gln271Arg) is located within the DNA-binding domain of the HOXC13 gene, cosegregates within the family, and is predicted to be maximally damaging. This is the first reported case of a missense HOXC13 mutation resulting in PHNED and the first reported case of PHNED identified in a North American family. Our findings illustrate the critical role of HOXC13 in human hair and nail development. © 2017 Wiley Periodicals, Inc.

  8. Structural Characterization of Missense Mutations Using High Resolution Mass Spectrometry: A Case Study of the Parkinson's-Related Protein, DJ-1

    NASA Astrophysics Data System (ADS)

    Ben-Nissan, Gili; Chotiner, Almog; Tarnavsky, Mark; Sharon, Michal

    2016-06-01

    Missense mutations that lead to the expression of mutant proteins carrying single amino acid substitutions are the cause of numerous diseases. Unlike gene lesions, insertions, deletions, nonsense mutations, or modified RNA splicing, which affect the length of a polypeptide, or determine whether a polypeptide is translated at all, missense mutations exert more subtle effects on protein structure, which are often difficult to evaluate. Here, we took advantage of the spectral resolution afforded by the EMR Orbitrap platform, to generate a mass spectrometry-based approach relying on simultaneous measurements of the wild-type protein and the missense variants. This approach not only considerably shortens the analysis time due to the concurrent acquisition but, more importantly, enables direct comparisons between the wild-type protein and the variants, allowing identification of even subtle structural changes. We demonstrate our approach using the Parkinson's-associated protein, DJ-1. Together with the wild-type protein, we examined two missense mutants, DJ-1A104T and DJ-1D149A, which lead to early-onset familial Parkinson's disease. Gas-phase, thermal, and chemical stability assays indicate clear alterations in the conformational stability of the two mutants: the structural stability of DJ-1D149A is reduced, whereas that of DJ-1A104T is enhanced. Overall, we anticipate that the methodology presented here will be applicable to numerous other missense mutants, promoting the structural investigations of multiple variants of the same protein.

  9. Quantitative PCR high-resolution melting (qPCR-HRM) curve analysis, a new approach to simultaneously screen point mutations and large rearrangements: application to MLH1 germline mutations in Lynch syndrome.

    PubMed

    Rouleau, Etienne; Lefol, Cédrick; Bourdon, Violaine; Coulet, Florence; Noguchi, Tetsuro; Soubrier, Florent; Bièche, Ivan; Olschwang, Sylviane; Sobol, Hagay; Lidereau, Rosette

    2009-06-01

    Several techniques have been developed to screen mismatch repair (MMR) genes for deleterious mutations. Until now, two different techniques were required to screen for both point mutations and large rearrangements. For the first time, we propose a new approach, called "quantitative PCR (qPCR) high-resolution melting (HRM) curve analysis (qPCR-HRM)," which combines qPCR and HRM to obtain a rapid and cost-effective method suitable for testing a large series of samples. We designed PCR amplicons to scan the MLH1 gene using qPCR HRM. Seventy-six patients were fully scanned in replicate, including 14 wild-type patients and 62 patients with known mutations (57 point mutations and five rearrangements). To validate the detected mutations, we used sequencing and/or hybridization on a dedicated MLH1 array-comparative genomic hybridization (array-CGH). All point mutations and rearrangements detected by denaturing high-performance liquid chromatography (dHPLC)+multiplex ligation-dependent probe amplification (MLPA) were successfully detected by qPCR HRM. Three large rearrangements were characterized with the dedicated MLH1 array-CGH. One variant was detected with qPCR HRM in a wild-type patient and was located within the reverse primer. One variant was not detected with qPCR HRM or with dHPLC due to its proximity to a T-stretch. With qPCR HRM, prescreening for point mutations and large rearrangements are performed in one tube and in one step with a single machine, without the need for any automated sequencer in the prescreening process. In replicate, its reagent cost, sensitivity, and specificity are comparable to those of dHPLC+MLPA techniques. However, qPCR HRM outperformed the other techniques in terms of its rapidity and amount of data provided.

  10. Genetic and Structure-Function Studies of Missense Mutations in Human Endothelial Lipase

    PubMed Central

    Razzaghi, Hamid; Tempczyk-Russell, Anna; Haubold, Kurt; Santorico, Stephanie A.; Shokati, Touraj; Christians, Uwe; Churchill, Mair E. A.

    2013-01-01

    Endothelial lipase (EL) plays a pivotal role in HDL metabolism. We sought to characterize EL and its interaction with HDL as well as its natural variants genetically, functionally and structurally. We screened our biethnic population sample (n = 802) for selected missense mutations (n = 5) and identified T111I as the only common variant. Multiple linear regression analyses in Hispanic subjects revealed an unexpected association between T111I and elevated LDL-C (p-value = 0.012) and total cholesterol (p-value = 0.004). We examined lipase activity of selected missense mutants (n = 10) and found different impacts on EL function, ranging from normal to complete loss of activity. EL-HDL lipidomic analyses indicated that EL has a defined remodeling of HDL without exhaustion of the substrate and a distinct and preference for several fatty acids that are lipid mediators and known for their potent pro- and anti-inflammatory properties. Structural studies using homology modeling revealed a novel α/β motif in the C-domain, unique to EL. The EL dimer was found to have the flexibility to expand and to bind various sizes of HDL particles. The likely impact of the all known missense mutations (n = 18) on the structure of EL was examined using molecular modeling and the impact they may have on EL lipase activity using a novel structure-function slope based on their structural free energy differences. The results of this multidisciplinary approach delineated the impact of EL and its variants on HDL. Moreover, the results suggested EL to have the capacity to modulate vascular health through its role in fatty acid-based signaling pathways. PMID:23536757

  11. Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4).

    PubMed

    Yatsenko, A N; Shroyer, N F; Lewis, R A; Lupski, J R

    2001-04-01

    Based on recent studies of the photoreceptor-specific ABC transporter gene ABCR (ABCA4) in Stargardt disease (STGD1) and other retinal dystrophies, we and others have developed a model in which the severity of retinal disease correlates inversely with residual ABCR activity. This model predicts that patients with late-onset STGDI may retain partial ABCR activity attributable to mild missense alleles. To test this hypothesis, we used late-onset STGDI patients (onset: > or =35 years) to provide an in vivo functional analysis of various combinations of mutant alleles. We sequenced directly the entire coding region of ABCR and detected mutations in 33/50 (66%) disease chromosomes, but surprisingly, 11/33 (33%) were truncating alleles. Importantly, all 22 missense mutations were located outside the known functional domains of ABCR (ATP-binding or transmembrane), whereas in our general cohort of STGDI subjects, alterations occurred with equal frequency across the entire protein. We suggest that these missense mutations in regions of unknown function are milder alleles and more susceptible to modifier effects. Thus, we have corroborated a prediction from the model of ABCR pathogenicity that (1) one mutant ABCR allele is always missense in late-onset STGD1 patients, and (2) the age-of-onset is correlated with the amount of ABCR activity of this allele. In addition, we report three new pseudodominant families that now comprise eight of 178 outbred STGD1 families and suggest a carrier frequency of STGD1-associated ABCR mutations of about 4.5% (approximately 1/22).

  12. A novel COL11A1 missense mutation in siblings with non-ocular Stickler syndrome.

    PubMed

    Kohmoto, Tomohiro; Tsuji, Atsumi; Morita, Kei-Ichi; Naruto, Takuya; Masuda, Kiyoshi; Kashimada, Kenichi; Enomoto, Keisuke; Morio, Tomohiro; Harada, Hiroyuki; Imoto, Issei

    2016-01-01

    Stickler syndrome (STL) is an autosomal, dominantly inherited, clinically variable and genetically heterogeneous connective tissue disorder characterized by ocular, auditory, orofacial and skeletal abnormalities. We conducted targeted resequencing using a next-generation sequencer for molecular diagnosis of a 2-year-old girl who was clinically suspected of having STL with Pierre Robin sequence. We detected a novel heterozygous missense mutation, NM_001854.3:n.4838G>A [NM_001854.3 (COL11A1_v001):c.4520G>A], in COL11A1, resulting in a Gly to Asp substitution at position 1507 [NM_001854.3(COL11A1_i001)] within one of the collagen-like domains of the triple helical region. The same mutation was detected in her 4-year-old brother with cleft palate and high-frequency sensorineural hearing loss.

  13. A novel COL11A1 missense mutation in siblings with non-ocular Stickler syndrome

    PubMed Central

    Kohmoto, Tomohiro; Tsuji, Atsumi; Morita, Kei-ichi; Naruto, Takuya; Masuda, Kiyoshi; Kashimada, Kenichi; Enomoto, Keisuke; Morio, Tomohiro; Harada, Hiroyuki; Imoto, Issei

    2016-01-01

    Stickler syndrome (STL) is an autosomal, dominantly inherited, clinically variable and genetically heterogeneous connective tissue disorder characterized by ocular, auditory, orofacial and skeletal abnormalities. We conducted targeted resequencing using a next-generation sequencer for molecular diagnosis of a 2-year-old girl who was clinically suspected of having STL with Pierre Robin sequence. We detected a novel heterozygous missense mutation, NM_001854.3:n.4838G>A [NM_001854.3 (COL11A1_v001):c.4520G>A], in COL11A1, resulting in a Gly to Asp substitution at position 1507 [NM_001854.3(COL11A1_i001)] within one of the collagen-like domains of the triple helical region. The same mutation was detected in her 4-year-old brother with cleft palate and high-frequency sensorineural hearing loss. PMID:27081569

  14. [Comparison of the sensibility and specificity between single-stranded conformation polymorphism and denaturing high-performance liquid chromatography in screening hMSH2 and hMLH1 gene mutations in hereditary non-polyposis colorectal cancer].

    PubMed

    Wei, Guang-hui; Zhao, Bo; Wang, Zhen-jun

    2008-09-01

    To compare the sensibility and specificity between single-stranded conformation polymorphism (SSCP) and denaturing high-performance liquid chromatography (DHPLC) in screening hMSH2 and hMLH1 gene mutations for the diagnosis of hereditary non-polyposis colorectal cancer (HNPCC). Seven Chinese HNPCC kindreds were collected. PCR-SSCP and DHPLC were used to screen the coding regions of hMSH2 and hMLH1 genes and the abnormal profiles were sequenced by a 377 DNA sequencer. Seven gene sequence variations of hMSH2 or hMLH1 were found. Among them, 4 variations were not found by SSCP, but by DHPLC. The sensibility of SSCP and DHPLC were 51.6% and 100% respectively, and the specificity were 66.6% and 93.3% respectively. DHPLC has better sensibility and specificity in screening hMSH2 and hMLH1 gene mutation as compared to SSCP. DHPLC is an ideal method in the diagnosis of HNPCC.

  15. Mucopolysaccharidosis IVA: Identification of a common missense mutation I113F in the N-Acetylgalactosamine-6-sulfate sulfatase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomatsu, Shunji; Fukuda, Seiji; Rezvi, Maruf

    1995-09-01

    Mucopolysaccharidosis IVA is an autosomal recessive lysosomal storage disorder caused by a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). The recent isolation and characterization of cDNA and genomic sequences encoding GALNS has facilitated identification of the molecular lesions that cause MPS IVA. We identified a common missense mutation among Caucasian MPS IVA patients. The mutation was originally detected by SSCP, and successive sequencing revealed an A{yields}T transversion at nt 393. This substitution altered the isoleucine at position 113 to phenylalanine (I113F) in the 622 amino acid GALNS protein and was associated with a severe phenotype in a homozygote. Compound heterogzygotes with onemore » I113F-allele mutation have a wide range of clinical phenotypes. Transfection experiments in GALNS-deficient fibroblasts revealed that the mutation drastically reduces the enzyme activity of GALNS. Allele-specific oligonucleotide or SSCP analysis indicated that this mutation accounted for 22.5% (9/40) of unrelated MPS IVA chromosomes from 23 Caucasian patients, including 6 consanguineous cases. Of interest, the I1e 113{yields}Phe substitution occurred in only Caucasian MPS IVA patients and in none of the GALNS alleles of 20 Japanese patients. These findings identify a frequent missense mutation among MPS IVA patients of Caucasian ancestry that results in severe MPS IVA when homoallelic, and will facilitate molecular diagnosis of most such patients and identification of heterozygous carriers. In addition to this common mutation, 10 different point mutations and 2 small deletions were detected, suggesting allelic heterogeneity in GALNS gene. 32 refs., 2 figs., 3 tabs.« less

  16. Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation

    PubMed Central

    Dettmer, Ulf; Newman, Andrew J.; Soldner, Frank; Luth, Eric S.; Kim, Nora C.; von Saucken, Victoria E.; Sanderson, John B.; Jaenisch, Rudolf; Bartels, Tim; Selkoe, Dennis

    2015-01-01

    β-Sheet-rich α-synuclein (αS) aggregates characterize Parkinson's disease (PD). αS was long believed to be a natively unfolded monomer, but recent work suggests it also occurs in α-helix-rich tetramers. Crosslinking traps principally tetrameric αS in intact normal neurons, but not after cell lysis, suggesting a dynamic equilibrium. Here we show that freshly biopsied normal human brain contains abundant αS tetramers. The PD-causing mutation A53T decreases tetramers in mouse brain. Neurons derived from an A53T patient have decreased tetramers. Neurons expressing E46K do also, and adding 1-2 E46K-like mutations into the canonical αS repeat motifs (KTKEGV) further reduces tetramers, decreases αS solubility and induces neurotoxicity and round inclusions. The other three fPD missense mutations likewise decrease tetramer:monomer ratios. The destabilization of physiological tetramers by PD-causing missense mutations and the neurotoxicity and inclusions induced by markedly decreasing tetramers suggest that decreased α-helical tetramers and increased unfolded monomers initiate pathogenesis. Tetramer-stabilizing compounds should prevent this. PMID:26076669

  17. Missense mutations located in structural p53 DNA-binding motifs are associated with extremely poor survival in chronic lymphocytic leukemia.

    PubMed

    Trbusek, Martin; Smardova, Jana; Malcikova, Jitka; Sebejova, Ludmila; Dobes, Petr; Svitakova, Miluse; Vranova, Vladimira; Mraz, Marek; Francova, Hana Skuhrova; Doubek, Michael; Brychtova, Yvona; Kuglik, Petr; Pospisilova, Sarka; Mayer, Jiri

    2011-07-01

    There is a distinct connection between TP53 defects and poor prognosis in chronic lymphocytic leukemia (CLL). It remains unclear whether patients harboring TP53 mutations represent a homogenous prognostic group. We evaluated the survival of patients with CLL and p53 defects identified at our institution by p53 yeast functional assay and complementary interphase fluorescence in situ hybridization analysis detecting del(17p) from 2003 to 2010. A defect of the TP53 gene was identified in 100 of 550 patients. p53 mutations were strongly associated with the deletion of 17p and the unmutated IgVH locus (both P < .001). Survival assessed from the time of abnormality detection was significantly reduced in patients with both missense (P < .001) and nonmissense p53 mutations (P = .004). In addition, patients harboring missense mutation located in p53 DNA-binding motifs (DBMs), structurally well-defined parts of the DNA-binding domain, manifested a clearly shorter median survival (12 months) compared with patients having missense mutations outside DBMs (41 months; P = .002) or nonmissense alterations (36 months; P = .005). The difference in survival was similar in the analysis limited to patients harboring mutation accompanied by del(17p) and was also confirmed in a subgroup harboring TP53 defect at diagnosis. The patients with p53 DBMs mutation (at diagnosis) also manifested a short median time to first therapy (TTFT; 1 month). The substantially worse survival and the short TTFT suggest a strong mutated p53 gain-of-function phenotype in patients with CLL with DBMs mutations. The impact of p53 DBMs mutations on prognosis and response to therapy should be analyzed in investigative clinical trials.

  18. A Missense Mutation in the Capza3 Gene and Disruption of F-actin Organization in Spermatids of repro32 Infertile Male Mice

    PubMed Central

    Geyer, Christopher B.; Inselman, Amy L.; Sunman, Jeffrey A.; Bornstein, Sheila; Handel, Mary Ann; Eddy, Edward M.

    2009-01-01

    Males homozygous for the repro32 ENU-induced mutation produced by the Reproductive Genomics program at The Jackson Laboratory are infertile, have low epididymal sperm concentrations, and produce sperm with abnormally shaped heads and poor motility. The purpose of the present study was to identify the mutated gene in repro32 mice and to define the structural and functional changes causing infertility and the aberrant sperm phenotype. In repro32/repro32 mice, we discovered a failure to shed excess cytoplasm and disorganization of the middle piece of the flagellum at spermiation, resulting in the outer dense fibers being wrapped around the sperm head within a bag of cytoplasm. Using a candidate-gene approach, a mutation was identified in the spermatid-specific “capping protein (actin filament) muscle Z-line, alpha 3” gene (Capza3). CAPZA3 protein localization was altered in spermatids concurrent with altered localization of a unique CAPZB variant isoform and disruption of the filamentous actin (F-actin) network. These observations strongly suggest the missense mutation in Capza3 is responsible for the mutant phenotype of repro32/repro32 sperm and regulation of F-actin dynamics by a spermatogenic cell-specific CAPZ heterodimer is essential for removal of the cytoplasm and maintenance of midpiece integrity during spermiation in the mouse. PMID:19341723

  19. Detection of a novel silent deletion, a missense mutation and a nonsense mutation in TCOF1.

    PubMed

    Fujioka, Hirotaka; Ariga, Tadashi; Horiuchi, Katsumi; Ishikiriyama, Satoshi; Oyama, Kimie; Otsu, Makoto; Kawashima, Kunihiro; Yamamoto, Yuhei; Sugihara, Tsuneki; Sakiyama, Yukio

    2008-12-01

    Treacher Collins syndrome (TCS) is a disorder of craniofacial development, that is caused by mutations in the TCOF1 gene. TCS is inherited as an autosomal dominant trait, and haploinsufficiency of the TCOF1 gene product treacle is proposed to be etiologically involved. Mutational analysis of the TCOF1 gene was done in 10 patients diagnosed with TCS using single-strand conformation polymorphism and direct sequencing. Among these 10 patients, a novel 9 bp deletion was found, together with a previously reported 2 bp deletion, a novel missense mutation and a novel nonsense mutation in three different families. Familial studies allowed judgment of whether these abnormal findings were responsible for the TCS phenotype, or not. The 9 bp deletion of three amino acids Lys-Glu-Lys (1378-1380), which was located in the nuclear localization domain of treacle, seemed not essential for the treacle function. In contrast, the novel mutation of Ala26Val is considered to affect the LisH domain, an important domain of treacle. All of the mutations thus far detected in exon 5 have resulted in frameshift, but a nonsense mutation was detected (Lys159Stop). The information obtained in the present study provides additional insights into the functional domains of treacle.

  20. MLH1 Promoter Methylation Frequency in Colorectal Cancer Patients and Related Clinicopathological and Molecular Features

    PubMed Central

    Li, Xia; Yao, Xiaoping; Wang, Yibaina; Hu, Fulan; Wang, Fan; Jiang, Liying; Liu, Yupeng; Wang, Da; Sun, Guizhi; Zhao, Yashuang

    2013-01-01

    Purpose To describe the frequency of MLH1 promoter methylation in colorectal cancer (CRC); to explore the associations between MLH1 promoter methylation and clinicopathological and molecular factors using a systematic review and meta-analysis. Methods A literature search of the PubMed and Embase databases was conducted to identify relevant articles published up to September 7, 2012 that described the frequency of MLH1 promoter methylation or its associations with clinicopathological and molecular factors in CRC. The pooled frequency, odds ratio (OR) and 95% confidence intervals (95% CI) were calculated. Results The pooled frequency of MLH1 promoter methylation in unselected CRC was 20.3% (95% CI: 16.8–24.1%). They were 18.7% (95% CI: 14.7–23.6%) and 16.4% (95% CI: 11.9–22.0%) in sporadic and Lynch syndrome (LS) CRC, respectively. Significant associations were observed between MLH1 promoter methylation and gender (pooled OR = 1.641, 95% CI: 1.215–2.215; P = 0.001), tumor location (pooled OR = 3.804, 95% CI: 2.715–5.329; P<0.001), tumor differentiation (pooled OR = 2.131, 95% CI: 1.464–3.102; P<0.001), MSI (OR: 27.096, 95% CI: 13.717–53.526; P<0.001). Significant associations were also observed between MLH1 promoter methylation and MLH1 protein expression, BRAF mutation (OR = 14.919 (95% CI: 6.427–34.631; P<0.001) and 9.419 (95% CI: 2.613–33.953; P = 0.001), respectively). Conclusion The frequency of MLH1 promoter methylation in unselected CRC was 20.3%. They were 18.7% in sporadic CRC and 16.4% in LS CRC, respectively. MLH1 promoter methylation may be significantly associated with gender, tumor location, tumor differentiation, MSI, MLH1 protein expression, and BRAF mutation. PMID:23555617

  1. Identification of missense mutations in the Norrie disease gene associated with advanced retinopathy of prematurity.

    PubMed

    Shastry, B S; Pendergast, S D; Hartzer, M K; Liu, X; Trese, M T

    1997-05-01

    Retinopathy of prematurity (ROP) is a retinal vascular disease occurring in infants with short gestational age and low birth weight and can lead to retinal detachment (ROP stages 4 and 5). X-linked familial exudative vitreoretinopathy is phenotypically similar to ROP and has been associated with mutations in the Norrie disease (ND) gene in some cases. To determine if similar mutations in the ND gene may play a role in the development of advanced ROP. Clinical examination and molecular genetic analysis were performed on 16 children, including 2 dizygotic and 1 monozygotic twin pairs, and their parents from 13 families. Sequencing of the amplified products revealed missense mutations (R121W and L108P) in the third exon of the ND gene in 4 patients. These mutations were not present in an unaffected premature twin, 2 children with regressed stage 3 ROP, the parents, or in 50 unrelated healthy control subjects. These findings suggest that mutations in the ND gene may play a role in the development of severe ROP in premature infants.

  2. Clinicopathologic Risk Factor Distributions for MLH1 Promoter Region Methylation in CIMP-Positive Tumors.

    PubMed

    Levine, A Joan; Phipps, Amanda I; Baron, John A; Buchanan, Daniel D; Ahnen, Dennis J; Cohen, Stacey A; Lindor, Noralane M; Newcomb, Polly A; Rosty, Christophe; Haile, Robert W; Laird, Peter W; Weisenberger, Daniel J

    2016-01-01

    The CpG island methylator phenotype (CIMP) is a major molecular pathway in colorectal cancer. Approximately 25% to 60% of CIMP tumors are microsatellite unstable (MSI-H) due to DNA hypermethylation of the MLH1 gene promoter. Our aim was to determine if the distributions of clinicopathologic factors in CIMP-positive tumors with MLH1 DNA methylation differed from those in CIMP-positive tumors without DNA methylation of MLH1. We assessed the associations between age, sex, tumor-site, MSI status BRAF and KRAS mutations, and family colorectal cancer history with MLH1 methylation status in a large population-based sample of CIMP-positive colorectal cancers defined by a 5-marker panel using unconditional logistic regression to assess the odds of MLH1 methylation by study variables. Subjects with CIMP-positive tumors without MLH1 methylation were significantly younger, more likely to be male, and more likely to have distal colon or rectal primaries and the MSI-L phenotype. CIMP-positive MLH1-unmethylated tumors were significantly less likely than CIMP-positive MLH1-methylated tumors to harbor a BRAF V600E mutation and significantly more likely to harbor a KRAS mutation. MLH1 methylation was associated with significantly better overall survival (HR, 0.50; 95% confidence interval, 0.31-0.82). These data suggest that MLH1 methylation in CIMP-positive tumors is not a completely random event and implies that there are environmental or genetic determinants that modify the probability that MLH1 will become methylated during CIMP pathogenesis. MLH1 DNA methylation status should be taken into account in etiologic studies. ©2015 American Association for Cancer Research.

  3. Clinicopathological risk factor distributions for MLH1 promoter region methylation in CIMP positive tumors

    PubMed Central

    Levine, A. Joan; Phipps, Amanda I.; Baron, John A.; Buchanan, Daniel D.; Ahnen, Dennis J.; Cohen, Stacey A.; Lindor, Noralane M.; Newcomb, Polly A.; Rosty, Christophe; Haile, Robert W.; Laird, Peter W.; Weisenberger, Daniel J.

    2015-01-01

    Background The CpG Island Methylator Phenotype (CIMP) is a major molecular pathway in colorectal cancer (CRC). Approximately 25% to 60% of CIMP tumors are microsatellite unstable (MSI-H) due to DNA hypermethylation of the MLH1 gene promoter. Our aim was to determine if the distributions of clinicopathologic factors in CIMP-positive tumors with MLH1 DNA methylation differed from those in CIMP-positive tumors without DNA methylation of MLH1. Methods We assessed the associations between age, sex, tumor-site, MSI status BRAF and KRAS mutations and family CRC history with MLH1 methylation status in a large population-based sample of CIMP-positive CRCs defined by a 5-marker panel using unconditional logistic regression to assess the odds of MLH1 methylation by study variables. Results Subjects with CIMP-positive tumors without MLH1 methylation were significantly younger, more likely to be male, more likely to have distal colon or rectal primaries and the MSI-L phenotype. CIMP-positive MLH1-unmethylated tumors were significantly less likely than CIMP-positive MLH1-methylated tumors to harbor a BRAF V600E mutation and significantly more likely to harbor a KRAS mutation. MLH1 methylation was associated with significantly better overall survival (HR=0.50; 95% Confidence Interval (0.31, 0.82)). Conclusions These data suggest that MLH1 methylation in CIMP-positive tumors is not a completely random event and implies that there are environmental or genetic determinants that modify the probability that MLH1 will become methylated during CIMP pathogenesis. Impact MLH1 DNA methylation status should be taken into account in etiologic studies. PMID:26512054

  4. Biallelic MLH1 SNP cDNA expression or constitutional promoter methylation can hide genomic rearrangements causing Lynch syndrome.

    PubMed

    Morak, Monika; Koehler, Udo; Schackert, Hans Konrad; Steinke, Verena; Royer-Pokora, Brigitte; Schulmann, Karsten; Kloor, Matthias; Höchter, Wilhelm; Weingart, Josef; Keiling, Cortina; Massdorf, Trisari; Holinski-Feder, Elke

    2011-08-01

    A positive family history, germline mutations in DNA mismatch repair genes, tumours with high microsatellite instability, and loss of mismatch repair protein expression are the hallmarks of hereditary non-polyposis colorectal cancer (Lynch syndrome). However, in ~10-15% of cases of suspected Lynch syndrome, no disease-causing mechanism can be detected. Oligo array analysis was performed to search for genomic imbalances in patients with suspected mutation-negative Lynch syndrome with MLH1 deficiency in their colorectal tumours. A deletion in the LRRFIP2 (leucine-rich repeat flightless-interacting protein 2) gene flanking the MLH1 gene was detected, which turned out to be a paracentric inversion on chromosome 3p22.2 creating two new stable fusion transcripts between MLH1 and LRRFIP2. A single-nucleotide polymorphism in MLH1 exon 8 was expressed from both alleles, initially pointing to appropriate MLH1 function at least in peripheral cells. In a second case, an inherited duplication of the MLH1 gene region resulted in constitutional MLH1 promoter methylation. Constitutional MLH1 promoter methylation may therefore in rare cases be a heritable disease mechanism and should not be overlooked in seemingly sporadic patients.

  5. Lynch syndrome: the influence of environmental factors on extracolonic cancer risk in hMLH1 c.C1528T mutation carriers and their mutation-negative sisters.

    PubMed

    Blokhuis, M M; Pietersen, G E; Goldberg, P A; Algar, U; Van der Merwe, L; Mbatani, N; Vorster, A A; Ramesar, R S

    2010-09-01

    Lynch Syndrome (LS) is a cancer susceptibility syndrome caused mostly by mutations in the mismatch repair genes, hMLH1, hMSH2 and hMSH6. Mutation carriers are at risk of colorectal and endometrial cancer and, less frequently, cancer of the ovaries, stomach, small bowel, hepatobiliary tract, ureter, renal pelvis and brain. The influence of environmental factors on extracolonic cancer risk in LS patients has not been investigated thus far. The aim of this study was to investigate some of these factors in South African females carrying the hMLH1 c.C1528T mutation and their mutation-negative relatives. Data were collected from 87 mutation-positive females and 121 mutation-negative female relatives regarding age, cancer history, hormonal contraceptive use, parity, duration of breast feeding, height, weight and age at first birth, last birth, menarche and menopause. Influence of these factors on cancer risk was analysed by mixed-effects generalised linear models. Extracolonic cancer occurred in 14% (12/87) of mutation-positive females versus 7% (8/121) of mutation-negative females, (P = 0.0279, adjusted for age and relatedness between women). Breast cancer was the most common extracolonic cancer. An association was found for oral contraceptive use and extracolonic cancer risk in mutation-negative females only. No association was found for any of the other risk factors investigated, when adjusted for age. This might be due to the scarcity of extracolonic cancers in our data. Future knowledge on the influence of additional environmental factors on cancer risk in LS females can lead to evidence-based lifestyle advice for mutation carriers, thereby complementing the prevention strategies available today. In addition, it can contribute to an integrated model of cancer aetiology. Therefore, this study should be taken as a thrust for further research.

  6. Structure of the human MLH1 N-terminus: implications for predisposition to Lynch syndrome

    DOE PAGES

    Wu, Hong; Zeng, Hong; Lam, Robert; ...

    2015-08-01

    Mismatch repair prevents the accumulation of erroneous insertions/deletions and non-Watson–Crick base pairs in the genome. Pathogenic mutations in theMLH1gene are associated with a predisposition to Lynch and Turcot's syndromes. Although genetic testing for these mutations is available, robust classification of variants requires strong clinical and functional support. Here, the first structure of the N-terminus of human MLH1, determined by X-ray crystallography, is described. Lastly, the structure shares a high degree of similarity with previously determined prokaryoticMLH1homologs; however, this structure affords a more accurate platform for the classification ofMLH1variants.

  7. Consequences of missense mutations for dimerization and turnover of alanine:glyoxylate aminotransferase: study of a spectrum of mutations.

    PubMed

    Coulter-Mackie, M B; Lian, Q

    2006-12-01

    Alanine:glyoxylate aminotransferase (AGT) is a liver peroxisomal enzyme, deficiency of which results in primary hyperoxaluria type 1 (PH1). More than 65 PH1-related mutations are now documented in the AGT gene (AGXT), of which about 50% are missense. We have generated a spectrum of 15 missense changes including the most common PH1 mutation, G170R, and expressed them on the appropriate background of the major or minor allele, in an Escherichia coli overexpression system and in a rabbit reticulocyte transcription/translation system. We have investigated their effects on enzyme activity, dimerization, aggregation, and turnover. The effect of pyridoxal phosphate (PLP) on dimerization and stability was also investigated. Although all 15 mutant AGTs were expressed as intact proteins in E. coli, only three: G41R and G41V on the major allele, and the common mutation G170R, resulted in significant amounts of enzymatic activity. Dimerization failure was a frequent observation (13/15) except for G41V and D183N. Dimerization was poor with S187F but was substantially improved with PLP. Proteasome-mediated protein degradation was observed for all the mutations except G41R on the major allele, G41V, D183N, G170R, and S218L. Increases in the stability of the mutant enzymes in the presence of PLP were small; however, G41R on the minor allele showed a direct relationship between its half life and the concentration of PLP. The minor allele AGT product and many of the mutants were subject to a limited non-proteasomal proteolytic cleavage when ATP was depleted.

  8. Secondary mutation in a coding mononucleotide tract in MSH6 causes loss of immunoexpression of MSH6 in colorectal carcinomas with MLH1/PMS2 deficiency.

    PubMed

    Shia, Jinru; Zhang, Liying; Shike, Moshe; Guo, Min; Stadler, Zsofia; Xiong, Xiaoling; Tang, Laura H; Vakiani, Efsevia; Katabi, Nora; Wang, Hangjun; Bacares, Ruben; Ruggeri, Jeanine; Boland, C Richard; Ladanyi, Marc; Klimstra, David S

    2013-01-01

    Immunohistochemical staining for DNA mismatch repair proteins may be affected by various biological and technical factors. Staining variations that could potentially lead to erroneous interpretations have been recognized. A recently recognized staining variation is the significant reduction of staining for MSH6 in some colorectal carcinomas. The frequency and specific characteristics of this aberrant MSH6 staining pattern, however, have not been well analyzed. In this study of 420 colorectal carcinoma samples obtained from patients fulfilling the Revised Bethesda Guidelines, we detected 9 tumors (2%) showing extremely limited staining for MSH6 with positive staining present in <5% of the tumor cells. Our analyses showed that these tumors belonged to two distinct categories: (1) MLH1 and/or PMS2 protein-deficient carcinomas (n=5, including 1 with a pathogenic mutation in PMS2); and (2) MLH1, PMS2 and MSH2 normal but with chemotherapy or chemoradiation therapy before surgery (n=4). To test our hypothesis that somatic mutation in the coding region microsatellite of the MSH6 gene might be a potential underlying mechanism for such limited MSH6 staining, we evaluated frameshift mutation in a (C)(8) tract in exon 5 of the MSH6 gene in seven tumors that had sufficient DNA for analysis, and detected mutation in four; all four tumors belonged to the MLH1/PMS2-deficient group. In conclusion, our data outline the main scenarios where significant reduction of MSH6 staining is more likely to occur in colorectal carcinoma, and suggest that somatic mutations of the coding region microsatellites of the MSH6 gene is an underlying mechanism for this staining phenomenon in MLH1/PMS2-deficient carcinomas.

  9. Alpha-tubulin missense mutations correlate with antimicrotubule drug resistance in Eleusine indica.

    PubMed Central

    Yamamoto, E; Zeng, L; Baird, W V

    1998-01-01

    Dinitroaniline herbicides are antimicrotubule drugs that bind to tubulins and inhibit polymerization. As a result of repeated application of dinitroaniline herbicides, highly resistant and intermediately resistant biotypes of goosegrass (Eleusine indica) developed in previously wild-type populations. Three alpha-tubulin cDNA classes (designated TUA1, TUA2, and TUA3) were isolated from each biotype. Nucleotide differences between the susceptible and the resistant (R) alpha-tubulins were identified in TUA1 and TUA2. The most significant differences were missense mutations that occurred in TUA1 of the R and intermediately resistant (I) biotypes. Such mutations convert Thr-239 to Ile in the R biotype and Met-268 to Thr in the I biotype. These amino acid substitutions alter hydrophobicity; therefore, they may alter the dinitroaniline binding property of the protein. These mutations were correlated with the dinitroaniline response phenotypes (Drp). Plants homozygous for susceptibility possessed the wild-type TUA1 allele; plants homozygous for resistance possessed the mutant tua1 allele; and plants heterozygous for susceptibility possessed both wild-type and mutant alleles. Thus, we conclude that TUA1 is at the Drp locus. Using polymerase chain reaction primer-introduced restriction analysis, we demonstrated that goosegrass genomic DNA can be diagnosed for Drp alleles. Although not direct proof, these results suggest that a mutation in an alpha-tubulin gene confers resistance to dinitroanilines in goosegrass. PMID:9490751

  10. Alpha-tubulin missense mutations correlate with antimicrotubule drug resistance in Eleusine indica.

    PubMed

    Yamamoto, E; Zeng, L; Baird, W V

    1998-02-01

    Dinitroaniline herbicides are antimicrotubule drugs that bind to tubulins and inhibit polymerization. As a result of repeated application of dinitroaniline herbicides, highly resistant and intermediately resistant biotypes of goosegrass (Eleusine indica) developed in previously wild-type populations. Three alpha-tubulin cDNA classes (designated TUA1, TUA2, and TUA3) were isolated from each biotype. Nucleotide differences between the susceptible and the resistant (R) alpha-tubulins were identified in TUA1 and TUA2. The most significant differences were missense mutations that occurred in TUA1 of the R and intermediately resistant (I) biotypes. Such mutations convert Thr-239 to Ile in the R biotype and Met-268 to Thr in the I biotype. These amino acid substitutions alter hydrophobicity; therefore, they may alter the dinitroaniline binding property of the protein. These mutations were correlated with the dinitroaniline response phenotypes (Drp). Plants homozygous for susceptibility possessed the wild-type TUA1 allele; plants homozygous for resistance possessed the mutant tua1 allele; and plants heterozygous for susceptibility possessed both wild-type and mutant alleles. Thus, we conclude that TUA1 is at the Drp locus. Using polymerase chain reaction primer-introduced restriction analysis, we demonstrated that goosegrass genomic DNA can be diagnosed for Drp alleles. Although not direct proof, these results suggest that a mutation in an alpha-tubulin gene confers resistance to dinitroanilines in goosegrass.

  11. Novel mutations in GALNT3 causing hyperphosphatemic familial tumoral calcinosis.

    PubMed

    Yancovitch, Alan; Hershkovitz, Dov; Indelman, Margareta; Galloway, Peter; Whiteford, Margo; Sprecher, Eli; Kılıç, Esra

    2011-09-01

    Hyperphosphatemic familial tumoral calcinosis (HFTC) is known to be caused by mutations in at least three genes: FGF23, GALNT3 and KL. Two families with two affected members suffering from HFTC were scrutinized for mutations in these candidate genes. We identified in both families homozygous missense mutations affecting highly conserved amino acids in GALNT3. One of the mutations is a novel mutation, whereas the second mutation was reported before in a compound heterozygous state. Our data expand the spectrum of known mutations in GALNT3 and contribute to a better understanding of the phenotypic manifestations of mutations in this gene.

  12. Loss of MLH1 sensitizes colon cancer cells to DNA-PKcs inhibitor KU60648.

    PubMed

    Hinrichsen, Inga; Ackermann, Anne; Düding, Tonja; Graband, Annika; Filmann, Natalie; Plotz, Guido; Zeuzem, Stefan; Brieger, Angela

    2017-07-01

    Germline mutations of MLH1 are responsible for tumor generation in nearly 50% of patients with Lynch Syndrome, and around 15% of sporadic colorectal cancers show MLH1-deficiency due to promotor hypermethylation. Although these tumors are of lower aggressiveness the benefit for these patients from standard chemotherapy is still under discussion. Recently, it was shown that the sensitivity to the DNA-PKcs inhibitor KU60648 is linked to loss of the MMR protein MSH3. However, loss of MSH3 is rather secondary, as a consequence of MMR-deficiency, and frequently detectable in MLH1-deficient tumors. Therefore, we examined the expression of MLH1, MSH2, MSH6, and MSH3 in different MMR-deficient and proficient cell lines and determined their sensitivity to KU60648 by analyzing cell viability and survival. MLH1-dependent ability of double strand break (DSB) repair was monitored after irradiation via γH2AX detection. A panel of 12 colon cancer cell lines, two pairs of cells, where MLH1 knock down was compared to controls with the same genetic background, and one MLH1-deficient cell line where MLH1 was overexpressed, were included. In summary, we found that MLH1 and/or MSH3-deficient cells exhibited a significantly higher sensitivity to KU60648 than MMR-proficient cells and that overexpression of MLH1 in MLH1-deficient cells resulted in a decrease of cell sensitivity. KU60648 efficiency seems to be associated with reduced DSB repair capacity. Since the molecular testing of colon tumors for MLH1 expression is a clinical standard we believe that MLH1 is a much better marker and a greater number of patients would benefit from KU60648 treatment. © 2017 Wiley Periodicals, Inc.

  13. Mapping disease-related missense mutations in the immunoglobulin-like fold domain of lamin A/C reveals novel genotype-phenotype associations for laminopathies.

    PubMed

    Scharner, Juergen; Lu, Hui-Chun; Fraternali, Franca; Ellis, Juliet A; Zammit, Peter S

    2014-06-01

    Mutations in A-type nuclear lamins cause laminopathies. However, genotype-phenotype correlations using the 340 missense mutations within the LMNA gene are unclear: partially due to the limited availability of three-dimensional structure. The immunoglobulin (Ig)-like fold domain has been solved, and using bioinformatics tools (including Polyphen-2, Fold X, Parameter OPtimized Surfaces, and PocketPicker) we characterized 56 missense mutations for position, surface exposure, change in charge and effect on Ig-like fold stability. We find that 21 of the 27 mutations associated with a skeletal muscle phenotype are distributed throughout the Ig-like fold, are nonsurface exposed and predicted to disrupt overall stability of the Ig-like fold domain. Intriguingly, the remaining 6 mutations clustered, had higher surface exposure, and did not affect stability. The majority of 9 lipodystrophy or 10 premature aging syndrome mutations also did not disrupt Ig-like fold domain stability and were surface exposed and clustered in distinct regions that overlap predicted binding pockets. Although buried, the 10 cardiac mutations had no other consistent properties. Finally, most lipodystrophy and premature aging mutations resulted in a -1 net charge change, whereas skeletal muscle mutations caused no consistent net charge changes. Since premature aging, lipodystrophy and the subset of 6 skeletal muscle mutations cluster tightly in distinct, charged regions, they likely affect lamin A/C -protein/DNA/RNA interactions: providing a consistent genotype-phenotype relationship for mutations in this domain. Thus, this subgroup of skeletal muscle laminopathies that we term the 'Skeletal muscle cluster', may have a distinct pathological mechanism. These novel associations refine the ability to predict clinical features caused by certain LMNA missense mutations. © 2013 Wiley Periodicals, Inc.

  14. Identification and molecular characterisation of a homozygous missense mutation in the ADAMTS10 gene in a patient with Weill-Marchesani syndrome.

    PubMed

    Steinkellner, Hannes; Etzler, Julia; Gogoll, Laura; Neesen, Jürgen; Stifter, Eva; Brandau, Oliver; Laccone, Franco

    2015-09-01

    Weill-Marchesani syndrome is a rare disorder of the connective tissue. Functional variants in ADAMTS10 are associated with Weill-Marchesani syndrome-1. We identified a homozygous missense mutation, c.41T>A, of the ADAMTS10 gene in a 19-year-old female with typical symptoms of WMS1: proportionate short stature, brachydactyly, joint stiffness, and microspherophakia. The ADAMTS10 missense mutation was analysed in silico, with conflicting results as to its effects on protein function, but it was predicted to affect the leader sequence. Molecular characterisation in HEK293 Ebna cells revealed an intracellular mis-targeting of the ADAMTS10 protein with a reduced concentration of the polypeptide in the endoplasmic reticulum. A large reduction in glycosylation of the cytoplasmic fraction of the mutant ADAMTS10 protein versus the wild-type protein and a lack of secretion of the mutant protein are also evident in our results.In conclusion, we identified a novel missense mutation of the ADAMTS10 gene and confirmed the functional consequences suggested by the in silico analysis by conducting molecular studies.

  15. Evaluating the impact of missenses mutations in CYP2D6*7 and CYP2D6*14A: does it compromise tamoxifen metabolism?

    PubMed

    Borba, Maria Acsm; Melo-Neto, Renato P; Leitão, Glauber M; Castelletti, Carlos Hm; Lima-Filho, José L; Martins, Danyelly Bg

    2016-04-01

    CYP2D6 is a high polymorphic enzyme from P450, responsible for metabolizing almost 25% of drugs. The distribution of different mutations among CYP2D6 alleles has been associated with poor, intermediate, extensive and ultra-metabolizers. To evaluate how missenses mutations in CYP2D6*7 and CYP2D6*14A poor metabolizer alleles affect CYP2D6 stability and function. CYPalleles database was used to collect polymorphisms data present in 105 alleles. We selected only poor metabolizers alleles that presented exclusively missenses mutations. They were analyzed through seven algorithms to predict the impact on CYP2D6 structure and function. H324P, the unique mutation in CYP2D6*7, has high impact in enzyme function due to its occurrence between two alpha-helixes involved in active site dynamics. G169R, a mutation that occurs only in CYP2D6*14A, leads to the gain of solvent accessibility and severe protein destabilization. Our in silico analysis showed that missenses mutations in CYP2D6*7 and CYP2D6*14A cause CYP2D6 dysfunction.

  16. Differing patterns of genetic instability in mice deficient in the mismatch repair genes Pms2, Mlh1, Msh2, Msh3 and Msh6.

    PubMed

    Hegan, Denise Campisi; Narayanan, Latha; Jirik, Frank R; Edelmann, Winfried; Liskay, R Michael; Glazer, Peter M

    2006-12-01

    Defects in genes associated with DNA mismatch repair (MMR) have been linked to hereditary colon cancer. Because the MMR pathway includes multiple factors with both overlapping and divergent functions, we sought to compare the impact of deficiencies in each of several MMR genes on genetic instability using a collection of knock-out mouse models. We investigated mutation frequencies and patterns in MMR-deficient mice using two transgenic reporter genes, supFG1 and cII, in the context of mice deficient for Pms2, Mlh1, Msh2, Msh3 or Msh6 or both Msh2 and Msh3 or both Msh3 and Msh6. We found that the mean mutation frequencies of all of the MMR-deficient mice were significantly higher than the mean mutation frequencies of wild-type mice. Mlh1-deficient mice and Msh2-deficient mice had the highest mutation frequencies in a comparison of the single nullizygous mice. Of all the mice studied, mice nullizygous for both Msh2 and Msh3 and those nullizygous for both Msh3 and Msh6 displayed the greatest overall increases in mutation frequencies compared with wild-type mice. Sequence analysis of the mutated reporter genes revealed significant differences between the individual groups of MMR-deficient mice. Taken together, our results further characterize the functions of the MMR factors in mutation avoidance and provide in vivo correlation to biochemical models of the MMR pathway.

  17. WNT10A missense mutation associated with a complete Odonto-Onycho-Dermal Dysplasia syndrome

    PubMed Central

    Nawaz, Sadia; Klar, Joakim; Wajid, Muhammad; Aslam, Muhammad; Tariq, Muhammad; Schuster, Jens; Baig, Shahid Mahmood; Dahl, Niklas

    2009-01-01

    Wnt signalling is one of a few pathways that are crucial for controlling genetic programs during embryonic development as well as in adult tissues. WNT10A is expressed in the skin and epidermis and it has shown to be critical for the development of ectodermal appendages. A nonsense mutation in WNT10A was recently identified in odonto-onycho-dermal dysplasia (OODD; MIM 257980), a rare syndrome characterised by severe hypodontia, nail dystrophy, smooth tongue, dry skin, keratoderma and hyperhydrosis of palms and soles. We identified a large consanguineous Pakistani pedigree comprising six individuals affected by a complete OODD syndrome. Autozygosity mapping using SNP array analysis showed that the affected individuals are homozygous for the WNT10A gene region. Subsequent mutation screening showed a homozygous c.392C>T transition in exon 3 of WNT10A, which predicts a p.A131V substitution in a conserved α-helix domain. We report here on the first inherited missense mutation in WNT10A with associated ectodermal features. PMID:19471313

  18. WNT10A missense mutation associated with a complete odonto-onycho-dermal dysplasia syndrome.

    PubMed

    Nawaz, Sadia; Klar, Joakim; Wajid, Muhammad; Aslam, Muhammad; Tariq, Muhammad; Schuster, Jens; Baig, Shahid Mahmood; Dahl, Niklas

    2009-12-01

    Wnt signalling is one of a few pathways that are crucial for controlling genetic programs during embryonic development as well as in adult tissues. WNT10A is expressed in the skin and epidermis and it has shown to be critical for the development of ectodermal appendages. A nonsense mutation in WNT10A was recently identified in odonto-onycho-dermal dysplasia (OODD; MIM 257980), a rare syndrome characterised by severe hypodontia, nail dystrophy, smooth tongue, dry skin, keratoderma and hyperhydrosis of palms and soles. We identified a large consanguineous Pakistani pedigree comprising six individuals affected by a complete OODD syndrome. Autozygosity mapping using SNP array analysis showed that the affected individuals are homozygous for the WNT10A gene region. Subsequent mutation screening showed a homozygous c.392C>T transition in exon 3 of WNT10A, which predicts a p.A131V substitution in a conserved alpha-helix domain. We report here on the first inherited missense mutation in WNT10A with associated ectodermal features.

  19. A Case of Inflammatory Generalized Type of Peeling Skin Syndrome Possibly Caused by a Homozygous Missense Mutation of CDSN

    PubMed Central

    Kawakami, Hiroshi; Uchiyama, Masaki; Maeda, Tatsuo; Tsunoda, Takahiko; Mitsuhashi, Yoshihiko; Tsuboi, Ryoji

    2014-01-01

    A 54-year-old Japanese woman had repetitive superficial skin peeling and ensuing erythematous changes in the sites since infancy. Her parents had a consanguineous marriage, and she was the only individual affected in her family tree. The erythematous changes seemed to worsen in the summer. Histologically, hyperkeratosis and splitting of the epidermis within the stratum corneum was noted, and electron microscopy revealed shedding of corneal cells in the horny layer and normal-looking corneodesmosomes. Gene analysis revealed a homozygous missense mutation at c.1358G>A in CDSN. Electron microscopic examination of the length and number of corneodesmosomes revealed statistically significant shortness and sparsity in the affected individual (mean ± SD 386.2 ± 149.5 nm) compared with that of an age- and site-matched control (406.6 ± 182.3 nm). We speculate that this size shrinkage of corneodesmosomes might be the result of a missense mutation of CDSN and that this could be one of the factors contributing to the pathological process of skin peeling. PMID:25473393

  20. A Case of Inflammatory Generalized Type of Peeling Skin Syndrome Possibly Caused by a Homozygous Missense Mutation of CDSN.

    PubMed

    Kawakami, Hiroshi; Uchiyama, Masaki; Maeda, Tatsuo; Tsunoda, Takahiko; Mitsuhashi, Yoshihiko; Tsuboi, Ryoji

    2014-09-01

    A 54-year-old Japanese woman had repetitive superficial skin peeling and ensuing erythematous changes in the sites since infancy. Her parents had a consanguineous marriage, and she was the only individual affected in her family tree. The erythematous changes seemed to worsen in the summer. Histologically, hyperkeratosis and splitting of the epidermis within the stratum corneum was noted, and electron microscopy revealed shedding of corneal cells in the horny layer and normal-looking corneodesmosomes. Gene analysis revealed a homozygous missense mutation at c.1358G>A in CDSN. Electron microscopic examination of the length and number of corneodesmosomes revealed statistically significant shortness and sparsity in the affected individual (mean ± SD 386.2 ± 149.5 nm) compared with that of an age- and site-matched control (406.6 ± 182.3 nm). We speculate that this size shrinkage of corneodesmosomes might be the result of a missense mutation of CDSN and that this could be one of the factors contributing to the pathological process of skin peeling.

  1. Alzheimer neuropathology without frontotemporal lobar degeneration hallmarks (TAR DNA-binding protein 43 inclusions) in missense progranulin mutation Cys139Arg.

    PubMed

    Redaelli, Veronica; Rossi, Giacomina; Maderna, Emanuela; Kovacs, Gabor G; Piccoli, Elena; Caroppo, Paola; Cacciatore, Francesca; Spinello, Sonia; Grisoli, Marina; Sozzi, Giuliano; Salmaggi, Andrea; Tagliavini, Fabrizio; Giaccone, Giorgio

    2018-01-01

    Null mutations in progranulin gene (GRN) reduce the progranulin production resulting in haploinsufficiency and are tightly associated with tau-negative frontotemporal lobar degeneration with TAR DNA-binding protein 43-positive inclusions (FTLD-TDP). Missense mutations of GRN were also identified, but their effects are not completely clear, in particular unanswered is the question of what neuropathology they elicit, also considering that their occurrence has been reported in patients with typical clinical features of Alzheimer disease. They describe two fraternal twins carrying the missense GRN Cys139Arg mutation affected by late-onset dementia and we report the neuropathological study of one of them. Both patients were examined by neuroimaging, neuropsychological assessment and genetic analysis of GRN and other genes associated with dementia. The brain of one was obtained at autopsy and examined neuropathologically. One sister presented clinical and MRI features leading to the diagnosis of Alzheimer disease. The other underwent autopsy and the brain showed neuropathological hallmarks of Alzheimer disease with abundant Aβ-amyloid deposition and Braak stage V of neurofibrillary pathology, in the absence of the hallmark lesions of FTLD-TDP. Their findings may contribute to better clarify the role of progranulin in neurodegenerative diseases indicating that some GRN mutations, in particular missense ones, may act as strong risk factor for Alzheimer disease rather than induce FTLD-TDP. © 2016 International Society of Neuropathology.

  2. Patients with colorectal cancer associated with Lynch syndrome and MLH1 promoter hypermethylation have similar prognoses.

    PubMed

    Haraldsdottir, Sigurdis; Hampel, Heather; Wu, Christina; Weng, Daniel Y; Shields, Peter G; Frankel, Wendy L; Pan, Xueliang; de la Chapelle, Albert; Goldberg, Richard M; Bekaii-Saab, Tanios

    2016-09-01

    Mismatch repair-deficient (dMMR) colorectal cancer (CRC) is caused by Lynch syndrome (LS) in 3% and sporadic inactivation of MLH1 by hypermethylation (MLH1-hm) in 12% of cases. It is not clear whether outcomes between LS-associated and MLH1-hm CRC differ. The objective of this study was to explore differences in clinical factors and outcomes in these two groups. Patients with dMMR CRC identified by immunohistochemistry staining and treated at a single institution from 1998 to 2012 were included. MLH1-hm was established with BRAF mutational analysis or hypermethylation testing. Patients' charts were accessed for information on pathology, germ-line MMR mutation testing, and clinical course. A total of 143 patients had CRC associated with LS (37 patients, 26%) or MLH1-hm (106 patients, 74%). Patients with LS were younger, more often male, presented more often with stage III disease, and had more metachronous disease than patients with MLH1-hm tumors. There was no difference in cancer-specific survival (CSS) between the groups; overall survival was longer in patients with LS, but this difference was minimal after adjusting for age and stage at diagnosis. CSS did not differ in LS-associated CRC compared with MLH1-hm CRC, suggesting that they carry a similar prognosis.Genet Med 18 9, 863-868.

  3. A modifier of Huntington's disease onset at the MLH1 locus.

    PubMed

    Lee, Jong-Min; Chao, Michael J; Harold, Denise; Abu Elneel, Kawther; Gillis, Tammy; Holmans, Peter; Jones, Lesley; Orth, Michael; Myers, Richard H; Kwak, Seung; Wheeler, Vanessa C; MacDonald, Marcy E; Gusella, James F

    2017-10-01

    Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by an expanded CAG repeat in HTT. Many clinical characteristics of HD such as age at motor onset are determined largely by the size of HTT CAG repeat. However, emerging evidence strongly supports a role for other genetic factors in modifying the disease pathogenesis driven by mutant huntingtin. A recent genome-wide association analysis to discover genetic modifiers of HD onset age provided initial evidence for modifier loci on chromosomes 8 and 15 and suggestive evidence for a locus on chromosome 3. Here, genotyping of candidate single nucleotide polymorphisms in a cohort of 3,314 additional HD subjects yields independent confirmation of the former two loci and moves the third to genome-wide significance at MLH1, a locus whose mouse orthologue modifies CAG length-dependent phenotypes in a Htt-knock-in mouse model of HD. Both quantitative and dichotomous association analyses implicate a functional variant on ∼32% of chromosomes with the beneficial modifier effect that delays HD motor onset by 0.7 years/allele. Genomic DNA capture and sequencing of a modifier haplotype localize the functional variation to a 78 kb region spanning the 3'end of MLH1 and the 5'end of the neighboring LRRFIP2, and marked by an isoleucine-valine missense variant in MLH1. Analysis of expression Quantitative Trait Loci (eQTLs) provides modest support for altered regulation of MLH1 and LRRFIP2, raising the possibility that the modifier affects regulation of both genes. Finally, polygenic modification score and heritability analyses suggest the existence of additional genetic modifiers, supporting expanded, comprehensive genetic analysis of larger HD datasets. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Missense mutations in TENM4, a regulator of axon guidance and central myelination, cause essential tremor

    PubMed Central

    Hor, Hyun; Francescatto, Ludmila; Bartesaghi, Luca; Ortega-Cubero, Sara; Kousi, Maria; Lorenzo-Betancor, Oswaldo; Jiménez-Jiménez, Felix J.; Gironell, Alexandre; Clarimón, Jordi; Drechsel, Oliver; Agúndez, José A. G.; Kenzelmann Broz, Daniela; Chiquet-Ehrismann, Ruth; Lleó, Alberto; Coria, Francisco; García-Martin, Elena; Alonso-Navarro, Hortensia; Martí, Maria J.; Kulisevsky, Jaume; Hor, Charlotte N.; Ossowski, Stephan; Chrast, Roman; Katsanis, Nicholas; Pastor, Pau; Estivill, Xavier

    2015-01-01

    Essential tremor (ET) is a common movement disorder with an estimated prevalence of 5% of the population aged over 65 years. In spite of intensive efforts, the genetic architecture of ET remains unknown. We used a combination of whole-exome sequencing and targeted resequencing in three ET families. In vitro and in vivo experiments in oligodendrocyte precursor cells and zebrafish were performed to test our findings. Whole-exome sequencing revealed a missense mutation in TENM4 segregating in an autosomal-dominant fashion in an ET family. Subsequent targeted resequencing of TENM4 led to the discovery of two novel missense mutations. Not only did these two mutations segregate with ET in two additional families, but we also observed significant over transmission of pathogenic TENM4 alleles across the three families. Consistent with a dominant mode of inheritance, in vitro analysis in oligodendrocyte precursor cells showed that mutant proteins mislocalize. Finally, expression of human mRNA harboring any of three patient mutations in zebrafish embryos induced defects in axon guidance, confirming a dominant-negative mode of action for these mutations. Our genetic and functional data, which is corroborated by the existence of a Tenm4 knockout mouse displaying an ET phenotype, implicates TENM4 in ET. Together with previous studies of TENM4 in model organisms, our studies intimate that processes regulating myelination in the central nervous system and axon guidance might be significant contributors to the genetic burden of this disorder. PMID:26188006

  5. Germline Missense Changes in the APC Gene and Their Relationship to Disease.

    PubMed

    Scott, Rodney J; Crooks, Renee; Rose, Lindy; Attia, John; Thakkinstian, Ammarin; Thomas, Lesley; Spigelman, Allan D; Meldrum, Cliff J

    2004-05-15

    Familial adenomatous polyposis (FAP) is characterized by the presence of hundreds to thousands of adenomas that carpet the entire colon and rectum. Nonsense and frameshift mutations in the adenomatous polyposis coli (APC) gene account for the majority of mutations identified to date and predispose primarily to the typical disease phenotype. Some APC mutations are associated with a milder form of the disease known as attenuated FAP. Virtually all mutations that have been described in the APC gene result in the formation of a premature stop codon and very little is known about missense mutations apart from a common Ashkenazi Jewish mutation (1307 K) and a British E1317Q missense change. The incidence of missense mutations in the APC gene has been underreported since the APC gene lends itself to analysis using an artificial transcription and translation assay known as the Protein Truncation Test (PTT) or the In Vitro Synthetic Protein assay (IVSP).In this report we have used denaturing high performance liquid chromatography to analyse the entire coding sequence of the APC gene to determine if a cohort of patients adhering to the diagnostic criteria of FAP to assess the frequency of missense mutations in the APC gene. Altogether 112 patients were studied and 22 missense mutations were identified. From the total of 22 missense changes, 13 were silent changes and the remaining 9 resulted in amino acid substitutions. One or more of these changes were identified multiple times in 62.5% of the population under study.The results reveal that missense mutations in the APC gene appear not to radically alter protein function but may be associated with more subtle processing of RNA transcripts which in turn could result in the expression of differentially spliced forms of the APC gene which may interfere with the functional activity of the APC protein.

  6. Novel splice-site and missense mutations in the ALDH1A3 gene underlying autosomal recessive anophthalmia/microphthalmia.

    PubMed

    Semerci, C Nur; Kalay, Ersan; Yıldırım, Cem; Dinçer, Tuba; Olmez, Akgün; Toraman, Bayram; Koçyiğit, Ali; Bulgu, Yunus; Okur, Volkan; Satıroğlu-Tufan, Lale; Akarsu, Nurten A

    2014-06-01

    This study aimed to identify the underlying genetic defect responsible for anophthalmia/microphthalmia. In total, two Turkish families with a total of nine affected individuals were included in the study. Affymetrix 250 K single nucleotide polymorphism genotyping and homozygosity mapping were used to identify the localisation of the genetic defect in question. Coding region of the ALDH1A3 gene was screened via direct sequencing. cDNA samples were generated from primary fibroblast cell cultures for expression analysis. Reverse transcriptase PCR (RT-PCR) analysis was performed using direct sequencing of the obtained fragments. The causative genetic defect was mapped to chromosome 15q26.3. A homozygous G>A substitution (c.666G>A) at the last nucleotide of exon 6 in the ALDH1A3 gene was identified in the first family. Further cDNA sequencing of ALDH1A3 showed that the c.666G>A mutation caused skipping of exon 6, which predicted in-frame loss of 43 amino acids (p.Trp180_Glu222del). A novel missense c.1398C>A mutation in exon 12 of ALDH1A3 that causes the substitution of a conserved asparagine by lysine at amino acid position 466 (p.Asn466Lys) was observed in the second family. No extraocular findings-except for nevus flammeus in one affected individual and a variant of Dandy-Walker malformation in another affected individual-were observed. Autistic-like behaviour and mental retardation were observed in three cases. In conclusion, novel ALDH1A3 mutations identified in the present study confirm the pivotal role of ALDH1A3 in human eye development. Autistic features, previously reported as an associated finding, were considered to be the result of social deprivation and inadequate parenting during early infancy in the presented families. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Bioinformatic Analysis of Pathogenic Missense Mutations of Activin Receptor Like Kinase 1 Ectodomain

    PubMed Central

    Scotti, Claudia; Olivieri, Carla; Boeri, Laura; Canzonieri, Cecilia; Ornati, Federica; Buscarini, Elisabetta; Pagella, Fabio; Danesino, Cesare

    2011-01-01

    Activin A receptor, type II-like kinase 1 (also called ALK1), is a serine-threonine kinase predominantly expressed on endothelial cells surface. Mutations in its ACVRL1 encoding gene (12q11-14) cause type 2 Hereditary Haemorrhagic Telangiectasia (HHT2), an autosomal dominant multisystem vascular dysplasia. The study of the structural effects of mutations is crucial to understand their pathogenic mechanism. However, while an X-ray structure of ALK1 intracellular domain has recently become available (PDB ID: 3MY0), structure determination of ALK1 ectodomain (ALK1EC) has been elusive so far. We here describe the building of a homology model for ALK1EC, followed by an extensive bioinformatic analysis, based on a set of 38 methods, of the effect of missense mutations at the sequence and structural level. ALK1EC potential interaction mode with its ligand BMP9 was then predicted combining modelling and docking data. The calculated model of the ALK1EC allowed mapping and a preliminary characterization of HHT2 associated mutations. Major structural changes and loss of stability of the protein were predicted for several mutations, while others were found to interfere mainly with binding to BMP9 or other interactors, like Endoglin (CD105), whose encoding ENG gene (9q34) mutations are known to cause type 1 HHT. This study gives a preliminary insight into the potential structure of ALK1EC and into the structural effects of HHT2 associated mutations, which can be useful to predict the potential effect of each single mutation, to devise new biological experiments and to interpret the biological significance of new mutations, private mutations, or non-synonymous polymorphisms. PMID:22028876

  8. Lynch Syndrome Associated with Two MLH1 Promoter Variants and Allelic Imbalance of MLH1 Expression

    PubMed Central

    Hesson, Luke B; Packham, Deborah; Kwok, Chau-To; Nunez, Andrea C; Ng, Benedict; Schmidt, Christa; Fields, Michael; Wong, Jason WH; Sloane, Mathew A; Ward, Robyn L

    2015-01-01

    Lynch syndrome is a hereditary cancer syndrome caused by a constitutional mutation in one of the mismatch repair genes. The implementation of predictive testing and targeted preventative surveillance is hindered by the frequent finding of sequence variants of uncertain significance in these genes. We aimed to determine the pathogenicity of previously reported variants (c.-28A>G and c.-7C>T) within the MLH1 5′untranslated region (UTR) in two individuals from unrelated suspected Lynch syndrome families. We investigated whether these variants were associated with other pathogenic alterations using targeted high-throughput sequencing of the MLH1 locus. We also determined their relationship to gene expression and epigenetic alterations at the promoter. Sequencing revealed that the c.-28A>G and c.-7C>T variants were the only potentially pathogenic alterations within the MLH1 gene. In both individuals, the levels of transcription from the variant allele were reduced to 50% compared with the wild-type allele. Partial loss of expression occurred in the absence of constitutional epigenetic alterations within the MLH1 promoter. We propose that these variants may be pathogenic due to constitutional partial loss of MLH1 expression, and that this may be associated with intermediate penetrance of a Lynch syndrome phenotype. Our findings provide further evidence of the potential importance of noncoding variants in the MLH1 5′UTR in the pathogenesis of Lynch syndrome. PMID:25762362

  9. Isolated Loss of PMS2 Immunohistochemical Expression is Frequently Caused by Heterogenous MLH1 Promoter Hypermethylation in Lynch Syndrome Screening for Endometrial Cancer Patients

    PubMed Central

    Sato, Naoki; Sugawara, Tae; Takahashi, Kazue; Kito, Masahiko; Makino, Kenichi; Sato, Toshiharu; Shimizu, Dai; Shirasawa, Hiromistu; Miura, Hiroshi; Sato, Wataru; Kumazawa, Yukiyo; Sato, Akira; Kumagai, Jin; Terada, Yukihiro

    2016-01-01

    Lynch syndrome (LS) is an autosomal-dominant inherited disorder mainly caused by a germline mutation in the DNA mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) and is associated with increased risk for various cancers, particularly colorectal cancer and endometrial cancer (EC). Women with LS account for 2% to 6% of EC patients; it is clinically important to identify LS in such individuals for predicting and/or preventing additional LS-associated cancers. PMS2 germline mutation (PMS2-LS) is the rarest contribution to LS etiology among the 4 LS-associated MMR germline mutations, and its detection is complicated. Therefore, prudent screening for PMS2-LS is important as it leads to an efficient LS identification strategy. Immunohistochemistry is recommended as a screening method for LS in EC. Isolated loss of PMS2 (IL-PMS2) expression is caused not only by PMS2-LS but also by MLH1 germline mutation or MLH1 promoter hypermethylation (MLH-PHM). This study aimed to determine the association between MLH1-PHM and IL-PMS2 to avoid inappropriate genetic analysis. We performed MLH1 methylation analysis and MLH1/PMS2 germline mutation testing on the IL-PMS2 cases. By performing MMR-immunohistochemistry on 360 unselected ECs, we could select 8 (2.2%) cases as IL-PMS2. Heterogenous MLH1 staining and MLH1-PHM were detected in 4 of 8 (50%) IL-PMS2 tumors. Of the 5 IL-PMS2 patients who underwent genetic analysis, 1 had PMS2 germline mutation with normal MLH1 expression (without MLH1-PHM), and no MLH1 germline mutation was detected. We suggest that MLH1 promoter methylation analysis for IL-PMS2 EC should be performed to exclude sporadic cases before further PMS2 genetic testing. PMID:26848797

  10. Isolated Loss of PMS2 Immunohistochemical Expression is Frequently Caused by Heterogenous MLH1 Promoter Hypermethylation in Lynch Syndrome Screening for Endometrial Cancer Patients.

    PubMed

    Kato, Aya; Sato, Naoki; Sugawara, Tae; Takahashi, Kazue; Kito, Masahiko; Makino, Kenichi; Sato, Toshiharu; Shimizu, Dai; Shirasawa, Hiromistu; Miura, Hiroshi; Sato, Wataru; Kumazawa, Yukiyo; Sato, Akira; Kumagai, Jin; Terada, Yukihiro

    2016-06-01

    Lynch syndrome (LS) is an autosomal-dominant inherited disorder mainly caused by a germline mutation in the DNA mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) and is associated with increased risk for various cancers, particularly colorectal cancer and endometrial cancer (EC). Women with LS account for 2% to 6% of EC patients; it is clinically important to identify LS in such individuals for predicting and/or preventing additional LS-associated cancers. PMS2 germline mutation (PMS2-LS) is the rarest contribution to LS etiology among the 4 LS-associated MMR germline mutations, and its detection is complicated. Therefore, prudent screening for PMS2-LS is important as it leads to an efficient LS identification strategy. Immunohistochemistry is recommended as a screening method for LS in EC. Isolated loss of PMS2 (IL-PMS2) expression is caused not only by PMS2-LS but also by MLH1 germline mutation or MLH1 promoter hypermethylation (MLH-PHM). This study aimed to determine the association between MLH1-PHM and IL-PMS2 to avoid inappropriate genetic analysis. We performed MLH1 methylation analysis and MLH1/PMS2 germline mutation testing on the IL-PMS2 cases. By performing MMR-immunohistochemistry on 360 unselected ECs, we could select 8 (2.2%) cases as IL-PMS2. Heterogenous MLH1 staining and MLH1-PHM were detected in 4 of 8 (50%) IL-PMS2 tumors. Of the 5 IL-PMS2 patients who underwent genetic analysis, 1 had PMS2 germline mutation with normal MLH1 expression (without MLH1-PHM), and no MLH1 germline mutation was detected. We suggest that MLH1 promoter methylation analysis for IL-PMS2 EC should be performed to exclude sporadic cases before further PMS2 genetic testing.

  11. WDR73 missense mutation causes infantile onset intellectual disability and cerebellar hypoplasia in a consanguineous family.

    PubMed

    Jiang, Chen; Gai, Nan; Zou, Yongyi; Zheng, Yu; Ma, Ruiyu; Wei, Xianda; Liang, Desheng; Wu, Lingqian

    2017-01-01

    Galloway-Mowat syndrome (GMS) is a very rare autosomal-recessive disorder characterized by nephrotic syndrome associated with microcephaly, and various central nervous system abnormalities, mostly cerebral hypoplasia or cerebellar atrophy, intellectual disability and neural-migration defects. WDR73 is the only gene known to cause GMS, and has never been implicated in other disease. Here we present a Chinese consanguineous family with infantile onset intellectual disability and cerebellar hypoplasia but no microcephaly. Whole exome sequencing identified a WDR73 p.W371G missense mutation. The mutation is confirmed to be segregated in this family by Sanger sequencing according to a recessive inheritance pattern. It is predicted to be deleterious by multiple algorithms and affect highly conserved site. Structural modeling revealed conformational differences between the wild type protein and the p.W371G protein. Real-time PCR and Western blotting revealed altered mRNA and protein levels in mutated samples. Our study indicates the novel WDR73 p.W371G missense mutation causes infantile onset intellectual disability and cerebellar hypoplasia in recessive mode of inheritance. Our findings imply that microcephaly is a variable phenotype in WDR73-related disease, suggest WDR73 to be a candidate gene of severe intellectual disability and cerebellar hypoplasia, and expand the molecular spectrum of WDR73-related disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Association of low-risk MSH3 and MSH2 variant alleles with Lynch syndrome: probability of synergistic effects.

    PubMed

    Duraturo, Francesca; Liccardo, Raffaella; Cavallo, Angela; De Rosa, Marina; Grosso, Michela; Izzo, Paola

    2011-10-01

    Mutations in the MLH1 and MSH2 genes account for a majority of cases of families with Lynch Syndrome. Germ-line mutations in MSH6, PMS2 and MLH3 are responsible for disease in a minority of cases, usually associated with milder and variable phenotypes. No germ-line mutations in MSH3 have so far been associated with Lynch Syndrome, although it is known that impaired MSH3 activity leads to a partial defect in mismatch repair (MMR), with low levels of microsatellite instability at the loci with dinucleotide repeats in colorectal cancer (CRC), thus suggesting a role for MSH3 in carcinogenesis. To determine a possible role of MSH3 as predisposing to CRC in Lynch syndrome, we screened MSH3 for germ-line mutations in 79 unrelated Lynch patients who were negative for pathogenetic mutations in MLH1, MSH2 and MSH6. We found 13 mutant alleles, including silent, missense and intronic variants. These variants were identified through denaturing high performance liquid chromatography and subsequent DNA sequencing. In one Lynch family, the index case with early-onset colon cancer was a carrier of a polymorphism in the MSH2 gene and two variants in the MSH3 gene. These variants were associated with the disease in the family, thus suggesting the involvement of MSH3 in colon tumour progression. We hypothesise a model in which variants of the MSH3 gene behave as low-risk alleles that contribute to the risk of colon cancer in Lynch families, mostly with other low-risk alleles of MMR genes. Copyright © 2010 UICC.

