Sample records for mm thick disk

  1. Footprint Reduction for the Acoustic Electric Feedthrough Technique

    DTIC Science & Technology

    2010-03-01

    input current measured using a 1 Ω sense resistor . Modulation depth of the peak- to-peak input current was 2Δ ~ 20...behaviour of an AEF arrangement formed using piezo -ceramic disks with diameter 38 mm and thickness 2 mm, across an aluminium plate with thickness 1.6 to 5...the 38 mm diameter piezo -ceramic disks. In an attempt to resolve this matter, the DSTO has examined an AEF system formed using disks with 10 mm

  2. Thermal Management Investigations in Ceramic Thin Disk Lasers

    DTIC Science & Technology

    2011-01-14

    techniques. 10-14mm diameter 0.2mm thick disks are mounted on silicon carbide ( SiC ), sapphire, and diamond submounts. From a larger platform, more than 6kW...along with various cooling techniques. 10-14mm diameter O.2mm thick disks are mounted on silicon carbide ( SiC ), sapphire, and diamond submounts. From a...assemblies are either attached to heat sinks or directly to the Cu W cooling mount, see Fig. I (c) & (d). The heat sinks tested are SiC , sapphire, and

  3. Effects of the type and thickness of ceramic, substrate, and cement on the optical color of a lithium disilicate ceramic.

    PubMed

    Pires, Laís A; Novais, Pollyanna M R; Araújo, Vinícius D; Pegoraro, Luiz F

    2017-01-01

    Reproducing the characteristics of natural teeth in ceramic crowns remains a complex and difficult process. The purpose of this in vitro study was to evaluate the effect of the substrate, cement, type, and thickness of the ceramic on the resulting color of a lithium disilicate ceramic. Forty ceramic disks were prepared from IPS e.max Press LT (low translucency) and HO (high opacity) in 2 different thicknesses (1.5 and 2 mm). The LT groups were composed of monolithic ceramic disks, and the HO groups were composed of disks fabricated with a 0.5-mm thickness combined with a 1- or 1.5-mm veneering ceramic thickness. Disks made of composite resin (R) and alloy (A) were used as substrate structures. The resin cement used was Variolink II. Color was measured with a spectrophotometer and expressed in CIELAB coordinates. Color differences (ΔE) were calculated. The data were analyzed with ANOVA and the Tukey HSD test (α=.05). When the ΔE of ceramic disks with both substrates, with and without cement, were compared, the lowest value (3) was obtained for ceramic HO with a 2-mm thickness/alloy substrate/without cement; the highest value (10) was obtained for ceramic LT with a1.5-mm thickness/alloy substrate/with cement. This difference was statistically significant. When the effect of cement on the ΔE of ceramics in both substrates was compared, the lowest value (1.1) occurred with ceramic HO with a 1.5-mm thickness/resin substrate, and the highest was observed for ceramic LT with a 1.5-mm thickness/alloy substrate (6.4). This difference was statistically significant. The substrate color, type and thickness of ceramic, and presence of the cement significantly influenced the resulting optical color. The ΔE values of cemented HO ceramics were lower than that of the LT ceramic. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Mo100 to Mo99 Target Cooling Enhancements Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard

    2016-02-16

    Target design requirements changed significantly over the past year to a much higher beam current on larger diameter disks, and with a beam impingement on both ends of the target. Scaling from the previous design, that required significantly more mass flow rate of helium coolant, and also thinner disks. A new Aerzen GM12.4 blower was selected that can deliver up to 400 g/s at 400 psi, compared to about 100 g/s possible with the Tuthill blower previously selected.Further, to accommodate the 42 MeV, 2.7 mA beam on each side of the target, the disk thickness and the coolant gaps weremore » halved to create the current baseline design: 0.5 mm disk thickness (at 29 mm diameter) and 0.25 mm coolant gap. Thermal-hydraulic analysis of this target, presented below for reference, gave very good results, suggesting that the target could be improved with fewer, thicker disks and with disk thickness increasing toward the target center. The total thickness of Mo100 in the target remaining the same, that reduces the number of coolant gaps. This allows for the gap width to be increased, increasing the mass flow in each gap and consequently increasing heat transfer. A preliminary geometry was selected and analyzed with variable disk thickness and wider coolant gaps. The result of analysis of this target shows that disk thickness increase near the window was too aggressive and further resizing of the disks is necessary, but it does illustrate the potential improvements that are possible. Experimental and analytical study of diffusers on the target exit has been done. This shows modest improvement in requcing pressure drop, as will be summarized below. However, the benefit is not significant, and implementation becomes problematic when disk thickness is varying. A bull nose at the entrance does offer significant benefit and is relatively easy to incorporate. A bull nose on both ends is now a feature of the baseline design, and will be a feature of any redesign or enhanced designs that follow.« less

  5. ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii

    NASA Astrophysics Data System (ADS)

    Ansdell, M.; Williams, J. P.; Trapman, L.; van Terwisga, S. E.; Facchini, S.; Manara, C. F.; van der Marel, N.; Miotello, A.; Tazzari, M.; Hogerheijde, M.; Guidi, G.; Testi, L.; van Dishoeck, E. F.

    2018-05-01

    We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (∼1–3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J = 2–1 lines. The spatial resolution is ∼0.″25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ∼ 0.2 M ⊕. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 μm continuum observations, we also calculate the millimeter spectral index, α mm, for 70 Lupus disks; we find an anticorrelation between α mm and millimeter flux for low-mass disks (M dust ≲ 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.

  6. High-density optical disk readout using a blue laser diode and a transparent plastic substrate with 0.3-mm thickness

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Chan; Lee, TaekSoo; Kim, Hyung-Nam; Jeong, SeongYun; Ahn, Seong-Keun; Kim, Jin-Yong; Lee, Jun-Seok; Kim, Ji-Byung; Lee, SeongWon; Lee, Dong C.; Asai, Ikuo

    2000-09-01

    We prepared and tested a disc that has a transparent plastic substrate of 0.3 mm thickness to confirm the readout capability using a blue laser diode. And the test results of injection molding for the plastic substrate of 0.3 mm thickness are shown.

  7. Effect of thickness and surface modifications on flexural strength of monolithic zirconia.

    PubMed

    Ozer, Fusun; Naden, Andrew; Turp, Volkan; Mante, Francis; Sen, Deniz; Blatz, Markus B

    2017-10-14

    A recommended minimum thickness for monolithic zirconia restorations has not been reported. Assessing a proper thickness that has the necessary load-bearing capacity but also conserves dental hard tissues is essential. The purpose of this in vitro study was to evaluate the effect of thickness and surface modifications on monolithic zirconia after simulated masticatory stresses. Monolithic zirconia disks (10 mm in diameter) were fabricated with 1.3 mm and 0.8 mm thicknesses. For each thickness, 21 disks were fabricated. The specimens of each group were further divided into 3 subgroups (n=7) according to the surface treatments applied: untreated (control), airborne-particle abrasion with 50-μm Al 2 O 3 particles at a pressure of 400 kPa at 10 mm, and grinding with a diamond rotary instrument followed by polishing. The biaxial flexure strength was determined by using a piston-on-3-balls technique in a universal testing machine. Flexural loading was applied with a 1.4-mm diameter steel cylinder, centered on the disk, at a crosshead speed of 0.5 mm/min until fracture occurred. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were performed. The data were statistically analyzed with 2-way ANOVA, Tamhane T2, 1-way ANOVA, and Student t tests (α=.05). The 1.3-mm specimens had significantly higher flexural strength than the 0.8-mm specimens (P<.05). Airborne-particle abrasion significantly increased the flexural strength (P<.05). Grinding and polishing did not affect the flexural strength of the specimens (P>.05). The mean flexural strength of 0.8-mm and 1.3-mm thick monolithic zirconia was greater than reported masticatory forces. Airborne-particle abrasion increased the flexural strength of monolithic zirconia. Grinding did not affect flexural strength if subsequently polished. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Masking of temperature-induced color changes in a thermo-sensitive fiber post.

    PubMed

    Vichi, Alessandro; Schiavetti, Remo; Pacifici, Edoardo; Giovannetti, Agostino; Goracci, Cecilia; Ferrari, Marco

    2012-04-01

    To evaluate (1) the efficacy of the color changing technology featured by DT Light Illusion Post aimed at safely identifying the post in case of re-treatment, and (2) the efficacy of a resin composite layer to mask the post if color shift occurs due to cold food and beverages. Five "master disks" of 3 mm of thickness were prepared by embedding in a resin composite four thermo-sensitive posts and one translucent post (control) cut in bars. Disks of resin composite in 0.5/1.0/1.5 mm thickness were prepared as well. Digital images were taken of the master disks with and without the overlying of the resin composite disks, at 5 degrees C and at 35 degrees C temperature. By the use of Adobe Photoshop "layering function" and "multi-layer option", differences in color were calculated between the post-free and the post-containing areas. The differences between the resin color and post color were remarkably higher when the temperature was 5 degrees C, showing that the technology of color change of the post was effective. With resin disk overlaid, at 35 degrees C none of the differences in color were above the threshold for clinical acceptability. At 5 degrees C blue and black colored posts were visible when the overlaid resin thickness was 0.5 mm, while at 1.0 mm and 1.5 mm none of the posts were visible.

  9. The effect of enamel porcelain thickness on color and the ability of a shade guide to prescribe chroma.

    PubMed

    Jarad, F D; Moss, B W; Youngson, C C; Russell, M D

    2007-04-01

    To test the null hypothesis that there is no color change when enamel porcelain thickness is changed and to evaluate the ability of a shade guide to prescribe chroma. Three shades (3M1, 3M2 and 3M3) were selected from a Vitapan 3D master shade guide. Five disk specimens were prepared for each shade, consisting of three layers (opacious dentin, dentin and enamel) at thicknesses of 0.6, 0.8 and 0.6mm, respectively. The color of each disk was measured using a spectrophotometer. Enamel porcelain was reduced in thickness to 0.3mm and porcelain disks were remeasured. Reducing the enamel thickness of porcelain disk specimens significantly increased L) (p<0.05), b*, metric chroma and hue angle (p<0.001). For the three shades studied (3M1, 3M2 and 3M3) L* values were not significantly different (p>0.05) and chroma increased for 3M1 with the lowest chroma to 3M3 with the highest chroma, which is in line with the shade guide specifications. Although statistically significant (p<0.001) changes in hue angle between the three shades were small (less than 3 degrees overall). The difference in chroma between the three shades 3M1, 3M2 and 3M3 was greatest for the thin enamel layer than the thick enamel layer. A change in enamel thickness from 0.6 to 0.3mm resulted in a three-unit change in L* and metric chroma and a 4 degrees change in hue angle. A change in enamel porcelain thickness will have a greater effect on higher chromatic shades than those with lower chroma. The ability of the shade guide to prescribe chroma was demonstrated but this could be offset by an anomalous enamel thickness.

  10. Magnetically-tunable rebound property for variable elastic devices made of magnetic elastomer and polyurethane foam

    NASA Astrophysics Data System (ADS)

    Oguro, Tsubasa; Endo, Hiroyuki; Kawai, Mika; Mitsumata, Tetsu

    2017-12-01

    A device consisting of a phase of magnetic elastomer, a phase of polyurethane foam (PUF), and permanent magnet was fabricated and the stress-strain curves for the two-phase magnetic elastomer were measured by a uniaxial compression measurement. A disk of magnetic elastomer was adhered on a disk of PUF by an adhesive agent. The PUF thickness was varied from 1 mm to 5 mm while the thickness of magnetic elastomers was constant at 5 mm. The stress at a strain of 0.15 for the two-phase magnetic elastomers was evaluated in the absence and in the presence of a magnetic field of 410 mT. The stress at 0 mT decreased remarkably with the PUF thickness due to the deformation of the PUF phase. On the other hand, the stress at 410 mT slightly decreased with the thickness; however, it kept high values even at high thickness. When the PUF thickness was 5 mm, the maximum stress increment with 45 times to the off-field stress was observed. An experiment using ping-pong balls demonstrated that the coefficient of restitution for the two-phase magnetic elastomers can be dramatically altered by the magnetic field.

  11. Characterization of plastic deformation in a disk bend test

    NASA Astrophysics Data System (ADS)

    Byun, T. S.; Lee, E. H.; Hunn, J. D.; Farrell, K.; Mansur, L. K.

    2001-04-01

    A disk bend test technique has been developed to study deformation mechanisms as well as mechanical properties. In the disk bend test, a transmission electron microscopy (TEM) disk size specimen of 3 mm diameter ×0.25 mm thick is clamped around its rim in a circular holder and indented with a tungsten carbide ball of 1 mm diameter on its back face. AISI 316LN austenitic stainless steel and 9Cr-2WVTa ferritic/martensitic steel were selected as test materials. A model was developed to determine the average plastic strain and surface plastic strain in the disk bend test. The deformation regimes of the plastic strain versus deflection curves corresponded to those of the load versus deflection curves. The stress state of the disk bend deformation was analyzed for the two test materials and compared with those of other mechanical tests such as uniaxial tensile, compact tension, and ball indentation tests. Slip line features at the deformed surface and the corresponding TEM microstructures were examined for both tensile and disk bend specimens. Differences and similarities in deformation between the disk bend and the tensile tests are described.

  12. Influence of Different Enamel Shades and Thickness on Chroma and Value of Dentin Vita Shade: An in vitro Comparative Assessment Study.

    PubMed

    Hajira, Noor Saira Wajid Najma; Mehta, Deepak; Ashwini, P; Meena, N; Usha, H L

    2015-04-01

    The aim of the present study is to determine the influence of different enamel shades of various thickness on chroma and value of vita shade of dentin. Three enamel composite resin shades (Enamel white, grey and neutral) and one dentin shade (A 2) from A melogen Plus (Ultradent) was used. Ninety Enamel disk specimens of 0.5, 0.75 and 1 mm thickness and 10 mm in diameter for each shade and 90 dentin disk specimens of 2 mm in thickness and 10 mm in diameter was used for the study. The spectrophotometric values of the dentin shade with and without enamel specimens were recorded and the values were converted to CIEL*a*b values. Statistical analysis was done using Pearson correlation coefficients to verify the effect of thickness on Chroma and value, and the significance was evaluated by one-way ANOVA and Tukey post hoc test. Two way ANOVA and Tukey post hoc was done to verify the variation within the groups. Results revealed a significant positive correlation between thickness and chroma and a negative correlation between thickness and value. There was a statistically significant variation in between the groups. All groups produced a significant increase in chroma with increase in thickness of enamel shade upto a thickness of 0.75 mm after which the behavior of each shade was erratic. Hence, the optimum thickness would be 0.75 mm. All groups produced a significant decrease in value with increase in thickness of enamel shade. Enamel white produced the greatest reduction in value, enamel neutral the least and enamel grey demonstrated an intermediate result. There is a need to have a knowledge of the effect on chroma and value when dentin is layered with different enamel shades, it is also important to understand the effect of these enamel shades at different thicknesses to better control the color and reproduce esthetic simulating natural teeth.

  13. Inner Structure in the TW Hya Circumstellar Disk

    NASA Astrophysics Data System (ADS)

    Akeson, Rachel L.; Millan-Gabet, R.; Ciardi, D.; Boden, A.; Sargent, A.; Monnier, J.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.

    2011-05-01

    TW Hya is a nearby (50 pc) young stellar object with an estimated age of 10 Myr and signs of active accretion. Previous modeling of the circumstellar disk has shown that the inner disk contains optically thin material, placing this object in the class of "transition disks". We present new near-infrared interferometric observations of the disk material and use these data, as well as previously published, spatially resolved data at 10 microns and 7 mm, to constrain disk models based on a standard flared disk structure. Our model demonstrates that the constraints imposed by the spatially resolved data can be met with a physically plausible disk but this requires a disk containing not only an inner gap in the optically thick disk as previously suggested, but also some optically thick material within this gap. Our model is consistent with the suggestion by previous authors of a planet with an orbital radius of a few AU. This work was conducted at the NASA Exoplanet Science Institute, California Institute of Technology.

  14. Optical influence of the type of illuminant, substrates and thickness of ceramic materials.

    PubMed

    Volpato, Cláudia Angela Maziero; Monteiro, Sylvio; de Andrada, Mauro Caldeira; Fredel, Márcio Celso; Petter, Carlos Otávio

    2009-01-01

    The present study is an instrumental evaluation of the optical influence of the type of illuminant, substrate and different thickness on the color of dental ceramics. Thirty ceramic disks were prepared from IPS-Empress and IPS-Empress2 in three different thicknesses (1.5, 2.0 and 2.5mm). Disks made of composite resin; silver-palladium alloy and gold were used as substrates. The disks with a 1.5mm thickness were placed on a neutral gray photographic paper and measured with a spectrophotometer under three illuminants: daylight (D65), incandescent light (A) and fluorescent light (F6). All ceramic disks were combined with the substrate disks and a spectrophotometer was used to measure the coordinates of lightness (L*) and chromaticity (a* and b*). Two-way ANOVA (p<0.05) was used to analyze the combinations of ceramics, substrates and illuminants tested considering the coordinates of lightness (L*) and chromaticity (a* and b*), and also differences of color (DeltaE), lightness (DeltaL*), chromaticity values (Deltaa* and Deltab*). For the illuminants tested, the results present significant differences for coordinates of chromaticity a* and b*, suggesting a metamerism effect. In combination with the substrates, the results present statistical differences in all the tested conditions, especially where there is no ceramic substructure. The presence of discolored tooth remnants or metallic posts and cores can interfere with the desired aesthetic result, based on the selection of color aided by a single luminous source. Thus, the substrate color effect, thickness of the ceramic materials and type of illuminant are important factors to be considered during the clinical application of the ceramic systems.

  15. Powder Metallurgy Fabrication of Molybdenum Accelerator Target Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowden, Richard Andrew; Kiggans Jr., James O.; Nunn, Stephen D.

    2015-07-01

    Powder metallurgy approaches for the fabrication of accelerator target disks are being examined to support the development of Mo-99 production by NorthStar Medical Technologies, LLC. An advantage of powder metallurgy is that very little material is wasted and, at present, dense, quality parts are routinely produced from molybdenum powder. The proposed targets, however, are thin wafers, 29 mm in diameter with a thickness of 0.5 mm, with very stringent dimensional tolerances. Although tooling can be machined to very high tolerance levels, the operations of powder feed, pressing and sintering involve complicated mechanisms, each of which affects green density and shrinkage,more » and therefore the dimensions and shape of the final product. Combinations of powder morphology, lubricants and pressing technique have been explored to produce target disks with minimal variations in thickness and little or no distortion. In addition, sintering conditions that produce densities for optimum target dissolvability are being determined.« less

  16. Thermal Test on Target with Pressed Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard

    A thorough test of the thermal performance of a target for Mo 99 production using solid Mo 100 target to produce the Mo 99 via a gamma-n reaction has previously been conducted at Argonne National Laboratory (ANL). The results are reported in “Zero Degree Line Mo Target Thermal Test Results and Analysis,” LANL report Number LA-UR-15-23134 dated 3/27/15. This target was comprised of 25 disks 1 mm thick and 12 mm in diameter, separated by helium coolant gaps 0.5 mm wide. The test reported in the above referenced report was conducted with natural Mo disks all cut from commercial rod.more » The production plant will have Mo 100 disks pressed and sintered using a process being developed at Oak Ridge National Laboratory (ORNL). The structural integrity of press-and-sinter disks is of some concern. The test reported herein included 4 disks made by the ORNL process and placed in the high heat, and therefore high thermal stress, region of the target. The electron beam energy was 23 MeV for these tests. Beam spot size was 3.5 mm horizontal and 3 mm vertical, FWHM. The thermal stress test of pressed-and-sintered disks resulted in no mechanical failures. The induced thermal stresses were below yield stress for natural Mo, indicating that up to that stress state no inherent deficiencies in the mechanical properties of the fabricated disks were evident.« less

  17. TSDC (Thermally Stimulated Depolarization Current) Studies of PEO (Poly(Ethylene Oxide)) and PEO Complexed with KSCN.

    DTIC Science & Technology

    1985-06-01

    evaporated onto the resulting films. These films were then cut to form disks about 8 mm in diameter and 0.7 mm thick. While one electrode covered the full...surrounded by a heating coil, inside an airtight chamber. A spring loaded brass electrode presses the sample and the other electrode ." down onto the copper...cylinder. A sapphire disk insulates the lower " lectrodh( from the copper. This arrangement guarantees good thermal contact, arid electrical

  18. Ceramic materials for porcelain veneers: part II. Effect of material, shade, and thickness on translucency.

    PubMed

    Barizon, Karine T L; Bergeron, Cathia; Vargas, Marcos A; Qian, Fang; Cobb, Deborah S; Gratton, David G; Geraldeli, Saulo

    2014-10-01

    Information regarding the differences in translucency among new ceramic systems is lacking. The purpose of this study was to compare the relative translucency of the different types of ceramic systems indicated for porcelain veneers and to evaluate the effect of shade and thickness on translucency. Disk specimens 13 mm in diameter and 0.7-mm thick were fabricated for the following 9 materials (n=5): VITA VM9, IPS Empress Esthetic, VITA PM9, Vitablocks Mark II, Kavo Everest G-Blank, IPS Empress CAD, IPS e.max CAD, IPS e.maxPress, and Lava Zirconia. VITA VM9 served as the positive control and Lava as the negative control. The disks were fabricated with the shade that corresponds to A1. For IPS e.maxPress, additional disks were made with different shades (BL2, BL4, A1, B1, O1, O2, V1, V2, V3), thickness (0.3 mm), and translucencies (high translucency, low translucency). Color coordinates (CIE L∗ a∗ b∗) were measured with a tristimulus colorimeter. The translucency parameter was calculated from the color difference of the material on a black versus a white background. One-way ANOVA, the post hoc Tukey honestly significant difference, and the Ryan-Einot-Gabriel-Welsch multiple range tests were used to analyze the data (α=.05). Statistically significant differences in the translucency parameter were found among porcelains (P<.001) according to the following rank: VM9>PM9, Empress Esthetic>Empress CAD>Mark II, Everest, e.max CAD>e.max Press>Lava. Significant differences also were noted when different shades and thickness were compared (P<.001). Different ceramic systems designed for porcelain veneers present varying degrees of translucency. The thickness and shade of lithium disilicate ceramic affect its translucency. Shade affects translucency parameter less than thickness. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. 29 mm Diameter Target Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Olivas, Eric Richard; Dale, Gregory E.

    After numerous delays, the test of the 29 mm diameter target was conducted on 8/18/2017. The complete target design report, dated 8/15/2016, is reproduced below for completeness. This describes in detail the 10 disk target with varying thickness disks. The report presents and discusses the test results. In brief summary, there appears to have been multiple instrumentation errors. Measured temperatures, pressures and IR camera window temperature measurement are all suspect. All tests were done at 35 MeV, with 171 μA current, or 6 kW of beam power.

  20. Design and Characterization of Thin Stainless Steel Burst Disks for Increasing Two-Stage Light Gas Launcher Efficiency

    NASA Technical Reports Server (NTRS)

    Tylka, Jonathan M.; Johnson, Kenneth L.; Henderson, Donald; Rodriguez, Karen

    2012-01-01

    Laser etched 300 series Stainless Steel Burst Disks (SSBD) ranging between 0.178 mm (0.007-in.) and 0.508mm (0.020-in.) thick were designed for use in a 17-caliber two-stage light gas launcher. First, a disk manufacturing method was selected using a combination of wire electrical discharge machining (EDM) to form the blank disks and laser etching to define the pedaling fracture pattern. Second, a replaceable insert was designed to go between the SSDB and the barrel. This insert reduced the stress concentration between the SSBD and the barrel, providing a place for the petals of the SSDB to open, and protecting the rifling on the inside of the barrel. Thereafter, a design of experiments was implemented to test and characterize the burst characteristics of SSBDs. Extensive hydrostatic burst testing of the SSBDs was performed to complete the design of experiments study with one-hundred and seven burst tests. The experiment simultaneously tested the effects of the following: two SSBD material states (full hard, annealed); five SSBD thicknesses 0.178, 0.254, 0.305, 0.381 mm (0.007, 0.010, 0.012, 0.015, 0.020-in.); two grain directions relative); number of times the laser etch pattern was repeated (varies between 5-200 times); two heat sink configurations (with and without heat sink); and, two barrel configurations (with and without insert). These tests resulted in the quantification of the relationship between SSBD thickness, laser etch parameters, and desired burst pressure. Of the factors investigated only thickness and number of laser etches were needed to develop a mathematical relationship predicting hydrostatic burst pressure of disks using the same barrel configuration. The fracture surfaces of two representative SSBD bursts were then investigated with a scanning electron microscope, one burst hydrostatically in a fixture and another dynamically in the launcher. The fracture analysis verified that both burst conditions resulted in a ductile overload failure indicated by transgranular microvoid coalescence, non-fragmenting rupture and mixed tensile and shear failure modes, regardless of the material states tested. More testing is underway to determine the relationship between SSBD burst pressure and projectile velocity.

  1. Alma Survey of Circumstellar Disks in the Young Stellar Cluster IC 348

    NASA Astrophysics Data System (ADS)

    Ruíz-Rodríguez, D.; Cieza, L. A.; Williams, J. P.; Andrews, S. M.; Principe, D. A.; Caceres, C.; Canovas, H.; Casassus, S.; Schreiber, M. R.; Kastner, J. H.

    2018-05-01

    We present a 1.3 mm continuum survey of the young (2-3 Myr) stellar cluster IC 348, which lies at a distance of 310 pc, and is dominated by low-mass stars (M⋆ ˜ 0.1-0.6 M⊙). We observed 136 Class II sources (disks that are optically thick in the infrared) at 0.8″ (200 au) resolution with a 3σ sensitivity of ˜ 0.45 mJy (Mdust ˜ 1.3 M⊕). We detect 40 of the targets and construct a mm-continuum luminosity function. We compare the disk mass distribution in IC 348 to those of younger and older regions, taking into account the dependence on stellar mass. We find a clear evolution in disk masses from 1 to 5-10 Myr. The disk masses in IC 348 are significantly lower than those in Taurus (1-3 Myr) and Lupus (1-3 Myr), similar to those of Chamaleon I, (2-3 Myr) and σ Ori (3-5 Myr) and significantly higher than in Upper Scorpius (5-10 Myr). About 20 disks in our sample (˜5% of the cluster members) have estimated masses (dust + gas) >1 MJup and hence might be the precursors of giant planets in the cluster. Some of the most massive disks include transition objects with inner opacity holes based on their infrared SEDs. From a stacking analysis of the 96 non-detections, we find that these disks have a typical dust mass of just ≲ 0.4 M⊕, even though the vast majority of their infrared SEDs remain optically thick and show little signs of evolution. Such low-mass disks may be the precursors of the small rocky planets found by Kepler around M-type stars.

  2. Comparison of conventional and digital radiography for radiometric differentiation of dental cements.

    PubMed

    Baksi, B Güniz; Ermis, R Banu

    2007-10-01

    To test the efficacy of conventional radiometry with indirect digital image analysis in the assessment of the relative radiopacity of dental cements used as liners or bases compared to human enamel and dentin. Disks of 15 different dental cements, 5 mm in diameter and 2 mm thick, were exposed to radiation together with 2-mm-thick disks of enamel and dentin and an aluminum step wedge. Density was evaluated by digital transmission densitometry and with the histogram function of an image analysis program following digitization of the radiographs with a flatbed scanner. A higher number of dental cements were discriminated from both dentin and enamel with conventional radiographic densitometer. All the cements examined, except Ionoseal (Voco) and Ionobond (Voco), were more radiopaque than dentin. With both methods, Chelon-Silver (3M ESPE) had the highest radiopacity and glass-ionomer cements the lowest. Radiodensity of dental cements can be differentiated with a high probability with the conventional radiometric method.

  3. Effect of ceramic thickness and shade on mechanical properties of a resin luting agent.

    PubMed

    Passos, Sheila Pestana; Kimpara, Estevão Tomomitsu; Bottino, Marco Antonio; Rizkalla, Amin S; Santos, Gildo Coelho

    2014-08-01

    This study aimed to investigate the influence of ceramic thickness and shade on the Knoop hardness and dynamic elastic modulus of a dual-cured resin cement. Six ceramic shades (Bleaching, A1, A2, A3, A3.5, B3) and two ceramic thicknesses (1 mm, 3 mm) were evaluated. Disk specimens (diameter: 7 mm; thickness: 2 mm) of the resin cement were light cured under a ceramic block. Light-cured specimens without the ceramic block at distances of 1 and 3 mm were also produced. The Knoop hardness number (KHN), density, and dynamic Young's moduli were determined. Statistical analysis was conducted using ANOVA and a Tukey B rank order test (p = 0.05). The bleaching 1-mm-thick group exhibited significantly higher dynamic Young's modulus. Lower dynamic Young's moduli were observed for the 3-mm-thick ceramic groups compared to bleaching 3-mm-thick group, and no difference was found among the other 3-mm groups. For the KHN, when A3.5 3-mm-thick was used, the KHN was significantly lower than bleaching and A1 1-mm-thick ceramic; however, no difference was exhibited between the thicknesses of the same shade. The dual-cured resin cement studied irradiated through the 1-mm-thick ceramic with the lightest shade (bleaching ceramic) exhibited a better elastic modulus, and there was no effect in KHN of the resin cement when light cured under different ceramic shades and thicknesses (1 and 3 mm), except when the A3.5 3-mm-thick ceramic was used. Variolink II irradiated through ceramic with the lowest chroma exhibited the highest elastic modulus; therefore, the light activation method might not be the same for all clinical situations. © 2014 by the American College of Prosthodontists.

  4. Effectiveness of Combination of Dentin and Enamel Layers on the Masking Ability of Porcelain.

    PubMed

    Boscato, Noéli; Hauschild, Fernando Gabriel; Kaizer, Marina da Rosa; De Moraes, Rafael Ratto

    2015-01-01

    This study evaluated the masking ability of different porcelain thicknesses and combination of enamel and/or dentin porcelain layers over simulated background dental substrates with higher (A2) and lower (C4) color values. Combination of the enamel (E) and dentin (D) monolayer porcelain disks with different thicknesses (0.5 mm, 0.8 mm, and 1 mm) resulted in the following bilayer groups (n=10): D1E1, D1E0.8; D1E0.5; D0.8E0.8; D0.8E0.5, and D0.5E0.5. CIELAB color coordinates were measured with a spectrophotometer. The translucency parameter of mono and bilayer specimens and the masking ability estimated by color variation (ΔE*ab) of bilayer specimens over simulated dental substrates were evaluated. Linear regression analysis was used to investigate the relationships translucency parameter × ΔE*, translucency parameter × porcelain thickness, and ΔE* × porcelain thickness. Data were analyzed statistically (α= 0.05). Thinner porcelain disks were associated with higher translucency. Porcelain monolayers were considerably more translucent than bilayers (enamel + dentin). Dentin porcelain was less translucent than enamel porcelain with same thickness. ΔE* was always lower when measured over A2 background. Higher ΔE* was observed for the C4 background, indicating poorer masking ability. Increased ΔE* was significantly associated with increased translucency for both backgrounds. Decreased translucency and ΔE* were associated with increased total porcelain thickness or increased dentin thickness for both backgrounds. In conclusion, increased porcelain thickness (particularly increased dentin layer) and increased porcelain opacity resulted in better masking ability of the dental backgrounds.

