[Multilocus Sequence Typing analysis of human Campylobacter coli in Granada (Spain)].
Carrillo-Ávila, J A; Sorlózano-Puerto, A; Pérez-Ruiz, M; Gutiérrez-Fernández, J
2016-12-01
Different subtypes of Campylobacter spp. have been associated with diarrhoea and a Multilocus Sequence Typing (MLST) method has been performed for subtyping. In the present work, MLST was used to analyse the genetic diversity of eight strains of Campylobacter coli. Nineteen genetic markers were amplified for MLST analysis: AnsB, DmsA, ggt, Cj1585c, CJJ81176-1367/1371, Tlp7, cj1321-cj1326, fucP, cj0178, cj0755/cfrA, ceuE, pldA, cstII, cstIII. After comparing the obtained sequences with the Campylobacter MLST database, the allele numbers, sequence types (STs) and clonal complexes (CCs) were assigned. The 8 C. coli isolates yielded 4 different STs belonging to 2 CCs. Seven isolates belong to ST-828 clonal complex and only one isolate belong to ST-21. Two samples came from the same patient, but were isolated in two different periods of time. MLST can be useful for taxonomic characterization of C. coli isolates.
Scally, Mark; Schuenzel, Erin L; Stouthamer, Richard; Nunney, Leonard
2005-12-01
Multilocus sequence typing (MLST) identifies and groups bacterial strains based on DNA sequence data from (typically) seven housekeeping genes. MLST has also been employed to estimate the relative contributions of recombination and point mutation to clonal divergence. We applied MLST to the plant pathogen Xylella fastidiosa using an initial set of sequences for 10 loci (9.3 kb) of 25 strains from five different host plants, grapevine (PD strains), oleander (OLS strains), oak (OAK strains), almond (ALS strains), and peach (PP strains). An eBURST analysis identified six clonal complexes using the grouping criterion that each member must be identical to at least one other member at 7 or more of the 10 loci. These clonal complexes corresponded to previously identified phylogenetic clades; clonal complex 1 (CC1) (all PD strains plus two ALS strains) and CC2 (OLS strains) defined the X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi clades, while CC3 (ALS strains), CC4 (OAK strains), and CC5 (PP strains) were subclades of X. fastidiosa subsp. multiplex. CC6 (ALS strains) identified an X. fastidiosa subsp. multiplex-like group characterized by a high frequency of intersubspecific recombination. Compared to the recombination rate in other bacterial species, the recombination rate in X. fastidiosa is relatively low. Recombination between different alleles was estimated to give rise to 76% of the nucleotide changes and 31% of the allelic changes observed. The housekeeping loci holC, nuoL, leuA, gltT, cysG, petC, and lacF were chosen to form the basis of a public database for typing X. fastidiosa (www.mlst.net). These loci identified the same six clonal complexes using the strain grouping criterion of identity at five or more loci with at least one other member.
“Epidemic Clones” of Listeria monocytogenes Are Widespread and Ancient Clonal Groups
Cantinelli, Thomas; Chenal-Francisque, Viviane; Diancourt, Laure; Frezal, Lise; Leclercq, Alexandre; Wirth, Thierry
2013-01-01
The food-borne pathogen Listeria monocytogenes is genetically heterogeneous. Although some clonal groups have been implicated in multiple outbreaks, there is currently no consensus on how “epidemic clones” should be defined. The objectives of this work were to compare the patterns of sequence diversity on two sets of genes that have been widely used to define L. monocytogenes clonal groups: multilocus sequence typing (MLST) and multi-virulence-locus sequence typing (MvLST). Further, we evaluated the diversity within clonal groups by pulsed-field gel electrophoresis (PFGE). Based on 125 isolates of diverse temporal, geographical, and source origins, MLST and MvLST genes (i) had similar patterns of sequence polymorphisms, recombination, and selection, (ii) provided concordant phylogenetic clustering, and (iii) had similar discriminatory power, which was not improved when we combined both data sets. Inclusion of representative strains of previous outbreaks demonstrated the correspondence of epidemic clones with previously recognized MLST clonal complexes. PFGE analysis demonstrated heterogeneity within major clones, most of which were isolated decades before their involvement in outbreaks. We conclude that the “epidemic clone” denominations represent a redundant but largely incomplete nomenclature system for MLST-defined clones, which must be regarded as successful genetic groups that are widely distributed across time and space. PMID:24006010
Miragaia, M.; Thomas, J. C.; Couto, I.; Enright, M. C.; de Lencastre, H.
2007-01-01
Despite its importance as a human pathogen, information on population structure and global epidemiology of Staphylococcus epidermidis is scarce and the relative importance of the mechanisms contributing to clonal diversification is unknown. In this study, we addressed these issues by analyzing a representative collection of S. epidermidis isolates from diverse geographic and clinical origins using multilocus sequence typing (MLST). Additionally, we characterized the mobile element (SCCmec) carrying the genetic determinant of methicillin resistance. The 217 S. epidermidis isolates from our collection were split by MLST into 74 types, suggesting a high level of genetic diversity. Analysis of MLST data using the eBURST algorithm revealed the existence of nine epidemic clonal lineages that were disseminated worldwide. One single clonal lineage (clonal complex 2) comprised 74% of the isolates, whereas the remaining isolates were clustered into 8 minor clonal lineages and 13 singletons. According to our evolutionary model, SCCmec was acquired at least 56 times by S. epidermidis. Although geographic dissemination of S. epidermidis strains and the value of the index of association between the alleles, 0.2898 (P < 0.05), support the clonality of S. epidermidis species, examination of the sequence changes at MLST loci during clonal diversification showed that recombination gives rise to new alleles approximately twice as frequently as point mutations. We suggest that S. epidermidis has a population with an epidemic structure, in which nine clones have emerged upon a recombining background and evolved quickly through frequent transfer of genetic mobile elements, including SCCmec. PMID:17220222
USDA-ARS?s Scientific Manuscript database
Flavobacterium psychrophilum is an important pathogen of salmonids worldwide. Multilocus sequence typing (MLST) has identified a recombinogenic population structure from which emerged a few epidemic clonal complexes particularly threatening for salmonid aquaculture. To date, MLST genotypes for this ...
Multilocus sequence type profiles of Bacillus cereus isolates from infant formula in China.
Yang, Yong; Yu, Xiaofeng; Zhan, Li; Chen, Jiancai; Zhang, Yunyi; Zhang, Junyan; Chen, Honghu; Zhang, Zheng; Zhang, Yanjun; Lu, Yiyu; Mei, Lingling
2017-04-01
Bacillus cereus sensu stricto is an opportunistic foodborne pathogen. The multilocus sequence type (MLST) of 74 B. cereus isolated from 513 non-random infant formula in China was analyzed. Of 64 sequence types (STs) detected, 50 STs and 6 alleles were newly found in PubMLST database. All isolates except for one singleton (ST-1049), were classified into 7 clonal complexes (CC) by BURST (n-4), in which CC1 with core ancestral clone ST-26 was the largest group including 86% isolates, and CC2, 3, 9, 10 and 13 were first reported in China. MLST profiles of the isolates from 8 infant formula brands were compared. It was found the brands might be potentially tracked by the variety of STs, such as ST-1049 of singleton and ST-1062 of isolate from goat milk source, though they could not be easily tracked just by clonal complex types of the isolates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tomasini, Nicolás; Lauthier, Juan José; Ayala, Francisco José; Tibayrenc, Michel; Diosque, Patricio
2014-01-01
The model of predominant clonal evolution (PCE) proposed for micropathogens does not state that genetic exchange is totally absent, but rather, that it is too rare to break the prevalent PCE pattern. However, the actual impact of this “residual” genetic exchange should be evaluated. Multilocus Sequence Typing (MLST) is an excellent tool to explore the problem. Here, we compared online available MLST datasets for seven eukaryotic microbial pathogens: Trypanosoma cruzi, the Fusarium solani complex, Aspergillus fumigatus, Blastocystis subtype 3, the Leishmania donovani complex, Candida albicans and Candida glabrata. We first analyzed phylogenetic relationships among genotypes within each dataset. Then, we examined different measures of branch support and incongruence among loci as signs of genetic structure and levels of past recombination. The analyses allow us to identify three types of genetic structure. The first was characterized by trees with well-supported branches and low levels of incongruence suggesting well-structured populations and PCE. This was the case for the T. cruzi and F. solani datasets. The second genetic structure, represented by Blastocystis spp., A. fumigatus and the L. donovani complex datasets, showed trees with weakly-supported branches but low levels of incongruence among loci, whereby genetic structuration was not clearly defined by MLST. Finally, trees showing weakly-supported branches and high levels of incongruence among loci were observed for Candida species, suggesting that genetic exchange has a higher evolutionary impact in these mainly clonal yeast species. Furthermore, simulations showed that MLST may fail to show right clustering in population datasets even in the absence of genetic exchange. In conclusion, these results make it possible to infer variable impacts of genetic exchange in populations of predominantly clonal micro-pathogens. Moreover, our results reveal different problems of MLST to determine the genetic structure in these organisms that should be considered. PMID:25054834
Forsythe, Stephen J; Dickins, Benjamin; Jolley, Keith A
2014-12-16
Following the association of Cronobacter spp. to several publicized fatal outbreaks in neonatal intensive care units of meningitis and necrotising enterocolitis, the World Health Organization (WHO) in 2004 requested the establishment of a molecular typing scheme to enable the international control of the organism. This paper presents the application of Next Generation Sequencing (NGS) to Cronobacter which has led to the establishment of the Cronobacter PubMLST genome and sequence definition database (http://pubmlst.org/cronobacter/) containing over 1000 isolates with metadata along with the recognition of specific clonal lineages linked to neonatal meningitis and adult infections Whole genome sequencing and multilocus sequence typing (MLST) has supports the formal recognition of the genus Cronobacter composed of seven species to replace the former single species Enterobacter sakazakii. Applying the 7-loci MLST scheme to 1007 strains revealed 298 definable sequence types, yet only C. sakazakii clonal complex 4 (CC4) was principally associated with neonatal meningitis. This clonal lineage has been confirmed using ribosomal-MLST (51-loci) and whole genome-MLST (1865 loci) to analyse 107 whole genomes via the Cronobacter PubMLST database. This database has enabled the retrospective analysis of historic cases and outbreaks following re-identification of those strains. The Cronobacter PubMLST database offers a central, open access, reliable sequence-based repository for researchers. It has the capacity to create new analysis schemes 'on the fly', and to integrate metadata (source, geographic distribution, clinical presentation). It is also expandable and adaptable to changes in taxonomy, and able to support the development of reliable detection methods of use to industry and regulatory authorities. Therefore it meets the WHO (2004) request for the establishment of a typing scheme for this emergent bacterial pathogen. Whole genome sequencing has additionally shown a range of potential virulence and environmental fitness traits which may account for the association of C. sakazakii CC4 pathogenicity, and propensity for neonatal CNS.
Genotyping of clinical and environmental multidrug resistant Enterococcus faecium strains.
Shokoohizadeh, Leili; Mobarez, Ashraf Mohabati; Alebouyeh, Masoud; Zali, Mohammad Reza; Ranjbar, Reza
2017-01-01
Multidrug resistant (MDR) Enterococcus faecium is a nosocomial pathogen and clonal complex 17 (CC17) is the main genetic subpopulation of E. faecium in hospitals worldwide. There has thus far been no report of major E. faecium clones in Iranian hospitals. The present study analyzed strains of MDR E. faecium obtained from patients and the Intensive Care Unit environments using pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) to determine the antibiotic resistance patterns and genetic features of the dominant. clones of E. faecium. PFGE and MLST analysis revealed the presence of 17and 15 different subtypes, respectively. Of these, 18 (86%) isolates belonged toCC17. Most strains in this clonal complex harbored the esp gene and exhibited resistance to vancomycin, teicoplanin, ampicillin, ciprofloxacin, gentamicin, and erythromycin. The MLST results revealed 12 new sequence types (ST) for the first time. Approximately 50% of the STs were associated with ST203. Detection of E. faecium strains belonging to CC17 on medical equipment and in clinical specimens verified the circulation of high-risk MDR clones among the patients and in hospital environments in Iran.
Panda, Sasmita; Jena, Smrutiti; Sharma, Savitri; Dhawan, Benu; Nath, Gopal; Singh, Durg Vijai
2016-01-01
The aim of this study was to determine sequence types of 34 S. haemolyticus strains isolated from a variety of infections between 2013 and 2016 in India by MLST. The MEGA5.2 software was used to align and compare the nucleotide sequences. The advanced cluster analysis was performed to define the clonal complexes. MLST analysis showed 24 new sequence types (ST) among S. haemolyticus isolates, irrespective of sources and place of isolation. The finding of this study allowed to set up an MLST database on the PubMLST.org website using BIGSdb software and made available at http://pubmlst.org/shaemolyticus/. The data of this study thus suggest that MLST can be used to study population structure and diversity among S. haemolyticus isolates.
Panda, Sasmita; Jena, Smrutiti; Sharma, Savitri; Dhawan, Benu; Nath, Gopal
2016-01-01
The aim of this study was to determine sequence types of 34 S. haemolyticus strains isolated from a variety of infections between 2013 and 2016 in India by MLST. The MEGA5.2 software was used to align and compare the nucleotide sequences. The advanced cluster analysis was performed to define the clonal complexes. MLST analysis showed 24 new sequence types (ST) among S. haemolyticus isolates, irrespective of sources and place of isolation. The finding of this study allowed to set up an MLST database on the PubMLST.org website using BIGSdb software and made available at http://pubmlst.org/shaemolyticus/. The data of this study thus suggest that MLST can be used to study population structure and diversity among S. haemolyticus isolates. PMID:27824930
Li, Zhen; Pérez-Osorio, Ailyn; Wang, Yu; Eckmann, Kaye; Glover, William A; Allard, Marc W; Brown, Eric W; Chen, Yi
2017-06-15
In 2015, in addition to a United States multistate outbreak linked to contaminated ice cream, another outbreak linked to ice cream was reported in the Pacific Northwest of the United States. It was a hospital-acquired outbreak linked to milkshakes, made from contaminated ice cream mixes and milkshake maker, served to patients. Here we performed multiple analyses on isolates associated with this outbreak: pulsed-field gel electrophoresis (PFGE), whole genome single nucleotide polymorphism (SNP) analysis, species-specific core genome multilocus sequence typing (cgMLST), lineage-specific cgMLST and whole genome-specific MLST (wgsMLST)/outbreak-specific cgMLST. We also analyzed the prophages and virulence genes. The outbreak isolates belonged to sequence type 1038, clonal complex 101, genetic lineage II. There were no pre-mature stop codons in inlA. Isolates contained Listeria Pathogenicity Island 1 and multiple internalins. PFGE and multiple whole genome sequencing (WGS) analyses all clustered together food, environmental and clinical isolates when compared to outgroup from the same clonal complex, which supported the finding that L. monocytogenes likely persisted in the soft serve ice cream/milkshake maker from November 2014 to November 2015 and caused 3 illnesses, and that the outbreak strain was transmitted between two ice cream production facilities. The whole genome SNP analysis, one of the two species-specific cgMLST, the lineage II-specific cgMLST and the wgsMLST/outbreak-specific cgMLST showed that L. monocytogenes cells persistent in the milkshake maker for a year formed a unique clade inside the outbreak cluster. This clustering was consistent with the cleaning practice after the outbreak was initially recognized in late 2014 and early 2015. Putative prophages were conserved among prophage-containing isolates. The loss of a putative prophage in two isolates resulted in the loss of the AscI restriction site in the prophage, which contributed to their AscI-PFGE banding pattern differences from other isolates. The high resolution of WGS analyses allowed the differentiation of epidemiologically unrelated isolates, as well as the elucidation of the microevolution and persistence of isolates within the scope of one outbreak. We applied a wgsMLST scheme which is essentially the outbreak-specific cgMLST. This scheme can be combined with lineage-specific cgMLST and species-specific cgMLST to maximize the resolution of WGS.
Diversification and Distribution of Ruminant Chlamydia abortus Clones Assessed by MLST and MLVA.
Siarkou, Victoria I; Vorimore, Fabien; Vicari, Nadia; Magnino, Simone; Rodolakis, Annie; Pannekoek, Yvonne; Sachse, Konrad; Longbottom, David; Laroucau, Karine
2015-01-01
Chlamydia abortus, an obligate intracellular bacterium, is the most common infectious cause of abortion in small ruminants worldwide and has zoonotic potential. We applied multilocus sequence typing (MLST) together with multiple-locus variable-number tandem repeat analysis (MLVA) to genotype 94 ruminant C. abortus strains, field isolates and samples collected from 1950 to 2011 in diverse geographic locations, with the aim of delineating C. abortus lineages and clones. MLST revealed the previously identified sequence types (STs) ST19, ST25, ST29 and ST30, plus ST86, a recently-assigned type on the Chlamydiales MLST website and ST87, a novel type harbouring the hemN_21 allele, whereas MLVA recognized seven types (MT1 to MT7). Minimum-spanning-tree analysis suggested that all STs but one (ST30) belonged to a single clonal complex, possibly reflecting the short evolutionary timescale over which the predicted ancestor (ST19) has diversified into three single-locus variants (ST86, ST87 and ST29) and further, through ST86 diversification, into one double-locus variant (ST25). ST descendants have probably arisen through a point mutation evolution mode. Interestingly, MLVA showed that in the ST19 population there was a greater genetic diversity than in other STs, most of which exhibited the same MT over time and geographical distribution. However, the evolutionary pathways of C. abortus STs seem to be diverse across geographic distances with individual STs restricted to particular geographic locations. The ST30 singleton clone displaying geographic specificity and represented by the Greek strains LLG and POS was effectively distinguished from the clonal complex lineage, supporting the notion that possibly two separate host adaptations and hence independent bottlenecks of C. abortus have occurred through time. The combination of MLST and MLVA assays provides an additional level of C. abortus discrimination and may prove useful for the investigation and surveillance of emergent C. abortus clonal populations.
Park, Kyung-Hwa; Greenwood-Quaintance, Kerryl E; Uhl, James R; Cunningham, Scott A; Chia, Nicholas; Jeraldo, Patricio R; Sampathkumar, Priya; Nelson, Heidi; Patel, Robin
2017-01-01
Staphylococcus aureus is a leading cause of bacteremia in hospitalized patients. Whether or not S. aureus bacteremia (SAB) is associated with clonality, implicating potential nosocomial transmission, has not, however, been investigated. Herein, we examined the epidemiology of SAB using whole genome sequencing (WGS). 152 SAB isolates collected over the course of 2015 at a single large Minnesota medical center were studied. Staphylococcus protein A (spa) typing was performed by PCR/Sanger sequencing; multilocus sequence typing (MLST) and core genome MLST (cgMLST) were determined by WGS. Forty-eight isolates (32%) were methicillin-resistant S. aureus (MRSA). The isolates encompassed 66 spa types, clustered into 11 spa clonal complexes (CCs) and 10 singleton types. 88% of 48 MRSA isolates belonged to spa CC-002 or -008. Methicillin-susceptible S. aureus (MSSA) isolates were more genotypically diverse, with 61% distributed across four spa CCs (CC-002, CC-012, CC-008 and CC-084). By MLST, there was 31 sequence types (STs), including 18 divided into 6 CCs and 13 singleton STs. Amongst MSSA isolates, the common MLST clones were CC5 (23%), CC30 (19%), CC8 (15%) and CC15 (11%). Common MRSA clones were CC5 (67%) and CC8 (25%); there were no MRSA isolates in CC45 or CC30. By cgMLST analysis, there were 9 allelic differences between two isolates, with the remaining 150 isolates differing from each other by over 40 alleles. The two isolates were retroactively epidemiologically linked by medical record review. Overall, cgMLST analysis resulted in higher resolution epidemiological typing than did multilocus sequence or spa typing.
Ramonaite, Sigita; Tamuleviciene, Egle; Alter, Thomas; Kasnauskyte, Neringa; Malakauskas, Mindaugas
2017-06-15
Campylobacter (C.) jejuni is the leading cause of human campylobacteriosis worldwide. We performed a molecular epidemiological study to investigate the genetic relationship among C. jejuni strains isolated from human diarrhoeal patients, broiler products and dairy cattle in Lithuania. The C. jejuni isolates from human clinical cases, dairy cattle and broiler products were genotyped using multilocus sequence typing (MLST). Allele numbers for each housekeeping gene, sequence type (ST), and clonal complex (CC) were assigned by submitting the DNA sequences to the C. jejuni MLST database ( http://pubmlst.org/campylobacter ). Based on the obtained sequence data of the housekeeping genes a phylogenetic analysis of the strains was performed and a minimum spanning tree (MST) was calculated. Among the 262 C. jejuni strains (consisting of 43 strains isolated from dairy cattle, 102 strains isolated from broiler products and 117 clinical human C. jejuni strains), 82 different MLST sequence types and 22 clonal complexes were identified. Clonal complexes CC21 and CC353 predominated among the C. jejuni strains. On ST-level, five sequence types (ST-5, ST-21, ST-50, ST-464 and ST-6410) were dominating and these five STs accounted for 35.9% (n = 94) of our isolates. In addition, 51 (19.5%) C. jejuni strains representing 27 (32.9%) STs were reported for the first time in the PubMLST database ( http://pubmlst.org/campylobacter ). The highest Czekanowski index or proportional similarity index (PSI) was calculated for C. jejuni strains isolated from human campylobacteriosis cases and broiler products (PSI = 0.32) suggesting a strong link between broiler strains and human cases. The PSI of dairy cattle and human samples was lower (PSI = 0.11), suggesting a weaker link between bovine strains and human cases. The calculated Simpson's index of all C. jejuni isolates showed a high genetic diversity (D = 0.96). Our results suggest that broiler products are the most important source of human campylobacteriosis in Lithuania. The study provides information on MLST type distribution and genetic relatedness of C. jejuni strains from humans, broiler products and dairy cattle in Lithuania for the first time, enabling a better understanding of the transmission pathways of C. jejuni in this country.
Multilocus Sequence Types of Campylobacter jejuni Isolates from Different Sources in Eastern China.
Zhang, Gong; Zhang, Xiaoyan; Hu, Yuanqing; Jiao, Xin-An; Huang, Jinlin
2015-09-01
Campylobacter jejuni is a major food-borne pathogen that causes human gastroenteritis in many developed countries. In our study, we applied multilocus sequence typing (MLST) technology to 167 C. jejuni isolates from diverse sources in Eastern China to examine their genetic diversity. MLST defined 94 sequence types (STs) belonging to 18 clonal complexes (CCs). Forty-five STs from 60 isolates (36%) and 22 alleles have not been previously documented in an international database. One hundred and two isolates, accounting for 61.1% of all isolates, belonged to eight clonal complexes. The eight major CCs were also the most common complexes from different sources. The most common ST type of isolates from human and food was ST-353. The dominant ST type in chicken and foods was ST-354. Among 21 STs that contained two or more different sources isolates, 15 STs contained human isolates and isolates from other sources, suggesting that potentially pathogenic strains are not restricted to specific lineages.
Honsa, Erin; Fricke, Thomas; Stephens, Alex J; Ko, Danny; Kong, Fanrong; Gilbert, Gwendolyn L; Huygens, Flavia; Giffard, Philip M
2008-08-19
Streptococcus agalactiae (Group B Streptococcus (GBS)) is an important human pathogen, particularly of newborns. Emerging evidence for a relationship between genotype and virulence has accentuated the need for efficient and well-defined typing methods. The objective of this study was to develop a single nucleotide polymorphism (SNP) based method for assigning GBS isolates to multilocus sequence typing (MLST)-defined clonal complexes. It was found that a SNP set derived from the MLST database on the basis of maximization of Simpsons Index of Diversity provided poor resolution and did not define groups concordant with the population structure as defined by eBURST analysis of the MLST database. This was interpreted as being a consequence of low diversity and high frequency horizontal gene transfer. Accordingly, a different approach to SNP identification was developed. This entailed use of the "Not-N" bioinformatic algorithm that identifies SNPs diagnostic for groups of known sequence variants, together with an empirical process of SNP testing. This yielded a four member SNP set that divides GBS into 10 groups that are concordant with the population structure. A fifth SNP was identified that increased the sensitivity for the clinically significant clonal complex 17 to 100%. Kinetic PCR methods for the interrogation of these SNPs were developed, and used to genotype 116 well characterized isolates. A five SNP method for dividing GBS into biologically valid groups has been developed. These SNPs are ideal for high throughput surveillance activities, and combining with more rapidly evolving loci when additional resolution is required.
Honsa, Erin; Fricke, Thomas; Stephens, Alex J; Ko, Danny; Kong, Fanrong; Gilbert, Gwendolyn L; Huygens, Flavia; Giffard, Philip M
2008-01-01
Background Streptococcus agalactiae (Group B Streptococcus (GBS)) is an important human pathogen, particularly of newborns. Emerging evidence for a relationship between genotype and virulence has accentuated the need for efficient and well-defined typing methods. The objective of this study was to develop a single nucleotide polymorphism (SNP) based method for assigning GBS isolates to multilocus sequence typing (MLST)-defined clonal complexes. Results It was found that a SNP set derived from the MLST database on the basis of maximisation of Simpsons Index of Diversity provided poor resolution and did not define groups concordant with the population structure as defined by eBURST analysis of the MLST database. This was interpreted as being a consequence of low diversity and high frequency horizontal gene transfer. Accordingly, a different approach to SNP identification was developed. This entailed use of the "Not-N" bioinformatic algorithm that identifies SNPs diagnostic for groups of known sequence variants, together with an empirical process of SNP testing. This yielded a four member SNP set that divides GBS into 10 groups that are concordant with the population structure. A fifth SNP was identified that increased the sensitivity for the clinically significant clonal complex 17 to 100%. Kinetic PCR methods for the interrogation of these SNPs were developed, and used to genotype 116 well characterized isolates. Conclusion A five SNP method for dividing GBS into biologically valid groups has been developed. These SNPs are ideal for high throughput surveillance activities, and combining with more rapidly evolving loci when additional resolution is required. PMID:18710585
Genetic variation among Staphylococcus aureus strains from Norwegian bulk milk.
Jørgensen, H J; Mørk, T; Caugant, D A; Kearns, A; Rørvik, L M
2005-12-01
Strains of Staphylococcus aureus obtained from bovine (n = 117) and caprine (n = 114) bulk milk were characterized and compared with S. aureus strains from raw-milk products (n = 27), bovine mastitis specimens (n = 9), and human blood cultures (n = 39). All isolates were typed by pulsed-field gel electrophoresis (PFGE). In addition, subsets of isolates were characterized using multilocus sequence typing (MLST), multiplex PCR (m-PCR) for genes encoding nine of the staphylococcal enterotoxins (SE), and the cloverleaf method for penicillin resistance. A variety of genotypes were observed, and greater genetic diversity was found among bovine than caprine bulk milk isolates. Certain genotypes, with a wide geographic distribution, were common to bovine and caprine bulk milk and may represent ruminant-specialized S. aureus. Isolates with genotypes indistinguishable from those of strains from ruminant mastitis were frequently found in bulk milk, and strains with genotypes indistinguishable from those from bulk milk were observed in raw-milk products. This indicates that S. aureus from infected udders may contaminate bulk milk and, subsequently, raw-milk products. Human blood culture isolates were diverse and differed from isolates from other sources. Genotyping by PFGE, MLST, and m-PCR for SE genes largely corresponded. In general, isolates with indistinguishable PFGE banding patterns had the same SE gene profile and isolates with identical SE gene profiles were placed together in PFGE clusters. Phylogenetic analyses agreed with the division of MLST sequence types into clonal complexes, and isolates within the same clonal complex had the same SE gene profile. Furthermore, isolates within PFGE clusters generally belonged to the same clonal complex.
Genetic Variation among Staphylococcus aureus Strains from Norwegian Bulk Milk
Jørgensen, H. J.; Mørk, T.; Caugant, D. A.; Kearns, A.; Rørvik, L. M.
2005-01-01
Strains of Staphylococcus aureus obtained from bovine (n = 117) and caprine (n = 114) bulk milk were characterized and compared with S. aureus strains from raw-milk products (n = 27), bovine mastitis specimens (n = 9), and human blood cultures (n = 39). All isolates were typed by pulsed-field gel electrophoresis (PFGE). In addition, subsets of isolates were characterized using multilocus sequence typing (MLST), multiplex PCR (m-PCR) for genes encoding nine of the staphylococcal enterotoxins (SE), and the cloverleaf method for penicillin resistance. A variety of genotypes were observed, and greater genetic diversity was found among bovine than caprine bulk milk isolates. Certain genotypes, with a wide geographic distribution, were common to bovine and caprine bulk milk and may represent ruminant-specialized S. aureus. Isolates with genotypes indistinguishable from those of strains from ruminant mastitis were frequently found in bulk milk, and strains with genotypes indistinguishable from those from bulk milk were observed in raw-milk products. This indicates that S. aureus from infected udders may contaminate bulk milk and, subsequently, raw-milk products. Human blood culture isolates were diverse and differed from isolates from other sources. Genotyping by PFGE, MLST, and m-PCR for SE genes largely corresponded. In general, isolates with indistinguishable PFGE banding patterns had the same SE gene profile and isolates with identical SE gene profiles were placed together in PFGE clusters. Phylogenetic analyses agreed with the division of MLST sequence types into clonal complexes, and isolates within the same clonal complex had the same SE gene profile. Furthermore, isolates within PFGE clusters generally belonged to the same clonal complex. PMID:16332822
Zarfel, Gernot; Luxner, Josefa; Folli, Bettina; Leitner, Eva; Feierl, Gebhard; Kittinger, Clemens; Grisold, Andrea
2016-07-01
Spa-typing and microarray techniques were used to study epidemiological changes in methicillin-resistant Staphylococcus aureus (MRSA) in South-East Austria. The population structure of 327 MRSA isolated between 2002 and 2012 was investigated. MRSA was assigned to 58 different spa types and 14 different MLST CC (multilocus sequence type clonal complexes); in particular, between 2007 and 2012, an increasing diversity in MRSA clones could be observed. The most abundant clonal complex was CC5. On the respective SCCmec cassettes, the CC5 isolates differed clearly within this decade and CC5/SCCmecI, the South German MRSA, predominant in 2002, was replaced by CC5/SCCmecII, the Rhine-Hesse MRSA in 2012. Whereas in many European countries MLST CC22-MRSA (EMRSA 15, the Barnim epidemic MRSA) is predominant, this clone occurred in Austria nearly 10 years later than in neighbouring countries. CC45, the Berlin EMRSA, epidemic in Germany, was only sporadically found in South-East Austria. The Irish ST8-MRSA-II represented by spa-type t190 was frequently found in 2002 and 2007, but disappeared in 2012. Our results demonstrate clonal replacement of MRSA clones within the last years in Austria. Ongoing surveillance is warranted for detection of changes within the MRSA population. © FEMS 2016.
Joseph, Susan; Forsythe, Stephen J.
2012-01-01
Cronobacter spp. (previously known as Enterobacter sakazakii) is a bacterial pathogen affecting all age groups, with particularly severe clinical complications in neonates and infants. One recognized route of infection being the consumption of contaminated infant formula. As a recently recognized bacterial pathogen of considerable importance and regulatory control, appropriate detection, and identification schemes are required. The application of multilocus sequence typing (MLST) and analysis (MLSA) of the seven alleles atpD, fusA, glnS, gltB, gyrB, infB, and ppsA (concatenated length 3036 base pairs) has led to considerable advances in our understanding of the genus. This approach is supported by both the reliability of DNA sequencing over subjective phenotyping and the establishment of a MLST database which has open access and is also curated; http://www.pubMLST.org/cronobacter. MLST has been used to describe the diversity of the newly recognized genus, instrumental in the formal recognition of new Cronobacter species (C. universalis and C. condimenti) and revealed the high clonality of strains and the association of clonal complex 4 with neonatal meningitis cases. Clearly the MLST approach has considerable benefits over the use of non-DNA sequence based methods of analysis for newly emergent bacterial pathogens. The application of MLST and MLSA has dramatically enabled us to better understand this opportunistic bacterium which can cause irreparable damage to a newborn baby’s brain, and has contributed to improved control measures to protect neonatal health. PMID:23189075
Population structure of clinical Pseudomonas aeruginosa from West and Central African countries.
Cholley, Pascal; Ka, Roughyatou; Guyeux, Christophe; Thouverez, Michelle; Guessennd, Nathalie; Ghebremedhin, Beniam; Frank, Thierry; Bertrand, Xavier; Hocquet, Didier
2014-01-01
Pseudomonas aeruginosa (PA) has a non-clonal, epidemic population with a few widely distributed and frequently encountered sequence types (STs) called 'high-risk clusters'. Clinical P. aeruginosa (clinPA) has been studied in all inhabited continents excepted in Africa, where a very few isolates have been analyzed. Here, we characterized a collection of clinPA isolates from four countries of West and Central Africa. 184 non-redundant isolates of clinPA from hospitals of Senegal, Ivory Coast, Nigeria, and Central African Republic were genotyped by MLST. We assessed their resistance level to antibiotics by agar diffusion and identified the extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs) by sequencing. The population structure of the species was determined by a nucleotide-based analysis of the entire PA MLST database and further localized on the phylogenetic tree (i) the sequence types (STs) of the present collection, (ii) the STs by continents, (iii) ESBL- and MBL-producing STs from the MLST database. We found 80 distinct STs, of which 24 had no relationship with any known STs. 'High-risk' international clonal complexes (CC155, CC244, CC235) were frequently found in West and Central Africa. The five VIM-2-producing isolates belonged to CC233 and CC244. GES-1 and GES-9 enzymes were produced by one CC235 and one ST1469 isolate, respectively. We showed the spread of 'high-risk' international clonal complexes, often described as multidrug-resistant on other continents, with a fully susceptible phenotype. The MBL- and ESBL-producing STs were scattered throughout the phylogenetic tree and our data suggest a poor association between a continent and a specific phylogroup. ESBL- and MBL-encoding genes are borne by both successful international clonal complexes and distinct local STs in clinPA of West and Central Africa. Furthermore, our data suggest that the spread of a ST could be either due to its antibiotic resistance or to features independent from the resistance to antibiotics.
Clonality and serotypes of Streptococcus mutans among children by multilocus sequence typing
Momeni, Stephanie S.; Whiddon, Jennifer; Cheon, Kyounga; Moser, Stephen A.; Childers, Noel K.
2015-01-01
Studies using multilocus sequence typing (MLST) have demonstrated that Streptococcus mutans isolates are genetically diverse. Our laboratory previously demonstrated clonality of S. mutans using MLST but could not discount the possibility of sampling bias. In this study, the clonality of randomly selected S. mutans plaque isolates from African American children was examined using MLST. Serotype and presence of collagen-binding proteins (CBP) cnm/cbm were also assessed. One hundred S. mutans isolates were randomly selected for MLST analysis. Sequence analysis was performed and phylogenetic trees were generated using START2 and MEGA. Thirty-four sequence types (ST) were identified of which 27 were unique to this population. Seventy-five percent of the isolates clustered into 16 clonal groups. Serotypes observed were c (n=84), e (n=3), and k (n=11). The prevalence of S. mutans isolates serotype k was notably high at 17.5%. All isolates were cnm/cbm negative. The clonality of S. mutans demonstrated in this study illustrates the importance of localized populations studies and are consistent with transmission. The prevalence of serotype k, a recently proposed systemic pathogen, observed in this study is higher than reported in most populations and is the first report of S. mutans serotype k in a US population. PMID:26443288
Matsuyama, T; Fukuda, Y; Sakai, T; Tanimoto, N; Nakanishi, M; Nakamura, Y; Takano, T; Nakayasu, C
2017-08-01
Bacterial haemolytic jaundice caused by Ichthyobacterium seriolicida has been responsible for mortality in farmed yellowtail, Seriola quinqueradiata, in western Japan since the 1980s. In this study, polymorphic analysis of I. seriolicida was performed using three molecular methods: amplified fragment length polymorphism (AFLP) analysis, multilocus sequence typing (MLST) and multiple-locus variable-number tandem repeat analysis (MLVA). Twenty-eight isolates were analysed using AFLP, while 31 isolates were examined by MLST and MLVA. No polymorphisms were identified by AFLP analysis using EcoRI and MseI, or by MLST of internal fragments of eight housekeeping genes. However, MLVA revealed variation in repeat numbers of three elements, allowing separation of the isolates into 16 sequence types. The unweighted pair group method using arithmetic averages cluster analysis of the MLVA data identified four major clusters, and all isolates belonged to clonal complexes. It is likely that I. seriolicida populations share a common ancestor, which may be a recently introduced strain. © 2016 John Wiley & Sons Ltd.
Chassain, Benoît; Lemée, Ludovic; Didi, Jennifer; Thiberge, Jean-Michel; Brisse, Sylvain; Pons, Jean-Louis
2012-01-01
Staphylococcus lugdunensis is recognized as one of the major pathogenic species within the genus Staphylococcus, even though it belongs to the coagulase-negative group. A multilocus sequence typing (MLST) scheme was developed to study the genetic relationships and population structure of 87 S. lugdunensis isolates from various clinical and geographic sources by DNA sequence analysis of seven housekeeping genes (aroE, dat, ddl, gmk, ldh, recA, and yqiL). The number of alleles ranged from four (gmk and ldh) to nine (yqiL). Allelic profiles allowed the definition of 20 different sequence types (STs) and five clonal complexes. The 20 STs lacked correlation with geographic source. Isolates recovered from hematogenic infections (blood or osteoarticular isolates) or from skin and soft tissue infections did not cluster in separate lineages. Penicillin-resistant isolates clustered mainly in one clonal complex, unlike glycopeptide-tolerant isolates, which did not constitute a distinct subpopulation within S. lugdunensis. Phylogenies from the sequences of the seven individual housekeeping genes were congruent, indicating a predominantly mutational evolution of these genes. Quantitative analysis of the linkages between alleles from the seven loci revealed a significant linkage disequilibrium, thus confirming a clonal population structure for S. lugdunensis. This first MLST scheme for S. lugdunensis provides a new tool for investigating the macroepidemiology and phylogeny of this unusually virulent coagulase-negative Staphylococcus. PMID:22785196
Momeni, Stephanie S; Whiddon, Jennifer; Cheon, Kyounga; Moser, Stephen A; Childers, Noel K
2015-12-01
Studies using multilocus sequence typing (MLST) have demonstrated that Streptococcus mutans isolates are genetically diverse. Our laboratory previously demonstrated clonality of S. mutans using MLST but could not discount the possibility of sampling bias. In this study, the clonality of randomly selected S. mutans plaque isolates from African-American children was examined using MLST. Serotype and the presence of collagen-binding proteins (CBPs) encoded by cnm/cbm were also assessed. One-hundred S. mutans isolates were randomly selected for MLST analysis. Sequence analysis was performed and phylogenetic trees were generated using start2 and mega. Thirty-four sequence types were identified, of which 27 were unique to this population. Seventy-five per cent of the isolates clustered into 16 clonal groups. The serotypes observed were c (n = 84), e (n = 3), and k (n = 11). The prevalence of S. mutans isolates of serotype k was notably high, at 17.5%. All isolates were cnm/cbm negative. The clonality of S. mutans demonstrated in this study illustrates the importance of localized population studies and are consistent with transmission. The prevalence of serotype k, a recently proposed systemic pathogen, observed in this study, is higher than reported in most populations and is the first report of S. mutans serotype k in a United States population. © 2015 Eur J Oral Sci.
Yu, Ying; Hu, Weizhao; Wu, Beibei; Zhang, Peipei; Chen, Jianshun; Wang, Shuna; Fang, Weihuan
2011-11-01
Multilocus sequence typing (MLST) was used to examine the clonal relationship and genetic diversity of 71 Vibrio parahaemolyticus isolates from clinical and seafood-related sources in southeastern Chinese coast between 2002 and 2009. The tested isolates fell into 61 sequence types (STs). Of 17 clinical isolates, 7 belonged to ST3 of the pandemic clonal complex 3, with 3 strains isolated in 2002. Although there was no apparent clonal relationship found between clinical strains and those from seafood-related sources positive with pathogenic markers, there were clonal relationships between clinical strains from this study and those from environmental sources in other parts of China. Phylogenetic analysis showed that strains of 112 STs (61 STs from this study and 51 retrieved from PUBMLST database covering different continents) could be divided into four branches. The vast majority of our isolates and those from other countries were genetically diverse and clustered into two major branches of mixed distribution (of geographic origins and sample sources), whereas five STs representing six isolates split as two minor branches because of divergence of their recA genes, which had 80%-82% nucleotide identity to typical V. parahaemolyticus strains and 73.3%-76.9% identity to the CDS24 of a Vibrio sp. plasmid p23023, indicating that the recA gene might have recombined by lateral gene transfer. This was further supported by a high ratio of recombination to mutation (3.038) for recA. In conclusion, MLST with fully extractable database is a powerful system for analysis of clonal relationship for strains of a particular region in a national or global scale as well as between clinical and environmental or food-related strains.
The multilocus sequence typing network: mlst.net.
Aanensen, David M; Spratt, Brian G
2005-07-01
The unambiguous characterization of strains of a pathogen is crucial for addressing questions relating to its epidemiology, population and evolutionary biology. Multilocus sequence typing (MLST), which defines strains from the sequences at seven house-keeping loci, has become the method of choice for molecular typing of many bacterial and fungal pathogens (and non-pathogens), and MLST schemes and strain databases are available for a growing number of prokaryotic and eukaryotic organisms. Sequence data are ideal for strain characterization as they are unambiguous, meaning strains can readily be compared between laboratories via the Internet. Laboratories undertaking MLST can quickly progress from sequencing the seven gene fragments to characterizing their strains and relating them to those submitted by others and to the population as a whole. We provide the gateway to a number of MLST schemes, each of which contain a set of tools for the initial characterization of strains, and methods for relating query strains to other strains of the species, including clustering based on differences in allelic profiles, phylogenetic trees based on concatenated sequences, and a recently developed method (eBURST) for identifying clonal complexes within a species and displaying the overall structure of the population. This network of MLST websites is available at http://www.mlst.net.
Elhadidy, Mohamed; Arguello, Hector; Álvarez-Ordóñez, Avelino; Miller, William G; Duarte, Alexandra; Martiny, Delphine; Hallin, Marie; Vandenberg, Olivier; Dierick, Katelijne; Botteldoorn, Nadine
2018-06-20
Campylobacter jejuni is a zoonotic pathogen commonly associated with human gastroenteritis. Retail poultry meat is a major food-related transmission source of C. jejuni to humans. The present study investigated the genetic diversity, clonal relationship, and strain risk-analysis of 403 representative C. jejuni isolates from chicken broilers (n = 204) and sporadic cases of human diarrhea (n = 199) over a decade (2006-2015) in Belgium, using multilocus sequence typing (MLST), PCR binary typing (P-BIT), and identification of lipooligosaccharide (LOS) biosynthesis locus classes. A total of 123 distinct sequence types (STs), clustered in 28 clonal complexes (CCs) were assigned, including ten novel sequence types that were not previously documented in the international database. Sequence types ST-48, ST-21, ST-50, ST-45, ST-464, ST-2274, ST-572, ST-19, ST-257 and ST-42 were the most prevalent. Clonal complex 21 was the main clonal complex in isolates from humans and chickens. Among observed STs, a total of 35 STs that represent 72.2% (291/403) of the isolates were identified in both chicken and human isolates confirming considerable epidemiological relatedness; these 35 STs also clustered together in the most prevalent CCs. A majority of the isolates harbored sialylated LOS loci associated with potential neuropathic outcomes in humans. Although the concordance between MLST and P-BIT, determined by the adjusted Rand and Wallace coefficients, showed low congruence between both typing methods. The discriminatory power of P-BIT and MLST was similar, with Simpson's diversity indexes of 0.978 and 0.975, respectively. Furthermore, P-BIT could provide additional epidemiological information that would provide further insights regarding the potential association to human health from each strain. In addition, certain clones could be linked to specific clinical symptoms. Indeed, LOS class E was associated with less severe infections. Moreover, ST-572 was significantly associated with clinical infections occurring after travelling abroad. Ultimately, the data generated from this study will help to better understand the molecular epidemiology of C. jejuni infection. Copyright © 2018. Published by Elsevier B.V.
Population Structure of Clinical Pseudomonas aeruginosa from West and Central African Countries
Cholley, Pascal; Ka, Roughyatou; Guyeux, Christophe; Thouverez, Michelle; Guessennd, Nathalie; Ghebremedhin, Beniam; Frank, Thierry; Bertrand, Xavier; Hocquet, Didier
2014-01-01
Background Pseudomonas aeruginosa (PA) has a non-clonal, epidemic population with a few widely distributed and frequently encountered sequence types (STs) called ‘high-risk clusters’. Clinical P. aeruginosa (clinPA) has been studied in all inhabited continents excepted in Africa, where a very few isolates have been analyzed. Here, we characterized a collection of clinPA isolates from four countries of West and Central Africa. Methodology 184 non-redundant isolates of clinPA from hospitals of Senegal, Ivory Coast, Nigeria, and Central African Republic were genotyped by MLST. We assessed their resistance level to antibiotics by agar diffusion and identified the extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs) by sequencing. The population structure of the species was determined by a nucleotide-based analysis of the entire PA MLST database and further localized on the phylogenetic tree (i) the sequence types (STs) of the present collection, (ii) the STs by continents, (iii) ESBL- and MBL-producing STs from the MLST database. Principal Findings We found 80 distinct STs, of which 24 had no relationship with any known STs. ‘High-risk’ international clonal complexes (CC155, CC244, CC235) were frequently found in West and Central Africa. The five VIM-2-producing isolates belonged to CC233 and CC244. GES-1 and GES-9 enzymes were produced by one CC235 and one ST1469 isolate, respectively. We showed the spread of ‘high-risk’ international clonal complexes, often described as multidrug-resistant on other continents, with a fully susceptible phenotype. The MBL- and ESBL-producing STs were scattered throughout the phylogenetic tree and our data suggest a poor association between a continent and a specific phylogroup. Conclusions ESBL- and MBL-encoding genes are borne by both successful international clonal complexes and distinct local STs in clinPA of West and Central Africa. Furthermore, our data suggest that the spread of a ST could be either due to its antibiotic resistance or to features independent from the resistance to antibiotics. PMID:25187957
Santos, Barbara A; Oliveira, Jéssica S; Cardoso, Nayara T; Barbosa, André V; Superti, Silvana V; Teixeira, Lúcia M; Neves, Felipe P G
2017-11-01
Cancer and hematological malignancies constitute major comorbidities in enterococcal infections, but little is known about the characteristics of enterococci affecting cancer patients. The aim of this study was to characterize 132 enterococcal clinical isolates obtained from cancer patients attending a Cancer Reference Center in Brazil between April 2013 and March 2014. Susceptibility to 17 antimicrobial agents was assessed by disk diffusion method. Resistance and virulence genes were investigated by PCR. Multilocus sequence typing (MLST) was performed for selected Enterococcus faecalis and Enterococcus faecium isolates. The predominant species was E. faecalis (108 isolates), followed by E. faecium (18), Enterococcus gallinarum (3), Enterococcus avium (2) and Enterococcus durans (1). Multidrug-resistant (MDR) isolates made up 44.7%, but all isolates were susceptible to fosfomycin, linezolid and glycopeptides. The most prevalent genes associated with erythromycin- and tetracycline-non susceptible isolates were erm(B) (47/71; 66.2%) and tet(M) (24/68; 35.3%), respectively. High-level resistance (HLR) to gentamicin was found in 22 (16.7%) isolates and 13 (59.1%) of them carried the aac(6')-Ie-aph(2″)-Ia gene. HLR to streptomycin was detected in 34 (25.8%) isolates, of which 15 (44.1%) isolates had the ant(6')-Ia gene. The most common virulence genes were gelE (48.9%), esp (30.5%) and asa1 (29.8%). MLST performed for 26 E. faecalis isolates revealed 18 different sequence-types (STs), with seven corresponding to novel STs (625, 626, 627, 628, 629, 630, and 635). On the other hand, nine of 10 E. faecium isolates analyzed by MLST belonged to a single clonal complex, comprised of mostly ST412, which emerged worldwide after mid-2000s, but also two novel STs (963 and 964). We detected major globally disseminated E. faecalis and E. faecium clonal complexes along with novel closely related STs, indicating the fitness and continuous evolution of these hospital-adapted lineages. Copyright © 2017 Elsevier B.V. All rights reserved.
NetF-producing Clostridium perfringens: Clonality and plasmid pathogenicity loci analysis.
Mehdizadeh Gohari, Iman; Kropinski, Andrew M; Weese, Scott J; Whitehead, Ashley E; Parreira, Valeria R; Boerlin, Patrick; Prescott, John F
2017-04-01
Clostridium perfringens is an important cause of foal necrotizing enteritis and canine acute hemorrhagic diarrhea. A major virulence determinant of the strains associated with these diseases appears to be a beta-sheet pore-forming toxin, NetF, encoded within a pathogenicity locus (NetF locus) on a large tcp-conjugative plasmid. Strains producing NetF also produce the putative toxin NetE, encoded within the same pathogenicity locus, as well as CPE enterotoxin and CPB2 on a second plasmid, and sometimes the putative toxin NetG within a pathogenicity locus (NetG locus) on another separate large conjugative plasmid. Previous genome sequences of two netF-positive C. perfringens showed that they both shared three similar plasmids, including the NetF/NetE and CPE/CPB2 toxins-encoding plasmids mentioned above and a putative bacteriocin-encoding plasmid. The main purpose of this study was to determine whether all NetF-producing strains share this common plasmid profile and whether their distinct NetF and CPE pathogenicity loci are conserved. To answer this question, 15 equine and 15 canine netF-positive isolates of C. perfringens were sequenced using Illumina Hiseq2000 technology. In addition, the clonal relationships among the NetF-producing strains were evaluated by core genome multilocus sequence typing (cgMLST). The data obtained showed that all NetF-producing strains have a common plasmid profile and that the defined pathogenicity loci on the plasmids are conserved in all these strains. cgMLST analysis showed that the NetF-producing C. perfringens strains belong to two distinct clonal complexes. The pNetG plasmid was absent from isolates of one of the clonal complexes, and there were minor but consistent differences in the NetF/NetE and CPE/CPB2 plasmids between the two clonal complexes. Copyright © 2017 Elsevier B.V. All rights reserved.
Suh, Ji-Yoeun; Son, Jun Seong; Chung, Doo Ryeon; Peck, Kyong Ran; Ko, Kwan Soo; Song, Jae-Hoon
2010-01-01
In vitro activities of colistin and other drugs were tested against 221 Klebsiella pneumoniae isolates that were collected between 2006 and 2007 in nine tertiary care South Korean hospitals from patients with bacteremia. The clonality of colistin-resistant K. pneumoniae (CRKP) isolates was assessed by multilocus sequence typing (MLST). We found that 15 isolates (6.8%) were resistant to colistin. MLST showed that CRKP isolates were nonclonal, with colistin resistance in K. pneumoniae occurring independently and not by clonal spreading.
Population structure of Streptococcus oralis
Do, Thuy; Jolley, Keith A.; Maiden, Martin C. J.; Gilbert, Steven C.; Clark, Douglas; Wade, William G.; Beighton, David
2009-01-01
Streptococcus oralis is a member of the normal human oral microbiota, capable of opportunistic pathogenicity; like related oral streptococci, it exhibits appreciable phenotypic and genetic variation. A multilocus sequence typing (MLST) scheme for S. oralis was developed and the resultant data analysed to examine the population structure of the species. Analysis of 113 isolates, confirmed as belonging to the S. oralis/mitis group by 16S rRNA gene sequencing, characterized the population as highly diverse and undergoing inter- and intra-species recombination with a probable clonal complex structure. ClonalFrame analysis of these S. oralis isolates along with examples of Streptococcus pneumoniae, Streptococcus mitis and Streptococcus pseudopneumoniae grouped the named species into distinct, coherent populations and did not support the clustering of S. pseudopneumoniae with S. mitis as reported previously using distance-based methods. Analysis of the individual loci suggested that this discrepancy was due to the possible hybrid nature of S. pseudopneumoniae. The data are available on the public MLST website (http://pubmlst.org/soralis/). PMID:19423627
Ko, Kwan Soo; Yeom, Joon-Sup; Lee, Mi Young; Peck, Kyong Ran
2008-01-01
In this study, we investigated the molecular characteristics of extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolates that were recovered from an outbreak in a Korean hospital. A new multilocus sequence typing (MLST) scheme for K. pneumoniae based on five housekeeping genes was developed and was evaluated for 43 ESBL-producing isolates from an outbreak as well as 38 surveillance isolates from Korea and also a reference strain. Overall, a total of 37 sequence types (STs) and six clonal complexes (CCs) were identified among the 82 K. pneumoniae isolates. The result of MLST analysis was concordant with that of pulsedfield gel electrophoresis. Most of the outbreak isolates belonged to a certain clone (ST2), and they produced SHV-1 and CTX-M14 enzymes, which was a different feature from that of the K. pneumoniae isolates from other Korean hospitals (ST20 and SHV-12). We also found a different distribution of CCs between ESBL-producing and -nonproducing K. pneumoniae isolates. The MLST method we developed in this study could provide unambiguous and well-resolved data for the epidemiologic study of K. pneumoniae. The outbreak isolates showed different molecular characteristics from the other K. pneumoniae isolates from other Korean hospitals. PMID:18303199
McDowell, Andrew; Nagy, István; Magyari, Márta; Barnard, Emma; Patrick, Sheila
2013-01-01
We previously described a Multilocus Sequence Typing (MLST) scheme based on eight genes that facilitates population genetic and evolutionary analysis of P. acnes. While MLST is a portable method for unambiguous typing of bacteria, it is expensive and labour intensive. Against this background, we now describe a refined version of this scheme based on two housekeeping (aroE; guaA) and two putative virulence (tly; camp2) genes (MLST4) that correctly predicted the phylogroup (IA1, IA2, IB, IC, II, III), clonal complex (CC) and sequence type (ST) (novel or described) status for 91% isolates (n = 372) via cross-referencing of the four gene allelic profiles to the full eight gene versions available in the MLST database (http://pubmlst.org/pacnes/). Even in the small number of cases where specific STs were not completely resolved, the MLST4 method still correctly determined phylogroup and CC membership. Examination of nucleotide changes within all the MLST loci provides evidence that point mutations generate new alleles approximately 1.5 times as frequently as recombination; although the latter still plays an important role in the bacterium's evolution. The secreted/cell-associated ‘virulence’ factors tly and camp2 show no clear evidence of episodic or pervasive positive selection and have diversified at a rate similar to housekeeping loci. The co-evolution of these genes with the core genome might also indicate a role in commensal/normal existence constraining their diversity and preventing their loss from the P. acnes population. The possibility that members of the expanded CAMP factor protein family, including camp2, may have been lost from other propionibacteria, but not P. acnes, would further argue for a possible role in niche/host adaption leading to their retention within the genome. These evolutionary insights may prove important for discussions surrounding camp2 as an immunotherapy target for acne, and the effect such treatments may have on commensal lineages. PMID:24058439
Cavanagh, Jorunn Pauline; Klingenberg, Claus; Hanssen, Anne-Merethe; Fredheim, Elizabeth Aarag; Francois, Patrice; Schrenzel, Jacques; Flægstad, Trond; Sollid, Johanna Ericson
2012-06-01
The notoriously multi-resistant Staphylococcus haemolyticus is an emerging pathogen causing serious infections in immunocompromised patients. Defining the population structure is important to detect outbreaks and spread of antimicrobial resistant clones. Currently, the standard typing technique is pulsed-field gel electrophoresis (PFGE). In this study we describe novel molecular typing schemes for S. haemolyticus using multi locus sequence typing (MLST) and multi locus variable number of tandem repeats (VNTR) analysis. Seven housekeeping genes (MLST) and five VNTR loci (MLVF) were selected for the novel typing schemes. A panel of 45 human and veterinary S. haemolyticus isolates was investigated. The collection had diverse PFGE patterns (38 PFGE types) and was sampled over a 20 year-period from eight countries. MLST resolved 17 sequence types (Simpsons index of diversity [SID]=0.877) and MLVF resolved 14 repeat types (SID=0.831). We found a low sequence diversity. Phylogenetic analysis clustered the isolates in three (MLST) and one (MLVF) clonal complexes, respectively. Taken together, neither the MLST nor the MLVF scheme was suitable to resolve the population structure of this S. haemolyticus collection. Future MLVF and MLST schemes will benefit from addition of more variable core genome sequences identified by comparing different fully sequenced S. haemolyticus genomes. Copyright © 2012 Elsevier B.V. All rights reserved.
Suh, Ji-Yoeun; Son, Jun Seong; Chung, Doo Ryeon; Peck, Kyong Ran; Ko, Kwan Soo; Song, Jae-Hoon
2010-01-01
In vitro activities of colistin and other drugs were tested against 221 Klebsiella pneumoniae isolates that were collected between 2006 and 2007 in nine tertiary care South Korean hospitals from patients with bacteremia. The clonality of colistin-resistant K. pneumoniae (CRKP) isolates was assessed by multilocus sequence typing (MLST). We found that 15 isolates (6.8%) were resistant to colistin. MLST showed that CRKP isolates were nonclonal, with colistin resistance in K. pneumoniae occurring independently and not by clonal spreading. PMID:19752282
Johnson, Jennifer K.; Arduino, Sonia M.; Stine, O. Colin; Johnson, Judith A.; Harris, Anthony D.
2007-01-01
For hospital epidemiologists, determining a system of typing that is discriminatory is essential for measuring the effectiveness of infection control measures. In situations in which the incidence of resistant Pseudomonas aeruginosa is increasing, the ability to discern whether it is due to patient-to-patient transmission versus an increase in patient endogenous strains is often made on the basis of molecular typing. The present study compared the discriminatory abilities of pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) for 90 P. aeruginosa isolates obtained from cultures of perirectal surveillance swabs from patients in an intensive care unit. PFGE identified 85 distinct types and 76 distinct groups when similarity cutoffs of 100% and 87%, respectively, were used. By comparison, MLST identified 60 sequence types that could be clustered into 11 clonal complexes and 32 singletons. By using the Simpson index of diversity (D), PFGE had a greater discriminatory ability than MLST for P. aeruginosa isolates (D values, 0.999 versus 0.975, respectively). Thus, while MLST was better for detecting genetic relatedness, we determined that PFGE was more discriminatory than MLST for determining genetic differences in P. aeruginosa. PMID:17881548
Climent, Yanet; Yero, Daniel; Martinez, Isabel; Martín, Alejandro; Jolley, Keith A.; Sotolongo, Franklin; Maiden, Martin C. J.; Urwin, Rachel; Pajón, Rolando
2010-01-01
In response to epidemic levels of serogroup B meningococcal disease in Cuba during the 1980s, the VA-MENGOC-BC vaccine was developed and introduced into the National Infant Immunization Program in 1991. Since then the incidence of meningococcal disease in Cuba has returned to the low levels recorded before the epidemic. A total of 420 Neisseria meningitidis strains collected between 1983 and 2005 in Cuba were analyzed by multilocus sequence typing (MLST). The set of strains comprised 167 isolated from disease cases and 253 obtained from healthy carriers. By MLST analysis, 63 sequence types (STs) were identified, and 32 of these were reported to be a new ST. The Cuban isolates were associated with 12 clonal complexes; and the most common were ST-32 (246 isolates), ST-53 (86 isolates), and ST-41/44 (36 isolates). This study also showed that the application of VA-MENGOC-BC, the Cuban serogroup B and C vaccine, reduced the frequency and diversity of hypervirulent clonal complexes ST-32 (vaccine serogroup B type-strain) and ST-41/44 and also affected other lineages. Lineages ST-8 and ST-11 were no longer found during the postvaccination period. The vaccine also affected the genetic composition of the carrier-associated meningococcal isolates. The number of carrier isolates belonging to hypervirulent lineages decreased significantly after vaccination, and ST-53, a sequence type common in carriers, became the predominant ST. PMID:20042619
Dissemination of the ST-103 clonal complex serogroup C meningococci in Salvador, Brazil.
Cordeiro, Soraia Machado; Cardoso, Cristiane Wanderley; de Araújo, Lorena Galvão; Ribeiro, Luis Eduardo; Azevedo, Jailton; Silva, Rita de Cassia Vilasboas; Dos Reis, Mitermayer Galvão; Ko, Albert Icksang; Reis, Joice Neves
2018-01-01
Invasive meningococcal disease (IMD) is a major public health problem worldwide. An epidemic of serogroup C (NmC) IMD occurred in 2010 in the city of Salvador. In this study, we describe the antigenic and genetic characterization of meningococcal isolates collected from meningitis cases in Salvador from 2001 to 2012. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed for the analysis of IMD isolates. A total of 733 cases were identified, and the serogroup was determined for 391 (53.0%) of these. Most cases were caused by NmC (53%) or B (47%). The most prevalent strains were B:4,7:P1.19,15 (32.9%; 129/391) and C:23:P1.14-6 (28.6%; 112/391). Based on PFGE/MLST analysis, 71.3% (77/108 PFGE-tested isolates) clustered as two clones of sequence type ST-3779 and ST-3780, both belonging to the ST-103 clonal complex. ST-3779 has been detected in Salvador since 1996 and together with ST-3780 became predominant after 2005. There was a predominance of C:23:P1.14-6, ST-3779/3780 in Salvador during the period of 2007-2012, establishing a major clonal lineage, which remained in the community for a long time; this has serious implications for public health, particularly in terms of prevention and control strategies of IMD. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Streptococcus mutans clonal variation revealed by multilocus sequence typing.
Nakano, Kazuhiko; Lapirattanakul, Jinthana; Nomura, Ryota; Nemoto, Hirotoshi; Alaluusua, Satu; Grönroos, Lisa; Vaara, Martti; Hamada, Shigeyuki; Ooshima, Takashi; Nakagawa, Ichiro
2007-08-01
Streptococcus mutans is the major pathogen of dental caries, a biofilm-dependent infectious disease, and occasionally causes infective endocarditis. S. mutans strains have been classified into four serotypes (c, e, f, and k). However, little is known about the S. mutans population, including the clonal relationships among strains of S. mutans, in relation to the particular clones that cause systemic diseases. To address this issue, we have developed a multilocus sequence typing (MLST) scheme for S. mutans. Eight housekeeping gene fragments were sequenced from each of 102 S. mutans isolates collected from the four serotypes in Japan and Finland. Between 14 and 23 alleles per locus were identified, allowing us theoretically to distinguish more than 1.2 x 10(10) sequence types. We identified 92 sequence types in these 102 isolates, indicating that S. mutans contains a diverse population. Whereas serotype c strains were widely distributed in the dendrogram, serotype e, f, and k strains were differentiated into clonal complexes. Therefore, we conclude that the ancestral strain of S. mutans was serotype c. No geographic specificity was identified. However, the distribution of the collagen-binding protein gene (cnm) and direct evidence of mother-to-child transmission were clearly evident. In conclusion, the superior discriminatory capacity of this MLST scheme for S. mutans may have important practical implications.
Assis, G B N; Tavares, G C; Pereira, F L; Figueiredo, H C P; Leal, C A G
2017-01-01
Streptococcus agalactiae and Francisella noatunensis subsp. orientalis (Fno) are important pathogens for farm-raised tilapia worldwide. There are no reports of coinfection caused by S. agalactiae and Fno in fish. This study aimed to determine the aetiology of atypical mortalities in a cage farm of Nile tilapia and to characterize the genetic diversity of the isolates. Fifty-two fish were sampled and subjected to parasitological and bacteriological examination. The S. agalactiae and Fno isolates were genotyped using MLST and REP-PCR, respectively. Whole-genome sequencing was performed to confirm the MLST results. Seven fish were shown coinfected by S. agalactiae and Fno. Chronic hypoxia and a reduction in the water temperature were determined as risk factors for coinfection. Fno isolates were shown clonally related in REP-PCR. The MLST analysis revealed that the S. agalactiae isolates from seven coinfected fish were negative for the glcK gene; however, these were determined to be members of clonal complex CC-552. This is the first description of coinfection by S. agalactiae and Fno in farm-raised Nile tilapia. The coinfection was predisposed by chronic hypoxia and was caused by the main genotypes of S. agalactiae and Fno reported in Brazil. Finally, a new S. agalactiae genotype with glcK gene partially deleted was described. © 2016 John Wiley & Sons Ltd.
Hofling-Lima, Ana Luisa; Pignatari, Antonio C. C.
2014-01-01
Staphylococcus epidermidis is an abundant member of the microbiota of the human skin and wet mucosa, which is commonly associated with sight-threatening infections in eyes with predisposing factors. Ocular S. epidermidis has become notorious because of its capability to form biofilms on different ocular devices and due to the evolving rates of antimicrobial resistance. In this study, the molecular epidemiology of 30 ocular methicillin-resistant S. epidermidis (MRSE) isolates was assessed using multilocus sequence typing (MLST). Antimicrobial resistance, accessory gene-regulator and staphylococcal cassette chromosome mec (SCCmec) types, biofilm formation, and the occurrence of biofilm-associated genes were correlated with MLST clonal complexes. Sequence types (STs) frequently found in the hospital setting were rarely found in our collection. Overall, 12 different STs were detected with a predominance of ST59 (30%), ST5 and ST6 (13.3% each). Most of the isolates (93.3%) belonged to the clonal complex 2 (CC2) and grouped mainly within subcluster CC2-II (92.9%). Isolates grouped within this subcluster were frequently biofilm producers (92.3%) with a higher occurrence of the aap (84.5%) and bhp (46.1%) genes compared to icaA (19.2%). SCCmec type IV (53.8%) was predominant within CC2-II strains, while 38.4% were nontypeable. In addition, CC2-II strains were frequently multidrug resistant (80.7%) and demonstrated to be particularly resistant to ciprofloxacin (80.8%), ofloxacin (77%), azithromycin (61.5%), and gentamicin (57.7%). Our findings demonstrate the predominance of a particular MRSE cluster causing ocular infections, which was associated with high rates of antimicrobial resistance and particularly the carriage of biofilm-related genes coding for proteinaceous factors implicated in biofilm accumulation. PMID:24523473
Platonov, A E; Mironov, K O; Iatsyshina, S B; Koroleva, I S; Platonova, O V; Gushchin, A E; Shipulin, G A
2003-01-01
Haemophilius influenzae, type b (Hib) bacteria, were genotyped by multilocus sequence typing (MLST) using 5 loci (adk, fucK, mdh, pgi, recA). 42 Moscow Hib strains (including 38 isolates form cerebrospinal fluid of children, who had purulent meningitis in 1999-2001, and 4 strains isolated from healthy carriers of Hib), as well as 2 strains from Yekaterinburg were studied. In MLST a strain is characterized, by alleles and their combinations (an allele profile) referred to also as sequence-type (ST). 9 Sts were identified within the Russian Hib bacteria: ST-1 was found in 25 strains (57%), ST-12 was found in 8 strains (18%), ST-11 was found in 4 strains (9%) and ST-15 was found in 2 strains (4.5%); all other STs strains (13, 14, 16, 17, 51) were found in isolated cases (2.3%). A comparison of allelic profiles and of nucleotide sequences showed that 93% of Russian isolates, i.e. strain with ST-1, 11, 12, 13, 15 and 17, belong to one and the same clonal complex. 2 isolates from Norway and Sweden from among 7 foreign Hib strains studied up to now can be described as belonging to the same clonal complex; 5 Hib strains were different from the Russian ones.
Molecular characterization of vancomycin-resistant Enterococcus faecium isolates from Bermuda
Akpaka, Patrick Eberechi; Kissoon, Shivnarine; Wilson, Clyde; Jayaratne, Padman; Smith, Ashley; Golding, George R.
2017-01-01
Molecular characteristics of vancomycin resistant enterococci isolates from Bermuda Island is currently unknown. This study was conducted to investigate phenotypic and genotypic characteristics of VRE isolates from Bermuda Island using the chromogenic agar, E-tests, polymerase chain reaction (PCR), pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Eighteen E. faecium isolates were completely analyzed and were all resistant to vancomycin, susceptible to linezolid and quinupristin/dalfopristin, positive for vanA and esp genes. The MLST analysis confirmed most isolates were of the sequence types linked to clonal complex 17 (CC17) that is widely associated with outbreaks in hospitals. Infection control measures, antibiotic stewardship, and surveillance activities will continue to be a priority in hospital on the Island. PMID:28267763
Molecular characterization of vancomycin-resistant Enterococcus faecium isolates from Bermuda.
Akpaka, Patrick Eberechi; Kissoon, Shivnarine; Wilson, Clyde; Jayaratne, Padman; Smith, Ashley; Golding, George R
2017-01-01
Molecular characteristics of vancomycin resistant enterococci isolates from Bermuda Island is currently unknown. This study was conducted to investigate phenotypic and genotypic characteristics of VRE isolates from Bermuda Island using the chromogenic agar, E-tests, polymerase chain reaction (PCR), pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Eighteen E. faecium isolates were completely analyzed and were all resistant to vancomycin, susceptible to linezolid and quinupristin/dalfopristin, positive for vanA and esp genes. The MLST analysis confirmed most isolates were of the sequence types linked to clonal complex 17 (CC17) that is widely associated with outbreaks in hospitals. Infection control measures, antibiotic stewardship, and surveillance activities will continue to be a priority in hospital on the Island.
Ogrodzki, Pauline; Forsythe, Stephen J.
2017-01-01
The Cronobacter genus is composed of seven species, within which a number of pathovars have been described. The most notable infections by Cronobacter spp. are of infants through the consumption of contaminated infant formula. The description of the genus has greatly improved in recent years through DNA sequencing techniques, and this has led to a robust means of identification. However some species are highly clonal and this limits the ability to discriminate between unrelated strains by some methods of genotyping. This article updates the application of three genotyping methods across the Cronobacter genus. The three genotyping methods were multilocus sequence typing (MLST), capsular profiling of the K-antigen and colanic acid (CA) biosynthesis regions, and CRISPR-cas array profiling. A total of 1654 MLST profiled and 286 whole genome sequenced strains, available by open access at the PubMLST Cronobacter database, were used this analysis. The predominance of C. sakazakii and C. malonaticus in clinical infections was confirmed. The majority of clinical strains being in the C. sakazakii clonal complexes (CC) 1 and 4, sequence types (ST) 8 and 12 and C. malonaticus ST7. The capsular profile K2:CA2, previously proposed as being strongly associated with C. sakazakii and C. malonaticus isolates from severe neonatal infections, was also found in C. turicensis, C. dublinensis and C. universalis. The majority of CRISPR-cas types across the genus was the I-E (Ecoli) type. Some strains of C. dublinensis and C. muytjensii encoded the I-F (Ypseudo) type, and others lacked the cas gene loci. The significance of the expanding profiling will be of benefit to researchers as well as governmental and industrial risk assessors. PMID:29033918
Getachew, Yitbarek; Zakaria, Zunita; Abdul Aziz, Saleha
2013-01-01
Vancomycin-resistant enterococci (VRE) have been reported to be present in humans, chickens, and pigs in Malaysia. In the present study, representative samples of VRE isolated from these populations were examined for similarities and differences by using the multilocus sequence typing (MLST) method. Housekeeping genes of Enterococcus faecium (n = 14) and Enterococcus faecalis (n = 11) isolates were sequenced and analyzed using the MLST databases eBURST and goeBURST. We found five sequence types (STs) of E. faecium and six STs of E. faecalis existing in Malaysia. Enterococcus faecium isolates belonging to ST203, ST17, ST55, ST79, and ST29 were identified, and E. faecium ST203 was the most common among humans. The MLST profiles of E. faecium from humans in this study were similar to the globally reported nosocomial-related strain lineage belonging to clonal complex 17 (CC17). Isolates from chickens and pigs have few similarities to those from humans, except for one isolate from a chicken, which was identified as ST203. E. faecalis isolates were more diverse and were identified as ST4, ST6, ST87, ST108, ST274, and ST244, which were grouped as specific to the three hosts. E. faecalis, belonging to the high-risk CC2 and CC87, were detected among isolates from humans. In conclusion, even though one isolate from a chicken was found clonal to that of humans, the MLST analysis of E. faecium and E. faecalis supports the findings of others who suggest VRE to be predominantly host specific and that clinically important strains are found mainly among humans. The infrequent detection of a human VRE clone in a chicken may in fact suggest a reverse transmission of VRE from humans to animals. PMID:23666337
Comparative Analysis of the Orphan CRISPR2 Locus in 242 Enterococcus faecalis Strains
Hullahalli, Karthik; Rodrigues, Marinelle; Schmidt, Brendan D.; Li, Xiang; Bhardwaj, Pooja; Palmer, Kelli L.
2015-01-01
Clustered, Regularly Interspaced Short Palindromic Repeats and their associated Cas proteins (CRISPR-Cas) provide prokaryotes with a mechanism for defense against mobile genetic elements (MGEs). A CRISPR locus is a molecular memory of MGE encounters. It contains an array of short sequences, called spacers, that generally have sequence identity to MGEs. Three different CRISPR loci have been identified among strains of the opportunistic pathogen Enterococcus faecalis. CRISPR1 and CRISPR3 are associated with the cas genes necessary for blocking MGEs, but these loci are present in only a subset of E. faecalis strains. The orphan CRISPR2 lacks cas genes and is ubiquitous in E. faecalis, although its spacer content varies from strain to strain. Because CRISPR2 is a variable locus occurring in all E. faecalis, comparative analysis of CRISPR2 sequences may provide information about the clonality of E. faecalis strains. We examined CRISPR2 sequences from 228 E. faecalis genomes in relationship to subspecies phylogenetic lineages (sequence types; STs) determined by multilocus sequence typing (MLST), and to a genome phylogeny generated for a representative 71 genomes. We found that specific CRISPR2 sequences are associated with specific STs and with specific branches on the genome tree. To explore possible applications of CRISPR2 analysis, we evaluated 14 E. faecalis bloodstream isolates using CRISPR2 analysis and MLST. CRISPR2 analysis identified two groups of clonal strains among the 14 isolates, an assessment that was confirmed by MLST. CRISPR2 analysis was also used to accurately predict the ST of a subset of isolates. We conclude that CRISPR2 analysis, while not a replacement for MLST, is an inexpensive method to assess clonality among E. faecalis isolates, and can be used in conjunction with MLST to identify recombination events occurring between STs. PMID:26398194
Wendel, Andreas F; Meyer, Sebastian; Deenen, René; Köhrer, Karl; Kolbe-Busch, Susanne; Pfeffer, Klaus; Willmann, Matthias; Kaasch, Achim J; MacKenzie, Colin R
2018-05-11
Enterobacter cloacae complex is a common cause of hospital outbreaks. A retrospective and prospective molecular analysis of carbapenem-resistant clinical isolates in a tertiary care center demonstrated an outbreak of a German-imipenemase-1 (GIM-1) metallo-beta-lactamase-producing Enterobacter hormaechei ssp. steigerwaltii affecting 23 patients between 2009 and 2016. Thirty-three isolates were sequence type 89 by conventional multilocus sequence typing (MLST) and displayed a maximum difference of 49 out of 3,643 targets in the ad-hoc core-genome MLST (cgMLST) scheme (SeqSphere+ software; Ridom, Münster, Germany). The relatedness of all isolates was confirmed by further maximum-likelihood phylogeny. One clonal complex of highly related isolates (≤15 allele difference in cgMLST) contained 17 patients, but epidemiological data only suggested five transmission events. The bla GIM-1 -gene was embedded in a class-1-integron (In770) and the Tn21-subgroup transposon Tn6216 (KC511628) on a 25-kb plasmid. Environmental screening detected one colonized sink trap in a service room. The outbreak was self-limited as no further bla GIM-1 -positive E. hormaechei has been isolated since 2016. Routine molecular screening of carbapenem-nonsusceptible gram-negative isolates detected a long-term, low-frequency outbreak of a GIM-1-producing E. hormaechei ssp. steigerwaltii clone. This highlights the necessity of molecular surveillance.
Du, Xue-Fei; Xiao, Meng; Liang, Hong-Yan; Sun, Zhe; Jiang, Yue-Hong; Chen, Guo-Yu; Meng, Xiao-Yu; Zou, Gui-Ling; Zhang, Li; Liu, Ya-Li; Zhang, Hui; Sun, Hong-Li; Jiang, Xiao-Feng; Xu, Ying-Chun
2014-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) has become an important nosocomial pathogen, causing considerable morbidity and mortality. During the last 20 years, a variety of genotyping methods have been introduced for screening the prevalence of MRSA. In this study, we developed and evaluated an improved approach capillary gel electrophoresis based multilocus variable-number tandem-repeat fingerprinting (CGE/MLVF) for rapid MRSA typing. A total of 42 well-characterized strains and 116 non-repetitive clinical MRSA isolates collected from six hospitals in northeast China between 2009 and 2010 were tested. The results obtained by CGE/MLVF against clinical isolates were compared with traditional MLVF, spa typing, Multilocus sequence typing/staphylococcal cassette chromosome mec (MLST/SCCmec) and pulse field gel electrophoresis (PFGE). The discriminatory power estimated by Simpson’s index of diversity was 0.855 (28 types), 0.855 (28 patterns), 0.623 (11 types), 0.517 (8 types) and 0.854 (28 patterns) for CGE/MLVF, traditional MLVF, spa typing, MLST/SCCmec and PFGE, respectively. All methods tested showed a satisfied concordance in clonal complex level calculated by adjusted Rand’s coefficient. CGE/MLVF showed better reproducibility and accuracy than traditional MLVF and PFGE methods. In addition, the CGE/MLVF has potential to produce portable results. In conclusion, CGE/MLVF is a rapid and easy to use MRSA typing method with lower cost, good reproducibility and high discriminatory power for monitoring the outbreak and clonal spread of MRSA isolates. PMID:24406728
Haendiges, Julie; Jones, Jessica; Myers, Robert A.; Mitchell, Clifford S.; Butler, Erin
2016-01-01
ABSTRACT In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to the consumption of oysters. Strains isolated from both stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). However, the oysters contained other potentially pathogenic V. parahaemolyticus strains exhibiting different PFGE patterns. In order to assess the identity, genetic makeup, relatedness, and potential pathogenicity of the V. parahaemolyticus strains, we sequenced 11 such strains (2 clinical strains and 9 oyster strains). We analyzed these genomes by in silico multilocus sequence typing (MLST) and determined their phylogeny using a whole-genome MLST (wgMLST) analysis. Our in silico MLST analysis identified six different sequence types (STs) (ST8, ST676, ST810, ST811, ST34, and ST768), with both of the clinical and four of the oyster strains being identified as belonging to ST8. Using wgMLST, we showed that the ST8 strains from clinical and oyster samples were nearly indistinguishable and belonged to the same outbreak, confirming that local oysters were the source of the infections. The remaining oyster strains were genetically diverse, differing in >3,000 loci from the Maryland ST8 strains. eBURST analysis comparing these strains with strains of other STs available at the V. parahaemolyticus MLST website showed that the Maryland ST8 strains belonged to a clonal complex endemic to Asia. This indicates that the ST8 isolates from clinical and oyster sources were likely not endemic to Maryland. Finally, this study demonstrates the utility of whole-genome sequencing (WGS) and associated analyses for source-tracking investigations. IMPORTANCE Vibrio parahaemolyticus is an important foodborne pathogen and the leading cause of bacterial infections in the United States associated with the consumption of seafood. In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to oyster consumption. Strains isolated from stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). The oysters also contained other potentially pathogenic V. parahaemolyticus strains with different PFGE patterns. Since their identity, genetic makeup, relatedness, and potential pathogenicity were unknown, their genomes were determined by using next-generation sequencing. Whole-genome sequencing (WGS) analysis by whole-genome multilocus sequence typing (wgMLST) allowed (i) identification of clinical and oyster strains with matching PFGE profiles as belonging to ST8, (ii) determination of oyster strain diversity, and (iii) identification of the clinical strains as belonging to a clonal complex (CC) described only in Asia. Finally, WGS and associated analyses demonstrated their utility for trace-back investigations. PMID:26994080
Haendiges, Julie; Jones, Jessica; Myers, Robert A; Mitchell, Clifford S; Butler, Erin; Toro, Magaly; Gonzalez-Escalona, Narjol
2016-06-01
In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to the consumption of oysters. Strains isolated from both stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). However, the oysters contained other potentially pathogenic V. parahaemolyticus strains exhibiting different PFGE patterns. In order to assess the identity, genetic makeup, relatedness, and potential pathogenicity of the V. parahaemolyticus strains, we sequenced 11 such strains (2 clinical strains and 9 oyster strains). We analyzed these genomes by in silico multilocus sequence typing (MLST) and determined their phylogeny using a whole-genome MLST (wgMLST) analysis. Our in silico MLST analysis identified six different sequence types (STs) (ST8, ST676, ST810, ST811, ST34, and ST768), with both of the clinical and four of the oyster strains being identified as belonging to ST8. Using wgMLST, we showed that the ST8 strains from clinical and oyster samples were nearly indistinguishable and belonged to the same outbreak, confirming that local oysters were the source of the infections. The remaining oyster strains were genetically diverse, differing in >3,000 loci from the Maryland ST8 strains. eBURST analysis comparing these strains with strains of other STs available at the V. parahaemolyticus MLST website showed that the Maryland ST8 strains belonged to a clonal complex endemic to Asia. This indicates that the ST8 isolates from clinical and oyster sources were likely not endemic to Maryland. Finally, this study demonstrates the utility of whole-genome sequencing (WGS) and associated analyses for source-tracking investigations. Vibrio parahaemolyticus is an important foodborne pathogen and the leading cause of bacterial infections in the United States associated with the consumption of seafood. In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to oyster consumption. Strains isolated from stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). The oysters also contained other potentially pathogenic V. parahaemolyticus strains with different PFGE patterns. Since their identity, genetic makeup, relatedness, and potential pathogenicity were unknown, their genomes were determined by using next-generation sequencing. Whole-genome sequencing (WGS) analysis by whole-genome multilocus sequence typing (wgMLST) allowed (i) identification of clinical and oyster strains with matching PFGE profiles as belonging to ST8, (ii) determination of oyster strain diversity, and (iii) identification of the clinical strains as belonging to a clonal complex (CC) described only in Asia. Finally, WGS and associated analyses demonstrated their utility for trace-back investigations. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Jans, Christoph; de Wouters, Tomas; Bonfoh, Bassirou; Lacroix, Christophe; Kaindi, Dasel Wambua Mulwa; Anderegg, Janine; Böck, Désirée; Vitali, Sabrina; Schmid, Thomas; Isenring, Julia; Kurt, Fabienne; Kogi-Makau, Wambui; Meile, Leo
2016-06-21
The Streptococcus bovis/Streptococcus equinus complex (SBSEC) comprises seven (sub)species classified as human and animal commensals, emerging opportunistic pathogens and food fermentative organisms. Changing taxonomy, shared habitats, natural competence and evidence for horizontal gene transfer pose difficulties for determining their phylogeny, epidemiology and virulence mechanisms. Thus, novel phylogenetic and functional classifications are required. An SBSEC overarching multi locus sequence type (MLST) scheme targeting 10 housekeeping genes was developed, validated and combined with host-related properties of adhesion to extracellular matrix proteins (ECM), activation of the immune responses via NF-KB and survival in simulated gastric juice (SGJ). Commensal and pathogenic SBSEC strains (n = 74) of human, animal and food origin from Europe, Asia, America and Africa were used in the MLST scheme yielding 66 sequence types and 10 clonal complexes differentiated into distinct habitat-associated and mixed lineages. Adhesion to ECMs collagen I and mucin type II was a common characteristic (23 % of strains) followed by adhesion to fibronectin and fibrinogen (19.7 %). High adhesion abilities were found for East African dairy and human blood isolate branches whereas commensal fecal SBSEC displayed low adhesion. NF-KB activation was observed for a limited number of dairy and blood isolates suggesting the potential of some pathogenic strains for reduced immune activation. Strains from dairy MLST clades displayed the highest relative survival to SGJ independently of dairy adaptation markers lacS/lacZ. Combining phylogenetic and functional analyses via SBSEC MLST enabled the clear delineation of strain clades to unravel the complexity of this bacterial group. High adhesion values shared between certain dairy and blood strains as well as the behavior of NF-KB activation are concerning for specific lineages. They highlighted the health risk among shared lineages and establish the basis to elucidate (zoonotic-) transmission, host specificity, virulence mechanisms and enhanced risk assessment as pathobionts in an overarching One Health approach.
Saffari, Fereshteh; Monsen, Tor; Karmostaji, Afsaneh; Azimabad, Fahimeh Bahadori; Widerström, Micael
2017-11-01
Infections associated with Acinetobacter baumannii represent an increasing threat in healthcare settings. Therefore, we investigated the epidemiological relationship between clinical isolates of A. baumannii obtained from patients in a university hospital in Bandar Abbas in southern Iran. Sixty-four consecutive non-duplicate clinical isolates collected during 2014-2015 were subjected to susceptibility testing, clonal relationship analysis using PFGE, multilocus variable-number tandem-repeat analysis (MLVA) and multilocus sequence typing (MLST), and examined for the presence of carbapenemases and integrons. Almost all A. baumannii isolates were extensively drug-resistant (XDR; 98 %) and carried an OXA carbapenemase gene (blaOXA-23-like; 98 %) and class 1 integrons (48 %). PFGE and MLST analysis identified three major genotypes, all belonging to clonal complex 92 (CC92): sequence type 848 (ST848) (n=23), ST451 (n=16) and ST195 (n=8). CC92 has previously been documented in the hospital setting in northern Iran, and ST195 has been reported in Arab States of the Persian Gulf. These data suggest national and global transmission of A. baumannii CC92. This report demonstrates the occurrence and potential spread of closely related XDR genotypes of A. baumannii CC92 within a university hospital in southern Iran. These genotypes were found in the majority of the investigated isolates, showed high prevalence of blaOXA-23 and integron class 1, and were associated with stay in the intensive care unit. Very few treatment options remain for healthcare-adapted XDR A. baumannii, and hence effective measures are desperately needed to reduce the spread of these strains and resultant infections in the healthcare setting.
Collado, Luis; Muñoz, Nataly; Porte, Lorena; Ochoa, Sofía; Varela, Carmen; Muñoz, Ivo
2018-03-01
Campylobacter jejuni is a major cause of acute gastroenteritis worldwide. However, it has also been associated with other diseases such as bacteremia and with several post-infection sequelae. Although campylobacteriosis is usually a self-limited infection, antibiotics are indicated for severe and chronic conditions. Unfortunately, several industrialised nations have reported a substantial increase in antibiotic resistance of C. jejuni. However, there is still a lack of knowledge about the epidemiology of resistance developed by this pathogen in the developing world. For this reason, our objective was to determine the resistance of clinical C. jejuni strains to ciprofloxacin and erythromycin in Chile and their associated genotypes. Fifty C. jejuni isolates recovered from fecal samples of people with acute gastroenteritis, in central and southern Chile between 2006 and 2015, were analysed. Resistance to erythromycin and ciprofloxacin was assessed by disk diffusion and agar dilution methods. Furthermore, these strains were genotyped by Multilocus Sequence Typing (MLST). Only one of the isolates was resistant to erythromycin. However, 48% of them were resistant to ciprofloxacin. The minimal inhibitory concentration of these ciprofloxacin-resistant isolates was in the range between 4 and 32 μg/ml. Moreover, MLST analyses showed that most ciprofloxacin-resistant strains were grouped into three dominant clonal complexes (ST-21, ST-48 and ST-353), while the unique strain resistant to both antibiotics belonged to the ST-45 complex. Our results evidence a high ciprofloxacin resistance and suggest that there is a dissemination of resistant clonal lineages responsible for cases of campylobacteriosis in Chile. Further studies should elucidate the origin of these resistant genotypes. Copyright © 2018 Elsevier B.V. All rights reserved.
Bouchami, Ons; de Lencastre, Herminia; Miragaia, Maria
2016-01-01
Staphylococcus haemolyticus is one of the most common pathogens associated with medical-device related infections, but its molecular epidemiology is poorly explored. In the current study, we aimed to better understand the genetic mechanisms contributing to S. haemolyticus diversity in the hospital environment and their impact on the population structure and clinical relevant phenotypic traits. The analysis of a representative S. haemolyticus collection by multilocus sequence typing (MLST) has identified a single highly prevalent and diverse genetic lineage of nosocomial S. haemolyticus clonal complex (CC) 29 accounting for 91% of the collection of isolates disseminated worldwide. The examination of the sequence changes at MLST loci during clonal diversification showed that recombination had a higher impact than mutation in shaping the S. haemolyticus population. Also, we ascertained that another mechanism contributing significantly to clonal diversification and adaptation was mediated by insertion sequence (IS) elements. We found that all nosocomial S. haemolyticus, belonging to different STs, were rich in IS1272 copies, as determined by Southern hybridization of macrorestriction patterns. In particular, we observed that the chromosome of a S. haemolyticus strain within CC29 was highly unstable during serial growth in vitro which paralleled with IS1272 transposition events and changes in clinically relevant phenotypic traits namely, mannitol fermentation, susceptibility to beta-lactams, biofilm formation and hemolysis. Our results suggest that recombination and IS transposition might be a strategy of adaptation, evolution and pathogenicity of the major S. haemolyticus prevalent lineage in the hospital environment.
Bouchami, Ons; de Lencastre, Herminia; Miragaia, Maria
2016-01-01
Staphylococcus haemolyticus is one of the most common pathogens associated with medical-device related infections, but its molecular epidemiology is poorly explored. In the current study, we aimed to better understand the genetic mechanisms contributing to S. haemolyticus diversity in the hospital environment and their impact on the population structure and clinical relevant phenotypic traits. The analysis of a representative S. haemolyticus collection by multilocus sequence typing (MLST) has identified a single highly prevalent and diverse genetic lineage of nosocomial S. haemolyticus clonal complex (CC) 29 accounting for 91% of the collection of isolates disseminated worldwide. The examination of the sequence changes at MLST loci during clonal diversification showed that recombination had a higher impact than mutation in shaping the S. haemolyticus population. Also, we ascertained that another mechanism contributing significantly to clonal diversification and adaptation was mediated by insertion sequence (IS) elements. We found that all nosocomial S. haemolyticus, belonging to different STs, were rich in IS1272 copies, as determined by Southern hybridization of macrorestriction patterns. In particular, we observed that the chromosome of a S. haemolyticus strain within CC29 was highly unstable during serial growth in vitro which paralleled with IS1272 transposition events and changes in clinically relevant phenotypic traits namely, mannitol fermentation, susceptibility to beta-lactams, biofilm formation and hemolysis. Our results suggest that recombination and IS transposition might be a strategy of adaptation, evolution and pathogenicity of the major S. haemolyticus prevalent lineage in the hospital environment. PMID:27249649
Neisseria meningitidis; clones, carriage, and disease.
Read, R C
2014-05-01
Neisseria meningitidis, the cause of meningococcal disease, has been the subject of sophisticated molecular epidemiological investigation as a consequence of the significant public health threat posed by this organism. The use of multilocus sequence typing and whole genome sequencing classifies the organism into clonal complexes. Extensive phenotypic, genotypic and epidemiological information is available on the PubMLST website. The human nasopharynx is the sole ecological niche of this species, and carrier isolates show extensive genetic diversity as compared with hyperinvasive lineages. Horizontal gene exchange and recombinant events within the meningococcal genome during residence in the human nasopharynx result in antigenic diversity even within clonal complexes, so that individual clones may express, for example, more than one capsular polysaccharide (serogroup). Successful clones are capable of wide global dissemination, and may be associated with explosive epidemics of invasive disease. © 2014 The Author Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.
Comparison of four molecular methods to type Salmonella Enteritidis strains.
Campioni, Fábio; Pitondo-Silva, André; Bergamini, Alzira M M; Falcão, Juliana P
2015-05-01
This study compared the pulsed-field gel electrophoresis (PFGE), enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR), multilocus variable-number of tanden-repeat analysis (MLVA), and multilocus sequence typing (MLST) methods for typing 188 Salmonella Enteritidis strains from different sources isolated over a 24-year period in Brazil. PFGE and ERIC-PCR were more efficient than MLVA for subtyping the strains. However, MLVA provided additional epidemiological information for those strains. In addition, MLST showed the Brazilian strains as belonging to the main clonal complex of S. Enteritidis, CC11, and provided the first report of two new STs in the S. enterica database but could not properly subtype the strains. Our results showed that the use of PFGE or ERIC-PCR together with MLVA is suitable to efficiently subtype S. Enteritidis strains and provide important epidemiological information. © 2015 APMIS. Published by John Wiley & Sons Ltd.
Mak, Tim N; Yu, Shu-Han; De Marzo, Angelo M; Brüggemann, Holger; Sfanos, Karen S
2013-05-01
Inflammation is commonly observed in radical prostatectomy specimens, and evidence suggests that inflammation may contribute to prostate carcinogenesis. Multiple microorganisms have been implicated in serving as a stimulus for prostatic inflammation. The pro-inflammatory anaerobe, Propionibacterium acnes, is ubiquitously found on human skin and is associated with the skin disease acne vulgaris. Recent studies have shown that P. acnes can be detected in prostatectomy specimens by bacterial culture or by culture-independent molecular techniques. Radical prostatectomy tissue samples were obtained from 30 prostate cancer patients and subject to both aerobic and anaerobic culture. Cultured species were identified by 16S rDNA gene sequencing. Propionibacterium acnes isolates were typed using multilocus sequence typing (MLST). Our study confirmed that P. acnes can be readily cultured from prostatectomy tissues (7 of 30 cases, 23%). In some cases, multiple isolates of P. acnes were cultured as well as other Propionibacterium species, such as P. granulosum and P. avidum. Overall, 9 of 30 cases (30%) were positive for Propionibacterium spp. MLST analyses identified eight different sequence types (STs) among prostate-derived P. acnes isolates. These STs belong to two clonal complexes, namely CC36 (type I-2) and CC53/60 (type II), or are CC53/60-related singletons. MLST typing results indicated that prostate-derived P. acnes isolates do not fall within the typical skin/acne STs, but rather are characteristic of STs associated with opportunistic infections and/or urethral flora. The MLST typing results argue against the likelihood that prostatectomy-derived P. acnes isolates represent contamination from skin flora. Copyright © 2012 Wiley Periodicals, Inc.
Saranathan, Rajagopalan; Vasanth, Vaidyanathan; Vasanth, Thamodharan; Shabareesh, Pidathala Raghavendra Venkata; Shashikala, P; Devi, Chandrakesan Sheela; Kalaivani, Ramakrishnan; Asir, Johny; Sudhakar, Pagal; Prashanth, K
2015-05-01
The molecular epidemiology and carbapenem resistance mechanisms of clinical isolates of Acinetobacter baumannii obtained from a south Indian tertiary care hospital were investigated by repetitive extragenic palindromic sequence PCR (REP-PCR) and multi-locus sequence typing (MLST). Analysis of resistant determinants was achieved by PCR screening for the presence of genes encoding OXA-carbapenemases, metallo-β-lactamases (MBLs) and efflux pumps. REP-PCR generated around eight clusters of high heterogeneity; of these, two major clusters (I and V) appeared to be clonal in origin. Analysis of representative isolates from different clusters by MLST revealed that most of the isolates belonged to sequence type 103 of CC103(B) . Second most prevalent ST belonged to clonal complex (CC) 92(B) which is also referred to as international clone II. Most of the isolates were multi-drug resistant, being susceptible only to polymyxin-B and newer quinolones. Class D β-lactamases such as blaOXA-51-like (100%), blaOXA-23-like (56.8%) and blaOXA-24-like (14.8%) were found to be predominant, followed by a class B β-lactamase, namely blaIMP-1 (40.7%); none of the isolates had blaOXA-58 like, blaNDM-1 or blaSIM-1 . Genes of efflux-pump adeABC were predominant, most of isolates being biofilm producers that were PCR-positive for autoinducer synthase gene (>94%). Carbapenem non-susceptible isolates were highly diverse and present throughout the hospital irrespective of type of ward or intensive care unit. Although previous reports have documented diverse resistant mechanisms in A. baumannii, production of MBL and OXA-type of carbapenamases were found to be the predominant mechanism(s) of carbapenem resistance identified in strains isolated from Southern India. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.
García-Alvarez, Andrés; Fernández-Garayzábal, José Francisco; Chaves, Fernando; Pinto, Chris; Cid, Dolores
2018-06-01
This study investigated the genetic characteristics of 121 ovine Mannheimia haemolytica isolates from lungs with (n = 75) and without pneumonic lesions (n = 46) using multilocus sequence typing (MLST), virulence-associated gene typing and pulsed-field gel electrophoresis (PFGE). Twelve STs were identified with most isolates (81%) belonged to ST16, ST28 and ST8. Analysis of the M. haemolytica MLST Database indicate a wide distribution of these genotypes in small ruminants, never reported in bovine isolates. This could suggest the adaptation of certain genetic lineages of M. haemolytica to small ruminants. e-BURST analysis grouped most STs into three clonal complexes (CC2, CC8 and CC28), consistent with a clonal population structure of M. haemolytica. Virulence-associated gene typing identified five virulence profiles in 64% and 65.1% of the M. haemolytica isolates from lungs with and without pneumonic lesions, respectively. These data suggest that M. haemolytica isolates from the lungs with and without pneumonic lesions are genetically homogeneous. By PGFE analysis a high level of genetic diversity was observed not only within isolates from lungs without pneumonic lesions but also among isolates from pneumonic lesions (GD 0.69 and GD 0.66, respectively; P > 0.05). These results indicate that multiple strains of M. haemolytica may be associated with individual cases of pneumonia in sheep. Copyright © 2018 Elsevier B.V. All rights reserved.
Shoja, Saeed; Ansari, Maryam; Faridi, Forogh; Azad, Mohsen; Davoodian, Parivash; Javadpour, Sedigheh; Farahani, Abbas; Mobarrez, Banafsheh Douzandeh; Karmostaji, Afsaneh
2018-05-01
The spread of carbapenem-resistant Klebsiella pneumoniae especially bla NDM-1 -carrying isolates is a great concern worldwide. In this study we describe the molecular basis of carbapenem-resistant K. pneumoniae in three teaching hospitals at Bandar Abbas, south of Iran. A total of 170 nonduplicate clinical isolates of K. pneumoniae were investigated. Antimicrobial susceptibility test was performed by disc diffusion method. PCR was carried out for detection of carbapenemase (bla KPC , bla IMP , bla VIM , bla NDM , bla SPM , bla OXA-48 , and bla OXA-181 ) and extended-spectrum β-lactamase (bla CTX-M , bla SHV , bla TEM , bla VEB , bla GES , and bla PER ). Clonal relatedness of bla NDM-1 -positive isolates was evaluated by multilocus sequence typing (MLST). Tigecycline was the most effective antimicrobial agent with 96.5% susceptibility. In addition, 6.5% of the isolates were carbapenem resistant. Bla NDM-1 was identified in four isolates (isolate A-D) and all of them were multidrug-resistant. MLST revealed that bla NDM-1 -positive isolates were clonally related and belonged to two distinct clonal complexes, including sequence type (ST) 13 and ST 392. In addition to bla NDM-1, isolate A coharbored bla SHV-11 , bla CTX-M-15 , and bla TEM-1 , isolate B harbored bla SHV-11 and bla CTX-M-15 , and isolates C and D contained both bla SHV-1 and bla CTX-M-15 . Our results indicate that NDM-1-producing K. pneumoniae ST 13 and ST 392 are disseminated in our region. Moreover, one of our major concerns is that these isolates may be more prevalent in the near future. Tracking and urgent intervention is necessary for control and prevention of these resistant isolates.