  13. Artefactual punctate MLH1 staining can lead to erroneous reporting of isolated PMS2 loss.

    PubMed

    Niu, Bonnie T; Hammond, Rory F L; Leen, Sarah L S; Faruqi, Asma Z; Trevisan, Giorgia; Gilks, C Blake; Singh, Naveena

    2018-05-31

    Germline mutations in the PMS2 gene are an uncommon cause of Lynch Syndrome (LS), present in <5% of LS-associated endometrial carcinomas (EC) 1,2 . Isolated loss of PMS2 immunohistochemical expression, with retained MLH1 expression, triggers referral to genetics services due to the significant risk of LS 3 . As detection of PMS2 germline mutations is problematic 4 , this may result in patients being labeled as "Lynch-like", with implications for future surveillance 5 . A recent study suggested that some cases of isolated PMS2 loss result from MLH1 promoter methylation and are sporadic rather than likely LS 6 ; they therefore recommended MLH1 promoter methylation testing in all cases of isolated PMS2 loss 6 . This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Ubiquitin-proteasome system impairment caused by a missense cardiac myosin-binding protein C mutation and associated with cardiac dysfunction in hypertrophic cardiomyopathy.

    PubMed

    Bahrudin, Udin; Morisaki, Hiroko; Morisaki, Takayuki; Ninomiya, Haruaki; Higaki, Katsumi; Nanba, Eiji; Igawa, Osamu; Takashima, Seiji; Mizuta, Einosuke; Miake, Junichiro; Yamamoto, Yasutaka; Shirayoshi, Yasuaki; Kitakaze, Masafumi; Carrier, Lucie; Hisatome, Ichiro

    2008-12-26

    The ubiquitin-proteasome system is responsible for the disappearance of truncated cardiac myosin-binding protein C, and the suppression of its activity contributes to cardiac dysfunction. This study investigated whether missense cardiac myosin-binding protein C gene (MYBPC3) mutation in hypertrophic cardiomyopathy (HCM) leads to destabilization of its protein, causes UPS impairment, and is associated with cardiac dysfunction. Mutations were identified in Japanese HCM patients using denaturing HPLC and sequencing. Heterologous expression was investigated in COS-7 cells as well as neonatal rat cardiac myocytes to examine protein stability and proteasome activity. The cardiac function was measured using echocardiography. Five novel MYBPC3 mutations -- E344K, DeltaK814, Delta2864-2865GC, Q998E, and T1046M -- were identified in this study. Compared with the wild type and other mutations, the E334K protein level was significantly lower, it was degraded faster, it had a higher level of polyubiquination, and increased in cells pretreated with the proteasome inhibitor MG132 (50 microM, 6 h). The electrical charge of its amino acid at position 334 influenced its stability, but E334K did not affect its phosphorylation. The E334K protein reduced cellular 20 S proteasome activity, increased the proapoptotic/antiapoptotic protein ratio, and enhanced apoptosis in transfected Cos-7 cells and neonatal rat cardiac myocytes. Patients carrying the E334K mutation presented significant left ventricular dysfunction and dilation. The conclusion is the missense MYBPC3 mutation E334K destabilizes its protein through UPS and may contribute to cardiac dysfunction in HCM through impairment of the ubiquitin-proteasome system.

  15. AR mutations in 28 patients with androgen insensitivity syndrome (Prader grade 0-3).

    PubMed

    Wang, Yi; Gong, Chunxiu; Wang, Xiou; Qin, Miao

    2017-07-01

    We investigated the androgen receptor (AR) gene mutation profiles of Chinese patients exhibiting severe androgen insensitivity syndrome (AIS) phenotypes. The present study enrolled 28 patients with genetically diagnosed AIS, who presented with severe phenotypes (Prader grade 0-3). Patients and some family members were screened via amplification and sequencing of their AR exons 1-8, including the corresponding intronic flanking regions. Luteinizing (LH), follicle-stimulating (FSH), and testosterone (T) hormone levels were found to be slightly, but not significantly, higher in patients with complete androgen insensitivity syndrome (CAIS) than in patients with partial androgen insensitivity syndrome (PAIS) (P>0.05). We identified 24 different AR mutations, including 12 that were novel. Ten patients (cases 2, 3, 10, 28, 11, 12, 19, 20, 24, and 25) were found to carry five recurrent mutations (p.Y572S, p.P914S, p.S176R, p.Y782N, and p.R841H); of these, p.Y572S, p.S176R, and p.Y782N were novel. Among the mutations identified in patients with CAIS, six (66.7%) were characterized as single-nucleotide missense mutations, and six (66.7%) were found to be located in the AR ligand-binding domain (LBD). Among the mutations identified in patients with PAIS, 15 (93.8%) were found to be missense, and 11 (68.8%) were found to be located in the LBD. Patients 10 and 28 were determined to harbor the same missense mutation (p.P914S), but were diagnosed with CAIS and PAIS, respectively. Sex hormone levels were slightly, but not significantly, elevated in patients with CAIS compared to those with PAIS. Missense mutations spanning AR exons 1-8 were the predominant form of identified mutations, and these were mostly located in the AR LBD. Approximately 50% of the identified mutations were novel, and have enriched the AR gene-mutation database. Patients harboring identical mutations were in some instances found to exhibit divergent phenotypes.

  16. Predicting the Functional Impact of CDH1 Missense Mutations in Hereditary Diffuse Gastric Cancer

    PubMed Central

    Melo, Soraia; Fernandes, Maria Sofia; Gonçalves, Margarida; Morais-de-Sá, Eurico; Sanches, João Miguel; Seruca, Raquel

    2017-01-01

    The role of E-cadherin in Hereditary Diffuse Gastric Cancer (HDGC) is unequivocal. Germline alterations in its encoding gene (CDH1) are causative of HDGC and occur in about 40% of patients. Importantly, while in most cases CDH1 alterations result in the complete loss of E-cadherin associated with a well-established clinical impact, in about 20% of cases the mutations are of the missense type. The latter are of particular concern in terms of genetic counselling and clinical management, as the effect of the sequence variants in E-cadherin function is not predictable. If a deleterious variant is identified, prophylactic surgery could be recommended. Therefore, over the last few years, intensive research has focused on evaluating the functional consequences of CDH1 missense variants and in assessing E-cadherin pathogenicity. In that context, our group has contributed to better characterize CDH1 germline missense variants and is now considered a worldwide reference centre. In this review, we highlight the state of the art methodologies to categorize CDH1 variants, as neutral or deleterious. This information is subsequently integrated with clinical data for genetic counseling and management of CDH1 variant carriers. PMID:29231860

  17. Missense mutation in DISC1 C-terminal coiled-coil has GSK3β signaling and sex-dependent behavioral effects in mice

    PubMed Central

    Dachtler, James; Elliott, Christina; Rodgers, R. John; Baillie, George S.; Clapcote, Steven J.

    2016-01-01

    Disrupted-in-Schizophrenia 1 (DISC1) is a risk factor for schizophrenia and affective disorders. The full-length DISC1 protein consists of an N-terminal ‘head’ domain and a C-terminal tail domain that contains several predicted coiled-coils, structural motifs involved in protein-protein interactions. To probe the in vivo effects of missense mutation of DISC1’s C-terminal tail, we tested mice carrying mutation D453G within a predicted α-helical coiled-coil region. We report that, relative to wild-type littermates, female DISC1D453G mice exhibited novelty-induced hyperlocomotion, an anxiogenic profile in the elevated plus-maze and open field tests, and reduced social exploration of unfamiliar mice. Male DISC1D453G mice displayed a deficit in passive avoidance, while neither males nor females exhibited any impairment in startle reactivity or prepulse inhibition. Whole brain homogenates showed normal levels of DISC1 protein, but decreased binding of DISC1 to GSK3β, decreased phospho-inhibition of GSK3β at serine 9, and decreased levels of β-catenin in DISC1D453G mice of either sex. Interrupted GSK3β signaling may thus be part of the mechanism underlying the behavioral phenotype associated with D453G, in common with the previously described N-terminal domain mutations Q31L and L100P in mice, and the schizophrenia risk-conferring variant R264Q in humans. PMID:26728762

  18. A missense mutation in the cholesteryl ester transfer protein gene with possible dominant effects on plasma high density lipoproteins.

    PubMed Central

    Takahashi, K; Jiang, X C; Sakai, N; Yamashita, S; Hirano, K; Bujo, H; Yamazaki, H; Kusunoki, J; Miura, T; Kussie, P

    1993-01-01

    Plasma HDL are a negative risk factor for atherosclerosis. Cholesteryl ester transfer protein (CETP; 476 amino acids) transfers cholesteryl ester from HDL to other lipoproteins. Subjects with homozygous CETP deficiency caused by a gene splicing defect have markedly elevated HDL; however, heterozygotes have only mild increases in HDL. We describe two probands with a CETP missense mutation (442 D:G). Although heterozygous, they have threefold increases in HDL concentration and markedly decreased plasma CETP mass and activity, suggesting that the mutation has dominant effects on CETP and HDL in vivo. Cellular expression of mutant cDNA results in secretion of only 30% of wild type CETP activity. Moreover, coexpression of wild type and mutant cDNAs leads to inhibition of wild type secretion and activity. The dominant effects of the CETP missense mutation during cellular expression probably explains why the probands have markedly increased HDL in the heterozygous state, and suggests that the active molecular species of CETP may be multimeric. Images PMID:8408659

  19. A missense mutation encoding Cys73Phe in neurophysin II is associated with autosomal dominant neurohypophyseal diabetes insipidus.

    PubMed

    Santiprabhob, Jeerunda; Browning, James; Repaske, David

    2002-01-01

    Autosomal dominant neurohypophyseal diabetes insipidus (ADNDI) is an inherited disease caused by progressive deficiency of the hormone arginine vasopressin (AVP) that typically becomes clinically apparent in the first decade of life. The genetic locus of ADNDI is the arginine vasopressin-neurophysin II (AVP-NPII) gene and mutations that cause ADNDI have been found in the nucleotides encoding the signal peptide, vasopressin, and neurophysin II peptides. In this study we have analyzed the AVP-NPII gene in a 20-year-old female who was diagnosed with ADNDI at 2 years of age. A heterozygous missense mutation (1684G>T) was found in exon 2 that predicts replacement of cysteine with phenylalanine at position 73 of neurophysin II. The mutation was confirmed by subcloning exon 2 PCR products to sequence each allele independently. Two out of four clones were found to have the missense mutation and two have the normal sequence, confirming the presence of the mutation and heterozygosity. Neurophysin II is an intracellular carrier protein for AVP during axonal transport from the hypothalamus to the posterior pituitary and contains 14 cysteine residues forming 7 disulfide bonds. This mutation is predicted to disrupt the disulfide bridge between Cys73 and Cys61 within the neurophysin II moiety. This finding of a novel mutation substituting cysteine with phenylalanine in one AVP-NPII gene allele supports the hypothesis that inability to form normal disulfide bonds in neurophysin II leads to ADNDI.

  20. A tailored approach to BRAF and MLH1 methylation testing in a universal screening program for Lynch syndrome.

    PubMed

    Adar, Tomer; Rodgers, Linda H; Shannon, Kristen M; Yoshida, Makoto; Ma, Tianle; Mattia, Anthony; Lauwers, Gregory Y; Iafrate, Anthony J; Chung, Daniel C

    2017-03-01

    To determine the correlation between BRAF genotype and MLH1 promoter methylation in a screening program for Lynch syndrome (LS), a universal screening program for LS was established in two medical centers. Tumors with abnormal MLH1 staining were evaluated for both BRAF V600E genotype and MLH1 promoter methylation. Tumors positive for both were considered sporadic, and genetic testing was recommended for all others. A total 1011 colorectal cancer cases were screened for Lynch syndrome, and 148 (14.6%) exhibited absent MLH1 immunostaining. Both BRAF and MLH1 methylation testing were completed in 126 cases. Concordant results (both positive or both negative) were obtained in 86 (68.3%) and 16 (12.7%) cases, respectively, with 81% concordance overall. The positive and negative predictive values for a BRAF mutation in predicting MLH1 promoter methylation were 98.9% and 41%, respectively, and the negative predictive value fell to 15% in patients ≥70 years old. Using BRAF genotyping as a sole test to evaluate cases with absent MLH1 staining would have increased referral rates for genetic testing by 2.3-fold compared with MLH1 methylation testing alone (31% vs 13.5%, respectively, P<0.01). However, a hybrid approach that reserves MLH1 methylation testing for BRAF wild-type cases only would significantly decrease the number of methylation assays performed and reduce the referral rate for genetic testing to 12.7%. A BRAF mutation has an excellent positive predictive value but poor negative predictive value in predicting MLH1 promoter methylation. A hybrid use of these tests may reduce the number of low-risk patients referred to genetic counseling and facilitate wider implementation of Lynch syndrome screening programs.

  1. Trafficking defects and loss of ligand binding are the underlying causes of all reported DDR2 missense mutations found in SMED-SL patients.

    PubMed

    Ali, Bassam R; Xu, Huifang; Akawi, Nadia A; John, Anne; Karuvantevida, Noushad S; Langer, Ruth; Al-Gazali, Lihadh; Leitinger, Birgit

    2010-06-01

    Spondylo-meta-epiphyseal dysplasia (SMED) with short limbs and abnormal calcifications (SMED-SL) is a rare, autosomal recessive human growth disorder, characterized by disproportionate short stature, short limbs, short broad fingers, abnormal metaphyses and epiphyses, platyspondyly and premature calcifications. Recently, three missense mutations and one splice-site mutation in the DDR2 gene were identified as causative genetic defects for SMED-SL, but the underlying cellular and biochemical mechanisms were not explored. Here we report a novel DDR2 missense mutation, c.337G>A (p.E113K), that causes SMED-SL in two siblings in the United Arab Emirates. Another DDR2 missense mutation, c.2254C>T (p.R752C), matching one of the previously reported SMED-SL mutations, was found in a second affected family. DDR2 is a plasma membrane receptor tyrosine kinase that functions as a collagen receptor. We expressed DDR2 constructs with the identified point mutations in human cell lines and evaluated their localization and functional properties. We found that all SMED-SL missense mutants were defective in collagen-induced receptor activation and that the three previously reported mutants (p.T713I, p.I726R and p.R752C) were retained in the endoplasmic reticulum. The novel mutant (p.E113K), in contrast, trafficked normally, like wild-type DDR2, but failed to bind collagen. This finding is in agreement with our recent structural data identifying Glu113 as an important amino acid in the DDR2 ligand-binding site. Our data thus demonstrate that SMED-SL can result from at least two different loss-of-function mechanisms: namely defects in DDR2 targeting to the plasma membrane or the loss of its ligand-binding activity.

  2. Trafficking defects and loss of ligand binding are the underlying causes of all reported DDR2 missense mutations found in SMED-SL patients

    PubMed Central

    Ali, Bassam R.; Xu, Huifang; Akawi, Nadia A.; John, Anne; Karuvantevida, Noushad S.; Langer, Ruth; Al-Gazali, Lihadh; Leitinger, Birgit

    2010-01-01

    Spondylo-meta-epiphyseal dysplasia (SMED) with short limbs and abnormal calcifications (SMED-SL) is a rare, autosomal recessive human growth disorder, characterized by disproportionate short stature, short limbs, short broad fingers, abnormal metaphyses and epiphyses, platyspondyly and premature calcifications. Recently, three missense mutations and one splice-site mutation in the DDR2 gene were identified as causative genetic defects for SMED-SL, but the underlying cellular and biochemical mechanisms were not explored. Here we report a novel DDR2 missense mutation, c.337G>A (p.E113K), that causes SMED-SL in two siblings in the United Arab Emirates. Another DDR2 missense mutation, c.2254C>T (p.R752C), matching one of the previously reported SMED-SL mutations, was found in a second affected family. DDR2 is a plasma membrane receptor tyrosine kinase that functions as a collagen receptor. We expressed DDR2 constructs with the identified point mutations in human cell lines and evaluated their localization and functional properties. We found that all SMED-SL missense mutants were defective in collagen-induced receptor activation and that the three previously reported mutants (p.T713I, p.I726R and p.R752C) were retained in the endoplasmic reticulum. The novel mutant (p.E113K), in contrast, trafficked normally, like wild-type DDR2, but failed to bind collagen. This finding is in agreement with our recent structural data identifying Glu113 as an important amino acid in the DDR2 ligand-binding site. Our data thus demonstrate that SMED-SL can result from at least two different loss-of-function mechanisms: namely defects in DDR2 targeting to the plasma membrane or the loss of its ligand-binding activity. PMID:20223752

  3. Missense mutations in TENM4, a regulator of axon guidance and central myelination, cause essential tremor.

    PubMed

    Hor, Hyun; Francescatto, Ludmila; Bartesaghi, Luca; Ortega-Cubero, Sara; Kousi, Maria; Lorenzo-Betancor, Oswaldo; Jiménez-Jiménez, Felix J; Gironell, Alexandre; Clarimón, Jordi; Drechsel, Oliver; Agúndez, José A G; Kenzelmann Broz, Daniela; Chiquet-Ehrismann, Ruth; Lleó, Alberto; Coria, Francisco; García-Martin, Elena; Alonso-Navarro, Hortensia; Martí, Maria J; Kulisevsky, Jaume; Hor, Charlotte N; Ossowski, Stephan; Chrast, Roman; Katsanis, Nicholas; Pastor, Pau; Estivill, Xavier

    2015-10-15

    Essential tremor (ET) is a common movement disorder with an estimated prevalence of 5% of the population aged over 65 years. In spite of intensive efforts, the genetic architecture of ET remains unknown. We used a combination of whole-exome sequencing and targeted resequencing in three ET families. In vitro and in vivo experiments in oligodendrocyte precursor cells and zebrafish were performed to test our findings. Whole-exome sequencing revealed a missense mutation in TENM4 segregating in an autosomal-dominant fashion in an ET family. Subsequent targeted resequencing of TENM4 led to the discovery of two novel missense mutations. Not only did these two mutations segregate with ET in two additional families, but we also observed significant over transmission of pathogenic TENM4 alleles across the three families. Consistent with a dominant mode of inheritance, in vitro analysis in oligodendrocyte precursor cells showed that mutant proteins mislocalize. Finally, expression of human mRNA harboring any of three patient mutations in zebrafish embryos induced defects in axon guidance, confirming a dominant-negative mode of action for these mutations. Our genetic and functional data, which is corroborated by the existence of a Tenm4 knockout mouse displaying an ET phenotype, implicates TENM4 in ET. Together with previous studies of TENM4 in model organisms, our studies intimate that processes regulating myelination in the central nervous system and axon guidance might be significant contributors to the genetic burden of this disorder. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency Syndrome.

    PubMed

    van der Klift, Heleen M; Mensenkamp, Arjen R; Drost, Mark; Bik, Elsa C; Vos, Yvonne J; Gille, Hans J J P; Redeker, Bert E J W; Tiersma, Yvonne; Zonneveld, José B M; García, Encarna Gómez; Letteboer, Tom G W; Olderode-Berends, Maran J W; van Hest, Liselotte P; van Os, Theo A; Verhoef, Senno; Wagner, Anja; van Asperen, Christi J; Ten Broeke, Sanne W; Hes, Frederik J; de Wind, Niels; Nielsen, Maartje; Devilee, Peter; Ligtenberg, Marjolijn J L; Wijnen, Juul T; Tops, Carli M J

    2016-11-01

    Monoallelic PMS2 germline mutations cause 5%-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA- and RNA-based strategies are applied to overcome problematic PMS2 mutation analysis due to the presence of pseudogenes and frequent gene conversion events. Here, we determined PMS2 mutation detection yield and mutation spectrum in a nationwide cohort of 396 probands. Furthermore, we studied concordance between tumor IHC/MSI (immunohistochemistry/microsatellite instability) profile and mutation carrier state. Overall, we found 52 different pathogenic PMS2 variants explaining 121 Lynch syndrome and nine CMMRD patients. In vitro mismatch repair assays suggested pathogenicity for three missense variants. Ninety-one PMS2 mutation carriers (70%) showed isolated loss of PMS2 in their tumors, for 31 (24%) no or inconclusive IHC was available, and eight carriers (6%) showed discordant IHC (presence of PMS2 or loss of both MLH1 and PMS2). Ten cases with isolated PMS2 loss (10%; 10/97) harbored MLH1 mutations. We confirmed that recently improved mutation analysis provides a high yield of PMS2 mutations in patients with isolated loss of PMS2 expression. Application of universal tumor prescreening methods will however miss some PMS2 germline mutation carriers. © 2016 WILEY PERIODICALS, INC.

  5. Alternating Hemiplegia of Childhood-Related Neural and Behavioural Phenotypes in Na+,K+-ATPase α3 Missense Mutant Mice

    PubMed Central

    Kirshenbaum, Greer S.; Dawson, Neil; Mullins, Jonathan G. L.; Johnston, Tom H.; Drinkhill, Mark J.; Edwards, Ian J.; Fox, Susan H.; Pratt, Judith A.; Brotchie, Jonathan M.; Roder, John C.; Clapcote, Steven J.

    2013-01-01

    Missense mutations in ATP1A3 encoding Na+,K+-ATPase α3 have been identified as the primary cause of alternating hemiplegia of childhood (AHC), a motor disorder with onset typically before the age of 6 months. Affected children tend to be of short stature and can also have epilepsy, ataxia and learning disability. The Na+,K+-ATPase has a well-known role in maintaining electrochemical gradients across cell membranes, but our understanding of how the mutations cause AHC is limited. Myshkin mutant mice carry an amino acid change (I810N) that affects the same position in Na+,K+-ATPase α3 as I810S found in AHC. Using molecular modelling, we show that the Myshkin and AHC mutations display similarly severe structural impacts on Na+,K+-ATPase α3, including upon the K+ pore and predicted K+ binding sites. Behavioural analysis of Myshkin mice revealed phenotypic abnormalities similar to symptoms of AHC, including motor dysfunction and cognitive impairment. 2-DG imaging of Myshkin mice identified compromised thalamocortical functioning that includes a deficit in frontal cortex functioning (hypofrontality), directly mirroring that reported in AHC, along with reduced thalamocortical functional connectivity. Our results thus provide validation for missense mutations in Na+,K+-ATPase α3 as a cause of AHC, and highlight Myshkin mice as a starting point for the exploration of disease mechanisms and novel treatments in AHC. PMID:23527305

  6. A rare missense mutation in MYH6 associates with non-syndromic coarctation of the aorta.

    PubMed

    Bjornsson, Thorsteinn; Thorolfsdottir, Rosa B; Sveinbjornsson, Gardar; Sulem, Patrick; Norddahl, Gudmundur L; Helgadottir, Anna; Gretarsdottir, Solveig; Magnusdottir, Audur; Danielsen, Ragnar; Sigurdsson, Emil L; Adalsteinsdottir, Berglind; Gunnarsson, Sverrir I; Jonsdottir, Ingileif; Arnar, David O; Helgason, Hrodmar; Gudbjartsson, Tomas; Gudbjartsson, Daniel F; Thorsteinsdottir, Unnur; Holm, Hilma; Stefansson, Kari

    2018-03-24

    Coarctation of the aorta (CoA) accounts for 4-8% of congenital heart defects (CHDs) and confers substantial morbidity despite treatment. It is increasingly recognized as a highly heritable condition. The aim of the study was to search for sequence variants that affect the risk of CoA. We performed a genome-wide association study of CoA among Icelanders (120 cases and 355 166 controls) based on imputed variants identified through whole-genome sequencing. We found association with a rare (frequency = 0.34%) missense mutation p.Arg721Trp in MYH6 (odds ratio = 44.2, P = 5.0 × 10-22), encoding the alpha-heavy chain subunit of cardiac myosin, an essential sarcomere protein. Approximately 20% of individuals with CoA in Iceland carry this mutation. We show that p.Arg721Trp also associates with other CHDs, in particular bicuspid aortic valve. We have previously reported broad effects of p.Arg721Trp on cardiac electrical function and strong association with sick sinus syndrome and atrial fibrillation. Through a population approach, we found that a rare missense mutation p.Arg721Trp in the sarcomere gene MYH6 has a strong effect on the risk of CoA and explains a substantial fraction of the Icelanders with CoA. This is the first mutation associated with non-familial or sporadic form of CoA at a population level. The p.Arg721Trp in MYH6 causes a cardiac syndrome with highly variable expressivity and emphasizes the importance of sarcomere integrity for cardiac development and function.

  7. Constitutional MLH1 methylation presenting with colonic polyposis syndrome and not Lynch syndrome.

    PubMed

    Kidambi, Trilokesh D; Blanco, Amie; Van Ziffle, Jessica; Terdiman, Jonathan P

    2016-04-01

    At least one-third of patients meeting clinical criteria for Lynch syndrome will have no germline mutation and constitutional epimutations leading to promoter methylation of MLH1 have been identified in a subset of these patients. We report the first case of constitutional MLH1 promoter methylation associated with a colonic polyposis syndrome in a 39 year-old man with a family history of colorectal cancer (CRC) and a personal history of 21 polyps identified over 8 years as well as the development of two synchronous CRCs over 16 months who was evaluated for a hereditary cancer syndrome. Immunohistochemistry (IHC) of multiple tumors showed absent MLH1 and PMS2 expression, though germline testing with Sanger sequencing and multiplex ligation-dependent probe amplification of these mismatch repair genes (MMR) genes was negative. A next generation sequencing panel of 29 genes also failed to identify a pathogenic mutation. Hypermethylation was identified in MLH1 intron 1 in tumor specimens along with buccal cells and peripheral white blood cells, confirming the diagnosis of constitutional MLH1 promoter methylation. This case highlights that constitutional MLH1 methylation should be considered in the differential diagnosis for a polyposis syndrome if IHC staining shows absent MMR gene expression.

  8. Missense Mutations Allow a Sequence-Blind Mutant of SpoIIIE to Successfully Translocate Chromosomes during Sporulation.

    PubMed

    Bose, Baundauna; Reed, Sydney E; Besprozvannaya, Marina; Burton, Briana M

    2016-01-01

    SpoIIIE directionally pumps DNA across membranes during Bacillus subtilis sporulation and vegetative growth. The sequence-reading domain (γ domain) is required for directional DNA transport, and its deletion severely impairs sporulation. We selected suppressors of the spoIIIEΔγ sporulation defect. Unexpectedly, many suppressors were intragenic missense mutants, and some restore sporulation to near-wild-type levels. The mutant proteins are likely not more abundant, faster at translocating DNA, or sequence-sensitive, and rescue does not involve the SpoIIIE homolog SftA. Some mutants behave differently when co-expressed with spoIIIEΔγ, consistent with the idea that some, but not all, variants may form mixed oligomers. In full-length spoIIIE, these mutations do not affect sporulation, and yet the corresponding residues are rarely found in other SpoIIIE/FtsK family members. The suppressors do not rescue chromosome translocation defects during vegetative growth, indicating that the role of the γ domain cannot be fully replaced by these mutations. We present two models consistent with our findings: that the suppressors commit to transport in one arbitrarily-determined direction or delay spore development. It is surprising that missense mutations somehow rescue loss of an entire domain with a complex function, and this raises new questions about the mechanism by which SpoIIIE pumps DNA and the roles SpoIIIE plays in vivo.

  9. Missense variations in the cystic fibrosis gene: Heteroduplex formation in the F508C mutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macek, M. Jr.; Ladanyi, L.; Buerger, J.

    1992-11-01

    Kobayashi et al. (1990) have described missense variations in the conserved region of exon 10 of the cystic fibrosis (CF) transmembrane conductance regulator gene. In their paper, two [Delta]F508/F508C compound heterozygous individuals were reported. Clinical and epithelial physiological studies in both cases were normal, suggesting that the substitution of cysteine for phenylalanine at position 508, the F508C mutation, is benign. However, Kerem et al. reported a patient with this substitution who had typical symptoms of CF. In routine [Delta]F508 mutation screening by visualization of the 3-bp deletion on a 12% polyacrylamide gel the authors detected an abnormal heteroduplex in themore » father of a CF patient of German origin. Subsequent direct sequencing of the PCR product confirmed that this clinically normal father is a compound heterozygote for the [Delta]F508/F508C mutations. This heteroduplex is slightly different from the usual heteroduplex in [Delta]F508/F508C heteroduplex was not published, it is likely that similar cases can be overseen during the widely performed [Delta]F508 mutation screening by PAGE. Detection of more cases, such as the one presented here, together with careful, standardized clinical examination of the proband, would be valuable to verify the nature of this mutation. 4 refs., 1 fig.« less

  10. CpG Island Methylator Phenotype Positive Tumors in the Absence of MLH1 Methylation Constitute a Distinct Subset of Duodenal Adenocarcinomas and Are Associated with Poor Prognosis

    PubMed Central

    Fu, Tao; Pappou, Emmanouil P.; Guzzetta, Angela A.; Jeschke, Jana; Kwak, Ruby; Dave, Pujan; Hooker, Craig M.; Morgan, Richard; Baylin, Stephen B.; Iacobuzio-Donahue, Christine A.; Wolfgang, Christopher L.; Ahuja, Nita

    2012-01-01

    Purpose Little information is available on genetic and epigenetic changes in duodenal adenocarcinomas. The purpose was to identify possible subsets of duodenal adenocarcinomas based on microsatellite instability (MSI), DNA methylation, mutations in the KRAS and BRAF genes, clinicopathologic features, and prognosis. Experimental Design Demographics, tumor characteristics and survival were available for 99 duodenal adenocarcinoma patients. Testing for KRAS and BRAF mutations, MSI, MLH1 methylation and CpG island methylator phenotype (CIMP) status was performed. A Cox proportional hazard model was built to predict survival. Results CIMP+ was detected in 27 of 99 (27.3%) duodenal adenocarcinomas, and was associated with MSI (P = 0.011) and MLH1 methylation (P < 0.001), but not with KRAS mutations (P = 0.114), as compared to CIMP− tumors. No BRAF V600E mutation was detected. Among the CIMP+ tumors, 15 (55.6%) were CIMP+/MLH1-unmethylated (MLH1-U). Kaplan-Meier analysis showed tumors classified by CIMP, CIMP/MLH1 methylation status or CIMP/MSI status could predict overall survival (OS; P = 0.047, 0.002, and 0.002, respectively), while CIMP/MLH1 methylation status could also predict time-to-recurrence (TTR; P = 0.016). In multivariate analysis, CIMP/MLH1 methylation status showed a significant prognostic value regarding both OS (P < 0.001) and TTR (P = 0.023). Patients with CIMP+/MLH1-U tumors had the worst OS and TTR. Conclusions Our results demonstrate existence of CIMP in duodenal adenocarcinomas. The combination of CIMP+/MLH1-U appears to be independently associated with poor prognosis in patients with duodenal adenocarcinomas. This study also suggests that BRAF mutations are not involved in duodenal tumorigenesis, MSI or CIMP development. PMID:22825585

  11. Finding the needle in a haystack: identification of cases of Lynch syndrome with MLH1 epimutation.

    PubMed

    Hitchins, Megan P

    2016-07-01

    Constitutional epimutation of the DNA mismatch repair gene, MLH1, represents a minor cause of Lynch syndrome. MLH1 epimutations are characterized by the soma-wide distribution of methylation of a single allele of the MLH1 promoter accompanied by constitutive allelic loss of transcription. 'Primary' MLH1 epimutations, considered pure epigenetic defects, tend to arise de novo in patients without a family history or any apparent genetic mutation. These demonstrate non-Mendelian inheritance. 'Secondary' MLH1 epimutations have a genetic basis and have been linked to non-coding genetic alterations in the vicinity of MLH1. These demonstrate autosomal dominant inheritance. Despite convincing evidence of their role in causing Lynch-type cancers, routine screening for MLH1 epimutations has not been widely adopted. Complicating factors may include: the need to perform additional methylation-based testing beyond the standard genetic screening for a germline mutation; the lack of a consensus algorithm for the selection of patients warranting MLH1 epimutation testing; overlapping molecular pathology features of MLH1 methylation and loss of MLH1 expression with more prevalent sporadic MSI cancers; the rarity of MLH1 epimutation; the variable inter-generational inheritance patterns; and the cost-effectiveness of screening. Nevertheless, a positive molecular diagnosis of MLH1 epimutation is clinically important because carriers have a high personal risk of developing metachronous Lynch-type cancers, and their relatives may also be at risk of carriage. Extending existing universal and clinic-based screening algorithms for Lynch syndrome to include an additional arm of selection criteria for cases warranting MLH1 epimutation testing could provide a cost-effective means of diagnosing these cases.

  12. Dyskeratosis congenita--two siblings with a new missense mutation in the DKC1 gene.

    PubMed

    Coelho, Joana Dias; Lestre, Sara; Kay, Teresa; Lopes, Maria João Paiva; Fiadeiro, Teresa; Apetato, Margarida

    2011-01-01

    Dyskeratosis congenital is reported in two siblings. They presented with the classic triad of mucocutaneous features: leukoplakia of the tongue, dystrophic nails, and a widespread reticulate pigmentation on the neck and upper chest. A genetic analysis was performed and a new missense mutation S356P, hemizygous, was identified in the DKC1 gene in both patients. Acitretin was started at a low-dose in both patients, resulting in clinical improvement and important, positive psychosocial effects. © 2011 Wiley Periodicals, Inc.

  13. Variants of the D{sub 5} dopamine receptor gene found in patients with schizophrenia: Identification of a nonsense mutation and multiple missense changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobell, J.L.; Lind, T.J.; Sommer, S.S.

    To determine whether mutations in the D{sub 5} dopamine receptor (D{sub 5}DR) gene are associated with schizophrenia, the gene was examined in 78 unrelated schizophrenic individuals. After amplification by the polymerase chain reaction, products were examined by dideoxy fingerprinting (ddF), a highly sensitive screening method related to single strand conformational polymorphism analysis. All samples with unusual ddF patterns were sequenced to precisely identify the sequence change. In the 156 D{sub 5}DR alleles examined, nine sequence changes were identified. Four of the nine did not affect protein structure; of these, three were silent changes and one was a transition in themore » 3{prime} untranslated region. The remaining five sequence changes result in protein alterations: of these, one is a missense change in a non-conserved amino acid, 3 are missense changes in amino acids that are conserved in some dopamine D{sub 5} receptors and the last is a nonsense mutation. To investigate whether the nonsense mutation was associated with schizophrenia, 400 additional schizophrenic cases of western European descent and 1914 ethnically-similar controls were screened for the change. One additional schizophrenic carrier was identified and verified by direct genomic sequencing (allele frequency: .0013), but eight carriers also were found and confirmed among the non-schizophrenics (allele frequency: .0021)(p>.25). The gene was re-examined in all newly identified carriers of the nonsense mutation by direct sequencing and/or ddF in search of additional mutations. None were identified. Family studies also were conducted to investigate possible cosegregation of the mutation with other neuropsychiatric diseases, but this was not demonstrated. Thus, the mutation does not appear to be associated with an increased risk of schizophrenia nor does an initial analysis suggest cosegregation with other neuropsychiatric disorders or symptom complexes.« less

  14. A missense mutation in Fgfr1 causes ear and skull defects in hush puppy mice.

    PubMed

    Calvert, Jennifer A; Dedos, Skarlatos G; Hawker, Kelvin; Fleming, Michelle; Lewis, Morag A; Steel, Karen P

    2011-06-01

    The hush puppy mouse mutant has been shown previously to have skull and outer, middle, and inner ear defects, and an increase in hearing threshold. The fibroblast growth factor receptor 1 (Fgfr1) gene is located in the region of chromosome 8 containing the mutation. Sequencing of the gene in hush puppy heterozygotes revealed a missense mutation in the kinase domain of the protein (W691R). Homozygotes were found to die during development, at approximately embryonic day 8.5, and displayed a phenotype similar to null mutants. Reverse transcription PCR indicated a decrease in Fgfr1 transcript in heterozygotes and homozygotes. Generation of a construct containing the mutation allowed the function of the mutated receptor to be studied. Immunocytochemistry showed that the mutant receptor protein was present at the cell membrane, suggesting normal expression and trafficking. Measurements of changes in intracellular calcium concentration showed that the mutated receptor could not activate the IP(3) pathway, in contrast to the wild-type receptor, nor could it initiate activation of the Ras/MAP kinase pathway. Thus, the hush puppy mutation in fibroblast growth factor receptor 1 appears to cause a loss of receptor function. The mutant protein appears to have a dominant negative effect, which could be due to it dimerising with the wild-type protein and inhibiting its activity, thus further reducing the levels of functional protein. A dominant modifier, Mhspy, which reduces the effect of the hush puppy mutation on pinna and stapes development, has been mapped to the distal end of chromosome 7 and may show imprinting.

  15. A novel dominant GJB2 (DFNA3) mutation in a Chinese family

    NASA Astrophysics Data System (ADS)

    Wang, Hongyang; Wu, Kaiwen; Yu, Lan; Xie, Linyi; Xiong, Wenping; Wang, Dayong; Guan, Jing; Wang, Qiuju

    2017-01-01

    To decipher the phenotype and genotype of a Chinese family with autosomal dominant non-syndromic hearing loss (ADNSHL) and a novel dominant missense mutation in the GJB2 gene (DFNA3), mutation screening of GJB2 was performed on the propositus from a five-generation ADNSHL family through polymerase chain reaction amplification and Sanger sequencing. The candidate variation and the co-segregation of the phenotype were verified in all ascertained family members. Targeted genes capture and next-generation sequencing (NGS) were performed to explore additional genetic variations. We identified the novel GJB2 mutation c.524C > A (p.P175H), which segregated with high frequency and was involved in progressive sensorineural hearing loss. One subject with an additional c.235delC mutation showed a more severe phenotype than did the other members with single GJB2 dominant variations. Four patients diagnosed with noise-induced hearing loss did not carry this mutation. No other pathogenic variations or modifier genes were identified by NGS. In conclusion, a novel missense mutation in GJB2 (DFNA3), affecting the second extracellular domain of the protein, was identified in a family with ADNSHL.

  16. The MLH1 c.-27C>A and c.85G>T variants are linked to dominantly inherited MLH1 epimutation and are borne on a European ancestral haplotype.

    PubMed

    Kwok, Chau-To; Vogelaar, Ingrid P; van Zelst-Stams, Wendy A; Mensenkamp, Arjen R; Ligtenberg, Marjolijn J; Rapkins, Robert W; Ward, Robyn L; Chun, Nicolette; Ford, James M; Ladabaum, Uri; McKinnon, Wendy C; Greenblatt, Marc S; Hitchins, Megan P

    2014-05-01

    Germline mutations of the DNA mismatch repair genes MLH1, MSH2, MSH6 or PMS2, and deletions affecting the EPCAM gene adjacent to MSH2, underlie Lynch syndrome by predisposing to early-onset colorectal, endometrial and other cancers. An alternative but rare cause of Lynch syndrome is constitutional epimutation of MLH1, whereby promoter methylation and transcriptional silencing of one allele occurs throughout normal tissues. A dominantly transmitted constitutional MLH1 epimutation has been linked to an MLH1 haplotype bearing two single-nucleotide variants, NM_000249.2: c.-27C>A and c.85G>T, in a Caucasian family with Lynch syndrome from Western Australia. Subsequently, a second seemingly unrelated Caucasian Australian case with the same MLH1 haplotype and concomitant epimutation was reported. We now describe three additional, ostensibly unrelated, cancer-affected families of European heritage with this MLH1 haplotype in association with constitutional epimutation, bringing the number of index cases reported to five. Array-based genotyping in four of these families revealed shared haplotypes between individual families that extended across ≤2.6-≤6.4 megabase regions of chromosome 3p, indicating common ancestry. A minimal ≤2.6 megabase founder haplotype common to all four families was identified, which encompassed MLH1 and additional flanking genes and segregated with the MLH1 epimutation in each family. Our findings indicate that the MLH1 c.-27C>A and c.85G>T variants are borne on a European ancestral haplotype and provide conclusive evidence for its pathogenicity via a mechanism of epigenetic silencing of MLH1 within normal tissues. Additional descendants bearing this founder haplotype may exist who are also at high risk of developing Lynch syndrome-related cancers.

  17. ALDH1A3 Mutations Cause Recessive Anophthalmia and Microphthalmia

    PubMed Central

    Fares-Taie, Lucas; Gerber, Sylvie; Chassaing, Nicolas; Clayton-Smith, Jill; Hanein, Sylvain; Silva, Eduardo; Serey, Margaux; Serre, Valérie; Gérard, Xavier; Baumann, Clarisse; Plessis, Ghislaine; Demeer, Bénédicte; Brétillon, Lionel; Bole, Christine; Nitschke, Patrick; Munnich, Arnold; Lyonnet, Stanislas; Calvas, Patrick; Kaplan, Josseline; Ragge, Nicola; Rozet, Jean-Michel

    2013-01-01

    Anophthalmia and microphthalmia (A/M) are early-eye-development anomalies resulting in absent or small ocular globes, respectively. A/M anomalies occur in syndromic or nonsyndromic forms. They are genetically heterogeneous, some mutations in some genes being responsible for both anophthalmia and microphthalmia. Using a combination of homozygosity mapping, exome sequencing, and Sanger sequencing, we identified homozygosity for one splice-site and two missense mutations in the gene encoding the A3 isoform of the aldehyde dehydrogenase 1 (ALDH1A3) in three consanguineous families segregating A/M with occasional orbital cystic, neurological, and cardiac anomalies. ALDH1A3 is a key enzyme in the formation of a retinoic acid gradient along the dorso-ventral axis during early eye development. Transitory expression of mutant ALDH1A3 open reading frames showed that both missense mutations reduce the accumulation of the enzyme, potentially leading to altered retinoic acid synthesis. Although the role of retinoic acid signaling in eye development is well established, our findings provide genetic evidence of a direct link between retinoic-acid-synthesis dysfunction and early-eye-development anomalies in humans. PMID:23312594

  18. Patterns and severity of vascular amyloid in Alzheimer's disease associated with duplications and missense mutations in APP gene, Down syndrome and sporadic Alzheimer's disease.

    PubMed

    Mann, David M A; Davidson, Yvonne S; Robinson, Andrew C; Allen, Nancy; Hashimoto, Tadafumi; Richardson, Anna; Jones, Matthew; Snowden, Julie S; Pendleton, Neil; Potier, Marie-Claude; Laquerrière, Annie; Prasher, Vee; Iwatsubo, Takeshi; Strydom, Andre

    2018-05-16

    In this study, we have compared the severity of amyloid plaque formation and cerebral amyloid angiopathy (CAA), and the subtype pattern of CAA pathology itself, between APP genetic causes of AD (APPdup, APP mutations), older individuals with Down syndrome (DS) showing the pathology of Alzheimer's disease (AD) and individuals with sporadic (early and late onset) AD (sEOAD and sLOAD, respectively). The aim of this was to elucidate important group differences and to provide mechanistic insights related to clinical and neuropathological phenotypes. Since lipid and cholesterol metabolism is implicated in AD as well as vascular disease, we additionally aimed to explore the role of APOE genotype in CAA severity and subtypes. Plaque formation was greater in DS and missense APP mutations than in APPdup, sEOAD and sLOAD cases. Conversely, CAA was more severe in APPdup and missense APP mutations, and in DS, compared to sEOAD and sLOAD. When stratified by CAA subtype from 1 to 4, there were no differences in plaque scores between the groups, though in patients with APPdup, APP mutations and sEOAD, types 2 and 3 CAA were more common than type 1. Conversely, in DS, sLOAD and controls, type 1 CAA was more common than types 2 and 3. APOE ε4 allele frequency was greater in sEOAD and sLOAD compared to APPdup, missense APP mutations, DS and controls, and varied between each of the CAA phenotypes with APOE ε4 homozygosity being more commonly associated with type 3 CAA than types 1 and 2 CAA in sLOAD and sEOAD. The differing patterns in CAA within individuals of each group could be a reflection of variations in the efficiency of perivascular drainage, this being less effective in types 2 and 3 CAA leading to a greater burden of CAA in parenchymal arteries and capillaries. Alternatively, as suggested by immunostaining using carboxy-terminal specific antibodies, it may relate to the relative tissue burdens of the two major forms of Aβ, with higher levels of Aβ 40 promoting a more

  19. Kinact: a computational approach for predicting activating missense mutations in protein kinases.

    PubMed

    Rodrigues, Carlos H M; Ascher, David B; Pires, Douglas E V

    2018-05-21

    Protein phosphorylation is tightly regulated due to its vital role in many cellular processes. While gain of function mutations leading to constitutive activation of protein kinases are known to be driver events of many cancers, the identification of these mutations has proven challenging. Here we present Kinact, a novel machine learning approach for predicting kinase activating missense mutations using information from sequence and structure. By adapting our graph-based signatures, Kinact represents both structural and sequence information, which are used as evidence to train predictive models. We show the combination of structural and sequence features significantly improved the overall accuracy compared to considering either primary or tertiary structure alone, highlighting their complementarity. Kinact achieved a precision of 87% and 94% and Area Under ROC Curve of 0.89 and 0.92 on 10-fold cross-validation, and on blind tests, respectively, outperforming well established tools (P < 0.01). We further show that Kinact performs equally well on homology models built using templates with sequence identity as low as 33%. Kinact is freely available as a user-friendly web server at http://biosig.unimelb.edu.au/kinact/.

  20. A novel missense mutation in GRIN2A causes a nonepileptic neurodevelopmental disorder.

    PubMed

    Fernández-Marmiesse, Ana; Kusumoto, Hirofumi; Rekarte, Saray; Roca, Iria; Zhang, Jin; Myers, Scott J; Traynelis, Stephen F; Couce, Mª Luz; Gutierrez-Solana, Luis; Yuan, Hongjie

    2018-04-11

    Mutations in the GRIN2A gene, which encodes the GluN2A (glutamate [NMDA] receptor subunit epsilon-1) subunit of the N-methyl-d-aspartate receptor, have been identified in patients with epilepsy-aphasia spectrum disorders, idiopathic focal epilepsies with centrotemporal spikes, and epileptic encephalopathies with severe developmental delay. However, thus far, mutations in this gene have not been associated with a nonepileptic neurodevelopmental disorder with dystonia. The objective of this study was to identify the disease-causing gene in 2 siblings with neurodevelopmental and movement disorders with no epileptiform abnormalities. The study method was targeted next-generation sequencing panel for neuropediatric disorders and subsequent electrophysiological studies. The 2 siblings carry a novel missense mutation in the GRIN2A gene (p.Ala643Asp) that was not detected in genomic DNA isolated from blood cells of their parents, suggesting that the mutation is the consequence of germinal mosaicism in 1 progenitor. In functional studies, the GluN2A-A643D mutation increased the potency of the agonists L-glutamate and glycine and decreased the potency of endogenous negative modulators, including protons, magnesium and zinc but reduced agonist-evoked peak current response in mammalian cells, suggesting that this mutation has a mixed effect on N-methyl-d-aspartate receptor function. De novo GRIN2A mutations can give rise to a neurodevelopmental and movement disorder without epilepsy. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  1. [Study of gene mutation in 62 hemophilia A children].

    PubMed

    Hu, Q; Liu, A G; Zhang, L Q; Zhang, A; Wang, Y Q; Wang, S M; Lu, Y J; Wang, X

    2017-11-02

    Objective: To analyze the mutation type of FⅧ gene in children with hemophilia A and to explore the relationship among hemophilia gene mutation spectrum, gene mutation and clinical phenotype. Method: Sixty-two children with hemophilia A from Department of Pediatric Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology between January 2015 and March 2017 were enrolled. All patients were male, aged from 4 months to 7 years and F Ⅷ activity ranged 0.2%-11.0%. Fifty cases had severe, 10 cases had moderate and 2 cases had mild hemophilia A. DNA was isolated from peripheral blood in hemophilia A children and the target gene fragment was amplified by PCR, in combination with the second generation sequencing, 22 and 1 introns were detected. Negative cases were detected by the second generation sequencing and results were compared with those of the international FⅧ gene mutation database. Result: There were 20 cases (32%) of intron 22 inversion, 2 cases (3%) of intron 1 inversion, 18 cases (29%) of missense mutation, 5 cases (8%) of nonsense mutation, 7 cases (11%) of deletion mutation, 1 case(2%)of splice site mutation, 2 cases (3%) of large fragment deletion and 1 case of insertion mutation (2%). No mutation was detected in 2 cases (3%), and 4 cases (7%) failed to amplify. The correlation between phenotype and genotype showed that the most common gene mutation in severe hemophilia A was intron 22 inversion (20 cases), accounting for 40% of severe patients, followed by 11 cases of missense mutation (22%). The most common mutation in moderate hemophilia A was missense mutation (6 cases), accounting for 60% of moderate patients. Conclusion: The most frequent mutation type in hemophilia A was intron 22 inversion, followed by missense mutation, again for missing mutation. The relationship between phenotype and genotype: the most frequent gene mutation in severe hemophilia A is intron 22 inversion, followed by missense

  2. Atypical Progeroid Syndrome due to Heterozygous Missense LMNA Mutations

    PubMed Central

    Garg, Abhimanyu; Subramanyam, Lalitha; Agarwal, Anil K.; Simha, Vinaya; Levine, Benjamin; D'Apice, Maria Rosaria; Novelli, Giuseppe; Crow, Yanick

    2009-01-01

    Context: Hutchinson-Gilford progeria syndrome (HGPS) and mandibuloacral dysplasia are well-recognized allelic autosomal dominant and recessive progeroid disorders, respectively, due to mutations in lamin A/C (LMNA) gene. Heterozygous LMNA mutations have also been reported in a small number of patients with a less well-characterized atypical progeroid syndrome (APS). Objective: The objective of the study was to investigate the underlying genetic and molecular basis of the phenotype of patients presenting with APS. Results: We report 11 patients with APS from nine families, many with novel heterozygous missense LMNA mutations, such as, P4R, E111K, D136H, E159K, and C588R. These and previously reported patients now reveal a spectrum of clinical features including progeroid manifestations such as short stature, beaked nose, premature graying, partial alopecia, high-pitched voice, skin atrophy over the hands and feet, partial and generalized lipodystrophy with metabolic complications, and skeletal anomalies such as mandibular hypoplasia and mild acroosteolysis. Skin fibroblasts from these patients when assessed for lamin A/C expression using epifluorescence microscopy revealed variable nuclear morphological abnormalities similar to those observed in patients with HGPS. However, these nuclear abnormalities in APS patients could not be rescued with 48 h treatment with farnesyl transferase inhibitors, geranylgeranyl transferase inhibitors or trichostatin-A, a histone deacetylase inhibitor. Immunoblots of cell lysates from fibroblasts did not reveal prelamin A accumulation in any of these patients. Conclusions: APS patients have a few overlapping but some distinct clinical features as compared with HGPS and mandibuloacral dysplasia. The pathogenesis of clinical manifestations in APS patients seems not to be related to accumulation of mutant farnesylated prelamin A. PMID:19875478

  3. Common mutations in the fibroblast growth factor receptor 3 (FGFR 3) gene account for achondroplasia, hypochondroplasia, and thanatophoric dwarfism.

    PubMed

    Bonaventure, J; Rousseau, F; Legeai-Mallet, L; Le Merrer, M; Munnich, A; Maroteaux, P

    1996-05-03

    The mapping of the achondroplasia locus to the short arm of chromosome 4 and the subsequent identification of a recurrent missense mutation (G380R) in the fibroblast growth factor receptor 3 (FGFR-3) gene has been followed by the detection of common FGFR-3 mutations in two clinically related disorders: thanatophoric dwarfism (types I and II) and hypochondroplasia. The relative clinical homogeneity of achondroplasia was substantiated by demonstration of its genetic homogeneity as more than 98% of all patients hitherto reported exhibit mutations in the transmembrane receptor domain. Although most hypochondroplasia cases were accounted for by a recurrent missense substitution (N540K) in the first tyrosine kinase (TK 1) domain of the receptor, a significant proportion (40%) of our patients did not harbor the N540K mutation and three hypochondroplasia families were not linked to the FGFR-3 locus, thus supporting clinical heterogeneity of this condition. In thanatophoric dwarfism (TD), a recurrent FGFR-3 mutation located in the second tyrosine kinase (TK 2) domain of the receptor was originally detected in 100% of TD II cases, our series seven distinct mutations in three different protein domains were identified in 25 of 26 TD I patients, suggesting that TD, like achondroplasia, is a genetically homogenous skeletal disorder.

  4. Hypomyelinating leukodystrophy-associated missense mutation in HSPD1 blunts mitochondrial dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, Yuki; Eguchi, Takahiro; Kawahara, Kazuko

    Myelin-forming glial cells undergo dynamic morphological changes in order to produce mature myelin sheaths with multiple layers. In the central nervous system (CNS), oligodendrocytes differentiate to insulate neuronal axons with myelin sheaths. Myelin sheaths play a key role in homeostasis of the nervous system, but their related disorders lead not only to dismyelination and repeated demyelination but also to severe neuropathies. Hereditary hypomyelinating leukodystrophies (HLDs) are a group of such diseases affecting oligodendrocytes and are often caused by missense mutations of the respective responsible genes. Despite increasing identification of gene mutations through advanced nucleotide sequencing technology, studies on the relationshipsmore » between gene mutations and their effects on cellular and subcellular aberrance have not followed at the same rapid pace. In this study, we report that an HLD4-associated (Asp-29-to-Gly) mutant of mitochondrial heat shock 60-kDa protein 1 (HSPD1) causes short-length morphologies and increases the numbers of mitochondria due to their aberrant fission and fusion cycles. In experiments using a fluorescent dye probe, this mutation decreases the mitochondrial membrane potential. Also, mitochondria accumulate in perinuclear regions. HLD4-associated HSPD1 mutant blunts mitochondrial dynamics, probably resulting in oligodendrocyte malfunction. This study constitutes a first finding concerning the relationship between disease-associated HSPD1 mutation and mitochondrial dynamics, which may be similar to the relationship between another disease-associated HSPD1 mutation (MitCHAP-60 disease) and aberrant mitochondrial dynamics. - Highlights: • The HLD4 mutant of HSPD1 decreases mitochondrial fission frequency. • The HLD4 mutant decreases mitochondrial fusion frequency. • Mitochondria harboring the HLD4 mutant exhibit slow motility. • The HLD4 mutant of HSPD1 decreases mitochondrial membrane potential. • HLD4-related

  5. Molecular Evolution of the Tissue-nonspecific Alkaline Phosphatase Allows Prediction and Validation of Missense Mutations Responsible for Hypophosphatasia*

    PubMed Central

    Silvent, Jérémie; Gasse, Barbara; Mornet, Etienne; Sire, Jean-Yves

    2014-01-01

    ALPL encodes the tissue nonspecific alkaline phosphatase (TNSALP), which removes phosphate groups from various substrates. Its function is essential for bone and tooth mineralization. In humans, ALPL mutations lead to hypophosphatasia, a genetic disorder characterized by defective bone and/or tooth mineralization. To date, 275 ALPL mutations have been reported to cause hypophosphatasia, of which 204 were simple missense mutations. Molecular evolutionary analysis has proved to be an efficient method to highlight residues important for the protein function and to predict or validate sensitive positions for genetic disease. Here we analyzed 58 mammalian TNSALP to identify amino acids unchanged, or only substituted by residues sharing similar properties, through 220 millions years of mammalian evolution. We found 469 sensitive positions of the 524 residues of human TNSALP, which indicates a highly constrained protein. Any substitution occurring at one of these positions is predicted to lead to hypophosphatasia. We tested the 204 missense mutations resulting in hypophosphatasia against our predictive chart, and validated 99% of them. Most sensitive positions were located in functionally important regions of TNSALP (active site, homodimeric interface, crown domain, calcium site, …). However, some important positions are located in regions, the structure and/or biological function of which are still unknown. Our chart of sensitive positions in human TNSALP (i) enables to validate or invalidate at low cost any ALPL mutation, which would be suspected to be responsible for hypophosphatasia, by contrast with time consuming and expensive functional tests, and (ii) displays higher predictive power than in silico models of prediction. PMID:25023282

  6. MLH1 V384D polymorphism associates with poor response to EGFR tyrosine kinase inhibitors in patients with EGFR L858R-positive lung adenocarcinoma.

    PubMed

    Chiu, Chao-Hua; Ho, Hsiang-Ling; Doong, Howard; Yeh, Yi-Chen; Chen, Mei-Yu; Chou, Teh-Ying; Tsai, Chun-Ming

    2015-04-10

    A significant fraction of patients with lung adenocarcinomas harboring activating epidermal growth factor receptor (EGFR) mutations do not experience clinical benefits from EGFR tyrosine kinase inhibitor (TKI) therapy. Using next-generation sequencing, we screened 739 mutation hotspots in 46 cancer-related genes in EGFR L858R-mutant lung adenocarcinomas from 29 patients who received EGFR-TKI therapy; 13 had short (< 3 months) and 16 had long (> 1 year) progression-free survival (PFS). We discovered MLH1 V384D as a genetic variant enriched in the group of patients with short PFS. Next, we investigated this genetic variation in 158 lung adenocarcinomas with the EGFR L858R mutation and found 14 (8.9%) patients had MLH1 V384D; available blood or non-tumor tissues from patients were also tested positive for MLH1 V384D. Patients with MLH1 V384D had a significantly shorter median PFS than those without (5.1 vs. 10.6 months; P= 0.001). Multivariate analysis showed that MLH1 V384D polymorphism was an independent predictor for a reduced PFS time (hazard ratio, 3.5; 95% confidence interval, 1.7 to 7.2; P= 0.001). In conclusion, MLH1 V384D polymorphism is associated with primary resistance to EGFR-TKIs in patients with EGFR L858R-positive lung adenocarcinoma and may potentially be a novel biomarker to guide treatment decisions.

  7. Influence of MLH1 on colon cancer sensitivity to poly(ADP-ribose) polymerase inhibitor combined with irinotecan.

    PubMed

    Tentori, Lucio; Leonetti, Carlo; Muzi, Alessia; Dorio, Annalisa Susanna; Porru, Manuela; Dolci, Susanna; Campolo, Federica; Vernole, Patrizia; Lacal, Pedro Miguel; Praz, Françoise; Graziani, Grazia

    2013-07-01

    Poly(ADP-ribose) polymerase inhibitors (PARPi) are currently evaluated in clinical trials in combination with topoisomerase I (Top1) inhibitors against a variety of cancers, including colon carcinoma. Since the mismatch repair component MLH1 is defective in 10-15% of colorectal cancers we have investigated whether MLH1 affects response to the Top1 inhibitor irinotecan, alone or in combination with PARPi. To this end, the colon cancer cell lines HCT116, carrying MLH1 mutations on chromosome 3 and HCT116 in which the wild-type MLH1 gene was replaced via chromosomal transfer (HCT116+3) or by transfection of the corresponding MLH1 cDNA (HCT116 1-2) were used. HCT116 cells or HCT116+3 cells stably silenced for PARP-1 expression were also analysed. The results of in vitro and in vivo experiments indicated that MLH1, together with low levels of Top1, contributed to colon cancer resistance to irinotecan. In the MLH1-proficient cells SN-38, the active metabolite of irinotecan, induced lower levels of DNA damage than in MLH1-deficient cells, as shown by the weaker induction of γ-H2AX and p53 phosphorylation. The presence of MLH1 contributed to induce of prompt Chk1 phosphorylation, restoring G2/M cell cycle checkpoint and repair of DNA damage. On the contrary, in the absence of MLH1, HCT116 cells showed minor Chk1 phosphorylation and underwent apoptosis. Remarkably, inhibition of PARP function by PARPi or by PARP-1 gene silencing always increased the antitumor activity of irinotecan, even in the presence of low PARP-1 expression.

  8. Missense variants in plakophilin-2 in arrhythmogenic right ventricular cardiomyopathy patients--disease-causing or innocent bystanders?

    PubMed

    Christensen, Alex Hørby; Benn, Marianne; Tybjaerg-Hansen, Anne; Haunso, Stig; Svendsen, Jesper Hastrup

    2010-01-01

    Mutations in genes encoding desmosomal proteins have been linked to arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). We hypothesized that a Scandinavian ARVC/D population would have a different spectrum of plakophilin-2 (PKP2) mutations and that some of the reported missense mutations may not be pathogenic. We screened 53 unrelated patients fulfilling Task Force criteria for ARVC/D for mutations in PKP2 by direct sequencing. Seven different mutations were identified: two insertion/deletions (E329fsX352, P401fsX406), 1 splice site (2146-2A>T), 1 non-sense (R79X) and 4 missense mutations (Q62K in 2 patients, G489R, G673V) of undeterminable pathogeneity. None of these mutations was present in 650 controls. Five of the mutations were novel. Seven patients carried reported missense mutations (D26N, S140F, V587I); however, these mutations were identified in our healthy controls, although at a lower frequency. Evaluation of all reported missense mutations in PKP2 showed unclear pathogeneity of several reported mutations. Fifteen percent of Danish ARVC/D patients carried PKP2 mutations. Our finding of reported disease-causing mutations at a low frequency among healthy controls suggests that these variants are disease modifying but not directly disease causing. We recommend conservative interpretation of missense variants in PKP2, functional characterization and large-scale sequencing to clarify normal variation in the gene.

  9. Clinical and genetic investigation of a Japanese family with cardiac fabry disease. Identification of a novel α-galactosidase A missense mutation (G195V).

    PubMed

    Nakagawa, Naoki; Maruyama, Hiroki; Ishihara, Takayuki; Seino, Utako; Kawabe, Jun-ichi; Takahashi, Fumihiko; Kobayashi, Motoi; Yamauchi, Atsushi; Sasaki, Yukie; Sakamoto, Naka; Ota, Hisanobu; Tanabe, Yasuko; Takeuchi, Toshiharu; Takenaka, Toshihiro; Kikuchi, Kenjiro; Hasebe, Naoyuki

    2011-01-01

    Fabry disease is an X-linked lysosomal storage disorder caused by mutations of the α-galactosidase A gene (GLA), and the disease is a relatively prevalent cause of left ventricular hypertrophy mimicking idiopathic hypertrophic cardiomyopathy. We assessed clinically 5 patients of a three-generation family and also searched for GLA mutations in 10 family members. The proband had left ventricular hypertrophy with localized thinning in the basal posterior wall and late gadolinium enhancement (LGE) in the near-circumferential wall in cardiovascular magnetic resonance images and her sister had vasospastic angina pectoris without organic stenosis of the coronary arteries. LGE notably appeared in parallel with decreased α-galactosidase A activity and increased NT-pro BNP in our patients. We detected a new GLA missense mutation (G195V) in exon 4, resulting in a glycine-to-valine substitution. Of the 10 family members, 5 family members each were positive and negative for this mutation. These new data extend our clinical and molecular knowledge of GLA gene mutations and confirm that a novel missense mutation in the GLA gene is important not only for a precise diagnosis of heterozygous status, but also for confirming relatives who are negative for this mutation.

  10. Identification of a novel nonsense mutation and a missense substitution in the AGPAT2 gene causing congenital generalized lipodystrophy type 1

    PubMed Central

    Haghighi, Amirreza; Razzaghy-Azar, Maryam; Talea, Ali; Sadeghian, Mahnaz; Ellard, Sian; Haghighi, Alireza

    2012-01-01

    Congenital generalized lipodystrophy (CGL) is an autosomal recessive disease characterized by the generalized scant of adipose tissue. CGL type 1 is caused by mutations in gene encoding 1-acylglycerol-3-phosphate O-acyltransferase-2 (AGPAT2). A clinical and molecular genetic investigation was performed in affected and unaffected members of two families with CGL type 1. The AGPAT2 coding region was sequenced in index cases of the two families. The presence of the identified mutations in relevant parents was tested. We identified a novel nonsense mutation (c.685G>T, p.Glu229*) and a missense substitution (c.514G>A, p.Glu172Lys). The unaffected parents in both families were heterozygous carrier of the relevant mutation. The results expand genotype–phenotype spectrum in CGL1 and will have applications in prenatal and early diagnosis of the disease. This is the first report of Persian families identified with AGPAT2 mutations. PMID:22902344

  11. A single-residue mutation, G203E, causes 3-hydroxy-3-methylglutaric aciduria by occluding the substrate channel in the 3D structural model of HMG-CoA lyase.

    PubMed

    Mir, C; Lopez-Viñas, E; Aledo, R; Puisac, B; Rizzo, C; Dionisi-Vici, C; Deodato, F; Pié, J; Gomez-Puertas, P; Hegardt, F G; Casals, N

    2006-02-01

    3-Hydroxy-3-methylglutaric aciduria is a rare autosomal recessive genetic disorder that affects ketogenesis and leucine metabolism. The disease is caused by mutations in the gene coding for 3-hydroxy-3-methylglutaryl-coenzyme A lyase (HL). To date 26 different mutations have been described. A (betaalpha)(8) TIM barrel structure has been proposed for the protein, and almost all missense mutations identified so far localize in the beta sheets that define the inside cavity. We report an Italian patient who bears homozygously a novel HL mutation, c.608G > A (p. G203E) in beta sheet six. A structural model of the mutated protein suggests that glutamic acid 203 impedes catalysis by blocking the entrance to the inner cavity of the enzyme. Loss of functionality has been confirmed in expression studies in E. coli, which demonstrate that the G203E mutation completely abolishes enzyme activity. Beta sheet six and beta sheet two are the two protein regions that accumulate most missense mutations, indicating their importance in enzyme functionality. A model for the mechanism of enzyme function is proposed.

  12. Novel mutations in the helix termination motif of keratin 3 and keratin 12 in 2 Taiwanese families with Meesmann corneal dystrophy.

    PubMed

    Chen, Ying-Ting; Tseng, Sung-Huei; Chao, Sheau-Chiou

    2005-11-01

    To analyze mutations of the keratin 3 gene (KRT3) and keratin 12 gene (KRT12) in 2 Taiwanese families with Meesmann corneal dystrophy (MCD). Diagnosis of MCD was confirmed by slit-lamp examination of the cornea in 4 members of family 1 and 6 members of family 2. All exons and flanking intron boundaries of KRT3 and KRT12 were amplified by polymerase chain reaction (PCR), and products were subjected to direct sequencing. Restriction fragment length polymorphism analysis (RFLP) with created mismatch primers, Bst XI and Nsp I, was used to confirm the presence of the mutations in affected individuals in family 1 and family 2, respectively. A novel heterozygous missense mutation (1508G-->C), predicting the substitution of a proline for an arginine (R503P) was detected in the helix termination motif of the keratin 3 polypeptide in family 1. Another novel heterozygous missense mutation (1286A-->G), predicting the substitution of a cysteine for a tyrosine at codon 429 (Y429C) was detected in the helix termination motif of the keratin 12 polypeptide in family 2. These 2 mutations were excluded from 50 normal controls by RFLP analysis, indicating that they were not common polymorphisms. A novel missense mutation (R503P) in KRT3 and another novel missense mutation (Y429C) in KRT12 lead to MCD in 2 unrelated Taiwanese families. The mutant codons in our study are all located in the highly conserved alpha-helix-termination motif, which is essential for keratin filament assembly. Mutation at this area may account for the disruption of keratin filament assembly, leading to MCD.

  13. Ameliorating pathogenesis by removing an exon containing a missense mutation: a potential exon-skipping therapy for laminopathies.

    PubMed

    Scharner, J; Figeac, N; Ellis, J A; Zammit, P S

    2015-06-01

    Exon skipping, as a therapy to restore a reading frame or switch protein isoforms, is under clinical trial. We hypothesised that removing an in-frame exon containing a mutation could also improve pathogenic phenotypes. Our model is laminopathies: incurable tissue-specific degenerative diseases associated with LMNA mutations. LMNA encodes A-type lamins, that together with B-type lamins, form the nuclear lamina. Lamins contain an alpha-helical central rod domain composed of multiple heptad repeats. Eliminating LMNA exon 3 or 5 removes six heptad repeats, so shortens, but should not otherwise significantly alter, the alpha-helix. Human Lamin A or Lamin C with a deletion corresponding to amino acids encoded by exon 5 (Lamin A/C-Δ5) localised normally in murine lmna-null cells, rescuing both nuclear shape and endogenous Lamin B1/emerin distribution. However, Lamin A carrying pathogenic mutations in exon 3 or 5, or Lamin A/C-Δ3, did not. Furthermore, Lamin A/C-Δ5 was not deleterious to wild-type cells, unlike the other Lamin A mutants including Lamin A/C-Δ3. Thus Lamin A/C-Δ5 function as effectively as wild-type Lamin A/C and better than mutant versions. Antisense oligonucleotides skipped LMNA exon 5 in human cells, demonstrating the possibility of treating certain laminopathies with this approach. This proof-of-concept is the first to report the therapeutic potential of exon skipping for diseases arising from missense mutations.

  14. Fabry disease presenting as apical left ventricular hypertrophy in a patient carrying the missense mutation R118C.

    PubMed

    Caetano, Francisca; Botelho, Ana; Mota, Paula; Silva, Joana; Leitão Marques, António

    2014-03-01

    Anderson-Fabry disease is an X-linked lysosomal storage disorder caused by abnormalities of the GLA gene, which encodes the enzyme α-galactosidase A. A deficiency of this enzyme leads to the lysosomal accumulation of glycosphingolipids, which may cause left ventricular hypertrophy that is typically concentric and symmetric. We present the case of a 60-year-old woman with symptoms of dyspnea, atypical chest pain and palpitations, in whom a transthoracic echocardiogram revealed an apical variant of hypertrophic cardiomyopathy. Analysis of specific sarcomeric genetic mutations was negative. The patient underwent a screening protocol for Anderson-Fabry disease, using a dried blood spot test, which was standard at our institution for patients with left ventricular hypertrophy. The enzymatic activity assay revealed reduced α-galactosidase A enzymatic activity. Molecular analysis identified a missense point mutation in the GLA gene (p.R118C). This case report shows that Anderson-Fabry disease may cause an apical form of left ventricular hypertrophy. The diagnosis was only achieved because of systematic screening, which highlights the importance of screening for Anderson-Fabry disease in patients with unexplained left ventricular hypertrophy, including those presenting with more unusual patterns, such as apical variants of left ventricular hypertrophy. This case also supports the idea that the missense mutation R118C is indeed a true pathogenic mutation of Anderson-Fabry disease. Copyright © 2012 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  15. A Rare Missense Mutation and a Polymorphism with High Frequency in LDLR Gene among Iranian Patients with Familial Hypercholesterolemia

    PubMed Central

    Tajamolian, Masoud; Kolahdouz, Parisa; Nikpour, Parvaneh; Forouzannia, Seyed Khalil; Sheikhha, Mohammad Hasan; Yazd, Ehsan Farashahi

    2018-01-01

    Background: Familial hypercholesterolemia (FH) is a disorder that is inherited by autosomal dominant pattern. The main cause of FH disease is the occurrence of mutations in low-density lipoprotein receptor (LDLR) gene sequence, as well as apolipoprotein B and proprotein convertase subtilisin/kexin type 9 genes, located in the next ranks, respectively. Materials and Methods: Forty-five unrelated Iranian patients with FH were screened using a high-resolution melting (HRM) method for exon 9 along with intron/exon boundaries of LDLR gene. Samples with shift in resultant HRM curves were compared to normal ones, sequenced, and analyzed. Results: Our findings revealed a missense mutation c. 1246C>T and a known variant IVS9-30C>T (rs1003723) that was recognized in 71% of the patients (22%: homozygous and 49%: heterozygous genotypes). In silico analysis, predicted the pathological effect of the c. 1246C>T mutation in LDLR protein structure, but IVS9-30C>T variant had no predicted effect on splice site and branch point function. Conclusion: FH is a hereditary type of hypercholesterolemia that leads to premature cardiovascular disease and atherosclerosis, and early diagnosis is needed. We detected a rare missense mutation (1246C>T) and a common single nucleotide polymorphism (SNP) in the Iranian population. These reports could help in the genetic diagnosis and counseling of FH patients. PMID:29531935

  16. Orphan missense mutations in the cystic fibrosis transmembrane conductance regulator: A three-step biological approach to establishing a correlation between genotype and phenotype.