  5. Numerical modeling of the divided bar measurements

    NASA Astrophysics Data System (ADS)

    LEE, Y.; Keehm, Y.

    2011-12-01

    The divided-bar technique has been used to measure thermal conductivity of rocks and fragments in heat flow studies. Though widely used, divided-bar measurements can have errors, which are not systematically quantified yet. We used an FEM and performed a series of numerical studies to evaluate various errors in divided-bar measurements and to suggest more reliable measurement techniques. A divided-bar measurement should be corrected against lateral heat loss on the sides of rock samples, and the thermal resistance at the contacts between the rock sample and the bar. We first investigated how the amount of these corrections would change by the thickness and thermal conductivity of rock samples through numerical modeling. When we fixed the sample thickness as 10 mm and varied thermal conductivity, errors in the measured thermal conductivity ranges from 2.02% for 1.0 W/m/K to 7.95% for 4.0 W/m/K. While we fixed thermal conductivity as 1.38 W/m/K and varied the sample thickness, we found that the error ranges from 2.03% for the 30 mm-thick sample to 11.43% for the 5 mm-thick sample. After corrections, a variety of error analyses for divided-bar measurements were conducted numerically. Thermal conductivity of two thin standard disks (2 mm in thickness) located at the top and the bottom of the rock sample slightly affects the accuracy of thermal conductivity measurements. When the thermal conductivity of a sample is 3.0 W/m/K and that of two standard disks is 0.2 W/m/K, the relative error in measured thermal conductivity is very small (~0.01%). However, the relative error would reach up to -2.29% for the same sample when thermal conductivity of two disks is 0.5 W/m/K. The accuracy of thermal conductivity measurements strongly depends on thermal conductivity and the thickness of thermal compound that is applied to reduce thermal resistance at contacts between the rock sample and the bar. When the thickness of thermal compound (0.29 W/m/K) is 0.03 mm, we found that the relative error in measured thermal conductivity is 4.01%, while the relative error can be very significant (~12.2%) if the thickness increases to 0.1 mm. Then, we fixed the thickness (0.03 mm) and varied thermal conductivity of the thermal compound. We found that the relative error with an 1.0 W/m/K compound is 1.28%, and the relative error with a 0.29 W/m/K is 4.06%. When we repeated this test with a different thickness of the thermal compound (0.1 mm), the relative error with an 1.0 W/m/K compound is 3.93%, and that with a 0.29 W/m/K is 12.2%. In addition, the cell technique by Sass et al.(1971), which is widely used to measure thermal conductivity of rock fragments, was evaluated using the FEM modeling. A total of 483 isotropic and homogeneous spherical rock fragments in the sample holder were used to test numerically the accuracy of the cell technique. The result shows the relative error of -9.61% for rock fragments with the thermal conductivity of 2.5 W/m/K. In conclusion, we report quantified errors in the divided-bar and the cell technique for thermal conductivity measurements for rocks and fragments. We found that the FEM modeling can accurately mimic these measurement techniques and can help us to estimate measurement errors quantitatively.

  6. Characterization of high speed synthetic jet actuators

    NASA Astrophysics Data System (ADS)

    Pikcilingis, Lucia

    Over the last 20 years, synthetic jets have been studied as a means for aerodynamic active flow control. Specifically, synthetic jets provide momentum transfer with zero-net mass flux, which has been proven to be effective for controlling flow fields. A synthetic jet is created by the periodic formation of vortex rings at its orifice due to the periodic motion of a piezoelectric disk(s). The present study seeks to optimize the performance of a synthetic jet actuator by utilizing different geometrical parameters such as disk thickness, orifice width and length, cavity height and cavity diameter, and different input parameters such as driving voltage and frequency. Two apparatuses were used with a cavity diameter of either 80 mm or 160 mm. Piezoelectric-based disks were provided by the Mide Corporation. Experiments were conducted using several synthetic jet apparatuses designed for various geometrical parameters utilizing a dual disk configuration. Velocity and temperature measurements were acquired at the center of the synthetic jet orifice using a temperature compensated hotwire and thermocouple probe. The disk(s) displacement was measured at the center of the disk with a laser displacement sensor. It was shown that the synthetic jets, having the 80 mm cavity diameter, are capable of exceeding peak velocities of 200 m/s with a relatively large orifice of dimensions AR = 12, hc* = 3, and hn* = 4. In addition, the conditions at which the disks were manufactured had minimal effect on the performance of the jet, except for the pair with overnight resting time as opposed to less than an hour resting time for the control units. Altering the tab style of the disks, where the tab allows the electrical circuit to be exposed for external power connection, showed that a thin fragile tab versus a tab of the same thickness as the disk has minimal effect on the performance but affects the durability of the disk due to the fragility or robustness of the tab. The synthetic jets, having a 160 mm cavity diameter, yielded jet velocities greater than 300 m/s. Altering the clamping conditions, at which the disks are clamped, showed that increasing the number of clamping points where the disks are clamped, improved the performance of the jet. Coupling this with a flexible clamping boundary condition yielded the best performing jets. Fatigue tests were conducted for both apparatuses using several different disk designs. These tests showed that there is a degradation of the disks that causes the jet performance to decay and eventually cause a fracture in the disk. It is apparent from this work that, though the conditions at which the disks are manufactured have a small effect on performance, the disks do exhibit a threshold where beyond it the performance decays. Though desired jet velocities and momentums are achievable, the abnormality of the disks needs to be addressed before applying the actuator to practical situations. As this research continues, the synthetic jet actuator will become more robust and reliable to be an effective and reliable source of active flow control.

  7. DIRECT IMAGING OF THE WATER SNOW LINE AT THE TIME OF PLANET FORMATION USING TWO ALMA CONTINUUM BANDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banzatti, A.; Pontoppidan, K. M.; Pinilla, P.

    2015-12-10

    Molecular snow lines in protoplanetary disks have been studied theoretically for decades because of their importance in shaping planetary architectures and compositions. The water snow line lies in the planet formation region at ≲10 AU, and so far its location has been estimated only indirectly from spatially unresolved spectroscopy. This work presents a proof-of-concept method to directly image the water snow line in protoplanetary disks through its physical and chemical imprint on the local dust properties. We adopt a physical disk model that includes dust coagulation, fragmentation, drift, and a change in fragmentation velocities of a factor of 10 betweenmore » dry silicates and icy grains as found by laboratory work. We find that the presence of a water snow line leads to a sharp discontinuity in the radial profile of the dust emission spectral index α{sub mm} due to replenishment of small grains through fragmentation. We use the ALMA simulator to demonstrate that this effect can be observed in protoplanetary disks using spatially resolved ALMA images in two continuum bands. We explore the model dependence on the disk viscosity and find that the spectral index reveals the water snow line for a wide range of conditions, with opposite trends when the emission is optically thin rather than thick. If the disk viscosity is low (α{sub visc} < 10{sup −3}), the snow line produces a ringlike structure with a minimum at α{sub mm} ∼ 2 in the optically thick regime, possibly similar to what has been measured with ALMA in the innermost region of the HL Tau disk.« less

  8. Coupling of lithium niobate disk resonators to integrated waveguides

    NASA Astrophysics Data System (ADS)

    Berneschi, S.; Cosi, F.; Nunzi Conti, G.; Pelli, S.; Soria, S.; Righini, G. C.; Dispenza, M.; Secchi, A.

    2011-01-01

    Whispering gallery mode (WGM) disk resonators fabricated in single crystals can have high Q factors within their transparency bandwidth and may have application both in fundamental and applied optics. Lithium niobate (LN) resonators thanks to their electro-optical properties may be used in particular as tunable filters, modulators, and delay lines. A critical step toward the actual application of these devices is the implementation of a robust and efficient coupling system. High index prisms are typically used for this purpose. In this work we demonstrate coupling to high-Q WGM LN disks from an integrated optical LN waveguide. The waveguides are made by proton exchange in X-cut LN. The disks with diameters of about 5 mm and thickness of 1 mm are made from commercial Z-cut LN wafers by core drilling a cylinder and thereafter polishing the edges into a spheroidal profile. Both resonance linewidth and cavity photon lifetime measurements were performed to calculate the Q factor of the resonator, which is in excess of 108.

  9. Large format silicon immersion gratings for high resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ge, Jian; McDavitt, Dan; Zhao, Bo; Miller, Shane

    2006-06-01

    We report progress on development of large format silicon immersion gratings (SIG) at UF. Currently SIGs on 4 inch diameter thick silicon disks can be routinely produced with groove periods from 7 microns to 250 microns and blaze angles from 20 degrees to 76 degrees. A new capability of making SIGs from 6 inch diameter silicon disks has also been demonstrated. A new Space Astronomy Instrumentation Lab (SAIL) facility is being established at UF to have a capability of fabricating SIGs on 8 inch diameter silicon disks with up to 4 inch thickness. Our prototype SIG with an 85x50 mm2 etched grating area and a 54.7 deg blaze angle has produced a nearly diffraction-limited wavefront, less than 1% integrated scattered light and ghost intensity, a 74% peak blaze efficiency and a R = 55,000 resolving power at 1.55 μm.

  10. Influence of the core material and the glass infiltration mode on the color of glass-infiltrated ceramic veneers over discolored backgrounds. A spectrophotometric evaluation.

    PubMed

    Koutayas, Spiridon-Oumvertos; Charisis, Dimitrios

    2008-01-01

    The purpose of this study was to evaluate the influence of the core material (Spinell or Alumina) and the glass infiltration mode (under or without vacuum) on the color of 2M2 Vita In-Ceram Spinell and Alumina ceramic veneers (Vident) for the restoration of 5M1 discolored backgrounds. A total of 40 In-Ceram Spinell (SP, n = 20) and Alumina (AL, n = 20) disks (diameter 10.0 mm, thickness 0.4 mm, Vident) were glass-infiltrated under (V, n = 20) or without vacuum (A, n = 20) using a translucent glass (S1, Vident) and then veneered (2M2 Vitadur Alpha, total thickness 0.7 mm). The veneer specimens were bonded onto the 5M1 color backgrounds (Vitadur Alpha, diameter 10.0 mm, thickness 2.0 mm) using a dual curing adhesive cement (Panavia F 2.0 Light, Kuraray), to create the study groups (SPV, SPA, ALV, ALA, each n = 10). Ten 2M2 feldspathic veneer disks (Vitadur Alpha, diameter 10.0 mm, thickness 0.7 mm) bonded onto 2M2 color backgrounds (Vitadur Alpha, diameter 10.0 mm, thickness 2.0 mm) were used as control (CTR group). L*a*b* color coordinates were measured 5 times for each study group and control specimen using a Vita Easyshade spectrophotometer (Vident). Mean color differences (DeltaE) were calculated using the equation DeltaE = (DeltaL*2 + Deltaa*2 + Deltab*2)1/2. Mean color differences and standard deviations between each study group and the control group were: 7.31 +/- 0.99 for SPV; 7.23 +/- 0.61 for SPA; 5.81 +/- 1.41 for ALV; and 6.25 +/- 0.89 for ALA. Two-way ANOVA followed by t test showed that only the core material had a statistically significant effect on the final color performance (alpha = .05, P = .000). The core material (Spinell or Alumina) significantly influenced the core-related opacity, while the glass infiltration mode (under or without vacuum) had a minor effect on the final color establishment of both glass-infiltrated veneers over discolored backgrounds. Regarding the reported clinical visible thresholds, In-Ceram Alumina ceramic veneers showed the greatest improvement in the color performance of discolored teeth compared with all other groups.

  11. Insulation disks on the skin to estimate muscle temperature.

    PubMed

    Brajkovic, Dragan; Ducharme, Michel B; Webb, Paul; Reardon, Frank D; Kenny, Glen P

    2006-08-01

    This study examined the use of insulation disks placed on the skin to estimate muscle temperature in resting subjects exposed to a thermoneutral (28 degrees C) ambient environment. The working hypothesis was that the skin temperature under each insulation disk would increase to a value corresponding to a specific muscle temperature measured by a control probe at 0.8+/-0.2, 1.3+/-0.2, 1.8+/-0.2, 2.3+/-0.2, and 2.8+/-0.2 cm below the skin surface. Eight subjects sat for 120 min while lateral thigh skin temperatures and vastus lateralis muscle temperature were directly measured. Vastus lateralis temperature was estimated non-invasively using two 5 cm diameter foam neoprene disks which were placed on top of the skin temperature probes (from time 60 to 120 min) located at 15.3 and 26.3 cm superior to the patella. The disks at the two locations were 3.2 and 4.8 mm thick, respectively. The placement of the 3.2- and 4.8-mm disks on the thigh for a minimum of 15 and 20 min, respectively, resulted in an increase in skin temperature under the disks which corresponded to the lateral thigh muscle temperature measured directly and invasively at 0.8+/-0.2 and 1.3+/-0.2 cm, respectively, below the skin.

  12. Annulus Fibrosus Can Strip Hyaline Cartilage End Plate from Subchondral Bone: A Study of the Intervertebral Disk in Tension.

    PubMed

    Balkovec, Christian; Adams, Michael A; Dolan, Patricia; McGill, Stuart M

    2015-10-01

    Study Design Biomechanical study on cadaveric spines. Objective Spinal bending causes the annulus to pull vertically (axially) on the end plate, but failure mechanisms in response to this type of loading are poorly understood. Therefore, the objective of this study was to identify the weak point of the intervertebral disk in tension. Methods Cadaveric motion segments (aged 79 to 88 years) were dissected to create midsagittal blocks of tissue, with ∼10 mm of bone superior and inferior to the disk. From these blocks, 14 bone-disk-bone slices (average 4.8 mm thick) were cut in the frontal plane. Each slice was gripped by its bony ends and stretched to failure at 1 mm/s. Mode of failure was recorded using a digital camera. Results Of the 14 slices, 10 failed by the hyaline cartilage being peeled off the subchondral bone, with the failure starting opposite the lateral annulus and proceeding medially. Two slices failed by rupturing of the trabecular bone, and a further two failed in the annulus. Conclusions The hyaline cartilage-bone junction is the disk's weak link in tension. These findings provide a plausible mechanism for the appearance of bone and cartilage fragments in herniated material. Stripping cartilage from the bony end plate would result in the herniated mass containing relatively stiff cartilage that does not easily resorb.

  13. Enhancing the Bounce of a Ball

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2010-10-01

    In sports such as baseball, softball, golf, and tennis, a common objective is to hit the ball as fast or as far as possible. Another common objective is to hit the ball so that it spins as fast as possible, since the trajectory of the ball through the air is strongly affected by ball spin. In an attempt to enhance both the coefficient of restitution (COR) and the spin of a golf ball, I conducted several experiments to see what would happen when a 45-g, 42.8-mm diameter golf ball bounced on: (a) a 58-mm diameter, 103-g Super Ball®; (b) an 8-mm thick, 56-mm diameter circular disk of Super Ball material cut from a large Super Ball and glued to a 3.4-kg lead brick; and (c) a 3-mm thick sheet of rubber glued to a 3.4-kg lead brick. (See Fig. 1.)

  14. Development of radon sources with a high stability and a wide range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukutsu, K.; Yamada, Y.

    A solid {sup 222}Rn (radon) source using a fibrous and porous SiC ceramic disk was developed. The emission rate of radon emanated from the disk depended on the content of {sup 226}Ra and the sintering temperature. A {sup 226}Ra sulfate ({sup 226}RaSO{sub 4}) solution was dropped on a fibrous SiC ceramic disk (33 mmφ) of 1 mm in thickness, and sintered at 400 °C. The radon concentration from a disk containing {sup 226}Ra of 1.85 MBq was measured to be 38 kBq m{sup −3} at a carrier airflow rate of 0.5 L min{sup −1}. By adjusting the {sup 226}Ra contentmore » or the sweep airflow rate, the radon concentrations were easily controlled over a wide range of over three orders of magnitude. The concentration was very stable for a long term. The compactness of the source disk made is easy for handling the source container and the shielding of gamma radiation from {sup 226}Ra and its decay products. Such advantages in a radon generation system are desirable for experiments of high-level, large-scale radon exposure.« less

  15. Probing circumplanetary disks with MagAO and ALMA

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Lin

    2018-01-01

    The dedication of the Magellan Adaptive Optics (MagAO) on the 6.5 m Clay Telescope has opened a new era in high-contrast imaging. Its unique diffraction-limited wavelengths of 0.6 to 1 micron helps to probe circumplanetary disks by measuring the amount of dust reddening as well as by searching for the strongest gas accretion indicator H-alpha (0.65 micron). Using MagAO, I found that two wide-orbit planetary-mass companions CT Cha B and 1RXS 1609 B have a significant dust extinction of Av ~ 3 to 5 mag likely from their disks. For GQ Lup B, I found that it is actively accreting material from its disk and emitting strong H-alpha emission. My research with MagAO demonstrates that circumplanetary disks could be ubiquitous among young giant planets. I later carried out a survey using ALMA to image accretion disks around several wide planet-mass companions at 1.3 mm continuum and CO (2-1). This is the first systematic study aiming to measure the size, mass, and structure of planetary disks. However, except for FW Tau C (which was shown to actually be a low-mass star from the dynamical mass measurement) no disks around the companions were found in my ALMA survey. This surprising null result implies that circumplanetary disks are much more compact and denser than expected, so they are faint and optically thick in the radio wavelengths. Therefore, mid- to far-infrared may be more favorable to characterize disk properties. The MIRI camera on the JWST can test this compact optically-thick disk hypothesis by probing disk thermal emission between 10 and 25 micron.

  16. An Explanation of the Very Low Radio Flux of Young Planet-mass Companions

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Lin; Close, Laird M.; Eisner, Josh A.; Sheehan, Patrick D.

    2017-12-01

    We report Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm continuum upper limits for five planetary-mass companions DH Tau B, CT Cha B, GSC 6214-210 B, 1RXS 1609 B, and GQ Lup B. Our survey, together with other ALMA studies, have yielded null results for disks around young planet-mass companions and placed stringent dust mass upper limits, typically less than 0.1 M ⊕, when assuming dust continuum is optically thin. Such low-mass gas/dust content can lead to a disk lifetime estimate (from accretion rates) much shorter than the age of the system. To alleviate this timescale discrepancy, we suggest that disks around wide companions might be very compact and optically thick in order to sustain a few Myr of accretion, yet have very weak (sub)millimeter flux so as to still be elusive to ALMA. Our order-of-magnitude estimate shows that compact optically thick disks might be smaller than 1000 R Jup and only emit ∼μJy of flux in the (sub)millimeter, but their average temperature can be higher than that of circumstellar disks. The high disk temperature could impede satellite formation, but it also suggests that mid- to far-infrared might be more favorable than radio wavelengths to characterize disk properties. Finally, the compact disk size might imply that dynamical encounters between the companion and the star, or any other scatterers in the system, play a role in the formation of planetary-mass companions.

  17. THICK DISKS OF EDGE-ON GALAXIES SEEN THROUGH THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G): LAIR OF MISSING BARYONS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comeron, Sebastien; Elmegreen, Bruce G.; Knapen, Johan H.

    Most, if not all, disk galaxies have a thin (classical) disk and a thick disk. In most models thick disks are thought to be a necessary consequence of the disk formation and/or evolution of the galaxy. We present the results of a study of the thick disk properties in a sample of carefully selected edge-on galaxies with types ranging from T = 3 to T = 8. We fitted one-dimensional luminosity profiles with physically motivated functions-the solutions of two stellar and one gaseous isothermal coupled disks in equilibrium-which are likely to yield more accurate results than other functions used inmore » previous studies. The images used for the fits come from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G). We found that thick disks are on average more massive than previously reported, mostly due to the selected fitting function. Typically, the thin and thick disks have similar masses. We also found that thick disks do not flare significantly within the observed range in galactocentric radii and that the ratio of thick-to-thin disk scale heights is higher for galaxies of earlier types. Our results tend to favor an in situ origin for most of the stars in the thick disk. In addition, the thick disk may contain a significant amount of stars coming from satellites accreted after the initial buildup of the galaxy and an extra fraction of stars coming from the secular heating of the thin disk by its own overdensities. Assigning thick disk light to the thin disk component may lead to an underestimate of the overall stellar mass in galaxies because of different mass-to-light ratios in the two disk components. On the basis of our new results, we estimate that disk stellar masses are between 10% and 50% higher than previously thought and we suggest that thick disks are a reservoir of 'local missing baryons'.« less

  18. Effect of processing induced particle alignment on the fracture toughness and fracture behavior of multiphase dental ceramics.

    PubMed

    Gonzaga, Carla C; Okada, Cristina Yuri; Cesar, Paulo F; Miranda, Walter G; Yoshimura, Humberto N

    2009-11-01

    To investigate the processing induced particle alignment on fracture behavior of four multiphase dental ceramics (one porcelain, two glass-ceramics and a glass-infiltrated-alumina composite). Disks (Ø12 mm x 1.1mm-thick) and bars (3 mm x 4 mm x 20 mm) of each material were processed according to manufacturer instructions, machined and polished. Fracture toughness (K(Ic)) was determined by the indentation strength method using 3-point bending and biaxial flexure fixtures for the fracture of bars and disks, respectively. Microstructural and fractographic analyses were performed with scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The isotropic microstructure of the porcelain and the leucite-based glass-ceramic resulted in similar fracture toughness values regardless of the specimen geometry. On the other hand, materials containing second-phase particles with high aspect ratio (lithium disilicate glass-ceramic and glass-infiltrated-alumina composite) showed lower fracture toughness for disk specimens compared to bars. For the lithium disilicate glass-ceramic disks, it was demonstrated that the occurrence of particle alignment during the heat-pressing procedure resulted in an unfavorable pattern that created weak microstructural paths during the biaxial test. For the glass-infiltrated-alumina composite, the microstructural analysis showed that the large alumina platelets tended to align their large surfaces perpendicularly to the direction of particle deposition during slip casting of green preforms. The fracture toughness of dental ceramics with anisotropic microstructure should be determined by means of biaxial testing, since it results in lower values.

  19. Compact, Portable Pulsed-Power

    DTIC Science & Technology

    2006-08-31

    adding this fast pulse to a slow, 30kV pulse which is below the threshold for significant corona emission. This scheme is presently being explored with...the smaller stressed electrode area. Further results from these systems were reported at the 2006 Power Modulator Conference in Washington, D.C...BLT and the medium-BLT is similar. The mini BLT electrodes are made of 3 mm thick molybdenum disks with a 3 mm central hole, capped on a hollow OFHC 1

  20. The Formation and Evolution of Galactic Disks with APOGEE and the Gaia Survey

    NASA Astrophysics Data System (ADS)

    Li, Chengdong; Zhao, Gang; Zhai, Meng; Jia, Yunpeng

    2018-06-01

    We explore the structure and evolutionary history of Galactic disks with Apache Point Observatory Galactic Evolution Experiment data release 13 (DR13 hereafter) and Gaia Tycho-Gaia Astrometric Solution data. We use the [α/M] ratio to allocate stars into particular Galactic components to elucidate the chemical and dynamical properties of the thin and thick disks. The spatial motions of the sample stars are obtained in Galactic Cartesian and cylindrical coordinates. We analyze the abundance trends and metallicity and [α/M] gradients of the thick and thin disks. We confirm the existence of metal-weak thick-disk stars in Galactic disks. A kinematical method is used to select the thin- and thick-disk stars for comparison. We calculate the scale length and scale height of the kinematically and chemically selected thick and thin disks based on the axisymmetric Jeans equation. We conclude that the scale length of the thick disk is approximately equal to that of the thin disk via a kinematical approach. For the chemical selection, this disparity is about 1 kpc. Finally, we get the stellar orbital parameters and try to unveil the formation scenario of the thick disk. We conclude that the gas-rich merger and radial migration are more reasonable formation scenarios for the thick disk.

  1. ALMA Survey of Class II Disks in the Young Stellar Cluster IC 348

    NASA Astrophysics Data System (ADS)

    Ruiz, Dary; Cieza, Lucas; Williams, Jonathan; Andrews, Sean; Principe, David

    2018-01-01

    We present a 1.3 mm continuum survey of the young (2-3 Myr) stellar cluster IC 348 at a distance of 270 pc, which is dominated by low-mass stars. We observed 146 Class II sources (disks that are optically thick in the infrared) at 0.8 '' (200 au) resolution with a 3σ sensitivity of 0.2 MEarth. We detect 46 of the targets and construct a disk luminosity function. We compare the disk mass distribution in IC 348 to those of younger and older regions, taking into account the dependence on stellar mass. We find a clear evolution in disk masses from 1 to 5-10 Myr. The disk masses in IC 348 are significantly lower than those in Taurus (1-2 Myr) and Lupus (1-3 Myr), similar to those of Chamaleon I, (2-3 Myr) and σ-Ori (3-5 Myr) and significantly higher than in Upper Scorpius (5-10 Myr). About 20 disks in our sample (~5% of the cluster members) have estimated masses (dust + gas) of >1 MJUP. and might be the precursors of giant planets in the cluster. Some of the most massive disks include transition objects with inner opacity holes based on their infrared SEDs. From an stacking analysis of the 90 non-detections, we find that these disks have a typical dust mass of just ≤ 0.1 MEarth, even though the vast majority of their infrared SEDs remain optically thick and show little signs of evolution. Such low-mass disks are likely to be the precursors of the small rocky planets found by Kepler around M-type stars.

  2. Exploring Our Galaxy's Thick Disk

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    What is the structure of the Milky Ways disk, and how did it form? A new study uses giant stars to explore these questions.A View from the InsideSchematic showing an edge-on, not-to-scale view of what we think the Milky Ways structurelookslike. The thick disk is shown in yellow and the thin disk is shown in green. [Gaba p]Spiral galaxies like ours are often observed to have disks consisting of two components: a thin disk that lies close to the galactic midplane, and a thick disk that extends above and below this. Past studies have suggested that the Milky Ways disk hosts the same structure, but our position embedded in the Milky Way makes this difficult to confirm.If we can measure the properties of a broad sample of distant tracer stars and use this to better understand the construction of the Milky Ways disk, then we can start to ask additional questions like, how did the disk components form? Formation pictures for the thick disk generally fall into two categories:Stars in the thick disk formed within the Milky Way either in situ or by migrating to their current locations.Stars in the thick disk formed in satellite galaxies around the Milky Way and then accreted when the satellites were disrupted.Scientists Chengdong Li and Gang Zhao (NAO Chinese Academy of Sciences, University of Chinese Academy of Sciences) have now used observations of giant stars which can be detected out to great distances due to their brightness to trace the properties of the Milky Ways thick disk and address the question of its origin.Best fits for the radial (top) and vertical (bottom) metallicity gradients of the thick-disk stars. [Adapted from Li Zhao 2017]Probing OriginsLi and Zhao used data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) in China to examine a sample of 35,000 giant stars. The authors sorted these stars into different disk components halo, thin disk, and thick disk based on their kinematic properties, and then explored how the orbital and chemical properties of these stars differed in the different components.Li and Zhao found that the scale length for the thick disk is roughly the same as that of the thin disk ( 3 kpc), i.e., both disk components extend out to the same radial distance. The scale height found for the thick disk is 1 kpc, compared to the thin disks few hundred parsecs or so.The metallicity of the thick-disk stars is roughly constant with radius; this could be a consequence of radial migration of the stars within the disk, which blurs any metallicity distribution that might have once been there. The metallicity of the stars decreases with distance above or below the galactic midplane, however a result consistent with formation of the thick disk via heating or radial migration of stars formed within the galaxy.Orbital eccentricity distribution for the thick-disk stars. [Li Zhao 2017]Further supporting these formation scenarios, the orbital eccentricities of the stars in the authors thick-disk sample indicate that they were born in the Milky Way, not accreted from disrupted satellites.The authors acknowledge that the findings in this study may still be influenced by selection effects resulting from our viewpoint within our galaxy. Nonetheless, this is interesting new data to add to our understanding of the structure and origins of the Milky Ways disk.CitationChengdong Li and Gang Zhao 2017 ApJ 850 25. doi:10.3847/1538-4357/aa93f4

  3. A descriptive study of the radiographic density of implant restorative cements.

    PubMed

    Wadhwani, Chandur; Hess, Timothy; Faber, Thomas; Piñeyro, Alfonso; Chen, Curtis S K

    2010-05-01

    Cementation of implant prostheses is a common practice. Excess cement in the gingival sulcus may harm the periodontal tissues. Identification of the excess cement may be possible with the use of radiographs if the cement has sufficient radiopacity. The purpose of this study was to compare the radiographic density of different cements used for implant prostheses. Eight different cements were compared: TempBond Original (TBO), TempBond NE (TBN), Fleck's (FL), Dycal (DY), RelyX Unicem (RXU), RelyX Luting (RXL), Improv (IM), and Premier Implant Cement (PIC). Specimen disks, 2 mm in thickness, were radiographed. Images were made using photostimulable phosphor (PSP) plates with standardized exposure values. The average grey level of the central area of each specimen disk was selected and measured in pixels using a software analysis program, ImageTool, providing an average grey level value representative of radiodensity for each of the 8 cements. The radiodensity was determined using the grey level values of the test materials, which were recorded and compared to a standard aluminum step wedge. An equivalent thickness of aluminum in millimeters was calculated using best straight line fit estimates. To assess contrast effects by varying the exposure settings, a second experiment using 1-mm-thick cement specimens radiographed at both 60 kVp and 70 kVp was conducted. The PSP plates with specimens were measured for a grey level value comparison to the standard aluminum step wedge, using the same software program. The highest grey level values were recorded for the zinc cements (TBO, TBN, and FL), with the 1-mm specimen detectable at both 60- and 70-kVp settings. A lower grey level was recorded for DY, indicative of a lower radiodensity compared to the zinc cements, but higher than RXL and RXU. The implant-specific cements had the lowest grey level values. IM could only be detected in 2-mm-thick sections with a lower aluminum equivalence value than the previously mentioned cements. PIC could not be detected radiographically for either the 1-mm or 2-mm thicknesses at either of the kVp settings. Some types of cement commonly used for the cementation of implant-supported prostheses have poor radiodensity and may not be detectable following radiographic examination.

  4. Pair production by high intensity picosecond laser interacting with thick solid target at XingGuangIII

    NASA Astrophysics Data System (ADS)

    Wu, Yuchi; Dong, Kegong; Yan, Yonghong; Zhu, Bin; Zhang, Tiankui; Chen, Jia; Yu, Minghai; Tan, Fang; Wang, Shaoyi; Han, Dan; Lu, Feng; Gu, Yuqiu

    2017-06-01

    An experiment for pair production by high intensity laser irradiating thick solid targets is present. The experiment used picosecond beam of the XingGuangIII laser facility, with intensities up to several 1019 W/cm2, pulse durations about 0.8 ps and laser energies around 120 J. Pairs were generated from 1 mm-thick tantalum disk targets with different diameters from 1 mm to 10 mm. Energy spectra of hot electron from targetrear surface represent a Maxwellian distribution and obey a scaling of ∼(Iλ2)0.5. Large quantity of positrons were observed at the target rear normal direction with a yield up to 2.8 × 109 e+/sr. Owing to the target rear surface sheath field, the positrons behave as a quasi-monoenergetic beam with peak energy of several MeV. Our experiment shows that the peak energy of positron beam is inversely proportional to the target diameter.