Reimer, Aleisha; Verghese, Bindhu; Lok, Mei; Ziegler, Jennifer; Farber, Jeffrey; Pagotto, Franco; Graham, Morag; Nadon, Celine A.
2012-01-01
Human listeriosis outbreaks in Canada have been predominantly caused by serotype 1/2a isolates with highly similar pulsed-field gel electrophoresis (PFGE) patterns. Multilocus sequence typing (MLST) and multi-virulence-locus sequence typing (MVLST) each identified a diverse population of Listeria monocytogenes isolates, and within that, both methods had congruent subtypes that substantiated a predominant clone (clonal complex 8; virulence type 59; proposed epidemic clone 5 [ECV]) that has been causing human illness across Canada for more than 2 decades. PMID:22337989
Molecular Typing and Epidemiology of Human Listeriosis Cases, Denmark, 2002-2012.
Jensen, Anne Kvistholm; Björkman, Jonas T; Ethelberg, Steen; Kiil, Kristoffer; Kemp, Michael; Nielsen, Eva Møller
2016-04-01
Denmark has a high incidence of invasive listeriosis (0.9 cases/100,000 population in 2012). We analyzed patient data, clinical outcome, and trends in pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) of Listeria monocytogenes strains isolated in Denmark during 2002-2012. We performed 2-enzyme PFGE and serotyping on 559 isolates and MLST on 92 isolates and identified some correlation between molecular type and clinical outcome and patient characteristics. We found 178 different PFGE types, but isolates from 122 cases belonged to just 2 closely related PFGE types, clonal complex 8 and sequence type 8. These 2 types were the main cause of a peak in incidence of invasive listeriosis during 2005-2009, possibly representing an outbreak or the presence of a highly prevalent clone. However, current typing methods could not fully confirm these possibilities, highlighting the need for more refined discriminatory typing methods to identify outbreaks within frequently occurring L. monocytogenes PFGE types.
Molecular Typing and Epidemiology of Human Listeriosis Cases, Denmark, 2002–20121
Björkman, Jonas T.; Ethelberg, Steen; Kiil, Kristoffer; Kemp, Michael; Nielsen, Eva Møller
2016-01-01
Denmark has a high incidence of invasive listeriosis (0.9 cases/100,000 population in 2012). We analyzed patient data, clinical outcome, and trends in pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) of Listeria monocytogenes strains isolated in Denmark during 2002–2012. We performed 2-enzyme PFGE and serotyping on 559 isolates and MLST on 92 isolates and identified some correlation between molecular type and clinical outcome and patient characteristics. We found 178 different PFGE types, but isolates from 122 cases belonged to just 2 closely related PFGE types, clonal complex 8 and sequence type 8. These 2 types were the main cause of a peak in incidence of invasive listeriosis during 2005–2009, possibly representing an outbreak or the presence of a highly prevalent clone. However, current typing methods could not fully confirm these possibilities, highlighting the need for more refined discriminatory typing methods to identify outbreaks within frequently occurring L. monocytogenes PFGE types. PMID:26982714
Chen, Po-An; Hung, Chih-Hsin; Huang, Ping-Chih; Chen, Jung-Ren; Huang, I-Fei; Chen, Wan-Ling; Chiou, Yee-Hsuan; Hung, Wan-Yu
2016-01-01
Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli sequence type ST131 has emerged as the leading cause of community-acquired urinary tract infections and bacteremia worldwide. Whether environmental water is a potential reservoir of these strains remains unclear. River water samples were collected from 40 stations in southern Taiwan from February to August 2014. PCR assay and multilocus sequence typing (MLST) analysis were conducted to determine the CTX-M group and sequence type, respectively. In addition, we identified the seasonal frequency of ESBL-producing E. coli strains and their geographical relationship with runoffs from livestock and poultry farms between February and August 2014. ESBL-producing E. coli accounted for 30% of the 621 E. coli strains isolated from river water in southern Taiwan. ESBL-producing E. coli ST131 was not detected among the isolates. The most commonly detected strain was E. coli CTX-M group 9. Among the 92 isolates selected for MLST analysis, the most common ESBL-producing clonal complexes were ST10 and ST58. The proportion of ESBL-producing E. coli was significantly higher in areas with a lower river pollution index (P = 0.025) and regions with a large number of chickens being raised (P = 0.013). ESBL-producing E. coli strains were commonly isolated from river waters in southern Taiwan. The most commonly isolated ESBL-producing clonal complexes were ST10 and ST58, which were geographically related to chicken farms. ESBL-producing E. coli ST131, the major clone causing community-acquired infections in Taiwan and worldwide, was not detected in river waters. PMID:26773082
Chen, Po-An; Hung, Chih-Hsin; Huang, Ping-Chih; Chen, Jung-Ren; Huang, I-Fei; Chen, Wan-Ling; Chiou, Yee-Hsuan; Hung, Wan-Yu; Wang, Jiun-Ling; Cheng, Ming-Fang
2016-01-15
Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli sequence type ST131 has emerged as the leading cause of community-acquired urinary tract infections and bacteremia worldwide. Whether environmental water is a potential reservoir of these strains remains unclear. River water samples were collected from 40 stations in southern Taiwan from February to August 2014. PCR assay and multilocus sequence typing (MLST) analysis were conducted to determine the CTX-M group and sequence type, respectively. In addition, we identified the seasonal frequency of ESBL-producing E. coli strains and their geographical relationship with runoffs from livestock and poultry farms between February and August 2014. ESBL-producing E. coli accounted for 30% of the 621 E. coli strains isolated from river water in southern Taiwan. ESBL-producing E. coli ST131 was not detected among the isolates. The most commonly detected strain was E. coli CTX-M group 9. Among the 92 isolates selected for MLST analysis, the most common ESBL-producing clonal complexes were ST10 and ST58. The proportion of ESBL-producing E. coli was significantly higher in areas with a lower river pollution index (P = 0.025) and regions with a large number of chickens being raised (P = 0.013). ESBL-producing E. coli strains were commonly isolated from river waters in southern Taiwan. The most commonly isolated ESBL-producing clonal complexes were ST10 and ST58, which were geographically related to chicken farms. ESBL-producing E. coli ST131, the major clone causing community-acquired infections in Taiwan and worldwide, was not detected in river waters. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Chen, Ming; Wang, Rui; Luo, Fu-Guang; Huang, Yan; Liang, Wan-Wen; Huang, Ting; Lei, Ai-Ying; Gan, Xi; Li, Li-Ping
2015-10-22
Recent studies have shown that group B streptococcus (GBS) may be infectious across hosts. The purpose of this study is to investigate the pathogenicity of clinical GBS isolates with serotypes Ia, III and V from human and cow to tilapia and the evolutionary relationship among these GBS strains of different sources. A total of 27 clinical GBS isolates from human (n=10), cow (n=2) and tilapia (n=15) were analyzed using serotyping, multi-locus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Among them, 15 isolates were tested for their pathogenicity to tilapia. The results showed that five human GBS strains (2 serotype III, 2 serotype Ia and 1 serotype V) infected tilapia with mortality rate ranging from 56.67% to 100%, while the other five human GBS strains tested were unable to infect tilapia. In addition, two cow GBS strains C001 and C003 of serotype III infected tilapia. However, they had significantly lower pathogenicity than the five human strains. Furthermore, human GBS strains H005 and H008, which had very strong ability to infect tilapia, had the same PFGE pattern. MLST analysis showed that the five human and the two cow GBS strains that were able to infect tilapia belonged to clonal complexes CC19, CC23 and CC103. The study for the first time confirmed that human or cow GBS clonal complexes CC19, CC23 and CC103 containing strains with serotypes Ia, III and V could infect tilapia and induce clinical signs under experimental conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Ferreira-Paim, Kennio; Andrade-Silva, Leonardo; Fonseca, Fernanda M.; Ferreira, Thatiana B.; Mora, Delio J.; Andrade-Silva, Juliana; Khan, Aziza; Dao, Aiken; Reis, Eduardo C.; Almeida, Margarete T. G.; Maltos, Andre; Junior, Virmondes R.; Trilles, Luciana; Rickerts, Volker; Chindamporn, Ariya; Sykes, Jane E.; Cogliati, Massimo; Nielsen, Kirsten; Boekhout, Teun; Fisher, Matthew; Kwon-Chung, June; Engelthaler, David M.; Lazéra, Marcia; Meyer, Wieland; Silva-Vergara, Mario L.
2017-01-01
Cryptococcosis is an important fungal infection in immunocompromised individuals, especially those infected with HIV. In Brazil, despite the free availability of antiretroviral therapy (ART) in the public health system, the mortality rate due to Cryptococcus neoformans meningitis is still high. To obtain a more detailed picture of the population genetic structure of this species in southeast Brazil, we studied 108 clinical isolates from 101 patients and 35 environmental isolates. Among the patients, 59% had a fatal outcome mainly in HIV-positive male patients. All the isolates were found to be C. neoformans var. grubii major molecular type VNI and mating type locus alpha. Twelve were identified as diploid by flow cytometry, being homozygous (AαAα) for the mating type and by PCR screening of the STE20, GPA1, and PAK1 genes. Using the ISHAM consensus multilocus sequence typing (MLST) scheme, 13 sequence types (ST) were identified, with one being newly described. ST93 was identified from 81 (75%) of the clinical isolates, while ST77 and ST93 were identified from 19 (54%) and 10 (29%) environmental isolates, respectively. The southeastern Brazilian isolates had an overwhelming clonal population structure. When compared with populations from different continents based on data extracted from the ISHAM-MLST database (mlst.mycologylab.org) they showed less genetic variability. Two main clusters within C. neoformans var. grubii VNI were identified that diverged from VNB around 0.58 to 4.8 million years ago. PMID:28099434
Mellmann, Alexander; Weniger, Thomas; Berssenbrügge, Christoph; Rothgänger, Jörg; Sammeth, Michael; Stoye, Jens; Harmsen, Dag
2007-10-29
For typing of Staphylococcus aureus, DNA sequencing of the repeat region of the protein A (spa) gene is a well established discriminatory method for outbreak investigations. Recently, it was hypothesized that this region also reflects long-term epidemiology. However, no automated and objective algorithm existed to cluster different repeat regions. In this study, the Based Upon Repeat Pattern (BURP) implementation that is a heuristic variant of the newly described EDSI algorithm was investigated to infer the clonal relatedness of different spa types. For calibration of BURP parameters, 400 representative S. aureus strains with different spa types were characterized by MLST and clustered using eBURST as "gold standard" for their phylogeny. Typing concordance analysis between eBURST and BURP clustering (spa-CC) were performed using all possible BURP parameters to determine their optimal combination. BURP was subsequently evaluated with a strain collection reflecting the breadth of diversity of S. aureus (JCM 2002; 40:4544). In total, the 400 strains exhibited 122 different MLST types. eBURST grouped them into 23 clonal complexes (CC; 354 isolates) and 33 singletons (46 isolates). BURP clustering of spa types using all possible parameter combinations and subsequent comparison with eBURST CCs resulted in concordances ranging from 8.2 to 96.2%. However, 96.2% concordance was reached only if spa types shorter than 8 repeats were excluded, which resulted in 37% excluded spa types. Therefore, the optimal combination of the BURP parameters was "exclude spa types shorter than 5 repeats" and "cluster spa types into spa-CC if cost distances are less than 4" exhibiting 95.3% concordance to eBURST. This algorithm identified 24 spa-CCs, 40 singletons, and excluded only 7.8% spa types. Analyzing the natural population with these parameters, the comparison of whole-genome micro-array groupings (at the level of 0.31 Pearson correlation index) and spa-CCs gave a concordance of 87.1%; BURP spa-CCs vs. manually grouped spa types resulted in 95.7% concordance. BURP is the first automated and objective tool to infer clonal relatedness from spa repeat regions. It is able to extract an evolutionary signal rather congruent to MLST and micro-array data.
Yu, Jie; Sun, Zhihong; Liu, Wenjun; Xi, Xiaoxia; Song, Yuqin; Xu, Haiyan; Lv, Qiang; Bao, Qiuhua; Menghe, Bilige; Sun, Tiansong
2015-10-26
Streptococcus thermophilus is a major dairy starter used for manufacturing of dairy products. In the present study, we developed a multilocus sequence typing (MLST) scheme for this important food bacterium. Sequences of 10 housekeeping genes (carB, clpX, dnaA, murC, murE, pepN, pepX, pyrG, recA, and rpoB) were obtained for 239 S. thermophilus strains, which were isolated from home-made fermented dairy foods in 18 different regions of Mongolia and China. All 10 genes of S. thermophilus were sequenced, aligned, and defined sequence types (STs) using the BioNumerics Software. The nucleotide diversity was calculated by START v2.0. The population structure, phylogenetic relationships and the role of recombination were inferred using ClonalFrame v1.2, SplitsTree 4.0 and Structure v2.3. The 239 S. thermophilus isolates and 18 reference strains could be assigned into 119 different STs, which could be further separated into 16 clonal complexes (CCs) and 38 singletons. Among the 10 loci, a total of 132 polymorphic sites were detected. The standardized index of association (IAS=0.0916), split-decomposition and ρ/θ (relative frequency of occurrence of recombination and mutation) and r/m value (relative impact of recombination and mutation in the diversification) confirms that recombination may have occurred, but it occurred at a low frequency in these 10 loci. Phylogenetic trees indicated that there were five lineages in the S. thermophilus isolates used in our study. MSTree and ClonalFrame tree analyses suggest that the evolution of S. thermophilus isolates have little relationship with geographic locality, but revealed no association with the types of fermented dairy product. Phylogenetic analysis of 36 whole genome strains (18 S. thermophilus, 2 S. vestibularis and 16 S. salivarius strains) indicated that our MLST scheme could clearly separate three closely related species within the salivarius group and is suitable for analyzing the population structure of the other two species in the salivarius group. Our newly developed MLST scheme improved the understanding on the genetic diversity and population structure of the S. thermophilus, as well as provided useful information for further studies on the genotyping and evolutionary research for S. thermophilus strains with global diversity.
Comparative genomics of Enterococcus faecalis from healthy Norwegian infants
Solheim, Margrete; Aakra, Ågot; Snipen, Lars G; Brede, Dag A; Nes, Ingolf F
2009-01-01
Background Enterococcus faecalis, traditionally considered a harmless commensal of the intestinal tract, is now ranked among the leading causes of nosocomial infections. In an attempt to gain insight into the genetic make-up of commensal E. faecalis, we have studied genomic variation in a collection of community-derived E. faecalis isolated from the feces of Norwegian infants. Results The E. faecalis isolates were first sequence typed by multilocus sequence typing (MLST) and characterized with respect to antibiotic resistance and properties associated with virulence. A subset of the isolates was compared to the vancomycin resistant strain E. faecalis V583 (V583) by whole genome microarray comparison (comparative genomic hybridization (CGH)). Several of the putative enterococcal virulence factors were found to be highly prevalent among the commensal baby isolates. The genomic variation as observed by CGH was less between isolates displaying the same MLST sequence type than between isolates belonging to different evolutionary lineages. Conclusion The variations in gene content observed among the investigated commensal E. faecalis is comparable to the genetic variation previously reported among strains of various origins thought to be representative of the major E. faecalis lineages. Previous MLST analysis of E. faecalis have identified so-called high-risk enterococcal clonal complexes (HiRECC), defined as genetically distinct subpopulations, epidemiologically associated with enterococcal infections. The observed correlation between CGH and MLST presented here, may offer a method for the identification of lineage-specific genes, and may therefore add clues on how to distinguish pathogenic from commensal E. faecalis. In this work, information on the core genome of E. faecalis is also substantially extended. PMID:19393078
Desoubeaux, Guillaume; Debourgogne, Anne; Wiederhold, Nathan P; Zaffino, Marie; Sutton, Deanna; Burns, Rachel E; Frasca, Salvatore; Hyatt, Michael W; Cray, Carolyn
2018-07-01
Fusarium spp. are saprobic moulds that are responsible for severe opportunistic infections in humans and animals. However, we need epidemiological tools to reliably trace the circulation of such fungal strains within medical or veterinary facilities, to recognize environmental contaminations that might lead to infection and to improve our understanding of factors responsible for the onset of outbreaks. In this study, we used molecular genotyping to investigate clustered cases of Fusarium solani species complex (FSSC) infection that occurred in eight Sphyrnidae sharks under managed care at a public aquarium. Genetic relationships between fungal strains were determined by multi-locus sequence typing (MLST) analysis based on DNA sequencing at five loci, followed by comparison with sequences of 50 epidemiologically unrelated FSSC strains. Our genotyping approach revealed that F. keratoplasticum and F. solani haplotype 9x were most commonly isolated. In one case, the infection proved to be with another Hypocrealian rare opportunistic pathogen Metarhizium robertsii. Twice, sharks proved to be infected with FSSC strains with the same MLST sequence type, supporting the hypothesis the hypothesis that common environmental populations of fungi existed for these sharks and would suggest the longtime persistence of the two clonal strains within the environment, perhaps in holding pools and life support systems of the aquarium. This study highlights how molecular tools like MLST can be used to investigate outbreaks of microbiological disease. This work reinforces the need for regular controls of water quality to reduce microbiological contamination due to waterborne microorganisms.
Zhang, Ji; Vehkala, Minna; Välimäki, Niko; Hakkinen, Marjaana; Hänninen, Marja-Liisa; Roasto, Mati; Mäesaar, Mihkel; Taboada, Eduardo; Barker, Dillon; Garofolo, Giuliano; Cammà, Cesare; Di Giannatale, Elisabetta; Corander, Jukka; Rossi, Mirko
2016-01-01
The decreased costs of genome sequencing have increased the capability to apply whole-genome sequencing to epidemiological surveillance of zoonotic Campylobacter jejuni. However, knowledge of the genetic diversity of this bacteria is vital for inferring relatedness between epidemiologically linked isolates and a necessary prerequisite for correct application of this methodology. To address this issue in C. jejuni we investigated the spatial and temporal signals in the genomes of a major clonal complex and generalist lineage, ST-45 CC, by analysing the population structure and genealogy as well as applying genome-wide association analysis of 340 isolates from across Europe collected over a wide time range. The occurrence and strength of the geographical signal varied between sublineages and followed the clonal frame when present, while no evidence of a temporal signal was found. Certain sublineages of ST-45 formed discrete and genetically isolated clades containing isolates with extremely similar genomes regardless of time and location of sampling. Based on a separate data set, these monomorphic genotypes represent successful C. jejuni clones, possibly spread around the globe by rapid animal (migrating birds), food or human movement. In addition, we observed an incongruence between the genealogy of the strains and multilocus sequence typing (MLST), challenging the existing clonal complex definition and the use of whole-genome gene-by-gene hierarchical nomenclature schemes for C. jejuni. PMID:28348829
Yokota, Shin-ichi; Konno, Mutsuko; Fujiwara, Shin-ichi; Toita, Nariaki; Takahashi, Michiko; Yamamoto, Soh; Ogasawara, Noriko; Shiraishi, Tsukasa
2015-10-01
The infection route of Helicobacter pylori has been recognized to be mainly intrafamilial, preferentially mother-to-child, especially in developed countries. To determine the transmission route, we examined whether multilocus sequence typing (MLST) was useful for analysis of intrafamilial infection. The possibility of intraspousal infection was also evaluated. Clonal relationships between strains derived from 35 index Japanese pediatric patients, and their family members were analyzed by two genetic typing procedures, MLST and random amplified polymorphic DNA (RAPD) fingerprinting. Mostly coincident results were obtained by MLST and RAPD. By MLST, the allele of loci in the isolates mostly matched between the index child and both the father and mother for 9 (25.7%) of the 35 patients, between the index child and the mother for 25 (60.0%) of the 35 patients. MLST is useful for analyzing the infection route of H. pylori as a highly reproducible method. Intrafamilial, especially mother-to-children and sibling, infection is the dominant transmission route. Intraspousal infection is also thought to occur in about a quarter in the Japanese families. © 2015 John Wiley & Sons Ltd.
Lu, Xin; Zhou, Haijian; Du, Xiaoli; Liu, Sha; Xu, Jialiang; Cui, Zhigang; Pang, Bo; Kan, Biao
2016-11-01
Vibrio parahaemolyticus is a common seafood-borne pathogenic bacterium which causes gastroenteritis in humans. Continuous surveillance on the molecular characters of the clinical and environmental V. parahaemolyticus strains needs to be conducted for the epidemiological and genetic purposes. To generate a picture of the population distribution of V. parahaemolyticus in eastern China isolated from clinical cases of gastroenteritis and environmental samples, we investigated the genetic and evolutionary relationships of the strains using the commonly used multi-locus sequence typing (MLST, in which seven house-keeping genes are used in the protocol). A highly genetic diversity within the V. parahaemolyticus population was observed but ST3 was still dominant in the clinical strains, and 103 new sequence types (ST) were found in the clinical strains by searching in the global V. parahaemolyticus MLST database. With these genetically diverse strains, we estimated the recombination rates of the loci in MLST analysis. The locus recA was found to be subject to exceptionally high rate of recombination, and the recombinant single nucleotide polymorphisms (SNPs) were also identified within the seven loci. The phylogenetic tree of the strains was re-constructed using the maximum likelihood method by removing the recombination SNPs of the seven loci, and the minimum spanning tree was re-constructed with the six loci without recA. Some changes were observed in comparison with the previously used methods, suggesting that the homologous recombination has roles in shaping the clonal structure of V. parahaemolyticus. We propose the recombination-free SNPs strategy in the clonality analysis of V. parahaemolyticus, especially when using the maximum likelihood method. Copyright © 2016. Published by Elsevier B.V.
Giannopoulos, Lambros; Papaparaskevas, Joseph; Refene, Eirini; Daikos, Georgios; Stavrianeas, Nikolaos; Tsakris, Athanassios
2015-02-01
Molecular typing data on antimicrobial-resistant Propionibacterium strains are limited in the literature. We examined antimicrobial resistance profiles and the underlying resistance mechanisms in Propionibacterium spp. isolates recovered from patients with moderate to severe acne vulgaris in Greece. The clonallity of the resistant Propionibacterium acnes isolates was also investigated. Propionibacterium spp. isolates were detected using Tryptone-Yeast Extract-Glucose (TYG) agar plates supplemented with 4% furazolidone. Erythromycin, clindamycin, vancomycin, penicillin, co-trimoxazole, doxycycline, minocycline and ciprofloxacin MICs were determined using the gradient strip method. Erythromycin, clindamycin and tetracycline mechanisms of resistance were determined using PCR and sequencing of the domain V of 23S rRNA and 16S rRNA, as well as the presence of the ermX gene. Typing was performed using the multi locus sequence typing (MLST) methodology. Seventy nine isolates from 76 patients were collected. Twenty-three isolates (29.1%) exhibited resistance to erythromycin and clindamycin, while two additional isolates (2.5%) were resistant only to erythromycin. Resistance to tetracycline was not detected. The underlying molecular mechanisms were point mutations A2059G and A2058G. MLST typing of the P. acnes resistant isolates revealed that lineage type IA1 (ST-1, 3 and 52) prevailed (12/18; 66.7%), whilst lineage type IA2 (ST-2 and 22) accounted for five more isolates (27.8%). Susceptible isolates were more evenly distributed between ST types. Propionibacterium spp. from moderate to severe acne vulgaris in Greece are frequently resistant to erythromycin/clindamycin but not to tetracyclines, mainly due to the point mutations A2059G and A2058G. P. acnes resistant isolates were more clonally related than susceptible ones and belonged to a limited number of MLST types. Copyright © 2014 Elsevier Ltd. All rights reserved.
Listeria monocytogenes sequence type 1 is predominant in ruminant rhombencephalitis
Dreyer, Margaux; Aguilar-Bultet, Lisandra; Rupp, Sebastian; Guldimann, Claudia; Stephan, Roger; Schock, Alexandra; Otter, Arthur; Schüpbach, Gertraud; Brisse, Sylvain; Lecuit, Marc; Frey, Joachim; Oevermann, Anna
2016-01-01
Listeria (L.) monocytogenes is an opportunistic pathogen causing life-threatening infections in diverse mammalian species including humans and ruminants. As little is known on the link between strains and clinicopathological phenotypes, we studied potential strain-associated virulence and organ tropism in L. monocytogenes isolates from well-defined ruminant cases of clinical infections and the farm environment. The phylogeny of isolates and their virulence-associated genes were analyzed by multilocus sequence typing (MLST) and sequence analysis of virulence-associated genes. Additionally, a panel of representative isolates was subjected to in vitro infection assays. Our data suggest the environmental exposure of ruminants to a broad range of strains and yet the strong association of sequence type (ST) 1 from clonal complex (CC) 1 with rhombencephalitis, suggesting increased neurotropism of ST1 in ruminants, which is possibly related to its hypervirulence. This study emphasizes the importance of considering clonal background of L. monocytogenes isolates in surveillance, epidemiological investigation and disease control. PMID:27848981
Wang, Tao; Li, Hua; Wang, Hua; Su, Jing
2015-04-16
The present study established a typing method with NotI-based pulsed-field gel electrophoresis (PFGE) and stress response gene schemed multilocus sequence typing (MLST) for 55 Oenococcus oeni strains isolated from six individual regions in China and two model strains PSU-1 (CP000411) and ATCC BAA-1163 (AAUV00000000). Seven stress response genes, cfa, clpL, clpP, ctsR, mleA, mleP and omrA, were selected for MLST testing, and positive selective pressure was detected for these genes. Furthermore, both methods separated the strains into two clusters. The PFGE clusters are correlated with the region, whereas the sequence types (STs) formed by the MLST confirm the two clusters identified by PFGE. In addition, the population structure was a mixture of evolutionary pathways, and the strains exhibited both clonal and panmictic characteristics. Copyright © 2015 Elsevier B.V. All rights reserved.
Emergence of Antimicrobial-Resistant Escherichia coli of Animal Origin Spreading in Humans
Skurnik, David; Clermont, Olivier; Guillard, Thomas; Launay, Adrien; Danilchanka, Olga; Pons, Stéphanie; Diancourt, Laure; Lebreton, François; Kadlec, Kristina; Roux, Damien; Jiang, Deming; Dion, Sara; Aschard, Hugues; Denamur, Maurice; Cywes-Bentley, Colette; Schwarz, Stefan; Tenaillon, Olivier; Andremont, Antoine; Picard, Bertrand; Mekalanos, John; Brisse, Sylvain; Denamur, Erick
2016-01-01
In the context of the great concern about the impact of human activities on the environment, we studied 403 commensal Escherichia coli/Escherichia clade strains isolated from several animal and human populations that have variable contacts to one another. Multilocus sequence typing (MLST) showed a decrease of diversity 1) in strains isolated from animals that had an increasing contact with humans and 2) in all strains that had increased antimicrobial resistance. A specific B1 phylogroup clonal complex (CC87, Institut Pasteur schema nomenclature) of animal origin was identified and characterized as being responsible for the increased antimicrobial resistance prevalence observed in strains from the environments with a high human-mediated antimicrobial pressure. CC87 strains have a high capacity of acquiring and disseminating resistance genes with specific metabolic and genetic determinants as demonstrated by high-throughput sequencing and phenotyping. They are good mouse gut colonizers but are not virulent. Our data confirm the predominant role of human activities in the emergence of antimicrobial resistance in the environmental bacterial strains and unveil a particular E. coli clonal complex of animal origin capable of spreading antimicrobial resistance to other members of microbial communities. PMID:26613786
Cutibacterium acnes molecular typing: time to standardize the method.
Dagnelie, M-A; Khammari, A; Dréno, B; Corvec, S
2018-03-12
The Gram-positive, anaerobic/aerotolerant bacterium Cutibacterium acnes is a commensal of healthy human skin; it is subdivided into six main phylogenetic groups or phylotypes: IA1, IA2, IB, IC, II and III. To decipher how far specific subgroups of C. acnes are involved in disease physiopathology, different molecular typing methods have been developed to identify these subgroups: i.e. phylotypes, clonal complexes, and types defined by single-locus sequence typing (SLST). However, as several molecular typing methods have been developed over the last decade, it has become a difficult task to compare the results from one article to another. Based on the scientific literature, the aim of this narrative review is to propose a standardized method to perform molecular typing of C. acnes, according to the degree of resolution needed (phylotypes, clonal complexes, or SLST types). We discuss the existing different typing methods from a critical point of view, emphasizing their advantages and drawbacks, and we identify the most frequently used methods. We propose a consensus algorithm according to the needed phylogeny resolution level. We first propose to use multiplex PCR for phylotype identification, MLST9 for clonal complex determination, and SLST for phylogeny investigation including numerous isolates. There is an obvious need to create a consensus about molecular typing methods for C. acnes. This standardization will facilitate the comparison of results between one article and another, and also the interpretation of clinical data. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Yeo, Matthew; Mauricio, Isabel L; Messenger, Louisa A; Lewis, Michael D; Llewellyn, Martin S; Acosta, Nidia; Bhattacharyya, Tapan; Diosque, Patricio; Carrasco, Hernan J; Miles, Michael A
2011-06-01
Multilocus sequence typing (MLST) is a powerful and highly discriminatory method for analysing pathogen population structure and epidemiology. Trypanosoma cruzi, the protozoan agent of American trypanosomiasis (Chagas disease), has remarkable genetic and ecological diversity. A standardised MLST protocol that is suitable for assignment of T. cruzi isolates to genetic lineage and for higher resolution diversity studies has not been developed. We have sequenced and diplotyped nine single copy housekeeping genes and assessed their value as part of a systematic MLST scheme for T. cruzi. A minimum panel of four MLST targets (Met-III, RB19, TcGPXII, and DHFR-TS) was shown to provide unambiguous assignment of isolates to the six known T. cruzi lineages (Discrete Typing Units, DTUs TcI-TcVI). In addition, we recommend six MLST targets (Met-II, Met-III, RB19, TcMPX, DHFR-TS, and TR) for more in depth diversity studies on the basis that diploid sequence typing (DST) with this expanded panel distinguished 38 out of 39 reference isolates. Phylogenetic analysis implies a subdivision between North and South American TcIV isolates. Single Nucleotide Polymorphism (SNP) data revealed high levels of heterozygosity among DTUs TcI, TcIII, TcIV and, for three targets, putative corresponding homozygous and heterozygous loci within DTUs TcI and TcIII. Furthermore, individual gene trees gave incongruent topologies at inter- and intra-DTU levels, inconsistent with a model of strict clonality. We demonstrate the value of systematic MLST diplotyping for describing inter-DTU relationships and for higher resolution diversity studies of T. cruzi, including presence of recombination events. The high levels of heterozygosity will facilitate future population genetics analysis based on MLST haplotypes.
Ma, Hansong; Voelz, Kerstin; Ren, Ping; Carter, Dee A.; Chaturvedi, Vishnu; Bildfell, Robert J.; May, Robin C.; Heitman, Joseph
2010-01-01
Cryptococcus gattii causes life-threatening disease in otherwise healthy hosts and to a lesser extent in immunocompromised hosts. The highest incidence for this disease is on Vancouver Island, Canada, where an outbreak is expanding into neighboring regions including mainland British Columbia and the United States. This outbreak is caused predominantly by C. gattii molecular type VGII, specifically VGIIa/major. In addition, a novel genotype, VGIIc, has emerged in Oregon and is now a major source of illness in the region. Through molecular epidemiology and population analysis of MLST and VNTR markers, we show that the VGIIc group is clonal and hypothesize it arose recently. The VGIIa/IIc outbreak lineages are sexually fertile and studies support ongoing recombination in the global VGII population. This illustrates two hallmarks of emerging outbreaks: high clonality and the emergence of novel genotypes via recombination. In macrophage and murine infections, the novel VGIIc genotype and VGIIa/major isolates from the United States are highly virulent compared to similar non-outbreak VGIIa/major-related isolates. Combined MLST-VNTR analysis distinguishes clonal expansion of the VGIIa/major outbreak genotype from related but distinguishable less-virulent genotypes isolated from other geographic regions. Our evidence documents emerging hypervirulent genotypes in the United States that may expand further and provides insight into the possible molecular and geographic origins of the outbreak. PMID:20421942
Markovska, Rumyana; Stoeva, Temenuga; Schneider, Ines; Boyanova, Lyudmila; Popova, Valentina; Dacheva, Daniela; Kaneva, Radka; Bauernfeind, Adolf; Mitev, Vanyo; Mitov, Ivan
2015-10-01
A total of 36 consecutive clinical and two fecal-screening carbapenem-resistant Klebsiella pneumoniae isolates from two Bulgarian university hospitals (Varna and Pleven) were investigated. Susceptibility testing, conjugation experiments, and plasmid replicon typing were carried out. Beta-lactamases were characterized by isoelectric focusing, PCR, and sequencing. Clonal relatedness was investigated by RAPD and multilocus sequence typing (MLST). Most of the isolates demonstrated multidrug resistance profile. Amikacin and tigecycline retained good activity with susceptibility rates of 95 and 87%, respectively. The resistance rate to colistin was 63%. Six RAPD- and MLST-types were identified: the dominating MLST-type was ST15 (27 isolates), followed by ST76 (six isolates), and ST1350 (two isolates). ST101, ST258, and ST151 were detected once. All except one of the K. pneumoniae produced KPC-2, mostly in combination with CTX-M-15, while for one isolate (ST101) the enzymes OXA-48 and CTX-M-14 were found. All KPC-2-producing transconjugants revealed the presence of IncFII plasmid. The OXA-48- and CTX-M-14-producing isolate showed the presence of L/M replicon type. The dissemination of KPC-2-producing K.pneumoniae in Bulgaria is mainly due to the sustained spread of successful ST15 clone and to a lesser extent of ST76 clone. This is the first report of OXA-48 producing ST101 K. pneumoniae in Bulgaria. © 2015 APMIS. Published by John Wiley & Sons Ltd.
Kinnevey, Peter M.; Shore, Anna C.; Brennan, Grainne I.; Sullivan, Derek J.; Ehricht, Ralf; Monecke, Stefan
2014-01-01
Clonal replacement of predominant nosocomial methicillin-resistant Staphylococcus aureus (MRSA) strains has occurred several times in Ireland during the last 4 decades. However, little is known about sporadically occurring MRSA in Irish hospitals or in other countries. Eighty-eight representative pvl-negative sporadic MRSA isolates recovered in Irish hospitals between 2000 and 2012 were investigated. These yielded unusual pulsed-field gel electrophoresis and antibiogram-resistogram typing patterns distinct from those of the predominant nosocomial MRSA clone, ST22-MRSA-IV, during the study period. Isolates were characterized by spa typing and DNA microarray profiling for multilocus sequence type (MLST) clonal complex (CC) and/or sequence type (ST) and SCCmec type assignment, as well as for detection of virulence and antimicrobial resistance genes. Conventional PCR-based SCCmec subtyping was undertaken when necessary. Extensive diversity was detected, including 38 spa types, 13 MLST-CCs (including 18 STs among 62 isolates assigned to STs), and 25 SCCmec types (including 2 possible novel SCCmec elements and 7 possible novel SCCmec subtypes). Fifty-four MLST-spa-SCCmec type combinations were identified. Overall, 68.5% of isolates were assigned to nosocomial lineages, with ST8-t190-MRSA-IID/IIE ± SCCM1 predominating (17.4%), followed by CC779/ST779-t878-MRSA-ψSCCmec-SCC-SCCCRISPR (7.6%) and CC22/ST22-t032-MRSA-IVh (5.4%). Community-associated clones, including CC1-t127/t386/t2279-MRSA-IV, CC59-t216-MRSA-V, CC8-t008-MRSA-IVa, and CC5-t002/t242-MRSA-IV/V, and putative animal-associated clones, including CC130-t12399-MRSA-XI, ST8-t064-MRSA-IVa, ST398-t011-MRSA-IVa, and CC6-t701-MRSA-V, were also identified. In total, 53.3% and 47.8% of isolates harbored genes for resistance to two or more classes of antimicrobial agents and two or more mobile genetic element-encoded virulence-associated factors, respectively. Effective ongoing surveillance of sporadic nosocomial MRSA is warranted for early detection of emerging clones and reservoirs of virulence, resistance, and SCCmec genes. PMID:24395241
Gundogdu, Ozan; da Silva, Daiani T; Mohammad, Banaz; Elmi, Abdi; Wren, Brendan W; van Vliet, Arnoud H M; Dorrell, Nick
2016-01-01
Campylobacter jejuni is the leading cause of bacterial foodborne diarrhoeal disease worldwide. Despite the microaerophilic nature of the bacterium, C. jejuni can survive the atmospheric oxygen conditions in the environment. Bacteria that can survive either within a host or in the environment like C. jejuni require variable responses to survive the stresses associated with exposure to different levels of reactive oxygen species. The MarR-type transcriptional regulators RrpA and RrpB have recently been shown to play a role in controlling both the C. jejuni oxidative and aerobic stress responses. Analysis of 3,746 C. jejuni and 486 C. coli genome sequences showed that whilst rrpA is present in over 99% of C. jejuni strains, the presence of rrpB is restricted and appears to correlate with specific MLST clonal complexes (predominantly ST-21 and ST-61). C. coli strains in contrast lack both rrpA and rrpB . In C. jejuni rrpB + strains, the rrpB gene is located within a variable genomic region containing the IF subtype of the type I Restriction-Modification ( hsd ) system, whilst this variable genomic region in C. jejuni rrpB - strains contains the IAB subtype hsd system and not the rrpB gene. C. jejuni rrpB - strains exhibit greater resistance to peroxide and aerobic stress than C. jejuni rrpB + strains. Inactivation of rrpA resulted in increased sensitivity to peroxide stress in rrpB + strains, but not in rrpB - strains. Mutation of rrpA resulted in reduced killing of Galleria mellonella larvae and enhanced biofilm formation independent of rrpB status. The oxidative and aerobic stress responses of rrpB - and rrpB + strains suggest adaptation of C. jejuni within different hosts and niches that can be linked to specific MLST clonal complexes.
Markovska, Rumyana; Stoeva, Temenuga; Boyanova, Lyudmila; Stankova, Petya; Pencheva, Daniela; Keuleyan, Emma; Murjeva, Marianna; Sredkova, Marya; Ivanova, Dobrinka; Lazarova, Grozdanka; Nedelcheva, Gergana; Kaneva, Radka; Mitov, Ivan
2017-12-01
A total of 82 extended spectrum beta-lactamase (ESBL) producing Klebsiella pneumoniae and 4 Klebsiella oxytoca isolates were collected in 2014 from four geographical areas in Bulgaria and their multilocus sequence type (MLST) and transferability of the ESBL encoding genes were investigated. The predominant type was CTX-M-15 (87%), followed by CTX-M-3 (9%), SHV-12 or SHV-2 (2%) and CTX-M-14 (1%). The CTX-M-15 producers belonged to ST15 (34.1%) and to a lesser extent to CC17 (ST16, ST17, ST336). The CTX-M-15 transconjugants showed a presence of R, A/C 2 and F replicons. The CTX-M-3 producers were assigned to ST29, ST70, ST432, ST542 and ST15 types and the transconjugants carried M 2 replicons. To the best of our knowledge, this is the first report that fully describes the MLST types among Bulgarian ESBL producing K. pneumoniae and the first report of the detection of IncR plasmid replicon type in our country. Copyright © 2017 Elsevier Inc. All rights reserved.
Sekirov, Inna; Croxen, Matthew A.; Ng, Corrinne; Azana, Robert; Chang, Yin; Mataseje, Laura; Boyd, David; Mangat, Chand; Mack, Benjamin; Tadros, Manal; Brodkin, Elizabeth; Kibsey, Pamela; Stefanovic, Aleksandra; Champagne, Sylvie; Mulvey, Michael R.
2015-01-01
Carbapenemase-producing organisms (CPOs) are a serious emerging problem for health care facilities worldwide. Owing to their resistance to most antimicrobial therapies, CPOs are difficult to treat and pose a challenge for infection prevention and control. Since 2010, lab-based surveillance for CPOs and PCR-based testing were implemented in British Columbia (BC), Canada. A review of CPOs in BC from 2008 to March 2014 was done to characterize the resistance mechanisms and possible clonal strain transmission and to compare pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and plasmid restriction fragment length polymorphism (RFLP) as molecular typing tools. During this study period, a total of 177 CPO cases were identified. Patient demographics and travel history were reviewed, and a descriptive analysis was carried out. PFGE profiles, MLST, and plasmid RFLP analysis for a subset of Escherichia coli, Klebsiella pneumoniae, and Enterobacter species isolates were obtained and analyzed. Our findings demonstrate that CPOs have been increasing in number in BC over time, from 1 isolate/year retrospectively identified in 2008 and 2009 to 82 isolates in 2013 and 30 isolates in the first quarter of 2014. Overall, K. pneumoniae isolates lack clonality, although some seemingly related clusters have been found. Plasmid analysis showed evidence of the spread of plasmids carrying carbapenemase-encoding genes between the examined isolates. Analysis of Enterobacter cloacae isolates revealed a more clonal nature of these CPOs in BC. The presence of related clusters provides evidence of interpatient organism transmission both within and between institutions. Although in our study, NDM-harboring E. cloacae isolates appeared to spread clonally, the spread of carbapenem resistance in K. pneumoniae seems to be plasmid mediated. PMID:26607987
Fei, Peng; Man, Chaoxin; Lou, Binbin; Forsythe, Stephen J.; Chai, Yunlei; Li, Ran; Niu, Jieting
2015-01-01
Cronobacter spp. (formerly defined as Enterobacter sakazakii) are opportunistic bacterial pathogens of both infants and adults. In this study, we analyzed 70 Cronobacter isolates from powdered infant formula (PIF) and an infant formula production facility in China to determine possible contamination routes. The strains were profiled by multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), PCR-based O-antigen serotyping, and ompA and rpoB sequence analyses. The isolates were primarily Cronobacter sakazakii (66/70) or Cronobacter malonaticus (4/70). The strains were divided into 38 pulsotypes (PTs) using PFGE and 19 sequence types (STs) by MLST. In contrast, rpoB and ompA sequence analyses divided the strains into 10 overlapping clusters each. PCR serotyping of the 66 C. sakazakii and 4 C. malonaticus strains resulted in the identification of four C. sakazakii serotypes (O1, O2, O4, and O7) and a single C. malonaticus serotype, O2. The dominant C. sakazakii sequence types from PIF and an infant formula production factory in China were C. sakazakii clonal complex 4 (CC4) (n = 19), ST1 (n = 14), and ST64 (n = 11). C. sakazakii CC4 is a clonal lineage strongly associated with neonatal meningitis. In the process of manufacturing PIF, the spray-drying, fluidized-bed-drying, and packing areas were the main areas with Cronobacter contamination. C. sakazakii strains with the same pulsotypes (PT3 and PT2) and sequence types (ST1 and ST64) were isolated both from processing equipment and from the PIF finished product. PMID:26048942
Fei, Peng; Man, Chaoxin; Lou, Binbin; Forsythe, Stephen J; Chai, Yunlei; Li, Ran; Niu, Jieting; Jiang, Yujun
2015-08-15
Cronobacter spp. (formerly defined as Enterobacter sakazakii) are opportunistic bacterial pathogens of both infants and adults. In this study, we analyzed 70 Cronobacter isolates from powdered infant formula (PIF) and an infant formula production facility in China to determine possible contamination routes. The strains were profiled by multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), PCR-based O-antigen serotyping, and ompA and rpoB sequence analyses. The isolates were primarily Cronobacter sakazakii (66/70) or Cronobacter malonaticus (4/70). The strains were divided into 38 pulsotypes (PTs) using PFGE and 19 sequence types (STs) by MLST. In contrast, rpoB and ompA sequence analyses divided the strains into 10 overlapping clusters each. PCR serotyping of the 66 C. sakazakii and 4 C. malonaticus strains resulted in the identification of four C. sakazakii serotypes (O1, O2, O4, and O7) and a single C. malonaticus serotype, O2. The dominant C. sakazakii sequence types from PIF and an infant formula production factory in China were C. sakazakii clonal complex 4 (CC4) (n = 19), ST1 (n = 14), and ST64 (n = 11). C. sakazakii CC4 is a clonal lineage strongly associated with neonatal meningitis. In the process of manufacturing PIF, the spray-drying, fluidized-bed-drying, and packing areas were the main areas with Cronobacter contamination. C. sakazakii strains with the same pulsotypes (PT3 and PT2) and sequence types (ST1 and ST64) were isolated both from processing equipment and from the PIF finished product. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Novel type of VanB2 teicoplanin-resistant hospital-associated Enterococcus faecium.
Santona, Antonella; Paglietti, Bianca; Al-Qahtani, Ahmed A; Bohol, Marie Fe F; Senok, Abiola; Deligios, Massimo; Rubino, Salvatore; Al-Ahdal, Mohammed N
2014-08-01
Seven high-risk clones of vancomycin-resistant Enterococcus faecium (VREF) belonging to clonal complex 17 were identified using multilocus sequence typing (MLST) among clinical isolates from Saudi Arabia. Among these isolates, a new hospital-associated sequence type (ST795), VanB(2)-type teicoplanin-resistant strain was detected. Its unusual phenotype resulted from a new combination of mutations in the ddl, vanS and vanW genes, which confirmed the trend of evolution in VanB-type resistance. Furthermore, characteristics of adaptation and persistence in the hospital environment of ST795 were emphasised by the presence of genes and clusters recognised to be specific for hospital-associated VREF. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Dan, Tong; Liu, Wenjun; Sun, Zhihong; Lv, Qiang; Xu, Haiyan; Song, Yuqin; Zhang, Heping
2014-06-09
Economically, Leuconostoc lactis is one of the most important species in the genus Leuconostoc. It plays an important role in the food industry including the production of dextrans and bacteriocins. Currently, traditional molecular typing approaches for characterisation of this species at the isolate level are either unavailable or are not sufficiently reliable for practical use. Multilocus sequence typing (MLST) is a robust and reliable method for characterising bacterial and fungal species at the molecular level. In this study, a novel MLST protocol was developed for 50 L. lactis isolates from Mongolia and China. Sequences from eight targeted genes (groEL, carB, recA, pheS, murC, pyrG, rpoB and uvrC) were obtained. Sequence analysis indicated 20 different sequence types (STs), with 13 of them being represented by a single isolate. Phylogenetic analysis based on the sequences of eight MLST loci indicated that the isolates belonged to two major groups, A (34 isolates) and B (16 isolates). Linkage disequilibrium analyses indicated that recombination occurred at a low frequency in L. lactis, indicating a clonal population structure. Split-decomposition analysis indicated that intraspecies recombination played a role in generating genotypic diversity amongst isolates. Our results indicated that MLST is a valuable tool for typing L. lactis isolates that can be used for further monitoring of evolutionary changes and population genetics.
2013-01-01
Background Enterococcus faecium has recently emerged as a multidrug-resistant nosocomial pathogen involved in outbreaks worldwide. A high rate of resistance to different antibiotics has been associated with virulent clonal complex 17 isolates carrying the esp and hyl genes and the purK1 allele. Results Twelve clinical vancomycin-resistant Enterococcus faecium (VREF) isolates were obtained from pediatric patients at the Hospital Infantil de México Federico Gómez (HIMFG). Among these VREF isolates, 58.3% (7/12) were recovered from urine, while 41.7% (5/12) were recovered from the bloodstream. The VREF isolates showed a 100% rate of resistance to ampicillin, amoxicillin-clavulanate, ciprofloxacin, clindamycin, chloramphenicol, streptomycin, gentamicin, rifampicin, erythromycin and teicoplanin. In addition, 16.7% (2/12) of the isolates were resistant to linezolid, and 66.7% (8/12) were resistant to tetracycline and doxycycline. PCR analysis revealed the presence of the vanA gene in all 12 VREF isolates, esp in 83.3% (10/12) of the isolates and hyl in 50% (6/12) of the isolates. Phylogenetic analysis via molecular typing was performed using pulsed-field gel electrophoresis (PFGE) and demonstrated 44% similarity among the VREF isolates. MLST analysis identified four different sequence types (ST412, ST757, ST203 and ST612). Conclusion This study provides the first report of multidrug-resistant VREF isolates belonging to clonal complex 17 from a tertiary care center in Mexico City. Multidrug resistance and genetic determinants of virulence confer advantages among VREF in the colonization of their host. Therefore, the prevention and control of the spread of nosocomial infections caused by VREF is crucial for identifying new emergent subclones that could be challenging to treat in subsequent years. PMID:24330424
Staphylococcus aureus Complex in the Straw-Colored Fruit Bat (Eidolon helvum) in Nigeria.
Olatimehin, Ayodele; Shittu, Adebayo O; Onwugamba, Francis C; Mellmann, Alexander; Becker, Karsten; Schaumburg, Frieder
2018-01-01
Bats are economically important animals and serve as food sources in some African regions. They can be colonized with the Staphylococcus aureus complex, which includes Staphylococcus schweitzeri and Staphylococcus argenteus . Fecal carriage of S. aureus complex in the straw-colored fruit bat ( Eidolon helvum ) has been described. However, data on their transmission and adaptation in animals and humans are limited. The aim of this study was to investigate the population structure of the S. aureus complex in E. helvum and to assess the geographical spread of S. aureus complex among other animals and humans. Fecal samples were collected from E. helvum in Obafemi Awolowo University, Ile-Ife, Nigeria. The isolates were characterized by antimicrobial susceptibility testing, spa typing and multilocus sequence typing (MLST). Isolates were screened for the presence of lukS / lukF -PV and the immune evasion cluster ( scn, sak, chp ) which is frequently found in isolates adapted to the human host. A Neighbor-Joining tree was constructed using the concatenated sequences of the seven MLST genes. A total of 250 fecal samples were collected and 53 isolates were included in the final analysis. They were identified as S. aureus ( n = 28), S. schweitzeri ( n = 11) and S. argenteus ( n = 14). Only one S. aureus was resistant to penicillin and another isolate was intermediately susceptible to tetracycline. The scn, sak , and chp gene were not detected. Species-specific MLST clonal complexes (CC) were detected for S. aureus (CC1725), S. argenteus (CC3960, CC3961), and S. schweitzeri (CC2463). STs of S. schweitzeri from this study were similar to STs from bats in Nigeria (ST2464) and Gabon (ST1700) or from monkey in Côte d'Ivoire (ST2058, ST2072). This suggests host adaptation of certain clones to wildlife mammals with a wide geographical spread in Africa. In conclusion, there is evidence of fecal carriage of members of S. aureus complex in E. helvum . S. schweitzeri from bats in Nigeria are closely related to those from bats and monkeys in West and Central Africa suggesting a cross-species transmission and wide geographical distribution. The low antimicrobial resistance rates and the absence of the immune evasion cluster suggests a limited exposure of these isolates to humans.
Licea-Navarro, Alexei Fedorovish; Revilla-Castellanos, Valeria Jeanette; Wong-Chang, Irma; González-Sánchez, Ricardo
2017-01-01
Vibrio parahaemolyticus is an important human pathogen that has been isolated worldwide from clinical cases, most of which have been associated with seafood consumption. Environmental and clinical toxigenic strains of V. parahaemolyticus that were isolated in Mexico from 1998 to 2012, including those from the only outbreak that has been reported in this country, were characterized genetically to assess the presence of the O3:K6 pandemic clone, and their genetic relationship to strains that are related to the pandemic clonal complex (CC3). Pathogenic tdh+ and tdh+/trh+ strains were analyzed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Also, the entire genome of a Mexican O3:K6 strain was sequenced. Most of the strains were tdh/ORF8-positive and corresponded to the O3:K6 serotype. By PFGE and MLST, there was very close genetic relationship between ORF8/O3:K6 strains, and very high genetic diversities from non-pandemic strains. The genetic relationship is very close among O3:K6 strains that were isolated in Mexico and sequences that were available for strains in the CC3, based on the PubMLST database. The whole-genome sequence of CICESE-170 strain had high similarity with that of the reference RIMD 2210633 strain, and harbored 7 pathogenicity islands, including the 4 that denote O3:K6 pandemic strains. These results indicate that pandemic strains that have been isolated in Mexico show very close genetic relationship among them and with those isolated worldwide. PMID:28099500
Molecular characterization of endocarditis-associated Staphylococcus aureus.
Nethercott, Cara; Mabbett, Amanda N; Totsika, Makrina; Peters, Paul; Ortiz, Juan C; Nimmo, Graeme R; Coombs, Geoffrey W; Walker, Mark J; Schembri, Mark A
2013-07-01
Infective endocarditis (IE) is a life-threatening infection of the heart endothelium and valves. Staphylococcus aureus is a predominant cause of severe IE and is frequently associated with infections in health care settings and device-related infections. Multilocus sequence typing (MLST), spa typing, and virulence gene microarrays are frequently used to classify S. aureus clinical isolates. This study examined the utility of these typing tools to investigate S. aureus epidemiology associated with IE. Ninety-seven S. aureus isolates were collected from patients diagnosed with (i) IE, (ii) bloodstream infection related to medical devices, (iii) bloodstream infection not related to medical devices, and (iv) skin or soft-tissue infections. The MLST clonal complex (CC) for each isolate was determined and compared to the CCs of members of the S. aureus population by eBURST analysis. The spa type of all isolates was also determined. A null model was used to determine correlations of IE with CC and spa type. DNA microarray analysis was performed, and a permutational analysis of multivariate variance (PERMANOVA) and principal coordinates analysis were conducted to identify genotypic differences between IE and non-IE strains. CC12, CC20, and spa type t160 were significantly associated with IE S. aureus. A subset of virulence-associated genes and alleles, including genes encoding staphylococcal superantigen-like proteins, fibrinogen-binding protein, and a leukocidin subunit, also significantly correlated with IE isolates. MLST, spa typing, and microarray analysis are promising tools for monitoring S. aureus epidemiology associated with IE. Further research to determine a role for the S. aureus IE-associated virulence genes identified in this study is warranted.
Molecular Characterization of Endocarditis-Associated Staphylococcus aureus
Nethercott, Cara; Mabbett, Amanda N.; Totsika, Makrina; Peters, Paul; Ortiz, Juan C.; Nimmo, Graeme R.; Coombs, Geoffrey W.
2013-01-01
Infective endocarditis (IE) is a life-threatening infection of the heart endothelium and valves. Staphylococcus aureus is a predominant cause of severe IE and is frequently associated with infections in health care settings and device-related infections. Multilocus sequence typing (MLST), spa typing, and virulence gene microarrays are frequently used to classify S. aureus clinical isolates. This study examined the utility of these typing tools to investigate S. aureus epidemiology associated with IE. Ninety-seven S. aureus isolates were collected from patients diagnosed with (i) IE, (ii) bloodstream infection related to medical devices, (iii) bloodstream infection not related to medical devices, and (iv) skin or soft-tissue infections. The MLST clonal complex (CC) for each isolate was determined and compared to the CCs of members of the S. aureus population by eBURST analysis. The spa type of all isolates was also determined. A null model was used to determine correlations of IE with CC and spa type. DNA microarray analysis was performed, and a permutational analysis of multivariate variance (PERMANOVA) and principal coordinates analysis were conducted to identify genotypic differences between IE and non-IE strains. CC12, CC20, and spa type t160 were significantly associated with IE S. aureus. A subset of virulence-associated genes and alleles, including genes encoding staphylococcal superantigen-like proteins, fibrinogen-binding protein, and a leukocidin subunit, also significantly correlated with IE isolates. MLST, spa typing, and microarray analysis are promising tools for monitoring S. aureus epidemiology associated with IE. Further research to determine a role for the S. aureus IE-associated virulence genes identified in this study is warranted. PMID:23616460
Messenger, Louisa A; Llewellyn, Martin S; Bhattacharyya, Tapan; Franzén, Oscar; Lewis, Michael D; Ramírez, Juan David; Carrasco, Hernan J; Andersson, Björn; Miles, Michael A
2012-01-01
Mitochondrial DNA is a valuable taxonomic marker due to its relatively fast rate of evolution. In Trypanosoma cruzi, the causative agent of Chagas disease, the mitochondrial genome has a unique structural organization consisting of 20-50 maxicircles (∼20 kb) and thousands of minicircles (0.5-10 kb). T. cruzi is an early diverging protist displaying remarkable genetic heterogeneity and is recognized as a complex of six discrete typing units (DTUs). The majority of infected humans are asymptomatic for life while 30-35% develop potentially fatal cardiac and/or digestive syndromes. However, the relationship between specific clinical outcomes and T. cruzi genotype remains elusive. The availability of whole genome sequences has driven advances in high resolution genotyping techniques and re-invigorated interest in exploring the diversity present within the various DTUs. To describe intra-DTU diversity, we developed a highly resolutive maxicircle multilocus sequence typing (mtMLST) scheme based on ten gene fragments. A panel of 32 TcI isolates was genotyped using the mtMLST scheme, GPI, mini-exon and 25 microsatellite loci. Comparison of nuclear and mitochondrial data revealed clearly incongruent phylogenetic histories among different geographical populations as well as major DTUs. In parallel, we exploited read depth data, generated by Illumina sequencing of the maxicircle genome from the TcI reference strain Sylvio X10/1, to provide the first evidence of mitochondrial heteroplasmy (heterogeneous mitochondrial genomes in an individual cell) in T. cruzi. mtMLST provides a powerful approach to genotyping at the sub-DTU level. This strategy will facilitate attempts to resolve phenotypic variation in T. cruzi and to address epidemiologically important hypotheses in conjunction with intensive spatio-temporal sampling. The observations of both general and specific incidences of nuclear-mitochondrial phylogenetic incongruence indicate that genetic recombination is geographically widespread and continues to influence the natural population structure of TcI, a conclusion which challenges the traditional paradigm of clonality in T. cruzi.
Lee, Hao-Yuan; Huang, Chih-Wei; Chen, Chyi-Liang; Wang, Yi-Hsin; Chang, Chee-Jen; Chiu, Cheng-Hsun
2015-12-01
Acinetobacter baumannii is one of the most important nosocomial pathogens worldwide. This study aimed to use multilocus sequence typing (MLST) for the epidemiological surveillance of A. baumannii isolates in Taiwan and analyze the clinical presentations and patients' outcome. MLST according to both Bartual's PubMLST and Pasteur's MLST schemes was applied to characterize bloodstream imipenem-resistant A. baumannii (IRAB) infection in intensive care units in a medical center. A total of 39 clinical IRAB bloodstream isolates in 2010 were enrolled. We also collected 13 imipenem-susceptible A. baumannii (ISAB) bloodstream isolates and 30 clinical sputum isolates (24 IRAB and 6 ISAB) for comparison. Clinical presentations and outcome of the patients were analyzed. We found that infection by ST455(B)/ST2(P) and inappropriate initial therapy were statistically significant risk factors for mortality. More than one-third of the IRAB isolates belonged to ST455(B)/ST2(P). Most ST455(B)/ST2(P) (80%) carried ISAba1-blaOXA-23, including 10 (66.7%) with Tn2006 (ISAba1-blaOXA-23-ISAba1) in an AbaR4-type resistance island. ST455(B)/ST2(P) appears to evolve from ST208(B)/ST2(P) of clonal complex (CC) 92(B)/CC2(P). In this hospital-based study, A. baumannii ST455 accounted for 38.5% of IRAB bacteremia, with a high mortality of 86.7%. Approximately 85% of ST455(B)/ST2(P)bacteremia had a primary source of ventilation-associated pneumonia. We report the emergence in Taiwan of IRAB ST455(B)/ST2(P), which is the current predominant clone of IRAB in our hospital and has been causing bacteremia with high mortality in critical patients. Copyright © 2015. Published by Elsevier B.V.
2014-01-01
Background Economically, Leuconostoc lactis is one of the most important species in the genus Leuconostoc. It plays an important role in the food industry including the production of dextrans and bacteriocins. Currently, traditional molecular typing approaches for characterisation of this species at the isolate level are either unavailable or are not sufficiently reliable for practical use. Multilocus sequence typing (MLST) is a robust and reliable method for characterising bacterial and fungal species at the molecular level. In this study, a novel MLST protocol was developed for 50 L. lactis isolates from Mongolia and China. Results Sequences from eight targeted genes (groEL, carB, recA, pheS, murC, pyrG, rpoB and uvrC) were obtained. Sequence analysis indicated 20 different sequence types (STs), with 13 of them being represented by a single isolate. Phylogenetic analysis based on the sequences of eight MLST loci indicated that the isolates belonged to two major groups, A (34 isolates) and B (16 isolates). Linkage disequilibrium analyses indicated that recombination occurred at a low frequency in L. lactis, indicating a clonal population structure. Split-decomposition analysis indicated that intraspecies recombination played a role in generating genotypic diversity amongst isolates. Conclusions Our results indicated that MLST is a valuable tool for typing L. lactis isolates that can be used for further monitoring of evolutionary changes and population genetics. PMID:24912963
Halbedel, Sven; Prager, Rita; Fuchs, Stephan; Trost, Eva; Werner, Guido; Flieger, Antje
2018-06-01
Listeria monocytogenes causes foodborne outbreaks with high mortality. For improvement of outbreak cluster detection, the German consiliary laboratory for listeriosis implemented whole-genome sequencing (WGS) in 2015. A total of 424 human L. monocytogenes isolates collected in 2007 to 2017 were subjected to WGS and core-genome multilocus sequence typing (cgMLST). cgMLST grouped the isolates into 38 complexes, reflecting 4 known and 34 unknown disease clusters. Most of these complexes were confirmed by single nucleotide polymorphism (SNP) calling, but some were further differentiated. Interestingly, several cgMLST cluster types were further subtyped by pulsed-field gel electrophoresis, partly due to phage insertions in the accessory genome. Our results highlight the usefulness of cgMLST for routine cluster detection but also show that cgMLST complexes require validation by methods providing higher typing resolution. Twelve cgMLST clusters included recent cases, suggesting activity of the source. Therefore, the cgMLST nomenclature data presented here may support future public health actions. Copyright © 2018 American Society for Microbiology.
Xu, Haiyan; Sun, Zhihong; Liu, Wenjun; Yu, Jie; Song, Yuqin; Lv, Qiang; Zhang, Jiachao; Shao, Yuyu; Menghe, Bilige; Zhang, Heping
2014-05-01
To determine the genetic diversity and phylogenetic relationships among Lactococcus lactis isolates, 197 strains isolated from naturally homemade yogurt in 9 ethnic minority areas of 6 provinces of China were subjected to multilocus sequence typing (MLST). The MLST analysis was performed using internal fragment sequences of 12 housekeeping genes (carB, clpX, dnaA, groEL, murC, murE, pepN, pepX, pyrG, recA, rpoB, and pheS). Six (dnaA) to 8 (murC) different alleles were detected for these genes, which ranged from 33.62 (clpX) to 41.95% (recA) GC (guanine-cytosine) content. The nucleotide diversity (π) ranged from 0.00362 (murE) to 0.08439 (carB). Despite this limited allelic diversity, the allele combinations of each strain revealed 72 different sequence types, which denoted significant genotypic diversity. The dN/dS ratios (where dS is the number of synonymous substitutions per synonymous site, and dN is the number of nonsynonymous substitutions per nonsynonymous site) were lower than 1, suggesting potential negative selection for these genes. The standardized index of association of the alleles IA(S)=0.3038 supported the clonality of Lc. lactis, but the presence of network structure revealed by the split decomposition analysis of the concatenated sequence was strong evidence for intraspecies recombination. Therefore, this suggests that recombination contributed to the evolution of Lc. lactis. A minimum spanning tree analysis of the 197 isolates identified 14 clonal complexes and 23 singletons. Phylogenetic trees were constructed based on the sequence types, using the minimum evolution algorithm, and on the concatenated sequence (6,192 bp), using the unweighted pair-group method with arithmetic mean, and these trees indicated that the evolution of our Lc. lactis population was correlated with geographic origin. Taken together, our results demonstrated that MLST could provide a better understanding of Lc. lactis genome evolution, as well as useful information for future studies on global Lc. lactis structure and genetic evolution, which will lay the foundation for screening Lc. lactis as starter cultures in fermented dairy products. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The Evolution of Campylobacter jejuni and Campylobacter coli
Sheppard, Samuel K.; Maiden, Martin C.J.
2015-01-01
The global significance of Campylobacter jejuni and Campylobacter coli as gastrointestinal human pathogens has motivated numerous studies to characterize their population biology and evolution. These bacteria are a common component of the intestinal microbiota of numerous bird and mammal species and cause disease in humans, typically via consumption of contaminated meat products, especially poultry meat. Sequence-based molecular typing methods, such as multilocus sequence typing (MLST) and whole genome sequencing (WGS), have been instructive for understanding the epidemiology and evolution of these bacteria and how phenotypic variation relates to the high degree of genetic structuring in C. coli and C. jejuni populations. Here, we describe aspects of the relatively short history of coevolution between humans and pathogenic Campylobacter, by reviewing research investigating how mutation and lateral or horizontal gene transfer (LGT or HGT, respectively) interact to create the observed population structure. These genetic changes occur in a complex fitness landscape with divergent ecologies, including multiple host species, which can lead to rapid adaptation, for example, through frame-shift mutations that alter gene expression or the acquisition of novel genetic elements by HGT. Recombination is a particularly strong evolutionary force in Campylobacter, leading to the emergence of new lineages and even large-scale genome-wide interspecies introgression between C. jejuni and C. coli. The increasing availability of large genome datasets is enhancing understanding of Campylobacter evolution through the application of methods, such as genome-wide association studies, but MLST-derived clonal complex designations remain a useful method for describing population structure. PMID:26101080
Didi, Jennifer; Lemée, Ludovic; Gibert, Laure; Pons, Jean-Louis
2014-01-01
Staphylococcus lugdunensis is an emergent virulent coagulase-negative staphylococcus responsible for severe infections similar to those caused by Staphylococcus aureus. To understand its potentially pathogenic capacity and have further detailed knowledge of the molecular traits of this organism, 93 isolates from various geographic origins were analyzed by multi-virulence-locus sequence typing (MVLST), targeting seven known or putative virulence-associated loci (atlLR2, atlLR3, hlb, isdJ, SLUG_09050, SLUG_16930, and vwbl). The polymorphisms of the putative virulence-associated loci were moderate and comparable to those of the housekeeping genes analyzed by multilocus sequence typing (MLST). However, the MVLST scheme generated 43 virulence types (VTs) compared to 20 sequence types (STs) based on MLST, indicating that MVLST was significantly more discriminating (Simpson's index [D], 0.943). No hypervirulent lineage or cluster specific to carriage strains was defined. The results of multilocus sequence analysis of known and putative virulence-associated loci are consistent with a clonal population structure for S. lugdunensis, suggesting a coevolution of these genes with housekeeping genes. Indeed, the nonsynonymous to synonymous evolutionary substitutions (dN/dS) ratio, the Tajima's D test, and Single-likelihood ancestor counting (SLAC) analysis suggest that all virulence-associated loci were under negative selection, even atlLR2 (AtlL protein) and SLUG_16930 (FbpA homologue), for which the dN/dS ratios were higher. In addition, this analysis of virulence-associated loci allowed us to propose a trilocus sequence typing scheme based on the intragenic regions of atlLR3, isdJ, and SLUG_16930, which is more discriminant than MLST for studying short-term epidemiology and further characterizing the lineages of the rare but highly pathogenic S. lugdunensis. PMID:25078912
Aubin, Guillaume Ghislain; Lavigne, Jean-Philippe; Foucher, Yohan; Dellière, Sarah; Lepelletier, Didier; Gouin, François; Corvec, Stéphane
2017-10-01
The recognition of the pathogenicity of Cutibacterium acnes in implant-associated infection is not always obvious. In this paper, we aimed to distinguish pathogenic and non-pathogenic C. acnes isolates. To reach this goal, we investigated the clonal complex (CC) of a large collection of C. acnes clinical isolates through Multi-Locus Sequence Typing (MLST), we established a Caenorhabditis elegans model to assess C. acnes virulence and we investigated the presence of virulence factors in our collection. Ours results showed that CC36 and CC53 C. acnes isolates were more frequently observed in prosthetic joint infections (PJI) than CC18 and CC28 C. acnes isolates (p = 0.021). The C. elegans model developed here showed two distinct virulence groups of C. acnes (p < 0.05). These groups were not correlated to CC or clinical origin. Whole genome sequencing allowed us to identify a putative gene linked to low virulent strains. In conclusion, MLST remains a good method to screen pathogenic C. acnes isolates according to their clinical context but mechanisms of C. acnes virulence need to be assess thought transcriptomic analysis to investigate regulatory process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Al Laham, Nahed; Mediavilla, José R; Chen, Liang; Abdelateef, Nahed; Elamreen, Farid Abu; Ginocchio, Christine C; Pierard, Denis; Becker, Karsten; Kreiswirth, Barry N
2015-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen in both community and healthcare-related settings worldwide. Current knowledge regarding the epidemiology of S. aureus and MRSA in Gaza is based on a single community-based carriage study. Here we describe a cross-sectional analysis of 215 clinical isolates collected from Al-Shifa Hospital in Gaza during 2008 and 2012. All isolates were characterized by spa typing, SCCmec typing, and detection of genes encoding Panton-Valentine leukocidin (PVL) and toxic shock syndrome toxin (TSST-1). Representative genotypes were also subjected to multilocus sequence typing (MLST). Antibiotic susceptibility testing was performed using VITEK2 and MicroScan. MRSA represented 56.3% of all S. aureus strains, and increased in frequency from 2008 (54.8%) to 2012 (58.4%). Aside from beta-lactams, resistance was observed to tetracycline, erythromycin, clindamycin, gentamicin, and fluoroquinolones. Molecular typing identified 35 spa types representing 17 MLST clonal complexes (CC), with spa 998 (Ridom t223, CC22) and spa 70 (Ridom t044, CC80) being the most prevalent. SCCmec types I, III, IV, V and VI were identified among MRSA isolates, while type II was not detected. PVL genes (lukF/S-PV) were detected in 40.0% of all isolates, while the TSST-1 gene (tst) was detected in 27.4% of all isolates, with surprisingly high frequency within CC22 (70.4%). Both PVL and TSST-1 genes were found in several isolates from 2012. Molecular typing of clinical isolates from Gaza hospitals revealed unusually high prevalence of TSST-1 genes among CC22 MRSA, which is noteworthy given a recent community study describing widespread carriage of a CC22 MRSA clone known as the 'Gaza strain'. While the latter did not address TSST-1, tst-positive spa 998 (Ridom t223) has been detected in several neighboring countries, and described as endemic in an Italian NICU, suggesting international spread of a 'Middle Eastern variant' of pandemic CC22 strain EMRSA-15.
Muñoz, Marina; Ríos-Chaparro, Dora Inés; Patarroyo, Manuel Alfonso; Ramírez, Juan David
2017-03-14
Multilocus sequence typing (MLST) is a highly discriminatory typing strategy; it is reproducible and scalable. There is a MLST scheme for Clostridium difficile (CD), a gram positive bacillus causing different pathologies of the gastrointestinal tract. This work was aimed at describing the frequency of sequence types (STs) and Clades (C) reported and evalute the intra-taxa diversity in the CD MLST database (CD-MLST-db) using an MLSA approach. Analysis of 1778 available isolates showed that clade 1 (C1) was the most frequent worldwide (57.7%), followed by C2 (29.1%). Regarding sequence types (STs), it was found that ST-1, belonging to C2, was the most frequent. The isolates analysed came from 17 countries, mostly from the United Kingdom (UK) (1541 STs, 87.0%). The diversity of the seven housekeeping genes in the MLST scheme was evaluated, and alleles from the profiles (STs), for identifying CD population structure. It was found that adk and atpA are conserved genes allowing a limited amount of clusters to be discriminated; however, different genes such as drx, glyA and particularly sodA showed high diversity indexes and grouped CD populations in many clusters, suggesting that these genes' contribution to CD typing should be revised. It was identified that CD STs reported to date have a mostly clonal population structure with foreseen events of recombination; however, one group of STs was not assigned to a clade being highly different containing at least nine well-supported clusters, suggesting a greater amount of clades for CD. This study shows the usefulness of CD-MLST-db as a tool for studying CD distribution and population structure, identifying the need for reviewing the usefulness of sodA as housekeeping gene within the MLST scheme and suggesting the existence of a greater amount of CD clades. The study also shows the plausible exchange of genetic material between STs, contributing towards intra-taxa genetic diversity.
Rafei, Rayane; Dabboussi, Fouad; Hamze, Monzer; Eveillard, Matthieu; Lemarié, Carole; Gaultier, Marie-Pierre; Mallat, Hassan; Moghnieh, Rima; Husni-Samaha, Rola; Joly-Guillou, Marie-Laure; Kempf, Marie
2014-01-01
This study analyzed 42 Acinetobacter baumannii strains collected between 2009-2012 from different hospitals in Beyrouth and North Lebanon to better understand the epidemiology and carbapenem resistance mechanisms in our collection and to compare the robustness of pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST), repetitive sequence-based PCR (rep-PCR) and blaOXA-51 sequence-based typing (SBT). Among 31 carbapenem resistant strains, we have detected three carbapenem resistance genes: 28 carried the blaOXA-23 gene, 1 the blaOXA-24 gene and 2 strains the blaOXA-58 gene. This is the first detection of blaOXA-23 and blaOXA-24 in Lebanon. PFGE identified 11 types and was the most discriminating technique followed by rep-PCR (9 types), blaOXA-51 SBT (8 types) and MLST (7 types). The PFGE type A'/ST2 was the dominant genotype in our collection present in Beyrouth and North Lebanon. The clustering agreement between all techniques was measured by adjust Wallace coefficient. An overall agreement has been demonstrated. High values of adjust Wallace coefficient were found with followed combinations: PFGE to predict MLST types = 100%, PFGE to predict blaOXA-51 SBT = 100%, blaOXA-51 SBT to predict MLST = 100%, MLST to predict blaOXA-51 SBT = 84.7%, rep-PCR to predict MLST = 81.5%, PFGE to predict rep-PCR = 69% and rep-PCR to predict blaOXA-51 SBT = 67.2%. PFGE and MLST are gold standard methods for outbreaks investigation and population structure studies respectively. Otherwise, these two techniques are technically, time and cost demanding. We recommend the use of blaOXA-51 SBT as first typing method to screen isolates and assign them to their corresponding clonal lineages. Repetitive sequence-based PCR is a rapid tool to access outbreaks but careful interpretation of results must be always performed.
Chen, Chih-Ming; Ke, Se-Chin; Li, Chia-Ru; Wu, Ying-Chen; Chen, Ter-Hsin; Lai, Chih-Ho; Wu, Xin-Xia; Wu, Lii-Tzu
2017-10-01
Multidrug-resistant Escherichia coli can contaminate food meat during processing and cause human infection. Phenotypic and genotypic characterization of the antimicrobial resistance were conducted for 45 multidrug-resistant E. coli isolates from 208 samples of beef carcasses. The mechanisms of resistance were evaluated using polymerase chain reaction and sequencing methods, and the clonal relationship among isolates was evaluated using multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Different variants of bla, tet, flo, dfrA, and aadA genes were detected in most of the strains resistant to β-lactam, tetracycline, chloramphenicol, sulfonamides, and aminoglycosides, respectively. Extended-spectrum β-lactamase (ESBL)-producing E. coli was found in 42.2% of the 45 E. coli isolates and the most commonly detected ESBL genotypes were CTX-M group 1 and 9. Class 1 integrons with nine different arrangements of gene cassettes were present in 28 of 45 E. coli isolates. Twenty-nine PFGE groups and 24 MLST types were identified in their clonal structure. This study revealed that E. coli isolates from beef contained high diversity of antimicrobial resistance genes, integrons, and genotypes. These results highlighted the role of beef meat as a potential source for multidrug-resistant E. coli strains and the need for controlling beef safety.
Phumthanakorn, Nathita; Fungwithaya, Punpichaya; Chanchaithong, Pattrarat; Prapasarakul, Nuvee
2018-06-01
This study aimed to detect and identify staphylococcal enterotoxin (SE) genes in methicillin-resistant Staphylococcus pseudintermedius (MRSP) strains from different sources, and to investigate the relationship between their sequence types (STs) and SE gene patterns. The profiles of 17 SE genes in 93 MRSP strains isolated from dogs (n=43), humans (n=18) and the environment (n=32) were detected by PCR. Multilocus sequence typing (MLST), SCCmec typing and pulsed-field gel electrophoresis (PFGE) were used to analyse the clonal relatedness between the molecular type and SE gene profiles.Results/Key findings. The human MRSP strains harboured the greatest number of SE genes (12/17; sea, sec, seg, sei, sek, sel, sem, sen, seo, sep, seq and tst-1) compared to those from dogs (5/17; sec, sel, sem, seq and tst-1) and environmental sources (3/17; sec, seq and tst-1). Using MLST and PFGE, different SE gene profiles were found within the same clonal type. We show that isolates of MRSP vary in their virulence gene profiles, depending on the source from which they have been isolated. This insight should encourage the development of appropriate monitoring and mitigation strategies to reduce the transmission of MRSP in veterinary hospitals and households.
Dale, Julia; Price, Erin P; Hornstra, Heidie; Busch, Joseph D; Mayo, Mark; Godoy, Daniel; Wuthiekanun, Vanaporn; Baker, Anthony; Foster, Jeffrey T; Wagner, David M; Tuanyok, Apichai; Warner, Jeffrey; Spratt, Brian G; Peacock, Sharon J; Currie, Bart J; Keim, Paul; Pearson, Talima
2011-12-01
Rapid assignment of bacterial pathogens into predefined populations is an important first step for epidemiological tracking. For clonal species, a single allele can theoretically define a population. For non-clonal species such as Burkholderia pseudomallei, however, shared allelic states between distantly related isolates make it more difficult to identify population defining characteristics. Two distinct B. pseudomallei populations have been previously identified using multilocus sequence typing (MLST). These populations correlate with the major foci of endemicity (Australia and Southeast Asia). Here, we use multiple Bayesian approaches to evaluate the compositional robustness of these populations, and provide assignment results for MLST sequence types (STs). Our goal was to provide a reference for assigning STs to an established population without the need for further computational analyses. We also provide allele frequency results for each population to enable estimation of population assignment even when novel STs are discovered. The ability for humans and potentially contaminated goods to move rapidly across the globe complicates the task of identifying the source of an infection or outbreak. Population genetic dynamics of B. pseudomallei are particularly complicated relative to other bacterial pathogens, but the work here provides the ability for broad scale population assignment. As there is currently no independent empirical measure of successful population assignment, we provide comprehensive analytical details of our comparisons to enable the reader to evaluate the robustness of population designations and assignments as they pertain to individual research questions. Finer scale subdivision and verification of current population compositions will likely be possible with genotyping data that more comprehensively samples the genome. The approach used here may be valuable for other non-clonal pathogens that lack simple group-defining genetic characteristics and provides a rapid reference for epidemiologists wishing to track the origin of infection without the need to compile population data and learn population assignment algorithms.
Emergence of Antimicrobial-Resistant Escherichia coli of Animal Origin Spreading in Humans.
Skurnik, David; Clermont, Olivier; Guillard, Thomas; Launay, Adrien; Danilchanka, Olga; Pons, Stéphanie; Diancourt, Laure; Lebreton, François; Kadlec, Kristina; Roux, Damien; Jiang, Deming; Dion, Sara; Aschard, Hugues; Denamur, Maurice; Cywes-Bentley, Colette; Schwarz, Stefan; Tenaillon, Olivier; Andremont, Antoine; Picard, Bertrand; Mekalanos, John; Brisse, Sylvain; Denamur, Erick
2016-04-01
In the context of the great concern about the impact of human activities on the environment, we studied 403 commensal Escherichia coli/Escherichia clade strains isolated from several animal and human populations that have variable contacts to one another. Multilocus sequence typing (MLST) showed a decrease of diversity 1) in strains isolated from animals that had an increasing contact with humans and 2) in all strains that had increased antimicrobial resistance. A specific B1 phylogroup clonal complex (CC87, Institut Pasteur schema nomenclature) of animal origin was identified and characterized as being responsible for the increased antimicrobial resistance prevalence observed in strains from the environments with a high human-mediated antimicrobial pressure. CC87 strains have a high capacity of acquiring and disseminating resistance genes with specific metabolic and genetic determinants as demonstrated by high-throughput sequencing and phenotyping. They are good mouse gut colonizers but are not virulent. Our data confirm the predominant role of human activities in the emergence of antimicrobial resistance in the environmental bacterial strains and unveil a particular E. coli clonal complex of animal origin capable of spreading antimicrobial resistance to other members of microbial communities. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bioinformatic analysis of meningococcal Msf and Opc to inform vaccine antigen design
Andreae, Clio A.; Sessions, Richard B.; Virji, Mumtaz
2018-01-01
Neisseria meningitidis is an antigenically and genetically variable Gram-negative bacterium and a causative agent of meningococcal meningitis and septicaemia. Meningococci encode many outer membrane proteins, including Opa, Opc, Msf, fHbp and NadA, identified as being involved in colonisation of the host and evasion of the immune response. Although vaccines are available for the prevention of some types of meningococcal disease, none currently offer universal protection. We have used sequences within the Neisseria PubMLST database to determine the variability of msf and opc in 6,500 isolates. In-silico analysis revealed that although opc is highly conserved, it is not present in all isolates, with most isolates in clonal complex ST-11 lacking a functional opc. In comparison, msf is found in all meningococcal isolates, and displays diversity in the N-terminal domain. We identified 20 distinct Msf sequence variants (Msf SV), associated with differences in number of residues within the putative Vn binding motifs. Moreover, we showed distinct correlations with certain Msf SVs and isolates associated with either hyperinvasive lineages or those clonal complexes associated with a carriage state. We have demonstrated differences in Vn binding between three Msf SVs and generated a cross reactive Msf polyclonal antibody. Our study has highlighted the importance of using large datasets to inform vaccine development and provide further information on the antigenic diversity exhibited by N. meningitidis. PMID:29547646
Bioinformatic analysis of meningococcal Msf and Opc to inform vaccine antigen design.
Andreae, Clio A; Sessions, Richard B; Virji, Mumtaz; Hill, Darryl J
2018-01-01
Neisseria meningitidis is an antigenically and genetically variable Gram-negative bacterium and a causative agent of meningococcal meningitis and septicaemia. Meningococci encode many outer membrane proteins, including Opa, Opc, Msf, fHbp and NadA, identified as being involved in colonisation of the host and evasion of the immune response. Although vaccines are available for the prevention of some types of meningococcal disease, none currently offer universal protection. We have used sequences within the Neisseria PubMLST database to determine the variability of msf and opc in 6,500 isolates. In-silico analysis revealed that although opc is highly conserved, it is not present in all isolates, with most isolates in clonal complex ST-11 lacking a functional opc. In comparison, msf is found in all meningococcal isolates, and displays diversity in the N-terminal domain. We identified 20 distinct Msf sequence variants (Msf SV), associated with differences in number of residues within the putative Vn binding motifs. Moreover, we showed distinct correlations with certain Msf SVs and isolates associated with either hyperinvasive lineages or those clonal complexes associated with a carriage state. We have demonstrated differences in Vn binding between three Msf SVs and generated a cross reactive Msf polyclonal antibody. Our study has highlighted the importance of using large datasets to inform vaccine development and provide further information on the antigenic diversity exhibited by N. meningitidis.
Kizerwetter-Świda, Magdalena; Chrobak-Chmiel, Dorota; Rzewuska, Magdalena; Binek, Marian
2017-09-01
Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is being reported with an increasing frequency in small animal veterinary practice. The molecular typing of MRSP isolates revealed that the dominating European multidrug-resistant lineage is the sequence type 71 (ST71), associated with staphylococcal chromosomal cassette SCCmec type II-III. However, the recent reports indicated the emergence of other clones. The study aimed to determine the genetic properties of MRSP isolates obtained from dogs in Poland over a ten-year period. A total of 42 clinical MRSP isolates were subjected to multilocus-sequence typing (MLST) and SCCmec typing. MLST typing of 42 MRSP isolates yielded six STs belonging to two major clonal complexes (CCs): CC71 and CC551, associated with SCCmec element II-III and V, respectively. CC71 comprising ST71 and its newly described single locus variant (SLV) ST680. The second dominating CC551was represented by ST551 and newly described SLV ST771. The other, ST258 and ST85 were detected in single MRSP isolates. This is the first report concerning MLST typing of MRSP isolates in Poland. The results confirmed the domination of ST71 among MRSP until 2015, and the emergence of ST551 in 2015. Furthermore, in 2016 ST551 was identified in the majority of the strains, indicating the changes in the population structure of MRSP in Poland. Polish clinical MRSP isolates showed a shift in the population structure during the period of 2007 and 2016. The dominating MRSP lineage until 2015 was multidrug-resistant ST71-SCCmecII-III. The other lineage ST551-SCCmecV emerged in Poland since 2015, and in 2016 was found in the majority of MRSP isolates. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Byoung-Jun; Kim, Ga-Na; Kim, Bo-Ram; Shim, Tae-Sun; Kook, Yoon-Hoh; Kim, Bum-Joon
2017-01-01
Recent multi locus sequence typing (MLST) and genome based studies indicate that lateral gene transfer (LGT) events in the rpoB gene are prevalent between Mycobacterium abscessus complex strains. To check the prevalence of the M. massiliense strains subject to rpoB LGT (Rec-mas), we applied rpoB typing (711 bp) to 106 Korean strains of M. massiliense infection that had already been identified by hsp65 sequence analysis (603 bp). The analysis indicated 6 smooth strains in M. massiliense Type I (10.0%, 6/60) genotypes but no strains in M. massiliense Type II genotypes (0%, 0/46), showing a discrepancy between the 2 typing methods. Further MLST analysis based on the partial sequencing of seven housekeeping genes, argH, cya, glpK, gnd, murC, pta and purH, as well as erm(41) PCR proved that these 6 Rec-mas strains consisted of two distinct genotypes belonging to M. massiliense and not M. abscessus. The complete rpoB sequencing analysis showed that these 6 Rec-mas strains have an identical hybrid rpoB gene, of which a 478 bp partial rpoB fragment may be laterally transferred from M. abscessus. Notably, five of the 6 Rec-mas strains showed complete identical sequences in a total of nine genes, including the seven MLST genes, hsp65, and rpoB, suggesting their clonal propagation in South Korea. In conclusion, we identified 6 M. massiliense smooth strains of 2 phylogenetically distinct genotypes with a specific hybrid rpoB gene laterally transferred from M. abscessus from Korean patients. Their clinical relevance and bacteriological traits remain to be elucidated.
Kim, Byoung-Jun; Kim, Ga-Na; Kim, Bo-Ram; Shim, Tae-Sun; Kook, Yoon-Hoh
2017-01-01
Recent multi locus sequence typing (MLST) and genome based studies indicate that lateral gene transfer (LGT) events in the rpoB gene are prevalent between Mycobacterium abscessus complex strains. To check the prevalence of the M. massiliense strains subject to rpoB LGT (Rec-mas), we applied rpoB typing (711 bp) to 106 Korean strains of M. massiliense infection that had already been identified by hsp65 sequence analysis (603 bp). The analysis indicated 6 smooth strains in M. massiliense Type I (10.0%, 6/60) genotypes but no strains in M. massiliense Type II genotypes (0%, 0/46), showing a discrepancy between the 2 typing methods. Further MLST analysis based on the partial sequencing of seven housekeeping genes, argH, cya, glpK, gnd, murC, pta and purH, as well as erm(41) PCR proved that these 6 Rec-mas strains consisted of two distinct genotypes belonging to M. massiliense and not M. abscessus. The complete rpoB sequencing analysis showed that these 6 Rec-mas strains have an identical hybrid rpoB gene, of which a 478 bp partial rpoB fragment may be laterally transferred from M. abscessus. Notably, five of the 6 Rec-mas strains showed complete identical sequences in a total of nine genes, including the seven MLST genes, hsp65, and rpoB, suggesting their clonal propagation in South Korea. In conclusion, we identified 6 M. massiliense smooth strains of 2 phylogenetically distinct genotypes with a specific hybrid rpoB gene laterally transferred from M. abscessus from Korean patients. Their clinical relevance and bacteriological traits remain to be elucidated. PMID:28604829
Identification of Escherichia coli and Shigella Species from Whole-Genome Sequences.
Chattaway, Marie A; Schaefer, Ulf; Tewolde, Rediat; Dallman, Timothy J; Jenkins, Claire
2017-02-01
Escherichia coli and Shigella species are closely related and genetically constitute the same species. Differentiating between these two pathogens and accurately identifying the four species of Shigella are therefore challenging. The organism-specific bioinformatics whole-genome sequencing (WGS) typing pipelines at Public Health England are dependent on the initial identification of the bacterial species by use of a kmer-based approach. Of the 1,982 Escherichia coli and Shigella sp. isolates analyzed in this study, 1,957 (98.4%) had concordant results by both traditional biochemistry and serology (TB&S) and the kmer identification (ID) derived from the WGS data. Of the 25 mismatches identified, 10 were enteroinvasive E. coli isolates that were misidentified as Shigella flexneri or S. boydii by the kmer ID, and 8 were S. flexneri isolates misidentified by TB&S as S. boydii due to nonfunctional S. flexneri O antigen biosynthesis genes. Analysis of the population structure based on multilocus sequence typing (MLST) data derived from the WGS data showed that the remaining discrepant results belonged to clonal complex 288 (CC288), comprising both S. boydii and S. dysenteriae strains. Mismatches between the TB&S and kmer ID results were explained by the close phylogenetic relationship between the two species and were resolved with reference to the MLST data. Shigella can be differentiated from E. coli and accurately identified to the species level by use of kmer comparisons and MLST. Analysis of the WGS data provided explanations for the discordant results between TB&S and WGS data, revealed the true phylogenetic relationships between different species of Shigella, and identified emerging pathoadapted lineages. © Crown copyright 2017.
MULTILOCUS SEQUENCE TYPING OF BRUCELLA ISOLATES FROM THAILAND.
Chawjiraphan, Wireeya; Sonthayanon, Piengchan; Chanket, Phanita; Benjathummarak, Surachet; Kerdsin, Anusak; Kalambhaheti, Thareerat
2016-11-01
Although brucellosis outbreaks in Thailand are rare, they cause abortions and infertility in animals, resulting in significant economic loss. Because Brucella spp display > 90% DNA homology, multilocus sequence typing (MLST) was employed to categorize local Brucella isolates into sequence types (STs) and to determine their genetic relatedness. Brucella samples were isolated from vaginal secretion of cows and goats, and from blood cultures of infected individuals. Brucella species were determined by multiplex PCR of eight loci, in addition to MLST based on partial DNA sequences of nine house-keeping genes. MLST analysis of 36 isolates revealed 78 distinct novel allele types and 34 novel STs, while two isolates possessed the known ST8. Sequence alignments identified polymorphic sites in each allele, ranging from 2-6%, while overall genetic diversity was 3.6%. MLST analysis of the 36 Brucella isolates classified them into three species, namely, B. melitensis, B. abortus and B. suis, in agreement with multiplex PCR results. Genetic relatedness among ST members of B. melitensis and B. abortus determined by eBURST program revealed ST2 as founder of B. abortus isolates and ST8 the founder of B. melitensis isolates. ST 36, 41 and 50 of Thai Brucella isolates were identified as single locus variants of clonal cluster (CC) 8, while the majority of STs were diverse. The genetic diversity and relatedness identified using MLST revealed hitherto unexpected diversity among Thai Brucella isolates. Genetic classification of isolates could reveal the route of brucellosis transmission among humans and farm animals and also reveal their relationship with other isolates in the region and other parts of the world.
Dan, Tong; Liu, Wenjun; Song, Yuqin; Xu, Haiyan; Menghe, Bilige; Zhang, Heping; Sun, Zhihong
2015-05-20
Lactobacillus fermentum is economically important in the production and preservation of fermented foods. A repeatable and discriminative typing method was devised to characterize L. fermentum at the molecular level. The multilocus sequence typing (MLST) scheme developed was based on analysis of the internal sequence of 11 housekeeping gene fragments (clpX, dnaA, dnaK, groEL, murC, murE, pepX, pyrG, recA, rpoB, and uvrC). MLST analysis of 203 isolates of L. fermentum from Mongolia and seven provinces/ autonomous regions in China identified 57 sequence types (ST), 27 of which were represented by only a single isolate, indicating high genetic diversity. Phylogenetic analyses based on the sequence of the 11 housekeeping gene fragments indicated that the L. fermentum isolates analyzed belonged to two major groups. A standardized index of association (I A (S)) indicated a weak clonal population structure in L. fermentum. Split decomposition analysis indicated that recombination played an important role in generating the genetic diversity observed in L. fermentum. The results from the minimum spanning tree strongly suggested that evolution of L. fermentum STs was not correlated with geography or food-type. The MLST scheme developed will be valuable for further studies on the evolution and population structure of L. fermentum isolates used in food products.
Yang, Jing-xian; Li, Tong; Ning, Yong-zhong; Shao, Dong-hua; Liu, Jing; Wang, Shu-qin; Liang, Guo-wei
2015-07-01
The incidence of vancomycin-resistant enterococcus (VRE) in China is increasing, the molecular epidemiology of VRE in China is only partly known. This study was conducted to assess the molecular characterization of resistance, virulence and clonality of 69 vancomycin-resistant Enterococcus faecium (VREfm) and seven vancomycin-resistant Enterococcus faecalis (VREfs) isolates obtained from a Chinese hospital between July 2011 and July 2013. The glycopeptide resistance genes (VanA and VanB) were screened by multiplex PCR. The presence of five putative virulence genes (esp, gelE, asa1, hyl and cylA) were evaluated by another multiplex PCR. Multilocus sequence typing (MLST) scheme was used to assess the clonality. All 76 VRE isolates exhibited VanA phenotype and harbored VanA gene. Esp was the only gene detected both in VREfm and VREfs strains, accounting for 89.9% and 42.9%, respectively. The hyl gene was merely positive in 27.5% of VREfm strains. MLST analysis demonstrated three STs (ST6, ST4 and ST470) in VREfs and twelve STs (ST78, ST571, ST17, ST564, ST389, ST18, ST547, ST341, ST414, ST343, ST262 and ST203) in VREfm, which were all designated as CC17 by eBURST algorithm. An outbreak of VREfm belonging to ST571 was found to happen within the neurology ward in this hospital. To our knowledge, this is the first report of ST6 (CC2) VREfs strains in China and the first outbreak report of VREfm strains belonging to ST571 around the world. Our data could offer important information for understanding the molecular features of VRE in China. Copyright © 2015 Elsevier B.V. All rights reserved.
Ruan, Zhi; Yang, Ting; Shi, Xinyan; Kong, Yingying; Xie, Xinyou
2017-01-01
Ureaplasma spp. have gained increasing recognition as pathogens in both adult and neonatal patients with multiple clinical presentations. However, the clonality of this organism in the male population and infertile couples in China is largely unknown. In this study, 96 (53 U. parvum and 43 U. urealyticum) of 103 Ureaplasma spp. strains recovered from genital specimens from male patients and 15 pairs of infertile couples were analyzed using multilocus sequence typing (MLST)/expanded multilocus sequence typing (eMLST) schemes. A total of 39 sequence types (STs) and 53 expanded sequence types (eSTs) were identified, with three predominant STs (ST1, ST9 and ST22) and eSTs (eST16, eST41 and eST82). Moreover, phylogenetic analysis revealed two distinct clusters that were highly congruent with the taxonomic differences between the two Ureaplasma species. We found significant differences in the distributions of both clusters and sub-groups between the male and female patients (P < 0.001). Moreover, 66.7% and 40.0% of the male and female partners of the infertile couples tested positive for Ureaplasma spp. The present study also attained excellent agreement of the identification of both Ureaplasma species between paired urine and semen specimens from the male partners (k > 0.80). However, this concordance was observed only for the detection of U. urealyticum within the infertile couples. In conclusion, the distributions of the clusters and sub-groups significantly differed between the male and female patients. U. urealyticum is more likely to transmit between infertile couples and be associated with clinical manifestations by the specific epidemic clonal lineages. PMID:28859153
Ruan, Zhi; Yang, Ting; Shi, Xinyan; Kong, Yingying; Xie, Xinyou; Zhang, Jun
2017-01-01
Ureaplasma spp. have gained increasing recognition as pathogens in both adult and neonatal patients with multiple clinical presentations. However, the clonality of this organism in the male population and infertile couples in China is largely unknown. In this study, 96 (53 U. parvum and 43 U. urealyticum) of 103 Ureaplasma spp. strains recovered from genital specimens from male patients and 15 pairs of infertile couples were analyzed using multilocus sequence typing (MLST)/expanded multilocus sequence typing (eMLST) schemes. A total of 39 sequence types (STs) and 53 expanded sequence types (eSTs) were identified, with three predominant STs (ST1, ST9 and ST22) and eSTs (eST16, eST41 and eST82). Moreover, phylogenetic analysis revealed two distinct clusters that were highly congruent with the taxonomic differences between the two Ureaplasma species. We found significant differences in the distributions of both clusters and sub-groups between the male and female patients (P < 0.001). Moreover, 66.7% and 40.0% of the male and female partners of the infertile couples tested positive for Ureaplasma spp. The present study also attained excellent agreement of the identification of both Ureaplasma species between paired urine and semen specimens from the male partners (k > 0.80). However, this concordance was observed only for the detection of U. urealyticum within the infertile couples. In conclusion, the distributions of the clusters and sub-groups significantly differed between the male and female patients. U. urealyticum is more likely to transmit between infertile couples and be associated with clinical manifestations by the specific epidemic clonal lineages.