    PubMed

    Fresquet, Fleur; Clement, Romain; Norez, Caroline; Sterlin, Adélaïde; Melin, Patricia; Becq, Frédéric; Kitzis, Alain; Thoreau, Vincent; Bilan, Frédéric

    2011-09-01

    More than 1860 mutations have been found within the human cystic fibrosis transmembrane conductance regulator (CFTR) gene sequence. These mutations can be classified according to their degree of severity in CF disease. Although the most common mutations are well characterized, few data are available for rare mutations. Thus, genetic counseling is particularly difficult when fetuses or patients with CF present these orphan variations. We describe a three-step in vitro assay that can evaluate rare missense CFTR mutation consequences to establish a correlation between genotype and phenotype. By using a green fluorescent protein-tagged CFTR construct, we expressed mutated proteins in COS-7 cells. CFTR trafficking was visualized by confocal microscopy, and the cellular localization of CFTR was determined using intracellular markers. We studied the CFTR maturation process using Western blot analysis and evaluated CFTR channel activity by automated iodide efflux assays. Of six rare mutations that we studied, five have been isolated in our laboratory. The cellular and functional impact that we observed in each case was compared with the clinical data concerning the patients in whom we encountered these mutations. In conclusion, we propose that performing this type of analysis for orphan CFTR missense mutations can improve CF genetic counseling. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  17. Hereditary cancer genes are highly susceptible to splicing mutations

    PubMed Central

    Soemedi, Rachel; Maguire, Samantha; Murray, Michael F.; Monaghan, Sean F.

    2018-01-01

    Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5′ and 3′ splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77%) of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36%) of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing. PMID:29505604

  18. Mutations in POLR3A and POLR3B Encoding RNA Polymerase III Subunits Cause an Autosomal-Recessive Hypomyelinating Leukoencephalopathy

    PubMed Central

    Saitsu, Hirotomo; Osaka, Hitoshi; Sasaki, Masayuki; Takanashi, Jun-ichi; Hamada, Keisuke; Yamashita, Akio; Shibayama, Hidehiro; Shiina, Masaaki; Kondo, Yukiko; Nishiyama, Kiyomi; Tsurusaki, Yoshinori; Miyake, Noriko; Doi, Hiroshi; Ogata, Kazuhiro; Inoue, Ken; Matsumoto, Naomichi

    2011-01-01

    Congenital hypomyelinating disorders are a heterogeneous group of inherited leukoencephalopathies characterized by abnormal myelin formation. We have recently reported a hypomyelinating syndrome characterized by diffuse cerebral hypomyelination with cerebellar atrophy and hypoplasia of the corpus callosum (HCAHC). We performed whole-exome sequencing of three unrelated individuals with HCAHC and identified compound heterozygous mutations in POLR3B in two individuals. The mutations include a nonsense mutation, a splice-site mutation, and two missense mutations at evolutionally conserved amino acids. Using reverse transcription-PCR and sequencing, we demonstrated that the splice-site mutation caused deletion of exon 18 from POLR3B mRNA and that the transcript harboring the nonsense mutation underwent nonsense-mediated mRNA decay. We also identified compound heterozygous missense mutations in POLR3A in the remaining individual. POLR3A and POLR3B encode the largest and second largest subunits of RNA Polymerase III (Pol III), RPC1 and RPC2, respectively. RPC1 and RPC2 together form the active center of the polymerase and contribute to the catalytic activity of the polymerase. Pol III is involved in the transcription of small noncoding RNAs, such as 5S ribosomal RNA and all transfer RNAs (tRNA). We hypothesize that perturbation of Pol III target transcription, especially of tRNAs, could be a common pathological mechanism underlying POLR3A and POLR3B mutations. PMID:22036171

  19. Disruption of a -35kb enhancer impairs CTCF binding and MLH1 expression in colorectal cells.

    PubMed

    Liu, Qing; Thoms, Julie A; Nunez, Andrea C; Huang, Yizhou; Knezevic, Kathy; Packham, Deborah; Poulos, Rebecca C; Williams, Rachel; Beck, Dominik; Hawkins, Nicholas J; Ward, Robyn L; Wong, Jason W H; Hesson, Luke B; Sloane, Mathew A; Pimanda, John

    2018-06-13

    MLH1 is a major tumour suppressor gene involved in the pathogenesis of Lynch syndrome and various sporadic cancers. Despite their potential pathogenic importance, genomic regions capable of regulating MLH1 expression over long distances have yet to be identified. Here we use chromosome conformation capture (3C) to screen a 650-kb region flanking the MLH1 locus to identify interactions between the MLH1 promoter and distal regions in MLH1 expressing and non-expressing cells. Putative enhancers were functionally validated using luciferase reporter assays, chromatin immunoprecipitation and CRISPR-Cas9 mediated deletion of endogenous regions. To evaluate whether germline variants in the enhancer might contribute to impaired MLH1 expression in patients with suspected Lynch syndrome, we also screened germline DNA from a cohort of 74 patients with no known coding mutations or epimutations at the MLH1 promoter. A 1.8kb DNA fragment, 35kb upstream of the MLH1 transcription start site enhances MLH1 gene expression in colorectal cells. The enhancer was bound by CTCF and CRISPR-Cas9 mediated deletion of a core binding region impairs endogenous MLH1 expression. 5.4% of suspected Lynch syndrome patients have a rare single nucleotide variant (G>A; rs143969848; 2.5% in gnomAD European, non-Finnish) within a highly conserved CTCF binding motif, which disrupts enhancer activity in SW620 colorectal carcinoma cells. A CTCF bound region within the MLH1 -35 enhancer regulates MLH1 expression in colorectal cells and is worthy of scrutiny in future genetic screening strategies for suspected Lynch syndrome associated with loss of MLH1 expression. Copyright ©2018, American Association for Cancer Research.

  20. ALDH1A3 mutations cause recessive anophthalmia and microphthalmia.

    PubMed

    Fares-Taie, Lucas; Gerber, Sylvie; Chassaing, Nicolas; Clayton-Smith, Jill; Hanein, Sylvain; Silva, Eduardo; Serey, Margaux; Serre, Valérie; Gérard, Xavier; Baumann, Clarisse; Plessis, Ghislaine; Demeer, Bénédicte; Brétillon, Lionel; Bole, Christine; Nitschke, Patrick; Munnich, Arnold; Lyonnet, Stanislas; Calvas, Patrick; Kaplan, Josseline; Ragge, Nicola; Rozet, Jean-Michel

    2013-02-07

    Anophthalmia and microphthalmia (A/M) are early-eye-development anomalies resulting in absent or small ocular globes, respectively. A/M anomalies occur in syndromic or nonsyndromic forms. They are genetically heterogeneous, some mutations in some genes being responsible for both anophthalmia and microphthalmia. Using a combination of homozygosity mapping, exome sequencing, and Sanger sequencing, we identified homozygosity for one splice-site and two missense mutations in the gene encoding the A3 isoform of the aldehyde dehydrogenase 1 (ALDH1A3) in three consanguineous families segregating A/M with occasional orbital cystic, neurological, and cardiac anomalies. ALDH1A3 is a key enzyme in the formation of a retinoic acid gradient along the dorso-ventral axis during early eye development. Transitory expression of mutant ALDH1A3 open reading frames showed that both missense mutations reduce the accumulation of the enzyme, potentially leading to altered retinoic acid synthesis. Although the role of retinoic acid signaling in eye development is well established, our findings provide genetic evidence of a direct link between retinoic-acid-synthesis dysfunction and early-eye-development anomalies in humans. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  1. Interdependence of DNA mismatch repair proteins MLH1 and MSH2 in apoptosis in human colorectal carcinoma cell lines.

    PubMed

    Hassen, Samar; Ali, Akhtar A; Kilaparty, Surya P; Al-Anbaky, Qudes A; Majeed, Waqar; Boman, Bruce M; Fields, Jeremy Z; Ali, Nawab

    2016-01-01

    The mammalian DNA mismatch repair (MMR) system consists of a number of proteins that play important roles in repair of base pair mismatch mutations and in maintenance of genomic integrity. A defect in this system can cause genetic instability, which can lead to carcinogenesis. For instance, a germline mutation in one of the mismatch repair proteins, especially MLH1 or MSH2, is responsible for hereditary non-polyposis colorectal cancer. These MMR proteins also play an important role in the induction of apoptosis. Accordingly, altered expression of or a defect in MLH1 or MSH2 may confer resistance to anti-cancer drugs used in chemotherapy. We hypothesized that the ability of these two MMR proteins to regulate apoptosis are interdependent. Moreover, a defect in either one may confer resistance to chemotherapy by an inability to trigger apoptosis. To this end, we studied three cell lines-SW480, LoVo, and HTC116. These cell lines were selected based on their differential expression of MLH1 and MSH2 proteins. SW480 expresses both MLH1 and MSH2; LoVo expresses only MLH1 but not MSH2; HCT116 expresses only MSH2 but not MLH1 protein. MTT assays, a measure of cytotoxicity, showed that there were different cytotoxic effects of an anti-cancer drug, etoposide, on these cell lines, effects that were correlated with the MMR status of the cells. Cells that are deficient in MLH1 protein (HCT116 cells) were resistant to the drug. Cells that express both MLH1 and MSH2 proteins (SW480 cells) showed caspase-3 cleavage, an indicator of apoptosis. Cells that lack MLH1 (HCT116 cells) did not show any caspase-3 cleavage. Expression of full-length MLH1 protein was decreased in MMR proficient (SW480) cells during apoptosis; it remained unchanged in cells that lack MSH2 (LoVo cells). The expression of MSH2 protein remained unchanged during apoptosis both in MMR proficient (SW480) and deficient (HCT116) cells. Studies on translocation of MLH1 protein from nucleus to cytosolic fraction, an

  2. CHEK2 mutations and HNPCC-related colorectal cancer.

    PubMed

    Suchy, Janina; Cybulski, Cezary; Wokołorczyk, Dominika; Oszurek, Oleg; Górski, Bohdan; Debniak, Tadeusz; Jakubowska, Anna; Gronwald, Jacek; Huzarski, Tomasz; Byrski, Tomasz; Dziuba, Ireneusz; Gogacz, Marek; Wiśniowski, Rafał; Wandzel, Piotr; Banaszkiewicz, Zbigniew; Kurzawski, Grzegorz; Kładny, Józef; Narod, Steven A; Lubiński, Jan

    2010-06-15

    Recently, the 1100delC variant of cell cycle checkpoint kinase 2 (CHEK2) has been reported to confer a colorectal cancer risk in hereditary non-polyposis-colorectal cancer (HNPCC) and HNPCC-related families in the Netherlands. To investigate whether CHEK2 mutations confer increased cancer risk in HNPCC and HNPCC-related families in Poland, we genotyped 463 probands from HNPCC and HNPCC-related families, and 5,496 controls for 4 CHEK2 alleles (1100delC, IVS2+1G>A, del5395, I157T). All 463 probands were screened for mutations in the HNPCC-related genes MSH2, MLH1 and MSH6. A positive association was observed for HNPCC-related cancer and the I157T missense CHEK2 mutation (OR = 1.7; p = 0.007), but not for the truncating alleles (OR = 1.0; p = 1.0). The association with the I157T was seen both for the 117 cases who fulfill Amsterdam criteria (OR = 1.9; p = 0.1) and for the 346 cases who do not fulfill the criteria (OR = 1.6; p = 0.03). One hundred forty-five of the 463 families had a mutation in MSH2, MLH1 or MSH6 (MMR-positive families). A positive association between the CHEK2 I157T mutation and HNPCC-related cancer was observed only for MMR-negative cases (OR = 2.1; p = 0.0004), but not for MMR-positive cases (OR = 0.8; p = 0.9). The association with I157T was particularly strong for MMR-negative cases with familial colorectal cancer (2 or more first-degree relatives affected) (OR = 2.5; p < 0.0001). We conclude that the I157T variant of CHEK2 increases the risk of colorectal cancer among MMR-negative, HNPCC/HNPCC-related families in Poland.

  3. Congenital Insensitivity to Pain: Novel SCN9A Missense and In-Frame Deletion Mutations

    PubMed Central

    Cox, James J; Sheynin, Jony; Shorer, Zamir; Reimann, Frank; Nicholas, Adeline K; Zubovic, Lorena; Baralle, Marco; Wraige, Elizabeth; Manor, Esther; Levy, Jacov; Woods, C Geoffery; Parvari, Ruti

    2010-01-01

    SCN9A encodes the voltage-gated sodium channel Nav1.7, a protein highly expressed in pain-sensing neurons. Mutations in SCN9A cause three human pain disorders: bi-allelic loss of function mutations result in Channelopathy-associated Insensitivity to Pain (CIP), whereas activating mutations cause severe episodic pain in Paroxysmal Extreme Pain Disorder (PEPD) and Primary Erythermalgia (PE). To date, all mutations in SCN9A that cause a complete inability to experience pain are protein truncating and presumably lead to no protein being produced. Here, we describe the identification and functional characterization of two novel non-truncating mutations in families with CIP: a homozygously-inherited missense mutation found in a consanguineous Israeli Bedouin family (Nav1.7-R896Q) and a five amino acid in-frame deletion found in a sporadic compound heterozygote (Nav1.7-ΔR1370-L1374). Both of these mutations map to the pore region of the Nav1.7 sodium channel. Using transient transfection of PC12 cells we found a significant reduction in membrane localization of the mutant protein compared to the wild type. Furthermore, voltage clamp experiments of mutant-transfected HEK293 cells show a complete loss of function of the sodium channel, consistent with the absence of pain phenotype. In summary, this study has identified critical amino acids needed for the normal subcellular localization and function of Nav1.7. © 2010 Wiley-Liss, Inc. PMID:20635406

  4. Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations.

    PubMed

    Cox, James J; Sheynin, Jony; Shorer, Zamir; Reimann, Frank; Nicholas, Adeline K; Zubovic, Lorena; Baralle, Marco; Wraige, Elizabeth; Manor, Esther; Levy, Jacov; Woods, C Geoffery; Parvari, Ruti

    2010-09-01

    SCN9Aencodes the voltage-gated sodium channel Na(v)1.7, a protein highly expressed in pain-sensing neurons. Mutations in SCN9A cause three human pain disorders: bi-allelic loss of function mutations result in Channelopathy-associated Insensitivity to Pain (CIP), whereas activating mutations cause severe episodic pain in Paroxysmal Extreme Pain Disorder (PEPD) and Primary Erythermalgia (PE). To date, all mutations in SCN9A that cause a complete inability to experience pain are protein truncating and presumably lead to no protein being produced. Here, we describe the identification and functional characterization of two novel non-truncating mutations in families with CIP: a homozygously-inherited missense mutation found in a consanguineous Israeli Bedouin family (Na(v)1.7-R896Q) and a five amino acid in-frame deletion found in a sporadic compound heterozygote (Na(v)1.7-DeltaR1370-L1374). Both of these mutations map to the pore region of the Na(v)1.7 sodium channel. Using transient transfection of PC12 cells we found a significant reduction in membrane localization of the mutant protein compared to the wild type. Furthermore, voltage clamp experiments of mutant-transfected HEK293 cells show a complete loss of function of the sodium channel, consistent with the absence of pain phenotype. In summary, this study has identified critical amino acids needed for the normal subcellular localization and function of Na(v)1.7. Copyright 2010 Wiley-Liss, Inc.

  5. Hypogonadotropic hypogonadism due to a novel missense mutation in the first extracellular loop of the neurokinin B receptor.

    PubMed

    Guran, Tulay; Tolhurst, Gwen; Bereket, Abdullah; Rocha, Nuno; Porter, Keith; Turan, Serap; Gribble, Fiona M; Kotan, L Damla; Akcay, Teoman; Atay, Zeynep; Canan, Husniye; Serin, Ayse; O'Rahilly, Stephen; Reimann, Frank; Semple, Robert K; Topaloglu, A Kemal

    2009-10-01

    The neurokinin B (NKB) receptor, encoded by TACR3, is widely expressed within the central nervous system, including hypothalamic nuclei involved in regulating GnRH release. We have recently reported two mutations in transmembrane segments of the receptor and a missense mutation in NKB in patients with normosmic isolated hypogonadotropic hypogonadism (nIHH). We sequenced the TACR3 gene in a family in which three siblings had nIHH. The novel mutant receptor thus identified was studied in a heterologous expression system using calcium flux as the functional readout. All affected siblings were homozygous for the His148Leu mutation, in the first extracellular loop of the NKB receptor. The His148Leu mutant receptor exhibited profoundly impaired signaling in response to NKB (EC(50) = 3 +/- 0.1 nm and >5 microm for wild-type and His148Leu, respectively). The location of the mutation in an extracellular part of the receptor led us also to test whether senktide, a synthetic NKB analog, may retain ability to stimulate the mutant receptor. However, the signaling activity of the His148Leu receptor in response to senktide was also severely impaired (EC(50) = 1 +/- 1 nm for wild-type and no significant response of His148Leu to 10 microm). Homozygosity for the TACR3 His148Leu mutation leads to failure of sexual maturation in humans, whereas signaling by the mutant receptor in vitro in response to either NKB or senktide is severely impaired. These observations further strengthen the link between NKB, the NKB receptor, and regulation of human reproductive function.

  6. Novel homozygous missense mutation in ALDH7A1 causes neonatal pyridoxine dependent epilepsy.

    PubMed

    Coci, Emanuele G; Codutti, Luca; Fink, Christian; Bartsch, Sophie; Grüning, Gunnar; Lücke, Thomas; Kurth, Ingo; Riedel, Joachim

    2017-04-01

    Pyridoxine dependent epilepsy (PDE) (OMIM#266100) is a neonatal form of epilepsy, caused by dysfunction of the enzyme α-aminoadipic semialdehyde dehydrogenase (ALDH7A1 or Antiquitin). This enzyme converts α-aminoadipic semialdehyde (α-AASA) into α-aminoadipate (AAA), a critical step in the lysine metabolism of the brain. ALDH7A1 dysfunction causes an accumulation of α-AASA and δ 1 -piperideine-6-carboxylic acid (P6C), which are in equilibrium with each other. P6C binds and inactivates pyridoxal 5'-phosphate (PLP), the active form of pyridoxine. Individuals affected by ALDH7A1 deficiency show pre-natal and post-natal seizures, which respond to oral pyridoxine but not to other pediatric anti-epileptic drugs. We discovered a novel missense mutation (c.566G > A, p.Gly189Glu) in homozygous state residing in the NAD+ binding domain coding region of exon 6 and affecting an highly conserved amino acid residue. The seizures stopped under post-natal pyridoxine therapy, nevertheless a longer follow-up is needed to evaluate the intellectual development of the child, who is additionally treated with oral l-arginine since the 13th month of life. Developmental delay with or without structural cortex abnormalities were reported in several patients. A brain MRI scan revealed hyperintense white matter in the right cerebellum compatible with cerebellar gliosis. Taken together, our studies enlarge the group of missense pathogenic mutations of ALDH7A1 gene and reveal a novel cerebellar finding within the PDE patients cohort. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. High Incidence of Noonan Syndrome Features Including Short Stature and Pulmonic Stenosis in Patients carrying NF1 Missense Mutations Affecting p.Arg1809: Genotype-Phenotype Correlation.

    PubMed

    Rojnueangnit, Kitiwan; Xie, Jing; Gomes, Alicia; Sharp, Angela; Callens, Tom; Chen, Yunjia; Liu, Ying; Cochran, Meagan; Abbott, Mary-Alice; Atkin, Joan; Babovic-Vuksanovic, Dusica; Barnett, Christopher P; Crenshaw, Melissa; Bartholomew, Dennis W; Basel, Lina; Bellus, Gary; Ben-Shachar, Shay; Bialer, Martin G; Bick, David; Blumberg, Bruce; Cortes, Fanny; David, Karen L; Destree, Anne; Duat-Rodriguez, Anna; Earl, Dawn; Escobar, Luis; Eswara, Marthanda; Ezquieta, Begona; Frayling, Ian M; Frydman, Moshe; Gardner, Kathy; Gripp, Karen W; Hernández-Chico, Concepcion; Heyrman, Kurt; Ibrahim, Jennifer; Janssens, Sandra; Keena, Beth A; Llano-Rivas, Isabel; Leppig, Kathy; McDonald, Marie; Misra, Vinod K; Mulbury, Jennifer; Narayanan, Vinodh; Orenstein, Naama; Galvin-Parton, Patricia; Pedro, Helio; Pivnick, Eniko K; Powell, Cynthia M; Randolph, Linda; Raskin, Salmo; Rosell, Jordi; Rubin, Karol; Seashore, Margretta; Schaaf, Christian P; Scheuerle, Angela; Schultz, Meredith; Schorry, Elizabeth; Schnur, Rhonda; Siqveland, Elizabeth; Tkachuk, Amanda; Tonsgard, James; Upadhyaya, Meena; Verma, Ishwar C; Wallace, Stephanie; Williams, Charles; Zackai, Elaine; Zonana, Jonathan; Lazaro, Conxi; Claes, Kathleen; Korf, Bruce; Martin, Yolanda; Legius, Eric; Messiaen, Ludwine

    2015-11-01

    Neurofibromatosis type 1 (NF1) is one of the most frequent genetic disorders, affecting 1:3,000 worldwide. Identification of genotype-phenotype correlations is challenging because of the wide range clinical variability, the progressive nature of the disorder, and extreme diversity of the mutational spectrum. We report 136 individuals with a distinct phenotype carrying one of five different NF1 missense mutations affecting p.Arg1809. Patients presented with multiple café-au-lait macules (CALM) with or without freckling and Lisch nodules, but no externally visible plexiform neurofibromas or clear cutaneous neurofibromas were found. About 25% of the individuals had Noonan-like features. Pulmonic stenosis and short stature were significantly more prevalent compared with classic cohorts (P < 0.0001). Developmental delays and/or learning disabilities were reported in over 50% of patients. Melanocytes cultured from a CALM in a segmental NF1-patient showed two different somatic NF1 mutations, p.Arg1809Cys and a multi-exon deletion, providing genetic evidence that p.Arg1809Cys is a loss-of-function mutation in the melanocytes and causes a pigmentary phenotype. Constitutional missense mutations at p.Arg1809 affect 1.23% of unrelated NF1 probands in the UAB cohort, therefore this specific NF1 genotype-phenotype correlation will affect counseling and management of a significant number of patients. © 2015 The Authors. **Human Mutation published by Wiley Periodicals, Inc.

  8. A Novel Missense Mutation in SLC5A5 Gene in a Sudanese Family with Congenital Hypothyroidism.

    PubMed

    Watanabe, Yui; Ebrhim, Reham S; Abdullah, Mohamed A; Weiss, Roy E

    2018-06-05

    Thyroid hormone synthesis requires the presence of iodide. The sodium-iodide symporter (NIS) is a glycoprotein that mediates the active uptake of iodide from the blood stream into the thyroid grand. NIS defects due to SLC5A5 gene mutations are known to cause congenital hypothyroidism (CH). The proposita is a 28-year-old female whose origin is North Sudan where neonatal screening for CH is not available. She presented with severe constipation and a goiter at the age of 40 days. Laboratory testing confirmed CH, and she was started on levothyroxine. Presumably due to the delayed treatment, the patient developed mental retardation. Her younger sister presented with a goiter, tongue protrusion, and umbilical hernia, and the youngest brother was also diagnosed with CH based on a thyrotropin level >100 μIU/mL at the age of 22 days and 8 days, respectively. The two siblings were treated with levothyroxine and had normal development. Their consanguineous parents had no history of thyroid disorders. Whole-exome sequencing was performed on the proposita. This identified a novel homozygous missense mutation in the SLC5A5 gene-c.1042T>G, p.Y348D-which was subsequently confirmed by Sanger sequencing. All affected children were homozygous for the same mutation, and their unaffected mother was heterozygous. The NIS protein is composed of 13 transmembrane segments (TMS), an extracellular amino-terminus, and an intracellular carboxy-terminus. The mutation is located in the TMS IX, which has the most β-OH group-containing amino acids (serine and threonine), which is implicated in Na + binding and translocation. In conclusion, a novel homozygous missense mutation in the SLC5A5 gene was identified in this Sudanese family with CH. The mutation is located in the TMS IX of the NIS protein, which is essential for NIS function. Low iodine intake in Sudan is considered to affect the severity of hypothyroidism in patients.

  9. Analyses of MMP20 Missense Mutations in Two Families with Hypomaturation Amelogenesis Imperfecta.

    PubMed

    Kim, Youn Jung; Kang, Jenny; Seymen, Figen; Koruyucu, Mine; Gencay, Koray; Shin, Teo Jeon; Hyun, Hong-Keun; Lee, Zang Hee; Hu, Jan C-C; Simmer, James P; Kim, Jung-Wook

    2017-01-01

    Amelogenesis imperfecta is a group of rare inherited disorders that affect tooth enamel formation, quantitatively and/or qualitatively. The aim of this study was to identify the genetic etiologies of two families presenting with hypomaturation amelogenesis imperfecta. DNA was isolated from peripheral blood samples obtained from participating family members. Whole exome sequencing was performed using DNA samples from the two probands. Sequencing data was aligned to the NCBI human reference genome (NCBI build 37.2, hg19) and sequence variations were annotated with the dbSNP build 138. Mutations in MMP20 were identified in both probands. A homozygous missense mutation (c.678T>A; p.His226Gln) was identified in the consanguineous Family 1. Compound heterozygous MMP20 mutations (c.540T>A, p.Tyr180 * and c.389C>T, p.Thr130Ile) were identified in the non-consanguineous Family 2. Affected persons in Family 1 showed hypomaturation AI with dark brown discoloration, which is similar to the clinical phenotype in a previous report with the same mutation. However, the dentition of the Family 2 proband exhibited slight yellowish discoloration with reduced transparency. Functional analysis showed that the p.Thr130Ile mutant protein had reduced activity of MMP20, while there was no functional MMP20 in the Family 1 proband. These results expand the mutational spectrum of the MMP20 and broaden our understanding of genotype-phenotype correlations in amelogenesis imperfecta.

  10. Reduced MLH3 Expression in the Syndrome of Gan-Shen Yin Deficiency in Patients with Different Diseases.

    PubMed

    Du, Juan; Zhong, Maofeng; Liu, Dong; Liang, Shufang; Liu, Xiaolin; Cheng, Binbin; Zhang, Yani; Yin, Zifei; Wang, Yuan; Ling, Changquan

    2017-01-01

    Traditional Chinese medicine formulates treatment according to body constitution (BC) differentiation. Different constitutions have specific metabolic characteristics and different susceptibility to certain diseases. This study aimed to assess the characteristic genes of gan-shen Yin deficiency constitution in different diseases. Fifty primary liver cancer (PLC) patients, 94 hypertension (HBP) patients, and 100 diabetes mellitus (DM) patients were enrolled and classified into gan-shen Yin deficiency group and non-gan-shen Yin deficiency group according to the body constitution questionnaire to assess the clinical manifestation of patients. The mRNA expressions of 17 genes in PLC patients with gan-shen Yin deficiency were different from those without gan-shen Yin deficiency. However, considering all patients with PLC, HBP, and DM, only MLH3 was significantly lower in gan-shen Yin deficiency group than that in non-gen-shen Yin deficiency. By ROC analysis, the relationship between MLH3 and gan-shen Yin deficiency constitution was confirmed. Treatment of MLH3 (-/- and -/+) mice with Liuweidihuang wan, classical prescriptions for Yin deficiency, partly ameliorates the body constitution of Yin deficiency in MLH3 (-/+) mice, but not in MLH3 (-/-) mice. MLH3 might be one of material bases of gan-shen Yin deficiency constitution.

  11. Mutations in POLR3A and POLR3B are a major cause of hypomyelinating leukodystrophies with or without dental abnormalities and/or hypogonadotropic hypogonadism.

    PubMed

    Daoud, Hussein; Tétreault, Martine; Gibson, William; Guerrero, Kether; Cohen, Ana; Gburek-Augustat, Janina; Synofzik, Matthis; Brais, Bernard; Stevens, Cathy A; Sanchez-Carpintero, Rocio; Goizet, Cyril; Naidu, Sakkubai; Vanderver, Adeline; Bernard, Geneviève

    2013-03-01

    Leukodystrophies are a heterogeneous group of inherited neurodegenerative disorders characterised by abnormal central nervous system white matter. Mutations in POLR3A and POLR3B genes were recently reported to cause four clinically overlapping hypomyelinating leukodystrophy phenotypes. Our aim was to investigate the presence and frequency of POLR3A and POLR3B mutations in patients with genetically unexplained hypomyelinating leukodystrophies with typical clinical and/or radiologic features of Pol III-related leukodystrophies. The entire coding region and the flanking exon/intron boundaries of POLR3A and/or POLR3B genes were amplified and sequenced in 14 patients. Recessive mutations in POLR3A or POLR3B were uncovered in all 14 patients. Eight novel mutations were identified in POLR3A: six missenses, one nonsense, and one frameshift mutation. Seven patients carried compound heterozygous mutations in POLR3B, of whom six shared the common mutation in exon 15 (p.V523E). Seven novel mutations were identified in POLR3B: four missenses, two splice sites, and one intronic mutation. To date, our group has described 37 patients, of whom 27 have mutations in POLR3A and 10 in POLR3B, respectively. Altogether, our results further support the proposal that POLR3A and POLR3B mutations are a major cause of hypomyelinating leukodystrophies and suggest that POLR3A mutations are more frequent.

  12. A novel deletion in the splice donor site of MLH1 exon 6 in a Japanese colon cancer patient with Lynch syndrome.

    PubMed

    Yamaguchi, Junya; Sato, Yuri; Kita, Mizuho; Nomura, Sachio; Yamamoto, Noriko; Kato, Yo; Ishikawa, Yuichi; Arai, Masami

    2015-10-01

    Lynch syndrome is an autosomal dominantly inherited disease that is characterized by a predisposition to cancers, mainly colorectal cancer. Germline mutations of DNA mismatch repair genes such as MLH1, MSH2, MSH6 and PMS2 have been described in patients with Lynch syndrome. Here, we report deletion of 2 bp in the splice donor site of the MLH1 exon 6 (c.545+4_545+5delCA) in a 48-year-old Japanese woman with Lynch syndrome. RT-PCR direct sequencing analysis revealed that this mutation led to an increase in the level of an MLH1 transcript in which exon 6 was skipped, and may cause a frameshift (p.E153FfsX8). Therefore, this mutation appears to be pathogenic and is responsible for Lynch syndrome. Additionally, analysis of the patient's tumor cells indicated microsatellite instability high phenotype and loss of the MLH1 and PMS2 proteins. To our knowledge, this is a germline splice site mutation of MLH1 that has not been reported previously. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Compound heterozygosity for two GHR missense mutations in a patient affected by Laron Syndrome: a case report.

    PubMed

    Moia, Stefania; Tessaris, Daniele; Einaudi, Silvia; de Sanctis, Luisa; Bona, Gianni; Bellone, Simonetta; Prodam, Flavia

    2017-10-12

    Mutations localized in the Growth Hormone Receptor (GHR) gene are often associated with the pathogenesis of Laron Syndrome, an autosomal recessive hereditary disorder characterized by severe growth retardation. Biochemically, patients present normal to high circulating GH levels, in presence of very low or undetectable IGF-I levels, which do not rise after rhGH treatment. We describe the case of a 3.8 years old girl with symmetrical short stature (-3.76 SDS), low IGF-1 and IGFBP-3, in presence of normal GH levels. Parents were not relatives and there was no family history of short stature. During the second day of birth, she developed severe hypoglycaemia that required glucose infusion. She presented frontal bossing and depressed nasal bridge. IGF-1 generation test showed no response, suggesting a GH resistance evidence. In the hypothesis of Laron Syndrome, we decided to perform a molecular analysis of Growth Hormone Receptor (GHR) gene. This analysis demonstrated that the patient was compound heterozygote for two missense mutations. GHR gene mutations are a well demonstrated cause of GH insensitivity. In heterozygous patients, probably the normal stature may be achieved by a compensatory mechanism of GH secretion or signalling. On the contrary, in homozygous or compound heterozygous patients these compensatory mechanisms are inadequate, and short stature may be the consequence.

  14. In Vivo-Selected Pyrazinoic Acid-Resistant Mycobacterium tuberculosis Strains Harbor Missense Mutations in the Aspartate Decarboxylase PanD and the Unfoldase ClpC1.

    PubMed

    Gopal, Pooja; Tasneen, Rokeya; Yee, Michelle; Lanoix, Jean-Philippe; Sarathy, Jansy; Rasic, George; Li, Liping; Dartois, Véronique; Nuermberger, Eric; Dick, Thomas

    2017-07-14

    Through mutant selection on agar containing pyrazinoic acid (POA), the bioactive form of the prodrug pyrazinamide (PZA), we recently showed that missense mutations in the aspartate decarboxylase PanD and the unfoldase ClpC1, and loss-of-function mutation of polyketide synthases Mas and PpsA-E involved in phthiocerol dimycocerosate synthesis, cause resistance to POA and PZA in Mycobacterium tuberculosis. Here we first asked whether these in vitro-selected POA/PZA-resistant mutants are attenuated in vivo, to potentially explain the lack of evidence of these mutations among PZA-resistant clinical isolates. Infection of mice with panD, clpC1, and mas/ppsA-E mutants showed that whereas growth of clpC1 and mas/ppsA-E mutants was attenuated, the panD mutant grew as well as the wild-type. To determine whether these resistance mechanisms can emerge within the host, mice infected with wild-type M. tuberculosis were treated with POA, and POA-resistant colonies were confirmed for PZA and POA resistance. Genome sequencing revealed that 82 and 18% of the strains contained missense mutations in panD and clpC1, respectively. Consistent with their lower fitness and POA resistance level, independent mas/ppsA-E mutants were not found. In conclusion, we show that the POA/PZA resistance mechanisms due to panD and clpC1 missense mutations are recapitulated in vivo. Whereas the representative clpC1 mutant was attenuated for growth in the mouse infection model, providing a possible explanation for their absence among clinical isolates, the growth kinetics of the representative panD mutant was unaffected. Why POA/PZA resistance-conferring panD mutations are observed in POA-treated mice but not yet among clinical strains isolated from PZA-treated patients remains to be determined.

  15. Marginal zone lymphoma-derived interfollicular diffuse large B-cell lymphoma harboring 20q12 chromosomal deletion and missense mutation of BIRC3 gene: a case report.

    PubMed

    Hatem, Joseph; Schrank-Hacker, April M; Watt, Christopher D; Morrissette, Jennifer J D; Rubin, Adam I; Kim, Ellen J; Nasta, Sunita D; Wasik, Mariusz A; Bogusz, Agata M

    2016-12-19

    Diffuse large B-cell lymphoma (DLBCL) typically leads to effacement of the nodal architecture by an infiltrate of malignant cells. Rarely (<1%), DLBCL can present with an interfollicular pattern (DLBCL-IF) preserving the lymphoid follicles. It has been postulated that DLBCL-IF is derived from marginal zone B cells and may represent a large-cell transformation of marginal zone lymphoma (MZL), however no direct evidence has been provided to date. Here we describe a rare case of a diagnostically challenging DLBCL-IF involving a lymph node in a patient with a prior history of lymphadenopathy for several years and MZL involving skin. A 53-year old man presented to our Dermatology Clinic due to a 1-year history of generalized itching, fatigue of 2-3 month's duration, nausea and mid back rash that was biopsied. PET (positron emission tomography)/CT (computed tomography) was performed and revealed inguinal, pelvic, retroperitoneal, axillary, and cervical lymphadenopathy. The patient was referred to surgery for excisional biopsy of a right inguinal lymph node. Diagnostic H&E stained slides and ancillary studies were reviewed for the lymph node and skin specimens. B-cell clonality by PCR and sequencing studies were performed on both specimens. We demonstrate that this patient's MZL and DLBCL-IF are clonally related, strongly suggesting that transformation of MZL to DLBCL had occurred. Furthermore, we identified a novel deletion of the long arm of chromosome 20 (del(20q12)) and a missense mutation in BIRC3 (Baculoviral IAP repeat-containing protein 3) in this patient's DLBCL that are absent from his MZL, suggesting that these genetic alterations contributed to the large cell transformation. To our knowledge, this is the first report providing molecular evidence for a previously suspected link between MZL and DLBCL-IF. In addition, we describe for the first time del(20q12) and a missense mutation in BIRC3 in DLBCL. Our findings also raise awareness of DLBCL-IF and discuss the

  16. Identification of a splicing enhancer in MLH1 using COMPARE a new assay for determination of relative RNA splicing efficiencies

    PubMed Central

    Xu, Dong-Qing; Mattox, William

    2006-01-01

    Exonic splicing enhancers (ESEs) are sequences that facilitate recognition of splice sites and prevent exon-skipping. Because ESEs are often embedded within proteincoding sequences, alterations in them can also often be interpreted as nonsense, missense or silent mutations. To correctly interpret exonic mutations and their roles in disease, it is important to develop strategies that identify ESE mutations. Potential ESEs can be found computationally in many exons but it has proven difficult to predict if a given mutation will have effects on splicing based on sequence alone. Here we describe a flexible in vitro method that can be used to functionally compare the effects of multiple sequence variants on ESE activity in a single in vitro splicing reaction. We have applied this method in parallel with conventional splicing assays to test for a splicing enhancer in exon 17 of the human MLH1 gene. Point mutations associated with hereditary nonpolyposis colorectal cancer (HNPCC) have previously been found to correlate with exon-skipping in both lymphocytes and tumors from patients. We show that sequences from this exon can replace an ESE from the mouse IgM gene to support RNA splicing in HeLa nuclear extracts. ESE activity was reduced by HNPCC point mutations in codon 659 indicating that their primary effect is on splicing. Surprisingly the strongest enhancer function mapped to a different region of the exon upstream of this codon. Together our results indicate that HNPCC point mutations in codon 659 affect an auxillary element that augments the enhancer function to ensure exon inclusion. PMID:16357104

  17. Massively Parallel Sequencing of a Chinese Family with DFNA9 Identified a Novel Missense Mutation in the LCCL Domain of COCH

    PubMed Central

    Gu, Xiaodong; Su, Wenling; Tang, Mingliang; Guo, Luo; Zhao, Liping

    2016-01-01

    DFNA9 is a late-onset, progressive, autosomal dominantly inherited sensorineural hearing loss with vestibular dysfunction, which is caused by mutations in the COCH (coagulation factor C homology) gene. In this study, we investigated a Chinese family segregating autosomal dominant nonsyndromic sensorineural hearing loss. We identified a missense mutation c.T275A p.V92D in the LCCL domain of COCH cosegregating with the disease and absent in 100 normal hearing controls. This mutation leads to substitution of the hydrophobic valine to an acidic amino acid aspartic acid. Our data enriched the mutation spectrum of DFNA9 and implied the importance for mutation screening of COCH in age related hearing loss with vestibular dysfunctions. PMID:28116169

  18. Two novel mutations in NOTCH3 gene causes cerebral autosomal dominant arteriopathy with subcritical infarct and leucoencephalopathy in two Chinese families.

    PubMed

    Zhu, Yuyou; Wang, Juan; Wu, Yuanbo; Wang, Guoping; Hu, Bai

    2015-01-01

    To investigate the genetic pathogenic causes of cerebral autosomal dominant arteriopathy with subcritical infarct and leucoencephalopathy (CADASIL) in two Chinese families, to provide the molecular basis for genetic counseling and antenatal diagnosis. The genetic mutation of gene NOTCH3 of propositus and family members was analyzed in these two CADASIL families by polymerase chain reaction and DNA sequencing technology directly. At the same time, the NOTCH3 gene mutation point of 100 healthy collators was detected, to explicit the pathogenic mutation by function prediction with Polyphen-2 and SIFT. Both propositus of the two families and patients with symptom were all accorded with the clinical features of CADASIL. It was shown by DNA sequencing that the 19(th) exon [c. 3043 T > A (p.Cys1015Ser)] in gene NOTCH3 of propositus, 2 patients (II3, III7), and a presymptomatic patient (IV1) in Family I all had heterozygosity missense mutation; and the 3(rd) exon [c.316T > G, p. (Cys106Gly)] in gene NOTCH3 of the propositus, a patient (IV3) and two presymptomatic patients (IV5, 6) in Family II all had heterozygosity missense mutation; and no mutations were detected in the 100 healthy collators. It was indicated by analyzing the function prediction that the mutation of [c. 3043 T > A (p.Cys1015Ser)] and [c.316T > G, p. (Cys106Gly)] may both influence encoding protein in NOTCH3. By analysis of the conservatism of mutation point in each species, these two basic groups were highly conserved. The heterozygosity missense mutation of 19(th) exon [c. 3043 T > A (p.Cys1015Ser)] and the 3(rd) exon [c.316T > G, p. (Cys106Gly)] in NOTCH3 gene are the new pathogenic mutations of CADASIL, and enriches the mutation spectrum of NOTCH3 gene.

  19. Cloning of rat MLH1 and expression analysis of MSH2, MSH3, MSH6, and MLH1 during spermatogenesis.

    PubMed

    Geeta Vani, R; Varghese, C M; Rao, M R

    1999-12-15

    The mismatch repair system has been highly conserved in various species. In eukaryotic cells, the Mut S and Mut L homologues play crucial roles in both DNA mismatch repair and meiotic recombination. A full-length rat cDNA clone for rat MLH1 has been constructed using the RT-PCR method. The cDNA has an open reading frame of 2274 nucleotides for a protein of 757 amino acids. We have also obtained partial cDNA clones for MSH3 and MSH6. Northern blot analysis of rat MLH1, MSH2, MSH3, and MSH6 in the testes of rats of different ages showed differential expression of these genes as a function of developmental maturation of the testes. The expression analysis suggests that MSH3 may have a more predominant role in the meiotic recombination process. Copyright 1999 Academic Press.

  20. Nuclear import of human MLH1, PMS2, and MutLalpha: redundancy is the key.

    PubMed

    Leong, Vivian; Lorenowicz, Jessica; Kozij, Natalie; Guarné, Alba

    2009-08-01

    DNA mismatch repair maintains genomic stability by correcting errors that have escaped polymerase proofreading. Defects on mismatch repair genes lead to an increased mutation rate, microsatellite instability and predisposition to human non-polyposis colorectal cancer (HNPCC). Human MutLalpha is a heterodimer formed by the interaction of MLH1 and PMS2 that coordinates a series of key events in mismatch repair. It has been proposed that nuclear import of MutLalpha may be the first regulatory step on the activation of the mismatch repair pathway. Using confocal microscopy and mismatch repair deficient cells, we have identified the sequence determinants that drive nuclear import of human MLH1, PMS2, and MutLalpha. Transient transfection of the individual proteins reveals that MLH1 has a bipartite and PMS2 has a single monopartite nuclear localization signal. Although dimerization is not required for nuclear localization, the MutLalpha heterodimer is imported more efficiently than the MLH1 or PMS2 monomers. Interestingly, the bipartite localization signal of MLH1 can direct import of MutLalpha even when PMS2 encompasses a mutated localization signal. Hence we conclude that the presence of redundant nuclear localization signals guarantees nuclear transport of MutLalpha and, consequently, efficient mismatch repair.

  1. A missense mutation in myosin VIIA prevents aminoglycoside accumulation in early postnatal cochlear hair cells.

    PubMed

    Richardson, G P; Forge, A; Kros, C J; Marcotti, W; Becker, D; Williams, D S; Thorpe, J; Fleming, J; Brown, S D; Steel, K P

    1999-11-28

    Myosin VIIA is expressed by sensory hair cells in the inner ear and proximal tubule cells in the kidney, the two primary targets of aminoglycoside antibiotics. Using cochlear cultures prepared from early postnatal Myo7a6J mice with a missense mutation in the head region of the myosin VIIA molecule we show that this myosin is required for aminoglycoside accumulation in cochlear hair cells. Hair cells in homozygous mutant Myo7a6J cochlear cultures have disorganized hair bundles, but are otherwise morphologically normal and transduce. However, and in contrast to hair cells from heterozygous Myo7a6J cultures, the homozygous Myo7a6J hair cells do not accumulate [3H]gentamicin and do not exhibit an ototoxic response on exposure to aminoglycoside. Possible roles for myosin VIIA in the process of aminoglycoside accumulation are discussed.

  2. Autosomal dominant myopathy: missense mutation (Glu-706 --> Lys) in the myosin heavy chain IIa gene.

    PubMed

    Martinsson, T; Oldfors, A; Darin, N; Berg, K; Tajsharghi, H; Kyllerman, M; Wahlstrom, J

    2000-12-19

    We here report on a human myopathy associated with a mutation in a fast myosin heavy chain (MyHC) gene, and also the genetic defect in a hereditary inclusion body myopathy. The disorder has previously been described in a family with an "autosomal dominant myopathy, with joint contractures, ophthalmoplegia, and rimmed vacuoles." Linkage analysis and radiation hybrid mapping showed that the gene locus (Human Genome Map locus name: IBM3) is situated in a 2-Mb region of chromosome 17p13, where also a cluster of MyHC genes is located. These include the genes encoding embryonic, IIa, IIx/d, IIb, perinatal, and extraocular MyHCs. Morphological analysis of muscle biopsies from patients from the family indicated to us that the type 2A fibers frequently were abnormal, whereas other fiber types appeared normal. This observation prompted us to investigate the MyHC-IIa gene, since MyHC-IIa is the major isoform in type 2A fibers. The complete genomic sequence for this gene was deduced by using an "in silico" strategy. The gene, found to consist of 38 exons, was subjected to a complete mutation scan in patients and controls. We identified a missense mutation, Glu-706 --> Lys, which is located in a highly conserved region of the motor domain, the so-called SH1 helix region. By conformational changes this region communicates activity at the nucleotide-binding site to the neck region, resulting in the lever arm swing. The mutation in this region is likely to result in a dysfunctional myosin, compatible with the disorder in the family.

  3. Disease-associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion channel properties.

    PubMed

    Fedele, Laura; Newcombe, Joseph; Topf, Maya; Gibb, Alasdair; Harvey, Robert J; Smart, Trevor G

    2018-03-06

    Genetic and bioinformatic analyses have identified missense mutations in GRIN2B encoding the NMDA receptor GluN2B subunit in autism, intellectual disability, Lennox Gastaut and West Syndromes. Here, we investigated several such mutations using a near-complete, hybrid 3D model of the human NMDAR and studied their consequences with kinetic modelling and electrophysiology. The mutants revealed reductions in glutamate potency; increased receptor desensitisation; and ablation of voltage-dependent Mg 2+ block. In addition, we provide new views on Mg 2+ and NMDA channel blocker binding sites. We demonstrate that these mutants have significant impact on excitatory transmission in developing neurons, revealing profound changes that could underlie their associated neurological disorders. Of note, the NMDAR channel mutant GluN2B V618G unusually allowed Mg 2+ permeation, whereas nearby N615I reduced Ca 2+ permeability. By identifying the binding site for an NMDAR antagonist that is used in the clinic to rescue gain-of-function phenotypes, we show that drug binding may be modified by some GluN2B disease-causing mutations.

  4. Impact of MLH1 expression on tumor evolution after curative surgical tumor resection in a murine orthotopic xenograft model for human MSI colon cancer.

    PubMed

    Meunier, Katy; Ferron, Marianne; Calmel, Claire; Fléjou, Jean-François; Pocard, Marc; Praz, Françoise

    2017-09-01

    Colorectal cancers (CRCs) displaying microsatellite instability (MSI) most often result from MLH1 deficiency. The aim of this study was to assess the impact of MLH1 expression per se on tumor evolution after curative surgical resection using a xenograft tumor model. Transplantable tumors established with the human MLH1-deficient HCT116 cell line and its MLH1-complemented isogenic clone, mlh1-3, were implanted onto the caecum of NOD/SCID mice. Curative surgical resection was performed at day 10 in half of the animals. The HCT116-derived tumors were more voluminous compared to the mlh1-3 ones (P = .001). Lymph node metastases and peritoneal carcinomatosis occurred significantly more often in the group of mice grafted with HCT116 (P = .007 and P = .035, respectively). Mlh1-3-grafted mice did not develop peritoneal carcinomatosis or liver metastasis. After surgical resection, lymph node metastases only arose in the group of mice implanted with HCT116 and the rate of cure was significantly lower than in the mlh1-3 group (P = .047). The murine orthotopic xenograft model based on isogenic human CRC cell lines allowed us to reveal the impact of MLH1 expression on tumor evolution in mice who underwent curative surgical resection and in mice whose tumor was left in situ. Our data indicate that the behavior of MLH1-deficient CRC is not only governed by mutations arising in genes harboring microsatellite repeated sequences but also from their defect in MLH1 as such. © 2017 Wiley Periodicals, Inc.

  5. Missense mutation in the USH2A gene: association with recessive retinitis pigmentosa without hearing loss.

    PubMed

    Rivolta, C; Sweklo, E A; Berson, E L; Dryja, T P

    2000-06-01

    Microdeletions Glu767(1-bp del), Thr967(1-bp del), and Leu1446(2-bp del) in the human USH2A gene have been reported to cause Usher syndrome type II, a disorder characterized by retinitis pigmentosa (RP) and mild-to-severe hearing loss. Each of these three frameshift mutations is predicted to lead to an unstable mRNA transcript that, if translated, would result in a truncated protein lacking the carboxy terminus. Here, we report Cys759Phe, a novel missense mutation in this gene that changes an amino-acid residue within the fifth laminin-epidermal growth factor-like domain of the USH2A gene and that is associated with recessive RP without hearing loss. This single mutation was found in 4.5% of 224 patients with recessive RP, suggesting that USH2A could cause more cases of nonsyndromic recessive RP than does any other gene identified to date.

  6. Evidence of constitutional MLH1 epimutation associated to transgenerational inheritance of cancer susceptibility.

    PubMed

    Crépin, Michel; Dieu, Marie-Claire; Lejeune, Sophie; Escande, Fabienne; Boidin, Denis; Porchet, Nicole; Morin, Gilles; Manouvrier, Sylvie; Mathieu, Michèle; Buisine, Marie-Pierre

    2012-01-01

    Constitutional epimutations of DNA mismatch repair (MMR) genes have been recently reported as a possible cause of Lynch syndrome. However, little is known about their prevalence, the risk of transmission through the germline and the risk for carriers to develop cancers. In this study, we evaluated the contribution of constitutional epimutations of MMR genes in Lynch syndrome. A cohort of 134 unrelated Lynch syndrome-suspected patients without MMR germline mutation was screened for constitutional epimutations of MLH1 and MSH2 by quantitative bisulfite pyrosequencing. Patients were also screened for the presence of EPCAM deletions, a possible cause of MSH2 methylation. Tumors from patients with constitutional epimutations were extensively analyzed. We identified a constitutional MLH1 epimutation in two proband patients. For one of them, we report for the first time evidence of transmission to two children who also developed early colonic tumors, indicating that constitutional MLH1 epimutations are associated to a real risk of transgenerational inheritance of cancer susceptibility. Moreover, a somatic BRAF mutation was detected in one affected child, indicating that tumors from patients carrying constitutional MLH1 epimutation can mimic MSI-high sporadic tumors. These findings may have important implications for future diagnostic strategies and genetic counseling. © 2011 Wiley Periodicals, Inc.

  7. Mutation analysis of the Smad3 gene in human osteoarthritis.

    PubMed

    Yao, Jun-Yan; Wang, Yan; An, Jing; Mao, Chun-Ming; Hou, Ning; Lv, Ya-Xin; Wang, You-Liang; Cui, Fang; Huang, Min; Yang, Xiao

    2003-09-01

    Osteoarthritis (OA) is the most common joint disease worldwide. Recent studies have shown that targeted disruption of Smad3 in mouse results in OA. To reveal the possible association between the Smad3 gene mutation and human OA, we employed polymerase chain reaction-single strand conformation polymorphism and sequencing to screen mutations in all nine exons of the Smad3 gene in 32 patients with knee OA and 50 patients with only bone fracture. A missense mutation of the Smad3 gene was found in one patient. The single base mutation located in the linker region of the SMAD3 protein was A --> T change in the position 2 of codon 197 and resulted in an asparagine to isoleucine amino-acid substitution. The expressions of matrix metalloproteinase 2 (MMP-2) and MMP-9 in sera of the patient carrying the mutation were higher than other OA patients and controls. This is the first report showing that the Smad3 gene mutations could be associated with the pathogenesis of human OA.

  8. A novel missense mutation, Leu390Val, in the cardiac beta-myosin heavy chain associated with pronounced septal hypertrophy in two families with hypertrophic cardiomyopathy.

    PubMed

    Havndrup, O; Bundgaard, H; Andersen, P S; Larsen, L A; Vuust, J; Kjeldsen, K; Christiansen, M

    2000-12-01

    An examination of the genetic background and phenotypic presentation of familial hypertrophic cardiomyopathy (FHC) with respect to specific mutations in the MYH7-gene encoding the cardiac beta-myosin heavy chain. Two families (n = 22) from a cohort of 67 families with FHC were studied at the National University Hospital, Rigshospitalet, Copenhagen. Clinical, non-invasive examinations of all included family members followed by molecular genetic analysis including PCR-single strand conformation polymorphism/heteroduplex (SSCP/HD) analysis and sequencing of exon 3-23 of the MYH7-gene. We found FHC associated with a missense mutation in two families, i.e. a C > G transversion at position g10124 and a G > T transversion at position g10126 causing the change of a leucine residue at codon 390 to a valine residue. The mutation is located in the actin-binding region of the beta-myosin heavy chain. The leucine residue is evolutionarily conserved in vertebrate myosins. In the two families, the phenotypic presentations in the clinically affected were characterized by asymmetric septal hypertrophy (septum diameter 18.8 (5.0) mm (mean (SD)) with only minor involvement of the left ventricular free wall (posterior wall diameter 11.0 (2.2) mm). Furthermore, the left ventricular systolic and diastolic functions were well preserved, even at a high age. The symptomatic status of the clinically affected patients depended on the presence or absence of a concomitant left ventricular outflow tract gradient. We report a novel missense mutation associated with FHC caused by a double nucleotide transversion. The penetrance of the mutation was not complete, but in clinically affected patients the mutation gives rise to an echocardiographic phenotype, predominantly characterized by pronounced septal hypertrophy.

  9. Syndromic parkinsonism and dementia associated with OPA 1 missense mutations

    PubMed Central

    Musumeci, Olimpia; Caporali, Leonardo; Zanna, Claudia; La Morgia, Chiara; Del Dotto, Valentina; Porcelli, Anna Maria; Rugolo, Michela; Valentino, Maria Lucia; Iommarini, Luisa; Maresca, Alessandra; Barboni, Piero; Carbonelli, Michele; Trombetta, Costantino; Valente, Enza Maria; Patergnani, Simone; Giorgi, Carlotta; Pinton, Paolo; Rizzo, Giovanni; Tonon, Caterina; Lodi, Raffaele; Avoni, Patrizia; Liguori, Rocco; Baruzzi, Agostino; Toscano, Antonio; Zeviani, Massimo

    2015-01-01

    Objective Mounting evidence links neurodegenerative disorders such as Parkinson disease and Alzheimer disease with mitochondrial dysfunction, and recent emphasis has focused on mitochondrial dynamics and quality control. Mitochondrial dynamics and mtDNA maintenance is another link recently emerged, implicating mutations in the mitochondrial fusion genes OPA1 and MFN2 in the pathogenesis of multisystem syndromes characterized by neurodegeneration and accumulation of mtDNA multiple deletions in postmitotic tissues. Here, we report 2 Italian families affected by dominant chronic progressive external ophthalmoplegia (CPEO) complicated by parkinsonism and dementia. Methods Patients were extensively studied by optical coherence tomography (OCT) to assess retinal nerve fibers, and underwent muscle and brain magnetic resonance spectroscopy (MRS), and muscle biopsy and fibroblasts were analyzed. Candidate genes were sequenced, and mtDNA was analyzed for rearrangements. Results Affected individuals displayed a slowly progressive syndrome characterized by CPEO, mitochondrial myopathy, sensorineural deafness, peripheral neuropathy, parkinsonism, and/or cognitive impairment, in most cases without visual complains, but with subclinical loss of retinal nerve fibers at OCT. Muscle biopsies showed cytochrome c oxidase‐negative fibers and mtDNA multiple deletions, and MRS displayed defective oxidative metabolism in muscle and brain. We found 2 heterozygous OPA1 missense mutations affecting highly conserved amino acid positions (p.G488R, p.A495V) in the guanosine triphosphatase domain, each segregating with affected individuals. Fibroblast studies showed a reduced amount of OPA1 protein with normal mRNA expression, fragmented mitochondria, impaired bioenergetics, increased autophagy and mitophagy. Interpretation The association of CPEO and parkinsonism/dementia with subclinical optic neuropathy widens the phenotypic spectrum of OPA1 mutations, highlighting the association of

  10. A missense mutation in the arginine-vasopressin neurophysin-II gene causes autosomal dominant neurohypophyseal diabetes insipidus in a Chinese family.

    PubMed

    Ye, Dan; Dong, FengQin; Lu, WeiQin; Zhang, Zhe; Lu, XunLiang; Li, ChengJiang; Liu, YanNing

    2013-06-01

    Familial neurohypophyseal diabetes insipidus, an autosomal dominant disorder, is mostly caused by mutations in the genes that encode AVP or its intracellular binding protein, neurophysin-II. The mutations lead to aberrant preprohormone processing and progressive destruction of AVP-secreting cells, which gradually manifests a progressive polyuria and polydipsia during early childhood, and a disorder of water homeostasis. We characterized the clinical and biochemical features, and sequenced the AVP neurophysin-II(AVP-NPII) gene of the affected individuals with autosomal dominant neurohypophyseal diabetes insipidus(ADNDI)to determine whether this disease was genetically determined. We obtained the histories of eight affected and four unaffected family individuals. The diagnosis of ADNDI was established using a water deprivation test and exogenous AVP administration. For molecular analysis, genomic DNA was extracted and the AVP-NPII gene was amplified using polymerase chain reaction and sequenced. The eight affected individuals showed different spectra of age of onsets (7-15 years) and urine volumes (132-253 ml/kg/24 h). All affected individuals responded to vasopressin administration, with a resolution of symptoms and an increase in urine osmolality by more than 50%. The characteristic hyperintense signal in the posterior pituitary on T1-weighted magnetic resonance imaging was absent in six family members and present in one. Sequencing analysis revealed a missense heterozygous mutation 1516G > T (Gly17Val) in exon 2 of the AVP-NPII gene among the ADNDI individuals. We identified a missense mutation in the AVP-NPII gene and the same mutation showed different spectra of age of onsets and urine volumes in a new Chinese family with ADNDI. The mutation may provide a molecular basis for understanding the characteristics of NPII and add to our knowledge of the pathogenesis of ADNDI, which would allow the presymptomatic diagnosis of asymptomatic subjects. © 2012 John Wiley

  11. A de novo missense mutation of FGFR2 causes facial dysplasia syndrome in Holstein cattle.

    PubMed

    Agerholm, Jørgen S; McEvoy, Fintan J; Heegaard, Steffen; Charlier, Carole; Jagannathan, Vidhya; Drögemüller, Cord

    2017-08-02

    Surveillance for bovine genetic diseases in Denmark identified a hitherto unreported congenital syndrome occurring among progeny of a Holstein sire used for artificial breeding. A genetic aetiology due to a dominant inheritance with incomplete penetrance or a mosaic germline mutation was suspected as all recorded cases were progeny of the same sire. Detailed investigations were performed to characterize the syndrome and to reveal its cause. Seven malformed calves were submitted examination. All cases shared a common morphology with the most striking lesions being severe facial dysplasia and complete prolapse of the eyes. Consequently the syndrome was named facial dysplasia syndrome (FDS). Furthermore, extensive brain malformations, including microencephaly, hydrocephalus, lobation of the cerebral hemispheres and compression of the brain were present. Subsequent data analysis of progeny of the sire revealed that around 0.5% of his offspring suffered from FDS. High density single nucleotide polymorphism (SNP) genotyping data of the seven cases and their parents were used to map the defect in the bovine genome. Significant genetic linkage was obtained for three regions, including chromosome 26 where whole genome sequencing of a case-parent trio revealed two de novo variants perfectly associated with the disease: an intronic SNP in the DMBT1 gene and a single non-synonymous variant in the FGFR2 gene. This FGFR2 missense variant (c.927G>T) affects a gene encoding a member of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and across species. It is predicted to change an evolutionary conserved tryptophan into a cysteine residue (p.Trp309Cys). Both variant alleles were proven to result from de novo mutation events in the germline of the sire. FDS is a novel genetic disorder of Holstein cattle. Mutations in the human FGFR2 gene are associated with various dominant inherited craniofacial dysostosis syndromes. Given

  12. A novel missense mutation in the CLCN7 gene linked to benign autosomal dominant osteopetrosis: a case series.

    PubMed

    Rashid, Ban Mousa; Rashid, Nawshirwan Gafoor; Schulz, Ansgar; Lahr, Georgia; Nore, Beston Faiek

    2013-01-09

    Osteopetrosis is a rare inherited genetic disease characterized by sclerosis of the skeleton. The absence or malfunction of osteoclasts is found to be strongly associated with the disease evolution. Currently, four clinically distinct forms of the disease have been recognized: the infantile autosomal recessive osteopetrosis, the malignant and the intermediate forms, and autosomal dominant osteopetrosis, type I and type II forms. The autosomal recessive types are the most severe forms with symptoms in very early childhood, whereas the autosomal dominant classes exhibit a heterogeneous trait with milder symptoms, often at later childhood or adulthood. Case 1 is the 12-year-old daughter (index patient) of an Iraqi-Kurdish family who, at the age of eight years, was diagnosed clinically to have mild autosomal dominant osteopetrosis. Presently, at 12-years old, she has severe complications due to the disease progression. In addition, the same family previously experienced the death of a female child in her late childhood. The deceased child had been misdiagnosed, at that time, with thalassemia major. In this report, we extended our investigation to identify the type of the inheritance patterns of osteopetrosis using molecular techniques, because consanguineous marriages exist within the family history. We have detected one heterozygous mutation in exon 15 of the Chloride Channel 7 gene in the index patient (Case 1), whereas other mutations were not detected in the associated genes TCIRG1, OSTM1, RANK, and RANKL. The missense mutation (CGG>TGG) located in exon 15 (c.1225C>T) of the Chloride Channel 7 gene changed the amino acid position 409 from arginine to tryptophan (p.R409W, c.1225C>T).Case 2 is the 16-year-old son (brother of the index patient) of the same family who was diagnosed clinically with mild autosomal dominant osteopetrosis. We have identified the same heterozygous mutation in exon 15 of the Chloride channel 7 gene in this patient (Case 2). The missense

  13. Calibration of Multiple In Silico Tools for Predicting Pathogenicity of Mismatch Repair Gene Missense Substitutions

    PubMed Central

    Thompson, Bryony A.; Greenblatt, Marc S.; Vallee, Maxime P.; Herkert, Johanna C.; Tessereau, Chloe; Young, Erin L.; Adzhubey, Ivan A.; Li, Biao; Bell, Russell; Feng, Bingjian; Mooney, Sean D.; Radivojac, Predrag; Sunyaev, Shamil R.; Frebourg, Thierry; Hofstra, Robert M.W.; Sijmons, Rolf H.; Boucher, Ken; Thomas, Alun; Goldgar, David E.; Spurdle, Amanda B.; Tavtigian, Sean V.

    2015-01-01

    Classification of rare missense substitutions observed during genetic testing for patient management is a considerable problem in clinical genetics. The Bayesian integrated evaluation of unclassified variants is a solution originally developed for BRCA1/2. Here, we take a step toward an analogous system for the mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) that confer colon cancer susceptibility in Lynch syndrome by calibrating in silico tools to estimate prior probabilities of pathogenicity for MMR gene missense substitutions. A qualitative five-class classification system was developed and applied to 143 MMR missense variants. This identified 74 missense substitutions suitable for calibration. These substitutions were scored using six different in silico tools (Align-Grantham Variation Grantham Deviation, multivariate analysis of protein polymorphisms [MAPP], Mut-Pred, PolyPhen-2.1, Sorting Intolerant From Tolerant, and Xvar), using curated MMR multiple sequence alignments where possible. The output from each tool was calibrated by regression against the classifications of the 74 missense substitutions; these calibrated outputs are interpretable as prior probabilities of pathogenicity. MAPP was the most accurate tool and MAPP + PolyPhen-2.1 provided the best-combined model (R2 = 0.62 and area under receiver operating characteristic = 0.93). The MAPP + PolyPhen-2.1 output is sufficiently predictive to feed as a continuous variable into the quantitative Bayesian integrated evaluation for clinical classification of MMR gene missense substitutions. PMID:22949387

  14. Profound, prelingual nonsyndromic deafness maps to chromosome 10q21 and is caused by a novel missense mutation in the Usher syndrome type IF gene PCDH15.

    PubMed

    Doucette, Lance; Merner, Nancy D; Cooke, Sandra; Ives, Elizabeth; Galutira, Dante; Walsh, Vanessa; Walsh, Tom; MacLaren, Linda; Cater, Tracey; Fernandez, Bridget; Green, Jane S; Wilcox, Edward R; Shotland, Lawrence I; Shotland, Larry; Li, Xiaoyan Cindy; Li, X C; Lee, Ming; King, Mary-Claire; Young, Terry-Lynn

    2009-05-01

    We studied a consanguineous family (Family A) from the island of Newfoundland with an autosomal recessive form of prelingual, profound, nonsyndromic sensorineural hearing loss. A genome-wide scan mapped the deafness trait to 10q21-22 (max LOD score of 4.0; D10S196) and fine mapping revealed a 16 Mb ancestral haplotype in deaf relatives. The PCDH15 gene was mapped within the critical region and was an interesting candidate because truncating mutations cause Usher syndrome type IF (USH1F) and two missense mutations have been previously associated with isolated deafness (DFNB23). Sequencing of the PCDH15 gene revealed 33 sequencing variants. Three of these variants were homozygous exclusively in deaf siblings but only one of them was not seen in ethnically matched controls. This novel c.1583 T>A transversion predicts an amino-acid substitution of a valine with an aspartic acid at codon 528 (V528D). Like the two DFNB23 mutations, the V528D mutation in Family A occurs in a highly conserved extracellular cadherin (EC) domain of PCDH15 and is predicted to be more deleterious than the previously identified DFNB23 missense mutations (R134G and G262D). Physical assessment, vestibular and visual function testing in deaf adults ruled out syndromic deafness because of Usher syndrome. This study validates the DFNB23 designation and supports the hypothesis that missense mutations in conserved motifs of PCDH15 cause nonsyndromic hearing loss. This emerging genotype-phenotype correlation in USH1F is similar to that in several other USH1 genes and cautions against a prognosis of a dual sensory loss in deaf children found to be homozygous for hypomorphic mutations at the USH1F locus.

  15. Identification and characterization of a novel DGAT1 missense mutation associated with congenital diarrhea[S

    PubMed Central

    Gluchowski, Nina L.; Chitraju, Chandramohan; Picoraro, Joseph A.; Mejhert, Niklas; Pinto, Shirly; Xin, Winnie; Kamin, Daniel S.; Winter, Harland S.; Chung, Wendy K.; Walther, Tobias C.; Farese, Robert V.

    2017-01-01

    Acyl-CoA:diacylglycerol acyltransferase (DGAT)1 and DGAT2 catalyze triglyceride (TG) biosynthesis in humans. Biallelic loss-of-function mutations in human DGAT1 result in severe congenital diarrhea and protein-losing enteropathy. Additionally, pharmacologic inhibition of DGAT1 led to dose-related diarrhea in human clinical trials. Here we identify a previously unknown DGAT1 mutation in identical twins of South Asian descent. These male patients developed watery diarrhea shortly after birth, with protein-losing enteropathy and failure to thrive. Exome sequencing revealed a homozygous recessive mutation in DGAT1, c.314T>C, p.L105P. We show here that the p.L105P DGAT1 enzyme produced from the mutant allele is less abundant, resulting in partial loss of TG synthesis activity and decreased formation of lipid droplets in patient-derived primary dermal fibroblasts. Thus, in contrast with complete loss-of-function alleles of DGAT1, the p.L105P missense allele partially reduces TG synthesis activity and causes a less severe clinical phenotype. Our findings add to the growing recognition of DGAT1 deficiency as a cause of congenital diarrhea with protein-losing enteropathy and indicate that DGAT1 mutations result in a spectrum of diseases. PMID:28373485

  16. A rat model of hypohidrotic ectodermal dysplasia carries a missense mutation in the Edaradd gene

    PubMed Central

    2011-01-01

    Background Hypohidrotic ectodermal dysplasia (HED) is a congenital disorder characterized by sparse hair, oligodontia, and inability to sweat. It is caused by mutations in any of three Eda pathway genes: ectodysplasin (Eda), Eda receptor (Edar), and Edar-associated death domain (Edaradd), which encode ligand, receptor, and intracellular adaptor molecule, respectively. The Eda signaling pathway activates NF-κB, which is central to ectodermal differentiation. Although the causative genes and the molecular pathway affecting HED have been identified, no curative treatment for HED has been established. Previously, we found a rat spontaneous mutation that caused defects in hair follicles and named it sparse-and-wavy (swh). Here, we have established the swh rat as the first rat model of HED and successfully identified the swh mutation. Results The swh/swh rat showed sparse hair, abnormal morphology of teeth, and absence of sweat glands. The ectoderm-derived glands, meibomian, preputial, and tongue glands, were absent. We mapped the swh mutation to the most telomeric part of rat Chr 7 and found a Pro153Ser missense mutation in the Edaradd gene. This mutation was located in the death domain of EDARADD, which is crucial for signal transduction and resulted in failure to activate NF-κB. Conclusions These findings suggest that swh is a loss-of-function mutation in the rat Edaradd and indicate that the swh/swh rat would be an excellent animal model of HED that could be used to investigate the pathological basis of the disease and the development of new therapies. PMID:22013926

  17. A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes.

    PubMed

    Liu, H X; Cartegni, L; Zhang, M Q; Krainer, A R

    2001-01-01

    Point mutations can generate defective and sometimes harmful proteins. The nonsense-mediated mRNA decay (NMD) pathway minimizes the potential damage caused by nonsense mutations. In-frame nonsense codons located at a minimum distance upstream of the last exon-exon junction are recognized as premature termination codons (PTCs), targeting the mRNA for degradation. Some nonsense mutations cause skipping of one or more exons, presumably during pre-mRNA splicing in the nucleus; this phenomenon is termed nonsense-mediated altered splicing (NAS), and its underlying mechanism is unclear. By analyzing NAS in BRCA1, we show here that inappropriate exon skipping can be reproduced in vitro, and results from disruption of a splicing enhancer in the coding sequence. Enhancers can be disrupted by single nonsense, missense and translationally silent point mutations, without recognition of an open reading frame as such. These results argue against a nuclear reading-frame scanning mechanism for NAS. Coding-region single-nucleotide polymorphisms (cSNPs) within exonic splicing enhancers or silencers may affect the patterns or efficiency of mRNA splicing, which may in turn cause phenotypic variability and variable penetrance of mutations elsewhere in a gene.

  18. Eight novel F13A1 gene missense mutations in patients with mild FXIII deficiency: in silico analysis suggests changes in FXIII-A subunit structure/function.

    PubMed

    Biswas, Arijit; Ivaskevicius, Vytautas; Thomas, Anne; Varvenne, Michael; Brand, Brigitte; Rott, Hannelore; Haussels, Iris; Ruehl, Heiko; Scholz, Ute; Klamroth, Robert; Oldenburg, Johannes

    2014-10-01

    Mild FXIII deficiency is an under-diagnosed disorder because the carriers of this deficiency are often asymptomatic and reveal a phenotype only under special circumstances like surgery or induced trauma. Mutational reports from this type of deficiency have been rare. In this study, we present the phenotypic and genotypic data of nine patients showing mild FXIII-A deficiency caused by eight novel heterozygous missense mutations (Pro166Leu, Arg171Gln, His342Tyr, Gln415Arg, Leu529Pro, Gln601Lys, Arg703Gln and Arg715Gly) in the F13A1 gene. None of these variants were seen in 200 healthy controls. In silico structural analysis of the local wild-type protein structures (activated and non-activated) from X-ray crystallographic models downloaded from the protein databank identified potential structural/functional effects for the identified mutations. The missense mutations in the core domain are suggested to be directly influencing the catalytic triad. Mutations on other domains might influence other critical factors such as activation peptide cleavage or the barrel domain integrity. In vitro expression and subsequent biochemical studies in the future will be able to confirm the pathophysiological mechanisms proposed for the mutations in this article.