  5. Multichannel X-Band Dielectric-Resonator Oscillator

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan; Dennis, Matthew; Cook, Brian

    2006-01-01

    A multichannel dielectric-resonator oscillator (DRO), built as a prototype of a local oscillator for an X-band transmitter or receiver, is capable of being electrically tuned among and within 26 adjacent frequency channels, each 1.16 MHz wide, in a band ranging from 7,040 to 7,070 GHz. The tunability of this oscillator is what sets it apart from other DROs, making it possible to use mass-produced oscillator units of identical design in diverse X-band applications in which there are requirements to use different fixed frequencies or to switch among frequency channels. The oscillator (see figure) includes a custom-designed voltage-controlled-oscillator (VCO) monolithic microwave integrated circuit (MMIC), a dielectric resonator disk (puck), and two varactor-coupling circuits, all laid out on a 25-mil (0.635-mm)-thick alumina substrate having a length and width of 17.8 mm. The resonator disk has a diameter of 8.89 mm and a thickness of 4.01 mm. The oscillator is mounted in an 8.9-mm-deep cavity in a metal housing. The VCO MMIC incorporates a negative- resistance oscillator amplifier along with a buffer amplifier. The resonator disk is coupled to a microstrip transmission line connected to the negative-resistance port of the VCO MMIC. The two varactor-coupling circuits include microstrip lines, laid out orthogonally to each other, for coupling with the resonator disk. Each varactor microstrip line is DC-coupled to an external port via a microwave choke. One varactor is used for coarse tuning to select a channel; the other varactor is used (1) for fine tuning across the 1.16-MHz width of each channel and (2) as a feedback port for a phase-lock loop. The resonator disk is positioned to obtain (1) the most desirable bandwidth, (2) relatively tight coupling with the microstrip connected to the coarse-tuning varactor, and (3) relatively loose coupling with the microstrip connected to the fine-tuning varactor. Measurements of performance showed that the oscillator can be switched among any of the 26 channels and can be phase-locked to a nominal frequency in any channel. The degree of nonlinearity of tuning was found not to exceed 2.5 percent. The tuning sensitivity was found to be 6.15 MHz/V at a bias offset of -2 V on the phase-lock-loop varactor. The phase noise of the oscillator in free-running operation was found to be -107 dBc/Hz (where dBc signifies decibels relative to the carrier signal) at 100 kHz away from the carrier frequency.

  6. Proof of the Feasibility of Coherent and Incoherent Schemes for Pumping a Gamma-ray Laser

    DTIC Science & Technology

    1992-12-31

    the Texas-X was investigated by using metallic indium disks 1.0 cm in diameter and 0.127 mm thick as well as plastic planchettes 5.0 cm in diameter and...Spectral Distribution The spectral distribution was examined by irradiating the full set of the calibration nuclides listed in Table 1. Planchettes

  7. [In vitro study on shear bond strength of veneering ceramics to zirconia].

    PubMed

    Hu, Xiaoping; Zhu, Hongshui; Zeng, Liwei

    2012-12-01

    To investigate the shear bond strength between veneering ceramic and zirconia core in different all-ceramic systems. Twenty disk-shaped specimens with 8 mm in diameter and 3 mm in height for each zirconia system (Lava, Cercon, IPS e.max ZirCAD, Procera) were fabricated respectively and divided into four groups: Lava group, Cercon group, IPS e.max ZirCAD group, Procera group. For each group, 10 specimens were sintered with 1 mm corresponding veneering ceramic, while the other were sintered with 2 mm corresponding veneering ceramic respectively. The shear bond strength and fracture mode of specimens were observed and determined. The values of shear bond strength for Lava, Cercon, IPS e.max ZirCAD and Procera were (13.82 +/- 3.71), (13.24 +/- 2.09), (6.37 +/- 4.15), (5.19 +/- 5.31) MPa in the group of 1 mm thicked veneering ceramics, respectively, while the values in the group of 2mm thicked veneering ceramics were (38.77 +/- 1.69), (21.67 +/- 3.34), (12.70 +/- 4.24), (9.94 +/- 6.67) MPa. The values of Lava and Cercon groups were significantly higher than that of IPS e.max ZirCAD and Procera groups (P < 0.05). And the values of 2 mm thicked veneering ceramic group were significantly higher than that in 1 mm thicked groups (P < 0.05). Adhesive fracture between core and veneering ceramics were observed in the fracture modes of most specimens. The shear bond strength of veneering ceramic to the zirconia framework are different from the zirconia system we chose, and the thickness of veneering ceramic has a great impact on its shear bond strength.

  8. A Radial Age Gradient in the Geometrically Thick Disk of the Milky Way

    NASA Astrophysics Data System (ADS)

    Martig, Marie; Minchev, Ivan; Ness, Melissa; Fouesneau, Morgan; Rix, Hans-Walter

    2016-11-01

    In the Milky Way, the thick disk can be defined using individual stellar abundances, kinematics, or age, or geometrically, as stars high above the midplane. In nearby galaxies, where only a geometric definition can be used, thick disks appear to have large radial scale lengths, and their red colors suggest that they are uniformly old. The Milky Way’s geometrically thick disk is also radially extended, but it is far from chemically uniform: α-enhanced stars are confined within the inner Galaxy. In simulated galaxies, where old stars are centrally concentrated, geometrically thick disks are radially extended, too. Younger stellar populations flare in the simulated disks’ outer regions, bringing those stars high above the midplane. The resulting geometrically thick disks therefore show a radial age gradient, from old in their central regions to younger in their outskirts. Based on our age estimates for a large sample of giant stars in the APOGEE survey, we can now test this scenario for the Milky Way. We find that the geometrically defined thick disk in the Milky Way has indeed a strong radial age gradient: the median age for red clump stars goes from ∼9 Gyr in the inner disk to 5 Gyr in the outer disk. We propose that at least some nearby galaxies could also have thick disks that are not uniformly old, and that geometrically thick disks might be complex structures resulting from different formation mechanisms in their inner and outer parts.

  9. The effect of different shades of specific luting agents and IPS empress ceramic thickness on overall color.

    PubMed

    Terzioğlu, Hakan; Yilmaz, Burak; Yurdukoru, Bengul

    2009-10-01

    The color stability of both porcelain and luting materials is very important for the esthetics of laminate veneers and all-ceramic crowns. The purpose of this study was to determine the effect of different shades of resin-based luting cement and the thickness of IPS Empress ceramics on the final color of the restorations. Resin-based dual-polymerized composite cement in two different shades (RelyX ARC) and ceramic disks of different thicknesses were selected for the study. Forty specimens (ten each of four different thicknesses: 0.5 mm, 1 mm, 2 mm, and 3 mm) were used for the evaluation. Initial specimen color parameters were determined in a Commission Internationale de l'Eclairage L*a*b* color order system with a colorimeter. Two different shades of the cement were prepared as polymerized layers and applied to one face of the specimens in order. Color changes were calculated between baseline color measurements and measurements after cementation. Color difference data were analyzed statistically. All specimens showed a significant color shift (DE > 3.7) after cementation regardless of the cement shade. However, the differences in the cement shade did not significantly affect the final color of the ceramic specimens for any thickness, and color shifts were not perceivable between the different shades of cement. (Int J Periodontics Restorative Dent 2009;29:499-505.).

  10. Effect of abutment shade, ceramic thickness, and coping type on the final shade of zirconia all-ceramic restorations: in vitro study of color masking ability.

    PubMed

    Oh, Seon-Hee; Kim, Seok-Gyu

    2015-10-01

    The aim of the study was to evaluate the effect of abutment shade, ceramic thickness, and coping type on the final shade of zirconia all-ceramic restorations. Three different types of disk-shaped zirconia coping specimens (Lava, Cercon, Zirkonzahn: ø10 mm × 0.4 mm) were fabricated and veneered with IPS e.max Press Ceram (shade A2), for total thicknesses of 1 and 1.5 mm. A total of sixty zirconia restoration specimens were divided into six groups based on their coping types and thicknesses. The abutment specimens (ø10 mm × 7 mm) were prepared with gold alloy, base metal (nickel-chromium) alloy, and four different shades (A1, A2, A3, A4) of composite resins. The average L*, a*, b* values of the zirconia specimens on the six abutment specimens were measured with a dental colorimeter, and the statistical significance in the effects of three variables was analyzed by using repeated measures analysis of variance (α=.05).The average shade difference (ΔE) values of the zirconia specimens between the A2 composite resin abutment and other abutments were also evaluated. The effects of zirconia specimen thickness (P<.001), abutment shade (P<.001), and type of zirconia copings (P<.003) on the final shade of the zirconia restorations were significant. The average ΔE value of Lava specimens (1 mm) between the A2 composite resin and gold alloy abutments was higher (close to the acceptability threshold of 5.5 ΔE) than th ose between the A2 composite resin and other abutments. This in-vitro study demonstrated that abutment shade, ceramic thickness, and coping type affected the resulting shade of zirconia restorations.

  11. A Microfabricated Segmented-Involute-Foil Regenerator for Enhancing Reliability and Performance of Stirling Engines

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gadeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey

    2007-01-01

    An actual-size microfabricated regenerator comprised of a stack of 42 disks, 19 mm diameter and 0.25 mm thick, with layers of microscopic, segmented, involute-shaped flow channels was fabricated and tested. The geometry resembles layers of uniformly-spaced segmented-parallel-plates, except the plates are curved. Each disk was made from electro-plated nickel using the LiGA process. This regenerator had feature sizes close to those required for an actual Stirling engine but the overall regenerator dimensions were sized for the NASA/Sunpower oscillating-flow regenerator test rig. Testing in the oscillating-flow test rig showed the regenerator performed extremely well, significantly better than currently used random-fiber material, producing the highest figures of merit ever recorded for any regenerator tested in that rig over its approximately 20 years of use.

  12. Vertical Structure of NGC 4631

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae; Seo, Mira Seo; Baek, Su-Ja

    2011-02-01

    We present a deep CCD imaging in B and V bands which allows us to analyze the vertical structure of NGC 4631. We derive the scale heights of the thin and thick disks at a variety of positions along the major axis of the disk. The scale heights of the thin disk are nearly constant while those of the thick disk tend to increase with increasing galactocentric distance. The mean scale heights of the thin disk derived from B and V images are similar to each other (˜450 pc). Instead, those of the thick disk show a strong east-west asymmetry which is caused by the diffuse stellar emission that is most prominent in the north west regions above the disk plane. The ratio of scale heights (z_{thick}/z_{thin}) is about 2.5 in the east side of the disk. However, this ratio is greater than 4 for the thick disk above the disk plane in the west side of the galaxy.

  13. The Evolution of the Galactic Thick Disk with the LAMOST Survey

    NASA Astrophysics Data System (ADS)

    Li, Chengdong; Zhao, Gang

    2017-11-01

    We select giant stars from LAMOST data release 3 (hereafter DR3) based on their spectral properties and atmospheric parameters in order to detect the structure and kinematic properties of the Galactic thick disk. The spatial motions of our sample stars are calculated. We obtain 2035 thick-disk giant stars by using a kinematic criterion. We confirm the existence of the metal-weak thick disk. The most metal-deficient star in our sample has [{Fe}/{{H}}]=-2.34. We derive the radial and vertical metallicity gradients, which are +0.035 ± 0.010 and -0.164 ± 0.010 dex kpc-1respectively. Then we estimate the scale length and scale height of the thick disk using the Jeans equation, and the results are {h}R=3.0+/- 0.1 {kpc} and {h}Z=0.9+/- 0.1 {kpc}. The scale length of the thick disk is approximately equal to that of the thin disk from several previous works. Finally, we calculate the orbital parameters of our sample stars, and discuss the formation scenario of the thick disk. Our result for the distribution of stellar orbital eccentricity excludes the accretion scenario. We conclude that the thick disk stars are mainly born inside the Milky Way.

  14. Foreign Object Damage of Two Gas-Turbine Grade Silicon Nitrides in a Thin Disk Configuration

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Pereira, J. Michael; Janosik, Lesley A.; Bhatt, Ramakrishna T.

    2003-01-01

    Foreign object damage (FOD) behavior of two commercial gas-turbine grade silicon nitrides, AS800 and SN282, was determined at ambient temperature through post-impact strength testing for thin disks impacted by steel-ball projectiles with a diameter of 1.59 mm in a velocity range from 115 to 440 m/s. AS800 silicon nitride exhibited a greater FOD resistance than SN282, primarily due to its greater value of fracture toughness (K(sub IC)). The critical impact velocity in which the corresponding post-impact strength yielded the lowest value was V(sub c) approx. 440 and 300 m/s for AS800 and SN282, respectively. A unique lower-strength regime was typified for both silicon nitrides depending on impact velocity, attributed to significant radial cracking. The damages generated by projectile impact were typically in the forms of ring, radial, and cone cracks with their severity and combination being dependent on impact velocity. Unlike thick (3 mm) flexure bar specimens used in the previous studies, thin (2 mm) disk target specimens exhibited a unique backside radial cracking occurring on the reverse side just beneath the impact sites at and above impact velocity of 160 and 220 m/s for SN282 and AS800, respectively.

  15. Mechanical properties, water sorption characteristics, and compound release of grape seed extract-incorporated resins

    PubMed Central

    EPASINGHE, Don Jeevanie; YIU, Cynthia Kar Yung; BURROW, Michael Francis

    2017-01-01

    Abstract Objective This study evaluated the effect of grape seed extract (GSE) incorporation on the mechanical properties, water sorption, solubility, and GSE release from the experimental adhesive resins. Material and Methods An experimental comonomer mixture, consisting of 40% Bis-GMA, 30% Bis MP, 28% HEMA, 0.26% camphorquinone and 1% EDMAB, was used to prepare four GSE-incorporated adhesive resins at concentrations of 0.5, 1, 1.5, and 2 wt%. The neat resin without GSE was used as the control. Six resin beams (25 mm x 2 mm x 2 mm) per group were prepared for flexural strength and modulus of elasticity evaluations using a universal testing machine at a crosshead speed of 1 mm/min. Five disks (6 mm in diameter and 2 mm in thickness) per group were used for microhardness measurements using a Leitz micro-hardness tester with Leica Qgo software. Five disks (7 mm in diameter and 2 mm in thickness) per group were prepared and stored in deionized water for 28 days. Water sorption, solubility, and GSE release in deionized water were calculated for each GSE-incorporated adhesive at the end of 28th day. Data was evaluated using one-way ANOVA and Tukey multiple comparisons. Results Flexural strength, modulus of elasticity and microhardness of GSE-incorporated adhesive decreased significantly with incorporation of 1.5% of GSE (p<0.05). Addition of GSE had no effect on the water sorption of the adhesive resins (p=0.33). The solubility of the resin also increased significantly with incorporation of 1.5% of GSE (p<0.05). Quantities of GSE release increased with increased concentration of GSE in the adhesive resin. Conclusion Up to 1% of GSE can be incorporated into a dental adhesive resin without interfering with the mechanical properties or solubility of the resins. PMID:28877280

  16. Finite-element analysis of vibrational modes in piezoelectric ceramic disks.

    PubMed

    Kunkel, H A; Locke, S; Pikeroen, B

    1990-01-01

    The natural vibrational modes of axially symmetric piezoelectric ceramic disks have been calculated by the finite-element method. The disks are of the type used as active elements in compressional wave ultrasonic transducers, and are electrically polarized in thickness with full electrodes on the disk's major faces. To optimize disk geometry for ultrasonic transducer application, the dependence of the vibrational modes on the disk diameter-to-thickness ratio for ratios from 0.2 (a tall cylinder) to 10.0 (a thin disk) has been studied. Series and parallel resonance frequencies for each of the modes are determined through an eigenfrequency analysis, and effective electromechanical coupling coefficients are calculated. The modal displacement fields in the disk are calculated to determine the physical nature of each mode. An analysis of the complete spectrum of piezoelectrically active modes as a function of diameter-thickness ratio is presented for the ceramic PZT-5H, including and identification of radial, edge, length expander, thickness shear, and thickness extensional vibrations. From this analysis, optimal diameter-to-thickness ratios for good transducer performance are discussed.

  17. SU-E-T-412: Evaluation of Tungsten-Based Functional Paper for Attenuation Device in Intraoperative Radiotherapy for Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamomae, T; Monzen, H; Okudaira, K

    Purpose: Intraoperative radiotherapy (IORT) with an electron beam is one of the accelerated partial breast irradiation methods that have recently been used in early-stage breast cancer. A protective acrylic resin-copper disk is inserted between the breast tissue and the pectoralis muscle to minimize the dose received by the posterior structures. However, a problem with this protective disk is that the surgical incision must be larger than the field size because the disk is manufactured from stiff and unyielding materials. The purpose of this study was to assess the applicability of a new tungsten-based functional paper (TFP) as an alternative tomore » the existing protective disk in IORT. Methods: The newly introduced TFP (Toppan Printing Co., Ltd., Tokyo, JP) is anticipated to become a useful device that is lead-free, light, flexible, and easily processed. The radiation shielding performance of TFP was verified by experimental measurements and Monte Carlo (MC) simulations using PHITS code. The doses transmitted through the protective disk or TFP were measured on a Mobetron mobile accelerator. The same geometries were then reproduced, and the dose distributions were simulated by the MC method. Results: The percentages of transmitted dose relative to the absence of the existing protective disk were lower than 2% in both the measurements and MC simulations. In the experimental measurements, the percentages of transmitted dose for a 9 MeV electron beam were 48.1, 2.3, and 0.6% with TFP thicknesses of 1.9, 3.7, and 7.4 mm, respectively. The percentages for a 12 MeV were 76.0, 49.3, 20.0, and 5.5% with TFP thicknesses of 1.9, 3.7, 7.4, and 14.8 mm, respectively. The results of the MC simulation showed a slight dose increase at the incident surface of the TFP caused by backscattered radiation. Conclusion: The results indicate that a small-incision procedure may be possible by the use of TFP.« less

  18. BREAKS IN THIN AND THICK DISKS OF EDGE-ON GALAXIES IMAGED IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comeron, Sebastien; Salo, Heikki; Laurikainen, Eija

    2012-11-10

    Breaks in the radial luminosity profiles of galaxies have until now been mostly studied averaged over disks. Here, we study separately breaks in thin and thick disks in 70 edge-on galaxies using imaging from the Spitzer Survey of Stellar Structure in Galaxies. We built luminosity profiles of the thin and thick disks parallel to midplanes and we found that thin disks often truncate (77%). Thick disks truncate less often (31%), but when they do, their break radius is comparable with that in the thin disk. This suggests either two different truncation mechanisms-one of dynamical origin affecting both disks simultaneously andmore » another one only affecting the thin disk-or a single mechanism that creates a truncation in one disk or in both depending on some galaxy property. Thin disks apparently antitruncate in around 40% of galaxies. However, in many cases, these antitruncations are an artifact caused by the superposition of a thin disk and a thick disk, with the latter having a longer scale length. We estimate the real thin disk antitruncation fraction to be less than 15%. We found that the ratio of the thick and thin stellar disk mass is roughly constant (0.2 < M{sub T} /M{sub t} < 0.7) for circular velocities v{sub c} > 120 km s{sup -1}, but becomes much larger at smaller velocities. We hypothesize that this is due to a combination of a high efficiency of supernova feedback and a slower dynamical evolution in lower-mass galaxies causing stellar thin disks to be younger and less massive than in higher-mass galaxies.« less

  19. ALMA Resolves the Nuclear Disks of Arp 220

    NASA Astrophysics Data System (ADS)

    Scoville, Nick; Murchikova, Lena; Walter, Fabian; Vlahakis, Catherine; Koda, Jin; Vanden Bout, Paul; Barnes, Joshua; Hernquist, Lars; Sheth, Kartik; Yun, Min; Sanders, David; Armus, Lee; Cox, Pierre; Thompson, Todd; Robertson, Brant; Zschaechner, Laura; Tacconi, Linda; Torrey, Paul; Hayward, Christopher C.; Genzel, Reinhard; Hopkins, Phil; van der Werf, Paul; Decarli, Roberto

    2017-02-01

    We present 90 mas (37 pc) resolution ALMA imaging of Arp 220 in the CO (1-0) line and continuum at λ =2.6 {mm}. The internal gas distribution and kinematics of both galactic nuclei are well resolved for the first time. In the west nucleus, the major gas and dust emission extends out to 0.″2 radius (74 pc); the central resolution element shows a strong peak in the dust emission but a factor of 3 dip in the CO line emission. In this nucleus, the dust is apparently optically thick ({τ }2.6{mm}˜ 1) at λ =2.6 {mm} with a dust brightness temperature of ˜147 K. The column of interstellar matter at this nucleus is {N}{{H}2}≥slant 2× {10}26 cm-2, corresponding to ˜900 gr cm-2. The east nucleus is more elongated with radial extent 0.″3 or ˜111 pc. The derived kinematics of the nuclear disks provide a good fit to the line profiles, yielding the emissivity distributions, the rotation curves, and velocity dispersions. In the west nucleus, there is evidence of a central Keplerian component requiring a central mass of 8 × 108 {M}⊙ . The intrinsic widths of the emission lines are {{Δ }}v({FWHM})=250 (west) and 120 (east) km s-1. Given the very short dissipation timescales for turbulence (≲105 years), we suggest that the line widths may be due to semicoherent motions within the nuclear disks. The symmetry of the nuclear disk structures is impressive, implying the merger timescale is significantly longer than the rotation period of the disks.

  20. A semi-analytical solution for elastic analysis of rotating thick cylindrical shells with variable thickness using disk form multilayers.

    PubMed

    Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi

    2014-01-01

    Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found.

  1. A Semi-Analytical Solution for Elastic Analysis of Rotating Thick Cylindrical Shells with Variable Thickness Using Disk Form Multilayers

    PubMed Central

    Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi

    2014-01-01

    Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found. PMID:24719582

  2. The Thick Disk in the Galaxy NGC 4244 from S4G Imaging

    NASA Astrophysics Data System (ADS)

    Comerón, Sébastien; Knapen, Johan H.; Sheth, Kartik; Regan, Michael W.; Hinz, Joannah L.; Gil de Paz, Armando; Menéndez-Delmestre, Karín; Muñoz-Mateos, Juan-Carlos; Seibert, Mark; Kim, Taehyun; Athanassoula, E.; Bosma, Albert; Buta, Ronald J.; Elmegreen, Bruce G.; Ho, Luis C.; Holwerda, Benne W.; Laurikainen, Eija; Salo, Heikki; Schinnerer, Eva

    2011-03-01

    If thick disks are ubiquitous and a natural product of disk galaxy formation and/or evolution processes, all undisturbed galaxies that have evolved during a significant fraction of a Hubble time should have a thick disk. The late-type spiral galaxy NGC 4244 has been reported as the only nearby edge-on galaxy without a confirmed thick disk. Using data from the Spitzer Survey of Stellar Structure in Galaxies (S4G) we have identified signs of two disk components in this galaxy. The asymmetries between the light profiles on both sides of the mid-plane of NGC 4244 can be explained by a combination of the galaxy not being perfectly edge-on and a certain degree of opacity of the thin disk. We argue that the subtlety of the thick disk is a consequence of either a limited secular evolution in NGC 4244, a small fraction of stellar material in the fragments which built the galaxy, or a high amount of gaseous accretion after the formation of the galaxy.

  3. Fatigue failure of dentin-composite disks subjected to cyclic diametral compression

    PubMed Central

    Li, Yuping; Carrera, Carola; Chen, Ruoqiong; Li, Jianying; Chen, Yungchung; Lenton, Patricia; Rudney, Joel. D.; Jones, Robert S.; Aparicio, Conrado; Fok, Alex

    2015-01-01

    Objective Our aim was to establish the relationship between cyclic loading and fatigue life of the dentin-composite interface using the newly developed disk in diametral compression tests. The results were then used to estimate the fatigue life of restored teeth under occlusal loading. Methods Disk specimens (5mm dia. × 2mm thick) were prepared using bovine incisors and restored with either a methacrylate-based composite Z100™ with Adper Single Bond Plus (Z100) or silorane-based composite Filtek ™ LS with LS System adhesive (LS). The dentin-composite disks were tested under cyclic diametral compression to determine the number of cycles to failure (Nf) at three load levels (n = 3 per group). Finite element analysis (FEA) was used to calculate the interfacial stresses (σ) within the specimen, to establish the σ vs. Nf curves, and those within a restored tooth under normal chewing forces (15N maximum). These were then used to estimate the lifetime of the restored tooth for the two restorative systems. Results The disks restored with LS had a higher fatigue resistance than those restored with Z100. The maximum interfacial stress in the restored tooth determined by FEA was ∼0.5MPa. Based on the estimate of 300,000 cycles of chewing per year, the predicted lifetime under occlusal loading for teeth restored with LS and Z100 was 33 and 10 years, respectively. Significance The disk in cyclic diametral compression has been used successfully to provide fatigue data which allows the lifetime of composite-restored teeth under occlusal loading to be predicted using numerical simulation. PMID:25958269

  4. Central Corneal Thickness and its Relationship to Intra-Ocular and Epidmiological Determinants.

    PubMed

    Tayyab, Ali; Masrur, Amena; Afzal, Farooq; Iqbal, Fyza; Naseem, Kamran

    2016-06-01

    To measure central corneal thickness in Pakistani population and determine its relationship to intra-ocular pressure, age, gender and ethnicity. Cross-sectional observation study. Pakistan Institute of Medical Sciences, Islamabad, Pakistan, between December 2013 and February 2015. The right eyes of 1000 cases (496 males and 504 females) were recruited for this study. Inclusion criteria were Pashtun or Punjabi ethnicity, intra-ocular pressure < 22 mmHg, gonioscopically open angles, cup-disk-ratio < 0.5, and age matched normal visual fields. Cases with prior ocular surgery, contact lens use, corneal pathologies, myopia or hypermetropia > ±3.0 diopters, astigmatism of > ±1.0 diopters were excluded. Central corneal thickness was measured using a TopCon non-contact specular microscope. Intra-ocular pressure was measured using Goldmann applanation tonometer. Frequency distribution, test of significance, and regression analysis was carried out using Statistical Package for Social Sciences version 20.0. Mean age was 47.31 ±11.78 years. Ethnic composition was 51.6% (n=516) Pashtun and 48.4% (n=484) Punjabi. The mean central corneal thickness was 503.96 (±12.47) µm, while the mean intra-ocular pressure was 15.61 (±2.68) mmHg. Regression analysis showed a significant association between central corneal thickness and intra-ocular pressure (p=0.00) and age (p=0.00). A±100 µchange in central corneal thickness was associated with change in IOPof ±3.30 mmHg, whereas central corneal thickness decreased by 0.12 µm per year. No significant association could be established between central corneal thickness and ethnicity (p=0.19). Central corneal thickness of the studied races was comparable to non-Caucasians which affects intra-ocular pressure measurements, and decreases with increasing age. No relationship was observed between central corneal thickness and ethnicity or gender.

  5. Effect of abutment shade, ceramic thickness, and coping type on the final shade of zirconia all-ceramic restorations: in vitro study of color masking ability

    PubMed Central

    Oh, Seon-Hee

    2015-01-01

    PURPOSE The aim of the study was to evaluate the effect of abutment shade, ceramic thickness, and coping type on the final shade of zirconia all-ceramic restorations. MATERIALS AND METHODS Three different types of disk-shaped zirconia coping specimens (Lava, Cercon, Zirkonzahn: ø10 mm × 0.4 mm) were fabricated and veneered with IPS e.max Press Ceram (shade A2), for total thicknesses of 1 and 1.5 mm. A total of sixty zirconia restoration specimens were divided into six groups based on their coping types and thicknesses. The abutment specimens (ø10 mm × 7 mm) were prepared with gold alloy, base metal (nickel-chromium) alloy, and four different shades (A1, A2, A3, A4) of composite resins. The average L*, a*, b* values of the zirconia specimens on the six abutment specimens were measured with a dental colorimeter, and the statistical significance in the effects of three variables was analyzed by using repeated measures analysis of variance (α=.05).The average shade difference (ΔE) values of the zirconia specimens between the A2 composite resin abutment and other abutments were also evaluated. RESULTS The effects of zirconia specimen thickness (P<.001), abutment shade (P<.001), and type of zirconia copings (P<.003) on the final shade of the zirconia restorations were significant. The average ΔE value of Lava specimens (1 mm) between the A2 composite resin and gold alloy abutments was higher (close to the acceptability threshold of 5.5 ΔE) than th ose between the A2 composite resin and other abutments. CONCLUSION This in-vitro study demonstrated that abutment shade, ceramic thickness, and coping type affected the resulting shade of zirconia restorations. PMID:26576252

  6. The Ages of the Thin Disk, Thick Disk, and the Halo from Nearby White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin; Munn, Jeffrey A.; Harris, Hugh C.; von Hippel, Ted; Liebert, James W.; Williams, Kurtis A.; Jeffery, Elizabeth; DeGennaro, Steven

    2017-03-01

    We present a detailed analysis of the white dwarf luminosity functions derived from the local 40 pc sample and the deep proper motion catalog of Munn et al. Many previous studies have ignored the contribution of thick disk white dwarfs to the Galactic disk luminosity function, which results in an erroneous age measurement. We demonstrate that the ratio of thick/thin disk white dwarfs is roughly 20% in the local sample. Simultaneously fitting for both disk components, we derive ages of 6.8-7.0 Gyr for the thin disk and 8.7 ± 0.1 Gyr for the thick disk from the local 40 pc sample. Similarly, we derive ages of 7.4-8.2 Gyr for the thin disk and 9.5-9.9 Gyr for the thick disk from the deep proper motion catalog, which shows no evidence of a deviation from a constant star formation rate in the past 2.5 Gyr. We constrain the time difference between the onset of star formation in the thin disk and the thick disk to be {1.6}-0.4+0.3 Gyr. The faint end of the luminosity function for the halo white dwarfs is less constrained, resulting in an age estimate of {12.5}-3.4+1.4 Gyr for the Galactic inner halo. This is the first time that ages for all three major components of the Galaxy have been obtained from a sample of field white dwarfs that is large enough to contain significant numbers of disk and halo objects. The resultant ages agree reasonably well with the age estimates for the oldest open and globular clusters.