Chaillou, Stéphane; Lucquin, Isabelle; Najjari, Afef; Zagorec, Monique; Champomier-Vergès, Marie-Christine
2013-01-01
Lactobacillus sakei plays a major role in meat fermentation and in the preservation of fresh meat. The large diversity of L. sakei strains represents a valuable and exploitable asset in the development of a variety of industrial applications; however, an efficient method to identify and classify these strains has yet to be developed. In this study, we used multilocus sequence typing (MLST) to analyze the polymorphism and allelic distribution of eight loci within an L. sakei population of 232 strains collected worldwide. Within this population, we identified 116 unique sequence types with an average pairwise nucleotide diversity per site (π) of 0.13%. Results from Structure, goeBurst, and ClonalFrame software analyses demonstrated that the L. sakei population analyzed here is derived from three ancestral lineages, each of which shows evidence of a unique evolutionary history influenced by independent selection scenarios. However, the signature of selective events in the contemporary population of isolates was somewhat masked by the pervasive phenomenon of homologous recombination. Our results demonstrate that lineage 1 is a completely panmictic subpopulation in which alleles have been continually redistributed through the process of intra-lineage recombination. In contrast, lineage 2 was characterized by a high degree of clonality. Lineage 3, the earliest-diverging branch in the genealogy, showed evidence of both clonality and recombination. These evolutionary histories strongly indicate that the three lineages may correspond to distinct ecotypes, likely linked or specialized to different environmental reservoirs. The MLST scheme developed in this study represents an easy and straightforward tool that can be used to further analyze the population dynamics of L. sakei strains in food products. PMID:24069179
Chaillou, Stéphane; Lucquin, Isabelle; Najjari, Afef; Zagorec, Monique; Champomier-Vergès, Marie-Christine
2013-01-01
Lactobacillus sakei plays a major role in meat fermentation and in the preservation of fresh meat. The large diversity of L. sakei strains represents a valuable and exploitable asset in the development of a variety of industrial applications; however, an efficient method to identify and classify these strains has yet to be developed. In this study, we used multilocus sequence typing (MLST) to analyze the polymorphism and allelic distribution of eight loci within an L. sakei population of 232 strains collected worldwide. Within this population, we identified 116 unique sequence types with an average pairwise nucleotide diversity per site (π) of 0.13%. Results from Structure, goeBurst, and ClonalFrame software analyses demonstrated that the L. sakei population analyzed here is derived from three ancestral lineages, each of which shows evidence of a unique evolutionary history influenced by independent selection scenarios. However, the signature of selective events in the contemporary population of isolates was somewhat masked by the pervasive phenomenon of homologous recombination. Our results demonstrate that lineage 1 is a completely panmictic subpopulation in which alleles have been continually redistributed through the process of intra-lineage recombination. In contrast, lineage 2 was characterized by a high degree of clonality. Lineage 3, the earliest-diverging branch in the genealogy, showed evidence of both clonality and recombination. These evolutionary histories strongly indicate that the three lineages may correspond to distinct ecotypes, likely linked or specialized to different environmental reservoirs. The MLST scheme developed in this study represents an easy and straightforward tool that can be used to further analyze the population dynamics of L. sakei strains in food products.
Fila, Libor; Dřevínek, Pavel
2017-11-01
Cystic fibrosis (CF) patients in the Czech Republic suffered in the late 1990s from an epidemic with ST32 strain of Burkholderia cepacia complex (Bcc). Cohort segregation of Bcc and of ST32 positive patients was introduced in 1999 and 2002, respectively. We performed a study to evaluate the molecular epidemiology of Bcc infection after implementation of these infection control measures. Patients attending the Prague CF adult Centre from 2000 to 2015 were included in the present study. Demographic data and microbial statuses were collected from patient records. All Bcc isolates were analyzed using multilocus sequence typing (MLST). The prevalences of epidemic strain ST32 and of other Bcc strains were calculated. Ninety out of 227 CF patients were infected with Bcc during the study period. The prevalence of ST32 cases significantly decreased from 46.5% in 2000-2001 to 10.4% in 2014-2015 (P < 0.001) due to occurrence of only one new case in 2003, as well as to the death of 72% of ST32-infected patients. Conversely, there was a significant increase in prevalence of other Bcc strains, which rose from 0 to 14.9% (P = 0.015) and of transient infections. A micro-epidemic of infection with ST630 strain was observed in 2014 in lung transplant patients hospitalized in intensive care unit. The prevalence of epidemic strain ST32 decreased, whereas that of non-clonal strains of Bcc increased. Routine use of MLST allowed early detection of new and potentially epidemic strains.
Cortimiglia, C; Luini, M; Bianchini, V; Marzagalli, L; Vezzoli, F; Avisani, D; Bertoletti, M; Ianzano, A; Franco, A; Battisti, A
2016-10-01
Staphylococcus aureus is the most important causative agent of subclinical mastitis in cattle resulting in reduced milk production and quality. Methicillin-resistant S. aureus (MRSA) strains has a clear zoonotic relevance, especially in the case of occupational exposure. The aim of the study was to evaluate the prevalence of S. aureus and MRSA in bulk tank milk (BTM) from dairy cattle herds in the Lombardy Region (Northern Italy) and to identify the main MRSA circulating genotypes. MRSA strains were characterized by susceptibility testing, multi-locus sequence typing (MLST), spa typing and SCCmec typing. A total 844 BTM samples were analysed and S. aureus and MRSA were detected in 47·2% and 3·8% of dairy herds, respectively. MLST showed that the majority (28/32) of isolates belonged to the typical livestock-associated lineages: ST398, ST97 and ST1. Interestingly, in this study we report for the first time the new ST3211, a single locus variant of ST(CC)22, with the newly described 462 aroE allele. Our study indicates high diffusion of S. aureus mastitis and low, but not negligible, prevalence of MRSA in the considered area, suggesting the need for planning specific control programmes for bovine mastitis caused by S. aureus, especially when MRSA is implicated.
Population structure and genetic diversity of the parasite Trichomonas vaginalis in Bristol, UK.
Hawksworth, Joseph; Levy, Max; Smale, Chloe; Cheung, Dean; Whittle, Alice; Longhurst, Denise; Muir, Peter; Gibson, Wendy
2015-08-01
The protozoan parasite Trichomonas vaginalis is the causative agent of trichomoniasis, an extremely common, but non-life-threatening, sexually-transmitted disease throughout the world. Recent population genetics studies of T. vaginalis have detected high genetic diversity and revealed a two-type population structure, associated with phenotypic differences in sensitivity to metronidazole, the drug commonly used for treatment, and presence of T. vaginalis virus. There is currently a lack of data on UK isolates; most isolates examined to date are from the US. Here we used a recently described system for multilocus sequence typing (MLST) of T. vaginalis to study diversity of clinical isolates from Bristol, UK. We used MLST to characterise 23 clinical isolates of T. vaginalis collected from female patients during 2013. Seven housekeeping genes were PCR-amplified for each isolate and sequenced. The concatenated sequences were then compared with data from other MLST-characterised isolates available from http://tvaginalis.mlst.net/ to analyse the population structure and construct phylogenetic trees. Among the 23 isolates from the Bristol population of T. vaginalis, we found 23 polymorphic nucleotide sites, 25 different alleles and 19 sequence types (genotypes). Most isolates had a unique genotype, in agreement with the high levels of heterogeneity observed elsewhere in the world. A two-type population structure was evident from population genetic analysis and phylogenetic reconstruction split the isolates into two major clades. Tests for recombination in the Bristol population of T. vaginalis gave conflicting results, suggesting overall a clonal pattern of reproduction. We conclude that the Bristol population of T. vaginalis parasites conforms to the two-type population structure found in most other regions of the world. We found the MLST scheme to be an efficient genotyping method. The online MLST database provides a useful repository and resource that will prove invaluable in future studies linking the genetics of T. vaginalis with the clinical manifestation of trichomoniasis. Copyright © 2015 Elsevier B.V. All rights reserved.
Yang, Yongchun; Liu, Yinglong; Ding, Yunlei; Yi, Li; Ma, Zhe; Fan, Hongjie; Lu, Chengping
2013-01-01
One hundred and two Streptococcus agalactiae (group B streptococcus [GBS]) isolates were collected from dairy cattle with subclinical mastitis in Eastern China during 2011. Clonal groups were established by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE), respectively. Capsular polysaccharides (CPS), pilus and alpha-like-protein (Alp) family genes were also characterized by molecular techniques. MLST analysis revealed that these isolates were limited to three clonal groups and were clustered in six different lineages, i.e. ST (sequence type) 103, ST568, ST67, ST301, ST313 and ST570, of which ST568 and ST570 were new genotypes. PFGE analysis revealed this isolates were clustered in 27 PFGE types, of which, types 7, 8, 14, 15, 16, 18, 23 and 25 were the eight major types, comprising close to 70% (71/102) of all the isolates. The most prevalent sequence types were ST103 (58% isolates) and ST568 (31% isolates), comprising capsular genotype Ia isolates without any of the detected Alp genes, suggesting the appearance of novel genomic backgrounds of prevalent strains of bovine S. agalactiae. All the strains possessed the pilus island 2b (PI-2b) gene and the prevalent capsular genotypes were types Ia (89% isolates) and II (11% isolates), the conserved pilus type providing suitable data for the development of vaccines against mastitis caused by S. agalactiae. PMID:23874442
Bürki, Sibylle; Spergser, Joachim; Bodmer, Michèle; Pilo, Paola
2016-11-30
Mycoplasma bovis is the most frequent etiologic agent of bovine mycoplasmosis. It causes various diseases in bovines and considerable economic loss due to the lack of effective treatment or preventive measures such as vaccination. In contrast to the US, where M. bovis-mastitis has been reported for a long time, M. bovis infections in Switzerland and Austria were predominantly associated with pneumonia and subclinical mastitis. However, since 2007 the situation has changed with the emergence of severe M. bovis-associated mastitis cases in both countries. In order to evaluate the molecular epidemiology of the bacteria isolated from these infections, recent and old Swiss, along with recent Austrian M. bovis isolates were analyzed by a typing method displaying intermediate resolution of evolutionary relationships among isolates called Multi-Locus Sequence Typing (MLST). The analysis of Swiss and Austrian M. bovis isolates revealed two major lineages. Isolates collected since 2007 in both countries cluster in the lineage I including ST5, ST33, ST34, 36, and ST38-40 (clonal complex 1), while all Swiss isolates recovered before 2007 cluster in the lineage II comprising ST17 and ST35 (clonal complex 5). Further investigations are necessary to understand if lineage I has a higher predilection or virulence toward mammary gland cells than the old lineage or if other factors are involved in the increased number of severe mastitis cases. Copyright © 2016 Elsevier B.V. All rights reserved.
Microbiological Features of KPC-Producing Enterobacter Isolates Identified in a U.S. Hospital System
Ahn, Chulsoo; Syed, Alveena; Hu, Fupin; O’Hara, Jessica A.; Rivera, Jesabel I.; Doi, Yohei
2014-01-01
Microbiological data regarding KPC-producing Enterobacter spp. are scarce. In this study, 11 unique KPC-producing Enterobacter isolates were identified among 44 ertapenem-non-susceptible Enterobacter isolates collected between 2009 and 2013 at a hospital system in Western Pennsylvania. All cases were healthcare-associated and occurred in medically complex patients. While pulsed-field gel electrophoresis (PFGE) showed diverse restriction patterns overall, multilocus sequence typing (MLST) identified Enterobacter cloacae isolates with sequence types (STs) 93 and 171 from two hospitals each. The levels of carbapenem minimum inhibitory concentrations were highly variable. All isolates remained susceptible to colistin, tigecycline, and the majority to amikacin and doxycycline. A blaKPC-carrying IncN plasmid conferring trimethoprim-sulfamethoxazole resistance was identified in three of the isolates. Spread of blaKPC in Enterobacter spp. appears to be due to a combination of plasmid-mediated and clonal processes. PMID:25053203
Jayaratne, Padman; Wilson, Clyde; Golding, George R.; Nicholson, Alison M.; Lewis, Delores B.; Hermelijn, Sandra M.
2017-01-01
Emergence of vancomycin-resistant Enterococci (VRE) that first appeared on the stage about three decades ago is now a major concern worldwide as it has globally reached every continent. Our aim was to simply undertake a multinational study to delineate the resistance and virulence genes of clinical isolates of VRE isolates from the Caribbean. We employed both conventional (standard microbiological methods including use of E-test strips, chromogenic agar) and molecular methods (polymerase chain reactions–PCR, pulsed-field gel electrophoresis–PFGE and multilocus sequence typing–MLST) to analyze and characterize 245 Enterococci species and 77 VRE isolates from twelve hospitals from eight countries in the Caribbean. The PCR confirmed and demonstrated the resistance and virulence genes (vanA and esp) among all confirmed VRE isolates. The PFGE delineated clonally related isolates from patients from the same country and other countries in the region. The main sequence types of the VRE isolates from the region included STs 412, 750, 203, 736 and 18, all from the common ancestor for clonal complex 17 (CC17). Despite this common ancestor and association of outbreaks of this lineage clones, there has been no reports of outbreaks of infection by VRE in several hospitals in the Caribbean. PMID:29020115
Analysis of nosocomial Staphylococcus haemolyticus by MLST and MALDI-TOF mass spectrometry.
Kornienko, Maria; Ilina, Elena; Lubasovskaya, Ludmila; Priputnevich, Tatiana; Falova, Oksana; Sukhikh, Gennadiy; Govorun, Vadim
2016-04-01
Coagulase-negative staphylococci (CoNS) are a major component of normal human skin and mucosae flora. However, some species of CoNS can lead to infections in immunocompromised patients and premature newborns. The choice of a rapid and reliable typing method is one of the major problems in the epidemiological monitoring of CoNS, especially Staphylococcushaemolyticus isolates. In this study, we have tested 71 isolates of S. haemolyticus obtained from newborns using the multilocus sequence typing (MLST) and the direct bacterial MALDI-TOF mass spectrometry profiling approaches. To date, there is no standard MLST scheme for investigating the diversity of S. haemolyticus strains. The novel variant of MLST scheme including the tpiA, pta, sh1200, rphE, tphK, mvaK1, and arc loki was tested. The discriminatory power was estimated by the Hunter-Gaston discriminatory index (D) as 0.95. The Composition Correlation Index Matrix (CCI matrix) was calculated to typing the isolates through the analysis of mass spectra; also, the values of the correlation index for different groups of isolates were evaluated. Closely related isolates obtained from the same hospital are characterized by increased values of correlation indices in comparison with these values of isolates collected from various hospitals. The data obtained by both methods allow to describe a clonal structure of S. haemolyticus population and to designate the presence of endemic clones of S. haemolyticus. Copyright © 2015 Elsevier B.V. All rights reserved.
Generation of diversity in Streptococcus mutans genes demonstrated by MLST.
Do, Thuy; Gilbert, Steven C; Clark, Douglas; Ali, Farida; Fatturi Parolo, Clarissa C; Maltz, Marisa; Russell, Roy R; Holbrook, Peter; Wade, William G; Beighton, David
2010-02-05
Streptococcus mutans, consisting of serotypes c, e, f and k, is an oral aciduric organism associated with the initiation and progression of dental caries. A total of 135 independent Streptococcus mutans strains from caries-free and caries-active subjects isolated from various geographical locations were examined in two versions of an MLST scheme consisting of either 6 housekeeping genes [accC (acetyl-CoA carboxylase biotin carboxylase subunit), gki (glucokinase), lepA (GTP-binding protein), recP (transketolase), sodA (superoxide dismutase), and tyrS (tyrosyl-tRNA synthetase)] or the housekeeping genes supplemented with 2 extracellular putative virulence genes [gtfB (glucosyltransferase B) and spaP (surface protein antigen I/II)] to increase sequence type diversity. The number of alleles found varied between 20 (lepA) and 37 (spaP). Overall, 121 sequence types (STs) were defined using the housekeeping genes alone and 122 with all genes. However pi, nucleotide diversity per site, was low for all loci being in the range 0.019-0.007. The virulence genes exhibited the greatest nucleotide diversity and the recombination/mutation ratio was 0.67 [95% confidence interval 0.3-1.15] compared to 8.3 [95% confidence interval 5.0-14.5] for the 6 concatenated housekeeping genes alone. The ML trees generated for individual MLST loci were significantly incongruent and not significantly different from random trees. Analysis using ClonalFrame indicated that the majority of isolates were singletons and no evidence for a clonal structure or evidence to support serotype c strains as the ancestral S. mutans strain was apparent. There was also no evidence of a geographical distribution of individual isolates or that particular isolate clusters were associated with caries. The overall low sequence diversity suggests that S. mutans is a newly emerged species which has not accumulated large numbers of mutations but those that have occurred have been shuffled as a consequence of intra-species recombination generating genotypes which can be readily distinguished by sequence analysis.
Didi, Jennifer; Lemée, Ludovic; Gibert, Laure; Pons, Jean-Louis; Pestel-Caron, Martine
2014-10-01
Staphylococcus lugdunensis is an emergent virulent coagulase-negative staphylococcus responsible for severe infections similar to those caused by Staphylococcus aureus. To understand its potentially pathogenic capacity and have further detailed knowledge of the molecular traits of this organism, 93 isolates from various geographic origins were analyzed by multi-virulence-locus sequence typing (MVLST), targeting seven known or putative virulence-associated loci (atlLR2, atlLR3, hlb, isdJ, SLUG_09050, SLUG_16930, and vwbl). The polymorphisms of the putative virulence-associated loci were moderate and comparable to those of the housekeeping genes analyzed by multilocus sequence typing (MLST). However, the MVLST scheme generated 43 virulence types (VTs) compared to 20 sequence types (STs) based on MLST, indicating that MVLST was significantly more discriminating (Simpson's index [D], 0.943). No hypervirulent lineage or cluster specific to carriage strains was defined. The results of multilocus sequence analysis of known and putative virulence-associated loci are consistent with a clonal population structure for S. lugdunensis, suggesting a coevolution of these genes with housekeeping genes. Indeed, the nonsynonymous to synonymous evolutionary substitutions (dN/dS) ratio, the Tajima's D test, and Single-likelihood ancestor counting (SLAC) analysis suggest that all virulence-associated loci were under negative selection, even atlLR2 (AtlL protein) and SLUG_16930 (FbpA homologue), for which the dN/dS ratios were higher. In addition, this analysis of virulence-associated loci allowed us to propose a trilocus sequence typing scheme based on the intragenic regions of atlLR3, isdJ, and SLUG_16930, which is more discriminant than MLST for studying short-term epidemiology and further characterizing the lineages of the rare but highly pathogenic S. lugdunensis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Zhang, Ping; Zhou, Haijian; Diao, Baowei; Li, Fengjuan; Du, Pengcheng; Li, Jie; Kan, Biao; Morris, J Glenn; Wang, Duochun
2014-04-01
Vibrio cholerae serogroup O139 was first identified in 1992 in India and Bangladesh, in association with major epidemics of cholera in both countries; cases were noted shortly thereafter in China. We characterized 211 V. cholerae O139 isolates that were isolated at multiple sites in China between 1993 and 2012 from patients (n = 92) and the environment (n = 119). Among clinical isolates, 88 (95.7%) of 92 were toxigenic, compared with 47 (39.5%) of 119 environmental isolates. Toxigenic isolates carried the El Tor CTX prophage and toxin-coregulated pilus A gene (tcpA), as well as the Vibrio seventh pandemic island I (VSP-I) and VSP-II. Among a subset of 42 toxigenic isolates screened by multilocus sequence typing (MLST), all were in the same sequence type as a clinical isolate (MO45) from the original Indian outbreak. Nontoxigenic isolates, in contrast, generally lacked VSP-I and -II, and fell within 13 additional sequence types in two clonal complexes distinct from the toxigenic isolates. In further pulsed-field gel electrophoresis (PFGE) (with NotI digestion) studies, toxigenic isolates formed 60 pulsotypes clustered in one group, while the nontoxigenic isolates formed 43 pulsotypes which clustered into 3 different groups. Our data suggest that toxigenic O139 isolates from widely divergent geographic locations, while showing some diversity, have maintained a relatively tight clonal structure across a 20-year time span. Nontoxigenic isolates, in contrast, exhibited greater diversity, with multiple clonal lineages, than did their toxigenic counterparts.
Van der Bij, A K; Van der Zwan, D; Peirano, G; Severin, J A; Pitout, J D D; Van Westreenen, M; Goessens, W H F
2012-09-01
Recently, the first outbreak of clonally related VIM-2 metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa in a Dutch tertiary-care centre was described. Subsequently, a nationwide surveillance study was performed in 2010-2011, which identified the presence of VIM-2 MBL-producing P. aeruginosa in 11 different hospitals. Genotyping by multiple-locus variable-number tandem-repeat analysis (MLVA) showed that the majority of the 82 MBL-producing isolates found belonged to a single MLVA type (n = 70, 85%), identified as ST111 by multilocus sequence typing (MLST). As MBL-producing isolates cause serious infections that are difficult to treat, the presence of clonally related isolates in various hospitals throughout the Netherlands is of nationwide concern. © 2012 The Authors. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.
Wang, Shao-Hung; Shen, Mandy; Lin, Hsin-Chieh; Sun, Pei-Lun; Lo, Hsiu-Jung; Lu, Jang-Jih
2015-11-01
Candida albicans is a common cause of bloodstream fungal infections in hospitalized patients. To investigate its epidemiology, multilocus sequence typing (MLST) was performed on 285 C. albicans bloodstream isolates from patients in Chang Gung Memorial Hospital at Linkou (CGMHL), Taiwan from 2003 to 2011. Among these isolates, the three major diploid sequence types (DSTs) were 693, 659, and 443 with 19, 16, and 13 isolates, respectively. The 179 DSTs were classified into 16 clades by unweighted pair-group method using arithmetic averages (UPGMA). The major ones were clades 1, 4, 3, and 17 (54, 49, 31, and 31 isolates, respectively). Further analyses with eBURST clustered the 285 isolates into 28 clonal complexes (CC). The most common complexes were CC8, CC20, and CC9. DST 693 that had the highest number of isolates was determined to be the cluster founder of CC20, which belonged to clade 3. So far, 33 isolates worldwide including 29 from Taiwan and 4 from Korea, are CC20, suggesting that CC20 is an Asian cluster. Two fluconazole-resistant isolates belonging to CC12 and CC19 were detected. All other CGMHL isolates were susceptible to 5-flucytosine, amphotericin B, anidulfungin, caspofungin, fluconazole, itraconazole, micafungin, posaconazole, and voriconazole. However, CC20 isolates exhibited significantly lower susceptibility to fluconazole. In conclusion, the 285 CGMHL C. albicans isolates displayed geographically clustering with Asian isolates, and most of them are susceptible to common antifungal drugs. Isolates of DST 693, a Taiwanese major genotype belonging to MLST clade 3, were more resistant to fluconazole than other isolates. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Brennan, Orla M.; Deasy, Emily C.; Rossney, Angela S.; Kinnevey, Peter M.; Ehricht, Ralf; Monecke, Stefan; Coleman, David C.
2012-01-01
One hundred seventy-five isolates representative of methicillin-resistant Staphylococcus aureus (MRSA) clones that predominated in Irish hospitals between 1971 and 2004 and that previously underwent multilocus sequence typing (MLST) and staphylococcal cassette chromosome mec (SCCmec) typing were characterized by spa typing (175 isolates) and DNA microarray profiling (107 isolates). The isolates belonged to 26 sequence type (ST)-SCCmec types and subtypes and 35 spa types. The array assigned all isolates to the correct MLST clonal complex (CC), and 94% (100/107) were assigned an ST, with 98% (98/100) correlating with MLST. The array assigned all isolates to the correct SCCmec type, but subtyping of only some SCCmec elements was possible. Additional SCCmec/SCC genes or DNA sequence variation not detected by SCCmec typing was detected by array profiling, including the SCC-fusidic acid resistance determinant Q6GD50/fusC. Novel SCCmec/SCC composite islands (CIs) were detected among CC8 isolates and comprised SCCmec IIA-IIE, IVE, IVF, or IVg and a ccrAB4-SCC element with 99% DNA sequence identity to SCCM1 from ST8/t024-MRSA, SCCmec VIII, and SCC-CI in Staphylococcus epidermidis. The array showed that the majority of isolates harbored one or more superantigen (94%; 100/107) and immune evasion cluster (91%; 97/107) genes. Apart from fusidic acid and trimethoprim resistance, the correlation between isolate antimicrobial resistance phenotype and the presence of specific resistance genes was ≥97%. Array profiling allowed high-throughput, accurate assignment of MRSA to CCs/STs and SCCmec types and provided further evidence of the diversity of SCCmec/SCC. In most cases, array profiling can accurately predict the resistance phenotype of an isolate. PMID:22869569
Stabler, Richard A; Dawson, Lisa F; Valiente, Esmeralda; Cairns, Michelle D; Martin, Melissa J; Donahue, Elizabeth H; Riley, Thomas V; Songer, J Glenn; Kuijper, Ed J; Dingle, Kate E; Wren, Brendan W
2012-01-01
Clostridium difficile has emerged rapidly as the leading cause of antibiotic-associated diarrheal disease, with the temporal and geographical appearance of dominant PCR ribotypes such as 017, 027 and 078. Despite this continued threat, we have a poor understanding of how or why particular variants emerge and the sources of strains that dominate different human populations. We have undertaken a breadth genotyping study using multilocus sequence typing (MLST) analysis of 385 C. difficile strains from diverse sources by host (human, animal and food), geographical locations (North America, Europe and Australia) and PCR ribotypes. Results identified 18 novel sequence types (STs) and 3 new allele sequences and confirmed the presence of five distinct clonal lineages generally associated with outbreaks of C. difficile infection in humans. Strains of animal and food origin were found of both ST-1 and ST-11 that are frequently associated with human disease. An in depth MLST analysis of the evolutionary distant ST-11/PCR ribotype 078 clonal lineage revealed that ST-11 can be found in alternative but closely related PCR ribotypes and PCR ribotype 078 alleles contain mutations generating novel STs. PCR ribotype 027 and 017 lineages may consist of two divergent subclades. Furthermore evidence of microdiversity was present within the heterogeneous clade 1. This study helps to define the evolutionary origin of dominant C. difficile lineages and demonstrates that C. difficile is continuing to evolve in concert with human activity.
Development and evaluation of a multi-locus sequence typing scheme for Mycoplasma synoviae.
Dijkman, R; Feberwee, A; Landman, W J M
2016-08-01
Reproducible molecular Mycoplasma synoviae typing techniques with sufficient discriminatory power may help to expand knowledge on its epidemiology and contribute to the improvement of control and eradication programmes of this mycoplasma species. The present study describes the development and validation of a novel multi-locus sequence typing (MLST) scheme for M. synoviae. Thirteen M. synoviae isolates originating from different poultry categories, farms and lesions, were subjected to whole genome sequencing. Their sequences were compared to that of M. synoviae reference strain MS53. A high number of single nucleotide polymorphisms (SNPs) indicating considerable genetic diversity were identified. SNPs were present in over 40 putative target genes for MLST of which five target genes were selected (nanA, uvrA, lepA, ruvB and ugpA) for the MLST scheme. This scheme was evaluated analysing 209 M. synoviae samples from different countries, categories of poultry, farms and lesions. Eleven clonal clusters and 76 different sequence types (STs) were obtained. Clustering occurred following geographical origin, supporting the hypothesis of regional population evolution. M. synoviae samples obtained from epidemiologically linked outbreaks often harboured the same ST. In contrast, multiple M. synoviae lineages were found in samples originating from swollen joints or oviducts from hens that produce eggs with eggshell apex abnormalities indicating that further research is needed to identify the genetic factors of M. synoviae that may explain its variations in tissue tropism and disease inducing potential. Furthermore, MLST proved to have a higher discriminatory power compared to variable lipoprotein and haemagglutinin A typing, which generated 50 different genotypes on the same database.
Azara, Elisa; Piras, Maria Giovanna; Parisi, Antonio; Tola, Sebastiana
2017-06-01
In this research, 330 Staphylococcus aureus isolates, collected in Sardinia (Italy) in the period 1986-2015 from clinical ovine mastitis and used for the preparation of inactivated autogenous vaccines, were analyzed. Susceptibility to 12 antimicrobial agents was tested by disk diffusion, according to CLSI recommendations. Resistance genes were detected by PCR assays. The most of isolates (85.2%) were susceptible to all antimicrobials tested, suggesting that did not exist change of resistance over time. Two isolates were multidrug-resistant (MDR), one of them (isolate 1496) showed resistance to seven antibiotics including oxacillin and erythromycin. This MRSA harboured SCCmec type IV and the erm(C) gene. Isolates were characterized by spa typing and MLST. Isolates belonged to 29 spa types: t1773 (n=186), t2678 (n=53), t7754 (n=14), t1532 (n=5), t524 (n=5) and t6060 (n=4) were the most frequent spa types found in Sardinia. The majority of ovine isolates (t1773, t7754 and t1532) was grouped in MLST CC130 (n=205) followed by CC133 (n=57). MRSA 1496 was classified as t3896, ST1 and CC1, a clonal complex common in human and also reported in cattle and pig. This study suggests that the CC130/ST700/t1773 is the prevalent S. aureus lineage associated with ovine mastitis in Sardinia. Copyright © 2017 Elsevier B.V. All rights reserved.
Al Atrouni, Ahmad; Hamze, Monzer; Jisr, Tamima; Lemarié, Carole; Eveillard, Matthieu; Joly-Guillou, Marie-Laure; Kempf, Marie
2016-11-01
To investigate the molecular epidemiology of Acinetobacter baumannii strains isolated from different hospitals in Lebanon. A total of 119 non-duplicate Acinetobacter strains were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and partial rpoB gene sequencing. Antibiotic susceptibility testing was performed by disc diffusion method and all identified carbapenem-resistant isolates were investigated by PCR assays for the presence of the carbapenemase-encoding genes. Multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were used for molecular typing. Of the 119 A. baumannii isolates, 76.5% were resistant to carbapenems. The most common carbapenemase was the OXA-23-type, found in 82 isolates. The study of population structure using MLST revealed the presence of 30 sequence types (STs) including 18 new ones, with ST2 being the most commonly detected, accounting for 61% of the isolates typed. PFGE performed on all strains of ST2 identified a major cluster of 53 isolates, in addition to three other minor clusters and ten unique profiles. This study highlights the wide dissemination of highly related OXA-23-producing carbapenem-resistant A. baumannii belonging to the international clone II in Lebanon. Thus, appropriate infection control measures are recommended in order to control the geographical spread of this clone in this country. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Jans, Christoph; Merz, Axel; Johler, Sophia; Younan, Mario; Tanner, Sabine A; Kaindi, Dasel Wambua Mulwa; Wangoh, John; Bonfoh, Bassirou; Meile, Leo; Tasara, Taurai
2017-08-01
Staphylococcus aureus frequently isolated from milk products in sub-Saharan Africa (SSA) is a major pathogen responsible for food intoxication, human and animal diseases. SSA hospital-derived strains are well studied but data on the population structure of foodborne S. aureus required to identify possible staphylococcal food poisoning sources is lacking. Therefore, the aim was to assess the population genetic structure, virulence and antibiotic resistance genes associated with milk-derived S. aureus isolates from Côte d'Ivoire, Kenya and Somalia through spa-typing, MLST, and DNA microarray analysis. Seventy milk S. aureus isolates from the three countries were assigned to 27 spa (7 new) and 23 (12 new) MLST sequence types. Milk-associated S. aureus of the three countries is genetically diverse comprising human and livestock-associated clonal complexes (CCs) predominated by the CC5 (n = 10) and CC30 (n = 9) isolates. Panton-Valentine leukocidin, toxic shock syndrome toxin and enterotoxin encoding genes were predominantly observed among human-associated CCs. Penicillin, fosfomycin and tetracycline, but not methicillin resistance genes were frequently detected. Our findings indicate that milk-associated S. aureus in SSA originates from human and animal sources alike highlighting the need for an overarching One Health approach to reduce S. aureus disease burdens through improving production processes, animal care and hygienic measures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tsang, Raymond S W; Ulanova, Marina
2017-07-24
More than two decades after the implementation of the Hib conjugate vaccine in North America, Haemophilus influenzae serotype a (Hia) has emerged as a significant cause of invasive disease in Indigenous communities. However, little is known about the global presence of this pathogen. We interrogated the H. influenzae Multi-Locus Sequence Typing (MLST) website (https://pubmlst.org/hinfluenzae/) by selecting for serotype a records. We also updated our previous literature review on this subject matter. Hia has been reported from at least 35 countries on six major continents. However, most Hia diseases were associated with Indigenous communities. Clonal analysis identified two clonal populations with one typified as ST-23 responsible for most invasive disease in North America and being the predominant clone described on the H. influenzae MLST website. Incidence of invasive Hia disease in Indigenous communities in North America are similar to the rates of Hib disease reported prior to the Hib conjugate vaccine era. Hia causes severe clinical diseases, such as meningitis, septicaemia, pneumonia, and septic arthritis with case-fatality rates between 5.6% and 33% depending on the age of the patient and the genetic makeup of the Hia strain. Although invasive Hia disease can be found globally, the current epidemiological data suggest that this infection predominantly affects Indigenous communities in North America. The clinical disease of Hia and the clonal nature of the bacteria resemble that of Hib. The high incidence of invasive Hia disease in Indigenous communities, along with potential fatality and severe sequelae causing long-term disability in survivors, may support the development of a new Hia conjugate vaccine for protection against this infection similar in design to the one introduced in the 1990s to control invasive Hib disease. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Zhu, Yinchu; Dong, Wenyang; Ma, Jiale; Yuan, Lvfeng; Hejair, Hassan M A; Pan, Zihao; Liu, Guangjin; Yao, Huochun
2017-04-08
Swine extraintestinal pathogenic Escherichia coli (ExPEC) is an important pathogen that leads to economic and welfare costs in the swine industry worldwide, and is occurring with increasing frequency in China. By far, various virulence factors have been recognized in ExPEC. Here, we investigated the virulence genotypes and clonal structure of collected strains to improve the knowledge of phylogenetic traits of porcine ExPECs in China. We isolated 64 Chinese porcine ExPEC strains from 2013 to 14 in China. By multiplex PCR, the distribution of isolates belonging to phylogenetic groups B1, B2, A and D was 9.4%, 10.9%, 57.8% and 21.9%, respectively. Nineteen virulence-related genes were detected by PCR assay; ompA, fimH, vat, traT and iutA were highly prevalent. Virulence-related genes were remarkably more prevalent in group B2 than in groups A, B1 and D; notably, usp, cnf1, hlyD, papA and ibeA were only found in group B2 strains. Genotyping analysis was performed and four clusters of strains (named I to IV) were identified. Cluster IV contained all isolates from group B2 and Cluster IV isolates had the strongest pathogenicity in a mouse infection model. As phylogenetic group B2 and D ExPEC isolates are generally considered virulent, multilocus sequence typing (MLST) analysis was performed for these isolates to further investigate genetic relationships. Two novel sequence types, ST5170 and ST5171, were discovered. Among the nine clonal complexes identified among our group B2 and D isolates, CC12 and CC95 have been indicated to have high zoonotic pathogenicity. The distinction between group B2 and non-B2 isolates in virulence and genotype accorded with MLST analysis. This study reveals significant genetic diversity among ExPEC isolates and helps us to better understand their pathogenesis. Importantly, our data suggest group B2 (Cluster IV) strains have the highest risk of causing animal disease and illustrate the correlation between genotype and virulence.
Molecular evidence of Burkholderia pseudomallei genotypes based on geographical distribution.
Zulkefli, Noorfatin Jihan; Mariappan, Vanitha; Vellasamy, Kumutha Malar; Chong, Chun Wie; Thong, Kwai Lin; Ponnampalavanar, Sasheela; Vadivelu, Jamuna; Teh, Cindy Shuan Ju
2016-01-01
Background. Central intermediary metabolism (CIM) in bacteria is defined as a set of metabolic biochemical reactions within a cell, which is essential for the cell to survive in response to environmental perturbations. The genes associated with CIM are commonly found in both pathogenic and non-pathogenic strains. As these genes are involved in vital metabolic processes of bacteria, we explored the efficiency of the genes in genotypic characterization of Burkholderia pseudomallei isolates, compared with the established pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) schemes. Methods. Nine previously sequenced B. pseudomallei isolates from Malaysia were characterized by PFGE, MLST and CIM genes. The isolates were later compared to the other 39 B. pseudomallei strains, retrieved from GenBank using both MLST and sequence analysis of CIM genes. UniFrac and hierachical clustering analyses were performed using the results generated by both MLST and sequence analysis of CIM genes. Results. Genetic relatedness of nine Malaysian B. pseudomallei isolates and the other 39 strains was investigated. The nine Malaysian isolates were subtyped into six PFGE profiles, four MLST profiles and five sequence types based on CIM genes alignment. All methods demonstrated the clonality of OB and CB as well as CMS and THE. However, PFGE showed less than 70% similarity between a pair of morphology variants, OS and OB. In contrast, OS was identical to the soil isolate, MARAN. To have a better understanding of the genetic diversity of B. pseudomallei worldwide, we further aligned the sequences of genes used in MLST and genes associated with CIM for the nine Malaysian isolates and 39 B. pseudomallei strains from NCBI database. Overall, based on the CIM genes, the strains were subtyped into 33 profiles where majority of the strains from Asian countries were clustered together. On the other hand, MLST resolved the isolates into 31 profiles which formed three clusters. Hierarchical clustering using UniFrac distance suggested that the isolates from Australia were genetically distinct from the Asian isolates. Nevertheless, statistical significant differences were detected between isolates from Malaysia, Thailand and Australia. Discussion. Overall, PFGE showed higher discriminative power in clustering the nine Malaysian B. pseudomallei isolates and indicated its suitability for localized epidemiological study. Compared to MLST, CIM genes showed higher resolution in distinguishing those non-related strains and better clustering of strains from different geographical regions. A closer genetic relatedness of Malaysian isolates with all Asian strains in comparison to Australian strains was observed. This finding was supported by UniFrac analysis which resulted in geographical segregation between Australia and the Asian countries.
Fischer, Julia; Hille, Katja; Ruddat, Inga; Mellmann, Alexander; Köck, Robin; Kreienbrock, Lothar
2017-02-01
Methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum β-lactamase (ESBL) producing enterobacteria (ESBL-E) have emerged in livestock. This study prospectively investigates the prevalence of MRSA and ESBL-E on pig farms and in nasal and stool samples from farmers and compares molecular characteristics of these ESBL-E isolates. In 2014, samples were derived at 51 pig farms in Germany. Per farm, five dust and five fecal samples were collected; one nasal and one stool sample were retrieved from farmers. ESBL-E isolates from humans and environmental isolates from the respective farms were characterized using whole genome sequencing for classical multilocus sequence typing (MLST), determination of ESBL-encoding genes and an ad hoc core genome MLST (cgMLST) analysis. MRSA and ESBL-E were detected on 49 (96%) and 31 (61%) of the farms, respectively; in most cases (59%) simultaneously. Nasal MRSA carriage was detected in 72 of 85 (84.7%) farmers and five of 84 (6.0%) farmers carried ESBL-E. ESBL-Escherichia coli isolates from farmers belonged to MLST STs/ESBL-genes ST10/CTX-M-1, ST196/TEM-52, ST278/TEM-52, ST410/CTX-M-15 and ST453/CTX-M-1. In one case, the human ESBL-E isolate was clonally identical to isolates from the farm environment; in the other four cases typing results indicated potential exchange of resistance determinants between human and environmental isolates, but, comparing the isolates within a minimum spanning tree indicated differences in cgMLST-patterns between the farms (p=0.076). This study demonstrated rectal ESBL-E carriage rates among farmers, which were similar to those in the general population. Molecular typing suggested that cross-transmission between the farmers and the farm environment is possible. Copyright © 2016 Elsevier B.V. All rights reserved.
Clonal Expansion of the Macrolide Resistant ST386 within Pneumococcal Serotype 6C in France
Janoir, Claire; Cohen, Robert; Levy, Corinne; Bingen, Edouard; Lepoutre, Agnès; Gutmann, Laurent; Varon, Emmanuelle
2014-01-01
In France, the use of the 7-valent pneumococcal conjugate vaccine (PCV7) lead to an overall significant decrease in PCV7 invasive pneumococcal disease (IPD) incidence. However, the decrease in vaccine serotype prevalence was partially counterbalanced by the serotype replacement phenomenon. In this study, we analyzed the role of the newly described serotype 6C as one of the replacement serotypes. This work was conducted on a large time scale from the early PCV7 era (2002–2003) to the PCV13 era (2010–2011), both on IPD strains recovered from the whole population and nasopharyngeal colonizing strains isolated in infant less than two years, who are known to be the main reservoir for pneumococci. Serotype 6C took advantage over 6A and 6B serotypes, which both decreased over time. A continuous and significant increase in 6C IPD was observed in adults along the study period; in contrast, in children less than two years, only an increase in 6C nasopharyngeal carriage was found, the prevalence of serotype 6C in IPD remaining very low over time. Among 101 6C invasive and colonizing strains studied by MLST, 24 STs were found to be related to three major clonal complexes, CC395, CC176, and CC315. STs related to CC176 tend to disappear after 2009 and were essentially replaced by ST386 (CC315), which dramatically increased over time. This clonal expansion may be explained by the erythromycin and tetracycline resistances associated with this clone. Finally, the decrease observed in nasopharyngeal 6C carriage since 2010, likely related to the PCV13 introduction in the French immunization schedule, is expected to lead to a decrease in 6C IPD in adults thereafter. PMID:24603763
Opavski, Natasa; Gajic, Ina; Borek, Anna L; Obszańska, Katarzyna; Stanojevic, Maja; Lazarevic, Ivana; Ranin, Lazar; Sitkiewicz, Izabela; Mijac, Vera
2015-07-01
A steady increase in macrolide resistance in Streptococcus pyogenes, group A streptococci (GAS) was reported in Serbia during 2004-2009 (9.9%). However, there are no data on the molecular epidemiology of pharyngeal macrolide resistance GAS (MRGAS) isolates. Therefore, the aims of this first nationwide study were to examine the prevalence of macrolide resistance in Serbian GAS and to determine their resistance phenotypes, genotypes and clonal relationships. Overall 3893 non-duplicate pharyngeal S. pyogenes isolates from outpatients with GAS infection were collected throughout country during 2008 and 2009. Among 486 macrolide resistant pharyngeal isolates collected, 103 were further characterized. Macrolide resistance phenotypes and genotypes were determined by double-disk diffusion test and PCR, respectively. Strain relatedness was determined by emm typing, multilocus sequence typing (MLST), multilocus variable tandem repeat analysis (MLVA), phage profiling (PP) and virulence factor profiling (VFP). Overall, macrolide resistance among GAS isolates in Serbia was 12.5%. M phenotype was the most common (71.8%), followed by iMLS (18.4%) and cMLS (9.7%). Three clonal complexes--emm75/mefA/ST49, emm12/mefA/ST36 and emm77/ermA/tetO/ST63 comprised over 90% of the tested strains. Although MLVA, PP and VFP distinguished 10, 20 and 12 different patterns, respectively, cluster analysis disclosed only small differences between strains which belonged to the same emm/ST type. Our data indicate dominance of three major internationally widely disseminated macrolide resistant clones and a high genetic homogeneity among the Serbian MRGAS population. Continued surveillance of macrolide resistance and clonal composition in MRGAS in Serbia in future is necessary to determine stability of MRGAS clones and to guide therapy strategies. Copyright © 2015 Elsevier B.V. All rights reserved.
Lepp, D; Gong, J; Songer, J G; Boerlin, P; Parreira, V R; Prescott, J F
2013-03-01
Necrotic enteritis (NE) is an economically important disease of poultry caused by certain Clostridium perfringens type A strains. NE pathogenesis involves the NetB toxin, which is encoded on a large conjugative plasmid within a 42-kb pathogenicity locus. Recent multilocus sequence type (MLST) studies have identified two predominant NE-associated clonal groups, suggesting that host genes are also involved in NE pathogenesis. We used microarray comparative genomic hybridization (CGH) to assess the gene content of 54 poultry isolates from birds that were healthy or that suffered from NE. A total of 400 genes were variably present among the poultry isolates and nine nonpoultry strains, many of which had putative functions related to nutrient uptake and metabolism and cell wall and capsule biosynthesis. The variable genes were organized into 142 genomic regions, 49 of which contained genes significantly associated with netB-positive isolates. These regions included three previously identified NE-associated loci as well as several apparent fitness-related loci, such as a carbohydrate ABC transporter, a ferric-iron siderophore uptake system, and an adhesion locus. Additional loci were related to plasmid maintenance. Cluster analysis of the CGH data grouped all of the netB-positive poultry isolates into two major groups, separated according to two prevalent clonal groups based on MLST analysis. This study identifies chromosomal loci associated with netB-positive poultry strains, suggesting that the chromosomal background can confer a selective advantage to NE-causing strains, possibly through mechanisms involving iron acquisition, carbohydrate metabolism, and plasmid maintenance.
Calvez, Ségolène; Fournel, Catherine; Douet, Diane-Gaëlle; Daniel, Patrick
2015-06-23
Yersinia ruckeri is a pathogen that has an impact on aquaculture worldwide. The disease caused by this bacterial species, yersiniosis or redmouth disease, generates substantial economic losses due to the associated mortality and veterinary costs. For predicting outbreaks and improving control strategies, it is important to characterize the population structure of the bacteria. The phenotypic and genetic homogeneities described previously indicate a clonal population structure as observed in other fish bacteria. In this study, the pulsed-field gel electrophoresis (PFGE) and multi locus sequence typing (MLST) methods were used to describe a population of isolates from outbreaks on French fish farms. For the PFGE analysis, two enzymes (NotI and AscI) were used separately and together. Results from combining the enzymes showed the great homogeneity of the outbreak population with a similarity > 80.0% but a high variability within the cluster (cut-off value = 80.0%) with a total of 43 pulsotypes described and an index of diversity = 0.93. The dominant pulsotypes described with NotI (PtN4 and PtN7) have already been described in other European countries (Finland, Germany, Denmark, Spain and Italy). The MLST approach showed two dominant sequence types (ST31 and ST36), an epidemic structure of the French Y. ruckeri population and a preferentially clonal evolution for rainbow trout isolates. Our results point to multiple types of selection pressure on the Y. ruckeri population attributable to geographical origin, ecological niche specialization and movements of farmed fish.
Conceição, Natália; da Silva, Lucas Emanuel Pinheiro; Darini, Ana Lúcia da Costa; Pitondo-Silva, André; de Oliveira, Adriana Gonçalves
2014-12-01
Despite the spread of penicillin-resistant, ampicillin-susceptible Enterococcus faecalis (PRASEF) isolates in diverse countries, the mechanisms leading to this unusual resistance phenotype have not yet been investigated. The aim of this study was to evaluate whether polymorphism in the pbp4 gene is associated with penicillin resistance in PRASEF isolates and to determine their genetic diversity. E. faecalis isolates were recovered from different clinical specimens of hospitalized patients from February 2006 to June 2010. The β-lactam minimal inhibitory concentrations (MICs) were determined by E-test®. The PCR-amplified pbp4 gene was sequenced with an automated sequencer. The genetic diversities of the isolates were established by PFGE (pulsed-field gel electrophoresis) and MLST (multilocus sequencing typing). Seventeen non-producing β-lactamase PRASEF and 10 penicillin-susceptible, ampicillin-susceptible E. faecalis (PSASEF) strains were analyzed. A single-amino-acid substitution (Asp-573→Glu) in the penicillin-binding domain was significantly found in all PRASEF isolates by sequencing of the pbp4 gene but not in the penicillin-susceptible isolates. In contrast to the PSASEF isolates, a majority of the PRASEFs had similar PFGE profiles. Six representative PRASEF isolates were resolved by MLST into ST9 and ST524 and belong to the globally dispersed clonal complex 9 (CC9). In conclusion, it appears quite likely that the amino acid alteration (Asp-573→Glu) found in the PBP4 of the Brazilian PRASEF isolates may account for their reduced susceptibility to penicillin, although other resistance mechanisms remain to be investigated. Copyright © 2014 Elsevier B.V. All rights reserved.
Duarte, Andreia; Santos, Andrea; Manageiro, Vera; Martins, Ana; Fraqueza, Maria J; Caniça, Manuela; Domingues, Fernanda C; Oleastro, Mónica
2014-10-01
Infections by Campylobacter jejuni and Campylobacter coli are considered the major cause of bacterial gastroenteritis in humans, with food being the main source of infection. In this study, a total of 196 Campylobacter strains (125 isolates from humans, 39 from retail food and 32 from food animal sources) isolated in Portugal between 2009 and 2012 were characterised by multilocus sequence typing (MLST) and flaA short variable region (SVR) typing. Susceptibility to six antibiotics as well as the mechanisms underlying antibiotic resistance phenotypes was also studied. Based on MLST typing, C. coli strains were genetically more conserved, with a predominant clonal complex (CC828), than C. jejuni strains. In contrast, C. coli isolates were genetically more variable than C. jejuni with regard to flaA-SVR typing. A high rate of resistance was observed for quinolones (100% to nalidixic acid, >90% to ciprofloxacin) and, in general, resistance was more common among C. coli, especially for erythromycin (40.2% vs. 6.7%). In addition, most isolates (86%) were resistant to multiple antimicrobial families. Besides the expected point mutations associated with antibiotic resistance, detected polymorphisms in the cmeABC locus likely play a role in the multiresistant phenotype. This study provides for the first time an overview of the genetic diversity of Campylobacter strains from Portugal. It also shows a worrying antibiotic multiresistance rate and the emergence of Campylobacter strains resistant to antibiotics of human use. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
2013-01-01
Background mTOR is a genetically conserved serine/threonine protein kinase, which controls cell growth, proliferation, and survival. A multifunctional protein CAD, catalyzing the initial three steps in de novo pyrimidine synthesis, is regulated by the phosphorylation reaction with different protein kinases, but the relationship with mTOR protein kinase has not been known. Results CAD was recovered as a binding protein with mLST8, a component of the mTOR complexes, from HEK293 cells transfected with the FLAG-mLST8 vector. Association of these two proteins was confirmed by the co-immuoprecipitaiton followed by immunoblot analysis of transfected myc-CAD and FLAG-mLST8 as well as that of the endogenous proteins in the cells. Analysis using mutant constructs suggested that CAD has more than one region for the binding with mLST8, and that mLST8 recognizes CAD and mTOR in distinct ways. The CAD enzymatic activity decreased in the cells depleted of amino acids and serum, in which the mTOR activity is suppressed. Conclusion The results obtained indicate that mLST8 bridges between CAD and mTOR, and plays a role in the signaling mechanism where CAD is regulated in the mTOR pathway through the association with mLST8. PMID:23594158
Schultsz, Constance; Jansen, Ewout; Keijzers, Wendy; Rothkamp, Anja; Duim, Birgitta; Wagenaar, Jaap A; van der Ende, Arie
2012-01-01
Streptococcus suis serotype 2 is the main cause of zoonotic S. suis infection despite the fact that other serotypes are frequently isolated from diseased pigs. Studies comparing concurrent invasive human and pig isolates from a single geographical location are lacking. We compared the population structures of invasive S. suis strains isolated between 1986 and 2008 from human patients (N = 24) and from pigs with invasive disease (N = 124) in The Netherlands by serotyping and multi locus sequence typing (MLST). Fifty-six percent of pig isolates were of serotype 9 belonging to 15 clonal complexes (CCs) or singleton sequence types (ST). In contrast, all human isolates were of serotype 2 and belonged to two non-overlapping clonal complexes CC1 (58%) and CC20 (42%). The proportion of serotype 2 isolates among S. suis strains isolated from humans was significantly higher than among strains isolated from pigs (24/24 vs. 29/124; P<0.0001). This difference remained significant when only strains within CC1 and CC20 were considered (24/24 vs. 27/37,P = 0.004). The Simpson diversity index of the S. suis population isolated from humans (0.598) was smaller than of the population isolated from pigs (0.765, P = 0.05) indicating that the S. suis population isolated from infected pigs was more diverse than the S. suis population isolated from human patients. S. suis serotype 2 strains of CC20 were all negative in a PCR for detection of genes encoding extracellular protein factor (EF) variants. These data indicate that the polysaccharide capsule is an important correlate of human S. suis infection, irrespective of the ST and EF encoding gene type of S. suis strains.
Harastani, Houda H.; Tokajian, Sima T.
2014-01-01
Background The emergence of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA) has caused a change in MRSA epidemiology worldwide. In the Middle East, the persistent spread of CA-MRSA isolates that were associated with multilocus sequence type (MLST) clonal complex 80 and with staphylococcal cassette chromosome mec (SCCmec) type IV (CC80-MRSA-IV), calls for novel approaches for infection control that would limit its spread. Methodology/Principal Findings In this study, the epidemiology of CC80-MRSA-IV was investigated in Jordan and Lebanon retrospectively covering the period from 2000 to 2011. Ninety-four S. aureus isolates, 63 (67%) collected from Lebanon and 31 (33%) collected from Jordan were included in this study. More than half of the isolates (56%) were associated with skin and soft tissue infections (SSTIs), and 73 (78%) were Panton-Valentine Leukocidin (PVL) positive. Majority of the isolates (84%) carried the gene for exofoliative toxin d (etd), 19% had the Toxic Shock Syndrome Toxin-1 gene (tst), and seven isolates from Jordan had a rare combination being positive for both tst and PVL genes. spa typing showed the prevalence of type t044 (85%) and pulsed-field gel electrophoresis (PFGE) recognized 21 different patterns. Antimicrobial susceptibility testing showed the prevalence (36%) of a unique resistant profile, which included resistance to streptomycin, kanamycin, and fusidic acid (SKF profile). Conclusions The genetic diversity among the CC80 isolates observed in this study poses an additional challenge to infection control of CA-MRSA epidemics. CA-MRSA related to ST80 in the Middle East was distinguished in this study from the ones described in other countries. Genetic diversity observed, which may be due to mutations and differences in the antibiotic regimens between countries may have led to the development of heterogeneous strains. Hence, it is difficult to maintain “the European CA-MRSA clone” as a uniform clone and it is better to designate as CC80-MRSA-IV isolates. PMID:25078407
Mohan, V; Stevenson, M A; Marshall, J C; French, N P
2017-07-01
To investigate the prevalence of Campylobacter spp. and C. jejuni in dog faecal material collected from dog walkways in the city of Palmerston North, New Zealand, and to characterise the C. jejuni isolates by multilocus sequence typing (MLST) and porA and flaA antigen gene typing. A total of 355 fresh samples of dogs faeces were collected from bins provided for the disposal of dog faeces in 10 walkways in Palmerston North, New Zealand, between August 2008-July 2009. Presumptive Campylobacter colonies, cultured on modified charcoal cefoperazone deoxycholate plates, were screened for genus Campylobacter and C. jejuni by PCR. The C. jejuni isolates were subsequently characterised by MLST and porA and flaA typing, and C. jejuni sequence types (ST) were assigned. Of the 355 samples collected, 72 (20 (95% CI=16-25)%) were positive for Campylobacter spp. and 22 (6 (95% CI=4-9)%) were positive for C. jejuni. Of the 22 C. jejuni isolates, 19 were fully typed by MLST. Ten isolates were assigned to the clonal complex ST-45 and three to ST-52. The allelic combinations of ST-45/flaA 21/porA 44 (n=3), ST-45/flaA 22/porA 53 (n=3) and ST-52/ flaA 57/porA 905 (n=3) were most frequent. The successful isolation of C. jejuni from canine faecal samples collected from faecal bins provides evidence that Campylobacter spp. may survive outside the host for at least several hours despite requiring fastidious growth conditions in culture. The results show that dogs carry C. jejuni genotypes (ST-45, ST-50, ST-52 and ST-696) that have been reported in human clinical cases. Although these results do not provide any evidence either for the direction of infection or for dogs being a potential risk factor for human campylobacteriosis, dog owners are advised to practice good hygiene with respect to their pets to reduce potential exposure to infection.
Urmersbach, Sara; Alter, Thomas; Koralage, Madura Sanjeevani Gonsal; Sperling, Lisa; Gerdts, Gunnar; Messelhäusser, Ute; Huehn, Stephan
2014-03-08
Vibrio parahaemolyticus is frequently isolated from environmental and seafood samples and associated with gastroenteritis outbreakes in American, European, Asian and African countries. To distinguish between different lineages of V. parahaemolyticus various genotyping techniques have been used, incl. multilocus sequence typing (MLST). Even though some studies have already applied MLST analysis to characterize V. parahaemolyticus strain sets, these studies have been restricted to specific geographical areas (e.g. U.S. coast, Thailand and Peru), have focused exclusively on pandemic or non-pandemic pathogenic isolates or have been based on a limited strain number. To generate a global picture of V. parahaemolyticus genotype distribution, a collection of 130 environmental and seafood related V. parahaemolyticus isolates of different geographical origins (Sri Lanka, Ecuador, North Sea and Baltic Sea as well as German retail) was subjected to MLST analysis after modification of gyrB and recA PCRs. The V. parahaemolyticus population was composed of 82 unique Sequence Types (STs), of which 68 (82.9%) were new to the pubMLST database. After translating the in-frame nucleotide sequences into amino acid sequences, less diversity was detectable: a total of 31 different peptide Sequence Types (pSTs) with 19 (61.3%) new pSTs were generated from the analyzed isolates. Most STs did not show a global dissemination, but some were supra-regionally distributed and clusters of STs were dependent on geographical origin. On peptide level no general clustering of strains from specific geographical regions was observed, thereby the most common pSTs were found on all continents (Asia, South America and Europe) and rare pSTs were restricted to distinct countries or even geographical regions. One lineage of pSTs associated only with strains from North and Baltic Sea strains was identified. Our study reveals a high genetic diversity in the analyzed V. parahaemolyticus strain set as well as for geographical strain subsets, with a high proportion of newly discovered alleles and STs. Differences between the subsets were identified. Our data support the postulated population structure of V. parahaemolyticus which follows the 'epidemic' model of clonal expansion. Application of peptide based AA-MLST allowed the identification of reliable relationships between strains.
Molecular epidemiology of Campylobacter jejuni infection in Israel-a nationwide study.
Weinberger, M; Moran-Gilad, J; Rokney, A; Davidov, Y; Agmon, V; Peretz, C; Valinsky, L
2016-12-01
The incidence of Campylobacter infection in Israel, particularly among children <2 years of age, has risen over the last decade and became one of the highest among industrialized countries. This study explored the molecular epidemiology of Campylobacter jejuni in Israel over a decade (2003-2012) using multilocus sequence typing (MLST) combined with demographic metadata. Representative clinical isolates (438) from a large national repository together with selected veterinary isolates (74) were subject to MLST. The distribution of age groups, ethnicity and clinical source across various genotypes was evaluated using Poisson modelling. The 512 studied isolates were assigned 126 distinct sequence types (STs) (18.8% novel STs) grouped into 21 clonal complexes (CCs). Most human, poultry and bovine STs clustered together in the leading CCs. Three dominant STs (ST21, ST6608, ST4766) were detected only since 2006. Patients infected with the leading CCs were similarly distributed along densely populated areas. The frequency of blood isolates was higher in patients infected with CC353 (relative rate (RR)=2.0, 95% CI 1.03-3.9, adjusted p value (adj.p) 0.047) and CC42 (RR=4.4, 95% CI 1.7-11.6, adj.p 0.018) and lower with CC257 (RR=0.3, 95% CI 0.1-0.9, adj. p 0.047). The distribution of age groups and ethnicity also varied across the leading CCs. In conclusion, C. jejuni isolates in a national sample appeared highly diverse with a high proportion of new STs. Phylogenic analysis was compatible with poultry and cattle as possible food sources of clinical infection. Demographic characteristics of the infected patients coupled with strain invasiveness across different genotypes revealed a complex epidemiology of C. jejuni transmission in Israel. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Human Staphylococcus aureus lineages among Zoological Park residents in Greece
Drougka, E.; Foka, A.; Posantzis, D.; Giormezis, N.; Anastassiou, E.D.; Petinaki, E.; Spiliopoulou, I.
2015-01-01
Staphylococcus aureus is a part of the microbiota flora in many animal species. The clonal spread of S. aureus among animals and personnel in a Zoological Park was investigated. Samples were collected from colonized and infected sites among 32 mammals, 11 birds and eight humans. The genes mecA, mecC, lukF/lukS-PV (encoding Panton-Valentine leukocidin, PVL) and tst (toxic shock syndrome toxin-1) were investigated by PCR. Clones were defined by Multilocus Sequence Typing (MLST), spa type and Pulsed-Field Gel Electrophoresis (PFGE). Seven S. aureus isolates were recovered from four animals and one from an employee. All were mecA, mecC and tst–negative, whereas, one carried the PVL genes and was isolated from an infected Squirrel monkey. Clonal analysis revealed the occurrence of seven STs, eight PFGE and five spa types including ones of human origin. Even though a variety of genotypes were identified among S. aureus strains colonizing zoo park residents, our results indicate that colonization with human lineages has indeed occurred. PMID:26623381
Sartor, Anna L.; Sidjabat, Hanna E.; Balkhy, Hanan H.; Walsh, Timothy R.; Al Johani, Sameera M.; AlJindan, Reem Y.; Alfaresi, Mubarak; Ibrahim, Emad; Al-Jardani, Amina; Al Salman, Jameela; Dashti, Ali A.; Johani, Khalid; Paterson, David L.
2015-01-01
The molecular epidemiology and mechanisms of resistance of carbapenem-resistant Acinetobacter baumannii (CRAB) were determined in hospitals in the states of the Cooperation Council for the Arab States of the Gulf (Gulf Cooperation Council [GCC]), namely, Saudi Arabia, United Arab Emirates, Oman, Qatar, Bahrain, and Kuwait. Isolates were subjected to PCR-based detection of antibiotic resistance genes and repetitive sequence-based PCR (rep-PCR) assessments of clonality. Selected isolates were subjected to multilocus sequence typing (MLST). We investigated 117 isolates resistant to carbapenem antibiotics (either imipenem or meropenem). All isolates were positive for OXA-51. The most common carbapenemases were the OXA-23-type, found in 107 isolates, followed by OXA-40-type (OXA-24-type), found in 5 isolates; 3 isolates carried the ISAba1 element upstream of blaOXA-51-type. No OXA-58-type, NDM-type, VIM-type, or IMP-type producers were detected. Multiple clones were detected with 16 clusters of clonally related CRAB. Some clusters involved hospitals in different states. MLST analysis of 15 representative isolates from different clusters identified seven different sequence types (ST195, ST208, ST229, ST436, ST450, ST452, and ST499), as well as three novel STs. The vast majority (84%) of the isolates in this study were associated with health care exposure. Awareness of multidrug-resistant organisms in GCC states has important implications for optimizing infection control practices; establishing antimicrobial stewardship programs within hospital, community, and agricultural settings; and emphasizing the need for establishing regional active surveillance systems. This will help to control the spread of CRAB in the Middle East and in hospitals accommodating transferred patients from this region. PMID:25568439
Zowawi, Hosam M; Sartor, Anna L; Sidjabat, Hanna E; Balkhy, Hanan H; Walsh, Timothy R; Al Johani, Sameera M; AlJindan, Reem Y; Alfaresi, Mubarak; Ibrahim, Emad; Al-Jardani, Amina; Al Salman, Jameela; Dashti, Ali A; Johani, Khalid; Paterson, David L
2015-03-01
The molecular epidemiology and mechanisms of resistance of carbapenem-resistant Acinetobacter baumannii (CRAB) were determined in hospitals in the states of the Cooperation Council for the Arab States of the Gulf (Gulf Cooperation Council [GCC]), namely, Saudi Arabia, United Arab Emirates, Oman, Qatar, Bahrain, and Kuwait. Isolates were subjected to PCR-based detection of antibiotic resistance genes and repetitive sequence-based PCR (rep-PCR) assessments of clonality. Selected isolates were subjected to multilocus sequence typing (MLST). We investigated 117 isolates resistant to carbapenem antibiotics (either imipenem or meropenem). All isolates were positive for OXA-51. The most common carbapenemases were the OXA-23-type, found in 107 isolates, followed by OXA-40-type (OXA-24-type), found in 5 isolates; 3 isolates carried the ISAba1 element upstream of blaOXA-51-type. No OXA-58-type, NDM-type, VIM-type, or IMP-type producers were detected. Multiple clones were detected with 16 clusters of clonally related CRAB. Some clusters involved hospitals in different states. MLST analysis of 15 representative isolates from different clusters identified seven different sequence types (ST195, ST208, ST229, ST436, ST450, ST452, and ST499), as well as three novel STs. The vast majority (84%) of the isolates in this study were associated with health care exposure. Awareness of multidrug-resistant organisms in GCC states has important implications for optimizing infection control practices; establishing antimicrobial stewardship programs within hospital, community, and agricultural settings; and emphasizing the need for establishing regional active surveillance systems. This will help to control the spread of CRAB in the Middle East and in hospitals accommodating transferred patients from this region. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Chen, Chang-Hua; Kuo, Han-Yueh; Hsu, Po-Jui; Chang, Chien-Min; Chen, Jiann-Yuan; Lu, Henry Horng-Shing; Chen, Hsin-Yao; Liou, Ming-Li
2018-06-01
The global spread of carbapenem-resistant Acinetobacter baumannii (CRAB) is now a public health problem. In Taiwan, the relationship of the CRAB circulation between long-term care facilities (LTCFs) and acute care hospitals remains unclear. Here, we use molecular epidemiologic methods to describe the transmission of CRAB isolates between a community hospital and its affiliated LTCFs. Subjects localized in eight LTCFs who were not admitted acute care hospitals in recent a year were enrolled in this study. CRAB isolates were collected during June 1, 2015 and December 31, 2015. DNA fingerprinting was performed by repetitive extragenic palindromic sequence-based polymerase chain reaction (Rep-PCR) and multilocus sequence typing (MLST). Multiplex-PCR amplification for the detection of bla OXA genes and beta-lactamase genes was performed. Twenty one subjects were enrolled. The major hospital admission diagnoses among the 21 subjects were pneumonia (71.4%). Genotyping of CRAB isolates by Rep-PCR revealed that a major clone, designated as type III, comprised fifteen of 21 (71.4%) isolates taken from 5 LTCFs and one study hospital. The isolates with type III were subtyped by PubMLST into 4 ST types. The most prevalent bla OXA genes in these isolates were bla OXA-23 -like (85.70%, 18/21). Twenty isolates carried bla SHV. CONCLUSION: Clonal spread of bla OxA-23 -carrying CRABs was found around LTCFs and the affiliated hospital. In Taiwan, it is important for the government to focus attention on the importance of identifying and tracing CRAB infections in LTCFs. Copyright © 2017. Published by Elsevier B.V.
Oliveira, C J B; Tiao, N; de Sousa, F G C; de Moura, J F P; Santos Filho, L; Gebreyes, W A
2016-03-01
The aim of this study was to investigate the phenotypic and genotypic diversity and anti-microbial resistance among staphylococci of dairy herds that originated from Paraiba State, north-eastern Brazil, a region where such studies are rare. Milk samples (n = 552) were collected from 15 dairy farms. Isolates were evaluated for anti-microbial susceptibility by Kirby-Bauer disc diffusion method. Confirmation of methicillin-resistant Staphylococcus aureus (MRSA) was performed using multiplex PCR targeting mecA and nuc genes in addition to phenotypic assay based on PBP-2a latex agglutination. Clonal relatedness of isolates was determined by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) genotyping. Staphylococci were detected in 269 (49%) of the samples. Among these, 65 (24%) were S. aureus. The remaining 204 isolates were either coagulase-negative staphylococci (n = 188; 70%) or coagulase positive other than S. aureus (n = 16; 6%). Staphylococci were cultured in seven (35%) of the 20 hand swab samples, from which five isolates were S. aureus. The isolates were most commonly resistant against penicillin (43%), ampicillin (38%) and oxacillin (27%). The gene mecA was detected in 21 S. aureus from milk and in one isolate from a milker's hand. None of the isolates were resistant to vancomycin. PFGE findings showed high clonal diversity among the isolates. Based on MLST, we identified a total of 11 different sequence types (STs 1, 5, 6, 83, 97, 126, 1583, 1622, 1623, 1624 and 1625) with four novel STs (ST1622-ST1625). The findings show that MRSA is prevalent in milk from semi-extensive dairy cows in north-eastern Brazil, and further investigation on its extent in various types of milk production systems and the farm-to-table continuum is warranted. © 2015 Blackwell Verlag GmbH.
A Decade of Invasive Meningococcal Disease Surveillance in Poland
Skoczyńska, Anna; Waśko, Izabela; Kuch, Alicja; Kadłubowski, Marcin; Gołębiewska, Agnieszka; Foryś, Małgorzata; Markowska, Marlena; Ronkiewicz, Patrycja; Wasiak, Katarzyna; Kozińska, Aleksandra; Matynia, Bożena; Hryniewicz, Waleria
2013-01-01
Background Neisseria meningitidis is a leading etiologic agent of severe invasive disease. The objective of the study was to characterise invasive meningococcal disease (IMD) epidemiology in Poland during the last decade, based on laboratory confirmed cases. Methods The study encompassed all invasive meningococci collected between 2002 and 2011 in the National Reference Centre for Bacterial Meningitis. The isolates were re-identified and characterised by susceptibility testing, MLST analysis, porA and fetA sequencing. A PCR technique was used for meningococcal identification directly from clinical materials. Results In the period studied, 1936 cases of IMD were confirmed, including 75.6% identified by culture. Seven IMD outbreaks, affecting mostly adolescents, were reported; all were caused by serogroup C meningococci of ST-11. The highest incidence was observed among children under one year of age (15.71/100,000 in 2011). The general case fatality rate in the years 2010–2011 was 10.0%. Meningococci of serogroup B, C, Y and W-135 were responsible for 48.8%, 36.6%, 1.2% and 1.2% of cases, respectively. All isolates were susceptible to third generation cephalosporins, chloramphenicol, ciprofloxacin, and 84.2% were susceptible to penicillin. MLST analysis (2009–2011) revealed that among serogroup B isolates the most represented were clonal complexes (CC) ST-32CC, ST-18CC, ST-41/44CC, ST-213CC and ST-269CC, and among serogroup C: ST-103CC, ST-41/44CC and ST-11CC. Conclusions The detection of IMD in Poland has changed over time, but observed increase in the incidence of the disease was mostly attributed to changes in the surveillance system including an expanded case definition and inclusion of data from non-culture diagnostics. PMID:23977184
Piran, Arezoo; Shahcheraghi, Fereshteh; Solgi, Hamid; Rohani, Mahdi; Badmasti, Farzad
2017-10-01
The multi-drug resistant (MDR) Acinetobacter baumannii as an important nosocomial pathogen has emerged a global health concern in recent years. In this study, we applied three easier, faster, and cost-effective methods including PCR-based open reading frames (ORFs) typing, sequence typing of bla OXA-51-like and RAPD-PCR method to rapid typing of A. baumannii strains. Taken together in the present study the results of ORFs typing, PCR-sequencing of bla OXA-51-like genes and MLST sequence typing revealed there was a high prevalence (62%, 35/57) of ST2 as international and successful clone which detected among clinical isolates of multi-drug resistant A. baumannii with ORF pattern B and bla OXA-66 gene. Only 7% (4/57) of MDR isolates belonged to ST1 with ORF pattern A and bla OXA-69 gene. Interestingly, we detected singleton ST513 (32%, 18/57) that encoded bla OXA-90 and showed the ORF pattern H as previously isolated in Middle East. Moreover, our data showed RAPD-PCR method can detect divergent strains of the STs. The Cl-1, Cl-2, Cl-3, Cl-4, Cl-10, Cl-11, Cl-12, Cl-13 and Cl-14 belonged to ST2. While the Cl-6, Cl-7, Cl-8 and Cl-9 belonged to ST513. Only Cl-5 belonged to ST1. It seems that the combination of these methods have more discriminatory than any method separately and could be effectively applied to rapid detection of the clonal complex (CC) of A. baumannii strains without performing of MLST or PFGE. Copyright © 2017 Elsevier B.V. All rights reserved.
Sathkumara, Harindra D; Merritt, Adam J; Corea, Enoka M; Krishnananthasivam, Shivankari; Natesan, Mohan; Inglis, Timothy J J; De Silva, Aruna Dharshan
2018-02-01
Melioidosis, a potentially fatal tropical infection, is said to be underdiagnosed in low-income countries. An increase in melioidosis cases in Sri Lanka allowed us to analyze the relationship among clinical outcome, bacteriology, epidemiology, and geography in the first 108 laboratory-confirmed cases of melioidosis from a nationwide surveillance program. The additional 76 cases of laboratory-confirmed melioidosis confirmed further associations between Burkholderia pseudomallei multilocus sequence typing (MLST) and infection phenotype; ST1137/unifocal bacteremic infection (χ 2 = 3.86, P < 0.05), ST1136/multifocal infection without bacteremia (χ 2 = 15.8, P < 0.001), and ST1132/unifocal nonbacteremic infection (χ 2 = 6.34, P = 0.02). ST1137 infections were predominantly seen in the Western Province, whereas ST1132, 1135, and 1136 infections predominated in the Northwestern Province. Early participating centers in the surveillance program had a lower melioidosis-associated mortality than later participants (χ 2 = 3.99, P < 0.05). The based upon related sequence types (eBURST) algorithm, a MLST clustering method that infers founding genotypes and patterns of descent for related isolates and clonal complexes in an unrooted tree, showed uneven distribution of sequence types (STs). There was spatial clustering of the commonest STs (ST1132, 1136, and 1137) in the Western, Northwestern, and Central provinces. The recent increase in melioidosis in Sri Lanka uncovered by laboratory-enhanced surveillance is likely to be the result of a combination of improved laboratory detection, increased clinician awareness, recruitment of clinical centers, and small outbreaks. Further development of the surveillance program into a national genotyping-supported melioidosis registry will improve melioidosis diagnosis, treatment, and prevention where underdiagnosis and mortality rates remain high.
Ngo, Thi Hoa; Tran, Thi Bich Chieu; Tran, Thi Thu Nga; Nguyen, Van Dung; Campbell, James; Pham, Hong Anh; Huynh, Huu Tho; Nguyen, Van Vinh Chau; Bryant, Juliet E; Tran, Tinh Hien; Farrar, Jeremy; Schultsz, Constance
2011-03-28
Streptococcus suis is a pathogen of major economic significance to the swine industry and is increasingly recognized as an emerging zoonotic agent in Asia. In Vietnam, S. suis is the leading cause of bacterial meningitis in adult humans. Zoonotic transmission is most frequently associated with serotype 2 strains and occupational exposure to pigs or consumption of infected pork. To gain insight into the role of pigs for human consumption as a reservoir for zoonotic infection in southern Vietnam, we determined the prevalence and diversity of S. suis carriage in healthy slaughterhouse pigs. Nasopharyngeal tonsils were sampled from pigs at slaughterhouses serving six provinces in southern Vietnam and Ho Chi Minh City area from September 2006 to November 2007. Samples were screened by bacterial culture. Isolates of S. suis were serotyped and characterized by multi locus sequence typing (MLST) and pulse field gel electrophoresis (PFGE). Antibiotic susceptibility profiles and associated genetic resistance determinants, and the presence of putative virulence factors were determined. 41% (222/542) of pigs carried S. suis of one or multiple serotypes. 8% (45/542) carried S. suis serotype 2 which was the most common serotype found (45/317 strains, 14%). 80% of serotype 2 strains belonged to the MLST clonal complex 1,which was previously associated with meningitis cases in Vietnam and outbreaks of severe disease in China in 1998 and 2005. These strains clustered with representative strains isolated from patients with meningitis in PFGE analysis, and showed similar antimicrobial resistance and virulence factor profiles. Slaughterhouse pigs are a major reservoir of S. suis serotype 2 capable of causing human infection in southern Vietnam. Strict hygiene at processing facilities, and health education programs addressing food safety and proper handling of pork should be encouraged.
Molecular epidemiology of Streptococcus agalactiae isolated from mastitis in Brazilian dairy herds.
Carvalho-Castro, Glei A; Silva, Juliana R; Paiva, Luciano V; Custódio, Dircéia A C; Moreira, Rafael O; Mian, Glaucia F; Prado, Ingrid A; Chalfun-Junior, Antônio; Costa, Geraldo M
Streptococcus agalactiae is one of the most common pathogens leading to mastitis in dairy herds worldwide; consequently, the pathogen causes major economic losses for affected farmers. In this study, multilocus sequence typing (MLST), genotypic capsular typing by multiplex polymerase chain reaction (PCR), and virulence gene detection were performed to address the molecular epidemiology of 59 bovine (mastitis) S. agalactiae isolates from 36 dairy farms located in the largest milk-producing mesoregions in Brazil (Minas Gerais, São Paulo, Paraná, and Pernambuco). We screened for the virulence genes bac, bca, bibA, cfb, hylB, fbsA, fbsB, PI-1, PI-2a, and PI-2b, which are associated with adhesion, invasion, tissue damage, and/or immune evasion. Furthermore, five capsular types were identified (Ia, Ib, II, III, and IV), and a few isolates were classified as non-typeable (NT). MLST revealed the following eight sequence types (STs): ST-61, ST-67, ST-103, ST-146, ST-226, ST-314, and ST-570, which were clustered in five clonal complexes (CC64, CC67, CC103, CC17, and CC314), and one singleton, ST-91. Among the virulence genes screened in this study, PI-2b, fbsB, cfb, and hylB appear to be the most important during mastitis development in cattle. Collectively, these results establish the molecular epidemiology of S. agalactiae isolated from cows in Brazilian herds. We believe that the data presented here provide a foundation for future research aimed at developing and implementing new preventative and treatment options for mastitis caused by S. agalactiae. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Vinueza-Burgos, Christian; Wautier, Magali; Martiny, Delphine; Cisneros, Marco; Van Damme, Inge; De Zutter, Lieven
2017-01-01
Abstract Thermotolerant Campylobacter spp. are a major cause of foodborne gastrointestinal infections worldwide. The linkage of human campylobacteriosis and poultry has been widely described. In this study we aimed to investigate the prevalence, antimicrobial resistance and genetic diversity of C. coli and C. jejuni in broilers from Ecuador. Caecal content from 379 randomly selected broiler batches originating from 115 farms were collected from 6 slaughterhouses located in the province of Pichincha during 1 year. Microbiological isolation was performed by direct plating on mCCDA agar. Identification of Campylobacter species was done by PCR. Minimum inhibitory concentration (MIC) values for gentamicin, ciprofloxacin, nalidixic acid, tetracycline, streptomycin, and erythromycin were obtained. Genetic variation was assessed by RFLP-flaA typing and Multilocus Sequence Typing (MLST) of selected isolates. Prevalence at batch level was 64.1%. Of the positive batches 68.7% were positive for C. coli, 18.9% for C. jejuni, and 12.4% for C. coli and C. jejuni. Resistance rates above 67% were shown for tetracycline, ciprofloxacin, and nalidixic acid. The resistance pattern tetracycline, ciprofloxin, and nalidixic acid was the dominant one in both Campylobacter species. RFLP-flaA typing analysis showed that C. coli and C. jejuni strains belonged to 38 and 26 profiles respectively. On the other hand MLST typing revealed that C. coli except one strain belonged to CC-828, while C. jejuni except 2 strains belonged to 12 assigned clonal complexes (CCs). Furthermore 4 new sequence types (STs) for both species were described, whereby 2 new STs for C. coli were based on new allele sequences. Further research is necessary to estimate the impact of the slaughter of Campylobacter positive broiler batches on the contamination level of carcasses in slaughterhouses and at retail in Ecuador. PMID:28339716
Zhang, Hui; Xiao, Meng; Kong, Fanrong; O'Sullivan, Matthew V N; Mao, Lei-Li; Zhao, Hao-Ran; Zhao, Ying; Wang, He; Xu, Ying-Chun
2015-04-01
Ceftaroline is a novel cephalosporin with activity against Gram-positive organisms, including meticillin-resistant Staphylococcus aureus (MRSA). The objective of this study was to investigate the susceptibility to ceftaroline of hospital-associated MRSA (HA-MRSA) isolates causing acute bacterial skin and skin-structure infections (ABSSSIs) in China and to examine their relationship by genotyping. A total of 251 HA-MRSA isolates causing ABSSSIs were collected from a multicentre study involving 56 hospitals in 38 large cities across 26 provinces in mainland China. All isolates were characterised by multilocus sequence typing (MLST), staphylococcal cassette chromosome mec (SCCmec) typing, spa typing and detection of the Panton-Valentine leukocidin locus (lukS-PV and lukF-PV). Minimum inhibitory concentrations (MICs) of 14 antimicrobial agents, including ceftaroline, were determined by broth microdilution and were interpreted using Clinical and Laboratory Standards Institute breakpoints. The ceftaroline MIC50 and MIC90 values (MICs that inhibit 50% and 90% of the isolates, respectively) were 1 μg/mL and 2 μg/mL, respectively; 33.5% (n=84) of the isolates studied were ceftaroline-non-susceptible, with MICs of 2 μg/mL, but no isolate exhibited ceftaroline resistance (MIC>2 μg/mL). All of the ceftaroline-non-susceptible isolates belonged to the predominant HA-MRSA clones: 95.2% (n=80) from MLST clonal complex 8 (CC8), with the remaining 4.8% (n=4) from CC5. The high rate of non-susceptibility to ceftaroline amongst HA-MRSA causing ABSSSIs in China is concerning. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Mirajkar, Nandita S; Bekele, Aschalew Z; Chander, Yogesh Y; Gebhart, Connie J
2015-09-01
Outbreaks of bloody diarrhea in swine herds in the late 2000s signaled the reemergence of an economically significant disease, swine dysentery, in the United States. Investigations confirmed the emergence of a novel spirochete in swine, provisionally designated "Brachyspira hampsonii," with two genetically distinct clades. Although it has since been detected in swine and migratory birds in Europe and North America, little is known about its genetic diversity or its relationships with other Brachyspira species. This study characterizes B. hampsonii using a newly developed multilocus sequence typing (MLST) approach and elucidates the diversity, distribution, population structure, and genetic relationships of this pathogen from diverse epidemiological sources globally. Genetic characterization of 81 B. hampsonii isolates, originating from six countries, with our newly established MLST scheme identified a total of 20 sequence types (STs) belonging to three clonal complexes (CCs). B. hampsonii showed a heterogeneous population structure with evidence of microevolution locally in swine production systems, while its clustering patterns showed associations with its epidemiological origins (country, swine production system, and host species). The close genetic relatedness of B. hampsonii isolates from different countries and host species highlights the importance of strict biosecurity control measures. A comparative analysis of 430 isolates representing seven Brachyspira species (pathogens and commensals) from 19 countries and 10 host species depicted clustering by microbial species. It revealed the close genetic relatedness of B. hampsonii with commensal Brachyspira species and also provided support for the two clades of B. hampsonii to be considered a single species. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Kinross, Pete; Petersen, Andreas; Skov, Robert; Van Hauwermeiren, Evelyn; Pantosti, Annalisa; Laurent, Frédéric; Voss, Andreas; Kluytmans, Jan; Struelens, Marc J; Heuer, Ole; Monnet, Dominique L
2017-01-01
Currently, surveillance of livestock-associated meticillin-resistant Staphylococcus aureus (LA-MRSA) in humans in Europe is not systematic but mainly event-based. In September 2014, the European Centre for Disease Prevention and Control (ECDC) initiated a questionnaire to collect data on the number of LA-MRSA from human samples (one isolate per patient) from national/regional reference laboratories in European Union/European Economic Area (EU/EEA) countries in 2013. Identification of LA-MRSA as clonal complex (CC) 398 by multilocus sequence typing (MLST) was preferred, although surrogate methods such as spa-typing were also accepted. The questionnaire was returned by 28 laboratories in 27 EU/EEA countries. Overall, LA-MRSA represented 3.9% of 13,756 typed MRSA human isolates, but it represented ≥ 10% in five countries (Belgium, Denmark, Spain, the Netherlands and Slovenia). Seven of the reference laboratories did not type MRSA isolates in 2013. To monitor the dispersion of LA-MRSA and facilitate targeted control measures, we advocate periodic systematic surveys or integrated multi-sectorial surveillance. PMID:29113628
Kinross, Pete; Petersen, Andreas; Skov, Robert; Van Hauwermeiren, Evelyn; Pantosti, Annalisa; Laurent, Frédéric; Voss, Andreas; Kluytmans, Jan; Struelens, Marc J; Heuer, Ole; Monnet, Dominique L
2017-11-01
Currently, surveillance of livestock-associated meticillin-resistant Staphylococcus aureus (LA-MRSA) in humans in Europe is not systematic but mainly event-based. In September 2014, the European Centre for Disease Prevention and Control (ECDC) initiated a questionnaire to collect data on the number of LA-MRSA from human samples (one isolate per patient) from national/regional reference laboratories in European Union/European Economic Area (EU/EEA) countries in 2013. Identification of LA-MRSA as clonal complex (CC) 398 by multilocus sequence typing (MLST) was preferred, although surrogate methods such as spa -typing were also accepted. The questionnaire was returned by 28 laboratories in 27 EU/EEA countries. Overall, LA-MRSA represented 3.9% of 13,756 typed MRSA human isolates, but it represented ≥ 10% in five countries (Belgium, Denmark, Spain, the Netherlands and Slovenia). Seven of the reference laboratories did not type MRSA isolates in 2013. To monitor the dispersion of LA-MRSA and facilitate targeted control measures, we advocate periodic systematic surveys or integrated multi-sectorial surveillance.
Martínez-Herrero, M C; Garijo-Toledo, M M; Liebhart, D; Ganas, P; Martínez-Díaz, R A; Ponce-Gordo, F; Carrero-Ruiz, A; Hess, M; Gómez-Muñoz, M T
2017-11-01
Extensive diversity has been described within the avian oropharyngeal trichomonad complex in recent years. In this study we developed clonal cultures from four isolates selected by their different ITS1/5.8S/ITS2 (ITS) genotype and their association with gross lesions of avian trichomonosis. Isolates were obtained from an adult racing pigeon and a nestling of Eurasian eagle owl with macroscopic lesions, and from a juvenile wood pigeon and an European turtle dove without clinical signs. Multi-locus sequence typing analysis of the ITS, small subunit of ribosomal rRNA (SSUrRNA) and Fe-hydrogenase (Fe-hyd) genes together with a morphological study by optical and scanning electron microscopy was performed. No significant differences in the structures were observed with scanning electron microscopy. However, the genetic characterisation revealed novel sequence types for the SSUrRNA region and Fe-hyd gene. Two clones were identified as Trichomonas gallinae in the MLST analysis, but the clones from the racing pigeon and European turtle dove showed higher similarity with Trichomonas tenax and Trichomonas canistomae than with T. gallinae at their ITS region, respectively. SSUrRNA sequences grouped all the clones in a clade that includes T. gallinae, T. tenax and T. canistomae. Further diversity was detected within the Fe-hyd locus, with a clear separation from T. gallinae of the clones obtained from the racing pigeon and the European turtle dove. In addition, morphometric comparison by optical microscopy with clonal cultures of T. gallinae revealed significant statistical differences on axostyle projection length in the clone from the European turtle dove. Morphometric and genetic data indicate that possible new species within the Trichomonas genus were detected. Taking in consideration the diversity in Trichomonas species present in the oral cavity of birds, a proper genetic analysis is highly recommended when outbreaks occur. Copyright © 2017 Elsevier B.V. All rights reserved.
Tedim, Ana P; Ruíz-Garbajosa, Patricia; Rodríguez, Maria Concepción; Rodríguez-Baños, Mercedes; Lanza, Val F; Derdoy, Laura; Cárdenas Zurita, Gonzalo; Loza, Elena; Cantón, Rafael; Baquero, Fernando; Coque, Teresa M
2017-01-01
To investigate the population structure of Enterococcus faecium causing bloodstream infections (BSIs) in a tertiary Spanish hospital with low glycopeptide resistance, and to enhance our knowledge of the dynamics of emergence and spread of high-risk clonal complexes. All available E. faecium causing BSIs (n = 413) in our hospital (January 1995-May 2015) were analysed for antibiotic susceptibility (CLSI), putative virulence traits (PCR, esp, hyl Efm ) and clonal relationship (SmaI-PFGE, MLST evaluated by goeBURST and BAPS). The increased incidence of BSIs caused by enterococci [2.3‰ of attended patients (inpatients and outpatients) in 1996 to 3.0‰ in 2014] significantly correlated with the increase in BSIs caused by E. faecium (0.33‰ of attended patients in 1996 to 1.3‰ in 2014). The BSIs Enterococcus faecalis:E. faecium ratio changed from 5:1 in 1996 to 1:1 in 2014. During the last decade an increase in E. faecium BSIs episodes in cancer patients (10.9% in 1995-2005 and 37.1% in 2006-15) was detected. Ampicillin-susceptible E. faecium (ASEfm; different STs/BAPS) and ampicillin-resistant E. faecium (AREfm; ST18/ST17-BAPS 3.3a) isolates were recovered throughout the study. Successive waves of BAPS 2.1a-AREfm (ST117, ST203 and ST80) partially replaced ASEfm and ST18-AREfm since 2006. Different AREfm clones (belonging to BAPS 2.1a and BAPS 3.3a) consistently isolated during the last decade from BSIs might be explained by a continuous and dense colonization (favouring both invasion and cross-transmission) of hospitalized patients. High-density colonization by these clones is probably enhanced in elderly patients by heavy and prolonged antibiotic exposure, particularly in oncological patients. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Rodas, Claudia; Klena, John D.; Nicklasson, Matilda; Iniguez, Volga; Sjöling, Åsa
2011-01-01
Background Enterotoxigenic Escherichia coli (ETEC) is a major cause of traveller's and infantile diarrhoea in the developing world. ETEC produces two toxins, a heat-stable toxin (known as ST) and a heat-labile toxin (LT) and colonization factors that help the bacteria to attach to epithelial cells. Methodology/Principal Findings In this study, we characterized a subset of ETEC clinical isolates recovered from Bolivian children under 5 years of age using a combination of multilocus sequence typing (MLST) analysis, virulence typing, serotyping and antimicrobial resistance test patterns in order to determine the genetic background of ETEC strains circulating in Bolivia. We found that strains expressing the heat-labile (LT) enterotoxin and colonization factor CS17 were common and belonged to several MLST sequence types but mainly to sequence type-423 and sequence type-443 (Achtman scheme). To further study the LT/CS17 strains we analysed the nucleotide sequence of the CS17 operon and compared the structure to LT/CS17 ETEC isolates from Bangladesh. Sequence analysis confirmed that all sequence type-423 strains from Bolivia had a single nucleotide polymorphism; SNPbol in the CS17 operon that was also found in some other MLST sequence types from Bolivia but not in strains recovered from Bangladeshi children. The dominant ETEC clone in Bolivia (sequence type-423/SNPbol) was found to persist over multiple years and was associated with severe diarrhoea but these strains were variable with respect to antimicrobial resistance patterns. Conclusion/Significance The results showed that although the LT/CS17 phenotype is common among ETEC strains in Bolivia, multiple clones, as determined by unique MLST sequence types, populate this phenotype. Our data also appear to suggest that acquisition and loss of antimicrobial resistance in LT-expressing CS17 ETEC clones is more dynamic than acquisition or loss of virulence factors. PMID:22140423
Ankarklev, Johan; Lebbad, Marianne; Einarsson, Elin; Franzén, Oscar; Ahola, Harri; Troell, Karin; Svärd, Staffan G
2018-06-01
Molecular epidemiology and genotyping studies of the parasitic protozoan Giardia intestinalis have proven difficult due to multiple factors, such as low discriminatory power in the commonly used genotyping loci, which has hampered molecular analyses of outbreak sources, zoonotic transmission and virulence types. Here we have focused on assemblage A Giardia and developed a high-resolution assemblage-specific multilocus sequence typing (MLST) method. Analyses of sequenced G. intestinalis assemblage A genomes from different sub-assemblages identified a set of six genetic loci with high genetic variability. DNA samples from both humans (n = 44) and animals (n = 18) that harbored Giardia assemblage A infections, were PCR amplified (557-700 bp products) and sequenced at the six novel genetic loci. Bioinformatic analyses showed five to ten-fold higher levels of polymorphic sites than what was previously found among assemblage A samples using the classic genotyping loci. Phylogenetically, a division of two major clusters in assemblage A became apparent, separating samples of human and animal origin. A subset of human samples (n = 9) from a documented Giardia outbreak in a Swedish day-care center, showed full complementarity at nine genetic loci (the six new and the standard BG, TPI and GDH loci), strongly suggesting one source of infection. Furthermore, three samples of human origin displayed MLST profiles that were phylogenetically more closely related to MLST profiles from animal derived samples, suggesting zoonotic transmission. These new genotyping loci enabled us to detect events of recombination between different assemblage A isolates but also between assemblage A and E isolates. In summary, we present a novel and expanded MLST strategy with significantly improved sensitivity for molecular analyses of virulence types, zoonotic potential and source tracking for assemblage A Giardia. Copyright © 2018. Published by Elsevier B.V.
Rodas, Claudia; Klena, John D; Nicklasson, Matilda; Iniguez, Volga; Sjöling, Asa
2011-01-01
Enterotoxigenic Escherichia coli (ETEC) is a major cause of traveller's and infantile diarrhoea in the developing world. ETEC produces two toxins, a heat-stable toxin (known as ST) and a heat-labile toxin (LT) and colonization factors that help the bacteria to attach to epithelial cells. In this study, we characterized a subset of ETEC clinical isolates recovered from Bolivian children under 5 years of age using a combination of multilocus sequence typing (MLST) analysis, virulence typing, serotyping and antimicrobial resistance test patterns in order to determine the genetic background of ETEC strains circulating in Bolivia. We found that strains expressing the heat-labile (LT) enterotoxin and colonization factor CS17 were common and belonged to several MLST sequence types but mainly to sequence type-423 and sequence type-443 (Achtman scheme). To further study the LT/CS17 strains we analysed the nucleotide sequence of the CS17 operon and compared the structure to LT/CS17 ETEC isolates from Bangladesh. Sequence analysis confirmed that all sequence type-423 strains from Bolivia had a single nucleotide polymorphism; SNP(bol) in the CS17 operon that was also found in some other MLST sequence types from Bolivia but not in strains recovered from Bangladeshi children. The dominant ETEC clone in Bolivia (sequence type-423/SNP(bol)) was found to persist over multiple years and was associated with severe diarrhoea but these strains were variable with respect to antimicrobial resistance patterns. The results showed that although the LT/CS17 phenotype is common among ETEC strains in Bolivia, multiple clones, as determined by unique MLST sequence types, populate this phenotype. Our data also appear to suggest that acquisition and loss of antimicrobial resistance in LT-expressing CS17 ETEC clones is more dynamic than acquisition or loss of virulence factors.
Rodríguez-Tamayo, Erika Andrea; Ruiz-Cadavid, Alejandra; Sánchez-González, Leidy Maritza; García-Valencia, Natalia; Jiménez-Quiceno, Judy Natalia
2016-03-01
Colonization plays a major role in the epidemiology and pathogenesis of Staphylococcus aureus infections. The child population is one of the most susceptible to colonization; however, community and children studies are limited in Colombia. To assess the clonal relationship of S.aureus strains isolated from colonized children in eight day care centers (DCCs) from Medellin and to determine the presence of epidemiological characteristics in these populations. An observational cross-sectional study was conducted on a sample of 200 children aged from 6 months to 5 years attending eight DCCs in Medellin, Colombia, during 2011. Nasal samples were collected from each nostril. The isolates species and methicillin resistance were molecularly confirmed using nuc and mec genes. Genotypic analysis included SCCmec typing, spa typing, PFGE and MLST. Epidemiological information was obtained from the parents and analyzed using the statistics program SPSS 21.0 RESULTS: The colonization frequency in DCCs ranged from 16.7% (n=3) to 53.6% (n=15). Genetically related isolates were identified inside four DCCs. Half (50%) of the isolates were grouped in 3 clusters, which belonged to the clonal complexes CC45, CC30, and CC121. Molecular typing of isolates from colonized children and comparison among DCCs showed the spread of colonizing strains inside DCCs in Medellin; predominantly the CC45 clone, a successful child colonizer. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Ip, Camilla L. C.; Ansari, M. Azim; Wilson, Daniel J.; Espedido, Bjorn A.; Jensen, Slade O.; Bowden, Rory
2016-01-01
Enterococcus faecium, a major cause of hospital-acquired infections, remains problematic because of its propensity to acquire resistance to vancomycin, which currently is considered first-line therapy. Here, we assess the evolution and resistance acquisition dynamics of E. faecium in a clinical context using a series of 132 bloodstream infection isolates from a single hospital. All isolates, of which 49 (37 %) were vancomycin-resistant, underwent whole-genome sequencing. E. faecium was found to be subject to high rates of recombination with little evidence of sequence importation from outside the local E. faecium population. Apart from disrupting phylogenetic reconstruction, recombination was frequent enough to invalidate MLST typing in the identification of clonal expansion and transmission events, suggesting that, where available, whole-genome sequencing should be used in tracing the epidemiology of E. faecium nosocomial infections and establishing routes of transmission. Several forms of the Tn1549-like element–vanB gene cluster, which was exclusively responsible for vancomycin resistance, appeared and spread within the hospital during the study period. Several transposon gains and losses and instances of in situ evolution were inferred and, although usually chromosomal, the resistance element was also observed on a plasmid background. There was qualitative evidence for clonal expansions of both vancomycin-resistant and vancomycin-susceptible E. faecium with evidence of hospital-specific subclonal expansion. Our data are consistent with continuing evolution of this established hospital pathogen and confirm hospital vancomycin-susceptible and vancomycin-resistant E. faecium patient transmission events, underlining the need for careful consideration before modifying current E. faecium infection control strategies. PMID:27713836
van Hal, Sebastiaan J; Ip, Camilla L C; Ansari, M Azim; Wilson, Daniel J; Espedido, Bjorn A; Jensen, Slade O; Bowden, Rory
2016-01-19
Enterococcus faecium , a major cause of hospital-acquired infections, remains problematic because of its propensity to acquire resistance to vancomycin, which currently is considered first-line therapy. Here, we assess the evolution and resistance acquisition dynamics of E. faecium in a clinical context using a series of 132 bloodstream infection isolates from a single hospital. All isolates, of which 49 (37 %) were vancomycin-resistant, underwent whole-genome sequencing. E. faecium was found to be subject to high rates of recombination with little evidence of sequence importation from outside the local E. faecium population. Apart from disrupting phylogenetic reconstruction, recombination was frequent enough to invalidate MLST typing in the identification of clonal expansion and transmission events, suggesting that, where available, whole-genome sequencing should be used in tracing the epidemiology of E. faecium nosocomial infections and establishing routes of transmission. Several forms of the Tn 1549 -like element- vanB gene cluster, which was exclusively responsible for vancomycin resistance, appeared and spread within the hospital during the study period. Several transposon gains and losses and instances of in situ evolution were inferred and, although usually chromosomal, the resistance element was also observed on a plasmid background. There was qualitative evidence for clonal expansions of both vancomycin-resistant and vancomycin-susceptible E. faecium with evidence of hospital-specific subclonal expansion. Our data are consistent with continuing evolution of this established hospital pathogen and confirm hospital vancomycin-susceptible and vancomycin-resistant E. faecium patient transmission events, underlining the need for careful consideration before modifying current E. faecium infection control strategies.
Campylobacter jejuni survival in a poultry processing plant environment.