  19. Missense mutations in SURF1 associated with deficient cytochrome c oxidase assembly in Leigh syndrome patients.

    PubMed

    Poyau, A; Buchet, K; Bouzidi, M F; Zabot, M T; Echenne, B; Yao, J; Shoubridge, E A; Godinot, C

    2000-02-01

    We have studied the fibroblasts of three patients suffering from Leigh syndrome associated with cytochrome c oxidase deficiency (LS-COX-). Their mitochondrial DNA was functional and all nuclear COX subunits had a normal sequence. The expression of transcripts encoding mitochondrial and nuclear COX subunits was normal or slightly increased. Similarly, the OXA1 transcript coding for a protein involved in COX assembly was increased. However, several COX-protein subunits were severely depressed, indicating deficient COX assembly. Surf1, a factor involved in COX biogenesis, was recently reported as mutated in LS-COX- patients, all mutations predicting a truncated protein. Sequence analysis of SURF1 gene in our three patients revealed seven heterozygous mutations, six of which were new : an insertion, a nonsense mutation, a splicing mutation of intron 7 in addition to three missense mutations. The mutation G385 A (Gly124-->Glu) changes a Gly that is strictly conserved in Surfl homologs of 12 species. The substitution G618 C (Asp202-->His), changing an Asp that is conserved only in mammals, appears to be a polymorphism. The mutation T751 C changes Ile246 to Thr, a position at which a hydrophobic amino acid is conserved in all eukaryotic and some bacterial species. Replacing Ile246 by Thr disrupts a predicted beta sheet structure present in all higher eukaryotes. COX activity could be restored in fibroblasts of the three patients by complementation with a retroviral vector containing normal SURF1 cDNA. These mutations identify domains essential to Surf1 protein structure and/or function.

  20. Effect of MLH1 -93G>A on gene expression in patients with colorectal cancer.

    PubMed

    Funck, Alexandre; Santos, Juliana C; Silva-Fernandes, Isabelle J L; Rabenhorst, Silvia H B; Martinez, Carlos A R; Ribeiro, Marcelo L

    2014-09-01

    The DNA repair machinery plays a key role in maintaining genomic stability by preventing the emergence of mutations. Furthermore, the -93G>A polymorphism in the MLH1 gene has been associated with an increased risk of developing colorectal cancer. Therefore, the aim of this study was to examine the expression pattern and effect of this polymorphism in normal and tumour samples from patients with colorectal cancer. The MLH1 -93G>A (rs1800734) polymorphism was detected by PCR-RFLP in 49 cases of colorectal cancer. MLH1 expression was investigated using real-time quantitative PCR. The results indicate a significant decrease in MLH1 expression in tumour samples compared to their normal counterparts. The MLH1 gene was also significantly repressed in samples from patients who had some degree of tumour invasion into other organs. Similarly, those patients who were in a more advanced tumour stage (TNM III and IV) exhibited a significant reduction in MLH1 gene expression. Finally, the mutant genotype AA of MLH1 was associated with a significant decrease in the expression of this gene. This finding suggests that this polymorphism could increase the risk of developing colorectal cancer by a defective mismatch repair system, particularly through the loss of MLH1 expression in an allele-specific manner.

  1. A novel missense mutation in the gene EDARADD associated with an unusual phenotype of hypohidrotic ectodermal dysplasia.

    PubMed

    Wohlfart, Sigrun; Söder, Stephan; Smahi, Asma; Schneider, Holm

    2016-01-01

    Hypohidrotic ectodermal dysplasia (HED) is a rare disorder characterized by deficient development of structures derived from the ectoderm including hair, nails, eccrine glands, and teeth. HED forms that are caused by mutations in the genes EDA, EDAR, or EDARADD may show almost identical phenotypes, explained by a common signaling pathway. Proper interaction of the proteins encoded by these three genes is important for the activation of the NF-κB signaling pathway and subsequent transcription of the target genes. Mutations in the gene EDARADD are most rarely implicated in HED. Here we describe a novel missense mutation, c.367G>A (p.Asp123Asn), in this gene which did not appear to influence the interaction between EDAR and EDARADD proteins, but led to an impaired ability to activate NF-κB signaling. Female members of the affected family showed either unilateral or bilateral amazia. In addition, an affected girl developed bilateral ovarian teratomas, possibly associated with her genetic condition. © 2015 Wiley Periodicals, Inc.

  2. A missense mutation in ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome.

    PubMed

    Bicknell, Louise S; Pitt, James; Aftimos, Salim; Ramadas, Ram; Maw, Marion A; Robertson, Stephen P

    2008-10-01

    There are several rare syndromes combining wrinkled, redundant skin and neurological abnormalities. Although phenotypic overlap between conditions has suggested that some might be allelic to one another, the aetiology for many of them remains unknown. A consanguineous New Zealand Maori family has been characterised that segregates an autosomal recessive connective tissue disorder (joint dislocations, lax skin) associated with neurological abnormalities (severe global developmental delay, choreoathetosis) without metabolic abnormalities in four affected children. A genome-screen performed under a hypothesis of homozygosity by descent for an ancestral mutation, identified a locus at 10q23 (Z = 3.63). One gene within the candidate interval, ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), was considered a plausible disease gene since a missense mutation had previously been shown to cause progressive neurodegeneration, cataracts, skin laxity, joint dislocations and metabolic derangement in a consanguineous Algerian family. A missense mutation, 2350C>T, was identified in ALDH18A1, which predicts the substitution H784Y. H784 is invariant across all phyla and lies within a previously unrecognised, conserved C-terminal motif in P5CS. In an in vivo assay of flux through this metabolic pathway using dermal fibroblasts obtained from an affected individual, proline and ornithine biosynthetic activity of P5CS was not affected by the H784Y substitution. These data suggest that P5CS may possess additional uncharacterised functions that affect connective tissue and central nervous system function.

  3. Structural and functional analysis of rare missense mutations in human chorionic gonadotrophin β-subunit

    PubMed Central

    Nagirnaja, Liina; Venclovas, Česlovas; Rull, Kristiina; Jonas, Kim C.; Peltoketo, Hellevi; Christiansen, Ole B.; Kairys, Visvaldas; Kivi, Gaily; Steffensen, Rudi; Huhtaniemi, Ilpo T.; Laan, Maris

    2012-01-01

    Heterodimeric hCG is one of the key hormones determining early pregnancy success. We have previously identified rare missense mutations in hCGβ genes with potential pathophysiological importance. The present study assessed the impact of these mutations on the structure and function of hCG by applying a combination of in silico (sequence and structure analysis, molecular dynamics) and in vitro (co-immunoprecipitation, immuno- and bioassays) approaches. The carrier status of each mutation was determined for 1086 North-Europeans [655 patients with recurrent miscarriage (RM)/431 healthy controls from Estonia, Finland and Denmark] using PCR-restriction fragment length polymorphism. The mutation CGB5 p.Val56Leu (rs72556325) was identified in a single heterozygous RM patient and caused a structural hindrance in the formation of the hCGα/β dimer. Although the amount of the mutant hCGβ assembled into secreted intact hCG was only 10% compared with the wild-type, a stronger signaling response was triggered upon binding to its receptor, thus compensating the effect of poor dimerization. The mutation CGB8 p.Pro73Arg (rs72556345) was found in five heterozygotes (three RM cases and two control individuals) and was inherited by two of seven studied live born children. The mutation caused ∼50% of secreted β-subunits to acquire an alternative conformation, but did not affect its biological activity. For the CGB8 p.Arg8Trp (rs72556341) substitution, the applied in vitro methods revealed no alterations in the assembly of intact hCG as also supported by an in silico analysis. In summary, the accumulated data indicate that only mutations with neutral or mild functional consequences might be tolerated in the major hCGβ genes CGB5 and CGB8. PMID:22554618

  4. Classification of rare missense substitutions, using risk surfaces, with genetic- and molecular-epidemiology applications.

    PubMed

    Tavtigian, Sean V; Byrnes, Graham B; Goldgar, David E; Thomas, Alun

    2008-11-01

    Many individually rare missense substitutions are encountered during deep resequencing of candidate susceptibility genes and clinical mutation screening of known susceptibility genes. BRCA1 and BRCA2 are among the most resequenced of all genes, and clinical mutation screening of these genes provides an extensive data set for analysis of rare missense substitutions. Align-GVGD is a mathematically simple missense substitution analysis algorithm, based on the Grantham difference, which has already contributed to classification of missense substitutions in BRCA1, BRCA2, and CHEK2. However, the distribution of genetic risk as a function of Align-GVGD's output variables Grantham variation (GV) and Grantham deviation (GD) has not been well characterized. Here, we used data from the Myriad Genetic Laboratories database of nearly 70,000 full-sequence tests plus two risk estimates, one approximating the odds ratio and the other reflecting strength of selection, to display the distribution of risk in the GV-GD plane as a series of surfaces. We abstracted contours from the surfaces and used the contours to define a sequence of missense substitution grades ordered from greatest risk to least risk. The grades were validated internally using a third, personal and family history-based, measure of risk. The Align-GVGD grades defined here are applicable to both the genetic epidemiology problem of classifying rare missense substitutions observed in known susceptibility genes and the molecular epidemiology problem of analyzing rare missense substitutions observed during case-control mutation screening studies of candidate susceptibility genes. (c) 2008 Wiley-Liss, Inc.

  5. Overrepresentation of missense mutations in mild hemophilia A patients from Belgium: founder effect or independent occurrence?

    PubMed

    Lannoy, N; Lambert, C; Vikkula, M; Hermans, C

    2015-06-01

    Roughly 40% of observed mutations responsible for hemophilia A (HA) are novel and present in either a single family or a limited number of unrelated families. During routine diagnostic analysis of 73 unrelated Belgian patients with mild HA, 4 out of 43 different mutations (p.Ser2030Asn, p.Arg2178Cys, p.Arg2178His, and p.Pro2311His) were detected in more than one family, representing 35% of total identified mutations. To discriminate between an independent recurrence or a founder effect, an analysis of intra- and -extragenic single nucleotide polymorphisms (SNPs) and short tandem repeats (STRs) flanking the F8 gene was conducted. SNP haplotype and microsatellite analysis revealed strong evidence that p.Ser2030Asn and p.Pro2311His mutations were probably associated with a founder effect. The two other mutations localized in an F8 cytosine-phosphate-guanine (CpG) site likely resulted from recurrent de novo events. This study suggests that missense mutations producing C-to-T or G-to-A substitutions in CpG dinucleotide can occur de novo with more repetition than other causal substitutions that do not affect the CpG site. Analysis of F8 database implied that CpG sites throughout the F8 gene are not all mutated with the same frequency. Causes are still unknown and remain to be identified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Classification of BRCA1 missense variants of unknown clinical significance

    PubMed Central

    Phelan, C; Dapic, V; Tice, B; Favis, R; Kwan, E; Barany, F; Manoukian, S; Radice, P; van der Luijt, R B; van Nesselrooij, B P M; Chenevix-Trench, G; kConFab; Caldes, T; de La Hoya, M; Lindquist, S; Tavtigian, S; Goldgar, D; Borg, A; Narod, S; Monteiro, A

    2005-01-01

    Background: BRCA1 is a tumour suppressor with pleiotropic actions. Germline mutations in BRCA1 are responsible for a large proportion of breast–ovarian cancer families. Several missense variants have been identified throughout the gene but because of lack of information about their impact on the function of BRCA1, predictive testing is not always informative. Classification of missense variants into deleterious/high risk or neutral/low clinical significance is essential to identify individuals at risk. Objective: To investigate a panel of missense variants. Methods and results: The panel was investigated in a comprehensive framework that included (1) a functional assay based on transcription activation; (2) segregation analysis and a method of using incomplete pedigree data to calculate the odds of causality; (3) a method based on interspecific sequence variation. It was shown that the transcriptional activation assay could be used as a test to characterise mutations in the carboxy-terminus region of BRCA1 encompassing residues 1396–1863. Thirteen missense variants (H1402Y, L1407P, H1421Y, S1512I, M1628T, M1628V, T1685I, G1706A, T1720A, A1752P, G1788V, V1809F, and W1837R) were specifically investigated. Conclusions: While individual classification schemes for BRCA1 alleles still present limitations, a combination of several methods provides a more powerful way of identifying variants that are causally linked to a high risk of breast and ovarian cancer. The framework presented here brings these variants nearer to clinical applicability. PMID:15689452

  7. Immunohistochemical null-phenotype for mismatch repair proteins in colonic carcinoma associated with concurrent MLH1 hypermethylation and MSH2 somatic mutations.

    PubMed

    Wang, Tao; Stadler, Zsofia K; Zhang, Liying; Weiser, Martin R; Basturk, Olca; Hechtman, Jaclyn F; Vakiani, Efsevia; Saltz, Lenard B; Klimstra, David S; Shia, Jinru

    2018-04-01

    Microsatellite instability, a well-established driver pathway in colorectal carcinogenesis, can develop in both sporadic and hereditary conditions via different molecular alterations in the DNA mismatch repair (MMR) genes. MMR protein immunohistochemistry (IHC) is currently widely used for the detection of MMR deficiency in solid tumors. The IHC test, however, can show varied staining patterns, posing challenges in the interpretation of the staining results in some cases. Here we report a case of an 80-year-old female with a colonic adenocarcinoma that exhibited an unusual "null" IHC staining pattern with complete loss of all four MMR proteins (MLH1, MSH2, MSH6, and PMS2). This led to subsequent MLH1 methylation testing and next generation sequencing which demonstrated that the loss of all MMR proteins was associated with concurrent promoter hypermethylation of MLH1 and double somatic truncating mutations in MSH2. These molecular findings, in conjunction with the patient's age being 80 years and the fact that the patient had no personal or family cancer history, indicated that the MMR deficiency was highly likely sporadic in nature. Thus, the stringent Lynch syndrome type surveillance programs were not recommended to the patient and her family members. This case illustrates a rare but important scenario where a null IHC phenotype signifies complex underlying molecular alternations that bear clinical management implications, highlighting the need for recognition and awareness of such unusual IHC staining patterns.

  8. The Chemical Chaperone, PBA, Reduces ER Stress and Autophagy and Increases Collagen IV α5 Expression in Cultured Fibroblasts From Men With X-Linked Alport Syndrome and Missense Mutations.

    PubMed

    Wang, Dongmao; Mohammad, Mardhiah; Wang, Yanyan; Tan, Rachel; Murray, Lydia S; Ricardo, Sharon; Dagher, Hayat; van Agtmael, Tom; Savige, Judy

    2017-07-01

    X-linked Alport syndrome (OMIM 301050) is caused by COL4A5 missense variants in 40% of families. This study examined the effects of chemical chaperone treatment (sodium 4-phenylbutyrate) on fibroblast cell lines derived from men with missense mutations. Dermal fibroblast cultures were established from 2 affected men and 3 normals. Proliferation rates were examined, the collagen IV α5 chain localized with immunostaining, and levels of the intra- and extracellular chains quantitated with an in-house enzyme-linked immunosorbent assay. COL4A5 mRNA was measured using quantitative reverse transcriptase polymerase chain reaction. Endoplasmic reticulum (ER) size was measured on electron micrographs and after HSP47 immunostaining. Markers of ER stress (ATF6, HSPA5, DDIT3), autophagy (ATG5, BECN1, ATG7), and apoptosis (CASP3, BAD, BCL 2 ) were also quantitated by quantitative reverse transcriptase polymerase chain reaction. Measurements were repeated after 48 hours of incubation with 10 mM sodium 4-phenylbutyrate acid. Both COL4A5 missense variants were associated with reduced proliferation rates on day 6 ( P  = 0.01 and P  = 0.03), ER enlargement, and increased mRNA for ER stress and autophagy (all P values < 0.05) when compared with normal. Sodium 4-phenylbutyrate treatment increased COL4A5 transcript levels ( P  < 0.01), and reduced ER size ( P  < 0.01 by EM and P  < 0.001 by immunostaining), ER stress (p HSPA5 and DDIT3, all P values < 0.01) and autophagy (ATG7, P  < 0.01). Extracellular collagen IV α5 chain was increased in the M1 line only ( P  = 0.06). Sodium 4-phenylbutyrate increases collagen IV α5 mRNA levels, reduces ER stress and autophagy, and possibly facilitates collagen IV α5 extracellular transport. Whether these actions delay end-stage renal failure in men with X-linked Alport syndrome and missense mutations will only be determined with clinical trials.

  9. MLH1-rheMac hereditary nonpolyposis colorectal cancer syndrome in rhesus macaques.

    PubMed

    Brammer, David W; Gillespie, Patrick J; Tian, Mei; Young, Daniel; Raveendran, Muthuswamy; Williams, Lawrence E; Gagea, Mihai; Benavides, Fernando J; Perez, Carlos J; Broaddus, Russell R; Bernacky, Bruce J; Barnhart, Kirstin F; Alauddin, Mian M; Bhutani, Manoop S; Gibbs, Richard A; Sidman, Richard L; Pasqualini, Renata; Arap, Wadih; Rogers, Jeffrey; Abee, Christian R; Gelovani, Juri G

    2018-03-13

    Over the past two decades, 33 cases of colonic adenocarcinomas have been diagnosed in rhesus macaques ( Macaca mulatta ) at the nonhuman primate colony of the Keeling Center for Comparative Medicine and Research at The University of Texas MD Anderson Cancer Center. The distinctive feature in these cases, based on PET/computed tomography (CT) imaging, was the presence of two or three tumor lesions in different locations, including proximal to the ileocecal juncture, proximal to the hepatic flexure, and/or in the sigmoid colon. These colon carcinoma lesions selectively accumulated [ 18 F]fluorodeoxyglucose ([ 18 F]FDG) and [ 18 F]fluoroacetate ([ 18 F]FACE) at high levels, reflecting elevated carbohydrate and fatty acid metabolism in these tumors. In contrast, the accumulation of [ 18 F]fluorothymidine ([ 18 F]FLT) was less significant, reflecting slow proliferative activity in these tumors. The diagnoses of colon carcinomas were confirmed by endoscopy. The expression of MLH1, MSH2, and MSH6 proteins and the degree of microsatellite instability (MSI) was assessed in colon carcinomas. The loss of MLH1 protein expression was observed in all tumors and was associated with a deletion mutation in the MLH1 promoter region and/or multiple single-nucleotide polymorphism (SNP) mutations in the MLH1 gene. All tumors exhibited various degrees of MSI. The pedigree analysis of this rhesus macaque population revealed several clusters of affected animals related to each other over several generations, suggesting an autosomal dominant transmission of susceptibility for colon cancer. The newly discovered hereditary nonpolyposis colorectal cancer syndrome in rhesus macaques, termed MLH1 -rheMac, may serve as a model for development of novel approaches to diagnosis and therapy of Lynch syndrome in humans. Copyright © 2018 the Author(s). Published by PNAS.

  10. Autoimmune Disease in a DFNA6/14/38 Family carrying a Novel Missense Mutation in WFS1

    PubMed Central

    Hildebrand, Michael S.; Sorensen, Jessica L.; Jensen, Maren; Kimberling, William J.; Smith, Richard J.H.

    2008-01-01

    Most familial cases of autosomal dominant low frequency sensorineural hearing loss (LFSNHL) are attributable to mutations in the Wolframin syndrome 1 (WFS1) gene at the DFNA6/14/38 locus. WFS1 mutations at this locus were first described in 2001 in six families segregating LFSNHL that was non-progressive below 2000 Hz; the causative mutations all clustered in the C-terminal domain of the wolframin protein. Mutations in WFS1 also cause Wolfram syndrome (WS), an autosomal recessive neurodegenerative disorder defined by diabetes mellitus, optic atrophy and often deafness, while numerous single nucleotide polymorphisms (SNPs) in WFS1 have been associated with increased risk for diabetes mellitus, psychiatric illnesses and Parkinson’s disease. This study was conducted in an American family segregating autosomal dominant LFSNHL. Two hearing impaired family members also had autoimmune diseases - Graves disease (GD) and Crohn’s disease (CD). Based on the low frequency audioprofile, mutation screening of WFS1 was completed and a novel missense mutation (c.2576G→A) that results in an arginine-to-glutamine substitution (p.R859Q) was identified in the C-terminal domain of the wolframin protein where most LFSNHL-causing mutations cluster. The family member with GD also carried polymorphisms in WFS1 that have been associated with other autoimmune diseases. PMID:18688868

  11. Cancer genes mutation profiling in calcifying epithelial odontogenic tumour.

    PubMed

    de Sousa, Sílvia Ferreira; Diniz, Marina Gonçalves; França, Josiane Alves; Fontes Pereira, Thaís Dos Santos; Moreira, Rennan Garcias; Santos, Jean Nunes Dos; Gomez, Ricardo Santiago; Gomes, Carolina Cavalieri

    2018-03-01

    To identify calcifying epithelial odontogenic tumour (CEOT) mutations in oncogenes and tumour suppressor genes. A panel of 50 genes commonly mutated in cancer was sequenced in CEOT by next-generation sequencing. Sanger sequencing was used to cover the region of the frameshift deletion identified in one sample. Missense single nucleotide variants (SNVs) with minor allele frequency (MAF) <1% were detected in PTEN , MET and JAK3 . A frameshift deletion in CDKN2A occurred in association with a missense mutation in the same gene region, suggesting a second hit in the inactivation of this gene. APC, KDR, KIT, PIK3CA and TP53 missense SNVs were identified; however, these are common SNVs, showing MAF >1%. CEOT harbours mutations in the tumour suppressor PTEN and CDKN2A and in the oncogenes JAK3 and MET . As these mutations occurred in only one case each, they are probably not driver mutations for these tumours. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. A missense mutation in the CRBN gene that segregates with intellectual disability and self-mutilating behaviour in a consanguineous Saudi family

    PubMed Central

    Sheereen, Atia; Alaamery, Manal; Bawazeer, Shahad; Al Yafee, Yusra; Massadeh, Salam; Eyaid, Wafaa

    2017-01-01

    Background Autosomal-recessive non-syndromic intellectual disability (ARNS-ID) is an aetiologically heterogeneous disorder. Although little is known about the function of human cereblon (CRBN), its relationship to mild cognitive deficits suggests that it is involved in the basic processes of human memory and learning. Objectives We aim to identify the genetic cause of intellectual disability and self-mutilation in a consanguineous Saudi family with five affected members. Methods Clinical whole-exome sequencing was performed on the proband patient, and Sanger sequencing was done to validate and confirm segregation in other family members. Results A missense variant (c. 1171T>C) in the CRBN gene was identified in five individuals with severe intellectual disability (ID) in a consanguineous Saudi family. The homozygous variant was co-segregating in the family with the phenotype of severe ID, seizures and self-mutilating behaviour. The missense mutation (p.C391R) reported here results in the replacement of a conserved cysteine residue by an arginine in the CULT (cereblon domain of unknown activity, binding cellular ligands and thalidomide) domain of CRBN, which contains a zinc-binding site. Conclusions These findings thus contribute to a growing list of ID disorders caused by CRBN mutations, broaden the spectrum of phenotypes attributable to ARNS-ID and provide new insight into genotype–phenotype correlations between CRBN mutations and the aetiology of ARNS-ID. PMID:28143899

  13. DNA analysis of an uncommon missense mutation in a Gaucher disease patient of Jewish-Polish-Russian descent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choy, F.Y.M.; Wei, C.; Applegarth, D.A.

    1994-06-01

    Gaucher disease is the most frequent lysosomal lipid storage disease. It results from deficient glucocerebrosidase activity and is transmitted as an autosomal recessive trait. Three clinical forms of Gaucher disease have been described: type 1, non-neuronopathic; type 2, acute neuronopathic; and type 3, subacute neuronopathic. We have sequenced the full length cDNA of the glucocerebrosidase gene and identified an uncommon mutation in nucleotide position 1604 (genoma DNA nucleotide position 6683) from a Gaucher disease patient of Jewish-Polish-Russian descent with type 1 Gaucher disease. It is a G{yields}A transition in exon 11 that results in {sup 496}Arg{yields}{sup 496}His of glucocerebrosidase. Thismore » missense mutation is present in the heterozygous form and creates a new cleavage site for the endonuclease HphI. We have developed a simple method to detect the presence of this mutation by using HphI restriction fragment length polymorphism analysis of glucocerebrosidase genomic DNA or cDNA. The mutation in the other Gaucher allele of this patient is an A{yields}G transition at cDNA nucleotide position 1226 which creates an XhoI cleavage site after PCR mismatch amplification. The presence of this mutation was also confirmed by sequence analysis. Based on previous reports that mutation 1226 is present only in type 1 Gaucher disease and the observation that there is no neurological involvement in this patient, we conclude that our patient with the 1226/1604 genotype is diagnosed as having type 1 Gaucher disease. Since it was also postulated that mutation 1226 in the homozygous form will usually result in a good prognosis, we speculate that the orthopedic complications and the unusual presence of glomerulosclerosis in this patient may be attributable to the mutation at nucleotide 1604. This speculation will require a description of more patients with this mutation for confirmation. 32 refs., 5 figs.« less

  14. A Missense Mutation in the Aggrecan C-type Lectin Domain Disrupts Extracellular Matrix Interactions and Causes Dominant Familial Osteochondritis Dissecans

    PubMed Central

    Stattin, Eva-Lena; Wiklund, Fredrik; Lindblom, Karin; Önnerfjord, Patrik; Jonsson, Björn-Anders; Tegner, Yelverton; Sasaki, Takako; Struglics, André; Lohmander, Stefan; Dahl, Niklas; Heinegård, Dick; Aspberg, Anders

    2010-01-01

    Osteochondritis dissecans is a disorder in which fragments of articular cartilage and subchondral bone dislodge from the joint surface. We analyzed a five-generation family in which affected members had autosomal-dominant familial osteochondritis dissecans. A genome-wide linkage analysis identified aggrecan (ACAN) as a prime candidate gene for the disorder. Sequence analysis of ACAN revealed heterozygosity for a missense mutation (c.6907G > A) in affected individuals, resulting in a p.V2303M amino acid substitution in the aggrecan G3 domain C-type lectin, which mediates interactions with other proteins in the cartilage extracellular matrix. Binding studies with recombinant mutated and wild-type G3 proteins showed loss of fibulin-1, fibulin-2, and tenascin-R interactions for the V2303M protein. Mass spectrometric analyses of aggrecan purified from patient cartilage verified that V2303M aggrecan is produced and present in the tissue. Our results provide a molecular mechanism for the etiology of familial osteochondritis dissecans and show the importance of the aggrecan C-type lectin interactions for cartilage function in vivo. PMID:20137779

  15. Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations

    DOE PAGES

    Adebali, Ogun; Reznik, Alexander O.; Ory, Daniel S.; ...

    2016-02-18

    Here, predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are probably benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, whereas inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and, moreover, are implicated in protection from coronary heart disease. Methods: We identified major events inmore » NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism s fitness. As a result, removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. In conclusion, the results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well.« less

  16. Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adebali, Ogun; Reznik, Alexander O.; Ory, Daniel S.

    Here, predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are probably benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, whereas inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and, moreover, are implicated in protection from coronary heart disease. Methods: We identified major events inmore » NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism s fitness. As a result, removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. In conclusion, the results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well.« less

  17. The A31P missense mutation in cardiac myosin binding protein C alters protein structure but does not cause haploinsufficiency.

    PubMed

    van Dijk, Sabine J; Bezold Kooiker, Kristina; Mazzalupo, Stacy; Yang, Yuanzhang; Kostyukova, Alla S; Mustacich, Debbie J; Hoye, Elaine R; Stern, Joshua A; Kittleson, Mark D; Harris, Samantha P

    2016-07-01

    Mutations in MYBPC3, the gene encoding cardiac myosin binding protein C (cMyBP-C), are a major cause of hypertrophic cardiomyopathy (HCM). While most mutations encode premature stop codons, missense mutations causing single amino acid substitutions are also common. Here we investigated effects of a single proline for alanine substitution at amino acid 31 (A31P) in the C0 domain of cMyBP-C, which was identified as a natural cause of HCM in cats. Results using recombinant proteins showed that the mutation disrupted C0 structure, altered sensitivity to trypsin digestion, and reduced recognition by an antibody that preferentially recognizes N-terminal domains of cMyBP-C. Western blots detecting A31P cMyBP-C in myocardium of cats heterozygous for the mutation showed a reduced amount of A31P mutant protein relative to wild-type cMyBP-C, but the total amount of cMyBP-C was not different in myocardium from cats with or without the A31P mutation indicating altered rates of synthesis/degradation of A31P cMyBP-C. Also, the mutant A31P cMyBP-C was properly localized in cardiac sarcomeres. These results indicate that reduced protein expression (haploinsufficiency) cannot account for effects of the A31P cMyBP-C mutation and instead suggest that the A31P mutation causes HCM through a poison polypeptide mechanism that disrupts cMyBP-C or myocyte function. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Epigenetic silencing of MLH1 in endometrial cancers is associated with larger tumor volume, increased rate of lymph node positivity and reduced recurrence-free survival.

    PubMed

    Cosgrove, Casey M; Cohn, David E; Hampel, Heather; Frankel, Wendy L; Jones, Dan; McElroy, Joseph P; Suarez, Adrian A; Zhao, Weiqiang; Chen, Wei; Salani, Ritu; Copeland, Larry J; O'Malley, David M; Fowler, Jeffrey M; Yilmaz, Ahmet; Chassen, Alexis S; Pearlman, Rachel; Goodfellow, Paul J; Backes, Floor J

    2017-09-01

    To determine the relationship between mismatch repair (MMR) classification and clinicopathologic features including tumor volume, and explore outcomes by MMR class in a contemporary cohort. Single institution cohort evaluating MMR classification for endometrial cancers (EC). MMR immunohistochemistry (IHC)±microsatellite instability (MSI) testing and reflex MLH1 methylation testing was performed. Tumors with MMR abnormalities by IHC or MSI and MLH1 methylation were classified as epigenetic MMR deficiency while those without MLH1 methylation were classified as probable MMR mutations. Clinicopathologic characteristics were analyzed. 466 endometrial cancers were classified; 75% as MMR proficient, 20% epigenetic MMR defects, and 5% as probable MMR mutations. Epigenetic MMR defects were associated with advanced stage, higher grade, presence of lymphovascular space invasion, and older age. MMR class was significantly associated with tumor volume, an association not previously reported. The epigenetic MMR defect tumors median volume was 10,220mm 3 compared to 3321mm 3 and 2,846mm 3 , for MMR proficient and probable MMR mutations respectively (P<0.0001). Higher tumor volume was associated with lymph node involvement. Endometrioid EC cases with epigenetic MMR defects had significantly reduced recurrence-free survival (RFS). Among advanced stage (III/IV) endometrioid EC the epigenetic MMR defect group was more likely to recur compared to the MMR proficient group (47.7% vs 3.4%) despite receiving similar adjuvant therapy. In contrast, there was no difference in the number of early stage recurrences for the different MMR classes. MMR testing that includes MLH1 methylation analysis defines a subset of tumors that have worse prognostic features and reduced RFS. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A Novel Rasopathy Caused by Recurrent De Novo Missense Mutations In PPP1CB Closely Resembles Noonan Syndrome with Loose Anagen Hair

    PubMed Central

    Gripp, Karen W.; Aldinger, Kimberly A.; Bennett, James T.; Baker, Laura; Tusi, Jessica; Powell-Hamilton, Nina; Stabley, Deborah; Sol-Church, Katia; Timms, Andrew E.; Dobyns, William B.

    2016-01-01

    Noonan syndrome is a rasopathy caused by mutations in multiple genes encoding components of the RAS/MAPK pathway. Despite its variable phenotype, limited genotype-phenotype correlations exist. Noonan syndrome with loose anagen hair (NS-LAH) is characterized by its distinctive hair anomalies, developmental differences and structural brain abnormalities and is caused by a single recurrent missense SHOC2 mutation. SHOC2 forms a complex with protein phosphatase 1 (PP1C). Protein phosphatases counterbalance kinases and control activation of signaling proteins, such as the mitogen activated protein kinases of the RAS/MAPK pathway. Here we report four patients with de novo missense mutations in protein phosphatase 1 catalytic subunit beta (PPP1CB), sharing a recognizable phenotype. Three individuals had the recurrent PPP1CB c.146G>C, p.Pro49Arg mutation, the fourth had a c.166G>C, p.Ala56Pro change. All had relative or absolute macrocephaly, low-set and posteriorly angulated ears and developmental delay. Slow growing and/or sparse hair and/or an unruly hair texture was present in all. Three individuals had feeding difficulties requiring feeding tubes. One of two males had cryptorchidism, another had pectus excavatum. Short stature was present in three. A female with the recurrent mutation had a Dandy-Walker malformation and optic nerve hypoplasia. Mild ventriculomegaly occurred in all, cerebellar tonsillar ectopia was seen in two and progressed to Chiari 1 malformation in one individual. Based on the combination of phenotypic findings and PPP1CB’s effect on RAF dephosphorylation within the RAS/MAPK pathway, this novel condition can be considered a rasopathy, most similar to NS-LAH. Collectively, these mutations meet the standardized criteria for pathogenicity. PMID:27264673

  20. A novel rasopathy caused by recurrent de novo missense mutations in PPP1CB closely resembles Noonan syndrome with loose anagen hair.

    PubMed

    Gripp, Karen W; Aldinger, Kimberly A; Bennett, James T; Baker, Laura; Tusi, Jessica; Powell-Hamilton, Nina; Stabley, Deborah; Sol-Church, Katia; Timms, Andrew E; Dobyns, William B

    2016-09-01

    Noonan syndrome is a rasopathy caused by mutations in multiple genes encoding components of the RAS/MAPK pathway. Despite its variable phenotype, limited genotype-phenotype correlations exist. Noonan syndrome with loose anagen hair (NS-LAH) is characterized by its distinctive hair anomalies, developmental differences, and structural brain abnormalities and is caused by a single recurrent missense SHOC2 mutation. SHOC2 forms a complex with protein phosphatase 1 (PP1C). Protein phosphatases counterbalance kinases and control activation of signaling proteins, such as the mitogen-activated protein kinases of the RAS/MAPK pathway. Here we report four patients with de novo missense mutations in protein phosphatase one catalytic subunit beta (PPP1CB), sharing a recognizable phenotype. Three individuals had the recurrent PPP1CB c.146G>C, p.Pro49Arg mutation, the fourth had a c.166G>C, p.Ala56Pro change. All had relative or absolute macrocephaly, low-set and posteriorly angulated ears, and developmental delay. Slow growing and/or sparse hair and/or an unruly hair texture was present in all. Three individuals had feeding difficulties requiring feeding tubes. One of two males had cryptorchidism, another had pectus excavatum. Short stature was present in three. A female with the recurrent mutation had a Dandy-Walker malformation and optic nerve hypoplasia. Mild ventriculomegaly occurred in all, cerebellar tonsillar ectopia was seen in two and progressed to Chiari 1 malformation in one individual. Based on the combination of phenotypic findings and PPP1CB's effect on RAF dephosphorylation within the RAS/MAPK pathway, this novel condition can be considered a rasopathy, most similar to NS-LAH. Collectively, these mutations meet the standardized criteria for pathogenicity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. A germline missense mutation in COQ6 is associated with susceptibility to familial schwannomatosis

    PubMed Central

    Zhang, Keqiang; Lin, Jia-Wei; Wang, Jinhui; Wu, Xiwei; Gao, Hanlin; Hsieh, Yi-Chen; Hwu, Peter; Liu, Yun-Ru; Su, Leila; Chiou, Hung-Yi; Wang, Daidong; Yuan, Yate-Ching; Whang-Peng, Jacqueline; Chiu, Wen-Ta; Yen, Yun

    2014-01-01

    Purpose: Schwannomatosis, a subtype of neurofibromatosis, is characterized by multiple benign, nonvestibular, nonintradermal schwannomas. Although the tumor suppressor SMARCB1 gene has been frequently identified as the underlying genetic cause of half of familial and ~10% of sporadic schwannomatosis, for most other cases, further causative genes remain to be discovered. Herein, we characterize the genome of a schwannomatosis family without constitutional inactivation of the SMARCB1 gene to explore novel genomic alterations predisposing individuals to the familial disease. Methods: We performed whole-genome/exome sequencing on genomic DNA of both schwannomatosis-affected and normal members of the family. Results: We identified a novel missense mutation (p.Asp208His; c.622G>C) in the coenzyme Q10 (CoQ10) biosynthesis monooxygenase 6 gene (COQ6) in schwannomatosis-affected members. The deleterious effects of the COQ6 mutations were validated by their lack of complementation in a coq6-deficient yeast mutant. Our study further indicated that the resultant haploinsufficiency of COQ6 might lead to CoQ10 deficiency and chronic overproduction of reactive oxygen species in Schwann cells. Conclusion: Although the exact oncogenetic mechanisms in this schwannomatosis family remain to be elucidated, our data strongly indicate a probable role of COQ6 mutation and CoQ10 deficiency in the development of familial schwannomatosis. PMID:24763291

  2. A germline missense mutation in COQ6 is associated with susceptibility to familial schwannomatosis.

    PubMed

    Zhang, Keqiang; Lin, Jia-Wei; Wang, Jinhui; Wu, Xiwei; Gao, Hanlin; Hsieh, Yi-Chen; Hwu, Peter; Liu, Yun-Ru; Su, Leila; Chiou, Hung-Yi; Wang, Daidong; Yuan, Yate-Ching; Whang-Peng, Jacqueline; Chiu, Wen-Ta; Yen, Yun

    2014-10-01

    Schwannomatosis, a subtype of neurofibromatosis, is characterized by multiple benign, nonvestibular, nonintradermal schwannomas. Although the tumor suppressor SMARCB1 gene has been frequently identified as the underlying genetic cause of half of familial and ~10% of sporadic schwannomatosis, for most other cases, further causative genes remain to be discovered. Herein, we characterize the genome of a schwannomatosis family without constitutional inactivation of the SMARCB1 gene to explore novel genomic alterations predisposing individuals to the familial disease. We performed whole-genome/exome sequencing on genomic DNA of both schwannomatosis-affected and normal members of the family. We identified a novel missense mutation (p.Asp208His; c.622G>C) in the coenzyme Q10 (CoQ10) biosynthesis monooxygenase 6 gene (COQ6) in schwannomatosis-affected members. The deleterious effects of the COQ6 mutations were validated by their lack of complementation in a coq6-deficient yeast mutant. Our study further indicated that the resultant haploinsufficiency of COQ6 might lead to CoQ10 deficiency and chronic overproduction of reactive oxygen species in Schwann cells. Although the exact oncogenetic mechanisms in this schwannomatosis family remain to be elucidated, our data strongly indicate a probable role of COQ6 mutation and CoQ10 deficiency in the development of familial schwannomatosis.Genet Med 16 10, 787-792.

  3. Two Thai families with Norrie disease (ND): association of two novel missense mutations with severe ND phenotype, seizures, and a manifesting carrier.

    PubMed

    Yamada, K; Limprasert, P; Ratanasukon, M; Tengtrisorn, S; Yingchareonpukdee, J; Vasiknanonte, P; Kitaoka, T; Ghadami, M; Niikawa, N; Kishino, T

    2001-04-15

    We describe two Thai families with Norrie disease (ND) in three generations, including 10 affected males and one manifesting female. All affected males in each family had severely defective eye development with complete loss of vision. In addition, three male patients (one from family 1 and two from family 2) suffered from epilepsy, and one female carrier from one family manifested blindness with phthisis bulbi in her right eye. Mutation analysis of the ND gene (NDP) revealed two different novel missense mutations (L16P and S75P) that co-segregated with ND in each family, suggesting that the newly appearing proline at codon 16 or codon 75 alters the conformation of the ND protein and contributes to the severe phenotype of ND in each family. Other studies suggest that epileptic seizures or growth retardation that is associated with ND is the consequence of loss of contiguous genes, because most such patients had deletions extending beyond the Norrie locus. Our finding that the three affected males in the two families with the missense mutations had epilepsy does not support a contiguous gene effect, but favors the pleiotropism of NDP, at least as far as the epileptic manifestation is concerned. The unilateral blindness in the female carrier may have been due to non-random X-inactivation. Copyright 2001 Wiley-Liss, Inc.

  4. Mutations of NOTCH3 in childhood pulmonary arterial hypertension

    PubMed Central

    Chida, Ayako; Shintani, Masaki; Matsushita, Yoshihisa; Sato, Hiroki; Eitoku, Takahiro; Nakayama, Tomotaka; Furutani, Yoshiyuki; Hayama, Emiko; Kawamura, Yoichi; Inai, Kei; Ohtsuki, Shinichi; Saji, Tsutomu; Nonoyama, Shigeaki; Nakanishi, Toshio

    2014-01-01

    Mutations of BMPR2 and other TGF-β superfamily genes have been reported in pulmonary arterial hypertension (PAH). However, 60–90% of idiopathic PAH cases have no mutations in these genes. Recently, the expression of NOTCH3 was shown to be increased in the pulmonary artery smooth muscle cells of PAH patients. We sought to investigate NOTCH3 and its target genes in PAH patients and clarify the role of NOTCH3 signaling. We screened for mutations in NOTCH3, HES1, and HES5 in 41 PAH patients who had no mutations in BMPR2, ALK1, endoglin, SMAD1/4/8, BMPR1B, or Caveolin-1. Two novel missense mutations (c.2519 G>A p.G840E, c.2698 A>C p.T900P) in NOTCH3 were identified in two PAH patients. We performed functional analysis using stable cell lines expressing either wild-type or mutant NOTCH3. The protein-folding chaperone GRP78/BiP was colocalized with wild-type NOTCH3 in the endoplasmic reticulum, whereas the majority of GRP78/BiP was translocated into the nuclei of cells expressing mutant NOTCH3. Cell proliferation and viability were higher for cells expressing mutant NOTCH3 than for those expressing wild-type NOTCH3. We identified novel NOTCH3 mutations in PAH patients and revealed that these mutations were involved in cell proliferation and viability. NOTCH3 mutants induced an impairment in NOTCH3-HES5 signaling. The results may contribute to the elucidation of PAH pathogenesis. PMID:24936512

  5. Combined Microsatellite Instability, MLH1 Methylation Analysis, and Immunohistochemistry for Lynch Syndrome Screening in Endometrial Cancers From GOG210: An NRG Oncology and Gynecologic Oncology Group Study.

    PubMed

    Goodfellow, Paul J; Billingsley, Caroline C; Lankes, Heather A; Ali, Shamshad; Cohn, David E; Broaddus, Russell J; Ramirez, Nilsa; Pritchard, Colin C; Hampel, Heather; Chassen, Alexis S; Simmons, Luke V; Schmidt, Amy P; Gao, Feng; Brinton, Louise A; Backes, Floor; Landrum, Lisa M; Geller, Melissa A; DiSilvestro, Paul A; Pearl, Michael L; Lele, Shashikant B; Powell, Matthew A; Zaino, Richard J; Mutch, David

    2015-12-20

    The best screening practice for Lynch syndrome (LS) in endometrial cancer (EC) remains unknown. We sought to determine whether tumor microsatellite instability (MSI) typing along with immunohistochemistry (IHC) and MLH1 methylation analysis can help identify women with LS. ECs from GOG210 patients were assessed for MSI, MLH1 methylation, and mismatch repair (MMR) protein expression. Each tumor was classified as having normal MMR, defective MMR associated with MLH1 methylation, or probable MMR mutation (ie, defective MMR but no methylation). Cancer family history and demographic and clinical features were compared for the three groups. Lynch mutation testing was performed for a subset of women. Analysis of 1,002 ECs suggested possible MMR mutation in 11.8% of tumors. The number of patients with a family history suggestive of LS was highest among women whose tumors were classified as probable MMR mutation (P = .001). Lynch mutations were identified in 41% of patient cases classified as probable mutation (21 of 51 tested). One of the MSH6 Lynch mutations was identified in a patient whose tumor had intact MSH6 expression. Age at diagnosis was younger for mutation carriers than noncarriers (54.3 v 62.3 years; P < .01), with five carriers diagnosed at age > 60 years. Combined MSI, methylation, and IHC analysis may prove useful in Lynch screening in EC. Twenty-four percent of mutation carriers presented with ECs at age > 60 years, and one carrier had an MSI-positive tumor with no IHC defect. Restricting Lynch testing to women diagnosed at age < 60 years or to women with IHC defects could result in missing a substantial fraction of genetic disease. © 2015 by American Society of Clinical Oncology.

  6. Combined Microsatellite Instability, MLH1 Methylation Analysis, and Immunohistochemistry for Lynch Syndrome Screening in Endometrial Cancers From GOG210: An NRG Oncology and Gynecologic Oncology Group Study

    PubMed Central

    Goodfellow, Paul J.; Billingsley, Caroline C.; Lankes, Heather A.; Ali, Shamshad; Cohn, David E.; Broaddus, Russell J.; Ramirez, Nilsa; Pritchard, Colin C.; Hampel, Heather; Chassen, Alexis S.; Simmons, Luke V.; Schmidt, Amy P.; Gao, Feng; Brinton, Louise A.; Backes, Floor; Landrum, Lisa M.; Geller, Melissa A.; DiSilvestro, Paul A.; Pearl, Michael L.; Lele, Shashikant B.; Powell, Matthew A.; Zaino, Richard J.; Mutch, David

    2015-01-01

    Purpose The best screening practice for Lynch syndrome (LS) in endometrial cancer (EC) remains unknown. We sought to determine whether tumor microsatellite instability (MSI) typing along with immunohistochemistry (IHC) and MLH1 methylation analysis can help identify women with LS. Patients and Methods ECs from GOG210 patients were assessed for MSI, MLH1 methylation, and mismatch repair (MMR) protein expression. Each tumor was classified as having normal MMR, defective MMR associated with MLH1 methylation, or probable MMR mutation (ie, defective MMR but no methylation). Cancer family history and demographic and clinical features were compared for the three groups. Lynch mutation testing was performed for a subset of women. Results Analysis of 1,002 ECs suggested possible MMR mutation in 11.8% of tumors. The number of patients with a family history suggestive of LS was highest among women whose tumors were classified as probable MMR mutation (P = .001). Lynch mutations were identified in 41% of patient cases classified as probable mutation (21 of 51 tested). One of the MSH6 Lynch mutations was identified in a patient whose tumor had intact MSH6 expression. Age at diagnosis was younger for mutation carriers than noncarriers (54.3 v 62.3 years; P < .01), with five carriers diagnosed at age > 60 years. Conclusion Combined MSI, methylation, and IHC analysis may prove useful in Lynch screening in EC. Twenty-four percent of mutation carriers presented with ECs at age > 60 years, and one carrier had an MSI-positive tumor with no IHC defect. Restricting Lynch testing to women diagnosed at age < 60 years or to women with IHC defects could result in missing a substantial fraction of genetic disease. PMID:26552419

  7. Clinical impact of endometrial cancer stratified by genetic mutational profiles, POLE mutation, and microsatellite instability.

    PubMed

    Haruma, Tomoko; Nagasaka, Takeshi; Nakamura, Keiichiro; Haraga, Junko; Nyuya, Akihiro; Nishida, Takeshi; Goel, Ajay; Masuyama, Hisashi; Hiramatsu, Yuji

    2018-01-01

    The molecular characterization of endometrial cancer (EC) can facilitate identification of various tumor subtypes. Although EC patients with POLE mutations reproducibly demonstrate better prognosis, the outcome of patients with microsatellite instability (MSI) remains controversial. This study attempted to interrogate whether genetic stratification of EC can identify distinct subsets with prognostic significance. A cohort of 138 EC patients who underwent surgical resection with curative intent was enrolled. Sanger sequencing was used to evaluate mutations in the POLE and KRAS genes. MSI analysis was performed using four mononucleotide repeat markers and methylation status of the MLH1 promoter was measured by a fluorescent bisulfite polymerase chain reaction (PCR). Protein expression for mismatch repair (MMR) proteins was evaluated by immunohistochemistry (IHC). Extensive hypermethylation of the MLH1 promoter was observed in 69.6% ECs with MLH1 deficiency and 3.5% with MMR proficiency, but in none of the ECs with loss of other MMR genes (P < .0001). MSI-positive and POLE mutations were found in 29.0% and 8.7% EC patients, respectively. Our MSI analysis showed a sensitivity of 92.7% for EC patients with MMR deficiency, and a specificity of 97.9% for EC patients with MMR proficiency. In univariate and multivariate analyses, POLE mutations and MSI status was significantly associated with progression-free survival (P = 0.0129 and 0.0064, respectively) but not with endometrial cancer-specific survival. This study provides significant evidence that analyses of proofreading POLE mutations and MSI status based on mononucleotide repeat markers are potentially useful biomarkers to identify EC patients with better prognosis.

  8. First Report of Arg587Cys Mutation of Notch3 Gene in Two Chinese Families with CADASIL.

    PubMed

    You, Jinsong; Liao, Shaojun; Zhang, Foming; Ma, Zhaohui; Li, Guifu

    2017-01-01

    To explore Notch3 mutation sites of Chinese patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Direct sequencing of all exons in Notch3 gene was performed on 12 unrelated suspected CADASIL cases from mainland China. A missense p.Arg587Cys (1759C>T) mutation in exon 11 was identified in 2 patients through genetic analysis. Chinese patients with CADASIL of R587C mutation in exon 11 was firstly reported. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  9. A novel missense mutation of the TYR gene in a pedigree with oculocutaneous albinism type 1 from China.

    PubMed

    Lin, Yu-Ying; Wei, Ai-Hua; Zhou, Zhi-Yong; Zhu, Wei; He, Xin; Lian, Shi

    2011-10-01

    The mutation of the tyrosinase (TYR) gene results in oculocutaneous albinism type 1 (OCA1), an autosomal recessive genetic disorder. OCA1 is the most common type of OCA in the Chinese population. Hence, the TYR gene was tested in this study. We also delineated the genetic analysis of OCA1 in a Chinese family. Genomic DNA was isolated from the blood leukocytes of a proband and his family. Mutational analysis at the TYR locus by DNA sequencing was used to screen five exons, including the intron/exon junctions. A pedigree chart was drawn and the fundus of the eyes of the proband was also examined. A novel missense mutation p.I151S on exon 1, and homozygous TYR mutant alleles were identified in the proband. None of the mutants was identified among the 100 normal control subjects. Genetic analysis of the proband's wife showed normal alleles in the TYR gene. Thus, the fetus was predicated a carrier of OCA1 with a normal appearance. This study provided new information about a novel mutation, p.I151S, in the TYR gene in a Chinese family with OCA1. Further investigation of the proband would be helpful to determine the effects of this mutation on TYR activity.

  10. Identification of a novel heterozygous missense mutation in the CACNA1F gene in a chinese family with retinitis pigmentosa by next generation sequencing.

    PubMed

    Zhou, Qi; Cheng, Jingliang; Yang, Weichan; Tania, Mousumi; Wang, Hui; Khan, Md Asaduzzaman; Duan, Chengxia; Zhu, Li; Chen, Rui; Lv, Hongbin; Fu, Junjiang

    2015-01-01

    Retinitis pigmentosa (RP) is an inherited retinal degenerative disease, which is clinically and genetically heterogeneous, and the inheritance pattern is complex. In this study, we have intended to study the possible association of certain genes with X-linked RP (XLRP) in a Chinese family. A Chinese family with RP was recruited, and a total of seven individuals were enrolled in this genetic study. Genomic DNA was isolated from peripheral leukocytes, and used for the next generation sequencing (NGS). The affected individual presented the clinical signs of XLRP. A heterozygous missense mutation (c.1555C>T, p.R519W) was identified by NGS in exon 13 of the CACNA1F gene on X chromosome, and was confirmed by Sanger sequencing. It showed perfect cosegregation with the disease in the family. The mutation at this position in the CACNA1F gene of RP was found novel by database searching. By using NGS, we have found a novel heterozygous missense mutation (c.1555C>T, p.R519W) in CACNA1F gene, which is probably associated with XLRP. The findings might provide new insights into the cause and diagnosis of RP, and have implications for genetic counseling and clinical management in this family.

  11. Identification of a Novel Heterozygous Missense Mutation in the CACNA1F Gene in a Chinese Family with Retinitis Pigmentosa by Next Generation Sequencing

    PubMed Central

    Tania, Mousumi; Wang, Hui; Khan, Md. Asaduzzaman; Duan, Chengxia; Zhu, Li; Chen, Rui; Lv, Hongbin

    2015-01-01

    Background. Retinitis pigmentosa (RP) is an inherited retinal degenerative disease, which is clinically and genetically heterogeneous, and the inheritance pattern is complex. In this study, we have intended to study the possible association of certain genes with X-linked RP (XLRP) in a Chinese family. Methods. A Chinese family with RP was recruited, and a total of seven individuals were enrolled in this genetic study. Genomic DNA was isolated from peripheral leukocytes, and used for the next generation sequencing (NGS). Results. The affected individual presented the clinical signs of XLRP. A heterozygous missense mutation (c.1555C>T, p.R519W) was identified by NGS in exon 13 of the CACNA1F gene on X chromosome, and was confirmed by Sanger sequencing. It showed perfect cosegregation with the disease in the family. The mutation at this position in the CACNA1F gene of RP was found novel by database searching. Conclusion. By using NGS, we have found a novel heterozygous missense mutation (c.1555C>T, p.R519W) in CACNA1F gene, which is probably associated with XLRP. The findings might provide new insights into the cause and diagnosis of RP, and have implications for genetic counseling and clinical management in this family. PMID:26075273

  12. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance

    PubMed Central

    Tischfield, Max A.; Baris, Hagit N.; Wu, Chen; Rudolph, Guenther; Van Maldergem, Lionel; He, Wei; Chan, Wai-Man; Andrews, Caroline; Demer, Joseph L.; Robertson, Richard L.; Mackey, David A.; Ruddle, Jonathan B.; Bird, Thomas D.; Gottlob, Irene; Pieh, Christina; Traboulsi, Elias I.; Pomeroy, Scott L.; Hunter, David G.; Soul, Janet S.; Newlin, Anna; Sabol, Louise J.; Doherty, Edward J.; de Uzcátegui, Clara E.; de Uzcátegui, Nicolas; Collins, Mary Louise Z.; Sener, Emin C.; Wabbels, Bettina; Hellebrand, Heide; Meitinger, Thomas; de Berardinis, Teresa; Magli, Adriano; Schiavi, Costantino; Pastore-Trossello, Marco; Koc, Feray; Wong, Agnes M.; Levin, Alex V.; Geraghty, Michael T.; Descartes, Maria; Flaherty, Maree; Jamieson, Robyn V.; Møller, H. U.; Meuthen, Ingo; Callen, David F.; Kerwin, Janet; Lindsay, Susan; Meindl, Alfons; Gupta, Mohan L.; Pellman, David; Engle, Elizabeth C.

    2011-01-01

    We report that eight heterozygous missense mutations in TUBB3, encoding the neuron-specific β-tubulin isotype III, result in a spectrum of human nervous system disorders we now call the TUBB3 syndromes. Each mutation causes the ocular motility disorder CFEOM3, whereas some also result in intellectual and behavioral impairments, facial paralysis, and/or later-onset axonal sensorimotor polyneuropathy. Neuroimaging reveals a spectrum of abnormalities including hypoplasia of oculomotor nerves, and dysgenesis of the corpus callosum, anterior commissure, and corticospinal tracts. A knock-in disease mouse model reveals axon guidance defects without evidence of cortical cell migration abnormalities. We show the disease-associated mutations can impair tubulin heterodimer formation in vitro, although folded mutant heterodimers can still polymerize into microtubules. Modeling each mutation in yeast tubulin demonstrates that all alter dynamic instability whereas a subset disrupts the interaction of microtubules with kinesin motors. These findings demonstrate normal TUBB3 is required for axon guidance and maintenance in mammals. PMID:20074521

  13. Detection of a large duplication mutation in the myosin-binding protein C3 gene in a case of hypertrophic cardiomyopathy.

    PubMed

    Meyer, Thomas; Pankuweit, Sabine; Richter, Anette; Maisch, Bernhard; Ruppert, Volker

    2013-09-15

    Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease with autosomal dominant inheritance caused by mutations in genes coding for sarcomeric and/or regulatory proteins expressed in cardiomyocytes. In a small cohort of HCM patients (n=8), we searched for mutations in the two most common genes responsible for HCM and found four missense mutations in the MYH7 gene encoding cardiac β-myosin heavy chain (R204H, M493V, R719W, and R870H) and three mutations in the myosin-binding protein C3 gene (MYBPC3) including one missense (A848V) and two frameshift mutations (c.3713delTG and c.702ins26bp). The c.702ins26bp insertion resulted from the duplication of a 26-bp fragment in a 54-year-old female HCM patient presenting with clinical signs of heart failure due to diastolic dysfunction. Although such large duplications (>10 bp) in the MYBPC3 gene are very rare and have been identified only in 4 families reported so far, the identical duplication mutation was found earlier in a Dutch patient, demonstrating that it may constitute a hitherto unknown founder mutation in central European populations. This observation underscores the significance of insertions into the coding sequence of the MYBPC3 gene for the development and pathogenesis of HCM. © 2013 Elsevier B.V. All rights reserved.

  14. HMG CoA lyase deficiency: identification of five causal point mutations in codons 41 and 42, including a frequent Saudi Arabian mutation, R41Q.

    PubMed Central

    Mitchell, G A; Ozand, P T; Robert, M F; Ashmarina, L; Roberts, J; Gibson, K M; Wanders, R J; Wang, S; Chevalier, I; Plöchl, E; Miziorko, H

    1998-01-01

    The hereditary deficiency of 3-hydroxy-3-methylglutaryl (HMG) CoA lyase (HL; OMIM 246450 [http://www3.ncbi.nlm.nih. gov:80/htbin-post/Omim/dispmim?246450]) results in episodes of hypoketotic hypoglycemia and coma and is reported to be frequent and clinically severe in Saudi Arabia. We found genetic diversity among nine Saudi HL-deficient probands: six were homozygous for the missense mutation R41Q, and two were homozygous for the frameshift mutation F305fs(-2). In 32 non-Saudi HL-deficient probands, we found three R41Q alleles and also discovered four other deleterious point mutations in codons 41 and 42: R41X, D42E, D42G, and D42H. In purified mutant recombinant HL, all four missense mutations in codons 41 and 42 cause a marked decrease in HL activity. We developed a screening procedure for HL missense mutations that yields residual activity at levels comparable to those obtained using purified HL peptides. Codons 41 and 42 are important for normal HL catalysis and account for a disproportionate 21 (26%) of 82 of mutant alleles in our group of HL-deficient probands. PMID:9463337

  15. Missense Mutations in the N-Terminal Domain of Human Phenylalanine Hydroxylase Interfere with Binding of Regulatory Phenylalanine

    PubMed Central

    Gjetting, Torben; Petersen, Marie; Guldberg, Per; Güttler, Flemming

    2001-01-01

    Hyperphenylalaninemia due to a deficiency of phenylalanine hydroxylase (PAH) is an autosomal recessive disorder caused by >400 mutations in the PAH gene. Recent work has suggested that the majority of PAH missense mutations impair enzyme activity by causing increased protein instability and aggregation. In this study, we describe an alternative mechanism by which some PAH mutations may render PAH defective. Database searches were used to identify regions in the N-terminal domain of PAH with homology to the regulatory domain of prephenate dehydratase (PDH), the rate-limiting enzyme in the bacterial phenylalanine biosynthesis pathway. Naturally occurring N-terminal PAH mutations are distributed in a nonrandom pattern and cluster within residues 46–48 (GAL) and 65–69 (IESRP), two motifs highly conserved in PDH. To examine whether N-terminal PAH mutations affect the ability of PAH to bind phenylalanine at the regulatory domain, wild-type and five mutant (G46S, A47V, T63P/H64N, I65T, and R68S) forms of the N-terminal domain (residues 2–120) of human PAH were expressed as fusion proteins in Escherichia coli. Binding studies showed that the wild-type form of this domain specifically binds phenylalanine, whereas all mutations abolished or significantly reduced this phenylalanine-binding capacity. Our data suggest that impairment of phenylalanine-mediated activation of PAH may be an important disease-causing mechanism of some N-terminal PAH mutations, which may explain some well-documented genotype-phenotype discrepancies in PAH deficiency. PMID:11326337

  16. Collagen Gly missense mutations: Effect of residue identity on collagen structure and integrin binding.

    PubMed

    Qiu, Yimin; Mekkat, Arya; Yu, Hongtao; Yigit, Sezin; Hamaia, Samir; Farndale, Richard W; Kaplan, David L; Lin, Yu-Shan; Brodsky, Barbara

    2018-05-11

    Gly missense mutations in type I collagen, which replace a conserved Gly in the repeating (Gly-Xaa-Yaa) n sequence with a larger residue, are known to cause Osteogenesis Imperfecta (OI). The clinical consequences of such mutations range from mild to lethal, with more serious clinical severity associated with larger Gly replacement residues. Here, we investigate the influence of the identity of the residue replacing Gly within and adjacent to the integrin binding 502 GFPGER 507 sequence on triple-helix structure, stability and integrin binding using a recombinant bacterial collagen system. Recombinant collagens were constructed with Gly substituted by Ala, Ser or Val at four positions within the integrin binding region. All constructs formed a stable triple-helix structure with a small decrease in melting temperature. Trypsin was used to probe local disruption of the triple helix, and Gly to Val replacements made the triple helix trypsin sensitive at three of the four sites. Any mutation at Gly505, eliminated integrin binding, while decreased integrin binding affinity was observed in the replacement of Gly residues at Gly502 following the order Val > Ser > Ala. Molecular dynamics simulations indicated that all Gly replacements led to transient disruption of triple-helix interchain hydrogen bonds in the region of the Gly replacement. These computational and experimental results lend insight into the complex molecular basis of the varying clinical severity of OI. Copyright © 2018. Published by Elsevier Inc.

  17. A novel missense mutation in the HECT domain of NEDD4L identified in a girl with periventricular nodular heterotopia, polymicrogyria and cleft palate.

    PubMed

    Kato, Koji; Miya, Fuyuki; Hori, Ikumi; Ieda, Daisuke; Ohashi, Kei; Negishi, Yutaka; Hattori, Ayako; Okamoto, Nobuhiko; Kato, Mitsuhiro; Tsunoda, Tatsuhiko; Yamasaki, Mami; Kanemura, Yonehiro; Kosaki, Kenjiro; Saitoh, Shinji

    2017-09-01

    We identified a novel de novo heterozygous missense mutation in the NEDD4L gene (NM_015277: c.2617G>A; p.Glu873Lys) through whole-exome sequencing in a 3-year-old girl showing severe global developmental delay, infantile spasms, cleft palate, periventricular nodular heterotopia and polymicrogyria. Mutations in the HECT domain of NEDD4L have been reported in patients with a neurodevelopmental disorder along with similar brain malformations. All patients reported with NEDD4L HECT domain mutations showed periventricular nodular heterotopia, and most had seizures, cortex anomalies, cleft palate and syndactyly. The unique constellation of clinical features in patients with NEDD4L mutations might help clinically distinguish them from patients with other genetic mutations including FLNA, which is a well-known causative gene of periventricular nodular heterotopia. Although mutations in the HECT domain of NEDD4L that lead to AKT-mTOR pathway deregulation in forced expression system were reported, our western blot analysis did not show an increased level of AKT-mTOR activity in lymphoblastoid cell lines (LCLs) derived from the patient. In contrast to the forced overexpression system, AKT-mTOR pathway deregulation in LCLs derived from our patient seems to be subtle.

  18. Detailed characterization of MLH1 p.D41H and p.N710D variants coexisting in a Lynch syndrome family with conserved MLH1 expression tumors.

    PubMed

    Pineda, M; González-Acosta, M; Thompson, B A; Sánchez, R; Gómez, C; Martínez-López, J; Perea, J; Caldés, T; Rodríguez, Y; Landolfi, S; Balmaña, J; Lázaro, C; Robles, L; Capellá, G; Rueda, D

    2015-06-01

    Lynch syndrome (LS) is an autosomal dominant cancer-susceptibility disease caused by inactivating germline mutations in mismatch repair (MMR) genes. Variants of unknown significance (VUS) are often detected in mutational analysis of MMR genes. Here we describe a large family fulfilling Amsterdam I criteria carrying two rare VUS in the MLH1 gene: c.121G > C (p.D41H) and c.2128A > G (p.N710D). Collection of clinico-pathological data, multifactorial analysis, in silico predictions, and functional analyses were used to elucidate the clinical significance of the identified MLH1 VUS. Only the c.121G > C variant cosegregated with LS-associated tumors in the family. Diagnosed colorectal tumors were microsatellite unstable although immunohistochemical staining revealed no loss of MMR proteins expression. Multifactorial likelihood analysis classified c.2128A > G as a non-pathogenic variant and c.121G > C as pathogenic. In vitro functional tests revealed impaired MMR activity and diminished expression of c.121G > C. Accordingly, the N710 residue is located in the unconserved MLH1 C-terminal domain, whereas D41 is highly conserved and located in the ATPase domain. The obtained results will enable adequate genetic counseling of c.121G > C and c.2128A > G variant carriers and their families. Furthermore, they exemplify how cumulative data and comprehensive analyses are mandatory to refine the classification of MMR variants. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Quantitative high resolution mapping of HvMLH3 foci in barley pachytene nuclei reveals a strong distal bias and weak interference

    PubMed Central

    Phillips, Dylan; Wnetrzak, Joanna; Nibau, Candida; Barakate, Abdellah; Ramsay, Luke; Wright, Frank; Higgins, James D.; Perry, Ruth M.; Jenkins, Glyn

    2013-01-01

    In barley (Hordeum vulgare L.), chiasmata (the physical sites of genetic crossovers) are skewed towards the distal ends of chromosomes, effectively consigning a large proportion of genes to recombination coldspots. This has the effect of limiting potential genetic variability, and of reducing the efficiency of map-based cloning and breeding approaches for this crop. Shifting the sites of recombination to more proximal chromosome regions by forward and reverse genetic means may be profitable in terms of realizing the genetic potential of the species, but is predicated upon a better understanding of the mechanisms governing the sites of these events, and upon the ability to recognize real changes in recombination patterns. The barley MutL Homologue (HvMLH3), a marker for class I interfering crossovers, has been isolated and a specific antibody has been raised. Immunolocalization of HvMLH3 along with the synaptonemal complex transverse filament protein ZYP1, used in conjunction with fluorescence in situ hybridization (FISH) tagging of specific barley chromosomes, has enabled access to the physical recombination landscape of the barley cultivars Morex and Bowman. Consistent distal localization of HvMLH3 foci throughout the genome, and similar patterns of HvMLH3 foci within bivalents 2H and 3H have been observed. A difference in total numbers of HvMLH3 foci between these two cultivars has been quantified, which is interpreted as representing genotypic variation in class I crossover frequency. Discrepancies between the frequencies of HvMLH3 foci and crossover frequencies derived from linkage analysis point to the existence of at least two crossover pathways in barley. It is also shown that interference of HvMLH3 foci is relatively weak compared with other plant species. PMID:23554258

  20. PMS2 gene mutation results in DNA mismatch repair system failure in a case of adult granulosa cell tumor.

    PubMed

    Wang, Wen-Chung; Lee, Ya-Ting; Lai, Yen-Chein

    2017-03-27

    Granulosa cell tumors are rare ovarian malignancies. Their characteristics include unpredictable indolent growth with malignant potential and late recurrence. Approximately 95% are of adult type. Recent molecular studies have characterized the FOXL2 402C > G mutation in adult granulosa cell tumor. Our previous case report showed that unique FOXL2 402C > G mutation and defective DNA mismatch repair system are associated with the development of adult granulosa cell tumor. In this study, the DNA sequences of four genes, MSH2, MLH1, MSH6, and PMS2, in the DNA mismatch repair system were determined via direct sequencing to elucidate the exact mechanism for the development of this granulosa cell tumor. The results showed that two missense germline mutations, T485K and N775L, inactivate the PMS2 gene. The results of this case study indicated that although FOXL2 402C > G mutation determines the development of granulosa cell tumor, PMS2 mutation may be the initial driver of carcinogenesis. Immunohistochemistry-based tumor testing for mismatch repair gene expression may be necessary for granulosa cell tumors to determine their malignant potential or if they are part of Lynch syndrome.

  1. Cardiac myosin missense mutations cause dilated cardiomyopathy in mouse models and depress molecular motor function.

    PubMed

    Schmitt, Joachim P; Debold, Edward P; Ahmad, Ferhaan; Armstrong, Amy; Frederico, Andrea; Conner, David A; Mende, Ulrike; Lohse, Martin J; Warshaw, David; Seidman, Christine E; Seidman, J G

    2006-09-26

    Dilated cardiomyopathy (DCM) leads to heart failure, a leading cause of death in industrialized nations. Approximately 30% of DCM cases are genetic in origin, with some resulting from point mutations in cardiac myosin, the molecular motor of the heart. The effects of these mutations on myosin's molecular mechanics have not been determined. We have engineered two murine models characterizing the physiological, cellular, and molecular effects of DCM-causing missense mutations (S532P and F764L) in the alpha-cardiac myosin heavy chain and compared them with WT mice. Mutant mice developed morphological and functional characteristics of DCM consistent with the human phenotypes. Contractile function of isolated myocytes was depressed and preceded left ventricular dilation and reduced fractional shortening. In an in vitro motility assay, both mutant cardiac myosins exhibited a reduced ability to translocate actin (V(actin)) but had similar force-generating capacities. Actin-activated ATPase activities were also reduced. Single-molecule laser trap experiments revealed that the lower V(actin) in the S532P mutant was due to a reduced ability of the motor to generate a step displacement and an alteration of the kinetics of its chemomechanical cycle. These results suggest that the depressed molecular function in cardiac myosin may initiate the events that cause the heart to remodel and become pathologically dilated.

  2. A missense mutation in the CRBN gene that segregates with intellectual disability and self-mutilating behaviour in a consanguineous Saudi family.

    PubMed

    Sheereen, Atia; Alaamery, Manal; Bawazeer, Shahad; Al Yafee, Yusra; Massadeh, Salam; Eyaid, Wafaa

    2017-04-01

    Autosomal-recessive non-syndromic intellectual disability (ARNS-ID) is an aetiologically heterogeneous disorder. Although little is known about the function of human cereblon (CRBN), its relationship to mild cognitive deficits suggests that it is involved in the basic processes of human memory and learning. We aim to identify the genetic cause of intellectual disability and self-mutilation in a consanguineous Saudi family with five affected members. Clinical whole-exome sequencing was performed on the proband patient, and Sanger sequencing was done to validate and confirm segregation in other family members. A missense variant (c. 1171T>C) in the CRBN gene was identified in five individuals with severe intellectual disability (ID) in a consanguineous Saudi family. The homozygous variant was co-segregating in the family with the phenotype of severe ID, seizures and self-mutilating behaviour. The missense mutation (p.C391R) reported here results in the replacement of a conserved cysteine residue by an arginine in the CULT (cereblon domain of unknown activity, binding cellular ligands and thalidomide) domain of CRBN, which contains a zinc-binding site. These findings thus contribute to a growing list of ID disorders caused by CRBN mutations, broaden the spectrum of phenotypes attributable to ARNS-ID and provide new insight into genotype-phenotype correlations between CRBN mutations and the aetiology of ARNS-ID. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. Analysis of patients with atypical hemolytic uremic syndrome treated at the Mie University Hospital: concentration of C3 p.I1157T mutation.

    PubMed

    Matsumoto, Takeshi; Fan, Xinping; Ishikawa, Eiji; Ito, Masaaki; Amano, Keishirou; Toyoda, Hidemi; Komada, Yoshihiro; Ohishi, Kohshi; Katayama, Naoyuki; Yoshida, Yoko; Matsumoto, Masanori; Fujimura, Yoshihiro; Ikejiri, Makoto; Wada, Hideo; Miyata, Toshiyuki

    2014-11-01

    Atypical hemolytic uremic syndrome (aHUS) is caused by abnormalities of the complement system and has a significantly poor prognosis. The clinical phenotypes of 12 patients in nine families with aHUS with familial or recurrent onset and ADAMTS13 activity of ≥20 % treated at the Mie University Hospital were examined. In seven of the patients, the first episode of aHUS occurred during childhood and ten patients experienced a relapse. All patients had renal dysfunction and three had been treated with hemodialysis. Seven patients experienced probable triggering events including common cold, influenza, bacterial infection and/or vaccination for influenza. All patients had entered remission, and renal function was improved in 11 patients. DNA sequencing of six candidate genes, identified a C3 p.I1157T missense mutation in all eight patients in six families examined and this mutation was causative for aHUS. A causative mutation THBD p.D486Y was also identified in an aHUS patient. Four missense mutations, CFH p.V837I, p.Y1058H, p.V1060L and THBD p.R403K may predispose to aHUS manifestation; the remaining seven missense mutations were likely neutral. In conclusion, the clinical phenotypes of aHUS are various, and there are often trigger factors. The C3 p.I1157T mutation was identified as the causative mutation for aHUS in all patients examined, and may be geographically concentrated in or around the Mie prefecture in central Japan.