  7. The Study of Galactic Disk Kinematics with SCUSS and SDSS Data

    NASA Astrophysics Data System (ADS)

    Peng, Xiyan; Wu, Zhenyu; Qi, Zhaoxiang; Du, Cuihua; Ma, Jun; Zhou, Xu; Jia, Yunpeng; Wang, Songhu

    2018-07-01

    We derive chemical and kinematics properties of G and K dwarfs from the SCUSS and SDSS data. We aim to characterize and explore the properties of the Galactic disk in order to understand their origins and evolutions. A kinematics approach is used to separate Galactic stellar populations into the likely thin disk and thick disk sample. Then, we explore rotational velocity gradients with metallicity of the Galactic disks to provide constraints on the various formation models. We identify a negative gradient of the rotational velocity of the thin disk stars with [Fe/H], ‑18.2 ± 2.3 km s‑1 dex‑1. For the thick disk, we identify a positive gradient of the rotational velocity with [Fe/H], 41.7 ± 6.1 km s‑1 dex‑1. The eccentricity does not change with metallicity for the thin disk sample. Thick disk stars exhibit a trend of orbital eccentricity with metallicity (‑0.13 dex‑1). The thin disk shows a negative metallicity gradient with Galactocentric radial distance R, while the thick disk shows a flat radial metallicity gradient. Our results suggest that radial migration may play an important role in the formation and evolution of the thin disk.

  8. Stability and Heat Transfer Characteristics of Condensing Films

    NASA Astrophysics Data System (ADS)

    Hermanson, J. C.; Pedersen, P. C.; Allen, J. S.; Shear, M. A.; Chen, Z. Q.; Alexandrou, A. N.

    2002-11-01

    The overall objective of this research is to investigate the fundamental physics of film condensation in reduced gravity. The condensation of vapor on a cool surface is important in many engineering problems,including spacecraft thermal control and also the behavior of condensate films that may form on the interior surfaces of spacecraft. To examine the effects of body force on condensing films, two different geometries have been tested in the laboratory: (1) a stabilizing gravitational body force (+1g, or condensing surface facing 'upwards') and (2) de-stabilizing gravitational body force (-1g, or 'downwards'). For each geometry, different fluid configurations are employed to help isolate the fluid mechanical and thermal mechanisms operative in condensing films. The fluid configurations are (a) a condensing film, and (b) a non-condensing film with film growth by mass addition by through the plate surface. Condensation experiments are conducted in a test cell containing a cooled copper or brass plate with an exposed diameter of 12.7 cm. The metal surface is polished to allow for double-pass shadowgraph imaging, and the test surface is instrumented with imbedded heat transfer gauges and thermocouples. Representative shadowgraph images of a condensing, unstable (-1g) n-pentane film are shown. The interfacial disturbances associated with the de-stabilizing body force leading to droplet formation and break-off can be clearly seen. The heat transfer coefficient associated with the condensing film is shown. The heat transfer coefficient is seen to initially decrease, consistent with the increased thermal resistance due to layer growth. For sufficiently long time, a steady value of heat transfer is observed, accompanied by continuous droplet formation and break-off. The non-condensing cell consists of a stack of thin stainless steel disks 10 cm in diameter mounted in a brass enclosure. The disks are perforated with a regular pattern of 361 holes each 0.25 mm in diameter. Non-condensing experiments in -1g have employed 50 cSt and 125 cSt silicone oil pumped through the perforated disks at a specified rate by a syringe micropump. The time to droplet break-off and the disturbance wavelengths appear to decrease with increasing pumping rate. The ability to reliably perform multi-point, ultrasonic measurements of the film thickness has been demonstrated. A linear array of eight transducers of 6 mm diameter (with a beam footprint of comparable size) are pulsed with a square-wave signal at a frequency of 5 MHz and a pulse duration of approximately 0.3 s. For thin films (60 m to 2-3 mm in thickness) the layer thickness is determined by frequency analysis, where the received ultrasound pulse is Fourier transformed and the spacing between the peaks in the frequency spectrum is analyzed. For thicker layers (up to at least 1 cm in thickness), time-domain analysis is performed of the received ultrasound pulses to generate directly the layer thickness. A time-trace of the film thickness at a point using a single transducer in the linear array is shown for the case of an unstable (-1g) n-pentane film. The oscillations in film thickness are evidently due to the passage and/or shedding of droplets from the cooled plate surface. The entire transducer array was used to measure the changes in film thickness resulting from the passage of gravity waves generated either by an oscillating wall or the impact of a single droplet on the free surface of a film. The enclosure in both cases was 14 cm square and the transducer spacing was 12 mm. Best results were obtained using as test fluid a mixture of 50% glycerol and 50% water with a fluid layer thickness of 3-5 mm. In both cases the measured wavelengths and wave propagation speeds using the ultrasound technique compared reasonably well with those observed by optical imaging. Additional information can be found in the original extended abstract.

  9. Stability and Heat Transfer Characteristics of Condensing Films

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Pedersen, P. C.; Allen, J. S.; Shear, M. A.; Chen, Z. Q.; Alexandrou, A. N.

    2002-01-01

    The overall objective of this research is to investigate the fundamental physics of film condensation in reduced gravity. The condensation of vapor on a cool surface is important in many engineering problems,including spacecraft thermal control and also the behavior of condensate films that may form on the interior surfaces of spacecraft. To examine the effects of body force on condensing films, two different geometries have been tested in the laboratory: (1) a stabilizing gravitational body force (+1g, or condensing surface facing 'upwards') and (2) de-stabilizing gravitational body force (-1g, or 'downwards'). For each geometry, different fluid configurations are employed to help isolate the fluid mechanical and thermal mechanisms operative in condensing films. The fluid configurations are (a) a condensing film, and (b) a non-condensing film with film growth by mass addition by through the plate surface. Condensation experiments are conducted in a test cell containing a cooled copper or brass plate with an exposed diameter of 12.7 cm. The metal surface is polished to allow for double-pass shadowgraph imaging, and the test surface is instrumented with imbedded heat transfer gauges and thermocouples. Representative shadowgraph images of a condensing, unstable (-1g) n-pentane film are shown. The interfacial disturbances associated with the de-stabilizing body force leading to droplet formation and break-off can be clearly seen. The heat transfer coefficient associated with the condensing film is shown. The heat transfer coefficient is seen to initially decrease, consistent with the increased thermal resistance due to layer growth. For sufficiently long time, a steady value of heat transfer is observed, accompanied by continuous droplet formation and break-off. The non-condensing cell consists of a stack of thin stainless steel disks 10 cm in diameter mounted in a brass enclosure. The disks are perforated with a regular pattern of 361 holes each 0.25 mm in diameter. Non-condensing experiments in -1g have employed 50 cSt and 125 cSt silicone oil pumped through the perforated disks at a specified rate by a syringe micropump. The time to droplet break-off and the disturbance wavelengths appear to decrease with increasing pumping rate. The ability to reliably perform multi-point, ultrasonic measurements of the film thickness has been demonstrated. A linear array of eight transducers of 6 mm diameter (with a beam footprint of comparable size) are pulsed with a square-wave signal at a frequency of 5 MHz and a pulse duration of approximately 0.3 s. For thin films (60 m to 2-3 mm in thickness) the layer thickness is determined by frequency analysis, where the received ultrasound pulse is Fourier transformed and the spacing between the peaks in the frequency spectrum is analyzed. For thicker layers (up to at least 1 cm in thickness), time-domain analysis is performed of the received ultrasound pulses to generate directly the layer thickness. A time-trace of the film thickness at a point using a single transducer in the linear array is shown for the case of an unstable (-1g) n-pentane film. The oscillations in film thickness are evidently due to the passage and/or shedding of droplets from the cooled plate surface. The entire transducer array was used to measure the changes in film thickness resulting from the passage of gravity waves generated either by an oscillating wall or the impact of a single droplet on the free surface of a film. The enclosure in both cases was 14 cm square and the transducer spacing was 12 mm. Best results were obtained using as test fluid a mixture of 50% glycerol and 50% water with a fluid layer thickness of 3-5 mm. In both cases the measured wavelengths and wave propagation speeds using the ultrasound technique compared reasonably well with those observed by optical imaging. Additional information can be found in the original extended abstract.

  10. Autofluorescence of choroidal nevus in 64 cases.

    PubMed

    Shields, Carol L; Pirondini, Cesare; Bianciotto, Carlos; Materin, Miguel A; Harmon, Sarah A; Shields, Jerry A

    2008-10-01

    To describe the autofluorescence features of choroidal nevi. Noncomparative case series. Sixty-four consecutive patients. Correlation of fundus photography with autofluorescence photography. Autofluorescence features of choroidal nevus and overlying retinal pigment epithelium (RPE). The mean patient age was 62 years. The choroidal nevus was a mean of 5 mm from the optic disk and foveola. The mean tumor basal dimension was 5.0 mm and mean tumor thickness was 1.0 mm. The choroidal nevus showed hypoautofluorescence in 56%, isoautofluorescence in 19%, and hyperautofluorescence in 25%. The autofluorescence features appeared unaffected by tumor thickness, but increasing tumor base and disrupted overlying RPE appeared to produce slightly brighter autofluorescence. Nevi located in the macular region showed darker hypoautofluorescence than those outside the macular region. Overlying RPE hyperplasia, atrophy, and fibrous metaplasia were generally hypoautofluorescent. Drusen, subretinal fluid, and orange pigment were generally hyperautofluorescent. The brightest hyperautofluorescence was found with orange pigment. Choroidal nevus shows little intrinsic autofluorescence. Overlying RPE alterations show dramatic autofluorescence ranging from dark hypoautofluorescence of RPE atrophy to bright hyperautofluorescence of orange pigment.

  11. Thermal transpiration in zeolites: A mechanism for motionless gas pumps

    NASA Astrophysics Data System (ADS)

    Gupta, Naveen K.; Gianchandani, Yogesh B.

    2008-11-01

    We explore the use of a naturally occurring zeolite, clinoptilolite, for a chip-scale, thermal transpiration-based gas pump. The nanopores in clinoptilolite enable the required free-molecular flow, even at atmospheric pressure. The pump utilizes a foil heater located between zeolite disks in a plastic package. A 2.3mm thick zeolite disk generates a typical gas flow rate of 6.6×10-3 cc/min-cm2 with an input power of <300mW/cm2. The performance is constrained by imperfections in clinoptilolite, which provide estimated leakage apertures of 10.2-13.5μm/cm2 of flow cross section. The transient response of the pump is studied to quantify nonidealities.

  12. Surface vibrational modes in disk-shaped resonators.

    PubMed

    Dmitriev, A V; Gritsenko, D S; Mitrofanov, V P

    2014-03-01

    The natural frequencies and distributions of displacement components for the surface vibrational modes in thin isotropic elastic disks are calculated. In particular, the research is focused on even solutions for low-lying resonant vibrations with large angular wave numbers. Several families of modes are found which are interpreted as modified surface modes of an infinitely long cylinder and Lamb modes of a plate. The results of calculation are compared with the results of the experimental measurements of vibrational modes generated by means of resonant excitation in duraluminum disk with radius of ≈90 mm and thickness of 16 mm in the frequency range of 130-200 kHz. An excellent agreement between the calculated and measured frequencies is found. Measurements of the structure of the resonant peaks show splitting of some modes. About a half of the measured modes has splitting Δfsplit/fmode at the level of the order of 10(-5). The Q-factors of all modes measured in vacuum lie in the interval (2…3)×10(5). This value is typical for duraluminum mechanical resonators in the ultrasonic frequency range. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Effect of coping thickness and background type on the masking ability of a zirconia ceramic.

    PubMed

    Tabatabaian, Farhad; Taghizade, Fateme; Namdari, Mahshid

    2018-01-01

    The masking ability of zirconia ceramics as copings is unclear. The purpose of this in vitro study was to evaluate the effect of coping thickness and background type on the masking ability of a zirconia ceramic and to determine zirconia coping thickness cut offs for masking the backgrounds investigated. Thirty zirconia disks in 3 thickness groups of 0.4, 0.6, and 0.8 mm were placed on 9 backgrounds to measure CIELab color attributes using a spectrophotometer. The backgrounds included A1, A2, and A3.5 shade composite resin, A3 shade zirconia, nickel-chromium alloy, nonprecious gold-colored alloy, amalgam, black, and white. ΔE values were measured to determine color differences between the specimens on the A2 shade composite resin background and the same specimens on the other backgrounds. The color change (ΔE) values were compared with threshold values for acceptability (ΔE=5.5) and perceptibility (ΔE=2.6). Repeated measures ANOVA, the Bonferroni test, and 1-sample t tests were used to analyze data (α=.05). Mean ΔE values ranged between 1.44 and 7.88. The zirconia coping thickness, the background type, and their interaction affected the CIELab and ΔE values (P<.001). To achieve ideal masking, the minimum thickness of a zirconia coping should be 0.4 mm for A1 and A3.5 shade composite resin, A3 shade zirconia, and nonprecious gold-colored alloy, 0.6 mm for amalgam, and 0.8 mm for nickel-chromium alloy. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Design, fabrication, and testing of an ultrasonic de-icing system for helicopter rotor blades

    NASA Astrophysics Data System (ADS)

    Palacios, Jose Luis

    A low-power, non-thermal ultrasonic de-icing system is introduced as a possible substitute for current electro-thermal systems. The system generates delaminating ultrasonic transverse shear stresses at the interface of accreted ice. A PZT-4 disk driven at 28.5 KHz (radial resonance of the disk) instantaneously de-bonds 2 mm thick freezer ice layers. The ice layers are accreted to a 0.7 mm thick, 30.4 cm x 30.4 cm steel plate at an environment temperature of -20°C. A power input of 50 Watts is applied to the actuator (50 V, 19.6 KV/m), which translates to a de-icing power of 0.07 W/cm2. A finite element model of the actuator bonded to the isotropic plate is used to guide the design of the system, and predicts the transverse shear stresses at the ice interface. Wind tunnel icing tests were conducted to demonstrate the potential use of the proposed system under impact icing conditions. Both glaze ice and rime ice were generated on steel and composite plates by changing the cloud conditions of the wind tunnel. Continuous ultrasonic vibration prevented impact ice formation around the actuator location at an input power not exceeding 0.18 W/cm 2 (1.2 W/in2). As ice thickness reached a critical thickness of approximately 1.2 mm, shedding occurred on those locations where ultrasonic transverse shear stresses exceeded the shear adhesion strength of the ice. Finite element transverse shear stress predictions correlate with observed experimental impact ice de-bonding behavior. To increase the traveling distance of propagating ultrasonic waves, ultrasonic shear horizontal wave modes are studied. Wave modes providing large modal interface transverse shear stress concentration coefficients (ISCC) between the host structure (0.7 mm thick steel plate) and accreted ice (2.5 mm thick ice layer) are identified and investigated for a potential increase in the wave propagation distance. Ultrasonic actuators able to trigger these optimum wave modes are designed and fabricated. Despite exciting wave modes with high ISCC values, instantaneous ice de-bonding is not observed at input powers under 100 Watts. The two triggered ultrasonic wave modes of the structure occur at high excitation frequencies, 202 KHz and 500 KHz respectively. At these frequencies, the ultrasonic actuators do not provide large enough transverse shear stresses to exceed the shear adhesion strength of the ice layer. Neither the actuator exciting the SH1 mode (202 KHz), nor the actuator triggering the SH2 mode (500 KHz) instantaneously de-bonds ice layers with an input power under 100 Watts.

  15. Experimental analysis and flow visualization of a thin liquid film on a stationary and rotating disk

    NASA Technical Reports Server (NTRS)

    Thomas, S.; Faghri, A.; Hankey, W.

    1991-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed ranged from 0-300 rpm and the flow rate varied from 7.0-15.0 lpm. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Upstream from the jump, the film thickness was determined by the inertial and frictional forces on the fluid, and the radial spreading of the film. The surface tension at the edge of the disk affected the film thickness downstream from the jump. For the rotating disk, the film thickness was dependent upon the inertial and frictional forces near the center of the disk and the centrifugal forces near the edge of the disk.

  16. Exact relativistic models of conformastatic charged dust thick disks

    NASA Astrophysics Data System (ADS)

    García-Reyes, Gonzalo

    2018-04-01

    We construct relativistic models of charged dust thick disks for a particular conformastatic spacetime through a Miyamoto-Nagai transformation used in Newtonian gravity to model disk like galaxies. Two simple families of thick disk models and a family of thick annular disks based on the field of an extreme Reissner-Nordström black hole and a Morgan-Morgan-like metric are considered. The electrogeodesic motion of test particles around the structures are analyzed. Also the stability of the particles against radial perturbation is studied using an extension of the Rayleigh criteria of stability of a fluid in rest in a gravitational field. The models built satisfy all the energy conditions.

  17. Extraplanar H II Regions in Spiral Galaxies. I. Low-metallicity Gas Accreting through the Disk-halo Interface of NGC 4013

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Rueff, Katherine M.; Lehner, Nicolas; Wotta, Christopher B.; Croxall, Kevin; Savage, Blair D.

    2018-04-01

    The interstellar thick disks of galaxies serve as the interface between the thin star-forming disk, where feedback-driven outflows originate, and the distant halo, the repository for accreted gas. We present optical emission line spectroscopy of a luminous, thick disk H II region located at z = 860 pc above the plane of the spiral galaxy NGC 4013 taken with the Multi-Object Double Spectrograph on the Large Binocular Telescope. This nebula, with an Hα luminosity ∼4–7 times that of the Orion nebula, surrounds a luminous cluster of young, hot stars that ionize the surrounding interstellar gas of the thick disk, providing a measure of the properties of that gas. We demonstrate that strong emission line methods can provide accurate measures of relative abundances between pairs of H II regions. From our emission line spectroscopy, we show that the metal content of the thick disk H II region is a factor of ≈2 lower than gas in H II regions at the midplane of this galaxy (with the relative abundance of O in the thick disk lower by ‑0.32 ± 0.09 dex). This implies incomplete mixing of material in the thick disk on small scales (hundreds of parsecs) and that there is accretion of low-metallicity gas through the thick disks of spirals. The inclusion of low-metallicity gas this close to the plane of NGC 4013 is reminiscent of the recently proposed “fountain-driven” accretion models.

  18. From dust to light: a study of star formation in NGC2264

    NASA Astrophysics Data System (ADS)

    Teixeira, P. S.

    2008-10-01

    The goal of this dissertation is to characterize the star formation history of the young cluster NGC2264 using the unique observational capabilities of the Spitzer Space Telescope. The motivation to conduct this study stems from the fact that most stars are formed within clusters, so the formation and evolution of the latter will effect the stellar mass distribution in the field. Detailed observational studies of young stellar clusters are therefore crucial to provide necessary constraints for theoretical models of cloud and cluster formation and evolution. This study also addresses the evolution of circumstellar disks in NGC2264; empirical knowledge of protoplanetary disk evolution is required for the understanding of how planetary systems such as our own form. The first result obtained from this study was both completely new and unexpected. A dense region within NGC2264 was found to be teeming with bright 24 μm Class I protostars; these sources are embedded within dense submillimeter cores and are spatially distributed along dense filamentary fingers of gas and dust that radially converge on a B-type binary Class I source. This cluster of protostars was baptized the "Spokes cluster" and its analysis provided further insight into the role of thermal support during core formation, collapse and fragmentation. The nearest neighbor projected separation distribution of these Class I sources shows a characteristic spacing that is similar to the Jeans length for the region, indicating that the dusty filaments may have undergone thermal fragmentation. The submillimeter cores of the Spokes cluster were observed at 230GHz using the SubMillimeter Array (SMA) and the resulting high resolution (~1.3") continuum observations revealed a dense grouping of 7 Class 0 sources embedded within a particular core, D-MM1 (~20"x20"). The compact sources have masses ranging between 0.4M and 1.2M, and radii of ~600AU. The mean separation of the Class 0 sources within D-MM1 is considerably smaller than the characteristic spacing between the Class I sources in the larger Spokes cluster and is consistent with hierarchical thermal fragmentation of the dense molecular gas in this region. The results obtained by the study of the Spokes cluster show that the spatial substructuring of a cluster or subcluster is correlated with age, i.e., groupings of very young protostars have clearly more concentrated and substructured spatial distributions. The Spokes cluster could thus be one of several building blocks of NGC2264, and will likely expand and disperse its members through the surrounding region, adding to the rest of NGC2264's stellar population.To further explore this scenario, I identified Pre-Main Sequence (PMS) disk bearing sources in the whole region of NGC2264, as surveyed by InfraRed Array Camera (IRAC) analyzing both their spatial distributions and ages. Of the 1404 sources detected in all four IRAC bands, 116 sources were found to have anemic IRAC disks and 217 sources were found to have thick IRAC disks; the disk fraction was calculated to be 37.5%±6.3% and found to be a function of spectral type, increasing for later type sources. I identified 4 candidate sources with transition disks (disks with inner holes), as well as 6 sources with anemic inner disks and thick outer disks that could be the immediate precursors of transition disks. This is a relevant result for it suggests planet formation may be occurring in the inner disk at very early ages. I found that the spatial distribution of the disk-bearing sources was a function of both disk type and amount of reddening. This spatial analysis enabled the identification of three groups of sources, namely, (i) embedded (AV> 3 magnitudes) sources with thick disks, (ii) unembedded sources with thick disks, and (iii) sources with anemic disks. The first group was found to have a median age of 1 Myr and its spatial distribution is highly concentrated and substructured. The second group, (ii), has a median age of 2 Myr and its spatial distribution is less concentrated and substructured than group (i), but more than the group of sources with anemic disks - the spatial distribution of this third group (age ~ 2 Myr) is not substructured and is more distributed, showing no particular peak or concentration. The star formation history of NGC2264 appears to be as follows: the northern region appears to have undergone the first epoch or episode of star formation, while the second epoch is currently occurring in the center (Spokes cluster) and south (near Allen's source). Status: RO

  19. Long-range effect of ion irradiation on Cu surface segregation in a Cu sbnd Ni system

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Tang, Guangze; Ma, Xinxin; Russell, F. Michael; Cao, Xingzhong; Wang, Baoyi; Zhang, Peng

    2011-05-01

    Ni films were deposited on one side of single crystal Cu substrate discs of 1.0 and 1.5 mm thickness. These discs were irradiated on the Cu side with argon ions. Evidence for enhanced Cu segregation at the Ni surface was found for both thicknesses. This effect decreased with increasing distance between the diffusion zone and the irradiated surface. Slow positron annihilation results indicate lower vacancy-like defects at the subsurface layer after Ar irradiation on the other surface of Cu disks. Such long-range effect is here interpreted on the basis of a particular type of mobile discrete breather called quodon.

  20. Influence of curing time, overlay material and thickness on three light-curing composites used for luting indirect composite restorations.

    PubMed

    D'Arcangelo, Camillo; De Angelis, Francesco; Vadini, Mirco; Carluccio, Fabio; Vitalone, Laura Merla; D'Amario, Maurizio

    2012-08-01

    To assess the microhardness of three resin composites employed in the adhesive luting of indirect composite restorations and examine the influence of the overlay material and thickness as well as the curing time on polymerization rate. Three commercially available resin composites were selected: Enamel Plus HRI (Micerium) (ENA), Saremco ELS (Saremco Dental) (SAR), Esthet-X HD (Dentsply/DeTrey) (EST-X). Post-polymerized cylinders of 6 different thicknesses were produced and used as overlays: 2 mm, 3 mm, 3.5 mm, 4 mm, 5 mm, and 6 mm. Two-mm-thick disks were produced and employed as underlays. A standardized amount of composite paste was placed between the underlay and the overlay surfaces which were maintained at a fixed distance of 0.5 mm. Light curing of the luting composite layer was performed through the overlays for 40, 80, or 120 s. For each specimen, the composite to be cured, the cured overlay, and the underlay were made out of the same batch of resin composite. All specimens were assigned to three experimental groups on the basis of the resin composite used, and to subgroups on the basis of the overlay thickness and the curing time, resulting in 54 experimental subgroups (n = 5). Forty-five additional specimens, 15 for each material under investigation, were produced and subjected to 40, 80, or 120 s of light curing using a microscope glass as an overlay; they were assigned to 9 control subgroups (n = 5). Three Vicker's hardness (VH) indentations were performed on each specimen. Means and standard deviations were calculated. Data were statistically analyzed using 3-way ANOVA. Within the same material, VH values lower than 55% of control were not considered acceptable. The used material, the overlay thickness, and the curing time significantly influenced VH values. In the ENA group, acceptable hardness values were achieved with 3.5-mm or thinner overlays after 120 or 80 s curing time (VH 41.75 and 39.32, respectively), and with 2-mm overlays after 40 s (VH 54.13). In the SAR group, acceptable hardness values were only achieved with 2-mm-thick overlays after 120 or 80 s curing time (VH 39.81 and 29.78, respectively). In the EST-X group, acceptable hardness values were only achieved with 3-mm or thinner overlays, after 120 or 80 s curing time (VH 36.20 and 36.03, respectively). Curing time, restoration thickness, and overlay material significantly influenced the microhardness of the tested resin composites employed as luting agents. The clinician should carefully keep these factors under control.

  1. Protoplanetary Disk Masses from Stars to Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Mohanty, Subhanjoy; Greaves, Jane; Mortlock, Daniel; Pascucci, Ilaria; Scholz, Aleks; Thompson, Mark; Apai, Daniel; Lodato, Giuseppe; Looper, Dagny

    2013-08-01

    We present SCUBA-2 850 μm observations of seven very low mass stars (VLMS) and brown dwarfs (BDs). Three are in Taurus and four in the TW Hydrae Association (TWA), and all are classical T Tauri (cTT) analogs. We detect two of the three Taurus disks (one only marginally), but none of the TWA ones. For standard grains in cTT disks, our 3σ limits correspond to a dust mass of 1.2 M ⊕ in Taurus and a mere 0.2 M ⊕ in the TWA (3-10× deeper than previous work). We combine our data with other submillimeter/millimeter (sub-mm/mm) surveys of Taurus, ρ Oph, and the TWA to investigate the trends in disk mass and grain growth during the cTT phase. Assuming a gas-to-dust mass ratio of 100:1 and fiducial surface density and temperature profiles guided by current data, we find the following. (1) The minimum disk outer radius required to explain the upper envelope of sub-mm/mm fluxes is ~100 AU for intermediate-mass stars, solar types, and VLMS, and ~20 AU for BDs. (2) While the upper envelope of apparent disk masses increases with M * from BDs to VLMS to solar-type stars, no such increase is observed from solar-type to intermediate-mass stars. We propose this is due to enhanced photoevaporation around intermediate stellar masses. (3) Many of the disks around Taurus and ρ Oph intermediate-mass and solar-type stars evince an opacity index of β ~ 0-1, indicating significant grain growth. Of the only four VLMS/BDs in these regions with multi-wavelength measurements, three are consistent with considerable grain growth, though optically thick disks are not ruled out. (4) For the TWA VLMS (TWA 30A and B), combining our 850 μm fluxes with the known accretion rates and ages suggests substantial grain growth by 10 Myr, comparable to that in the previously studied TWA cTTs Hen 3-600A and TW Hya. The degree of grain growth in the TWA BDs (2M1207A and SSPM1102) remains largely unknown. (5) A Bayesian analysis shows that the apparent disk-to-stellar mass ratio has a roughly constant mean of log10[M disk/M *] ≈ -2.4 all the way from intermediate-mass stars to VLMS/BDs, supporting previous qualitative suggestions that the ratio is ~1% throughout the stellar/BD domain. (6) Similar analysis shows that the disk mass in close solar-type Taurus binaries (sep <100 AU) is significantly lower than in singles (by a factor of 10), while that in wide solar-type Taurus binaries (>=100 AU) is closer to that in singles (lower by a factor of three). (7) We discuss the implications of these results for planet formation around VLMS/BDs, and for the observed dependence of accretion rate on stellar mass.

  2. Self-interacting dark matter constraints in a thick dark disk scenario

    NASA Astrophysics Data System (ADS)

    Vattis, Kyriakos; Koushiappas, Savvas M.

    2018-05-01

    A thick dark matter disk is predicted in cold dark matter simulations as the outcome of the interaction between accreted satellites and the stellar disk in Milky Way-sized halos. We study the effects of a self-interacting thick dark disk on the energetic neutrino flux from the Sun. We find that for particle masses between 100 GeV and 1 TeV and dark matter annihilation to τ+τ-, either the self-interaction may not be strong enough to solve the small-scale structure motivation or a dark disk cannot be present in the Milky Way.

  3. [Scanning electron microscopy observation of the growth of osteoblasts on Ti-24Nb-4Zr-8Sn modified by micro-arc oxidation and alkali-heat treatment and implant-bone interface].

    PubMed

    Han, Xue; Liu, Hong-Chen; Wang, Dong-Sheng; Li, Shu-Jun; Yang, Rui

    2011-01-01

    To observe the efficacy of micro-arc oxidation and alkali-heat treatment (MAH) on Ti-24Nb-4Zr-8Sn (Ti2448). Disks (diameter of 14.5 mm, thickness of 1 mm) and cylinders (diameter of 3 mm, height of 10 mm) were fabricated from Ti2448 alloy. Samples were divided into three groups: polished (Ti2448), micro-arc oxidation(MAO-Ti2448), micro-arc oxidation and alkali-heat treatment (MAH-Ti2448). MC3T3-E1 osteoblastic cells were cultured on the disks and cell morphology was observed with scanning electron microscopy (SEM) aftre 3 days. The cylinder samples were implanted in the tibia of dogs and implant-bone interface was observed with SEM after 3 months. A rough and porous structure was shown in both MAO and MAH group. The MC3T3-E1 cells on the MAH-Ti2448 discs spread fully in intimate contact with the underlying coarse surface through active cytoskeletal extentions. Osseointegration was formed in the implant-bone interface in MAH samples. MAH treatment can provide a more advantageous Ti2448 surface to osteoblastic cells than MAO treatment does, and the former can improve the implant-bone integration.

  4. The Effects of Accretion Disk Thickness on the Black Hole Reflection Spectrum

    NASA Astrophysics Data System (ADS)

    Taylor, Corbin; Reynolds, Christopher S.

    2018-01-01

    Despite being the gravitational engines that power galactic-scale winds and mega parsec-scale jets in active galaxies, black holes are remarkably simple objects, typically being fully described by their angular momenta (spin) and masses. The modelling of AGN X-ray reflection spectra has proven fruitful in estimating the spin of AGN, as well as giving insight into their accretion histories and into the properties of plasmas in the strong gravity regime. However, current models make simplifying assumptions about the geometry of the reflecting material in the accretion disk and the irradiating X-ray corona, approximating the disk as an optically thick, infinitely thin disk of material in the orbital plane. We present results from the new relativistic raytracing suite, Fenrir, that explore the effects that disk thickness may have on the reflection spectrum and the accompanying reverberation signatures. Approximating the accretion disk as an optically thick, geometrically thin, radiation pressure dominated disk (Shakura & Sunyaev 1973), one finds that the disk geometry is non-negligible in many cases, with significant changes in the broad Fe K line profile. Finally, we explore the systematic errors inherent in other contemporary models that approximate that disk as having negligible vertical extent.