García-Sánchez, Lourdes; Melero, Beatriz; Jaime, Isabel; Hänninen, Marja-Liisa; Rossi, Mirko; Rovira, Jordi
2017-08-01
Campylobacteriosis is the most common cause of bacterial gastroenteritis worldwide. Consumption of poultry, especially chicken's meat is considered the most common route for human infection. The aim of this study was to determine if Campylobacter spp. might persist in the poultry plant environment before and after cleaning and disinfection procedures and the distribution and their genetic relatedness. During one month from a poultry plant were analyzed a total of 494 samples -defeathering machine, evisceration machine, floor, sink, conveyor belt, shackles and broiler meat- in order to isolate C. jejuni and C. coli. Results showed that C. jejuni and C. coli prevalence was 94.5% and 5.5% respectively. Different typing techniques as PFGE, MLST established seven C. jejuni genotypes. Whole genome MLST strongly suggest that highly clonal populations of C. jejuni can survive in adverse environmental conditions, even after cleaning and disinfection, and persist for longer periods than previous thought (at least 21 days) in the poultry plant environment. Even so, it might act as a source of contamination independently of the contamination level of the flock entering the slaughter line. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bernhardt, A; Sedlacek, L; Wagner, S; Schwarz, C; Würstl, B; Tintelnot, K
2013-12-01
Scedosporium and Pseudallescheria species are the second most common lung-colonising fungi in cystic fibrosis (CF) patients. For epidemiological reasons it is important to trace sources of infection, routes of transmission and to determine whether these fungi are transient or permanent colonisers of the respiratory tract. Molecular typing methods like multilocus sequence typing (MLST) help provide this data. Clinical isolates of the P. boydii complex (including S. apiospermum and P. boydii) from CF patients in different regions of Germany were studied using MLST. Five gene loci, ACT, CAL, RPB2, BT2 and SOD2, were analysed. The S. apiospermum isolates from 34 patients were assigned to 32 sequence types (STs), and the P. boydii isolates from 14 patients to 8 STs. The results revealed that patients can be colonised by individual strains for years. The MLST scheme developed for S. apiospermum and P. boydii is a highly effective tool for epidemiologic studies worldwide. The MLST data are accessible at http://mlst.mycologylab.org/. Copyright © 2013 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Wardal, Ewa; Markowska, Katarzyna; Żabicka, Dorota; Wróblewska, Marta; Giemza, Małgorzata; Mik, Ewa; Połowniak-Pracka, Hanna; Woźniak, Agnieszka; Hryniewicz, Waleria; Sadowy, Ewa
2014-01-01
Vancomycin-resistant Enterococcus faecium represents a growing threat in hospital-acquired infections. Two outbreaks of this pathogen from neighboring Warsaw hospitals have been analyzed in this study. Pulsed-field gel electrophoresis (PFGE) of SmaI-digested DNA, multilocus VNTR analysis (MLVA), and multilocus sequence typing (MLST) revealed a clonal variability of isolates which belonged to three main lineages (17, 18, and 78) of nosocomial E. faecium. All isolates were multidrug resistant and carried several resistance, virulence, and plasmid-specific genes. Almost all isolates shared the same variant of Tn1546 transposon, characterized by the presence of insertion sequence ISEf1 and a point mutation in the vanA gene. In the majority of cases, this transposon was located on 50 kb or 100 kb pRUM-related plasmids, which lacked, however, the axe-txe toxin-antitoxin genes. 100 kb plasmid was easily transferred by conjugation and was found in various clonal backgrounds in both institutions, while 50 kb plasmid was not transferable and occurred solely in MT159/ST78 strains that disseminated clonally in one institution. Although molecular data indicated the spread of VRE between two institutions or a potential common source of this alert pathogen, epidemiological investigations did not reveal the possible route by which outbreak strains disseminated. PMID:25003118
Recombination-Driven Genome Evolution and Stability of Bacterial Species.
Dixit, Purushottam D; Pang, Tin Yau; Maslov, Sergei
2017-09-01
While bacteria divide clonally, horizontal gene transfer followed by homologous recombination is now recognized as an important contributor to their evolution. However, the details of how the competition between clonality and recombination shapes genome diversity remains poorly understood. Using a computational model, we find two principal regimes in bacterial evolution and identify two composite parameters that dictate the evolutionary fate of bacterial species. In the divergent regime, characterized by either a low recombination frequency or strict barriers to recombination, cohesion due to recombination is not sufficient to overcome the mutational drift. As a consequence, the divergence between pairs of genomes in the population steadily increases in the course of their evolution. The species lacks genetic coherence with sexually isolated clonal subpopulations continuously formed and dissolved. In contrast, in the metastable regime, characterized by a high recombination frequency combined with low barriers to recombination, genomes continuously recombine with the rest of the population. The population remains genetically cohesive and temporally stable. Notably, the transition between these two regimes can be affected by relatively small changes in evolutionary parameters. Using the Multi Locus Sequence Typing (MLST) data, we classify a number of bacterial species to be either the divergent or the metastable type. Generalizations of our framework to include selection, ecologically structured populations, and horizontal gene transfer of nonhomologous regions are discussed as well. Copyright © 2017 by the Genetics Society of America.
Feltrin, Fabiola; Alba, Patricia; Kraushaar, Britta; Ianzano, Angela; Argudín, María Angeles; Di Matteo, Paola; Porrero, María Concepción; Aarestrup, Frank M.; Butaye, Patrick; Franco, Alessia
2015-01-01
Pandemic methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 97 (CC97) lineages originated from livestock-to-human host jumps. In recent years, CC97 has become one of the major MRSA lineages detected in Italian farmed animals. The aim of this study was to characterize and analyze differences in MRSA and methicillin-susceptible S. aureus (MSSA) mainly of swine and bovine origins. Forty-seven CC97 isolates, 35 MRSA isolates, and 6 MSSA isolates from different Italian pig and cattle holdings; 5 pig MRSA isolates from Germany; and 1 human MSSA isolate from Spain were characterized by macrorestriction pulsed-field gel electrophoresis (PFGE) analysis, multilocus sequence typing (MLST), spa typing, staphylococcal cassette chromosome mec (SCCmec) typing, and antimicrobial resistance pattern analysis. Virulence and resistance genes were investigated by PCR and microarray analysis. Most of the isolates were of SCCmec type V (SCCmec V), except for two German MRSA isolates (SCCmec III). Five main clusters were identified by PFGE, with the German isolates (clusters I and II) showing 60.5% similarity with the Italian isolates, most of which (68.1%) grouped into cluster V. All CC97 isolates were Panton-Valentine leukocidin (PVL) negative, and a few (n = 7) tested positive for sak or scn. All MRSA isolates were multidrug resistant (MDR), and the main features were erm(B)- or erm(C)-mediated (n = 18) macrolide-lincosamide-streptogramin B resistance, vga(A)-mediated (n = 37) pleuromutilin resistance, fluoroquinolone resistance (n = 33), tet(K) in 32/37 tet(M)-positive isolates, and blaZ in almost all MRSA isolates. Few host-associated differences were detected among CC97 MRSA isolates: their extensive MDR nature in both pigs and dairy cattle may be a consequence of a spillback from pigs of a MRSA lineage that originated in cattle as MSSA and needs further investigation. Measures should be implemented at the farm level to prevent spillover to humans in intensive farming areas. PMID:26590279
Masood, Naqash; Moore, Karen; Farbos, Audrey; Paszkiewicz, Konrad; Dickins, Ben; McNally, Alan; Forsythe, Stephen
2015-10-05
Cronobacter sakazakii is a member of the genus Cronobacter that has frequently been isolated from powdered infant formula (PIF) and linked with rare but fatal neonatal infections such as meningitis and necrotising enterocolitis. The Cronobacter MLST scheme has reported over 400 sequence types and 42 clonal complexes; however C. sakazakii clonal complex 4 (CC4) has been linked strongly with neonatal infections, especially meningitis. There have been a number of reported Cronobacter outbreaks over the last three decades. The largest outbreak of C. sakazakii was in a neonatal intensive care unit (NICU) in France (1994) that lasted over 3 months and claimed the lives of three neonates. The present study used whole genome sequencing data of 26 isolates obtained from this outbreak to reveal their relatedness. This study is first of its kind to use whole genome sequencing data to analyse a Cronobacter outbreak. Whole genome sequencing data was generated for 26 C. sakazakii isolates on the Illumina MiSeq platform. The whole genome phylogeny was determined using Mugsy and RaxML. SNP calls were determined using SMALT and SAMtools, and filtered using VCFtools. The whole genome phylogeny suggested 3 distant clusters of C. sakazakii isolates were associated with the outbreak. SNP typing and phylogeny indicate the source of the C. sakazakii could have been from extrinsic contamination of reconstituted infant formula from the NICU environment and personnel. This pool of strains would have contributed to the prolonged duration of the outbreak, which was up to 3 months. Furthermore 3 neonates were co-infected with C. sakazakii from two different genotype clusters. The genomic investigation revealed the outbreak consisted of an heterogeneous population of C. sakazakii isolates. The source of the outbreak was not identified, but probably was due to environmental and personnel reservoirs resulting in extrinsic contamination of the neonatal feeds. It also indicated that C. sakazakii isolates from different genotype clusters have the ability to co-infect neonates.
Li, Yuanhong; Yu, Huan; Jiang, Hua; Jiao, Yang; Zhang, Yaodong; Shao, Jihong
2017-01-01
Cronobacter species are important food-borne opportunistic pathogens which have been implicated in the cause of necrotizing enterocolitis, sepsis, and meningitis in neonates and infants. However, these bacteria are routinely found in foodstuffs, clinical specimens, and environmental samples. This study investigated the genetic diversity, antimicrobial susceptibility, and biofilm formation of Cronobacter isolates (n = 40) recovered from spices and cereals in China during 2014–2015. Based on the fusA sequencing analysis, we found that the majority (23/40, 57.5%) of Cronobacter isolates in spices and cereals were C. sakazakii, while the remaining strains were C. dublinensis (6/40, 15.0%), C. malonaticus (5/40, 12.5%), C. turicensis (4/40, 10.0%), and C. universalis (2/40, 5.0%). Multilocus sequence typing (MLST) analysis produced 30 sequence types (STs) among the 40 Cronobacter isolates, with 5 STs (ST4, ST13, ST50, ST129, and ST158) related to neonatal meningitis. The pattern of the overall ST distribution was diverse; in particular, it was revealed that ST148 was the predominant ST, presenting 12.5% within the whole population. MLST assigned 12 isolates to 7 different clonal complexes (CCs), 4, 13, 16, 17, 72, 129, and 143, respectively. The results of O-antigen serotyping indicated that C. sakazakii serotype O1 and O2 were the most two prevalent serotypes. The antimicrobial susceptibility testing showed that the 40 Cronobacter isolates were susceptible to most of the antibiotics tested except for ceftriaxone, meropenem, and aztreona. Of the 40 Cronobacter strains tested, 13 (32.5%) were assessed as weak bioflim producers, one (2.5%) was a moderate biofilm producer, one (2.5%) was strong biofilm producer, and the others (62.5%) were non-biofilm producers. MLST and O-antigen serotyping have indicated that Cronobacter strains recovered from spices and cereals were genetically diverse. Isolates of clinical origin, particularly the C. sakazakii ST4 neonatal meningitic pathovar, have been identified from spices and cereals. Moreover, antimicrobial resistance of Cronobacter strains was observed, which may imply a potential public health risk. Therefore, the surveillance of Cronobacter spp. in spices and cereals should be strengthened to improve epidemiological understandings of Cronobacter infections. PMID:29312246
Brehony, Carina; O'Connor, Lois; Meyler, Kenneth; Jolley, Keith A.; Bray, James; Bennett, Desiree; Maiden, Martin C. J.; Cunney, Robert
2016-01-01
A carriage study was undertaken (n = 112) to ascertain the prevalence of Neisseria spp. following the eighth case of invasive meningococcal disease in young children (5 to 46 months) and members of a large extended indigenous ethnic minority Traveller family (n = 123), typically associated with high-occupancy living conditions. Nested multilocus sequence typing (MLST) was employed for case specimen extracts. Isolates were genome sequenced and then were assembled de novo and deposited into the Bacterial Isolate Genome Sequencing Database (BIGSdb). This facilitated an expanded MLST approach utilizing large numbers of loci for isolate characterization and discrimination. A rare sequence type, ST-6697, predominated in disease specimens and isolates that were carried (n = 8/14), persisting for at least 44 months, likely driven by the high population density of houses (n = 67/112) and trailers (n = 45/112). Carriage for Neisseria meningitidis (P < 0.05) and Neisseria lactamica (P < 0.002) (2-sided Fisher's exact test) was more likely in the smaller, more densely populated trailers. Meningococcal carriage was highest in 24- to 39-year-olds (45%, n = 9/20). Evidence of horizontal gene transfer (HGT) was observed in four individuals cocolonized by Neisseria lactamica and Neisseria meningitidis. One HGT event resulted in the acquisition of 26 consecutive N. lactamica alleles. This study demonstrates how housing density can drive meningococcal transmission and carriage, which likely facilitated the persistence of ST-6697 and prolonged the outbreak. Whole-genome MLST effectively distinguished between highly similar outbreak strain isolates, including those isolated from person-to-person transmission, and also highlighted how a few HGT events can distort the true phylogenetic relationship between highly similar clonal isolates. PMID:27629899
McManus, Brenda A.; Maguire, Rory; Cashin, Phillipa J.; Claffey, Noel; Flint, Stephen; Abdulrahim, Mohammed H.
2012-01-01
This study investigated the prevalence and cell density of Candida species in periodontal pockets, healthy subgingival sites, and oral rinse samples of patients with untreated periodontitis. Twenty-one periodontitis patients underwent sampling at two periodontitis sites, and 19/21 of these patients underwent sampling at one periodontally healthy site. Both paper point and curette sampling techniques were employed. The periodontitis patients and 50 healthy subjects were also sampled by oral rinse. Candida isolates were recovered on CHROMagar Candida medium, and representative isolates were identified. Candida spp. were recovered from 10/21 (46.7%) periodontitis patients and from 16/50 (32%) healthy subjects. C. albicans predominated in both groups and was recovered from all Candida-positive subjects. Candida-positive periodontitis patients yielded Candida from periodontal pockets with average densities of 3,528 and 3,910 CFU/sample from curette and paper point samples, respectively, and 1,536 CFU/ml from oral rinse samples. The majority (18/19) of the healthy sites sampled from periodontitis patients were Candida negative. The 16 Candida-positive healthy subjects yielded an average of 279 CFU/ml from oral rinse samples. C. albicans isolates were investigated by multilocus sequence typing (MLST) to determine if specific clonal groups were associated with periodontitis. MLST analysis of 31 C. albicans isolates from periodontitis patients yielded 19 sequence types (STs), 13 of which were novel. Eleven STs belonged to MLST clade 1. In contrast, 16 C. albicans isolates from separate healthy subjects belonged to 16 STs, with 4 isolates belonging to clade 1. The distributions of STs between both groups were significantly different (P = 0.04) and indicated an enrichment of C. albicans isolates in periodontal pockets, which warrants a larger study. PMID:22875886
Ganjo, Aryann R; Maghdid, Delshad M; Mansoor, Isam Y; Kok, Dik J; Severin, Juliette A; Verbrugh, Henri A; Kreft, Deborah; Fatah, M H; Alnakshabandi, A A; Dlnya, Asad; Hammerum, Anette M; Ng, Kim; Goessens, Wil
2016-12-01
In addition to intrinsic resistance in Acinetobacter baumannii, many different types of acquired resistance mechanisms have been reported, including the presence of VIM and IMP metallo β-lactamases and also of bla OXA-23-like and bla OXA-58-like enzymes. In the Kurdistan region of Iraq, the multiresistant A. baumannii-calcoaceticus complex is prevalent. We characterized the different mechanisms of resistance present in clinical isolates collected from different wards and different hospitals from the Kurdistan region. One hundred twenty clinical nonduplicate A. baumannii-calcoaceticus complex isolates were collected from four hospitals between January 2012 and October 2013. The identification of the isolates was confirmed by MALDI-TOF. The susceptibility to different antibiotics was determined by disk diffusion and analyzed in accordance to EUCAST guidelines. By PCR, the presence of bla OXA-51-like , bla OXA-23-like , bla OXA-24-like , and bla OXA-58-like genes was determined as well as the presence of the insertion element ISAba1. Clonal diversity was analyzed by pulsed-field gel electrophoresis (PFGE) using the restriction enzyme ApaI and, in addition, multilocus sequence typing (MLST) was performed on a selected subset of 15 isolates. All 120 A. baumannii isolates harbored bla OXA-51-like genes. One hundred one out of 110 (92%) imipenem (IMP)-resistant A. baumannii-calcoaceticus complex isolates additionally carried the bla OXA-23-like gene and four isolates (3%) were positive for bla OXA-24-like. All 101 bla OXA-23-like -positive isolates had the ISAba1 insertion sequence, 1,600 bp upstream of the bla OXA-23-like gene. The bla OXA-58-like gene was not detected in any of the 110 IMP-resistant strains. Eight different PFGE clusters were identified and distributed over the different hospitals. MLST analysis performed on a subset of 15 representative isolates revealed the presence of the international clone ST2 (Pasteur). Besides ST2 (Pasteur), also many other STs (Pasteur) were encountered such as ST136, ST94, ST623, ST792, and ST793, all carrying the bla OXA-23 gene. In clinical A. baumannii-calcoaceticus complex isolates from Kurdistan-Iraq, the bla OXA-23 gene in combination with the upstream ISAba1 insertion element is largely responsible for carbapenem resistance. Several small clusters of identical genotypes were found from patients admitted to the same ward and during overlapping time periods, suggesting transmission within the hospital. Identification of source(s) and limiting the transmission of these strains to patients needs to be prioritized.
Bojarska, A; Molska, E; Janas, K; Skoczyńska, A; Stefaniuk, E; Hryniewicz, W; Sadowy, E
2016-06-01
The purpose of this study was to perform an analysis of Streptococcus suis human invasive isolates, collected in Poland by the National Reference Centre for Bacterial Meningitis. Isolates obtained from 21 patients during 2000-2013 were investigated by phenotypic tests, multilocus sequence typing (MLST), analysis of the TR9 locus from the multilocus variable number tandem repeat (VNTR) analysis (MLVA) scheme and pulsed-field gel electrophoresis (PFGE) of SmaI-digested DNA. Determinants of virulence and antimicrobial resistance were detected by polymerase chain reaction (PCR) and analysed by sequencing. All isolates represented sequence type 1 (ST1) and were suggested to be serotype 2. PFGE and analysis of the TR9 locus allowed the discrimination of four and 17 types, respectively. Most of the isolates were haemolysis- and DNase-positive, and around half of them formed biofilm. Genes encoding suilysin, extracellular protein factor, fibronectin-binding protein, muramidase-released protein, surface antigen one, enolase, serum opacity factor and pili were ubiquitous in the studied group, while none of the isolates carried sequences characteristic for the 89K pathogenicity island. All isolates were susceptible to penicillin, cefotaxime, imipenem, moxifloxacin, chloramphenicol, rifampicin, gentamicin, linezolid, vancomycin and daptomycin. Five isolates (24 %) were concomitantly non-susceptible to erythromycin, clindamycin and tetracycline, and harboured the tet(O) and erm(B) genes; for one isolate, lsa(E) and lnu(B) were additionally detected. Streptococcus suis isolated in Poland from human invasive infections belongs to a globally distributed clonal complex of this pathogen, enriched in virulence markers. This is the first report of the lsa(E) and lnu(B) resistance genes in S. suis.
Invasive Haemophilus influenzae disease in the vaccine era in Rio de Janeiro, Brazil
Tuyama, Mari; Corrêa-Antônio, Jessica; Schlackman, Jessica; Marsh, Jane W; Rebelo, Maria C; Cerqueira, Elaine O; Nehab, Márcio; Kegele, Fabíola; Carmo, Getúlio F; Thielmann, Dominique CA; Barroso, Paulo F; Harrison, Lee H; Barroso, David E
2017-01-01
BACKGROUND Haemophilus influenzae (Hi) serotype b (Hib) conjugate vaccine was incorporated into the infant immunisation schedule in Brazil in 1999, where Hib was one of the major etiologic sources of community-acquired bacterial meningitis. OBJECTIVES The purpose of this study is to describe the molecular epidemiology of invasive Hi disease in Rio de Janeiro state, Brazil, before and after vaccine introduction. METHODS Surveillance data from 1986 to 2014 were analysed. Hi isolates recovered from cerebrospinal fluid (CSF) or blood from 1993 to 2014 were serotyped by slide agglutination, genotyped by multilocus sequence typing (MLST), and the capsule type evaluation, differentiation of serologically non-typeable isolates, and characterisation of the capsule (cap) locus was done by polymerase chain reaction. Antimicrobial susceptibility testing was performed using E-test. FINDINGS From 1986 to 1999 and from 2000 to 2014, 2580 and 197 (42% without serotype information) confirmed cases were reported, respectively. The case fatality rate was 17% and did not correlate with the strain. Hib and b- variant isolates belonged to ST-6, whereas serotype a isolates belonged to the ST-23 clonal complex. Serotype a appeared to emerge during the 2000s. Non-encapsulated isolates were non-clonal and distinct from the encapsulated isolates. Ampicillin-resistant isolates were either of serotype b or were non-encapsulated, and all of them were β-lactamase-positive but amoxicillin-clavulanic acid susceptible. MAIN CONCLUSIONS Although Hi meningitis became a relatively rare disease in Rio de Janeiro after the introduction of the Hib conjugate vaccine, the isolates recovered from patients have become more diverse. These results indicate the need to implement an enhanced surveillance system to continue monitoring the impact of the Hib conjugate vaccine. PMID:28225904
Invasive Haemophilus influenzae disease in the vaccine era in Rio de Janeiro, Brazil.
Tuyama, Mari; Corrêa-Antônio, Jessica; Schlackman, Jessica; Marsh, Jane W; Rebelo, Maria C; Cerqueira, Elaine O; Nehab, Márcio; Kegele, Fabíola; Carmo, Getúlio F; Thielmann, Dominique Ca; Barroso, Paulo F; Harrison, Lee H; Barroso, David E
2017-03-01
Haemophilus influenzae (Hi) serotype b (Hib) conjugate vaccine was incorporated into the infant immunisation schedule in Brazil in 1999, where Hib was one of the major etiologic sources of community-acquired bacterial meningitis. The purpose of this study is to describe the molecular epidemiology of invasive Hi disease in Rio de Janeiro state, Brazil, before and after vaccine introduction. Surveillance data from 1986 to 2014 were analysed. Hi isolates recovered from cerebrospinal fluid (CSF) or blood from 1993 to 2014 were serotyped by slide agglutination, genotyped by multilocus sequence typing (MLST), and the capsule type evaluation, differentiation of serologically non-typeable isolates, and characterisation of the capsule (cap) locus was done by polymerase chain reaction. Antimicrobial susceptibility testing was performed using E-test. From 1986 to 1999 and from 2000 to 2014, 2580 and 197 (42% without serotype information) confirmed cases were reported, respectively. The case fatality rate was 17% and did not correlate with the strain. Hib and b- variant isolates belonged to ST-6, whereas serotype a isolates belonged to the ST-23 clonal complex. Serotype a appeared to emerge during the 2000s. Non-encapsulated isolates were non-clonal and distinct from the encapsulated isolates. Ampicillin-resistant isolates were either of serotype b or were non-encapsulated, and all of them were β-lactamase-positive but amoxicillin-clavulanic acid susceptible. Although Hi meningitis became a relatively rare disease in Rio de Janeiro after the introduction of the Hib conjugate vaccine, the isolates recovered from patients have become more diverse. These results indicate the need to implement an enhanced surveillance system to continue monitoring the impact of the Hib conjugate vaccine.
Epidemiology and molecular typing of VRE bloodstream isolates in an Irish tertiary care hospital.
Ryan, L; O'Mahony, E; Wrenn, C; FitzGerald, S; Fox, U; Boyle, B; Schaffer, K; Werner, G; Klare, I
2015-10-01
Ireland has the highest rate of vancomycin-resistant Enterococcus faecium (VREfm) isolated from blood of nosocomial patients in Europe, which rose from 33% (110/330) in 2007 to 45% (178/392) in 2012. No other European country had a VREfm rate from blood cultures of >25%. Our aim was to elucidate the reasons for this significantly higher rate in Ireland. The epidemiology and molecular typing of VRE from bloodstream infections (BSIs) was examined in a tertiary care referral hospital and isolates were compared with those from other tertiary care referral centres in the region. The most common source of VRE BSIs was intra-abdominal sepsis, followed by line-related infection and febrile neutropenia. Most of the isolates were positive for vanA; 52% (43/83) possessed the esp gene and 12% (10/83) possessed the hyl gene. Genotyping by SmaI macrorestriction analysis (PFGE) of isolates revealed clonal relatedness between bloodstream isolates and environmental isolates. VRE BSI isolates from two other tertiary care hospitals in the Dublin region showed relatedness by PFGE analysis. MLST revealed four STs (ST17, ST18, ST78 and ST203), all belonging to the clonal complex of hospital-associated strains. Irish VRE BSI isolates have virulence factor profiles as previously reported from Europe. Typing analysis shows the spread of individual clones within the hospital and between regional tertiary care hospitals. Apart from transmission of VRE within the hospital and transfer of colonized patients between Irish hospitals, no other explanation for the persistently high VREfm BSI rate in Ireland has been found. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Mirajkar, Nandita S; Gebhart, Connie J
2014-01-01
Outbreaks of mucohemorrhagic diarrhea in pigs caused by Brachyspira hyodysenteriae in the late 2000s indicated the re-emergence of Swine Dysentery (SD) in the U.S. Although the clinical disease was absent in the U.S. since the early 1990s, it continued to cause significant economic losses to other swine rearing countries worldwide. This study aims to fill the gap in knowledge pertaining to the re-emergence and epidemiology of B. hyodysenteriae in the U.S. and its global relationships using a multi-locus sequence typing (MLST) approach. Fifty-nine post re-emergent isolates originating from a variety of sources in the U.S. were characterized by MLST, analyzed for epidemiological relationships (within and between multiple sites of swine systems), and were compared with pre re-emergent isolates from the U.S. Information for an additional 272 global isolates from the MLST database was utilized for international comparisons. Thirteen nucleotide sequence types (STs) including a predominant genotype (ST93) were identified in the post re-emergent U.S. isolates; some of which showed genetic similarity to the pre re-emergent STs thereby suggesting its likely role in the re-emergence of SD. In the U.S., in general, no more than one ST was found on a site; multiple sites of a common system shared a ST; and STs found in the U.S. were distinct from those identified globally. Of the 110 STs characterized from ten countries, only two were found in more than one country. The U.S. and global populations, identified as clonal and heterogeneous based on STs, showed close relatedness based on amino acid types (AATs). One predicted founder type (AAT9) and multiple predicted subgroup founder types identified for both the U.S. and the global population indicate the potential microevolution of this pathogen. This study elucidates the strain diversity and microevolution of B. hyodysenteriae, and highlights the utility of MLST for epidemiological and surveillance studies.
Buján, Noemí; Balboa, Sabela; L Romalde, Jesús; E Toranzo, Alicia; Magariños, Beatriz
2018-05-08
At present, the genus Edwardsiella compiles five species: E. tarda, E. hoshinae, E. ictaluri, E. piscicida and E. anguillarum. Some species of this genus such us E. ictaluri and E. piscicida are important pathogens of numerous fish species. With the description of the two latter species, the phylogeny of Edwardsiella became more complicated. With the aim to clarify the relationships among all species in the genus, a multilocus sequence typing (MLST) approach was developed and applied to characterize 56 isolates and 6 reference strains belonging to the five Edwardsiella species. Moreover, several analyses based on the MLST scheme were performed to investigate the evolution within the genus, as well as the influence of recombination and mutation in the speciation. Edwardsiella isolates presented a high genetic variability reflected in the fourteen sequence types (ST) represented by a single isolates out of eighteen total ST. Mutation events were considerably more frequent than recombination, although both approximately equal influenced the genetic diversification. However, the speciation among species occurred mostly by recombination. Edwardsiella genus displays a non-clonal population structure with some degree of geographical isolation followed by a population expansion of E. piscicida. A database from this study was created and hosted on pubmlst.org (http://pubmlst.org/edwardsiella/). Copyright © 2018 Elsevier Inc. All rights reserved.
Bachiri, Taous; Bakour, Sofiane; Lalaoui, Rym; Belkebla, Nadia; Allouache, Meriem; Rolain, Jean Marc; Touati, Abdelaziz
2018-04-01
The aim of the present study was to screen for the presence of carbapenemase-producing Enterobacteriaceae (CPE) isolates from wild boars and Barbary macaques in Algeria. Fecal samples were collected from wild boars (n = 168) and Barbary macaques (n = 212), in Bejaia, Algeria, between September 2014 and April 2016. The isolates were identified and antimicrobial susceptibility was determined. Carbapenem resistance determinants were studied using PCR and sequencing, while clonal relatedness was performed using multilocus sequence typing (MLST). PCR was used to investigate certain virulence genes. Three CPE isolates from three different samples (1.8%) recovered from wild boars were identified as Escherichia coli (two isolates) and Klebsiella pneumoniae (one isolate). These isolates were resistant to amoxicillin, amoxicillin-clavulanate, tobramycin, ertapenem, and meropenem. The results of PCR and sequencing analysis showed that all three isolates produced the OXA-48 enzyme. The MLST showed that the two E. coli isolates were assigned to the same sequence type, ST635, and belonged to phylogroup A, whereas K. pneumoniae strain belonged to ST13. The K. pneumoniae strain was positive for multiple virulence factors, whereas no virulence determinants were found in E. coli isolates. This is the first report of OXA-48-producing Enterobacteriaceae in wild animals from Algeria and Africa.
Jorgensen, F.; Ellis-Iversen, J.; Rushton, S.; Bull, S. A.; Harris, S. A.; Bryan, S. J.; Gonzalez, A.; Humphrey, T. J.
2011-01-01
Geographical and seasonal variation in the incidence and prevalence of Campylobacter jejuni and C. coli in housed broiler flocks reared in Great Britain in 2004 to 2006 was investigated in this study. Ceca (30) from 797 flocks, not subject to prior partial depopulation and reared on 211 farms, were examined individually for the presence of Campylobacter spp. The best-fitting climatic factors explained approximately 46% of the prevalence of Campylobacter-colonized flocks at slaughter and consisted of a combination of temperature at slaughter, number of sunshine hours in placement month, and millimeters of rainfall in placement month. Positive flocks were more likely to be slaughtered between June and November than during the rest of the year and to be reared in northern Great Britain than in central or southern Great Britain. C. jejuni was identified in approximately 90% of flocks, and C. coli was present in 10% of flocks. The most common clonal complexes identified in 226 isolates typed by multilocus sequence typing (MLST) were ST-45, ST-21, ST-574, ST-443, and ST-828. Flocks slaughtered at the same time were more likely to have similar complexes, and ST-45 had a seasonal pattern, with the highest prevalence in June, and was also more likely to be present in flocks reared in northern Great Britain. PMID:21460110
Pires, João; Kuenzli, Esther; Kasraian, Sara; Tinguely, Regula; Furrer, Hansjakob; Hilty, Markus; Hatz, Christoph; Endimiani, Andrea
2016-01-01
We aimed to assess the intestinal colonization dynamics by multiple extended-spectrum cephalosporin-resistant Enterobacteriaceae (ESC-R-Ent) clones in Swiss travelers to India, a country with high prevalence of these multidrug-resistant pathogens. Fifteen healthy volunteers (HVs) colonized with ESC-R-Ent after traveling to India who provided stools before, after, and at 3- and 6-month follow-up are presented in this study. Stools were enriched in a LB broth containing 3 mg/L cefuroxime and plated in standard selective media (BLSE, ChromID ESBL, Supercarba) to detect carbapenem- and/or ESC-R-Ent. At least 5 Enterobacteriaceae colonies were analyzed for each stool provided. All strains underwent phenotypic tests (MICs in microdilution) and molecular typing to define bla genes (microarray, PCR/sequencing), clonality (MLST, rep-PCR), and plasmid content. While only three HVs were colonized before the trip, all participants had positive stools after returning, but the colonization rate decreased during the follow-up period (i.e., six HVs were still colonized at both 3 and 6 months). More importantly, polyclonal acquisition (median of 2 clones, range 1–5) was identified at return in all HVs. The majority of the Escherichia coli isolates belonged to phylogenetic groups A and B1 and to high diverse non-epidemic sequence types (STs); however, 15% of them belonged to clonal complex 10 and mainly possessed blaCTX−M−15 genes. F family plasmids were constantly found (~80%) in the recovered ESC-R-Ent. Our results indicate a possible polyclonal acquisition of the ESC-R-Ent via food-chain and/or through an environmental exposure. For some HVs, prolonged colonization in the follow-up period was observed due to clonal persistence or presence of the same plasmid replicon types in a new bacterial host. Travel medicine practitioners, clinicians, and clinical microbiologists who are facing the returning travelers and their samples for different reasons should be aware of this important phenomenon, so that better infection control measures, treatment strategies, and diagnostic tests can be adopted. PMID:27462305
Antimicrobial Susceptibility and Clonality of Clinical Ureaplasma Isolates in the United States
Fernández, Javier; Karau, Melissa J.; Cunningham, Scott A.; Greenwood-Quaintance, Kerryl E.
2016-01-01
Ureaplasma urealyticum and Ureaplasma parvum are pathogens involved in urogenital tract and intrauterine infections and also in systemic diseases in newborns and immunosuppressed patients. There is limited information on the antimicrobial susceptibility and clonality of these species. In this study, we report the susceptibility of 250 contemporary isolates of Ureaplasma (202 U. parvum and 48 U. urealyticum isolates) recovered at Mayo Clinic, Rochester, MN. MICs of doxycycline, azithromycin, ciprofloxacin, tetracycline, erythromycin, and levofloxacin were determined by broth microdilution, with MICS of the last three interpreted according to CLSI guidelines. Levofloxacin resistance was found in 6.4% and 5.2% of U. parvum and U. urealyticum isolates, respectively, while 27.2% and 68.8% of isolates, respectively, showed ciprofloxacin MICs of ≥4 μg/ml. The resistance mechanism of levofloxacin-resistant isolates was due to mutations in parC, with the Ser83Leu substitution being most frequent, followed by Glu87Lys. No macrolide resistance was found among the 250 isolates studied; a single U. parvum isolate was tetracycline resistant. tet(M) was found in 10 U. parvum isolates, including the single tetracycline-resistant isolate, as well as in 9 isolates which had low tetracycline and doxycycline MICs. Multilocus sequence typing (MLST) performed on a selection of 46 isolates showed high diversity within the clinical Ureaplasma isolates studied, regardless of antimicrobial susceptibility. The present work extends previous knowledge regarding susceptibility to antimicrobial agents, resistance mechanisms, and clonality of Ureaplasma species in the United States. PMID:27246773
2013-01-01
Background Treatment of subclinical mastitis during lactation can have both direct (individual animal level) and indirect (population level) effects. With a few exceptions, prior research has focused on evaluating the direct effects of mastitis treatment, and to date no controlled field trials have been conducted to test whether beneficial indirect effects of lactation treatment strategies targeting subclinical mastitis can be demonstrated on commercial dairy farms. Furthermore, there is limited knowledge on the impact of such interventions on the population dynamics of specific bacterial strains. The purpose of this study was to test the hypothesis that lactation therapy targeting S. aureus subclinical intramammary infection reduces transmission of S. aureus strains within dairy herds. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were used to determine strain specific infection dynamics in treated and control groups in a split herd trial conducted on 2 commercial dairy farms. Results The direct effect of 8 days intramammary lactation therapy with pirlimycin hydrochloride was demonstrated by an increased proportion of cure and a reduction in duration of infection in quarters receiving treatment compared to untreated controls. The indirect effect of lactation therapy was demonstrated by reduction of new S. aureus intramammary infections (IMI) caused by the dominant strain type in both herds. Strain typing of representative isolates taken over the duration of all IMI, including pre- and post-treatment isolates, provided more precise estimates of new infection, cure, and re-infection rates. New S. aureus infections in recovered susceptible quarters and the emergence of a new strain type in one herd influenced incidence measures. Conclusion In addition to demonstrating positive direct effects of lactation therapy, this study provides evidence that treatment of subclinical S. aureus mastitis during lactation can have indirect effects including preventing new IMI and reducing incidence of clinical mastitis within dairy herds. Strain specific transmission parameter estimates for S. aureus MLST clonal complexes 5, 97 and 705 in 2 commercial dairy herds are also reported. PMID:23398676
Barlow, John W; Zadoks, Ruth N; Schukken, Ynte H
2013-02-11
Treatment of subclinical mastitis during lactation can have both direct (individual animal level) and indirect (population level) effects. With a few exceptions, prior research has focused on evaluating the direct effects of mastitis treatment, and to date no controlled field trials have been conducted to test whether beneficial indirect effects of lactation treatment strategies targeting subclinical mastitis can be demonstrated on commercial dairy farms. Furthermore, there is limited knowledge on the impact of such interventions on the population dynamics of specific bacterial strains. The purpose of this study was to test the hypothesis that lactation therapy targeting S. aureus subclinical intramammary infection reduces transmission of S. aureus strains within dairy herds. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were used to determine strain specific infection dynamics in treated and control groups in a split herd trial conducted on 2 commercial dairy farms. The direct effect of 8 days intramammary lactation therapy with pirlimycin hydrochloride was demonstrated by an increased proportion of cure and a reduction in duration of infection in quarters receiving treatment compared to untreated controls. The indirect effect of lactation therapy was demonstrated by reduction of new S. aureus intramammary infections (IMI) caused by the dominant strain type in both herds. Strain typing of representative isolates taken over the duration of all IMI, including pre- and post-treatment isolates, provided more precise estimates of new infection, cure, and re-infection rates. New S. aureus infections in recovered susceptible quarters and the emergence of a new strain type in one herd influenced incidence measures. In addition to demonstrating positive direct effects of lactation therapy, this study provides evidence that treatment of subclinical S. aureus mastitis during lactation can have indirect effects including preventing new IMI and reducing incidence of clinical mastitis within dairy herds. Strain specific transmission parameter estimates for S. aureus MLST clonal complexes 5, 97 and 705 in 2 commercial dairy herds are also reported.
Alabi, Abraham; Kazimoto, Theckla; Lebughe, Marthe; Vubil, Delfino; Phaku, Patrick; Mandomando, Inacio; Kern, Winfried V; Abdulla, Salim; Mellmann, Alexander; Peitzmann, Lena; Bischoff, Markus; Peters, Georg; Herrmann, Mathias; Grobusch, Martin P; Schaumburg, Frieder; Rieg, Siegbert
2018-06-01
The incidence of Staphylococcus aureus skin and soft tissue infection (SSTI) is high in sub-Saharan Africa. This is fueled by a high prevalence of Panton-Valentine leukocidin (PVL), which can be associated with necrotizing disease. The aim was to describe the clinical presentation and the treatment of SSTI in the African setting and to identify challenges in the management. Patients (n = 319) were recruited in DR Congo (n = 56, 17.6%), Gabon (n = 89, 27.9%), Mozambique (n = 79, 24.8%) and Tanzania (n = 95, 29.8%) during the prospective observational StaphNet cohort study (2010-2015). A physician recorded the clinical management in standardized questionnaires and stratified the entity of SSTI into superficial (sSSTI) or deep-seated (dSSTI). Selected virulence factors (PVL, β hemolysin) and multilocus sequence types (MLST) were extracted from whole genome sequencing data. There were 220/319 (69%) sSSTI and 99/319 (31%) dSSTI. Compared to sSSTI, patients with dSSTI were more often hospitalized (13.2 vs. 23.5%, p = 0.03), HIV-positive (7.6 vs. 15.9%, p = 0.11), and required more often incision and drainage (I&D, 45.5 vs. 76.5%, p = 0.04). The proportion of an adequate antimicrobial therapy increased marginally from day 1 (empirical therapy) to day 3 (definite therapy), for sSSTI (70.7 to 72.4%) and dSSTI (55.4 to 58.9%). PVL was a risk factor for I&D (OR = 1.7, p = 0.02) and associated with MLST clonal complex CC121 (OR = 2.7, p < 0.001). Appropriate antimicrobial agents and surgical services to perform I&D were available for the majority of patients. Results from susceptibility testing should be considered more efficiently in the selection of antimicrobial therapy.
Mahmmod, Y S; Klaas, I C; Katholm, J; Lutton, M; Zadoks, R N
2015-10-01
Host-adaptation of Streptococcus agalactiae subpopulations has been described whereby strains that are commonly associated with asymptomatic carriage or disease in people differ phenotypically and genotypically from those causing mastitis in dairy cattle. Based on multilocus sequence typing (MLST), the most common strains in dairy herds in Denmark belong to sequence types (ST) that are also frequently found in people. The aim of this study was to describe epidemiological and diagnostic characteristics of such strains in relation to bovine mastitis. Among 1,199 cattle from 6 herds, cow-level prevalence of S. agalactiae was estimated to be 27.4% based on PCR and 7.8% based on bacteriological culture. Quarter-level prevalence was estimated at 2.8% based on bacteriological culture. Per herd, between 2 and 26 isolates were characterized by pulsed-field gel electrophoresis (PFGE) and MLST. Within each herd, a single PFGE type and ST predominated, consistent with a contagious mode of transmission or point source infection within herds. Evidence of within-herd evolution of S. agalactiae was detected with both typing methods, although ST belonged to a single clonal complex (CC) per herd. Detection of CC23 (3 herds) was associated with significantly lower approximate count (colony-forming units) at the quarter level and significantly lower cycle threshold value at the cow level than detection of CC1 (2 herds) or CC19 (1 herd), indicating a lower bacterial load in CC23 infections. Median values for the number of infected quarters and somatic cell count (SCC) were numerically but not significantly lower for cows infected with CC23 than for cows with CC1 or CC19. For all CC, an SCC threshold of 200,000 cells/mL was an unreliable indicator of infection status, and prescreening of animals based on SCC as part of S. agalactiae detection and eradication campaigns should be discouraged. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Park, Dong Jin; Yu, Jin Kyung; Park, Kang Gyun; Park, Yeon-Joon
2015-12-01
We investigated the molecular genotypes of ciprofloxacin-resistant Klebsiella pneumoniae and their characteristics according to the genetic lineages. For 160 K. pneumoniae collected in 2013, ciprofloxacin minimum inhibitory concentrations (MICs) were determined by agar dilution method. The genotypes of ciprofloxacin-resistant K. pneumoniae isolates were determined by multilocus sequence typing (MLST) and wzi gene typing. The presence of plasmid-mediated resistance determinants [qnrA, qnrB, qnrS, aac(6')-Ib-cr, blaCTX-M, and blaSHV] was investigated. The gyrA and parC genes were sequenced. Fifty-seven isolates showed ciprofloxacin resistance. By MLST, four major sequence types (STs) or clonal complexes (CCs), that is, ST307, CC11, CC147, and ST15, were found and the two most prevalent STs were ST307 (14/57, 24.6%) and ST11 (12/57, 21.1%). By wzi gene sequencing, 46 of the 57 isolates could be differentiated. All the ST307 isolates had an identical wzi sequence and harbored qnrB. The majority of them harbored aac(6')-Ib-cr (85.7%) and CTX-M-15 (92.9%). In contrast, 12 ST11 isolates were divided into five sublineages by wzi sequence and qnrB, qnrS, and aac(6')-Ib-cr were carried by nine, seven, and three isolates, respectively. They harbored SHV-type extended-spectrum β-lactamase more frequently than CTX-M-15 (nine and four isolates, respectively). The prevalence of CTX-M-15, qnrB1, and aac(6')-Ib-cr was significantly higher in ST307 than in ST11 (p=0.003, p=0.000, and p=0.002, respectively). Both clones had identical amino acid substitution in gyrA (S83I) and parC (S80I). K. pneumoniae ST307 and ST11 were the two most common clones, and the ST307 isolates were highly homogeneous, suggesting their recent emergence.
Jolley, Keith A.; Reed, Elizabeth; Martinez-Urtaza, Jaime
2017-01-01
ABSTRACT Vibrio parahaemolyticus is an important human foodborne pathogen whose transmission is associated with the consumption of contaminated seafood, with a growing number of infections reported over recent years worldwide. A multilocus sequence typing (MLST) database for V. parahaemolyticus was created in 2008, and a large number of clones have been identified, causing severe outbreaks worldwide (sequence type 3 [ST3]), recurrent outbreaks in certain regions (e.g., ST36), or spreading to other regions where they are nonendemic (e.g., ST88 or ST189). The current MLST scheme uses sequences of 7 genes to generate an ST, which results in a powerful tool for inferring the population structure of this pathogen, although with limited resolution, especially compared to pulsed-field gel electrophoresis (PFGE). The application of whole-genome sequencing (WGS) has become routine for trace back investigations, with core genome MLST (cgMLST) analysis as one of the most straightforward ways to explore complex genomic data in an epidemiological context. Therefore, there is a need to generate a new, portable, standardized, and more advanced system that provides higher resolution and discriminatory power among V. parahaemolyticus strains using WGS data. We sequenced 92 V. parahaemolyticus genomes and used the genome of strain RIMD 2210633 as a reference (with a total of 4,832 genes) to determine which genes were suitable for establishing a V. parahaemolyticus cgMLST scheme. This analysis resulted in the identification of 2,254 suitable core genes for use in the cgMLST scheme. To evaluate the performance of this scheme, we performed a cgMLST analysis of 92 newly sequenced genomes, plus an additional 142 strains with genomes available at NCBI. cgMLST analysis was able to distinguish related and unrelated strains, including those with the same ST, clearly showing its enhanced resolution over conventional MLST analysis. It also distinguished outbreak-related from non-outbreak-related strains within the same ST. The sequences obtained from this work were deposited and are available in the public database (http://pubmlst.org/vparahaemolyticus). The application of this cgMLST scheme to the characterization of V. parahaemolyticus strains provided by different laboratories from around the world will reveal the global picture of the epidemiology, spread, and evolution of this pathogen and will become a powerful tool for outbreak investigations, allowing for the unambiguous comparison of strains with global coverage. PMID:28330888
Pérez-Lago, L; Palacios, J J; Herranz, M; Ruiz Serrano, M J; Bouza, E; García-de-Viedma, D
2015-02-01
The analysis of microevolution events, its functional relevance and impact on molecular epidemiology strategies, constitutes one of the most challenging aspects of the study of clonal complexity in infection by Mycobacterium tuberculosis. In this study, we retrospectively evaluated whether two improved sampling schemes could provide access to the clonal complexity that is undetected by the current standards (analysis of one isolate from one sputum). We evaluated in 48 patients the analysis by mycobacterial interspersed repetitive unit-variable number tandem repeat of M. tuberculosis isolates cultured from bronchial aspirate (BAS) or bronchoalveolar lavage (BAL) and, in another 16 cases, the analysis of a higher number of isolates from independent sputum samples. Analysis of the isolates from BAS/BAL specimens revealed clonal complexity in a very high proportion of cases (5/48); in most of these cases, complexity was not detected when the isolates from sputum samples were analysed. Systematic analysis of isolates from multiple sputum samples also improved the detection of clonal complexity. We found coexisting clonal variants in two of 16 cases that would have gone undetected in the analysis of the isolate from a single sputum specimen. Our results suggest that analysis of isolates from BAS/BAL specimens is highly efficient for recording the true clonal composition of M. tuberculosis in the lungs. When these samples are not available, we recommend increasing the number of isolates from independent sputum specimens, because they might not harbour the same pool of bacteria. Our data suggest that the degree of clonal complexity in tuberculosis has been underestimated because of the deficiencies inherent in a simplified procedure. Copyright © 2014 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
McCarthy, Noel M.; Wimalarathna, Helen L.; Colles, Frances M.; Clark, Lorraine; Bowler, Ian C. J. W.; Maiden, Martin C. J.; Dingle, Kate E.
2012-01-01
Temporal and seasonal trends in Campylobacter genotypes causing human gastroenteritis were investigated in a 6-year study of 3,300 recent isolates from Oxfordshire, United Kingdom. Genotypes (sequence types [ST]) were defined using multilocus sequence typing and assigned to a clonal complex (a cluster of related strains that share four or more identical alleles with a previously defined central genotype). A previously undescribed clonal complex (ST-464) was identified which, together with ST-42, ST-45, and ST-52 complexes, showed increasing incidence. Concurrently, the incidence of ST-574, ST-607, and ST-658 complexes declined. The relative frequencies of three clonal complexes (ST-45, ST-283, and ST-42) peaked during summer and those of two (ST-353 and ST-403) peaked during winter. Nine clonal complexes (ST-22, ST-45, ST-48, ST-61, ST-257, ST-283, ST-403, ST-658, and ST-677) were significantly associated with ciprofloxacin sensitivity (P < 0.05). Seven clonal complexes (ST-49, ST-206, ST-354, ST-446, ST-460, ST-464, and ST-607) were associated with ciprofloxacin resistance (P < 0.05). Clonal complexes exhibited changing incidence and differences in seasonality and antibiotic resistance phenotype. These data also demonstrated that detailed surveillance at a single site captures information which reflects that observed nationally. PMID:22814466
O'Hara, F. Patrick; Suaya, Jose A.; Ray, G. Thomas; Baxter, Roger; Brown, Megan L.; Mera, Robertino M.; Close, Nicole M.; Thomas, Elizabeth
2016-01-01
A number of molecular typing methods have been developed for characterization of Staphylococcus aureus isolates. The utility of these systems depends on the nature of the investigation for which they are used. We compared two commonly used methods of molecular typing, multilocus sequence typing (MLST) (and its clustering algorithm, Based Upon Related Sequence Type [BURST]) with the staphylococcal protein A (spa) typing (and its clustering algorithm, Based Upon Repeat Pattern [BURP]), to assess the utility of these methods for macroepidemiology and evolutionary studies of S. aureus in the United States. We typed a total of 366 clinical isolates of S. aureus by these methods and evaluated indices of diversity and concordance values. Our results show that, when combined with the BURP clustering algorithm to delineate clonal lineages, spa typing produces results that are highly comparable with those produced by MLST/BURST. Therefore, spa typing is appropriate for use in macroepidemiology and evolutionary studies and, given its lower implementation cost, this method appears to be more efficient. The findings are robust and are consistent across different settings, patient ages, and specimen sources. Our results also support a model in which the methicillin-resistant S. aureus (MRSA) population in the United States comprises two major lineages (USA300 and USA100), which each consist of closely related variants. PMID:26669861
O'Hara, F Patrick; Suaya, Jose A; Ray, G Thomas; Baxter, Roger; Brown, Megan L; Mera, Robertino M; Close, Nicole M; Thomas, Elizabeth; Amrine-Madsen, Heather
2016-01-01
A number of molecular typing methods have been developed for characterization of Staphylococcus aureus isolates. The utility of these systems depends on the nature of the investigation for which they are used. We compared two commonly used methods of molecular typing, multilocus sequence typing (MLST) (and its clustering algorithm, Based Upon Related Sequence Type [BURST]) with the staphylococcal protein A (spa) typing (and its clustering algorithm, Based Upon Repeat Pattern [BURP]), to assess the utility of these methods for macroepidemiology and evolutionary studies of S. aureus in the United States. We typed a total of 366 clinical isolates of S. aureus by these methods and evaluated indices of diversity and concordance values. Our results show that, when combined with the BURP clustering algorithm to delineate clonal lineages, spa typing produces results that are highly comparable with those produced by MLST/BURST. Therefore, spa typing is appropriate for use in macroepidemiology and evolutionary studies and, given its lower implementation cost, this method appears to be more efficient. The findings are robust and are consistent across different settings, patient ages, and specimen sources. Our results also support a model in which the methicillin-resistant S. aureus (MRSA) population in the United States comprises two major lineages (USA300 and USA100), which each consist of closely related variants.
Genotypic and phenotypic characterization of invasive neonatal Escherichia coli clinical isolates.
Shakir, Salika Mehreen; Goldbeck, Jessica Marie; Robison, Denise; Eckerd, Annette Marie; Chavez-Bueno, Susana
2014-11-01
The objective of this study was to describe the clinical characteristics of neonates with Escherichia coli bacteremia and the antibiotic resistance pattern of the bacterial isolates. We assessed the isolates' genetic relatedness and virulence phenotypic characteristics in vitro. A total of 24 neonates with E. coli bacteremia were identified prospectively in a tertiary-care hospital. Clinical and antibiotic resistance data were investigated. The E. coli isolates were analyzed by multilocus sequence typing (MLST); the presence of the K1 capsule and their ability to invade intestinal epithelial cells were also assessed. Most newborns were very low birth weight infants. Overall, 75% of the isolates were ampicillin resistant and 17% were gentamicin and tobramycin nonsusceptible. MLST determined sequence types 95 and 131 (ST95 and ST131) predominated, with ST131 becoming significantly more prevalent recently. The K1 capsule was present in 50% of the isolates. ST131 isolates and those producing bacteremia in newborns younger than 7 days showed a highly invasive phenotype. Resistance to antibiotics currently used empirically to treat newborns is present in bacteremia-producing E. coli. Clonal spread among newborns of multidrug-resistant E. coli is possible; therefore, continued surveillance is needed. Identification of additional virulence factors associated with increased invasion in neonatal E. coli strains is important and further studies are warranted. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Concordance and discordance of sequence survey methods for molecular epidemiology
Hasan, Nur A.; Cebula, Thomas A.; Colwell, Rita R.; Robison, Richard A.; Johnson, W. Evan; Crandall, Keith A.
2015-01-01
The post-genomic era is characterized by the direct acquisition and analysis of genomic data with many applications, including the enhancement of the understanding of microbial epidemiology and pathology. However, there are a number of molecular approaches to survey pathogen diversity, and the impact of these different approaches on parameter estimation and inference are not entirely clear. We sequenced whole genomes of bacterial pathogens, Burkholderia pseudomallei, Yersinia pestis, and Brucella spp. (60 new genomes), and combined them with 55 genomes from GenBank to address how different molecular survey approaches (whole genomes, SNPs, and MLST) impact downstream inferences on molecular evolutionary parameters, evolutionary relationships, and trait character associations. We selected isolates for sequencing to represent temporal, geographic origin, and host range variability. We found that substitution rate estimates vary widely among approaches, and that SNP and genomic datasets yielded different but strongly supported phylogenies. MLST yielded poorly supported phylogenies, especially in our low diversity dataset, i.e., Y. pestis. Trait associations showed that B. pseudomallei and Y. pestis phylogenies are significantly associated with geography, irrespective of the molecular survey approach used, while Brucella spp. phylogeny appears to be strongly associated with geography and host origin. We contrast inferences made among monomorphic (clonal) and non-monomorphic bacteria, and between intra- and inter-specific datasets. We also discuss our results in light of underlying assumptions of different approaches. PMID:25737810
Gonzalez-Escalona, Narjol; Jolley, Keith A; Reed, Elizabeth; Martinez-Urtaza, Jaime
2017-06-01
Vibrio parahaemolyticus is an important human foodborne pathogen whose transmission is associated with the consumption of contaminated seafood, with a growing number of infections reported over recent years worldwide. A multilocus sequence typing (MLST) database for V. parahaemolyticus was created in 2008, and a large number of clones have been identified, causing severe outbreaks worldwide (sequence type 3 [ST3]), recurrent outbreaks in certain regions (e.g., ST36), or spreading to other regions where they are nonendemic (e.g., ST88 or ST189). The current MLST scheme uses sequences of 7 genes to generate an ST, which results in a powerful tool for inferring the population structure of this pathogen, although with limited resolution, especially compared to pulsed-field gel electrophoresis (PFGE). The application of whole-genome sequencing (WGS) has become routine for trace back investigations, with core genome MLST (cgMLST) analysis as one of the most straightforward ways to explore complex genomic data in an epidemiological context. Therefore, there is a need to generate a new, portable, standardized, and more advanced system that provides higher resolution and discriminatory power among V. parahaemolyticus strains using WGS data. We sequenced 92 V. parahaemolyticus genomes and used the genome of strain RIMD 2210633 as a reference (with a total of 4,832 genes) to determine which genes were suitable for establishing a V. parahaemolyticus cgMLST scheme. This analysis resulted in the identification of 2,254 suitable core genes for use in the cgMLST scheme. To evaluate the performance of this scheme, we performed a cgMLST analysis of 92 newly sequenced genomes, plus an additional 142 strains with genomes available at NCBI. cgMLST analysis was able to distinguish related and unrelated strains, including those with the same ST, clearly showing its enhanced resolution over conventional MLST analysis. It also distinguished outbreak-related from non-outbreak-related strains within the same ST. The sequences obtained from this work were deposited and are available in the public database (http://pubmlst.org/vparahaemolyticus). The application of this cgMLST scheme to the characterization of V. parahaemolyticus strains provided by different laboratories from around the world will reveal the global picture of the epidemiology, spread, and evolution of this pathogen and will become a powerful tool for outbreak investigations, allowing for the unambiguous comparison of strains with global coverage. Copyright © 2017 Gonzalez-Escalona et al.
Harada, Kazuki; Shimizu, Takae; Mukai, Yujiro; Kuwajima, Ken; Sato, Tomomi; Usui, Masaru; Tamura, Yutaka; Kimura, Yui; Miyamoto, Tadashi; Tsuyuki, Yuzo; Ohki, Asami; Kataoka, Yasushi
2016-01-01
The emergence of antimicrobial resistance in Klebsiella spp., including resistance to extended-spectrum cephalosporins (ESC) and fluoroquinolones, is of great concern in both human and veterinary medicine. In this study, we investigated the prevalence of antimicrobial resistance in a total of 103 Klebsiella spp. isolates, consisting of Klebsiella pneumoniae complex (KP, n = 89) and K. oxytoca (KO, n = 14) from clinical specimens of dogs and cats in Japan. Furthermore, we characterized the resistance mechanisms, including extended-spectrum β-lactamase (ESBL), plasmid-mediated AmpC β-lactamase (PABL), and plasmid-mediated quinolone resistance (PMQR); and assessed genetic relatedness of ESC-resistant Klebsiella spp. strains by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Antimicrobial susceptibility testing demonstrated that resistance rates to ampicillin, cephalothin, enrofloxacin, ciprofloxacin, trimethoprim/sulfamethoxazole, cefotaxime, gentamicin, tetracycline, chloramphenicol, amoxicillin-clavulanic acid, and cefmetazole were 98.1, 37.9, 37.9, 35.9, 35.0, 34.0, 31.1, 30.1, 28.2, 14.6, and 6.8%, respectively. Phenotypic testing detected ESBLs and/or AmpC β-lactamases in 31 of 89 (34.8%) KP isolates, but not in KO isolates. Resistances to 5 of the 12 antimicrobials tested, as well as the three PMQRs [qnrB, qnrS, and aac(6′)-Ib-cr], were detected significantly more frequently in ESBL-producing KP, than in non-ESBL-producing KP and KO. The most frequent ESBL was CTX-M-15 (n = 13), followed by CTX-M-14 (n = 7), CTX-M-55 (n = 6), SHV-2 (n = 5), CTX-M-2 (n = 2), and CTX-M-3 (n = 2). Based on the rpoB phylogeny, all ESBL-producing strains were identified as K. pneumoniae, except for one CTX-M-14-producing strain, which was identified as K. quasipneumoniae. All of AmpC β-lactamase positive isolates (n = 6) harbored DHA-1, one of the PABLs. Based on MLST and PFGE analysis, ST15 KP clones producing CTX-M-2, CTX-M-15, CTX-M-55, and/or SHV-2, as well as KP clones of ST1844-CTX-M-55, ST655-CTX-M-14, and ST307-CTX-M-15, were detected in one or several hospitals. Surprisingly, specific clones were detected in different patients at an interval of many months. These results suggest that multidrug-resistant ESBL-producing KP were clonally disseminated among companion animals via not only direct but also indirect transmission. This is the first report on large-scale monitoring of antimicrobial-resistant Klebsiella spp. isolates from companion animals in Japan. PMID:27446056
Antimicrobial Susceptibility and Clonality of Clinical Ureaplasma Isolates in the United States.
Fernández, Javier; Karau, Melissa J; Cunningham, Scott A; Greenwood-Quaintance, Kerryl E; Patel, Robin
2016-08-01
Ureaplasma urealyticum and Ureaplasma parvum are pathogens involved in urogenital tract and intrauterine infections and also in systemic diseases in newborns and immunosuppressed patients. There is limited information on the antimicrobial susceptibility and clonality of these species. In this study, we report the susceptibility of 250 contemporary isolates of Ureaplasma (202 U. parvum and 48 U. urealyticum isolates) recovered at Mayo Clinic, Rochester, MN. MICs of doxycycline, azithromycin, ciprofloxacin, tetracycline, erythromycin, and levofloxacin were determined by broth microdilution, with MICS of the last three interpreted according to CLSI guidelines. Levofloxacin resistance was found in 6.4% and 5.2% of U. parvum and U. urealyticum isolates, respectively, while 27.2% and 68.8% of isolates, respectively, showed ciprofloxacin MICs of ≥4 μg/ml. The resistance mechanism of levofloxacin-resistant isolates was due to mutations in parC, with the Ser83Leu substitution being most frequent, followed by Glu87Lys. No macrolide resistance was found among the 250 isolates studied; a single U. parvum isolate was tetracycline resistant. tet(M) was found in 10 U. parvum isolates, including the single tetracycline-resistant isolate, as well as in 9 isolates which had low tetracycline and doxycycline MICs. Multilocus sequence typing (MLST) performed on a selection of 46 isolates showed high diversity within the clinical Ureaplasma isolates studied, regardless of antimicrobial susceptibility. The present work extends previous knowledge regarding susceptibility to antimicrobial agents, resistance mechanisms, and clonality of Ureaplasma species in the United States. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Gooskens, J; Neeling, A J De; Willems, R J; Wout, J W Van 't; Kuijper, E J
2005-01-01
An increasing number of group A streptococci (GAS) with constitutive or inducible resistance to macrolide-lincosamide-streptogramin B antibiotics (cMLS or iMLS phenotype) is observed in Europe, but MLS resistant GAS associated with streptococcal toxic shock syndrome (STSS) has not been reported. We describe a patient admitted with STSS caused by an iMLS resistant T28 M77 Streptococcus pyogenes carrying the ermA [subclass TR] gene. A 2-y retrospective analysis among 701 nationwide collected GAS strains revealed an incidence of 3.1% of this M type 77 GAS. Analysis of 17 available M77 strains (12 T28 and 5 T13) indicated that 2 (12%) were MLS resistant due to the ermA [TR] gene. Both MLS resistant strains were cultured from blood and belonged to T28 serotype. Multilocus sequence typing (MLST) showed that all M77 isolates belonged to sequence type 63. We conclude that 17 M77 GAS collected in the Netherlands in a 2-y period were associated with invasive disease and belonged to the same clonal complex. Since only 12% carried the ermA [TR] resistance gene, it is very likely that the gene has been acquired by horizontal transmission rather than from spread of a resistant circulating clone.
Graham, Jay P; Vasco, Karla; Trueba, Gabriel
2016-06-01
Domestic animals and animal products are the source of pathogenic Campylobacter jejuni and C. coli in industrialized countries, yet little is known about the transmission of these bacteria in developing countries. Guinea pigs (Cavia porcellus) are commonly raised for food in the Andean region of South America, however, limited research has characterized this rodent as a reservoir of zoonotic enteric pathogens. In this study, we examined the prevalence of Campylobacter spp. in 203 fecal samples from domestic animals of 59 households in a semi-rural parish of Quito, Ecuador. Of the twelve animal species studied, guinea pigs showed the highest prevalence of C. jejuni (n = 39/40; 97.5%). Multilocus sequence typing (MLST) was used to characterize the genetic relationship of C. jejuni from domestic animals and 21 sequence types (STs) were identified. The majority of STs from guinea pigs appeared to form new clonal complexes that were not related to STs of C. jejuni isolated from other animal species and shared only a few alleles with other C. jejuni previously characterized. The study identifies guinea pigs as a major reservoir of C. jejuni and suggests that some C. jejuni strains are adapted to this animal species. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Clark, Clifford G; Berry, Chrystal; Walker, Matthew; Petkau, Aaron; Barker, Dillon O R; Guan, Cai; Reimer, Aleisha; Taboada, Eduardo N
2016-12-03
Whole genome sequencing (WGS) is useful for determining clusters of human cases, investigating outbreaks, and defining the population genetics of bacteria. It also provides information about other aspects of bacterial biology, including classical typing results, virulence, and adaptive strategies of the organism. Cell culture invasion and protein expression patterns of four related multilocus sequence type 21 (ST21) C. jejuni isolates from a significant Canadian water-borne outbreak were previously associated with the presence of a CJIE1 prophage. Whole genome sequencing was used to examine the genetic diversity among these isolates and confirm that previous observations could be attributed to differential prophage carriage. Moreover, we sought to determine the presence of genome sequences that could be used as surrogate markers to delineate outbreak-associated isolates. Differential carriage of the CJIE1 prophage was identified as the major genetic difference among the four outbreak isolates. High quality single-nucleotide variant (hqSNV) and core genome multilocus sequence typing (cgMLST) clustered these isolates within expanded datasets consisting of additional C. jejuni strains. The number and location of homopolymeric tract regions was identical in all four outbreak isolates but differed from all other C. jejuni examined. Comparative genomics and PCR amplification enabled the identification of large chromosomal inversions of approximately 93 kb and 388 kb within the outbreak isolates associated with transducer-like proteins containing long nucleotide repeat sequences. The 93-kb inversion was characteristic of the outbreak-associated isolates, and the gene content of this inverted region displayed high synteny with the reference strain. The four outbreak isolates were clonally derived and differed mainly in the presence of the CJIE1 prophage, validating earlier findings linking the prophage to phenotypic differences in virulence assays and protein expression. The identification of large, genetically syntenous chromosomal inversions in the genomes of outbreak-associated isolates provided a unique method for discriminating outbreak isolates from the background population. Transducer-like proteins appear to be associated with the chromosomal inversions. CgMLST and hqSNV analysis also effectively delineated the outbreak isolates within the larger C. jejuni population structure.
Apostolakos, Ilias; Franz, Eelco; van Hoek, Angela H A M; Florijn, Alice; Veenman, Christiaan; Sloet-van Oldruitenborgh-Oosterbaan, Marianne M; Dierikx, Cindy; van Duijkeren, Engeline
2017-07-01
To investigate the occurrence and characteristics of ESBL/AmpC-producing Escherichia coli in faecal samples from horses at one equine clinic in the Netherlands. A total of 91 horses, including residents and patients, were sampled. ESBL/AmpC-producing E. coli were identified by a combination disc diffusion test. Phylogenetic groups and MLST were determined. ESBL/AmpC genes were analysed using PCR and sequencing. Plasmids were characterized by transformation and PCR-based replicon typing. Subtyping of plasmids was done by plasmid MLST. At least one E. coli isolate with a confirmed ESBL/AmpC gene was found in samples from 76 horses (84%). Although phylogenetic group B1 E. coli bla CTX-M-1 predominated, a diverse E. coli population was found, indicating that clonal nosocomial spread was not the only reason for the high occurrence found. MLST analysis revealed the presence of 47 E. coli STs, organized in four clusters of genetically related strains. ST10, ST641, ST1079 and ST1250 were most commonly found. With regard to the genes, bla CTX-M-1 was most prevalent ( n = 91), followed by bla CTX-M-2 ( n = 26). The most frequently found plasmid type was IncHI1, but plasmids belonging to the IncF, IncI1 and IncN groups were also identified. A high occurrence of ESBL-producing E. coli in faecal samples was found among horses in an equine clinic and the variety of STs, ESBL genes and plasmid types suggests nosocomial transmission. ESBL E. coli can cause difficult-to-treat infections in horses and prudent use of antimicrobials is warranted. A further assessment of the risks of transmission to persons in close contact with horses, such as caretakers or veterinarians, is crucial. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Roine, Johanna; Hänninen, Marja-Liisa; Hielm-Björkman, Anna; Kivistö, Rauni
2015-01-01
In recent years, increasing numbers of consumers have become interested in feeding raw food for their pet dogs as opposed to commercial dry food, in the belief of health advantages. However, raw meat and internal organs, possibly contaminated by pathogens such as Campylobacter spp., may pose a risk of transmission of zoonoses to the pet owners. Campylobacter jejuni is the leading cause of bacterial gastroenteritis in humans but C. upsaliensis has also been associated with human disease. In this study we investigated the effect of different feeding strategies on the prevalence of Campylobacter spp. in Finnish dogs. We further characterized the isolates using multilocus sequence typing (MLST), whole-genome (wg) MLST and antimicrobial susceptibility testing. Dogs were sampled before and after a feeding period consisting of commercial raw feed or dry pellet feed. Altogether 56% (20/36) of the dogs yielded at least one Campylobacter-positive fecal sample. C. upsaliensis was the major species detected from 39% of the dogs before and 30% after the feeding period. Two C. jejuni isolates were recovered, both from raw-fed dogs after the dietary regimen. The isolates represented the same genotype (ST-1326), suggesting a common infection source. However, no statistically significant correlation was found between the feeding strategies and Campylobacter spp. carriage. The global genealogy of MLST types of dog and human C. upsaliensis isolates revealed weakly clonal population structure as most STs were widely dispersed. Major antimicrobial resistance among C. upsaliensis isolates was against streptomycin (STR MIC > 4mg/l). Apart from that, all isolates were highly susceptible against the antimicrobials tested. Mutations were found in the genes rpsL or rpsL and rsmG in streptomycin resistant isolates. In conclusion, increasing trend to feed dogs with raw meat warrants more studies to evaluate the risk associated with raw feeding of pets in transmission of zoonoses to humans. PMID:26172151
Diversity and distribution of Listeria monocytogenes in meat processing plants.
Martín, Belén; Perich, Adriana; Gómez, Diego; Yangüela, Javier; Rodríguez, Alicia; Garriga, Margarita; Aymerich, Teresa
2014-12-01
Listeria monocytogenes is a major concern for the meat processing industry because many listeriosis outbreaks have been linked to meat product consumption. The aim of this study was to elucidate L. monocytogenes diversity and distribution across different Spanish meat processing plants. L. monocytogenes isolates (N = 106) collected from food contact surfaces of meat processing plants and meat products were serotyped and then characterised by multilocus sequence typing (MLST). The isolates were serotyped as 1/2a (36.8%), 1/2c (34%), 1/2b (17.9%) and 4b (11.3%). MLST identified ST9 as the most predominant allelic profile (33% of isolates) followed by ST121 (16%), both of which were detected from several processing plants and meat products sampled in different years, suggesting that those STs are highly adapted to the meat processing environment. Food contact surfaces during processing were established as an important source of L. monocytogenes in meat products because the same STs were obtained in isolates recovered from surfaces and products. L. monocytogenes was recovered after cleaning and disinfection procedures in two processing plants, highlighting the importance of thorough cleaning and disinfection procedures. Epidemic clone (EC) marker ECI was identified in 8.5%, ECIII was identified in 2.8%, and ECV was identified in 7.5% of the 106 isolates. Furthermore, a selection of presumably unrelated ST9 isolates was analysed by multi-virulence-locus sequence typing (MVLST). Most ST9 isolates had the same virulence type (VT11), confirming the clonal origin of ST9 isolates; however, one ST9 isolate was assigned to a new VT (VT95). Consequently, MLST is a reliable tool for identification of contamination routes and niches in processing plants, and MVLST clearly differentiates EC strains, which both contribute to the improvement of L. monocytogenes control programs in the meat industry. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cadona, Jimena S; Bustamante, Ana V; González, Juliana; Sanso, A Mariel
2016-01-01
Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen responsible for severe disease in humans such as hemolytic uremic syndrome (HUS) and cattle, the principal reservoir. Identification of the clones/lineages is important as several characteristics, among them propensity to cause disease varies with STEC phylogenetic origin. At present, we do not know what STEC clones, especially of non-O157:H7, are circulating in Argentina. To fill this knowledge gap we assessed the genetic diversity of STEC strains isolated in Argentina from various sources, mostly cattle and food, using multilocus sequence typing (MLST). Our objectives were to determine the phylogenetic relationships among strains and to compare them with strains from different geographic origins, especially with those from clinical human cases, in order to evaluate their potential health risk. A total of 59 STEC isolates from 41 serotypes were characterized by MLST. Analysis using EcMLST database identified 38 sequence types (ST), 17 (45%) of which were new STs detected in 18 serotypes. Fifteen out of 38 STs identified were grouped into 11 clonal groups (CGs) and, 23 not grouped in any of the defined CGs. Different STs were found in the same serotype. Results highlighted a high degree of phylogenetic heterogeneity among Argentinean strains and they showed that several cattle and food isolates belonged to the same STs that are commonly associated with clinical human cases in several geographical areas. STEC is a significant public health concern. Argentina has the highest incidence of HUS in the world and this study provides the first data about which STEC clones are circulating. Data showed that most of them might pose a serious zoonotic risk and this information is important for developing public health initiatives. However, the actual potential risk will be defined by the virulence profiles, which may differ among isolates belonging to the same ST.
Global distribution and diversity of ovine-associated Staphylococcus aureus.
Smith, Edward M; Needs, Polly F; Manley, Grace; Green, Laura E
2014-03-01
Staphylococcus aureus is an important pathogen of many species, including sheep, and impacts on both human and animal health, animal welfare, and farm productivity. Here we present the widest global diversity study of ovine-associated S. aureus to date. We analysed 97 S. aureus isolates from sheep and sheep products from the UK, Turkey, France, Norway, Australia, Canada and the USA using multilocus sequence typing (MLST) and spa typing. These were compared with 196 sheep isolates from Europe (n=153), Africa (n=28), South America (n=14) and Australia (n=1); 172 bovine, 68 caprine and 433 human S. aureus profiles. Overall there were 59 STs and 87 spa types in the 293 ovine isolates; in the 97 new ovine isolates there were 22 STs and 37 spa types, including three novel MLST alleles, four novel STs and eight novel spa types. Three main CCs (CC133, CC522 and CC700) were detected in sheep and these contained 61% of all isolates. Four spa types (t002, t1534, t2678 and t3576) contained 31% of all isolates and were associated with CC5, CC522, CC133 and CC522 respectively. spa types were consistent with MLST CCs, only one spa type (t1403) was present in multiple CCs. The three main ovine CCs have different but overlapping patterns of geographical dissemination that appear to match the location and timing of sheep domestication and selection for meat and wool production. CC133, CC522 and CC700 remained ovine-associated following the inclusion of additional host species. Ovine isolates clustered separately from human and bovine isolates and those from sheep cheeses, but closely with caprine isolates. As with cattle isolates, patterns of clonal diversification of sheep isolates differ from humans, indicative of their relatively recent host-jump. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Balandyté, Lina; Brodard, Isabelle; Frey, Joachim; Oevermann, Anna; Abril, Carlos
2011-01-01
Listeria monocytogenes is among the most important food-borne pathogens and is well adapted to persist in the environment. To gain insight into the genetic relatedness and potential virulence of L. monocytogenes strains causing central nervous system (CNS) infections, we used multilocus variable-number tandem-repeat analysis (MLVA) to subtype 183 L. monocytogenes isolates, most from ruminant rhombencephalitis and some from human patients, food, and the environment. Allelic-profile-based comparisons grouped L. monocytogenes strains mainly into three clonal complexes and linked single-locus variants (SLVs). Clonal complex A essentially consisted of isolates from human and ruminant brain samples. All but one rhombencephalitis isolate from cattle were located in clonal complex A. In contrast, food and environmental isolates mainly clustered into clonal complex C, and none was classified as clonal complex A. Isolates of the two main clonal complexes (A and C) obtained by MLVA were analyzed by PCR for the presence of 11 virulence-associated genes (prfA, actA, inlA, inlB, inlC, inlD, inlE, inlF, inlG, inlJ, and inlC2H). Virulence gene analysis revealed significant differences in the actA, inlF, inlG, and inlJ allelic profiles between clinical isolates (complex A) and nonclinical isolates (complex C). The association of particular alleles of actA, inlF, and newly described alleles of inlJ with isolates from CNS infections (particularly rhombencephalitis) suggests that these virulence genes participate in neurovirulence of L. monocytogenes. The overall absence of inlG in clinical complex A and its presence in complex C isolates suggests that the InlG protein is more relevant for the survival of L. monocytogenes in the environment. PMID:21984240
Versteeg, Bart; Bruisten, Sylvia M; van der Ende, Arie; Pannekoek, Yvonne
2016-04-18
Chlamydia trachomatis infections remain the most common bacterial sexually transmitted infection worldwide. To gain more insight into the epidemiology and transmission of C. trachomatis, several schemes of multilocus sequence typing (MLST) have been developed. We investigated the clustering of C. trachomatis strains derived from men who have sex with men (MSM) and heterosexuals using the MLST scheme based on 7 housekeeping genes (MLST-7) adapted for clinical specimens and a high-resolution MLST scheme based on 6 polymorphic genes, including ompA (hr-MLST-6). Specimens from 100 C. trachomatis infected men who have sex with men (MSM) and 100 heterosexual women were randomly selected from previous studies and sequenced. We adapted the MLST-7 scheme to a nested assay to be suitable for direct typing of clinical specimens. All selected specimens were typed using both the adapted MLST-7 scheme and the hr-MLST-6 scheme. Clustering of C. trachomatis strains derived from MSM and heterosexuals was assessed using minimum spanning tree analysis. Sufficient chlamydial DNA was present in 188 of the 200 (94 %) selected samples. Using the adapted MLST-7 scheme, full MLST profiles were obtained for 187 of 188 tested specimens resulting in a high success rate of 99.5 %. Of these 187 specimens, 91 (48.7 %) were from MSM and 96 (51.3 %) from heterosexuals. We detected 21 sequence types (STs) using the adapted MLST-7 and 79 STs using the hr-MLST-6 scheme. Minimum spanning tree analyses was used to examine the clustering of MLST-7 data, which showed no reflection of separate transmission in MSM and heterosexual hosts. Moreover, typing using the hr-MLST-6 scheme identified genetically related clusters within each of clusters that were identified by using the MLST-7 scheme. No distinct transmission of C. trachomatis could be observed in MSM and heterosexuals using the adapted MLST-7 scheme in contrast to using the hr-MLST-6. In addition, we compared clustering of both MLST schemes and demonstrated that typing using the hr-MLST-6 scheme is able to identify genetically related clusters of C. trachomatis strains within each of the clusters that were identified by using the MLST-7 scheme.
Freitas, Ana R.; Tedim, Ana P.; Novais, Carla; Ruiz-Garbajosa, Patricia; Werner, Guido; Laverde-Gomez, Jenny A.; Cantón, Rafael; Peixe, Luísa; Baquero, Fernando; Coque, Teresa M.
2010-01-01
Enterococcus faecium has increasingly been reported as a nosocomial pathogen since the early 1990s, presumptively associated with the expansion of a human-associated Enterococcus faecium polyclonal subcluster known as clonal complex 17 (CC17) that has progressively acquired different antibiotic resistance (ampicillin and vancomycin) and virulence (espEfm, hylEfm, and fms) traits. We analyzed the presence and the location of a putative glycoside hydrolase hylEfm gene among E. faecium strains obtained from hospitalized patients (255 patients; outbreak, bacteremic, and/or disseminated isolates from 23 countries and five continents; 1986 to 2009) and from nonclinical origins (isolates obtained from healthy humans [25 isolates], poultry [30], swine [90], and the environment [55]; 1999 to 2007). Clonal relatedness was established by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Plasmid analysis included determination of content and size (S1-PFGE), transferability (filter mating), screening of Rep initiator proteins (PCR), and location of vanA, vanB, ermB, and hylEfm genes (S1/I-CeuI hybridization). Most E. faecium isolates contained large plasmids (>150 kb) and showed variable contents of van, hylEfm, or espEfm. The hylEfm gene was associated with megaplasmids (170 to 375 kb) of worldwide spread (ST16, ST17, and ST18) or locally predominant (ST192, ST203, ST280, and ST412) ampicillin-resistant CC17 clones collected in the five continents since the early 1990s. All but one hylEfm-positive isolate belonged to the CC17 polyclonal subcluster. The presence of hylEfm megaplasmids among CC17 from Europe, Australia, Asia, and Africa since at least the mid-1990s was documented. This study further demonstrates the pandemic expansion of particular CC17 clones before acquisition of vancomycin resistance and putative virulence traits and describes the presence of megaplasmids in most of the contemporary E. faecium isolates with different origins. PMID:20385861
Mora, Azucena; López, Cecilia; Dabhi, Ghizlane; Blanco, Miguel; Blanco, Jesús E; Alonso, María Pilar; Herrera, Alexandra; Mamani, Rosalía; Bonacorsi, Stéphane; Moulin-Schouleur, Maryvonne; Blanco, Jorge
2009-07-07
Extraintestinal pathogenic Escherichia coli (ExPEC) strains of serotype O1:K1:H7/NM are frequently implicated in neonatal meningitis, urinary tract infections and septicemia in humans. They are also commonly isolated from colibacillosis in poultry. Studies to determine the similarities of ExPEC from different origins have indicated that avian strains potentially have zoonotic properties. A total of 59 ExPEC O1:K1:H7/NM isolates (21 from avian colibacillosis, 15 from human meningitis, and 23 from human urinary tract infection and septicemia) originated from four countries were characterized by phylogenetic PCR grouping, Multilocus Sequence Typing (MLST), Pulsed Field Gel Electrophoresis (PFGE) and genotyping based on several genes known for their association with ExPEC or avian pathogenic Escherichia coli (APEC) virulence.APEC and human ExPEC isolates differed significantly in their assignments to phylogenetic groups, being phylogroup B2 more prevalent among APEC than among human ExPEC (95% vs. 53%, P = 0.001), whereas phylogroup D was almost exclusively associated with human ExPEC (47% vs. 5%, P = 0.0000). Seven virulence genes showed significant differences, being fimAvMT78 and sat genes linked to human isolates, while papGII, tsh, iron, cvaC and iss were significantly associated to APEC. By MLST, 39 of 40 ExPEC belonging to phylogroup B2, and 17 of 19 belonging to phylogroup D exhibited the Sequence Types (STs) ST95 and ST59, respectively. Additionally, two novel STs (ST1013 and ST1006) were established. Considering strains sharing the same ST, phylogenetic group, virulence genotype and PFGE cluster to belong to the same subclone, five subclones were detected; one of those grouped six strains of human and animal origin from two countries. Present results reveal that the clonal group B2 O1:K1:H7/NM ST95, detected in strains of animal and human origin, recovered from different dates and geographic sources, provides evidence that some APEC isolates may act as potential pathogens for humans and, consequently, poultry as a foodborne source, suggesting no host specificity for this type of isolates. A novel and important finding has been the detection of the clonal group D O1:K1:H7/NM ST59 almost exclusively in humans, carrying pathogenic genes linked to the phylogenetic group D. This finding would suggest D O1:K1:H7/NM ST59 as a host specific pathotype for humans.
Guillard, Thomas; Cholley, Pascal; Limelette, Anne; Hocquet, Didier; Matton, Lucie; Guyeux, Christophe; Lebreil, Anne-Laure; Bajolet, Odile; Brasme, Lucien; Madoux, Janick; Vernet-Garnier, Véronique; Barbe, Coralie; Bertrand, Xavier; de Champs on behalf of CarbaFrEst Group, Christophe
2015-01-01
Fluoroquinolone (FQ) agents are a potential resort to treat infection due to Enterobacteriaceae producing extended spectrum β-lactamase and susceptible to FQ. In a context of increase of non-susceptibility to carbapenems among Enterobacteriaceae, we characterized FQ resistance mechanisms in 75 Enterobacter cloacae isolates non-susceptible to ertapenem in North-Eastern France in 2012 and describe the population structure by pulsed field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Among them, 14.7% (12/75) carried a carbapenemase-encoding gene. Except one isolate producing VIM-1, the carbapenemase-producing isolates carried the well-known IncL/M pOXA48a plasmid. Most of the isolates (59/75) harbored at least a FQ-R determinant. qnr genes were predominant (40%, 30/75). The MLST study revealed that E. cloacae isolates’ clonality was wide [24 different sequence types (STs)]. The more widespread STs were ST74, ST101, ST110, ST114, and ST133. Carbapenem MICs were higher for E. cloacae ST74 than for other E. cloacae isolates. Plasmid-mediated quinolone resistance determinants were more often observed in E. cloacae ST74 isolates. These findings showed that (i) pOXA-48a is spreading in North-Eastern France, (ii) qnr is preponderant in E. cloacae, (iii) E. cloacae comprised a large amount of lineages spreading in North-Eastern France, and (iv) FQ as an alternative to β-lactams to treat ertapenem non-susceptible Enterobacteriaceae are compromised. PMID:26557115
Velineni, Sridhar; Russell, Kim; Hamlen, Heidi J.; Pesavento, Patricia; Fortney, William D.; Crawford, P. Cynda
2014-01-01
Acute hemorrhagic pneumonia caused by Streptococcus zooepidemicus has emerged as a major disease of shelter dogs and greyhounds. S. zooepidemicus strains differing in multilocus sequence typing (MLST), protective protein (SzP), and M-like protein (SzM) sequences were identified from 9 outbreaks in Texas, Kansas, Florida, Nevada, New Mexico, and Pennsylvania. Clonality based on 2 or more isolates was evident for 7 of these outbreaks. The Pennsylvania and Nevada outbreaks also involved cats. Goat antisera against acutely infected lung tissue as well as convalescent-phase sera reacted with a mucinase (Sz115), hyaluronidase (HylC), InlA domain-containing cell surface-anchored protein (INLA), membrane-anchored protein (MAP), SzP, SzM, and extracellular oligopeptide-binding protein (OppA). The amino acid sequences of SzP and SzM of the isolates varied greatly. The szp and szm alleles of the closely related Kansas clone (sequence type 129 [ST-129]) and United Kingdom isolate BHS5 (ST-123) were different, indicating that MLST was unreliable as a predictor of virulence phenotype. Combinations of conserved HylC and serine protease (ScpC) and variable SzM and SzP proteins of S. zooepidemicus strain NC78 were protectively immunogenic for mice challenged with a virulent canine strain. Thus, although canine pneumonia outbreaks are caused by different strains of S. zooepidemicus, protective immune responses were elicited in mice by combinations of conserved or variable S. zooepidemicus proteins from a single strain. PMID:24990905
Development of a multilocus sequence typing scheme for Ureaplasma.
Zhang, J; Kong, Y; Feng, Y; Huang, J; Song, T; Ruan, Z; Song, J; Jiang, Y; Yu, Y; Xie, X
2014-04-01
Ureaplasma is a commensal of the human urogenital tract but is always associated with invasive diseases such as non-gonococcal urethritis and infertility adverse pregnancy outcomes. To better understand the molecular epidemiology and population structure of Ureaplasma, a multilocus sequence typing (MLST) scheme based on four housekeeping genes (ftsH, rpL22, valS, thrS) was developed and validated using 283 isolates, including 14 serovars of reference strains and 269 strains obtained from clinical patients. A total of 99 sequence types (STs) were revealed: the 14 type strains of the Ureaplasma serovars were assigned to 12 STs, and 87 novel and special STs appeared among the clinical isolates. ST1 and ST22 were the predominant STs, which contained 68 and 70 isolates, respectively. Two clonal lineages (CC1 and CC2) were shown by eBURST analysis, and linkage disequilibrium was revealed through a standardized index of association (I A (S)). The neighbor-joining tree results of 14 Ureaplasma serovars showed two genetically significantly distant clusters, which was highly congruent with the species taxonomy of ureaplasmas [Ureaplasma parvum (UPA) and Ureaplasma urealyticum (UUR)]. Analysis of the biotypes of 269 clinical isolates revealed that all the isolates of CC1 were UPA and those of CC2 were UUR. Additionally, CC2 was found more often in symptomatic patients with vaginitis, tubal obstruction, and cervicitis. In conclusion, this MLST scheme is adequate for investigations of molecular epidemiology and population structure with highly discriminating capacity.
Danesi, Patrizia; Firacative, Carolina; Cogliati, Massimo; Otranto, Domenico; Capelli, Gioia; Meyer, Wieland
2014-09-01
Cryptococcosis represents a fungal disease acquired from the environment with animals serving as host sentinels for human exposure. The aim of this study was to investigate the genetic characteristics of Cryptococcus isolates from veterinary sources (cats, dogs and birds) to understand their epidemiology and the genetic variability of the casual isolates. Mating-type PCR in connection with MLST analysis using the ISHAM consensus MLST scheme for the C. neoformans/C. gattii species complex was used to genotype 17 C. neoformans isolates. In the absence of an MLST typing scheme Cryptococcus adeliensis, C. albidus, C. aureus, C. carnescens, C. laurentii, C. magnus and C. uniguttulatus strains were typed using M13 PCR fingerprinting. All C. neoformans isolates were MATα mating type, but hybrids possessed αADa and aADα mating and serotypes. Two C. neoformans molecular types VNI, VNIV and VNIII and VNII/VNIV hybrids were identified. Amongst the 66 non-C. neoformans strains investigated 55 M13 PCR fingerprinting types were identified. The wide variety of MLST types of C. neoformans and the occurrence of αADa and aADα hybrids in our study supports the notion of genetic recombination in the area studied. The heterogeneity of the non-C. neoformans isolates remains open to further investigations and should be taken into consideration when identifying emergent pathogens. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Shome, Bibek Ranjan; Bhuvana, Mani; Mitra, Susweta Das; Krithiga, Natesan; Shome, Rajeswari; Velu, Dhanikachalam; Banerjee, Apala; Barbuddhe, Sukhadeo B; Prabhudas, Krishnamshetty; Rahman, Habibar
2012-12-01
Streptococci are one among the major mastitis pathogens which have a considerable impact on cow health, milk quality, and productivity. The aim of the present study was to investigate the occurrence and virulence characteristics of streptococci from bovine milk and to assess the molecular epidemiology and population structure of the Indian isolates using multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Out of a total of 209 bovine composite milk samples screened from four herds (A-D), 30 Streptococcus spp. were isolated from 29 milk samples. Among the 30 isolates, species-specific PCR and partial 16S rRNA gene sequence analysis identified 17 Streptococcus agalactiae arising from herd A and 13 Streptococcus uberis comprising of 5, 7, and 1 isolates from herds B, C, and D respectively. PCR based screening for virulence genes revealed the presence of the cfb and the pavA genes in 17 and 1 S. agalactiae isolates, respectively. Similarly, in S. uberis isolates, cfu gene was present in six isolates from herd C, the pau A/skc gene in all the isolates from herds B, C, and D, whereas the sua gene was present in four isolates from herd B and the only isolate from herd D. On MLST analysis, all the S. agalactiae isolates were found to be of a novel sequence type (ST), ST-483, reported for the first time and is a single locus variant of the predicted subgroup founder ST-310, while the S. uberis isolates were found to be of three novel sequence types, namely ST-439, ST-474, and ST-475, all reported for the first time. ST-474 was a double locus variant of three different STs of global clonal complex ST-143 considered to be associated with clinical and subclinical mastitis, but ST-439 and ST-475 were singletons. Unique sequence types identified for both S. agalactiae and S. uberis were found to be herd specific. On PFGE analysis, identical or closely related restriction patterns for S. agalactiae ST-483 and S. uberis ST-439 in herds A and B respectively, but an unrelated restriction pattern for S. uberis ST-474 and ST-475 isolates from herds D and C respectively, were obtained. This signifies that the isolates of particular ST may exhibit related PFGE patterns suggesting detection of a faster molecular clock by PFGE than MLST. Since all the isolates of both the species belonged to novel sequence types, their epidemiological significance in global context could not be ascertained, however, evidence suggests that they have uniquely evolved in Indian conditions. Further research would be useful for understanding the role of these pathogens in bovine sub-clinical mastitis and implementing effective control strategies in India.
A genomic overview of the population structure of Salmonella.
Alikhan, Nabil-Fareed; Zhou, Zhemin; Sergeant, Martin J; Achtman, Mark
2018-04-01
For many decades, Salmonella enterica has been subdivided by serological properties into serovars or further subdivided for epidemiological tracing by a variety of diagnostic tests with higher resolution. Recently, it has been proposed that so-called eBurst groups (eBGs) based on the alleles of seven housekeeping genes (legacy multilocus sequence typing [MLST]) corresponded to natural populations and could replace serotyping. However, this approach lacks the resolution needed for epidemiological tracing and the existence of natural populations had not been independently validated by independent criteria. Here, we describe EnteroBase, a web-based platform that assembles draft genomes from Illumina short reads in the public domain or that are uploaded by users. EnteroBase implements legacy MLST as well as ribosomal gene MLST (rMLST), core genome MLST (cgMLST), and whole genome MLST (wgMLST) and currently contains over 100,000 assembled genomes from Salmonella. It also provides graphical tools for visual interrogation of these genotypes and those based on core single nucleotide polymorphisms (SNPs). eBGs based on legacy MLST are largely consistent with eBGs based on rMLST, thus demonstrating that these correspond to natural populations. rMLST also facilitated the selection of representative genotypes for SNP analyses of the entire breadth of diversity within Salmonella. In contrast, cgMLST provides the resolution needed for epidemiological investigations. These observations show that genomic genotyping, with the assistance of EnteroBase, can be applied at all levels of diversity within the Salmonella genus.
Prachantasena, Sakaoporn; Charununtakorn, Petcharatt; Muangnoicharoen, Suthida; Hankla, Luck; Techawal, Natthaporn; Chaveerach, Prapansak; Tuitemwong, Pravate; Chokesajjawatee, Nipa; Williams, Nicola; Humphrey, Tom; Luangtongkum, Taradon
2016-01-01
Poultry and poultry products are commonly considered as the major vehicle of Campylobacter infection in humans worldwide. To reduce the number of human cases, the epidemiology of Campylobacter in poultry must be better understood. Therefore, the objective of the present study was to determine the distribution and genetic relatedness of Campylobacter in the Thai chicken production industry. During June to October 2012, entire broiler production processes (i.e., breeder flock, hatchery, broiler farm and slaughterhouse) of five broiler production chains were investigated chronologically. Representative isolates of C. jejuni from each production stage were characterized by flaA SVR sequencing and multilocus sequence typing (MLST). Amongst 311 selected isolates, 29 flaA SVR alleles and 17 sequence types (STs) were identified. The common clonal complexes (CCs) found in this study were CC-45, CC-353, CC-354 and CC-574. C. jejuni isolated from breeders were distantly related to those isolated from broilers and chicken carcasses, while C. jejuni isolates from the slaughterhouse environment and meat products were similar to those isolated from broiler flocks. Genotypic identification of C. jejuni in slaughterhouses indicated that broilers were the main source of Campylobacter contamination of chicken meat during processing. To effectively reduce Campylobacter in poultry meat products, control and prevention strategies should be aimed at both farm and slaughterhouse levels.
Sobhanipoor, Mohammad Hossein; Ahmadrajabi, Roya; Karmostaji, Afsaneh; Saffari, Fereshteh
2017-10-01
Colonization of methicillin resistant Staphylococccus aureus (MRSA) can occur more commonly in healthy people who live in close together or are in close physical contact with each other. Having knowledge about the molecular characteristics of these strains provides considerable discernment into the epidemiology of this important microorganism. A total of 806 nasal swabs were collected from healthy workers of an automaker company in the southeast of Iran and were analyzed to detect MRSA isolates. Multilocus sequence typing (MLST), spa typing, and detection of staphylococcal cassette chromosome mec (SCCmec) were performed. The presence of genes encoding Panton-Valentine Leukocidin (PVL) and Arginine Catabolic Mobile Element (ACME) were also investigated. Carriage rate of S. aureus was 20%. Among 10 identified MRSA, no acme was found while high prevalence of pvl (60%) was of great concern. Seven different spa types including five new ones were identified. The most frequent sequence type was the novel one; ST 3373 (n = 3), followed by each of ST22, ST88, ST859 (n = 2) and ST1955 (n = 1). MRSA isolates were clustered into two main clonal complexes; CC22 (n = 6) and CC88 (n = 4). Low genetic diversity with the dominance of CC22, SCCmecIV was found. Distribution of previously found hospital-associated MRSA was demonstrated among our isolates. © 2017 APMIS. Published by John Wiley & Sons Ltd.
Momoh, Asabe Halimat; Kwaga, Jacob K P; Bello, Mohammed; Sackey, Anthony K B; Larsen, Anders Rhod
2018-04-19
Staphylococcus aureus is a commensal and pathogenic bacterium with impact on public health and livestock industry. The study investigated nasal carriage, antibiotic resistance, and molecular characterization of S. aureus in pigs and pig workers. Nasal swabs from 300 backyard-raised pigs and 101 pig workers were used for the study. Resulting isolates were confirmed using MALDI-TOF MS, tested for antibiotic resistance, and three different multiplex PCRs were used to detect enterotoxin, mecA, spaA, scn, and pvl genes. spa typing was used to annotate the isolates into MLST clonal complexes (CC). Structured questionnaire was used to access possible risk factors for S. aureus carriage. The prevalence of S. aureus in pigs and pig workers were 5.3 and 12.9%, respectively. The isolates were resistant to beta-lactams (97%), tetracycline (62%), sulfonamide (52%), aminoglycoside (20.6%), fluoroquinolone (24%), and mupirocin (3.4%). Twenty seven (93%) of the isolates carried scn, 7(24%) pvl, and 12 (41%) enterotoxin genes, respectively. Questionnaire survey showed medical-related occupation of household members was associated (p < 0.5) with S. aureus carriage. This study suggests the presence of human multidrug resistant strains of S. aureus, high carriage of pvl, and enterotoxin genes, and CC5, CC15, and CC152 were the CC-groups shared among pigs and pig workers.
Transmission of Streptococcus pneumoniae in an Urban Slum Community
Palma, Tania; Ribeiro, Guilherme S.; Pinheiro, Ricardo M; Ribeiro, Cassio Tâmara; Cordeiro, Soraia Machado; da Silva Filho, H. P.; Moschioni, Monica; Thompson, Terry A.; Spratt, Brian; Riley, Lee W.; Barocchi, Michele A.; Reis, Mitermayer G.; Ko, Albert I.
2008-01-01
Background Inhabitants of slum settlements represent a significant proportion of the population at risk for pneumococcal disease in developing countries. Methods We conducted a household survey of pneumococcal carriage among residents of a slum community in the city of Salvador, Brazil. Results Among 262 subjects, 95 (36%) were colonized with S. pneumoniae. Children <5 years of age (OR, 8.0; 95%CI, 3.5-18.6) and those who attended schools (OR 2.7, 95%CI, 1.2-6.0) had significantly higher risk of being colonized. Of 94 isolates obtained from colonized individuals, 51% had serotypes included in the seven-valent pneumococcal conjugate vaccine. Overall, 10% (9 of 94 isolates) were nonsusceptible to penicillin and 28% (27 of 94 isolates) were resistant to cotrimoxazole. BOX-PCR, PFGE and MLST analysis found that 44% of the carriage isolates belonged to 14 distinct clonal groups. Strains of the same clonal group were isolated from multiple members of 9 out of the 39 study households. Nineteen carriage isolates had genotypes that were the same as those identified among 362 strains obtained from active surveillance for meningitis. Conclusions The study's findings indicate that there is significant intra and inter-household spread of S. pneumoniae in the slum community setting. However, a limited number of clones encountered during carriage among slum residents were found to cause invasive disease. PMID:18672297
Chattaway, Marie Anne; Day, Michaela; Mtwale, Julia; White, Emma; Rogers, James; Day, Martin; Powell, David; Ahmad, Marwa; Harris, Ross; Talukder, Kaisar Ali; Wain, John; Jenkins, Claire; Cravioto, Alejandro
2017-10-01
This study investigates the virulence and antimicrobial resistance in association with common clonal complexes (CCs) of enteroaggregative Escherichia coli (EAEC) isolated from Bangladesh. The aim was to determine whether specific CCs were more likely to be associated with putative virulence genes and/or antimicrobial resistance. The presence of 15 virulence genes (by PCR) and susceptibility to 18 antibiotics were determined for 151 EAEC isolated from cases and controls during an intestinal infectious disease study carried out between 2007-2011 in the rural setting of Mirzapur, Bangladesh (Kotloff KL, Blackwelder WC, Nasrin D, Nataro JP, Farag TH et al.Clin Infect Dis 2012;55:S232-S245). These data were then analysed in the context of previously determined serotypes and clonal complexes defined by multi-locus sequence typing. Overall there was no association between the presence of virulence or antimicrobial resistance genes in isolates of EAEC from cases versus controls. However, when stratified by clonal complex (CC) one CC associated with cases harboured more virulence factors (CC40) and one CC harboured more resistance genes (CC38) than the average. There was no direct link between the virulence gene content and antibiotic resistance. Strains within a single CC had variable virulence and resistance gene content indicating independent and multiple gene acquisitions over time. In Bangladesh, there are multiple clonal complexes of EAEC harbouring a variety of virulence and resistance genes. The emergence of two of the most successful clones appeared to be linked to either increased virulence (CC40) or antimicrobial resistance (CC38), but increased resistance and virulence were not found in the same clonal complexes.