  4. PDE3A mutations cause autosomal dominant hypertension with brachydactyly.

    PubMed

    Maass, Philipp G; Aydin, Atakan; Luft, Friedrich C; Schächterle, Carolin; Weise, Anja; Stricker, Sigmar; Lindschau, Carsten; Vaegler, Martin; Qadri, Fatimunnisa; Toka, Hakan R; Schulz, Herbert; Krawitz, Peter M; Parkhomchuk, Dmitri; Hecht, Jochen; Hollfinger, Irene; Wefeld-Neuenfeld, Yvette; Bartels-Klein, Eireen; Mühl, Astrid; Kann, Martin; Schuster, Herbert; Chitayat, David; Bialer, Martin G; Wienker, Thomas F; Ott, Jürg; Rittscher, Katharina; Liehr, Thomas; Jordan, Jens; Plessis, Ghislaine; Tank, Jens; Mai, Knut; Naraghi, Ramin; Hodge, Russell; Hopp, Maxwell; Hattenbach, Lars O; Busjahn, Andreas; Rauch, Anita; Vandeput, Fabrice; Gong, Maolian; Rüschendorf, Franz; Hübner, Norbert; Haller, Hermann; Mundlos, Stefan; Bilginturan, Nihat; Movsesian, Matthew A; Klussmann, Enno; Toka, Okan; Bähring, Sylvia

    2015-06-01

    Cardiovascular disease is the most common cause of death worldwide, and hypertension is the major risk factor. Mendelian hypertension elucidates mechanisms of blood pressure regulation. Here we report six missense mutations in PDE3A (encoding phosphodiesterase 3A) in six unrelated families with mendelian hypertension and brachydactyly type E (HTNB). The syndrome features brachydactyly type E (BDE), severe salt-independent but age-dependent hypertension, an increased fibroblast growth rate, neurovascular contact at the rostral-ventrolateral medulla, altered baroreflex blood pressure regulation and death from stroke before age 50 years when untreated. In vitro analyses of mesenchymal stem cell-derived vascular smooth muscle cells (VSMCs) and chondrocytes provided insights into molecular pathogenesis. The mutations increased protein kinase A-mediated PDE3A phosphorylation and resulted in gain of function, with increased cAMP-hydrolytic activity and enhanced cell proliferation. Levels of phosphorylated VASP were diminished, and PTHrP levels were dysregulated. We suggest that the identified PDE3A mutations cause the syndrome. VSMC-expressed PDE3A deserves scrutiny as a therapeutic target for the treatment of hypertension.

  5. Molecular-clinical correlation in a family with a novel heteroplasmic Leigh syndrome missense mutation in the mitochondrial cytochrome c oxidase III gene.

    PubMed

    Mkaouar-Rebai, Emna; Ellouze, Emna; Chamkha, Imen; Kammoun, Fatma; Triki, Chahnez; Fakhfakh, Faiza

    2011-01-01

    Cytochrome c oxidase is an essential component of the mitochondrial respiratory chain that catalyzes the reduction of molecular oxygen by reduced cytochrome c. In this study, the authors report the second mutation associated with Leigh syndrome in the blood and buccal mucosa of 2 affected members of a Tunisian family. It was a novel heteroplasmic missense mitochondrial mutation at nucleotide 9478 in the gene specifying subunit III of cytochrome c oxidase substituting the valine at position 91 to alanine in a highly conserved amino acid. It was found with a high mutant load in tissues derived from endoderm (buccal mucosa) and mesoderm (blood). However, it was nearly absent in tissue derived from ectoderm (hair follicles). It was absent in 120 healthy controls, and PolyPhen analysis showed that the hydropathy index changed from +1.276 to +0.242, and the number of structures of the 3D protein decreased from 39 to 32.

  6. Identification of a novel CLRN1 gene mutation in Usher syndrome type 3: two case reports.

    PubMed

    Yoshimura, Hidekane; Oshikawa, Chie; Nakayama, Jun; Moteki, Hideaki; Usami, Shin-Ichi

    2015-05-01

    This study examines the CLRN1 gene mutation analysis in Japanese patients who were diagnosed with Usher syndrome type 3 (USH3) on the basis of clinical findings. Genetic analysis using massively parallel DNA sequencing (MPS) was conducted to search for 9 causative USH genes in 2 USH3 patients. We identified the novel pathogenic mutation in the CLRN1 gene in 2 patients. The missense mutation was confirmed by functional prediction software and segregation analysis. Both patients were diagnosed as having USH3 caused by the CLRN1 gene mutation. This is the first report of USH3 with a CLRN1 gene mutation in Asian populations. Validating the presence of clinical findings is imperative for properly differentiating among USH subtypes. In addition, mutation screening using MPS enables the identification of causative mutations in USH. The clinical diagnosis of this phenotypically variable disease can then be confirmed. © The Author(s) 2015.

  7. Accumulation of multiple mutations in linezolid-resistant Staphylococcus epidermidis causing bloodstream infections; in silico analysis of L3 amino acid substitutions that might confer high-level linezolid resistance.

    PubMed

    Ikonomidis, Alexandros; Grapsa, Anastasia; Pavlioglou, Charikleia; Demiri, Antonia; Batarli, Alexandra; Panopoulou, Maria

    2016-12-01

    Fifty-six Staphylococcus epidermidis clinical isolates, showing high-level linezolid resistance and causing bacteremia in critically ill patients, were studied. All isolates belonged to ST22 clone and carried the T2504A and C2534T mutations in gene coding for 23SrRNA as well as the C189A, G208A, C209T and G384C missense mutations in L3 protein which resulted in Asp159Tyr, Gly152Asp and Leu94Val substitutions. Other silent mutations were also detected in genes coding for ribosomal proteins L3 and L22. In silico analysis of missense mutations showed that although L3 protein retained the sequence of secondary motifs, the tertiary structure was influenced. The observed alteration in L3 protein folding provides an indication on the putative role of L3-coding gene mutations in high-level linezolid resistance. Furthermore, linezolid pressure in health care settings where linezolid consumption is of high rates might lead to the selection of resistant mutants possessing L3 mutations that might confer high-level linezolid resistance.

  8. A novel missense mutation in ANO5/TMEM16E is causative for gnathodiaphyseal dyplasia in a large Italian pedigree

    PubMed Central

    Marconi, Caterina; Brunamonti Binello, Paolo; Badiali, Giovanni; Caci, Emanuela; Cusano, Roberto; Garibaldi, Joseph; Pippucci, Tommaso; Merlini, Alberto; Marchetti, Claudio; Rhoden, Kerry J; Galietta, Luis J V; Lalatta, Faustina; Balbi, Paolo; Seri, Marco

    2013-01-01

    Gnathodiaphyseal dysplasia (GDD) is an autosomal dominant syndrome characterized by frequent bone fractures at a young age, bowing of tubular bones and cemento-osseus lesions of the jawbones. Anoctamin 5 (ANO5) belongs to the anoctamin protein family that includes calcium-activated chloride channels. However, recent data together with our own experiments reported here add weight to the hypothesis that ANO5 may not function as calcium-activated chloride channel. By sequencing the entire ANO5 gene coding region and untranslated regions in a large Italian GDD family, we found a novel missense mutation causing the p.Thr513Ile substitution. The mutation segregates with the disease in the family and has never been described in any database as a polymorphism. To date, only two mutations on the same cysteine residue at position 356 of ANO5 amino-acid sequence have been described in GDD families. As ANO5 has also been found to be mutated in two different forms of muscular dystrophy, the finding of this third mutation in GDD adds clues to the role of ANO5 in these disorders. PMID:23047743

  9. Mutation spectrum and risk of colorectal cancer in African American families with Lynch Syndrome

    PubMed Central

    Guindalini, Rodrigo Santa Cruz; Win, Aung Ko; Gulden, Cassandra; Lindor, Noralane M.; Newcomb, Polly A.; Haile, Robert W.; Raymond, Victoria; Stoffel, Elena; Hall, Michael; Llor, Xavier; Ukaegbu, Chinedu I.; Solomon, Ilana; Weitzel, Jeffrey; Kalady, Matthew; Blanco, Amie; Terdiman, Jonathan; Shuttlesworth, Gladis A.; Lynch, Patrick M.; Hampel, Heather; Lynch, Henry T.; Jenkins, Mark A.; Olopade, Olufunmilayo I.; Kupfer, Sonia S.

    2015-01-01

    Background & Aims African Americans (AAs) have the highest incidence and mortality of colorectal cancer (CRC) in the United States (US). Few data are available on genetic and non-genetic risk factors for CRC among AAs. Little is known about cancer risks and mutations in mismatch repair (MMR) genes in AAs with the most common inherited CRC syndrome, Lynch syndrome. We aimed to characterize phenotype, mutation spectrum, and risk of CRC in AAs with Lynch Syndrome. Methods We performed a retrospective study of AAs with mutations in MMR genes (MLH1, MSH2, MSH6, and PMS2) using databases from 13 US referral centers. We analyzed data on personal and family histories of cancer. Modified segregation analysis conditioned on ascertainment criteria was used to estimate age- and sex-specific CRC cumulative risk studying members of the mutation-carrying families. Results We identified 51 AA families with deleterious mutations that disrupt function of the MMR gene product: 31 in MLH1 (61%), 11 in MSH2 (21%), 3 in MSH6 (6%), and 6 in PMS2 (12%); 8 mutations were detected in more than 1 individual and 11 have not been previously reported. In the 920 members of the 51 families with deleterious mutations, the cumulative risks of CRC at an age of 80 y were estimated to be 36.2% (95% confidence interval [CI], 10.5%–83.9%) for men and 29.7% (95% CI, 8.31%–76.1%) for women. CRC risk was significantly higher among individuals with mutations in MLH1 or MSH2 (hazard ratio, 13.9; 95% CI, 3.44–56.5). Conclusions We estimate the cumulative risk for CRC in AAs with MMR gene mutations to be similar to that of individuals of European descent with Lynch syndrome. Two-thirds of mutations were found in MLH1—some were found in multiple individuals and some have not been previously reported. Differences in the mutation spectrum are likely to reflect the genetic diversity of this population. PMID:26248088

  10. Mutation spectrum and risk of colorectal cancer in African American families with Lynch syndrome.

    PubMed

    Guindalini, Rodrigo Santa Cruz; Win, Aung Ko; Gulden, Cassandra; Lindor, Noralane M; Newcomb, Polly A; Haile, Robert W; Raymond, Victoria; Stoffel, Elena; Hall, Michael; Llor, Xavier; Ukaegbu, Chinedu I; Solomon, Ilana; Weitzel, Jeffrey; Kalady, Matthew; Blanco, Amie; Terdiman, Jonathan; Shuttlesworth, Gladis A; Lynch, Patrick M; Hampel, Heather; Lynch, Henry T; Jenkins, Mark A; Olopade, Olufunmilayo I; Kupfer, Sonia S

    2015-11-01

    African Americans (AAs) have the highest incidence of and mortality resulting from colorectal cancer (CRC) in the United States. Few data are available on genetic and nongenetic risk factors for CRC among AAs. Little is known about cancer risks and mutations in mismatch repair (MMR) genes in AAs with the most common inherited CRC condition, Lynch syndrome. We aimed to characterize phenotype, mutation spectrum, and risk of CRC in AAs with Lynch syndrome. We performed a retrospective study of AAs with mutations in MMR genes (MLH1, MSH2, MSH6, and PMS2) using databases from 13 US referral centers. We analyzed data on personal and family histories of cancer. Modified segregation analysis conditioned on ascertainment criteria was used to estimate age- and sex-specific CRC cumulative risk, studying members of the mutation-carrying families. We identified 51 AA families with deleterious mutations that disrupt function of the MMR gene product: 31 in MLH1 (61%), 11 in MSH2 (21%), 3 in MSH6 (6%), and 6 in PMS2 (12%); 8 mutations were detected in more than 1 individual, and 11 have not been previously reported. In the 920 members of the 51 families with deleterious mutations, the cumulative risks of CRC at 80 years of age were estimated to be 36.2% (95% confidence interval [CI], 10.5%-83.9%) for men and 29.7% (95% CI, 8.31%-76.1%) for women. CRC risk was significantly higher among individuals with mutations in MLH1 or MSH2 (hazard ratio, 13.9; 95% CI, 3.44-56.5). We estimate the cumulative risk for CRC in AAs with MMR gene mutations to be similar to that of individuals of European descent with Lynch syndrome. Two-thirds of mutations were found in MLH1, some of which were found in multiple individuals and some that have not been previously reported. Differences in mutation spectrum are likely to reflect the genetic diversity of this population. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Identification of constitutional MLH1 epimutations and promoter variants in colorectal cancer patients from the Colon Cancer Family Registry

    PubMed Central

    Ward, Robyn L.; Dobbins, Timothy; Lindor, Noralane M.; Rapkins, Robert W.; Hitchins, Megan P.

    2013-01-01

    Purpose: Constitutional MLH1 epimutations manifest as promoter methylation and silencing of the affected allele in normal tissues, predisposing to Lynch syndrome–associated cancers. This study investigated their frequency and inheritance. Methods: A total of 416 individuals with a colorectal cancer showing loss of MLH1 expression and without deleterious germline mutations in MLH1 were ascertained from the Colon Cancer Family Registry (C-CFR). Constitutive DNA samples were screened for MLH1 methylation in all 416 subjects and for promoter sequence changes in 357 individuals. Results: Constitutional MLH1 epimutations were identified in 16 subjects. Of these, seven (1.7%) had mono- or hemi-allelic methylation and eight had low-level methylation (2%). In one subject the epimutation was linked to the c.-27C>A promoter variant. Testing of 37 relatives from nine probands revealed paternal transmission of low-level methylation segregating with a c.+27G>A variant in one case. Five additional probands had a promoter variant without an MLH1 epimutation, with three showing diminished promoter activity in functional assays. Conclusion: Although rare, sequence changes in the regulatory region of MLH1 and aberrant methylation may alone or together predispose to the development of cancer. Screening for these changes is warranted in individuals who have a negative germline sequence screen of MLH1 and loss of MLH1 expression in their tumor. PMID:22878509

  12. Identification of a Novel Missense FBN2 Mutation in a Chinese Family with Congenital Contractural Arachnodactyly Using Exome Sequencing

    PubMed Central

    Deng, Hao; Lu, Qian; Xu, Hongbo; Deng, Xiong; Yuan, Lamei; Yang, Zhijian; Guo, Yi; Lin, Qiongfen; Xiao, Jingjing; Guan, Liping; Song, Zhi

    2016-01-01

    Congenital contractural arachnodactyly (CCA, OMIM 121050), also known as Beals-Hecht syndrome, is an autosomal dominant disorder of connective tissue. CCA is characterized by arachnodactyly, dolichostenomelia, pectus deformities, kyphoscoliosis, congenital contractures and a crumpled appearance of the helix of the ear. The aim of this study is to identify the genetic cause of a 4-generation Chinese family of Tujia ethnicity with congenital contractural arachnodactyly by exome sequencing. The clinical features of patients in this family are consistent with CCA. A novel missense mutation, c.3769T>C (p.C1257R), in the fibrillin 2 gene (FBN2) was identified responsible for the genetic cause of our family with CCA. The p.C1257R mutation occurs in the 19th calcium-binding epidermal growth factor-like (cbEGF) domain. The amino acid residue cysteine in this domain is conserved among different species. Our findings suggest that exome sequencing is a powerful tool to discover mutation(s) in CCA. Our results may also provide new insights into the cause and diagnosis of CCA, and may have implications for genetic counseling and clinical management. PMID:27196565

  13. Utility of MLH1 Methylation Analysis in the Clinical Evaluation of Lynch Syndrome in Women with Endometrial Cancer

    PubMed Central

    Bruegl, Amanda S.; Djordjevic, Bojana; Urbauer, Diana L.; Westin, Shannon N.; Soliman, Pamela T.; Lu, Karen H.; Luthra, Rajyalakshmi; Broaddus, Russell R.

    2013-01-01

    Clinical screening criteria, such as young age of endometrial cancer diagnosis and family history of signature cancers, have traditionally been used to identify women with Lynch Syndrome, which is caused by mutation of a DNA mismatch repair gene. Immunohistochemistry and microsatellite instability analysis have evolved as important screening tools to evaluate endometrial cancer patients for Lynch Syndrome. A complicating factor is that 15-20% of sporadic endometrial cancers have immunohistochemical loss of the DNA mismatch repair protein MLH1 and high levels of microsatellite instability due to methylation of MLH1. The PCR-based MLH1 methylation assay potentially resolves this issue, yet many clinical laboratories do not perform this assay. The objective of this study was to determine if clinical and pathologic features help to distinguish sporadic endometrial carcinomas with MLH1 loss secondary to MLH1 methylation from Lynch Syndrome-associated endometrial carcinomas with MLH1 loss and absence of MLH1 methylation. Of 337 endometrial carcinomas examined, 54 had immunohistochemical loss of MLH1. 40/54 had MLH1 methylation and were designated as sporadic, while 14/54 lacked MLH1 methylation and were designated as Lynch Syndrome. Diabetes and deep myometrial invasion were associated with Lynch Syndrome; no other clinical or pathological variable distinguished the 2 groups. Combining Society of Gynecologic Oncology screening criteria with these 2 features accurately captured all Lynch Syndrome cases, but with low specificity. In summary, no single clinical/pathologic feature or screening criteria tool accurately identified all Lynch Syndrome-associated endometrial carcinomas, highlighting the importance of the MLH1 methylation assay in the clinical evaluation of these patients. PMID:23888949

  14. Utility of MLH1 methylation analysis in the clinical evaluation of Lynch Syndrome in women with endometrial cancer.

    PubMed

    Bruegl, Amanda S; Djordjevic, Bojana; Urbauer, Diana L; Westin, Shannon N; Soliman, Pamela T; Lu, Karen H; Luthra, Rajyalakshmi; Broaddus, Russell R

    2014-01-01

    Clinical screening criteria, such as young age of endometrial cancer diagnosis and family history of signature cancers, have traditionally been used to identify women with Lynch Syndrome, which is caused by mutation of a DNA mismatch repair gene. Immunohistochemistry and microsatellite instability analysis have evolved as important screening tools to evaluate endometrial cancer patients for Lynch Syndrome. A complicating factor is that 15-20% of sporadic endometrial cancers have immunohistochemical loss of the DNA mismatch repair protein MLH1 and high levels of microsatellite instability due to methylation of MLH1. The PCR-based MLH1 methylation assay potentially resolves this issue, yet many clinical laboratories do not perform this assay. The objective of this study was to determine if clinical and pathologic features help to distinguish sporadic endometrial carcinomas with MLH1 loss secondary to MLH1 methylation from Lynch Syndrome-associated endometrial carcinomas with MLH1 loss and absence of MLH1 methylation. Of 337 endometrial carcinomas examined, 54 had immunohistochemical loss of MLH1. 40/54 had MLH1 methylation and were designated as sporadic, while 14/54 lacked MLH1 methylation and were designated as Lynch Syndrome. Diabetes and deep myometrial invasion were associated with Lynch Syndrome; no other clinical or pathological variable distinguished the 2 groups. Combining Society of Gynecologic Oncology screening criteria with these 2 features accurately captured all Lynch Syndrome cases, but with low specificity. In summary, no single clinical/pathologic feature or screening criteria tool accurately identified all Lynch Syndrome-associated endometrial carcinomas, highlighting the importance of the MLH1 methylation assay in the clinical evaluation of these patients.

  15. Identification of rare heterozygous missense mutations in FANCA in esophageal atresia patients using next-generation sequencing.

    PubMed

    Feng, Yu; Chen, Runsen; Da, Min; Qian, Bo; Mo, Xuming

    2018-06-30

    Esophageal atresia and tracheoesophageal fistula (EA/TEF) are relatively common malformations in newborns, but the etiology of EA/TEF remains unknown. Fanconi anemia (FA) complementation group A (FANCA) is a key component of the FA core complex and is essential for the activation of the DNA repair pathway. The middle region (amino acids 674-1208) of FANCA is required for its interaction with FAAP20. We performed targeted sequencing of this binding region of FANCA (exons 23-36) in 40 EA/TEF patients. We also investigated the effect of the p.A958V mutation on the protein-protein interaction between FANCA and FAAP20 using an in vitro binding assay and co-immunoprecipitation. Immunolocalization analysis was performed to investigate the subcellular localization of FANCA, and tissue sections and immunohistochemistry were used to explore the expression of FANCA. We identified four rare missense variants in the FANCA binding region. FANCA mutations were significantly overrepresented in EA/TEF patients compared with 4300 control subjects from the NHLBI-ESP project (Fisher's exact p = 2.17 × 10 -5 , odds ratio = 31.75). p.A958V, a novel de novo mutation in the FANCA gene, was identified in one patient with EA/TEF. We provide further evidence that the p.A958V mutation reduces the binding affinity of FANCA for FAAP20. Interestingly, the p.A958V mutation impaired the nuclear localization of the FANCA protein expressed in HeLa cells. We found that FANCA was more highly expressed in stratified squamous epithelium than in smooth muscle. In conclusion, mutations in the FANCA gene are associated with EA/TEF in humans. Copyright © 2018. Published by Elsevier B.V.

  16. Identification and characterisation of mutations associated with von Willebrand disease in a Turkish patient cohort

    PubMed Central

    Hampshire, Daniel J.; Abuzenadah, Adel M.; Cartwright, Ashley; Al-Shammari, Nawal S.; Coyle, Rachael E.; Eckert, Michaela; Al-Buhairan, Ahlam M.; Messenger, Sarah L.; Budde, Ulrich; Gürsel, Türkiz; Ingerslev, Jørgen; Peake, Ian R.; Goodeve, Anne C.

    2014-01-01

    Summary Several cohort studies have investigated the molecular basis of von Willebrand disease (VWD); however these have mostly focused on European and North American populations. This study aimed to investigate mutation spectrum in 26 index cases (IC) from Turkey diagnosed with all three VWD types, the majority (73%) with parents who were knowingly related. IC were screened for mutations using multiplex ligation-dependent probe amplification and analysis of all von Willebrand factor gene (VWF) exons and exon/intron boundaries. Selected missense mutations were expressed in vitro. Candidate VWF mutations were identified in 25 of 26 IC and included propeptide missense mutations in four IC (two resulting in type 1 and two in recessive 2A), all influencing VWF expression in vitro. Four missense mutations, a nonsense mutation and a small in-frame insertion resulting in type 2A were also identified. Of 15 type 3 VWD IC, 13 were homozygous and two compound heterozygous for 14 candidate mutations predicted to result in lack of expression and two propeptide missense changes. Identification of intronic breakpoints of an exon 17–18 deletion suggested that the mutation resulted from non-homologous end joining. This study provides further insight into the pathogenesis of VWD in a population with a high degree of consanguineous partnerships. PMID:23702511

  17. A novel missense mutation in the NDP gene in a child with Norrie disease and severe neurological involvement including infantile spasms.

    PubMed

    Lev, Dorit; Weigl, Yuval; Hasan, Mariana; Gak, Eva; Davidovich, Michael; Vinkler, Chana; Leshinsky-Silver, Esther; Lerman-Sagie, Tally; Watemberg, Nathan

    2007-05-01

    Norrie disease (ND) is a rare X-linked recessive disorder characterized by congenital blindness and in some cases, mental retardation and deafness. Other neurological complications, particularly epilepsy, are rare. We report on a novel mutation identified in a patient with ND and profound mental retardation. The patient was diagnosed at the age of 6 months due to congenital blindness. At the age of 8 months he developed infantile spasms, which were diagnosed at 11 months as his EEG demonstrated hypsarrhythmia. Mutation analysis of the ND gene (NDP) of the affected child and his mother revealed a novel missense mutation at position c.134T > A resulting in amino acid change at codon V45E. To the best of our knowledge, such severe neurological involvement has not been previously reported in ND patients. The severity of the phenotype may suggest the functional importance of this site of the NDP gene.

  18. Identification of A Novel Missense Mutation in The Norrie Disease Gene: The First Molecular Genetic Analysis and Prenatal Diagnosis of Norrie Disease in An Iranian Family.

    PubMed

    Talebi, Farah; Ghanbari Mardasi, Farideh; Mohammadi Asl, Javad; Lashgari, Ali; Farhadi, Freidoon

    2018-07-01

    Norrie disease (ND) is a rare X-linked recessive disorder, which is characterized by congenital blindness and, in several cases, accompanied with mental retardation and deafness. ND is caused by mutations in NDP, located on the proximal short arm of the X chromosome (Xp11.3). The disease has been observed in many ethnic groups worldwide, however, no such case has been reported from Iran. In this study, we present the molecular analysis of two patients with ND and the subsequent prenatal diagnosis. Screening of NDP identified a hemizygous missense mutation (p.Ser133Cys) in the affected male siblings of the family. The mother was the carrier for the mutation (p.Ser133Cys). In a subsequent chorionic amniotic pregnancy, we carried out prenatal diagnosis by sequencing NDP in the chorionic villi sample at 11 weeks of gestation. The fetus was carrying the mutation and thus unaffected. This is the first mutation report and prenatal diagnosis of an Iranian family with ND, and highlights the importance of prenatal diagnostic screening of this congenital disorder and relevant genetic counseling. Copyright© by Royan Institute. All rights reserved.

  19. Rare Noncoding Mutations Extend the Mutational Spectrum in the PGAP3 Subtype of Hyperphosphatasia with Mental Retardation Syndrome

    PubMed Central

    Knaus, Alexej; Awaya, Tomonari; Helbig, Ingo; Afawi, Zaid; Pendziwiat, Manuela; Abu‐Rachma, Jubran; Thompson, Miles D.; Cole, David E.; Skinner, Steve; Annese, Fran; Canham, Natalie; Schweiger, Michal R.; Robinson, Peter N.; Mundlos, Stefan; Kinoshita, Taroh; Munnich, Arnold

    2016-01-01

    ABSTRACT HPMRS or Mabry syndrome is a heterogeneous glycosylphosphatidylinositol (GPI) anchor deficiency that is caused by an impairment of synthesis or maturation of the GPI‐anchor. The expressivity of the clinical features in HPMRS varies from severe syndromic forms with multiple organ malformations to mild nonsyndromic intellectual disability. In about half of the patients with the clinical diagnosis of HPMRS, pathogenic mutations can be identified in the coding region in one of the six genes, one among them is PGAP3. In this work, we describe a screening approach with sequence specific baits for transcripts of genes of the GPI pathway that allows the detection of functionally relevant mutations also including introns and the 5′ and 3′ UTR. By this means, we also identified pathogenic noncoding mutations, which increases the diagnostic yield for HPMRS on the basis of intellectual disability and elevated serum alkaline phosphatase. In eight affected individuals from different ethnicities, we found seven novel pathogenic mutations in PGAP3. Besides five missense mutations, we identified an intronic mutation, c.558‐10G>A, that causes an aberrant splice product and a mutation in the 3′UTR, c.*559C>T, that is associated with substantially lower mRNA levels. We show that our novel screening approach is a useful rapid detection tool for alterations in genes coding for key components of the GPI pathway. PMID:27120253

  20. Haplotype defined by the MLH1-93G/A polymorphism is associated with MLH1 promoter hypermethylation in sporadic colorectal cancers.

    PubMed

    Miyakura, Yasuyuki; Tahara, Makiko; Lefor, Alan T; Yasuda, Yoshikazu; Sugano, Kokichi

    2014-11-24

    Methylation of the MLH1 promoter region has been suggested to be a major mechanism of gene inactivation in sporadic microsatellite instability-positive (MSI-H) colorectal cancers (CRCs). Recently, single-nucleotide polymorphism (SNP) in the MLH1 promoter region (MLH1-93G/A; rs1800734) has been proposed to be associated with MLH1 promoter methylation, loss of MLH1 protein expression and MSI-H tumors. We examined the association of MLH1-93G/A and six other SNPs surrounding MLH1-93G/A with the methylation status in 210 consecutive sporadic CRCs in Japanese patients. Methylation of the MLH1 promoter region was evaluated by Na-bisulfite polymerase chain reaction (PCR)/single-strand conformation polymorphism (SSCP) analysis. The genotype frequencies of SNPs located in the 54-kb region surrounding the MLH1-93G/A SNP were examined by SSCP analysis. Methylation of the MLH1 promoter region was observed in 28.6% (60/210) of sporadic CRCs. The proportions of MLH1-93G/A genotypes A/A, A/G and G/G were 26% (n=54), 51% (n=108) and 23% (n=48), respectively, and they were significantly associated with the methylation status (p=0.01). There were no significant associations between genotype frequency of the six other SNPs and methylation status. The A-allele of MLH1-93G/A was more common in cases with methylation than the G-allele (p=0.0094), especially in females (p=0.0067). In logistic regression, the A/A genotype of the MLH1-93G/A SNP was shown to be the most significant risk factor for methylation of the MLH1 promoter region (odds ratio 2.82, p=0.003). Furthermore, a haplotype of the A-allele of rs2276807 located -47 kb upstream from the MLH1-93G/A SNP and the A-allele of MLH1-93G/A SNP was significantly associated with MLH1 promoter methylation. These results indicate that individuals, and particularly females, carrying the A-allele at the MLH1-93G/A SNP, especially in association with the A-allele of rs2276807, may harbor an increased risk of methylation of the MLH1 promoter

  1. Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling.

    PubMed

    Snijders Blok, Lot; Madsen, Erik; Juusola, Jane; Gilissen, Christian; Baralle, Diana; Reijnders, Margot R F; Venselaar, Hanka; Helsmoortel, Céline; Cho, Megan T; Hoischen, Alexander; Vissers, Lisenka E L M; Koemans, Tom S; Wissink-Lindhout, Willemijn; Eichler, Evan E; Romano, Corrado; Van Esch, Hilde; Stumpel, Connie; Vreeburg, Maaike; Smeets, Eric; Oberndorff, Karin; van Bon, Bregje W M; Shaw, Marie; Gecz, Jozef; Haan, Eric; Bienek, Melanie; Jensen, Corinna; Loeys, Bart L; Van Dijck, Anke; Innes, A Micheil; Racher, Hilary; Vermeer, Sascha; Di Donato, Nataliya; Rump, Andreas; Tatton-Brown, Katrina; Parker, Michael J; Henderson, Alex; Lynch, Sally A; Fryer, Alan; Ross, Alison; Vasudevan, Pradeep; Kini, Usha; Newbury-Ecob, Ruth; Chandler, Kate; Male, Alison; Dijkstra, Sybe; Schieving, Jolanda; Giltay, Jacques; van Gassen, Koen L I; Schuurs-Hoeijmakers, Janneke; Tan, Perciliz L; Pediaditakis, Igor; Haas, Stefan A; Retterer, Kyle; Reed, Patrick; Monaghan, Kristin G; Haverfield, Eden; Natowicz, Marvin; Myers, Angela; Kruer, Michael C; Stein, Quinn; Strauss, Kevin A; Brigatti, Karlla W; Keating, Katherine; Burton, Barbara K; Kim, Katherine H; Charrow, Joel; Norman, Jennifer; Foster-Barber, Audrey; Kline, Antonie D; Kimball, Amy; Zackai, Elaine; Harr, Margaret; Fox, Joyce; McLaughlin, Julie; Lindstrom, Kristin; Haude, Katrina M; van Roozendaal, Kees; Brunner, Han; Chung, Wendy K; Kooy, R Frank; Pfundt, Rolph; Kalscheuer, Vera; Mehta, Sarju G; Katsanis, Nicholas; Kleefstra, Tjitske

    2015-08-06

    Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  2. Variable hearing impairment in a DFNB2 family with a novel MYO7A missense mutation.

    PubMed

    Hildebrand, M S; Thorne, N P; Bromhead, C J; Kahrizi, K; Webster, J A; Fattahi, Z; Bataejad, M; Kimberling, W J; Stephan, D; Najmabadi, H; Bahlo, M; Smith, R J H

    2010-06-01

    Myosin VIIA mutations have been associated with non-syndromic hearing loss (DFNB2; DFNA11) and Usher syndrome type 1B (USH1B). We report clinical and genetic analyses of a consanguineous Iranian family segregating autosomal recessive non-syndromic hearing loss (ARNSHL). The hearing impairment was mapped to the DFNB2 locus using Affymetrix 50K GeneChips; direct sequencing of the MYO7A gene was completed. The Iranian family (L-1419) was shown to segregate a novel homozygous missense mutation (c.1184G>A) that results in a p.R395H amino acid substitution in the motor domain of the myosin VIIA protein. As one affected family member had significantly less severe hearing loss, we used a candidate approach to search for a genetic modifier. This novel MYO7A mutation is the first reported to cause DFNB2 in the Iranian population and this DFNB2 family is the first to be associated with a potential modifier. The absence of vestibular and retinal defects, and less severe low frequency hearing loss, is consistent with the phenotype of a recently reported Pakistani DFNB2 family. Thus, we conclude this family has non-syndromic hearing loss (DFNB2) rather than USH1B, providing further evidence that these two diseases represent discrete disorders.

  3. A missense mutation in the vasopressin-neurophysin precursor gene cosegregates with human autosomal dominant neurohypophyseal diabetes insipidus.

    PubMed Central

    Bahnsen, U; Oosting, P; Swaab, D F; Nahke, P; Richter, D; Schmale, H

    1992-01-01

    Familial neurohypophyseal diabetes insipidus in humans is a rare disease transmitted as an autosomal dominant trait. Affected individuals have very low or undetectable levels of circulating vasopressin and suffer from polydipsia and polyuria. An obvious candidate gene for the disease is the vasopressin-neurophysin (AVP-NP) precursor gene on human chromosome 20. The 2 kb gene with three exons encodes a composite precursor protein consisting of the neuropeptide vasopressin and two associated proteins, neurophysin and a glycopeptide. Cloning and nucleotide sequence analysis of both alleles of the AVP-NP gene present in a Dutch ADNDI family reveals a point mutation in one allele of the affected family members. Comparison of the nucleotide sequences shows a G----T transversion within the neurophysin-encoding exon B. This missense mutation converts a highly conserved glycine (Gly17 of neurophysin) to a valine residue. RFLP analysis of six related family members indicates cosegregation of the mutant allele with the DI phenotype. The mutation is not present in 96 chromosomes of an unrelated control group. These data suggest that a single amino acid exchange within a highly conserved domain of the human vasopressin-associated neurophysin is the primary cause of one form of ADNDI. Images PMID:1740104

  4. Monoallelic FGFR3 and Biallelic ALPL mutations in a Thai girl with hypochondroplasia and hypophosphatasia.

    PubMed

    Porntaveetus, Thantrira; Srichomthong, Chalurmpon; Suphapeetiporn, Kanya; Shotelersuk, Vorasuk

    2017-10-01

    Skeletal dysplasias are a complex group of more than 350 disorders with phenotypic and genotypic heterogeneity affecting bone and cartilage growth. We studied a 2-year-old girl and her 21-year-old mother with disproportionate short stature. In addition to typical features of hypochondroplasia found in both patients, the child had deformities of the extremity bones, metaphyseal flares, and bilateral transverse (Bowdler) fibular spurs with overlying skin dimples detected at birth. Intravenous pamidronate was started in the child since the age of 17 days, and then every two months. Exome sequencing revealed that the girl was heterozygous for a missense mutation (c.1651A>G, p.Ile538Val) in exon 13 of FGFR3, a known mutation for hypochondroplasia, inherited from her mother. Interestingly, the child also harbored compound heterozygous missense mutations in exon 12 of ALPL, c.1460C>T (p.Ala487Val) inherited from her mother and c.1479C>A (p.Asn493Lys) inherited from her healthy father. The former mutation was previously reported in perinatal hypophosphatasia while the latter was novel. Constantly reduced serum alkaline phosphatase levels including the one before the pamidronate administration and a substantially elevated level of plasma pyridoxal 5'-phosphate detected at age 28 months supported the diagnosis of hypophosphatasia. After a definite diagnosis was achieved, pamidronate was withdrawn at the age of 28 months. No adverse events were observed during pamidronate therapy. In conclusion, we describe a unique case with monoallelic FGFR3 and biallelic ALPL mutations leading to features of both hypochondroplasia and hypophosphatasia. © 2017 Wiley Periodicals, Inc.

  5. [A young boy with elevated aminotransferases in physical examination--Two novel missense mutations associated with Wilson's disease were found].

    PubMed

    Zhu, Yu; Deng, Si-Yan; Wan, Chao-Min

    2015-07-01

    A 3-year-old boy had abnormal liver function, which was found in physical examination, for 5 months before admission. He had no symptoms such as anorexia, poor appetite, and jaundice, had normal growth and development, and showed no hepatosplenomegaly. Laboratory examination revealed significantly reduced ceruloplasmin (35 mg/L), as well as negative hepatotropic virus, cytomegalovirus, and Epstein-Barr virus. There were normal muscle enzymes, blood glucose, and blood ammonia and negative liver-specific autoantibodies. The boy had negative K-F ring and normal 24-hour urine copper (0.56 μmol/L). The ATP7B gene testing for the boy, his sister, and their parents detected two novel missense mutations in the boy and his sister, i.e., compound heterozygous mutations in exon 7 (c.2075T>C, p.L692P) and exon 13 (c.3044T>C, p.L1015P), which were inherited from their father and mother, respectively. Wilson's disease was confirmed by genetic diagnosis in the boy and his sister. The boy and his sister were given a low-copper diet. The boy was administered with penicillamine for decoppering and zinc supplement against copper uptake. His sister received zinc supplement alone because no clinical symptoms were observed. The boy showed normal liver function in the reexamination after 3 months of treatment.

  6. [Promoter hypermethylation status of the mismatch repair gene hMLH1 in patients with sporadic renal cell carcinoma].

    PubMed

    Salinas-Sánchez, Antonio S; Rubio-del-Campo, Antonio; Sánchez-Sánchez, Francisco; Giménez-Bachs, José M; Donate-Moreno, María J; García-Olmo, Dolores C; Escribano-Martínez, Julio

    2006-04-01

    Epigenetic inactivation is a gene function abnormality that produces no changes in the DNA sequence, with the most frequent epigenetic alteration being hypermethylation of CpG islands in the promoter regions of the genes. Based on recent indications of a potential relationship between mismatch repair genes and renal cell carcinoma (RCC), we were interested in investigating the existence of promoter hypermethylation of the hMLH1 gene in tumor DNA samples from patients with sporadic RCC. Sixty-five tumor tissue specimens were collected consecutively. The DNA was first obtained and purified, then digested with the restriction enzymes Hpa II and Msp I, followed by polimerase chain reaction amplification of 3 promoter regions of the hMLH1 gene, agarose gel electrophoresis, and densitometric analysis of the images of the amplified bands. Mean patient age was 63.7 years. The most frequent cell type was clear cell carcinoma (67.7%). 73.9% of tumors were diagnosed in stages below pT2, 9.3% had gland involvement and 20%, distant metastasis. No somatic hypermethylation was detected in the promoter region of the hMLH1 gene in any of the patients studied. Our data indicate that promoter hypermethylation of the hMLH1 gene is not implicated in the pathogenesis of sporadic RCC, and therefore the existence of another type of mutation, microsatellite instability and/or loss of heterozygosity should be examined to determine the possible role of this gene in sporadic RCC.

  7. A patient with hypophosphatemia, a femoral fracture, and recurrent kidney stones: report of a novel mutation in SLC34A3.

    PubMed

    Page, Kathleen; Bergwitz, Clemens; Jaureguiberry, Graciana; Harinarayan, Chittari V; Insogna, Karl

    2008-10-01

    To determine if there was a genetic contribution to our patient's unusual clinical presentation of nephrolithiasis and nonhealing stress fracture. We describe a 31-year-old man who had rickets as a child and developed a femur insufficiency fracture and recurrent nephrolithiasis as an adult after moving to the United States from India. The patient's clinical course and results from radiographic and biochemical analyses are described. Analysis of the SLC34A3 gene was performed using genomic DNA samples from the patient and his family members. Before referral to the Yale Bone Center, the patient was treated with calcitriol, ergocalciferol, and phosphate. Changing therapy to phosphate alone led to clinical improvement. Genetic analysis revealed that the patient is a compound heterozygote for mutations in the SLC34A3 gene. On 1 allele, he has a previously described missense mutation in exon 7: c.575C>T (p.Ser192Leu). The other allele carries a novel nonsense mutation in exon 3: c.145C>T (p.Gln49X). One unaffected sibling is a carrier of the missense mutation and 1 sister with a history of flank pain is a carrier of the novel mutation. Hereditary hypophosphatemic rickets with hypercalciuria is a rare metabolic disorder associated with mutations in SLC34A3, the gene that encodes the renal sodium phosphate cotransporter NaPi-IIc. Although hypercalciuria is a distinguishing feature of the disease, nephrolithiasis is rarely described. The patient's atypical clinical presentation illustrates that both environmental and genetic factors potentially affect phenotypic expression of SLC34A3 mutations.

  8. Subsets of microsatellite-unstable colorectal cancers exhibit discordance between the CpG island methylator phenotype and MLH1 methylation status.

    PubMed

    Kim, Jung H; Rhee, Ye-Y; Bae, Jeong-M; Kwon, Hyeong-J; Cho, Nam-Y; Kim, Mi J; Kang, Gyeong H

    2013-07-01

    Although the presence of MLH1 methylation in microsatellite-unstable colorectal cancer generally indicates involvement of the CpG island methylator phenotype (CIMP) in the development of the tumor, these two conditions do not always correlate. A minority of microsatellite-unstable colorectal cancers exhibit discordance between CIMP and MLH1 methylation statuses. However, the clinicopathological features of such microsatellite-unstable colorectal cancers with discrepant MLH1 methylation and CIMP statuses remain poorly studied. Microsatellite-unstable colorectal cancers (n=220) were analyzed for CIMP and MLH1 methylation statuses using the MethyLight assay. Based on the combinatorial CIMP and MLH1 methylation statuses, the microsatellite-unstable colorectal cancers were grouped into four subtypes (CIMP-high (CIMP-H) MLH1 methylation-positive (MLH1m+), CIMP-H MLH1 methylation-negative, CIMP-low/0 (CIMP-L/0) MLH1m+, and CIMP-L/0 MLH1 methylation-negative), which were compared in terms of their associations with clinicopathological and molecular features. The CIMP-L/0 MLH1 methylation-negative and CIMP-H MLH1m+ subtypes were predominant, comprising 63.6 and 24.1% of total microsatellite-unstable colorectal cancers, respectively. The discordant subtypes, CIMP-H MLH1 methylation-negative and CIMP-L/0 MLH1m+, were found in 5 and 7% of microsatellite-unstable colorectal cancers, respectively. The CIMP-H MLH1 methylation-negative subtype exhibited elevated incidence rates in male patients and was associated with larger tumor size, more frequent loss of MSH2 expression, increased frequency of KRAS mutation, and advanced cancer stage. The CIMP-L/0 MLH1m+ subtype was associated with onset at an earlier age, a predominance of MLH1 loss, and earlier cancer stage. None of the CIMP-L/0 MLH1m+ subtype patients succumbed to death during the follow-up. Our findings suggest that the discordant subtypes of colorectal cancers exhibit distinct clinicopathological and molecular features

  9. A Comprehensive Functional Analysis of NTRK1 Missense Mutations Causing Hereditary Sensory and Autonomic Neuropathy Type IV (HSAN IV).

    PubMed

    Shaikh, Samiha S; Chen, Ya-Chun; Halsall, Sally-Anne; Nahorski, Michael S; Omoto, Kiyoyuki; Young, Gareth T; Phelan, Anne; Woods, Christopher Geoffrey

    2017-01-01

    Hereditary sensory and autonomic neuropathy type IV (HSAN IV) is an autosomal recessive disorder characterized by a complete lack of pain perception and anhidrosis. Here, we studied a cohort of seven patients with HSAN IV and describe a comprehensive functional analysis of seven novel NTRK1 missense mutations, c.1550G >A, c.1565G >A, c.1970T >C, c.2096T >C, c.2254T >A, c.2288G >C, and c.2311C >T, corresponding to p.G517E, p.G522E, p.L657P, p.I699T, p.C752S, p.C763S, and p.R771C, all of which were predicted pathogenic by in silico analysis. The results allowed us to assess the pathogenicity of each mutation and to gain novel insights into tropomyosin receptor kinase A (TRKA) downstream signaling. Each mutation was systematically analyzed for TRKA glycosylation states, intracellular and cell membrane expression patterns, nerve growth factor stimulated TRKA autophosphorylation, TRKA-Y496 phosphorylation, PLCγ activity, and neurite outgrowth. We showed a diverse range of functional effects: one mutation appeared fully functional, another had partial activity in all assays, one mutation affected only the PLCγ pathway and four mutations were proved null in all assays. Thus, we conclude that complete abolition of TRKA kinase activity is not the only pathogenic mechanism underlying HSAN IV. By corollary, the assessment of the clinical pathogenicity of HSAN IV mutations is more complex than initially predicted and requires a multifaceted approach. © 2016 WILEY PERIODICALS, INC.

  10. The importance of proper bioinformatics analysis and clinical interpretation of tumor genomic profiling: a case study of undifferentiated sarcoma and a constitutional pathogenic BRCA2 mutation and an MLH1 variant of uncertain significance.

    PubMed

    Varga, Elizabeth; Chao, Elizabeth C; Yeager, Nicholas D

    2015-09-01

    Next-generation sequencing (NGS) technology is increasingly utilized to identify therapeutic targets for patients with malignancy. This technology also has the capability to reveal the presence of constitutional genetic alterations, which may have significant implications for patients and their family members. Here we present the case of a 23 year old Caucasian patient with recurrent undifferentiated sarcoma who had NGS-based tumor analysis using an assay which simultaneously analyzed the entire coding sequence of 236 cancer-related genes (3769 exons) plus 47 introns from 19 genes often rearranged or altered in cancer. Pathogenic alterations were reported in tumor as the predicted protein alterations, BRCA2 "R645fs*15″ and MLH1 "E694*". Because constitutional BRCA2 and MLH1 gene mutations are associated with Hereditary Breast Ovarian Cancer Syndrome (HBOCS) and Lynch syndrome respectively, sequence analysis of DNA isolated from peripheral blood was performed. The presence of the alterations, BRCA2 c.1929delG and MLH1 c.2080G>T, corresponding to the previously reported predicted protein alterations, were confirmed by Sanger sequencing in the constitutional DNA. An additional DNA finding was reported in this analysis, MLH1 c.2081A>C at the neighboring nucleotide. Further evaluation of the family revealed that all alterations were paternally inherited and the two MLH1 substitutions were in cis, more appropriately referred to as MLH1 c.2080_2081delGAinsTC, which is classified as a variant of uncertain significance. This case illustrates important considerations related to appropriate interpretation of NGS tumor results and follow-up of patients with potentially deleterious constitutional alterations.

  11. Neonatal High Bone Mass With First Mutation of the NF-κB Complex: Heterozygous De Novo Missense (p.Asp512Ser) RELA (Rela/p65).

    PubMed

    Frederiksen, Anja L; Larsen, Martin J; Brusgaard, Klaus; Novack, Deborah V; Knudsen, Peter Juel Thiis; Schrøder, Henrik Daa; Qiu, Weimin; Eckhardt, Christina; McAlister, William H; Kassem, Moustapha; Mumm, Steven; Frost, Morten; Whyte, Michael P

    2016-01-01

    Heritable disorders that feature high bone mass (HBM) are rare. The etiology is typically a mutation(s) within a gene that regulates the differentiation and function of osteoblasts (OBs) or osteoclasts (OCs). Nevertheless, the molecular basis is unknown for approximately one-fifth of such entities. NF-κB signaling is a key regulator of bone remodeling and acts by enhancing OC survival while impairing OB maturation and function. The NF-κB transcription complex comprises five subunits. In mice, deletion of the p50 and p52 subunits together causes osteopetrosis (OPT). In humans, however, mutations within the genes that encode the NF-κB complex, including the Rela/p65 subunit, have not been reported. We describe a neonate who died suddenly and unexpectedly and was found at postmortem to have HBM documented radiographically and by skeletal histopathology. Serum was not available for study. Radiographic changes resembled malignant OPT, but histopathological investigation showed morphologically normal OCs and evidence of intact bone resorption excluding OPT. Furthermore, mutation analysis was negative for eight genes associated with OPT or HBM. Instead, accelerated bone formation appeared to account for the HBM. Subsequently, trio-based whole exome sequencing revealed a heterozygous de novo missense mutation (c.1534_1535delinsAG, p.Asp512Ser) in exon 11 of RELA encoding Rela/p65. The mutation was then verified using bidirectional Sanger sequencing. Lipopolysaccharide stimulation of patient fibroblasts elicited impaired NF-κB responses compared with healthy control fibroblasts. Five unrelated patients with unexplained HBM did not show a RELA defect. Ours is apparently the first report of a mutation within the NF-κB complex in humans. The missense change is associated with neonatal osteosclerosis from in utero increased OB function rather than failed OC action. These findings demonstrate the importance of the Rela/p65 subunit within the NF-κB pathway for human

  12. Intrafamilial variability of the ocular phenotype in a Polish family with a missense mutation (A63D) in the Norrie disease gene.

    PubMed

    Zaremba, J; Feil, S; Juszko, J; Myga, W; van Duijnhoven, G; Berger, W

    1998-09-01

    To describe the phenotypic variability in a Polish Norrie disease (ND) family associated with the missense mutation A63D. A patient with spared vision from a Polish ND family underwent detailed ophthalmological examinations including slit-lamp biomicroscopy, ultrasound (USG), angiography, Goldmann kinetic visual field, and electroretinography (ERG). Mutation screening was carried out using the single-strand conformation polymorphism (SSCP) technique and subsequent DNA sequencing of the coding part of the ND gene. A mutation was detected (exon 3, A63D) in a large Polish family with 12 affected males, all but one presenting with classical ND symptoms. In one male, partially preserved vision was observed up to 40 years of age (distance acuity of the right eye 1/50 and left eye 2/50). Slit-lamp examination revealed remnants of a persistent primary vitreous and hyaloid artery. Upon angiography, the retina was vascularized within the posterior pole but not in the periphery. The ERG revealed pathological changes characteristic for chorioretinal degenerations. Within one family, individuals with identical sequence alterations in the ND gene can show remarkable phenotypic variability of the ocular symptoms. These findings indicate the involvement of additional factors (epigenetic or genetic) in ocular pathogenesis of ND.

  13. Glioma Specific Extracellular Missense Mutations in the First Cysteine Rich Region of Epidermal Growth Factor Receptor (EGFR) Initiate Ligand Independent Activation

    PubMed Central

    Ymer, Susie I.; Greenall, Sameer A.; Cvrljevic, Anna; Cao, Diana X.; Donoghue, Jacqui F.; Epa, V. Chandana; Scott, Andrew M.; Adams, Timothy E.; Johns, Terrance G.

    2011-01-01

    The epidermal growth factor receptor (EGFR) is overexpressed or mutated in glioma. Recently, a series of missense mutations in the extracellular domain (ECD) of EGFR were reported in glioma patients. Some of these mutations clustered within a cysteine-rich region of the EGFR targeted by the therapeutic antibody mAb806. This region is only exposed when EGFR activates and appears to locally misfold during activation. We expressed two of these mutations (R324L and E330K) in NR6 mouse fibroblasts, as they do not express any EGFR-related receptors. Both mutants were autophosphorylated in the absence of ligand and enhanced cell survival and anchorage-independent and xenograft growth. The ECD truncation that produces the de2-7EGFR (or EGFRvIII), the most common EGFR mutation in glioma, generates a free cysteine in this same region. Using a technique optimized for detecting disulfide-bonded dimers, we definitively demonstrated that the de2-7EGFR is robustly dimerized and that ablation of the free cysteine prevents dimerization and activation. Modeling of the R324L mutation suggests it may cause transient breaking of disulfide bonds, leading to similar disulfide-bonded dimers as seen for the de2-7EGFR. These ECD mutations confirm that the cysteine-rich region of EGFR around the mAb806 epitope has a significant role in receptor activation. PMID:24212795

  14. Assessment of the potential pathogenicity of missense mutations identified in the GTPase-activating protein (GAP)-related domain of the neurofibromatosis type-1 (NF1) gene.

    PubMed

    Thomas, Laura; Richards, Mark; Mort, Matthew; Dunlop, Elaine; Cooper, David N; Upadhyaya, Meena

    2012-12-01

    Neurofibromatosis type-1 (NF1) is caused by constitutional mutations of the NF1 tumor-suppressor gene. Although ∼85% of inherited NF1 microlesions constitute truncating mutations, the remaining ∼15% are missense mutations whose pathological relevance is often unclear. The GTPase-activating protein-related domain (GRD) of the NF1-encoded protein, neurofibromin, serves to define its major function as a negative regulator of the Ras-MAPK (mitogen-activated protein kinase) signaling pathway. We have established a functional assay to assess the potential pathogenicity of 15 constitutional nonsynonymous NF1 missense mutations (11 novel and 4 previously reported but not functionally characterized) identified in the NF1-GRD (p.R1204G, p.R1204W, p.R1276Q, p.L1301R, p.I1307V, p.T1324N, p.E1327G, p.Q1336R, p.E1356G, p.R1391G, p.V1398D, p.K1409E, p.P1412R, p.K1436Q, p.S1463F). Individual mutations were introduced into an NF1-GRD expression vector and activated Ras was assayed by an enzyme-linked immunosorbent assay (ELISA). Ten NF1-GRD variants were deemed to be potentially pathogenic by virtue of significantly elevated levels of activated GTP-bound Ras in comparison to wild-type NF1 protein. The remaining five NF1-GRD variants were deemed less likely to be of pathological significance as they exhibited similar levels of activated Ras to the wild-type protein. These conclusions received broad support from both bioinformatic analysis and molecular modeling and serve to improve our understanding of NF1-GRD structure and function. © 2012 Wiley Periodicals, Inc.

  15. Mutations in a novel gene with transmembrane domains underlie Usher syndrome type 3.

    PubMed

    Joensuu, T; Hämäläinen, R; Yuan, B; Johnson, C; Tegelberg, S; Gasparini, P; Zelante, L; Pirvola, U; Pakarinen, L; Lehesjoki, A E; de la Chapelle, A; Sankila, E M

    2001-10-01

    Usher syndrome type 3 (USH3) is an autosomal recessive disorder characterized by progressive hearing loss, severe retinal degeneration, and variably present vestibular dysfunction, assigned to 3q21-q25. Here, we report on the positional cloning of the USH3 gene. By haplotype and linkage-disequilibrium analyses in Finnish carriers of a putative founder mutation, the critical region was narrowed to 250 kb, of which we sequenced, assembled, and annotated 207 kb. Two novel genes-NOPAR and UCRP-and one previously identified gene-H963-were excluded as USH3, on the basis of mutational analysis. USH3, the candidate gene that we identified, encodes a 120-amino-acid protein. Fifty-two Finnish patients were homozygous for a termination mutation, Y100X; patients in two Finnish families were compound heterozygous for Y100X and for a missense mutation, M44K, whereas patients in an Italian family were homozygous for a 3-bp deletion leading to an amino acid deletion and substitution. USH3 has two predicted transmembrane domains, and it shows no homology to known genes. As revealed by northern blotting and reverse-transcriptase PCR, it is expressed in many tissues, including the retina.

  16. Ionizing radiation, inflammation, and their interactions in colon carcinogenesis in Mlh1-deficient mice

    PubMed Central

    Morioka, Takamitsu; Miyoshi-Imamura, Tomoko; Blyth, Benjamin J; Kaminishi, Mutsumi; Kokubo, Toshiaki; Nishimura, Mayumi; Kito, Seiji; Tokairin, Yutaka; Tani, Shusuke; Murakami-Murofushi, Kimiko; Yoshimi, Naoki; Shimada, Yoshiya; Kakinuma, Shizuko

    2015-01-01

    Genetic, physiological and environmental factors are implicated in colorectal carcinogenesis. Mutations in the mutL homolog 1 (MLH1) gene, one of the DNA mismatch repair genes, are a main cause of hereditary colon cancer syndromes such as Lynch syndrome. Long-term chronic inflammation is also a key risk factor, responsible for colitis-associated colorectal cancer; radiation exposure is also known to increase colorectal cancer risk. Here, we studied the effects of radiation exposure on inflammation-induced colon carcinogenesis in DNA mismatch repair-proficient and repair-deficient mice. Male and female Mlh1−/− and Mlh1+/+ mice were irradiated with 2 Gy X-rays when aged 2 weeks or 7 weeks and/or were treated with 1% dextran sodium sulfate (DSS) in drinking water for 7 days at 10 weeks old to induce mild inflammatory colitis. No colon tumors developed after X-rays and/or DSS treatment in Mlh1+/+ mice. Colon tumors developed after DSS treatment alone in Mlh1−/− mice, and exposure to radiation prior to DSS treatment increased the number of tumors. Histologically, colon tumors in the mice resembled the subtype of well-to-moderately differentiated adenocarcinomas with tumor-infiltrating lymphocytes of human Lynch syndrome. Immunohistochemistry revealed that expression of both p53 and β-catenin and loss of p21 and adenomatosis polyposis coli proteins were observed at the later stages of carcinogenesis, suggesting a course of molecular pathogenesis distinct from typical sporadic or colitis-associated colon cancer in humans. In conclusion, radiation exposure could further increase the risk of colorectal carcinogenesis induced by inflammation under the conditions of Mlh1 deficiency. PMID:25529563

  17. Mutation Spectrum and Phenotypic Features in Noonan Syndrome with PTPN11 Mutations: Definition of Two Novel Mutations.

    PubMed

    Atik, Tahir; Aykut, Ayca; Hazan, Filiz; Onay, Huseyin; Goksen, Damla; Darcan, Sukran; Tukun, Ajlan; Ozkinay, Ferda

    2016-06-01

    To evaluate the spectrum of PTPN11 gene mutations in Noonan syndrome patients and to study the genotype-phenotype associations. In this study, twenty Noonan syndrome patients with PTPN11 mutations were included. The patients underwent a detailed clinical and physical evaluation. To identify inherited cases, parents of all mutation positive patients were analyzed. Thirteen different PTPN11 mutations, two of them being novel, were detected in the study group. These mutations included eleven missense mutations: p.G60A, p.D61N, p.Y62D, p.Y63C, p.E69Q, p.Q79R, p.Y279C,p.N308D, p.N308S, p.M504V, p.Q510R and two novel missense mutations: p.I56V and p.I282M. The frequency of cardiac abnormalities and short stature were found to be 80 % and 80 %, respectively. Mental retardation was not observed in patients having exon 8 mutations. No significant correlations were detected between other phenotypic features and genotypes. By identifying genotype-phenotype correlations, this study provides information on phenotypes observed in NS patients with different PTPN11 mutations.

  18. Functional analysis of mutations in a severe congenital neutropenia syndrome caused by glucose-6-phosphatase-β deficiency

    PubMed Central

    Lin, Su Ru; Pan, Chi-Jiunn; Mansfield, Brian C.; Chou, Janice Yang

    2016-01-01

    Glucose-6-phosphatase-β (G6Pase-β or G6PC3) deficiency is characterized by neutropenia and dysfunction in both neutrophils and macrophages. G6Pase-β is an enzyme embedded in the endoplasmic reticulum membrane that catalyzes the hydrolysis of glucose-6-phosphate (G6P) to glucose and phosphate. To date, 33 separate G6PC3 mutations have been identified in G6Pase-β-deficient patients but only the p.R253H and p.G260R missense mutations have been characterized functionally for pathogenicity. Here we functionally characterize 16 of the 19 known missense mutations using a sensitive assay, based on a recombinant adenoviral vector-mediated expression system, to demonstrate pathogenicity. Fourteen missense mutations completely abolish G6Pase-β enzymatic activity while the p.S139I and p.R189Q mutations retain 49% and 45%, respectively of wild type G6Pase-β activity. A database of residual enzymatic activity retained by the G6Pase-β mutations will serve as a reference for evaluating genotype-phenotype relationships. PMID:25492228

  19. Compared effects of missense mutations in Very-Long-Chain Acyl-CoA Dehydrogenase deficiency: Combined analysis by structural, functional and pharmacological approaches.

    PubMed

    Gobin-Limballe, Stéphanie; McAndrew, Ryan P; Djouadi, Fatima; Kim, Jung-Ja; Bastin, Jean

    2010-05-01

    Very-Long-Chain Acyl-CoA Dehydrogenase deficiency (VLCADD) is an autosomal recessive disorder considered as one of the more common ss-oxidation defects, possibly associated with neonatal cardiomyopathy, infantile hepatic coma, or adult-onset myopathy. Numerous gene missense mutations have been described in these VLCADD phenotypes, but only few of them have been structurally and functionally analyzed, and the molecular basis of disease variability is still poorly understood. To address this question, we first analyzed fourteen disease-causing amino acid changes using the recently described crystal structure of VLCAD. The predicted effects varied from the replacement of amino acid residues lining the substrate binding cavity, involved in holoenzyme-FAD interactions or in enzyme dimerisation, predicted to have severe functional consequences, up to amino acid substitutions outside key enzyme domains or lying on near enzyme surface, with predicted milder consequences. These data were combined with functional analysis of residual fatty acid oxidation (FAO) and VLCAD protein levels in patient cells harboring these mutations, before and after pharmacological stimulation by bezafibrate. Mutations identified as detrimental to the protein structure in the 3-D model were generally associated to profound FAO and VLCAD protein deficiencies in the patient cells, however, some mutations affecting FAD binding or monomer-monomer interactions allowed a partial response to bezafibrate. On the other hand, bezafibrate restored near-normal FAO rates in some mutations predicted to have milder consequences on enzyme structure. Overall, combination of structural, biochemical, and pharmacological analysis allowed assessment of the relative severity of individual mutations, with possible applications for disease management and therapeutic approach. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Association of Mismatch Repair Mutation With Age at Cancer Onset in Lynch Syndrome: Implications for Stratified Surveillance Strategies.

    PubMed

    Ryan, Neil A J; Morris, Julie; Green, Kate; Lalloo, Fiona; Woodward, Emma R; Hill, James; Crosbie, Emma J; Evans, D Gareth

    2017-12-01

    Lynch syndrome is caused by dominantly inherited germline mutations that predispose individuals to colorectal, endometrial, ovarian, and other cancers through inactivation of the cellular mismatch repair system. Lynch syndrome–associated cancers are amenable to surveillance strategies that may improve survival. The age at which surveillance should start is disputed. To determine whether mutated gene and type of mutation influence age at onset of Lynch syndrome–associated cancers. A retrospective cohort study of individuals with Lynch syndrome–associated colorectal, endometrial, and/or ovarian cancers whose medical records were included in the clinical database of a large quaternary referral center for genomic medicine in the Northwest of England. Mutated gene (MLH1, MSH2, MSH6, and/or PMS2) and type of mutation (truncating, splicing, or large rearrangement). Age at cancer diagnosis. A total of 1063 individuals with proven Lynch syndrome were included, 495 male and 568 female (mean age 52 years; age range, 10-93 years [children were included in the database, but no children developed cancer]). There were 546 men and women with colorectal cancer, 162 women with endometrial cancer, and 49 women with ovarian cancer; mean follow-up was 68.2 months. Among MLH1 mutation carriers, mutations in MLH1 were associated with colorectal cancer in 249 (61%) of 409 men and women; endometrial cancer in 53 of 196 (27%) women; and ovarian cancer in 15 (8%) of 196 women. Among MSH2 mutation carriers, mutations in MSH2 (the most prevalent mutations overall) were most commonly associated with female-specific cancers: endometrial cancer in 83 (30%) of 279 women; ovarian cancer in 28 (10%) of 279 women; and colorectal cancer in 239 (50%) 479 men and women. Mutations in MSH6 were less prevalent, and MSH6 mutation carriers presented with colorectal and endometrial cancer at later ages than carriers of mutations in MSH2 or MLH1. When stratified by mutation type, women with truncating

  1. Diversity of genetic events associated with MLH1 promoter methylation in Lynch syndrome families with heritable constitutional epimutation.

    PubMed

    Leclerc, Julie; Flament, Cathy; Lovecchio, Tonio; Delattre, Lucie; Ait Yahya, Emilie; Baert-Desurmont, Stéphanie; Burnichon, Nelly; Bronner, Myriam; Cabaret, Odile; Lejeune, Sophie; Guimbaud, Rosine; Morin, Gilles; Mauillon, Jacques; Jonveaux, Philippe; Laurent-Puig, Pierre; Frébourg, Thierry; Porchet, Nicole; Buisine, Marie-Pierre

    2018-04-12

    PurposeConstitutional epimutations are an alternative to genetic mutations in the etiology of genetic diseases. Some of these epimutations, termed secondary, correspond to the epigenetic effects of cis-acting genetic defects transmitted to the offspring following a Mendelian inheritance pattern. In Lynch syndrome, a few families with such apparently heritable MLH1 epimutations have been reported so far.MethodsWe designed a long-range polymerase chain reaction next-generation sequencing strategy to screen MLH1 entire gene and applied it to 4 French families with heritable epimutations and 10 additional patients with no proven transmission of their epimutations.ResultsThis strategy successfully detected the insertion of an Alu element in MLH1 coding sequence in one family. Two previously unreported MLH1 variants were also identified in other epimutation carriers: a nucleotide substitution within intron 1 and a single-nucleotide deletion in the 5'-UTR. Detection of a partial MLH1 duplication in another family required multiplex ligation-dependent probe amplification technology. We demonstrated the segregation of these variants with MLH1 methylation and studied the functional consequences of these defects on transcription.ConclusionThis is the largest cohort of patients with MLH1 secondary epimutations associated with a broad spectrum of genetic defects. This study provides further insight into the complexity of molecular mechanisms leading to secondary epimutations.GENETICS in MEDICINE advance online publication, 12 April 2018; doi:10.1038/gim.2018.47.

  2. Independent role for presynaptic FMRP revealed by an FMR1 missense mutation associated with intellectual disability and seizures

    PubMed Central

    Myrick, Leila K.; Deng, Pan-Yue; Hashimoto, Hideharu; Oh, Young Mi; Cho, Yongcheol; Poidevin, Mickael J.; Suhl, Joshua A.; Visootsak, Jeannie; Cavalli, Valeria; Jin, Peng; Cheng, Xiaodong; Warren, Stephen T.; Klyachko, Vitaly A.

    2015-01-01

    Fragile X syndrome (FXS) results in intellectual disability (ID) most often caused by silencing of the fragile X mental retardation 1 (FMR1) gene. The resulting absence of fragile X mental retardation protein 1 (FMRP) leads to both pre- and postsynaptic defects, yet whether the pre- and postsynaptic functions of FMRP are independent and have distinct roles in FXS neuropathology remain poorly understood. Here, we demonstrate an independent presynaptic function for FMRP through the study of an ID patient with an FMR1 missense mutation. This mutation, c.413G > A (R138Q), preserves FMRP’s canonical functions in RNA binding and translational regulation, which are traditionally associated with postsynaptic compartments. However, neuronally driven expression of the mutant FMRP is unable to rescue structural defects at the neuromuscular junction in fragile x mental retardation 1 (dfmr1)-deficient Drosophila, suggesting a presynaptic-specific impairment. Furthermore, mutant FMRP loses the ability to rescue presynaptic action potential (AP) broadening in Fmr1 KO mice. The R138Q mutation also disrupts FMRP’s interaction with the large-conductance calcium-activated potassium (BK) channels that modulate AP width. These results reveal a presynaptic- and translation-independent function of FMRP that is linked to a specific subset of FXS phenotypes. PMID:25561520

  3. Mutational Spectrum of MYO15A and the Molecular Mechanisms of DFNB3 Human Deafness

    PubMed Central

    Rehman, Atteeq U.; Bird, Jonathan E.; Faridi, Rabia; Shahzad, Mohsin; Shah, Sujay; Lee, Kwanghyuk; Khan, Shaheen N.; Imtiaz, Ayesha; Ahmed, Zubair M.; Riazuddin, Saima; Santos-Cortez, Regie Lyn P.; Ahmad, Wasim; Leal, Suzanne M.; Riazuddin, Sheikh; Friedman, Thomas B.

    2016-01-01

    Deafness in humans is a common neurosensory disorder and is genetically heterogeneous. Across diverse ethnic groups, mutations of MYO15A at the DFNB3 locus appear to be the third or fourth most common cause of autosomal recessive, nonsyndromic deafness. In 49 of the 67 exons of MYO15A, there are currently 192 recessive mutations identified, including 14 novel mutations reported here. These mutations are distributed uniformly across MYO15A with one enigmatic exception; the alternatively spliced giant exon 2, encoding 1,233 residues, has 17 truncating mutations but no convincing deafness-causing missense mutations. MYO15A encodes three distinct isoform classes, one of which is 395 kDa (3,530 residues), the largest member of the myosin superfamily of molecular motors. Studies of Myo15 mouse models that recapitulate DFNB3 revealed two different pathogenic mechanisms of hearing loss. In the inner ear, myosin 15 is necessary both for the development and the long-term maintenance of stereocilia, mechanosensory sound-transducing organelles that extend from the apical surface of hair cells. The goal of this Mutation Update is to provide a comprehensive review of mutations and functions of MYO15A. PMID:27375115

  4. Mlh1 deficiency in normal mouse colon mucosa associates with chromosomally unstable colon cancer

    PubMed Central

    Pussila, Marjaana; Törönen, Petri; Einarsdottir, Elisabet; Katayama, Shintaro; Krjutškov, Kaarel; Holm, Liisa; Kere, Juha; Peltomäki, Päivi; Mäkinen, Markus J; Linden, Jere; Nyström, Minna

    2018-01-01

    Abstract Colorectal cancer (CRC) genome is unstable and different types of instabilities, such as chromosomal instability (CIN) and microsatellite instability (MSI) are thought to reflect distinct cancer initiating mechanisms. Although 85% of sporadic CRC reveal CIN, 15% reveal mismatch repair (MMR) malfunction and MSI, the hallmarks of Lynch syndrome with inherited heterozygous germline mutations in MMR genes. Our study was designed to comprehensively follow genome-wide expression changes and their implications during colon tumorigenesis. We conducted a long-term feeding experiment in the mouse to address expression changes arising in histologically normal colonic mucosa as putative cancer preceding events, and the effect of inherited predisposition (Mlh1+/−) and Western-style diet (WD) on those. During the 21-month experiment, carcinomas developed mainly in WD-fed mice and were evenly distributed between genotypes. Unexpectedly, the heterozygote (B6.129-Mlh1tm1Rak) mice did not show MSI in their CRCs. Instead, both wildtype and heterozygote CRC mice showed a distinct mRNA expression profile and shortage of several chromosomal segregation gene-specific transcripts (Mlh1, Bub1, Mis18a, Tpx2, Rad9a, Pms2, Cenpe, Ncapd3, Odf2 and Dclre1b) in their colon mucosa, as well as an increased mitotic activity and abundant numbers of unbalanced/atypical mitoses in tumours. Our genome-wide expression profiling experiment demonstrates that cancer preceding changes are already seen in histologically normal colon mucosa and that decreased expressions of Mlh1 and other chromosomal segregation genes may form a field-defect in mucosa, which trigger MMR-proficient, chromosomally unstable CRC. PMID:29701748

  5. A novel missense NDP mutation [p.(Cys93Arg)] with a manifesting carrier in an austrian family with Norrie disease.

    PubMed

    Parzefall, Thomas; Lucas, Trevor; Ritter, Markus; Ludwig, Martin; Ramsebner, Reinhard; Frohne, Alexandra; Schöfer, Christian; Hengstschläger, Markus; Frei, Klemens

    2014-01-01

    Norrie disease is a rare, X-linked genetic syndrome characterized by combined congenital blindness and progressive hearing impairment. Norrie disease is caused by alterations in the NDP gene encoding the growth factor norrin that plays a key role in vascular development and stabilization of the eye, inner ear and brain. We identified a family with 3 affected deafblind males and a single female carrier presenting with a serous retinal detachment but normal hearing. Genetic analysis revealed a novel c.277T>C missense mutation causing the substitution of a hydrophobic cysteine to a hydrophilic arginine [p.(Cys93Arg)] within the highly conserved cysteine knot domain of the norrin protein. These results should expand the scope for amniocentesis and genetic testing for Norrie disease which is gaining in importance due to novel postnatal therapeutic concepts to alleviate the devastating retinal symptoms of Norrie disease. © 2014 S. Karger AG, Basel.