  5. Surface figure control for coated optics

    DOEpatents

    Ray-Chaudhuri, Avijit K.; Spence, Paul A.; Kanouff, Michael P.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The optic section has an optical section thickness.sup.2 /optical section diameter ratio of between about 5 to 10 mm, and a thickness variation between front and back surfaces of less than about 10%. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  6. Summary of experimental studies, at CERN, on a positron source using crystal effects

    NASA Astrophysics Data System (ADS)

    Artru, X.; Baier, V.; Beloborodov, K.; Bogdanov, A.; Bukin, A.; Burdin, S.; Chehab, R.; Chevallier, M.; Cizeron, R.; Dauvergne, D.; Dimova, T.; Druzhinin, V.; Dubrovin, M.; Gatignon, L.; Golubev, V.; Jejcic, A.; Keppler, P.; Kirsch, R.; Kulibaba, V.; Lautesse, Ph.; Major, J.; Poizat, J.-C.; Potylitsin, A.; Remillieux, J.; Serednyakov, S.; Shary, V.; Strakhovenko, V.; Sylvia, C.

    2005-11-01

    A new kind of positron sources for future linear colliders, where the converter is an aligned tungsten crystal, oriented on the <1 1 1>-axis, has been studied at CERN in the WA103 experiment with tertiary electron beams from the SPS. In such sources the photons resulting from channeling radiation and coherent bremsstrahlung create the e+e- pairs. Electron beams, of 6 and 10 GeV, were impinging on different kinds of targets: a 4 mm thick crystal, a 8 mm thick crystal and a compound target made of 4 mm crystal followed by 4 mm amorphous disk. An amorphous tungsten target 20 mm thick was also used for the sake of comparison with the 8 mm crystal and to check the ability of the detection system to provide the correct track reconstruction. The charged particles coming out from the target were detected in a drift chamber immersed partially in a magnetic field. The reconstruction of the particle trajectories provided the energy and angular spectrum of the positrons in a rather wide energy range (up to 150 MeV) and angular domain (up to 30°). The experimental approach presented in this article provides a full description of this kind of source. A presentation of the measured positron distribution in momentum space (longitudinal versus transverse) is given to allow an easy determination of the available yield for a given momentum acceptance. Results on photons, measured downstream of the positron detector, are also presented. A significant enhancement of photon and positron production is clearly observed. This enhancement, for a 10 GeV incident beam, is of 4 for the 4 mm thick crystal and larger than 2 for the 8 mm thick crystal. Another important result concerns the validation of the simulations for the crystals, for which a quite good agreement was met between the simulations and the experiment, for positrons as well as for photons. These results are presented after a short presentation of the experimental setup and of the track reconstruction procedure.

  7. Fluorescence Imaging of Underexpanded Jets and Comparison with CFD

    NASA Technical Reports Server (NTRS)

    Wilkes, Jennifer A.; Glass, Christopher E.; Danehy, Paul M.; Nowak, Robert J.

    2006-01-01

    An experimental study of underexpanded and highly underexpanded axisymmetric nitrogen free jets seeded with 0.5% nitric oxide (NO) and issuing from a sonic orifice was conducted at NASA Langley Research Center. Reynolds numbers based on nozzle exit conditions ranged from 770 to 35,700, and nozzle exit-to-ambient jet pressure ratios ranged from 2 to 35. These flows were non-intrusively visualized with a spatial resolution of approximately 0.14 mm x 0.14 mm x 1 mm thick and a temporal resolution of 1 s using planar laser-induced fluorescence (PLIF) of NO, with the laser tuned to the strongly-fluorescing UV absorption bands of the Q1 band head near 226.256 nm. Three laminar cases were selected for comparison with computational fluid dynamics (CFD). The cases were run using GASP (General Aerodynamic Simulation Program) Version 4. Comparisons of the fundamental wavelength of the jet flow showed good agreement between CFD and experiment for all three test cases, while comparisons of Mach disk location and Mach disk diameter showed good agreement at lower jet pressure ratios, with a tendency to slightly underpredict these parameters with increasing jet pressure ratio.

  8. SMA Continuum Survey of Circumstellar Disks in Serpens

    NASA Astrophysics Data System (ADS)

    Law, Charles; Ricci, Luca; Andrews, Sean M.; Wilner, David J.; Qi, Chunhua

    2017-06-01

    The lifetime of disks surrounding pre-main-sequence stars is closely linked to planet formation and provides information on disk dispersal mechanisms and dissipation timescales. The potential for these optically thick, gas-rich disks to form planets is critically dependent on how much dust is available to be converted into terrestrial planets and rocky cores of giant planets. For this reason, an understanding of how dust mass varies with key properties such as stellar mass, age, and environment is critical for understanding planet formation. Millimeter wavelength observations, in which the dust emission is optically thin, are required to study the colder dust residing in the disk’s outer regions and to measure disk dust masses. Hence, we have obtained SMA 1.3 mm continuum observations of 62 Class II sources with suspected circumstellar disks in the Serpens star-forming region (SFR). Relative to the well-studied Taurus SFR, Serpens allows us to probe the distribution of dust masses for disks in a much denser and more clustered environment. Only 13 disks were detected in the continuum with the SMA. We calculate the total dust masses of these disks and compare their masses to those of disks in Taurus, Lupus, and Upper Scorpius. We do not find evidence of diminished dust masses in Serpens disks relative to those in Taurus despite the fact that disks in denser clusters may be expected to contain less dust mass due to stronger and more frequent tidal interactions that can disrupt the outer regions of disks. However, considering the low detection fraction, we likely detected only bright continuum sources and a more sensitive survey of Serpens would help clarify these results.

  9. WE-DE-207B-04: Quantitative Contrast-Enhanced Spectral Mammography Based On Photon-Counting Detectors: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, H; Zhou, B; Beidokhti, D

    Purpose: To investigate the feasibility of accurate quantification of iodine mass thickness in contrast-enhanced spectral mammography. Methods: Experimental phantom studies were performed on a spectral mammography system based on Si strip photon-counting detectors. Dual-energy images were acquired using 40 kVp and a splitting energy of 34 keV with 3 mm Al pre-filtration. The initial calibration was done with glandular and adipose tissue equivalent phantoms of uniform thicknesses and iodine disk phantoms of various concentrations. A secondary calibration was carried out using the iodine signal obtained from the dual-energy decomposed images and the known background phantom thicknesses and densities. The iodinemore » signal quantification method was validated using phantoms composed of a mixture of glandular and adipose materials, for various breast thicknesses and densities. Finally, the traditional dual-energy weighted subtraction method was also studied as a comparison. The measured iodine signal from both methods was compared to the known iodine concentrations of the disk phantoms to characterize the quantification accuracy. Results: There was good agreement between the iodine mass thicknesses measured using the proposed method and the known values. The root-mean-square (RMS) error was estimated to be 0.2 mg/cm2. The traditional weighted subtraction method also predicted a linear correlation between the measured signal and the known iodine mass thickness. However, the correlation slope and offset values were strongly dependent on the total breast thickness and density. Conclusion: The results of the current study suggest that iodine mass thickness can be accurately quantified with contrast-enhanced spectral mammography. The quantitative information can potentially improve the differentiation between benign and malignant legions. Grant funding from Philips Medical Systems.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrasco-González, Carlos; Rodríguez, Luis F.; Galván-Madrid, Roberto

    The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau, these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk–planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surfacemore » density profiles and grain-size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength, the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of (1–3) × 10{sup −3} M {sub ⊙}, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.« less

  11. Tempest in a glass tube: A helical vortex formation in a complex plasma

    NASA Astrophysics Data System (ADS)

    Saitou, Yoshifumi; Ishihara, Osamu; Ishihara

    2014-12-01

    A collective behavior of dust particles in a complex plasma with a magnetic field (up to 4 kG) is investigated. Dust particles form a dust disk which is rotating in a horizontal plane pushed by ions rotating with the E × B drift as a trigger force. The thickness of the disk is determined by controlling the experimental conditions. The disk rotates in a horizontal plane and forms a two-dimensional thin structure when the pressure pAr is relatively high. The dust particles are ejected from near the disk center and form a rotation in the vertical plane and, hence, forms a helical vortex when the disk is thick for relatively low pAr . The reason the dust disk has the different thickness is due to the neutral pressure. Under a higher (lower) neutral gas pressure, the disk becomes two (three) dimensional due to the influence of the neutral drag force.

  12. Optimization of tungsten x-ray spectra for digital mammography: a comparison of model to experiment

    NASA Astrophysics Data System (ADS)

    Andre, Michael P.; Spivey, Brett A.

    1997-05-01

    Tungsten (W) target x-rays tubes are being studied for use in digital mammography to improve x-ray flux, reduce noise and increase tube heat capacity. A parametric model was developed for digital mammography to evaluate optimization of x-ray spectra for a particular sensor. The model computes spectra and mean glandular doses (MGD) for combinations of W target, beam filters, kVp, breast type and thickness. Two figures of merit were defined: (signal/noise)2/MGD and spectral quantum efficiency; these were computed as a means to approach optimization of object contrast. The model is derived from a combination of classic equations, XCOM from NBS, and published data. X-ray spectra were calculated and measured for filters of Al, Sn, Rh, Mo and Ag on a Eureka tube. (Signal/noise)2/MGD was measured for a filtered W target tube and a digital camera employing CsI scintillator optically coupled to a CCD for which the detective quantum efficiency (DQE) was known. A 3-mm thick acrylic disk was imaged on thickness of 3-8 cm of acrylic and the results were compared to the predictions of the model. The relative error between predicted and measured spectra was +/- 2 percent from 24 to 34 kVp. Calculated MGD as a function of breast thickness, half-value layer and beam filter compares very well to published data. Best performance was found for the following combinations: Mo filter with 30 mm breast, Ag filter with 45 mm, Sn filter for 60 mm, and Al filter for 75 mm thick breast. The parametric model agrees well with measurement and provides a means to explore optimum combinations of kVp and beam filter. For a particular detector, this data may be used with the DQE to estimate total system signal-to-noise ratio for a particular imaging task.

  13. Tilted Thick-Disk Accretion onto a Kerr Black Hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fragile, P C; Anninos, P

    2003-12-12

    We present the first results from fully general relativistic numerical studies of thick-disk accretion onto a rapidly-rotating (Kerr) black hole with a spin axis that is tilted (not aligned) with the angular momentum vector of the disk. We initialize the problem with the solution for an aligned, constant angular momentum, accreting thick disk around a black hole with spin a/M = J/M{sup 2} = +0.9 (prograde disk). The black hole is then instantaneously tilted, through a change in the metric, by an angle {beta}{sub 0}. In this Letter we report results with {beta}{sub 0} = 0, 15, and 30{sup o}.more » The disk is allowed to respond to the Lense-Thirring precession of the tilted black hole. We find that the disk settles into a quasi-static, twisted, warped configuration with Lense-Thirring precession dominating out to a radius analogous to the Bardeen-Petterson transition in tilted Keplerian disks.« less

  14. New diamond cell for single-crystal x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Boehler, Reinhard

    2006-11-01

    A new design for a high-precision diamond cell is described. Two kinematically mounted steel disks are elastically deflected to generate pressure. This principle provides higher precision in the diamond anvil alignment than most sliding piston-cylinder or guide-pin devices at significantly lower cost. With this new diamond cell conical diamond anvils with an x-ray aperture of 85° were successfully tested to over 50GPa using helium as a pressure medium. Anvil thickness of less than 1.4mm provides high x-ray transmission and low background, a significant improvement compared to beryllium or diamond-disk backing plates. Because the diamond anvils are supported by tungsten carbide seats, samples and pressure media can be annealed by external or laser heating to provide hydrostatic pressure conditions.

  15. Impact of background on color, transmittance, and fluorescence of leucite based ceramics.

    PubMed

    Rafael, Caroline Freitas; Güth, Jan-Frederik; Kauling, Ana Elisa Colle; Cesar, Paulo Francisco; Volpato, Claudia Angelo Mazieiro; Liebermann, Anja

    2017-07-26

    This study evaluated the impact of tooth shade on differences in color (∆E), lightness (∆L), chromaticity coordinates a*/b* (∆a and ∆b), transmittance and the degree of fluorescence of CAD/CAM leucite based ceramic (LBC). Ten disks were fabricated of LBC; Empress CAD, A2, thickness of 1.5 mm and eight disks of resin-nano-ceramic (RNC; Lava Ultimate) in different colors to simulate variations in substrate shade. The associations of LBC disks with different color substrates were analyzed with a spectrophotometer; ∆E, ∆L*, ∆a*, ∆b*, and transmittance were measured and calculated. Fluorescence was evaluated with a fluorescence system (Fluorescence System, Biopdi). All substrate shades influenced the optical properties of LBC, with regard to color, luminosity, coordinate a* and b*, transmittance, and fluorescence (p<0.001). Substrate colors with high saturation (A3.5 and C2) presented highest impact, whereas colors with lowest saturations (BL, B1) showed less impact. Substrate color influenced the optical properties of ceramic restorations.

  16. The Relationship between the Dense Neutral and Diffuse Ionized Gas in the Thick Disks of Two Edge-on Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Rueff, Katherine M.; Howk, J. Christopher; Pitterle, Marissa; Hirschauer, Alec S.; Fox, Andrew J.; Savage, Blair D.

    2013-03-01

    We present high-resolution, optical images (BVI + Hα) of the multiphase interstellar medium (ISM) in the thick disks of the edge-on spiral galaxies NGC 4013 and NGC 4302. Our images from the Hubble Space Telescope (HST), Large Binocular Telescope, and WIYN 3.5 m telescope reveal an extensive population of filamentary dust absorption seen to z ~2-2.5 kpc. Many of these dusty thick disk structures have characteristics reminiscent of molecular clouds found in the Milky Way disk. Our Hα images show that the extraplanar diffuse ionized gas (DIG) in these galaxies is dominated by a smooth, diffuse component. The strongly filamentary morphologies of the dust absorption have no counterpart in the smoothly distributed Hα emission. We argue that the thick disk DIG and dust-bearing filaments trace physically distinct phases of the thick disk ISM, the latter tracing a dense, warm or cold neutral medium. The dense, dusty matter in the thick disks of spiral galaxies is largely tracing matter ejected from the thin disk via energetic feedback from massive stars. The high densities of the gas may be a result of converging gas flows. This dense material fuels some thick disk star formation, as evidenced by the presence of thick disk H II regions. Based on observations obtained with the NASA/ESA Hubble Space Telescope operated at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Also, based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the US, Italy, and Germany. LBT Corporation partners are the University of Arizona, on behalf of the Arizona University System; Instituto Nazionale do Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max Planck Society, the Astrophysical Institute of Potsdam, and Heidelberg University; Ohio State University, and the Research Corporation, on behalf of the University of Notre Dame, the University of Minnesota, and the University of Virginia. Also, based on observations obtained by the WIYN Observatory which is a joint facility of the University of Wisconsin-Madison, Yale University, Indiana University, and the National Optical Astronomy Observatories.

  17. Structural changes of macula and optic disk of the fellow eye in patients with nonarteritic anterior ischemic optic neuropathy.

    PubMed

    Duman, R; Yavas, G F; Veliyev, I; Dogan, M; Duman, R

    2018-05-10

    The aim was to assess the ganglion cell complex (GCC) thickness, retinal nerve fiber layer (RNFL) thickness and optic disk features in the affected eyes (AE) and unaffected fellow eyes (FE) of subjects with unilateral nonarteritic anterior ischemic optic neuropathy (NAION) and to compare with healthy control eyes (CE) using spectral domain-optical coherence tomography (SD-OCT). This study included 28 patients and age, sex and refraction-matched 28 control subjects. Mean GCC thickness and peripapillary RNFL thickness in four quadrants measured by cirrus SD-OCT were evaluated in both AE and FE of patients and CE. In addition, optic disk measurements obtained with OCT were evaluated. Mean GCC thickness was significantly lower in AE compared with both FE and CE (P < 0.001), and mean GCC thickness in FE was significantly lower than CE (P = 0.022). In addition, mean RNFL thickness in superior and nasal quadrants significantly decreased in FE compared with CE (P = 0.020 and 0.010, respectively). Furthermore, AE had significantly greater optic disk cupping compared with both FE and CE (P < 0.001). GCC and RNFL thickness decreased significantly at late stages of NAION, in both AE and FE compared with CE, suggesting that some subclinical structural changes may occur in FE despite lack of obvious visual symptoms. In addition, there was no significant difference in optic disk features between the CE and FE. And significantly greater optic disk cupping in the AE compared with both FE and CE supports the acquired enlargement of cupping after the onset of NAION.

  18. An Analytical Model for the Evolution of the Protoplanetary Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khajenabi, Fazeleh; Kazrani, Kimia; Shadmehri, Mohsen, E-mail: f.khajenabi@gu.ac.ir

    We obtain a new set of analytical solutions for the evolution of a self-gravitating accretion disk by holding the Toomre parameter close to its threshold and obtaining the stress parameter from the cooling rate. In agreement with the previous numerical solutions, furthermore, the accretion rate is assumed to be independent of the disk radius. Extreme situations where the entire disk is either optically thick or optically thin are studied independently, and the obtained solutions can be used for exploring the early or the final phases of a protoplanetary disk evolution. Our solutions exhibit decay of the accretion rate as amore » power-law function of the age of the system, with exponents −0.75 and −1.04 for optically thick and thin cases, respectively. Our calculations permit us to explore the evolution of the snow line analytically. The location of the snow line in the optically thick regime evolves as a power-law function of time with the exponent −0.16; however, when the disk is optically thin, the location of the snow line as a function of time with the exponent −0.7 has a stronger dependence on time. This means that in an optically thin disk inward migration of the snow line is faster than an optically thick disk.« less

  19. Exploring the Effects of Disk Thickness on the Black Hole Reflection Spectrum

    NASA Astrophysics Data System (ADS)

    Taylor, Corbin; Reynolds, Christopher S.

    2018-03-01

    The relativistically broadened reflection spectrum, observed in both AGN and X-ray binaries, has proven to be a powerful probe of the properties of black holes and the environments in which they reside. Emitted from the innermost regions of the accretion disk, this X-ray spectral component carries with it information not only about the plasma that resides in these extreme conditions, but also the black hole spin, a marker of the formation and accretion history of these objects. The models currently used to interpret the reflection spectrum are often simplistic, however, approximating the disk as an infinitely thin, optically thick plane of material orbiting in circular Keplerian orbits around the central object. Using a new relativistic ray-tracing suite (Fenrir) that allows for more complex disk approximations, we examine the effects that disk thickness may have on the reflection spectrum. Assuming a lamppost corona, we find that finite disk thickness can have a variety of effects on the reflection spectrum, including a truncation of the blue wing (from self-shadowing of the accretion disk) and an enhancement of the red wing (from the irradiation of the central “eye wall” of the inner disk). We deduce the systematic errors on black hole spin and height that may result from neglecting these effects.

  20. CHANGES IN CHOROIDAL THICKNESS IN AND OUTSIDE THE MACULA AFTER HEMODIALYSIS IN PATIENTS WITH END-STAGE RENAL DISEASE

    PubMed Central

    Chang, In Boem; Lee, Jeong Hyun

    2017-01-01

    Purpose: To evaluate changes in choroidal thickness in and outside the macula as a result of hemodialysis (HD) in patients with end-stage renal disease. Methods: Patients with end-stage renal disease treated with maintenance HD in the Dialysis Unit of Sanggye Paik Hospital, Seoul, South Korea, were included in this study. The choroidal thickness was measured in and outside the macula before and after HD (paired t-test). Choroidal thickness in the macula was measured at the foveal center and 1.5 mm temporal to the foveal center and outside the macula was measured at superior, inferior, and nasal area 3.5 mm from the optic disk margin. Peripapillary retinal nerve fiber layer thickness, intraocular pressure, central corneal thickness, and systemic parameters such as serum osmolarity and blood pressure (BP) were measured before and after HD (paired t-test). We divided patients into two groups, diabetic and nondiabetic groups to compare the changes in choroidal thickness. Patients with diabetes were subdivided into two groups: severe retinal change group and moderate retinal change group (Mann–Whitney test). Pearson's correlation test was used to evaluate the correlations between choroidal thickness and changes in serum osmolarity, BP, and body weight loss. Choroidal thickness and peripapillary retinal nerve fiber layer thickness were measured using spectral-domain optical coherence tomography. Results: Fifty-four eyes of 31 patients with end-stage renal disease were included. After HD, the mean intraocular pressure was significantly decreased from 14.8 ± 2.5 mmHg to 13.0 ± 2.6 mmHg (P < 0.001). Choroidal thickness was reduced in all areas (P < 0.001). The reduction in choroidal thickness correlated with body weight loss, decrease in serum osmolarity, and decrease in systolic BP (P < 0.05). In the diabetic group, the mean choroidal thickness changes were greater than those in the nondiabetic group (P < 0.05). The severe retinal change group showed greater changes in choroidal thickness in all areas (P < 0.05). Other factors that significantly decreased after HD included serum osmolarity, body weight, and systolic BP (all P < 0.001). The diabetic group showed greater changes in serum osmolarity and body weight (P < 0.001, P = 0.048, respectively). The measured overall changes in peripapillary retinal nerve fiber layer thickness or central corneal thickness were not statistically significant. Conclusion: Changes in body weight, serum osmolarity, and BP during HD may affect choroidal thickness in and outside the macula. PMID:27557086

  1. Spitzer observations of NGC 2264: the nature of the disk population

    NASA Astrophysics Data System (ADS)

    Teixeira, P. S.; Lada, C. J.; Marengo, M.; Lada, E. A.

    2012-04-01

    Aims: NGC 2264 is a young cluster with a rich circumstellar disk population which makes it an ideal target for studying the evolution of stellar clusters. Our goal is to study the star formation history of NGC 2264 and to analyse the primordial disk evolution of its members. Methods: The study presented is based on data obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS) on board the Spitzer Space Telescope, combined with deep near-infrared (NIR) ground-based FLAMINGOS imaging and previously published optical data. Results: We build NIR dust extinction maps of the molecular cloud associated with the cluster, and determine it to have a mass of 2.1 × 103 M⊙ above an AV of 7 mag. Using a differential Ks-band luminosity function (KLF) of the cluster, we estimate the size of the population of NGC 2264, within the area observed by FLAMINGOS, to be 1436 ± 242 members. The star formation efficiency is ≥ ~25%. We identify the disk population and divide it into 3 groups based on their spectral energy distribution slopes from 3.6 μm to 8 μm and on the 24 μm excess emission: (i) optically thick inner disks, (ii) anaemic inner disks, and (iii) disks with inner holes, or transition disks. We analyse the spatial distribution of these sources and find that sources with thick disks segregate into sub-clusterings, whereas sources with anaemic disks do not. Furthermore, sources with anaemic disks are found to be unembedded (i.e., with AV < 3 mag), whereas the clustered sources with thick disks are still embedded within the parental cloud. Conclusions: NGC 2264 has undergone more than one star-forming event, where the anaemic and extincted thick disk population appear to have formed in separate episodes: the sources with anaemic disks are more evolved and have had time to disperse and populate a halo of the cluster. We also find tentative evidence of triggered star-formation in the Fox Fur Nebula. In terms of disk evolution, our findings support the emerging disk evolution paradigm of two distinct evolutionary paths for primordial optically thick disks: a homologous one where the disk emission decreases uniformly at NIR and mid-infrared (MIR) wavelengths, and a radially differential one where the emission from the inner region of the disk decreases more rapidly than from the outer region (forming transition disks).

  2. THE DOMINANT EPOCH OF STAR FORMATION IN THE MILKY WAY FORMED THE THICK DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snaith, Owain N.; Haywood, Misha; Di Matteo, Paola

    2014-02-01

    We report the first robust measurement of the Milky Way star formation history using the imprint left on chemical abundances of long-lived stars. The formation of the Galactic thick disk occurs during an intense star formation phase between 9.0 (z ∼ 1.5) and 12.5 Gyr (z ∼ 4.5) ago and is followed by a dip (at z ∼ 1.1) lasting about 1 Gyr. Our results imply that the thick disk is as massive as the Milky Way's thin disk, suggesting a fundamental role of this component in the genesis of our Galaxy, something that had been largely unrecognized. This new picture impliesmore » that huge quantities of gas necessary to feed the building of the thick disk must have been present at these epochs, in contradiction with the long-term infall assumed by chemical evolution models in the last two decades. These results allow us to fit the Milky Way within the emerging features of the evolution of disk galaxies in the early universe.« less

  3. On chemical reaction and porous medium effect in the MHD flow due to a rotating disk with variable thickness

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Nazar, Hira; Imtiaz, Maria; Alsaedi, Ahmed

    2017-06-01

    The present analysis describes the magnetohydrodynamic (MHD) axisymmetric flow of a viscous fluid due to a rotating disk with variable thickness. An electrically conducting fluid fills the porous space. The first-order chemical reaction is considered. The equations of the present problem representing the flow of a fluid are reduced into nonlinear ordinary differential equations. Convergent series solutions are obtained. The impacts of the various involved dimensionless parameters on fluid flow, temperature, concentration, skin frction coefficient and Nusselt number are examined. The radial, tangential and axial components of velocity are affected in a similar manner on changing the thickness coefficient of the disk. Similar effects of the disk thickness coefficient are observed for both the temperature and concentration profile.

  4. Design and Optimization of Ultrasonic Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants.

    PubMed

    Meng, Miao; Kiani, Mehdi

    2017-02-01

    Ultrasound has been recently proposed as an alternative modality for efficient wireless power transmission (WPT) to biomedical implants with millimeter (mm) dimensions. This paper presents the theory and design methodology of ultrasonic WPT links that involve mm-sized receivers (Rx). For given load (R L ) and powering distance (d), the optimal geometries of transmitter (Tx) and Rx ultrasonic transducers, including their diameter and thickness, as well as the optimal operation frequency (f c ) are found through a recursive design procedure to maximize the power transmission efficiency (PTE). First, a range of realistic f c s is found based on the Rx thickness constrain. For a chosen f c within the range, the diameter and thickness of the Rx transducer are then swept together to maximize PTE. Then, the diameter and thickness of the Tx transducer are optimized to maximize PTE. Finally, this procedure is repeated for different f c s to find the optimal f c and its corresponding transducer geometries that maximize PTE. A design example of ultrasonic link has been presented and optimized for WPT to a 1 mm 3 implant, including a disk-shaped piezoelectric transducer on a silicon die. In simulations, a PTE of 2.11% at f c of 1.8 MHz was achieved for R L of 2.5 [Formula: see text] at [Formula: see text]. In order to validate our simulations, an ultrasonic link was optimized for a 1 mm 3 piezoelectric transducer mounted on a printed circuit board (PCB), which led to simulated and measured PTEs of 0.65% and 0.66% at f c of 1.1 MHz for R L of 2.5 [Formula: see text] at [Formula: see text], respectively.

  5. The Effects of Accretion Disk Geometry on AGN Reflection Spectra

    NASA Astrophysics Data System (ADS)

    Taylor, Corbin James; Reynolds, Christopher S.

    2017-08-01

    Despite being the gravitational engines that power galactic-scale winds and mega parsec-scale jets in active galaxies, black holes are remarkably simple objects, typically being fully described by their angular momenta (spin) and masses. The modelling of AGN X-ray reflection spectra has proven fruitful in estimating the spin of AGN, as well as giving insight into their accretion histories and the properties of plasmas in the strong gravity regime. However, current models make simplifying assumptions about the geometry of the reflecting material in the accretion disk and the irradiating X-ray corona, approximating the disk as an optically thick, infinitely thin disk of material in the orbital plane. We present results from the new relativistic raytracing suite, Fenrir, that explore the effects that disk thickness may have on the reflection spectrum and the accompanying reverberation signatures. Approximating the accretion disk as an optically thick, geometrically thin, radiation pressure dominated disk (Shakura & Sunyaev 1973), one finds that the disk geometry is non-negligible in many cases, with significant changes in the broad Fe K line profile. Finally, we explore the systematic errors inherent in approximating the disk as being infinitely thin when modeling reflection spectrum, potentially biasing determinations of black hole and corona properties.

  6. The matter-neutrino resonance around thick disks

    NASA Astrophysics Data System (ADS)

    Deaton, Michael

    2016-03-01

    We are studying neutrino flavor transformations in typical neutron star merger environments. Here a dominance of νe over νe fluxes introduces transformation behaviors qualitatively different from those seen in supernovae. Discovered in thin disk models, the matter neutrino resonance (MNR) may behave differently around thick disks, or not appear at all. I'll present what we have learned about the MNR using a phenomenological model motivated by hydrodynamical simulations of post-merger disks. JINA-CEE.

  7. Strength and fracture of uranium, plutonium and several their alloys under shock wave loading

    NASA Astrophysics Data System (ADS)

    Golubev, V. K.

    2012-08-01

    Results on studying the spall fracture of uranium, plutonium and several their alloys under shock wave loading are presented in the paper. The problems of influence of initial temperature in a range of - 196 - 800∘C and loading time on the spall strength and failure character of uranium and two its alloys with molybdenum and both molybdenum and zirconium were studied. The results for plutonium and its alloy with gallium were obtained at a normal temperature and in a temperature range of 40-315∘C, respectively. The majority of tests were conducted with the samples in the form of disks 4 mm in thickness. They were loaded by the impact of aluminum plates 4 mm thick through a copper screen 12 mm thick serving as the cover or bottom part of a special container. The character of spall failure of materials and the damage degree of samples were observed on the longitudinal metallographic sections of recovered samples. For a concrete test temperature, the impact velocity was sequentially changed and therefore the loading conditions corresponding to the consecutive transition from microdamage nucleation up to complete macroscopic spall fracture were determined. The conditions of shock wave loading were calculated using an elastic-plastic computer program. The comparison of obtained results with the data of other researchers on the spall fracture of examined materials was conducted.

  8. Milky Way's thick and thin disk: Is there a distinct thick disk?

    NASA Astrophysics Data System (ADS)

    Kawata, D.; Chiappini, C.

    2016-09-01

    This article is based on our discussion session on Milky Way models at the 592 WE-Heraeus Seminar, Reconstructing the Milky Way's History: Spectroscopic Surveys, Asteroseismology and Chemodynamical Models. The discussion focused on the following question: "Are there distinct thick and thin disks?". The answer to this question depends on the definition one adopts for thin and thick disks. The participants of this discussion converged to the idea that there are at least two different types of disks in the Milky Way. However, there are still important open questions on how to best define these two types of disks (chemically, kinematically, geometrically or by age?). The question of what is the origin of the distinct disks remains open. The future Galactic surveys which are highlighted in this conference should help us answering these questions. The almost one-hour debate involving researchers in the field representing different modelling approaches (Galactic models such as TRILEGAL, Besançon and Galaxia, chemical evolution models, extended distribution functions method, chemodynamics in the cosmological context, and self-consistent cosmological simulations) illustrated how important is to have all these parallel approaches. All approaches have their advantages and shortcomings (also discussed), and different approaches are useful to address specific points that might help us answering the more general question above.