2014-01-01
Background Cell lines are often regarded as clonal, even though this simplifies what is known about mutagenesis, transformation and other processes that destabilize them over time. Monitoring these clonal dynamics is important for multiple areas of biomedical research, including stem cell and cancer biology. Tracking the contributions of individual cells to large populations, however, has been constrained by limitations in sensitivity and complexity. Results We utilize cellular barcoding methods to simultaneously track the clonal contributions of tens of thousands of cells. We demonstrate that even with optimal culturing conditions, common cell lines including HeLa, K562 and HEK-293 T exhibit ongoing clonal dynamics. Starting a population with a single clone diminishes but does not eradicate this phenomenon. Next, we compare lentiviral and zinc-finger nuclease barcode insertion approaches, finding that the zinc-finger nuclease protocol surprisingly results in reduced clonal diversity. We also document the expected reduction in clonal complexity when cells are challenged with genotoxic stress. Finally, we demonstrate that xenografts maintain clonal diversity to a greater extent than in vitro culturing of the human non-small-cell lung cancer cell line HCC827. Conclusions We demonstrate the feasibility of tracking and quantifying the clonal dynamics of entire cell populations within multiple cultured cell lines. Our results suggest that cell heterogeneity should be considered in the design and interpretation of in vitro culture experiments. Aside from clonal cell lines, we propose that cellular barcoding could prove valuable in modeling the clonal behavior of heterogeneous cell populations over time, including tumor populations treated with chemotherapeutic agents. PMID:24886633
Jackson, Charlene R; Davis, Johnnie A; Barrett, John B
2013-04-01
There is increasing interest in the presence of Staphylococcus aureus, specifically methicillin-resistant S. aureus (MRSA), on retail meat products. In this study, staphylococci were isolated from retail pork and retail beef in Georgia, and MRSA from the products was compared to human MRSA from the same geographic area using broth microdilution antimicrobial susceptibility testing, multilocus sequence typing (MLST), spa typing, SCCmec typing, and pulsed-field gel electrophoresis (PFGE). S. aureus was isolated from 45% (45/100) of pork products and 63% (63/100) of beef products; mecA was detected in S. aureus from both pork (3/100; 3%) and beef (4/100; 4%). Fifty percent (50/100) of human S. aureus also contained mecA. Multidrug resistance was detected among MRSA from all sources. All MRSA (n = 57) was SCCmec type IV, and nine different spa types were present among the isolates (t002, t008, t012, t024, t179, t337, t548, t681, and t1062). Four sequence types (ST5, ST8, ST9, and ST30) were detected using MLST; the majority of MRSA isolates belonged to ST8, followed by ST5. One retail beef MRSA isolate belonged to ST8, while the remaining three were ST5. In retail pork MRSA, ST5, ST9, and ST30 were observed. The majority of human MRSA isolates belonged to ST8. Thirty-seven MRSA isolates, one of which was a retail beef MRSA isolate, were pvl(+). Using PFGE, MLST, and spa typing, three retail beef MRSA isolates were found to be identical in PFGE pattern, ST, and spa type to two human clonal MRSA isolates (USA100 and USA300). One additional retail beef MRSA isolate had a PFGE pattern similar to that of a human MRSA isolate, whereas none of the retail pork MRSA isolates had PFGE patterns similar to those of human MRSA isolates. These data suggest that the retail beef samples were contaminated by a human source, possibly during processing of the meat, and may present a source of MRSA for consumers and others who handle raw meat.
Davis, Johnnie A.; Barrett, John B.
2013-01-01
There is increasing interest in the presence of Staphylococcus aureus, specifically methicillin-resistant S. aureus (MRSA), on retail meat products. In this study, staphylococci were isolated from retail pork and retail beef in Georgia, and MRSA from the products was compared to human MRSA from the same geographic area using broth microdilution antimicrobial susceptibility testing, multilocus sequence typing (MLST), spa typing, SCCmec typing, and pulsed-field gel electrophoresis (PFGE). S. aureus was isolated from 45% (45/100) of pork products and 63% (63/100) of beef products; mecA was detected in S. aureus from both pork (3/100; 3%) and beef (4/100; 4%). Fifty percent (50/100) of human S. aureus also contained mecA. Multidrug resistance was detected among MRSA from all sources. All MRSA (n = 57) was SCCmec type IV, and nine different spa types were present among the isolates (t002, t008, t012, t024, t179, t337, t548, t681, and t1062). Four sequence types (ST5, ST8, ST9, and ST30) were detected using MLST; the majority of MRSA isolates belonged to ST8, followed by ST5. One retail beef MRSA isolate belonged to ST8, while the remaining three were ST5. In retail pork MRSA, ST5, ST9, and ST30 were observed. The majority of human MRSA isolates belonged to ST8. Thirty-seven MRSA isolates, one of which was a retail beef MRSA isolate, were pvl+. Using PFGE, MLST, and spa typing, three retail beef MRSA isolates were found to be identical in PFGE pattern, ST, and spa type to two human clonal MRSA isolates (USA100 and USA300). One additional retail beef MRSA isolate had a PFGE pattern similar to that of a human MRSA isolate, whereas none of the retail pork MRSA isolates had PFGE patterns similar to those of human MRSA isolates. These data suggest that the retail beef samples were contaminated by a human source, possibly during processing of the meat, and may present a source of MRSA for consumers and others who handle raw meat. PMID:23363837
Cunha, Marcos Paulo Vieira; Saidenberg, Andre Becker; Moreno, Andrea Micke; Ferreira, Antonio José Piantino; Vieira, Mônica Aparecida Midolli; Gomes, Tânia Aparecida Tardelli; Knöbl, Terezinha
2017-01-01
Extra-intestinal pathogenic Escherichia coli (ExPEC) represent an emerging pathogen, with pandemic strains increasingly involved in cases of urinary tract infections (UTIs), bacteremia, and meningitis. In addition to affecting humans, the avian pathotype of ExPEC, avian pathogenic E. coli (APEC), causes severe economic losses to the poultry industry. Several studies have revealed overlapping characteristics between APEC and human ExPEC, leading to the hypothesis of a zoonotic potential of poultry strains. However, the description of certain important pandemic clones, such as Sequence Type 73 (ST73), has not been reported in food sources. We characterized 27 temporally matched APEC strains from diverse poultry farms in Brazil belonging to the O6 serogroup because this serogroup is frequently described as a causal factor in UTI and septicemia in humans in Brazil and worldwide. The isolates were genotypically characterized by identifying ExPEC virulence factors, phylogenetically tested by phylogrouping and multilocus sequence type (MLST) analysis, and compared to determine their similarity employing the pulsed field gel electrophoresis (PFGE) technique. The strains harbored a large number of virulence determinants that are commonly described in uropathogenic E. coli (UPEC) and sepsis associated E. coli (SEPEC) strains and, to a lesser extent in neonatal meningitis associated E. coli (NMEC), such as pap (85%), sfa (100%), usp (100%), cnf1 (22%), kpsMTII (66%), hlyA (52%), and ibeA (4%). These isolates also yielded a low prevalence of some genes that are frequently described in APEC, such as iss (37%), tsh, ompT, and hlyF (8% each), and cvi/cva (0%). All strains were classified as part of the B2 phylogroup and sequence type 73 (ST73), with a cluster of 25 strains showing a clonal profile by PFGE. These results further suggest the zoonotic potential of some APEC clonal lineages and their possible role in the epidemiology of human ExPEC, in addition to providing the first description of the O6-B2-ST73 clonal group in poultry.
Core Genome Multilocus Sequence Typing Scheme for High-Resolution Typing of Enterococcus faecium
de Been, Mark; Pinholt, Mette; Top, Janetta; Bletz, Stefan; van Schaik, Willem; Brouwer, Ellen; Rogers, Malbert; Kraat, Yvette; Bonten, Marc; Corander, Jukka; Westh, Henrik; Harmsen, Dag
2015-01-01
Enterococcus faecium, a common inhabitant of the human gut, has emerged in the last 2 decades as an important multidrug-resistant nosocomial pathogen. Since the start of the 21st century, multilocus sequence typing (MLST) has been used to study the molecular epidemiology of E. faecium. However, due to the use of a small number of genes, the resolution of MLST is limited. Whole-genome sequencing (WGS) now allows for high-resolution tracing of outbreaks, but current WGS-based approaches lack standardization, rendering them less suitable for interlaboratory prospective surveillance. To overcome this limitation, we developed a core genome MLST (cgMLST) scheme for E. faecium. cgMLST transfers genome-wide single nucleotide polymorphism (SNP) diversity into a standardized and portable allele numbering system that is far less computationally intensive than SNP-based analysis of WGS data. The E. faecium cgMLST scheme was built using 40 genome sequences that represented the diversity of the species. The scheme consists of 1,423 cgMLST target genes. To test the performance of the scheme, we performed WGS analysis of 103 outbreak isolates from five different hospitals in the Netherlands, Denmark, and Germany. The cgMLST scheme performed well in distinguishing between epidemiologically related and unrelated isolates, even between those that had the same sequence type (ST), which denotes the higher discriminatory power of this cgMLST scheme over that of conventional MLST. We also show that in terms of resolution, the performance of the E. faecium cgMLST scheme is equivalent to that of an SNP-based approach. In conclusion, the cgMLST scheme developed in this study facilitates rapid, standardized, and high-resolution tracing of E. faecium outbreaks. PMID:26400782
Core Genome Multilocus Sequence Typing Scheme for High- Resolution Typing of Enterococcus faecium.
de Been, Mark; Pinholt, Mette; Top, Janetta; Bletz, Stefan; Mellmann, Alexander; van Schaik, Willem; Brouwer, Ellen; Rogers, Malbert; Kraat, Yvette; Bonten, Marc; Corander, Jukka; Westh, Henrik; Harmsen, Dag; Willems, Rob J L
2015-12-01
Enterococcus faecium, a common inhabitant of the human gut, has emerged in the last 2 decades as an important multidrug-resistant nosocomial pathogen. Since the start of the 21st century, multilocus sequence typing (MLST) has been used to study the molecular epidemiology of E. faecium. However, due to the use of a small number of genes, the resolution of MLST is limited. Whole-genome sequencing (WGS) now allows for high-resolution tracing of outbreaks, but current WGS-based approaches lack standardization, rendering them less suitable for interlaboratory prospective surveillance. To overcome this limitation, we developed a core genome MLST (cgMLST) scheme for E. faecium. cgMLST transfers genome-wide single nucleotide polymorphism(SNP) diversity into a standardized and portable allele numbering system that is far less computationally intensive than SNP-based analysis of WGS data. The E. faecium cgMLST scheme was built using 40 genome sequences that represented the diversity of the species. The scheme consists of 1,423 cgMLST target genes. To test the performance of the scheme, we performed WGS analysis of 103 outbreak isolates from five different hospitals in the Netherlands, Denmark, and Germany. The cgMLST scheme performed well in distinguishing between epidemiologically related and unrelated isolates, even between those that had the same sequence type (ST), which denotes the higher discriminatory power of this cgMLST scheme over that of conventional MLST. We also show that in terms of resolution, the performance of the E. faecium cgMLST scheme is equivalent to that of an SNP-based approach. In conclusion, the cgMLST scheme developed in this study facilitates rapid, standardized, and high-resolution tracing of E. faecium outbreaks.
Magnússon, S H; Guðmundsdóttir, S; Reynisson, E; Rúnarsson, A R; Harðardóttir, H; Gunnarson, E; Georgsson, F; Reiersen, J; Marteinsson, V Th
2011-10-01
Campylobacter jejuni isolates from various sources in Iceland were genotyped with the aim of assessing the genetic diversity, population structure, source distribution and campylobacter transmission routes to humans. A collection of 584 Campylobacter isolates were collected from clinical cases, food, animals and environment in Iceland in 1999-2002, during a period of national Campylobacter epidemic in Iceland. All isolates were characterized by pulse field gel electrophoresis (PFGE), and selected subset of 52 isolates representing the diversity of the identified PFGE types was further genotyped using multilocus sequence typing (MLST) and fla-SVR sequencing to gain better insight into the population structure. The results show a substantial diversity within the Icelandic Campylobacter population. Majority of the human Campylobacter infections originated from domestic chicken and cattle isolates. MLST showed the isolates to be distributed among previously reported and common sequence type complexes in the MLST database. The genotyping of Campylobacter from various sources has not previously been reported from Iceland, and the results of the study gave a valuable insight into the population structure of Camp. jejuni in Iceland, source distribution and transmission routes to humans. The geographical isolation of Iceland in the north Atlantic provides new information on Campylobacter population dynamics on a global scale. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology No claim to Icelandic Government works.
Bai, Y; Wang, W; Yan, L; Yang, S R; Yan, S F; Dong, Y P; Zhao, B C; Zhao, Y Y; Xu, J; Hu, Y J; Li, F Q
2018-04-06
Objective: To analyses the antimicrobial resistance and molecular characterization of 21 MRSA isolates cultured from retail foods from different provinces in China, and evaluate the molecular typing methods. Methods: Twenty-one MRSA isolates were obtained from national foodborne pathogen surveillance network in 2012 (Chinese salad, n= 3; milk, n= 1; cake, n= 2; rice, n= 1; cold noodle, n= 1; spiced beef, n= 1; dumpling, n= 1; packed meal, n= 1; salad, n= 1; raw pork, n= 9). The antimicrobial resistance of 21 strains to 12 antimicrobial agents was tested by broth dilution method. Polymerase chain reaction (PCR) and DNA sequencing were performed to obtain the genetic types of MLST (ST) and spa typing. The clonal complex (CC) was assigned by eBURST soft and the MLVA type (MT) and MLVA complex (MC) were identified via the database of the MLVA website (http://www.mlva.net). Sma I pulsed-field gel electrophoresis ( Sma Ⅰ-PFGE) was also carried out to obtain the PFGE patterns of 21 strains. The genetic diversity and discriminatory power of typing were calculated by the Simpson's index of diversity (diversity index, DI) to find out the best genotyping method for MRSA. Results: All MRSA isolates showed multi-drug resistance(MDR), and were resistant to oxacillin, benzylpenicillin, clindamycin and erythromycin, and 71.4% (15/21), 47.6% (10/21), 42.9% (9/21) and 28.6% (6/21) of the MRSA isolates were resistant to tetracycline, ciprofloxacin, trimethoprim/sulfamethoxazole and gentamicin, respectively. Moreover, one strain was found to be resistant to all three antimicrobials of levofloxacin, moxifloxacin and rifampicin. Great diversity was found in these food-associated MRSA (6 STs, 7 spa types, and 9 MTs). PFGE patterns were more diverse than those of other three molecular typing methods (19 pulse types). The index of diversity (DI) of PFGE, MLVA, spa typing and MLST was 0.99, 0.80, 0.73, and 0.61, respectively. Among the MRSA isolates, CC9-ST9-t899-MT929-MC2236 (PFGE Cluster Ⅴ) was the most prevalent clone, which were all cultured from raw pork (9 isolates). Besides, two MRSA were identified as CC59-ST338-t437-MT621-MC621 (PFGE Cluster Ⅳ). Different clone had their own resistance spectrum profiles. Conclusion: The food-borne MRSA isolates were all MDR in this study. Different clones had their own resistance spectrum profiles. MLVA represented a promising tool for molecular epidemiology tracing of MRSA in foodborne disease events.
Register, Karen B; Ivanov, Yury V; Harvill, Eric T; Davison, Nick; Foster, Geoffrey
2015-03-01
During a succession of phocine morbillivirus outbreaks spanning the past 25 years, Bordetella bronchiseptica was identified as a frequent secondary invader and cause of death. The goal of this study was to evaluate genetic diversity and the molecular basis for host specificity among seal isolates from these outbreaks. MLST and PvuII ribotyping of 54 isolates from Scottish, English or Danish coasts of the Atlantic or North Sea revealed a single, host-restricted genotype. A single, novel genotype, unique from that of the Atlantic and North Sea isolates, was found in isolates from an outbreak in the Caspian Sea. Phylogenetic analysis based either on MLST sequence, ribotype patterns or genome-wide SNPs consistently placed both seal-specific genotypes within the same major clade but indicates a distinct evolutionary history for each. An additional isolate from the intestinal tract of a seal on the south-west coast of England has a genotype otherwise found in rabbit, guinea pig and pig isolates. To investigate the molecular basis for host specificity, DNA and predicted protein sequences of virulence genes that mediate host interactions were used in comparisons between a North Sea isolate, a Caspian Sea isolate and each of their closest relatives as inferred from genome-wide SNP analysis. Despite their phylogenetic divergence, fewer nucleotide and amino acid substitutions were found in comparisons of the two seal isolates than in comparisons with closely related strains. These data indicate isolates of B. bronchiseptica associated with respiratory disease in seals comprise unique, host-adapted and highly clonal populations. © 2015 The Authors.
Yang, Jiyong; Jiang, Yufeng; Guo, Ling; Ye, LIyan; Ma, Yanning; Luo, Yanping
2016-06-01
Vancomycin-resistant Enterococcus (VRE) has been identified in China. However, little is known about the spread of VRE isolates. The genetic relatedness of vancomycin-resistant Enterococcus faecium (VREfm) isolates was analyzed by pulsed-field gel electrophoresis (PFGE), their antimicrobial susceptibilities were analyzed by E-test and the VITEK 2 AST-GP67 test Kit, and their sequence types (STs) were investigated by multilocus sequence typing (MLST). S1-PFGE was used for plasmid profiling, and PCR and subsequent sequencing were performed to identify the virulence genes. A total of 96 nonduplicated VREfm isolates were obtained and categorized into 38 PFGE types (type 1-38). The predominant MLST type was ST78, while ST17, ST341, and ST342 were also sporadically identified. All types of clinical VREfm strains harbored the vanA gene; however, they carried plasmids of different sizes. While 92.1%, 71.1%, and 60.5% of VREfm strains carried hyl, scm, and ecbA genes, respectively, all of them were positive for esp, acm, sgrA, pilA, and pilB genes. Clonal VREfm spread was observed, and nonplasmid-mediated horizontal transfer of vancomycin-resistant gene might have conveyed resistance to some vancomycin-susceptible E. faecium strains. E. faecium ST78 carrying vanA gene was the most prevalent clone in this study. The high prevalence of virulence genes, including esp, hyl, acm, scm, ecbA, sgrA, pilA, and pilB, confirmed their important roles in the emergence of VREfm ST78 in nosocomial infections.
Phylogenetic relationships of Shiga toxin-producing Escherichia coli isolated from Peruvian children
Contreras, C. A.; Ruiz, J.; Lacher, D. W.; Rivera, F. P.; Saenz, Y.; Chea-Woo, E.; Zavaleta, N.; Gil, A. I.; Lanata, C. F.; Huicho, L.; Maves, R. C.; Torres, C.; DebRoy, C.; Cleary, T. G.
2011-01-01
The aim of this study was to determine the prevalence, virulence factors (stx, eae, ehxA and astA) and phylogenetic relationships [PFGE and multilocus sequence typing (MLST)] of Shiga toxin-producing Escherichia coli (STEC) strains isolated from four previous cohort studies in 2212 Peruvian children aged <36 months. STEC prevalence was 0.4 % (14/3219) in diarrhoeal and 0.6 % (15/2695) in control samples. None of the infected children developed haemolytic uraemic syndrome (HUS) or other complications of STEC. stx1 was present in 83 % of strains, stx2 in 17 %, eae in 72 %, ehxA in 59 % and astA in 14 %. The most common serotype was O26 : H11 (14 %) and the most common seropathotype was B (45 %). The strains belonged mainly to phylogenetic group B1 (52 %). The distinct combinations of alleles across the seven MLST loci were used to define 13 sequence types among 19 STEC strains. PFGE typing of 20 STEC strains resulted in 19 pulsed-field patterns. Comparison of the patterns revealed 11 clusters (I–XI), each usually including strains belonging to different serotypes; one exception was cluster VI, which gathered exclusively seven strains of seropathotype B, clonal group enterohaemorrhagic E. coli (EHEC) 2 and phylogenetic group B1. In summary, STEC prevalence was low in Peruvian children with diarrhoea in the community setting. The strains were phylogenetically diverse and associated with mild infections. However, additional studies are needed in children with bloody diarrhoea and HUS. PMID:21292859
Faria, Nuno A.; Carrico, João A.; Oliveira, Duarte C.; Ramirez, Mário; de Lencastre, Hermínia
2008-01-01
Sequence-based methods for typing Staphylococcus aureus, such as multilocus sequence typing (MLST) and spa typing, have increased interlaboratory reproducibility, portability, and speed in obtaining results, but pulsed-field gel electrophoresis (PFGE), remains the method of choice in many laboratories due to the extensive experience with this methodology and the large body of data accumulated using the technique. Comparisons between typing methods have been overwhelmingly based on a qualitative assessment of the overall agreement of results and the relative discriminatory indexes. In this study, we quantitatively assess the congruence of the major typing methods for S. aureus, using a diverse collection of 198 S. aureus strains previously characterized by PFGE, spa typing, MLST, and, in the case of methicillin-resistant S. aureus (MRSA), SCCmec typing in order to establish the quantitative congruence between the typing methods. The results of most typing methods agree in that MRSA and methicillin-susceptible S. aureus (MSSA) differ in terms of diversity of genetic backgrounds, with MSSA being more diverse. Our results show that spa typing has a very good predictive power over the clonal relationships defined by eBURST, while PFGE is less accurate for that purpose but nevertheless provides better typeability and discriminatory power. The combination of PFGE and spa typing provided even better results. Based on these observations, we suggest the use of the conjugation of spa typing and PFGE typing for epidemiological surveillance studies, since this combination provides the ability to infer long-term relationships while maintaining the discriminatory power and typeability needed in short-term studies. PMID:17989188
Chattaway, Marie Anne; Day, Michaela; Mtwale, Julia; White, Emma; Rogers, James; Day, Martin; Powell, David; Ahmad, Marwa; Harris, Ross; Talukder, Kaisar Ali; Wain, John; Jenkins, Claire; Cravioto, Alejandro
2017-01-01
Purpose This study investigates the virulence and antimicrobial resistance in association with common clonal complexes (CCs) of enteroaggregative Escherichia coli (EAEC) isolated from Bangladesh. The aim was to determine whether specific CCs were more likely to be associated with putative virulence genes and/or antimicrobial resistance. Methodology The presence of 15 virulence genes (by PCR) and susceptibility to 18 antibiotics were determined for 151 EAEC isolated from cases and controls during an intestinal infectious disease study carried out between 2007–2011 in the rural setting of Mirzapur, Bangladesh (Kotloff KL, Blackwelder WC, Nasrin D, Nataro JP, Farag TH et al. Clin Infect Dis 2012;55:S232–S245). These data were then analysed in the context of previously determined serotypes and clonal complexes defined by multi-locus sequence typing. Results Overall there was no association between the presence of virulence or antimicrobial resistance genes in isolates of EAEC from cases versus controls. However, when stratified by clonal complex (CC) one CC associated with cases harboured more virulence factors (CC40) and one CC harboured more resistance genes (CC38) than the average. There was no direct link between the virulence gene content and antibiotic resistance. Strains within a single CC had variable virulence and resistance gene content indicating independent and multiple gene acquisitions over time. Conclusion In Bangladesh, there are multiple clonal complexes of EAEC harbouring a variety of virulence and resistance genes. The emergence of two of the most successful clones appeared to be linked to either increased virulence (CC40) or antimicrobial resistance (CC38), but increased resistance and virulence were not found in the same clonal complexes. PMID:28945190
Development of Mycoplasma synoviae (MS) core genome multilocus sequence typing (cgMLST) scheme.
Ghanem, Mostafa; El-Gazzar, Mohamed
2018-05-01
Mycoplasma synoviae (MS) is a poultry pathogen with reported increased prevalence and virulence in recent years. MS strain identification is essential for prevention, control efforts and epidemiological outbreak investigations. Multiple multilocus based sequence typing schemes have been developed for MS, yet the resolution of these schemes could be limited for outbreak investigation. The cost of whole genome sequencing became close to that of sequencing the seven MLST targets; however, there is no standardized method for typing MS strains based on whole genome sequences. In this paper, we propose a core genome multilocus sequence typing (cgMLST) scheme as a standardized and reproducible method for typing MS based whole genome sequences. A diverse set of 25 MS whole genome sequences were used to identify 302 core genome genes as cgMLST targets (35.5% of MS genome) and 44 whole genome sequences of MS isolates from six countries in four continents were used for typing applying this scheme. cgMLST based phylogenetic trees displayed a high degree of agreement with core genome SNP based analysis and available epidemiological information. cgMLST allowed evaluation of two conventional MLST schemes of MS. The high discriminatory power of cgMLST allowed differentiation between samples of the same conventional MLST type. cgMLST represents a standardized, accurate, highly discriminatory, and reproducible method for differentiation between MS isolates. Like conventional MLST, it provides stable and expandable nomenclature, allowing for comparing and sharing the typing results between different laboratories worldwide. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Greaves, Mel; Maley, Carlo C.
2012-01-01
Cancers evolve by a reiterative process of clonal expansion, genetic diversification and clonal selection within the adaptive landscapes of tissue ecosystems. The dynamics are complex with highly variable patterns of genetic diversity and resultant clonal architecture. Therapeutic intervention may decimate cancer clones, and erode their habitats, but inadvertently provides potent selective pressure for the expansion of resistant variants. The inherently Darwinian character of cancer lies at the heart of therapeutic failure but perhaps also holds the key to more effective control. PMID:22258609
Bletz, Stefan; Janezic, Sandra; Harmsen, Dag; Rupnik, Maja; Mellmann, Alexander
2018-06-01
Clostridium difficile , recently renamed Clostridioides difficile , is the most common cause of antibiotic-associated nosocomial gastrointestinal infections worldwide. To differentiate endogenous infections and transmission events, highly discriminatory subtyping is necessary. Today, methods based on whole-genome sequencing data are increasingly used to subtype bacterial pathogens; however, frequently a standardized methodology and typing nomenclature are missing. Here we report a core genome multilocus sequence typing (cgMLST) approach developed for C. difficile Initially, we determined the breadth of the C. difficile population based on all available MLST sequence types with Bayesian inference (BAPS). The resulting BAPS partitions were used in combination with C. difficile clade information to select representative isolates that were subsequently used to define cgMLST target genes. Finally, we evaluated the novel cgMLST scheme with genomes from 3,025 isolates. BAPS grouping ( n = 6 groups) together with the clade information led to a total of 11 representative isolates that were included for cgMLST definition and resulted in 2,270 cgMLST genes that were present in all isolates. Overall, 2,184 to 2,268 cgMLST targets were detected in the genome sequences of 70 outbreak-associated and reference strains, and on average 99.3% cgMLST targets (1,116 to 2,270 targets) were present in 2,954 genomes downloaded from the NCBI database, underlining the representativeness of the cgMLST scheme. Moreover, reanalyzing different cluster scenarios with cgMLST were concordant to published single nucleotide variant analyses. In conclusion, the novel cgMLST is representative for the whole C. difficile population, is highly discriminatory in outbreak situations, and provides a unique nomenclature facilitating interlaboratory exchange. Copyright © 2018 American Society for Microbiology.
Cluster of Serogroup W135 Meningococci, Southeastern Florida, 2008–2009
Mejia-Echeverry, Alvaro; Fiorella, Paul; Leguen, Fermin; Livengood, John; Kay, Robyn; Hopkins, Richard
2010-01-01
Recently, 14 persons in southeastern Florida were identified with Neisseria meningitidis serogroup W135 invasive infections. All isolates tested had matching or near-matching pulsed-field gel electrophoresis patterns and belonged to the multilocus sequence type 11 clonal complex. The epidemiologic investigation suggested recent endemic transmission of this clonal complex in southeastern Florida. PMID:20031054
Pearce, Madison E; Alikhan, Nabil-Fareed; Dallman, Timothy J; Zhou, Zhemin; Grant, Kathie; Maiden, Martin C J
2018-06-02
Multi-country outbreaks of foodborne bacterial disease present challenges in their detection, tracking, and notification. As food is increasingly distributed across borders, such outbreaks are becoming more common. This increases the need for high-resolution, accessible, and replicable isolate typing schemes. Here we evaluate a core genome multilocus typing (cgMLST) scheme for the high-resolution reproducible typing of Salmonella enterica (S. enterica) isolates, by its application to a large European outbreak of S. enterica serovar Enteritidis. This outbreak had been extensively characterised using single nucleotide polymorphism (SNP)-based approaches. The cgMLST analysis was congruent with the original SNP-based analysis, the epidemiological data, and whole genome MLST (wgMLST) analysis. Combination of the cgMLST and epidemiological data confirmed that the genetic diversity among the isolates predated the outbreak, and was likely present at the infection source. There was consequently no link between country of isolation and genetic diversity, but the cgMLST clusters were congruent with date of isolation. Furthermore, comparison with publicly available Enteritidis isolate data demonstrated that the cgMLST scheme presented is highly scalable, enabling outbreaks to be contextualised within the Salmonella genus. The cgMLST scheme is therefore shown to be a standardised and scalable typing method, which allows Salmonella outbreaks to be analysed and compared across laboratories and jurisdictions. Copyright © 2018. Published by Elsevier B.V.
Merida-Vieyra, Jocelin; De Colsa, Agustin; Calderon Castañeda, Yair; Arzate Barbosa, Patricia; Aquino Andrade, Alejandra
2016-01-01
The aim of this study was to identify the presence of group CTX-M-9 extended spectrum beta-lactamases (ESBL) in clinical Escherichia coli isolates from pediatric patients. A total of 404 non-repeated positive ESBL E. coli isolates were collected from documented clinical infections in pediatric patients over a 2-year period. The identification and susceptibility profiles were determined using an automated system. Isolates that suggested ESBL production based on their resistance profiles to third and fourth generation cephalosporin and monobactam were selected. ESBL production was phenotypically confirmed using a diffusion method with cefotaxime and ceftazidime discs alone and in combination with clavulanic acid. blaESBL gene identification was performed through PCR amplification and sequencing. Pulsed Field Gel Electrophoresis (PFGE) and Multilocus Sequence Typing (MLST) were performed to establish the clonal relationships of the E. coli isolates. CTX-M-9-type ESBLs were detected in 2.5% of the isolates. The subtypes corresponded to blaCTX-M-14 (n = 4) and blaCTX-M-27 (n = 6). Additionally, coexistence with other beta-lactamases was observed. A clonal relationship was established in three isolates; the rest were classified as non-related. We found seven different sequence type (ST) in CTX-M-9- producing E. coli isolates. ST38 was the most frequent. This study is the first report in Mexico to document the presence of group CTX-M-9 ESBLs in E. coli isolates from pediatric patients. PMID:27992527
Population genetic analysis of Enterocytozoon bieneusi in humans.
Li, Wei; Cama, Vitaliano; Feng, Yaoyu; Gilman, Robert H; Bern, Caryn; Zhang, Xichen; Xiao, Lihua
2012-01-01
Genotyping based on sequence analysis of the ribosomal internal transcribed spacer has revealed significant genetic diversity in Enterocytozoonbieneusi. Thus far, the population genetics of E. bieneusi and its significance in the epidemiology of microsporidiosis have not been examined. In this study, a multilocus sequence typing of E. bieneusi in AIDS patients in Lima, Peru was conducted, using 72 specimens previously genotyped as A, D, IV, EbpC, WL11, Peru7, Peru8, Peru10 and Peru11 at the internal transcribed spacer locus. Altogether, 39 multilocus genotypes were identified among the 72 specimens. The observation of strong intragenic linkage disequilibria and limited genetic recombination among markers were indicative of an overall clonal population structure of E. bieneusi. Measures of pair-wise intergenic linkage disequilibria and a standardised index of association (IAS) based on allelic profile data further supported this conclusion. Both sequence-based and allelic profile-based phylogenetic analyses showed the presence of two genetically isolated groups in the study population, one (group 1) containing isolates of the anthroponotic internal transcribed spacer genotype A, and the other (group 2) containing isolates of multiple internal transcribed spacer genotypes (mainly genotypes D and IV) with zoonotic potential. The measurement of linkage disequilibria and recombination indicated group 2 had a clonal population structure, whereas group 1 had an epidemic population structure. The formation of the two sub-populations was confirmed by STRUCTURE and Wright's fixation index (FST) analyses. The data highlight the power of MLST in understanding the epidemiology of E. bieneusi. Published by Elsevier Ltd.
Effects of complex life cycles on genetic diversity: cyclical parthenogenesis.
Rouger, R; Reichel, K; Malrieu, F; Masson, J P; Stoeckel, S
2016-11-01
Neutral patterns of population genetic diversity in species with complex life cycles are difficult to anticipate. Cyclical parthenogenesis (CP), in which organisms undergo several rounds of clonal reproduction followed by a sexual event, is one such life cycle. Many species, including crop pests (aphids), human parasites (trematodes) or models used in evolutionary science (Daphnia), are cyclical parthenogens. It is therefore crucial to understand the impact of such a life cycle on neutral genetic diversity. In this paper, we describe distributions of genetic diversity under conditions of CP with various clonal phase lengths. Using a Markov chain model of CP for a single locus and individual-based simulations for two loci, our analysis first demonstrates that strong departures from full sexuality are observed after only a few generations of clonality. The convergence towards predictions made under conditions of full clonality during the clonal phase depends on the balance between mutations and genetic drift. Second, the sexual event of CP usually resets the genetic diversity at a single locus towards predictions made under full sexuality. However, this single recombination event is insufficient to reshuffle gametic phases towards full-sexuality predictions. Finally, for similar levels of clonality, CP and acyclic partial clonality (wherein a fixed proportion of individuals are clonally produced within each generation) differentially affect the distribution of genetic diversity. Overall, this work provides solid predictions of neutral genetic diversity that may serve as a null model in detecting the action of common evolutionary or demographic processes in cyclical parthenogens (for example, selection or bottlenecks).
Group B Streptococcal Colonization, Molecular Characteristics, and Epidemiology
Shabayek, Sarah; Spellerberg, Barbara
2018-01-01
Streptococcus agalactiae or group B streptococcus (GBS) is a leading cause of serious neonatal infections. GBS is an opportunistic commensal constituting a part of the intestinal and vaginal physiologic flora and maternal colonization is the principal route of GBS transmission. GBS is a pathobiont that converts from the asymptomatic mucosal carriage state to a major bacterial pathogen causing severe invasive infections. At present, as many as 10 serotypes (Ia, Ib, and II–IX) are recognized. The aim of the current review is to shed new light on the latest epidemiological data and clonal distribution of GBS in addition to discussing the most important colonization determinants at a molecular level. The distribution and predominance of certain serotypes is susceptible to variations and can change over time. With the availability of multilocus sequence typing scheme (MLST) data, it became clear that GBS strains of certain clonal complexes possess a higher potential to cause invasive disease, while other harbor mainly colonizing strains. Colonization and persistence in different host niches is dependent on the adherence capacity of GBS to host cells and tissues. Bacterial biofilms represent well-known virulence factors with a vital role in persistence and chronic infections. In addition, GBS colonization, persistence, translocation, and invasion of host barriers are largely dependent on their adherence abilities to host cells and extracellular matrix proteins (ECM). Major adhesins mediating GBS interaction with host cells include the fibrinogen-binding proteins (Fbs), the laminin-binding protein (Lmb), the group B streptococcal C5a peptidase (ScpB), the streptococcal fibronectin binding protein A (SfbA), the GBS immunogenic bacterial adhesin (BibA), and the hypervirulent adhesin (HvgA). These adhesins facilitate persistent and intimate contacts between the bacterial cell and the host, while global virulence regulators play a major role in the transition to invasive infections. This review combines for first time epidemiological data with data on adherence and colonization for GBS. Investigating the epidemiology along with understanding the determinants of mucosal colonization and the development of invasive disease at a molecular level is therefore important for the development of strategies to prevent invasive GBS disease worldwide. PMID:29593684
Krizova, Lenka; Dijkshoorn, Lenie; Nemec, Alexandr
2011-01-01
To assess the diversity of AbaR genomic resistance islands in Acinetobacter baumannii European clone I (MLST clonal complex 1), we investigated 26 multidrug-resistant strains of this major clone isolated from hospitals in 21 cities of 10 European countries between 1984 and 2005. Each strain harbored an AbaR structure integrated at the same position in the chromosomal ATPase gene. AbaR3, including four subtypes based on variations in class 1 integron cassettes, and AbaR10 were found in 15 and 2 strains, respectively, whereas a new, unique AbaR variant was discovered in each of the other 9 strains. These new variants, designated AbaR11 to AbaR19 (19.8 kb to 57.5 kb), seem to be truncated derivatives of AbaR3, likely resulting from the deletions of its internal parts mediated by either IS26 elements (AbaR12 to AbaR19) or homologous recombination (AbaR11). AbaR3 was detected in all 10 strains isolated in 1984 to 1991, while AbaR11 to AbaR19 were carried only by strains isolated since 1997. Our results and those from previous publications suggest that AbaR3 is the original form of AbaR in European clone I, which may have provided strains of the lineage with a selective advantage facilitating their spread in European hospitals in the 1980s or before. PMID:21537009
Moles, Laura; Gómez, Marta; Jiménez, Esther; Bustos, Gerardo; de Andrés, Javier; Melgar, Ana; Escuder, Diana; Fernández, Leónides; Del Campo, Rosa; Rodríguez, Juan Miguel
2017-01-01
Studies focused on the stomach microbiota are relatively scarce, and most of them are focused on the adult population. The aim of this work is to describe the bacterial communities inhabiting the gastric content (GC) of preterm neonates. For that purpose, GC samples were collected weekly from a total of 13 preterm neonates during their first month of life within their hospital stay. Samples were analyzed by using both culture-dependent and -independent techniques. The former allowed the isolation of bacteria belonging mainly to the genera Enterococcus, Staphylococcus, Streptococcus, Serratia, Klebsiella , and Escherichia . The cultured dominant species in the GC samples during all the hospitalization period were Enterococcus faecalis and Staphylococcus epidermidis . Multilocus sequence typing (MLST) analysis revealed the presence of high-risk clonal complexes associated with the hospital environment, which may colonize enteral feeding tubes. Similarly, the 16S rRNA sequencing showed that Streptococcus, Staphylococcus, Lactobacillus, Enterococcus, Corynebacterium , and Propionibacterium were the dominant genera present at 75% of the gastric samples. However, the genera Serratia, Klebsiella , and Streptococcus were the most abundant. Own mother's milk (OMM) and donor milk (DM) were collected after their pass through the external feeding tubes to assess their bacterial content. OMM and DM had a similar bacterial pattern to GC. Based on these data, the GC of preterm neonates is dominated by Proteobacteria and Firmicutes and harbors high-risk bacterial clones, which may colonize enteral feeding tubes, and therefore the feeds that pass through them.
Moles, Laura; Gómez, Marta; Jiménez, Esther; Bustos, Gerardo; de Andrés, Javier; Melgar, Ana; Escuder, Diana; Fernández, Leónides; del Campo, Rosa; Rodríguez, Juan Miguel
2017-01-01
Studies focused on the stomach microbiota are relatively scarce, and most of them are focused on the adult population. The aim of this work is to describe the bacterial communities inhabiting the gastric content (GC) of preterm neonates. For that purpose, GC samples were collected weekly from a total of 13 preterm neonates during their first month of life within their hospital stay. Samples were analyzed by using both culture-dependent and -independent techniques. The former allowed the isolation of bacteria belonging mainly to the genera Enterococcus, Staphylococcus, Streptococcus, Serratia, Klebsiella, and Escherichia. The cultured dominant species in the GC samples during all the hospitalization period were Enterococcus faecalis and Staphylococcus epidermidis. Multilocus sequence typing (MLST) analysis revealed the presence of high-risk clonal complexes associated with the hospital environment, which may colonize enteral feeding tubes. Similarly, the 16S rRNA sequencing showed that Streptococcus, Staphylococcus, Lactobacillus, Enterococcus, Corynebacterium, and Propionibacterium were the dominant genera present at 75% of the gastric samples. However, the genera Serratia, Klebsiella, and Streptococcus were the most abundant. Own mother’s milk (OMM) and donor milk (DM) were collected after their pass through the external feeding tubes to assess their bacterial content. OMM and DM had a similar bacterial pattern to GC. Based on these data, the GC of preterm neonates is dominated by Proteobacteria and Firmicutes and harbors high-risk bacterial clones, which may colonize enteral feeding tubes, and therefore the feeds that pass through them. PMID:28459051
Pollett, S.; Miller, S.; Hindler, J.; Uslan, D.; Carvalho, M.
2014-01-01
Carbapenem-resistant Enterobacteriaceae (CRE) are a concern for health care in the United States but remain relatively uncommon in California. We describe the phenotype, clonality, and carbapenemase-encoding genes present in CRE isolated from patients at a Californian tertiary health care system. CRE for this study were identified by evaluating the antibiograms of Enterobacteriaceae isolated in the UCLA Health System from 2011 to 2013 for isolates that were not susceptible to meropenem and/or imipenem. The identification of these isolates was subsequently confirmed by matrix-associated laser desorption ionization–time of flight, and broth microdilution tests were repeated to confirm the CRE phenotype. Real-time PCR for blaKPC, blaSME, blaIMP, blaNDM-1, blaVIM, and blaOXA-48 was performed. Clonality was assessed by repetitive sequence-based PCR (repPCR) and multilocus sequence typing (MLST). Of 15,839 nonduplicate clinical Enterobacteriaceae isolates, 115 (0.73%) met the study definition for CRE. This number increased from 0.5% (44/8165) in the first half of the study to 0.9% (71/7674) in the second (P = 0.004). The most common CRE species were Klebsiella pneumoniae, Enterobacter aerogenes, and Escherichia coli. A carbapenemase-encoding gene was found in 81.7% (94/115) of CRE and included blaKPC (78.3%), blaNDM-1 (0.9%), and blaSME (2.6%). The majority of blaKPC genes were in K. pneumoniae isolates, which fell into 14 clonal groups on typing. blaKPC was identified in more than one species of CRE cultured from the same patient in four cases. Three blaSME-carrying Serratia marcescens isolates and one blaNDM-1 carrying Providencia rettgeri isolate were detected. CRE are increasing in California, and carbapenemases, particularly KPC, are a common mechanism for carbapenem resistance in this region. PMID:25210072
Uwingabiye, Jean; Lemnouer, Abdelhay; Roca, Ignasi; Alouane, Tarek; Frikh, Mohammed; Belefquih, Bouchra; Bssaibis, Fatna; Maleb, Adil; Benlahlou, Yassine; Kassouati, Jalal; Doghmi, Nawfal; Bait, Abdelouahed; Haimeur, Charki; Louzi, Lhoussain; Ibrahimi, Azeddine; Vila, Jordi; Elouennass, Mostafa
2017-01-01
Carbapenem-resistant Acinetobacter baumannii has recently been defined by the World Health Organization as a critical pathogen. The aim of this study was to compare clonal diversity and carbapenemase-encoding genes of A. baumannii isolates collected from colonized or infected patients and hospital environment in two intensive care units (ICUs) in Morocco. The patient and environmental sampling was carried out in the medical and surgical ICUs of Mohammed V Military teaching hospital from March to August 2015. All A. baumannii isolates recovered from clinical and environmental samples, were identified using routine microbiological techniques and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Antimicrobial susceptibility testing was performed using disc diffusion method. The carbapenemase-encoding genes were screened for by PCR. Clonal relatedness was analyzed by digestion of the DNA with low frequency restriction enzymes and pulsed field gel electrophoresis (PFGE) and the multi locus sequence typing (MLST) was performed on two selected isolates from two major pulsotypes. A total of 83 multidrug-resistant A. baumannii isolates were collected: 47 clinical isolates and 36 environmental isolates. All isolates were positive for the bla OXA51-like and bla OXA23-like genes. The coexistence of bla NDM-1 /bla OXA-23-like and bla OXA 24-like /bla OXA-23-like were detected in 27 (32.5%) and 2 (2.4%) of A. baumannii isolates, respectively. The environmental samples and the fecally-colonized patients were significantly identified ( p < 0.05) as the most common sites of isolation of NDM-1-harboring isolates. PFGE grouped all isolates into 9 distinct clusters with two major groups (0007 and 0008) containing up to 59% of the isolates. The pulsotype 0008 corresponds to sequence type (ST) 195 while pulsotype 0007 corresponds to ST 1089.The genetic similarity between the clinical and environmental isolates was observed in 80/83 = 96.4% of all isolates, belonging to 7 pulsotypes. This study shows that the clonal spread of environmental A. baumannii isolates is related to that of clinical isolates recovered from colonized or infected patients, being both associated with a high prevalence of the bla OXA23-like and bla NDM-1 genes. These findings emphasize the need for prioritizing the bio-cleaning of the hospital environment to control and prevent the dissemination of A. baumannii clonal lineages.
Characterization of Escherichia coli O78 from an outbreak of septicemia in lambs in Norway.
Kjelstrup, Cecilie K; Arnesen, Lotte P Stenfors; Granquist, Erik G; L'Abée-Lund, Trine M
2013-09-27
The aim of the study was to characterize isolates of Escherichia coli from an outbreak of septicemia in a Norwegian sheep flock in 2008 with emphasis on virulence, serological grouping, phylogenicity and homology. Six E. coli isolates from succumbed neonatal lambs and four E. coli isolates collected from healthy individuals were analyzed by Pulsed-Field Gel Electrophoresis (PFGE), miniaturized microarray, and polymerase chain reaction (PCR). The septicemic E. coli isolates showed identical pulsotypes (PTs), and belonged to serogroup O78, phylogenetic group A, and MLST ST 369. The virulence genes f17G, bmaE, afaE-VIII, ireA, iroN and iss were detected in the septicemic isolates. The results showed that the E. coli isolates from the septicemic outbreak had a clonal appearance, thus likely originating from a common source. The clone carried genes important for virulence, however, a significant explanation for the high pathogenicity was not revealed. Copyright © 2013 Elsevier B.V. All rights reserved.
mec-associated dru typing in the epidemiological analysis of ST239 MRSA in Malaysia.
Ghaznavi-Rad, E; Goering, R V; Nor Shamsudin, M; Weng, P L; Sekawi, Z; Tavakol, M; van Belkum, A; Neela, V
2011-11-01
The usefulness of mec-associated dru typing in the epidemiological analysis of methicillin-resistant Staphylococcus aureus (MRSA) isolated in Malaysia was investigated and compared with pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and spa and SCCmec typing. The isolates studied included all MRSA types in Malaysia. Multilocus sequence type ST188 and ST1 isolates were highly clonal by all typing methods. However, the dru typing of ST239 isolates produced the clearest discrimination between SCCmec IIIa and III isolates, yielding more subtypes than any other method. Evaluation of the discriminatory power for each method identified dru typing and PFGE as the most discriminatory, with Simpson's index of diversity (SID) values over 89%, including an isolate which was non-typeable by spa, but dru-typed as dt13j. The discriminatory ability of dru typing, especially with closely related MRSA ST239 strains (e.g., Brazilian and Hungarian), underscores its utility as a tool for the epidemiological investigation of MRSA.
Techaruvichit, Punnida; Vesaratchavest, Mongkol; Keeratipibul, Suwimon; Kuda, Takashi; Kimura, Bon
2015-01-01
Campylobacter jejuni is a common cause of the frequently reported food-borne diseases in developed and developing nations. This study describes the development of multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) using capillary electrophoresis as a novel typing method for microbial source tracking and epidemiological investigation of C. jejuni. Among 36 tandem repeat loci detected by the Tandem Repeat Finder program, 7 VNTR loci were selected and used for characterizing 60 isolates recovered from chicken meat samples from retail shops, samples from chicken meat processing factory, and stool samples. The discrimination ability of MLVA was compared with that of multilocus sequence typing (MLST). MLVA (diversity index of 0.97 with 31 MLVA types) provided slightly higher discrimination than MLST (diversity index of 0.95 with 25 MLST types). The overall concordance between MLVA and MLST was estimated at 63% by adjusted Rand coefficient. MLVA predicted MLST type better than MLST predicted MLVA type, as reflected by Wallace coefficient (Wallace coefficient for MLVA to MLST versus MLST to MLVA, 86% versus 51%). MLVA is a useful tool and can be used for effective monitoring of C. jejuni and investigation of epidemics caused by C. jejuni. PMID:26025899
Sahin, Orhan; Fitzgerald, Collette; Stroika, Steven; Zhao, Shaohua; Sippy, Rachel J; Kwan, Patrick; Plummer, Paul J; Han, Jing; Yaeger, Michael J; Zhang, Qijing
2012-03-01
Campylobacter jejuni is a major zoonotic pathogen. A highly virulent, tetracycline-resistant C. jejuni clone (clone SA) has recently emerged in ruminant reservoirs and has become the predominant cause of sheep abortion in the United States. To determine whether clone SA is associated with human disease, we compared the clinical isolates of clone SA from sheep abortions with the human isolates of the PulseNet National Campylobacter databases at the CDC and the FDA using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and serotyping. The combined SmaI and KpnI PFGE pattern designations of clone SA from sheep were indistinguishable from those of 123 (9.03%) human C. jejuni isolates (total, 1,361) in the CDC database, among which 56 were associated with sporadic infections and 67 were associated with outbreaks that occurred in multiple states from 2003 to 2010. Most of the outbreaks were attributed to raw milk, while the sources for most of the sporadic cases were unknown. All clone SA isolates examined, including PFGE-matched human isolates, belong to sequence type 8 (ST-8) by MLST and serotype HS:1,8, further indicating the clonality of the related isolates from different host species. Additionally, C. jejuni clone SA was identified in raw milk, cattle feces, the feces and bile of healthy sheep, and abortion cases of cattle and goats, indicating the broad distribution of this pathogenic clone in ruminants. These results provide strong molecular and epidemiological evidence for zoonotic transmission of this emergent clone from ruminants to humans and indicate that C. jejuni clone SA is an important threat to public health.
Zenati, K; Touati, A; Bakour, S; Sahli, F; Rolain, J M
2016-01-01
Investigation of several outbreaks of multidrug-resistant Acinetobacter baumannii infection has demonstrated that contamination of the inanimate hospital environment could be implicated in the spread of these multidrug-resistant strains. To investigate the occurrence of carbapenem-resistant A. baumannii on inanimate surfaces and possible dissemination in the hospital environment in Algeria as a potential source of infection in humans. A. baumannii strains were isolated from the hospital environment and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Antimicrobial susceptibility was determined using disc diffusion and E-test methods. Carbapenemase activity was detected using microbiological tests, including modified Hodge test, modified Carba NP test, and EDTA test. Carbapenem resistance determinants were studied by polymerase chain reaction (PCR) and sequencing. Clonal relatedness was determined using multi-locus sequence typing (MLST). A total of 67 A. baumannii isolates were obtained from 868 environmental samples and identified by MALDI-TOF MS. Among them, 61 isolates were resistant to imipenem with minimum inhibitory concentration >32 μg/mL and positive by the modified Hodge test and modified Carba NP test. In addition, the activity of carbapenemase was inhibited by EDTA in 32 strains. PCR and sequencing showed the presence of blaOXA-23 gene in 29 strains, and the blaNDM-1 gene in 32 isolates. MLST demonstrated the presence of five types of ST (ST19, ST2, ST85, ST98, and ST115). Our study demonstrated the dissemination of carbapenemase-producing A. baumannii strains recovered from inanimate surfaces in a hospital environment, surrounding patients, healthcare workers and visitors, in Algeria as a potential source for nosocomial infection. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Genetic diversity and population structure of food-borne Staphylococcus carnosus strains.
Bückle Née Müller, Anne; Kranz, Markus; Schmidt, Herbert; Weiss, Agnes
2017-01-01
The species Staphylococcus carnosus is a non-pathogenic representative of the coagulase negative staphylococci. Specific strains are applied as meat starter cultures. The species consists of two subspecies, S. carnosus ssp. carnosus and S. carnosus ssp. utilis. In order to place S. carnosus strains, characterized in former studies, in a genetic background that allows a typing of candidates for starter cultures, a Multilocus Sequence Typing (MLST) scheme was developed. Internal fragments of the genes tpiA, xprT, dat, gmk, glpK, narG, cstA, encoding triosephosphate isomerase, xanthine phosphoribosyltransferase, d-amino acid aminotransferase, guanylate kinase, glycerol kinase, the α-chain of the respiratory nitrate reductase, and a carbon starvation protein where chosen. Genes were selected based on their equal distribution in the genome, taxonomic value in subspecies differentiation and metabolic function. This MLST was applied to 44 S. carnosus strains, most of them previously analyzed for their suitability as starter cultures. The number of alleles varied between zero (tpiA) and five (cstA) and allowed the definition of nine sequence types (ST). ST1 was most abundant (18 strains), followed by ST2 (8) and ST4 (6). The nine STs confirmed a close relationship of all strains despite their isolation source and year, but lacked correlation with physiological activities relevant for starter cultures. The low amount of STs in the strain set lets us suggest that recombination between strains is rare. Thus, it is hypothesized that evolutionary events seem to be due to single point mutations rather than intrachromosomal recombination, and that the species possesses a clonal population structure. Copyright © 2016 Elsevier GmbH. All rights reserved.
Calleros, Lucía; Betancor, Laura; Iraola, Gregorio; Méndez, Alejandra; Morsella, Claudia; Paolicchi, Fernando; Silveyra, Silvia; Velilla, Alejandra; Pérez, Ruben
2017-01-01
Campylobacter fetus is a Gram-negative, microaerophilic bacterium that infects animals and humans. The subspecies Campylobacter fetus subsp. fetus (Cff) affects a broad range of vertebrate hosts and induces abortion in cows and sheep. Campylobacter fetus subsp. venerealis (Cfv) is restricted to cattle and causes the endemic disease bovine genital campylobacteriosis, which triggers reproductive problems and is responsible for major economic losses. Campylobacter fetus subsp. testudinum (Cft) has been isolated mostly from apparently healthy reptiles belonging to different species but also from ill snakes and humans. Genotypic differentiation of Cff and Cfv is difficult, and epidemiological information is scarce because there are few methods to study the genetic diversity of the strains. We analyze the efficacy of MLST, ribosomal sequences (23S gene and internal spacer region), and CRISPRs to assess the genetic variability of C. fetus in bovine and human isolates. Sequences retrieved from complete genomes were included in the analysis for comparative purposes. MLST and ribosomal sequences had scarce or null variability, while the CRISPR-cas system structure and the sequence of CRISPR1 locus showed remarkable diversity. None of the sequences here analyzed provided evidence of a genetic differentiation of Cff and Cfv in bovine isolates. Comparison of bovine and human isolates with Cft strains showed a striking divergence. Inter-host differences raise the possibility of determining the original host of human infections using CRISPR sequences. CRISPRs are the most variable sequences analyzed in C. fetus so far, and constitute excellent representatives of a dynamic fraction of the genome. CRISPR typing is a promising tool to characterize isolates and to track the source and transmission route of C. fetus infections. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Yongxiang; Zhang, Anyun; Yang, Yongqiang; Lei, Changwei; Jiang, Wei; Liu, Bihui; Shi, Hongping; Kong, Linghan; Cheng, Guangyang; Zhang, Xiuzhong; Yang, Xin; Wang, Hongning
2017-12-04
The aim of this study was to investigate the prevalence and characterization of Salmonella concerning the poultry industry in China. A total of 170 non-duplicate Salmonella isolates were recovered from the 1540 chicken samples. Among the Salmonella isolates from chickens, the predominant serovars were S. enterica serovar Enteritidis (S. Enteritidis) (49/170, 28.8%), S. enterica serovar Indiana (S. Indiana) (37/170, 21.8%) and S. enterica serovar California (S. California) (34/170, 20.0%). High antimicrobial resistance was observed for ciprofloxacin (68.2%), amikacin (48.2%) and cefotaxime (44.7%). Of particular concerns were the 18 S. Indiana and 17 S. California isolates, which were concurrently resistant to cefotaxime, amikacin and ciprofloxacin. The bla CTX-M genes, 16S rRNA methylase genes (armA, rmtD or rmtC) and five plasmid-mediated quinolone resistance (PMQR) determinants (aac(6')-Ib-cr, oqxAB, qnrB, qepA and qnrD) were identified in 18 S. Indiana and 17 S. California isolates. To clarify their genetic correlation, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were further conducted. PFGE profiles showed that the majority of S. Indiana and S. California isolates were clonally unrelated with a standard cut-off of 85%. The results of MLST demonstrated that ST17 and ST40 were the most common ST types in S. Indiana and S. California isolates, respectively. Our findings indicated that the multiple antibiotic resistant S. Indiana and S. California isolates were widespread in chicken in China and might pose a potential threat to public health. Copyright © 2017 Elsevier B.V. All rights reserved.
Sahin, Orhan; Fitzgerald, Collette; Stroika, Steven; Zhao, Shaohua; Sippy, Rachel J.; Kwan, Patrick; Plummer, Paul J.; Han, Jing; Yaeger, Michael J.
2012-01-01
Campylobacter jejuni is a major zoonotic pathogen. A highly virulent, tetracycline-resistant C. jejuni clone (clone SA) has recently emerged in ruminant reservoirs and has become the predominant cause of sheep abortion in the United States. To determine whether clone SA is associated with human disease, we compared the clinical isolates of clone SA from sheep abortions with the human isolates of the PulseNet National Campylobacter databases at the CDC and the FDA using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and serotyping. The combined SmaI and KpnI PFGE pattern designations of clone SA from sheep were indistinguishable from those of 123 (9.03%) human C. jejuni isolates (total, 1,361) in the CDC database, among which 56 were associated with sporadic infections and 67 were associated with outbreaks that occurred in multiple states from 2003 to 2010. Most of the outbreaks were attributed to raw milk, while the sources for most of the sporadic cases were unknown. All clone SA isolates examined, including PFGE-matched human isolates, belong to sequence type 8 (ST-8) by MLST and serotype HS:1,8, further indicating the clonality of the related isolates from different host species. Additionally, C. jejuni clone SA was identified in raw milk, cattle feces, the feces and bile of healthy sheep, and abortion cases of cattle and goats, indicating the broad distribution of this pathogenic clone in ruminants. These results provide strong molecular and epidemiological evidence for zoonotic transmission of this emergent clone from ruminants to humans and indicate that C. jejuni clone SA is an important threat to public health. PMID:22189122
Giufrè, Maria; Cardines, Rita; Accogli, Marisa; Pardini, Manuela; Cerquetti, Marina
2013-08-01
The introduction of Haemophilus influenzae serotype b (Hib) conjugate vaccines has changed the epidemiology of invasive H. influenzae disease, with a shift in the predominant serotype from Hib to nonencapsulated H. influenzae (ncHi). The objective of this study was to identify the genotypes/clones associated with invasive H. influenzae disease in Italy. Eighty-seven H. influenzae strains isolated in the years 2009 to 2011 within the National Surveillance of Invasive Bacterial Disease program were analyzed. Strains were characterized by serotyping, antimicrobial susceptibility testing, and multilocus sequence typing (MLST). Genetic polymorphisms in the bla(TEM) gene promoter region as well as the occurrence of both adhesin genes (hmwA and hia) and the IgA1 protease-encoding gene (igaB) were also investigated. Of 87 strains, 67 were ncHi and 20 were encapsulated. Eleven strains were β-lactamase positive, harboring the bla(TEM) gene. Most bla(TEM) genes (10/11) were associated with a Pdel promoter region exhibiting a 135-bp deletion; the remaining strain possessed the Pa/Pb overlapping promoter. MLST analysis showed that encapsulated isolates were clonal, with each serotype sharing a few related sequence types (STs). Forty-six different STs were identified among the 67 ncHi strains. Despite this heterogeneity, a group of closely related STs (ST103, ST139, and ST145) encompassed almost 25% of all ncHi strains and 45.5% of the β-lactamase producers carrying the Pdel promoter. These major ST clones were found to be associated with the hmwA gene but not with the igaB gene. To conclude, although the heterogeneity of the ncHi population was confirmed, diffusion of major successful ST clones was documented.
Genetic variants near MLST8 and DHX57 affect the epigenetic age of the cerebellum
NASA Astrophysics Data System (ADS)
Lu, Ake T.; Hannon, Eilis; Levine, Morgan E.; Hao, Ke; Crimmins, Eileen M.; Lunnon, Katie; Kozlenkov, Alexey; Mill, Jonathan; Dracheva, Stella; Horvath, Steve
2016-02-01
DNA methylation (DNAm) levels lend themselves for defining an epigenetic biomarker of aging known as the `epigenetic clock'. Our genome-wide association study (GWAS) of cerebellar epigenetic age acceleration identifies five significant (P<5.0 × 10-8) SNPs in two loci: 2p22.1 (inside gene DHX57) and 16p13.3 near gene MLST8 (a subunit of mTOR complex 1 and 2). We find that the SNP in 16p13.3 has a cis-acting effect on the expression levels of MLST8 (P=6.9 × 10-18) in most brain regions. In cerebellar samples, the SNP in 2p22.1 has a cis-effect on DHX57 (P=4.4 × 10-5). Gene sets found by our GWAS analysis of cerebellar age acceleration exhibit significant overlap with those of Alzheimer's disease (P=4.4 × 10-15), age-related macular degeneration (P=6.4 × 10-6), and Parkinson's disease (P=2.6 × 10-4). Overall, our results demonstrate the utility of a new paradigm for understanding aging and age-related diseases: it will be fruitful to use epigenetic tissue age as endophenotype in GWAS.
Effects of complex life cycles on genetic diversity: cyclical parthenogenesis
Rouger, R; Reichel, K; Malrieu, F; Masson, J P; Stoeckel, S
2016-01-01
Neutral patterns of population genetic diversity in species with complex life cycles are difficult to anticipate. Cyclical parthenogenesis (CP), in which organisms undergo several rounds of clonal reproduction followed by a sexual event, is one such life cycle. Many species, including crop pests (aphids), human parasites (trematodes) or models used in evolutionary science (Daphnia), are cyclical parthenogens. It is therefore crucial to understand the impact of such a life cycle on neutral genetic diversity. In this paper, we describe distributions of genetic diversity under conditions of CP with various clonal phase lengths. Using a Markov chain model of CP for a single locus and individual-based simulations for two loci, our analysis first demonstrates that strong departures from full sexuality are observed after only a few generations of clonality. The convergence towards predictions made under conditions of full clonality during the clonal phase depends on the balance between mutations and genetic drift. Second, the sexual event of CP usually resets the genetic diversity at a single locus towards predictions made under full sexuality. However, this single recombination event is insufficient to reshuffle gametic phases towards full-sexuality predictions. Finally, for similar levels of clonality, CP and acyclic partial clonality (wherein a fixed proportion of individuals are clonally produced within each generation) differentially affect the distribution of genetic diversity. Overall, this work provides solid predictions of neutral genetic diversity that may serve as a null model in detecting the action of common evolutionary or demographic processes in cyclical parthenogens (for example, selection or bottlenecks). PMID:27436524
Zhang, Jun; Kong, Yingying; Ruan, Zhi; Huang, Jun; Song, Tiejun; Song, Jingjuan; Jiang, Yan; Yu, Yunsong; Xie, Xinyou
2014-01-01
The multilocus sequence typing (MLST) scheme of Ureaplasma based on four housekeeping genes (ftsH, rpL22, valS, and thrS) was described in our previous study; here we introduced an expanded MLST (eMLST) scheme with improved discriminatory power, which was developed by adding two putative virulence genes (ureG and mba-np1) to the original MLST scheme. To evaluate the discriminatory power of eMLST, a total of 14 reference strains of Ureaplasma serovars and 269 clinical strains (134 isolated from symptomatic patients and 135 obtained from asymptomatic persons) were investigated. Our study confirmed that all 14 serotype strains could successfully be differentiated into 14 eMLST STs (eSTs), while some of them could not even be differentiated by the MLST, and a total of 136 eSTs were identified among the clinical isolates we investigated. In addition, phylogenetic analysis indicated that two genetically significantly distant clusters (cluster I and II) were revealed and most clinical isolates were located in cluster I. These findings were in accordance with and further support for the concept of two well-known genetic lineages (Ureaplasma parvum and Ureaplasma urealyticum) in our previous study. Interestingly, although both clusters were associated with clinical manifestation, the sub-group 2 of cluster II had pronounced and adverse effect on patients and might be a potential risk factor for clinical outcomes. In conclusion, the eMLST scheme offers investigators a highly discriminative typing tool that is capable for precise epidemiological investigations and clinical relevance of Ureaplasma.
Ruan, Zhi; Huang, Jun; Song, Tiejun; Song, Jingjuan; Jiang, Yan; Yu, Yunsong; Xie, Xinyou
2014-01-01
The multilocus sequence typing (MLST) scheme of Ureaplasma based on four housekeeping genes (ftsH, rpL22, valS, and thrS) was described in our previous study; here we introduced an expanded MLST (eMLST) scheme with improved discriminatory power, which was developed by adding two putative virulence genes (ureG and mba-np1) to the original MLST scheme. To evaluate the discriminatory power of eMLST, a total of 14 reference strains of Ureaplasma serovars and 269 clinical strains (134 isolated from symptomatic patients and 135 obtained from asymptomatic persons) were investigated. Our study confirmed that all 14 serotype strains could successfully be differentiated into 14 eMLST STs (eSTs), while some of them could not even be differentiated by the MLST, and a total of 136 eSTs were identified among the clinical isolates we investigated. In addition, phylogenetic analysis indicated that two genetically significantly distant clusters (cluster I and II) were revealed and most clinical isolates were located in cluster I. These findings were in accordance with and further support for the concept of two well-known genetic lineages (Ureaplasma parvum and Ureaplasma urealyticum) in our previous study. Interestingly, although both clusters were associated with clinical manifestation, the sub-group 2 of cluster II had pronounced and adverse effect on patients and might be a potential risk factor for clinical outcomes. In conclusion, the eMLST scheme offers investigators a highly discriminative typing tool that is capable for precise epidemiological investigations and clinical relevance of Ureaplasma. PMID:25093900
Saukkoriipi, Annika; Bratcher, Holly B.; Bloigu, Aini; Juvonen, Raija; Silvennoinen-Kassinen, Sylvi; Peitso, Ari; Harju, Terttu; Vainio, Olli; Kuusi, Markku; Maiden, Martin C. J.; Leinonen, Maija; Käyhty, Helena; Toropainen, Maija
2012-01-01
The relationship between carriage and the development of invasive meningococcal disease is not fully understood. We investigated the changes in meningococcal carriage in 892 military recruits in Finland during a nonepidemic period (July 2004 to January 2006) and characterized all of the oropharyngeal meningococcal isolates obtained (n = 215) by using phenotypic (serogrouping and serotyping) and genotypic (porA typing and multilocus sequence typing) methods. For comparison, 84 invasive meningococcal disease strains isolated in Finland between January 2004 and February 2006 were also analyzed. The rate of meningococcal carriage was significantly higher at the end of military service than on arrival (18% versus 2.2%; P < 0.001). Seventy-four percent of serogroupable carriage isolates belonged to serogroup B, and 24% belonged to serogroup Y. Most carriage isolates belonged to the carriage-associated ST-60 clonal complex. However, 21.5% belonged to the hyperinvasive ST-41/44 clonal complex. Isolates belonging to the ST-23 clonal complex were cultured more often from oropharyngeal samples taken during the acute phase of respiratory infection than from samples taken at health examinations at the beginning and end of military service (odds ratio [OR], 6.7; 95% confidence interval [95% CI], 2.7 to 16.4). The ST-32 clonal complex was associated with meningococcal disease (OR, 17.8; 95% CI, 3.8 to 81.2), while the ST-60 clonal complex was associated with carriage (OR, 10.7; 95% CI, 3.3 to 35.2). These findings point to the importance of meningococcal vaccination for military recruits and also to the need for an efficacious vaccine against serogroup B isolates. PMID:22135261
Zischka, Melanie; Künne, Carsten T; Blom, Jochen; Wobser, Dominique; Sakιnç, Türkân; Schmidt-Hohagen, Kerstin; Dabrowski, P Wojtek; Nitsche, Andreas; Hübner, Johannes; Hain, Torsten; Chakraborty, Trinad; Linke, Burkhard; Goesmann, Alexander; Voget, Sonja; Daniel, Rolf; Schomburg, Dietmar; Hauck, Rüdiger; Hafez, Hafez M; Tielen, Petra; Jahn, Dieter; Solheim, Margrete; Sadowy, Ewa; Larsen, Jesper; Jensen, Lars B; Ruiz-Garbajosa, Patricia; Quiñones Pérez, Dianelys; Mikalsen, Theresa; Bender, Jennifer; Steglich, Matthias; Nübel, Ulrich; Witte, Wolfgang; Werner, Guido
2015-03-12
Enterococcus faecalis is a multifaceted microorganism known to act as a beneficial intestinal commensal bacterium. It is also a dreaded nosocomial pathogen causing life-threatening infections in hospitalised patients. Isolates of a distinct MLST type ST40 represent the most frequent strain type of this species, distributed worldwide and originating from various sources (animal, human, environmental) and different conditions (colonisation/infection). Since enterococci are known to be highly recombinogenic we determined to analyse the microevolution and niche adaptation of this highly distributed clonal type. We compared a set of 42 ST40 isolates by assessing key molecular determinants, performing whole genome sequencing (WGS) and a number of phenotypic assays including resistance profiling, formation of biofilm and utilisation of carbon sources. We generated the first circular closed reference genome of an E. faecalis isolate D32 of animal origin and compared it with the genomes of other reference strains. D32 was used as a template for detailed WGS comparisons of high-quality draft genomes of 14 ST40 isolates. Genomic and phylogenetic analyses suggest a high level of similarity regarding the core genome, also demonstrated by similar carbon utilisation patterns. Distribution of known and putative virulence-associated genes did not differentiate between ST40 strains from a commensal and clinical background or an animal or human source. Further analyses of mobile genetic elements (MGE) revealed genomic diversity owed to: (1) a modularly structured pathogenicity island; (2) a site-specifically integrated and previously unknown genomic island of 138 kb in two strains putatively involved in exopolysaccharide synthesis; and (3) isolate-specific plasmid and phage patterns. Moreover, we used different cell-biological and animal experiments to compare the isolate D32 with a closely related ST40 endocarditis isolate whose draft genome sequence was also generated. D32 generally showed a greater capacity of adherence to human cell lines and an increased pathogenic potential in various animal models in combination with an even faster growth in vivo (not in vitro). Molecular, genomic and phenotypic analysis of representative isolates of a major clone of E. faecalis MLST ST40 revealed new insights into the microbiology of a commensal bacterium which can turn into a conditional pathogen.
Jandova, Zuzana; Musilek, Martin; Vackova, Zuzana; Kozakova, Jana; Krizova, Pavla
2016-01-01
Background This study presents antigenic and genetic characteristics of Neisseria meningitidis strains recovered from invasive meningococcal disease (IMD) in the Czech Republic in 1971–2015. Material and Methods A total of 1970 isolates from IMD, referred to the National Reference Laboratory for Meningococcal Infections in 1971–2015, were studied. All isolates were identified and characterized by conventional biochemical and serological tests. Most isolates (82.5%) were characterized by multilocus sequence typing method. Results In the study period 1971–2015, the leading serogroup was B (52.4%), most often assigned to clonal complexes cc32, cc41/44, cc18, and cc269. A significant percentage of strains were of serogroup C (41.4%), with high clonal homogeneity due to hyperinvasive complex cc11, which played an important role in IMD in the Czech Republic in the mid-1990s. Serogroup Y isolates, mostly assigned to cc23, and isolates of clonally homogeneous serogroup W have also been recovered more often over the last years. Conclusion The incidence of IMD and distribution of serogroups and clonal complexes of N. meningitidis in the Czech Republic varied over time, as can be seen from the long-term monitoring, including molecular surveillance data. Data from the conventional and molecular IMD surveillance are helpful in refining the antimeningococcal vaccination strategy in the Czech Republic. PMID:27936105
Loux, Valentin; Coeuret, Gwendoline; Zagorec, Monique; Champomier Vergès, Marie-Christine; Chaillou, Stéphane
2018-04-19
We present here the complete and draft genome sequences of nine Lactobacillus sakei strains, selected from the entire range of clonal complexes from the three known lineages of the species. The strains were chosen to provide a wide view of pangenomic and plasmidic diversity for this important foodborne species. Copyright © 2018 Loux et al.
A RESTful application programming interface for the PubMLST molecular typing and genome databases
Bray, James E.; Maiden, Martin C. J.
2017-01-01
Abstract Molecular typing is used to differentiate microorganisms at the subspecies or strain level for epidemiological investigations, infection control, public health and environmental sampling. DNA sequence-based typing methods require authoritative databases that link sequence variants to nomenclature in order to facilitate communication and comparison of identified types in national or global settings. The PubMLST website (https://pubmlst.org/) fulfils this role for over a hundred microorganisms for which it hosts curated molecular sequence typing data, providing sequence and allelic profile definitions for multi-locus sequence typing (MLST) and single-gene typing approaches. In recent years, these have expanded to cover the whole genome with schemes such as core genome MLST (cgMLST) and whole genome MLST (wgMLST) which catalogue the allelic diversity found in hundreds to thousands of genes. These approaches provide a common nomenclature for high-resolution strain characterization and comparison. Molecular typing information is linked to isolate provenance, phenotype, and increasingly genome assemblies, providing a resource for outbreak investigation and research in to population structure, gene association, global epidemiology and vaccine coverage. A Representational State Transfer (REST) Application Programming Interface (API) has been developed for the PubMLST website to make these large quantities of structured molecular typing and whole genome sequence data available for programmatic access by any third party application. The API is an integral component of the Bacterial Isolate Genome Sequence Database (BIGSdb) platform that is used to host PubMLST resources, and exposes all public data within the site. In addition to data browsing, searching and download, the API supports authentication and submission of new data to curator queues. Database URL: http://rest.pubmlst.org/ PMID:29220452
Multilocus sequence typing of total-genome-sequenced bacteria.
Larsen, Mette V; Cosentino, Salvatore; Rasmussen, Simon; Friis, Carsten; Hasman, Henrik; Marvig, Rasmus Lykke; Jelsbak, Lars; Sicheritz-Pontén, Thomas; Ussery, David W; Aarestrup, Frank M; Lund, Ole
2012-04-01
Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the "gold standard" of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available to scientists and routine diagnostic laboratories. Currently, the cost is below that of traditional MLST. The new challenges will be how to extract the relevant information from the large amount of data so as to allow for comparison over time and between laboratories. Ideally, this information should also allow for comparison to historical data. We developed a Web-based method for MLST of 66 bacterial species based on WGS data. As input, the method uses short sequence reads from four sequencing platforms or preassembled genomes. Updates from the MLST databases are downloaded monthly, and the best-matching MLST alleles of the specified MLST scheme are found using a BLAST-based ranking method. The sequence type is then determined by the combination of alleles identified. The method was tested on preassembled genomes from 336 isolates covering 56 MLST schemes, on short sequence reads from 387 isolates covering 10 schemes, and on a small test set of short sequence reads from 29 isolates for which the sequence type had been determined by traditional methods. The method presented here enables investigators to determine the sequence types of their isolates on the basis of WGS data. This method is publicly available at www.cbs.dtu.dk/services/MLST.
Huang, Jinhu; Shang, Kexin; Kashif, Jam; Wang, Liping
2015-05-01
Acquiring antibiotic resistance genes may change an organism's genetic characteristics and the effect of antibiotics, resulting in a rapid transmission of microbial pathogens. The objectives of this experiment were to identify the features of Streptococcus suis (S. suis) isolated from three pig farms in China which are geographically isolated. Among the isolates, 56.52% were sequence type 7 (ST7), followed by ST1 (26.09%), indicating that ST7 prevails in China, as revealed by multi-locus sequence typing (MLST). Statistical analysis indicated an association between geography, sequence types and antibiotic resistance genotypes. 66.67% of the isolates in Sichuan province presented a (ermB(-) + mefA(-) + tetO(-) + tetM(-)) + ST7 type. The tetM(+) +ST7 type was the most prevalent in Jiangsu province, whereas the strains from Hebei province had a phenotype ermB(+) +tetO(+) +ST1 (63.64%). Pulsed-field gel electrophoresis (PGFE) pattern A2 with 100% similarity reflected the clonal dissemination between Sichuan and Jiangsu provinces. Strains carrying or not carrying antibiotic resistance genes presented different PFGE patterns in Hebei province. ST7 is widespread in many regions of China and a clonal dissemination occurred between Sichuan and Jiangsu provinces in diseased pigs. However, ST1 strains with macrolide and tetracycline resistance (ermB(+) +tetO(+) +ST1) isolated from a farm in Hebei province demonstrated that the genetic diversity was contributed by horizontal acquiring of ermB and tetO carrying elements. © 2014 Society of Chemical Industry.
Lee, Yangsoon; Kim, Bong-Soo; Chun, Jongsik; Yong, Ji Hyun; Lee, Yeong Seon; Yoo, Jung Sik; Yong, Dongeun; Hong, Seong Geun; D'Souza, Roshan; Thomson, Kenneth S; Lee, Kyungwon; Chong, Yunsop
2014-01-01
We analyzed the whole genome sequence and resistome of the outbreak Klebsiella pneumoniae strain MP14 and compared it with those of K. pneumoniae carbapenemase- (KPC-) producing isolates that showed high similarity in the NCBI genome database. A KPC-2-producing multidrug-resistant (MDR) K. pneumoniae clinical isolate was obtained from a patient admitted to a Korean hospital in 2011. The strain MP14 was resistant to all tested β-lactams including monobactam, amikacin, levofloxacin, and cotrimoxazole, but susceptible to tigecycline and colistin. Resistome analysis showed the presence of β-lactamase genes including bla KPC-2, bla SHV-11, bla TEM-169, and bla OXA-9. MP14 also possessed aac(6'-)Ib, aadA2, and aph(3'-)Ia as aminoglycoside resistance-encoding genes, mph(A) for macrolides, oqxA and oqxB for quinolone, catA1 for phenicol, sul1 for sulfonamide, and dfrA12 for trimethoprim. Both SNP tree and cgMLST analysis showed the close relatedness with the KPC producers (KPNIH strains) isolated from an outbreak in the USA and colistin-resistant strains isolated in Italy. The plasmid-scaffold genes in plasmids pKpQil, pKpQil-IT, pKPN3, or pKPN-IT were identified in MP14, KPNIH, and Italian strains. The KPC-2-producing MDR K. pneumoniae ST258 stain isolated in Korea was highly clonally related with MDR K. pneumoniae strains from the USA and Italy. Global spread of KPC-producing K. pneumoniae is a worrying phenomenon.
Clonal development and organization of the adult Drosophila central brain.
Yu, Hung-Hsiang; Awasaki, Takeshi; Schroeder, Mark David; Long, Fuhui; Yang, Jacob S; He, Yisheng; Ding, Peng; Kao, Jui-Chun; Wu, Gloria Yueh-Yi; Peng, Hanchuan; Myers, Gene; Lee, Tzumin
2013-04-22
The insect brain can be divided into neuropils that are formed by neurites of both local and remote origin. The complexity of the interconnections obscures how these neuropils are established and interconnected through development. The Drosophila central brain develops from a fixed number of neuroblasts (NBs) that deposit neurons in regional clusters. By determining individual NB clones and pursuing their projections into specific neuropils, we unravel the regional development of the brain neural network. Exhaustive clonal analysis revealed 95 stereotyped neuronal lineages with characteristic cell-body locations and neurite trajectories. Most clones show complex projection patterns, but despite the complexity, neighboring clones often coinnervate the same local neuropil or neuropils and further target a restricted set of distant neuropils. These observations argue for regional clonal development of both neuropils and neuropil connectivity throughout the Drosophila central brain. Copyright © 2013 Elsevier Ltd. All rights reserved.
Universality of clone dynamics during tissue development
NASA Astrophysics Data System (ADS)
Rulands, Steffen; Lescroart, Fabienne; Chabab, Samira; Hindley, Christopher J.; Prior, Nicole; Sznurkowska, Magdalena K.; Huch, Meritxell; Philpott, Anna; Blanpain, Cedric; Simons, Benjamin D.
2018-05-01
The emergence of complex organs is driven by the coordinated proliferation, migration and differentiation of precursor cells. The fate behaviour of these cells is reflected in the time evolution of their progeny, termed clones, which serve as a key experimental observable. In adult tissues, where cell dynamics is constrained by the condition of homeostasis, clonal tracing studies based on transgenic animal models have advanced our understanding of cell fate behaviour and its dysregulation in disease1,2. But what can be learnt from clonal dynamics in development, where the spatial cohesiveness of clones is impaired by tissue deformations during tissue growth? Drawing on the results of clonal tracing studies, we show that, despite the complexity of organ development, clonal dynamics may converge to a critical state characterized by universal scaling behaviour of clone sizes. By mapping clonal dynamics onto a generalization of the classical theory of aerosols, we elucidate the origin and range of scaling behaviours and show how the identification of universal scaling dependences may allow lineage-specific information to be distilled from experiments. Our study shows the emergence of core concepts of statistical physics in an unexpected context, identifying cellular systems as a laboratory to study non-equilibrium statistical physics.
Kohl, Thomas A; Diel, Roland; Harmsen, Dag; Rothgänger, Jörg; Walter, Karen Meywald; Merker, Matthias; Weniger, Thomas; Niemann, Stefan
2014-07-01
Whole-genome sequencing (WGS) allows for effective tracing of Mycobacterium tuberculosis complex (MTBC) (tuberculosis pathogens) transmission. However, it is difficult to standardize and, therefore, is not yet employed for interlaboratory prospective surveillance. To allow its widespread application, solutions for data standardization and storage in an easily expandable database are urgently needed. To address this question, we developed a core genome multilocus sequence typing (cgMLST) scheme for clinical MTBC isolates using the Ridom SeqSphere(+) software, which transfers the genome-wide single nucleotide polymorphism (SNP) diversity into an allele numbering system that is standardized, portable, and not computationally intensive. To test its performance, we performed WGS analysis of 26 isolates with identical IS6110 DNA fingerprints and spoligotyping patterns from a longitudinal outbreak in the federal state of Hamburg, Germany (notified between 2001 and 2010). The cgMLST approach (3,041 genes) discriminated the 26 strains with a resolution comparable to that of SNP-based WGS typing (one major cluster of 22 identical or closely related and four outlier isolates with at least 97 distinct SNPs or 63 allelic variants). Resulting tree topologies are highly congruent and grouped the isolates in both cases analogously. Our data show that SNP- and cgMLST-based WGS analyses facilitate high-resolution discrimination of longitudinal MTBC outbreaks. cgMLST allows for a meaningful epidemiological interpretation of the WGS genotyping data. It enables standardized WGS genotyping for epidemiological investigations, e.g., on the regional public health office level, and the creation of web-accessible databases for global TB surveillance with an integrated early warning system. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Sulaiman, Irshad M; Jacobs, Emily; Segars, Katharine; Simpson, Steven; Kerdahi, Khalil
2016-08-01
Cronobacter sakazakii is an opportunistic human-pathogenic bacterium known to cause acute meningitis and necrotizing enterocolitis in neonates and immunocompromised individuals. This human-pathogenic microorganism has been isolated from a variety of food and environmental samples, and has been also linked to foodborne outbreaks associated with powdered infant formula (PIF). The U.S. Food and Drug Administration have a policy of zero tolerance of these organisms in PIF. Thus, this agency utilizes the presence of these microorganisms as one of the criteria in implementing regulatory actions and assessing adulteration of food products of public health importance. In this study, we recovered two isolates of Cronobacter from the 91 environmental swab samples during an investigation of sporadic case of foodborne illness following conventional microbiological protocols. The isolated typical colonies were identified using VITEK2 and real-time PCR protocols. The recovered Cronobacter isolates were then characterized for species identification by sequencing the 16S rRNA locus. Further, multilocus sequence typing (MLST) was accomplished characterizing seven known C. sakazakii-specific MLST loci (atpD, fusA, glnS, gltB, gyrB, infB, and pps). Results of this study confirmed all of the recovered Cronobacter isolates from the environmental swab samples to be C. sakazakii. The MLST profile matched with the published profile of the complex 31 of C. sakazakii. Thus, rRNA and 7-loci MLST-based sequencing protocols are robust techniques for rapid detection and differentiation of Cronobacter species, and these molecular diagnostic tools can be used in implementing successful surveillance program and in the control and prevention of foodborne illness.
Hall, Carina M; Busch, Joseph D; Shippy, Kenzie; Allender, Christopher J; Kaestli, Mirjam; Mayo, Mark; Sahl, Jason W; Schupp, James M; Colman, Rebecca E; Keim, Paul; Currie, Bart J; Wagner, David M
2015-01-01
The global distribution of the soil-dwelling bacterium Burkholderia pseudomallei, causative agent of melioidosis, is poorly understood. We used established culturing methods developed for B. pseudomallei to isolate Burkholderia species from soil collected at 18 sampling sites in three states in the southern United States (Arizona (n = 4), Florida (n = 7), and Louisiana (n = 7)). Using multi-locus sequence typing (MLST) of seven genes, we identified 35 Burkholderia isolates from these soil samples. All species belonged to the B. cepacia complex (Bcc), including B. cenocepacia, B. cepacia, B. contaminans, B. diffusa, B. metallica, B. seminalis, B. vietnamiensis and two unnamed members of the Bcc. The MLST analysis provided a high level of resolution among and within these species. Despite previous clinical cases within the U.S. involving B. pseudomallei and its close phylogenetic relatives, we did not isolate any of these taxa. The Bcc contains a number of opportunistic pathogens that cause infections in cystic fibrosis patients. Interestingly, we found that B. vietnamiensis was present in soil from all three states, suggesting it may be a common component in southern U.S. soils. Most of the Burkholderia isolates collected in this study were from Florida (30/35; 86%), which may be due to the combination of relatively moist, sandy, and acidic soils found there compared to the other two states. We also investigated one MLST gene, recA, for its ability to identify species within Burkholderia. A 365bp fragment of recA recovered nearly the same species-level identification as MLST, thus demonstrating its cost effective utility when conducting environmental surveys for Burkholderia. Although we did not find B. pseudomallei, our findings document that other diverse Burkholderia species are present in soils in the southern United States.
Hall, Carina M.; Busch, Joseph D.; Shippy, Kenzie; Allender, Christopher J.; Kaestli, Mirjam; Mayo, Mark; Sahl, Jason W.; Schupp, James M.; Colman, Rebecca E.; Keim, Paul; Currie, Bart J.; Wagner, David M.
2015-01-01
The global distribution of the soil-dwelling bacterium Burkholderia pseudomallei, causative agent of melioidosis, is poorly understood. We used established culturing methods developed for B. pseudomallei to isolate Burkholderia species from soil collected at 18 sampling sites in three states in the southern United States (Arizona (n = 4), Florida (n = 7), and Louisiana (n = 7)). Using multi-locus sequence typing (MLST) of seven genes, we identified 35 Burkholderia isolates from these soil samples. All species belonged to the B. cepacia complex (Bcc), including B. cenocepacia, B. cepacia, B. contaminans, B. diffusa, B. metallica, B. seminalis, B. vietnamiensis and two unnamed members of the Bcc. The MLST analysis provided a high level of resolution among and within these species. Despite previous clinical cases within the U.S. involving B. pseudomallei and its close phylogenetic relatives, we did not isolate any of these taxa. The Bcc contains a number of opportunistic pathogens that cause infections in cystic fibrosis patients. Interestingly, we found that B. vietnamiensis was present in soil from all three states, suggesting it may be a common component in southern U.S. soils. Most of the Burkholderia isolates collected in this study were from Florida (30/35; 86%), which may be due to the combination of relatively moist, sandy, and acidic soils found there compared to the other two states. We also investigated one MLST gene, recA, for its ability to identify species within Burkholderia. A 365bp fragment of recA recovered nearly the same species-level identification as MLST, thus demonstrating its cost effective utility when conducting environmental surveys for Burkholderia. Although we did not find B. pseudomallei, our findings document that other diverse Burkholderia species are present in soils in the southern United States. PMID:26600238
Clonality Testing in Veterinary Medicine: A Review With Diagnostic Guidelines.
Keller, S M; Vernau, W; Moore, P F
2016-07-01
The accurate distinction of reactive and neoplastic lymphoid proliferations can present challenges. Given the different prognoses and treatment strategies, a correct diagnosis is crucial. Molecular clonality assays assess rearranged lymphocyte antigen receptor gene diversity and can help differentiate reactive from neoplastic lymphoid proliferations. Molecular clonality assays are commonly used to assess atypical, mixed, or mature lymphoid proliferations; small tissue fragments that lack architecture; and fluid samples. In addition, clonality testing can be utilized to track neoplastic clones over time or across anatomic sites. Molecular clonality assays are not stand-alone tests but useful adjuncts that follow clinical, morphologic, and immunophenotypic assessment. Even though clonality testing provides valuable information in a variety of situations, the complexities and pitfalls of this method, as well as its dependency on the experience of the interpreter, are often understated. In addition, a lack of standardized terminology, laboratory practices, and interpretational guidelines hinders the reproducibility of clonality testing across laboratories in veterinary medicine. The objectives of this review are twofold. First, the review is intended to familiarize the diagnostic pathologist or interested clinician with the concepts, potential pitfalls, and limitations of clonality testing. Second, the review strives to provide a basis for future harmonization of clonality testing in veterinary medicine by providing diagnostic guidelines. © The Author(s) 2016.
Matray, Olivier; Mouhajir, Abdelmounaim; Giraud, Sandrine; Godon, Charlotte; Gargala, Gilles; Labbé, Franck; Rougeron, Amandine; Ballet, Jean-Jacques; Zouhair, Rachid; Bouchara, Jean-Philippe; Favennec, Loïc
2016-05-01
The Scedosporium apiospermum species complex usually ranks second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF), but little is known about the molecular epidemiology of the airway colonization. Polymerase chain reaction (PCR) amplification of repetitive sequences (rep-PCR) was applied to the retrospective analysis of a panel of isolates already studied by random amplification of polymorphic DNA (RAPD) and comprising 63 isolates recovered from sputa from 9 CF patients. Results were compared to those obtained previously by RAPD, and herein by beta-tubulin (TUB) gene sequencing and Multilocus Sequence Typing (MLST). Within the panel of isolates studied,S. apiospermum sensu stricto and Scedosporium boydii, as expected, were the predominant species with 21 and 36 isolates, respectively. Four isolates from one patient were identified as Scedosporium aurantiacum, whereas two isolates belonged to the Pseudallescheria ellipsoidea subgroup of S. boydii rep-PCR analysis of these isolates clearly differentiated the three species and P. ellipsoidea isolates, whatever the rep-PCR kit used, and also permitted strain differentiation. When using the mold primer kit, results from rep-PCR were in close agreement with those obtained by MLST. For both S. apiospermum and S. boydii, 8 genotypes were differentiated by rep-PCR and MLST compared to 10 by RAPD. All S. aurantiacum isolates shared the same RAPD genotype and exhibited the same rep-PCR profile and sequence type. These results illustrate the efficacy of rep-PCR for both species identification within the S. apiospermum complex and genotyping for the two major species of this complex.Abstract presentation: Part of this work was presented during the 18th Congress of the International Society for Human and Animal Mycology, Berlin (Germany), June 2012.S. Giraud, C. Godon, A. Rougeron, J.P. Bouchara and L. Favennec are members of the ECMM/ISHAM working group on Fungal respiratory infections in Cystic Fibrosis(Fri-CF). © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing.
Hughes, Andrew E O; Magrini, Vincent; Demeter, Ryan; Miller, Christopher A; Fulton, Robert; Fulton, Lucinda L; Eades, William C; Elliott, Kevin; Heath, Sharon; Westervelt, Peter; Ding, Li; Conrad, Donald F; White, Brian S; Shao, Jin; Link, Daniel C; DiPersio, John F; Mardis, Elaine R; Wilson, Richard K; Ley, Timothy J; Walter, Matthew J; Graubert, Timothy A
2014-07-01
Next-generation sequencing has been used to infer the clonality of heterogeneous tumor samples. These analyses yield specific predictions-the population frequency of individual clones, their genetic composition, and their evolutionary relationships-which we set out to test by sequencing individual cells from three subjects diagnosed with secondary acute myeloid leukemia, each of whom had been previously characterized by whole genome sequencing of unfractionated tumor samples. Single-cell mutation profiling strongly supported the clonal architecture implied by the analysis of bulk material. In addition, it resolved the clonal assignment of single nucleotide variants that had been initially ambiguous and identified areas of previously unappreciated complexity. Accordingly, we find that many of the key assumptions underlying the analysis of tumor clonality by deep sequencing of unfractionated material are valid. Furthermore, we illustrate a single-cell sequencing strategy for interrogating the clonal relationships among known variants that is cost-effective, scalable, and adaptable to the analysis of both hematopoietic and solid tumors, or any heterogeneous population of cells.
Morley, Laura; McNally, Alan; Paszkiewicz, Konrad; Corander, Jukka; Méric, Guillaume; Sheppard, Samuel K.; Blom, Jochen
2015-01-01
Campylobacter jejuni is a highly diverse species of bacteria commonly associated with infectious intestinal disease of humans and zoonotic carriage in poultry, cattle, pigs, and other animals. The species contains a large number of distinct clonal complexes that vary from host generalist lineages commonly found in poultry, livestock, and human disease cases to host-adapted specialized lineages primarily associated with livestock or poultry. Here, we present novel data on the ST403 clonal complex of C. jejuni, a lineage that has not been reported in avian hosts. Our data show that the lineage exhibits a distinctive pattern of intralineage recombination that is accompanied by the presence of lineage-specific restriction-modification systems. Furthermore, we show that the ST403 complex has undergone gene decay at a number of loci. Our data provide a putative link between the lack of association with avian hosts of C. jejuni ST403 and both gene gain and gene loss through nonsense mutations in coding sequences of genes, resulting in pseudogene formation. PMID:25795671
Schneider, Sarah C; Tinguely, Regula; Droz, Sara; Hilty, Markus; Donà, Valentina; Bodmer, Thomas; Endimiani, Andrea
2015-10-01
Antibiotic resistance in Ureaplasma urealyticum/Ureaplasma parvum and Mycoplasma hominis is an issue of increasing importance. However, data regarding the susceptibility and, more importantly, the clonality of these organisms are limited. We analyzed 140 genital samples obtained in Bern, Switzerland, in 2014. Identification and antimicrobial susceptibility tests were performed by using the Mycoplasma IST 2 kit and sequencing of 16S rRNA genes. MICs for ciprofloxacin and azithromycin were obtained in broth microdilution assays. Clonality was analyzed with PCR-based subtyping and multilocus sequence typing (MLST), whereas quinolone resistance and macrolide resistance were studied by sequencing gyrA, gyrB, parC, and parE genes, as well as 23S rRNA genes and genes encoding L4/L22 ribosomal proteins. A total of 103 samples were confirmed as positive for U. urealyticum/U. parvum, whereas 21 were positive for both U. urealyticum/U. parvum and M. hominis. According to the IST 2 kit, the rates of nonsusceptibility were highest for ciprofloxacin (19.4%) and ofloxacin (9.7%), whereas low rates were observed for clarithromycin (4.9%), erythromycin (1.9%), and azithromycin (1%). However, inconsistent results between microdilution and IST 2 kit assays were recorded. Various sequence types (STs) observed previously in China (ST1, ST2, ST4, ST9, ST22, and ST47), as well as eight novel lineages, were detected. Only some quinolone-resistant isolates had amino acid substitutions in ParC (Ser83Leu in U. parvum of serovar 6) and ParE (Val417Thr in U. parvum of serovar 1 and the novel Thr417Val substitution in U. urealyticum). Isolates with mutations in 23S rRNA or substitutions in L4/L22 were not detected. This is the first study analyzing the susceptibility of U. urealyticum/U. parvum isolates in Switzerland and the clonality outside China. Resistance rates were low compared to those in other countries. We hypothesize that some hyperepidemic STs spread worldwide via sexual intercourse. Large combined microbiological and clinical studies should address this important issue. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Schneider, Sarah C.; Tinguely, Regula; Droz, Sara; Hilty, Markus; Donà, Valentina; Bodmer, Thomas
2015-01-01
Antibiotic resistance in Ureaplasma urealyticum/Ureaplasma parvum and Mycoplasma hominis is an issue of increasing importance. However, data regarding the susceptibility and, more importantly, the clonality of these organisms are limited. We analyzed 140 genital samples obtained in Bern, Switzerland, in 2014. Identification and antimicrobial susceptibility tests were performed by using the Mycoplasma IST 2 kit and sequencing of 16S rRNA genes. MICs for ciprofloxacin and azithromycin were obtained in broth microdilution assays. Clonality was analyzed with PCR-based subtyping and multilocus sequence typing (MLST), whereas quinolone resistance and macrolide resistance were studied by sequencing gyrA, gyrB, parC, and parE genes, as well as 23S rRNA genes and genes encoding L4/L22 ribosomal proteins. A total of 103 samples were confirmed as positive for U. urealyticum/U. parvum, whereas 21 were positive for both U. urealyticum/U. parvum and M. hominis. According to the IST 2 kit, the rates of nonsusceptibility were highest for ciprofloxacin (19.4%) and ofloxacin (9.7%), whereas low rates were observed for clarithromycin (4.9%), erythromycin (1.9%), and azithromycin (1%). However, inconsistent results between microdilution and IST 2 kit assays were recorded. Various sequence types (STs) observed previously in China (ST1, ST2, ST4, ST9, ST22, and ST47), as well as eight novel lineages, were detected. Only some quinolone-resistant isolates had amino acid substitutions in ParC (Ser83Leu in U. parvum of serovar 6) and ParE (Val417Thr in U. parvum of serovar 1 and the novel Thr417Val substitution in U. urealyticum). Isolates with mutations in 23S rRNA or substitutions in L4/L22 were not detected. This is the first study analyzing the susceptibility of U. urealyticum/U. parvum isolates in Switzerland and the clonality outside China. Resistance rates were low compared to those in other countries. We hypothesize that some hyperepidemic STs spread worldwide via sexual intercourse. Large combined microbiological and clinical studies should address this important issue. PMID:26195516
A critical re-evaluation of multilocus sequence typing (MLST) efforts in Wolbachia.