  6. The identification of HESX1 mutations in Kallmann syndrome

    PubMed Central

    Newbern, Kayce; Natrajan, Nithya; Kim, Hyung-Goo; Chorich, Lynn .P.; Halvorson, Lisa; Cameron, Richard S.; Layman, Lawrence C.

    2013-01-01

    Objective To determine if HESX1 mutations are present in patients with idiopathic hypogonadotropic hypogonadism (IHH)/Kallmann syndrome (KS). HESX1 mutations have previously been characterized in patients with septo-optic dysplasia (SOD), isolated growth hormone deficiency (IGHD), and combined pituitary hormone deficiency (CPHD). We hypothesized that IHH/KS represents a milder phenotypic variant of SOD. Design PCR-based DNA sequencing was performed on 217 well-characterized IHH/KS patients. Putative missense mutations were analyzed by sorting intolerant from tolerant (SIFT) and Clustal Ω. Setting An academic medical center Patients 217 IHH/KS and 192 controls Interventions DNA was extracted from patients and controls; genotype/phenotype comparisons were made Main Outcome Measures DNA sequence of HESX1, SIFT analysis, and ortholog alignment Results Two novel heterozygous missense mutations (p.H42Y and p.V75L) and previously reported heterozygous missense mutation p.Q6H in HESX1 were identified in 3/217 (1.4%) patients. All were males with KS. Both p.Q6H and p.H42Y were predicted to be deleterious by SIFT, while p.V75L was conserved in 8/9 species. No other IHH/KS gene mutations were present. Conclusions HESX1 mutations may cause KS in addition to more severe phenotypes. Our findings expand the phenotypic spectrum of HESX1 mutations in humans, thereby broadening its role in development. PMID:23465708

  7. A novel mutation in the JH4 domain of JAK3 causing severe combined immunodeficiency complicated by vertebral osteomyelitis.

    PubMed

    Qamar, Farah; Junejo, Samina; Qureshi, Sonia; Seleman, Michael; Bainter, Wayne; Massaad, Michel; Chou, Janet; Geha, Raif S

    2017-10-01

    JAK3 is a tyrosine kinase essential for signaling downstream of the common gamma chain subunit shared by multiple cytokine receptors. JAK3 deficiency results in T - B + NK - severe combined immune deficiency (SCID). We report a patient with SCID due to a novel mutation in the JAK3 JH4 domain. The function of the JH4 domain remains unknown. This is the first report of a missense mutation in the JAK3 JH4 domain, thereby demonstrating the importance of the JH4 domain of JAK3 in host immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Novel MSH2 splice-site mutation in a young patient with Lynch syndrome

    PubMed Central

    Liccardo, Raffaella; De Rosa, Marina; Izzo, Paola; Duraturo, Francesca

    2018-01-01

    Lynch Syndrome (LS) is associated with germline mutations in one of the mismatch repair (MMR) genes, including MutL homolog 1 (MLH1), MutS homolog 2 (MSH2), MSH6, PMS1 homolog 2, mismatch repair system component (PMS2), MLH3 and MSH3. The mutations identified in MMR genes are point mutations or large rearrangements. The point mutations are certainly pathogenetic whether they determine formation of truncated protein. The mutations that arise in splice sites are classified as ‘likely pathogenic’ variants. In the present study, a novel splicing mutation was identified, (named c.212-1g>a), in the MSH2 gene. This novel mutation in the consensus splice site of MSH2 exon 2 leads to the loss of the canonical splice site, without skipping in-frame of exon 2; also with the formation of 2 aberrant transcripts, due to the activation of novel splice sites in exon 2. This mutation was identified in a young patient who developed colon cancer at the age of 26 years and their belongs to family that met the ‘Revised Amsterdam Criteria’. The present study provided insight into the molecular mechanism determining the pathogenicity of this novel MSH2 mutation and it reaffirms the importance of genetic testing in LS. PMID:29568967

  9. Genetic and bioinformatics analysis of four novel GCK missense variants detected in Caucasian families with GCK-MODY phenotype.

    PubMed

    Costantini, S; Malerba, G; Contreas, G; Corradi, M; Marin Vargas, S P; Giorgetti, A; Maffeis, C

    2015-05-01

    Heterozygous loss-of-function mutations in the glucokinase (GCK) gene cause maturity-onset diabetes of the young (MODY) subtype GCK (GCK-MODY/MODY2). GCK sequencing revealed 16 distinct mutations (13 missense, 1 nonsense, 1 splice site, and 1 frameshift-deletion) co-segregating with hyperglycaemia in 23 GCK-MODY families. Four missense substitutions (c.718A>G/p.Asn240Asp, c.757G>T/p.Val253Phe, c.872A>C/p.Lys291Thr, and c.1151C>T/p.Ala384Val) were novel and a founder effect for the nonsense mutation (c.76C>T/p.Gln26*) was supposed. We tested whether an accurate bioinformatics approach could strengthen family-genetic evidence for missense variant pathogenicity in routine diagnostics, where wet-lab functional assays are generally unviable. In silico analyses of the novel missense variants, including orthologous sequence conservation, amino acid substitution (AAS)-pathogenicity predictors, structural modeling and splicing predictors, suggested that the AASs and/or the underlying nucleotide changes are likely to be pathogenic. This study shows how a careful bioinformatics analysis could provide effective suggestions to help molecular-genetic diagnosis in absence of wet-lab validations. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. A novel missense mutation, p.(R102W) in WNT7A causes Al-Awadi Raas-Rothschild syndrome in a fetus.

    PubMed

    Mutlu, Mehmet Burak; Cetinkaya, Arda; Koc, Nermin; Ceylaner, Gulay; Erguner, Bekir; Aydın, Hatip; Karaman, Selin; Demirci, Oya; Goksu, Kamber; Karaman, Ali

    2016-11-01

    Al-Awadi-Raas-Rothschild syndrome (AARRS) is a rare autosomal recessive disorder which consists of severe malformations of the upper and lower limbs, abnormal genitalia and underdeveloped pelvis. Here, we present a fetus with severe limbs defects, including bilateral humeroradial synostosis, bilateral oligodactyly in hands, underdeveloped pelvis, short femora and tibiae, absence of fibulae, severely small feet, and absence of uterus. An autosomal recessively inherited novel mutation in WNT7A found in the fetus, c.304C > T, affects an evolutionarily well-conserved amino acid, causing the p.(R102W) missense change at protein level. The findings presented in this fetus are compatible with diagnosis of AARRS, expanding the mutational spectrum of limb malformations arising from defects in WNT7A. Crown Copyright © 2016. Published by Elsevier Masson SAS. All rights reserved.

  11. Rare key functional domain missense substitutions in MRE11A, RAD50, and NBN contribute to breast cancer susceptibility: results from a Breast Cancer Family Registry case-control mutation-screening study

    PubMed Central

    2014-01-01

    Introduction The MRE11A-RAD50-Nibrin (MRN) complex plays several critical roles related to repair of DNA double-strand breaks. Inherited mutations in the three components predispose to genetic instability disorders and the MRN genes have been implicated in breast cancer susceptibility, but the underlying data are not entirely convincing. Here, we address two related questions: (1) are some rare MRN variants intermediate-risk breast cancer susceptibility alleles, and if so (2) do the MRN genes follow a BRCA1/BRCA2 pattern wherein most susceptibility alleles are protein-truncating variants, or do they follow an ATM/CHEK2 pattern wherein half or more of the susceptibility alleles are missense substitutions? Methods Using high-resolution melt curve analysis followed by Sanger sequencing, we mutation screened the coding exons and proximal splice junction regions of the MRN genes in 1,313 early-onset breast cancer cases and 1,123 population controls. Rare variants in the three genes were pooled using bioinformatics methods similar to those previously applied to ATM, BRCA1, BRCA2, and CHEK2, and then assessed by logistic regression. Results Re-analysis of our ATM, BRCA1, and BRCA2 mutation screening data revealed that these genes do not harbor pathogenic alleles (other than modest-risk SNPs) with minor allele frequencies >0.1% in Caucasian Americans, African Americans, or East Asians. Limiting our MRN analyses to variants with allele frequencies of <0.1% and combining protein-truncating variants, likely spliceogenic variants, and key functional domain rare missense substitutions, we found significant evidence that the MRN genes are indeed intermediate-risk breast cancer susceptibility genes (odds ratio (OR) = 2.88, P = 0.0090). Key domain missense substitutions were more frequent than the truncating variants (24 versus 12 observations) and conferred a slightly higher OR (3.07 versus 2.61) with a lower P value (0.029 versus 0.14). Conclusions These data establish

  12. Loss-of-function mutations in APOC3, triglycerides, and coronary disease.

    PubMed

    Crosby, Jacy; Peloso, Gina M; Auer, Paul L; Crosslin, David R; Stitziel, Nathan O; Lange, Leslie A; Lu, Yingchang; Tang, Zheng-zheng; Zhang, He; Hindy, George; Masca, Nicholas; Stirrups, Kathleen; Kanoni, Stavroula; Do, Ron; Jun, Goo; Hu, Youna; Kang, Hyun Min; Xue, Chenyi; Goel, Anuj; Farrall, Martin; Duga, Stefano; Merlini, Pier Angelica; Asselta, Rosanna; Girelli, Domenico; Olivieri, Oliviero; Martinelli, Nicola; Yin, Wu; Reilly, Dermot; Speliotes, Elizabeth; Fox, Caroline S; Hveem, Kristian; Holmen, Oddgeir L; Nikpay, Majid; Farlow, Deborah N; Assimes, Themistocles L; Franceschini, Nora; Robinson, Jennifer; North, Kari E; Martin, Lisa W; DePristo, Mark; Gupta, Namrata; Escher, Stefan A; Jansson, Jan-Håkan; Van Zuydam, Natalie; Palmer, Colin N A; Wareham, Nicholas; Koch, Werner; Meitinger, Thomas; Peters, Annette; Lieb, Wolfgang; Erbel, Raimund; Konig, Inke R; Kruppa, Jochen; Degenhardt, Franziska; Gottesman, Omri; Bottinger, Erwin P; O'Donnell, Christopher J; Psaty, Bruce M; Ballantyne, Christie M; Abecasis, Goncalo; Ordovas, Jose M; Melander, Olle; Watkins, Hugh; Orho-Melander, Marju; Ardissino, Diego; Loos, Ruth J F; McPherson, Ruth; Willer, Cristen J; Erdmann, Jeanette; Hall, Alistair S; Samani, Nilesh J; Deloukas, Panos; Schunkert, Heribert; Wilson, James G; Kooperberg, Charles; Rich, Stephen S; Tracy, Russell P; Lin, Dan-Yu; Altshuler, David; Gabriel, Stacey; Nickerson, Deborah A; Jarvik, Gail P; Cupples, L Adrienne; Reiner, Alex P; Boerwinkle, Eric; Kathiresan, Sekar

    2014-07-03

    Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype. We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons. An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G→A and IVS3+1G→T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (P<1×10(-20)), and circulating levels of APOC3 in carriers were 46% lower than levels in noncarriers (P=8×10(-10)). The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 noncarriers (odds ratio, 0.60; 95% confidence interval, 0.47 to 0.75; P=4×10(-6)). Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.).

  13. Loss-of-Function Mutations in APOC3, Triglycerides, and Coronary Disease

    PubMed Central

    2014-01-01

    Background Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype. Methods We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons. Results An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G→A and IVS3+1G→T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (P<1×10−20), and circulating levels of APOC3 in carriers were 46% lower than levels in noncarriers (P = 8×10−10). The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 noncarriers (odds ratio, 0.60; 95% confidence interval, 0.47 to 0.75; P = 4×10−6). Conclusions Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.) PMID:24941081

  14. Sarcolemmal alpha and gamma sarcoglycan protein deficiencies in Turkish siblings with a novel missense mutation in the alpha sarcoglycan gene.

    PubMed

    Diniz, Gulden; Tosun Yildirim, Hulya; Akinci, Gulcin; Hazan, Filiz; Ozturk, Aysel; Yararbas, Kanay; Tukun, Ajlan

    2014-06-01

    The sarcoglycan alpha gene, also known as the adhalin gene, is located on chromosome 17q21; mutations in this gene are associated with limb-girdle muscular dystrophy type 2D. We describe two Turkish siblings with findings consistent with limb-girdle muscular dystrophy type 2D. The evaluation excluded a dystrophinopathy, which is the most common form of muscular dystrophy. Both siblings had very high levels of creatinine phosphokinase and negative molecular tests for deletions and duplications of the dystrophin gene. The older boy presented at 8 years of age with an inability to climb steps and an abnormal gait. His younger brother was 5 years old and had similar symptoms. The muscle biopsy evaluation was performed only in the older brother. The muscle biopsy showed dystrophic features as well as a deficiency in the expression of two different glycoproteins: the alpha sarcoglycan and the gamma sarcoglycan. Sarcolemmal expressions of dystrophin and other sarcoglycans (beta and delta) were diffusely present. DNA analysis demonstrated the presence of previously unknown homozygous mutations [c.226 C > T (p.L76 F)] in exon 3 in the sarcoglycan alpha genes of both siblings. Similar heterozygous point mutations at the same locus were found in both parents, but the genes of beta, delta, and gamma sarcoglycan were normal in the remaining family members. We describe two siblings with limb-girdle muscular dystrophy type 2D with a novel missense mutation. These patients illustrate that the differential diagnosis of muscular dystrophies is impossible with clinical findings alone. Therefore, a muscle biopsy and DNA analysis remain essential methods for diagnosis of muscle diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Ionizing radiation, inflammation, and their interactions in colon carcinogenesis in Mlh1-deficient mice.

    PubMed

    Morioka, Takamitsu; Miyoshi-Imamura, Tomoko; Blyth, Benjamin J; Kaminishi, Mutsumi; Kokubo, Toshiaki; Nishimura, Mayumi; Kito, Seiji; Tokairin, Yutaka; Tani, Shusuke; Murakami-Murofushi, Kimiko; Yoshimi, Naoki; Shimada, Yoshiya; Kakinuma, Shizuko

    2015-03-01

    Genetic, physiological and environmental factors are implicated in colorectal carcinogenesis. Mutations in the mutL homolog 1 (MLH1) gene, one of the DNA mismatch repair genes, are a main cause of hereditary colon cancer syndromes such as Lynch syndrome. Long-term chronic inflammation is also a key risk factor, responsible for colitis-associated colorectal cancer; radiation exposure is also known to increase colorectal cancer risk. Here, we studied the effects of radiation exposure on inflammation-induced colon carcinogenesis in DNA mismatch repair-proficient and repair-deficient mice. Male and female Mlh1(-/-) and Mlh1(+/+) mice were irradiated with 2 Gy X-rays when aged 2 weeks or 7 weeks and/or were treated with 1% dextran sodium sulfate (DSS) in drinking water for 7 days at 10 weeks old to induce mild inflammatory colitis. No colon tumors developed after X-rays and/or DSS treatment in Mlh1(+/+) mice. Colon tumors developed after DSS treatment alone in Mlh1(-/-) mice, and exposure to radiation prior to DSS treatment increased the number of tumors. Histologically, colon tumors in the mice resembled the subtype of well-to-moderately differentiated adenocarcinomas with tumor-infiltrating lymphocytes of human Lynch syndrome. Immunohistochemistry revealed that expression of both p53 and β-catenin and loss of p21 and adenomatosis polyposis coli proteins were observed at the later stages of carcinogenesis, suggesting a course of molecular pathogenesis distinct from typical sporadic or colitis-associated colon cancer in humans. In conclusion, radiation exposure could further increase the risk of colorectal carcinogenesis induced by inflammation under the conditions of Mlh1 deficiency. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  16. Proteomics screen to reveal molecular changes mediated by C722G missense mutation in CHRM2 gene.

    PubMed

    Hou, Dongyan; Chen, Ying; Liu, Jiamei; Xu, Lin; Zhang, Zhiyong; Zhang, Juan; Wang, Hua; Wang, Xin; Chen, Jin; Zhao, Rongrui; Hu, Aihua; Hakonarson, Hakon; Zhang, Lin; Shen, Yan

    2013-08-26

    Previously, we reported a missense mutation (C722G) in the M2-muscarinic acetylcholine receptor (CHRM2) gene associated with familial dilated cardiomyopathy. However, the exact molecular mechanisms by the related protein changes of CHRM2-C722G mutation induced are still unclear. CHRM2 and CHRM2-C722G lentiviral vector was infected to CHO cells. Proteomic analysis by label-free shotgun strategy and the STRING 9.0 software were performed. A total of 102 proteins with at least 2-fold change in the CHRM2-C722G group were identified, 42 proteins were up-regulated, whereas 57 were down-regulated. These altered proteins belong to three broad functional categories: (i) metabolic (e.g. Cytosolic acyl coenzyme A thioester hydrolase, Malate dehydrogenase); (ii) cytoskeletal (e.g. Actin-related protein, Myosin light polypeptide 6 and Alpha-actinin-1) and (iii) stress response (e.g. heat shock protein 70, Ras-related protein Rab-10). Interestingly, the marked differences in the expression of selected eight proteins (change >4.0-fold), were connected with many proteins related to apoptosis and immune/inflammatory response such as: FOS, BAX, MYC, TP53 and IL6. This novel study demonstrated for the first time a full-scale screening of the proteomics research by CHRM2-C722G mutation and profiled 102 changed proteins, of which, eight might be critical in cardiac dysfunction for future mapping. It was a full-scale screening of the proteomics research by CHRM2-C722G mutation. These proteins might serve as valuable biomarkers that could predict the presence of a precursor field. These proteins might serve to further explore the pathophysiological mechanisms in familial DCM patients with C176W mutation. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) associated with a novel C82R mutation in the NOTCH3 gene.

    PubMed

    Zea-Sevilla, M Ascensión; Bermejo-Velasco, Pedro; Serrano-Heranz, Regino; Calero, Miguel

    2015-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare inherited cerebrovascular disease associated with mutations in the NOTCH3 gene on chromosome 19, and represents the most common hereditary stroke disorder. We describe a pedigree, which suffered the classical clinical CADASIL pattern of migraine headaches, recurrent subcortical infarcts, and subcortical dementia, associated with a previously undescribed missense mutation (c.[244T>C], p.[C82R]) in NOTCH3. This new mutation extends the list of known pathogenic mutations responsible for CADASIL, which are associated with an odd number of cysteine residues within any of the epidermal growth factor-like repeats of Notch3 receptor protein.

  18. Frequency of pathogenic germline mutations in cancer susceptibility genes in breast cancer patients.

    PubMed

    Kaur, Raman Preet; Shafi, Gowhar; Benipal, Raja Paramjeet Singh; Munshi, Anjana

    2018-04-26

    In this study, we evaluated the incidence of pathogenic germline mutations in 30 breast cancer susceptibility genes in breast cancer patients. Our aim was to understand the involvement of the inherited mutations in these genes in a breast cancer cohort. Two hundred ninety-six female breast cancer patients including 4.5% of familial breast cancer cases were included in the study. 200 ng of genomic DNA was used to evaluate the pathogenic mutations, detected using Global Screening Array (GSA) microchip (Illumina Inc.) according to the manufacturer's instructions. The pathogenic frameshift and nonsense mutations were observed in BRCA2 (10.9%), MLH1 (58.6%), MTHFR (50%), MSH2 (14.2%), and CYTB (52%) genes. Familial breast cancer patients (4.5%) had variations in BRCA2, MLH1, MSH2, and CYTB genes. 28% of patients with metastasis, recurrence, and death harbored mono/biallelic alterations in MSH2, MLH1, and BRCA2 genes. The results of this study can guide to develop a panel to test the breast cancer patients for pathogenic mutations, from Malwa region of Punjab. The screening of MSH2, MLH1, and BRCA2 should be carried in individuals with or without family history of breast cancer as these genes have been reported to increase the cancer risk by tenfold.

  19. Consequences of a novel caveolin-3 mutation in a large German family.

    PubMed

    Fischer, Dirk; Schroers, Anja; Blümcke, Ingmar; Urbach, Horst; Zerres, Klaus; Mortier, Wilhelm; Vorgerd, Matthias; Schröder, Rolf

    2003-02-01

    Mutations in the human caveolin-3 gene (cav-3) on chromosome 3p25 have been described in limb girdle muscular dystrophy, rippling muscle disease, hyperCKemia, and distal myopathy. Here, we describe the genetic, myopathological, and clinical findings in a large German family harboring a novel heterozygous mutation (GAC-->GAA) in codon 27 of the cav-3 gene. This missense mutation causes an amino acid change from asparagine to glutamate (Asp27Glu) in the N-terminal region of the Cav-3 protein, which leads to a drastic decrease of Cav-3 protein expression in skeletal muscle tissue. In keeping with an autosomal dominant mode of inheritance, this novel cav-3 mutation was found to cosegregate with neuromuscular involvement in the reported family. Ultrastructural analysis of Cav-3-deficient muscle showed an abnormal folding of the plasma membrane as well as multiple vesicular structures in the subsarcolemmal region. Neurological examination of all nine subjects from three generations harboring the novel cav-3 mutation showed clear evidence of rippling muscle disease. However, only two of these nine patients showed isolated signs of rippling muscle disease without muscle weakness or atrophy, whereas five had additional signs of a distal myopathy and two fulfilled the diagnostic criteria of a coexisting limb girdle muscular dystrophy. These findings indicate that mutations in the human cav-3 gene can lead to different and overlapping clinical phenotypes even within the same family. Different clinical phenotypes in caveolinopathies may be attributed to so far unidentified modifying factors/genes in the individual genetic background of affected patients.

  20. Autophagy influences the low-dose hyper-radiosensitivity of human lung adenocarcinoma cells by regulating MLH1.

    PubMed

    Wang, Qiong; Xiao, Zhuya; Lin, Zhenyu; Zhou, Jie; Chen, Weihong; Jie, Wuyun; Cao, Xing; Yin, Zhongyuan; Cheng, Jing

    2017-06-01

    To investigate the impact of autophagy on the low-dose hyper-radiosensitivity (HRS) of human lung adenocarcinoma cells via MLH1 regulation. Immunofluorescent staining, Western blotting, and electron microscopy were utilized to detect autophagy in A549 and H460 cells. shRNA was used to silence MLH1 expression. The levels of MLH1, mTOR, p-mTOR, BNIP3, and Beclin-1 were measured by real-time polymerase chain reaction (PCR) and Western blotting. A549 cells, which have low levels of MLH1 expression, displayed HRS/induced radioresistance (IRR). Conversely, the radiosensitivity of H460 cells, which express high levels of MLH1, conformed to the linear-quadratic (LQ) model. After down-regulating MLH1 expression, A549 cells showed increased HRS and inhibition of autophagy, whereas H460 cells exhibited HRS/IRR. The levels of mTOR, p-mTOR, and BNIP3 were reduced in cells harboring MLH1 shRNA, and the changes in the mTOR/p-mTOR ratio mirrored those in MLH1 expression. Low MLH1-expressing A549 cells may exhibit HRS. Both the mTOR/p-mTOR and BNIP3/Beclin-1 signaling pathways were found to be related to HRS, but only mTOR/p-mTOR is involved in the regulation of HRS via MLH1 and autophagy.

  1. Response to DNA damage of CHEK2 missense mutations in familial breast cancer

    PubMed Central

    Roeb, Wendy; Higgins, Jake; King, Mary-Claire

    2012-01-01

    Comprehensive sequencing of tumor suppressor genes to evaluate inherited predisposition to cancer yields many individually rare missense alleles of unknown functional and clinical consequence. To address this problem for CHEK2 missense alleles, we developed a yeast-based assay to assess in vivo CHEK2-mediated response to DNA damage. Of 25 germline CHEK2 missense alleles detected in familial breast cancer patients, 12 alleles had complete loss of DNA damage response, 8 had partial loss and 5 exhibited a DNA damage response equivalent to that mediated by wild-type CHEK2. Variants exhibiting reduced response to DNA damage were found in all domains of the CHEK2 protein. Assay results were in agreement with epidemiologic assessments of breast cancer risk for those variants sufficiently common for case–control studies to have been undertaken. Assay results were largely concordant with consensus predictions of in silico tools, particularly for damaging alleles in the kinase domain. However, of the 25 variants, 6 were not consistently classifiable by in silico tools. An in vivo assay of cellular response to DNA damage by mutant CHEK2 alleles may complement and extend epidemiologic and genetic assessment of their clinical consequences. PMID:22419737

  2. Response to DNA damage of CHEK2 missense mutations in familial breast cancer.

    PubMed

    Roeb, Wendy; Higgins, Jake; King, Mary-Claire

    2012-06-15

    Comprehensive sequencing of tumor suppressor genes to evaluate inherited predisposition to cancer yields many individually rare missense alleles of unknown functional and clinical consequence. To address this problem for CHEK2 missense alleles, we developed a yeast-based assay to assess in vivo CHEK2-mediated response to DNA damage. Of 25 germline CHEK2 missense alleles detected in familial breast cancer patients, 12 alleles had complete loss of DNA damage response, 8 had partial loss and 5 exhibited a DNA damage response equivalent to that mediated by wild-type CHEK2. Variants exhibiting reduced response to DNA damage were found in all domains of the CHEK2 protein. Assay results were in agreement with epidemiologic assessments of breast cancer risk for those variants sufficiently common for case-control studies to have been undertaken. Assay results were largely concordant with consensus predictions of in silico tools, particularly for damaging alleles in the kinase domain. However, of the 25 variants, 6 were not consistently classifiable by in silico tools. An in vivo assay of cellular response to DNA damage by mutant CHEK2 alleles may complement and extend epidemiologic and genetic assessment of their clinical consequences.

  3. Nonketotic hyperglycinemia: Functional assessment of missense variants in GLDC to understand phenotypes of the disease.

    PubMed

    Bravo-Alonso, Irene; Navarrete, Rosa; Arribas-Carreira, Laura; Perona, Almudena; Abia, David; Couce, María Luz; García-Cazorla, Angels; Morais, Ana; Domingo, Rosario; Ramos, María Antonia; Swanson, Michael A; Van Hove, Johan L K; Ugarte, Magdalena; Pérez, Belén; Pérez-Cerdá, Celia; Rodríguez-Pombo, Pilar

    2017-06-01

    The rapid analysis of genomic data is providing effective mutational confirmation in patients with clinical and biochemical hallmarks of a specific disease. This is the case for nonketotic hyperglycinemia (NKH), a Mendelian disorder causing seizures in neonates and early-infants, primarily due to mutations in the GLDC gene. However, understanding the impact of missense variants identified in this gene is a major challenge for the application of genomics into clinical practice. Herein, a comprehensive functional and structural analysis of 19 GLDC missense variants identified in a cohort of 26 NKH patients was performed. Mutant cDNA constructs were expressed in COS7 cells followed by enzymatic assays and Western blot analysis of the GCS P-protein to assess the residual activity and mutant protein stability. Structural analysis, based on molecular modeling of the 3D structure of GCS P-protein, was also performed. We identify hypomorphic variants that produce attenuated phenotypes with improved prognosis of the disease. Structural analysis allows us to interpret the effects of mutations on protein stability and catalytic activity, providing molecular evidence for clinical outcome and disease severity. Moreover, we identify an important number of mutants whose loss-of-functionality is associated with instability and, thus, are potential targets for rescue using folding therapeutic approaches. © 2017 Wiley Periodicals, Inc.

  4. Both a frameshift and a missense mutation of the STRA6 gene observed in an infant with the Matthew-Wood syndrome.

    PubMed

    Sadowski, Samantha; Chassaing, Nicolas; Gaj, Zuzanna; Czichos, Ewa; Wilczynski, Jan; Nowakowska, Dorota

    2017-03-01

    The Matthew-Wood syndrome is associated with mutations of the STRA6 gene. It combines a pulmonary agenesis/hypoplasia; microphthalmia/anophthalmia; congenital cardiac, digestive, and urogenital malformations; and diaphragmatic defects. A 23-year-old nulliparous woman was referred to our center after a fetal ultrasound examination at 26 weeks of pregnancy revealed an abnormal head shape, a heart malformation, multiple cysts in both kidneys, and dilated ureters. A male baby (46, XY; 3600g; Apgar score 1) was delivered at 38 weeks of gestation and died 1 hr later due to respiratory failure. The diagnosis of Matthew-Wood syndrome was suspected given the association of bilateral anophthalmia, agenesis of the left lung, and heart and kidney defects. It was confirmed by the identification of two deleterious mutations of the STRA6 gene. The child was a compound heterozygote for two previously reported mutations, a paternally inherited missense mutation (c.878C>T [p.Pro293Leu] and a maternally inherited frameshift mutation (c.50_52delACTinsCC [p. Asp17Alafs*55]), producing a premature stop codon. The diagnosis of Matthew-Wood syndrome should be considered in all fetuses with microphthalmia/anophthalmia. It requires an extensive ultrasound/MRI examination of the lung, heart, and diaphragm. Birth Defects Research 109:251-253, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Mutational Spectrum of MYO15A and the Molecular Mechanisms of DFNB3 Human Deafness.

    PubMed

    Rehman, Atteeq U; Bird, Jonathan E; Faridi, Rabia; Shahzad, Mohsin; Shah, Sujay; Lee, Kwanghyuk; Khan, Shaheen N; Imtiaz, Ayesha; Ahmed, Zubair M; Riazuddin, Saima; Santos-Cortez, Regie Lyn P; Ahmad, Wasim; Leal, Suzanne M; Riazuddin, Sheikh; Friedman, Thomas B

    2016-10-01

    Deafness in humans is a common neurosensory disorder and is genetically heterogeneous. Across diverse ethnic groups, mutations of MYO15A at the DFNB3 locus appear to be the third or fourth most common cause of autosomal-recessive, nonsyndromic deafness. In 49 of the 67 exons of MYO15A, there are currently 192 recessive mutations identified, including 14 novel mutations reported here. These mutations are distributed uniformly across MYO15A with one enigmatic exception; the alternatively spliced giant exon 2, encoding 1,233 residues, has 17 truncating mutations but no convincing deafness-causing missense mutations. MYO15A encodes three distinct isoform classes, one of which is 395 kDa (3,530 residues), the largest member of the myosin superfamily of molecular motors. Studies of Myo15 mouse models that recapitulate DFNB3 revealed two different pathogenic mechanisms of hearing loss. In the inner ear, myosin 15 is necessary both for the development and the long-term maintenance of stereocilia, mechanosensory sound-transducing organelles that extend from the apical surface of hair cells. The goal of this Mutation Update is to provide a comprehensive review of mutations and functions of MYO15A. © 2016 WILEY PERIODICALS, INC.

  6. Clinical Significance of MLH1 Methylation and CpG Island Methylator Phenotype as Prognostic Markers in Patients with Gastric Cancer

    PubMed Central

    Shigeyasu, Kunitoshi; Nagasaka, Takeshi; Mori, Yoshiko; Yokomichi, Naosuke; Kawai, Takashi; Fuji, Tomokazu; Kimura, Keisuke; Umeda, Yuzo; Kagawa, Shunsuke; Goel, Ajay; Fujiwara, Toshiyoshi

    2015-01-01

    Background To improve the outcome of patients suffering from gastric cancer, a better understanding of underlying genetic and epigenetic events in this malignancy is required. Although CpG island methylator phenotype (CIMP) and microsatellite instability (MSI) have been shown to play pivotal roles in gastric cancer pathogenesis, the clinical significance of these events on survival outcomes in patients with gastric cancer remains unknown. Methods This study included a patient cohort with pathologically confirmed gastric cancer who had surgical resections. A cohort of 68 gastric cancers was analyzed. CIMP and MSI statuses were determined by analyzing promoter CpG island methylation status of 28 genes/loci, and genomic instability at 10 microsatellite markers, respectively. A Cox’s proportional hazards model was performed for multivariate analysis including age, stage, tumor differentiation, KRAS mutation status, and combined CIMP/MLH1 methylation status in relation to overall survival (OS). Results By multivariate analysis, longer OS was significantly correlated with lower pathologic stage (P = 0.0088), better tumor differentiation (P = 0.0267) and CIMP-high and MLH1 3' methylated status (P = 0.0312). Stratification of CIMP status with regards to MLH1 methylation status further enabled prediction of gastric cancer prognosis. Conclusions CIMP and/or MLH1 methylation status may have a potential to be prognostic biomarkers for patients with gastric cancer. PMID:26121593

  7. Loss-of-function CARD8 mutation causes NLRP3 inflammasome activation and Crohn's disease.

    PubMed

    Mao, Liming; Kitani, Atsushi; Similuk, Morgan; Oler, Andrew J; Albenberg, Lindsey; Kelsen, Judith; Aktay, Atiye; Quezado, Martha; Yao, Michael; Montgomery-Recht, Kim; Fuss, Ivan J; Strober, Warren

    2018-05-01

    In these studies, we evaluated the contribution of the NLRP3 inflammasome to Crohn's disease (CD) in a kindred containing individuals having a missense mutation in CARD8, a protein known to inhibit this inflammasome. Whole exome sequencing and PCR studies identified the affected individuals as having a V44I mutation in a single allele of the T60 isoform of CARD8. The serum levels of IL-1β in the affected individuals were increased compared with those in healthy controls, and their peripheral monocytes produced increased amounts of IL-1β when stimulated by NLRP3 activators. Immunoblot studies probing the basis of these findings showed that mutated T60 CARD8 failed to downregulate the NLRP3 inflammasome because it did not bind to NLRP3 and inhibit its oligomerization. In addition, these studies showed that mutated T60 CARD8 exerted a dominant-negative effect by its capacity to bind to and form oligomers with unmutated T60 or T48 CARD8 that impeded their binding to NLRP3. Finally, inflammasome activation studies revealed that intact but not mutated CARD8 prevented NLRP3 deubiquitination and serine dephosphorylation. CD due to a CARD8 mutation was not effectively treated by anti-TNF-α, but did respond to IL-1β inhibitors. Thus, patients with anti-TNF-α-resistant CD may respond to this treatment option.

  8. Homozygosity for a novel missense mutation in the leptin receptor gene (P316T) in two Egyptian cousins with severe early onset obesity.

    PubMed

    Mazen, I; El-Gammal, M; Abdel-Hamid, M; Farooqi, I S; Amr, K

    2011-04-01

    Congenital deficiency of the leptin receptor is a very rare cause of severe early-onset obesity. To date, only 9 families have been reported in the literature to have mutations in the leptin receptor gene. The clinical features include severe early onset obesity, severe hyperphagia, hypogonadotropic hypogonadism, and T cell and neuroendocrine/metabolic dysfunction. Here we report two cousins with severe early onset obesity and recurrent respiratory tract infections. Their serum leptin levels were elevated but they were within the range predicted by the elevated fat mass in both cousins. Direct sequencing of the entire coding sequence of the leptin receptor gene revealed a novel homozygous missense mutation in exon 6, P316T. The mutation was found in the homozygous form in both cousins and in the heterozygote state in their parents. This mutation was not found in 200 chromosomes from 100 unrelated normal weight control subjects of Egyptian origin using PCR-RFLP analysis. In conclusion, finding this new mutation in the LEPR beside our previous mutation in the LEP gene implies that monogenic obesity syndromes may be common in the Egyptian population owing to the high rates of consanguineous marriages. Further screening of more families for mutations in LEP, LEPR, and MC4 might confirm this assumption. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Mutation spectrum of homogentisic acid oxidase (HGD) in alkaptonuria.

    PubMed

    Vilboux, Thierry; Kayser, Michael; Introne, Wendy; Suwannarat, Pim; Bernardini, Isa; Fischer, Roxanne; O'Brien, Kevin; Kleta, Robert; Huizing, Marjan; Gahl, William A

    2009-12-01

    Alkaptonuria (AKU) is a rare autosomal recessive metabolic disorder, characterized by accumulation of homogentisic acid, leading to darkened urine, pigmentation of connective tissue (ochronosis), joint and spine arthritis, and destruction of cardiac valves. AKU is due to mutations in the homogentisate dioxygenase gene (HGD) that converts homogentisic acid to maleylacetoacetic acid in the tyrosine catabolic pathway. Here we report a comprehensive mutation analysis of 93 patients enrolled in our study, as well as an extensive update of all previously published HGD mutations associated with AKU. Within our patient cohort, we identified 52 HGD variants, of which 22 were novel. This yields a total of 91 identified HGD variations associated with AKU to date, including 62 missense, 13 splice site, 10 frameshift, 5 nonsense, and 1 no-stop mutation. Most HGD variants reside in exons 3, 6, 8, and 13. We assessed the potential effect of all missense variations on protein function, using five bioinformatic tools specifically designed for interpretation of missense variants (SIFT, POLYPHEN, PANTHER, PMUT, and SNAP). We also analyzed the potential effect of splice-site variants using two different tools (BDGP and NetGene2). This study provides valuable resources for molecular analysis of alkaptonuria and expands our knowledge of the molecular basis of this disease.

  10. Mutation spectrum of homogentisic acid oxidase (HGD) in alkaptonuria

    PubMed Central

    Vilboux, Thierry; Kayser, Michael; Introne, Wendy; Suwannarat, Pim; Bernardini, Isa; Fischer, Roxanne; O’Brien, Kevin; Kleta, Robert; Huizing, Marjan; Gahl, William A.

    2009-01-01

    Alkaptonuria (AKU) is a rare autosomal recessive metabolic disorder, characterized by accumulation of homogentisic acid, leading to darkened urine, pigmentation of connective tissue (ochronosis), joint and spine arthritis, and destruction of cardiac valves. AKU is due to mutations in the homogentisate dioxygenase gene, HGD, that converts homogentisic acid to maleylacetoacetic acid in the tyrosine catabolic pathway. Here we report a comprehensive mutation analysis of 93 patients enrolled in our study, as well as an extensive update of all previously published HGD mutations associated with AKU. Within our patient cohort, we identified 52 HGD variants, of which 22 were novel. This yields a total of 91 identified HGD variations associated with AKU to date, including 62 missense, 13 splice site, 10 frameshift, 5 nonsense and 1 no-stop mutation. Most HGD variants reside in exons 3, 6, 8 and 13. We assessed the potential effect of all missense variations on protein function, using 5 bioinformatic tools specifically designed for interpretation of missense variants (SIFT, POLYPHEN, PANTHER, PMUT and SNAP). We also analyzed the potential effect of splice site variants using two different tools (BDGP and NetGene2). This study provides valuable resources for molecular analysis of alkaptonuria and expands our knowledge of the molecular basis of this disease. PMID:19862842

  11. Novel Mutation in the ATP-Binding Cassette Transporter A3 (ABCA3) Encoding Gene Causes Respiratory Distress Syndrome in A Term Newborn in Southwest Iran

    PubMed Central

    Rezaei, Farideh; Shafiei, Mohammad; Shariati, Gholamreza; Dehdashtian, Ali; Mohebbi, Maryam; Galehdari, Hamid

    2016-01-01

    Introduction ABCA3 glycoprotein belongs to the ATP-binding cassette (ABC) superfamily of transporters, which utilize the energy derived from hydrolysis of ATP for the translocation of a wide variety of substrates across the plasma membrane. Mutations in the ABCA3 gene are knowingly causative for fatal surfactant deficiency, particularly respiratory distress syndrome (RDS) in term babies. Case Presentation In this study, Sanger sequencing of the whole ABCA3 gene (NCBI NM_001089) was performed in a neonatal boy with severe RDS. A homozygous mutation has been identified in the patient. Parents were heterozygous for the same missense mutation GGA > AGA at position 202 in exon 6 of the ABCA3 gene (c.604G > A; p.G202R). Furthermore, 70 normal individuals have been analyzed for the mentioned change with negative results. Conclusions Regarding Human Genome Mutation Database (HGMD) and other literature recherche, the detected change is a novel mutation and has not been reported before. Bioinformatics mutation predicting tools prefer it as pathogenic. PMID:27437095

  12. The TP53 gene promoter is not methylated in families suggestive of Li-Fraumeni syndrome with no germline TP53 mutations.

    PubMed

    Finkova, Alena; Vazna, Alzbeta; Hrachovina, Ondrej; Bendova, Sarka; Prochazkova, Kamila; Sedlacek, Zdenek

    2009-08-01

    Germline TP53 mutations are found in only 70% of families with the Li-Fraumeni syndrome (LFS), and with an even lower frequency in families suggestive of LFS but not meeting clinical criteria of the syndrome. Despite intense efforts, to date, no other genes have been associated with the disorder in a significant number of TP53 mutation-negative families. A search for defects in TP53 other than heterozygous missense mutations showed that neither intron variants nor sequence variants in the TP53 promoter are frequent in LFS, and multiexon deletions have been found to be responsible for LFS only in several cases. Another cancer predisposition syndrome, hereditary non-polyposis colon cancer, has been associated with epigenetic silencing of one allele of the MLH1 or MSH2 genes. This prompted us to test the methylation of the TP53 gene promoter in a set of 14 families suggestive of LFS using bisulphite sequencing of three DNA fragments from the 5' region of the gene. We found no detectable methylation at any of the CG dinucleotides tested. Thus, epigenetic silencing of the TP53 promoter is not a frequent cause of the disorder in families suggestive of LFS but with no germline mutations in the coding part of the gene.

  13. A comparative study of quantitative immunohistochemistry and quantum dot immunohistochemistry for mutation carrier identification in Lynch syndrome.

    PubMed

    Barrow, Emma; Evans, D Gareth; McMahon, Ray; Hill, James; Byers, Richard

    2011-03-01

    Lynch Syndrome is caused by mutations in DNA mismatch repair (MMR) genes. Mutation carrier identification is facilitated by immunohistochemical detection of the MMR proteins MHL1 and MSH2 in tumour tissue and is desirable as colonoscopic screening reduces mortality. However, protein detection by conventional immunohistochemistry (IHC) is subjective, and quantitative techniques are required. Quantum dots (QDs) are novel fluorescent labels that enable quantitative multiplex staining. This study compared their use with quantitative 3,3'-diaminobenzidine (DAB) IHC for the diagnosis of Lynch Syndrome. Tumour sections from 36 mutation carriers and six controls were obtained. These were stained with DAB on an automated platform using antibodies against MLH1 and MSH2. Multiplex QD immunofluorescent staining of the sections was performed using antibodies against MLH1, MSH2 and smooth muscle actin (SMA). Multispectral analysis of the slides was performed. The staining intensity of DAB and QDs was measured in multiple colonic crypts, and the mean intensity scores calculated. Receiver operating characteristic (ROC) curves of staining performance for the identification of mutation carriers were evaluated. For quantitative DAB IHC, the area under the MLH1 ROC curve was 0.872 (95% CI 0.763 to 0.981), and the area under the MSH2 ROC curve was 0.832 (95% CI 0.704 to 0.960). For quantitative QD IHC, the area under the MLH1 ROC curve was 0.812 (95% CI 0.681 to 0.943), and the area under the MSH2 ROC curve was 0.598 (95% CI 0.418 to 0.777). Despite the advantage of QD staining to enable several markers to be measured simultaneously, it is of lower utility than DAB IHC for the identification of MMR mutation carriers. Automated DAB IHC staining and quantitative slide analysis may enable high-throughput IHC.

  14. Mutations in the TLR3 signaling pathway and beyond in adult patients with herpes simplex encephalitis.

    PubMed

    Mørk, N; Kofod-Olsen, E; Sørensen, K B; Bach, E; Ørntoft, T F; Østergaard, L; Paludan, S R; Christiansen, M; Mogensen, T H

    2015-12-01

    Herpes simplex encephalitis (HSE) in children has previously been linked to defects in type I interferon production downstream of Toll-like receptor (TLR)3. In the present study, we used whole-exome sequencing to investigate the genetic profile of 16 adult patients with a history of HSE. We identified novel mutations in IRF3, TYK2 and MAVS, molecules involved in generating innate antiviral immune responses, which have not previously been associated with HSE. Moreover, data revealed mutations in TLR3, TRIF, TBK1 and STAT1 known to be associated with HSE in children but not previously described in adults. All discovered mutations were heterozygous missense mutations, the majority of which were associated with significantly decreased antiviral responses to HSV-1 infection and/or the TLR3 agonist poly(I:C) in patient peripheral blood mononuclear cells compared with controls. Altogether, this study demonstrates novel mutations in the TLR3 signaling pathway in molecules previously identified in children, suggesting that impaired innate immunity to HSV-1 may also increase susceptibility to HSE in adults. Importantly, the identification of mutations in innate signaling molecules not directly involved in TLR3 signaling suggests the existence of innate immunodeficiencies predisposing to HSE beyond the TLR3 pathway.

  15. DNA mismatch repair proteins MLH1 and PMS2 can be imported to the nucleus by a classical nuclear import pathway.

    PubMed

    de Barros, Andrea C; Takeda, Agnes A S; Dreyer, Thiago R; Velazquez-Campoy, Adrian; Kobe, Boštjan; Fontes, Marcos R M

    2018-03-01

    MLH1 and PMS2 proteins form the MutLα heterodimer, which plays a major role in DNA mismatch repair (MMR) in humans. Mutations in MMR-related proteins are associated with cancer, especially with colon cancer. The N-terminal region of MutLα comprises the N-termini of PMS2 and MLH1 and, similarly, the C-terminal region of MutLα is composed by the C-termini of PMS2 and MLH1, and the two are connected by linker region. The nuclear localization sequences (NLSs) necessary for the nuclear transport of the two proteins are found in this linker region. However, the exact NLS sequences have been controversial, with different sequences reported, particularly for MLH1. The individual components are not imported efficiently, presumably due to their C-termini masking their NLSs. In order to gain insights into the nuclear transport of these proteins, we solved the crystal structures of importin-α bound to peptides corresponding to the supposed NLSs of MLH1 and PMS2 and performed isothermal titration calorimetry to study their binding affinities. Both putative MLH1 and PMS2 NLSs can bind to importin-α as monopartite NLSs, which is in agreement with some previous studies. However, MLH1-NLS has the highest affinity measured by a natural NLS peptide, suggesting a major role of MLH1 protein in nuclear import compared to PMS2. Finally, the role of MLH1 and PMS2 in the nuclear transport of the MutLα heterodimer is discussed. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  16. Novel Mutation of the NOTCH3 Gene in a Chinese Pedigree with CADASIL.

    PubMed

    Hou, Xiaoxia; He, Chuan; Jin, Qingwen; Niu, Qi; Ren, Guang; Cheng, Hong

    2017-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) results from NOTCH3 gene mutations, which lead to the degeneration of vascular smooth muscle cells (VSMCs). The clinical presentation of CADASIL patients is dependent on the impact of other vascular risk factors and the type of NOTCH3 mutation present. Here, we report a rare pathogenic mutation on exon 14 of the NOTCH3 gene in a Chinese family affected by CADASIL with phenotypic peculiarities. We performed genetic testing, clinical and neuropsychological examination, brain magnetic resonance images (MRI), and electron microscopy (EM) in skin biopsies. NOTCH3 gene analysis revealed a c.2182CT substitution on exon 14, which is the first example of this mutation in a Chinese individual from the Han ancestry. Granular osmiophilic material (GOM) was found in the proband, and all patients had migraine, subcortical ischemic events, and mood disturbances, without progressive cognitive impairment. Cranial MRI further showed white matter hyperintensity, involving bilateral basal ganglia and multiple microbleeds (MBs), in the thalamus and brain stem. This study suggests that different missense mutations in NOTCH3 might contribute to atypical clinical features of CADASIL. This report also indicates that for individuals with a positive family history having clinical and neuroradiological findings suggestive of CADASIL, genetic testing and GOM detection should be performed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. De novo missense mutations in the NAA10 gene cause severe non-syndromic developmental delay in males and females

    PubMed Central

    Popp, Bernt; Støve, Svein I; Endele, Sabine; Myklebust, Line M; Hoyer, Juliane; Sticht, Heinrich; Azzarello-Burri, Silvia; Rauch, Anita; Arnesen, Thomas; Reis, André

    2015-01-01

    Recent studies revealed the power of whole-exome sequencing to identify mutations in sporadic cases with non-syndromic intellectual disability. We now identified de novo missense variants in NAA10 in two unrelated individuals, a boy and a girl, with severe global developmental delay but without any major dysmorphism by trio whole-exome sequencing. Both de novo variants were predicted to be deleterious, and we excluded other variants in this gene. This X-linked gene encodes N-alpha-acetyltransferase 10, the catalytic subunit of the NatA complex involved in multiple cellular processes. A single hypomorphic missense variant p.(Ser37Pro) was previously associated with Ogden syndrome in eight affected males from two different families. This rare disorder is characterized by a highly recognizable phenotype, global developmental delay and results in death during infancy. In an attempt to explain the discrepant phenotype, we used in vitro N-terminal acetylation assays which suggested that the severity of the phenotype correlates with the remaining catalytic activity. The variant in the Ogden syndrome patients exhibited a lower activity than the one seen in the boy with intellectual disability, while the variant in the girl was the most severe exhibiting only residual activity in the acetylation assays used. We propose that N-terminal acetyltransferase deficiency is clinically heterogeneous with the overall catalytic activity determining the phenotypic severity. PMID:25099252

  18. Role of MLH1 methylation in esophageal cancer carcinogenesis and its clinical significance.

    PubMed

    Li, Jinyun; Ye, Dong; Wang, Lei; Peng, Yingying; Li, Qun; Deng, Hongxia; Zhou, Chongchang

    2018-01-01

    The mutL homolog-1 ( MLH1 ) is a DNA mismatch repair gene and has been reported to be frequently methylated in numerous cancers. However, the association between MLH1 methylation and esophageal cancer (EC), as well as its clinical significance, remains unclear. Hence, we conducted a systematic meta-analysis based on 19 articles (including 1384 ECs, 345 premalignant lesions, and 1244 healthy controls). Our analysis revealed that the frequency of MLH1 methylation was significantly elevated during EC carcinogenesis. In addition, we observed that MLH1 promoter methylation was associated with age (odds ratio [OR]=1.79; 95% CI =1.20-2.66), advanced tumor grade (OR=3.7; 95% CI =2.37-5.77), lymph node metastasis (OR=2.65; 95% CI =1.81-3.88), distant metastasis (OR=7.60; 95% CI =1.23-47.19), advanced clinical stage (OR=4.46; 95% CI =2.88-6.91), and poor prognosis in EC patients (hazard ratio =1.64, 95% CI =1.00-2.69). The pooled sensitivity, specificity, and area under the curve of MLH1 methylation in EC patients versus healthy individuals were 0.15, 0.99, and 0.77, respectively. Our findings indicate that MLH1 methylation is involved in the carcinogenesis, progression, and metastasis of EC. Moreover, methylated MLH1 could be a potential diagnostic and prognostic biomarker for EC.

  19. Genes with mutation significance were highly associated with the clinical pattern of patients with breast cancer.

    PubMed

    Ding, Wan-Jun; Zeng, Tao; Wang, Li-Jun; Lei, Hong-Bo; Ge, Wei; Wang, Zhi

    2017-11-17

    In the United States, breast cancer is the second leading cause of cancer death in women. Over the past 20 years, breast cancer incidence and mortality rates increased rapidly in developing regions. We aimed to identify the gene mutation patterns that associated with the clinical patterns, including survival status, histo-pathological classes and so forth, of breast cancer. We retrieved 1098 cases of the clinical information, and level-3 legacy data of mRNA expression level, protein expression data and mutation files from GDC data portal. The genes with mutation significance were obtained. We studied the impacts of mutation types on the expression levels of mRNA and protein. Different statistics methods were used to calculate the correlation between the mutation types and the expression data or histo-clinical measures. There were 24 genes with mutation significance identified. The most mutated genes were selected to study the role of specific mutations played on the patients with breast cancer. One interesting finding was the missense mutations on TP53 were related with high expression levels of mRNA and protein. The missense mutations on TP53 were highly related with the morphology, race, ER status, PR status and HER2 Status, while the truncated mutations were only related with the morphology, ER status and PR status. The missense mutation on PIK3CA was highly associated with the morphology, race, ER status and PR status. The mutants with different mutants and the wild type of the most mutated genes had different impacts on the histo-clinical measures that might help personalized therapy.

  20. Identification and Functional Analysis of ZIC3 Mutations in Heterotaxy and Related Congenital Heart Defects

    PubMed Central

    Ware, Stephanie M.; Peng, Jianlan; Zhu, Lirong; Fernbach, Susan; Colicos, Suzanne; Casey, Brett; Towbin, Jeffrey; Belmont, John W.

    2004-01-01

    Mutations in the zinc finger transcription factor ZIC3 cause X-linked heterotaxy and have also been identified in patients with isolated congenital heart disease (CHD). To determine the relative contribution of ZIC3 mutations to both heterotaxy and isolated CHD, we screened the coding region of ZIC3 in 194 unrelated patients, including 61 patients with classic heterotaxy, 93 patients with heart defects characteristic of heterotaxy, and 11 patients with situs inversus totalis. Five novel ZIC3 mutations in three classic heterotaxy kindreds and two sporadic CHD cases were identified. None of these alleles was found in 97 ethnically matched control samples. On the basis of these analyses, we conclude that the phenotypic spectrum of ZIC3 mutations should be expanded to include affected females and CHD not typical for heterotaxy. This screening of a cohort of patients with sporadic heterotaxy indicates that ZIC3 mutations account for ∼1% of affected individuals. Missense and nonsense mutations were found in the highly conserved zinc finger–binding domain and in the N-terminal protein domain. Functional analysis of all currently known ZIC3 point mutations indicates that mutations in the putative zinc finger DNA binding domain and in the N-terminal domain result in loss of reporter gene transactivation. It is surprising that transfection studies demonstrate aberrant cytoplasmic localization resulting from mutations between amino acids 253–323 of the ZIC3 protein, indicating that the pathogenesis of a subset of ZIC3 mutations results at least in part from failure of appropriate nuclear localization. These results further expand the phenotypic and genotypic spectrum of ZIC3 mutations and provide initial mechanistic insight into their functional consequences. PMID:14681828

  1. Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs.

    PubMed

    Harrington, Jill M; Kolodner, Richard D

    2007-09-01

    DNA mismatch repair is thought to act through two subpathways involving the recognition of base-base and insertion/deletion mispairs by the Msh2-Msh6 heterodimer and the recognition of insertion/deletion mispairs by the Msh2-Msh3 heterodimer. Here, through genetic and biochemical approaches, we describe a previously unidentified role of the Msh2-Msh3 heterodimer in the recognition of base-base mispairs and the suppression of homology-mediated duplication and deletion mutations. Saccharomyces cerevisiae msh3 mutants did not show an increase in the rate of base substitution mutations by the CAN1 forward mutation assay compared to the rate for the wild type but did show an altered spectrum of base substitution mutations, including an increased accumulation of base pair changes from GC to CG and from AT to TA; msh3 mutants also accumulated homology-mediated duplication and deletion mutations. The mutation spectrum of mlh3 mutants paralleled that of msh3 mutants, suggesting that the Mlh1-Mlh3 heterodimer may also play a role in the repair of base-base mispairs and in the suppression of homology-mediated duplication and deletion mutations. Mispair binding analysis with purified Msh2-Msh3 and DNA substrates derived from CAN1 sequences found to be mutated in vivo demonstrated that Msh2-Msh3 exhibited robust binding to specific base-base mispairs that was consistent with functional mispair binding.

  2. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy.

    PubMed

    Minetti, C; Sotgia, F; Bruno, C; Scartezzini, P; Broda, P; Bado, M; Masetti, E; Mazzocco, M; Egeo, A; Donati, M A; Volonte, D; Galbiati, F; Cordone, G; Bricarelli, F D; Lisanti, M P; Zara, F

    1998-04-01

    Limb-girdle muscular dystrophy (LGMD) is a clinically and genetically heterogeneous group of myopathies, including autosomal dominant and recessive forms. To date, two autosomal dominant forms have been recognized: LGMD1A, linked to chromosome 5q, and LGMD1B, associated with cardiac defects and linked to chromosome 1q11-21. Here we describe eight patients from two different families with a new form of autosomal dominant LGMD, which we propose to call LGMD1C, associated with a severe deficiency of caveolin-3 in muscle fibres. Caveolin-3 (or M-caveolin) is the muscle-specific form of the caveolin protein family, which also includes caveolin-1 and -2. Caveolins are the principal protein components of caveolae (50-100 nm invaginations found in most cell types) which represent appendages or sub-compartments of plasma membranes. We localized the human caveolin-3 gene (CAV3) to chromosome 3p25 and identified two mutations in the gene: a missense mutation in the membrane-spanning region and a micro-deletion in the scaffolding domain. These mutations may interfere with caveolin-3 oligomerization and disrupt caveolae formation at the muscle cell plasma membrane.

  3. Inherited biallelic CSF3R mutations in severe congenital neutropenia

    PubMed Central

    Triot, Alexa; Järvinen, Päivi M.; Arostegui, Juan I.; Murugan, Dhaarini; Kohistani, Naschla; Dapena Díaz, José Luis; Racek, Tomas; Puchałka, Jacek; Gertz, E. Michael; Schäffer, Alejandro A.; Kotlarz, Daniel; Pfeifer, Dietmar; Díaz de Heredia Rubio, Cristina; Ozdemir, Mehmet Akif; Patiroglu, Turkan; Karakukcu, Musa; Sánchez de Toledo Codina, José; Yagüe, Jordi; Touw, Ivo P.; Unal, Ekrem

    2014-01-01

    Severe congenital neutropenia (SCN) is characterized by low numbers of peripheral neutrophil granulocytes and a predisposition to life-threatening bacterial infections. We describe a novel genetic SCN type in 2 unrelated families associated with recessively inherited loss-of-function mutations in CSF3R, encoding the granulocyte colony-stimulating factor (G-CSF) receptor. Family A, with 3 affected children, carried a homozygous missense mutation (NM_000760.3:c.922C>T, NP_000751.1:p.Arg308Cys), which resulted in perturbed N-glycosylation and aberrant localization to the cell surface. Family B, with 1 affected infant, carried compound heterozygous deletions provoking frameshifts and premature stop codons (NM_000760.3:c.948_963del, NP_000751.1:p.Gly316fsTer322 and NM_000760.3:c.1245del, NP_000751.1:p.Gly415fsTer432). Despite peripheral SCN, all patients had morphologic evidence of full myeloid cell maturation in bone marrow. None of the patients responded to treatment with recombinant human G-CSF. Our study highlights the genetic and morphologic SCN variability and provides evidence both for functional importance and redundancy of G-CSF receptor-mediated signaling in human granulopoiesis. PMID:24753537

  4. Spectrum of MECP2 gene mutations in a cohort of Indian patients with Rett syndrome: report of two novel mutations.

    PubMed

    Das, Dhanjit Kumar; Raha, Sarbani; Sanghavi, Daksha; Maitra, Anurupa; Udani, Vrajesh

    2013-02-15

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, primarily affecting females and characterized by developmental regression, epilepsy, stereotypical hand movements, and motor abnormalities. Its prevalence is about 1 in 10,000 female births. Rett syndrome is caused by mutations within methyl CpG-binding protein 2 (MECP2) gene. Over 270 individual nucleotide changes which cause pathogenic mutations have been reported. However, eight most commonly occurring missense and nonsense mutations account for almost 70% of all patients. We screened 90 individuals with Rett syndrome phenotype. A total of 19 different MECP2 mutations and polymorphisms were identified in 27 patients. Of the 19 mutations, we identified 7 (37%) frameshift, 6 (31%) nonsense, 14 (74%) missense mutations and one duplication (5%). The most frequent pathogenic changes were: missense p.T158M (11%), p.R133C (7.4%), and p.R306C (7.4%) and nonsense p.R168X (11%), p.R255X (7.4%) mutations. We have identified two novel mutations namely p.385-388delPLPP present in atypical patients and p.Glu290AlafsX38 present in a classical patient of Rett syndrome. Sequence homology for p.385-388delPLPP mutation revealed that these 4 amino acids were conserved across mammalian species. This indicated the importance of these 4 amino acids in structure and function of the protein. A novel variant p.T479T has also been identified in a patient with atypical Rett syndrome. A total of 62 (69%) patients remained without molecular genetics diagnosis that necessitates further search for mutations in other genes like CDKL5 and FOXG1 that are known to cause Rett phenotype. The majority of mutations are detected in exon 4 and only one mutation was present in exon 3. Therefore, our study suggests the need for screening exon 4 of MECP2 as first line of diagnosis in these patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Structural distortions due to missense mutations in human formylglycine-generating enzyme leading to multiple sulfatase deficiency.

    PubMed

    Meshach Paul, D; Chadah, Tania; Senthilkumar, B; Sethumadhavan, Rao; Rajasekaran, R

    2017-11-03

    The major candidate for multiple sulfatase deficiency is a defective formylglycine-generating enzyme (FGE). Though adequately produced, mutations in FGE stall the activation of sulfatases and prevent their activity. Missense mutations, viz. E130D, S155P, A177P, W179S, C218Y, R224W, N259I, P266L, A279V, C336R, R345C, A348P, R349Q and R349W associated with multiple sulfatase deficiency are yet to be computationally studied. Aforementioned mutants were initially screened through ws-SNPs&GO 3D program. Mutant R345C acquired the highest score, and hence was studied in detail. Discrete molecular dynamics explored structural distortions due to amino acid substitution. Therein, comparative analyses of wild type and mutant were carried out. Changes in structural contours were observed between wild type and mutant. Mutant had low conformational fluctuation, high atomic mobility and more compactness than wild type. Moreover, free energy landscape showed mutant to vary in terms of its conformational space as compared to wild type. Subsequently, wild type and mutant were subjected to single-model analyses. Mutant had lesser intra molecular interactions than wild type suggesting variations pertaining to its secondary structure. Furthermore, simulated thermal denaturation showed dissimilar pattern of hydrogen bond dilution. Effects of these variations were observed as changes in elements of secondary structure. Docking studies of mutant revealed less favourable binding energy towards its substrate as compared to wild type. Therefore, theoretical explanations for structural distortions of mutant R345C leading to multiple sulfatase deficiency were revealed. The protocol of the study could be useful to examine the effectiveness of pharmacological chaperones prior to experimental studies.

  6. CPT1A Missense Mutation Associated With Fatty Acid Metabolism and Reduced Height in Greenlanders.

    PubMed

    Skotte, Line; Koch, Anders; Yakimov, Victor; Zhou, Sirui; Søborg, Bolette; Andersson, Mikael; Michelsen, Sascha W; Navne, Johan E; Mistry, Jacqueline M; Dion, Patrick A; Pedersen, Michael L; Børresen, Malene L; Rouleau, Guy A; Geller, Frank; Melbye, Mads; Feenstra, Bjarke

    2017-06-01

    Inuit have lived for thousands of years in an extremely cold environment on a diet dominated by marine-derived fat. To investigate how this selective pressure has affected the genetic regulation of fatty acid metabolism, we assessed 233 serum metabolic phenotypes in a population-based sample of 1570 Greenlanders. Using array-based and targeted genotyping, we found that rs80356779, a p.Pro479Leu variant in CPT1A , was strongly associated with markers of n -3 fatty acid metabolism, including degree of unsaturation ( P =1.16×10 - 34 ), levels of polyunsaturated fatty acids, n -3 fatty acids, and docosahexaoenic acid relative to total fatty acid levels ( P =2.35×10 - 15 , P =4.02×10 - 19 , and P =7.92×10 - 27 ). The derived allele (L479) occurred at a frequency of 76.2% in our sample while being absent in most other populations, and we found strong signatures of positive selection at the locus. Furthermore, we found that each copy of L479 reduced height by an average of 2.1 cm ( P =1.04×10 - 9 ). In exome sequencing data from a sister population, the Nunavik Inuit, we found no other likely causal candidate variant than rs80356779. Our study shows that a common CPT1A missense mutation is strongly associated with a range of metabolic phenotypes and reduced height in Greenlanders. These findings are important from a public health perspective and highlight the usefulness of complex trait genetic studies in isolated populations. © 2017 American Heart Association, Inc.

  7. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System.

    PubMed

    Smith, Catherine E; Bowen, Nikki; Graham, William J; Goellner, Eva M; Srivatsan, Anjana; Kolodner, Richard D

    2015-08-28

    Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5' nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3' nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg(2+) and Mn(2+) for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System*

    PubMed Central

    Smith, Catherine E.; Bowen, Nikki; Graham, William J.; Goellner, Eva M.; Srivatsan, Anjana; Kolodner, Richard D.

    2015-01-01

    Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5′ nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3′ nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg2+ and Mn2+ for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR. PMID:26170454

  9. Leigh disease presenting in utero due to a novel missense mutation in the mitochondrial DNA-ND3.

    PubMed

    Leshinsky-Silver, Esther; Lev, Dorit; Malinger, Gustavo; Shapira, Daniel; Cohen, Sarit; Lerman-Sagie, Tally; Saada, Ann

    2010-05-01

    Leigh syndrome can be caused by defects in both nuclear and mitochondrial genes involved in energy metabolism. Recently, an increasing number of mutations in mitochondrial DNA encoding regions, especially in NADH dehydrogenase (respiratory chain complex I) subunits, have been reported as causative of early onset Leigh syndrome. We describe a patient whose fetal brain ultrasound demonstrated periventricular pseudocyst suggestive of a possible mitochondrial disorder who presented postnatally with Leigh syndrome. A muscle biopsy demonstrated a partial decrease in complex I and pyruvate dehydrogenase (PDH-E1 alpha) activity. Sequencing of the PDH-E1 alpha gene did not reveal any mutation. Sequencing of the mtDNA revealed a novel heteroplasmic G10254A (D66N) mutation in the ND3 gene. This change results in a substitution of aspartic acid to asparagine in a highly conserved domain of the ND3 subunit. The mutation could not be detected in the mother's blood or urine sediment. Blue native gel electrophoresis of muscle mitochondria revealed a normal size, albeit a decreased level of complex I. The G10254A substitution in the mtDNA-ND3 gene is another cause of maternally inherited Leigh syndrome. This case demonstrates that periventricular pseudocysts may be the initial in utero presentation in patients with mitochondrial disorders. We emphasize the importance of screening the mtDNA in pediatric patients as the first step in molecular diagnosis of Leigh syndrome. (c) 2010 Elsevier Inc. All rights reserved.

  10. Homozygosity for a newly identified missense mutation in a patient with very severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID).

    PubMed Central

    Hirschhorn, R; Chakravarti, V; Puck, J; Douglas, S D

    1991-01-01

    We have identified a previously unrecognized missense mutation in a patient with severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID). The mutation is a G646-to-A transition at a CG dinucleotide and predicts a glycine-to-arginine substitution at codon 216. Computer analysis of secondary structure predicts a major alteration with loss of a beta-pleated sheet in a highly conserved region of the protein. The basepair substitution also generates a new site for the restriction enzyme BstXI in exon 7 of the genomic DNA. Digestion of genomic DNA from the patient and from his parents revealed that he was homozygous for the mutation and that his mother and father were carriers. This mutation in homozygous form appears to be associated with very severe disease, since the patient had perinatal onset of clinical manifestations of SCID, the highest concentration of the toxic metabolite deoxyATP in nine patients studied, and a relatively poor immunologic response during the initial 2 years of therapy with polyethylene glycol-adenosine deaminase. Analysis of DNA from 21 additional patients with ADA-SCID and from 19 unrelated normals revealed that, while none of the normal individuals showed the abnormal restriction fragment, two of the 21 patients studied were heterozygous for the G646-to-A mutation. Images Figure 2 PMID:1680289

  11. A critical functional missense mutation (H173R) in the bovine PROP1 gene significantly affects growth traits in cattle.

    PubMed

    Pan, Chuanying; Wu, Chongyang; Jia, Wenchao; Xu, Yao; Lei, Chuzhao; Hu, Shenrong; Lan, Xianyong; Chen, Hong

    2013-12-01

    The PROP1 protein, encoded by the prophet of Pit-1 (PROP1) gene, exhibits both DNA-binding and transcriptional activation abilities. Its expression leads to the ontogenesis of growth hormone (GH), prolactin (PRL), thyroid-stimulating hormone (TSH), and pituitary hormone. The missense mutation H173R in PROP1 may result in deficiencies of GH, PRL, TSH, and Pit-1, thereby affecting growth traits. The objective of this study was to characterize the H173R mutation within the PROP1 gene and examine its associations with growth traits in cattle. Accordingly, the H173R mutation was genotyped in 1207 cows belonging to five Chinese native breeds. Three genotypes were identified among the specimens, with genotype AA being the major one. Consequently, the "G" allele was the minor allele. Association testing revealed that the H173R mutation was significantly associated with body weight, average daily weight gain and physical parameters in the analyzed breeds. Interestingly, the cows with genotype AG and/or AA had superior growth traits compared with those expressing the GG genotype, in all tested breeds. These findings revealed that the "A" allele had positive effects on growth traits, which was consistent with the increasing binding ability and enhanced activation capacity associated with the bovine isoform PROP1-173H, representing the "A" allele. Therefore, the H173R mutation can be considered as a DNA marker for selecting individuals with superior growth traits, thereby contributing to research on breeding and genetics in the beef industry. © 2013.

  12. Rapid Proteasomal Degradation of Mutant Proteins Is the Primary Mechanism Leading to Tumorigenesis in Patients With Missense AIP Mutations

    PubMed Central

    Hernández-Ramírez, Laura C.; Martucci, Federico; Morgan, Rhodri M. L.; Trivellin, Giampaolo; Tilley, Daniel; Ramos-Guajardo, Nancy; Iacovazzo, Donato; D'Acquisto, Fulvio; Prodromou, Chrisostomos

    2016-01-01

    Context: The pathogenic effect of mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene (AIPmuts) in pituitary adenomas is incompletely understood. We have identified the primary mechanism of loss of function for missense AIPmuts. Objective: This study sought to analyze the mechanism/speed of protein turnover of wild-type and missense AIP variants, correlating protein half-life with clinical parameters. Design and Setting: Half-life and protein–protein interaction experiments and cross-sectional analysis of AIPmut positive patients' data were performed in a clinical academic research institution. Patients: Data were obtained from our cohort of pituitary adenoma patients and literature-reported cases. Interventions: Protein turnover of endogenous AIP in two cell lines and fifteen AIP variants overexpressed in HEK293 cells was analyzed via cycloheximide chase and proteasome inhibition. Glutathione-S-transferase pull-down and quantitative mass spectrometry identified proteins involved in AIP degradation; results were confirmed by coimmunoprecipitation and gene knockdown. Relevant clinical data was collected. Main Outcome Measures: Half-life of wild-type and mutant AIP proteins and its correlation with clinical parameters. Results: Endogenous AIP half-life was similar in HEK293 and lymphoblastoid cells (43.5 and 32.7 h). AIP variants were divided into stable proteins (median, 77.7 h; interquartile range [IQR], 60.7–92.9 h), and those with short (median, 27 h; IQR, 21.6–28.7 h) or very short (median, 7.7 h; IQR, 5.6–10.5 h) half-life; proteasomal inhibition rescued the rapid degradation of mutant proteins. The experimental half-life significantly correlated with age at diagnosis of acromegaly/gigantism (r = 0.411; P = .002). The FBXO3-containing SKP1–CUL1–F-box protein complex was identified as the E3 ubiquitin-ligase recognizing AIP. Conclusions: AIP is a stable protein, driven to ubiquitination by the SKP1–CUL1–F-box protein complex

  13. Saccharomyces cerevisiae Msh2-Msh3 Acts in Repair of Base-Base Mispairs▿ †

    PubMed Central

    Harrington, Jill M.; Kolodner, Richard D.

    2007-01-01

    DNA mismatch repair is thought to act through two subpathways involving the recognition of base-base and insertion/deletion mispairs by the Msh2-Msh6 heterodimer and the recognition of insertion/deletion mispairs by the Msh2-Msh3 heterodimer. Here, through genetic and biochemical approaches, we describe a previously unidentified role of the Msh2-Msh3 heterodimer in the recognition of base-base mispairs and the suppression of homology-mediated duplication and deletion mutations. Saccharomyces cerevisiae msh3 mutants did not show an increase in the rate of base substitution mutations by the CAN1 forward mutation assay compared to the rate for the wild type but did show an altered spectrum of base substitution mutations, including an increased accumulation of base pair changes from GC to CG and from AT to TA; msh3 mutants also accumulated homology-mediated duplication and deletion mutations. The mutation spectrum of mlh3 mutants paralleled that of msh3 mutants, suggesting that the Mlh1-Mlh3 heterodimer may also play a role in the repair of base-base mispairs and in the suppression of homology-mediated duplication and deletion mutations. Mispair binding analysis with purified Msh2-Msh3 and DNA substrates derived from CAN1 sequences found to be mutated in vivo demonstrated that Msh2-Msh3 exhibited robust binding to specific base-base mispairs that was consistent with functional mispair binding. PMID:17636021

  14. [Mutations of amyloid precursor protein in early-onset familial Alzheimer's disease].