  9. Filtering Water by Use of Ultrasonically Vibrated Nanotubes

    NASA Technical Reports Server (NTRS)

    Gavalas, Lillian Susan

    2009-01-01

    Devices that could be characterized as acoustically driven molecular sieves have been proposed for filtering water to remove all biological contaminants and all molecules larger than water molecules. Originally intended for purifying wastewater for reuse aboard spacecraft, these devices could also be attractive for use on Earth in numerous settings in which there are requirements to obtain potable, medical-grade, or otherwise pure water from contaminated water supplies. These devices could also serve as efficient means of removing some or all water from chemical products . for example, they might be useful as adjuncts or substitutes for stills in the removal of water from alcohols and alcoholic beverages. These devices may be constructed using various materials, such as ceramics, metallics, or polymers, depending on end-use requirements. A representative device of this type (see figure) would include a polymeric disk, about 1 mm in diameter and between 1 and 40 microns thick, within which would be embedded single-wall carbon nanotubes aligned along the thickness axis. The polymeric disk would be part of a unitary polymeric ring assembly. An acoustic transducer in the form of a piezoelectric-film-and-electrode subassembly - typically 9 microns thick and made of poly(vinylidene fluoride) coated with copper 150 nm thick -. would be affixed to the outside of the outer polymeric ring by means of an electrically nonconductive epoxy. The nanotubes would be chosen to have diameters between about 8 and about 13.5 A because water molecules could fit into the nanotubes, but larger molecules could not. Water to be purified would be placed in contact with one face (typically, the upper face) of the filter disk. The surface tension of water is low enough that water molecules should enter and travel along the nanotubes, and computational simulations of molecular dynamics and experimental measurements have shown that the water molecules inside the nanotubes in this size range can be expected to become aligned into helical columns that exhibit properties of both hexagonal ice crystals and liquid water

  10. L10 FePtCu bit patterned media

    NASA Astrophysics Data System (ADS)

    Brombacher, C.; Grobis, M.; Lee, J.; Fidler, J.; Eriksson, T.; Werner, T.; Hellwig, O.; Albrecht, M.

    2012-01-01

    Chemically ordered 5 nm-thick L10 FePtCu films with strong perpendicular magnetic anisotropy were post-patterned by nanoimprint lithography into a dot array over a 3 mm-wide circumferential band on a 3 inch Si wafer. The dots with a diameter of 30 nm and a center-to-center pitch of 60 nm appear as single domain and reveal an enhanced switching field as compared to the continuous film. We demonstrate successful recording on a single track using shingled writing with a conventional hard disk drive write/read head.

  11. A Multi-Wavelength View of Planet Forming Regions: Unleashing the Full Power of ALMA

    NASA Astrophysics Data System (ADS)

    Tazzari, Marco

    2017-11-01

    Observations at sub-mm/mm wavelengths allow us to probe the solids in the interior of protoplanetary disks, where the bulk of the dust is located and planet formation is expected to occur. However, the actual size of dust grains is still largely unknown due to the limited angular resolution and sensitivity of past observations. The upgraded VLA and, especially, the ALMA observatories provide now powerful tools to resolve grain growth in disks, making the time ripe for developing a multi-wavelength analysis of sub-mm/mm observations of disks. In my contribution I will present a novel analysis method for multi-wavelength ALMA/VLA observations which, based on the self-consistent modelling of the sub-mm/mm disk continuum emission, allows us to constrain simultaneously the size distribution of dust grains and the disk's physical structure (Tazzari et al. 2016, A&A 588 A53). I will also present the recent analysis of spatially resolved ALMA Band 7 observations of a large sample of disks in the Lupus star forming region, from which we obtained a tentative evidence of a disk size-disk mass correlation (Tazzari et al. 2017, arXiv:1707.01499). Finally, I will introduce galario, a GPU Accelerated Library for the Analysis of Radio Interferometry Observations. Fitting the observed visibilities in the uv-plane is computationally demanding: with galario we solve this problem for the current as well as for the full-science ALMA capabilities by leveraging on the computing power of GPUs, providing the computational breakthrough needed to fully exploit the new wealth of information delivered by ALMA.

  12. Mapping the Asymmetric Thick Disk. II. Distance, Size, and Mass of the Hercules Thick Disk Cloud

    NASA Astrophysics Data System (ADS)

    Larsen, Jeffrey A.; Cabanela, Juan E.; Humphreys, Roberta M.

    2011-04-01

    The Hercules Thick Disk Cloud was initially discovered as an excess in the number of faint blue stars between Quadrants 1 and 4 of the Galaxy. The origin of the Cloud could be an interaction with the disk bar, a triaxial Thick Disk, or a merger remnant or stream. To better map the spatial extent of the Cloud along the line of sight, we have obtained multi-color UBVR photometry for 1.2 million stars in 63 fields each of approximately 1 deg2. Our analysis of the fields beyond the apparent boundaries of the excess has already ruled out a triaxial Thick Disk as a likely explanation. In this paper, we present our results for the star counts over all of our fields, determine the spatial extent of the overdensity across and along the line of sight, and estimate the size and mass of the Cloud. Using photometric parallaxes, the stars responsible for the excess are between 1 and 6 kpc from the Sun, 0.5-4 kpc above the Galactic plane, and extend approximately 3-4 kpc across our line of sight. The Cloud is thus a major substructure in the Galaxy. The distribution of the excess along our sight lines corresponds with the density contours of the bar in the Disk, and its most distant stars are directly over the bar. We also see through the Cloud to its far side. Over the entire 500 deg2 of the sky containing the Cloud, we estimate more than 5.6 million stars and 1.9 million solar masses of material. If the overdensity is associated with the bar, it would exceed 1.4 billion stars and more than 50 million solar masses. Finally, we argue that the Hercules-Aquila Cloud is actually the Hercules Thick Disk Cloud.

  13. MAPPING THE ASYMMETRIC THICK DISK. II. DISTANCE, SIZE, AND MASS OF THE HERCULES THICK DISK CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Jeffrey A.; Cabanela, Juan E.; Humphreys, Roberta M., E-mail: larsen@usna.edu, E-mail: cabanela@mnstate.edu, E-mail: roberta@umn.edu

    2011-04-15

    The Hercules Thick Disk Cloud was initially discovered as an excess in the number of faint blue stars between Quadrants 1 and 4 of the Galaxy. The origin of the Cloud could be an interaction with the disk bar, a triaxial Thick Disk, or a merger remnant or stream. To better map the spatial extent of the Cloud along the line of sight, we have obtained multi-color UBVR photometry for 1.2 million stars in 63 fields each of approximately 1 deg{sup 2}. Our analysis of the fields beyond the apparent boundaries of the excess has already ruled out a triaxialmore » Thick Disk as a likely explanation. In this paper, we present our results for the star counts over all of our fields, determine the spatial extent of the overdensity across and along the line of sight, and estimate the size and mass of the Cloud. Using photometric parallaxes, the stars responsible for the excess are between 1 and 6 kpc from the Sun, 0.5-4 kpc above the Galactic plane, and extend approximately 3-4 kpc across our line of sight. The Cloud is thus a major substructure in the Galaxy. The distribution of the excess along our sight lines corresponds with the density contours of the bar in the Disk, and its most distant stars are directly over the bar. We also see through the Cloud to its far side. Over the entire 500 deg{sup 2} of the sky containing the Cloud, we estimate more than 5.6 million stars and 1.9 million solar masses of material. If the overdensity is associated with the bar, it would exceed 1.4 billion stars and more than 50 million solar masses. Finally, we argue that the Hercules-Aquila Cloud is actually the Hercules Thick Disk Cloud.« less

  14. The Genesis of the Milky Way's Thick Disk via Stellar Migration

    NASA Astrophysics Data System (ADS)

    Loebman, Sarah; Roskar, R.; Debattista, V. P.; Ivezic, Z.; Quinn, T. R.; Wadsley, J.

    2011-01-01

    The separation of the Milky Way disk into a thin and thick component is supported by differences in kinematics and metallicity. These differences have lead to the predominant view that the thick disk formed early via a cataclysmic event and constitutes fossil evidence of the hierarchical growth of the Milky Way. We show here, using N-body simulations, how a double vertical structure, with stellar populations displaying similar dichotomies can arise purely through internal evolution. Stars migrate radially, while retaining nearly circular orbits, as described by Sellwood & Binney (2002). As stars move outwards their vertical motions carry them to larger heights above the mid-plane, populating a thickened component. Such stars found at present time in the solar neighborhood formed early in the disk’s history at smaller radii where stars are more metal-poor and α-enhanced, leading to exactly the properties observed for thick disk stars. Classifying stars as members of the thin or thick disk by either velocity or metallicity leads to an apparent separation in the other property as observed. This scenario is supported by the SDSS observation that stars in the transition region do not show any correlation between rotation and metallicity. Such a correlation is present in young stars and arises because of epicyclic motions but migration radially mixes stars, washing out the correlation. Using the Geneva Copenhagen Survey, we indeed find a velocity-metallicity correlation in the younger stars and none in the older stars. We predict a similar result when separating stars by [α/Fe]. The good qualitative agreement between our simulation and observations are remarkable because the simulation was not tuned to reproduce the Milky Way, hinting that the thick disk may be dominated by stellar migration. Nonetheless, we cannot exclude that some fraction of the thick disk is a fossil of a past more violent history.

  15. ngVLA Key Science Goal 1: Unveiling the Formation of Solar System Analogues

    NASA Astrophysics Data System (ADS)

    Liu, Shangfei; Ricci, Luca; Isella, Andrea; Li, Hui; Li, Shengtai

    2018-01-01

    The annular gaps and other substructures discovered in several protoplanetary disks by ALMA and optical/NIR telescopes are reminiscent of the interaction between newborn planets and the circumstellar material. The comparison with theoretical models indicates that these structures might indeed result from the gravitational interaction between the circumstellar disk and Saturn-mass planets orbiting at tens of AU from the parent star. The same observations also revealed that the submm-wave dust continuum emission arising within 10-30 AU from the star is optically thick. The large optical depth prevents us from accurately measuring the dust density and, therefore, image planet-driven density perturbations. A natural solution to this problem consists in imaging disks at wavelengths of 3mm and longer, where the dust continuum emission from the innermost disk regions is optically thin, but still bright enough to be detected. These wavelengths are covered by the VLA, which, however, lacks the angular resolution and sensitivity to efficiently search for signatures of planets orbiting in the innermost and densest disk regions. Thanks to its much larger collecting area, resolving power, and image quality the Next Generation VLA (ngVLA) will transform the study of planet formation. we present the results of a recent study aimed at investigating the potential of the ngVLA of discovering disk sub-structures, such as gaps and azimuthal asymmetries, generated by the interaction with low-mass forming planets at < 10 au from the star.

  16. Mapping the Asymmetric Thick Disk. III. The Kinematics and Interaction with the Galactic Bar

    NASA Astrophysics Data System (ADS)

    Humphreys, Roberta M.; Beers, Timothy C.; Cabanela, Juan E.; Grammer, Skyler; Davidson, Kris; Lee, Young Sun; Larsen, Jeffrey A.

    2011-04-01

    In the first two papers of this series, Larsen et al. describe our faint CCD survey in the inner Galaxy and map the overdensity of thick disk stars in Quadrant 1 (Q1) to 5 kpc or more along the line of sight. The regions showing the strongest excess are above the density contours of the bar in the Galactic disk. In this third paper on the asymmetric thick disk, we report on radial velocities and derived metallicity parameters for over 4000 stars in Q1, above and below the plane, and in Quadrant 4 (Q4) above the plane. We confirm the corresponding kinematic asymmetry first reported by Parker et al., extended to greater distances and with more spatial coverage. The thick disk stars in Q1 have a rotational lag of 60-70 km s-1 relative to circular rotation, and the metal-weak thick disk stars have an even greater lag of 100 km s-1. Both lag their corresponding populations in Q4 by ≈30 km s-1. Interestingly, the disk stars in Q1 also appear to participate in the rotational lag by about 30 km s-1. The enhanced rotational lag for the thick disk in Q1 extends to 4 kpc or more from the Sun. At 3-4 kpc, our sight lines extend above the density contours on the near side of the bar, and as our lines of sight pass directly over the bar the rotational lag appears to decrease. This is consistent with a "gravitational wake" induced by the rotating bar in the disk which would trap and pile up stars behind it. We conclude that a dynamical interaction with the stellar bar is the most probable explanation for the observed kinematic and spatial asymmetries. Based on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona, and at the Cerro Tololo Inter-American Observatory (NOAO) operated by the Association of Universities for Research in Astronomy (AURA).

  17. The AMBRE project: The thick thin disk and thin thick disk of the Milky Way

    NASA Astrophysics Data System (ADS)

    Hayden, M. R.; Recio-Blanco, A.; de Laverny, P.; Mikolaitis, S.; Worley, C. C.

    2017-11-01

    We analyze 494 main sequence turnoff and subgiant stars from the AMBRE:HARPS survey. These stars have accurate astrometric information from Gaia DR1, providing reliable age estimates with relative uncertainties of ±1 or 2 Gyr and allowing precise orbital determinations. The sample is split based on chemistry into a low-[Mg/Fe] sequence, which are often identified as thin disk stellar populations, and high-[Mg/Fe] sequence, which are often associated with thick disk stellar populations. We find that the high-[Mg/Fe] chemical sequence has extended star formation for several Gyr and is coeval with the oldest stars of the low-[Mg/Fe] chemical sequence: both the low- and high-[Mg/Fe] sequences were forming stars at the same time. We find that the high-[Mg/Fe] stellar populations are only vertically extended for the oldest, most-metal poor and highest [Mg/Fe] stars. When comparing vertical velocity dispersion for the low- and high-[Mg/Fe] sequences, the high-[Mg/Fe] sequence has lower vertical velocity dispersion than the low-[Mg/Fe] sequence for stars of similar age. This means that identifying either group as thin or thick disk based on chemistry is misleading. The stars belonging to the high-[Mg/Fe] sequence have perigalacticons that originate in the inner disk, while the perigalacticons of stars on the low-[Mg/Fe] sequence are generally around the solar neighborhood. From the orbital properties of the stars, the high-[Mg/Fe] and low-[Mg/Fe] sequences are most likely a reflection of the chemical enrichment history of the inner and outer disk populations, respectively; radial mixing causes both populations to be observed in situ at the solar position. Based on these results, we emphasize that it is important to be clear in defining what populations are being referenced when using the terms thin and thick disk, and that ideally the term thick disk should be reserved for purely geometric definitions to avoid confusion and be consistent with definitions in external galaxies.

  18. The Mass Dependence between Protoplanetary Disks and their Stellar Hosts

    NASA Astrophysics Data System (ADS)

    Andrews, Sean M.; Rosenfeld, Katherine A.; Kraus, Adam L.; Wilner, David J.

    2013-07-01

    We present a substantial extension of the millimeter (mm) wave continuum photometry catalog for circumstellar dust disks in the Taurus star-forming region, based on a new "snapshot" λ = 1.3 mm survey with the Submillimeter Array. Combining these new data with measurements in the literature, we construct a mm-wave luminosity distribution, f(L mm), for Class II disks that is statistically complete for stellar hosts with spectral types earlier than M8.5 and has a 3σ depth of roughly 3 mJy. The resulting census eliminates a longstanding selection bias against disks with late-type hosts, and thereby demonstrates that there is a strong correlation between L mm and the host spectral type. By translating the locations of individual stars in the Hertzsprung-Russell diagram into masses and ages, and adopting a simple conversion between L mm and the disk mass, Md , we confirm that this correlation corresponds to a statistically robust relationship between the masses of dust disks and the stars that host them. A Bayesian regression technique is used to characterize these relationships in the presence of measurement errors, data censoring, and significant intrinsic scatter: the best-fit results indicate a typical 1.3 mm flux density of ~25 mJy for 1 M ⊙ hosts and a power-law scaling L_mm ∝ M_{\\ast}^{1.5-2.0}. We suggest that a reasonable treatment of dust temperature in the conversion from L mm to Md favors an inherently linear Md vpropM * scaling, with a typical disk-to-star mass ratio of ~0.2%-0.6%. The measured rms dispersion around this regression curve is ±0.7 dex, suggesting that the combined effects of diverse evolutionary states, dust opacities, and temperatures in these disks imprint a full width at half-maximum range of a factor of ~40 on the inferred Md (or L mm) at any given host mass. We argue that this relationship between Md and M * likely represents the origin of the inferred correlation between giant planet frequency and host star mass in the exoplanet population, and provides some basic support for the core accretion model for planet formation. Moreover, we caution that the effects of incompleteness and selection bias must be considered in comparative studies of disk evolution, and illustrate that fact with statistical comparisons of f(L mm) between the Taurus catalog presented here and incomplete subsamples in the Ophiuchus, IC 348, and Upper Sco young clusters.

  19. Spread of the dust temperature distribution in circumstellar disks

    NASA Astrophysics Data System (ADS)

    Heese, S.; Wolf, S.; Dutrey, A.; Guilloteau, S.

    2017-07-01

    Context. Accurate temperature calculations for circumstellar disks are particularly important for their chemical evolution. Their temperature distribution is determined by the optical properties of the dust grains, which, among other parameters, depend on their radius. However, in most disk studies, only average optical properties and thus an average temperature is assumed to account for an ensemble of grains with different radii. Aims: We investigate the impact of subdividing the grain radius distribution into multiple sub-intervals on the resulting dust temperature distribution and spectral energy distribution (SED). Methods: The temperature distribution, the relative grain surface below a certain temperature, the freeze-out radius, and the SED were computed for two different scenarios: (1) Radius distribution represented by 16 logarithmically distributed radius intervals, and (2) radius distribution represented by a single grain species with averaged optical properties (reference). Results: Within the considered parameter range, I.e., of grain radii between 5 nm and 1 mm and an optically thin and thick disk with a parameterized density distribution, we obtain the following results: in optically thin disk regions, the temperature spread can be as large as 63% and the relative grain surface below a certain temperature is lower than in the reference disk. With increasing optical depth, the difference in the midplane temperature and the relative grain surface below a certain temperature decreases. Furthermore, below 20 K, this fraction is higher for the reference disk than for the case of multiple grain radii, while it shows the opposite behavior for temperatures above this threshold. The thermal emission in the case of multiple grain radii at short wavelengths is stronger than for the reference disk. The freeze-out radius (snowline) is a function of grain radius, spanning a radial range between the coldest and warmest grain species of 30 AU.

  20. The variability of software scoring of the CDMAM phantom associated with a limited number of images

    NASA Astrophysics Data System (ADS)

    Yang, Chang-Ying J.; Van Metter, Richard

    2007-03-01

    Software scoring approaches provide an attractive alternative to human evaluation of CDMAM images from digital mammography systems, particularly for annual quality control testing as recommended by the European Protocol for the Quality Control of the Physical and Technical Aspects of Mammography Screening (EPQCM). Methods for correlating CDCOM-based results with human observer performance have been proposed. A common feature of all methods is the use of a small number (at most eight) of CDMAM images to evaluate the system. This study focuses on the potential variability in the estimated system performance that is associated with these methods. Sets of 36 CDMAM images were acquired under carefully controlled conditions from three different digital mammography systems. The threshold visibility thickness (TVT) for each disk diameter was determined using previously reported post-analysis methods from the CDCOM scorings for a randomly selected group of eight images for one measurement trial. This random selection process was repeated 3000 times to estimate the variability in the resulting TVT values for each disk diameter. The results from using different post-analysis methods, different random selection strategies and different digital systems were compared. Additional variability of the 0.1 mm disk diameter was explored by comparing the results from two different image data sets acquired under the same conditions from the same system. The magnitude and the type of error estimated for experimental data was explained through modeling. The modeled results also suggest a limitation in the current phantom design for the 0.1 mm diameter disks. Through modeling, it was also found that, because of the binomial statistic nature of the CDMAM test, the true variability of the test could be underestimated by the commonly used method of random re-sampling.

  1. Damage Tolerant Design for Cold-Section Turbine Engine Disks

    DTIC Science & Technology

    1981-06-01

    Ti-6Al-4V Disks ......... .. 59 28. FIOO 2nd-Stage Fan Disk Designs ........ ................ .. 61 29. Fan Disk Tangential Stress Profile... 61 30. Life-Limiting Features of Damage-Tolerant Disk .......... ... 62 31. Disk Life Limits .... ...................... 62 32. Life Test...Stress Rati• Model ..... .......... .. 113 61 . Thick-Section Center-Notched Specimen ....... ............. .. 116 62. Bolthole Specimen

  2. Extraplanar H II Regions in Spiral Galaxies. II. In Situ Star Formation in the Interstellar Thick Disk of NGC 4013

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Rueff, Katherine M.; Lehner, Nicolas; Wotta, Christopher B.; Croxall, Kevin; Savage, Blair D.

    2018-04-01

    We present observations of an Hα-emitting knot in the thick disk of NGC 4013, demonstrating it is an H II region surrounding a cluster of young hot stars z = 860 pc above the plane of this edge-on spiral galaxy. With LBT/MODS spectroscopy we show that this H II region has an Hα luminosity ∼4–7 times that of the Orion nebula, with an implied ionizing photon production rate log Q 0 ≈ 49.4 (photons s‑1). HST/WFPC2 imaging reveals an associated blue continuum source with M V = ‑8.21 ± 0.24. Together, these properties demonstrate that the H II region is powered by a young cluster of stars formed in situ in the thick disk, with an ionizing photon flux equivalent to ∼6 O7 V stars. If we assume ≈6 other extraplanar Hα-emitting knots are H II regions, the total thick disk star formation rate of NGC 4013 is ∼5 × 10‑4 M ⊙ yr‑1. The star formation likely occurs in the dense clouds of the interstellar thick disk seen in optical images of dust extinction and CO emission.

  3. UX Tau A

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This is an artist's rendition of the one-million-year-old star system called UX Tau A, located approximately 450 light-years away. Observations from NASA's Spitzer Space Telescope showed a gap in the dusty planet-forming disk swirling around the system's central sun-like star.

    Spitzer saw a gap in UX Tau A's disk that extends from 0.2 to 56 astronomical units (an astronomical unit is the distance between the sun and Earth). The gap extends from the equivalent of Mercury to Pluto in our solar system, and is sandwiched between thick inner and outer disks on either side. Astronomers suspect that the gap was carved out by one or more forming planets.

    Such dusty disks are where planets are thought to be born. Dust grains clump together like snowballs to form larger rocks, and then the bigger rocks collide to form the cores of planets. When rocks revolve around their central star, they act like cosmic vacuum cleaners, picking up all the gas and dust in their path and creating gaps.

    Although gaps have been detected in disks swirling around young stars before, UX Tau A is special because the gap is sandwiched between two thick disks of dust. An inner thick dusty disk hugs the central star, then, moving outward, there is a gap, followed by another thick doughnut-shaped disk. Other systems with gaps contain very little to no dust near the central star. In other words, those gaps are more like big holes in the centers of disks.

    Some scientists suspect that these holes could have been carved out by a process called photoevaporation. Photoevaporation occurs when radiation from the central star heats up the gas and dust around it to the point where it evaporates away. The fact that there is thick disk swirling extremely close to UX Tau A's central star rules out the photoevaporation scenario. If photoevaporation from the star played a role, then large amounts of dust would not be floating so close to the star.

  4. The Chemical Composition of the Galactic Bulge and Implications for its Evolution

    NASA Astrophysics Data System (ADS)

    McWilliam, Andrew

    2016-08-01

    At a bulge latitude of b = -4°, the average [Fe/H] and [Mg/H] values are +0.06 and +0.17 dex, roughly 0.2 and 0.7 dex higher than the local thin and thick disk values, respectively, suggesting a large bulge effective yield, perhaps due to efficient retention of supernova ejecta. The bulge vertical [Fe/H] gradient, at ∼0.5 dex/kpc, appears to be due to a changing mixture of sub-populations (near +0.3 dex and -0.3 dex and one possibly near -0.7 dex) with latitude. At solar [Fe/H], the bulge [Al/Fe] and [α/Fe] ratios are ∼ +0.15 dex. Below [Fe/H] ∼ -0.5 dex, the bulge and local thick disk compositions are very similar; but the measured [Mg/Fe], [/Fe], [La/Eu] and dramatic [Cu/Fe] ratios suggest higher SFR in the bulge. However, these composition differences with the thick disk could be due to measurement errors and non-LTE effects. Unusual zig-zag trends of [Cu/Fe] and [Na/Fe] suggest metallicity-dependent nucleosynthesis by core-collapse supernovae in the Type Ia supernova time-delay scenario. The bulge sub-population compositions resemble the local thin and thick disks, but at higher [Fe/H], suggesting a radial [Fe/H] gradient of -0.04 to -0.05 dex/kpc for both the thin and thick disks. If the bulge formed through accretion of inner thin and thick disk stars, it appears that these stars retained vertical scale heights characteristic of their kinematic origin, resulting in the vertical [Fe/H] gradient and [α/Fe] trends seen today.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espaillat, C.; D'Alessio, P.; Hernandez, J.

    In the past few years, several disks with inner holes that are relatively empty of small dust grains have been detected and are known as transitional disks. Recently, Spitzer has identified a new class of 'pre-transitional disks' with gaps based on near-infrared photometry and mid-infrared spectra; these objects have an optically thick inner disk separated from an optically thick outer disk by an optically thin disk gap. A near-infrared spectrum provided the first confirmation of a gap in the pre-transitional disk of LkCa 15 by verifying that the near-infrared excess emission in this object was due to an optically thickmore » inner disk. Here, we investigate the difference between the nature of the inner regions of transitional and pre-transitional disks using the same veiling-based technique to extract the near-infrared excess emission above the stellar photosphere. However, in this work we use detailed disk models to fit the excess continua as opposed to the simple blackbody fits previously used. We show that the near-infrared excess emission of the previously identified pre-transitional disks of LkCa 15 and UX Tau A in the Taurus cloud as well as the newly identified pre-transitional disk of ROX 44 in Ophiuchus can be fit with an inner disk wall located at the dust destruction radius. We also present detailed modeling of the broadband spectral energy distributions of these objects, taking into account the effect of shadowing by the inner disk on the outer disk, but considering the finite size of the star, unlike other recent treatments. The near-infrared excess continua of these three pre-transitional disks, which can be explained by optically thick inner disks, are significantly different from that of the transitional disks of GM Aur, whose near-infrared excess continuum can be reproduced by emission from sub-micron-sized optically thin dust, and DM Tau, whose near-infrared spectrum is consistent with a disk hole that is relatively free of small dust. The structure of pre-transitional disks may be a sign of young planets forming in these disks and future studies of pre-transitional disks will provide constraints to aid in theoretical modeling of planet formation.« less

  6. THE MILKY WAY HAS NO DISTINCT THICK DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovy, Jo; Rix, Hans-Walter; Hogg, David W., E-mail: bovy@ias.edu

    2012-06-01

    Different stellar sub-populations of the Milky Way's stellar disk are known to have different vertical scale heights, their thickness increasing with age. Using SEGUE spectroscopic survey data, we have recently shown that mono-abundance sub-populations, defined in the [{alpha}/Fe]-[Fe/H] space, are well described by single-exponential spatial-density profiles in both the radial and the vertical direction; therefore, any star of a given abundance is clearly associated with a sub-population of scale height h{sub z} . Here, we work out how to determine the stellar surface-mass density contributions at the solar radius R{sub 0} of each such sub-population, accounting for the survey selectionmore » function, and for the fraction of the stellar population mass that is reflected in the spectroscopic target stars given populations of different abundances and their presumed age distributions. Taken together, this enables us to derive {Sigma}{sub R{sub 0}}(h{sub z}), the surface-mass contributions of stellar populations with scale height h{sub z} . Surprisingly, we find no hint of a thin-thick disk bi-modality in this mass-weighted scale-height distribution, but a smoothly decreasing function, approximately {Sigma}{sub R{sub 0}}(h{sub z}){proportional_to} exp(-h{sub z}), from h{sub z} Almost-Equal-To 200 pc to h{sub z} Almost-Equal-To 1 kpc. As h{sub z} is ultimately the structurally defining property of a thin or thick disk, this shows clearly that the Milky Way has a continuous and monotonic distribution of disk thicknesses: there is no 'thick disk' sensibly characterized as a distinct component. We discuss how our result is consistent with evidence for seeming bi-modality in purely geometric disk decompositions or chemical abundances analyses. We constrain the total visible stellar surface-mass density at the solar radius to be {Sigma}{sub R{sub 0}}* = 30 {+-} 1 M{sub Sun} pc{sup -2}.« less

  7. Translucency of dental ceramics with different thicknesses.

    PubMed

    Wang, Fu; Takahashi, Hidekazu; Iwasaki, Naohiko

    2013-07-01

    The increased use of esthetic restorations requires an improved understanding of the translucent characteristics of ceramic materials. Ceramic translucency has been considered to be dependent on composition and thickness, but less information is available about the translucent characteristics of these materials, especially at different thicknesses. The purpose of this study was to investigate the relationship between translucency and the thickness of different dental ceramics. Six disk-shaped specimens of 8 glass ceramics (IPS e.max Press HO, MO, LT, HT, IPS e.max CAD LT, MO, AvanteZ Dentin, and Trans) and 5 specimens of 5 zirconia ceramics (Cercon Base, Zenotec Zr Bridge, Lava Standard, Lava Standard FS3, and Lava Plus High Translucency) were prepared following the manufacturers' instructions and ground to a predetermined thickness with a grinding machine. A spectrophotometer was used to measure the translucency parameters (TP) of the glass ceramics, which ranged from 2.0 to 0.6 mm, and of the zirconia ceramics, which ranged from 1.0 to 0.4 mm. The relationship between the thickness and TP of each material was evaluated using a regression analysis (α=.05). The TP values of the glass ceramics ranged from 2.2 to 25.3 and the zirconia ceramics from 5.5 to 15.1. There was an increase in the TP with a decrease in thickness, but the amount of change was material dependent. An exponential relationship with statistical significance (P<.05) between the TP and thickness was found for both glass ceramics and zirconia ceramics. The translucency of dental ceramics was significantly influenced by both material and thickness. The translucency of all materials increased exponentially as the thickness decreased. All of the zirconia ceramics evaluated in the present study showed some degree of translucency, which was less sensitive to thickness compared to that of the glass ceramics. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  8. Effects of core-to-dentin thickness ratio on the biaxial flexural strength, reliability, and fracture mode of bilayered materials of zirconia core (Y-TZP) and veneer indirect composite resins.