Bleidorn, Christoph; Gerth, Michael
2018-01-01
Wolbachia (Alphaproteobacteria, Rickettsiales) is the most common, and arguably one of the most important inherited symbionts. Molecular differentiation of Wolbachia strains is routinely performed with a set of five multilocus sequence typing (MLST) markers. However, since its inception in 2006, the performance of MLST in Wolbachia strain typing has not been assessed objectively. Here, we evaluate the properties of Wolbachia MLST markers and compare it to 252 other single copy loci present in the genome of most Wolbachia strains. Specifically, we investigated how well MLST performs at strain differentiation, at reflecting genetic diversity of strains, and as phylogenetic marker. We find that MLST loci are outperformed by other loci at all tasks they are currently employed for, and thus that they do not reflect the properties of a Wolbachia strain very well. We argue that whole genome typing approaches should be used for Wolbachia typing in the future. Alternatively, if few loci approaches are necessary, we provide a characterisation of 252 single copy loci for a number a criteria, which may assist in designing specific typing systems or phylogenetic studies. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cabral, Adriane Borges; Maciel, Maria Amélia Vieira; Barros, Josineide Ferreira; Antunes, Marcelo Maranhão; Barbosa de Castro, Célia Maria Machado; Lopes, Ana Catarina Souza
2017-01-01
Enterobacter aerogenes and Enterobacter cloacae complex are the two species of this genus most involved in healthcare-associated infections that are ESBL and carbapenemase producers. This study characterized, phenotypically and genotypically, 51 isolates of E. aerogenes and E. cloacae complex originating from infection or colonization in patients admitted to a public hospital in Recife, Pernambuco, Brazil, by antimicrobial susceptibility profile, analysis of β-lactamase genes (blaTEM, blaSHV, blaCTX-M, blaKPC, blaVIM, blaIMP and blaSPM), PCR and DNA sequencing, plasmid profile and ERIC-PCR. In both species, the genes blaTEM, blaCTX-M and blaKPC were detected. The DNA sequencing confirmed the variants blaTEM-1, blaCTX-M-15 and blaKPC-2 in isolates. More than one gene conferring resistance in the isolates, including the detection of the three previously cited genes in strains isolated from infection sites, was observed. The detection of blaCTX-M was more frequent in isolates from infection sites than from colonization. The gene blaKPC predominated in E. cloacae complex isolates obtained from infections; however, in E. aerogenes isolates, it predominated in samples obtained from colonization. A clonal relationship among all of E. aerogenes isolates was detected by ERIC-PCR. The majority of E. cloacae complex isolates presented the same ERIC-PCR pattern. Despite the clonal relation presented by the isolates using ERIC-PCR, different plasmid and resistance profiles and several resistance genes were observed. The clonal dissemination and the accumulation of β-lactam resistance determinants presented by the isolates demonstrated the ability of E. aerogenes and E. cloacae complex, obtained from colonization and infection, to acquire and maintain different resistance genes.
Tong, Steven Y C; Xie, Shirley; Richardson, Leisha J; Ballard, Susan A; Dakh, Farshid; Grabsch, Elizabeth A; Grayson, M Lindsay; Howden, Benjamin P; Johnson, Paul D R; Giffard, Philip M
2011-01-01
We have developed a single nucleotide polymorphism (SNP) nucleated high-resolution melting (HRM) technique to genotype Enterococcus faecium. Eight SNPs were derived from the E. faecium multilocus sequence typing (MLST) database and amplified fragments containing these SNPs were interrogated by HRM. We tested the HRM genotyping scheme on 85 E. faecium bloodstream isolates and compared the results with MLST, pulsed-field gel electrophoresis (PFGE) and an allele specific real-time PCR (AS kinetic PCR) SNP typing method. In silico analysis based on predicted HRM curves according to the G+C content of each fragment for all 567 sequence types (STs) in the MLST database together with empiric data from the 85 isolates demonstrated that HRM analysis resolves E. faecium into 231 "melting types" (MelTs) and provides a Simpson's Index of Diversity (D) of 0.991 with respect to MLST. This is a significant improvement on the AS kinetic PCR SNP typing scheme that resolves 61 SNP types with D of 0.95. The MelTs were concordant with the known ST of the isolates. For the 85 isolates, there were 13 PFGE patterns, 17 STs, 14 MelTs and eight SNP types. There was excellent concordance between PFGE, MLST and MelTs with Adjusted Rand Indices of PFGE to MelT 0.936 and ST to MelT 0.973. In conclusion, this HRM based method appears rapid and reproducible. The results are concordant with MLST and the MLST based population structure.
Epigenetic Memory as a Basis for Intelligent Behavior in Clonal Plants.
Latzel, Vít; Rendina González, Alejandra P; Rosenthal, Jonathan
2016-01-01
Environmentally induced epigenetic change enables plants to remember past environmental interactions. If this memory capability is exploited to prepare plants for future challenges, it can provide a basis for highly sophisticated behavior, considered intelligent by some. Against the backdrop of an overview of plant intelligence, we hypothesize: (1) that the capability of plants to engage in such intelligent behavior increases with the additional level of complexity afforded by clonality, and; (2) that more faithful inheritance of epigenetic information in clonal plants, in conjunction with information exchange and coordination between connected ramets, is likely to enable especially advanced intelligent behavior in this group. We therefore further hypothesize that this behavior provides ecological and evolutionary advantages to clonal plants, possibly explaining, at least in part, their widespread success. Finally, we suggest avenues of inquiry to enable assessing intelligent behavior and the role of epigenetic memory in clonal species.
Couto, Natacha; Monchique, Cláudia; Belas, Adriana; Marques, Cátia; Gama, Luís T; Pomba, Constança
2016-06-01
The objective of this study was to investigate the evolution of resistance to antimicrobials, corresponding mechanisms and molecular characteristics of Staphylococcus spp., between 1999 and 2014. Susceptibility to 38 antimicrobials was determined for 632 clinical staphylococcal isolates obtained from companion animals (dogs, cats, horses and other animals). Twenty antimicrobial resistance genes, including mecA and mecC, were screened by PCR. Methicillin-resistant staphylococci were characterized by spa (Staphylococcus aureus), SCCmec, MLST and PFGE typing. Statistical analyses were performed using SAS v9.3 and differences were considered relevant if P ≤ 0.05. The mecA gene was identified in 74 staphylococcal isolates (11.6%): 11 MRSA (40.7%), 40 methicillin-resistant Staphylococcus pseudintermedius (MRSP; 8.7%) and 23 methicillin-resistant CoNS (26.7%). Resistance to the majority of antimicrobials and the number of mecA-positive isolates increased significantly over time. Eighteen spa types were identified, including two new ones. MRSA isolates were divided into three PFGE clusters that included ST22-IV, ST105-II, ST398-V and ST5-VI. Most methicillin-resistant Staphylococcus epidermidis isolates were of clonal complex (CC) 5, including a new ST, and clustered in eight PFGE clusters. MRSP were grouped into five PFGE clusters and included ST45-NT, ST71-II-III, ST195-III, ST196-V, ST339-NT, ST342-IV and the new ST400-III. Methicillin-resistant Staphylococcus haemolyticus clustered in two PFGE clusters. The significant increase in antimicrobial-resistant and mecA-positive isolates in recent years is worrying. Furthermore, several isolates are MDR, which complicates antimicrobial treatment and increases the risk of transfer to humans or human isolates. Several clonal lineages of MRSA and methicillin-resistant S. epidermidis circulating in human hospitals and the community were found, suggesting that companion animals can become infected with and contribute to the dissemination of highly successful human clones. Urgent measures, such as determination of clinical breakpoints and guidelines for antimicrobial use, are needed. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Salazar-Ospina, Lorena; Jiménez, Judy Natalia
2017-09-21
Staphylococcus aureus is responsible for a large number of infections in pediatric population; however, information about the behavior of such infections in this population is limited. The aim of the study was to describe the clinical, epidemiological, and molecular characteristics of infections caused by methicillin-susceptible and resistant S. aureus (MSSA-MRSA) in a pediatric population. A cross-sectional descriptive study in patients from birth to 14 years of age from three high-complexity institutions was conducted (2008-2010). All patients infected with methicillin-resistant S. aureus and a representative sample of patients infected with methicillin-susceptible S. aureus were included. Clinical and epidemiological information was obtained from medical records and molecular characterization included spa typing, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). In addition, staphylococcal cassette chromosome mec (SCCmec) and virulence factor genes were detected. A total of 182 patients, 65 with methicillin-susceptible S. aureus infections and 117 with methicillin-resistant S. aureus infections, were included in the study; 41.4% of the patients being under 1 year. The most frequent infections were of the skin and soft tissues. Backgrounds such as having stayed in day care centers and previous use of antibiotics were more common in patients with methicillin-resistant S. aureus infections (p≤0.05). Sixteen clonal complexes were identified and methicillin-susceptible S. aureus strains were more diverse. The most common cassette was staphylococcal cassette chromosomemec IVc (70.8%), which was linked to Panton-Valentine leukocidin (pvl). In contrast with other locations, a prevalence of infections in children under 1 year of age in the city could be observed; this emphasizes the importance of epidemiological knowledge at the local level. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Guenther, Sebastian; Aschenbrenner, Katja; Stamm, Ivonne; Bethe, Astrid; Semmler, Torsten; Stubbe, Annegret; Stubbe, Michael; Batsajkhan, Nyamsuren; Glupczynski, Youri; Wieler, Lothar H.; Ewers, Christa
2012-01-01
Frequent contact with human waste and liquid manure from intensive livestock breeding, and the increased loads of antibiotic-resistant bacteria that result, are believed to be responsible for the high carriage rates of ESBL-producing E. coli found in birds of prey (raptors) in Central Europe. To test this hypothesis against the influence of avian migration, we initiated a comparative analysis of faecal samples from wild birds found in Saxony-Anhalt in Germany and the Gobi-Desert in Mongolia, regions of dissimilar human and livestock population characteristics and agricultural practices. We sampled a total of 281 wild birds, mostly raptors with primarily north-to-south migration routes. We determined antimicrobial resistance, focusing on ESBL production, and unravelled the phylogenetic and clonal relatedness of identified ESBL-producing E. coli isolates using multi-locus sequence typing (MLST) and macrorestriction analyses. Surprisingly, the overall carriage rates (approximately 5%) and the proportion of ESBL-producers among E. coli (Germany: 13.8%, Mongolia: 10.8%) were similar in both regions. Whereas bla CTX-M-1 predominated among German isolates (100%), bla CTX-M-9 was the most prevalent in Mongolian isolates (75%). We identified sequence types (STs) that are well known in human and veterinary clinical ESBL-producing E. coli (ST12, ST117, ST167, ST648) and observed clonal relatedness between a Mongolian avian ESBL-E. coli (ST167) and a clinical isolate of the same ST that originated in a hospitalised patient in Europe. Our data suggest the influence of avian migratory species in the transmission of ESBL-producing E. coli and challenge the prevailing assumption that reducing human influence alone invariably leads to lower rates of antimicrobial resistance. PMID:23300857
Guenther, Sebastian; Aschenbrenner, Katja; Stamm, Ivonne; Bethe, Astrid; Semmler, Torsten; Stubbe, Annegret; Stubbe, Michael; Batsajkhan, Nyamsuren; Glupczynski, Youri; Wieler, Lothar H; Ewers, Christa
2012-01-01
Frequent contact with human waste and liquid manure from intensive livestock breeding, and the increased loads of antibiotic-resistant bacteria that result, are believed to be responsible for the high carriage rates of ESBL-producing E. coli found in birds of prey (raptors) in Central Europe. To test this hypothesis against the influence of avian migration, we initiated a comparative analysis of faecal samples from wild birds found in Saxony-Anhalt in Germany and the Gobi-Desert in Mongolia, regions of dissimilar human and livestock population characteristics and agricultural practices. We sampled a total of 281 wild birds, mostly raptors with primarily north-to-south migration routes. We determined antimicrobial resistance, focusing on ESBL production, and unravelled the phylogenetic and clonal relatedness of identified ESBL-producing E. coli isolates using multi-locus sequence typing (MLST) and macrorestriction analyses. Surprisingly, the overall carriage rates (approximately 5%) and the proportion of ESBL-producers among E. coli (Germany: 13.8%, Mongolia: 10.8%) were similar in both regions. Whereas bla(CTX-M-1) predominated among German isolates (100%), bla(CTX-M-9) was the most prevalent in Mongolian isolates (75%). We identified sequence types (STs) that are well known in human and veterinary clinical ESBL-producing E. coli (ST12, ST117, ST167, ST648) and observed clonal relatedness between a Mongolian avian ESBL-E. coli (ST167) and a clinical isolate of the same ST that originated in a hospitalised patient in Europe. Our data suggest the influence of avian migratory species in the transmission of ESBL-producing E. coli and challenge the prevailing assumption that reducing human influence alone invariably leads to lower rates of antimicrobial resistance.
Multilocus sequence typing scheme for the Mycobacterium abscessus complex.
Macheras, Edouard; Konjek, Julie; Roux, Anne-Laure; Thiberge, Jean-Michel; Bastian, Sylvaine; Leão, Sylvia Cardoso; Palaci, Moises; Sivadon-Tardy, Valérie; Gutierrez, Cristina; Richter, Elvira; Rüsch-Gerdes, Sabine; Pfyffer, Gaby E; Bodmer, Thomas; Jarlier, Vincent; Cambau, Emmanuelle; Brisse, Sylvain; Caro, Valérie; Rastogi, Nalin; Gaillard, Jean-Louis; Heym, Beate
2014-01-01
We developed a multilocus sequence typing (MLST) scheme for Mycobacterium abscessus sensu lato, based on the partial sequencing of seven housekeeping genes: argH, cya, glpK, gnd, murC, pta and purH. This scheme was used to characterize a collection of 227 isolates recovered between 1994 and 2010 in France, Germany, Switzerland and Brazil. We identified 100 different sequence types (STs), which were distributed into three groups on the tree obtained by concatenating the sequences of the seven housekeeping gene fragments (3576bp): the M. abscessus sensu stricto group (44 STs), the "M. massiliense" group (31 STs) and the "M. bolletii" group (25 STs). SplitTree analysis showed a degree of intergroup lateral transfers. There was also evidence of lateral transfer events involving rpoB. The most prevalent STs in our collection were ST1 (CC5; 20 isolates) and ST23 (CC3; 31 isolates). Both STs were found in Europe and Brazil, and the latter was implicated in a large post-surgical procedure outbreak in Brazil. Respiratory isolates from patients with cystic fibrosis belonged to a large variety of STs; however, ST2 was predominant in this group of patients. Our MLST scheme, publicly available at www.pasteur.fr/mlst, offers investigators a valuable typing tool for M. abscessus sensu lato in future epidemiological studies throughout the world. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Characterization of OXA-48-like-producing Enterobacteriaceae isolated from river water in Algeria.
Tafoukt, Rima; Touati, Abdelaziz; Leangapichart, Thongpan; Bakour, Sofiane; Rolain, Jean-Marc
2017-09-01
The spread of carbapenemase-producing Enterobacteriaceae (CPE) is a significant problem for healthcare worldwide. The prevalence of carbapenem-resistant Enterobacteriaceae (CPE) in water environments in Algeria are unknown. The aim of this study was to screen for the presence of CPE isolates in the Soummam River in Bejaia, Algeria. Isolates of Enterobacteriaceae recovered from twelve samples of river water and showing reduced susceptibility to carbapenems were included in this study. The isolates were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Isolates were subjected to antimicrobial susceptibility testing and the modified Carba NP test. Carbapenemase and extended-spectrum β-lactamase (ESBL) determinants were studied by PCR amplification and sequencing. The clonal relatedness between isolates was studied by Multilocus Sequence Typing (MLST) method. A total of 20 carbapenem-resistant Enterobacteriaceae strains were included in this study, identified as Escherichia coli (n = 12), Klebsiella pneumoniae (n = 3), Raoultella ornithinolytica (n = 3), Citrobacter freundii (n = 1) and Citrobacter braakii (n = 1). Carbapenemase genes identified in this study included bla OXA-48 , observed in 17 isolates (9 E. coli, 3 K. pneumoniae, 3 R. ornithinolytica, 1 C. freundii and 1 C. braakii), and bla OXA-244 , a variant of bla OXA-48 , was found in three E. coli isolates. MLST showed that 12 E. coli strains belonged to six different sequence types (ST559, ST38, ST212, ST3541, 1972 and ST2142), and we identified three different STs in K. pneumoniae isolates, including ST133, ST2055, and a new sequence type: ST2192. This study showed the presence of OXA-48-like-producing Enterobacteriaceae in water environments and highlighted the potential role of aquatic environments as reservoirs of clinically relevant antimicrobial-resistant bacteria, with the potential to spread throughout the community. Copyright © 2017 Elsevier Ltd. All rights reserved.
Escher, Robert; Brunner, Colette; von Steiger, Niklaus; Brodard, Isabelle; Droz, Sara; Abril, Carlos; Kuhnert, Peter
2016-05-14
Campylobacter fetus subspecies fetus (CFF) is an important pathogen for both cattle and humans. We performed a systematic epidemiological and clinical study of patients and evaluated the genetic relatedness of 17 human and 17 bovine CFF isolates by using different genotyping methods. In addition, the serotype, the dissemination of the genomic island containing a type IV secretion system (T4SS) and resistance determinants for tetracycline and streptomycin were also evaluated. The isolates from patients diagnosed with CFF infection as well as those from faecal samples of healthy calves were genotyped using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), as well as single locus sequence typing (SLST) targeting cmp1 and cmp2 genes encoding two major outer membrane proteins in CFF. The presence of the genomic island and identification of serotype was determined by PCRs targeting genes of the T4SS and the sap locus, respectively. Tetracycline and streptomycin resistance phenotypes were determined by minimal inhibitory concentration. Clinical data obtained from medical records and laboratory data were supplemented by data obtained via telephone interviews with the patients and treating physicians. PFGE analysis defined two major clusters; cluster A containing 16 bovine (80 %) isolates and cluster B containing 13 human (92 %) isolates, suggesting a host preference. Further genotypic analysis using MLST, SLST as well as sap and T4SS PCR showed the presence of genotypically identical isolates in cattle and humans. The low diversity observed within the cmp alleles of CFF corroborates the clonal nature of this pathogen. The genomic island containing the tetracycline and streptomycin resistance determinants was found in 55 % of the isolates in cluster A and correlated with phenotypic antibiotic resistance. Most human and bovine isolates were separated on two phylogenetic clusters. However, several human and bovine isolates were identical by diverse genotyping methods, indicating a possible link between strains from these two hosts.
Springer, Deborah J.; Billmyre, R. Blake; Filler, Elan E.; Voelz, Kerstin; Pursall, Rhiannon; Mieczkowski, Piotr A.; Larsen, Robert A.; Dietrich, Fred S.; May, Robin C.; Filler, Scott G.; Heitman, Joseph
2014-01-01
Ongoing Cryptococcus gattii outbreaks in the Western United States and Canada illustrate the impact of environmental reservoirs and both clonal and recombining propagation in driving emergence and expansion of microbial pathogens. C. gattii comprises four distinct molecular types: VGI, VGII, VGIII, and VGIV, with no evidence of nuclear genetic exchange, indicating these represent distinct species. C. gattii VGII isolates are causing the Pacific Northwest outbreak, whereas VGIII isolates frequently infect HIV/AIDS patients in Southern California. VGI, VGII, and VGIII have been isolated from patients and animals in the Western US, suggesting these molecular types occur in the environment. However, only two environmental isolates of C. gattii have ever been reported from California: CBS7750 (VGII) and WM161 (VGIII). The incongruence of frequent clinical presence and uncommon environmental isolation suggests an unknown C. gattii reservoir in California. Here we report frequent isolation of C. gattii VGIII MATα and MAT a isolates and infrequent isolation of VGI MATα from environmental sources in Southern California. VGIII isolates were obtained from soil debris associated with tree species not previously reported as hosts from sites near residences of infected patients. These isolates are fertile under laboratory conditions, produce abundant spores, and are part of both locally and more distantly recombining populations. MLST and whole genome sequence analysis provide compelling evidence that these environmental isolates are the source of human infections. Isolates displayed wide-ranging virulence in macrophage and animal models. When clinical and environmental isolates with indistinguishable MLST profiles were compared, environmental isolates were less virulent. Taken together, our studies reveal an environmental source and risk of C. gattii to HIV/AIDS patients with implications for the >1,000,000 cryptococcal infections occurring annually for which the causative isolate is rarely assigned species status. Thus, the C. gattii global health burden could be more substantial than currently appreciated. PMID:25144534
Minim typing--a rapid and low cost MLST based typing tool for Klebsiella pneumoniae.
Andersson, Patiyan; Tong, Steven Y C; Bell, Jan M; Turnidge, John D; Giffard, Philip M
2012-01-01
Here we report a single nucleotide polymorphism (SNP) based genotyping method for Klebsiella pneumoniae utilising high-resolution melting (HRM) analysis of fragments within the multilocus sequence typing (MLST) loci. The approach is termed mini-MLST or Minim typing and it has previously been applied to Streptococcus pyogenes, Staphylococcus aureus and Enterococcus faecium. Six SNPs were derived from concatenated MLST sequences on the basis of maximisation of the Simpsons Index of Diversity (D). DNA fragments incorporating these SNPs and predicted to be suitable for HRM analysis were designed. Using the assumption that HRM alleles are defined by G+C content, Minim typing using six fragments was predicted to provide a D = 0.979 against known STs. The method was tested against 202 K. pneumoniae using a blinded approach in which the MLST analyses were performed after the HRM analyses. The HRM-based alleles were indeed in accordance with G+C content, and the Minim typing identified known STs and flagged new STs. The tonB MLST locus was determined to be very diverse, and the two Minim fragments located herein contribute greatly to the resolving power. However these fragments are refractory to amplification in a minority of isolates. Therefore, we assessed the performance of two additional formats: one using only the four fragments located outside the tonB gene (D = 0.929), and the other using HRM data from these four fragments in conjunction with sequencing of the tonB MLST fragment (D = 0.995). The HRM assays were developed on the Rotorgene 6000, and the method was shown to also be robust on the LightCycler 480, allowing a 384-well high through-put format. The assay provides rapid, robust and low-cost typing with fully portable results that can directly be related to current MLST data. Minim typing in combination with molecular screening for antibiotic resistance markers can be a powerful surveillance tool kit.
Minim Typing – A Rapid and Low Cost MLST Based Typing Tool for Klebsiella pneumoniae
Andersson, Patiyan; Tong, Steven Y. C.; Bell, Jan M.; Turnidge, John D.; Giffard, Philip M.
2012-01-01
Here we report a single nucleotide polymorphism (SNP) based genotyping method for Klebsiella pneumoniae utilising high-resolution melting (HRM) analysis of fragments within the multilocus sequence typing (MLST) loci. The approach is termed mini-MLST or Minim typing and it has previously been applied to Streptococcus pyogenes, Staphylococcus aureus and Enterococcus faecium. Six SNPs were derived from concatenated MLST sequences on the basis of maximisation of the Simpsons Index of Diversity (D). DNA fragments incorporating these SNPs and predicted to be suitable for HRM analysis were designed. Using the assumption that HRM alleles are defined by G+C content, Minim typing using six fragments was predicted to provide a D = 0.979 against known STs. The method was tested against 202 K. pneumoniae using a blinded approach in which the MLST analyses were performed after the HRM analyses. The HRM-based alleles were indeed in accordance with G+C content, and the Minim typing identified known STs and flagged new STs. The tonB MLST locus was determined to be very diverse, and the two Minim fragments located herein contribute greatly to the resolving power. However these fragments are refractory to amplification in a minority of isolates. Therefore, we assessed the performance of two additional formats: one using only the four fragments located outside the tonB gene (D = 0.929), and the other using HRM data from these four fragments in conjunction with sequencing of the tonB MLST fragment (D = 0.995). The HRM assays were developed on the Rotorgene 6000, and the method was shown to also be robust on the LightCycler 480, allowing a 384-well high through-put format. The assay provides rapid, robust and low-cost typing with fully portable results that can directly be related to current MLST data. Minim typing in combination with molecular screening for antibiotic resistance markers can be a powerful surveillance tool kit. PMID:22428067
Choleva, Lukas; Musilova, Zuzana; Kohoutova-Sediva, Alena; Paces, Jan; Rab, Petr; Janko, Karel
2014-01-01
Distinguishing between hybrid introgression and incomplete lineage sorting causing incongruence among gene trees in that they exhibit topological differences requires application of statistical approaches that are based on biologically relevant models. Such study is especially challenging in hybrid systems, where usual vectors mediating interspecific gene transfers--hybrids with Mendelian heredity--are absent or unknown. Here we study a complex of hybridizing species, which are known to produce clonal hybrids, to discover how one of the species, Cobitis tanaitica, has achieved a pattern of mito-nuclear mosaic genome over the whole geographic range. We appplied three distinct methods, including the method using solely the information on gene tree topologies, and found that the contrasting mito-nuclear signal might not have resulted from the retention of ancestral polymorphism. Instead, we found two signs of hybridization events related to C. tanaitica; one concerning nuclear gene flow and the other suggested mitochondrial capture. Interestingly, clonal inheritance (gynogenesis) of contemporary hybrids prevents genomic introgressions and non-clonal hybrids are either absent or too rare to be detected among European Cobitis. Our analyses therefore suggest that introgressive hybridizations are rather old episodes, mediated by previously existing hybrids whose inheritance was not entirely clonal. Cobitis complex thus supports the view that the type of resulting hybrids depends on a level of genomic divergence between sexual species.
Guinoiseau, Thibault; Moreau, Alain; Hohnadel, Guillaume; Ngo-Giang-Huong, Nicole; Brulard, Celine; Vourc'h, Patrick; Goudeau, Alain; Gaudy-Graffin, Catherine
2017-01-01
Hepatitis C virus (HCV) evolves rapidly in a single host and circulates as a quasispecies wich is a complex mixture of genetically distinct virus's but closely related namely variants. To identify intra-individual diversity and investigate their functional properties in vitro, it is necessary to define their quasispecies composition and isolate the HCV variants. This is possible using single genome amplification (SGA). This technique, based on serially diluted cDNA to amplify a single cDNA molecule (clonal amplicon), has already been used to determine individual HCV diversity. In these studies, positive PCR reactions from SGA were directly sequenced using Sanger technology. The detection of non-clonal amplicons is necessary for excluding them to facilitate further functional analysis. Here, we compared Next Generation Sequencing (NGS) with De Novo assembly and Sanger sequencing for their ability to distinguish clonal and non-clonal amplicons after SGA on one plasma specimen. All amplicons (n = 42) classified as clonal by NGS were also classified as clonal by Sanger sequencing. No double peaks were seen on electropherograms for non-clonal amplicons with position-specific nucleotide variation below 15% by NGS. Altogether, NGS circumvented many of the difficulties encountered when using Sanger sequencing after SGA and is an appropriate tool to reliability select clonal amplicons for further functional studies.
Guinoiseau, Thibault; Moreau, Alain; Hohnadel, Guillaume; Ngo-Giang-Huong, Nicole; Brulard, Celine; Vourc’h, Patrick; Goudeau, Alain; Gaudy-Graffin, Catherine
2017-01-01
Hepatitis C virus (HCV) evolves rapidly in a single host and circulates as a quasispecies wich is a complex mixture of genetically distinct virus’s but closely related namely variants. To identify intra-individual diversity and investigate their functional properties in vitro, it is necessary to define their quasispecies composition and isolate the HCV variants. This is possible using single genome amplification (SGA). This technique, based on serially diluted cDNA to amplify a single cDNA molecule (clonal amplicon), has already been used to determine individual HCV diversity. In these studies, positive PCR reactions from SGA were directly sequenced using Sanger technology. The detection of non-clonal amplicons is necessary for excluding them to facilitate further functional analysis. Here, we compared Next Generation Sequencing (NGS) with De Novo assembly and Sanger sequencing for their ability to distinguish clonal and non-clonal amplicons after SGA on one plasma specimen. All amplicons (n = 42) classified as clonal by NGS were also classified as clonal by Sanger sequencing. No double peaks were seen on electropherograms for non-clonal amplicons with position-specific nucleotide variation below 15% by NGS. Altogether, NGS circumvented many of the difficulties encountered when using Sanger sequencing after SGA and is an appropriate tool to reliability select clonal amplicons for further functional studies. PMID:28362878
Caugant, Dominique A.; Kristiansen, Paul A.; Wang, Xin; Mayer, Leonard W.; Taha, Muhamed-Kheir; Ouédraogo, Rasmata; Kandolo, Denis; Bougoudogo, Flabou; Sow, Samba; Bonte, Laurence
2012-01-01
Background The serogroup A conjugate meningococcal vaccine, MenAfriVac, was introduced in mass vaccination campaigns in December 2010 in Burkina Faso, Mali and Niger. In the coming years, vaccination will be extended to other African countries at risk of epidemics. To document the molecular characteristics of disease-causing meningococcal strains circulating in the meningitis belt of Africa before vaccine introduction, the World Health Organization Collaborating Centers on Meningococci in Europe and United States established a common strain collection of 773 isolates from cases of invasive meningococcal disease collected between 2004 and 2010 from 13 sub-Saharan countries. Methodology All isolates were characterized by multilocus sequence typing, and 487 (62%) were also analyzed for genetic variation in the surface antigens PorA and FetA. Antibiotic susceptibility was tested for part of the collection. Principal Findings Only 19 sequence types (STs) belonging to 6 clonal complexes were revealed. ST-5 clonal complex dominated with 578 (74.8%) isolates. All ST-5 complex isolates were remarkably homogeneous in their PorA (P1.20,9) and FetA (F3-1) and characterized the serogroup A strains which have been responsible for most epidemics during this time period. Sixty-eight (8.8%) of the 773 isolates belonged to the ST-11 clonal complex which was mainly represented by serogroup W135, while an additional 38 (4.9%) W135 isolates belonged to the ST-175 complex. Forty-eight (6.2%) serogroup X isolates from West Africa belonged to the ST-181 complex, while serogroup X cases in Kenya and Uganda were caused by an unrelated clone, ST-5403. Serogroup X, ST-181, emerged in Burkina Faso before vaccine introduction. Conclusions In the seven years preceding introduction of a new serogroup A conjugate vaccine, serogroup A of the ST-5 clonal complex was identified as the predominant disease-causing strain. PMID:23029368
Reclassification of Borrelia spp. isolated in South Korea using Multilocus Sequence Typing.
Park, Kyung-Hee; Choi, Yeon-Joo; Kim, Jeoungyeon; Park, Hye-Jin; Song, Dayoung; Jang, Won-Jong
2018-05-31
Using Borrelia isolated from South Korea, we evaluated by MLST and three intergenic genes (16S rRNA, ospA, and 5S-23S IGS) typing to analyze the relationship between host and vector and molecular background. Using the MLST analysis, we identified B. afzelii, B. yangtzensis, B. garinii, and B. bavariensis. This study was first report of the identification of B. yangtzensis using the MLST in South Korea.
Farmanbar, Amir; Firouzi, Sanaz; Park, Sung-Joon; Nakai, Kenta; Uchimaru, Kaoru; Watanabe, Toshiki
2017-01-31
Clonal expansion of leukemic cells leads to onset of adult T-cell leukemia (ATL), an aggressive lymphoid malignancy with a very poor prognosis. Infection with human T-cell leukemia virus type-1 (HTLV-1) is the direct cause of ATL onset, and integration of HTLV-1 into the human genome is essential for clonal expansion of leukemic cells. Therefore, monitoring clonal expansion of HTLV-1-infected cells via isolation of integration sites assists in analyzing infected individuals from early infection to the final stage of ATL development. However, because of the complex nature of clonal expansion, the underlying mechanisms have yet to be clarified. Combining computational/mathematical modeling with experimental and clinical data of integration site-based clonality analysis derived from next generation sequencing technologies provides an appropriate strategy to achieve a better understanding of ATL development. As a comprehensively interdisciplinary project, this study combined three main aspects: wet laboratory experiments, in silico analysis and empirical modeling. We analyzed clinical samples from HTLV-1-infected individuals with a broad range of proviral loads using a high-throughput methodology that enables isolation of HTLV-1 integration sites and accurate measurement of the size of infected clones. We categorized clones into four size groups, "very small", "small", "big", and "very big", based on the patterns of clonal growth and observed clone sizes. We propose an empirical formal model based on deterministic finite state automata (DFA) analysis of real clinical samples to illustrate patterns of clonal expansion. Through the developed model, we have translated biological data of clonal expansion into the formal language of mathematics and represented the observed clonality data with DFA. Our data suggest that combining experimental data (absolute size of clones) with DFA can describe the clonality status of patients. This kind of modeling provides a basic understanding as well as a unique perspective for clarifying the mechanisms of clonal expansion in ATL.
Maciejewski, Jaroslaw P; Balasubramanian, Suresh K
2017-12-08
Recent technological advances in genomics have led to the discovery of new somatic mutations and have brought deeper insights into clonal diversity. This discovery has changed not only the understanding of disease mechanisms but also the diagnostics and clinical management of bone marrow failure. The clinical applications of genomics include enhancement of current prognostic schemas, prediction of sensitivity or refractoriness to treatments, and conceptualization and selective application of targeted therapies. However, beyond these traditional clinical aspects, complex hierarchical clonal architecture has been uncovered and linked to the current concepts of leukemogenesis and stem cell biology. Detection of clonal mutations, otherwise typical of myelodysplastic syndrome, in the course of aplastic anemia (AA) and paroxysmal nocturnal hemoglobinuria has led to new pathogenic concepts in these conditions and created a new link between AA and its clonal complications, such as post-AA and paroxysmal nocturnal hemoglobinuria. Distinctions among founder vs subclonal mutations, types of clonal evolution (linear or branching), and biological features of individual mutations (sweeping, persistent, or vanishing) will allow for better predictions of the biologic impact they impart in individual cases. As clonal markers, mutations can be used for monitoring clonal dynamics of the stem cell compartment during physiologic aging, disease processes, and leukemic evolution. © 2016 by The American Society of Hematology. All rights reserved.
Soeorg, Hiie; Metsvaht, Hanna Kadri; Keränen, Evamaria Elisabet; Eelmäe, Imbi; Merila, Mirjam; Ilmoja, Mari-Liis; Metsvaht, Tuuli; Lutsar, Irja
2018-04-02
Staphylococcus haemolyticus is a common colonizer and cause of late-onset sepsis (LOS) in preterm neonates. By describing genetic relatedness, we aimed to determine whether mother's breast milk (BM) is a source of S. haemolyticus colonizing neonatal gut and skin and/or causing LOS. S. haemolyticus was isolated from stool and skin swabs of 49 BM-fed preterm neonates admitted to neonatal intensive care unit, 20 healthy BM-fed term neonates and BM of mothers once a week and typed by multilocus variable-number tandem-repeat analysis (MLVA) and multilocus sequence typing (MLST). Virulence-related genes were determined by PCR. Compared with term neonates S. haemolyticus colonized more commonly gut (35% vs 89.9%; p<0.001) and skin (50% vs 91.8%; p<0.001) of preterm neonates and mothers' BM (15% vs 38.8%). Isolates from preterm compared with term neonates and their mothers carried more commonly the mecA gene (83.5% vs 5.4%; p<0.001) and IS256 (52.4% vs 2.7%; p<0.001) and belonged to clonal complex 29 (89.1% vs 63%; p=0.014). Only 7 (14.3%) preterm and 3 (15%) term neonates were colonized in gut or on skin with MLVA-types indistinguishable from those in BM. Most frequent MLVA-types belonged to sequence type 3 or 42, comprised 71.1-78.4% of isolates from preterm neonates/mothers and caused all seven LOS episodes. LOS-causing strain colonized the gut of 4/7 and the skin of 5/7 neonates, but not BM, prior to onset of LOS. S. haemolyticus colonizing gut and skin or causing LOS in preterm neonates rarely originate from BM, but are mecA-positive strains adapted to hospital environment.
Durand, Karine; Orgeur, Geoffrey; Balidas, Samuel; Fricot, Céline; Bonneau, Sophie; Quillévéré, Anne; Audusseau, Corinne; Olivier, Valérie; Grimault, Valérie; Mathis, René
2012-01-01
The genus Clavibacter comprises one species and five subspecies of plant-pathogenic bacteria, four of which are classified as quarantine organisms due to the high economic threat they pose. Clavibacter michiganensis subsp. michiganensis is one of the most important pathogens of tomato, but the recommended diagnostic tools are not satisfactory due to false-negative and/or -positive results. To provide a robust analysis of the genetic relatedness among a worldwide collection of C. michiganensis subsp. michiganensis strains, relatives (strains from the four other C. michiganensis subspecies), and nonpathogenic Clavibacter-like strains isolated from tomato, we performed multilocus sequence-based analysis and typing (MLSA and MLST) based on six housekeeping genes (atpD, dnaK, gyrB, ppK, recA, and rpoB). We compared this “framework” with phenotypic and genotypic characteristics such as pathogenicity on tomato, reaction to two antisera by immunofluorescence and to five PCR identification tests, and the presence of four genes encoding the main C. michiganensis subsp. michiganensis pathogenicity determinants. We showed that C. michiganensis subsp. michiganensis is monophyletic and is distinct from its closest taxonomic neighbors. The nonpathogenic Clavibacter-like strains were identified as C. michiganensis using 16S rRNA gene sequencing. These strains, while cross-reacting with C. michiganensis subsp. michiganensis identification tools, are phylogenetically distinct from the pathogenic strains but belong to the C. michiganensis clade. C. michiganensis subsp. michiganensis clonal complexes linked strains from highly diverse geographical origins and also strains isolated over long periods of time in the same location. This illustrates the importance of seed transmission in the worldwide dispersion of this pathogen and its survival and adaptation abilities in a new environment once introduced. PMID:23001675
Bergal, A; Loucif, L; Benouareth, D E; Bentorki, A A; Abat, C; Rolain, J-M
2015-12-01
This study describes, for the first time, the genetic and phenotypic diversity among 93 Streptococcus agalactiae (group B Streptococcus, GBS) isolates collected from Guelma, Algeria and Marseille, France. All strains were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The molecular support of antibiotic resistance and serotyping were investigated by polymerase chain reaction (PCR). The phylogenetic lineage of each GBS isolate was determined by multilocus sequence typing (MLST) and grouped into clonal complexes (CCs) using eBURST. The isolates represented 37 sequence types (STs), 16 of which were novel, grouped into five CCs, and belonging to seven serotypes. Serotype V was the most prevalent serotype in our collection (44.1%). GBS isolates of each serotype were distributed among multiple CCs, including cps III/CC19, cps V/CC1, cps Ia/CC23, cps II/CC10, and cps III/CC17. All isolates presented susceptibility to penicillin, whereas resistance to erythromycin was detected in 40% and tetracycline in 82.2% of isolates. Of the 37 erythromycin-resistant isolates, 75.7% showed the macrolide-lincosamide-streptogramin B (MLSB)-resistant phenotype and 24.3% exhibited the macrolide (M)-resistant phenotype. Constitutive MLSB resistance (46%) mediated by the ermB gene was significantly associated with the Guelma isolates, whereas the M resistance phenotype (24.3%) mediated by the mefA/E gene dominated among the Marseille isolates and belonged to ST-23. Tetracycline resistance was predominantly due to tetM, which was detected alone (95.1%) or associated with tetO (3.7%). These results provide epidemiological data in these regions that establish a basis for monitoring increased resistance to erythromycin and also provide insight into correlations among clones, serotypes, and resistance genes.
Tryfinopoulou, Kyriaki; Kesanopoulos, Konstantinos; Xirogianni, Athanasia; Marmaras, Nektarios; Papandreou, Anastasia; Papaevangelou, Vassiliki; Tsolia, Maria; Jasir, Aftab; Tzanakaki, Georgina
2016-01-01
The aim of the study was to estimate the meningococcal carriage rate and to identify the genotypic characteristics of the strains isolated from healthy military recruits and university students in order to provide data that might increase our understanding on the epidemiology of meningococcus and obtain information which helps to evaluate the potential effects on control programs such as vaccination. A total of 1420 oropharyngeal single swab samples were collected from military recruits and university students on voluntary basis, aged 18-26 years. New York City Medium was used for culture and the suspected N. meningitidis colonies were identified by Gram stain, oxidase and rapid carbohydrate utilization tests. Further characterisation was carried out by molecular methods (multiplex PCR, MLST, WGS). The overall carriage rate was of 12.7%; 15% and 10.4% for recruits and university students respectively. MenB (39.4%) was the most prevalent followed by MenY (12.8%) and MenW (4.4%). Among the initial 76 Non Groupable (NG) isolates, Whole Genome Sequence Analysis (WGS) revealed that 8.3% belonged to MenE, 3.3% to MenX and 1.1% to MenZ, while, 53 strains (29.4%) were finally identified as capsule null. Genetic diversity was found among the MenB isolates, with 41/44 cc and 35 cc predominating. Meningococcal carriage rate in both groups was lower compared to our previous studies (25% and 18% respectively) with predominance of MenB isolates. These findings, help to further our understanding on the epidemiology of meningococcal disease in Greece. Although the prevalence of carriage seems to have declined compared to our earlier studies, the predominant MenB clonal complexes (including 41/44cc and 35cc) are associated with invasive meningococcal disease.
Jacques, Marie-Agnès; Durand, Karine; Orgeur, Geoffrey; Balidas, Samuel; Fricot, Céline; Bonneau, Sophie; Quillévéré, Anne; Audusseau, Corinne; Olivier, Valérie; Grimault, Valérie; Mathis, René
2012-12-01
The genus Clavibacter comprises one species and five subspecies of plant-pathogenic bacteria, four of which are classified as quarantine organisms due to the high economic threat they pose. Clavibacter michiganensis subsp. michiganensis is one of the most important pathogens of tomato, but the recommended diagnostic tools are not satisfactory due to false-negative and/or -positive results. To provide a robust analysis of the genetic relatedness among a worldwide collection of C. michiganensis subsp. michiganensis strains, relatives (strains from the four other C. michiganensis subspecies), and nonpathogenic Clavibacter-like strains isolated from tomato, we performed multilocus sequence-based analysis and typing (MLSA and MLST) based on six housekeeping genes (atpD, dnaK, gyrB, ppK, recA, and rpoB). We compared this "framework" with phenotypic and genotypic characteristics such as pathogenicity on tomato, reaction to two antisera by immunofluorescence and to five PCR identification tests, and the presence of four genes encoding the main C. michiganensis subsp. michiganensis pathogenicity determinants. We showed that C. michiganensis subsp. michiganensis is monophyletic and is distinct from its closest taxonomic neighbors. The nonpathogenic Clavibacter-like strains were identified as C. michiganensis using 16S rRNA gene sequencing. These strains, while cross-reacting with C. michiganensis subsp. michiganensis identification tools, are phylogenetically distinct from the pathogenic strains but belong to the C. michiganensis clade. C. michiganensis subsp. michiganensis clonal complexes linked strains from highly diverse geographical origins and also strains isolated over long periods of time in the same location. This illustrates the importance of seed transmission in the worldwide dispersion of this pathogen and its survival and adaptation abilities in a new environment once introduced.
Argudín, M Angeles; Vanderhaeghen, Wannes; Vandendriessche, Stien; Vandecandelaere, Ilse; André, François-Xavier; Denis, Olivier; Coenye, Tom; Butaye, Patrick
2015-07-09
While Staphylococcus epidermidis, as part of the commensal flora, is a well-known human opportunistic pathogen, only little is known about the genetic relatedness of S. epidermidis carriage isolates from animal and human origin. This study aimed to compare S. epidermidis recovered from livestock, livestock-farmers and humans associated with the hospital environment. A total of 193 S. epidermidis isolates from three populations [animals (n=33), farmers (n=86) and hospital-associated (n=74)] were characterized by broth microdilution antimicrobial susceptibility testing, staphylococcal cassette chromosome mec (SCCmec) typing, pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The overall S. epidermidis nasal colonization rate was low in animals (1-9%) but high among farmers (75%). High levels of multi-resistance were found in all populations. Tetracycline resistance was high in animal and farmer isolates; resistance to erythromycin, clindamycin and trimethoprim was high in animal and hospital-associated isolates. Methicillin-resistant S. epidermidis - MRSE isolates were found in all collections, with 22 (67%) MRSE in animals, 44 (51%) MRSE in farmers and 42 (57%) MRSE associated with the hospital-setting. Known SCCmec types and variants were detected in 79% of MRSE; the rest were non-typeable cassettes. In total 79 PFGE-types were found, of which 22 were shared between livestock, farmers and the hospital settings. Clonal complex 2 was predominant in all three populations and most STs corresponded to types previously observed in community and nosocomial S. epidermidis populations. S. epidermidis isolates from livestock, farmers and hospital-setting showed a high level of diversity, but some clones can be found in humans as well as in animals. Copyright © 2015 Elsevier B.V. All rights reserved.
Sanad, Yasser M.; Kassem, Issmat I.; Abley, Melanie; Gebreyes, Wondwossen; LeJeune, Jeffrey T.; Rajashekara, Gireesh
2011-01-01
Since cattle are a major source of food and the cattle industry engages people from farms to processing plants and meat markets, it is conceivable that beef-products contaminated with Campylobacter spp. would pose a significant public health concern. To better understand the epidemiology of cattle-associated Campylobacter spp. in the USA, we characterized the prevalence, genotypic and phenotypic properties of these pathogens. Campylobacter were detected in 181 (19.2%) out of 944 fecal samples. Specifically, 71 C. jejuni, 132 C. coli, and 10 other Campylobacter spp. were identified. The prevalence of Campylobacter varied regionally and was significantly (P<0.05) higher in fecal samples collected from the South (32.8%) as compared to those from the North (14.8%), Midwest (15.83%), and East (12%). Pulsed Field Gel Electrophoresis (PFGE) analysis showed that C. jejuni and C. coli isolates were genotypically diverse and certain genotypes were shared across two or more of the geographic locations. In addition, 13 new C. jejuni and two C. coli sequence types (STs) were detected by Multi Locus Sequence Typing (MLST). C. jejuni associated with clinically human health important sequence type, ST-61 which was not previously reported in the USA, was identified in the present study. Most frequently observed clonal complexes (CC) were CC ST-21, CC ST-42, and CC ST-61, which are also common in humans. Further, the cattle associated C. jejuni strains showed varying invasion and intracellular survival capacity; however, C. coli strains showed a lower invasion and intracellular survival potential compared to C. jejuni strains. Furthermore, many cattle associated Campylobacter isolates showed resistance to several antimicrobials including ciprofloxacin, erythromycin, and gentamicin. Taken together, our results highlight the importance of cattle as a potential reservoir for clinically important Campylobacter. PMID:22046247
Muttaiyah, S.; Coombs, G.; Pandey, S.; Reed, P.; Ritchie, S.; Lennon, D.; Roberts, S.
2010-01-01
Panton-Valentine leukocidin (PVL) has been linked to invasive community-acquired methicillin-resistant Staphylococcus aureus infections. However, the association between disease and PVL-positive methicillin-susceptible Staphylococcus aureus (MSSA) has not been widely reported. We aimed to examine the epidemiology of PVL in clinical MSSA isolates from patients presenting to Auckland City Hospital. Four hundred eleven MSSA clinical isolates and 93 nasal carriage isolates were collected and tested for the presence of the lukSF-PV genes using PCR. The results were examined in light of host and disease factors. Multilocus sequence typing (MLST) was performed on a random subset of isolates to ensure that there was no single PVL-positive MSSA clone responsible for disease in Auckland. The prevalence of the lukSF-PV genes in MSSA isolates associated with disease (124/335; 37%) was not significantly different from the prevalence of the lukSF-PV genes in MSSA nasal carriage isolates (29/93; 31% [P = 0.33]). PVL-positive MSSA isolates in Auckland are genetically diverse and come from a number of different clonal complexes. PVL-positive infections peaked at between 10 and 20 years of age, with a subsequent decline. Pacific ethnicity, age, diagnosis of skin and soft tissue infection (SSTI), community-onset infection, and the need for surgical intervention were found by multivariate analysis to be independently associated with PVL-positive MSSA infection. More than one-third of MSSA infections in our patient population are caused by PVL-positive strains. Those patients with PVL-positive MSSA infection were more likely to be of Pacific ethnicity, be younger in age, have community-onset infection, have SSTI, and need surgical intervention. PMID:20686081
Bortolami, Alessio; Verin, Ranieri; Chantrey, Julian; Corrò, Michela; Ashpole, Ian; Lopez, Javier; Timofte, Dorina
2017-10-01
Little is known about the characteristics and diseases associated with methicillin-resistant Staphylococcus aureus (MRSA) in nondomestic animals. Four presumptive MRSA isolates, obtained from clinical (n = 3) and surveillance specimens (n = 1) from dwarf (Helogale parvula) and yellow mongooses (Cynictis penicillata) from a United Kingdom zoo, were analyzed by PCR for detection of mecA and mecC-mediated methicillin resistance, and virulence genes. Isolates were genotyped by multilocus sequence typing (MLST) and staphylococcal cassette chromosome mec (SCCmec) and spa sequence typing. Three isolates, obtained from the dwarf mongooses, carried mecA, tetK, and fexA resistance and virulence genes (icaA, icaD, and sec) and were typed to SCCmec IVa, spa type t899, and clonal complex (CC) 398. The fourth MRSA isolate, obtained from the femoral bone marrow of a yellow mongoose showing postmortem findings consistent with septicemia, carried mecC and was oxacillin/cefoxitin susceptible, when tested at 37°C but showed a characteristic MRSA susceptibility profile at 25°C ± 2°C. Furthermore, this isolate exhibited a different genetic background (SCCmecXI/t843/CC130) and had biofilm-associated genes (bap, icaA, and icaD) and tetK tetracycline resistance genes. This work describes the first isolation of livestock-associated MRSA CC398 from two zoo mongoose species where it was associated with both clinical disease and colonization, and the first isolation of mecC MRSA from a zoo species in the United Kingdom. Both reports highlight the potential for zoo species to act as reservoirs for these zoonotic agents.
Development of Multilocus Sequence Typing (MLST) for Mycoplasma synoviae.
El-Gazzar, Mohamed; Ghanem, Mostafa; McDonald, Kristina; Ferguson-Noel, Naola; Raviv, Ziv; Slemons, Richard D
2017-03-01
Mycoplasma synoviae (MS) is a poultry pathogen that has had an increasing incidence and economic impact over the past few years. Strain identification is necessary for outbreak investigation, infection source identification, and facilitating prevention and control as well as eradication efforts. Currently, a segment of the variable lipoprotein hemagglutinin A (vlhA) gene (420 bp) is the only target that is used for MS strain identification. A major limitation of this assay is that colonality of typed samples can only be inferred if their vlhA sequences are identical; however, if their sequences are different, the degree of relatedness is uncertain. In this study we propose a multilocus sequence typing (MLST) assay to further refine MS strain identification. After initial screening of 24 housekeeping genes as potential targets, seven genes were selected for the MLST assay. An internal segment (450-711 bp) from each of the seven genes was successfully amplified and sequenced from 58 different MS strains and field isolates (n = 30) or positive clinical samples (n = 28). The collective sequence of all seven gene segments (3960 bp total) was used for MS sequence typing. The 58 tested MS samples were typed into 30 different sequence types using the MLST assay and, coincidentally, all the samples were typed into 30 sequence types using the vlhA assay. However, the phylogenetic tree generated using the MLST data was more congruent to the epidemiologic information than was the tree generated by the vlhA assay. We suggest that the newly developed MLST assay and the vlhA assay could be used in tandem for MS typing. The MLST assay will be a valuable and more reliable tool for MS sequence typing, providing better understanding of the epidemiology of MS infection. This in turn will aid disease prevention, control, and eradication efforts.
A Single Multilocus Sequence Typing (MLST) Scheme for Seven Pathogenic Leptospira Species
Amornchai, Premjit; Wuthiekanun, Vanaporn; Bailey, Mark S.; Holden, Matthew T. G.; Zhang, Cuicai; Jiang, Xiugao; Koizumi, Nobuo; Taylor, Kyle; Galloway, Renee; Hoffmaster, Alex R.; Craig, Scott; Smythe, Lee D.; Hartskeerl, Rudy A.; Day, Nicholas P.; Chantratita, Narisara; Feil, Edward J.; Aanensen, David M.; Spratt, Brian G.; Peacock, Sharon J.
2013-01-01
Background The available Leptospira multilocus sequence typing (MLST) scheme supported by a MLST website is limited to L. interrogans and L. kirschneri. Our aim was to broaden the utility of this scheme to incorporate a total of seven pathogenic species. Methodology and Findings We modified the existing scheme by replacing one of the seven MLST loci (fadD was changed to caiB), as the former gene did not appear to be present in some pathogenic species. Comparison of the original and modified schemes using data for L. interrogans and L. kirschneri demonstrated that the discriminatory power of the two schemes was not significantly different. The modified scheme was used to further characterize 325 isolates (L. alexanderi [n = 5], L. borgpetersenii [n = 34], L. interrogans [n = 222], L. kirschneri [n = 29], L. noguchii [n = 9], L. santarosai [n = 10], and L. weilii [n = 16]). Phylogenetic analysis using concatenated sequences of the 7 loci demonstrated that each species corresponded to a discrete clade, and that no strains were misclassified at the species level. Comparison between genotype and serovar was possible for 254 isolates. Of the 31 sequence types (STs) represented by at least two isolates, 18 STs included isolates assigned to two or three different serovars. Conversely, 14 serovars were identified that contained between 2 to 10 different STs. New observations were made on the global phylogeography of Leptospira spp., and the utility of MLST in making associations between human disease and specific maintenance hosts was demonstrated. Conclusion The new MLST scheme, supported by an updated MLST website, allows the characterization and species assignment of isolates of the seven major pathogenic species associated with leptospirosis. PMID:23359622
Yap, Kien-Pong; Ho, Wing S; Gan, Han M; Chai, Lay C; Thong, Kwai L
2016-01-01
Typhoid fever, caused by Salmonella enterica serovar Typhi, remains an important public health burden in Southeast Asia and other endemic countries. Various genotyping methods have been applied to study the genetic variations of this human-restricted pathogen. Multilocus sequence typing (MLST) is one of the widely accepted methods, and recently, there is a growing interest in the re-application of MLST in the post-genomic era. In this study, we provide the global MLST distribution of S. Typhi utilizing both publicly available 1,826 S. Typhi genome sequences in addition to performing conventional MLST on S. Typhi strains isolated from various endemic regions spanning over a century. Our global MLST analysis confirms the predominance of two sequence types (ST1 and ST2) co-existing in the endemic regions. Interestingly, S. Typhi strains with ST8 are currently confined within the African continent. Comparative genomic analyses of ST8 and other rare STs with genomes of ST1/ST2 revealed unique mutations in important virulence genes such as flhB, sipC, and tviD that may explain the variations that differentiate between seemingly successful (widespread) and unsuccessful (poor dissemination) S. Typhi populations. Large scale whole-genome phylogeny demonstrated evidence of phylogeographical structuring and showed that ST8 may have diverged from the earlier ancestral population of ST1 and ST2, which later lost some of its fitness advantages, leading to poor worldwide dissemination. In response to the unprecedented increase in genomic data, this study demonstrates and highlights the utility of large-scale genome-based MLST as a quick and effective approach to narrow the scope of in-depth comparative genomic analysis and consequently provide new insights into the fine scale of pathogen evolution and population structure.
Ogihara, Shinji; Saito, Ryoichi; Sawabe, Etsuko; Kozakai, Takahiro; Shima, Mari; Aiso, Yoshibumi; Fujie, Toshihide; Nukui, Yoko; Koike, Ryuji; Hagihara, Michio; Tohda, Shuji
2018-04-01
The recently developed PCR-based open reading frame typing (POT) method is a useful molecular typing tool. Here, we evaluated the performance of POT for molecular typing of methicillin-resistant Staphylococcus aureus (MRSA) isolates and compared its performance to those of multilocus sequence typing (MLST) and Staphylococcus protein A gene typing (spa typing). Thirty-seven MRSA isolates were collected between July 2012 and May 2015. MLST, spa typing, and POT were performed, and their discriminatory powers were evaluated using Simpson's index analysis. The MRSA isolates were classified into 11, 18, and 33 types by MLST, spa typing, and POT, respectively. The predominant strains identified by MLST, spa typing, and POT were ST8 and ST764, t002, and 93-191-127, respectively. The discriminatory power of MLST, spa typing, and POT was 0.853, 0.875, and 0.992, respectively, indicating that POT had the highest discriminatory power. Moreover, the results of MLST and spa were available after 2 days, whereas that of POT was available in 5 h. Furthermore, POT is rapid and easy to perform and interpret. Therefore, POT is a superior molecular typing tool for monitoring nosocomial transmission of MRSA. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Leptospira species molecular epidemiology in the genomic era.
Caimi, K; Repetto, S A; Varni, V; Ruybal, P
2017-10-01
Leptospirosis is a zoonotic disease which global burden is increasing often related to climatic change. Hundreds of whole genome sequences from worldwide isolates of Leptospira spp. are available nowadays, together with online tools that permit to assign MLST sequence types (STs) directly from raw sequence data. In this work we have applied R7L-MLST to near 500 genomes and strains collection globally distributed. All 10 pathogenic species as well as intermediate were typed using this MLST scheme. The correlation observed between STs and serogroups in our previous work, is still satisfied with this higher dataset sustaining the implementation of MLST to assist serological classification as a complementary approach. Bayesian phylogenetic analysis of concatenated sequences from R7-MLST loci allowed us to resolve taxonomic inconsistencies but also showed that events such as recombination, gene conversion or lateral gene transfer played an important role in the evolution of Leptospira genus. Whole genome sequencing allows us to contribute with suitable epidemiologic information useful to apply in the design of control strategies and also in diagnostic methods for this illness. Copyright © 2017 Elsevier B.V. All rights reserved.
ClonEvol: clonal ordering and visualization in cancer sequencing.
Dang, H X; White, B S; Foltz, S M; Miller, C A; Luo, J; Fields, R C; Maher, C A
2017-12-01
Reconstruction of clonal evolution is critical for understanding tumor progression and implementing personalized therapies. This is often done by clustering somatic variants based on their cellular prevalence estimated via bulk tumor sequencing of multiple samples. The clusters, consisting of the clonal marker variants, are then ordered based on their estimated cellular prevalence to reconstruct clonal evolution trees, a process referred to as 'clonal ordering'. However, cellular prevalence estimate is confounded by statistical variability and errors in sequencing/data analysis, and therefore inhibits accurate reconstruction of the clonal evolution. This problem is further complicated by intra- and inter-tumor heterogeneity. Furthermore, the field lacks a comprehensive visualization tool to facilitate the interpretation of complex clonal relationships. To address these challenges we developed ClonEvol, a unified software tool for clonal ordering, visualization, and interpretation. ClonEvol uses a bootstrap resampling technique to estimate the cellular fraction of the clones and probabilistically models the clonal ordering constraints to account for statistical variability. The bootstrapping allows identification of the sample founding- and sub-clones, thus enabling interpretation of clonal seeding. ClonEvol automates the generation of multiple widely used visualizations for reconstructing and interpreting clonal evolution. ClonEvol outperformed three of the state of the art tools (LICHeE, Canopy and PhyloWGS) for clonal evolution inference, showing more robust error tolerance and producing more accurate trees in a simulation. Building upon multiple recent publications that utilized ClonEvol to study metastasis and drug resistance in solid cancers, here we show that ClonEvol rediscovered relapsed subclones in two published acute myeloid leukemia patients. Furthermore, we demonstrated that through noninvasive monitoring ClonEvol recapitulated the emerging subclones throughout metastatic progression observed in the tumors of a published breast cancer patient. ClonEvol has broad applicability for longitudinal monitoring of clonal populations in tumor biopsies, or noninvasively, to guide precision medicine. ClonEvol is written in R and is available at https://github.com/ChrisMaherLab/ClonEvol. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Yuan, Xiaoli; Morano, Lisa; Bromley, Robin; Spring-Pearson, Senanu; Stouthamer, Richard; Nunney, Leonard
2010-06-01
Using a modified multilocus sequence typing (MLST) scheme for the bacterial plant pathogen Xylella fastidiosa based on the same seven housekeeping genes employed in a previously published MLST, we studied the genetic diversity of two subspecies, X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi, which cause Pierce's disease and oleander leaf scorch, respectively. Typing of 85 U.S. isolates (plus one from northern Mexico) of X. fastidiosa subsp. fastidiosa from 15 different plant hosts and 21 isolates of X. fastidiosa subsp. sandyi from 4 different hosts in California and Texas supported their subspecific status. Analysis using the MLST genes plus one cell-surface gene showed no significant genetic differentiation based on geography or host plant within either subspecies. Two cases of homologous recombination (with X. fastidiosa subsp. multiplex, the third U.S. subspecies) were detected in X. fastidiosa subsp. fastidiosa. Excluding recombination, MLST site polymorphism in X. fastidiosa subsp. fastidiosa (0.048%) and X. fastidiosa subsp. sandyi (0.000%) was substantially lower than in X. fastidiosa subsp. multiplex (0.240%), consistent with the hypothesis that X. fastidiosa subspp. fastidiosa and sandyi were introduced into the United States (probably just prior to 1880 and 1980, respectively). Using whole-genome analysis, we showed that MLST is more effective at genetic discrimination at the specific and subspecific level than other typing methods applied to X. fastidiosa. Moreover, MLST is the only technique effective in detecting recombination.
Jenderny, Jutta; Goldmann, Claudia; Thede, Rebekka; Ebrecht, Monika; Korioth, Frank
2014-01-01
There are only a few cytogenetic analysis (CA) studies that directly compare the novel cultivation technique using immunostimulatory CpG-oligonucleotide DSP30/interleukin-2 (DSP30/IL2) with other culture methods. Therefore, parallel cultures of peripheral blood of 129 chronic lymphocytic leukemia (CLL) patients were set up in unstimulated cultures, in the presence of pokeweed medium (PWM), and with DSP30/IL2. Furthermore, CA results were compared with data obtained by FISH. Clonal aberrations were observed by CA in 6% of the cases in unstimulated cultures, in 27% of the cases with PWM, and in 40% of the cases with DSP30/IL2. Some clonal aberrations were detected by CA only with one culture method. Using 3 different culture methods, clonal aberrations were detected in 41% of the cases by CA and in 71% of the cases by FISH. Altogether, 78% of the cases exhibited clonal aberrations discovered by CA and FISH. Also, CA detected clonal aberrations not targeted by FISH in 7% of the cases, and FISH identified clonal aberrations not detected by CA in 36% of the cases. Our study demonstrates that the combined use of CA with different culture methods together with FISH increases our knowledge of the genetic complexity and heterogeneity in CLL pathogenesis. © 2014 S. Karger AG, Basel.
Nunney, L; Elfekih, S; Stouthamer, R
2012-05-01
Microbial identification methods have evolved rapidly over the last few decades. One such method is multilocus sequence typing (MLST). MLST is a powerful tool for understanding the evolutionary dynamics of pathogens and to gain insight into their genetic diversity. We illustrate the importance of accurate typing by reporting on three problems that have arisen in the study of a single bacterial species, the plant pathogen Xylella fastidiosa. Two of these were particularly serious since they concerned contamination of important research material that has had detrimental consequences for Xylella research: the contamination of DNA used in the sequencing of an X. fastidiosa genome (Ann-1) with DNA from another X. fastidiosa strain, and the unrecognized mislabeling of a strain (Temecula1) distributed from a culture collection (ATCC). We advocate the routine use of MLST to define strains maintained in culture collections and emphasize the importance of confirming the purity of DNA submitted for sequencing. We also present a third example that illustrates the value of MLST in guiding the choice of taxonomic types. Beyond these situations, there is a strong case for MLST whenever an isolate is used experimentally, especially where genotypic differences are suspected to influence the outcome.
Wright, Laura L; Turton, Jane F; Livermore, David M; Hopkins, Katie L; Woodford, Neil
2015-01-01
Carbapenem-resistant isolates of Pseudomonas aeruginosa producing metallo-β-lactamases (MBLs) are increasingly reported worldwide and often belong to particular 'high-risk clones'. This study aimed to characterize a comprehensive collection of MBL-producing P. aeruginosa isolates referred to the UK national reference laboratory from multiple UK laboratories over a 10 year period. Isolates were referred to the UK national reference laboratory between 2003 and 2012 for investigation of resistance mechanisms and/or outbreaks. MBL genes were detected by PCR. Typing was carried out by nine-locus variable-number tandem repeat (VNTR) analysis and MLST. MBL-producing P. aeruginosa isolates were referred from 267 source patients and 89 UK laboratories. The most common isolation sites were urine (24%), respiratory (18%), wounds (17%) and blood (13%). VIM-type MBLs predominated (91% of all MBLs found), but a few IMP- and NDM-type enzymes were also identified. Diverse VNTR types were seen, but 86% of isolates belonged to six major complexes. MLST of representative isolates from each complex showed that they corresponded to STs 111, 233, 235, 357, 654 and 773, respectively. Isolates belonging to these complexes were received from between 9 and 25 UK referring laboratories each. The incidence of MBL-producing P. aeruginosa is increasing in the UK. The majority of these isolates belong to several 'high-risk clones', which have been previously reported internationally as host clones of MBLs. © Crown copyright 2014.
Multiplexing clonality: combining RGB marking and genetic barcoding
Cornils, Kerstin; Thielecke, Lars; Hüser, Svenja; Forgber, Michael; Thomaschewski, Michael; Kleist, Nadja; Hussein, Kais; Riecken, Kristoffer; Volz, Tassilo; Gerdes, Sebastian; Glauche, Ingmar; Dahl, Andreas; Dandri, Maura; Roeder, Ingo; Fehse, Boris
2014-01-01
RGB marking and DNA barcoding are two cutting-edge technologies in the field of clonal cell marking. To combine the virtues of both approaches, we equipped LeGO vectors encoding red, green or blue fluorescent proteins with complex DNA barcodes carrying color-specific signatures. For these vectors, we generated highly complex plasmid libraries that were used for the production of barcoded lentiviral vector particles. In proof-of-principle experiments, we used barcoded vectors for RGB marking of cell lines and primary murine hepatocytes. We applied single-cell polymerase chain reaction to decipher barcode signatures of individual RGB-marked cells expressing defined color hues. This enabled us to prove clonal identity of cells with one and the same RGB color. Also, we made use of barcoded vectors to investigate clonal development of leukemia induced by ectopic oncogene expression in murine hematopoietic cells. In conclusion, by combining RGB marking and DNA barcoding, we have established a novel technique for the unambiguous genetic marking of individual cells in the context of normal regeneration as well as malignant outgrowth. Moreover, the introduction of color-specific signatures in barcodes will facilitate studies on the impact of different variables (e.g. vector type, transgenes, culture conditions) in the context of competitive repopulation studies. PMID:24476916
Cholley, Pascal; Stojanov, Milos; Hocquet, Didier; Thouverez, Michelle; Bertrand, Xavier; Blanc, Dominique S
2015-08-01
Reliable molecular typing methods are necessary to investigate the epidemiology of bacterial pathogens. Reference methods such as multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) are costly and time consuming. Here, we compared our newly developed double-locus sequence typing (DLST) method for Pseudomonas aeruginosa to MLST and PFGE on a collection of 281 isolates. DLST was as discriminatory as MLST and was able to recognize "high-risk" epidemic clones. Both methods were highly congruent. Not surprisingly, a higher discriminatory power was observed with PFGE. In conclusion, being a simple method (single-strand sequencing of only 2 loci), DLST is valuable as a first-line typing tool for epidemiological investigations of P. aeruginosa. Coupled to a more discriminant method like PFGE or whole genome sequencing, it might represent an efficient typing strategy to investigate or prevent outbreaks. Copyright © 2015 Elsevier Inc. All rights reserved.
Engle, E K; Fisher, D A C; Miller, C A; McLellan, M D; Fulton, R S; Moore, D M; Wilson, R K; Ley, T J; Oh, S T
2015-04-01
Clonal architecture in myeloproliferative neoplasms (MPNs) is poorly understood. Here we report genomic analyses of a patient with primary myelofibrosis (PMF) transformed to secondary acute myeloid leukemia (sAML). Whole genome sequencing (WGS) was performed on PMF and sAML diagnosis samples, with skin included as a germline surrogate. Deep sequencing validation was performed on the WGS samples and an additional sample obtained during sAML remission/relapsed PMF. Clustering analysis of 649 validated somatic single-nucleotide variants revealed four distinct clonal groups, each including putative driver mutations. The first group (including JAK2 and U2AF1), representing the founding clone, included mutations with high frequency at all three disease stages. The second clonal group (including MYB) was present only in PMF, suggesting the presence of a clone that was dispensable for transformation. The third group (including ASXL1) contained mutations with low frequency in PMF and high frequency in subsequent samples, indicating evolution of the dominant clone with disease progression. The fourth clonal group (including IDH1 and RUNX1) was acquired at sAML transformation and was predominantly absent at sAML remission/relapsed PMF. Taken together, these findings illustrate the complex clonal dynamics associated with disease evolution in MPNs and sAML.
Salunke, Bipinchandra K.; Salunkhe, Rahul C.; Dhotre, Dhiraj P.; Walujkar, Sandeep A.; Khandagale, Avinash B.; Chaudhari, Rahul; Chandode, Rakesh K.; Ghate, Hemant V.; Patole, Milind S.; Werren, John H.
2012-01-01
Members of the genus Wolbachia are intracellular bacteria that are widespread in arthropods and establish diverse symbiotic associations with their hosts, ranging from mutualism to parasitism. Here we present the first detailed analyses of Wolbachia in butterflies from India with screening of 56 species. Twenty-nine species (52%) representing five families were positive for Wolbachia. This is the first report of Wolbachia infection in 27 of the 29 species; the other two were reported previously. This study also provides the first evidence of infection in the family Papilionidae. A striking diversity was observed among Wolbachia strains in butterfly hosts based on five multilocus sequence typing (MLST) genes, with 15 different sequence types (STs). Thirteen STs are new to the MLST database, whereas ST41 and ST125 were reported earlier. Some of the same host species from this study carried distinctly different Wolbachia strains, whereas the same or different butterfly hosts also harbored closely related Wolbachia strains. Butterfly-associated STs in the Indian sample originated by recombination and point mutation, further supporting the role of both processes in generating Wolbachia diversity. Recombination was detected only among the STs in this study and not in those from the MLST database. Most of the strains were remarkably similar in their wsp genotype, despite divergence in MLST. Only two wsp alleles were found among 25 individuals with complete hypervariable region (HVR) peptide profiles. Although both wsp and MLST show variability, MLST gives better separation between the strains. Completely different STs were characterized for the individuals sharing the same wsp alleles. PMID:22504801
USDA-ARS?s Scientific Manuscript database
The CBS-KNAW Fungal Biodiversity Centre’s Fusarium MLST website (http://www.cbs.knaw.nl/Fusarium), and the corresponding Fusarium-ID site hosted at the Pennsylvania State University (http://isolate.fusariumdb.org; Geiser et al. 2004, Park et al. 2010) were constructed to facilitate identification of...
Using whole genome sequencing to study American foulbrood epidemiology in honeybees
Ågren, Joakim; Schäfer, Marc Oliver
2017-01-01
American foulbrood (AFB), caused by Paenibacillus larvae, is a devastating disease in honeybees. In most countries, the disease is controlled through compulsory burning of symptomatic colonies causing major economic losses in apiculture. The pathogen is endemic to honeybees world-wide and is readily transmitted via the movement of hive equipment or bees. Molecular epidemiology of AFB currently largely relies on placing isolates in one of four ERIC-genotypes. However, a more powerful alternative is multi-locus sequence typing (MLST) using whole-genome sequencing (WGS), which allows for high-resolution studies of disease outbreaks. To evaluate WGS as a tool for AFB-epidemiology, we applied core genome MLST (cgMLST) on isolates from a recent outbreak of AFB in Sweden. The high resolution of the cgMLST allowed different bacterial clones involved in the disease outbreak to be identified and to trace the source of infection. The source was found to be a beekeeper who had sold bees to two other beekeepers, proving the epidemiological link between them. No such conclusion could have been made using conventional MLST or ERIC-typing. This is the first time that WGS has been used to study the epidemiology of AFB. The results show that the technique is very powerful for high-resolution tracing of AFB-outbreaks. PMID:29140998
USDA-ARS?s Scientific Manuscript database
Welcome to the Morchella MLST database. This dedicated database was set up at the CBS-KNAW Biodiversity Center by Vincent Robert in February 2012, using BioloMICS software (Robert et al., 2011), to facilitate DNA sequence-based identifications of Morchella species via the Internet. The current datab...
Ilczyszyn, Weronika M.; Sabat, Artur J.; Akkerboom, Viktoria; Szkarlat, Anna; Klepacka, Joanna; Sowa-Sierant, Iwona; Wasik, Barbara; Kosecka-Strojek, Maja; Buda, Aneta; Miedzobrodzki, Jacek; Friedrich, Alexander W.
2016-01-01
The aim of current study was to examine clonal structure and genetic profile of invasive Staphylococcus aureus isolates recovered from infants and children treated at the Jagiellonian University Children’s Hospital of Krakow, Poland. The 107 invasive S. aureus isolates, collected between February 2012 and August 2014, were analysed retrospectively. Antimicrobial susceptibility testing, spa typing and DNA microarray analysis were performed to determine clonal distribution, diversity and gene content in regard to patients characteristics. In total, 107 isolates were recovered from 88 patients with clinical symptoms of invasive bacterial infection. The final set of 92 non-duplicate samples included 38 MRSA isolates. Additionally, a set of 54 S. aureus isolates collected during epidemiological screening was genotyped and analysed. There were 72 healthcare-associated (HCA) and 20 community-onset (CO) infection events caused by 33 and 5 MRSA isolates, respectively. The majority of isolates were affiliated with the major European clonal complexes CC5 (t003, spa-CC 002), CC45 (spa-CC 015), CC7 or CC15 (t084, t091, spa-CC 084). Two epidemic clones (CC5-MRSA-II or CC45-MRSA-IV) dominated among MRSA isolates, while MSSA population contained 15 different CCs. The epidemiological screening isolates belonged to similar genetic lineages as those collected from invasive infection cases. The HCA infection events, spa types t003, t2642 or CC5 were significantly associated with infections occurring in neonates and children under 5 years of age. Moreover, carriage of several genetic markers, including erm(A), sea (N315), egc-cluster, chp was significantly higher in isolates obtained from children in this age group. The spa types t091 and t008 were underrepresented among patients aged 5 years or younger, whereas spa type t008, CC8 and presence of splE was associated with infection in children aged 10 years or older. The HCA-MRSA strains were most frequently found in children under 5 years, although the majority of invasive infections was associated with MSSA strains. Moreover, an association between age group of children from the study population and a specific strain genotype (spa type, clonal complex or genetic content) was observed among the patients. PMID:26992009
Emergence of endemic MLST non-typeable vancomycin-resistant Enterococcus faecium.
Carter, Glen P; Buultjens, Andrew H; Ballard, Susan A; Baines, Sarah L; Tomita, Takehiro; Strachan, Janet; Johnson, Paul D R; Ferguson, John K; Seemann, Torsten; Stinear, Timothy P; Howden, Benjamin P
2016-12-01
Enterococcus faecium is a major nosocomial pathogen causing significant morbidity and mortality worldwide. Assessment of E. faecium using MLST to understand the spread of this organism is an important component of hospital infection control measures. Recent studies, however, suggest that MLST might be inadequate for E. faecium surveillance. To use WGS to characterize recently identified vancomycin-resistant E. faecium (VREfm) isolates non-typeable by MLST that appear to be causing a multi-jurisdictional outbreak in Australia. Illumina NextSeq and Pacific Biosciences SMRT sequencing platforms were used to determine the genome sequences of 66 non-typeable E. faecium (NTEfm) isolates. Phylogenetic and bioinformatics analyses were subsequently performed using a number of in silico tools. Sixty-six E. faecium isolates were identified by WGS from multiple health jurisdictions in Australia that could not be typed by MLST due to a missing pstS allele. SMRT sequencing and complete genome assembly revealed a large chromosomal rearrangement in representative strain DMG1500801, which likely facilitated the deletion of the pstS region. Phylogenomic analysis of this population suggests that deletion of pstS within E. faecium has arisen independently on at least three occasions. Importantly, the majority of these isolates displayed a vancomycin-resistant genotype. We have identified NTEfm isolates that appear to be causing a multi-jurisdictional outbreak in Australia. Identification of these isolates has important implications for MLST-based typing activities designed to monitor the spread of VREfm and provides further evidence supporting the use of WGS for hospital surveillance of E. faecium. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Killer, Jiří; Skřivanová, Eva; Hochel, Igor; Marounek, Milan
2015-06-01
Cronobacter spp. are bacterial pathogens that affect children and immunocompromised adults. In this study, we used multilocus sequence typing (MLST) to determine sequence types (STs) in 11 Cronobacter spp. strains isolated from retail foods, 29 strains from dust samples obtained from vacuum cleaners, and 4 clinical isolates. Using biochemical tests, species-specific polymerase chain reaction, and MLST analysis, 36 strains were identified as Cronobacter sakazakii, and 6 were identified as Cronobacter malonaticus. In addition, one strain that originated from retail food and one from a dust sample from a vacuum cleaner were identified on the basis of MLST analysis as Cronobacter dublinensis and Cronobacter turicensis, respectively. Cronobacter spp. strains isolated from the retail foods were assigned to eight different MLST sequence types, seven of which were newly identified. The strains isolated from the dust samples were assigned to 7 known STs and 14 unknown STs. Three clinical isolates and one household dust isolate were assigned to ST4, which is the predominant ST associated with neonatal meningitis. One clinical isolate was classified based on MLST analysis as Cronobacter malonaticus and belonged to an as-yet-unknown ST. Three strains isolated from the household dust samples were assigned to ST1, which is another clinically significant ST. It can be concluded that Cronobacter spp. strains of different origin are genetically quite variable. The recovery of C. sakazakii strains belonging to ST1 and ST4 from the dust samples suggests the possibility that contamination could occur during food preparation. All of the novel STs and alleles for C. sakazakii, C. malonaticus, C. dublinensis, and C. turicensis determined in this study were deposited in the Cronobacter MLST database available online ( http://pubmlst.org/cronobacter/).
Li, Zhirong; Liu, Xiaolei; Zhao, Jianhong; Xu, Kaiyue; Tian, Tiantian; Yang, Jing; Qiang, Cuixin; Shi, Dongyan; Wei, Honglian; Sun, Suju; Cui, Qingqing; Li, Ruxin; Niu, Yanan; Huang, Bixing
2018-04-01
Clostridium difficile is the causative pathogen for antibiotic-related nosocomial diarrhea. For epidemiological study and identification of virulent clones, a new binary typing method was developed for C. difficile in this study. The usefulness of this newly developed optimized 10-loci binary typing method was compared with two widely used methods ribotyping and multilocus sequence typing (MLST) in 189 C. difficile samples. The binary typing, ribotyping and MLST typed the samples into 53 binary types (BTs), 26 ribotypes (RTs), and 33 MLST sequence types (STs), respectively. The typing ability of the binary method was better than that of either ribotyping or MLST expressed in Simpson Index (SI) at 0.937, 0.892 and 0.859, respectively. The ease of testing, portability and cost-effectiveness of the new binary typing would make it a useful typing alternative for outbreak investigations within healthcare facilities and epidemiological research. Copyright © 2018 Elsevier B.V. All rights reserved.
Rehm, Thomas; Baums, Christoph G; Strommenger, Birgit; Beyerbach, Martin; Valentin-Weigand, Peter; Goethe, Ralph
2007-01-01
Amplified fragment length polymorphism (AFLP) typing was applied to 116 Streptococcus suis isolates with different clinical backgrounds (invasive/pneumonia/carrier/human) and with known profiles of virulence-associated genes (cps1, -2, -7 and -9, as well as mrp, epf and sly). A dendrogram was generated that allowed identification of two clusters (A and C) with different subclusters (A1, A2, C1 and C2) and two heterogeneous groups of strains (B and D). For comparison, three strains from each AFLP subcluster and group were subjected to multilocus sequence typing (MLST) analysis. The closest relationship and lowest diversity were found for patterns clustering within AFLP subcluster A1, which corresponded with sequence type (ST) complex 1. Strains within subcluster A1 were mainly invasive cps1 and mrp+ epf+ (or epf*) sly+ cps2+ strains of porcine or human origin. A new finding of this study was the clustering of invasive mrp* cps9 isolates within subcluster A2. MLST analysis suggested that A2 correlates with a single ST complex (ST87). In contrast to A1 and A2, subclusters C1 and C2 contained mainly pneumonia isolates of genotype cps7 or cps2 and epf- sly-. In conclusion, this study demonstrates that AFLP allows identification of clusters of S. suis strains with clinical relevance.
Cao, Yongzhong; Shen, Yongxiu; Cheng, Lingling; Zhang, Xiaorong; Wang, Chao; Wang, Yan; Zhou, Xiaohui; Chao, Guoxiang; Wu, Yantao
2018-03-01
Salmonellae is one of the most important foodborne pathogens and becomes resistant to multiple antibiotics, which represents a significant challenge to food industry and public health. However, a molecular signature that can be used to distinguish antimicrobial resistance profile, particularly multi-drug resistance or extensive-drug resistance (XDR). In the current study, 168 isolates from the chicken and pork production chains and ill chickens were characterized by serotyping, antimicrobial susceptibility test, multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). The results showed that these isolates belonged to 13 serotypes, 14 multilocus sequence types (STs), 94 PFGE genotypes, and 70 antimicrobial resistant profiles. S. Enteritidis, S. Indiana, and S. Derby were the predominant serotypes, corresponding to the ST11, ST17, and ST40 clones, respectively and the PFGE Cluster A, Cluster E, and Cluster D, respectively. Among the ST11-S. Enteritidis (Cluster A) and the ST40-S. Derby (Cluster D) clones, the majority of isolates were resistant to 4-8 antimicrobial agents, whereas in the ST17S. Indiana (Cluster E) clone, isolates showed extensive-drug resistance (XDR) to 9-16 antimicrobial agents. The bla TEM-1-like gene was prevalent in the ST11 and ST17 clones corresponding to high ampicillin resistance. The bla TEM-1-like , bla CTX-M , bla OXA-1-like , sul1, aaC4, aac(6')-1b, dfrA17, and floR gene complex was highly prevalent among isolates of ST17, corresponding to an XDR phenotype. These results demonstrated the association of the resistant phenotypes and genotypes with ST clone and PFGE cluster. Our results also indicated that the newly identified gene complex comprising bla TEM-1-like , bla CTX-M , bla OXA-1-like , sul1, aaC4, aac(6')-1b, dfrA17, and floR, was responsible for the emergence of the ST17S. Indiana XDR clone. ST17 could be potentially used as a molecular signature to distinguish S. Indiana XDR clone. Copyright © 2017 Elsevier GmbH. All rights reserved.
Machuca, Mayra Alejandra; Sosa, Luis Miguel; González, Clara Isabel
2013-01-01
Background Staphylococcus aureus is among the most common global nosocomial pathogens. The emergence and spread of methicillin-resistant Staphylococcus aureus (MRSA) is a public health problem worldwide that causes nosocomial and community infections. The goals of this study were to establish the clonal complexes (CC) of the isolates of MRSA obtained from pediatric patients in a university hospital in Colombia and to investigate its molecular characteristics based on the virulence genes and the genes of staphylococcal toxins and adhesins. Methods A total of 53 MRSA isolates from pediatric patients with local or systemic infections were collected. The MRSA isolates were typed based on the SCCmec, MLST, spa and agr genes. The molecular characterization included the detection of Panton-Valentine Leukocidin, superantigenic and exfoliative toxins, and adhesin genes. The correlation between the molecular types identified and the profile of virulence factors was determined for all isolates. Results Four CC were identified, including CC8, CC5, CC80 and CC78. The ST8-MRSA-IVc-agrI was the predominant clone among the isolates, followed by the ST5-MRSA-I-agrII and ST5-MRSA-IVc-agrII clones. Twelve spa types were identified, of which t10796 and t10799 were new repeat sequences. The isolates were carriers of toxin genes, and hlg (100%), sek (92%) and pvl (88%) were the most frequent. Ten toxin gene profiles were observed, and the most frequent were seq-sek-hlg (22.6%), sek-hlg (22.6%), seb-seq-sek-hlg (18.9%) and seb-sek-hlg (15.1%). The adhesion genes were present in most of the MRSA isolates, including the following: clf-A (89%), clf-B (87%), fnb-A (83%) and ica (83%). The majority of the strains carried SCCmec-IVc and were identified as causing nosocomial infection. No significant association between a molecular type and the virulence factors was found. Conclusion Four major MRSA clone complexes were identified among the isolates. ST8-MRSA-IVc-agrI pvl+ (USA300-LV) was the most frequent, confirming the presence of community-associated MRSA in Colombian hospitals. PMID:24058415
Weekes, Michael P.; Wills, Mark R.; Mynard, Kim; Carmichael, Andrew J.; Sissons, J. G. Patrick
1999-01-01
Human cytomegalovirus (HCMV)-specific CD8+ cytotoxic T lymphocytes (CTL) appear to play an important role in the control of virus replication and in protection against HCMV-related disease. We have previously reported high frequencies of memory CTL precursors (CTLp) specific to the HCMV tegument protein pp65 in the peripheral blood of healthy virus carriers. In some individuals, the CTL response to this protein is focused on only a single epitope, whereas in other virus carriers CTL recognized multiple epitopes which we identified by using synthetic peptides. We have analyzed the clonal composition of the memory CTL response to four of these pp65 epitopes by sequencing the T-cell receptors (TCR) of multiple independently derived epitope-specific CTL clones, which were derived by formal single-cell cloning or from clonal CTL microcultures. In all cases, we have observed a high degree of clonal focusing: the majority of CTL clones specific to a defined pp65 peptide from any one virus carrier use only one or two different TCRs at the level of the nucleotide sequence. Among virus carriers who have the same major histocompatibility complex (MHC) class I allele, we observed that CTL from different donors that recognize the same peptide-MHC complex often used the same Vβ segment, although other TCR gene segments and CDR3 length were not in general conserved. We have also examined the clonal composition of CTL specific to pp65 peptides in asymptomatic human immunodeficiency virus-infected individuals. We have observed a similarly focused peptide-specific CTL response. Thus, the large population of circulating HCMV peptide-specific memory CTLp in virus carriers in fact contains individual CTL clones that have undergone extensive clonal expansion in vivo. PMID:9971792
An outbreak of Burkholderia stabilis colonization in a nasal ward.
Wang, Lijun; Wang, Mei; Zhang, Junyi; Wu, Wei; Lu, Yuan; Fan, Yanyan
2015-04-01
The aim of this study was to describe an outbreak of Burkholderia stabilis colonization among patients in a nasal ward. Multilocus sequence typing (MLST) was used for the molecular typing of B. stabilis isolates. Microbiological records were reviewed to delineate the colonization outbreak period. One hundred seventy-one cultures of environment and equipment samples from the nasal ward were performed to trace the source of contamination. Infection control measures were taken in order to end the outbreak. All B. stabilis isolates were identified as a new MLST type, ST821. A total of 53 patients carried this B. stabilis in the nasal ward between March and September 2013, which was defined as the outbreak period. The source of the colonization was not determined because all environment cultures were negative for Burkholderia cepacia complex. No further B. stabilis carriers have been found in the ward since the implementation of interventions. Attention must be paid to asymptomatic colonization in order to identify outbreaks early. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Development of a Web Tool for Escherichia coli Subtyping Based on fimH Alleles.
Roer, Louise; Tchesnokova, Veronika; Allesøe, Rosa; Muradova, Mariya; Chattopadhyay, Sujay; Ahrenfeldt, Johanne; Thomsen, Martin C F; Lund, Ole; Hansen, Frank; Hammerum, Anette M; Sokurenko, Evgeni; Hasman, Henrik
2017-08-01
The aim of this study was to construct a valid publicly available method for in silico fimH subtyping of Escherichia coli particularly suitable for differentiation of fine-resolution subgroups within clonal groups defined by standard multilocus sequence typing (MLST). FimTyper was constructed as a FASTA database containing all currently known fimH alleles. The software source code is publicly available at https://bitbucket.org/genomicepidemiology/fimtyper, the database is freely available at https://bitbucket.org/genomicepidemiology/fimtyper_db, and a service implementing the software is available at https://cge.cbs.dtu.dk/services/FimTyper FimTyper was validated on three data sets: one containing Sanger sequences of fimH alleles of 42 E. coli isolates generated prior to the current study (data set 1), one containing whole-genome sequence (WGS) data of 243 third-generation-cephalosporin-resistant E. coli isolates (data set 2), and one containing a randomly chosen subset of 40 E. coli isolates from data set 2 that were subjected to conventional fimH subtyping (data set 3). The combination of the three data sets enabled an evaluation and comparison of FimTyper on both Sanger sequences and WGS data. FimTyper correctly predicted all 42 fimH subtypes from the Sanger sequences from data set 1 and successfully analyzed all 243 draft genomes from data set 2. FimTyper subtyping of the Sanger sequences and WGS data from data set 3 were in complete agreement. Additionally, fimH subtyping was evaluated on a phylogenetic network of 122 sequence type 131 (ST131) E. coli isolates. There was perfect concordance between the typology and fimH -based subclones within ST131, with accurate identification of the pandemic multidrug-resistant clonal subgroup ST131- H 30. FimTyper provides a standardized tool, as a rapid alternative to conventional fimH subtyping, highly suitable for surveillance and outbreak detection. Copyright © 2017 American Society for Microbiology.
Freitas, Ana R; Tedim, Ana P; Francia, Maria V; Jensen, Lars B; Novais, Carla; Peixe, Luísa; Sánchez-Valenzuela, Antonio; Sundsfjord, Arnfinn; Hegstad, Kristin; Werner, Guido; Sadowy, Ewa; Hammerum, Anette M; Garcia-Migura, Lourdes; Willems, Rob J; Baquero, Fernando; Coque, Teresa M
2016-12-01
Vancomycin-resistant Enterococcus faecium (VREfm) have been increasingly reported since the 1980s. Despite the high number of published studies about VRE epidemiology, the dynamics and evolvability of these microorganisms are still not fully understood. A multilevel population genetic analysis of VREfm outbreak strains since 1986, representing the first comprehensive characterization of plasmid content in E. faecium, was performed to provide a detailed view of potential transmissible units. From a comprehensive MeSH search, we identified VREfm strains causing hospital outbreaks (1986-2012). In total, 53 VanA and 18 VanB isolates (27 countries, 5 continents) were analysed and 82 vancomycin-susceptible E. faecium (VSEfm) were included for comparison. Clonal relatedness was established by PFGE and MLST (goeBURST/Bayesian Analysis of Population Structure, BAPS). Characterization of van transposons (PCR mapping, RFLP, sequencing), plasmids (transfer, ClaI-RFLP, PCR typing of relaxases, replication-initiation proteins and toxin-antitoxin systems, hybridization, sequencing), bacteriocins and virulence determinants (PCR, hybridization, sequencing) was performed. VREfm were mainly associated with major human lineages ST17, ST18 and ST78. VREfm and VSEfm harboured plasmids of different families [RCR, small theta plasmids, RepA_N (pRUM/pLG1) and Inc18] able to yield mosaic elements. Tn1546-vanA was mainly located on pRUM/Axe-Txe (USA) and Inc18-pIP186 (Europe) plasmids. The VanB2 type (Tn5382/Tn1549) was predominant among VanB strains (chromosome and plasmids). Both strains and plasmids contributed to the spread and persistence of vancomycin resistance among E. faecium. Horizontal gene transfer events among genetic elements from different clonal lineages (same or different species) result in chimeras with different stability and host range, complicating the surveillance of epidemic plasmids. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Pitout, Johann D D; Campbell, Lorraine; Church, Deirdre L; Gregson, Daniel B; Laupland, Kevin B
2009-06-01
Extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli has recently emerged as a major risk factor for community-acquired, travel-related infections in the Calgary Health Region. Molecular characterization was done on isolates associated with infections in returning travelers using isoelectric focusing, PCR, and sequencing for bla(CTX-M)s, bla(TEM)s, bla(SHV)s, bla(OXA)s, and plasmid-mediated quinolone resistance determinants. Genetic relatedness was determined with pulsed-field gel electrophoresis using XbaI and multilocus sequence typing (MLST). A total of 105 residents were identified; 6/105 (6%) presented with hospital-acquired infections, 9/105 (9%) with health care-associated community-onset infections, and 90/105 (86%) with community-acquired infections. Seventy-seven of 105 (73%) of the ESBL-producing E. coli isolates were positive for bla(CTX-M) genes; 55 (58%) produced CTX-M-15, 13 (14%) CTX-M-14, six (6%) CTX-M-24, one (1%) CTX-M-2, one (1%) CTX-M-3, and one (1%) CTX-M-27, while 10 (10%) produced TEM-52, three (3%) TEM-26, 11 (11%) SHV-2, and four (4%) produced SHV-12. Thirty-one (30%) of the ESBL-producing E. coli isolates were positive for aac(6')-Ib-cr, and one (1%) was positive for qnrS. The majority of the ESBL-producing isolates (n = 95 [90%]) were recovered from urine samples, and 83 (87%) were resistant to ciprofloxacin. The isolation of CTX-M-15 producers belonging to clone ST131 was associated with travel to the Indian subcontinent (India, Pakistan), Africa, the Middle East, and Europe, while clonally unrelated strains of CTX-M-14 and -24 were associated with travel to Asia. Our study suggested that clone ST131 coproducing CTX-M-15, OXA-1, TEM-1, and AAC(6')-Ib-cr and clonally unrelated CTX-M-14 producers have emerged as important causes of community-acquired, travel-related infections.
Poultry as reservoir for extraintestinal pathogenic Escherichia coli O45:K1:H7-B2-ST95 in humans.
Mora, Azucena; Viso, Susana; López, Cecilia; Alonso, María Pilar; García-Garrote, Fernando; Dabhi, Ghizlane; Mamani, Rosalía; Herrera, Alexandra; Marzoa, Juan; Blanco, Miguel; Blanco, Jesús E; Moulin-Schouleur, Maryvonne; Schouler, Catherine; Blanco, Jorge
2013-12-27
Escherichia coli strains O45:K1:H7 are implicated in severe human infections such as meningitis. Since an increasing prevalence of serogroup O45 among avian pathogenic (APEC) and human extraintestinal pathogenic (ExPEC) E. coli strains isolated in Spain have been noticed, the aims of the present study were to investigate similarities between poultry and human O45 isolates, and to investigate the evolutionary relationship of ST95 types. The genetic relatedness and virulence gene profiles of 55 O45 APEC obtained from an avian colibacillosis collection (1991-2011) and 19 human O45 ExPEC from a human septicemic/uropathogenic (UPEC) E. coli collection (1989-2010) were determined by multilocus sequence typing (MLST), pulsed-field-gel-electrophoresis (PFGE), ECOR phylogrouping, and PCR-based genotyping. Two main clonal groups were established. The most prevalent and highly pathogenic O45:K1:H7-B2-ST95 shows a successful persistence since the 90s to the present, with parallel evolution both in human and poultry, on the basis of their PFGE and virulence gene profile similarities (9 human strains and 15 avian strains showed ≥85% PFGE identity). Comparison of this group with other ST95 closely related members (O1:K1:H7 and O18:K1:H7 isolates from our collections) shows pathogenic specialization through conserved virulence genotypes. The other prevalent O45 clonal group characterized in this study, the O45:HNM/H19-D-ST371/ST2676 was only detected in APEC strains suggesting host specificity. In conclusion, poultry could be acting as a reservoir of O45:K1:H7-B2-ST95 and other pathogenic ST95 serotypes in humans. Further studies would be necessary to clarify if pathogenic mechanisms used by ST95 strains are the same in avian and human hosts. Copyright © 2013 Elsevier B.V. All rights reserved.
Epidemiologic and Clinical Impact of Acinetobacter baumannii Colonization and Infection
Villar, Macarena; Cano, María E.; Gato, Eva; Garnacho-Montero, José; Miguel Cisneros, José; Ruíz de Alegría, Carlos; Fernández-Cuenca, Felipe; Martínez-Martínez, Luis; Vila, Jordi; Pascual, Alvaro; Tomás, María; Bou, Germán; Rodríguez-Baño, Jesús
2014-01-01
Abstract Acinetobacter baumannii is one of the most important antibiotic-resistant nosocomial bacteria. We investigated changes in the clinical and molecular epidemiology of A. baumannii over a 10-year period. We compared the data from 2 prospective multicenter cohort studies in Spain, one performed in 2000 (183 patients) and one in 2010 (246 patients), which included consecutive patients infected or colonized by A. baumannii. Molecular typing was performed by repetitive extragenic palindromic polymerase chain reaction (REP-PCR), pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). The incidence density of A. baumannii colonization or infection increased significantly from 0.14 in 2000 to 0.52 in 2010 in medical services (p < 0.001). The number of non-nosocomial health care-associated cases increased from 1.2% to 14.2%, respectively (p < 0.001). Previous exposure to carbapenems increased in 2010 (16.9% in 2000 vs 27.3% in 2010, p = 0.03). The drugs most frequently used for definitive treatment of patients with infections were carbapenems in 2000 (45%) and colistin in 2010 (50.3%). There was molecular-typing evidence of an increase in the frequency of A. baumannii acquisition in non-intensive care unit wards in 2010 (7.6% in 2000 vs 19.2% in 2010, p = 0.01). By MSLT, the ST2 clonal group predominated and increased in 2010. This epidemic clonal group was more frequently resistant to imipenem and was associated with an increased risk of sepsis, although not with severe sepsis or mortality. Some significant changes were noted in the epidemiology of A. baumannii, which is increasingly affecting patients admitted to conventional wards and is also the cause of non-nosocomial health care-associated infections. Epidemic clones seem to combine antimicrobial resistance and the ability to spread, while maintaining their clinical virulence. PMID:25181313
Genetic evolution of nevus of Ota reveals clonal heterogeneity acquiring BAP1 and TP53 mutations.
Vivancos, Ana; Caratú, Ginevra; Matito, Judit; Muñoz, Eva; Ferrer, Berta; Hernández-Losa, Javier; Bodet, Domingo; Pérez-Alea, Mileidys; Cortés, Javier; Garcia-Patos, Vicente; Recio, Juan A
2016-03-01
Melanoma presents molecular alterations based on its anatomical location and exposure to environmental factors. Due to its intrinsic genetic heterogeneity, a simple snapshot of a tumor's genetic alterations does not reflect the tumor clonal complexity or specific gene-gene cooperation. Here, we studied the genetic alterations and clonal evolution of a unique patient with a Nevus of Ota that developed into a recurring uveal-like dermal melanoma. The Nevus of Ota and ulterior lesions contained GNAQ mutations were c-KIT positive, and tumors showed an increased RAS pathway activity during progression. Whole-exome sequencing of these lesions revealed the acquisition of BAP1 and TP53 mutations during tumor evolution, thereby unmasking clonal heterogeneity and allowing the identification of cooperating genes within the same tumor. Our results highlight the importance of studying tumor genetic evolution to identify cooperating mechanisms and delineate effective therapies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Punctuated Copy Number Evolution and Clonal Stasis in Triple-Negative Breast Cancer
Gao, Ruli; Davis, Alexander; McDonald, Thomas O.; Sei, Emi; Shi, Xiuqing; Wang, Yong; Tsai, Pei-Ching; Casasent, Anna; Waters, Jill; Zhang, Hong; Meric-Bernstam, Funda; Michor, Franziska; Navin, Nicholas E.