    PubMed

    Naruse, S; Tsuji, S; Miyatake, T

    1992-09-01

    Genetic linkage studies of familial Alzheimer's disease (FAD) have suggested that some form of early-onset FAD is linked to proximal long arm of chromosome 21. It has been also suggested that some form of late-onset FAD is linked to long arm of chromosome 19. Goate et al have identified a mis-sense mutation (Val to Ile) in exon 17 of the amyloid precursor protein (APP) gene in 2 of 16 early-onset FAD families, and have shown that the FAD locus in an FAD family is tightly linked to the mis-sense mutation. To determine if the mis-sense mutation is observed in different ethnic origine, we have studied some early-onset FAD families. Two early-onset FAD families showed the existence of the mutation. As the mutation has been identified in different ethnic origine and the mutation has not been observed in normal individuals, it strengthen hypothesis that the mutation is pathogenic. Recently, Val to Phe and Val to Gly mutations have been also identified at the same codon (Codon 717) of the APP gene.

  15. A missense mutation in MKRN3 in a Danish girl with central precocious puberty and her brother with early puberty.

    PubMed

    Känsäkoski, Johanna; Raivio, Taneli; Juul, Anders; Tommiska, Johanna

    2015-12-01

    Idiopathic central precocious puberty (ICPP) results from the premature reactivation of the hypothalamic-pituitary-gonadal axis leading to development of secondary sexual characteristics prior to 8 y in girls or 9 y in boys. Since the initial discovery of mutations in the maternally imprinted MKRN3 gene in 2013, several case reports have described mutations in this gene in ICPP patients from different populations, highlighting the importance of MKRN3 as a regulator of pubertal onset. We screened 29 Danish girls with ICPP for mutations in MKRN3. Expression of MKRN3 in human hypothalamic complementary DNA (cDNA) was investigated by PCR. One paternally inherited rare variant, c.1034G>A (p.Arg345His), was identified in one girl with ICPP and in her brother with early puberty. The variant is predicted to be deleterious by three different in silico prediction programs. Expression of MKRN3 was confirmed in adult human hypothalamus. Our results are in line with previous studies in which paternally inherited MKRN3 mutations have been found both in males and in females with ICPP or early puberty. Our report further expands the set of MKRN3 mutations identified in ICPP patients across diverse populations, thus supporting the major regulatory function of MKRN3 in pubertal onset.

  16. A Homozygous Missense Mutation in TGM5 Abolishes Epidermal Transglutaminase 5 Activity and Causes Acral Peeling Skin Syndrome

    PubMed Central

    Cassidy, Andrew J.; van Steensel, Maurice A. M.; Steijlen, Peter M.; van Geel, Michel; Velden, Jaap van der; Morley, Susan M.; Terrinoni, Alessandro; Melino, Gerry; Candi, Eleonora; McLean, W. H. Irwin

    2005-01-01

    Peeling skin syndrome is an autosomal recessive genodermatosis characterized by the shedding of the outer epidermis. In the acral form, the dorsa of the hands and feet are predominantly affected. Ultrastructural analysis has revealed tissue separation at the junction between the granular cells and the stratum corneum in the outer epidermis. Genomewide linkage analysis in a consanguineous Dutch kindred mapped the gene to 15q15.2 in the interval between markers D15S1040 and D15S1016. Two homozygous missense mutations, T109M and G113C, were found in TGM5, which encodes transglutaminase 5 (TG5), in all affected persons in two unrelated families. The mutation was present on the same haplotype in both kindreds, indicating a probable ancestral mutation. TG5 is strongly expressed in the epidermal granular cells, where it cross-links a variety of structural proteins in the terminal differentiation of the epidermis to form the cornified cell envelope. An established, in vitro, biochemical cross-linking assay revealed that, although T109M is not pathogenic, G113C completely abolishes TG5 activity. Three-dimensional modeling of TG5 showed that G113C lies close to the catalytic domain, and, furthermore, that this glycine residue is conserved in all known transglutaminases, which is consistent with pathogenicity. Other families with more-widespread peeling skin phenotypes lacked TGM5 mutations. This study identifies the first causative gene in this heterogeneous group of skin disorders and demonstrates that the protein cross-linking function performed by TG5 is vital for maintaining cell-cell adhesion between the outermost layers of the epidermis. PMID:16380904

  17. Role of MLH1 methylation in esophageal cancer carcinogenesis and its clinical significance

    PubMed Central

    Li, Jinyun; Ye, Dong; Wang, Lei; Peng, Yingying; Li, Qun; Deng, Hongxia

    2018-01-01

    The mutL homolog-1 (MLH1) is a DNA mismatch repair gene and has been reported to be frequently methylated in numerous cancers. However, the association between MLH1 methylation and esophageal cancer (EC), as well as its clinical significance, remains unclear. Hence, we conducted a systematic meta-analysis based on 19 articles (including 1384 ECs, 345 premalignant lesions, and 1244 healthy controls). Our analysis revealed that the frequency of MLH1 methylation was significantly elevated during EC carcinogenesis. In addition, we observed that MLH1 promoter methylation was associated with age (odds ratio [OR]=1.79; 95% CI =1.20–2.66), advanced tumor grade (OR=3.7; 95% CI =2.37–5.77), lymph node metastasis (OR=2.65; 95% CI =1.81–3.88), distant metastasis (OR=7.60; 95% CI =1.23–47.19), advanced clinical stage (OR=4.46; 95% CI =2.88–6.91), and poor prognosis in EC patients (hazard ratio =1.64, 95% CI =1.00–2.69). The pooled sensitivity, specificity, and area under the curve of MLH1 methylation in EC patients versus healthy individuals were 0.15, 0.99, and 0.77, respectively. Our findings indicate that MLH1 methylation is involved in the carcinogenesis, progression, and metastasis of EC. Moreover, methylated MLH1 could be a potential diagnostic and prognostic biomarker for EC. PMID:29440913

  18. Gene Augmentation Therapy for a Missense Substitution in the cGMP-Binding Domain of Ovine CNGA3 Gene Restores Vision in Day-Blind Sheep

    PubMed Central

    Gootwine, Elisha; Abu-Siam, Mazen; Obolensky, Alexey; Rosov, Alex; Honig, Hen; Nitzan, Tali; Shirak, Andrey; Ezra-Elia, Raaya; Yamin, Esther; Banin, Eyal; Averbukh, Edward; Hauswirth, William W.; Ofri, Ron; Seroussi, Eyal

    2017-01-01

    Purpose Applying CNGA3 gene augmentation therapy to cure a novel causative mutation underlying achromatopsia (ACHM) in sheep. Methods Impaired vision that spontaneously appeared in newborn lambs was characterized by behavioral, electroretinographic (ERG), and histologic techniques. Deep-sequencing reads of an affected lamb and an unaffected lamb were compared within conserved genomic regions orthologous to human genes involved in similar visual impairment. Observed nonsynonymous amino acid substitutions were classified by their deleteriousness score. The putative causative mutation was assessed by producing compound CNGA3 heterozygotes and applying gene augmentation therapy using the orthologous human cDNA. Results Behavioral assessment revealed day blindness, and subsequent ERG examination showed attenuated photopic responses. Histologic and immunohistochemical examination of affected sheep eyes did not reveal degeneration, and cone photoreceptors expressing CNGA3 were present. Bioinformatics and sequencing analyses suggested a c.1618G>A, p.Gly540Ser substitution in the GMP-binding domain of CNGA3 as the causative mutation. This was confirmed by genetic concordance test and by genetic complementation experiment: All five compound CNGA3 heterozygotes, carrying both p.Arg236* and p.Gly540Ser mutations in CNGA3, were day-blind. Furthermore, subretinal delivery of the intact human CNGA3 gene using an adeno-associated viral vector (AAV) restored photopic vision in two affected p.Gly540Ser homozygous rams. Conclusions The c.1618G>A, p.Gly540Ser substitution in CNGA3 was identified as the causative mutation for a novel form of ACHM in Awassi sheep. Gene augmentation therapy restored vision in the affected sheep. This novel mutation provides a large-animal model that is valid for most human CNGA3 ACHM patients; the majority of them carry missense rather than premature-termination mutations. PMID:28282490

  19. Gene Augmentation Therapy for a Missense Substitution in the cGMP-Binding Domain of Ovine CNGA3 Gene Restores Vision in Day-Blind Sheep.

    PubMed

    Gootwine, Elisha; Abu-Siam, Mazen; Obolensky, Alexey; Rosov, Alex; Honig, Hen; Nitzan, Tali; Shirak, Andrey; Ezra-Elia, Raaya; Yamin, Esther; Banin, Eyal; Averbukh, Edward; Hauswirth, William W; Ofri, Ron; Seroussi, Eyal

    2017-03-01

    Applying CNGA3 gene augmentation therapy to cure a novel causative mutation underlying achromatopsia (ACHM) in sheep. Impaired vision that spontaneously appeared in newborn lambs was characterized by behavioral, electroretinographic (ERG), and histologic techniques. Deep-sequencing reads of an affected lamb and an unaffected lamb were compared within conserved genomic regions orthologous to human genes involved in similar visual impairment. Observed nonsynonymous amino acid substitutions were classified by their deleteriousness score. The putative causative mutation was assessed by producing compound CNGA3 heterozygotes and applying gene augmentation therapy using the orthologous human cDNA. Behavioral assessment revealed day blindness, and subsequent ERG examination showed attenuated photopic responses. Histologic and immunohistochemical examination of affected sheep eyes did not reveal degeneration, and cone photoreceptors expressing CNGA3 were present. Bioinformatics and sequencing analyses suggested a c.1618G>A, p.Gly540Ser substitution in the GMP-binding domain of CNGA3 as the causative mutation. This was confirmed by genetic concordance test and by genetic complementation experiment: All five compound CNGA3 heterozygotes, carrying both p.Arg236* and p.Gly540Ser mutations in CNGA3, were day-blind. Furthermore, subretinal delivery of the intact human CNGA3 gene using an adeno-associated viral vector (AAV) restored photopic vision in two affected p.Gly540Ser homozygous rams. The c.1618G>A, p.Gly540Ser substitution in CNGA3 was identified as the causative mutation for a novel form of ACHM in Awassi sheep. Gene augmentation therapy restored vision in the affected sheep. This novel mutation provides a large-animal model that is valid for most human CNGA3 ACHM patients; the majority of them carry missense rather than premature-termination mutations.

  20. Novel USH2A mutations in Israeli patients with retinitis pigmentosa and Usher syndrome type 2.

    PubMed

    Kaiserman, Nadia; Obolensky, Alexey; Banin, Eyal; Sharon, Dror

    2007-02-01

    To identify USH2A mutations in Israeli patients with autosomal-recessive Usher syndrome type 2 (USH2) and retinitis pigmentosa (RP). Patients from 95 families with RP and 4 with USH2 were clinically evaluated. USH2A exons 2-72 were scanned for mutations using single-strand conformation and sequencing analyses. The frequency of novel missense changes was determined in patients and controls using restriction endonucleases. The analysis revealed 3 USH2A mutations, 2 of which are novel, in 2 families with USH2 and a large family (MOL0051) with both USH2 and RP. Compound heterozygotes for 2 null mutations (Thr80fs and Arg737stop) in MOL0051 suffered from USH2 while compound heterozygotes for 1 of the null mutations and a novel missense mutation (Gly4674Arg) had nonsyndromic RP. Our results support the involvement of USH2A in nonsyndromic RP and we report here of a second, novel, missense mutation in this gene causing autosomal-recessive RP. Possible involvement of USH2A should be considered in the molecular genetic evaluation of patients with autosomal-recessive RP. Understanding the mechanism by which different USH2A mutations cause either USH2 or RP may assist in the development of novel therapeutic approaches.

  1. [NOTCH3 gene mutations in two Chinese families featuring cerebral autosomal dominant arteriopathy with subcortical infarct and leucoencephalopathy].

    PubMed

    Sun, Qiying; Li, Wenwen; Zhou, Yafang; Yi, Fang; Wang, Jianfeng; Hu, Yacen; Yao, Lingyan; Zhou, Lin; Xu, Hongwei

    2017-12-10

    To analyze potential mutations of the NOTCH3 gene in two Chinese families featuring cerebral autosomal dominant arteriopathy with subcortical infarct and leucoencephalopathy (CADASIL). The two probands and related family members and 100 healthy controls were recruited. Potential mutations of the NOTCH3 gene were screened by PCR and direct sequencing. PolyPhen-2 and SIFT software were used to predict the protein function. The conditions of both probands were adult-onset, with main clinical features including recurrent transient ischemic attacks and/or strokes, cognitive impairment. MRI findings suggested multiple cerebral infarcts and severe leukoencephalopathy. A heterozygous mutation c.328C>T (p.Arg110Cys), which was located in exon 3 of the NOTCH3 gene and known as a causative mutation, was identified in proband 1. A novel heterozygous mutation c.1013 G>C (p.Cys338Ser) located in exon 6 of the NOTCH3 gene was identified in the proband 2, which was not reported previously. The same mutations were not detected among the 100 unrelated healthy controls. Function analysis suggested that heterozygous mutation c.1013G>C can severely affect the functions of NOTCH3 protein. Two heterozygous missense mutations in the NOTCH3 gene have been identified in two families affected with CADASIL. The novel heterozygous Cys338Ser mutation in exon 6 of the NOTCH3 gene probably underlies the CADASIL.

  2. E2-EPF UCP regulates stability and functions of missense mutant pVHL via ubiquitin mediated proteolysis.

    PubMed

    Park, Kyeong-Su; Kim, Ju Hee; Shin, Hee Won; Chung, Kyung-Sook; Im, Dong-Soo; Lim, Jung Hwa; Jung, Cho-Rok

    2015-10-26

    Missense mutation of VHL gene is frequently detected in type 2 VHL diseases and linked to a wide range of pVHL functions and stability. Certain mutant pVHLs retain ability to regulate HIFs but lose their function by instability. In this case, regulating of degradation of mutant pVHLs, can be postulated as therapeutic method. The stability and cellular function of missense mutant pVHLs were determine in HEK293T transient expressing cell and 786-O stable cell line. Ubiquitination assay of mutant VHL proteins was performed in vitro system. Anticancer effect of adenovirus mediated shUCP expressing was evaluated using ex vivo mouse xenograft assay. Three VHL missense mutants (V155A, L158Q, and Q164R) are directly ubiquitinated by E2-EPF UCP (UCP) in vitro. Mutant pVHLs are more unstable than wild type in cell. Missense mutant pVHLs interact with UCP directly in both in vitro and cellular systems. Lacking all of lysine residues of pVHL result in resistance to ubiquitination thereby increase its stability. Missense mutant pVHLs maintained the function of E3 ligase to ubiquitinate HIF-1α in vitro. In cells expressing mutant pVHLs, Glut-1 and VEGF were relatively upregulated compared to their levels in cells expressing wild-type. Depletion of UCP restored missense mutant pVHLs levels and inhibited cell growth. Adenovirus-mediated shUCP RNA delivery inhibited tumor growth in ex vivo mouse xenograft model. These data suggest that targeting of UCP can be one of therapeutic method in type 2 VHL disease caused by unstable but functional missense mutant pVHL.

  3. The genetic spectrum and the evaluation of CADASIL screening scale in Chinese patients with NOTCH3 mutations.

    PubMed

    Liu, Xiao; Zuo, Yuehuan; Sun, Wei; Zhang, Wei; Lv, He; Huang, Yining; Xiao, Jiangxi; Yuan, Yun; Wang, Zhaoxia

    2015-07-15

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited small artery disease caused by NOTCH3 gene mutation. Here we report clinical, pathological and genetic profiles of 29 newly-diagnosed CADASIL patients, evaluation of the CADASIL scale in Chinese CADASIL patients, and reanalysis of all reported mainland Chinese patients with identified NOTCH3 gene mutation. We found two novel mutations (p.C134G and p.C291Y) and 13 reported NOTCH3 mutations in the newly-diagnosed group. CADASIL scale score was less than the cutoff score in 19 of 53 Chinese patients with NOTCH3 mutation, generating only a sensitivity of 64.1%. At the time of study, the total number of genetically confirmed CADASIL cases reached 158 from 97 unrelated mainland Chinese families, with 9/97 (9.3%) sporadic patients. The NOTCH3 gene mutation profile showed 43 mutations, with hotspots in exon 4, followed by exon 3. The considerable variability in onset age and CADASIL scale score in patients carrying the same NOTCH3 missense mutation suggested no obvious phenotype-genotype correlation. In conclusion, we report two novel mutations which expand the NOTCH3 mutational spectrum. Exons 4 and 3 are hotspots in mainland Chinese patients with NOTCH3 mutation. The low sensitivity of CADASIL scale in our patients group indicated that the CADASIL scale should be refined according to the clinical characteristics of Chinese CADASIL patients when used in Chinese populations. Copyright © 2015. Published by Elsevier B.V.

  4. alpha-Mannosidosis in the guinea pig: cloning of the lysosomal alpha-mannosidase cDNA and identification of a missense mutation causing alpha-mannosidosis.

    PubMed

    Berg, Thomas; Hopwood, John J

    2002-03-16

    alpha-Mannosidosis is a lysosomal storage disorder caused by deficient activity of the lysosomal alpha-mannosidase. We report here the sequencing and expression of the lysosomal alpha-mannosidase cDNA from normal and alpha-mannosidosis guinea pigs. The amino acid sequence of the guinea pig enzyme displayed 82-85% identity to the lysosomal alpha-mannosidase in other mammals. The cDNA of the alpha-mannosidosis guinea pig contained a missense mutation, 679C>T, leading to substitution of arginine by tryptophan at amino acid position 227 (R227W). The R227W allele segregated with the alpha-mannosidosis genotype in the guinea pig colony and introduction of R227W into the wild-type sequence eliminated the production of recombinant alpha-mannosidase activity in heterologous expression studies. Furthermore, the guinea pig mutation has been found in human patients. Our results strongly indicate that the 679C>T mutation causes alpha-mannosidosis and suggest that the guinea pig will be an excellent model for investigation of pathogenesis and evaluation of therapeutic strategies for human alpha-mannosidosis.

  5. Spectrum of rhodopsin mutations in Korean patients with retinitis pigmentosa

    PubMed Central

    Kim, Kwang Joong; Kim, Cinoo; Bok, Jeong; Kim, Kyung-Seon; Lee, Eun-Ju; Park, Sung Pyo; Chung, Hum; Han, Bok-Ghee; Kim, Hyung-Lae; Kimm, Kuchan; Yu, Hyeong Gon

    2011-01-01

    Purpose To determine the spectrum and frequency of rhodopsin gene (RHO) mutations in Korean patients with retinitis pigmentosa (RP) and to characterize genotype–phenotype correlations in patients with mutations. Methods The RHO mutations were screened by direct sequencing, and mutation prevalence was measured in patients and controls. The impact of missense mutations to RP was predicted by segregation analysis, peptide sequence alignment, and in silico analysis. The severity of disease in patients with the missense mutations was compared by visual acuity, electroretinography, optical coherence tomography, and kinetic visual field testing. Results Five heterozygous mutations were identified in six of 302 probands with RP, including a novel mutation (c.893C>A, p.A298D) and four known mutations (c.50C>T, p.T17M; c.533A>G, p.Y178C; c.888G>T, p.K296N; and c.1040C>T, p.P347L). The allele frequency of missense mutations was measured in 114 ethnically matched controls. p.A298D, newly identified in a sporadic patient, had never been found in controls and was predicted to be pathogenic. Among the patients with the missense mutations, we observed the most severe phenotype in patients with p.P347L, less severe phenotypes in patients with p.Y178C or p.A298D, and a relatively moderate phenotype in a patient with p.T17M. Conclusions The results reveal the spectrum of RHO mutations in Korean RP patients and clinical features that vary according to mutations. Our findings will be useful for understanding these genetic spectra and the genotype–phenotype correlations and will therefore help with predicting disease prognosis and facilitating the development of gene therapy. PMID:21677794

  6. An exonic missense mutation c.28G>A is associated with weak B blood group by affecting RNA splicing of the ABO gene.

    PubMed

    Cai, Xiaohong; Qian, Chengrui; Wu, Wenman; Lei, Hang; Ding, Qiulan; Zou, Wei; Xiang, Dong; Wang, Xuefeng

    2017-09-01

    The amino acid substitutions caused by ABO gene mutations are usually predicted to impact glycosyltransferase's function or its biosynthesis. Here we report an ABO exonic missense mutation that affects B-antigen expression by decreasing the mRNA level of the ABO gene rather than the amino acid change. Serologic studies including plasma total GTB transfer capacity were performed. The exon sequences of the ABO gene were analyzed by Sanger sequencing. B 310 cDNA with c.28G>A (p.G10R) mutation was expressed in HeLa cells and total GTB transfer capacity in cell supernatant was measured. Flow cytometry was performed on these HeLa cells after transfection, and agglutination of Hela-B weak cells was also examined. The mRNA of the ABO gene was analyzed by direct sequencing and real-time reverse transcriptase-polymerase chain reaction. A minigene construct was prepared to evaluate the potential of splicing. While plasma total GTB transfer capacity was undetectable in this B 3 -like individual, the relative percentage of antigen-expressing cells and mean fluorescence index of the B weak red blood cells (RBCs) were 19 and 14% of normal B RBCs, respectively. There was no significant difference of total GTB transfer capacity in cell supernatant and B-antigen expression on cell surfaces between HeLa cells transfected with B 310 cDNA and B cDNA. The mRNA expression level of B 310 in peripheral whole blood was significantly reduced. The amount of splicing is significantly lower in c.28G>A construct compared to that in wild-type construct after transfection in K562 cells. ABO c.28G>A mutation may cause B 3 -like subgroup by affecting RNA splicing of the ABO gene. © 2017 AABB.

  7. Clinical mutational profiling of 1006 lung cancers by next generation sequencing

    PubMed Central

    Illei, Peter B.; Belchis, Deborah; Tseng, Li-Hui; Nguyen, Doreen; De Marchi, Federico; Haley, Lisa; Riel, Stacy; Beierl, Katie; Zheng, Gang; Brahmer, Julie R.; Askin, Frederic B.; Gocke, Christopher D.; Eshleman, James R.; Forde, Patrick M.; Lin, Ming-Tseh

    2017-01-01

    Analysis of lung adenocarcinomas for actionable mutations has become standard of care. Here, we report our experience using next generation sequencing (NGS) to examine AKT1, BRAF, EGFR, ERBB2, KRAS, NRAS, and PIK3CA genes in 1006 non-small cell lung cancers in a clinical diagnostic setting. NGS demonstrated high sensitivity. Among 760 mutations detected, the variant allele frequency (VAF) was 2–5% in 33 (4.3%) mutations and 2–10% in 101 (13%) mutations. A single bioinformatics pipeline using Torrent Variant Caller, however, missed a variety of EGFR mutations. Mutations were detected in KRAS (36% of tumors), EGFR (19%) including 8 (0.8%) within the extracellular domain (4 at codons 108 and 4 at codon 289), BRAF (6.3%), and PIK3CA (3.7%). With a broader reportable range, exon 19 deletion and p.L858R accounted for only 36% and 26% of EGFR mutations and p.V600E accounted for only 24% of BRAF mutations. NGS provided accurate sequencing of complex mutations seen in 19% of EGFR exon 19 deletion mutations. Doublet (compound) EGFR mutations were observed in 29 (16%) of 187 EGFR-mutated tumors, including 69% with two non-p.L858R missense mutations and 24% with p.L858 and non-p.L858R missense mutations. Concordant VAFs suggests doublet EGFR mutations were present in a dominant clone and cooperated in oncogenesis. Mutants with predicted impaired kinase, observed in 25% of BRAF-mutated tumors, were associated with a higher incidence of concomitant activating KRAS mutations. NGS demonstrates high analytic sensitivity, broad reportable range, quantitative VAF measurement, single molecule sequencing to resolve complex deletion mutations, and simultaneous detection of concomitant mutations. PMID:29228562

  8. Four Novel Mutations in the ALPL Gene in Chinese patients with Odonto, Childhood and Adult Hypophosphatasia.

    PubMed

    Xu, Lijun; Pang, Qianqian; Jiang, Yan; Wang, Ou; Li, Mei; Xing, Xiaoping; Xia, Weibo

    2018-05-03

    Background and purpose: Hypophosphatasiais (HPP) is a rare inherited disorder characterized by defective bone and/or dental mineralization, and decreased serum alkaline phosphatase activity. ALPL , the only gene related with HPP, encodes tissue non-specific alkaline phosphatase (TNSALP). Few studies were carried out in ALPL gene mutations in the Chinese population with HPP. The purpose of this study is to elucidate the clinical and genetic characteristics of HPP in 5 unrelated Chinese families and 2 sporadic patients. Methods : 10 clinically diagnosed HPP patients from 5 unrelated Chinese families and 2 sporadic patients and 50 healthy controls were genetic investigated. All 12 exons and exon-intron boundaries of the ALPL gene were amplified by polymerase chain reaction and directly sequenced. The laboratory and radiological investigations were conducted simultaneously in these 10 HPP patients. A three-dimensional model of the TNSALP was used to predict the dominant negative effect of identified missense mutations. Results : 3 odonto, 3 childhood and 4 adult types of HPP were clinically diagnosed. 10 mutations were identified in 5 unrelated Chinese families and 2 sporadic patients, including 8 missense mutations and 2 frameshift mutations. Of which, 4 were novel: 1 frameshift mutation (p.R138Pfsx45); 3 missense mutations (p.C201R, p.V459A, p.C497S). No identical mutations and any other new ALPL mutations were found in unrelated 50 healthy controls. Conclusions : Our study demonstrated that the ALPL  gene mutations are responsible for HPP in these Chinese families. These findings will be useful for clinicians to improve understanding of this heritable bone disorder. ©2018 The Author(s).

  9. C-Terminal Fluorescent Labeling Impairs Functionality of DNA Mismatch Repair Proteins

    PubMed Central

    Brieger, Angela; Plotz, Guido; Hinrichsen, Inga; Passmann, Sandra; Adam, Ronja; Zeuzem, Stefan

    2012-01-01

    The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency. PMID:22348133

  10. A Novel Mutation in the XLRS1 Gene in a Korean Family with X-linked Retinoschisis

    PubMed Central

    Jwa, Nam Soo; Kim, Sung Soo; Lee, Sung Chul; Kwon, Oh Woong

    2006-01-01

    Purpose To report a novel missense mutation in the XLRS1 gene in a Korean family with X-linked retinoschisis. Methods Observation case report of a family with a proband with X-linked retinoschisis underwent complete ophthalmologic examination. Genomic DNA was excluded from the family's blood and all exons of the XLRS1 gene were amplified by polymerase chain reaction and analyzed using a direct sequencing method. Results A novel Leu103Phe missense mutation was identified. Conclusions A novel Leu103Phe mutation is an additional missense mutation which is responsible for the pathogenesis of X-linked retinoschisis. PMID:16768192

  11. Epigenetic Loss of MLH1 Expression in Normal Human Hematopoietic Stem Cell Clones is Defined by the Promoter CpG Methylation Pattern Observed by High-Throughput Methylation Specific Sequencing

    PubMed Central

    Kenyon, Jonathan; Nickel-Meester, Gabrielle; Qing, Yulan; Santos-Guasch, Gabriela; Drake, Ellen; PingfuFu; Sun, Shuying; Bai, Xiaodong; Wald, David; Arts, Eric; Gerson, Stanton L.

    2016-01-01

    Normal human hematopoietic stem and progenitor cells (HPC) lose expression of MLH1, an important mismatch repair (MMR) pathway gene, with age. Loss of MMR leads to replication dependent mutational events and microsatellite instability observed in secondary acute myelogenous leukemia and other hematologic malignancies. Epigenetic CpG methylation upstream of the MLH1 promoter is a contributing factor to acquired loss of MLH1 expression in tumors of the epithelia and proximal mucosa. Using single molecule high-throughput bisulfite sequencing we have characterized the CpG methylation landscape from −938 to −337 bp upstream of the MLH1 transcriptional start site (position +0), from 30 hematopoietic colony forming cell clones (CFC) either expressing or not expressing MLH1. We identify a correlation between MLH1 promoter methylation and loss of MLH1 expression. Additionally, using the CpG site methylation frequencies obtained in this study we were able to generate a classification algorithm capable of sorting the expressing and non-expressing CFC. Thus, as has been previously described for many tumor cell types, we report for the first time a correlation between the loss of MLH1 expression and increased MLH1 promoter methylation in CFC derived from CD34+ selected hematopoietic stem and progenitor cells. PMID:27570841

  12. Epigenetic Loss of MLH1 Expression in Normal Human Hematopoietic Stem Cell Clones is Defined by the Promoter CpG Methylation Pattern Observed by High-Throughput Methylation Specific Sequencing.

    PubMed

    Kenyon, Jonathan; Nickel-Meester, Gabrielle; Qing, Yulan; Santos-Guasch, Gabriela; Drake, Ellen; PingfuFu; Sun, Shuying; Bai, Xiaodong; Wald, David; Arts, Eric; Gerson, Stanton L

    Normal human hematopoietic stem and progenitor cells (HPC) lose expression of MLH1 , an important mismatch repair (MMR) pathway gene, with age. Loss of MMR leads to replication dependent mutational events and microsatellite instability observed in secondary acute myelogenous leukemia and other hematologic malignancies. Epigenetic CpG methylation upstream of the MLH1 promoter is a contributing factor to acquired loss of MLH1 expression in tumors of the epithelia and proximal mucosa. Using single molecule high-throughput bisulfite sequencing we have characterized the CpG methylation landscape from -938 to -337 bp upstream of the MLH1 transcriptional start site (position +0), from 30 hematopoietic colony forming cell clones (CFC) either expressing or not expressing MLH1 . We identify a correlation between MLH1 promoter methylation and loss of MLH1 expression. Additionally, using the CpG site methylation frequencies obtained in this study we were able to generate a classification algorithm capable of sorting the expressing and non-expressing CFC. Thus, as has been previously described for many tumor cell types, we report for the first time a correlation between the loss of MLH1 expression and increased MLH1 promoter methylation in CFC derived from CD34 + selected hematopoietic stem and progenitor cells.

  13. Characterization of pathogenic human MSH2 missense mutations using yeast as a model system: a laboratory course in molecular biology.

    PubMed

    Gammie, Alison E; Erdeniz, Naz

    2004-01-01

    This work describes the project for an advanced undergraduate laboratory course in cell and molecular biology. One objective of the course is to teach students a variety of cellular and molecular techniques while conducting original research. A second objective is to provide instruction in science writing and data presentation by requiring comprehensive laboratory reports modeled on the primary literature. The project for the course focuses on a gene, MSH2, implicated in the most common form of inherited colorectal cancer. Msh2 is important for maintaining the fidelity of genetic material where it functions as an important component of the DNA mismatch repair machinery. The goal of the project has two parts. The first part is to create mapped missense mutation listed in the human databases in the cognate yeast MSH2 gene and to assay for defects in DNA mismatch repair. The second part of the course is directed towards understanding in what way are the variant proteins defective for mismatch repair. Protein levels are analyzed to determine if the missense alleles display decreased expression. Furthermore, the students establish whether the Msh2p variants are properly localized to the nucleus using indirect immunofluorescence and whether the altered proteins have lost their ability to interact with other subunits of the MMR complex by creating recombinant DNA molecules and employing the yeast 2-hybrid assay.

  14. CRIMEtoYHU: a new web tool to develop yeast-based functional assays for characterizing cancer-associated missense variants.

    PubMed

    Mercatanti, Alberto; Lodovichi, Samuele; Cervelli, Tiziana; Galli, Alvaro

    2017-12-01

    Evaluation of the functional impact of cancer-associated missense variants is more difficult than for protein-truncating mutations and consequently standard guidelines for the interpretation of sequence variants have been recently proposed. A number of algorithms and software products were developed to predict the impact of cancer-associated missense mutations on protein structure and function. Importantly, direct assessment of the variants using high-throughput functional assays using simple genetic systems can help in speeding up the functional evaluation of newly identified cancer-associated variants. We developed the web tool CRIMEtoYHU (CTY) to help geneticists in the evaluation of the functional impact of cancer-associated missense variants. Humans and the yeast Saccharomyces cerevisiae share thousands of protein-coding genes although they have diverged for a billion years. Therefore, yeast humanization can be helpful in deciphering the functional consequences of human genetic variants found in cancer and give information on the pathogenicity of missense variants. To humanize specific positions within yeast genes, human and yeast genes have to share functional homology. If a mutation in a specific residue is associated with a particular phenotype in humans, a similar substitution in the yeast counterpart may reveal its effect at the organism level. CTY simultaneously finds yeast homologous genes, identifies the corresponding variants and determines the transferability of human variants to yeast counterparts by assigning a reliability score (RS) that may be predictive for the validity of a functional assay. CTY analyzes newly identified mutations or retrieves mutations reported in the COSMIC database, provides information about the functional conservation between yeast and human and shows the mutation distribution in human genes. CTY analyzes also newly found mutations and aborts when no yeast homologue is found. Then, on the basis of the protein domain

  15. Do Structural Missense Variants in the ATM Gene Found in Women With Breast Cancer Cause Breast Cancer in Knock-in Mouse Strains?

    DTIC Science & Technology

    2006-04-01

    W81XWH-05-1-0282 TITLE: Do Structural Missense Variants in the ATM Gene Found in Women with Breast Cancer Cause Breast Cancer in "Knock-in...5a. CONTRACT NUMBER Do Structural Missense Variants in the ATM Gene Found in Women with Breast Cancer Cause Breast Cancer in "Knock-in" Mouse...human cohort-specific missense mutations will develop breast cancer with dominant inheritance in a subset of animals. It also is hypothesized that

  16. A missense mutation in hepatocyte nuclear factor-4 alpha, resulting in a reduced transactivation activity, in human late-onset non-insulin-dependent diabetes mellitus.

    PubMed Central

    Hani, E H; Suaud, L; Boutin, P; Chèvre, J C; Durand, E; Philippi, A; Demenais, F; Vionnet, N; Furuta, H; Velho, G; Bell, G I; Laine, B; Froguel, P

    1998-01-01

    Non-insulin-dependent diabetes mellitus (NIDDM) is a heterogeneous disorder characterized by hyperglycemia resulting from defects in insulin secretion and action. Recent studies have found mutations in the hepatocyte nuclear factor-4 alpha gene (HNF-4alpha) in families with maturity-onset diabetes of the young (MODY), an autosomal dominant form of diabetes characterized by early age at onset and a defect in glucose-stimulated insulin secretion. During the course of our search for susceptibility genes contributing to the more common late-onset NIDDM forms, we observed nominal evidence for linkage between NIDDM and markers in the region of the HNF-4alpha/MODY1 locus in a subset of French families with NIDDM diagnosed before 45 yr of age. Thus, we screened these families for mutations in the HNF-4alpha gene. We found a missense mutation, resulting in a valine-to-isoleucine substitution at codon 393 in a single family. This mutation cosegregated with diabetes and impaired insulin secretion, and was not present in 119 control subjects. Expression studies showed that this conservative substitution is associated with a marked reduction of transactivation activity, a result consistent with this mutation contributing to the insulin secretory defect observed in this family. PMID:9449683

  17. Reduced migration of MLH1 deficient colon cancer cells depends on SPTAN1.

    PubMed

    Hinrichsen, Inga; Ernst, Benjamin Philipp; Nuber, Franziska; Passmann, Sandra; Schäfer, Dieter; Steinke, Verena; Friedrichs, Nicolaus; Plotz, Guido; Zeuzem, Stefan; Brieger, Angela

    2014-01-24

    Defects in the DNA mismatch repair (MMR) protein MLH1 are frequently observed in sporadic and hereditary colorectal cancers (CRC). Affected tumors generate much less metastatic potential than the MLH1 proficient forms. Although MLH1 has been shown to be not only involved in postreplicative MMR but also in several MMR independent processes like cytoskeletal organization, the connection between MLH1 and metastasis remains unclear. We recently identified non-erythroid spectrin αII (SPTAN1), a scaffolding protein involved in cell adhesion and motility, to interact with MLH1. In the current study, the interaction of MLH1 and SPTAN1 and its potential consequences for CRC metastasis was evaluated. Nine cancer cell lines as well as fresh and paraffin embedded colon cancer tissue from 12 patients were used in gene expression studies of SPTAN1 and MLH1. Co-expression of SPTAN1 and MLH1 was analyzed by siRNA knock down of MLH1 in HeLa, HEK293, MLH1 positive HCT116, SW480 and LoVo cells. Effects on cellular motility were determined in MLH1 deficient HCT116 and MLH1 deficient HEK293T compared to their MLH1 proficient sister cells, respectively. MLH1 deficiency is clearly associated with SPTAN1 reduction. Moreover, siRNA knock down of MLH1 decreased the mRNA level of SPTAN1 in HeLa, HEK293 as well as in MLH1 positive HCT116 cells, which indicates a co-expression of SPTAN1 by MLH1. In addition, cellular motility of MLH1 deficient HCT116 and MLH1 deficient HEK293T cells was impaired compared to the MLH1 proficient sister clones. Consequently, overexpression of SPTAN1 increased migration of MLH1 deficient cells while knock down of SPTAN1 decreased cellular mobility of MLH1 proficient cells, indicating SPTAN1-dependent migration ability. These data suggest that SPTAN1 levels decreased in concordance with MLH1 reduction and impaired cellular mobility in MLH1 deficient colon cancer cells. Therefore, aggressiveness of MLH1-positive CRC might be related to SPTAN1.

  18. Reduced migration of MLH1 deficient colon cancer cells depends on SPTAN1

    PubMed Central

    2014-01-01

    Introduction Defects in the DNA mismatch repair (MMR) protein MLH1 are frequently observed in sporadic and hereditary colorectal cancers (CRC). Affected tumors generate much less metastatic potential than the MLH1 proficient forms. Although MLH1 has been shown to be not only involved in postreplicative MMR but also in several MMR independent processes like cytoskeletal organization, the connection between MLH1 and metastasis remains unclear. We recently identified non-erythroid spectrin αII (SPTAN1), a scaffolding protein involved in cell adhesion and motility, to interact with MLH1. In the current study, the interaction of MLH1 and SPTAN1 and its potential consequences for CRC metastasis was evaluated. Methods Nine cancer cell lines as well as fresh and paraffin embedded colon cancer tissue from 12 patients were used in gene expression studies of SPTAN1 and MLH1. Co-expression of SPTAN1 and MLH1 was analyzed by siRNA knock down of MLH1 in HeLa, HEK293, MLH1 positive HCT116, SW480 and LoVo cells. Effects on cellular motility were determined in MLH1 deficient HCT116 and MLH1 deficient HEK293T compared to their MLH1 proficient sister cells, respectively. Results MLH1 deficiency is clearly associated with SPTAN1 reduction. Moreover, siRNA knock down of MLH1 decreased the mRNA level of SPTAN1 in HeLa, HEK293 as well as in MLH1 positive HCT116 cells, which indicates a co-expression of SPTAN1 by MLH1. In addition, cellular motility of MLH1 deficient HCT116 and MLH1 deficient HEK293T cells was impaired compared to the MLH1 proficient sister clones. Consequently, overexpression of SPTAN1 increased migration of MLH1 deficient cells while knock down of SPTAN1 decreased cellular mobility of MLH1 proficient cells, indicating SPTAN1-dependent migration ability. Conclusions These data suggest that SPTAN1 levels decreased in concordance with MLH1 reduction and impaired cellular mobility in MLH1 deficient colon cancer cells. Therefore, aggressiveness of MLH1-positive CRC might be

  19. A missense mutation in the human cytochrome b5 gene causes 46,XY disorder of sex development due to true isolated 17,20 lyase deficiency.

    PubMed

    Idkowiak, Jan; Randell, Tabitha; Dhir, Vivek; Patel, Pushpa; Shackleton, Cedric H L; Taylor, Norman F; Krone, Nils; Arlt, Wiebke

    2012-03-01

    Isolated 17,20 lyase deficiency is commonly defined by apparently normal 17α-hydroxylase activity but severely reduced 17,20 lyase activity of the bifunctional enzyme cytochrome P450 (CYP) enzyme 17A1 (CYP17A1), resulting in sex steroid deficiency but normal glucocorticoid and mineralocorticoid reserve. Cytochrome b5 (CYB5A) is thought to selectively enhance 17,20 lyase activity by facilitating the allosteric interaction of CYP17A1 with its electron donor P450 oxidoreductase (POR). We investigated a large consanguineous family including three siblings with 46,XY disorder of sex development (DSD) presenting with isolated 17,20 lyase deficiency. We investigated the clinical and biochemical phenotype, conducted genetic analyses, and functionally characterized the identified CYB5A mutation in cell-based CYP17A1 coexpression assays. All three siblings presented with 46,XY DSD, sex steroid deficiency, normal mineralocorticoids and glucocorticoids, and a urine steroid metabolome suggestive of isolated 17,20 lyase deficiency. CYP17A1 and POR sequences were normal, but we detected a homozygous CYB5A missense mutation (g.28,400A→T; p.H44L). Functional in vitro analysis revealed normal CYP17A1 17α-hydroxylase activity but severely impaired 17,20 lyase activity. In silico analysis suggested the disruption of CYB5A heme binding by p.H44L. We have identified the first human CYB5A missense mutation as the cause of isolated 17,20 lyase deficiency in three individuals with 46,XY DSD. Detailed review of previously reported cases with apparently isolated 17,20 lyase deficiency due to mutant CYP17A1 and POR reveals impaired 17α-hydroxylase activity as assessed by steroid metabolome analysis and short cosyntropin testing. This suggests that truly isolated 17,20 lyase deficiency is observed only in individuals with inactivating CYB5A mutations.

  20. Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced T(H)17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome.

    PubMed

    Renner, Ellen D; Rylaarsdam, Stacey; Anover-Sombke, Stephanie; Rack, Anita L; Reichenbach, Janine; Carey, John C; Zhu, Qili; Jansson, Annette F; Barboza, Julia; Schimke, Lena F; Leppert, Mark F; Getz, Melissa M; Seger, Reinhard A; Hill, Harry R; Belohradsky, Bernd H; Torgerson, Troy R; Ochs, Hans D

    2008-07-01

    Hyper-IgE syndrome (HIES) is a rare, autosomal-dominant immunodeficiency characterized by eczema, Staphylococcus aureus skin abscesses, pneumonia with pneumatocele formation, Candida infections, and skeletal/connective tissue abnormalities. Recently it was shown that heterozygous signal transducer and activator of transcription 3 (STAT3) mutations cause autosomal-dominant HIES. To determine the spectrum and functional consequences of heterozygous STAT3 mutations in a cohort of patients with HIES. We sequenced the STAT3 gene in 38 patients with HIES (National Institutes of Health score >40 points) from 35 families, quantified T(H)17 cells in peripheral blood, and evaluated tyrosine phosphorylation of STAT3. Most STAT3 mutations in our cohort were in the DNA-binding domain (DBD; 22/35 families) or Src homology 2 (SH2) domain (10/35) and were missense mutations. We identified 2 intronic mutations resulting in exon skipping and in-frame deletions within the DBD. In addition, we identified 2 mutations located in the transactivation domain downstream of the SH2 domain: a 10-amino acid deletion and an amino acid substitution. In 1 patient, we were unable to identify a STAT3 mutation. T(H)17 cells were absent or low in the peripheral blood of all patients who were evaluated (n = 17). IL-6-induced STAT3-phosphorylation was consistently reduced in patients with SH2 domain mutations but comparable to normal controls in patients with mutations in the DBD. Heterozygous STAT3 mutations were identified in 34 of 35 unrelated HIES families. Patients had impaired T(H)17 cell development, and those with SH2 domain mutations had reduced STAT3 phosphorylation.

  1. CDH23 mutation and phenotype heterogeneity: a profile of 107 diverse families with Usher syndrome and nonsyndromic deafness.

    PubMed

    Astuto, L M; Bork, J M; Weston, M D; Askew, J W; Fields, R R; Orten, D J; Ohliger, S J; Riazuddin, S; Morell, R J; Khan, S; Riazuddin, S; Kremer, H; van Hauwe, P; Moller, C G; Cremers, C W R J; Ayuso, C; Heckenlively, J R; Rohrschneider, K; Spandau, U; Greenberg, J; Ramesar, R; Reardon, W; Bitoun, P; Millan, J; Legge, R; Friedman, T B; Kimberling, W J

    2002-08-01

    Usher syndrome type I is characterized by congenital hearing loss, retinitis pigmentosa (RP), and variable vestibular areflexia. Usher syndrome type ID, one of seven Usher syndrome type I genetic localizations, have been mapped to a chromosomal interval that overlaps with a nonsyndromic-deafness localization, DFNB12. Mutations in CDH23, a gene that encodes a putative cell-adhesion protein with multiple cadherin-like domains, are responsible for both Usher syndrome and DFNB12 nonsyndromic deafness. Specific CDH23 mutational defects have been identified that differentiate these two phenotypes. Only missense mutations of CDH23 have been observed in families with nonsyndromic deafness, whereas nonsense, frameshift, splice-site, and missense mutations have been identified in families with Usher syndrome. In the present study, a panel of 69 probands with Usher syndrome and 38 probands with recessive nonsyndromic deafness were screened for the presence of mutations in the entire coding region of CDH23, by heteroduplex, single-strand conformation polymorphism, and direct sequence analyses. A total of 36 different CDH23 mutations were detected in 45 families; 33 of these mutations were novel, including 18 missense, 3 nonsense, 5 splicing defects, 5 microdeletions, and 2 insertions. A total of seven mutations were common to more than one family. Numerous exonic and intronic polymorphisms also were detected. Results of ophthalmologic examinations of the patients with nonsyndromic deafness have found asymptomatic RP-like manifestations, indicating that missense mutations may have a subtle effect in the retina. Furthermore, patients with mutations in CDH23 display a wide range of hearing loss and RP phenotypes, differing in severity, age at onset, type, and the presence or absence of vestibular areflexia.

  2. CDH23 Mutation and Phenotype Heterogeneity: A Profile of 107 Diverse Families with Usher Syndrome and Nonsyndromic Deafness

    PubMed Central

    Astuto, L. M.; Bork, J. M.; Weston, M. D.; Askew, J. W.; Fields, R. R.; Orten, D. J.; Ohliger, S. J.; Riazuddin, S.; Morell, R. J.; Khan, S.; Riazuddin, S.; Kremer, H.; van Hauwe, P.; Moller, C. G.; Cremers, C. W. R. J.; Ayuso, C.; Heckenlively, J. R.; Rohrschneider, K.; Spandau, U.; Greenberg, J.; Ramesar, R.; Reardon, W.; Bitoun, P.; Millan, J.; Legge, R.; Friedman, T. B.; Kimberling, W. J.

    2002-01-01

    Usher syndrome type I is characterized by congenital hearing loss, retinitis pigmentosa (RP), and variable vestibular areflexia. Usher syndrome type ID, one of seven Usher syndrome type I genetic localizations, have been mapped to a chromosomal interval that overlaps with a nonsyndromic-deafness localization, DFNB12. Mutations in CDH23, a gene that encodes a putative cell-adhesion protein with multiple cadherin-like domains, are responsible for both Usher syndrome and DFNB12 nonsyndromic deafness. Specific CDH23 mutational defects have been identified that differentiate these two phenotypes. Only missense mutations of CDH23 have been observed in families with nonsyndromic deafness, whereas nonsense, frameshift, splice-site, and missense mutations have been identified in families with Usher syndrome. In the present study, a panel of 69 probands with Usher syndrome and 38 probands with recessive nonsyndromic deafness were screened for the presence of mutations in the entire coding region of CDH23, by heteroduplex, single-strand conformation polymorphism, and direct sequence analyses. A total of 36 different CDH23 mutations were detected in 45 families; 33 of these mutations were novel, including 18 missense, 3 nonsense, 5 splicing defects, 5 microdeletions, and 2 insertions. A total of seven mutations were common to more than one family. Numerous exonic and intronic polymorphisms also were detected. Results of ophthalmologic examinations of the patients with nonsyndromic deafness have found asymptomatic RP–like manifestations, indicating that missense mutations may have a subtle effect in the retina. Furthermore, patients with mutations in CDH23 display a wide range of hearing loss and RP phenotypes, differing in severity, age at onset, type, and the presence or absence of vestibular areflexia. PMID:12075507

  3. Targeted next-generation sequencing extends the phenotypic and mutational spectrums for EYS mutations

    PubMed Central

    Gu, Shun; Tian, Yuanyuan; Chen, Xue

    2016-01-01

    Purpose We aim to determine genetic lesions with a phenotypic correlation in four Chinese families with autosomal recessive retinitis pigmentosa (RP). Methods Medical histories were carefully reviewed. All patients received comprehensive ophthalmic evaluations. The next-generation sequencing (NGS) approach targeting a panel of 205 retinal disease–relevant genes and 15 candidate genes was selectively performed on probands from the four recruited families for mutation detection. Online predictive software and crystal structure modeling were also applied to test the potential pathogenic effects of identified mutations. Results Of the four families, two were diagnosed with RP sino pigmento (RPSP). Patients with RPSP claimed to have earlier RP age of onset but slower disease progression. Five mutations in the eyes shut homolog (EYS) gene, involving two novel (c.7228+1G>A and c.9248G>A) and three recurrent mutations (c.4957dupA, c.6416G>A and c.6557G>A), were found as RP causative in the four families. The missense variant c.5093T>C was determined to be a variant of unknown significance (VUS) due to the variant’s colocalization in the same allele with the reported pathogenic mutation c.6416G>A. The two novel variants were further confirmed absent in 100 unrelated healthy controls. Online predictive software indicated potential pathogenicity of the three missense mutations. Further, crystal structural modeling suggested generation of two abnormal hydrogen bonds by the missense mutation p.G2186E (c.6557G>A) and elongation of its neighboring β-sheet induced by p.G3083D (c.9248G>A), which could alter the tertiary structure of the eys protein and thus interrupt its physicochemical properties. Conclusions Taken together, with the targeted NGS approach, we reveal novel EYS mutations and prove the efficiency of targeted NGS in the genetic diagnoses of RP. We also first report the correlation between EYS mutations and RPSP. The genotypic-phenotypic relationship in all

  4. Targeted next-generation sequencing extends the phenotypic and mutational spectrums for EYS mutations.

    PubMed

    Gu, Shun; Tian, Yuanyuan; Chen, Xue; Zhao, Chen

    2016-01-01

    We aim to determine genetic lesions with a phenotypic correlation in four Chinese families with autosomal recessive retinitis pigmentosa (RP). Medical histories were carefully reviewed. All patients received comprehensive ophthalmic evaluations. The next-generation sequencing (NGS) approach targeting a panel of 205 retinal disease-relevant genes and 15 candidate genes was selectively performed on probands from the four recruited families for mutation detection. Online predictive software and crystal structure modeling were also applied to test the potential pathogenic effects of identified mutations. Of the four families, two were diagnosed with RP sino pigmento (RPSP). Patients with RPSP claimed to have earlier RP age of onset but slower disease progression. Five mutations in the eyes shut homolog (EYS) gene, involving two novel (c.7228+1G>A and c.9248G>A) and three recurrent mutations (c.4957dupA, c.6416G>A and c.6557G>A), were found as RP causative in the four families. The missense variant c.5093T>C was determined to be a variant of unknown significance (VUS) due to the variant's colocalization in the same allele with the reported pathogenic mutation c.6416G>A. The two novel variants were further confirmed absent in 100 unrelated healthy controls. Online predictive software indicated potential pathogenicity of the three missense mutations. Further, crystal structural modeling suggested generation of two abnormal hydrogen bonds by the missense mutation p.G2186E (c.6557G>A) and elongation of its neighboring β-sheet induced by p.G3083D (c.9248G>A), which could alter the tertiary structure of the eys protein and thus interrupt its physicochemical properties. Taken together, with the targeted NGS approach, we reveal novel EYS mutations and prove the efficiency of targeted NGS in the genetic diagnoses of RP. We also first report the correlation between EYS mutations and RPSP. The genotypic-phenotypic relationship in all Chinese patients carrying mutations in the EYS

  5. Screening Mutations of MYBPC3 in 114 Unrelated Patients with Hypertrophic Cardiomyopathy by Targeted Capture and Next-generation Sequencing.

    PubMed

    Liu, Xuxia; Jiang, Tengyong; Piao, Chunmei; Li, Xiaoyan; Guo, Jun; Zheng, Shuai; Zhang, Xiaoping; Cai, Tao; Du, Jie

    2015-06-19

    Hypertrophic cardiomyopathy (HCM) is a major cause of sudden cardiac death. Mutations in the MYBPC3 gene represent the cause of HCM in ~35% of patients with HCM. However, genetic testing in clinic setting has been limited due to the cost and relatively time-consuming by Sanger sequencing. Here, we developed a HCM Molecular Diagnostic Kit enabling ultra-low-cost targeted gene resequencing in a large cohort and investigated the mutation spectrum of MYBPC3. In a cohort of 114 patients with HCM, a total of 20 different mutations (8 novel and 12 known mutations) of MYBPC3 were identified from 25 patients (21.9%). We demonstrated that the power of targeted resequencing in a cohort of HCM patients, and found that MYBPC3 is a common HCM-causing gene in Chinese patients. Phenotype-genotype analyses showed that the patients with double mutations (n = 2) or premature termination codon mutations (n = 12) showed more severe manifestations, compared with patients with missense mutations (n = 11). Particularly, we identified a recurrent truncation mutation (p.Y842X) in four unrelated cases (4/25, 16%), who showed severe phenotypes, and suggest that the p.Y842X is a frequent mutation in Chinese HCM patients with severe phenotypes.

  6. ELOVL5 Mutations Cause Spinocerebellar Ataxia 38

    PubMed Central

    Di Gregorio, Eleonora; Borroni, Barbara; Giorgio, Elisa; Lacerenza, Daniela; Ferrero, Marta; Lo Buono, Nicola; Ragusa, Neftj; Mancini, Cecilia; Gaussen, Marion; Calcia, Alessandro; Mitro, Nico; Hoxha, Eriola; Mura, Isabella; Coviello, Domenico A.; Moon, Young-Ah; Tesson, Christelle; Vaula, Giovanna; Couarch, Philippe; Orsi, Laura; Duregon, Eleonora; Papotti, Mauro Giulio; Deleuze, Jean-François; Imbert, Jean; Costanzi, Chiara; Padovani, Alessandro; Giunti, Paola; Maillet-Vioud, Marcel; Durr, Alexandra; Brice, Alexis; Tempia, Filippo; Funaro, Ada; Boccone, Loredana; Caruso, Donatella; Stevanin, Giovanni; Brusco, Alfredo

    2014-01-01

    Spinocerebellar ataxias (SCAs) are a heterogeneous group of autosomal-dominant neurodegenerative disorders involving the cerebellum and 23 different genes. We mapped SCA38 to a 56 Mb region on chromosome 6p in a SCA-affected Italian family by whole-genome linkage analysis. Targeted resequencing identified a single missense mutation (c.689G>T [p.Gly230Val]) in ELOVL5. Mutation screening of 456 independent SCA-affected individuals identified the same mutation in two further unrelated Italian families. Haplotyping showed that at least two of the three families shared a common ancestor. One further missense variant (c.214C>G [p.Leu72Val]) was found in a French family. Both missense changes affect conserved amino acids, are predicted to be damaging by multiple bioinformatics tools, and were not identified in ethnically matched controls or within variant databases. ELOVL5 encodes an elongase involved in the synthesis of polyunsaturated fatty acids of the ω3 and ω6 series. Arachidonic acid and docosahexaenoic acid, two final products of the enzyme, were reduced in the serum of affected individuals. Immunohistochemistry on control mice and human brain demonstrated high levels in Purkinje cells. In transfection experiments, subcellular localization of altered ELOVL5 showed a perinuclear distribution with a signal increase in the Golgi compartment, whereas the wild-type showed a widespread signal in the endoplasmic reticulum. SCA38 and SCA34 are examples of SCAs due to mutations in elongase-encoding genes, emphasizing the importance of fatty-acid metabolism in neurological diseases. PMID:25065913

  7. Inherited biallelic CSF3R mutations in severe congenital neutropenia.

    PubMed

    Triot, Alexa; Järvinen, Päivi M; Arostegui, Juan I; Murugan, Dhaarini; Kohistani, Naschla; Dapena Díaz, José Luis; Racek, Tomas; Puchałka, Jacek; Gertz, E Michael; Schäffer, Alejandro A; Kotlarz, Daniel; Pfeifer, Dietmar; Díaz de Heredia Rubio, Cristina; Ozdemir, Mehmet Akif; Patiroglu, Turkan; Karakukcu, Musa; Sánchez de Toledo Codina, José; Yagüe, Jordi; Touw, Ivo P; Unal, Ekrem; Klein, Christoph

    2014-06-12

    Severe congenital neutropenia (SCN) is characterized by low numbers of peripheral neutrophil granulocytes and a predisposition to life-threatening bacterial infections. We describe a novel genetic SCN type in 2 unrelated families associated with recessively inherited loss-of-function mutations in CSF3R, encoding the granulocyte colony-stimulating factor (G-CSF) receptor. Family A, with 3 affected children, carried a homozygous missense mutation (NM_000760.3:c.922C>T, NP_000751.1:p.Arg308Cys), which resulted in perturbed N-glycosylation and aberrant localization to the cell surface. Family B, with 1 affected infant, carried compound heterozygous deletions provoking frameshifts and premature stop codons (NM_000760.3:c.948_963del, NP_000751.1:p.Gly316fsTer322 and NM_000760.3:c.1245del, NP_000751.1:p.Gly415fsTer432). Despite peripheral SCN, all patients had morphologic evidence of full myeloid cell maturation in bone marrow. None of the patients responded to treatment with recombinant human G-CSF. Our study highlights the genetic and morphologic SCN variability and provides evidence both for functional importance and redundancy of G-CSF receptor-mediated signaling in human granulopoiesis. © 2014 by The American Society of Hematology.

  8. Mutation of MSH3 in endometrial cancer and evidence for its functional role in heteroduplex repair.

    PubMed

    Risinger, J I; Umar, A; Boyd, J; Berchuck, A; Kunkel, T A; Barrett, J C

    1996-09-01

    Many human tumours have length alterations in repetitive sequence elements. Although this microsatellite instability has been attributed to mutations in four DNA mismatch repair genes in hereditary nonpolyposis colorectal cancer (HNPCC) kindreds, many sporadic tumours exhibit instability but no detectable mutations in these genes. It is therefore of interest to identify other genes that contribute to this instability. In yeast, mutations in several genes, including RTH and MSH3, cause microsatellite instability. Thus, we screened 16 endometrial carcinomas with microsatellite instability for alterations in FEN1 (the human homolog of RTH) and in MSH3 (refs 12-14). Although we found no FEN1 mutations, a frameshift mutation in MSH3 was observed in an endometrial carcinoma and in an endometrial carcinoma cell line. Extracts of the cell line were deficient in repair of DNA substrates containing mismatches or extra nucleotides. Introducing chromosome 5, encoding the MSH3 gene, into the mutant cell line increased the stability of some but not all microsatellites. Extracts of these cells repaired certain substrates containing extra nucleotides, but were deficient in repair of those containing mismatches or other extra nucleotides. A subsequent search revealed a second gene mutation in HHUA cells, a missense mutation in the MSH6 gene. Together the data suggest that the MSH3 gene encodes a product that functions in repair of some but not all pre-mutational intermediates, its mutation in tumours can result in genomic instability and, as in yeast, MSH3 and MSH6 are partially redundant for mismatch repair.

  9. Novel Homozygous Missense Mutation in RYR1 Leads to Severe Congenital Ptosis, Ophthalmoplegia, and Scoliosis in the Absence of Myopathy.

    PubMed

    Dilaver, Nafi; Mazaheri, Neda; Maroofian, Reza; Zeighami, Jawaher; Seifi, Tahere; Zamani, Mina; Sedaghat, Alireza; Shariati, Gholam Reza; Galehdari, Hamid

    2017-12-01

    Ryanodine receptor 1 ( RYR1 ) is an intracellular calcium receptor primarily expressed in skeletal muscle with a role in excitation contraction. Both dominant and recessive mutations in the RYR1 gene cause a range of RYR1 -related myopathies and/or susceptibility to malignant hyperthermia (MH). Recently, an atypical manifestation of ptosis, variably presenting with ophthalmoplegia, facial paralysis, and scoliosis but without significant muscle weakness, has been reported in 9 cases from 4 families with bialleic variants in RYR1 . Two affected children from a consanguineous family with severe congenital ptosis, ophthalmoplegia, scoliosis, and distinctive long faces but without skeletal myopathy were studied. To identify the cause of the hereditary condition, DNA from the proband was subjected to whole exome sequencing (WES). WES revealed a novel homozygous missense variant in RYR1 (c.14066T>A; p.IIe4689Asn), which segregated within the family. Although the phenotype of the affected siblings in this study was similar to previously described cases, the clinical features were more severely expressed. Our findings contribute to the expansion of phenotypes related to RYR1 dysfunction. Additionally, it supports a new RYR1 -related clinical presentation without musculoskeletal involvement. It is important that individuals with RYR1 mutations are considered susceptible to MH, as 70% of the MH cases are caused by mutations in the RYR1 gene.

  10. First de novo ANK3 nonsense mutation in a boy with intellectual disability, speech impairment and autistic features.

    PubMed

    Kloth, Katja; Denecke, Jonas; Hempel, Maja; Johannsen, Jessika; Strom, Tim M; Kubisch, Christian; Lessel, Davor

    2017-09-01

    Ankyrin-G, encoded by ANK3, plays an important role in neurodevelopment and neuronal function. There are multiple isoforms of Ankyrin-G resulting in differential tissue expression and function. Heterozygous missense mutations in ANK3 have been associated with autism spectrum disorder. Further, in three siblings a homozygous frameshift mutation affecting only the longest isoform and a patient with a balanced translocation disrupting all isoforms were documented. The latter four patients were affected by a variable degree of intellectual disability, attention deficit hyperactivity disorder and autism. Here, we report on a boy with speech impairment, intellectual disability, autistic features, macrocephaly, macrosomia, chronic hunger and an altered sleeping pattern. By trio-whole-exome sequencing, we identified the first de novo nonsense mutation affecting all ANK3 transcripts. Thus, our data expand the phenotype of ANK3-associated diseases and suggest an isoform-based, phenotypic continuum between dominant and recessive ANK3-associated pathologies. Copyright © 2017. Published by Elsevier Masson SAS.

  11. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyette, P.; Frosst, P.; Rosenblatt, D.S.

    1995-05-01

    5-Methyltetrahydrofolate, the major form of folate in plasma, is a carbon donor for the remethylation of homocysteine to methionine. This form of folate is generated from 5,10-methylenetetrahydrofolate through the action of 5,10-methylenetetrahydrofolate reductase (MTHFR), a cytosolic flavoprotein. Patients with an autosomal recessive severe deficiency of MTHFR have homocystinuria and a wide range of neurological and vascular disturbances. We have recently described the isolation of a cDNA for MTHFR and the identification of two mutations in patients with severe MTHFR deficiency. We report here the characterization of seven novel mutations in this gene: six missense mutations and a 5{prime} splice-site defectmore » that activates a cryptic splice in the coding sequence. We also present a preliminary analysis of the relationship between genotype and phenotype for all nine mutations identified thus far in this gene. A nonsense mutation and two missense mutations (proline to leucine and threonine to methionine) in the homozygous state are associated with extremely low activity (0%-3%) and onset of symptoms within the 1st year of age. Other missense mutations (arginine to cysteine and arginine to glutamine) are associated with higher enzyme activity and later onset of symptoms. 19 refs., 4 figs., 2 tabs.« less

  12. Aberrant protein expression and frequent allelic loss of MSH3 in colorectal cancer with low-level microsatellite instability.

    PubMed

    Plaschke, Jens; Preußler, Mark; Ziegler, Andreas; Schackert, Hans K

    2012-07-01

    High level of microsatellite instability (MSI-H) in colorectal cancer (CRC) is caused by the inactivation of mismatch repair (MMR) genes; however, it is unknown for tumors with low level MSI (MSI-L). The protein complex involving MSH3 preferentially recognizes insertion/deletion loops (IDLs) of two to eight bases and di- and tetranucleotide repeats are affected in the majority of MSI-L CRC. We selected 10 and eight MSI-L CRCs from 228 and 204 patients with sporadic and hereditary disease, respectively. The tumors were analyzed for protein expression of MSH3, MSH2, MSH6, MLH1, and PMS2, and for mutations and loss of heterozygosity (LOH) in MSH3. Four tumors showed a markedly reduced MSH3 expression, whereas all 18 tumors had normal expression of the remaining MMR proteins. Twenty-five different sequence variants were identified. None of these results in a truncated protein, though L902W represents the first constitutional missense mutation in MSH3 predicted to be functional based on conservation among mutS homologues. All variants have also been found in normal DNA of the patients and in controls. LOH intragenic to MSH3 was evident for 12 of 16 (75%) informative tumors. Occurrence of sequence variants in normal DNA of the patients and in controls excludes somatic mutations and mutations specific to the CRC patient population, respectively. In contrast, the high frequency of LOH as well as the aberrant protein expression in some tumors indicates an involvement of MSH3 impairment in MSI-L CRC.

  13. Discovery of mutations in homologous recombination genes in African-American women with breast cancer.

    PubMed

    Ding, Yuan Chun; Adamson, Aaron W; Steele, Linda; Bailis, Adam M; John, Esther M; Tomlinson, Gail; Neuhausen, Susan L

    2018-04-01

    African-American women are more likely to develop aggressive breast cancer at younger ages and experience poorer cancer prognoses than non-Hispanic Caucasians. Deficiency in repair of DNA by homologous recombination (HR) is associated with cancer development, suggesting that mutations in genes that affect this process may cause breast cancer. Inherited pathogenic mutations have been identified in genes involved in repairing DNA damage, but few studies have focused on African-Americans. We screened for germline mutations in seven HR repair pathway genes in DNA of 181 African-American women with breast cancer, evaluated the potential effects of identified missense variants using in silico prediction software, and functionally characterized a set of missense variants by yeast two-hybrid assays. We identified five likely-damaging variants, including two PALB2 truncating variants (Q151X and W1038X) and three novel missense variants (RAD51C C135R, and XRCC3 L297P and V337E) that abolish protein-protein interactions in yeast two-hybrid assays. Our results add to evidence that HR gene mutations account for a proportion of the genetic risk for developing breast cancer in African-Americans. Identifying additional mutations that diminish HR may provide a tool for better assessing breast cancer risk and improving approaches for targeted treatment.

  14. SMA-Causing Missense Mutations in Survival motor neuron (Smn) Display a Wide Range of Phenotypes When Modeled in Drosophila

    PubMed Central

    Praveen, Kavita; Wen, Ying; Gray, Kelsey M.; Noto, John J.; Patlolla, Akash R.; Van Duyne, Gregory D.; Matera, A. Gregory

    2014-01-01

    Mutations in the human survival motor neuron 1 (SMN) gene are the primary cause of spinal muscular atrophy (SMA), a devastating neuromuscular disorder. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. Additional tissue-specific and global functions have been ascribed to SMN; however, their relevance to SMA pathology is poorly understood and controversial. Using Drosophila as a model system, we created an allelic series of twelve Smn missense mutations, originally identified in human SMA patients. We show that animals expressing these SMA-causing mutations display a broad range of phenotypic severities, similar to the human disease. Furthermore, specific interactions with other proteins known to be important for SMN's role in RNP assembly are conserved. Intragenic complementation analyses revealed that the three most severe mutations, all of which map to the YG box self-oligomerization domain of SMN, display a stronger phenotype than the null allele and behave in a dominant fashion. In support of this finding, the severe YG box mutants are defective in self-interaction assays, yet maintain their ability to heterodimerize with wild-type SMN. When expressed at high levels, wild-type SMN is able to suppress the activity of the mutant protein. These results suggest that certain SMN mutants can sequester the wild-type protein into inactive complexes. Molecular modeling of the SMN YG box dimer provides a structural basis for this dominant phenotype. These data demonstrate that important structural and functional features of the SMN YG box are conserved between vertebrates and invertebrates, emphasizing the importance of self-interaction to the proper functioning of SMN. PMID:25144193

  15. SMA-causing missense mutations in survival motor neuron (Smn) display a wide range of phenotypes when modeled in Drosophila.

    PubMed

    Praveen, Kavita; Wen, Ying; Gray, Kelsey M; Noto, John J; Patlolla, Akash R; Van Duyne, Gregory D; Matera, A Gregory

    2014-08-01

    Mutations in the human survival motor neuron 1 (SMN) gene are the primary cause of spinal muscular atrophy (SMA), a devastating neuromuscular disorder. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. Additional tissue-specific and global functions have been ascribed to SMN; however, their relevance to SMA pathology is poorly understood and controversial. Using Drosophila as a model system, we created an allelic series of twelve Smn missense mutations, originally identified in human SMA patients. We show that animals expressing these SMA-causing mutations display a broad range of phenotypic severities, similar to the human disease. Furthermore, specific interactions with other proteins known to be important for SMN's role in RNP assembly are conserved. Intragenic complementation analyses revealed that the three most severe mutations, all of which map to the YG box self-oligomerization domain of SMN, display a stronger phenotype than the null allele and behave in a dominant fashion. In support of this finding, the severe YG box mutants are defective in self-interaction assays, yet maintain their ability to heterodimerize with wild-type SMN. When expressed at high levels, wild-type SMN is able to suppress the activity of the mutant protein. These results suggest that certain SMN mutants can sequester the wild-type protein into inactive complexes. Molecular modeling of the SMN YG box dimer provides a structural basis for this dominant phenotype. These data demonstrate that important structural and functional features of the SMN YG box are conserved between vertebrates and invertebrates, emphasizing the importance of self-interaction to the proper functioning of SMN.

  16. Prevalence and Spectrum of Germline Cancer Susceptibility Gene Mutations Among Patients With Early-Onset Colorectal Cancer

    PubMed Central

    Pearlman, Rachel; Frankel, Wendy L.; Swanson, Benjamin; Zhao, Weiqiang; Yilmaz, Ahmet; Miller, Kristin; Bacher, Jason; Bigley, Christopher; Nelsen, Lori; Goodfellow, Paul J.; Goldberg, Richard M.; Paskett, Electra; Shields, Peter G.; Freudenheim, Jo L.; Stanich, Peter P; Lattimer, Ilene; Arnold, Mark; Liyanarachchi, Sandya; Kalady, Matthew; Heald, Brandie; Greenwood, Carla; Paquette, Ian; Prues, Marla; Draper, David J.; Lindeman, Carolyn; Kuebler, J. Philip; Reynolds, Kelly; Brell, Joanna M.; Shaper, Amy A.; Mahesh, Sameer; Buie, Nicole; Weeman, Kisa; Shine, Kristin; Haut, Mitchell; Edwards, Joan; Bastola, Shyamal; Wickham, Karen; Khanduja, Karamjit S.; Zacks, Rosemary; Pritchard, Colin C.; Shirts, Brian H.; Jacobson, Angela; Allen, Brian; de la Chapelle, Albert; Hampel, Heather

    2017-01-01

    IMPORTANCE Hereditary cancer syndromes infer high cancer risks and require intensive cancer surveillance, yet the prevalence and spectrum of these conditions among unselected patients with early-onset colorectal cancer (CRC) is largely undetermined. OBJECTIVE To determine the frequency and spectrum of cancer susceptibility gene mutations among patients with early-onset CRC. DESIGN, SETTING, AND PARTICIPANTS Overall, 450 patients diagnosed with colorectal cancer younger than 50 years were prospectively accrued from 51 hospitals into the Ohio Colorectal Cancer Prevention Initiative from January 1, 2013, to June 20, 2016. Mismatch repair (MMR) deficiency was determined by microsatellite instability and/or immunohistochemistry. Germline DNA was tested for mutations in 25 cancer susceptibility genes using next-generation sequencing. MAIN OUTCOMES AND MEASURES Mutation prevalence and spectrum in patients with early-onset CRC was determined. Clinical characteristics were assessed by mutation status. RESULTS In total 450 patients younger than 50 years were included in the study, and 75 gene mutations were found in 72 patients (16%). Forty-eight patients (10.7%) had MMR-deficient tumors, and 40 patients (83.3%) had at least 1 gene mutation: 37 had Lynch syndrome (13, MLH1 [including one with constitutional MLH1 methylation]; 16, MSH2; 1, MSH2/monoallelic MUTYH; 2, MSH6; 5, PMS2); 1 patient had the APC c.3920T>A, p.I1307K mutation and a PMS2 variant; 9 patients (18.8%) had double somatic MMR mutations (including 2 with germline biallelic MUTYH mutations); and 1 patient had somatic MLH1 methylation. Four hundred two patients (89.3%) had MMR-proficient tumors, and 32 patients (8%) had at least 1 gene mutation: 9 had mutations in high-penetrance CRC genes (5, APC; 1, APC/PMS2; 2, biallelic MUTYH; 1, SMAD4); 13 patients had mutations in high- or moderate-penetrance genes not traditionally associated with CRC (3, ATM; 1, ATM/CHEK2; 2, BRCA1; 4, BRCA2; 1, CDKN2A; 2, PALB2); 10

  17. Copy number variation and missense mutations of the agouti signaling protein (ASIP) gene in goat breeds with different coat colors.