    PubMed

    Su, Naichuan; Liao, Yunmao; Zhang, Hai; Yue, Li; Lu, Xiaowen; Shen, Jiefei; Wang, Hang

    2017-01-01

    Indirect composite resins (ICR) are promising alternatives as veneering materials for zirconia frameworks. The effects of core-to-dentin thickness ratio (C/Dtr) on the mechanical property of bilayered veneer ICR/yttria-tetragonal zirconia polycrystalline (Y-TZP) core disks have not been previously studied. The purpose of this in vitro study was to assess the effects of C/Dtr on the biaxial flexural strength, reliability, and fracture mode of bilayered veneer ICR/ Y-TZP core disks. A total of 180 bilayered 0.6-mm-thick composite resin disks in core material and C/Dtr of 2:1, 1:1, and 1:2 were tested with either core material placed up or placed down for piston-on-3-ball biaxial flexural strength. The mean biaxial flexural strength, Weibull modulus, and fracture mode were measured to evaluate the variation trend of the biaxial flexural strength, reliability, and fracture mode of the bilayered disks with various C/Dtr. One-way analysis of variance (ANOVA) and chi-square tests were used to evaluate the variation tendency of fracture mode with the C/Dtr or material placed down during testing (α=.05). Light microscopy was used to identify the fracture mode. The mean biaxial flexural strength and reliability improved with the increase in C/Dtr when specimens were tested with the core material either up and down, and depended on the materials that were placed down during testing. The rates of delamination, Hertzian cone cracks, subcritical radial cracks, and number of fracture fragments partially depended on the C/Dtr and the materials that were placed down during testing. The biaxial flexural strength, reliability, and fracture mode in bilayered structures of Y-TZP core and veneer ICR depend on both the C/Dtr and the material that was placed down during testing. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Imaging a Central Ionized Component, a Narrow Ring, and the CO Snowline in the Multigapped Disk of HD 169142

    NASA Astrophysics Data System (ADS)

    Macías, Enrique; Anglada, Guillem; Osorio, Mayra; Torrelles, José M.; Carrasco-González, Carlos; Gómez, José F.; Rodríguez, Luis F.; Sierra, Anibal

    2017-04-01

    We report Very Large Array observations at 7 mm, 9 mm, and 3 cm toward the pre-transitional disk of the Herbig Ae star HD 169142. These observations have allowed us to study the millimeter emission of this disk with the highest angular resolution so far (0.″12 × 0.″09, or 14 au × 11 au, at 7 mm). Our 7 and 9 mm images show a narrow ring of emission at a radius of ˜25 au tracing the outer edge of the inner gap. This ring presents an asymmetric morphology that could be produced by dynamical interactions between the disk and forming planets. Additionally, the azimuthally averaged radial intensity profiles of the 7 and 9 mm images confirm the presence of the previously reported gap at ˜45 au and reveal a new gap at ˜85 au. We analyzed archival DCO+(3-2) and C18O(2-1) ALMA observations, showing that the CO snowline is located very close to this third outer gap. This suggests that growth and accumulation of large dust grains close to the CO snowline could be the mechanism responsible for this proposed outer gap. Finally, a compact source of emission is detected at 7 mm, 9 mm, and 3 cm toward the center of the disk. Its flux density and spectral index indicate that it is dominated by free-free emission from ionized gas, which could be associated with the photoionization of the inner disk, an independent object, or an ionized jet.

  10. Physical properties and evolutionary time scales of disks around solar-type and intermediate mass stars

    NASA Technical Reports Server (NTRS)

    Strom, Stephen E.; Edwards, Suzan

    1993-01-01

    Recent observations of circumstellar disks and their evolutionary timescales are reviewed. It is concluded that disks appear to be a natural outcome of the star-formation process. The disks surrounding young stars initially are massive, with optically thick structures comprised of gas and micron-sized grains. Disk masses are found to range from 0.01 to 0.2 solar masses for solar-type PMS stars, and from 0.01 to 6 solar masses for young, intermediate mass stars. Massive, optically thick accretion disks have accretion rates between 10 exp -8 and 10 exp -6 solar masses/yr for solar type PMS stars and between 10 exp -6 and 10 exp -4 solar masses/yr for intermediate stars. The results suggest that a significant fraction of the mass comprising the star may have passed through a circumstellar accretion disk.

  11. Evolving Gravitationally Unstable Disks over Cosmic Time: Implications for Thick Disk Formation

    NASA Astrophysics Data System (ADS)

    Forbes, John; Krumholz, Mark; Burkert, Andreas

    2012-07-01

    Observations of disk galaxies at z ~ 2 have demonstrated that turbulence driven by gravitational instability can dominate the energetics of the disk. We present a one-dimensional simulation code, which we have made publicly available, that economically evolves these galaxies from z ~ 2 to z ~ 0 on a single CPU in a matter of minutes, tracking column density, metallicity, and velocity dispersions of gaseous and multiple stellar components. We include an H2-regulated star formation law and the effects of stellar heating by transient spiral structure. We use this code to demonstrate a possible explanation for the existence of a thin and thick disk stellar population and the age-velocity-dispersion correlation of stars in the solar neighborhood: the high velocity dispersion of gas in disks at z ~ 2 decreases along with the cosmological accretion rate, while at lower redshift the dynamically colder gas forms the low velocity dispersion stars of the thin disk.

  12. 51 OPHIUCHUS: A POSSIBLE BETA PICTORIS ANALOG MEASURED WITH THE KECK INTERFEROMETER NULLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, Christopher C.; Kuchner, Marc J.; Traub, Wesley A.

    2009-10-01

    We present observations of the 51 Ophiuchi circumstellar disk made with the Keck interferometer operating in nulling mode at N band. We model these data simultaneously with VLTI-MIDI visibility data and a Spitzer IRS spectrum using a variety of optically thin dust cloud models and an edge-on optically thick disk model. We find that single-component optically thin disk models and optically thick disk models are inadequate to reproduce the observations, but an optically thin two-component disk model can reproduce all of the major spectral and interferometric features. Our preferred disk model consists of an inner disk of blackbody grains extendingmore » to {approx}4 AU and an outer disk of small silicate grains extending out to {approx}1200 AU. Our model is consistent with an inner 'birth' disk of continually colliding parent bodies producing an extended envelope of ejected small grains. This picture resembles the disks around Vega, AU Microscopii, and beta Pictoris, supporting the idea that 51 Ophiuchius may be a beta Pictoris analog.« less

  13. Thick Disks in the Hubble Space Telescope Frontier Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Tompkins, Brittany

    Thick disk evolution is studied using edge-on galaxies in two Hubble Space Telescope Frontier Field Parallels. The galaxies were separated into 72 clumpy types and 35 spiral types with bulges. Perpendicular light profiles in F435W, F606W, and F814W ( B , V , and I ) passbands were measured at 1 pixel intervals along the major axes and fitted to sech{sup 2} functions convolved with the instrument line spread function (LSF). The LSF was determined from the average point spread function of ∼20 stars in each passband and field, convolved with a line of uniform brightness to simulate disk blurring.more » A spread function for a clumpy disk was also used for comparison. The resulting scale heights were found to be proportional to galactic mass, with the average height for a 10{sup 10±0.5} M {sub ⊙} galaxy at z = 2 ± 0.5 equal to 0.63 ± 0.24 kpc. This value is probably the result of a blend between thin and thick disk components that cannot be resolved. Evidence for such two-component structure is present in an inverse correlation between height and midplane surface brightness. Models suggest that the thick disk is observed best between the clumps, and there the average scale height is 1.06 ± 0.43 kpc for the same mass and redshift. A 0.63 ± 0.68 mag V − I color differential with height is also evidence for a mixture of thin and thick components.« less

  14. Numerical analysis of hydrodynamics in a rotor-stator reactor for biodiesel synthesis

    NASA Astrophysics Data System (ADS)

    Wen, Zhuqing; Petera, Jerzy

    2016-06-01

    A rotor-stator spinning disk reactor for intensified biodiesel synthesis is described and numerically simulated. The reactor consists of two flat disks, located coaxially and parallel to each other with a gap ranging from 0.1 mm to 0.2 mm between the disks. The upper disk is located on a rotating shaft while the lower disk is stationary. The feed liquids, triglycerides (TG) and methanol are introduced coaxially along the center line of rotating disk and stationary disk, respectively. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reaction species transport model by the CFD software ANSYS©Fluent v. 13.0. The effects of upper disk's spinning speed, gap size and flow rates at inlets are evaluated.

  15. The Radial Metallicity Gradients in the Milky Way Thick Disk as Fossil Signatures of a Primordial Chemical Distribution

    NASA Astrophysics Data System (ADS)

    Curir, A.; Serra, A. L.; Spagna, A.; Lattanzi, M. G.; Re Fiorentin, P.; Diaferio, A.

    2014-04-01

    In this Letter we examine the evolution of the radial metallicity gradient induced by secular processes, in the disk of an N-body Milky Way-like galaxy. We assign a [Fe/H] value to each particle of the simulation according to an initial, cosmologically motivated, radial chemical distribution and let the disk dynamically evolve for ~6 Gyr. This direct approach allows us to take into account only the effects of dynamical evolution and to gauge how and to what extent they affect the initial chemical conditions. The initial [Fe/H] distribution increases with R in the inner disk up to R ≈ 10 kpc and decreases for larger R. We find that the initial chemical profile does not undergo major transformations after ~6 Gyr of dynamical evolution. The final radial chemical gradients predicted by the model in the solar neighborhood are positive and of the same order as those recently observed in the Milky Way thick disk. We conclude that (1) the spatial chemical imprint at the time of disk formation is not washed out by secular dynamical processes and (2) the observed radial gradient may be the dynamical relic of a thick disk originated from a stellar population showing a positive chemical radial gradient in the inner regions.

  16. Radiation Hydrodynamical Turbulence in Protoplanetary Disks: Numerical Models and Observational Constraints

    NASA Astrophysics Data System (ADS)

    Flock, Mario; Nelson, Richard P.; Turner, Neal J.; Bertrang, Gesa H.-M.; Carrasco-González, Carlos; Henning, Thomas; Lyra, Wladimir; Teague, Richard

    2017-12-01

    Planets are born in protostellar disks, which are now observed with enough resolution to address questions about internal gas flows. Magnetic forces are possibly drivers of the flows, but ionization state estimates suggest that much of the gas mass decouples from magnetic fields. Thus, hydrodynamical instabilities could play a major role. We investigate disk dynamics under conditions typical for a T Tauri system, using global 3D radiation-hydrodynamics simulations with embedded particles and a resolution of 70 cells per scale height. Stellar irradiation heating is included with realistic dust opacities. The disk starts in joint radiative balance and hydrostatic equilibrium. The vertical shear instability (VSI) develops into turbulence that persists up to at least 1600 inner orbits (143 outer orbits). Turbulent speeds are a few percent of the local sound speed at the midplane, increasing to 20%, or 100 m s-1, in the corona. These are consistent with recent upper limits on turbulent speeds from optically thin and thick molecular line observations of TW Hya and HD 163296. The predominantly vertical motions induced by the VSI efficiently lift particles upward. Grains 0.1 and 1 mm in size achieve scale heights greater than expected in isotropic turbulence. We conclude that while kinematic constraints from molecular line emission do not directly discriminate between magnetic and nonmagnetic disk models, the small dust scale heights measured in HL Tau and HD 163296 favor turbulent magnetic models, which reach lower ratios of the vertical kinetic energy density to the accretion stress.

  17. The value of maximum jaw motion measurements for distinguishing between common temporomandibular disorder subgroups.

    PubMed

    Masumi, S; Kim, Y J; Clark, G T

    2002-05-01

    The purpose of this study was to determine if mandibular motion measurements could be used to distinguish between common temporomandibular disorder (TMD) subgroups that were established on the basis of only clinical signs and symptoms. Patients were 41 consecutive TMD clinic patients (31 women and 10 men). These patients were divided into 6 typical TMD subgroups. The subgroups were patients with (1) arthromyalgia, (2) arthromyalgia with disk condyle incoordination, (3) disk condyle incoordination only, (4) osteoarthritis, (5) suspected disk displacement without reduction, or (6) other diagnoses. There were no subjects in the other-diagnosis subgroup and only 1 subject with suspected disk displacement without reduction who was dropped without further consideration. The data for mean age showed that the osteoarthritis subgroup (n = 12) was statistically older (17 years) than the disk-condyle-incoordination-only subgroup (n = 11). The mean age of the other 2 groups, arthromyalgia (n = 11) and arthromyalgia with disk condyle incoordination (n = 6), was between the osteoarthritis and the disk-condyle-incoordination-only subgroups. For the 4 TMD subgroups whose data were analyzed, the mean differences between similar jaw opening measurements ranged from 6 to 8 mm with a standard deviation of approximately 8 to 10 mm. The mean left lateral motions were 0.5 to 1.3 mm larger than observed on the right. The widest mean jaw opening (56 mm) occurred in the disk-condyle-incoordination-only group. These differences were not found to be statistically significant. Analysis of opening, lateral and protrusive jaw motion data showed these measurements could not reliably differentiate between patients with osteoarthritis, arthromyalgia, arthromyalgia with disk condyle incoordination and disk condyle incoordination only.

  18. Young Stellar Objects in Lynds 1641: Disks and Accretion

    NASA Astrophysics Data System (ADS)

    Fang, Min; Kim, Jinyoung Serena; van Boekel, Roy; Sicilia-Aguilar, Aurora; Henning, Thomas; Flaherty, Kevin

    2013-07-01

    We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, 2MASS, and XMM covering 1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use this data, along with archival photometric data, to derive spectral types, masses, ages and extinction values. We also use the H_alpha and H_beta lines to derive accretion rates. We calculate the disk fraction as N(II)/N(II+III), where N(II) and N(III) are numbers of Class\\ II and Class\\ III sources, respectively, and obtain a disk fraction of 50% in L1641. We find that the disk frequency is almost constant as a function of stellar mass with a slight peak at log(M_*/M_sun) -0.25. The analysis of multi-epoch data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses in the M_acc vs. M_* plot. Forty-six new transition disk objects are confirmed in our spectroscopic survey and we find that the fraction of transition disks that are actively accreting is lower than for optically thick disks (40-45% vs. 77-79% respectively). We confirm our previous result that the accreting YSOs with transition disks have a similar median accretion rate to normal optically thick disks. Analyzing the age distributions of various populations, we find that the diskless YSOs are statistically older than the YSOs with optically-thick disks and the transition disk objects have a median age which is intermediate between the two populations.

  19. Imaging a Central Ionized Component, a Narrow Ring, and the CO Snowline in the Multigapped Disk of HD 169142

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macías, Enrique; Anglada, Guillem; Osorio, Mayra

    2017-04-01

    We report Very Large Array observations at 7 mm, 9 mm, and 3 cm toward the pre-transitional disk of the Herbig Ae star HD 169142. These observations have allowed us to study the millimeter emission of this disk with the highest angular resolution so far (0.″12 × 0.″09, or 14 au × 11 au, at 7 mm). Our 7 and 9 mm images show a narrow ring of emission at a radius of ∼25 au tracing the outer edge of the inner gap. This ring presents an asymmetric morphology that could be produced by dynamical interactions between the disk andmore » forming planets. Additionally, the azimuthally averaged radial intensity profiles of the 7 and 9 mm images confirm the presence of the previously reported gap at ∼45 au and reveal a new gap at ∼85 au. We analyzed archival DCO{sup +}(3–2) and C{sup 18}O(2–1) ALMA observations, showing that the CO snowline is located very close to this third outer gap. This suggests that growth and accumulation of large dust grains close to the CO snowline could be the mechanism responsible for this proposed outer gap. Finally, a compact source of emission is detected at 7 mm, 9 mm, and 3 cm toward the center of the disk. Its flux density and spectral index indicate that it is dominated by free–free emission from ionized gas, which could be associated with the photoionization of the inner disk, an independent object, or an ionized jet.« less

  20. HST and Adaptive Optics Imaging of the Edge-on Circumtertiary Disk in the Young Triple System HV Tauri

    NASA Astrophysics Data System (ADS)

    Stapelfeldt, K. R.; Menard, F.; Brandner, W.; Padgett, D. L.; Krist, J. E.; Watson, A. M.

    2000-12-01

    Hubble Space Telescope images of the HV Tauri triple system show that HV Tau C appears as a compact bipolar nebula at visual wavelengths. Near-infrared adaptive optics observations made at the Canada France Hawaii Telescope show a similar morphology, and no directly visible star at wavelengths less than 2 microns. These results confirm the conclusions of Monin & Bouvier 2000, namely that HV Tau C is an optically thick circumstellar disk seen close to edge-on. The images are compared to scattered light models for circumstellar disks. We find that the HV Tau C disk has an outer radius of 85 AU, inclination of about 6 deg, gaussian scale height of 15 AU at its outer radius, and is flared. The thickness of the dark lane indicates a total disk mass about half that of Jupiter. There is clear evidence for declining dust opacity toward longer wavelengths, as the dust lane thickness shrinks by 30 between 0.8 and 2.2 microns; the trend is consistent with interstellar dust grains. Tidal truncation of the disk outer radius may have occurred in this system.

  1. Kinematics of metal-poor giants in an inner-halo field, with implications for disk formation

    NASA Technical Reports Server (NTRS)

    Morrison, Heather L.

    1993-01-01

    A sample of approximately 100 predominantly metal-weak giants, identified in a high-latitude field towards the galactic center using an automated objective-prism survey technique, is presented. Abundances and radial velocities have been measured for these giants, whose distances from the Sun range from 1 to 18 kpc. While the extremely metal-weak stars in the field have halo kinematics, the majority of the stars with intermediate abundance have thick disk kinematics, despite the fact that their average distance from the galactic plane is 3 kpc. The most satisfactory explanation for this effect is that the inner halo is moderately flattened, and the metal-weak stars of the thick disk have a scale height of about 2 kpc. It is suggested that the thick disk may have formed in a dissipational collapse, rather than in a separate event such as the accretion of a small satellite galaxy.

  2. Structures and properties of materials recovered from high shock pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nellis, W.J.

    1994-03-01

    Shock compression produces high dynamic pressures, densities, temperatures, and their quench rates. Because of these extreme conditions, shock compression produces materials with novel crystal structures, microstructures, and physical properties. Using a 6.5-m-long two-stage gun, we perform experiments with specimens up to 10 mm in diameter and 0.001--1 mm thick. For example, oriented disks of melt-textured superconducting YBa{sub 2}Cu{sub 3}O{sub 7} were shocked to 7 GPa without macroscopic fracture. Lattice defects are deposited in the crystal, which improve magnetic hysteresis at {approximately}1 kOe. A computer code has been developed to simulate shock compaction of 100 powder particles. Computations will be comparedmore » with experiments with 15--20 {mu}m Cu powders. The method is applicable to other powders and dynamic conditions.« less

  3. Compact Packaging of Photonic Millimeter-Wave Receiver

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung; Pouch, John; Miranda, Felix; Levi, Anthony F.

    2007-01-01

    A carrier structure made from a single silicon substrate is the basis of a compact, lightweight, relatively inexpensive package that holds the main optical/electronic coupling components of a photonic millimeter-wave receiver based on a lithium niobate resonator disk. The design of the package is simple and provides for precise relative placement of optical components, eliminating the need for complex, bulky positioning mechanisms like those commonly used to align optical components to optimize focus and coupling. Although a prototype of the package was fabricated as a discrete unit, the design is amenable to integration of the package into a larger photonic and/or electronic receiver system. The components (see figure) include a lithium niobate optical resonator disk of 5-mm diameter and .200- m thickness, positioned adjacent to a millimeter- wave resonator electrode. Other components include input and output coupling prisms and input and output optical fibers tipped with ball lenses for focusing and collimation, respectively. Laser light is introduced via the input optical fiber and focused into the input coupling prism. The input coupling prism is positioned near (but not in contact with) the resonator disk so that by means of evanescent-wave coupling, the input laser light in the prism gives rise to laser light propagating circumferentially in guided modes in the resonator disk. Similarly, a portion of the circumferentially propagating optical power is extracted from the disk by evanescent-wave coupling from the disk to the output coupling prism, from whence the light passes through the collimating ball lens into the output optical fiber. The lens-tipped optical fibers must be positioned at a specified focal distance from the prisms. The optical fibers and the prisms must be correctly positioned relative to the resonator disk and must be oriented to obtain the angle of incidence (55 in the prototype) required for evanescent-wave coupling of light into and out of the desired guided modes in the resonator disk. To satisfy all these requirements, precise alignment features are formed in the silicon substrate by use of a conventional wet-etching process. These features include a 5-mm-diameter, 50- m-deep cavity that holds the disk; two trapezoidal-cross-section recesses for the prisms; and two grooves that hold the optical fibers at the correct positions and angles relative to the prisms and disk. The fiber grooves contain abrupt tapers, near the prisms, that serve as hard stops for positioning the lenses at the focal distance from the prisms. There are also two grooves for prismadjusting rods. The design provides a little slack in the prism recesses for adjusting the positions of the prisms by means of these rods to optimize the optical coupling.

  4. Noncontact thermophysical property measurement by levitation of a thin liquid disk.

    PubMed

    Lee, Sungho; Ohsaka, Kenichi; Rednikov, Alexei; Sadhal, Satwindar Singh

    2006-09-01

    The purpose of the current research program is to develop techniques for noncontact measurement of thermophysical properties of highly viscous liquids. The application would be for undercooled liquids that remain liquid even below the freezing point when suspended without a container. The approach being used here consists of carrying out thermocapillary flow and temperature measurements in a horizontally levitated, laser-heated thin glycerin disk. In a levitated state, the disk is flattened by an intense acoustic field. Such a disk has the advantage of a relatively low gravitational potential over the thickness, thus mitigating the buoyancy effects, and helping isolate the thermocapillary-driven flows. For the purpose of predicting the thermal properties from these measurements, it is necessary to develop a theoretical model of the thermal processes. Such a model has been developed, and, on the basis of the observed shape, the thickness is taken to be a minimum at the center with a gentle parabolic profile at both the top and the bottom surfaces. This minimum thickness is much smaller than the radius of disk drop and the ratio of thickness to radius becomes much less than unity. It is heated by laser beam in normal direction to the edge. A general three-dimensional momentum equation is transformed into a two-variable vorticity equation. For the highly viscous liquid, a few millimeters in size, Stokes equations adequately describe the flow. Additional approximations are made by considering average flow properties over the disk thickness in a manner similar to lubrication theory. In the same way, the three-dimensional energy equation is averaged over the disk thickness. With convection boundary condition at the surfaces, we integrate a general three-dimensional energy equation to get an averaged two-dimensional energy equation that has convection terms, conduction terms, and additional source terms corresponding to a Biot number. A finite-difference numerical approach is used to solve these steady-state governing equations in the cylindrical coordinate system. The calculations yield the temperature distribution and the thermally driven flow field. These results have been used to formulate a model that, in conjunction with experiments, has enabled the development of a method for the noncontact thermophysical property measurement of liquids.

  5. The Stationary Condensation and Radial Outflow of a Liquid Film on a Horizontal Disk

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, Leonid; Frenkel, Alexander

    2008-01-01

    The application of capillary screen liquid acquisition devices to space-based cryogenic propulsion systems is expected to necessitate thermodynamic conditioning in order to stabilize surface tension retention characteristics. The present results have been obtained in the framework of the research of low gravity condensation-flow processes for conditioning cryogenic liquid acquisition devices. The following system is studied: On the top of a subcooled horizontal disk, a liquid film condenses from the ambient saturated vapor. The liquid is forcedly removed at the disk edge, and there is an outward radial flow of the film. Stationary regimes of the flow are uncovered such that (i) the gravity is negligible, being eclipsed by the capillary forces; (ii) the film thickness is everywhere much smaller than the disk radius; and (iii) the slow-flow lubrication approximation is valid. A nonlinear differential equation for the film thickness as a function of the radial coordinate is obtained. The (two-dimensional) fields of velocities, temperature and pressure in the film are explicitly determined by the radial profile of its thickness. The equilibrium is controlled by two parameters: (i) the vapor-disk difference of temperatures and (ii) the liquid exhaust rate. For the flow regimes with a nearly uniform film thickness, the governing equation linearizes, and the film interface is analytically predicted to have a concave-up quartic parabola profile. Thus, perhaps counter-intuitively, the liquid film is thicker at the edge and thinner at the center of the disk.

  6. How robust are our views of Milky Way stellar populations before Gaia?

    NASA Astrophysics Data System (ADS)

    Haywood, M.

    2014-07-01

    One year before the first release of the first data from Gaia, how robust are our views of the Milky Way stellar populations? Recent results have shown that limits, differences and/or continuities between populations are not where we thought they were just a few years ago. The outer disk (> 10kpc) has properties essentially different from the inner (thin+thick) disk, while the bulge is best explained in terms of disk populations, with a negligible or inexistent classical bulge, suggesting that the Milky Way is a pure disk galaxy. Much less contingent than previously envisaged, the thick disk is probably the main phase of stellar mass creation in the MW, and the parent population of the thin disk. These results lead to fundamental changes in our views on the stellar mass growth of the Galaxy, secular mass redistribution in the disk, and imply a change of paradigm of the chemical evolution. I review these different advances, and discuss some of the key questions.

  7. Development of a small specimen test machine to evaluate irradiation embrittlement of fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Ishii, T.; Ohmi, M.; Saito, J.; Hoshiya, T.; Ooka, N.; Jitsukawa, S.; Eto, M.

    2000-12-01

    Small specimen test techniques (SSTT) are essential to use an accelerator-driven deuterium-lithium stripping reaction neutron source for the study of fusion reactor materials because of the limitation of the available irradiation volume. A remote-controlled small punch (SP) test machine was developed at the hot laboratory of the Japan Materials Testing Reactor (JMTR) in the Japan Atomic Energy Research Institute (JAERI). This report describes the SP test method and machine for use in a hot cell, and test results on irradiated ferritic steels. The specimen was either a coupon 10×10×0.25 mm 3 or a TEM disk 3 mm in diameter by 0.25 mm in thickness. Tests can be performed at temperatures ranging from 93 to 1123 K in a vacuum or in an inert gas environment. The ductile to brittle transition temperature of the irradiated ferritic steel as determined by the SP test is also evaluated.

  8. Investigating dust trapping in transition disks with millimeter-wave polarization

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Kataoka, A.; Pinilla, P.; Dullemond, C. P.; Henning, Th.; Birnstiel, T.

    2016-08-01

    Context. Spatially resolved polarized (sub-)mm emission has been observed for example in the protoplanetary disk around HL Tau. Magnetically aligned grains are commonly interpreted as the source of polarization. However, self-scattering by large dust grains with a high enough albedo is another polarization mechanism, which is becoming a compelling method independent of the spectral index to constrain the dust grain size in protoplanetary disks. Aims: We study the dust polarization at mm wavelengths in the dust trapping scenario proposed for transition disks, when a giant planet opens a gap in the disk. We investigate the characteristic polarization patterns and their dependence on disk inclination, dust size evolution, planet position, and observing wavelength. Methods: We combine two-dimensional hydrodynamical simulations of planet-disk interactions with self-consistent dust growth models. These size-dependent dust density distributions are used for follow-up three-dimensional radiative transfer calculations to predict the polarization degree at ALMA bands due to scattered thermal emission. Results: Dust self-scattering has been proven to be a viable mechanism for producing polarized mm-wave radiation. We find that the polarization pattern of a disk with a planetary gap after 1 Myr of dust evolution shows a distinctive three-ring structure. Two narrow inner rings are located at the planet gap edges. A third wider ring of polarization is situated in the outer disk beyond 100 au. For increasing observing wavelengths, all three rings change their position slightly, where the innermost and outermost rings move inward. This distance is detectable when comparing the results at ALMA bands 3, 6, and 7. Within the highest polarized intensity regions the polarization vectors are oriented in the azimuthal direction. For an inclined disk there is an interplay between polarization originating from a flux gradient and inclination-induced quadrupole polarization. For intermediate inclined transition disks, the polarization degree is as high as ~2% at λ = 3.1 mm (band 3), which is well above the detection limit of future ALMA observations.

  9. Effects of polishing on surface roughness, gloss and color of surface reaction type pre-reacted glass-ionomer filled resin composite.

    PubMed

    Hosoya, Yumiko; Shiraishi, Takanobu; Odatsu, Tetsuro; Miyazaki, Masashi; García-Godoy, Franklin

    2011-06-01

    To evaluate the effects of polishing on surface roughness, gloss and color of different shades of surface reaction type pre-reacted glass-ionomer (S-PRG) filled nano-hybrid resin composite. Resin disks of 15 mm diameter and 2 mm thickness and final polish with 1000-grit SiC paper, super fine cut diamond (FG) point, silicon (MFR) point and Super-Snap mini-disk red (SNAP) were made with Beautifil II shades: A2, A20, Inc). One week after curing, the surface roughness, gloss and color were measured. Data was analyzed with ANOVA and Fisher's PLSD with alpha= 0.05 For all shades, the order of roughness (Ra) ranked according to groups of 1000-grit SiC > FG > MFR > SNAP with significant differences among all groups. For all shades, the order of gloss ranked according to groups of SNAP > MFR > FG > 1000-grit SiC with significant differences among the groups except for between MFR and FG without significant difference. The influence of the surface roughness on color differed among the polishing groups and shades. However, the values of the color differences (deltaE*ab) between the polishing groups of all shades were imperceptible to the naked eye.

  10. 20 mJ, 1 ps Yb:YAG Thin-disk Regenerative Amplifier

    PubMed Central

    Alismail, Ayman; Wang, Haochuan; Brons, Jonathan; Fattahi, Hanieh

    2017-01-01

    This is a report on a 100 W, 20 mJ, 1 ps Yb:YAG thin-disk regenerative amplifier. A homemade Yb:YAG thin-disk, Kerr-lens mode-locked oscillator with turn-key performance and microjoule-level pulse energy is used to seed the regenerative chirped-pulse amplifier. The amplifier is placed in airtight housing. It operates at room temperature and exhibits stable operation at a 5 kHz repetition rate, with a pulse-to-pulse stability less than 1%. By employing a 1.5 mm-thick beta barium borate crystal, the frequency of the laser output is doubled to 515 nm, with an average power of 70 W, which corresponds to an optical-to-optical efficiency of 70%. This superior performance makes the system an attractive pump source for optical parametric chirped-pulse amplifiers in the near-infrared and mid-infrared spectral range. Combining the turn-key performance and the superior stability of the regenerative amplifier, the system facilitates the generation of a broadband, CEP-stable seed. Providing the seed and pump of the optical parametric chirped-pulse amplification (OPCPA) from one laser source eliminates the demand of active temporal synchronization between these pulses. This work presents a detailed guide to set up and operate a Yb:YAG thin-disk regenerative amplifier, based on chirped-pulse amplification (CPA), as a pump source for an optical parametric chirped-pulse amplifier. PMID:28745636

  11. ALMA REVEALS THE ANATOMY OF THE mm-SIZED DUST AND MOLECULAR GAS IN THE HD 97048 DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Catherine; Maud, Luke T.; Juhász, Attila

    Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ∼ mm wavelengths. We present the first spatially resolved ∼ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ≈640 au. ALMA data reveal a circular-symmetric dusty disk extending to ≈350 au, and a molecular disk traced in CO J = 3-2 emission, extending to ≈750 au. The CO emission arises from a flared layer with an opening angle ≈30°–40°. HD 97048more » is another source for which the large (∼ mm-sized) dust grains are more centrally concentrated than the small (∼ μ m-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modeling suggest a decrement in continuum emission within ≈50 au, consistent with the cavity size determined from mid-infrared imaging (34 ± 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ≈50, 150, and 300 au, with associated gaps at ≈100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ≈ 10–20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterize the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.« less

  12. ALMA Reveals the Anatomy of the mm-sized Dust and Molecular Gas in the HD 97048 Disk

    NASA Astrophysics Data System (ADS)

    Walsh, Catherine; Juhász, Attila; Meeus, Gwendolyn; Dent, William R. F.; Maud, Luke T.; Aikawa, Yuri; Millar, Tom J.; Nomura, Hideko

    2016-11-01

    Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ˜ mm wavelengths. We present the first spatially resolved ˜ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ≈640 au. ALMA data reveal a circular-symmetric dusty disk extending to ≈350 au, and a molecular disk traced in CO J = 3-2 emission, extending to ≈750 au. The CO emission arises from a flared layer with an opening angle ≈30°-40°. HD 97048 is another source for which the large (˜ mm-sized) dust grains are more centrally concentrated than the small (˜μm-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modeling suggest a decrement in continuum emission within ≈50 au, consistent with the cavity size determined from mid-infrared imaging (34 ± 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ≈50, 150, and 300 au, with associated gaps at ≈100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ≈ 10-20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterize the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.