2016-01-01
Aneuploidy is a hallmark of breast cancer; however, our knowledge of how these complex genomic rearrangements evolve during tumorigenesis is limited. In this study we developed a highly multiplexed single-nucleus-sequencing method to investigate copy number evolution in triple-negative breast cancer patients. We sequenced 1000 single cells from 12 patients and identified 1–3 major clonal subpopulations in each tumor that shared a common evolutionary lineage. We also identified a minor subpopulation of non-clonal cells that were classified as: 1) metastable, 2) pseudo-diploid, or 3) chromazemic. Phylogenetic analysis and mathematical modeling suggest that these data are unlikely to be explained by the gradual accumulation of copy number events over time. In contrast, our data challenge the paradigm of gradual evolution, showing that the majority of copy number aberrations are acquired at the earliest stages of tumor evolution, in short punctuated bursts, followed by stable clonal expansions that form the tumor mass. PMID:27526321
Folster, J P; Pecic, G; Singh, A; Duval, B; Rickert, R; Ayers, S; Abbott, J; McGlinchey, B; Bauer-Turpin, J; Haro, J; Hise, K; Zhao, S; Fedorka-Cray, P J; Whichard, J; McDermott, P F
2012-07-01
Salmonella enterica is one of the most common causes of foodborne illness in the United States. Although salmonellosis is usually self-limiting, severe infections typically require antimicrobial treatment, and ceftriaxone, an extended-spectrum cephalosporin (ESC), is commonly used in both adults and children. Surveillance conducted by the National Antimicrobial Resistance Monitoring System (NARMS) has shown a recent increase in ESC resistance among Salmonella Heidelberg isolated from food animals at slaughter, retail meat, and humans. ESC resistance among Salmonella in the United States is usually mediated by a plasmid-encoded bla(CMY) β-lactamase. In 2009, we identified 47 ESC-resistant bla(CMY)-positive Heidelberg isolates from humans (n=18), food animals at slaughter (n=16), and retail meats (n=13) associated with a spike in the prevalence of this serovar. Almost 90% (26/29) of the animal and meat isolates were isolated from chicken carcasses or retail chicken meat. We screened NARMS isolates for the presence of bla(CMY), determined whether the gene was plasmid-encoded, examined pulsed-field gel electrophoresis patterns to assess the genetic diversities of the isolates, and categorized the bla(CMY) plasmids by plasmid incompatibility groups and plasmid multi-locus sequence typing (pMLST). All 47 bla(CMY) genes were found to be plasmid encoded. Incompatibility/replicon typing demonstrated that 41 were IncI1 plasmids, 40 of which only conferred bla(CMY)-associated resistance. Six were IncA/C plasmids that carried additional resistance genes. pMLST of the IncI1-bla(CMY) plasmids showed that 27 (65.8%) were sequence type (ST) 12, the most common ST among bla(CMY)-IncI1 plasmids from Heidelberg isolated from humans. Ten plasmids had a new ST profile, ST66, a type very similar to ST12. This work showed that the 2009 increase in ESC resistance among Salmonella Heidelberg was caused mainly by the dissemination of bla(CMY) on IncI1 and IncA/C plasmids in a variety of genetic backgrounds, and is likely not the result of clonal expansion.
Chang, Yu C; Scaria, Joy; Ibraham, Mariamma; Doiphode, Sanjay; Chang, Yung-Fu; Sultan, Ali; Mohammed, Hussni O
2016-01-01
Salmonella enterica is one of the most commonly reported causes of bacterial foodborne illness around the world. Understanding the sources of this pathogen and the associated factors that exacerbate its risk to humans will help in developing risk mitigation strategies. The genetic relatedness among Salmonella isolates recovered from human gastroenteritis cases and food animals in Qatar were investigated in the hope of shedding light on these sources, their possible transmission routes, and any associated factors. A repeat cross-sectional study was conducted in which the samples and associated data were collected from both populations (gastroenteritis cases and animals). Salmonella isolates were initially analyzed using multi-locus sequence typing (MLST) to investigate the genetic diversity and clonality. The relatedness among the isolates was assessed using the minimum spanning tree (MST). Twenty-seven different sequence types (STs) were identified in this study; among them, seven were novel, including ST1695, ST1696, ST1697, ST1698, ST1699, ST1702, and ST1703. The pattern of overall ST distribution was diverse; in particular, it was revealed that ST11 and ST19 were the most common sequence types, presenting 29.5% and 11.5% within the whole population. In addition, 20 eBurst Groups (eBGs) were identified in our data, which indicates that ST11 and ST19 belonged to eBG4 and eBG1, respectively. In addition, the potential association between the putative risk factors and eBGs were evaluated. There was no significant clustering of these eBGs by season; however, a significant association was identified in terms of nationality in that Qataris were six times more likely to present with eBG1 compared to non-Qataris. In the MST analysis, four major clusters were presented, namely, ST11, ST19, ST16, and ST31. The linkages between the clusters alluded to a possible transmission route. The results of the study have provided insight into the ST distributions of S. enterica and their possible zoonotic associations in Qatar. Published by Elsevier Ltd.
Lee, Mi Young; Choi, Hyeon Jin; Choi, Ji Young; Song, Minsuk; Song, Yoosuk; Kim, Shin-Woo; Chang, Hyun-Ha; Jung, Sook-In; Kim, Yeon-Sook; Ki, Hyun Kyun; Son, Jun Seong; Kwon, Ki Tae; Heo, Sang Taek; Yeom, Joon-Sup; Shin, Sang Yop; Chung, Doo Ryeon; Peck, Kyong Ran; Song, Jae-Hoon; Ko, Kwan Soo
2010-02-01
Ciprofloxacin-resistant Escherichia coli is growing concern in clinical settings. In this study, we investigated the distribution of virulence determinants and phylogenetic groups among community-onset, ciprofloxacin-resistant E. coli isolates causing urinary tract infections (UTIs) in Korea. In addition, the evidence of clonal spread in the community was also examined. From November 2006 to August 2007, 543 community-onset E. coli isolates causing UTIs were collected as part of a multicenter surveillance study. In vitro susceptibility testing was performed using broth microdilution method. Distribution of virulence determinants and phylogenetic groupings were examined. In addition, multilocus sequence typing (MLST) analysis was performed. In vitro antimicrobial susceptibility testing revealed that 154 isolates (28.4%) were ciprofloxacin-resistant. Of these, 129 ciprofloxacin-resistant E. coli isolates were further characterized. As a result of phylogenetic subgrouping, we found that phylogenetic subgroup D was the most predominant (46 isolates, 35.7%), followed by B2 (44 isolates, 34.1%), A (21 isolates, 16.3%), and B1 (18 isolates, 14.0%). MLST analysis showed 48 sequence types (STs). The most prevalent ST was ST131 (32 isolates, 24.8%), followed by ST393 (23 isolates, 17.8%). While all ST131 isolates belonged to phylogenetic subgroup B2, which is known to be a highly virulent, all ST393 isolates belonged to subgroup D. ST131 and ST393 showed different profiles of virulence factors; papA, papG allele III, and traT genes were significantly more prevalent in ST131 than in ST393 (p values, <0.001). Based on genotyping, it is suggested that epidemic and virulent ciprofloxacin-resistant E. coli clones such as ST131 and ST393 have disseminated in Korea. However, the diversity of CTX-M genes in ST131 isolates may indicate that ESBL genes have been acquired independently or several ESBL-producing, ciprofloxacin-resistant E. coli clones may have disseminated in the Korean community. Copyright 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.
Vogt, Debora; Overesch, Gudrun; Endimiani, Andrea; Collaud, Alexandra; Thomann, Andreas; Perreten, Vincent
2014-10-01
Prevalence and genetic relatedness were determined for third-generation cephalosporin-resistant Escherichia coli (3GC-R-Ec) detected in Swiss beef, veal, pork, and poultry retail meat. Samples from meat-packing plants (MPPs) processing 70% of the slaughtered animals in Switzerland were purchased at different intervals between April and June 2013 and analyzed. Sixty-nine 3GC-R-Ec isolates were obtained and characterized by microarray, PCR/DNA sequencing, Multi Locus Sequence Typing (MLST), and plasmid replicon typing. Plasmids of selected strains were transformed by electroporation into E. coli TOP10 cells and analyzed by plasmid MLST. The prevalence of 3GC-R-Ec was 73.3% in chicken and 2% in beef meat. No 3GC-R-Ec were found in pork and veal. Overall, the bla(CTX-M-1) (79.4%), bla(CMY-2) (17.6%), bla(CMY-4) (1.5%), and bla(SHV-12) (1.5%) β-lactamase genes were detected, as well as other genes conferring resistance to chloramphenicol (cmlA1-like), sulfonamides (sul), tetracycline (tet), and trimethoprim (dfrA). The 3GC-R-Ec from chicken meat often harbored virulence genes associated with avian pathogens. Plasmid incompatibility (Inc) groups IncI1, IncFIB, IncFII, and IncB/O were the most frequent. A high rate of clonality (e.g., ST1304, ST38, and ST93) among isolates from the same MPPs suggests that strains persist at the plant and spread to meat at the carcass-processing stage. Additionally, the presence of the blaCTX-M-1 gene on an IncI1 plasmid sequence type 3 (IncI1/pST3) in genetically diverse strains indicates interstrain spread of an epidemic plasmid. The bla(CMY-2) and bla(CMY-4) genes were located on IncB/O plasmids. This study represents the first comprehensive assessment of 3GC-R-Ec in meat in Switzerland. It demonstrates the need for monitoring contaminants and for the adaptation of the Hazard Analysis and Critical Control Point concept to avoid the spread of multidrug-resistant bacteria through the food chain.
Seol, Chang Ahn; Park, Jeong Su; Sung, Heungsup; Kim, Mi-Na
2014-06-01
A 53-year-old Vietnamese man with liver cirrhosis was transferred from a Vietnamese hospital to our tertiary care hospital in Korea in order to undergo a liver transplantation. Bacteremia due to vanA Enterococcus faecium was diagnosed, and stool surveillance cultures for vancomycin-resistant enterococci (VRE) were positive for both vanA and vanB E. faecium. Pulsed-field gel electrophoresis analysis revealed that the 2 vanA VRE isolates from the blood and stool were clonal, but the vanB VRE was unrelated to the vanA VRE. vanA and vanB VRE were ST64 and ST18, single-allele variations of clonal complex 17, respectively. This is the first case report of vanA VRE bacteremia in a Vietnamese patient and demonstrates the reemergence of vanB VRE since a single outbreak occurred 15years ago in Korea. The reemergence of vanB VRE emphasizes the importance of VRE genotyping to prevent the spread of new VRE strains. Copyright © 2014 Elsevier Inc. All rights reserved.
Ahmed, Sara; Besser, Thomas E; Call, Douglas R; Weissman, Scott J; Jones, Lisa P; Davis, Margaret A
2016-05-01
Multi-locus sequence typing (MLST) is a useful system for phylogenetic and epidemiological studies of multidrug-resistant Escherichiacoli. Most studies utilize a seven-locus MLST, but an alternate two-locus typing method (fumC and fimH; CH typing) has been proposed that may offer a similar degree of discrimination at lower cost. Herein, we compare CH typing to the standard seven-locus method for typing commensal E. coli isolates from dairy cattle. In addition, we evaluated alternative combinations of eight loci to identify combinations that maximize discrimination and congruence with standard seven-locus MLST among commensal E. coli while minimizing the cost. We also compared both methods when used for typing uropathogenic E. coli (UPEC). CH typing was less discriminatory for commensal E. coli than the standard seven-locus method (Simpson's Index of Diversity=0.933 [0.902-0.964] and 0.97 [0.96-0.979], respectively). Combining fimH with housekeeping gene loci improved discriminatory power for commensal E. coli from cattle but resulted in poor congruence with MLST. We found that a four-locus typing method including the housekeeping genes adk, purA, gyrB and recA could be used to minimize cost without sacrificing discriminatory power or congruence with Achtman seven-locus MLST when typing commensal E. coli. Copyright © 2016 Elsevier B.V. All rights reserved.
Multilocus sequence typing reveals a novel subspeciation of Lactobacillus delbrueckii.
Tanigawa, Kana; Watanabe, Koichi
2011-03-01
Currently, the species Lactobacillus delbrueckii is divided into four subspecies, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. indicus and L. delbrueckii subsp. lactis. These classifications were based mainly on phenotypic identification methods and few studies have used genotypic identification methods. As a result, these subspecies have not yet been reliably delineated. In this study, the four subspecies of L. delbrueckii were discriminated by phenotype and by genotypic identification [amplified-fragment length polymorphism (AFLP) and multilocus sequence typing (MLST)] methods. The MLST method developed here was based on the analysis of seven housekeeping genes (fusA, gyrB, hsp60, ileS, pyrG, recA and recG). The MLST method had good discriminatory ability: the 41 strains of L. delbrueckii examined were divided into 34 sequence types, with 29 sequence types represented by only a single strain. The sequence types were divided into eight groups. These groups could be discriminated as representing different subspecies. The results of the AFLP and MLST analyses were consistent. The type strain of L. delbrueckii subsp. delbrueckii, YIT 0080(T), was clearly discriminated from the other strains currently classified as members of this subspecies, which were located close to strains of L. delbrueckii subsp. lactis. The MLST scheme developed in this study should be a useful tool for the identification of strains of L. delbrueckii to the subspecies level.
Use of Variable-Number Tandem Repeats To Examine Genetic Diversity of Neisseria meningitidis
Yazdankhah, Siamak P.; Lindstedt, Bjørn-Arne; Caugant, Dominique A.
2005-01-01
Repetitive DNA motifs with potential variable-number tandem repeats (VNTR) were identified in the genome of Neisseria meningitidis and used to develop a typing method. A total of 146 meningococcal isolates recovered from carriers and patients were studied. These included 82 of the 107 N. meningitidis isolates previously used in the development of multilocus sequence typing (MLST), 45 isolates recovered from different counties in Norway in connection with local outbreaks, and 19 serogroup W135 isolates of sequence type 11 (ST-11), which were recovered in several parts of the world. The latter group comprised isolates related to the Hajj outbreak of 2000 and isolates recovered from outbreaks in Burkina Faso in 2001 and 2002. All isolates had been characterized previously by MLST or multilocus enzyme electrophoresis (MLEE). VNTR analysis showed that meningococcal isolates with similar MLST or MLEE types recovered from epidemiologically linked cases in a defined geographical area often presented similar VNTR patterns while isolates of the same MLST or MLEE types without an obvious epidemiological link showed variable VNTR patterns. Thus, VNTR analysis may be used for fine typing of meningococcal isolates after MLST or MLEE typing. The method might be especially valuable for differentiating among ST-11 strains, as shown by the VNTR analyses of serogroup W135 ST-11 meningococcal isolates recovered since the mid-1990s. PMID:15814988
Analysis of co-evolving genes in campylobacter jejuni and C. coli
USDA-ARS?s Scientific Manuscript database
Background: The population structure of Campylobacter has been frequently studied by MLST, for which fragments of housekeeping genes are compared. We wished to determine if the used MLST genes are representative of the complete genome. Methods: A set of 1029 core gene families (CGF) was identifie...
Freitas, Ana R.; Novais, Carla; Ruiz-Garbajosa, Patricia; Coque, Teresa M.; Peixe, Luísa
2009-01-01
The population structure of 56 Enterococcus faecium isolates selected from a collection of enterococci from humans, animals, and the environment in Portugal (1997 to 2007) was analyzed by multilocus sequence typing. We identified 41 sequence types clustering into CC17, CC5, CC9, CC22 and CC94, all clonal lineages comprising isolates from different hosts. Our findings highlight the role of community-associated hosts as reservoirs of enterococci able to cause human infections. PMID:19447948
Petzold, Markus; Prior, Karola; Moran-Gilad, Jacob; Harmsen, Dag; Lück, Christian
2017-01-01
Introduction Whole genome sequencing (WGS) is increasingly used in Legionnaires’ disease (LD) outbreak investigations, owing to its higher resolution than sequence-based typing, the gold standard typing method for Legionella pneumophila, in the analysis of endemic strains. Recently, a gene-by-gene typing approach based on 1,521 core genes called core genome multilocus sequence typing (cgMLST) was described that enables a robust and standardised typing of L. pneumophila. Methods: We applied this cgMLST scheme to isolates obtained during the largest outbreak of LD reported so far in Germany. In this outbreak, the epidemic clone ST345 had been isolated from patients and four different environmental sources. In total 42 clinical and environmental isolates were retrospectively typed. Results: Epidemiologically unrelated ST345 isolates were clearly distinguishable from the epidemic clone. Remarkably, epidemic isolates split up into two distinct clusters, ST345-A and ST345-B, each respectively containing a mix of clinical and epidemiologically-related environmental samples. Discussion/conclusion: The outbreak was therefore likely caused by both variants of the single sequence type, which pre-existed in the environmental reservoirs. The two clusters differed by 40 alleles located in two neighbouring genomic regions of ca 42 and 26 kb. Additional analysis supported horizontal gene transfer of the two regions as responsible for the difference between the variants. Both regions comprise virulence genes and have previously been reported to be involved in recombination events. This corroborates the notion that genomic outbreak investigations should always take epidemiological information into consideration when making inferences. Overall, cgMLST proved helpful in disentangling the complex genomic epidemiology of the outbreak. PMID:29162202
Petzold, Markus; Prior, Karola; Moran-Gilad, Jacob; Harmsen, Dag; Lück, Christian
2017-11-01
IntroductionWhole genome sequencing (WGS) is increasingly used in Legionnaires' disease (LD) outbreak investigations, owing to its higher resolution than sequence-based typing, the gold standard typing method for Legionella pneumophila, in the analysis of endemic strains. Recently, a gene-by-gene typing approach based on 1,521 core genes called core genome multilocus sequence typing (cgMLST) was described that enables a robust and standardised typing of L. pneumophila . Methods : We applied this cgMLST scheme to isolates obtained during the largest outbreak of LD reported so far in Germany. In this outbreak, the epidemic clone ST345 had been isolated from patients and four different environmental sources. In total 42 clinical and environmental isolates were retrospectively typed. Results : Epidemiologically unrelated ST345 isolates were clearly distinguishable from the epidemic clone. Remarkably, epidemic isolates split up into two distinct clusters, ST345-A and ST345-B, each respectively containing a mix of clinical and epidemiologically-related environmental samples. Discussion/conclusion : The outbreak was therefore likely caused by both variants of the single sequence type, which pre-existed in the environmental reservoirs. The two clusters differed by 40 alleles located in two neighbouring genomic regions of ca 42 and 26 kb. Additional analysis supported horizontal gene transfer of the two regions as responsible for the difference between the variants. Both regions comprise virulence genes and have previously been reported to be involved in recombination events. This corroborates the notion that genomic outbreak investigations should always take epidemiological information into consideration when making inferences. Overall, cgMLST proved helpful in disentangling the complex genomic epidemiology of the outbreak.
Bartoloni, Alessandro; Pallecchi, Lucia; Fernandez, Connie; Mantella, Antonia; Riccobono, Eleonora; Magnelli, Donata; Mannini, Dario; Strohmeyer, Marianne; Bartalesi, Filippo; Segundo, Higinio; Monasterio, Joaquin; Rodriguez, Hugo; Cabezas, César; Gotuzzo, Eduardo; Rossolini, Gian Maria
2013-05-01
To investigate the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) nasal carriage in rural and urban community settings of Bolivia and Peru. MRSA nasal carriage was investigated in 585 individuals living in rural and urban areas of Bolivia and Peru (one urban area, one small rural village, and two native communities, one of which was highly isolated). MRSA isolates were subjected to molecular analysis for the detection of virulence genes, characterization of the staphylococcal cassette chromosome mec (SCCmec), and genotyping (multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE)). An overall very low prevalence of MRSA nasal carriage was observed (0.5%), with MRSA carriers being detected only in a small rural village of the Bolivian Chaco. The three MRSA isolates showed the characteristics of community-associated MRSA (being susceptible to all non-beta-lactam antibiotics and harboring the SCCmec type IV), were clonally related, and belonged to ST1649. This study provides an insight into the epidemiology of MRSA in community settings of Bolivia and Peru. Reliable, time-saving, and low-cost methods should be implemented to encourage continued surveillance of MRSA dissemination in resource-limited countries. Copyright © 2012 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Genetic diversity of the human pathogen Vibrio vulnificus: a new phylogroup.
Broza, Yoav Y; Raz, Nili; Lerner, Larisa; Danin-Poleg, Yael; Kashi, Yechezkel
2012-02-15
The biotype 3 group of the human pathogen Vibrio vulnificus emerged in Israel probably as a result of genome hybridization of two bacterial populations. We performed a genomic and phylogenetic study of V. vulnificus strains isolated from the environmental niche from which this group emerged - fish aquaculture in Israel. The genetic relationships and evolutionary aspects of 188 environmental and clinical isolates of the bacterium were studied by genomic typing. Genetic relations were determined based on variation at 12 variable number tandem repeat (VNTR, also termed SSR) loci. Analysis revealed a new cluster, in addition to the main groups of biotype 1& 2 and biotype 3. Similar grouping results were obtained with three different statistical approaches. Isolates forming this new cluster presented unclear biochemical profile nevertheless were not identified as biotype 1 or biotype 3. Further examination of representative strains by multilocus sequence typing (MLST) of 10 housekeeping genes and 5 conserved hypothetical genes supported the identification of this as yet undiscovered phylogroup (phenotypically diverse), termed clade A herein. This new clonal subgroup includes environmental as well as clinical isolates. The results highlight the fish aquaculture environment, and possibly man-made ecological niches as a whole, as a source for the emergence of new pathogenic strains. Copyright © 2011 Elsevier B.V. All rights reserved.
Discriminative power of Campylobacter phenotypic and genotypic typing methods.
Duarte, Alexandra; Seliwiorstow, Tomasz; Miller, William G; De Zutter, Lieven; Uyttendaele, Mieke; Dierick, Katelijne; Botteldoorn, Nadine
2016-06-01
The aim of this study was to compare different typing methods, individually and combined, for use in the monitoring of Campylobacter in food. Campylobacter jejuni (n=94) and Campylobacter coli (n=52) isolated from different broiler meat carcasses were characterized using multilocus sequence typing (MLST), flagellin gene A restriction fragment length polymorphism typing (flaA-RFLP), antimicrobial resistance profiling (AMRp), the presence/absence of 5 putative virulence genes; and, exclusively for C. jejuni, the determination of lipooligosaccharide (LOS) class. Discriminatory power was calculated by the Simpson's index of diversity (SID) and the congruence was measured by the adjusted Rand index and adjusted Wallace coefficient. MLST was individually the most discriminative typing method for both C. jejuni (SID=0.981) and C. coli (SID=0.957). The most discriminative combination with a SID of 0.992 for both C. jejuni and C. coli was obtained by combining MLST with flaA-RFLP. The combination of MLST with flaA-RFLP is an easy and feasible typing method for short-term monitoring of Campylobacter in broiler meat carcass. Copyright © 2016 Elsevier B.V. All rights reserved.
Hartmann, Luise; Stephenson, Christine F; Verkamp, Stephanie R; Johnson, Krystal R; Burnworth, Bettina; Hammock, Kelle; Brodersen, Lisa Eidenschink; de Baca, Monica E; Wells, Denise A; Loken, Michael R; Zehentner, Barbara K
2014-12-01
Array comparative genomic hybridization (aCGH) has become a powerful tool for analyzing hematopoietic neoplasms and identifying genome-wide copy number changes in a single assay. aCGH also has superior resolution compared with fluorescence in situ hybridization (FISH) or conventional cytogenetics. Integration of single nucleotide polymorphism (SNP) probes with microarray analysis allows additional identification of acquired uniparental disomy, a copy neutral aberration with known potential to contribute to tumor pathogenesis. However, a limitation of microarray analysis has been the inability to detect clonal heterogeneity in a sample. This study comprised 16 samples (acute myeloid leukemia, myelodysplastic syndrome, chronic lymphocytic leukemia, plasma cell neoplasm) with complex cytogenetic features and evidence of clonal evolution. We used an integrated manual peak reassignment approach combining analysis of aCGH and SNP microarray data for characterization of subclonal abnormalities. We compared array findings with results obtained from conventional cytogenetic and FISH studies. Clonal heterogeneity was detected in 13 of 16 samples by microarray on the basis of log2 values. Use of the manual peak reassignment analysis approach improved resolution of the sample's clonal composition and genetic heterogeneity in 10 of 13 (77%) patients. Moreover, in 3 patients, clonal disease progression was revealed by array analysis that was not evident by cytogenetic or FISH studies. Genetic abnormalities originating from separate clonal subpopulations can be identified and further characterized by combining aCGH and SNP hybridization results from 1 integrated microarray chip by use of the manual peak reassignment technique. Its clinical utility in comparison to conventional cytogenetic or FISH studies is demonstrated. © 2014 American Association for Clinical Chemistry.
Araki, Kiwako S; Kubo, Takuya; Kudoh, Hiroshi
2017-01-01
In sessile organisms such as plants, spatial genetic structures of populations show long-lasting patterns. These structures have been analyzed across diverse taxa to understand the processes that determine the genetic makeup of organismal populations. For many sessile organisms that mainly propagate via clonal spread, epigenetic status can vary between clonal individuals in the absence of genetic changes. However, fewer previous studies have explored the epigenetic properties in comparison to the genetic properties of natural plant populations. Here, we report the simultaneous evaluation of the spatial structure of genetic and epigenetic variation in a natural population of the clonal plant Cardamine leucantha. We applied a hierarchical Bayesian model to evaluate the effects of membership of a genet (a group of individuals clonally derived from a single seed) and vegetation cover on the epigenetic variation between ramets (clonal plants that are physiologically independent individuals). We sampled 332 ramets in a 20 m × 20 m study plot that contained 137 genets (identified using eight SSR markers). We detected epigenetic variation in DNA methylation at 24 methylation-sensitive amplified fragment length polymorphism (MS-AFLP) loci. There were significant genet effects at all 24 MS-AFLP loci in the distribution of subepiloci. Vegetation cover had no statistically significant effect on variation in the majority of MS-AFLP loci. The spatial aggregation of epigenetic variation is therefore largely explained by the aggregation of ramets that belong to the same genets. By applying hierarchical Bayesian analyses, we successfully identified a number of genet-specific changes in epigenetic status within a natural plant population in a complex context, where genotypes and environmental factors are unevenly distributed. This finding suggests that it requires further studies on the spatial epigenetic structure of natural populations of diverse organisms, particularly for sessile clonal species.
Voronina, O L; Kunda, M S; Dmitrenko, O A; Lunin, V G; Gintsburg, A L
2011-01-01
Development of Staphylococcus haemolyticus strain typing method based on multilocus sequencing for resolving problems of molecular epidemiology. 102 strains of coagulase negative staphylococci (CNS) isolated in hospitals of various specialization in N. Novgorod and Moscow were studied. Species identification of strain was performed by using tuf gene fragment sequencing, S. haemolyticus strain differentiation--by MLST results. eBURST approach was used for cluster analysis of MLST data; structural changes in tagatose-6-phosphate kinase were studied by using InterProScan platform and SWISS-MODEL site programs; MLST scheme gene allele variability analysis was performed by using MEGA4.0 program package. In the 102 strains sampled CNS was detected in 28 strains of the S. haemolyticus species. The MLST scheme developed for the first time for S. haemolyticus including mvaK, rphE, tphK, gtr, arcC, triA, aroE genes allowed the differentiation of the sampled strains by 11 genotypes. Strains with ST 3, 8, 6, 1, 4, 5 and 11 differed by highest epidemiologic significance. Cluster and phylogenetic analysis of the data obtained showed a high adaptive ability of the nosocomial S. haemolyticus strains. Multiresistance to antibacterial preparations was detected in the analyzed strains. The MLST method developed was effective in the differentiation of S. haemolyticus strains that circulate in hospitals and threaten both neonates and hospitalized adult patients.
Blanchard, Adam M; Jolley, Keith A; Maiden, Martin C J; Coffey, Tracey J; Maboni, Grazieli; Staley, Ceri E; Bollard, Nicola J; Warry, Andrew; Emes, Richard D; Davies, Peers L; Tötemeyer, Sabine
2018-01-01
Dichelobacter nodosus ( D. nodosus ) is the causative pathogen of ovine footrot, a disease that has a significant welfare and financial impact on the global sheep industry. Previous studies into the phylogenetics of D. nodosus have focused on Australia and Scandinavia, meaning the current diversity in the United Kingdom (U.K.) population and its relationship globally, is poorly understood. Numerous epidemiological methods are available for bacterial typing; however, few account for whole genome diversity or provide the opportunity for future application of new computational techniques. Multilocus sequence typing (MLST) measures nucleotide variations within several loci with slow accumulation of variation to enable the designation of allele numbers to determine a sequence type. The usage of whole genome sequence data enables the application of MLST, but also core and whole genome MLST for higher levels of strain discrimination with a negligible increase in experimental cost. An MLST database was developed alongside a seven loci scheme using publically available whole genome data from the sequence read archive. Sequence type designation and strain discrimination was compared to previously published data to ensure reproducibility. Multiple D. nodosus isolates from U.K. farms were directly compared to populations from other countries. The U.K. isolates define new clades within the global population of D. nodosus and predominantly consist of serogroups A, B and H, however serogroups C, D, E, and I were also found. The scheme is publically available at https://pubmlst.org/dnodosus/.
De Cesare, Alessandra; Parisi, Antonio; Mioni, Renzo; Comin, Damiano; Lucchi, Alex; Manfreda, Gerardo
2017-03-01
Rabbit meat has outstanding dietetic and nutritional properties. However, few data on microbiological hazards associated with rabbit productions are available. In this study, the presence of Listeria monocytogenes was determined in 430 rabbit carcasses, 256 rabbit meat cuts and products, and 599 environmental sponges collected from four Italian rabbit slaughterhouses over a period of 1 year. Prevalence of L. monocytogenes among the 1285 rabbit meat and environmental samples was 11%, with statistically significant differences between slaughterhouses. The highest prevalence (33.6%) was observed in rabbit meat cuts and products; the majority of positive environmental samples were collected from conveyor belts. Overall, 27.9% and 14.3% of rabbit cuts and carcasses, respectively, had L. monocytogenes counts higher than 1 colony-forming unit (CFU)/10 g. A selection of 123 isolates from positive samples was genotyped and serotyped to determine genetic profiles and diversity among L. monocytogenes isolates contaminating different slaughterhouses and classes of products investigated. Discriminatory power and concordance among the results obtained using multilocus variable-number tandem-repeat analysis (MLVA), multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), automated EcoRI ribotyping, and serotyping were assessed. The isolates selected for typing were classified into serotypes 1/2a (52.8%), 1/2c (32.5%), and 1/2b (14.6%). The majority of the isolates were classified as ST14 (34.1%), ST9 (35.5%), ST121 (17.9%), and ST224 (14.6%). The greatest discriminatory power was observed with the MLVA typing, followed by MLST, PFGE, and ribotyping. The best bidirectional concordance was achieved between PFGE and MLST. There was 100% correlation between both MLST and MLVA with serotype. Moreover, a high unidirectional correspondence was observed between MLVA and both MLST and PFGE, as well as between PFGE and both MLST and serotyping. The results of this study show for the first time in Italy prevalence and genetic profiles of L. monocytogenes isolated in rabbit products and slaughterhouses.
Yoshida, Catherine E; Kruczkiewicz, Peter; Laing, Chad R; Lingohr, Erika J; Gannon, Victor P J; Nash, John H E; Taboada, Eduardo N
2016-01-01
For nearly 100 years serotyping has been the gold standard for the identification of Salmonella serovars. Despite the increasing adoption of DNA-based subtyping approaches, serotype information remains a cornerstone in food safety and public health activities aimed at reducing the burden of salmonellosis. At the same time, recent advances in whole-genome sequencing (WGS) promise to revolutionize our ability to perform advanced pathogen characterization in support of improved source attribution and outbreak analysis. We present the Salmonella In Silico Typing Resource (SISTR), a bioinformatics platform for rapidly performing simultaneous in silico analyses for several leading subtyping methods on draft Salmonella genome assemblies. In addition to performing serovar prediction by genoserotyping, this resource integrates sequence-based typing analyses for: Multi-Locus Sequence Typing (MLST), ribosomal MLST (rMLST), and core genome MLST (cgMLST). We show how phylogenetic context from cgMLST analysis can supplement the genoserotyping analysis and increase the accuracy of in silico serovar prediction to over 94.6% on a dataset comprised of 4,188 finished genomes and WGS draft assemblies. In addition to allowing analysis of user-uploaded whole-genome assemblies, the SISTR platform incorporates a database comprising over 4,000 publicly available genomes, allowing users to place their isolates in a broader phylogenetic and epidemiological context. The resource incorporates several metadata driven visualizations to examine the phylogenetic, geospatial and temporal distribution of genome-sequenced isolates. As sequencing of Salmonella isolates at public health laboratories around the world becomes increasingly common, rapid in silico analysis of minimally processed draft genome assemblies provides a powerful approach for molecular epidemiology in support of public health investigations. Moreover, this type of integrated analysis using multiple sequence-based methods of sub-typing allows for continuity with historical serotyping data as we transition towards the increasing adoption of genomic analyses in epidemiology. The SISTR platform is freely available on the web at https://lfz.corefacility.ca/sistr-app/.
Beauregard, France; Angers, Bernard
2018-05-31
Unisexuals of the blue-spotted salamander complex are thought to reproduce by kleptogenesis. Genome exchanges associated with this sperm-dependent mode of reproduction are expected to result in a higher genetic variation and multiple ploidy levels compared to clonality. However, the existence of some populations exclusively formed of genetically identical individuals suggests that factors could prevent genome exchanges. This study aimed at assessing the prevalence of genome exchange among unisexuals of the Ambystoma laterale-jeffersonianum complex from 10 sites in the northern part of their distribution. A total of 235 individuals, including 207 unisexuals, were genotyped using microsatellite loci and AFLP. Unisexual individuals could be sorted in five genetically distinct groups, likely derived from the same paternal A. jeffersonianum haplome. One of these groups exclusively reproduced clonally, even when found in sympatry with lineages presenting signature of genome exchange. Genome exchange was site-dependent for another group. Genome exchange was detected at all sites for the three remaining groups. Prevalence of genome exchange appears to be associated with ecological conditions such as availability of effective sperm donors. Intrinsic genomic factors may also affect this process, since different lineages in sympatry present highly variable rate of genome exchange. The coexistence of clonal and genetically diversified lineages opens the door to further research on alternatives to genetic variation.
Diversification of the vacAs1m1 and vacAs2m2 Strains of Helicobacter pylori in Meriones unguiculatus
Mendoza-Elizalde, Sandra; Arteaga-Resendiz, Nancy K.; Valencia-Mayoral, Pedro; Luna, Raúl C.; Moreno-Espinosa, Sarbelio; Arenas-Huertero, Francisco; Zúñiga, Gerardo; Velázquez-Guadarrama, Norma
2016-01-01
The bacterium Helicobacter pylori exhibits great genetic diversity, and the pathogenic roles of its virulence factors have been widely studied. However, the evolutionary dynamics of H. pylori strains during stomach colonization are not well-characterized. Here, we analyzed the microevolutionary dynamics of the toxigenic strain vacAs1m1, the non-toxigenic strain vacAs2m2, and a combination of both strains in an animal model over time. Meriones unguiculatus were inoculated with the following bacteria: group 1-toxigenic strain vacAs1m1/cagA+/cagE+/babA2+; ST181, group 2-non-toxigenic strain vacAs2m2/cagA+/cagE+/babA2+; ST2901, and group 3-both strains. The gerbils were euthanized at different time points (3, 6, 12, and 18 months). In group 1, genetic alterations were observed at 6 and 12 months. With the combination of both strains, group 3 also exhibited genetic alterations at 3 and 18 months; moreover, a chimera, vacA m1-m2, was detected. Additionally, four new sequence types (STs) were reported in the PubMLST database for H. pylori. Synonymous and non-synonymous mutations were analyzed and associated with alterations in amino acids. Microevolutionary analysis of the STs (PHYLOViZ) identified in each group revealed many mutational changes in the toxigenic (vacAs1m1) and non-toxigenic (vacAs2m2) strains. Phylogenetic assessments (eBURST) did not reveal clonal complexes. Our findings indicate that the toxigenic strain, vacAs1m1, and a combination of toxigenic and non-toxigenic strains acquired genetic material by recombination. The allelic combination, vacAs2m1, displayed the best adaptation in the animal model over time, and a chimera, m1-m2, was also identified, which confirmed previous reports. PMID:27877163
Mendoza-Elizalde, Sandra; Arteaga-Resendiz, Nancy K; Valencia-Mayoral, Pedro; Luna, Raúl C; Moreno-Espinosa, Sarbelio; Arenas-Huertero, Francisco; Zúñiga, Gerardo; Velázquez-Guadarrama, Norma
2016-01-01
The bacterium Helicobacter pylori exhibits great genetic diversity, and the pathogenic roles of its virulence factors have been widely studied. However, the evolutionary dynamics of H. pylori strains during stomach colonization are not well-characterized. Here, we analyzed the microevolutionary dynamics of the toxigenic strain vacAs1m1 , the non-toxigenic strain vacAs2m2 , and a combination of both strains in an animal model over time. Meriones unguiculatus were inoculated with the following bacteria: group 1-toxigenic strain vacAs1m1/cagA+/cagE+/babA2+ ; ST181, group 2-non-toxigenic strain vacAs2m2/cagA+/cagE+/babA2+ ; ST2901, and group 3-both strains. The gerbils were euthanized at different time points (3, 6, 12, and 18 months). In group 1, genetic alterations were observed at 6 and 12 months. With the combination of both strains, group 3 also exhibited genetic alterations at 3 and 18 months; moreover, a chimera, vacA m1-m2 , was detected. Additionally, four new sequence types (STs) were reported in the PubMLST database for H. pylori . Synonymous and non-synonymous mutations were analyzed and associated with alterations in amino acids. Microevolutionary analysis of the STs (PHYLOViZ) identified in each group revealed many mutational changes in the toxigenic ( vacAs1m1 ) and non-toxigenic ( vacAs2m2 ) strains. Phylogenetic assessments (eBURST) did not reveal clonal complexes. Our findings indicate that the toxigenic strain, vacAs1m1 , and a combination of toxigenic and non-toxigenic strains acquired genetic material by recombination. The allelic combination, vacAs2m1 , displayed the best adaptation in the animal model over time, and a chimera, m1-m2 , was also identified, which confirmed previous reports.
Yang, Xiaojuan; Yu, Shubo; Wu, Qingping; Zhang, Jumei; Wu, Shi; Rong, Dongli
2018-01-01
The aim of this study was to characterize the subtypes and virulence profiles of 69 Staphylococcus aureus isolates obtained from retail ready-to-eat food in China. The isolates were analyzed using multilocus sequence typing (MLST) and polymerase chain reaction (PCR) analysis of important virulence factor genes, including the staphylococcal enterotoxin (SE) genes ( sea , seb , sec , sed , see , seg , seh , sei , sej ), the exfoliative toxin genes ( eta and etb ), the toxic shock syndrome toxin-1 gene ( tst ), and the Panton-Valentine leucocidin-encoding gene ( pvl ). The isolates encompassed 26 different sequence types (STs), including four new STs (ST3482, ST3484, ST3485, ST3504), clustered in three clonal complexes and 17 singletons. The most prevalent STs were ST1, ST6, and ST15, constituting 34.8% of all isolates. Most STs (15/26, 57.7%) detected have previously been associated with human infections. All 13 toxin genes examined were detected in the S. aureus isolates, with 84.1% of isolates containing toxin genes. The three most prevalent toxin genes were seb (36.2%), sea (33.3%), and seg (33.3%). The classical SE genes ( sea - see ), which contribute significantly to staphylococcal food poisoning (SFP), were detected in 72.5% of the S. aureus isolates. In addition, pvl , eta , etb , and tst were found in 11.6, 10.1, 10.1, and 7.2% of the S. aureus isolates, respectively. Strains ST6 carrying sea and ST1 harboring sec-seh enterotoxin profile, which are the two most common clones associated with SFP, were also frequently detected in the food samples in this study. This study indicates that these S. aureus isolates present in Chinese ready-to-eat food represents a potential public health risk. These data are valuable for epidemiological studies, risk management, and public health strategies.
Yang, Xiaojuan; Yu, Shubo; Wu, Qingping; Zhang, Jumei; Wu, Shi; Rong, Dongli
2018-01-01
The aim of this study was to characterize the subtypes and virulence profiles of 69 Staphylococcus aureus isolates obtained from retail ready-to-eat food in China. The isolates were analyzed using multilocus sequence typing (MLST) and polymerase chain reaction (PCR) analysis of important virulence factor genes, including the staphylococcal enterotoxin (SE) genes (sea, seb, sec, sed, see, seg, seh, sei, sej), the exfoliative toxin genes (eta and etb), the toxic shock syndrome toxin-1 gene (tst), and the Panton-Valentine leucocidin-encoding gene (pvl). The isolates encompassed 26 different sequence types (STs), including four new STs (ST3482, ST3484, ST3485, ST3504), clustered in three clonal complexes and 17 singletons. The most prevalent STs were ST1, ST6, and ST15, constituting 34.8% of all isolates. Most STs (15/26, 57.7%) detected have previously been associated with human infections. All 13 toxin genes examined were detected in the S. aureus isolates, with 84.1% of isolates containing toxin genes. The three most prevalent toxin genes were seb (36.2%), sea (33.3%), and seg (33.3%). The classical SE genes (sea–see), which contribute significantly to staphylococcal food poisoning (SFP), were detected in 72.5% of the S. aureus isolates. In addition, pvl, eta, etb, and tst were found in 11.6, 10.1, 10.1, and 7.2% of the S. aureus isolates, respectively. Strains ST6 carrying sea and ST1 harboring sec-seh enterotoxin profile, which are the two most common clones associated with SFP, were also frequently detected in the food samples in this study. This study indicates that these S. aureus isolates present in Chinese ready-to-eat food represents a potential public health risk. These data are valuable for epidemiological studies, risk management, and public health strategies. PMID:29662467
Boité, Mariana C.; Mauricio, Isabel L.; Miles, Michael A.; Cupolillo, Elisa
2012-01-01
The Leishmania genus comprises up to 35 species, some with status still under discussion. The multilocus sequence typing (MLST)—extensively used for bacteria—has been proposed for pathogenic trypanosomatids. For Leishmania, however, a detailed analysis and revision on the taxonomy is still required. We have partially sequenced four housekeeping genes—glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), mannose phosphate isomerase (MPI) and isocitrate dehydrogenase (ICD)—from 96 Leishmania (Viannia) strains and assessed their discriminatory typing capacity. The fragments had different degrees of diversity, and are thus suitable to be used in combination for intra- and inter-specific inferences. Species-specific single nucleotide polymorphisms were detected, but not for all species; ambiguous sites indicating heterozygosis were observed, as well as the putative homozygous donor. A large number of haplotypes were detected for each marker; for 6PGD a possible ancestral allele for L. (Viannia) was found. Maximum parsimony-based haplotype networks were built. Strains of different species, as identified by multilocus enzyme electrophoresis (MLEE), formed separated clusters in each network, with exceptions. NeighborNet of concatenated sequences confirmed species-specific clusters, suggesting recombination occurring in L. braziliensis and L. guyanensis. Phylogenetic analysis indicates L. lainsoni and L. naiffi as the most divergent species and does not support L. shawi as a distinct species, placing it in the L. guyanensis cluster. BURST analysis resulted in six clonal complexes (CC), corresponding to distinct species. The L. braziliensis strains evaluated correspond to one widely geographically distributed CC and another restricted to one endemic area. This study demonstrates the value of systematic multilocus sequence analysis (MLSA) for determining intra- and inter-species relationships and presents an approach to validate the species status of some entities. Furthermore, it contributes to the phylogeny of L. (Viannia) and might be helpful for epidemiological and population genetics analysis based on haplotype/diplotype determinations and inferences. PMID:23133690
Chen, Yi; Luo, Yan; Curry, Phillip; Timme, Ruth; Melka, David; Doyle, Matthew; Parish, Mickey; Hammack, Thomas S; Allard, Marc W; Brown, Eric W; Strain, Errol A
2017-01-01
A listeriosis outbreak in the United States implicated contaminated ice cream produced by one company, which operated 3 facilities. We performed single nucleotide polymorphism (SNP)-based whole genome sequencing (WGS) analysis on Listeria monocytogenes from food, environmental and clinical sources, identifying two clusters and a single branch, belonging to PCR serogroup IIb and genetic lineage I. WGS Cluster I, representing one outbreak strain, contained 82 food and environmental isolates from Facility I and 4 clinical isolates. These isolates differed by up to 29 SNPs, exhibited 9 pulsed-field gel electrophoresis (PFGE) profiles and multilocus sequence typing (MLST) sequence type (ST) 5 of clonal complex 5 (CC5). WGS Cluster II contained 51 food and environmental isolates from Facility II, 4 food isolates from Facility I and 5 clinical isolates. Among them the isolates from Facility II and clinical isolates formed a clade and represented another outbreak strain. Isolates in this clade differed by up to 29 SNPs, exhibited 3 PFGE profiles and ST5. The only isolate collected from Facility III belonged to singleton ST489, which was in a single branch separate from Clusters I and II, and was not associated with the outbreak. WGS analyses clustered together outbreak-associated isolates exhibiting multiple PFGE profiles, while differentiating them from epidemiologically unrelated isolates that exhibited outbreak PFGE profiles. The complete genome of a Cluster I isolate allowed the identification and analyses of putative prophages, revealing that Cluster I isolates differed by the gain or loss of three putative prophages, causing the banding pattern differences among all 3 AscI-PFGE profiles observed in Cluster I isolates. WGS data suggested that certain ice cream varieties and/or production lines might have contamination sources unique to them. The SNP-based analysis was able to distinguish CC5 as a group from non-CC5 isolates and differentiate among CC5 isolates from different outbreaks/incidents.
Chen, Yi; Luo, Yan; Curry, Phillip; Timme, Ruth; Melka, David; Doyle, Matthew; Parish, Mickey; Hammack, Thomas S.; Allard, Marc W.; Brown, Eric W.; Strain, Errol A.
2017-01-01
A listeriosis outbreak in the United States implicated contaminated ice cream produced by one company, which operated 3 facilities. We performed single nucleotide polymorphism (SNP)-based whole genome sequencing (WGS) analysis on Listeria monocytogenes from food, environmental and clinical sources, identifying two clusters and a single branch, belonging to PCR serogroup IIb and genetic lineage I. WGS Cluster I, representing one outbreak strain, contained 82 food and environmental isolates from Facility I and 4 clinical isolates. These isolates differed by up to 29 SNPs, exhibited 9 pulsed-field gel electrophoresis (PFGE) profiles and multilocus sequence typing (MLST) sequence type (ST) 5 of clonal complex 5 (CC5). WGS Cluster II contained 51 food and environmental isolates from Facility II, 4 food isolates from Facility I and 5 clinical isolates. Among them the isolates from Facility II and clinical isolates formed a clade and represented another outbreak strain. Isolates in this clade differed by up to 29 SNPs, exhibited 3 PFGE profiles and ST5. The only isolate collected from Facility III belonged to singleton ST489, which was in a single branch separate from Clusters I and II, and was not associated with the outbreak. WGS analyses clustered together outbreak-associated isolates exhibiting multiple PFGE profiles, while differentiating them from epidemiologically unrelated isolates that exhibited outbreak PFGE profiles. The complete genome of a Cluster I isolate allowed the identification and analyses of putative prophages, revealing that Cluster I isolates differed by the gain or loss of three putative prophages, causing the banding pattern differences among all 3 AscI-PFGE profiles observed in Cluster I isolates. WGS data suggested that certain ice cream varieties and/or production lines might have contamination sources unique to them. The SNP-based analysis was able to distinguish CC5 as a group from non-CC5 isolates and differentiate among CC5 isolates from different outbreaks/incidents. PMID:28166293
2012-01-01
Background Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Results Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. Conclusion This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus urinalis) is cause for concern, as it highlights the possibility for continued acquisition of human virulence factors for this emerging zoonotic pathogen. PMID:23244770
Diversity of Staphylococcus aureus Isolates in European Wildlife
Monecke, Stefan; Gavier-Widén, Dolores; Hotzel, Helmut; Peters, Martin; Guenther, Sebastian; Lazaris, Alexandros; Loncaric, Igor; Müller, Elke; Reissig, Annett; Ruppelt-Lorz, Antje; Shore, Anna C.; Walter, Birgit; Coleman, David C.; Ehricht, Ralf
2016-01-01
Staphylococcus aureus is a well-known colonizer and cause of infection among animals and it has been described from numerous domestic and wild animal species. The aim of the present study was to investigate the molecular epidemiology of S. aureus in a convenience sample of European wildlife and to review what previously has been observed in the subject field. 124 S. aureus isolates were collected from wildlife in Germany, Austria and Sweden; they were characterized by DNA microarray hybridization and, for isolates with novel hybridization patterns, by multilocus sequence typing (MLST). The isolates were assigned to 29 clonal complexes and singleton sequence types (CC1, CC5, CC6, CC7, CC8, CC9, CC12, CC15, CC22, CC25, CC30, CC49, CC59, CC88, CC97, CC130, CC133, CC398, ST425, CC599, CC692, CC707, ST890, CC1956, ST2425, CC2671, ST2691, CC2767 and ST2963), some of which (ST2425, ST2691, ST2963) were not described previously. Resistance rates in wildlife strains were rather low and mecA-MRSA isolates were rare (n = 6). mecC-MRSA (n = 8) were identified from a fox, a fallow deer, hares and hedgehogs. The common cattle-associated lineages CC479 and CC705 were not detected in wildlife in the present study while, in contrast, a third common cattle lineage, CC97, was found to be common among cervids. No Staphylococcus argenteus or Staphylococcus schweitzeri-like isolates were found. Systematic studies are required to monitor the possible transmission of human- and livestock-associated S. aureus/MRSA to wildlife and vice versa as well as the possible transmission, by unprotected contact to animals. The prevalence of S. aureus/MRSA in wildlife as well as its population structures in different wildlife host species warrants further investigation. PMID:27992523
Tryfinopoulou, Kyriaki; Kesanopoulos, Konstantinos; Xirogianni, Athanasia; Marmaras, Nektarios; Papandreou, Anastasia; Papaevangelou, Vassiliki; Tsolia, Maria; Jasir, Aftab; Tzanakaki, Georgina
2016-01-01
Purpose The aim of the study was to estimate the meningococcal carriage rate and to identify the genotypic characteristics of the strains isolated from healthy military recruits and university students in order to provide data that might increase our understanding on the epidemiology of meningococcus and obtain information which helps to evaluate the potential effects on control programs such as vaccination., Methods A total of 1420 oropharyngeal single swab samples were collected from military recruits and university students on voluntary basis, aged 18–26 years. New York City Medium was used for culture and the suspected N. meningitidis colonies were identified by Gram stain, oxidase and rapid carbohydrate utilization tests. Further characterisation was carried out by molecular methods (multiplex PCR, MLST, WGS). Results The overall carriage rate was of 12.7%; 15% and 10.4% for recruits and university students respectively. MenB (39.4%) was the most prevalent followed by MenY (12.8%) and MenW (4.4%). Among the initial 76 Non Groupable (NG) isolates, Whole Genome Sequence Analysis (WGS) revealed that 8.3% belonged to MenE, 3.3% to MenX and 1.1% to MenZ, while, 53 strains (29.4%) were finally identified as capsule null. Genetic diversity was found among the MenB isolates, with 41/44 cc and 35 cc predominating. Conclusion Meningococcal carriage rate in both groups was lower compared to our previous studies (25% and 18% respectively) with predominance of MenB isolates. These findings, help to further our understanding on the epidemiology of meningococcal disease in Greece. Although the prevalence of carriage seems to have declined compared to our earlier studies, the predominant MenB clonal complexes (including 41/44cc and 35cc) are associated with invasive meningococcal disease. PMID:27907129
Kim, Seon Woo; Haendiges, Julie; Keller, Eric N; Myers, Robert; Kim, Alexander; Lombard, Jason E; Karns, Jeffrey S; Van Kessel, Jo Ann S; Haley, Bradd J
2018-01-01
Unpasteurized dairy products are known to occasionally harbor Listeria monocytogenes and have been implicated in recent listeriosis outbreaks and numerous sporadic cases of listeriosis. However, the diversity and virulence profiles of L. monocytogenes isolates recovered from these products have not been fully described. Here we report a genomic analysis of 121 L. monocytogenes isolates recovered from milk, milk filters, and milking equipment collected from bovine dairy farms in 19 states over a 12-year period. In a multi-virulence-locus sequence typing (MVLST) analysis, 59 Virulence Types (VT) were identified, of which 25% were Epidemic Clones I, II, V, VI, VII, VIII, IX, or X, and 31 were novel VT. In a multi-locus sequence typing (MLST) analysis, 60 Sequence Types (ST) of 56 Clonal Complexes (CC) were identified. Within lineage I, CC5 and CC1 were among the most abundant, and within lineage II, CC7 and CC37 were the most abundant. Multiple CCs previously associated with central nervous system and maternal-neonatal infections were identified. A genomic analysis identified variable distribution of virulence markers, Listeria pathogenicity islands (LIPI) -1, -3, and -4, and stress survival island-1 (SSI-1). Of these, 14 virulence markers, including LIPI-3 and -4 were more frequently detected in one lineage (I or II) than the other. LIPI-3 and LIPI-4 were identified in 68% and 28% of lineage I CCs, respectively. Results of this analysis indicate that there is a high level of genetic diversity among the L. monocytogenes present in bulk tank milk in the United States with some strains being more frequently detected than others, and some being similar to those that have been isolated from previous non-dairy related outbreaks. Results of this study also demonstrate significant number of strains isolated from dairy farms encode virulence markers associated with severe human disease.
Cancer evolution, mutations, and clonal selection in relapse neuroblastoma.
Schulte, Marc; Köster, Johannes; Rahmann, Sven; Schramm, Alexander
2018-05-01
The notion of cancer as a complex evolutionary system has been validated by in-depth molecular analyses of tumor progression over the last years. While a complex interplay of cell-autonomous programs and cell-cell interactions determines proliferation and differentiation during normal development, intrinsic and acquired plasticity of cancer cells allow for evasion of growth factor limitations, apoptotic signals, or attacks from the immune system. Treatment-induced molecular selection processes have been described by a number of studies already, but understanding of those events facilitating metastatic spread, organ-specific homing, and resistance to anoikis is still in its early days. In principle, somatic events giving rise to cancer progression should be easier to follow in childhood tumors bearing fewer mutations and genomic aberrations than their counterparts in adulthood. We have previously reported on the genetic events accompanying relapsing neuroblastoma, a solid tumor of early childhood. Our results indicated significantly higher single nucleotide variants in relapse tumors, gave hints for branched tumor evolution upon treatment and clonal selection as deduced from shifts in allelic frequencies between primary and relapsing neuroblastoma. Here, we will review these findings and give an outlook on dealing with intratumoral heterogeneity and sub-clonal diversity in neuroblastoma for future targeted treatments.
Identification and removal of low-complexity sites in allele-specific analysis of ChIP-seq data.
Waszak, Sebastian M; Kilpinen, Helena; Gschwind, Andreas R; Orioli, Andrea; Raghav, Sunil K; Witwicki, Robert M; Migliavacca, Eugenia; Yurovsky, Alisa; Lappalainen, Tuuli; Hernandez, Nouria; Reymond, Alexandre; Dermitzakis, Emmanouil T; Deplancke, Bart
2014-01-15
High-throughput sequencing technologies enable the genome-wide analysis of the impact of genetic variation on molecular phenotypes at unprecedented resolution. However, although powerful, these technologies can also introduce unexpected artifacts. We investigated the impact of library amplification bias on the identification of allele-specific (AS) molecular events from high-throughput sequencing data derived from chromatin immunoprecipitation assays (ChIP-seq). Putative AS DNA binding activity for RNA polymerase II was determined using ChIP-seq data derived from lymphoblastoid cell lines of two parent-daughter trios. We found that, at high-sequencing depth, many significant AS binding sites suffered from an amplification bias, as evidenced by a larger number of clonal reads representing one of the two alleles. To alleviate this bias, we devised an amplification bias detection strategy, which filters out sites with low read complexity and sites featuring a significant excess of clonal reads. This method will be useful for AS analyses involving ChIP-seq and other functional sequencing assays. The R package abs filter for library clonality simulations and detection of amplification-biased sites is available from http://updepla1srv1.epfl.ch/waszaks/absfilter
Babouee, B.; Frei, R.; Schultheiss, E.; Widmer, A. F.; Goldenberger, D.
2011-01-01
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has become an increasing problem worldwide in recent decades. Molecular typing methods have been developed to identify clonality of strains and monitor spread of MRSA. We compared a new commercially available DiversiLab (DL) repetitive element PCR system with spa typing, spa clonal cluster analysis, and pulsed-field gel electrophoresis (PFGE) in terms of discriminatory power and concordance. A collection of 106 well-defined MRSA strains from our hospital was analyzed, isolated between 1994 and 2006. In addition, we analyzed 6 USA300 strains collected in our institution. DL typing separated the 106 MRSA isolates in 10 distinct clusters and 8 singleton patterns. Clustering analysis into spa clonal complexes resulted in 3 clusters: spa-CC 067/548, spa-CC 008, and spa-CC 012. The discriminatory powers (Simpson's index of diversity) were 0.982, 0.950, 0.846, and 0.757 for PFGE, spa typing, DL typing, and spa clonal clustering, respectively. DL typing and spa clonal clustering showed the highest concordance, calculated by adjusted Rand's coefficients. The 6 USA300 isolates grouped homogeneously into distinct PFGE and DL clusters, and all belonged to spa type t008 and spa-CC 008. Among the three methods, DL proved to be rapid and easy to perform. DL typing qualifies for initial screening during outbreak investigation. However, compared to PFGE and spa typing, DL typing has limited discriminatory power and therefore should be complemented by more discriminative methods in isolates that share identical DL patterns. PMID:21307215
Dissemination of VIM-2 producing Pseudomonas aeruginosa ST233 at tertiary care hospitals in Egypt.
Zafer, Mai Mahmoud; Al-Agamy, Mohamed Hamed; El-Mahallawy, Hadir Ahmed; Amin, Magdy Aly; El Din Ashour, Seif
2015-03-12
Pseudomonas aeruginosa is an important nosocomial pathogen, commonly causing infections in immunocompromised patients. The aim of this study was to examine the genetic relatedness of metallo-beta-lactamase (MBL) producing carbapenem resistant Pseudomonas aeruginosa clinical isolates collected from 2 tertiary hospitals in Cairo, Egypt using Multi Locus sequence typing (MLST). Phenotypic and genotypic detection of metallo-beta-lactamase for forty eight non-duplicate carbapenem resistant P. aeruginosa isolates were carried out. DNA sequencing and MLST were done. The bla VIM-2 gene was highly prevalent (28/33 strains, 85%) among 33 MBL-positive P.aeruginosa isolates. MLST revealed eleven distinct Sequence Types (STs). A unique ST233 clone producing VIM-2 was documented by MLST in P.aeruginosa strains isolated from Cairo university hospitals. The high prevalence of VIM-2 producers was not due to the spread of a single clone. The findings of the present study clearly demonstrate that clones of VIM-2 positive in our hospitals are different from those reported from European studies. Prevalence of VIM-2 producers of the same clone was detected from surgical specimens whereas oncology related specimens were showing diverse clones.
Mowlaboccus, Shakeel; Perkins, Timothy T.; Smith, Helen; Sloots, Theo; Tozer, Sarah; Prempeh, Lydia-Jessica; Tay, Chin Yen; Peters, Fanny; Speers, David; Keil, Anthony D.; Kahler, Charlene M.
2016-01-01
Neisseria meningitidis is the causative agent of invasive meningococcal disease (IMD). The BEXSERO® vaccine which is used to prevent serogroup B disease is composed of four sub-capsular protein antigens supplemented with an outer membrane vesicle. Since the sub-capsular protein antigens are variably expressed and antigenically variable amongst meningococcal isolates, vaccine coverage can be estimated by the meningococcal antigen typing system (MATS) which measures the propensity of the strain to be killed by vaccinated sera. Whole genome sequencing (WGS) which identifies the alleles of the antigens that may be recognised by the antibody response could represent, in future, an alternative estimate of coverage. In this study, WGS of 278 meningococcal isolates responsible for 62% of IMD in Western Australia from 2000–2014 were analysed for association of genetic lineage (sequence type [ST], clonal complex [cc]) with BEXSERO® antigen sequence type (BAST) and MATS to predict the annual vaccine coverage. A hyper-endemic period of IMD between 2000–05 was caused by cc41/44 with the major sequence type of ST-146 which was not predicted by MATS or BAST to be covered by the vaccine. An increase in serogroup diversity was observed between 2010–14 with the emergence of cc11 serogroup W in the adolescent population and cc23 serogroup Y in the elderly. BASTs were statistically associated with clonal complex although individual antigens underwent antigenic drift from the major type. BAST and MATS predicted an annual range of 44–91% vaccine coverage. Periods of low vaccine coverage in years post-2005 were not a result of the resurgence of cc41/44:ST-146 but were characterised by increased diversity of clonal complexes expressing BASTs which were not predicted by MATS to be covered by the vaccine. The driving force behind the diversity of the clonal complex and BAST during these periods of low vaccine coverage is unknown, but could be due to immune selection and inter-strain competition with carriage of non-disease causing meningococci. PMID:27355628
Bianchi, A; Evans, J L; Nordlund, A C; Watts, T D; Witters, L A
1992-01-01
Reuber hepatoma cells are useful cultured lines for the study of insulin action, lipid and lipoprotein metabolism, and the regulation of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of fatty acid biosynthesis. During investigations in different clonal lines of these cells, we have uncovered marked intercellular variability in the activity, enzyme content, and insulin regulation of ACC paralleled by differences in cellular neutral lipid (triglyceride) content. Two contrasting clonal lines, Fao and H356A-1, have been studied in detail. Several features distinguish these two lines, including differences in ACC activity and enzyme kinetics, the content of the two major hepatic ACC isozymes (Mr 280,000 and 265,000 Da) and their heteroisozymic complex, the extent of ACC phosphorylation, and the ability of ACC to be activated on stimulation by insulin and insulinomimetic agonists. As studied by Nile Red staining and fluorescence-activated cell sorting, these two lines also display marked differences in neutral lipid content, which correlates with both basal levels of ACC activity and inhibition of ACC by the fatty acid analog, 5-(tetradecyloxy)-2-furoic acid (TOFA). These results emphasize the importance of characterization of any particular clonal line of Reuber cells for studies of enzyme regulation, substrate metabolism, and hormone action. With respect to ACC, studies in contrasting clonal lines of Reuber cells could provide valuable clues to understanding both the complex mechanisms of intracellular ACC regulation in the absence and presence of hormones and its regulatory role(s) in overall hepatic lipid metabolism.
Xu, Liang; Yu, Fei-Hai; van Drunen, Elles; Schieving, Feike; Dong, Ming; Anten, Niels P R
2012-04-01
Grazing is a complex process involving the simultaneous occurrence of both trampling and defoliation. Clonal plants are a common feature of heavily grazed ecosystems where large herbivores inflict the simultaneous pressures of trampling and defoliation on the vegetation. We test the hypothesis that physiological integration (resource sharing between interconnected ramets) may help plants to deal with the interactive effects of trampling and defoliation. In a field study, small and large ramets of the root-suckering clonal tree Populus simonii were subjected to two levels of trampling and defoliation, while connected or disconnected to other ramets. Plant responses were quantified via survival, growth, morphological and stem mechanical traits. Disconnection and trampling increased mortality, especially in small ramets. Trampling increased stem length, basal diameter, fibrous root mass, stem stiffness and resistance to deflection in connected ramets, but decreased them in disconnected ones. Trampling decreased vertical height more in disconnected than in connected ramets, and reduced stem mass in disconnected ramets but not in connected ramets. Defoliation reduced basal diameter, leaf mass, stem mass and leaf area ratio, but did not interact with trampling or disconnection. Although clonal integration did not influence defoliation response, it did alleviate the effects of trampling. We suggest that by facilitating resource transport between ramets, clonal integration compensates for trampling-induced damage to fine roots.
Kotetishvili, Mamuka; Stine, O. Colin; Chen, Yuansha; Kreger, Arnold; Sulakvelidze, Alexander; Sozhamannan, Shanmuga; Morris, Jr., J. Glenn
2003-01-01
Twenty-two Vibrio cholerae isolates, including some from “epidemic” (O1 and O139) and “nonepidemic” serogroups, were characterized by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) by using three housekeeping genes, gyrB, pgm, and recA; sequence data were also obtained for the virulence-associated genes tcpA, ctxA, and ctxB. Even with the small number of loci used, MLST had better discriminatory ability than did PFGE. On MLST analysis, there was clear clustering of epidemic serogroups; much greater diversity was seen among tcpA- and ctxAB-positive V. cholerae strains from other, nonepidemic serogroups, with a number of tcpA and ctxAB alleles identified. PMID:12734277
Clonal evolution in hematologic malignancies and therapeutic implications
Landau, Dan A.; Carter, Scott L.; Getz, Gad; Wu, Catherine J.
2014-01-01
The ability of cancer to evolve and adapt is a principal challenge to therapy in general, and to the paradigm of targeted therapy in particular. This ability is fueled by the co-existence of multiple, genetically heterogeneous subpopulations within the cancer cell population. Increasing evidence has supported the idea that these subpopulations are selected in a Darwinian fashion, by which the genetic landscape of the tumor is continuously reshaped. Massively parallel sequencing has enabled a recent surge in our ability to study this process, adding to previous efforts using cytogenetic methods and targeted sequencing. Altogether, these studies reveal the complex evolutionary trajectories occurring across individual hematological malignancies. They also suggest that while clonal evolution may contribute to resistance to therapy, treatment may also hasten the evolutionary process. New insights into this process challenge us to understand the impact of treatment on clonal evolution, and inspire the development of novel prognostic and therapeutic strategies. PMID:23979521
Chiang, Yu-Chung; Tsai, Chi-Chu; Hsu, Tsai-Wen; Chou, Chang-Hung
2012-11-01
Microsatellite loci were developed from Imperata cylindrica, a traditional medicinal herb in Asia and among the top 10 worst invasive weeds in the world, to aid in the identification of the limits of asexual clonal individuals. A total of 21 microsatellite markers, including 18 polymorphic and three monomorphic loci, were developed from I. cylindrica using a magnetic bead enrichment protocol. The primers amplified dinucleotide, trinucleotide, and complex repeats. The number of alleles ranged from one to 19 per locus, with an observed heterozygosity ranging from 0.09 to 1.00. Several loci deviated significantly from the within-population Hardy-Weinberg equilibrium as a result of asexual clonal reproduction. These polymorphic markers should be useful tools in further studies on the identification of the range of clonal reproduction units and the selection and classification of the medicinal cultivar.
Dissecting social cell biology and tumors using Drosophila genetics.
Pastor-Pareja, José Carlos; Xu, Tian
2013-01-01
Cancer was seen for a long time as a strictly cell-autonomous process in which oncogenes and tumor-suppressor mutations drive clonal cell expansions. Research in the past decade, however, paints a more integrative picture of communication and interplay between neighboring cells in tissues. It is increasingly clear as well that tumors, far from being homogenous lumps of cells, consist of different cell types that function together as complex tissue-level communities. The repertoire of interactive cell behaviors and the quantity of cellular players involved call for a social cell biology that investigates these interactions. Research into this social cell biology is critical for understanding development of normal and tumoral tissues. Such complex social cell biology interactions can be parsed in Drosophila. Techniques in Drosophila for analysis of gene function and clonal behavior allow us to generate tumors and dissect their complex interactive biology with cellular resolution. Here, we review recent Drosophila research aimed at understanding tissue-level biology and social cell interactions in tumors, highlighting the principles these studies reveal.
NASA Astrophysics Data System (ADS)
Figueroa, Rosa Isabel; Rengefors, Karin; Bravo, Isabel; Bensch, Staffan
2010-02-01
The chain-forming dinoflagellate Gymnodinium catenatum Graham is responsible for outbreaks of paralytic shellfish poisoning (PSP), a human health threat in coastal waters. Sexuality in this species is of great importance in its bloom dynamics, and has been shown to be very complex but lacks an explanation. For this reason, we tested if unreported homothallic behavior and rapid genetic changes may clarify the sexual system of this alga. To achieve this objective, 12 clonal strains collected from the Spanish coast were analyzed for the presence of sexual reproduction. Mating affinity results, self-compatibility studies, and genetic fingerprinting (amplified fragment length polymorphism, AFLP) analysis on clonal strains, showed three facts not previously described for this species: (i) That there is a continuous mating system within G. catenatum, with either self-compatible strains (homothallic), or strains that needed to be outcrossed (heterothallic), and with a range of differences in cyst production among the crosses. (ii) There was intraclonal genetic variation, i.e. genetic variation within an asexual lineage. Moreover, the variability among homothallic clones was smaller than among the heterothallic ones. (iii) Sibling strains (the two strains established by the germination of one cyst) increased their intra- and inter-sexual compatibility with time. To summarize, we have found that G. catenatum's sexual system is much more complex than previously described, including complex homothallic/heterothallic behaviors. Additionally, high rates of genetic variability may arise in clonal strains, although explanations for the mechanisms responsible are still lacking.
ASXL1/EZH2 mutations promote clonal expansion of neoplastic HSC and impair erythropoiesis in PMF.
Triviai, Ioanna; Zeschke, Silke; Rentel, Jan; Spanakis, Marios; Scherer, Theo; Gabdoulline, Razif; Panagiota, Victoria; Thol, Felicitas; Heuser, Michael; Stocking, Carol; Kröger, Nicolaus
2018-06-15
Primary myelofibrosis (PMF) is a hematopoietic stem cell (HSC) disease, characterized by aberrant differentiation of all myeloid lineages and profound disruption of the bone marrow niche. PMF samples carry several mutations, but their cell origin and hierarchy in regulating the different waves of clonal and aberrant myeloproliferation from the prime HSC compartment is poorly understood. Genotyping of >2000 colonies from CD133+HSC and progenitors from PMF patients confirmed the complex genetic heterogeneity within the neoplastic population. Notably, mutations in chromatin regulators ASXL1 and/or EZH2 were identified as the first genetic lesions, preceding both JAK2-V617F and CALR mutations, and are thus drivers of clonal myelopoiesis in a PMF subset. HSC from PMF patients with double ASXL1/EZH2 mutations exhibited significantly higher engraftment in immunodeficient mice than those from patients without histone modifier mutations. EZH2 mutations correlate with aberrant erythropoiesis in PMF patients, exemplified by impaired maturation and cell cycle arrest of erythroid progenitors. These data underscore the importance of post-transcriptional modifiers of histones in neoplastic stem cells, whose clonal growth sustains aberrant myelopoiesis and expansion of pre-leukemic clones in PMF.
Population Structure in Nontypeable Haemophilus influenzae
LaCross, Nathan C.; Marrs, Carl F.; Gilsdorf, Janet R.
2013-01-01
Nontypeable Haemophilus influenzae (NTHi) frequently colonize the human pharynx asymptomatically, and are an important cause of otitis media in children. Past studies have identified typeable H. influenzae as being clonal, but the population structure of NTHi has not been extensively characterized. The research presented here investigated the diversity and population structure in a well-characterized collection of NTHi isolated from the middle ears of children with otitis media or the pharynges of healthy children in three disparate geographic regions. Multilocus sequence typing identified 109 unique sequence types among 170 commensal and otitis media-associated NTHi isolates from Finland, Israel, and the US. The largest clonal complex contained only five sequence types, indicating a high level of genetic diversity. The eBURST v3, ClonalFrame 1.1, and structure 2.3.3 programs were used to further characterize diversity and population structure from the sequence typing data. Little clustering was apparent by either disease state (otitis media or commensalism) or geography in the ClonalFrame phylogeny. Population structure was clearly evident, with support for eight populations when all 170 isolates were analyzed. Interestingly, one population contained only commensal isolates, while two others consisted solely of otitis media isolates, suggesting associations between population structure and disease. PMID:23266487
Mentasti, Massimo; Tewolde, Rediat; Aslett, Martin; Harris, Simon R.; Afshar, Baharak; Underwood, Anthony; Harrison, Timothy G.
2016-01-01
Sequence-based typing (SBT), analogous to multilocus sequence typing (MLST), is the current “gold standard” typing method for investigation of legionellosis outbreaks caused by Legionella pneumophila. However, as common sequence types (STs) cause many infections, some investigations remain unresolved. In this study, various whole-genome sequencing (WGS)-based methods were evaluated according to published guidelines, including (i) a single nucleotide polymorphism (SNP)-based method, (ii) extended MLST using different numbers of genes, (iii) determination of gene presence or absence, and (iv) a kmer-based method. L. pneumophila serogroup 1 isolates (n = 106) from the standard “typing panel,” previously used by the European Society for Clinical Microbiology Study Group on Legionella Infections (ESGLI), were tested together with another 229 isolates. Over 98% of isolates were considered typeable using the SNP- and kmer-based methods. Percentages of isolates with complete extended MLST profiles ranged from 99.1% (50 genes) to 86.8% (1,455 genes), while only 41.5% produced a full profile with the gene presence/absence scheme. Replicates demonstrated that all methods offer 100% reproducibility. Indices of discrimination range from 0.972 (ribosomal MLST) to 0.999 (SNP based), and all values were higher than that achieved with SBT (0.940). Epidemiological concordance is generally inversely related to discriminatory power. We propose that an extended MLST scheme with ∼50 genes provides optimal epidemiological concordance while substantially improving the discrimination offered by SBT and can be used as part of a hierarchical typing scheme that should maintain backwards compatibility and increase discrimination where necessary. This analysis will be useful for the ESGLI to design a scheme that has the potential to become the new gold standard typing method for L. pneumophila. PMID:27280420
David, Sophia; Mentasti, Massimo; Tewolde, Rediat; Aslett, Martin; Harris, Simon R; Afshar, Baharak; Underwood, Anthony; Fry, Norman K; Parkhill, Julian; Harrison, Timothy G
2016-08-01
Sequence-based typing (SBT), analogous to multilocus sequence typing (MLST), is the current "gold standard" typing method for investigation of legionellosis outbreaks caused by Legionella pneumophila However, as common sequence types (STs) cause many infections, some investigations remain unresolved. In this study, various whole-genome sequencing (WGS)-based methods were evaluated according to published guidelines, including (i) a single nucleotide polymorphism (SNP)-based method, (ii) extended MLST using different numbers of genes, (iii) determination of gene presence or absence, and (iv) a kmer-based method. L. pneumophila serogroup 1 isolates (n = 106) from the standard "typing panel," previously used by the European Society for Clinical Microbiology Study Group on Legionella Infections (ESGLI), were tested together with another 229 isolates. Over 98% of isolates were considered typeable using the SNP- and kmer-based methods. Percentages of isolates with complete extended MLST profiles ranged from 99.1% (50 genes) to 86.8% (1,455 genes), while only 41.5% produced a full profile with the gene presence/absence scheme. Replicates demonstrated that all methods offer 100% reproducibility. Indices of discrimination range from 0.972 (ribosomal MLST) to 0.999 (SNP based), and all values were higher than that achieved with SBT (0.940). Epidemiological concordance is generally inversely related to discriminatory power. We propose that an extended MLST scheme with ∼50 genes provides optimal epidemiological concordance while substantially improving the discrimination offered by SBT and can be used as part of a hierarchical typing scheme that should maintain backwards compatibility and increase discrimination where necessary. This analysis will be useful for the ESGLI to design a scheme that has the potential to become the new gold standard typing method for L. pneumophila. Copyright © 2016 David et al.
Machado, Gabriel Esquitini; Matsumoto, Cristianne Kayoko; Chimara, Erica; Duarte, Rafael da Silva; de Freitas, Denise; Palaci, Moises; Hadad, David Jamil; Lima, Karla Valéria Batista; Lopes, Maria Luiza; Ramos, Jesus Pais; Campos, Carlos Eduardo; Caldas, Paulo César; Heym, Beate; Leão, Sylvia Cardoso
2014-08-01
Outbreaks of infections by rapidly growing mycobacteria following invasive procedures, such as ophthalmological, laparoscopic, arthroscopic, plastic, and cardiac surgeries, mesotherapy, and vaccination, have been detected in Brazil since 1998. Members of the Mycobacterium chelonae-Mycobacterium abscessus group have caused most of these outbreaks. As part of an epidemiological investigation, the isolates were typed by pulsed-field gel electrophoresis (PFGE). In this project, we performed a large-scale comparison of PFGE profiles with the results of a recently developed multilocus sequence typing (MLST) scheme for M. abscessus. Ninety-three isolates were analyzed, with 40 M. abscessus subsp. abscessus isolates, 47 M. abscessus subsp. bolletii isolates, and six isolates with no assigned subspecies. Forty-five isolates were obtained during five outbreaks, and 48 were sporadic isolates that were not associated with outbreaks. For MLST, seven housekeeping genes (argH, cya, glpK, gnd, murC, pta, and purH) were sequenced, and each isolate was assigned a sequence type (ST) from the combination of obtained alleles. The PFGE patterns of DraI-digested DNA were compared with the MLST results. All isolates were analyzable by both methods. Isolates from monoclonal outbreaks showed unique STs and indistinguishable or very similar PFGE patterns. Thirty-three STs and 49 unique PFGE patterns were identified among the 93 isolates. The Simpson's index of diversity values for MLST and PFGE were 0.69 and 0.93, respectively, for M. abscessus subsp. abscessus and 0.96 and 0.97, respectively, for M. abscessus subsp. bolletii. In conclusion, the MLST scheme showed 100% typeability and grouped monoclonal outbreak isolates in agreement with PFGE, but it was less discriminative than PFGE for M. abscessus. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Bier, Nadja; Bechlars, Silke; Diescher, Susanne; Klein, Florian; Hauk, Gerhard; Duty, Oliver; Strauch, Eckhard
2013-01-01
The genetic diversity of Vibrio vulnificus isolates from clinical and environmental sources originating from the Baltic Sea region was evaluated by multilocus sequence typing (MLST), and possible relationships between MLST clusters, potential genotypic and phenotypic traits associated with pathogenicity, and source of isolation were investigated. The studied traits included genotyping of polymorphic loci (16S rRNA, vcg, and pilF), presence/absence of potential virulence genes, including nanA, nab, and genes of pathogenicity regions, metabolic features, hemolytic activity, resistance to human serum, and cytotoxicity to human intestinal cells. MLST generated 35 (27 new) sequence types and divided the 53 isolates (including four reference strains) into two main clusters, with cluster I containing biotype 1 and 2 isolates of mainly environmental origin and cluster II containing biotype 1 isolates of mainly clinical origin. Cluster II isolates were further subdivided into two branches. Branch IIB included isolates from recent cases of wound infections that were acquired at the German Baltic Sea coastline between 2010 and 2011 and isolates from seawater samples of the same regions isolated between 1994 and 2010. Comparing the MLST data with the results of genotyping and phenotyping showed that strains of MLST cluster II possess a number of additional pathogenicity-associated traits compared to cluster I strains. Rapid microbiological methods such as matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry combined with typing of selected virulence-associated traits (e.g., serum resistance, mannitol fermentation, nanA, and pathogenicity region XII) could be used for risk assessment purposes regarding V. vulnificus strains isolated from the Baltic Sea region. PMID:23542621
Meats, Emma; Feil, Edward J.; Stringer, Suzanna; Cody, Alison J.; Goldstein, Richard; Kroll, J. Simon; Popovic, Tanja; Spratt, Brian G.
2003-01-01
A multilocus sequence typing (MLST) scheme has been developed for the unambiguous characterization of encapsulated and noncapsulated Haemophilus influenzae isolates. The sequences of internal fragments of seven housekeeping genes were determined for 131 isolates, comprising a diverse set of 104 serotype a, b, c, d, e, and f isolates and 27 noncapsulated isolates. Many of the encapsulated isolates had previously been characterized by multilocus enzyme electrophoresis (MLEE), and the validity of the MLST scheme was established by the very similar clustering of isolates obtained by these methods. Isolates of serotypes c, d, e, and f formed monophyletic groups on a dendrogram constructed from the differences in the allelic profiles of the isolates, whereas there were highly divergent lineages of both serotype a and b isolates. Noncapsulated isolates were distinct from encapsulated isolates and, with one exception, were within two highly divergent clusters. The relationships between the major lineages of encapsulated H. influenzae inferred from MLEE data could not be discerned on a dendrogram constructed from differences in the allelic profiles, but were apparent on a tree reconstructed from the concatenated nucleotide sequences. Recombination has not therefore completely eliminated phylogenetic signal, and in support of this, for encapsulated isolates, there was significant congruence between many of the trees reconstructed from the sequences of the seven individual loci. Congruence was less apparent for noncapsulated isolates, suggesting that the impact of recombination is greater among noncapsulated than encapsulated isolates. The H. influenzae MLST scheme is available at www.mlst.net, it allows any isolate to be compared with those in the MLST database, and (for encapsulated isolates) it assigns isolates to their phylogenetic lineage, via the Internet. PMID:12682154
Krutova, Marcela; Matejkova, Jana; Kuijper, Ed J; Drevinek, Pavel; Nyc, Otakar
2016-07-21
In 2014, 18 hospitals in the Czech Republic participated in a survey of the incidence of Clostridium difficile infections (CDI) in the country. The mean CDI incidence was 6.1 (standard deviation (SD):7.2) cases per 10,000 patient bed-days and 37.8 cases (SD: 41.4) per 10,000 admissions. The mean CDI testing frequency was 39.5 tests (SD: 25.4) per 10,000 patient bed-days and 255.8 tests (SD: 164.0) per 10,000 admissions. A total of 774 C. difficile isolates were investigated, of which 225 (29%) belonged to PCR ribotype 176, and 184 isolates (24%) belonged to PCR ribotype 001. Multilocus variable-number tandem repeat analysis (MLVA) revealed 27 clonal complexes formed by 84% (190/225) of PCR ribotype 176 isolates, and 14 clonal complexes formed by 77% (141/184) of PCR ribotype 001 isolates. Clonal clusters of PCR ribotypes 176 and 001 were observed in 11 and 7 hospitals, respectively. Our data demonstrate the spread of two C. difficile PCR ribotypes within 18 hospitals in the Czech Republic, stressing the importance of standardising CDI testing protocols and implementing mandatory CDI surveillance in the country. This article is copyright of The Authors, 2016.
O'Donnell, Kerry; Sutton, Deanna A.; Rinaldi, Michael G.; Magnon, Karen C.; Cox, Patricia A.; Revankar, Sanjay G.; Sanche, Stephen; Geiser, David M.; Juba, Jean H.; van Burik, Jo-Anne H.; Padhye, Arvind; Anaissie, Elias J.; Francesconi, Andrea; Walsh, Thomas J.; Robinson, Jody S.
2004-01-01
Fusarium oxysporum is a phylogenetically diverse monophyletic complex of filamentous ascomycetous fungi that are responsible for localized and disseminated life-threatening opportunistic infections in immunocompetent and severely neutropenic patients, respectively. Although members of this complex were isolated from patients during a pseudoepidemic in San Antonio, Tex., and from patients and the water system in a Houston, Tex., hospital during the 1990s, little is known about their genetic relatedness and population structure. This study was conducted to investigate the global genetic diversity and population biology of a comprehensive set of clinically important members of the F. oxysporum complex, focusing on the 33 isolates from patients at the San Antonio hospital and on strains isolated in the United States from the water systems of geographically distant hospitals in Texas, Maryland, and Washington, which were suspected as reservoirs of nosocomial fusariosis. In all, 18 environmental isolates and 88 isolates from patients spanning four continents were genotyped. The major finding of this study, based on concordant results from phylogenetic analyses of multilocus DNA sequence data and amplified fragment length polymorphisms, is that a recently dispersed, geographically widespread clonal lineage is responsible for over 70% of all clinical isolates investigated, including all of those associated with the pseudoepidemic in San Antonio. Moreover, strains of the clonal lineage recovered from patients were conclusively shown to genetically match those isolated from the hospital water systems of three U.S. hospitals, providing support for the hypothesis that hospitals may serve as a reservoir for nosocomial fusarial infections. PMID:15528703
Aires-de-Sousa, Marta; Parente, Carlos E S R; Vieira-da-Motta, Olney; Bonna, Isabel C F; Silva, Denise A; de Lencastre, Hermínia
2007-06-01
Eighty-four staphylococcal isolates were obtained from milk samples from cows, sheep, goats, and buffalo with subclinical mastitis and from colonization samples from ostriches. The animals were hosted in 18 small dairy herds and an ostrich breeding located in 10 municipalities of the state of Rio de Janeiro, Brazil. Thirty isolates were identified as Staphylococcus aureus by biochemical and molecular techniques and were comparatively characterized by phenotypic and genotypic methods. The molecular characterization by pulsed-field gel electrophoresis (PFGE), spa typing, and multilocus sequence typing (MLST) revealed five clonal types (PFGE A, spa type t359, sequence type 747 [ST747]; PFGE B, spa type t1180, ST750; PFGE C, spa type t605, ST126; PFGE D, spa type t127, ST751; and PFGE F, spa type t002, ST5). None of the isolates harbored the Panton-Valentine leukocidin or exfoliative toxin D gene. The detection of major clone A (in 63% of the isolates) in different herds, among all animal species studied, and in infection and colonization samples evidenced its geographical spread among Rio de Janeiro State and no host preference among the animal species. Comparison with S. aureus from a human origin suggested that all but one clone found in the present study might be animal specific.
Rafei, Rayane; Dabboussi, Fouad; Hamze, Monzer; Eveillard, Matthieu; Lemarié, Carole; Mallat, Hassan; Rolain, Jean-Marc; Joly-Guillou, Marie-Laure; Kempf, Marie
2014-04-01
The emergence of carbapenem-resistant Acinetobacter baumannii has been observed worldwide. We describe the first detection of A. baumannii carrying the blaNDM-1 gene in Lebanon, isolated from Syrian patients wounded during the civil war. Four carbapenem-resistant A. baumannii strains isolated in 2012 in the Tripoli Government Hospital, Lebanon, from civilians wounded during the Syrian war, were analysed. Susceptibility was determined by disk diffusion testing, and resistance to carbapenems was confirmed by Etest. The presence of blaOXA-23-like, blaOXA-24-like, blaOXA-58-like, blaOXA-143-like, and blaNDM was investigated by PCR. Clonal relationships were studied by pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and blaOXA-51 sequence-based typing. All isolates harboured the blaNDM-1 gene and were negative for other tested carbapenemases. They all belonged to the sequence type 85 and formed a single cluster by PFGE. Finally, blaOXA-51-like gene sequencing revealed the presence of the blaOXA-94 variant in all four isolates. These findings show that Syria constitutes a reservoir for NDM-1-producing bacteria. These results also highlight the need for effective measures to stop the threatening spread of such strains. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wimalarathna, Helen M L; Richardson, Judith F; Lawson, Andy J; Elson, Richard; Meldrum, Richard; Little, Christine L; Maiden, Martin C J; McCarthy, Noel D; Sheppard, Samuel K
2013-07-15
Antimicrobial resistance is increasing among clinical Campylobacter cases and is common among isolates from other sources, specifically retail poultry - a major source of human infection. In this study the antimicrobial susceptibility of isolates from a UK-wide survey of Campylobacter in retail poultry in 2001 and 2004-5 was investigated. The occurrence of phenotypes resistant to tetracycline, quinolones (ciprofloxacin and naladixic acid), erythromycin, chloramphenicol and aminoglycosides was quantified. This was compared with a phylogeny for these isolates based upon Multi Locus Sequence Typing (MLST) to investigate the pattern of antimicrobial resistance acquisition. Antimicrobial resistance was present in all lineage clusters, but statistical testing showed a non-random distribution. Erythromycin resistance was associated with Campylobacter coli. For all antimicrobials tested, resistant isolates were distributed among relatively distant lineages indicative of widespread acquisition. There was also evidence of clustering of resistance phenotypes within lineages; indicative of local expansion of resistant strains. These results are consistent with the widespread acquisition of antimicrobial resistance among chicken associated Campylobacter isolates, either through mutation or horizontal gene transfer, and the expansion of these lineages as a proportion of the population. As Campylobacter are not known to multiply outside of the host and long-term carriage in humans is extremely infrequent in industrialized countries, the most likely location for the proliferation of resistant lineages is in farmed chickens.
2012-01-01
Background Pseudomonas aeruginosa is an opportunistic pathogen which has the potential to become extremely harmful in the nosocomial environment, especially for cystic fibrosis (CF) patients, who are easily affected by chronic lung infections. For epidemiological purposes, discriminating P.aeruginosa isolates is a critical step, to define distribution of clones among hospital departments, to predict occurring microevolution events and to correlate clones to their source. A collection of 182 P. aeruginosa clinical strains isolated within Italian hospitals from patients with chronic infections, i.e. cystic fibrosis (CF) patients, and with acute infections were genotyped. Molecular typing was performed with the ArrayTube (AT) multimarker microarray (Alere Technologies GmbH, Jena, Germany), a cost-effective, time-saving and standardized method, which addresses genes from both the core and accessory P.aeruginosa genome. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were employed as reference genotyping techniques to estimate the ArrayTube resolution power. Results 41 AT-genotypes were identified within our collection, among which 14 were novel and 27 had been previously described in publicly available AT-databases. Almost 30% of the genotypes belonged to a main cluster of clones. 4B9A, EC2A, 3C2A were mostly associated to CF-patients whereas F469, 2C1A, 6C22 to non CF. An investigation on co-infections events revealed that almost 40% of CF patients were colonized by more than one genotype, whereas less than 4% were observed in non CF patients. The presence of the exoU gene correlated with non-CF patients within the intensive care unit (ICU) whereas the pKLC102-like island appeared to be prevalent in the CF centre. The congruence between the ArrayTube typing and PFGE or MLST was 0.077 and 0.559 (Adjusted Rand coefficient), respectively. AT typing of this Italian collection could be easily integrated with the global P. aeruginosa AT-typed population, uncovering that most AT-genotypes identified (> 80%) belonged to two large clonal clusters, and included 12 among the most abundant clones of the global population. Conclusions The ArrayTube (AT) multimarker array represented a robust and portable alternative to reference techniques for performing P. aeruginosa molecular typing, and allowed us to draw conclusions especially suitable for epidemiologists on an Italian clinical collection from chronic and acute infections. PMID:22840192
Mougari, Faiza; Raskine, Laurent; Ferroni, Agnes; Marcon, Estelle; Sermet-Gaudelus, Isabelle; Veziris, Nicolas; Heym, Beate; Gaillard, Jean-Louis; Nassif, Xavier; Cambau, Emmanuelle
2014-06-01
Mycobacterium abscessus is a rapidly growing mycobacterium that causes respiratory tract infections in predisposed patients, such as those with cystic fibrosis and nosocomial skin and soft tissue infections. In order to investigate the clonal relationships between the strains causing epidemic episodes, we evaluated the discriminatory power of the semiautomated DiversiLab (DL) repetitive extragenic palindromic sequence PCR (REP-PCR) test for M. abscessus genotyping. Since M. abscessus was shown to be composed of subspecies (M. abscessus subsp. massiliense, M. abscessus subsp. bolletii, and M. abscessus subsp. abscessus), we also evaluated the ability of this technique to differentiate subspecies. The technique was applied to two collections of clinical isolates, (i) 83 M. abscessus original isolates (43 M. abscessus subsp. abscessus, 12 M. abscessus subsp. bolletii, and 28 M. abscessus subsp. massiliense) from infected patients and (ii) 35 repeated isolates obtained over 1 year from four cystic fibrosis patients. The DL REP-PCR test was standardized for DNA extraction, DNA amplification, and electrophoresis pattern comparisons. Among the isolates from distinct patients, 53/83 (62%) isolates showed a specific pattern, and 30 were distributed in 11 clusters and 6 patterns, with 2 to 4 isolates per pattern. The clusters and patterns did not fully correlate with multilocus sequence typing (MLST) analysis results. This revealed a high genomic diversity between patients, with a discriminatory power of 98% (Simpson's diversity index). However, since some isolates shared identical patterns, this raises the question of whether it is due to transmission between patients or a common reservoir. Multiple isolates from the same patient showed identical patterns, except for one patient infected by two strains. Between the M. abscessus subspecies, the indexes were <70%, indicating that the DL REP-PCR test is not an accurate tool for identifying organisms to the subspecies level. REP-PCR appears to be a rapid genotyping method that is useful for investigating epidemics of M. abscessus infections. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Bhuyan, Soubhagya K; Vairale, Mohan G; Arya, Neha; Yadav, Priti; Veer, Vijay; Singh, Lokendra; Yadava, Pramod K; Kumar, Pramod
2016-06-01
Cholera is often caused when drinking water is contaminated through environmental sources. In recent years, the drastic cholera epidemics in Odisha (2007) and Haiti (2010) were associated with natural disasters (flood and Earthquake). Almost every year the state of Assam India witnesses flood in Brahamputra River valley during reversal of wind system (monsoon). This is often followed by outbreak of diarrheal diseases including cholera. Beside the incidence of cholera outbreaks, there is lack of experimental evidence for prevalence of the bacterium in aquatic environment and its association with cholera during/after flood in the state. A molecular surveillance during 2012-14 was carried out to study prevalence, strain differentiation, and clonality of Vibrio cholerae in inland aquatic reservoirs flooded by Brahamputra River in Assam. Water samples were collected, filtered, enriched in alkaline peptone water followed by selective culturing on thiosulfate bile salt sucrose agar. Environmental isolates were identified as V. cholerae, based on biochemical assays followed by sero-grouping and detailed molecular characterization. The incidence of the presence of the bacterium in potable water sources was higher after flood. Except one O1 isolate, all of the strains were broadly grouped under non-O1/non-O139 whereas some of them did have cholera toxin (CT). Surprisingly, we have noticed Haitian ctxB in two non-O1/non-O139 strains. MLST analyses based on pyrH, recA and rpoA genes revealed clonality in the environmental strains. The isolates showed varying degree of antimicrobial resistance including tetracycline and ciprofloxacin. The strains harbored the genetic elements SXT constins and integrons responsible for multidrug resistance. Genetic characterization is useful as phenotypic characters alone have proven to be unsatisfactory for strain discrimination. An assurance to safe drinking water, sanitation and monitoring of the aquatic reservoirs is of utmost importance for combating the impending epidemic threat in the flood affected areas. Further, the management of flood through multi-prong approaches and sustainable utilization of environmental resources would be effective in disease management. Copyright © 2015 Elsevier B.V. All rights reserved.
Maciuca, Iuliana E; Williams, Nicola J; Tuchilus, Cristina; Dorneanu, Olivia; Guguianu, Eleonora; Carp-Carare, Catalin; Rimbu, Cristina; Timofte, Dorina
2015-12-01
Use of antibiotics in food animals may contribute to development and spread of resistant organisms, particularly so in some countries. The aim of this study was two-fold; first, to establish the prevalence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in chicken production in a region within Romania. Second, to study the relatedness of ESBL-producing E. coli isolates recovered from broilers, abattoir workers where the chickens were slaughtered and from the human clinical specimens from two regional hospitals. The results indicated a very high (69%) rate of carriage of ESBL and AmpC-producing E. coli in chickens with 36% CTX-M producers. Sequencing showed that chickens in Romania have the highest worldwide prevalence (53%) of blaCTX-M-15 reported in poultry E. coli isolates. The majority (53%) of the extended-spectrum cephalosporin-resistant E. coli carried plasmid-mediated blaampC genes, mostly blaCMY-2 type, one of the highest prevalences reported in Europe. The predominant CTX-M type found in the human clinical E. coli isolates was blaCTX-M-15 and most isolates coharbored blaOXA-1, blaTEM, and aac(6')-ib-cr. The majority (60%) of the human clinical isolates belonged to the pandemic virulent clone B2-ST131. The clonal relationship between broiler and the human CTX-M-producing E. coli isolates was assessed by macrorestriction pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST), which indicated strain diversity with no common STs found between human and poultry isolates. Moreover, IncI1 was the most prevalent replicon found in broiler ESBL-producing E. coli isolates and also in transconjugants, indicating that plasmids and not clonal spread may play a role in the transfer of blaCTX-M genes. This study identifies a high prevalence of ESBL-producing E. coli from broiler chickens in Romania with a high occurrence incidence of blaCTX-M-15, which reflects the main ESBL type found in human E. coli infections in this country.
Djeffal, Samia; Bakour, Sofiane; Mamache, Bakir; Elgroud, Rachid; Agabou, Amir; Chabou, Selma; Hireche, Sana; Bouaziz, Omar; Rahal, Kheira; Rolain, Jean-Marc
2017-05-15
The aims of this study were to investigate Salmonella contamination in broiler chicken farms and slaughterhouses, to assess the antibiotic resistance profile in avian and human Salmonella isolates, and to evaluate the relationship between avian and human Extended Spectrum β-Lactamase (ESBL)-producing isolates. Salmonella was screened in different sample matrices collected at thirty-two chicken farms and five slaughterhouses. The human isolates were recovered from clinical specimens at the University Teaching Hospital of Constantine (UTH). All suspected colonies were confirmed by MALDI-TOF (Matrix Assisted Laser Desorption Ionization Time OF light) and serotyped. Susceptibility testing against 13 antibiotics including, amoxicillin/clavulanic acid, ticarcillin, cefoxitin, cefotaxime, aztreonam, imipenem, ertapenem, gentamicin, amikacin, ciprofloxacin, colistin, trimethoprim/sulfamethoxazole and fosfomycin, was performed using the disk diffusion method on Mueller-Hinton agar. ESBL-production was screened by the double-disk synergy test and confirmed by molecular characterization using PCR (polymerase chain reaction) amplification and sequencing of ESBL encoding genes. Clonality of the avian and human strains was performed using the Multi Locus Sequencing Typing method (MLST). Forty-five isolated avian Salmonella strains and 37 human collected ones were studied. Five S. enterica serotypes were found in avian isolates (mainly Kentucky) and 9 from human ones (essentially Infantis). 51.11% and 26.6% of the avian isolates were resistant to ciprofloxacin and cefotaxime, respectively, whereas human isolates were less resistant to these antibiotics (13.5% to ciprofloxacin and 16.2% to cefotaxime). Eighteen (12 avian and 6 human) strains were found to produce ESBLs, which were identified as bla CTX-M-1 (n = 12), bla CTX-M-15 (n = 5) and bla TEM group (n = 8). Interestingly, seven of the ESBL-producing strains (5 avian and 2 human) were of the same ST (ST15) and clustered together, suggesting a common origin. The results of the combined phenotypic and genotypic analysis found in this study suggest a close relationship between human and avian strains and support the hypothesis that poultry production may play a role in the spread of multidrug-resistant Salmonella in the human community within the study region.