    PubMed

    Fontanesi, L; Beretti, F; Riggio, V; Gómez González, E; Dall'Olio, S; Davoli, R; Russo, V; Portolano, B

    2009-01-01

    In goats, classical genetic studies reported a large number of alleles at the Agouti locus with effects on coat color and pattern distribution. From these early studies, the dominant A(Wt) (white/tan) allele was suggested to cause the white color of the Saanen breed. Here, we sequenced the coding region of the goat ASIP gene in 6 goat breeds (Girgentana, Maltese, Derivata di Siria, Murciano-Granadina, Camosciata delle Alpi, and Saanen), with different coat colors and patterns. Five single nucleotide polymorphisms (SNPs) were identified, 3 of which caused missense mutations in conserved positions of the cysteine-rich carboxy-terminal domain of the protein (p.Ala96Gly, p.Cys126Gly, and p.Val128Gly). Allele and genotype frequencies suggested that these mutations are not associated or not completely associated with coat color in the investigated goat breeds. Moreover, genotyping and sequencing results, deviation from Hardy-Weinberg equilibrium, as well as allele copy number evaluation from semiquantitative fluorescent multiplex PCR, indicated the presence of copy number variation (CNV) in all investigated breeds. To confirm the presence of CNV and evaluate its extension, we applied a bovine-goat cross-species array comparative genome hybridization (aCGH) experiment using a custom tiling array based on bovine chromosome 13. aCGH results obtained for 8 goat DNA samples confirmed the presence of CNV affecting a region of less that 100 kb including the ASIP and AHCY genes. In Girgentana and Saanen breeds, this CNV might cause the A(Wt) allele, as already suggested for a similar structural mutation in sheep affecting the ASIP and AHCY genes, providing evidence for a recurrent interspecies CNV. However, other mechanisms may also be involved in determining coat color in these 2 breeds. Copyright 2009 S. Karger AG, Basel.

  18. The structural effects of mutations can aid in differential phenotype prediction of beta-myosin heavy chain (Myosin-7) missense variants.

    PubMed

    Al-Numair, Nouf S; Lopes, Luis; Syrris, Petros; Monserrat, Lorenzo; Elliott, Perry; Martin, Andrew C R

    2016-10-01

    High-throughput sequencing platforms are increasingly used to screen patients with genetic disease for pathogenic mutations, but prediction of the effects of mutations remains challenging. Previously we developed SAAPdap (Single Amino Acid Polymorphism Data Analysis Pipeline) and SAAPpred (Single Amino Acid Polymorphism Predictor) that use a combination of rule-based structural measures to predict whether a missense genetic variant is pathogenic. Here we investigate whether the same methodology can be used to develop a differential phenotype predictor, which, once a mutation has been predicted as pathogenic, is able to distinguish between phenotypes-in this case the two major clinical phenotypes (hypertrophic cardiomyopathy, HCM and dilated cardiomyopathy, DCM) associated with mutations in the beta-myosin heavy chain (MYH7) gene product (Myosin-7). A random forest predictor trained on rule-based structural analyses together with structural clustering data gave a Matthews' correlation coefficient (MCC) of 0.53 (accuracy, 75%). A post hoc removal of machine learning models that performed particularly badly, increased the performance (MCC = 0.61, Acc = 79%). This proof of concept suggests that methods used for pathogenicity prediction can be extended for use in differential phenotype prediction. Analyses were implemented in Perl and C and used the Java-based Weka machine learning environment. Please contact the authors for availability. andrew@bioinf.org.uk or andrew.martin@ucl.ac.uk Supplementary data are available at Bioinformatics online. © The Authors 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. BTKbase, mutation database for X-linked agammaglobulinemia (XLA).

    PubMed Central

    Vihinen, M; Brandau, O; Brandén, L J; Kwan, S P; Lappalainen, I; Lester, T; Noordzij, J G; Ochs, H D; Ollila, J; Pienaar, S M; Riikonen, P; Saha, B K; Smith, C I

    1998-01-01

    X-linked agammaglobulinemia (XLA) is an immunodeficiency caused by mutations in the gene coding for Bruton's agammaglobulinemia tyrosine kinase (BTK). A database (BTKbase) of BTK mutations has been compiled and the recent update lists 463 mutation entries from 406 unrelated families showing 303 unique molecular events. In addition to mutations, the database also lists variants or polymorphisms. Each patient is given a unique patient identity number (PIN). Information is included regarding the phenotype including symptoms. Mutations in all the five domains of BTK have been noticed to cause the disease, the most common event being missense mutations. The mutations appear almost uniformly throughout the molecule and frequently affect CpG sites that code for arginine residues. The putative structural implications of all the missense mutations are given in the database. The improved version of the registry having a number of new features is available at http://www. helsinki.fi/science/signal/btkbase.html PMID:9399844

  20. Andermann syndrome can be a phenocopy of hereditary motor and sensory neuropathy--report of a discordant sibship with a compound heterozygous mutation of the KCC3 gene.

    PubMed

    Rudnik-Schöneborn, S; Hehr, U; von Kalle, T; Bornemann, A; Winkler, J; Zerres, K

    2009-06-01

    Andermann syndrome is a rare autosomal recessive disorder characterized by agenesis of the corpus callosum (ACC), progressive motor-sensory neuropathy, mental retardation and facial features. We report on two siblings with the clinical picture of a demyelinating hereditary motor and sensory neuropathy (HMSN), where only the presence of ACC in the younger brother pointed to the diagnosis of Andermann syndrome. Mutation analysis of the KCC3 (SLC12A6) gene showed a compound heterozygous mutation; a maternal missense mutation c.1616G>A (p.G539D) and a paternal splice mutation c.1118+1G>A in both siblings. We hypothesize that mutations of the KCC3 gene may result in non-syndromic childhood onset HMSN.

  1. Mispair-specific Recruitment of the Mlh1-Pms1 Complex Identifies Repair Substrates of the Saccharomyces cerevisiae Msh2-Msh3 Complex*

    PubMed Central

    Srivatsan, Anjana; Bowen, Nikki; Kolodner, Richard D.

    2014-01-01

    DNA mismatch repair is initiated by either the Msh2-Msh6 or the Msh2-Msh3 mispair recognition heterodimer. Here we optimized the expression and purification of Saccharomyces cerevisiae Msh2-Msh3 and performed a comparative study of Msh2-Msh3 and Msh2-Msh6 for mispair binding, sliding clamp formation, and Mlh1-Pms1 recruitment. Msh2-Msh3 formed sliding clamps and recruited Mlh1-Pms1 on +1, +2, +3, and +4 insertion/deletions and CC, AA, and possibly GG mispairs, whereas Msh2-Msh6 formed mispair-dependent sliding clamps and recruited Mlh1-Pms1 on 7 of the 8 possible base:base mispairs, the +1 insertion/deletion mispair, and to a low level on the +2 but not the +3 or +4 insertion/deletion mispairs and not on the CC mispair. The mispair specificity of sliding clamp formation and Mlh1-Pms1 recruitment but not mispair binding alone correlated best with genetic data on the mispair specificity of Msh2-Msh3- and Msh2-Msh6-dependent mismatch repair in vivo. Analysis of an Msh2-Msh6/Msh3 chimeric protein and mutant Msh2-Msh3 complexes showed that the nucleotide binding domain and communicating regions but not the mispair binding domain of Msh2-Msh3 are responsible for the extremely rapid dissociation of Msh2-Msh3 sliding clamps from DNA relative to that seen for Msh2-Msh6, and that amino acid residues predicted to stabilize Msh2-Msh3 interactions with bent, strand-separated mispair-containing DNA are more critical for the recognition of small +1 insertion/deletions than larger +4 insertion/deletions. PMID:24550389

  2. Mispair-specific recruitment of the Mlh1-Pms1 complex identifies repair substrates of the Saccharomyces cerevisiae Msh2-Msh3 complex.

    PubMed

    Srivatsan, Anjana; Bowen, Nikki; Kolodner, Richard D

    2014-03-28

    DNA mismatch repair is initiated by either the Msh2-Msh6 or the Msh2-Msh3 mispair recognition heterodimer. Here we optimized the expression and purification of Saccharomyces cerevisiae Msh2-Msh3 and performed a comparative study of Msh2-Msh3 and Msh2-Msh6 for mispair binding, sliding clamp formation, and Mlh1-Pms1 recruitment. Msh2-Msh3 formed sliding clamps and recruited Mlh1-Pms1 on +1, +2, +3, and +4 insertion/deletions and CC, AA, and possibly GG mispairs, whereas Msh2-Msh6 formed mispair-dependent sliding clamps and recruited Mlh1-Pms1 on 7 of the 8 possible base:base mispairs, the +1 insertion/deletion mispair, and to a low level on the +2 but not the +3 or +4 insertion/deletion mispairs and not on the CC mispair. The mispair specificity of sliding clamp formation and Mlh1-Pms1 recruitment but not mispair binding alone correlated best with genetic data on the mispair specificity of Msh2-Msh3- and Msh2-Msh6-dependent mismatch repair in vivo. Analysis of an Msh2-Msh6/Msh3 chimeric protein and mutant Msh2-Msh3 complexes showed that the nucleotide binding domain and communicating regions but not the mispair binding domain of Msh2-Msh3 are responsible for the extremely rapid dissociation of Msh2-Msh3 sliding clamps from DNA relative to that seen for Msh2-Msh6, and that amino acid residues predicted to stabilize Msh2-Msh3 interactions with bent, strand-separated mispair-containing DNA are more critical for the recognition of small +1 insertion/deletions than larger +4 insertion/deletions.

  3. Immunohistochemical analysis of expression and allelotype of mismatch repair genes (hMLH1 and hMSH2) in bladder cancer

    PubMed Central

    Kassem, H Sh; Varley, J M; Hamam, S M; Margison, G P

    2001-01-01

    Mutation of human homologues of DNA mismatch repair (MMR) genes in tumours has been shown to be associated with the phenomenon of microsatellite instability (MSI). Several studies have reported the occurrence of MSI in bladder cancer, but evidence of involvement of MMR genes in the pathogenesis of this cancer is still unclear. We therefore utilized quantitative immunohistochemical (IHC) image analysis and PCR-based allelotype analysis to determine hMLH1 and hMSH2 genes alteration in a cohort of Egyptian bladder cancer samples. IHC analysis of 24 TCC and 12 SCC revealed marked- intra and intertumour heterogeneity in the levels of expression of the two MMR proteins. One TCC lost MLH1 expression and one lost MSH2, (1/24, 4%), and one SCC lost MSH2 (1/12, 8%). A large proportion of analysed tumours revealed a percentage positivity of less than 50% for MLH1 and MSH2 expression (44% and 69%, respectively). Complete loss of heterozygosity in three dinucleotide repeats lying within, or in close proximity to, hMLH1 and hMSH2 was rare (2/57, (4%) for MLH1; and 1/55, (2%) for MSH2), however allelic imbalance was detected in 11/57 (hMLH1) and 10/55 (hMSH2) at any of the informative microsatellite loci. These alterations in structure and expression of DNA MMR genes suggest their possible involvement in the tumorigenesis and/or progression of bladder cancer. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11161395

  4. [Analysis of gene mutation in a Chinese family with Norrie disease].

    PubMed

    Zhang, Tian-xiao; Zhao, Xiu-li; Hua, Rui; Zhang, Jin-song; Zhang, Xue

    2012-09-01

    To detect the pathogenic mutation in a Chinese family with Norrie disease. Clinical diagnosis was based on familial history, clinical sign and B ultrasonic examination. Peripheral blood samples were obtained from all available members in a Chinese family with Norrie disease. Genomic DNA was extracted from lymphocytes by the standard SDS-proteinase K-phenol/chloroform method. Two coding exons and all intron-exon boundaries of the NDP gene were PCR amplified using three pairs of primers and subjected to automatic DNA sequence. The causative mutation was confirmed by restriction enzyme analysis and genotyping analysis in all members. Sequence analysis of NDP gene revealed a missense mutation c.220C > T (p.Arg74Cys) in the proband and his mother. Further mutation identification by restriction enzyme analysis and genotyping analysis showed that the proband was homozygote of this mutation. His mother and other four unaffected members (III3, IV4, III5 and II2) were carriers of this mutation. The mutant amino acid located in the C-terminal cystine knot-like domain, which was critical motif for the structure and function of NDP. A NDP missense mutation was identified in a Chinese family with Norrie disease.

  5. Report of a Novel SHOX Missense Variant in a Boy With Short Stature and His Mother With Leri–Weill Dyschondrosteosis

    PubMed Central

    Lucchetti, Laura; Prontera, Paolo; Mencarelli, Amedea; Sallicandro, Ester; Mencarelli, Annalisa; Cofini, Marta; Leonardi, Alberto; Stangoni, Gabriela; Penta, Laura; Esposito, Susanna

    2018-01-01

    Heterozygous mutations in the SHOX gene or in the upstream and downstream enhancer elements are associated with 2–22% of cases of idiopathic short stature (OMIM #300582) and with 60% of cases of Leri–Weill dyschondrosteosis (OMIM #127300) with which female subjects are generally more severely affected. Approximately 80–90% of SHOX pathogenic variants are deletions or duplications, and the remaining 10–20% are point mutations that primarily give rise to missense variants. The clinical interpretation of novel variants, particularly missense variants, can be challenging and can remain of uncertain significance. Here, we describe a novel missense variant (c.1044 G>T, p.Arg118Met) in a Moroccan boy with a disproportionately short stature and without any radiological traits or bone deformities and in his mother, who had a disproportionately short stature and a Madelung deformity. This variant has not been reported to date in the updated SHOX allelic variant or Human Gene Mutation Databases nor is it listed as a polymorphism in the ExAC browser, dbSNP, or 1000G. This mutation was predicted to be deleterious by three different bioinformatics tools since it modifies an amino acid in a highly conserved DNA-binding domain of the SHOX protein. Based on this evidence, the patient was treated with recombinant human growth hormone. PMID:29692759

  6. Promoter hypermethylation of mismatch repair gene hMLH1 predicts the clinical response of malignant astrocytomas to nitrosourea.

    PubMed

    Fukushima, Takao; Katayama, Yoichi; Watanabe, Takao; Yoshino, Atsuo; Ogino, Akiyoshi; Ohta, Takashi; Komine, Chiaki

    2005-02-15

    In certain types of human cancers, transcriptional inactivation of hMLH1 by promoter hypermethylation plays a causal role in the loss of mismatch repair functions that modulate cytotoxic pathways in response to DNA-damaging agents. The aim of the present study was to investigate the role of promoter methylation of the hMLH1 gene in malignant astrocytomas. We examined the hMLH1 promoter methylation in a homogeneous cohort of patients with 41 malignant astrocytomas treated by 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-2(2-chloroethyl)-3-nitrosourea chemotherapy in combination with radiation and interferon therapy, and assessed the correlation of such methylation with clinical outcome. hMLH1 promoter methylation was found in 6 (15%) of the 41 newly diagnosed malignant astrocytomas. Hypermethylation of the hMLH1 promoter corresponded closely with a loss of immunohistochemical staining for hMLH1 protein (P = 0.0013). Patients with hMLH1-methylated tumors displayed a greater chance of responding to adjuvant therapy as compared with those with hMLH1-unmethylated tumors (P = 0.0150). The presence of hMLH1 hypermethylation was significantly associated with a longer progression-free survival on both univariate analysis (P = 0.0340) and multivariate analysis (P = 0.0161). The present study identified hMLH1 methylation status as a predictor of the clinical response of malignant astrocytomas to chloroethylnitrosourea-based adjuvant therapy. The findings obtained suggest that determination of the methylation status of hMLH1 could provide a potential basis for designing rational chemotherapeutic strategies, as well as for predicting prognosis.

  7. [Gene mutation analysis of X-linked hypophosphatemic rickets].

    PubMed

    Song, Ying; Ma, Hong-Wei; Li, Fang; Hu, Man; Ren, Shuang; Yu, Ya-Fen; Zhao, Gui-Jie

    2013-11-01

    To investigate the frequency and type of PHEX gene mutations in children with X-linked hypophosphatemic rickets (XLH), the possible presence of mutational hot spots, and the relationship between genotype and clinical phenotype. Clinical data of 10 children with XLH was retrospectively reviewed. The relationship between gene mutation type and severity of XLH was evaluated. PHEX gene mutations were detected in all 10 children with XLH, including 6 cases of missense mutation, 2 cases of splice site mutation, 1 case of frameshift mutation, and 1 case of nonsense mutation. Two new mutations, c.2048T>C and IVS14+1delAG, were found. The type of PHEX gene mutation was not associated with the degree of short stature and leg deformity (P=0.571 and 0.467), and the mutation site was also not associated with the degree of short stature and leg deformity (P=0.400 and 1.000). Missense mutation is the most common type of PHEX gene mutation in children with XLH, and c.2048T>C and IVS14+1delAG are two new PHEX gene mutations. The type and site of PHEX gene mutation are not associated with the severity of XLH.

  8. Characterization of a novel MYO3A missense mutation associated with a dominant form of late onset hearing loss.

    PubMed

    Dantas, Vitor G L; Raval, Manmeet H; Ballesteros, Angela; Cui, Runjia; Gunther, Laura K; Yamamoto, Guilherme L; Alves, Leandro Ucela; Bueno, André Silva; Lezirovitz, Karina; Pirana, Sulene; Mendes, Beatriz C A; Yengo, Christopher M; Kachar, Bechara; Mingroni-Netto, Regina C

    2018-06-07

    Whole-exome sequencing of samples from affected members of two unrelated families with late-onset non-syndromic hearing loss revealed a novel mutation (c.2090 T > G; NM_017433) in MYO3A. The mutation was confirmed in 36 affected individuals, showing autosomal dominant inheritance. The mutation alters a single residue (L697W or p.Leu697Trp) in the motor domain of the stereocilia protein MYO3A, leading to a reduction in ATPase activity, motility, and an increase in actin affinity. MYO3A-L697W showed reduced filopodial actin protrusion initiation in COS7 cells, and a predominant tipward accumulation at filopodia and stereocilia when coexpressed with wild-type MYO3A and espin-1, an actin-regulatory MYO3A cargo. The combined higher actin affinity and duty ratio of the mutant myosin cause increased retention time at stereocilia tips, resulting in the displacement of the wild-type MYO3A protein, which may impact cargo transport, stereocilia length, and mechanotransduction. The dominant negative effect of the altered myosin function explains the dominant inheritance of deafness.

  9. Identification of biallelic EXTL3 mutations in a novel type of spondylo-epi-metaphyseal dysplasia.

    PubMed

    Guo, Long; Elcioglu, Nursel H; Mizumoto, Shuji; Wang, Zheng; Noyan, Bilge; Albayrak, Hatice M; Yamada, Shuhei; Matsumoto, Naomichi; Miyake, Noriko; Nishimura, Gen; Ikegawa, Shiro

    2017-08-01

    Spondylo-epi-metaphyseal dysplasia (SEMD) is a group of inherited skeletal diseases characterized by the anomalies in spine, epiphyses and metaphyses. SEMD is highly heterogeneous and >20 distinct entities have been identified. Here we describe a novel type of SEMD in two unrelated Turkish patients who presented with severe platyspondyly, kyphoscoliosis, pelvic distortion, constriction of the proximal femora and brachydactyly. Although these phenotypes overlap considerably with some known SEMDs, they had a novel causal gene, exostosin-like glycosyltransferase 3 (EXTL3), that encodes a glycosyltransferase involved in the synthesis of heparin and heparan sulfate. The EXTL3 mutation identified in the patients was a homozygous missense mutation (c.953C>T) that caused a substitution in a highly conserved amino acid (p.P318L). The enzyme activity of the mutant EXTL3 protein was significantly decreased compared to the wild-type protein. Both patients had spinal cord compression at the cranio-vertebral junction and multiple liver cysts since early infancy. One of the patients showed severe immunodeficiency, which is considered non-fortuitous association. Our findings would help define a novel type of SEMD caused by EXTL3 mutations.

  10. DNA mismatch repair gene MLH1 induces apoptosis in prostate cancer cells.

    PubMed

    Fukuhara, Shinichiro; Chang, Inik; Mitsui, Yozo; Chiyomaru, Takeshi; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Hirata, Hiroshi; Deng, Guoren; Gill, Ankurpreet; Wong, Darryn K; Shiina, Hiroaki; Nonomura, Norio; Dahiya, Rajvir; Tanaka, Yuichiro

    2014-11-30

    Mismatch repair (MMR) enzymes have been shown to be deficient in prostate cancer (PCa). MMR can influence the regulation of tumor development in various cancers but their role on PCa has not been investigated. The aim of the present study was to determine the functional effects of the mutL-homolog 1 (MLH1) gene on growth of PCa cells. The DU145 cell line has been established as MLH1-deficient and thus, this cell line was utilized to determine effects of MLH1 by gene expression. Lack of MLH1 protein expression was confirmed by Western blotting in DU145 cells whereas levels were high in normal PWR-1E and RWPE-1 prostatic cells. MLH1-expressing stable transfectant DU145 cells were then created to characterize the effects this MMR gene has on various growth properties. Expression of MLH1 resulted in decreased cell proliferation, migration and invasion properties. Lack of cell growth in vivo also indicated a tumor suppressive effect by MLH1. Interestingly, MLH1 caused an increase in apoptosis along with phosphorylated c-Abl, and treatment with MLH1 siRNAs countered this effect. Furthermore, inhibition of c-Abl with STI571 also abrogated the effect on apoptosis caused by MLH1. These results demonstrate MLH1 protects against PCa development by inducing c-Abl-mediated apoptosis.

  11. DNA mismatch repair gene MLH1 induces apoptosis in prostate cancer cells

    PubMed Central

    Mitsui, Yozo; Chiyomaru, Takeshi; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Hirata, Hiroshi; Deng, Guoren; Gill, Ankurpreet; Wong, Darryn K.; Shiina, Hiroaki; Nonomura, Norio; Dahiya, Rajvir; Tanaka, Yuichiro

    2014-01-01

    Mismatch repair (MMR) enzymes have been shown to be deficient in prostate cancer (PCa). MMR can influence the regulation of tumor development in various cancers but their role on PCa has not been investigated. The aim of the present study was to determine the functional effects of the mutL-homolog 1 (MLH1) gene on growth of PCa cells. The DU145 cell line has been established as MLH1-deficient and thus, this cell line was utilized to determine effects of MLH1 by gene expression. Lack of MLH1 protein expression was confirmed by Western blotting in DU145 cells whereas levels were high in normal PWR-1E and RWPE-1 prostatic cells. MLH1-expressing stable transfectant DU145 cells were then created to characterize the effects this MMR gene has on various growth properties. Expression of MLH1 resulted in decreased cell proliferation, migration and invasion properties. Lack of cell growth in vivo also indicated a tumor suppressive effect by MLH1. Interestingly, MLH1 caused an increase in apoptosis along with phosphorylated c-Abl, and treatment with MLH1 siRNAs countered this effect. Furthermore, inhibition of c-Abl with STI571 also abrogated the effect on apoptosis caused by MLH1. These results demonstrate MLH1 protects against PCa development by inducing c-Abl-mediated apoptosis. PMID:25526032

  12. Novel NEK8 Mutations Cause Severe Syndromic Renal Cystic Dysplasia through YAP Dysregulation

    PubMed Central

    Grampa, Valentina; Odye, Gweltas; Thomas, Sophie; Elkhartoufi, Nadia; Filhol, Emilie; Niel, Olivier; Silbermann, Flora; Lebreton, Corinne; Collardeau-Frachon, Sophie; Rouvet, Isabelle; Alessandri, Jean-Luc; Devisme, Louise; Dieux-Coeslier, Anne; Cordier, Marie-Pierre; Capri, Yline; Khung-Savatovsky, Suonavy; Sigaudy, Sabine; Salomon, Rémi; Antignac, Corinne; Gubler, Marie-Claire; Benmerah, Alexandre; Terzi, Fabiola; Attié-Bitach, Tania; Jeanpierre, Cécile; Saunier, Sophie

    2016-01-01

    Ciliopathies are a group of genetic multi-systemic disorders related to dysfunction of the primary cilium, a sensory organelle present at the cell surface that regulates key signaling pathways during development and tissue homeostasis. In order to identify novel genes whose mutations would cause severe developmental ciliopathies, >500 patients/fetuses were analyzed by a targeted high throughput sequencing approach allowing exome sequencing of >1200 ciliary genes. NEK8/NPHP9 mutations were identified in five cases with severe overlapping phenotypes including renal cystic dysplasia/hypodysplasia, situs inversus, cardiopathy with hypertrophic septum and bile duct paucity. These cases highlight a genotype-phenotype correlation, with missense and nonsense mutations associated with hypodysplasia and enlarged cystic organs, respectively. Functional analyses of NEK8 mutations in patient fibroblasts and mIMCD3 cells showed that these mutations differentially affect ciliogenesis, proliferation/apoptosis/DNA damage response, as well as epithelial morphogenesis. Notably, missense mutations exacerbated some of the defects due to NEK8 loss of function, highlighting their likely gain-of-function effect. We also showed that NEK8 missense and loss-of-function mutations differentially affect the regulation of the main Hippo signaling effector, YAP, as well as the expression of its target genes in patient fibroblasts and renal cells. YAP imbalance was also observed in enlarged spheroids of Nek8-invalidated renal epithelial cells grown in 3D culture, as well as in cystic kidneys of Jck mice. Moreover, co-injection of nek8 MO with WT or mutated NEK8-GFP RNA in zebrafish embryos led to shortened dorsally curved body axis, similar to embryos injected with human YAP RNA. Finally, treatment with Verteporfin, an inhibitor of YAP transcriptional activity, partially rescued the 3D spheroid defects of Nek8-invalidated cells and the abnormalities of NEK8-overexpressing zebrafish embryos

  13. Genetic Mutations in Cancer

    Cancer.gov

    Many different types of genetic mutations are found in cancer cells. This infographic outlines certain types of alterations that are present in cancer, such as missense, nonsense, frameshift, and chromosome rearrangements.

  14. Expression of DNA repair proteins MSH2, MLH1 and MGMT in human benign and malignant thyroid lesions: An immunohistochemical study

    PubMed Central

    Giaginis, Constantinos; Michailidi, Christina; Stolakis, Vasileios; Alexandrou, Paraskevi; Tsourouflis, Gerasimos; Klijanienko, Jerzy; Delladetsima, Ioanna; Theocharis, Stamatios

    2011-01-01

    Summary Background DNA repair is a major defense mechanism, which contributes to the maintenance of genetic sequence, and minimizes cell death, mutation rates, replication errors, DNA damage persistence and genomic instability. Alterations in the expression levels of proteins participating in DNA repair mechanisms have been associated with several aspects of cancer biology. The present study aimed to evaluate the clinical significance of DNA repair proteins MSH2, MLH1 and MGMT in benign and malignant thyroid lesions. Material/Methods MSH2, MLH1 and MGMT protein expression was assessed immunohistochemically on paraffin-embedded thyroid tissues from 90 patients with benign and malignant lesions. Results The expression levels of MLH1 was significantly upregulated in cases with malignant compared to those with benign thyroid lesions (p=0.038). The expression levels of MGMT was significantly downregulated in malignant compared to benign thyroid lesions (p=0.001). Similar associations for both MLH1 and MGMT between cases with papillary carcinoma and hyperplastic nodules were also noted (p=0.014 and p=0.026, respectively). In the subgroup of malignant thyroid lesions, MSH2 downregulation was significantly associated with larger tumor size (p=0.031), while MLH1 upregulation was significantly associated with the presence of lymphatic and vascular invasion (p=0.006 and p=0.002, respectively). Conclusions Alterations in the mismatch repair proteins MSH2 and MLH1 and the direct repair protein MGMT may result from tumor development and/or progression. Further studies are recommended to draw definite conclusions on the clinical significance of DNA repair proteins in thyroid neoplasia. PMID:21358597

  15. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus.

    PubMed Central

    Rittig, S.; Robertson, G. L.; Siggaard, C.; Kovács, L.; Gregersen, N.; Nyborg, J.; Pedersen, E. B.

    1996-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder characterized by progressive postnatal deficiency of arginine vasopressin as a result of mutation in the gene that encodes the hormone. To determine the extent of mutations in the coding region that produce the phenotype, we studied members of 17 unrelated kindreds with the disorder. We sequenced all 3 exons of the gene by using a rapid, direct dye-terminator method and found the causative mutation in each kindred. In four kindreds, the mutations were each identical to mutations described in other affected families. In the other 13 kindreds each mutation was unique. There were two missense mutations that altered the cleavage region of the signal peptide, seven missense mutations in exon 2, which codes for the conserved portion of the protein, one nonsense mutation in exon 2, and three nonsense mutations in exon 3. These findings, together with the clinical features of FNDI, suggest that each of the mutations exerts an effect by directing the production of a pre-prohormone that cannot be folded, processed, or degraded properly and eventually destroys vasopressinergic neurons. Images Figure 3 PMID:8554046

  16. Colon and Endometrial Cancers with Mismatch Repair Deficiency can Arise from Somatic, Rather Than Germline, Mutations

    PubMed Central

    Haraldsdottir, Sigurdis; Hampel, Heather; Tomsic, Jerneja; Frankel, Wendy L.; Pearlman, Rachel; de la Chapelle, Albert; Pritchard, Colin C.

    2014-01-01

    Background & Aims Patients with Lynch syndrome carry germline mutations in single alleles of genes encoding the MMR proteins MLH1, MSH2, MSH6 and PMS2; when the second allele becomes mutated, cancer can develop. Increased screening for Lynch syndrome has identified patients with tumors that have deficiency in MMR, but no germline mutations in genes encoding MMR proteins. We investigated whether tumors with deficient MMR had acquired somatic mutations in patients without germline mutations in MMR genes using next-generation sequencing. Methods We analyzed blood and tumor samples from 32 patients with colorectal or endometrial cancer who participated in Lynch syndrome screening studies in Ohio and were found to have tumors with MMR deficiency (based on microsatellite instability and/or absence of MMR proteins in immunohistochemical analysis, without hypermethylation of MLH1), but no germline mutations in MMR genes. Tumor DNA was sequenced for MLH1, MSH2, MSH6, PMS2, EPCAM, POLE and POLD1 with ColoSeq and mutation frequencies were established. Results Twenty-two of 32 patients (69%) were found to have two somatic (tumor) mutations in MMR genes encoding proteins that were lost from tumor samples, based on immunohistochemistry. Of the 10 tumors without somatic mutations in MMR genes, 3 had somatic mutations with possible loss of heterozygosity that could lead to MMR deficiency, 6 were found to be false-positive results (19%), and 1 had no mutations known to be associated with MMR deficiency. All of the tumors found to have somatic MMR mutations were of the hypermutated phenotype (>12 mutations/Mb); 6 had mutation frequencies >200 per Mb, and 5 of these had somatic mutations in POLE, which encodes a DNA polymerase. Conclusions Some patients are found to have tumors with MMR deficiency during screening for Lynch syndrome, yet have no identifiable germline mutations in MMR genes. We found that almost 70% of these patients acquire somatic mutations in MMR genes, leading to

  17. Expanding the clinical and genetic spectrum of G6PD deficiency: The occurrence of BCGitis and novel missense mutation.

    PubMed

    Khan, Taj Ali; Mazhar, Humaira; Nawaz, Mehboob; Kalsoom, Kalsoom; Ishfaq, Muhammad; Asif, Huma; Rahman, Hazir; Qasim, Muhammad; Naz, Farkhanda; Hussain, Mubashir; Khattak, Baharullah; Ullah, Waheed; Cabral-Marques, Otavio; Butt, Jawad; Iqbal, Asif

    2017-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway that ensures sufficient production of coenzyme nicotinamide adenine dinucleotide phosphate (NADPH) by catalyzing the reduction of NADP+ to NADPH. Noteworthy, the latter mediates the production of reactive oxygen species (ROS) by phagocytic cells such as neutrophils and monocytes. Therefore, patients with severe forms of G6PD deficiency may present impaired NADPH oxidase activity and become susceptible to recurrent infections. This fact, highlights the importance to characterize the immunopathologic mechanisms underlying the susceptibility to infections in patients with G6PD deficiency. Here we report the first two cases of G6PD deficiency with Bacille Calmette-Guérin (BCG) adverse effect, besides jaundice, hemolytic anemia and recurrent infections caused by Staphylococcus aureus. The qualitative G6PD screening was performed and followed by oxidative burst analysis using flow cytometry. Genetic and in silico analyses were carried out by Sanger sequencing and mutation pathogenicity predicted using bioinformatics tools, respectively. Activated neutrophils and monocytes from patients displayed impaired oxidative burst. The genetic analysis revealed the novel missense mutation c.1157T>A/p.L386Q in G6PD. In addition, in silico analysis indicated that this mutation is pathogenic, thereby hampering the oxidative burst of neutrophils and monocytes from patients. Our data expand the clinical and genetic spectrum of G6PD deficiency, and suggest that impaired oxidative burst in this severe primary immune deficiency is an underlying immunopathologic mechanism that predisposes to mycobacterial infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Rats with a missense mutation in Atm display neuroinflammation and neurodegeneration subsequent to accumulation of cytosolic DNA following unrepaired DNA damage.

    PubMed

    Quek, Hazel; Luff, John; Cheung, KaGeen; Kozlov, Sergei; Gatei, Magtouf; Lee, C Soon; Bellingham, Mark C; Noakes, Peter G; Lim, Yi Chieh; Barnett, Nigel L; Dingwall, Steven; Wolvetang, Ernst; Mashimo, Tomoji; Roberts, Tara L; Lavin, Martin F

    2017-04-01

    Mutations in the ataxia-telangiectasia (A-T)-mutated ( ATM ) gene give rise to the human genetic disorder A-T, characterized by immunodeficiency, cancer predisposition, and neurodegeneration. Whereas a series of animal models recapitulate much of the A-T phenotype, they fail to present with ataxia or neurodegeneration. We describe here the generation of an Atm missense mutant [amino acid change of leucine (L) to proline (P) at position 2262 (L2262P)] rat by intracytoplasmic injection (ICSI) of mutant sperm into oocytes. Atm -mutant rats ( Atm L2262P/L2262P ) expressed low levels of ATM protein, suggesting a destabilizing effect of the mutation, and had a significantly reduced lifespan compared with Atm +/+ Whereas these rats did not show cerebellar atrophy, they succumbed to hind-limb paralysis (45%), and the remainder developed tumors. Closer examination revealed the presence of both dsDNA and ssDNA in the cytoplasm of cells in the hippocampus, cerebellum, and spinal cord of Atm L2262P/L2262P rats. Significantly increased levels of IFN-β and IL-1β in all 3 tissues were indicative of DNA damage induction of the type 1 IFN response. This was further supported by NF-κB activation, as evidenced by p65 phosphorylation (P65) and translocation to the nucleus in the spinal cord and parahippocampus. Other evidence of neuroinflammation in the brain and spinal cord was the loss of motor neurons and the presence of increased activation of microglia. These data provide support for a proinflammatory phenotype that is manifested in the Atm mutant rat as hind-limb paralysis. This mutant represents a useful model to investigate the importance of neuroinflammation in A-T. © Society for Leukocyte Biology.

  19. The major origin of seedless grapes is associated with a missense mutation in the MADS-box gene VviAGL11.

    PubMed

    Royo, Carolina; Torres-Pérez, Rafael; Mauri, Nuria; Diestro, Nieves; Cabezas, José Antonio; Marchal, Cécile; Lacombe, Thierry; Ibáñez, Javier; Tornel, Manuel; Carreño, Juan; Martínez-Zapater, José M; Carbonell-Bejerano, Pablo

    2018-05-31

    Seedlessness is greatly prized by consumers of fresh grapes. While stenospermocarpic seed abortion determined by the SEED DEVELOPMENT INHIBITOR (SDI) locus is the usual source of seedlessness in commercial grapevine (Vitis vinifera) cultivars, the underlying sdi mutation remains unknown. Here, we undertook an integrative approach to identify the causal mutation. Quantitative genetics and fine mapping in two 'Crimson Seedless' (CS)-derived F1 mapping populations confirmed the major effect of the SDI locus and delimited the sdi mutation to a 323-kb region on chromosome 18. RNA-seq comparing seed traces of seedless and seeds of seeded F1 individuals identified processes triggered during sdi-determined seed abortion, including activation of salicylic acid-dependent defenses. The RNA-seq dataset was investigated for candidate genes and, while no evidence for causal cis-acting regulatory mutations was detected, deleterious nucleotide changes in coding sequences of the seedless haplotype were predicted in two genes within the sdi fine mapping interval. Targeted re-sequencing of the two genes in a collection of 124 grapevine cultivars showed that only the point variation causing the Arg197Leu substitution in the seed morphogenesis regulator gene AGAMOUS-LIKE 11 (VviAGL11) was fully linked with stenospermocarpy. The concurrent post-zygotic variation identified for this missense polymorphism and seedlessness phenotype in seeded somatic variants of the original stenospermocarpic cultivar supports a causal effect. We postulate that seed abortion caused by this amino acid substitution in VviAGL11 is the major cause of seedlessness in cultivated grapevine. This information can be exploited to boost seedless grape breeding. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  20. Correlation of MLH1 and MGMT methylation levels between peripheral blood leukocytes and colorectal tissue DNA samples in colorectal cancer patients.

    PubMed

    Li, Xia; Wang, Yibaina; Zhang, Zuoming; Yao, Xiaoping; Ge, Jie; Zhao, Yashuang

    2013-11-01

    CpG island methylation in the promoter regions of the DNA mismatch repair gene mutator L homologue 1 ( MLH1 ) and DNA repair gene O 6 -methylguanine-DNA methyltransferase ( MGMT ) genes has been shown to occur in the leukocytes of peripheral blood and colorectal tissue. However, it is unclear whether the methylation levels in the blood leukocytes and colorectal tissue are correlated. The present study analyzed and compared the levels of MGMT and MLH1 gene methylation in the leukocytes of peripheral blood and colorectal tissues obtained from patients with colorectal cancer (CRC). The methylation levels of MGMT and MLH1 were examined using methylation-sensitive high-resolution melting (MS-HRM) analysis. A total of 44 patients with CRC were selected based on the MLH1 and MGMT gene methylation levels in the leukocytes of the peripheral blood. Corresponding colorectal tumor and normal tissues were obtained from each patient and the DNA methylation levels were determined. The correlation coefficients were evaluated using Spearman's rank test. Agreement was determined by generalized κ-statistics. Spearman's rank correlation coefficients (r) for the methylation levels of the MGMT and MLH1 genes in the leukocytes of the peripheral blood and normal colorectal tissue were 0.475 and 0.362, respectively (P=0.001 and 0.016, respectively). The agreement of the MGMT and MLH1 gene methylation levels in the leukocytes of the peripheral blood and normal colorectal tissue were graded as fair and poor (κ=0.299 and 0.126, respectively). The methylation levels of MGMT and MLH1 were moderately and weakly correlated between the patient-matched leukocytes and the normal colorectal tissue, respectively. Blood-derived DNA methylation measurements may not always represent the levels of normal colorectal tissue methylation.

  1. The BAG3 gene variants in Polish patients with dilated cardiomyopathy: four novel mutations and a genotype-phenotype correlation.

    PubMed

    Franaszczyk, Maria; Bilinska, Zofia T; Sobieszczańska-Małek, Małgorzata; Michalak, Ewa; Sleszycka, Justyna; Sioma, Agnieszka; Małek, Łukasz A; Kaczmarska, Dorota; Walczak, Ewa; Włodarski, Paweł; Hutnik, Łukasz; Milanowska, Blanka; Dzielinska, Zofia; Religa, Grzegorz; Grzybowski, Jacek; Zieliński, Tomasz; Ploski, Rafal

    2014-07-09

    BAG3 gene mutations have been recently implicated as a novel cause of dilated cardiomyopathy (DCM). Our aim was to evaluate the prevalence of BAG3 mutations in Polish patients with DCM and to search for genotype-phenotype correlations. We studied 90 unrelated probands by direct sequencing of BAG3 exons and splice sites. Large deletions/insertions were screened for by quantitative real time polymerase chain reaction (qPCR). We found 5 different mutations in 6 probands and a total of 21 mutations among their relatives: the known p.Glu455Lys mutation (2 families), 4 novel mutations: p.Gln353ArgfsX10 (c.1055delC), p.Gly379AlafsX45 (c.1135delG), p.Tyr451X (c.1353C>A) and a large deletion of 17,990 bp removing BAG3 exons 3-4. Analysis of mutation positive relatives of the probands from this study pooled with those previously reported showed higher DCM prevalence among those with missense vs. truncating mutations (OR = 8.33, P = 0.0058) as well as a difference in age at disease onset between the former and the latter in Kaplan-Meier survival analysis (P = 0.006). Clinical data from our study suggested that in BAG3 mutation carriers acute onset DCM with hemodynamic compromise may be triggered by infection. BAG3 point mutations and large deletions are relatively frequent cause of DCM. Delayed DCM onset associated with truncating vs. non-truncating mutations may be important for genetic counseling.

  2. Novel homozygous missense mutation in GAN associated with Charcot-Marie-Tooth disease type 2 in a large consanguineous family from Israel.

    PubMed

    Aharoni, Sharon; Barwick, Katy E S; Straussberg, Rachel; Harlalka, Gaurav V; Nevo, Yoram; Chioza, Barry A; McEntagart, Meriel M; Mimouni-Bloch, Aviva; Weedon, Michael; Crosby, Andrew H

    2016-11-16

    CMT-2 is a clinically and genetically heterogeneous group of peripheral axonal neuropathies characterized by slowly progressive weakness and atrophy of distal limb muscles resulting from length-dependent motor and sensory neurodegeneration. Classical giant axonal neuropathy (GAN) is an autosomal recessively inherited progressive neurodegenerative disorder of the peripheral and central nervous systems, typically diagnosed in early childhood and resulting in death by the end of the third decade. Distinctive phenotypic features are the presence of "kinky" hair and long eyelashes. The genetic basis of the disease has been well established, with over 40 associated mutations identified in the gene GAN, encoding the BTB-KELCH protein gigaxonin, involved in intermediate filament regulation. An Illumina Human CytoSNP-12 array followed by whole exome sequence analysis was used to identify the disease associated gene mutation in a large consanguineous family diagnosed with Charcot-Marie-Tooth disease type 2 (CMT-2) from which all but one affected member had straight hair. Here we report the identification of a novel GAN missense mutation underlying the CMT-2 phenotype observed in this family. Although milder forms of GAN, with and without the presence of kinky hair have been reported previously, a phenotype distinct from that was investigated in this study. All family members lacked common features of GAN, including ataxia, nystagmus, intellectual disability, seizures, and central nervous system involvement. Our findings broaden the spectrum of phenotypes associated with GAN mutations and emphasize a need to proceed with caution when providing families with diagnostic or prognostic information based on either clinical or genetic findings alone.

  3. A new mutation in Muir-Torre syndrome associated with familiar transmission of different gastrointestinal adenocarcinomas.

    PubMed

    Tanyi, M; Olasz, J; Lukács, G; Tanyi, J L; Tóth, L; Antal-Szalmás, P; Ress, Z; Bubán, T; András, C; Damjanovich, L

    2009-10-01

    Hereditary Nonpolyposis Colorectal Carcinoma (HNPCC) is the most frequent inherited disease which can lead to the development of tumors in the colon and other locations. Its genetic basis is related to the germline mutation of the Mismatch Repair (MMR) genes. Muir-Torre syndrome is considered one of the subtypes of this disease, in which the HNPCC tumor spectrum is frequently associated with sebaceous carcinoma of the skin or keratoacanthoma. A 57 years old male patient is presented with a mucinous carcinoma of the caecum and an adenocarcinoma of the pancreas head. A malignant sebaceous carcinoma was removed from his left neck area. His family history was significant for two cases of colon carcinoma, two cases of stomach cancer and a case of metacron endometrial and skin tumor as well. Both the colon carcinoma and the skin tumor proved to be microsatellite unstable. An Arg>Pro switch missense mutation was found in codon 265 of the hMLH1 gene. This error was found in 4 other members of his family. The detected genetic alteration was considered pathogenic and was not published yet in English literature. The significance of this particular case is the rare tumor association in a patient with Muir-Torre syndrome (MTS). In cases of sebaceous skin lesions, evaluation of family history is of utmost importance in the early detection of HNPCC and in the follow up care of family members with the particular mutation.

  4. Functional and splicing defect analysis of 23 ACVRL1 mutations in a cohort of patients affected by Hereditary Hemorrhagic Telangiectasia

    PubMed Central

    Alaa el Din, Ferdos; Patri, Sylvie; Thoreau, Vincent; Rodriguez-Ballesteros, Montserrat; Hamade, Eva; Bailly, Sabine; Gilbert-Dussardier, Brigitte; Abou Merhi, Raghida; Kitzis, Alain

    2015-01-01

    Hereditary Hemorrhagic Telangiectasia syndrome (HHT) or Rendu-Osler-Weber (ROW) syndrome is an autosomal dominant vascular disorder. Two most common forms of HHT, HHT1 and HHT2, have been linked to mutations in the endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1or ALK1) genes respectively. This work was designed to examine the pathogenicity of 23 nucleotide variations in ACVRL1 gene detected in more than 400 patients. Among them, 14 missense mutations and one intronic variant were novels, and 8 missense mutations were previously identified with questionable implication in HHT2. The functionality of missense mutations was analyzed in response to BMP9 (specific ligand of ALK1), the maturation of the protein products and their localization were analyzed by western blot and fluorescence microscopy. The splicing impairment of the intronic and of two missense mutations was examined by minigene assay. Functional analysis showed that 18 out of 22 missense mutations were defective. Splicing analysis revealed that one missense mutation (c.733A>G, p.Ile245Val) affects the splicing of the harboring exon 6. Similarly, the intronic mutation outside the consensus splicing sites (c.1048+5G>A in intron 7) was seen pathogenic by splicing study. Both mutations induce a frame shift creating a premature stop codon likely resulting in mRNA degradation by NMD surveillance mechanism. Our results confirm the haploinsufficiency model proposed for HHT2. The affected allele of ACVRL1 induces mRNA degradation or the synthesis of a protein lacking the receptor activity. Furthermore, our data demonstrate that functional and splicing analyses together, represent two robust diagnostic tools to be used by geneticists confronted with novel or conflicted ACVRL1 mutations. PMID:26176610

  5. Rare ATAD5 missense variants in breast and ovarian cancer patients.

    PubMed

    Maleva Kostovska, Ivana; Wang, Jing; Bogdanova, Natalia; Schürmann, Peter; Bhuju, Sabin; Geffers, Robert; Dürst, Matthias; Liebrich, Clemens; Klapdor, Rüdiger; Christiansen, Hans; Park-Simon, Tjoung-Won; Hillemanns, Peter; Plaseska-Karanfilska, Dijana; Dörk, Thilo

    2016-06-28

    ATAD5/ELG1 is a protein crucially involved in replication and maintenance of genome stability. ATAD5 has recently been identified as a genomic risk locus for both breast and ovarian cancer through genome-wide association studies. We aimed to investigate the spectrum of coding ATAD5 germ-line mutations in hospital-based series of patients with triple-negative breast cancer or serous ovarian cancer compared with healthy controls. The ATAD5 coding and adjacent splice site regions were analyzed by targeted next-generation sequencing of DNA samples from 273 cancer patients, including 114 patients with triple-negative breast cancer and 159 patients with serous epithelial ovarian cancer, and from 276 healthy females. Among 42 different variants identified, twenty-two were rare missense substitutions, of which 14 were classified as pathogenic by at least one in silico prediction tool. Three of four novel missense substitutions (p.S354I, p.H974R and p.K1466N) were predicted to be pathogenic and were all identified in ovarian cancer patients. Overall, rare missense variants with predicted pathogenicity tended to be enriched in ovarian cancer patients (14/159) versus controls (11/276) (p = 0.05, 2df). While truncating germ-line variants in ATAD5 were not detected, it remains possible that several rare missense variants contribute to genetic susceptibility toward epithelial ovarian carcinomas. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Recessive myosin myopathy with external ophthalmoplegia associated with MYH2 mutations.

    PubMed

    Tajsharghi, Homa; Hammans, Simon; Lindberg, Christopher; Lossos, Alexander; Clarke, Nigel F; Mazanti, Ingrid; Waddell, Leigh B; Fellig, Yakov; Foulds, Nicola; Katifi, Haider; Webster, Richard; Raheem, Olayinka; Udd, Bjarne; Argov, Zohar; Oldfors, Anders

    2014-06-01

    Myosin myopathies comprise a group of inherited diseases caused by mutations in myosin heavy chain (MyHC) genes. Homozygous or compound heterozygous truncating MYH2 mutations have been demonstrated to cause recessive myopathy with ophthalmoplegia, mild-to-moderate muscle weakness and complete lack of type 2A muscle fibers. In this study, we describe for the first time the clinical and morphological characteristics of recessive myosin IIa myopathy associated with MYH2 missense mutations. Seven patients of five different families with a myopathy characterized by ophthalmoplegia and mild-to-moderate muscle weakness were investigated. Muscle biopsy was performed to study morphological changes and MyHC isoform expression. Five of the patients were homozygous for MYH2 missense mutations, one patient was compound heterozygous for a missense and a nonsense mutation and one patient was homozygous for a frame-shift MYH2 mutation. Muscle biopsy demonstrated small or absent type 2A muscle fibers and reduced or absent expression of the corresponding MyHC IIa transcript and protein. We conclude that mild muscle weakness and ophthalmoplegia in combination with muscle biopsy demonstrating small or absent type 2A muscle fibers are the hallmark of recessive myopathy associated with MYH2 mutations.

  7. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development.

    PubMed

    Roncero, A M; López-Nieva, P; Cobos-Fernández, M A; Villa-Morales, M; González-Sánchez, L; López-Lorenzo, J L; Llamas, P; Ayuso, C; Rodríguez-Pinilla, S M; Arriba, M C; Piris, M A; Fernández-Navarro, P; Fernández, A F; Fraga, M F; Santos, J; Fernández-Piqueras, J

    2016-01-01

    The JAK-STAT pathway has a substantial role in lymphoid precursor cell proliferation, survival and differentiation. Nonetheless, the contribution of JAK2 to T-cell lymphoblastic lymphoma (T-LBL) development remains poorly understood. We have identified one activating TEL-JAK2 translocation and four missense mutations accumulated in 2 out of 16 T-LBL samples. Two of them are novel JAK2 mutations and the other two are reported for the first time in T-LBL. Notably, R683G and I682T might have arisen owing to RNA editing. Mutated samples showed different mutated transcripts suggesting sub-clonal heterogeneity. Functional approaches revealed that two JAK2 mutations (H574R and R683G) constitutively activate JAK-STAT signaling in γ2A cells and can drive the proliferation of BaF3-EpoR cytokine-dependent cell line. In addition, aberrant hypermethylation of SOCS3 might contribute to enhance the activation of JAK-STAT signaling. Of utmost interest is that primary T-LBL samples harboring JAK2 mutations exhibited increased expression of LMO2, suggesting a mechanistic link between JAK2 mutations and the expression of LMO2, which was confirmed for the four missense mutations in transfected γ2A cells. We therefore propose that active JAK2 contribute to T-LBL development by two different mechanisms, and that the use of pan-JAK inhibitors in combination with epigenetic drugs should be considered in future treatments.

  8. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development

    PubMed Central

    Roncero, A M; López-Nieva, P; Cobos-Fernández, M A; Villa-Morales, M; González-Sánchez, L; López-Lorenzo, J L; Llamas, P; Ayuso, C; Rodríguez-Pinilla, S M; Arriba, M C; Piris, M A; Fernández-Navarro, P; Fernández, A F; Fraga, M F; Santos, J; Fernández-Piqueras, J

    2016-01-01

    The JAK-STAT pathway has a substantial role in lymphoid precursor cell proliferation, survival and differentiation. Nonetheless, the contribution of JAK2 to T-cell lymphoblastic lymphoma (T-LBL) development remains poorly understood. We have identified one activating TEL-JAK2 translocation and four missense mutations accumulated in 2 out of 16 T-LBL samples. Two of them are novel JAK2 mutations and the other two are reported for the first time in T-LBL. Notably, R683G and I682T might have arisen owing to RNA editing. Mutated samples showed different mutated transcripts suggesting sub-clonal heterogeneity. Functional approaches revealed that two JAK2 mutations (H574R and R683G) constitutively activate JAK-STAT signaling in γ2A cells and can drive the proliferation of BaF3-EpoR cytokine-dependent cell line. In addition, aberrant hypermethylation of SOCS3 might contribute to enhance the activation of JAK-STAT signaling. Of utmost interest is that primary T-LBL samples harboring JAK2 mutations exhibited increased expression of LMO2, suggesting a mechanistic link between JAK2 mutations and the expression of LMO2, which was confirmed for the four missense mutations in transfected γ2A cells. We therefore propose that active JAK2 contribute to T-LBL development by two different mechanisms, and that the use of pan-JAK inhibitors in combination with epigenetic drugs should be considered in future treatments. PMID:26216197

  9. Mutation analysis of BRCA1/2 mutations with special reference to polymorphic SNPs in Indian breast cancer patients.

    PubMed

    Shah, Nidhi D; Shah, Parth S; Panchal, Yash Y; Katudia, Kalpesh H; Khatri, Nikunj B; Ray, Hari Shankar P; Bhatiya, Upti R; Shah, Sandip C; Shah, Bhavini S; Rao, Mandava V

    2018-01-01

    Germline mutations BRCA1 and BRCA2 contribute almost equally in the causation of breast cancer (BC). The type of mutations in the Indian population that cause this condition is largely unknown. In this cohort, 79 randomized BC patients were screened for various types of BRCA1 and BRCA2 mutations including frameshift, nonsense, missense, in-frame and splice site types. The purified extracted DNA of each referral patient was subjected to Sanger gene sequencing using Codon Code Analyzer and Mutation Surveyor and next-generation sequencing (NGS) methods with Ion torrent software, after appropriate care. The data revealed that 35 cases were positive for BRCA1 or BRCA2 (35/79: 44.3%). BRCA2 mutations were higher (52.4%) than BRCA1 mutations (47.6%). Five novel mutations detected in this study were p.pro163 frameshift, p.asn997 frameshift, p.ser148 frameshift and two splice site single-nucleotide polymorphisms (SNPs). Additionally, four nonsense and one in-frame deletion were identified, which all seemed to be pathogenic. Polymorphic SNPs contributed the highest percentage of mutations (72/82: 87.8%) and contributed to pathogenic, likely pathogenic, likely benign, benign and variant of unknown significance (VUS). Young age groups (20-60 years) had a high frequency of germline mutations (62/82;75.6%) in the Indian population. This study suggested that polymorphic SNPs contributed a high percentage of mutations along with five novel types. Younger age groups are prone to having BC with a higher mutational rate. Furthermore, the SNPs detected in exons 10, 11 and 16 of BRCA1 and BRCA2 were higher than those in other exons 2, 3 and 9 polymorphic sites in two germline genes. These may be contributory for BC although missense types are known to be susceptible for cancer depending on the type of amino acid replaced in the protein and associated with pathologic events. Accordingly, appropriate counseling and treatment may be suggested.

  10. CDKL5 mutations in boys with severe encephalopathy and early-onset intractable epilepsy.

    PubMed

    Elia, M; Falco, M; Ferri, R; Spalletta, A; Bottitta, M; Calabrese, G; Carotenuto, M; Musumeci, S A; Lo Giudice, M; Fichera, M

    2008-09-23

    To search for CDKL5 gene mutations in boys presenting with severe early-onset encephalopathy and intractable epilepsy, a clinical picture very similar to that already described in girls with CDKL5 mutations. Eight boys (age range 3-16 years, mean age 8.5 years, SD 4.38) with severe or profound mental retardation and early-onset intractable seizures were selected for CDKL5 gene mutation screening by denaturing high-performance liquid chromatography analysis. We found three unrelated boys carrying three different missense mutations of the CDKL5 gene: c.872G>A (p.C291Y), c.863C>T (p.T288I), and c.533G>C (p.R178P). They presented early-onset, polymorphous, and drug-resistant seizures, mostly myoclonic and tonic or spasms. EEG showed epileptiform abnormalities which were multifocal during wakefulness, and pseudoperiodic bisynchronous during sleep. This study describes three boys carrying CDKL5 missense mutations and their detailed clinical and EEG data, and indicates that CDKL5 gene mutations may represent a cause of severe or profound mental retardation and early-onset intractable seizures, also in boys. Screening for CDKL5 mutations is strongly recommended in individuals with these clinical features.

  11. Autosomal-dominant Meesmann epithelial corneal dystrophy without an exon mutation in the keratin-3 or keratin-12 gene in a Chinese family.

    PubMed

    Cao, Wei; Yan, Ming; Hao, QianYun; Wang, ShuLin; Wu, LiHua; Liu, Qing; Li, MingYan; Biddle, Fred G; Wu, Wei

    2013-04-01

    Meesmann epithelial corneal dystrophy (MECD) is a dominantly inherited disorder, characterized by fragility of the anterior corneal epithelium and formation of intraepithelial microcysts. It has been described in a number of different ancestral groups. To date, all reported cases of MECD have been associated with either a single mutation in one exon of the keratin-3 gene (KRT3) or a single mutation in one of two exons of the keratin-12 gene (KRT12). Each mutation leads to a predicted amino acid change in the respective keratin-3 or keratin-12 proteins that combine to form the corneal-specific heterodimeric intermediate filament protein. This case report describes a four-generation Chinese kindred with typical autosomal-dominant MECD. Exon sequencing of KRT3 and KRT12 in six affected and eight unaffected individuals (including two spouses) did not detect any mutations or nucleotide sequence variants. This kindred demonstrates that single mis-sense mutations may be sufficient but are not required in all individuals with the MECD phenotype. It provides a unique opportunity to investigate further genomic and functional heterogeneity in MECD.

  12. Missense-depleted regions in population exomes implicate ras superfamily nucleotide-binding protein alteration in patients with brain malformation

    PubMed Central

    Ge, Xiaoyan; Gong, Henry; Dumas, Kevin; Litwin, Jessica; Phillips, Joanna J; Waisfisz, Quinten; Weiss, Marjan M; Hendriks, Yvonne; Stuurman, Kyra E; Nelson, Stanley F; Grody, Wayne W; Lee, Hane; Kwok, Pui-Yan; Shieh, Joseph T C

    2016-01-01

    Genomic sequence interpretation can miss clinically relevant missense variants for several reasons. Rare missense variants are numerous in the exome and difficult to prioritise. Affected genes may also not have existing disease association. To improve variant prioritisation, we leverage population exome data to identify intragenic missense-depleted regions (MDRs) genome-wide that may be important in disease. We then use missense depletion analyses to help prioritise undiagnosed disease exome variants. We demonstrate application of this strategy to identify a novel gene association for human brain malformation. We identified de novo missense variants that affect the GDP/GTP-binding site of ARF1 in three unrelated patients. Corresponding functional analysis suggests ARF1 GDP/GTP-activation is affected by the specific missense mutations associated with heterotopia. These findings expand the genetic pathway underpinning neurologic disease that classically includes FLNA. ARF1 along with ARFGEF2 add further evidence implicating ARF/GEFs in the brain. Using functional ontology, top MDR-containing genes were highly enriched for nucleotide-binding function, suggesting these may be candidates for human disease. Routine consideration of MDR in the interpretation of exome data for rare diseases may help identify strong genetic factors for many severe conditions, infertility/reduction in reproductive capability, and embryonic conditions contributing to preterm loss. PMID:28868155

  13. Identification of novel FBN1 and TGFBR2 mutations in 65 probands with Marfan syndrome or Marfan-like phenotypes.

    PubMed

    Chung, Brian Hon-Yin; Lam, Stephen Tak-Sum; Tong, Tony Ming-For; Li, Susanna Yuk-Han; Lun, Kin-Shing; Chan, Daniel Hon-Chuen; Fok, Susanna Fung-Shan; Or, June Siu-Fong; Smith, David Keith; Yang, Wanling; Lau, Yu-Lung

    2009-07-01

    Marfan syndrome is an autosomal dominant connective tissue disorder, and mutations in the FBN1 and TGFBR2 genes have been identified in probands with MFS and related phenotypes. Using DHPLC and sequencing, we studied the mutation spectrum in 65 probands with Marfan syndrome and related phenotypes. A total of 24 mutations in FBN1 were identified, of which 19 (nine missense, six frameshift, two nonsense and two affecting splice junctions) were novel. In the remaining 41 probands, six were identified to have novel TGFBR2 mutations (one frameshift and five missense mutations). All novel mutations found in this study were confirmed to be absent in 50 unrelated normal individuals of the same ethnic background. In probands who fulfilled the Ghent criteria (n = 16), mutations in FBN1 were found in 81% of cases. None of those with TGFBR2 mutations fulfilled the Ghent criteria. Novel missense mutations of unknown significance were classified according to the latest ACMG guidelines and their likelihood to be causative was evaluated.

  14. Expression of MLH1 and MSH2 in urothelial carcinoma of the renal pelvis.

    PubMed

    Ehsani, Laleh; Osunkoya, Adeboye O

    2014-09-01

    In this study, we investigated microsatellite instability in urothelial carcinoma of the renal pelvis by lack of immunohistochemical staining for MLH1 and MSH2. The study included 44 cases of urothelial carcinoma of the renal pelvis obtained from radical nephroureterectomy specimens at our institution. We evaluated the loss of nuclear immunohistochemical staining of MLH1 and MSH2. Eight of 44 (18 %) patients had negative MLH1 expression and 25/44 (57 %) patients had negative MSH2 expression. Six of 8 (75 %) patients with negative MLH1 expression were male and 2/8 (25 %) patients were female. Nineteen of 25 (75 %) patients with negative MSH2 expression were male, and 6/25 (24 %) patients were female. Seven of 8 (88 %) cases with negative MLH1 expression were high-grade urothelial carcinoma, and 21/25 (84 %) cases with negative MSH2 expression were high-grade urothelial carcinoma. Twenty-one of 44 (48 %) cases had an inverted growth pattern, of which 3/21 (14 %) cases had negative MLH1 expression and 14/21 (67 %) cases had negative MSH2 expression. Our study showed that microsatellite instability based on negative expression of MLH1 and MSH2 was more common in male patients with high-grade urothelial carcinoma. There is a strong correlation between inverted growth pattern and negative MSH2 expression. Microsatellite instability testing should be performed in patients with upper urinary tract carcinoma and may have prognostic value.

  15. MLH1 expression predicts the response to preoperative therapy and is associated with PD-L1 expression in esophageal cancer.

    PubMed

    Momose, Kota; Yamasaki, Makoto; Tanaka, Koji; Miyazaki, Yasuhiro; Makino, Tomoki; Takahashi, Tsuyoshi; Kurokawa, Yukinori; Nakajima, Kiyokazu; Takiguchi, Shuji; Mori, Masaki; Doki, Yuichiro

    2017-07-01

    Programmed death-ligand 1 (PD-1/PD-L1) inhibition therapy demonstrates potential as a future treatment for esophageal cancer. Mismatch repair status and tumor PD-L1 expression are the candidate predictive biomarkers for response to this therapy. In colorectal cancer, mismatch repair-deficient tumors are associated with improved survival, although they are not sensitive to 5-fluorouracil-based chemotherapy. The purpose of the present study was to investigate the association between MutL homolog 1 (MLH1) expression and prognosis, response to therapy and PD-L1 expression in esophageal cancer. Immunohistochemistry was used to evaluate MLH1 and PD-L1 expression in 251 resected specimens. Of the specimens, 30.3% exhibited low MLH1 expression and 15.5% exhibited high PD-L1 expression. The 5-year overall survival rates for the high MLH1 expression group and the low MLH1 expression group were 51.3 and 55.6%, respectively (P=0.5260). The responder ratio was 45.7% in the high MLH1 expression group and 15.4% in the low MLH1 expression group (P<0.0001). The frequency of high PD-L1 expression was 11.4% in the high MLH1 expression group (P=0.0064) and 25.0% in the low MLH1 expression group. MLH1 expression may be a predictive factor for the response to preoperative therapy in esophageal cancer, and esophageal cancer with low MLH1 expression may have a mechanism that assists in promoting tumor PD-L1 expression.

  16. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittig, S.; Siggaard, C.; Pedersen, E.B.

    1996-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder characterized by progressive postnatal deficiency of arginine vasopressin as a result of mutation in the gene that encodes the hormone. To determine the extent of mutations in the coding region that produce the phenotype, we studied members of 17 unrelated kindreds with the disorder. We sequenced all 3 exons of the gene by using a rapid, direct dye-terminator method and found the causative mutation in each kindred. In four kindreds, the mutations were each identical to mutations described in other affected families. In the other 13 kindreds each mutation wasmore » unique. There were two missense mutations that altered the cleavage region of the signal peptide, seven missense mutations in exon 2, which codes for the conserved portion of the protein, one nonsense mutation in exon 2, and three nonsense mutations in exon 3. These findings, together with the clinical features of FNDI, suggest that each of the mutations exerts an effect by directing the production of a pre-prohormone that cannot be folded, processed, or degraded properly and eventually destroys vasopressinergic neurons. 63 refs., 5 figs., 6 tabs.« less

  17. The risk of gastric cancer in carriers of CHEK2 mutations.

    PubMed

    Teodorczyk, Urszula; Cybulski, Cezary; Wokołorczyk, Dominika; Jakubowska, Anna; Starzyńska, Teresa; Lawniczak, Małgorzata; Domagała, Paweł; Ferenc, Katarzyna; Marlicz, Krzysztof; Banaszkiewicz, Zbigniew; Wiśniowski, Rafał; Narod, Steven A; Lubiński, Jan

    2013-09-01

    CHEK2 is a tumor suppressor gene whose functions are central to the induction of cell cycle arrest and apoptosis following DNA damage. Mutations in CHEK2 have been associated with cancers at many sites, including breast and prostate cancers, but the relationship between CHEK2 and gastric cancer has not been extensively studied. In Poland, there are four known founder alleles of CHEK2; three alleles are protein truncating (1100delC, IVS2G>A, del5395) and the other is a missense variant (I157T). We examined the frequencies of four Polish founder mutations in the CHEK2 gene in 658 unselected gastric cancer patients, in 154 familial gastric cancer patients and in 8,302 controls. A CHEK2 mutation was seen in 57 of 658 (8.7 %) unselected patients with gastric cancer compared to 480 of 8,302 (5.8 %) controls (OR 1.6, p = 0.004). A CHEK2 mutation was present in 19 of 154 (12.3 %) familial cases (OR = 2.3, p = 0.001). The odds ratio for early onset (<50 years) gastric cancer was higher (2.1, p = 0.01), than for cases diagnosed at age of 50 or above (OR 1.4, p = 0.05). Truncating mutations of CHEK2 were associated with higher risk (OR = 2.1, p = 0.02) than the missense mutation I157T (OR = 1.4, p = 0.04). CHEK2 mutations predispose to gastric cancer, in particular to young-onset cases.

  18. Truncating mutations in the last exon of NOTCH3 cause lateral meningocele syndrome.

    PubMed

    Gripp, Karen W; Robbins, Katherine M; Sobreira, Nara L; Witmer, P Dane; Bird, Lynne M; Avela, Kristiina; Makitie, Outi; Alves, Daniela; Hogue, Jacob S; Zackai, Elaine H; Doheny, Kimberly F; Stabley, Deborah L; Sol-Church, Katia

    2015-02-01

    Lateral meningocele syndrome (LMS, OMIM%130720), also known as Lehman syndrome, is a very rare skeletal disorder with facial anomalies, hypotonia and meningocele-related neurologic dysfunction. The characteristic lateral meningoceles represent the severe end of the dural ectasia spectrum and are typically most severe in the lower spine. Facial features of LMS include hypertelorism and telecanthus, high arched eyebrows, ptosis, midfacial hypoplasia, micrognathia, high and narrow palate, low-set ears and a hypotonic appearance. Hyperextensibility, hernias and scoliosis reflect a connective tissue abnormality, and aortic dilation, a high-pitched nasal voice, wormian bones and osteolysis may be present. Lateral meningocele syndrome has phenotypic overlap with Hajdu-Cheney syndrome. We performed exome resequencing in five unrelated individuals with LMS and identified heterozygous truncating NOTCH3 mutations. In an additional unrelated individual Sanger sequencing revealed a deleterious variant in the same exon 33. In total, five novel de novo NOTCH3 mutations were identified in six unrelated patients. One had a 26 bp deletion (c.6461_6486del, p.G2154fsTer78), two carried the same single base pair insertion (c.6692_93insC, p.P2231fsTer11), and three individuals had a nonsense point mutation at c.6247A > T (pK2083*), c.6663C > G (p.Y2221*) or c.6732C > A, (p.Y2244*). All mutations cluster into the last coding exon, resulting in premature termination of the protein and truncation of the negative regulatory proline-glutamate-serine-threonine rich PEST domain. Our results suggest that mutant mRNA products escape nonsense mediated decay. The truncated NOTCH3 may cause gain-of-function through decreased clearance of the active intracellular product, resembling NOTCH2 mutations in the clinically related Hajdu-Cheney syndrome and contrasting the NOTCH3 missense mutations causing CADASIL. © 2014 Wiley Periodicals, Inc.

  19. Mutation spectrum of Chinese patients with Bartter syndrome.

    PubMed

    Han, Yue; Lin, Yi; Sun, Qing; Wang, Shujuan; Gao, Yanxia; Shao, Leping

    2017-11-24

    Bartter syndrome (BS) has been rarely reported in Chinese population except for a few case reports. This investigation was aimed to analyze the mutations of the causal genes in sixteen Chinese patients with BS, and review their followup and treatment. Identify mutations by the next generation sequencing and the multiplex ligation-dependent probe amplification (MLPA). Clinical characteristics and biochemical findings at the first presentation as well as follow-up were reviewed. 15 different CLCNKB gene mutations were identified in fourteen patients with BS, including 11 novel ones. A novel missense mutation and a novel small deletion were found from SLC12A1 gene. A novel gross deletion was found in CLCNKA gene. A recurrent missense mutation was identified from BSND gene. We found that the whole gene deletion mutation of CLCNKB gene was the most frequent mutation (32%), and the rate of gross deletion was up to 50 percent in this group of Chinese patients. The present study has found 19 mutations, including 14 novel ones, which would enrich the human gene mutation database (HGMD) and provide valuable references to the genetic counseling and diagnosis of the Chinese population.

  20. Mutation spectrum of Chinese patients with Bartter syndrome

    PubMed Central

    Han, Yue; Lin, Yi; Sun, Qing; Wang, Shujuan; Gao, Yanxia; Shao, Leping

    2017-01-01

    Objective Bartter syndrome (BS) has been rarely reported in Chinese population except for a few case reports. This investigation was aimed to analyze the mutations of the causal genes in sixteen Chinese patients with BS, and review their followup and treatment. Methods Identify mutations by the next generation sequencing and the multiplex ligation-dependent probe amplification (MLPA). Clinical characteristics and biochemical findings at the first presentation as well as follow-up were reviewed. Results 15 different CLCNKB gene mutations were identified in fourteen patients with BS, including 11 novel ones. A novel missense mutation and a novel small deletion were found from SLC12A1 gene. A novel gross deletion was found in CLCNKA gene. A recurrent missense mutation was identified from BSND gene. We found that the whole gene deletion mutation of CLCNKB gene was the most frequent mutation (32%), and the rate of gross deletion was up to 50 percent in this group of Chinese patients. Conclusion The present study has found 19 mutations, including 14 novel ones, which would enrich the human gene mutation database (HGMD) and provide valuable references to the genetic counseling and diagnosis of the Chinese population. PMID:29254190