Solgi, Hamid; Giske, Christian G; Badmasti, Farzad; Aghamohammad, Shadi; Havaei, Seyed Asghar; Sabeti, Shahram; Mostafavizadeh, Kamyar; Shahcheraghi, Fereshteh
2017-11-01
The emergence of carbapenem resistance among Escherichia coli is a serious threat to public health. The objective of this study was to investigate resistance genes and clonality of carbapenem resistant E. coli in Iran. Between February 2015 and July 2016, a total of 32 non-duplicate E. coli isolates that were ertapenem resistant or intermediate (R/I-ETP) were collected from patient clinical or surveillance cultures (rectal swabs) at two university hospitals. Resistance genes were identified by PCR and sequencing. Conjugation experiments, PCR-based replicon typing, PFGE and multilocus sequence typing (MLST) were performed. PCR assays showed, among the 32 isolates, twenty-nine strains produced carbapenemase genes. The predominant carbapenemase was bla OXA-48 (82.8%), followed by bla NDM-1 (31%), bla NDM-7 (6.9%) and bla OXA-181 (3.4%). Seven of the bla NDM positive isolates co-harbored bla OXA-48 carbapenemases. The bla NDM and bla OXA-48 were found in IncA/C and IncL/M conjugative plasmids, respectively. The bla CTX-M-15 , qnrA and intI1 genes were also present in most isolates. The PFGE revealed genetic diversity among the 28 E. coli isolates, which belonged to six minor PFGE clusters and 14 isolates were singletons. The 26 isolates were distributed into 18 STs, of which two were dominant (ST648 and ST167). We identified one bla NDM-1 -positive ST131 E. coli isolates that harbor the bla CTX-M-15 and bla TEM genes. Horizontal transfer of IncA/C and IncL/M plasmids has likely facilitated the spread of the bla OXA-48 and bla NDM genes among E. coli. Their clonal diversity and the presence of faecal carriers in isolates suggest an endemic spread of OXA-48 and NDM. Therefore, it emphasizes the critical importance of monitoring and controlling the spread of carbapenem resistant E. coli. Copyright © 2017. Published by Elsevier B.V.
Fan, X; Xiao, M; Chen, S; Kong, F; Dou, H-T; Wang, H; Xiao, Y-L; Kang, M; Sun, Z-Y; Hu, Z-D; Wan, Z; Chen, S-L; Liao, K; Chu, Y-Z; Hu, T-S; Zou, G-L; Hou, X; Zhang, L; Zhao, Y-P; Xu, Y-C; Liu, Z-Y
2016-10-01
There are few data on the molecular epidemiology of cryptococcosis in China. Here we investigated the species distribution, molecular types and antifungal susceptibilities of 312 Cryptococcus neoformans species complex isolates from ten hospitals over 5 years. Isolates were identified by internal transcribed spacer (ITS) sequencing and by two matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems. Multilocus sequence typing (MLST) was used to verify species/variety and to designate molecular types. Susceptibility to six antifungal drugs was determined by the Sensititre YeastOne™ method. Cryptococcus neoformans was the predominant species (305/312 isolates (97.8%), all were ITS type 1, serotype A), of which 89.2% (272/305) were C. neoformans var. grubii MLST sequence type (ST) 5 and 6.2% (19/305) were ST31. Other C. neoformans var. grubii STs were rare but included six novel STs. Only two strains were C. neoformans var. neoformans (both serotype AD). Cryptococcus gattii was uncommon (n = 7, four ITS types) and comprised five MLST STs including one novel ST. For C. neoformans var. grubii, the proportion of isolates with non-wild-type MICs to fluconazole significantly rose in the fourth study year (from 0% (0/56 isolates) in the first year to 23.9% (17/71) in the fourth year), including five isolates with fluconazole MICs of ≥32 mg/L. The study has provided useful data on the species epidemiology and their genetic diversity and antifungal susceptibility. The proportional increase in isolates with non-wild-type MICs to fluconazole is noted. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
2016-09-01
assigned a classification. MLST analysis MLST was determined using an in-house automated pipeline that first searches for homologs of each gene of...and virulence mechanism contributing to their success as pathogens in the wound environment. A novel bioinformatics pipeline was used to incorporate...monitored in two ways: read-based genome QC and assembly based metrics. The JCVI Genome QC pipeline samples sequence reads and performs BLAST
Tanaka, Yuhei; Gotoh, Kenji; Teramachi, Mariko; Ishimoto, Kazuhisa; Tsumura, Naoki; Shindou, Shizuo; Yamashita, Yushiro
2016-11-01
Here we report the molecular epidemiology of macrolide-resistant Streptococcus pyogenes (group A streptococci, GAS) isolated from children with pharyngotonsillitis between 2011 and 2013 in Japan. In 299 isolates, 124 (41.5%) isolates were macrolide-resistant. We characterized the isolates by emm typing, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). Of 299 isolates, 124 (41.5%) were macrolide-resistant isolates, 76 (61.3%) possessed mefA and 46 (37.1%) possessed ermB. All 76 isolates with mefA possessed msrD. There were no isolates possessed ermTR in this study. Eight emm/MLST types were observed. The predominant type was emm1/ST28 (57 isolates, 46.0%), which possessed the mefA/msrD complex, presenting as the M phenotype. The second most predominant type was emm12/ST467, which possessed ermB, presenting as the cMLS B phenotype. Of the cMLS B phenotype isolates, types emm28/ST52 and emm12/ST36 had multiple genetic backgrounds. We found high proportions of macrolide-resistant GAS in the southwestern areas of Japan. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Grange, Zoë L; Gartrell, Brett D; Biggs, Patrick J; Nelson, Nicola J; Anderson, Marti; French, Nigel P
2016-05-01
Isolation of wildlife into fragmented populations as a consequence of anthropogenic-mediated environmental change may alter host-pathogen relationships. Our understanding of some of the epidemiological features of infectious disease in vulnerable populations can be enhanced by the use of commensal bacteria as a proxy for invasive pathogens in natural ecosystems. The distinctive population structure of a well-described meta-population of a New Zealand endangered flightless bird, the takahe (Porphyrio hochstetteri), provided a unique opportunity to investigate the influence of host isolation on enteric microbial diversity. The genomic epidemiology of a prevalent rail-associated endemic commensal bacterium was explored using core genome and ribosomal multilocus sequence typing (rMLST) of 70 Campylobacter sp. nova 1 isolated from one third of the takahe population resident in multiple locations. While there was evidence of recombination between lineages, bacterial divergence appears to have occurred and multivariate analysis of 52 rMLST genes revealed location-associated differentiation of C. sp. nova 1 sequence types. Our results indicate that fragmentation and anthropogenic manipulation of populations can influence host-microbial relationships, with potential implications for niche adaptation and the evolution of micro-organisms in remote environments. This study provides a novel framework in which to explore the complex genomic epidemiology of micro-organisms in wildlife populations.
Rosain, Jérémie; Hong, Eva; Fieschi, Claire; Martins, Paula Vieira; El Sissy, Carine; Deghmane, Ala-Eddine; Ouachée, Marie; Thomas, Caroline; Launay, David; de Pontual, Loïc; Suarez, Felipe; Moshous, Despina; Picard, Capucine; Taha, Muhamed-Kheir; Frémeaux-Bacchi, Véronique
2017-04-15
Patients with terminal complement pathway deficiency (TPD) are susceptible to recurrent invasive meningococcal disease (IMD). Neisseria meningitidis (Nm) strains infecting these patients are poorly documented in the literature. We identified patients with TPD and available Nm strains isolated during IMD. We investigated the genetic basis of the different TPDs and the characteristics of the Nm strains. We included 56 patients with C5 (n = 8), C6 (n = 20), C7 (n = 18), C8 (n = 9), or C9 (n = 1) deficiency. Genetic study was performed in 47 patients and 30 pathogenic variants were identified in the genes coding for C5 (n = 4), C6 (n = 5), C7 (n = 12), C8 (n = 7), and C9 (n = 2). We characterized 61 Nm strains responsible for IMD in the 56 patients with TPD. The most frequent strains belonged to groups Y (n = 27 [44%]), B (n = 18 [30%]), and W (n = 8 [13%]). Hyperinvasive clonal complexes (CC11, CC32, CC41/44, and CC269) were responsible for 21% of IMD cases. The CC23 predominates and represented 26% of all invasive isolates. Eleven of the 15 clonal complexes identified fit to 12 different clonal complexes belonging to carriage strains. Unusual meningococcal strains with low level of virulence similar to carriage strains are most frequently responsible for IMD in patients with TPD. © The Author 217. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Mixed ductal‐lobular carcinomas: evidence for progression from ductal to lobular morphology
McCart Reed, Amy E; Kutasovic, Jamie R; Nones, Katia; Saunus, Jodi M; Da Silva, Leonard; Newell, Felicity; Kazakoff, Stephen; Melville, Lewis; Jayanthan, Janani; Vargas, Ana Cristina; Reid, Lynne E; Beesley, Jonathan; Chen, Xiao Qing; Patch, Anne-Marie; Clouston, David; Porter, Alan; Evans, Elizabeth; Pearson, John V; Chenevix‐Trench, Georgia; Cummings, Margaret C; Waddell, Nicola; Lakhani, Sunil R
2018-01-01
Abstract Mixed ductal–lobular carcinomas (MDLs) show both ductal and lobular morphology, and constitute an archetypal example of intratumoural morphological heterogeneity. The mechanisms underlying the coexistence of these different morphological entities are poorly understood, although theories include that these components either represent ‘collision’ of independent tumours or evolve from a common ancestor. We performed comprehensive clinicopathological analysis of a cohort of 82 MDLs, and found that: (1) MDLs more frequently coexist with ductal carcinoma in situ (DCIS) than with lobular carcinoma in situ (LCIS); (2) the E‐cadherin–catenin complex was normal in the ductal component in 77.6% of tumours; and (3) in the lobular component, E‐cadherin was almost always aberrantly located in the cytoplasm, in contrast to invasive lobular carcinoma (ILC), where E‐cadherin is typically absent. Comparative genomic hybridization and multiregion whole exome sequencing of four representative cases revealed that all morphologically distinct components within an individual case were clonally related. The mutations identified varied between cases; those associated with a common clonal ancestry included BRCA2, TBX3, and TP53, whereas those associated with clonal divergence included CDH1 and ESR1. Together, these data support a model in which separate morphological components of MDLs arise from a common ancestor, and lobular morphology can arise via a ductal pathway of tumour progression. In MDLs that present with LCIS and DCIS, the clonal divergence probably occurs early, and is frequently associated with complete loss of E‐cadherin expression, as in ILC, whereas, in the majority of MDLs, which present with DCIS but not LCIS, direct clonal divergence from the ductal to the lobular phenotype occurs late in tumour evolution, and is associated with aberrant expression of E‐cadherin. The mechanisms driving the phenotypic change may involve E‐cadherin–catenin complex deregulation, but are yet to be fully elucidated, as there is significant intertumoural heterogeneity, and each case may have a unique molecular mechanism. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:29344954
Zurfluh, Katrin; Wang, Juan; Klumpp, Jochen; Nüesch-Inderbinen, Magdalena; Fanning, Séamus; Stephan, Roger
2014-01-01
Objectives: The purpose of this study was to characterize sets of extended-spectrum β-lactamases (ESBL)-producing Enterobacteriaceae collected longitudinally from different flocks of broiler breeders, meconium of 1-day-old broilers from theses breeder flocks, as well as from these broiler flocks before slaughter. Methods: Five sets of ESBL-producing Escherichia coli were studied by multi-locus sequence typing (MLST), phylogenetic grouping, PCR-based replicon typing and resistance profiling. The blaCTX-M-1-harboring plasmids of one set (pHV295.1, pHV114.1, and pHV292.1) were fully sequenced and subjected to comparative analysis. Results: Eleven different MLST sequence types (ST) were identified with ST1056 the predominant one, isolated in all five sets either on the broiler breeder or meconium level. Plasmid sequencing revealed that blaCTX-M-1 was carried by highly similar IncI1/ST3 plasmids that were 105 076 bp, 110 997 bp, and 117 269 bp in size, respectively. Conclusions: The fact that genetically similar IncI1/ST3 plasmids were found in ESBL-producing E. coli of different MLST types isolated at the different levels in the broiler production pyramid provides strong evidence for a vertical transmission of these plasmids from a common source (nucleus poultry flocks). PMID:25324838
Zurfluh, Katrin; Wang, Juan; Klumpp, Jochen; Nüesch-Inderbinen, Magdalena; Fanning, Séamus; Stephan, Roger
2014-01-01
The purpose of this study was to characterize sets of extended-spectrum β-lactamases (ESBL)-producing Enterobacteriaceae collected longitudinally from different flocks of broiler breeders, meconium of 1-day-old broilers from theses breeder flocks, as well as from these broiler flocks before slaughter. Five sets of ESBL-producing Escherichia coli were studied by multi-locus sequence typing (MLST), phylogenetic grouping, PCR-based replicon typing and resistance profiling. The bla CTX-M-1-harboring plasmids of one set (pHV295.1, pHV114.1, and pHV292.1) were fully sequenced and subjected to comparative analysis. Eleven different MLST sequence types (ST) were identified with ST1056 the predominant one, isolated in all five sets either on the broiler breeder or meconium level. Plasmid sequencing revealed that bla CTX-M-1 was carried by highly similar IncI1/ST3 plasmids that were 105 076 bp, 110 997 bp, and 117 269 bp in size, respectively. The fact that genetically similar IncI1/ST3 plasmids were found in ESBL-producing E. coli of different MLST types isolated at the different levels in the broiler production pyramid provides strong evidence for a vertical transmission of these plasmids from a common source (nucleus poultry flocks).
Delorme, Christine; Legravet, Nicolas; Jamet, Emmanuel; Hoarau, Caroline; Alexandre, Bolotin; El-Sharoud, Walid M; Darwish, Mohamed S; Renault, Pierre
2017-02-02
We analyzed 178 Streptococcus thermophilus strains isolated from diverse products, from around the world, over a 60-year period with a new multilocus sequence typing (MLST) scheme. This collection included isolates from two traditional cheese-making sites with different starter-use practices, in sampling campaigns carried out over a three years period. The nucleotide diversity of the S. thermophilus population was limited, but 116 sequence types (ST) were identified. Phylogenetic analysis of the concatenated sequences of the six housekeeping genes revealed the existence of groups confirmed by eBURST analysis. Deeper analyses performed on 25 strains by CRISPR and whole-genome analysis showed that phylogenies obtained by MLST and whole-genome analysis were in agreement but differed from that inferred by CRISPR analysis. Strains isolated from traditional products could cluster in specific groups indicating their origin, but also be mixed in groups containing industrial starter strains. In the traditional cheese-making sites, we found that S. thermophilus persisted on dairy equipment, but that occasionally added starter strains may become dominant. It underlined the impact of starter use that may reshape S. thermophilus populations including in traditional products. This new MLST scheme thus provides a framework for analyses of S. thermophilus populations and the management of its biodiversity. Copyright © 2016 Elsevier B.V. All rights reserved.
Abdul Razzaq, Badar; Scalora, Allison; Koparde, Vishal N; Meier, Jeremy; Mahmood, Musa; Salman, Salman; Jameson-Lee, Max; Serrano, Myrna G; Sheth, Nihar; Voelkner, Mark; Kobulnicky, David J; Roberts, Catherine H; Ferreira-Gonzalez, Andrea; Manjili, Masoud H; Buck, Gregory A; Neale, Michael C; Toor, Amir A
2016-05-01
Immune reconstitution kinetics and subsequent clinical outcomes in HLA-matched recipients of allogeneic stem cell transplantation (SCT) are variable and difficult to predict. Considering SCT as a dynamical system may allow sequence differences across the exomes of the transplant donors and recipients to be used to simulate an alloreactive T cell response, which may allow better clinical outcome prediction. To accomplish this, whole exome sequencing was performed on 34 HLA-matched SCT donor-recipient pairs (DRPs) and the nucleotide sequence differences translated to peptides. The binding affinity of the peptides to the relevant HLA in each DRP was determined. The resulting array of peptide-HLA binding affinity values in each patient was considered as an operator modifying a hypothetical T cell repertoire vector, in which each T cell clone proliferates in accordance with the logistic equation of growth. Using an iterating system of matrices, each simulated T cell clone's growth was calculated with the steady-state population being proportional to the magnitude of the binding affinity of the driving HLA-peptide complex. Incorporating competition between T cell clones responding to different HLA-peptide complexes reproduces a number of features of clinically observed T cell clonal repertoire in the simulated repertoire, including sigmoidal growth kinetics of individual T cell clones and overall repertoire, Power Law clonal frequency distribution, increase in repertoire complexity over time with increasing clonal diversity, and alteration of clonal dominance when a different antigen array is encountered, such as in SCT. The simulated, alloreactive T cell repertoire was markedly different in HLA-matched DRPs. The patterns were differentiated by rate of growth and steady-state magnitude of the simulated T cell repertoire and demonstrate a possible correlation with survival. In conclusion, exome wide sequence differences in DRPs may allow simulation of donor alloreactive T cell response to recipient antigens and may provide a quantitative basis for refining donor selection and titration of immunosuppression after SCT. Copyright © 2016 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Holmes, Natasha E; Turnidge, John D; Munckhof, Wendy J; Robinson, J Owen; Korman, Tony M; O'Sullivan, Matthew V N; Anderson, Tara L; Roberts, Sally A; Warren, Sanchia J C; Coombs, Geoffrey W; Tan, Hui-Leen; Gao, Wei; Johnson, Paul D R; Howden, Benjamin P
2014-09-01
An elevated vancomycin MIC is associated with poor outcomes in Staphylococcus aureus bacteremia (SAB) and is reported in patients with methicillin-susceptible S. aureus (MSSA) bacteremia in the absence of vancomycin treatment. Here, using DNA microarray and phenotype analysis, we investigated the genetic predictors and accessory gene regulator (agr) function and their relationship with elevated vancomycin MIC using blood culture isolates from a multicenter binational cohort of patients with SAB. Specific clonal complexes were associated with elevated (clonal complex 8 [CC8] [P < 0.001]) or low (CC22 [P < 0.001], CC88 [P < 0.001], and CC188 [P = 0.002]) vancomycin MIC. agr dysfunction (P = 0.014) or agr genotype II (P = 0.043) were also associated with an elevated vancomycin MIC. Specific resistance and virulence genes were also linked to an elevated vancomycin MIC, including blaZ (P = 0.002), sea (P < 0.001), clfA (P < 0.001), splA (P = 0.001), and the arginine catabolic mobile element (ACME) locus (P = 0.02). These data suggest that inherent organism characteristics may explain the link between elevated vancomycin MICs and poor outcomes in patients with SAB, regardless of the antibiotic treatment received. A consideration of clonal specificity should be included in future research when attempting to ascertain treatment effects or clinical outcomes. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
A novel artificial immune clonal selection classification and rule mining with swarm learning model
NASA Astrophysics Data System (ADS)
Al-Sheshtawi, Khaled A.; Abdul-Kader, Hatem M.; Elsisi, Ashraf B.
2013-06-01
Metaheuristic optimisation algorithms have become popular choice for solving complex problems. By integrating Artificial Immune clonal selection algorithm (CSA) and particle swarm optimisation (PSO) algorithm, a novel hybrid Clonal Selection Classification and Rule Mining with Swarm Learning Algorithm (CS2) is proposed. The main goal of the approach is to exploit and explore the parallel computation merit of Clonal Selection and the speed and self-organisation merits of Particle Swarm by sharing information between clonal selection population and particle swarm. Hence, we employed the advantages of PSO to improve the mutation mechanism of the artificial immune CSA and to mine classification rules within datasets. Consequently, our proposed algorithm required less training time and memory cells in comparison to other AIS algorithms. In this paper, classification rule mining has been modelled as a miltiobjective optimisation problem with predictive accuracy. The multiobjective approach is intended to allow the PSO algorithm to return an approximation to the accuracy and comprehensibility border, containing solutions that are spread across the border. We compared our proposed algorithm classification accuracy CS2 with five commonly used CSAs, namely: AIRS1, AIRS2, AIRS-Parallel, CLONALG, and CSCA using eight benchmark datasets. We also compared our proposed algorithm classification accuracy CS2 with other five methods, namely: Naïve Bayes, SVM, MLP, CART, and RFB. The results show that the proposed algorithm is comparable to the 10 studied algorithms. As a result, the hybridisation, built of CSA and PSO, can develop respective merit, compensate opponent defect, and make search-optimal effect and speed better.
Long-range barcode labeling-sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Feng; Zhang, Tao; Singh, Kanwar K.
Methods for sequencing single large DNA molecules by clonal multiple displacement amplification using barcoded primers. Sequences are binned based on barcode sequences and sequenced using a microdroplet-based method for sequencing large polynucleotide templates to enable assembly of haplotype-resolved complex genomes and metagenomes.
Emergence of vanA Enterococcus faecium in Denmark, 2005-15.
Hammerum, Anette M; Baig, Sharmin; Kamel, Yasmin; Roer, Louise; Pinholt, Mette; Gumpert, Heidi; Holzknecht, Barbara; Røder, Bent; Justesen, Ulrik S; Samulioniené, Jurgita; Kjærsgaard, Mona; Østergaard, Claus; Holm, Anette; Dzajic, Esad; Søndergaard, Turid Snekloth; Gaini, Shahin; Edquist, Petra; Alm, Erik; Lilje, Berit; Westh, Henrik; Stegger, Marc; Hasman, Henrik
2017-08-01
To describe the changing epidemiology of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in clinical samples in Denmark 2005-15 according to species and van type, and, furthermore, to investigate the genetic relatedness of the clinical E. faecium isolates from 2015. During 2005-14, all clinical VRE isolates were tested for the presence of vanA/B/C genes by PCR. In 2015, all clinical VRE isolates were whole-genome sequenced. From the WGS data, the presence of van genes and MLST STs were extracted in silico . Core-genome MLST (cgMLST) analysis was performed for the vancomycin-resistant E. faecium isolates. During 2005-15, 1043 vanA E. faecium , 25 vanB E. faecium , 4 vanA E. faecalis and 28 vanB E. faecalis were detected. The number of VRE was <50 isolates/year until 2012 to > 200 isolates/year in 2013-15. In 2015, 368 vanA E. faecium and 1 vanB E. faecium were detected along with 1 vanA E. faecalis and 1 vanB E. faecalis . cgMLST subdivided the 368 vanA E. faecium isolates into 33 cluster types (CTs), whereas the vanB E. faecium isolate belonged to a different CT. ST203-CT859 was most prevalent (51%), followed by ST80-CT14 (22%), ST117-CT24 (6%), ST80-CT866 (4%) and ST80-CT860 (2%). Comparison with the cgMLST.org database, previous studies and personal communications with neighbouring countries revealed that the novel cluster ST203-CT859 emerged in December 2014 and spread to the south of Sweden and the Faroe Islands during 2015. VRE increased in Denmark during 2005-15 due to the emergence of several vanA E. faecium clones. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Adamiak, Paul; Vanderkooi, Otto G; Kellner, James D; Schryvers, Anthony B; Bettinger, Julie A; Alcantara, Joenel
2014-06-03
Multi-locus sequence typing (MLST) is a portable, broadly applicable method for classifying bacterial isolates at an intra-species level. This methodology provides clinical and scientific investigators with a standardized means of monitoring evolution within bacterial populations. MLST uses the DNA sequences from a set of genes such that each unique combination of sequences defines an isolate's sequence type. In order to reliably determine the sequence of a typing gene, matching sequence reads for both strands of the gene must be obtained. This study assesses the ability of both the standard, and an alternative set of, Streptococcus pneumoniae MLST primers to completely sequence, in both directions, the required typing alleles. The results demonstrated that for five (aroE, recP, spi, xpt, ddl) of the seven S. pneumoniae typing alleles, the standard primers were unable to obtain the complete forward and reverse sequences. This is due to the standard primers annealing too closely to the target regions, and current sequencing technology failing to sequence the bases that are too close to the primer. The alternative primer set described here, which includes a combination of primers proposed by the CDC and several designed as part of this study, addresses this limitation by annealing to highly conserved segments further from the target region. This primer set was subsequently employed to sequence type 105 S. pneumoniae isolates collected by the Canadian Immunization Monitoring Program ACTive (IMPACT) over a period of 18 years. The inability of several of the standard S. pneumoniae MLST primers to fully sequence the required region was consistently observed and is the result of a shift in sequencing technology occurring after the original primers were designed. The results presented here introduce clear documentation describing this phenomenon into the literature, and provide additional guidance, through the introduction of a widely validated set of alternative primers, to research groups seeking to undertake S. pneumoniae MLST based studies.
NASA Astrophysics Data System (ADS)
Dai, F. Z.; Geng, J.; Tan, W. S.; Ren, X. D.; Lu, J. Z.; Huang, Shu
2018-07-01
The Ti6Al4V micro-dimple surfaces fabricated by a masked laser surface texturing (MLST) technique within water were subjected to soft contact laser shock peening (SCLSP) and hard contact laser shock peening (HCLSP). The effects of these two LSP methods on topography, micro-hardness and residual stress distribution were studied. The friction and wear performance under dry friction and oil lubrication were also studied. The enclosure of micro cracks in the micro-dimple bottom was observed when treated by SCLSP and HCLSP. The dry friction and wear test showed that the MLST+HCLSP surfaces had the best wear resistance performance. In the oil lubricated friction test, the occurrence of the hydrodynamic lubrication effect occurred on the micro-dimple surfaces. The MLST+HCLSP exhibited the best friction and wear resistance performance. These were due to the micro-hardness increase, the producing of compressive residual stress and the surface roughness reduction of as treated surfaces.
Charpentier, Elena; Garnaud, Cécile; Wintenberger, Claire; Bailly, Sébastien; Murat, Jean-Benjamin; Rendu, John; Pavese, Patricia; Drouet, Thibault; Augier, Caroline; Malvezzi, Paolo; Thiébaut-Bertrand, Anne; Mallaret, Marie-Reine; Epaulard, Olivier; Cornet, Muriel; Larrat, Sylvie; Maubon, Danièle
2017-08-01
Pneumocystis jirovecii is a major threat for immunocompromised patients, and clusters of pneumocystis pneumonia (PCP) have been increasingly described in transplant units during the past decade. Exploring an outbreak transmission network requires complementary spatiotemporal and strain-typing approaches. We analyzed a PCP outbreak and demonstrated the added value of next-generation sequencing (NGS) for the multilocus sequence typing (MLST) study of P. jirovecii strains. Thirty-two PCP patients were included. Among the 12 solid organ transplant patients, 5 shared a major and unique genotype that was also found as a minor strain in a sixth patient. A transmission map analysis strengthened the suspicion of nosocomial acquisition of this strain for the 6 patients. NGS-MLST enables accurate determination of subpopulation, which allowed excluding other patients from the transmission network. NGS-MLST genotyping approach was essential to deciphering this outbreak. This innovative approach brings new insights for future epidemiologic studies on this uncultivable opportunistic fungus.
Charpentier, Elena; Garnaud, Cécile; Wintenberger, Claire; Bailly, Sébastien; Murat, Jean-Benjamin; Rendu, John; Pavese, Patricia; Drouet, Thibault; Augier, Caroline; Malvezzi, Paolo; Thiébaut-Bertrand, Anne; Mallaret, Marie-Reine; Epaulard, Olivier; Cornet, Muriel; Larrat, Sylvie
2017-01-01
Pneumocystis jirovecii is a major threat for immunocompromised patients, and clusters of pneumocystis pneumonia (PCP) have been increasingly described in transplant units during the past decade. Exploring an outbreak transmission network requires complementary spatiotemporal and strain-typing approaches. We analyzed a PCP outbreak and demonstrated the added value of next-generation sequencing (NGS) for the multilocus sequence typing (MLST) study of P. jirovecii strains. Thirty-two PCP patients were included. Among the 12 solid organ transplant patients, 5 shared a major and unique genotype that was also found as a minor strain in a sixth patient. A transmission map analysis strengthened the suspicion of nosocomial acquisition of this strain for the 6 patients. NGS-MLST enables accurate determination of subpopulation, which allowed excluding other patients from the transmission network. NGS-MLST genotyping approach was essential to deciphering this outbreak. This innovative approach brings new insights for future epidemiologic studies on this uncultivable opportunistic fungus. PMID:28726611
Allix-Béguec, Caroline; Wahl, Céline; Hanekom, Madeleine; Nikolayevskyy, Vladyslav; Drobniewski, Francis; Maeda, Shinji; Campos-Herrero, Isolina; Mokrousov, Igor; Niemann, Stefan; Kontsevaya, Irina; Rastogi, Nalin; Samper, Sofia; Sng, Li-Hwei; Warren, Robin M.
2014-01-01
Mycobacterium tuberculosis Beijing strains represent targets of special importance for molecular surveillance of tuberculosis (TB), especially because they are associated with spread of multidrug resistance in some world regions. Standard 24-locus mycobacterial interspersed repetitive-unit–variable-number tandem-repeat (MIRU-VNTR) typing lacks resolution power for accurately discriminating closely related clones that often compose Beijing strain populations. Therefore, we evaluated a set of 7 additional, hypervariable MIRU-VNTR loci for better resolution and tracing of such strains, using a collection of 535 Beijing isolates from six world regions where these strains are known to be prevalent. The typeability and interlaboratory reproducibility of these hypervariable loci were lower than those of the 24 standard loci. Three loci (2163a, 3155, and 3336) were excluded because of their redundant variability and/or more frequent noninterpretable results compared to the 4 other markers. The use of the remaining 4-locus set (1982, 3232, 3820, and 4120) increased the number of types by 52% (from 223 to 340) and reduced the clustering rate from 58.3 to 36.6%, when combined with the use of the standard 24-locus set. Known major clonal complexes/24-locus-based clusters were all subdivided, although the degree of subdivision varied depending on the complex. Only five single-locus variations were detected among the hypervariable loci of an additional panel of 92 isolates, representing 15 years of clonal spread of a single Beijing strain in a geographically restricted setting. On this calibrated basis, we propose this 4-locus set as a consensus for subtyping Beijing clonal complexes and clusters, after standard typing. PMID:24172154
Allix-Béguec, Caroline; Wahl, Céline; Hanekom, Madeleine; Nikolayevskyy, Vladyslav; Drobniewski, Francis; Maeda, Shinji; Campos-Herrero, Isolina; Mokrousov, Igor; Niemann, Stefan; Kontsevaya, Irina; Rastogi, Nalin; Samper, Sofia; Sng, Li-Hwei; Warren, Robin M; Supply, Philip
2014-01-01
Mycobacterium tuberculosis Beijing strains represent targets of special importance for molecular surveillance of tuberculosis (TB), especially because they are associated with spread of multidrug resistance in some world regions. Standard 24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing lacks resolution power for accurately discriminating closely related clones that often compose Beijing strain populations. Therefore, we evaluated a set of 7 additional, hypervariable MIRU-VNTR loci for better resolution and tracing of such strains, using a collection of 535 Beijing isolates from six world regions where these strains are known to be prevalent. The typeability and interlaboratory reproducibility of these hypervariable loci were lower than those of the 24 standard loci. Three loci (2163a, 3155, and 3336) were excluded because of their redundant variability and/or more frequent noninterpretable results compared to the 4 other markers. The use of the remaining 4-locus set (1982, 3232, 3820, and 4120) increased the number of types by 52% (from 223 to 340) and reduced the clustering rate from 58.3 to 36.6%, when combined with the use of the standard 24-locus set. Known major clonal complexes/24-locus-based clusters were all subdivided, although the degree of subdivision varied depending on the complex. Only five single-locus variations were detected among the hypervariable loci of an additional panel of 92 isolates, representing 15 years of clonal spread of a single Beijing strain in a geographically restricted setting. On this calibrated basis, we propose this 4-locus set as a consensus for subtyping Beijing clonal complexes and clusters, after standard typing.
Salazar, Clara Lina; Reyes, Catalina; Cienfuegos-Gallet, Astrid Vanessa; Best, Emma; Atehortua, Santiago; Sierra, Patricia; Correa, Margarita M; Fawley, Warren N; Paredes-Sabja, Daniel; Wilcox, Mark; Gonzalez, Angel
2018-01-01
We aimed to achieve a higher typing resolution within the three dominant Clostridium difficile ribotypes (591,106 and 002) circulating in Colombia. A total of 50 C. difficile isolates we had previously typed by PCR-ribotyping, representing the major three ribotypes circulating in Colombia, were analyzed. Twenty-seven isolates of ribotype 591, 12 of ribotype 106 and 11 of ribotype 002 were subtyped by multiple locus variable-number tandem-repeat analysis (MLVA). The presence of the PaLoc genes (tcdA/tcdB), toxin production in culture and antimicrobial susceptibility were also determined. From the total C. difficile ribotypes analyzed, 20 isolates (74%) of ribotype 591, nine (75%) of ribotype 106 and five (45.5%) of ribotype 002 were recovered from patients with Clostridium difficile infection (CDI). MLVA allowed us to recognize four and two different clonal complexes for ribotypes 591 and 002, respectively, having a summed tandem-repeat difference (STRD) <2, whereas none of the ribotype 106 isolates were grouped in a cluster or clonal complex having a STRD >10. Six ribotype 591 and three ribotype 002 isolates belonging to a defined clonal complex were isolated on the same week in two different hospitals. All ribotypes harbored either tcdA+/tcdB+ or tcdA-/tcdB+ PaLoc genes. Moreover, 94% of the isolates were positive for toxin in culture. All isolates were susceptible to vancomycin and metronidazole, while 75% to 100% of the isolates were resistant to clindamycin, and less than 14.8% of ribotype 591 isolates were resistant to moxifloxacina. No significant differences were found among ribotypes with respect to demographic and clinical patients' data; however, our results demonstrated a high molecular heterogeneity of C. difficile strains circulating in Colombia.
Salazar, Clara Lina; Reyes, Catalina; Cienfuegos-Gallet, Astrid Vanessa; Best, Emma; Atehortua, Santiago; Sierra, Patricia; Correa, Margarita M.; Fawley, Warren N.; Paredes-Sabja, Daniel; Wilcox, Mark
2018-01-01
We aimed to achieve a higher typing resolution within the three dominant Clostridium difficile ribotypes (591,106 and 002) circulating in Colombia. A total of 50 C. difficile isolates we had previously typed by PCR-ribotyping, representing the major three ribotypes circulating in Colombia, were analyzed. Twenty-seven isolates of ribotype 591, 12 of ribotype 106 and 11 of ribotype 002 were subtyped by multiple locus variable-number tandem-repeat analysis (MLVA). The presence of the PaLoc genes (tcdA/tcdB), toxin production in culture and antimicrobial susceptibility were also determined. From the total C. difficile ribotypes analyzed, 20 isolates (74%) of ribotype 591, nine (75%) of ribotype 106 and five (45.5%) of ribotype 002 were recovered from patients with Clostridium difficile infection (CDI). MLVA allowed us to recognize four and two different clonal complexes for ribotypes 591 and 002, respectively, having a summed tandem-repeat difference (STRD) <2, whereas none of the ribotype 106 isolates were grouped in a cluster or clonal complex having a STRD >10. Six ribotype 591 and three ribotype 002 isolates belonging to a defined clonal complex were isolated on the same week in two different hospitals. All ribotypes harbored either tcdA+/tcdB+ or tcdA-/tcdB+ PaLoc genes. Moreover, 94% of the isolates were positive for toxin in culture. All isolates were susceptible to vancomycin and metronidazole, while 75% to 100% of the isolates were resistant to clindamycin, and less than 14.8% of ribotype 591 isolates were resistant to moxifloxacina. No significant differences were found among ribotypes with respect to demographic and clinical patients’ data; however, our results demonstrated a high molecular heterogeneity of C. difficile strains circulating in Colombia. PMID:29649308
Marcelletti, Simone; Scortichini, Marco
2016-12-01
Xylella fastidiosa, a xylem-limited bacterium transmitted by xylem-fluid-feeding Hemiptera insects, causes economic losses of both woody and herbaceous plant species. A Xyl. fastidiosa subsp. pauca strain, namely CoDiRO, was recently found to be associated with the 'olive quick decline syndrome' in southern Italy (i.e. Apulia region). Recently, some Xyl. fastidiosa strains intercepted in France from Coffea spp. plant cuttings imported from Central and South America were characterized. The introduction of infected plant material from Central America in Apulia was also postulated even though an ad hoc study to confirm this hypothesis is lacking. In the present study, we assessed the complete and draft genome of 27 Xyl. fastidiosa strains. Through a genome-wide approach, we confirmed the occurrence of three subspecies within Xyl. fastidiosa, namely fastidiosa, multiplex and pauca, and demonstrated the occurrence of a genetic clonal complex of four Xyl. fastidiosa strains belonging to subspecies pauca which evolved in Central America. The CoDiRO strain displayed 13 SNPs when compared with a strain isolated in Costa Rica from Coffea sp. and 32 SNPs when compared with two strains obtained from Nerium oleander in Costa Rica. These results support the close relationships of the two strains. The four strains in the clonal complex contain prophage-like genes in their genomes. This study strongly supports the possibility of the introduction of Xyl. fastidiosa in southern Italy via coffee plants grown in Central America. The data also stress how the current global circulation of agricultural commodities potentially threatens the agrosystems worldwide.
Mahu, M; Pasmans, F; Vranckx, K; De Pauw, N; Vande Maele, L; Vyt, Philip; Vandersmissen, Tamara; Martel, A; Haesebrouck, F; Boyen, F
2017-08-01
Swine dysentery (SD) is an economically important disease for which antimicrobial treatment still occupies an important place to control outbreaks. However, acquired antimicrobial resistance is increasingly observed in Brachyspira hyodysenteriae. In this study, the Minimal Inhibitory Concentrations (MIC) of six antimicrobial compounds for 30 recent Belgian B. hyodysenteriae isolates were determined using a broth microdilution method. In addition, relevant regions of the 16S rRNA, 23S rRNA and the L3 protein encoding genes were sequenced to reveal mutations associated with acquired resistance. Finally, a phylogeny was reconstructed using minimal spanning tree analysis of multi locus sequence typing of the isolates. For lincomycin, doxycycline, tylosin and tylvalosin, at least 70% of the isolates did not belong to the wild-type population and were considered to have acquired resistance. For valnemulin and tiamulin, this was over 50%. In all isolates with acquired resistance to doxycycline, the G1058C mutation was present in their 16S rRNA gene. All isolates showing acquired resistance to lincomycin and both macrolides displayed the A2058T mutation in their 23S rRNA gene. Other mutations in this gene and the N148S mutation in the L3 protein were present in both wild-type isolates and isolates considered to have acquired resistance. Multi locus sequence analysis revealed a previously undescribed clonal complex, with 4 novel sequence types in which the majority of isolates showed acquired resistance to all tested antimicrobial products. In conclusion, acquired antimicrobial resistance is widespread among Belgian B. hyodysenteriae isolates. The emergence of multi-resistant clonal complexes can pose a threat to swine industry. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuo, C.; Hsu, B.; Shen, T.; Tseng, S.; Tsai, J.; Huang, K.; Kao, P.; Chen, J.
2013-12-01
Salmonella spp. is a common water-borne pathogens and its genus comprises more than 2,500 serotypes. Major pathogenic genotypes which cause typhoid fever, enteritis and other intestinal-type diseases are S. Typhimurium, S. Enteritidis, S. Stanley, S. Agona, S.Albany, S. Schwarzengrund, S. Newport, S. Choleraesuis, and S. Derby. Hence, the identification of the serotypes of Salmonella spp. is important. In the present study, the analytical procedures include direct concentration method, non-selective pre-enrichment method and selective enrichment method of Salmonella spp.. Both selective enrichment method and cultured bacteria were detected with specific primers of Salmonella spp. by polymerase chain reaction (PCR). At last, the serotypes of Salmonella were confirmed by using MLST (multilocus sequence typing) with aroC, dnaN, hemD, hisD, purE, sucA, thrA housekeeping genes to identify the strains of positive samples. This study contains 121 samples from three different types of water sources including the drinking water (51), streams (45), and swine wastewater (25). Thirteen samples with positive invA gene are separated from culture method. The strains of these positive samples which identified from MLST method are S. Albany, S. Typhimurium, S. Newport, S. Bareilly, and S. Derby. Some of the serotypes, S. Albany, S. Typhimurium and S. Newport, are highly pathogenic which correlated to human diarrhea. In our results, MLST is a useful method to identify the strains of Salmonella spp.. Keywords: Salmonella, PCR, MLST.
Rodriguez, Marcela; Hogan, Patrick G; Satola, Sarah W; Crispell, Emily; Wylie, Todd; Gao, Hongyu; Sodergren, Erica; Weinstock, George M; Burnham, Carey-Ann D; Fritz, Stephanie A
2015-09-01
Historically, a number of typing methods have been evaluated for Staphylococcus aureus strain characterization. The emergence of contemporary strains of community-associated S. aureus, and the ensuing epidemic with a predominant strain type (USA300), necessitates re-evaluation of the discriminatory power of these typing methods for discerning molecular epidemiology and transmission dynamics, essential to investigations of hospital and community outbreaks. We compared the discriminatory index of 5 typing methods for contemporary S. aureus strain characterization. Children presenting to St. Louis Children's Hospital and community pediatric practices in St. Louis, Missouri (MO), with community-associated S. aureus infections were enrolled. Repetitive sequence-based PCR (repPCR), pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), staphylococcal protein A (spa), and staphylococcal cassette chromosome (SCC) mec typing were performed on 200 S. aureus isolates. The discriminatory index of each method was calculated using the standard formula for this metric, where a value of 1 is highly discriminatory and a value of 0 is not discriminatory. Overall, we identified 26 distinct strain types by repPCR, 17 strain types by PFGE, 30 strain types by MLST, 68 strain types by spa typing, and 5 strain types by SCCmec typing. RepPCR had the highest discriminatory index (D) of all methods (D = 0.88), followed by spa typing (D = 0.87), MLST (D = 0.84), PFGE (D = 0.76), and SCCmec typing (D = 0.60). The method with the highest D among MRSA isolates was repPCR (D = 0.64) followed by spa typing (D = 0.45) and MLST (D = 0.44). The method with the highest D among MSSA isolates was spa typing (D = 0.98), followed by MLST (D = 0.93), repPCR (D = 0.92), and PFGE (D = 0.89). Among isolates designated USA300 by PFGE, repPCR was most discriminatory, with 10 distinct strain types identified (D = 0.63). We identified 45 MRSA isolates which were classified as identical by PFGE, MLST, spa typing, and SCCmec typing (USA300, ST8, t008, SCCmec IV, respectively); within this collection, there were 5 distinct strain types identified by repPCR. The typing methods yielded comparable discriminatory power for S. aureus characterization overall; when discriminating among USA300 isolates, repPCR retained the highest discriminatory power. This property is advantageous for investigations conducted in the era of contemporary S. aureus infections.
Rodriguez, Marcela; Hogan, Patrick G.; Satola, Sarah W.; Crispell, Emily; Wylie, Todd; Gao, Hongyu; Sodergren, Erica; Weinstock, George M.; Burnham, Carey-Ann D.; Fritz, Stephanie A.
2015-01-01
Abstract Historically, a number of typing methods have been evaluated for Staphylococcus aureus strain characterization. The emergence of contemporary strains of community-associated S. aureus, and the ensuing epidemic with a predominant strain type (USA300), necessitates re-evaluation of the discriminatory power of these typing methods for discerning molecular epidemiology and transmission dynamics, essential to investigations of hospital and community outbreaks. We compared the discriminatory index of 5 typing methods for contemporary S. aureus strain characterization. Children presenting to St. Louis Children's Hospital and community pediatric practices in St. Louis, Missouri (MO), with community-associated S. aureus infections were enrolled. Repetitive sequence-based PCR (repPCR), pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), staphylococcal protein A (spa), and staphylococcal cassette chromosome (SCC) mec typing were performed on 200 S. aureus isolates. The discriminatory index of each method was calculated using the standard formula for this metric, where a value of 1 is highly discriminatory and a value of 0 is not discriminatory. Overall, we identified 26 distinct strain types by repPCR, 17 strain types by PFGE, 30 strain types by MLST, 68 strain types by spa typing, and 5 strain types by SCCmec typing. RepPCR had the highest discriminatory index (D) of all methods (D = 0.88), followed by spa typing (D = 0.87), MLST (D = 0.84), PFGE (D = 0.76), and SCCmec typing (D = 0.60). The method with the highest D among MRSA isolates was repPCR (D = 0.64) followed by spa typing (D = 0.45) and MLST (D = 0.44). The method with the highest D among MSSA isolates was spa typing (D = 0.98), followed by MLST (D = 0.93), repPCR (D = 0.92), and PFGE (D = 0.89). Among isolates designated USA300 by PFGE, repPCR was most discriminatory, with 10 distinct strain types identified (D = 0.63). We identified 45 MRSA isolates which were classified as identical by PFGE, MLST, spa typing, and SCCmec typing (USA300, ST8, t008, SCCmec IV, respectively); within this collection, there were 5 distinct strain types identified by repPCR. The typing methods yielded comparable discriminatory power for S. aureus characterization overall; when discriminating among USA300 isolates, repPCR retained the highest discriminatory power. This property is advantageous for investigations conducted in the era of contemporary S. aureus infections. PMID:26376402
Novel epidemic clones of Listeria monocytogenes, United States, 2011
USDA-ARS?s Scientific Manuscript database
This study determined whether four clinical and five food/environmental isolates associated with the 2011 U.S. cantaloupe listeriosis outbreak were previously identified outbreak strains, if they belonged to previously observed clonal complexes (CCs), to one of the five known epidemic clones (ECs) o...
Kretz, Cecilia B; Retchless, Adam C; Sidikou, Fati; Issaka, Bassira; Ousmane, Sani; Schwartz, Stephanie; Tate, Ashley H; Pana, Assimawè; Njanpop-Lafourcade, Berthe-Marie; Nzeyimana, Innocent; Nse, Ricardo Obama; Deghmane, Ala-Eddine; Hong, Eva; Brynildsrud, Ola Brønstad; Novak, Ryan T; Meyer, Sarah A; Oukem-Boyer, Odile Ouwe Missi; Ronveaux, Olivier; Caugant, Dominique A; Taha, Muhamed-Kheir; Wang, Xin
2016-10-01
In 2015, Niger reported the largest epidemic of Neisseria meningitidis serogroup C (NmC) meningitis in sub-Saharan Africa. The NmC epidemic coincided with serogroup W (NmW) cases during the epidemic season, resulting in a total of 9,367 meningococcal cases through June 2015. To clarify the phylogenetic association, genetic evolution, and antibiotic determinants of the meningococcal strains in Niger, we sequenced the genomes of 102 isolates from this epidemic, comprising 81 NmC and 21 NmW isolates. The genomes of 82 isolates were completed, and all 102 were included in the analysis. All NmC isolates had sequence type 10217, which caused the outbreaks in Nigeria during 2013-2014 and for which a clonal complex has not yet been defined. The NmC isolates from Niger were substantially different from other NmC isolates collected globally. All NmW isolates belonged to clonal complex 11 and were closely related to the isolates causing recent outbreaks in Africa.
Schinasi, Leah; Wing, Steve; Augustino, Kerri L; Ramsey, Keith M; Nobles, Delores L; Richardson, David B; Price, Lance B; Aziz, Maliha; MacDonald, Pia D M; Stewart, Jill R
2014-06-23
Distinct strains of methicillin resistant Staphylococcus aureus (MRSA) have been identified on livestock and livestock workers. Industrial food animal production may be an important environmental reservoir for human carriage of these pathogenic bacteria. The objective of this study was to investigate environmental and occupational exposures associated with nasal carriage of MRSA in patients hospitalized at Vidant Medical Center, a tertiary hospital serving a region with intensive livestock production in eastern North Carolina. MRSA nasal carriage was identified via nasal swabs collected within 24 hours of hospital admission. MRSA carriers (cases) were gender and age matched to non-carriers (controls). Participants were interviewed about recent environmental and occupational exposures. Home addresses were geocoded and publicly available data were used to estimate the density of swine in residential census block groups of residence. Conditional logistic regression models were used to derive odds ratio (OR) estimates and 95% confidence intervals (CI). Presence of the scn gene in MRSA isolates was assessed. In addition, multi locus sequence typing (MLST) of the MRSA isolates was performed, and the Diversilab® system was used to match the isolates to USA pulsed field gel electrophoresis types. From July - December 2011, 117 cases and 119 controls were enrolled. A higher proportion of controls than cases were current workforce members (41.2% vs. 31.6%) Cases had a higher odds of living in census block groups with medium densities of swine (OR: 4.76, 95% CI: 1.36-16.69) and of reporting the ability to smell odor from a farm with animals when they were home (OR: 1.51, 95% CI: 0.80-2.86). Of 49 culture positive MRSA isolates, all were scn positive. Twenty-two isolates belonged to clonal complex 5. Absence of livestock workers in this study precluded evaluation of occupational exposures. Higher odds of MRSA in medium swine density areas could reflect environmental exposure to swine or poultry.
Han, Chongxu; Tang, Hui; Ren, Chuanli; Zhu, Xiaoping; Han, Dongsheng
2016-01-01
Pandemic Vibrio parahaemolyticus is an emerging public health concern as it has caused numerous gastroenteritis outbreaks worldwide. Currently, the absence of a global overview of the phenotypic and molecular characteristics of pandemic strains restricts our overall understanding of these strains, especially for environmental strains. To generate a global picture of the sero-prevalence and genetic diversity of pandemic V. parahaemolyticus, pandemic isolates from worldwide collections were selected and analyzed in this study. After a thorough analysis, we found that the pandemic isolates represented 49 serotypes, which are widely distributed in 22 countries across four continents (Asia, Europe, America and Africa). All of these serotypes were detected in clinical isolates but only nine in environmental isolates. O3:K6 was the most widely disseminated serotype, followed by O3:KUT, while the others were largely restricted to certain countries. The countries with the most abundant pandemic serotypes were China (26 serotypes), India (24 serotypes), Thailand (15 serotypes) and Vietnam (10 serotypes). Based on MLST analysis, 14 sequence types (STs) were identified among the pandemic strains, nine of which fell within clonal complex (CC) 3. ST3 and ST305 were the only two STs that have been reported in environmental pandemic strains. Pandemic ST3 has caused a wide range of infections in as many as 16 countries. Substantial serotypic diversity was mainly observed among isolates within pandemic ST3, including as many as 12 combinations of O/K serotypes. At the allele level, the dtdS and pntA, two loci that perfectly conserved in CC3, displayed a degree of polymorphism in some pandemic strains. In conclusion, we provide a comprehensive understanding of sero-prevalence and genetic differentiation of clinical and environmental pandemic isolates collected from around the world. Although, further studies are needed to delineate the specific mechanisms by which the pandemic strains evolve and spread, the findings in this study are helpful when seeking countermeasures to reduce the spread of V. parahaemolyticus in endemic areas.
2014-01-01
Background Distinct strains of methicillin resistant Staphylococcus aureus (MRSA) have been identified on livestock and livestock workers. Industrial food animal production may be an important environmental reservoir for human carriage of these pathogenic bacteria. The objective of this study was to investigate environmental and occupational exposures associated with nasal carriage of MRSA in patients hospitalized at Vidant Medical Center, a tertiary hospital serving a region with intensive livestock production in eastern North Carolina. Methods MRSA nasal carriage was identified via nasal swabs collected within 24 hours of hospital admission. MRSA carriers (cases) were gender and age matched to non-carriers (controls). Participants were interviewed about recent environmental and occupational exposures. Home addresses were geocoded and publicly available data were used to estimate the density of swine in residential census block groups of residence. Conditional logistic regression models were used to derive odds ratio (OR) estimates and 95% confidence intervals (CI). Presence of the scn gene in MRSA isolates was assessed. In addition, multi locus sequence typing (MLST) of the MRSA isolates was performed, and the Diversilab® system was used to match the isolates to USA pulsed field gel electrophoresis types. Results From July - December 2011, 117 cases and 119 controls were enrolled. A higher proportion of controls than cases were current workforce members (41.2% vs. 31.6%) Cases had a higher odds of living in census block groups with medium densities of swine (OR: 4.76, 95% CI: 1.36-16.69) and of reporting the ability to smell odor from a farm with animals when they were home (OR: 1.51, 95% CI: 0.80-2.86). Of 49 culture positive MRSA isolates, all were scn positive. Twenty-two isolates belonged to clonal complex 5. Conclusions Absence of livestock workers in this study precluded evaluation of occupational exposures. Higher odds of MRSA in medium swine density areas could reflect environmental exposure to swine or poultry. PMID:24958086
Bocanegra-Ibarias, Paola; Garza-González, Elvira; Morfín-Otero, Rayo; Barrios, Humberto; Villarreal-Treviño, Licet; Rodríguez-Noriega, Eduardo; Garza-Ramos, Ulises; Petersen-Morfin, Santiago; Silva-Sanchez, Jesus
2017-01-01
To characterize the microbiological, molecular and epidemiological data of an outbreak of carbapenem-resistant Enterobacteriaceae (CRE) in a tertiary-care hospital in Mexico. From September 2014 to July 2015, all CRE clinical isolates recovered during an outbreak in the Hospital Civil "Fray Antonio Alcalde" in Jalisco, Mexico were screened for antimicrobial susceptibility, carbapenemase production, carbapenemase-encoding genes, and plasmid profiles. Horizontal transfer of imipenem resistance; and clonal diversity by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST); as well as biofilm production and the presence of 14 virulence genes were analyzed in selected isolates. Fifty-two carbapenem-resistant isolates corresponding to 5 species were detected, i.e., Klebsiella pneumoniae (n = 46), Enterobacter cloacae (n = 3), Escherichia coli (n = 1), Providencia rettgeri (n = 1) and Citrobacter freundii (n = 1) with carbapenemase encoding genes blaNDM-1 (n = 48), blaVIM (n = 3), blaIMP (n = 1) and blaKPC (n = 1) detected in these isolates. The blaNDM-1 gene was detected in plasmids from 130- to 170-kb in K. pneumoniae (n = 46); E. cloacae (n = 3), E. coli (n = 1) and P. rettgeri (n = 1). The transfer of plasmids harboring the blaNDM-1 gene was obtained in eight transconjugants. One plasmid restriction pattern was detected, with the blaNDM-1 identified in different restriction fragments. Predominant clone A of K. pneumoniae isolates archived 28/46 (60%) isolates and belongs to ST392. Besides, ST307, ST309, ST846, ST2399, and ST2400 were detected for K. pneumoniae; as well as E. cloacae ST182 and E. coli ST10. The fimA and uge genes were more likely to be identified in K. pneumoniae carbapenem-susceptible isolates (p = <0.001) and biofilm production was more liable to be observed in carbapenem-resistant isolates (p = <0.05). Four Enterobacteriaceae species harboring the blaNDM-1 gene were detected in a nosocomial outbreak in Mexico; horizontal transfer and strain transmission were demonstrated for the blaNDM-1 gene. Given the variation in the size of the plasmid harboring blaNDM-1, complex rearrangements must also be occurring.
Ryan, Will H
2018-02-01
The temperature-size rule is a commonly observed pattern where adult body size is negatively correlated with developmental temperature. In part, this may occur as a consequence of allometric scaling, where changes in the ratio of surface area to mass limit oxygen diffusion as body size increases. As oxygen demand increases with temperature, a smaller body should be favored as temperature increases. For clonal animals, small changes in growth and/or fission rate can rapidly alter the average body size of clonal descendants. Here I test the hypothesis that the clonal sea anemone Diadumene lineata is able to track an optimal body size through seasonal temperature changes using fission rate plasticity. Individuals from three regions (Florida, Georgia, and Massachusetts) across the species' latitudinal range were grown in a year-long reciprocal common garden experiment mimicking seasonal temperature changes at three sites. Average body size was found to be smaller and fission rates higher in warmer conditions, consistent with the temperature-size rule pattern. However, seasonal size and fission patterns reflect a complex interaction between region-specific thermal reaction norms and the local temperature regime. These details provide insight into both the range of conditions required for oxygen limitation to contribute to a negative correlation between body size and temperature and the role that fission rate plasticity can play in tracking a rapidly changing optimal phenotype.
de Souza da-Silva, Ana Paula; de Sousa, Viviane Santos; Martins, Natacha; da Silva Dias, Rubens Clayton; Bonelli, Raquel Regina; Riley, Lee W; Moreira, Beatriz Meurer
2017-05-01
Escherichia coli clones ST131, ST69, ST95, and ST73 are frequent causes of urinary tract infections (UTI) and bloodstream infections. Specific clones and virulence profiles of E. coli causing UTI in men has been rarely described. The aim of this study was to characterize patient and clonal characteristics of community-acquired UTI caused by E. coli in men (n=12) and women (n=127) in Rio de Janeiro, Brazil, complementing a previous work. We characterized isolates in phylogenetic groups, ERIC2-PCR and PFGE types, MLST, genome similarity and virulence gene-profiles. UTI from men were more frequently caused by phylogenetic group B2 isolates (83% versus 42%, respectively, P = 0.01), a group with significantly higher virulence scores compared with women. ST73 was the predominant clone in men (50%) and the second most frequent in women (12%), with the highest virulence score (mean and median=9) among other clones. ST73 gnomes formed at least six clusters. E. coli from men carried significantly higher numbers of virulence genes, such as sfa/focDE (67% versus 27%), hlyA (58% versus 24%), cnf 1 (58% versus 16%), fyuA (100% versus 82%) and MalX (92% versus 44%), compared with isolates from women. These data suggest the predominance and spread of ST73 isolates likely relates to an abundance of virulence determinants. Copyright © 2017 Elsevier Inc. All rights reserved.
Sudagidan, Mert; Aydin, Ali
2010-04-15
In this study, three Panton-Valentine Leukocidin gene carrying methicillin-susceptible Staphylococcus aureus (MSSA) strains (M1-AAG42B, PY30C-b and YF1B-b) were isolated from different food samples in Kesan-Edirne, Turkey. These strains were characterized on the basis of MLST type, spa type, virulence factor gene contents, antibiotic susceptibilities against 21 antibiotics and biofilm formation. The genetic relatedness of the strains was determined by PFGE. In addition, the complete gene sequences of lukS-PV and lukF-PV were also investigated. All strains were found to be susceptible to tested antibiotics and they were mecA negative. Three strains showed the same PFGE band pattern, ST152 clonal type and t355 spa type. In the detection of virulence factor genes, sea, seb, sec, sed, see, seg, seh, sei, sej, sek, sel, sem, sen, seo, sep, seq, seu, eta, etb, set1, geh and tst genes were not detected. All strains showed the positive results for alpha- and beta-haemolysin genes (hla and hlb), protease encoding genes (sspA, sspB and aur), lukE and lukD leukocidin genes (lukED). The strains were found to be non-biofilm formers. By this study, the virulence properties of the strains were described and this is one of the first reports regarding PVL-positive MSSA strains from food. (c) 2010 Elsevier B.V. All rights reserved.
Arvand, Mardjan; Feil, Edward J.; Giladi, Michael; Boulouis, Henri-Jean; Viezens, Juliane
2007-01-01
Bartonella henselae is a zoonotic pathogen and the causative agent of cat scratch disease and a variety of other disease manifestations in humans. Previous investigations have suggested that a limited subset of B. henselae isolates may be associated with human disease. In the present study, 182 human and feline B. henselae isolates from Europe, North America and Australia were analysed by multi-locus sequence typing (MLST) to detect any associations between sequence type (ST), host species and geographical distribution of the isolates. A total of 14 sequence types were detected, but over 66% (16/24) of the isolates recovered from human disease corresponded to a single genotype, ST1, and this type was detected in all three continents. In contrast, 27.2% (43/158) of the feline isolates corresponded to ST7, but this ST was not recovered from humans and was restricted to Europe. The difference in host association of STs 1 (human) and 7 (feline) was statistically significant (P≤0.001). eBURST analysis assigned the 14 STs to three clonal lineages, which contained two or more STs, and a singleton comprising ST7. These groups were broadly consistent with a neighbour-joining tree, although splits decomposition analysis was indicative of a history of recombination. These data indicate that B. henselae lineages differ in their virulence properties for humans and contribute to a better understanding of the population structure of B. henselae. PMID:18094753
Antonov, V A; Altukhova, V V; Savchenko, S S; Zamaraev, V S; Iliukhin, V I; Alekseev, V V
2007-01-01
Burkholderia mallei is highly pathogenic microorganism for both humans and animals. In this work, the possibility of the use of the genotyping method for differentiation between strains of B. mallei was studied. A collection of 14 isolates of B. mallei was characterized using randomly amplified polymorphic DNA (RAPD) and multilocus sequence typing (MLST). RAPD was the best method used for detecting strain differences of B. mallei. It was suggested that this method would be an increasingly useful molecular epidemiological tool.
Evolutionary perspectives on clonal reproduction in vertebrate animals
Avise, John C.
2015-01-01
A synopsis is provided of different expressions of whole-animal vertebrate clonality (asexual organismal-level reproduction), both in the laboratory and in nature. For vertebrate taxa, such clonal phenomena include the following: human-mediated cloning via artificial nuclear transfer; intergenerational clonality in nature via parthenogenesis and gynogenesis; intergenerational hemiclonality via hybridogenesis and kleptogenesis; intragenerational clonality via polyembryony; and what in effect qualifies as clonal replication via self-fertilization and intense inbreeding by simultaneous hermaphrodites. Each of these clonal or quasi-clonal mechanisms is described, and its evolutionary genetic ramifications are addressed. By affording an atypical vantage on standard vertebrate reproduction, clonality offers fresh perspectives on the evolutionary and ecological significance of recombination-derived genetic variety. PMID:26195735
Walter, Roland B.; Laszlo, George S.; Lionberger, Jack M.; Pollard, Jessica A.; Harrington, Kimberly H.; Gudgeon, Chelsea J.; Othus, Megan; Rafii, Shahin; Meshinchi, Soheil; Appelbaum, Frederick R.; Bernstein, Irwin D.
2014-01-01
Recent technological advances led to an appreciation of the genetic complexity of human acute myeloid leukemia (AML) but underlying progenitor cells remain poorly understood because their rarity precludes direct study. We developed a co-culture method integrating hypoxia, aryl hydrocarbon receptor inhibition, and micro-environmental support via human endothelial cells to isolate these cells. X-chromosome inactivation studies of the least mature precursors derived following prolonged culture of CD34+/CD33− cells revealed polyclonal growth in highly curable AMLs, suggesting mutations necessary for clonal expansion were acquired in more mature progenitors. Consistently, in core-binding factor (CBF) leukemias with known complementing mutations, immature precursors derived following prolonged culture of CD34+/CD33− cells harbored neither mutation or the CBF mutation alone, whereas more mature precursors often carried both mutations. These results were in contrast to those with leukemias with poor prognosis that showed clonal dominance in the least mature precursors. These data indicate heterogeneity among progenitors in human AML that may have prognostic and therapeutic implications. PMID:24721792
Current Progresses of Single Cell DNA Sequencing in Breast Cancer Research.
Liu, Jianlin; Adhav, Ragini; Xu, Xiaoling
2017-01-01
Breast cancers display striking genetic and phenotypic diversities. To date, several hypotheses are raised to explain and understand the heterogeneity, including theories for cancer stem cell (CSC) and clonal evolution. According to the CSC theory, the most tumorigenic cells, while maintaining themselves through symmetric division, divide asymmetrically to generate non-CSCs with less tumorigenic and metastatic potential, although they can also dedifferentiate back to CSCs. Clonal evolution theory recapitulates that a tumor initially arises from a single cell, which then undergoes clonal expansion to a population of cancer cells. During tumorigenesis and evolution process, cancer cells undergo different degrees of genetic instability and consequently obtain varied genetic aberrations. Yet the heterogeneity in breast cancers is very complex, poorly understood and subjected to further investigation. In recent years, single cell sequencing (SCS) technology developed rapidly, providing a powerful new way to better understand the heterogeneity, which may lay foundations to some new strategies for breast cancer therapies. In this review, we will summarize development of SCS technologies and recent advances of SCS in breast cancer.
Clonal Integration Enhances the Performance of a Clonal Plant Species under Soil Alkalinity Stress
Sun, Juanjuan; Chen, Jishan; Zhang, Yingjun
2015-01-01
Clonal plants have been shown to successfully survive in stressful environments, including salinity stress, drought and depleted nutrients through clonal integration between original and subsequent ramets. However, relatively little is known about whether clonal integration can enhance the performance of clonal plants under alkalinity stress. We investigated the effect of clonal integration on the performance of a typical rhizomatous clonal plant, Leymus chinensis, using a factorial experimental design with four levels of alkalinity and two levels of rhizome connection treatments, connected (allowing integration) and severed (preventing integration). Clonal integration was estimated by comparing physiological and biomass features between the rhizome-connected and rhizome-severed treatments. We found that rhizome-connected treatment increased the biomass, height and leaf water potential of subsequent ramets at highly alkalinity treatments but did not affect them at low alkalinity treatments. However, rhizome-connected treatment decreased the root biomass of subsequent ramets and did not influence the photosynthetic rates of subsequent ramets. The biomass of original ramets was reduced by rhizome-connected treatment at the highest alkalinity level. These results suggest that clonal integration can increase the performance of clonal plants under alkalinity stress. Rhizome-connected plants showed dramatically increased survival of buds with negative effects on root weight, indicating that clonal integration influenced the resource allocation pattern of clonal plants. A cost-benefit analysis based on biomass measures showed that original and subsequent ramets significantly benefited from clonal integration in highly alkalinity stress, indicating that clonal integration is an important adaptive strategy by which clonal plants could survive in local alkalinity soil. PMID:25790352
Becker, Karsten; Ballhausen, Britta; Kahl, Barbara C; Köck, Robin
2017-02-01
In the past decade, livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) strains in particular of the clonal complex (CC) 398 have emerged in many parts of the world especially in areas with a high density of pig farming. In those regions, farmworkers and other individuals with professional contact to livestock are very frequently colonized with LA-MRSA. These persons are the presumably source for LA-MRSA transmission to household members and other parts of the human population. Altogether, colonization and/or infection of these individuals lead to the introduction of LA-MRSA into hospitals and other healthcare facilities. Since LA-MRSA CC398 have been found to be specifically adapted to their animal hosts in terms of the equipment with virulence factors, their pathogenicity to human patients is a matter of debate with first reports about clinical cases. Meanwhile, case reports, case series and few studies have demonstrated the capability of LA-MRSA to cause all types of infections attributed to S. aureus in general including fatal courses. Human infections observed comprise e.g. bacteremia, pneumonia, osteomyelitis, endocarditis and many manifestations of skin and soft tissue infections. However, inpatients affected by MRSA CC398 generally show different demographic (e.g. younger, shorter length of hospital stay) and clinical characteristics (e.g. less severe complications) which may explain or at least contribute to a lower disease burden of LA-MRSA compared to other MRSA clonal lineages. Copyright © 2015 Elsevier B.V. All rights reserved.
Volkert, Sarah; Kohlmann, Alexander; Schnittger, Susanne; Kern, Wolfgang; Haferlach, Torsten; Haferlach, Claudia
2014-05-01
We analyzed 1,200 patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) harboring a 5q deletion in order to clarify whether the type of 5q loss is associated with other biological markers and prognosis. We investigated all patients by chromosome banding analysis, FISH with a probe for EGR1 (5q31) and, if necessary, to resolve complex karyotypes with 24-color-FISH. Moreover, 420 patients were analyzed for mutations in the TP53 gene. The patient cohort was subdivided based on type of 5q loss: Patients with interstitial deletions and patients with 5q loss due to unbalanced rearrangements or monosomy 5. Loss of the long arm of chromosome 5 due to an unbalanced rearrangement occurred more often in AML (286/627; 45.6%) than MDS (188/573; 32.8%; P < 0.001). In both entities, patients with 5q loss due to unbalanced translocations showed complex karyotypes more frequently (MDS: 179/188; 95.2% vs. 124/385; 32.2%; P < 0.001; AML: 274/286; 95.8% vs. 256/341; 75.1%; P < 0.001). Moreover, in MDS unbalanced 5q translocations were associated with clonal evolution (109/188; 58.0% vs. 124/385; 32.2%; P < 0.001), mutation of TP53 (64/67; 95.5% vs. 40/120; 40.0%; P < 0.001), and shorter survival (15.3 months vs. not reached; P < 0.001). In MDS, complex karyotype was an independent adverse prognostic factor (HR = 5.34; P = 0.032), whereas in AML presence of TP53 mutations was the strongest adverse prognostic factor (HR = 2.21; P = 0.026). In conclusion, in AML and MDS, loss of the long arm of chromosome 5 due to unbalanced translocations is associated with complex karyotype and in MDS, moreover, with clonal evolution, mutations in the TP53 gene and adverse prognosis. Copyright © 2014 Wiley Periodicals, Inc.
Sexual reproduction and the evolution of microbial pathogens.
Heitman, Joseph
2006-09-05
Three common systemic human fungal pathogens--Cryptococcus neoformans, Candida albicans and Aspergillus fumigatus--have retained all the machinery to engage in sexual reproduction, and yet their populations are often clonal with limited evidence for recombination. Striking parallels have emerged with four protozoan parasites that infect humans: Toxoplasma gondii, Trypanosoma brucei, Trypanosoma cruzi and Plasmodium falciparum. Limiting sexual reproduction appears to be a common virulence strategy, enabling generation of clonal populations well adapted to host and environmental niches, yet retaining the ability to engage in sexual or parasexual reproduction and respond to selective pressure. Continued investigation of the sexual nature of microbial pathogens should facilitate both laboratory investigation and an understanding of the complex interplay between pathogens, hosts, vectors, and their environments.
CRISPR-cas loci profiling of Cronobacter sakazakii pathovars.
Ogrodzki, Pauline; Forsythe, Stephen James
2016-12-01
Cronobacter sakazakii sequence types 1, 4, 8 and 12 are associated with outbreaks of neonatal meningitis and necrotizing enterocolitis infections. However clonality results in strains which are indistinguishable using conventional methods. This study investigated the use of clustered regularly interspaced short palindromic repeats (CRISPR)-cas loci profiling for epidemiological investigations. Seventy whole genomes of C. sakazakii strains from four clonal complexes which were widely distributed temporally, geographically and origin of source were profiled. All strains encoded the same type I-E subtype CRISPR-cas system with a total of 12 different CRISPR spacer arrays. This study demonstrated the greater discriminatory power of CRISPR spacer array profiling compared with multilocus sequence typing, which will be of use in source attribution during Cronobacter outbreak investigations.
Liao, Feng; Mo, Zhishuo; Chen, Meiling; Pang, Bo; Fu, Xiaoqing; Xu, Wen; Jing, Huaiqi; Kan, Biao; Gu, Wenpeng
2018-01-01
Vibrio cholerae O1 strains taken from the repository of Yunnan province, southwest China, were abundant and special. We selected 70 typical toxigenic V. cholerae (69 O1 and one O139 serogroup strains) isolated from Yunnan province, performed the pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and MLST of virulence gene (V-MLST) methods, and evaluated the resolution abilities for typing methods. The ctxB subunit sequence analysis for all strains have shown that cholera between 1986 and 1995 was associated with mixed infections with El Tor and El Tor variants, while infections after 1996 were all caused by El Tor variant strains. Seventy V. cholerae obtained 50 PFGE patterns, with a high resolution. The strains could be divided into three groups with predominance of strains isolated during 1980s, 1990s, and 2000s, respectively, showing a good consistency with the epidemiological investigation. We also evaluated two MLST method for V. cholerae , one was used seven housekeeping genes ( adk , gyrB , metE , pntA , mdh , purM , and pyrC ), and all the isolates belonged to ST69; another was used nine housekeeping genes ( cat , chi , dnaE , gyrB , lap , pgm , recA , rstA , and gmd ). A total of seven sequence types (STs) were found by using this method for all the strains; among them, rstA gene had five alleles, recA and gmd have two alleles, and others had only one allele. The virulence gene sequence typing method ( ctxAB , tcpA , and toxR ) showed that 70 strains were divided into nine STs; among them, tcpA gene had six alleles, toxR had five alleles, while ctxAB was identical for all the strains. The latter two sequences based typing methods also had consistency with epidemiology of the strains. PFGE had a higher resolution ability compared with the sequence based typing method, and MLST used seven housekeeping genes showed the lower resolution power than nine housekeeping genes and virulence genes methods. These two sequence typing methods could distinguish some epidemiological special strains in local area.
Nielsen, Karen Leth; Stegger, Marc; Kiil, Kristoffer; Godfrey, Paul A; Feldgarden, Michael; Lilje, Berit; Andersen, Paal S; Frimodt-Møller, Niels
2017-12-01
The faecal flora is a common reservoir for urinary tract infection (UTI), and Escherichia coli (E. coli) is frequently found in this reservoir without causing extraintestinal infection. We investigated these E. coli reservoirs by whole-genome sequencing a large collection of E. coli from healthy controls (faecal), who had never previously had UTI, and from UTI patients (faecal and urinary) sampled from the same geographical area. We compared MLST types, phylogenetic relationship, accessory genome content and FimH type between patient and control faecal isolates as well as between UTI and faecal-only isolates, respectively. Comparison of the accessory genome of UTI isolates to faecal isolates revealed 35 gene families which were significantly more prevalent in the UTI isolates compared to the faecal isolates, although none of these were unique to one of the two groups. Of these 35, 22 belonged to a genomic island and three putatively belonged to a type VI secretion system (T6SS). MLST types and SNP phylogeny indicated no clustering of the UTI or faecal E. coli from patients distinct from the control faecal isolates, although there was an overrepresentation of UTI isolates belonging to clonal lineages CC73 and CC12. One combination of mutations in FimH, N70S/S78N, was significantly associated to UTI, while phylogenetic analysis of FimH and fimH identified no signs of distinct adaptation of UTI isolates compared to faecal-only isolates not causing UTI. In summary, the results showed that (i) healthy women who had never previously had UTI carried faecal E. coli which were overall closely related to UTI and faecal isolates from UTI patients; (ii) UTI isolates do not cluster separately from faecal-only isolates based on SNP analysis; and (iii) 22 gene families of a genomic island, putative T6SS proteins as well as specific metabolism and virulence associated proteins were significantly more common in UTI isolates compared to faecal-only isolates and (iv) evolution of fimH for these isolates was not linked to the clinical source of the isolates, apart from the mutation combination N70S/S78N, which was correlated to UTI isolates of phylogroup B2. Combined, these findings illustrate that faecal and UTI isolates, as well as faecal-only and faecal-UTI isolates, are closely related and can only be distinguished, if at all, by their accessory genome. Copyright © 2017 Elsevier GmbH. All rights reserved.
Leekitcharoenphon, Pimlapas; Lukjancenko, Oksana; Lukwesa-Musyani, Chileshe; Tambatamba, Bushimbwa; Mwaba, John; Kalonda, Annie; Nakazwe, Ruth; Kwenda, Geoffrey; Jensen, Jacob Dyring; Svendsen, Christina A.; Dittmann, Karen K.; Kaas, Rolf S.; Cavaco, Lina M.; Aarestrup, Frank M.; Hasman, Henrik; Mwansa, James C. L.
2014-01-01
Retrospectively, we investigated the epidemiology of a massive Salmonella enterica serovar Typhi outbreak in Zambia during 2010 to 2012. Ninety-four isolates were susceptibility tested by MIC determinations. Whole-genome sequence typing (WGST) of 33 isolates and bioinformatic analysis identified the multilocus sequence type (MLST), haplotype, plasmid replicon, antimicrobial resistance genes, and genetic relatedness by single nucleotide polymorphism (SNP) analysis and genomic deletions. The outbreak affected 2,040 patients, with a fatality rate of 0.5%. Most (83.0%) isolates were multidrug resistant (MDR). The isolates belonged to MLST ST1 and a new variant of the haplotype, H58B. Most isolates contained a chromosomally translocated region containing seven antimicrobial resistance genes, catA1, blaTEM-1, dfrA7, sul1, sul2, strA, and strB, and fragments of the incompatibility group Q1 (IncQ1) plasmid replicon, the class 1 integron, and the mer operon. The genomic analysis revealed 415 SNP differences overall and 35 deletions among 33 of the isolates subjected to whole-genome sequencing. In comparison with other genomes of H58, the Zambian isolates separated from genomes from Central Africa and India by 34 and 52 SNPs, respectively. The phylogenetic analysis indicates that 32 of the 33 isolates sequenced belonged to a tight clonal group distinct from other H58 genomes included in the study. The small numbers of SNPs identified within this group are consistent with the short-term transmission that can be expected over a period of 2 years. The phylogenetic analysis and deletions suggest that a single MDR clone was responsible for the outbreak, during which occasional other S. Typhi lineages, including sensitive ones, continued to cocirculate. The common view is that the emerging global S. Typhi haplotype, H58B, containing the MDR IncHI1 plasmid is responsible for the majority of typhoid infections in Asia and sub-Saharan Africa; we found that a new variant of the haplotype harboring a chromosomally translocated region containing the MDR islands of IncHI1 plasmid has emerged in Zambia. This could change the perception of the term “classical MDR typhoid” currently being solely associated with the IncHI1 plasmid. It might be more common than presently thought that S. Typhi haplotype H58B harbors the IncHI1 plasmid or a chromosomally translocated MDR region or both. PMID:25392358
Defining Clonal Color in Fluorescent Multi-Clonal Tracking
Wu, Juwell W.; Turcotte, Raphaël; Alt, Clemens; Runnels, Judith M.; Tsao, Hensin; Lin, Charles P.
2016-01-01
Clonal heterogeneity and selection underpin many biological processes including development and tumor progression. Combinatorial fluorescent protein expression in germline cells has proven its utility for tracking the formation and regeneration of different organ systems. Such cell populations encoded by combinatorial fluorescent proteins are also attractive tools for understanding clonal expansion and clonal competition in cancer. However, the assignment of clonal identity requires an analytical framework in which clonal markings can be parameterized and validated. Here we present a systematic and quantitative method for RGB analysis of fluorescent melanoma cancer clones. We then demonstrate refined clonal trackability of melanoma cells using this scheme. PMID:27073117
Isolation and clinical sample typing of human leptospirosis cases in Argentina.
Chiani, Yosena; Jacob, Paulina; Varni, Vanina; Landolt, Noelia; Schmeling, María Fernanda; Pujato, Nazarena; Caimi, Karina; Vanasco, Bibiana
2016-01-01
Leptospira typing is carried out using isolated strains. Because of difficulties in obtaining them, direct identification of infective Leptospira in clinical samples is a high priority. Multilocus sequence typing (MLST) proved highly discriminatory for seven pathogenic species of Leptospira, allowing isolate characterization and robust assignment to species, in addition to phylogenetic evidence for the relatedness between species. In this study we characterized Leptospira strains circulating in Argentina, using typing methods applied to human clinical samples and isolates. Phylogenetic studies based on 16S ribosomal RNA gene sequences enabled typing of 8 isolates (6 Leptospira interrogans, one Leptospira wolffii and one Leptospira broomii) and 58 out of 85 (68.2%) clinical samples (55 L. interrogans, 2 Leptospira meyeri, and one Leptospira kirschneri). MLST results for the L. interrogans isolates indicated that five were probably Canicola serogroup (ST37) and one was probably Icterohaemorrhagiae serogroup (ST17). Eleven clinical samples (21.6%), provided MLST interpretable data: five were probably Pyrogenes serogroup (ST13), four Sejroe (ST20), one Autumnalis (ST22) and one Canicola (ST37). To the best of our knowledge this study is the first report of the use of an MLST typing scheme with seven loci to identify Leptospira directly from clinical samples in Argentina. The use of clinical samples presents the advantage of the possibility of knowing the infecting strain without resorting to isolates. This study also allowed, for the first time, the characterization of isolates of intermediate pathogenicity species (L. wolffii and L. broomii) from symptomatic patients. Copyright © 2015 Elsevier B.V. All rights reserved.
Sulaiman, Irshad M; Jacobs, Emily; Simpson, Steven; Kerdahi, Khalil
2017-06-01
The primary mission of the U.S. Food and Drug Administration is to enforce the Food, Drug, and Cosmetic Act and regulate food, drug, and cosmetic products. Thus, this agency monitors the presence of pathogenic microorganisms in these products, including canned foods, as one of the regulatory action criteria and also ensures that these products are safe for human consumption. This study was carried out to investigate the effectiveness of pathogen control and integrity of ready-to-eat canned food containing Black Bean Corn Poblano Salsa. A total of nine unopened and recalled canned glass jars from the same lot were examined initially by conventional microbiologic protocols that involved a two-step enrichment, followed by streaking on selective agar plates, for the presence of gram-positive and gram-negative bacteria. Of the eight subsamples examined for each sample, all subsamples of one of the containers were found positive for the presence of slow-growing rod-shaped, gram-positive, facultative anaerobic bacteria. The recovered isolates were subsequently sequenced at rRNA and gyrB loci. Afterward, multilocus sequence typing (MLST) was performed characterizing 11 additional known MLST loci (clpX, dnaA, dnaK, groEL, murC, murE, pepX, pyrG, recA, rpoB, and uvrC). Analyses of the nucleotide sequences of rRNA, gyrB, and 11 MLST loci confirmed these gram-positive bacteria recovered from canned food to be Lactobacillus fermentum . Thus, the DNA sequencing of housekeeping MLST genes can provide species identification of L. fermentum and can be used in the canned food monitoring program of public health importance.
Both, Leonard; Collins, Sarah; de Zoysa, Aruni; White, Joanne; Mandal, Sema
2014-01-01
Human infections caused by toxigenic corynebacteria occur sporadically across Europe. In this report, we undertook the epidemiological and molecular characterization of all toxigenic corynebacterium strains isolated in England between January 2007 and December 2013. Epidemiological aspects include case demographics, risk factors, clinical presentation, treatment, and outcome. Molecular characterization was performed using multilocus sequence typing (MLST) alongside traditional phenotypic methods. In total, there were 20 cases of toxigenic corynebacteria; 12 (60.0%) were caused by Corynebacterium ulcerans, where animal contact was the predominant risk factor. The remaining eight (40.0%) were caused by Corynebacterium diphtheriae strains; six were biovar mitis, which were associated with recent travel abroad. Adults 45 years and older were particularly affected (55.0%; 11/20), and typical symptoms included sore throat and fever. Respiratory diphtheria with the absence of a pharyngeal membrane was the most common presentation (50.0%; 10/20). None of the eight C. diphtheriae cases were fully immunized. Diphtheria antitoxin was issued in two (9.5%) cases; both survived. Two (9.5%) cases died, one due to a C. diphtheriae infection and one due to C. ulcerans. MLST demonstrated that the majority (87.5%; 7/8) of C. diphtheriae strains represented new sequence types (STs). By adapting several primer sequences, the MLST genes in C. ulcerans were also amplified, thereby providing the basis for extension of the MLST scheme, which is currently restricted to C. diphtheriae. Despite high population immunity, occasional toxigenic corynebacterium strains are identified in England and continued surveillance is required. PMID:25502525
Hamby, Stephen E; Joseph, Susan; Forsythe, Stephen J; Chuzhanova, Nadia
2011-09-20
Cronobacter, formerly known as Enterobacter sakazakii, is a food-borne pathogen known to cause neonatal meningitis, septicaemia and death. Current diagnostic tests for identification of Cronobacter do not differentiate between species, necessitating time consuming 16S rDNA gene sequencing or multilocus sequence typing (MLST). The organism is ubiquitous, being found in the environment and in a wide range of foods, although there is variation in pathogenicity between Cronobacter isolates and between species. Therefore to be able to differentiate between the pathogenic and non-pathogenic strains is of interest to the food industry and regulators. Here we report the use of Expectation Maximization clustering to categorise 98 strains of Cronobacter as pathogenic or non-pathogenic based on biochemical test results from standard diagnostic test kits. Pathogenicity of a strain was postulated on the basis of either pathogenic symptoms associated with strain source or corresponding MLST sequence types, allowing the clusters to be labelled as containing either pathogenic or non-pathogenic strains. The resulting clusters gave good differentiation of strains into pathogenic and non-pathogenic groups, corresponding well to isolate source and MLST sequence type. The results also revealed a potential association between pathogenicity and inositol fermentation. An investigation of the genomes of Cronobacter sakazakii and C. turicensis revealed the gene for inositol monophosphatase is associated with putative virulence factors in pathogenic strains of Cronobacter. We demonstrated a computational approach allowing existing diagnostic kits to be used to identify pathogenic strains of Cronobacter. The resulting clusters correlated well with MLST sequence types and revealed new information about the pathogenicity of Cronobacter species.
Wang, Yong-Jian; Müller-Schärer, Heinz; van Kleunen, Mark; Cai, Ai-Ming; Zhang, Ping; Yan, Rong; Dong, Bi-Cheng; Yu, Fei-Hai
2017-12-01
What confers invasive alien plants a competitive advantage over native plants remains open to debate. Many of the world's worst invasive alien plants are clonal and able to share resources within clones (clonal integration), particularly in heterogeneous environments. Here, we tested the hypothesis that clonal integration benefits invasive clonal plants more than natives and thus confers invasives a competitive advantage. We selected five congeneric and naturally co-occurring pairs of invasive alien and native clonal plants in China, and grew pairs of connected and disconnected ramets under heterogeneous light, soil nutrient and water conditions that are commonly encountered by alien plants during their invasion into new areas. Clonal integration increased biomass of all plants in all three heterogeneous resource environments. However, invasive plants benefited more from clonal integration than natives. Consequently, invasive plants produced more biomass than natives. Our results indicate that clonal integration may confer invasive alien clonal plants a competitive advantage over natives. Therefore, differences in the ability of clonal integration could potentially explain, at least partly, the invasion success of alien clonal plants in areas where resources are heterogeneously distributed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
You, Wenhua; Fan, Shufeng; Yu, Dan; Xie, Dong; Liu, Chunhua
2014-01-01
Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more than co-occurring native plants in heterogeneous habitats. To test these hypotheses, two stoloniferous clonal plants, Alternanthera philoxeroides (invasive), Jussiaea repens (native) were studied in China. The apical parts of both species were grown either with or without neighboring vegetation and the basal parts without competitors were in nutrient- rich or -poor habitats, with stolon connections were either severed or kept intact. Competition significantly reduced growth and photosynthetic performance of the apical ramets in both species, but not the biomass of neighboring vegetation. Without competition, clonal integration greatly improved the growth and photosynthetic performance of both species, especially when the basal parts were in nutrient-rich habitats. When grown with neighboring vegetation, growth of J. repens and photosynthetic performance of both species were significantly enhanced by clonal integration with the basal parts in both nutrient-rich and -poor habitats, while growth and relative neighbor effect (RNE) of A. philoxeroides were greatly improved by clonal integration only when the basal parts were in nutrient-rich habitats. Moreover, clonal integration increased A. philoxeroides's biomass allocation to roots without competition, but decreased it with competition, especially when the basal ramets were in nutrient-rich sections. Effects of clonal integration on biomass allocation of J. repens was similar to that of A. philoxeroides but with less significance. These results supported our hypothesis that invasive clonal plants A. philoxeroides benefits from clonal integration more than co-occurring native J. repens, suggesting that the invasiveness of A. philoxeroides may be closely related to clonal integration in heterogeneous environments.
You, Wenhua; Fan, Shufeng; Yu, Dan; Xie, Dong; Liu, Chunhua
2014-01-01
Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more than co-occurring native plants in heterogeneous habitats. To test these hypotheses, two stoloniferous clonal plants, Alternanthera philoxeroides (invasive), Jussiaea repens (native) were studied in China. The apical parts of both species were grown either with or without neighboring vegetation and the basal parts without competitors were in nutrient- rich or -poor habitats, with stolon connections were either severed or kept intact. Competition significantly reduced growth and photosynthetic performance of the apical ramets in both species, but not the biomass of neighboring vegetation. Without competition, clonal integration greatly improved the growth and photosynthetic performance of both species, especially when the basal parts were in nutrient-rich habitats. When grown with neighboring vegetation, growth of J. repens and photosynthetic performance of both species were significantly enhanced by clonal integration with the basal parts in both nutrient-rich and -poor habitats, while growth and relative neighbor effect (RNE) of A. philoxeroides were greatly improved by clonal integration only when the basal parts were in nutrient-rich habitats. Moreover, clonal integration increased A. philoxeroides's biomass allocation to roots without competition, but decreased it with competition, especially when the basal ramets were in nutrient-rich sections. Effects of clonal integration on biomass allocation of J. repens was similar to that of A. philoxeroides but with less significance. These results supported our hypothesis that invasive clonal plants A. philoxeroides benefits from clonal integration more than co-occurring native J. repens, suggesting that the invasiveness of A. philoxeroides may be closely related to clonal integration in heterogeneous environments. PMID:24816849
Races of the celery pathogen Fusarium oxysporum f. sp. apii are polyphyletic
USDA-ARS?s Scientific Manuscript database
Fusarium oxysporum species complex (FOSC) isolates were obtained from celery with symptoms of Fusarium yellows between 1993 and 2013 primarily in California. Virulence tests and a two-gene dataset from 174 isolates indicated that virulent isolates collected before 2013 were a highly clonal populatio...
Geno- and phenotypic characteristics of a transfected babesia bovis 6-Cys-E knockout clonal line
USDA-ARS?s Scientific Manuscript database
Babesia bovis is an intra-erythrocytic tick transmitted apicomplexan protozoan parasite. It has a complex life style including asexual replication in the mammalian host and sexual replication occurring in the midgut of host tick vector, typically, Rhipicephalus microplus. Previous evidence showed th...
Cheng, Jing-Wei; Liu, Chang; Kudinha, Timothy; Xiao, Meng; Yu, Shu-Ying; Yang, Chun-Xia; Wei, Ming; Liang, Guo-Wei; Shao, Dong-Hua; Kong, Fanrong; Tong, Zhao-Hui; Xu, Ying-Chun
2018-04-26
Clostridium difficile is the leading cause of health care-associated infections. Previous studies suggest that C. difficile MLST clade 4 strains with higher drug resistance rates constitute the major clone spreading in China. Thus development of a rapid and accurate typing method for these strains is needed to monitor the epidemiology of this clone and to guide clinical treatment. A total of 160 non-duplicate C. difficile isolates recovered from three large teaching hospitals in Beijing were studied. All the 41 clade 4 C. difficile isolates clustered together on the PCA dendrogram. Spectra peak statistics revealed that five markers (2691.43Da, 2704.91Da, 2711.93Da, 3247.27Da and 3290.76Da) can easily and reliably distinguish between clade 4 and non-clade 4 isolates, with area under the curve (AUC) values of 0.991, 0.997, 0.973, 1 and 1, respectively. In conclusion, MALDI-TOF MS is a very simple and accurate method for identifying C. difficile MLST clade 4 strains. Copyright © 2018 Elsevier Inc. All rights reserved.
Ward, Todd J.; Graves, Lewis M.; Tarr, Cheryl L.; Siletzky, Robin M.; Kathariou, Sophia
2014-01-01
Listeria monocytogenes can cause severe food-borne disease (listeriosis). Numerous outbreaks have involved three serotype 4b epidemic clones (ECs): ECI, ECII, and ECIa. However, little is known about the population structure of L. monocytogenes serotype 4b from sporadic listeriosis in the United States, even though most cases of human listeriosis are in fact sporadic. Here we analyzed 136 serotype 4b isolates from sporadic cases in the United States, 2003 to 2008, utilizing multiple tools including multilocus genotyping, pulsed-field gel electrophoresis, and sequence analysis of the inlAB locus. ECI, ECII, and ECIa were frequently encountered (32, 17, and 7%, respectively). However, annually 30 to 68% of isolates were outside these ECs, and several novel clonal groups were identified. An estimated 33 and 17% of the isolates, mostly among the ECs, were resistant to cadmium and arsenic, respectively, but resistance to benzalkonium chloride was uncommon (3%) among the sporadic isolates. The frequency of clonal groups fluctuated within the 6-year study period, without consistent trends. However, on several occasions, temporal clusters of isolates with indistinguishable genotypes were detected, suggesting the possibility of hidden multistate outbreaks. Our analysis suggests a complex population structure of serotype 4b L. monocytogenes from sporadic disease, with important contributions by ECs and several novel clonal groups. Continuous monitoring will be needed to assess long-term trends in clonality patterns and population structure of L. monocytogenes from sporadic listeriosis. PMID:24705322
Lee, Sangmi; Ward, Todd J; Graves, Lewis M; Tarr, Cheryl L; Siletzky, Robin M; Kathariou, Sophia
2014-06-01
Listeria monocytogenes can cause severe food-borne disease (listeriosis). Numerous outbreaks have involved three serotype 4b epidemic clones (ECs): ECI, ECII, and ECIa. However, little is known about the population structure of L. monocytogenes serotype 4b from sporadic listeriosis in the United States, even though most cases of human listeriosis are in fact sporadic. Here we analyzed 136 serotype 4b isolates from sporadic cases in the United States, 2003 to 2008, utilizing multiple tools including multilocus genotyping, pulsed-field gel electrophoresis, and sequence analysis of the inlAB locus. ECI, ECII, and ECIa were frequently encountered (32, 17, and 7%, respectively). However, annually 30 to 68% of isolates were outside these ECs, and several novel clonal groups were identified. An estimated 33 and 17% of the isolates, mostly among the ECs, were resistant to cadmium and arsenic, respectively, but resistance to benzalkonium chloride was uncommon (3%) among the sporadic isolates. The frequency of clonal groups fluctuated within the 6-year study period, without consistent trends. However, on several occasions, temporal clusters of isolates with indistinguishable genotypes were detected, suggesting the possibility of hidden multistate outbreaks. Our analysis suggests a complex population structure of serotype 4b L. monocytogenes from sporadic disease, with important contributions by ECs and several novel clonal groups. Continuous monitoring will be needed to assess long-term trends in clonality patterns and population structure of L. monocytogenes from sporadic listeriosis.
Molecular epidemiology of clonal diploids: a quick overview and a short DIY (do it yourself) notice.
De Meeûs, Thierry; Lehmann, Laurent; Balloux, François
2006-03-01
In this short review we report the basic notions needed for understanding the population genetics of clonal diploids. We focus on the consequences of clonality on the distribution of genetic diversity within individuals, between individuals and between populations. We then summarise how to detect clonality in mainly sexual populations, conversely, how to detect sexuality in mainly clonal populations and also how genetic differentiation between populations is affected by clonality in diploids. This information is then used for building recipes on how to analyse and interpret genetic polymorphism data in molecular epidemiology studies of clonal diploids.
Douhovnikoff, Vladimir; Hazelton, Eric L G
2014-09-01
• The characteristics of clonal growth that are advantageous in invasive plants can also result in native plants' ability to resist invasion. In Maine, we compared the clonal architecture and diversity of an invasive lineage (introduced Phragmites) and a noninvasive lineage (native Phragmites) present in much of North America. This study is the first on stand-scale diversity using a sample size and systematic spatial-sampling scheme adequate for characterizing clonal structure in Phragmites. Our questions included: (1) Does the structure and extent of clonal growth suggest that the potential for clonal growth contributes to the invasiveness of the introduced lineage? (2) Is clonal growth common in the native lineage, acting as a possible source of ecological resistance and resilience?• Microsatellite markers were used to measure clonal sizes, architecture, and diversity within each lineage in stands within four marshes in Maine.• Clonal diversity measures indicated that clonal growth was significantly greater in stands of the native lineage than in the introduced. While lineage was a consistent predictor of clonal diversity relative ranking, the marsh location was a much stronger predictor of the absolute range of these values.• Our results indicate an important role for clonal growth in the space consolidation of native Phragmites and could explain why the introduced lineage, with stronger competitive traits, has not replaced the native where they co-occur. These results with regard to clone size, size distributions, singleton occurrence, and clonal architecture provide some evidence for stand development that follows a genotypic initial floristics model. © 2014 Botanical Society of America, Inc.
Sun, Zhihong; Liu, Wenjun; Song, Yuqin; Xu, Haiyan; Yu, Jie; Bilige, Menghe; Zhang, Heping; Chen, Yongfu
2015-05-01
Lactobacillus helveticus is an economically important lactic acid bacterium used in industrial dairy fermentation. In the present study, the population structure of 245 isolates of L. helveticus from different naturally fermented dairy products in China and Mongolia were investigated using an multilocus sequence typing scheme with 11 housekeeping genes. A total of 108 sequence types were detected, which formed 8 clonal complexes and 27 singletons. Results from Structure, SplitsTree, and ClonalFrame software analyses demonstrated the presence of 3 subpopulations in the L. helveticus isolates used in our study, namely koumiss, kurut-tarag, and panmictic lineages. Most L. helveticus isolates from particular ecological origins had specific population structures. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Engineering microbial consortia to enhance biomining and bioremediation.
Brune, Karl D; Bayer, Travis S
2012-01-01
In natural environments microorganisms commonly exist as communities of multiple species that are capable of performing more varied and complicated tasks than clonal populations. Synthetic biologists have engineered clonal populations with characteristics such as differentiation, memory, and pattern formation, which are usually associated with more complex multicellular organisms. The prospect of designing microbial communities has alluring possibilities for environmental, biomedical, and energy applications, and is likely to reveal insight into how natural microbial consortia function. Cell signaling and communication pathways between different species are likely to be key processes for designing novel functions in synthetic and natural consortia. Recent efforts to engineer synthetic microbial interactions will be reviewed here, with particular emphasis given to research with significance for industrial applications in the field of biomining and bioremediation of acid mine drainage.
Engineering microbial consortia to enhance biomining and bioremediation
Brune, Karl D.; Bayer, Travis S.
2012-01-01
In natural environments microorganisms commonly exist as communities of multiple species that are capable of performing more varied and complicated tasks than clonal populations. Synthetic biologists have engineered clonal populations with characteristics such as differentiation, memory, and pattern formation, which are usually associated with more complex multicellular organisms. The prospect of designing microbial communities has alluring possibilities for environmental, biomedical, and energy applications, and is likely to reveal insight into how natural microbial consortia function. Cell signaling and communication pathways between different species are likely to be key processes for designing novel functions in synthetic and natural consortia. Recent efforts to engineer synthetic microbial interactions will be reviewed here, with particular emphasis given to research with significance for industrial applications in the field of biomining and bioremediation of acid mine drainage. PMID:22679443
USDA-ARS?s Scientific Manuscript database
Human illness due to the foodborne bacterial pathogen Listeria monocytogenes frequently involves certain widely disseminated clonal complexes (CCs), primarily of serotype 4b. CC1, CC2 and CC6, previously also designated epidemic clone (EC) I, Ia and II, respectively, have been frequently implicate...