  13. Reevaluation of interpretive criteria for Haemophilus influenzae by using meropenem (10-microgram), imipenem (10-microgram), and ampicillin (2- and 10-microgram) disks.

    PubMed Central

    Zerva, L; Biedenbach, D J; Jones, R N

    1996-01-01

    A collection of 300 Haemophilus influenzae clinical strains was used to assess in vitro susceptibility to carbapenems (meropenem, imipenem) by MIC and disk diffusion methods and to compare disk diffusion test results with two potencies of ampicillin disks (2 and 10 micrograms). The isolates included ampicillin-susceptible or- intermediate (167 strains), beta-lactamase-positive (117 strains), and beta-lactamase-negative ampicillin-resistant (BLNAR; 16 strains) organisms. Disk diffusion testing was performed with 10-micrograms meropenem disks from two manufacturers. Meropenem was highly active against H. influenzae strains (MIC50, 0.06 microgram/ml; MIC90, 0.25 microgram/ml; MIC50 and MIC90, MICs at which 50 and 90%, respectively, of strains are inhibited) and was 8- to 16-fold more potent than imipenem (MIC50, 1 microgram/ml; MIC90, 2 micrograms/ml). Five non-imipenem-susceptible strains were identified (MIC, 8 micrograms/ml), but the disk diffusion test indicated susceptibility (zone diameters, 18 to 21 mm). MIC values of meropenem, doxycycline, ceftazidime, and ceftriaxone for BLNAR strains were two- to fourfold greater than those for other strains. The performance of both meropenem disks was comparable and considered acceptable. A single susceptible interpretive zone diameter of > or = 17 mm (MIC, < = or 4 micrograms/ml) was proposed for meropenem. Testing with the 2-micrograms ampicillin disk was preferred because of an excellent correlation between MIC values and zone diameters (r = 0.94) and superior interpretive accuracy with the susceptible criteria at > or = 17 mm (MIC, < or = 1 microgram/ml) and the resistant criteria at < or = 13 mm (MIC, > or = 4 micrograms/ml). Among the BLNAR strains tested, 81.3% were miscategorized as susceptible or intermediate when the 10-micrograms ampicillin disk was used, while the 2-micrograms disk produced only minor interpretive errors (12.5%). Use of these criteria for testing H. influenzae against meropenem and ampicillin should maximize reference test and standardized disk diffusion test performance with the Haemophilus Test Medium. The imipenem disk diffusion test appears compromised and should be used with caution for detecting strains for which imipenem MICs are elevated. PMID:8818892

  14. Swivel Joint For Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Milner, James F.

    1988-01-01

    Swivel joint allows liquid-nitrogen pipe to rotate through angle of 100 degree with respect to mating pipe. Functions without cracking hard foam insulation on lines. Pipe joint rotates on disks so mechanical stress not transmitted to thick insulation on pipes. Inner disks ride on fixed outer disks. Disks help to seal pressurized liquid nitrogen flowing through joint.

  15. THE RADIAL METALLICITY GRADIENTS IN THE MILKY WAY THICK DISK AS FOSSIL SIGNATURES OF A PRIMORDIAL CHEMICAL DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curir, A.; Serra, A. L.; Spagna, A.

    2014-04-01

    In this Letter we examine the evolution of the radial metallicity gradient induced by secular processes, in the disk of an N-body Milky Way-like galaxy. We assign a [Fe/H] value to each particle of the simulation according to an initial, cosmologically motivated, radial chemical distribution and let the disk dynamically evolve for ∼6 Gyr. This direct approach allows us to take into account only the effects of dynamical evolution and to gauge how and to what extent they affect the initial chemical conditions. The initial [Fe/H] distribution increases with R in the inner disk up to R ≈ 10 kpc andmore » decreases for larger R. We find that the initial chemical profile does not undergo major transformations after ∼6 Gyr of dynamical evolution. The final radial chemical gradients predicted by the model in the solar neighborhood are positive and of the same order as those recently observed in the Milky Way thick disk. We conclude that (1) the spatial chemical imprint at the time of disk formation is not washed out by secular dynamical processes and (2) the observed radial gradient may be the dynamical relic of a thick disk originated from a stellar population showing a positive chemical radial gradient in the inner regions.« less

  16. Unbiased millimeter-wave line surveys of TW Hya and V4046 Sgr: The enhanced C{sub 2}H and CN abundances of evolved protoplanetary disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastner, Joel H.; Punzi, Kristina; Hily-Blant, Pierre

    2014-09-20

    We have conducted the first comprehensive millimeter-wave molecular emission line surveys of the evolved circumstellar disks orbiting the nearby, roughly solar-mass, pre-main-sequence (T Tauri) stars, TW Hya (D = 54 pc) and V4046 Sgr AB (D = 73 pc). Both disks are known to retain significant residual gaseous components despite the advanced ages of their host stars (∼8 Myr and ∼21 Myr, respectively). Our unbiased broadband radio spectral surveys of the TW Hya and V4046 Sgr disks were performed with the Atacama Pathfinder Experiment 12 m telescope, and are intended to yield a complete census of the bright molecular emissionmore » lines in the range 275-357 GHz (1.1-0.85 mm). We find that lines of {sup 12}CO, {sup 13}CO, HCN, CN, and C{sub 2}H, all of which lie in the higher frequency (>330 GHz) range, constitute the strongest molecular emission from both disks in the spectral region surveyed. The molecule C{sub 2}H is detected here for the first time in both disks, as is CS in the TW Hya disk. The survey results also include the first measurements of the full suite of the hyperfine transitions of CN N = 3 → 2 and C{sub 2}H N = 4 → 3 in both disks. Modeling of these CN and C{sub 2}H hyperfine complexes in the spectrum of TW Hya indicates that the emission from both species is optically thick and may originate from very cold (≲10 K) disk regions. The latter result, if confirmed, would suggest the efficient production of CN and C{sub 2}H in the outer disk and/or near the disk midplane. It furthermore appears that the fractional abundances of CN and C{sub 2}H are significantly enhanced in these evolved protoplanetary disks, relative to the fractional abundances of the same molecules in the environments of deeply embedded protostars. These results, combined with previous determinations of the enhanced abundances of other species (such as HCO{sup +}) in T Tauri star disks, underscore the importance of properly accounting for high-energy (FUV and X-ray) radiation from the central T Tauri star when modeling protoplanetary disk gas chemistry and physical conditions.« less

  17. Features of the accretion in the EX Hydrae system: Results of numerical simulation

    NASA Astrophysics Data System (ADS)

    Isakova, P. B.; Zhilkin, A. G.; Bisikalo, D. V.; Semena, A. N.; Revnivtsev, M. G.

    2017-07-01

    A two-dimensional numerical model in the axisymmetric approximation that describes the flow structure in the magnetosphere of the white dwarf in the EX Hya system has been developed. Results of simulations show that the accretion in EX Hya proceeds via accretion columns, which are not closed and have curtain-like shapes. The thickness of the accretion curtains depends only weakly on the thickness of the accretion disk. This thickness developed in the simulations does not agree with observations. It is concluded that the main reason for the formation of thick accretion curtains in the model is the assumption that the magnetic field penetrates fully into the plasma of the disk. An analysis based on simple estimates shows that a diamagnetic disk that fully or partially shields the magnetic field of the star may be a more attractive explanation for the observed features of the accretion in EX Hya.

  18. Millimetre spectral indices of transition disks and their relation to the cavity radius

    NASA Astrophysics Data System (ADS)

    Pinilla, P.; Benisty, M.; Birnstiel, T.; Ricci, L.; Isella, A.; Natta, A.; Dullemond, C. P.; Quiroga-Nuñez, L. H.; Henning, T.; Testi, L.

    2014-04-01

    Context. Transition disks are protoplanetary disks with inner depleted dust cavities that are excellent candidates for investigating the dust evolution when there is a pressure bump. A pressure bump at the outer edge of the cavity allows dust grains from the outer regions to stop their rapid inward migration towards the star and to efficiently grow to millimetre sizes. Dynamical interactions with planet(s) have been one of the most exciting theories to explain the clearing of the inner disk. Aims: We look for evidence of millimetre dust particles in transition disks by measuring their spectral index αmm with new and available photometric data. We investigate the influence of the size of the dust depleted cavity on the disk integrated millimetre spectral index. Methods: We present the 3-mm (100 GHz) photometric observations carried out with the Plateau de Bure Interferometer of four transition disks: LkHα 330, UX Tau A, LRLL 31, and LRLL 67. We used the available values of their fluxes at 345 GHz to calculate their spectral index, as well as the spectral index for a sample of twenty transition disks. We compared the observations with two kinds of models. In the first set of models, we considered coagulation and fragmentation of dust in a disk in which a cavity is formed by a massive planet located at different positions. The second set of models assumes disks with truncated inner parts at different radii and with power-law dust-size distributions, where the maximum size of grains is calculated considering turbulence as the source of destructive collisions. Results: We show that the integrated spectral index is higher for transition disks (TD) than for regular protoplanetary disks (PD) with mean values of bar{αmmTD} = 2.70 ± 0.13 and bar{αmmPD} = 2.20 ± 0.07 respectively. For transition disks, the probability that the measured spectral index is positively correlated with the cavity radius is 95%. High angular resolution imaging of transition disks is needed to distinguish between the dust trapping scenario and the truncated disk case. The final PdBI data used in the paper are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A51

  19. New HErschel Multi-wavelength Extragalactic Survey of Edge-on Spirals (NHEMESES)

    NASA Astrophysics Data System (ADS)

    Holwerda, B. W.; Bianchi, S.; Baes, M.; de Jong, R. S.; Dalcanton, J. J.; Radburn-Smith, D.; Gordon, K.; Xilouris, M.

    2012-08-01

    Edge-on spiral galaxies offer a unique perspective on the vertical structure of spiral disks, both stars and the iconic dark dustlanes. The thickness of these dustlanes can now be resolved for the first time with Herschel in far-infrared and sub-mm emission. We present NHEMESES, an ongoing project that targets 12 edge-on spiral galaxies with the PACS and SPIRE instruments on Herschel. These vertically resolved observations of edge-on spirals will impact on several current topics. First and foremost, these Herschel observations will settle whether or not there is a phase change in the vertical structure of the ISM with disk mass. Previously, a dramatic change in dustlane morphology was observed as in massive disks the dust collapses into a thin lane. If this is the case, the vertical balance between turbulence and gravity dictates the ISM structure and consequently star-formation and related phenomena (spiral arms, bars etc.). We specifically target lower mass nearby edge-ons to complement existing Herschel observations of high-mass edge-on spirals (the HEROES project). Secondly, the combined data-set, together with existing Spitzer observations, will drive a new generation of spiral disk Spectral Energy Distribution models. These model how dust reprocesses starlight to thermal emission but the dust geometry remains the critical unknown. And thirdly, the observations will provide an accurate and unbiased census of the cold dusty structures occasionally seen extending out of the plane of the disk, when backlit by the stellar disk. To illustrate the NHEMESES project, we present early results on NGC 4244 and NGC 891, two well studies examples of a low and high-mass edge-on spiral.

  20. Levofloxacin susceptibility testing against Helicobacter pylori: evaluation of a modified disk diffusion method compared to E test.

    PubMed

    Boyanova, Lyudmila; Ilieva, Juliana; Gergova, Galina; Mitov, Ivan

    2016-01-01

    We compared levofloxacin (1 μg/disk) disk diffusion method to E test against 212 Helicobacter pylori strains. Using diameter breakpoints for susceptibility (≥15 mm) and resistance (≤9 mm), very major error, major error rate, and categoric agreement were 0.0%, 0.6%, and 93.9%, respectively. The method may be useful in low-resource laboratories. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The Gaseous Disks of Young Stellar Objects

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.

    2006-01-01

    Disks represent a crucial stage in the formation of stars and planets. They are novel astrophysical systems with attributes intermediate between the interstellar medium and stars. Their physical properties are inhomogeneous and are affected by hard stellar radiation and by dynamical evolution. Observing disk structure is difficult because of the small sizes, ranging from as little as 0.05 AU at the inner edge to 100-1000 AU at large radial distances. Nonetheless, substantial progress has been made by observing the radiation emitted by the dust from near infrared to mm wavelengths, i.e., the spectral energy distribution of an unresolved disk. Many fewer results are available for the gas, which is the main mass component of disks over much of their lifetime. The inner disk gas of young stellar objects (henceforth YSOs) have been studied using the near infrared rovibrational transitions of CO and a few other molecules, while the outer regions have been explored with the mm and sub-mm lines of CO and other species. Further progress can be expected in understanding the physical properties of disks from observations with sub-mm arrays like SMA, CARMA and ALMA, with mid infrared measurements using Spitzer, and near infrared spectroscopy with large ground-based telescopes. Intense efforts are also being made to model the observations using complex thermal-chemical models. After a brief review of the existing observations and modeling results, some of the weaknesses of the models will be discussed, including the absence of good laboratory and theoretical calculations for essential microscopic processes.

  2. Comparison of the retention of 5 core materials supported by a dental post.

    PubMed

    Gu, Steven; Isidro, Mario; Deutsch, Allan S; Musikant, Barry L

    2006-01-01

    This study evaluated the retention of dental post heads (No. 2 Flexi-Post) embedded in 5 core materials (1 automix resin composite, 2 hand-mixed resin composites, and 2 glass ionomers). Samples were prepared by embedding post heads in 4.5-mm-thick disks of core material. The resin composite materials provided significantly more retention than the glass-ionomer-based materials. The post head retention of the automix resin composite was comparable to that of the hand-mixed resin composites. Unlike the resin composite samples, all the glass-ionomer samples fractured during testing. This is an unacceptable condition for a clinically successful restoration.

  3. Design study of 10 kW direct fission target for RISP project

    NASA Astrophysics Data System (ADS)

    Tshoo, K.; Jang, D. Y.; Woo, H. J.; Kang, B. H.; Kim, G. D.; Hwang, W.; Kim, Y. K.

    2014-03-01

    We are developing Isotope Separation On-Line (ISOL) target system, which consists of 1.3 mm-thick uranium-carbide multi-disks and cylindrical tantalum heater, to be installed in new facility for Rare Isotope Science Project in Korea. The intense neutron-rich nuclei are produced via the fission process using the uranium carbide targets with a 70 MeV proton beam. The fission rate was estimated to be ˜1.5 × 1013/sec for 10 kW proton beam. The target system has been designed to be operated at a temperature of ˜2000 °C so as to improve the release effciency.

  4. Accretion Disk Spectra of the Ultra-luminous X-ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Ebisawa, Ken; Zycki, Piotr; Kubota, Aya; Mizuno, Tsunefumi; Watarai, Ken-ya

    2003-01-01

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (greater than or approximately equal to 300 Solar Mass). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super- Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  5. Numerical analysis of hydrodynamics in a rotor-stator reactor for biodiesel synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Zhuqing; Petera, Jerzy

    A rotor-stator spinning disk reactor for intensified biodiesel synthesis is described and numerically simulated. The reactor consists of two flat disks, located coaxially and parallel to each other with a gap ranging from 0.1 mm to 0.2 mm between the disks. The upper disk is located on a rotating shaft while the lower disk is stationary. The feed liquids, triglycerides (TG) and methanol are introduced coaxially along the center line of rotating disk and stationary disk, respectively. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reactionmore » species transport model by the CFD software ANSYS©Fluent v. 13.0. The effects of upper disk’s spinning speed, gap size and flow rates at inlets are evaluated.« less

  6. Thermal Conductivity of Ceramic Thermal Barrier and Environmental Barrier Coating Materials

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Bansal, Narottam P.; Lee, Kang N.; Miller, Robert A.

    2001-01-01

    Thermal barrier and environmental barrier coatings (TBC's and EBC's) have been developed to protect metallic and Si-based ceramic components in gas turbine engines from high temperature attack. Zirconia-yttria based oxides and (Ba,Sr)Al2Si2O8(BSAS)/mullite based silicates have been used as the coating materials. In this study, thermal conductivity values of zirconia-yttria- and BSAS/mullite-based coating materials were determined at high temperatures using a steady-state laser heat flux technique. During the laser conductivity test, the specimen surface was heated by delivering uniformly distributed heat flux from a high power laser. One-dimensional steady-state heating was achieved by using thin disk specimen configuration (25.4 mm diam and 2 to 4 mm thickness) and the appropriate backside air-cooling. The temperature gradient across the specimen thickness was carefully measured by two surface and backside pyrometers. The thermal conductivity values were thus determined as a function of temperature based on the 1-D heat transfer equation. The radiation heat loss and laser absorption corrections of the materials were considered in the conductivity measurements. The effects of specimen porosity and sintering on measured conductivity values were also evaluated.

  7. Halbach array type focusing actuator for small and thin optical data storage device

    NASA Astrophysics Data System (ADS)

    Lee, Sung Q.; Park, Kang-Ho; Paek, Mun Chul

    2004-09-01

    The small form factor optical data storage devices are developing rapidly nowadays. Since it is designed for portable and compatibility with flesh memory, its components such as disk, head, focusing actuator, and spindle motor should be assembled within 5 mm. The thickness of focusing actuator is within 2 mm and the total working range is +/-100um, with the resolution of less than 1μm. Since the thickness is limited tightly, it is hard to place the yoke that closes the magnetic circuit and hard to make strong flux density without yoke. Therefore, Halbach array is adopted to increase the magnetic flux of one side without yoke. The proposed Halbach array type focusing actuator has the advantage of thin actuation structure with sacrificing less flex density than conventional magnetic array. The optical head unit is moved on the swing arm type tracking actuator. Focusing coil is attached to swing arm, and Halbach magnet array is positioned at the bottom of deck along the tracking line, and focusing actuator exerts force by the Fleming's left hand rule. The dynamics, working range, control resolution of focusing actuator are analyzed and performed.

  8. SO2 frost - UV-visible reflectivity and Io surface coverage

    NASA Technical Reports Server (NTRS)

    Nash, D. B.; Fanale, F. P.; Nelson, R. M.

    1980-01-01

    The reflectance spectrum in the range 0.24-0.85 microns of SO2 frost is measured in light of the discovery of SO2 gas in the atmosphere of Io and the possible discovery of the frost on its surface. Frost deposits up to 1.5 mm thick were grown in vacuum at 130 K and bi-directional reflectance spectra were obtained. Typical SO2 frost is found to exhibit very low reflectivity (2-5%) at 0.30 microns, rising steeply at 0.32 microns to attain a maximum reflectivity (75-80%) at 4.0 microns and uniformly high reflectivity throughout the visible and near infrared. Comparison with the full disk spectrum of Io reveals that no more than 20% of the surface can be covered with optically thick SO2 frost. Combinations of surface materials including SO2 frost which can produce the observed spectrum are indicated.

  9. Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang-Condell, Hannah; Wilner, David; Andrews, Sean; Kraus, Adam; Dahm, Scott; hide

    2012-01-01

    We present Keck/NIRC2 Ks band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3-2.5 arcse (approx 35-280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model for a single dust belt including a phase function with two components and a 5-10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry. Although there may be alternate explanations, agreement between the SW disk brightness peak and disk's peak mm emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1-1 mm-sized grains at approx 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.

  10. Evaluation of CLSI M44-A2 Disk Diffusion and Associated Breakpoint Testing of Caspofungin and Micafungin Using a Well-Characterized Panel of Wild-Type and fks Hot Spot Mutant Candida Isolates▿

    PubMed Central

    Arendrup, Maiken Cavling; Park, Steven; Brown, Steven; Pfaller, Michael; Perlin, David S.

    2011-01-01

    Disk diffusion testing has recently been standardized by the CLSI, and susceptibility breakpoints have been established for several antifungal compounds. For caspofungin, 5-μg disks are approved, and for micafungin, 10-μg disks are under evaluation. We evaluated the performances of caspofungin and micafungin disk testing using a panel of Candida isolates with and without known FKS echinocandin resistance mechanisms. Disk diffusion and microdilution assays were performed strictly according to CLSI documents M44-A2 and M27-A3. Eighty-nine clinical Candida isolates were included: Candida albicans (20 isolates/10 mutants), C. glabrata (19 isolates/10 mutants), C. dubliniensis (2 isolates/1 mutant), C. krusei (16 isolates/3 mutants), C. parapsilosis (14 isolates/0 mutants), and C. tropicalis (18 isolates/4 mutants). Quality control strains were C. parapsilosis ATCC 22019 and C. krusei ATCC 6258. The correlations between zone diameters and MIC results were good for both compounds, with identical susceptibility classifications for 93.3% of the isolates by applying the current CLSI breakpoints. However, the numbers of fks hot spot mutant isolates misclassified as being susceptible (S) (very major errors [VMEs]) were high (61% for caspofungin [S, ≥11 mm] and 93% for micafungin [S, ≥14 mm]). Changing the disk diffusion breakpoint to S at ≥22 mm significantly improved the discrimination. For caspofungin, 1 VME was detected (a C. tropicalis isolate with an F76S substitution) (3.5%), and for micafungin, 10 VMEs were detected, the majority of which were for C. glabrata (8/10). The broadest separation between zone diameter ranges for wild-type (WT) and mutant isolates was seen for caspofungin (6 to 12 mm versus −4 to 7 mm). In conclusion, caspofungin disk diffusion testing with a modified breakpoint led to excellent separation between WT and mutant isolates for all Candida species. PMID:21357293

  11. White-Light Whispering-Gallery-Mode Optical Resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2006-01-01

    Whispering-gallery-mode (WGM) optical resonators can be designed to exhibit continuous spectra over wide wavelength bands (in effect, white-light spectra), with ultrahigh values of the resonance quality factor (Q) that are nearly independent of frequency. White-light WGM resonators have potential as superior alternatives to (1) larger, conventional optical resonators in ring-down spectroscopy, and (2) optical-resonator/electro-optical-modulator structures used in coupling of microwave and optical signals in atomic clocks. In these and other potential applications, the use of white-light WGM resonators makes it possible to relax the requirement of high-frequency stability of lasers, thereby enabling the use of cheaper lasers. In designing a white-light WGM resonator, one exploits the fact that the density of the mode spectrum increases predictably with the thickness of the resonator disk. By making the resonator disk sufficiently thick, one can make the frequency differences between adjacent modes significantly less than the spectral width of a single mode, so that the spectral peaks of adjacent modes overlap, making the resonator spectrum essentially continuous. Moreover, inasmuch as the Q values of the various modes are determined primarily by surface Rayleigh scattering that does not depend on mode numbers, all the modes have nearly equal Q. By use of a proper coupling technique, one can ensure excitation of a majority of the modes. For an experimental demonstration of a white-light WGM resonator, a resonator disk 0.5-mm thick and 5 mm in diameter was made from CaF2. The shape of the resonator and the fiberoptic coupling arrangement were as shown in Figure 1. The resonator was excited with laser light having a wavelength of 1,320 nm and a spectral width of 4 kHz. The coupling efficiency exceeded 80 percent at any frequency to which the laser could be set in its tuning range, which was >100-GHz wide. The resonator response was characterized by means of ring-down tests in which the excitation was interrupted by a shutter having a rise and a fall time of 5 ns. The ring-down time of photodiodes and associated circuitry used to measure the interrupted excitation and the resonator output was <1 ns. Figure 2 shows the shapes of representative input and output light pulses. The average ring-down time was found to be 120 ns, corresponding to Q=2x10(exp 8). The variations of Q with the laser carrier frequency were found to be <5 percent. Hence, the resonator was shown to have the desired white light properties.

  12. Rings of Molecular Line Emission in the Disk Orbiting the Young, Close Binary V4046 Sgr

    NASA Astrophysics Data System (ADS)

    Dickson-Vandervelde, Dorothy; Kastner, Joel H.; Qi, C.; Forveille, Thierry; Hily-Blant, Pierre; Oberg, Karin; Wilner, David; Andrews, Sean; Gorti, Uma; Rapson, Valerie; Sacco, Germano; Principe, David

    2018-01-01

    We present analysis of a suite of subarcsecond ALMA Band 6 (1.1 - 1.4 mm) molecular line images of the circumbinary, protoplanetary disk orbiting V4046 Sgr. The ~20 Myr-old V4046 Sgr system, which lies a mere ~73 pc from Earth, consists of a close (separation ~10 Rsun) pair of roughly solar-mass stars that are orbited by a gas-rich crcumbinary disk extending to ~350 AU in radius. The ALMA images reveal that the molecules CO and HCN and their isotopologues display centrally peaked surface brightness morphologies, whereas the cyanide group molecules (HC3N, CH3CN), deuterated molecules (DCN, DCO+), hydrocarbons (as traced by C2H), and potential CO ice line tracers (N2H+, and H2CO) appear as a sequence of sharp and diffuse rings of increasing radii. The characteristic sizes of these molecular emission rings, which range from ~25 to >100 AU in radius, are evident in radial emission-line surface brightness profiles extracted from the deprojected disk images. We find that emission from 13CO emission transitions from optically thin to thick within ~50 AU, whereas C18O emission remains optically thin within this radius. We summarize the insight into the physical and chemical processes within this evolved protoplanetary disk that can be obtained from comparisons of the various emission-line morphologies with each other and with that of the continuum (large-grain) emission on size scales of tens of AU.This research is supported by NASA Exoplanets program grant NNX16AB43G to RIT

  13. A KEPLERIAN-LIKE DISK AROUND THE FORMING O-TYPE STAR AFGL 4176

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Katharine G.; Hoare, Melvin G.; Robitaille, Thomas P.

    We present Atacama Large Millimeter/submillimeter Array line and continuum observations at 1.2 mm with ∼0.″3 resolution that uncover a Keplerian-like disk around the forming O-type star AFGL 4176. The continuum emission from the disk at 1.21 mm (source mm1) has a deconvolved size of 870 ± 110 AU × 330 ± 300 AU and arises from a structure ∼8 M{sub ⊙} in mass, calculated assuming a dust temperature of 190 K. The first-moment maps, pixel-to-pixel line modeling, assuming local thermodynamic equilibrium (LTE), and position–velocity diagrams of the CH{sub 3}CN J = 13–12 K-line emission all show a velocity gradient alongmore » the major axis of the source, coupled with an increase in velocity at small radii, consistent with Keplerian-like rotation. The LTE line modeling shows that where CH{sub 3}CN J = 13–12 is excited, the temperatures in the disk range from ∼70 to at least 300 K and that the H{sub 2} column density peaks at 2.8 × 10{sup 24} cm{sup −2}. In addition, we present Atacama Pathfinder Experiment {sup 12}CO observations that show a large-scale outflow from AFGL 4176 perpendicular to the major axis of mm1, supporting the disk interpretation. Finally, we present a radiative transfer model of a Keplerian disk surrounding an O7 star, with a disk mass and radius of 12 M{sub ⊙} and 2000 AU that reproduces the line and continuum data, further supporting our conclusion that our observations have uncovered a Keplerian-like disk around an O-type star.« less

  14. Modern Optimization Methods in Minimum Weight Design of Elastic Annular Rotating Disk with Variable Thickness

    NASA Astrophysics Data System (ADS)

    Jafari, S.; Hojjati, M. H.

    2011-12-01

    Rotating disks work mostly at high angular velocity and this results a large centrifugal force and consequently induce large stresses and deformations. Minimizing weight of such disks yields to benefits such as low dead weights and lower costs. This paper aims at finding an optimal disk thickness profile for minimum weight design using the simulated annealing (SA) and particle swarm optimization (PSO) as two modern optimization techniques. In using semi-analytical the radial domain of the disk is divided into some virtual sub-domains as rings where the weight of each rings must be minimized. Inequality constrain equation used in optimization is to make sure that maximum von Mises stress is always less than yielding strength of the material of the disk and rotating disk does not fail. The results show that the minimum weight obtained for all two methods is almost identical. The PSO method gives a profile with slightly less weight (6.9% less than SA) while the implementation of both PSO and SA methods are easy and provide more flexibility compared with classical methods.

  15. Investigating FP Tau’s protoplanetary disk structure through modeling

    NASA Astrophysics Data System (ADS)

    Brinjikji, Marah; Espaillat, Catherine

    2017-01-01

    This project presents a study aiming to understand the structure of the protoplanetary disk around FP Tau, a very young, very low mass star in the Taurus star-forming region. We have gathered existing optical, Spitzer, Herschel and submillimeter observations to construct the spectral energy distribution (SED) of FP Tau. We have used the D’Alessio et al (2006) physically self-consistent irradiated accretion disk model including dust settling to model the disk of FP Tau. Using this method, the best fit for the SED of FP Tau is a model that includes a gap located 10-20 AU away from the star. This gap is filled with optically thin dust that separates the optically thick dust in the outer disk from the optically thick dust in the inner disk. These characteristics indicate that FP Tau’s protostellar system is best classified as a pre-transitional disk. Near-infrared interferometry in the K-Band from Willson et al 2016 indicates that FP Tau has a small gap located 10-20 AU from the star, which is consistent with the model we produced, lending further support to the pre-transitional disk interpretation. The most likely explanation for the existence of a gap in the disk is a forming planet.

  16. Effect of bioactive glass-containing resin composite on dentin remineralization.

    PubMed

    Lee, Myoung Geun; Jang, Ji-Hyun; Ferracane, Jack L; Davis, Harry; Bae, Han Eul; Choi, Dongseok; Kim, Duck-Su

    2018-05-25

    The purpose of this study was to evaluate the effect of bioactive glass (BAG)-containing composite on dentin remineralization. Sixty-six dentin disks with 3 mm thickness were prepared from thirty-three bovine incisors. The following six experimental groups were prepared according to type of composite (control and experimental) and storage solutions (simulated body fluid [SBF] and phosphate-buffered saline [PBS]): 1 (undemineralized); 2 (demineralized); 3 (demineralized with control in SBF); 4 (demineralized with control in PBS); 5 (demineralized with experimental composite in SBF); and 6 (demineralized with experimental composite in PBS). BAG65S (65% Si, 31% Ca, and 4% P) was prepared via the sol-gel method. The control composite was made with a 50:50 Bis-GMA:TEGDMA resin matrix, 57 wt% strontium glass, and 15 wt% aerosol silica. The experimental composite had the same resin and filler, but with 15 wt% BAG65S replacing the aerosol silica. For groups 3-6, composite disks (20 × 10 × 2 mm) were prepared and approximated to the dentin disks and stored in PBS or SBF for 2 weeks. Micro-hardness measurements, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) and field-emission scanning electron microscopy (FE-SEM) was investigated. The experimental BAG-containing composite significantly increased the micro-hardness of the adjacent demineralized dentin. ATR-FTIR revealed calcium phosphate peaks on the surface of the groups which used experimental composite. FE-SEM revealed surface deposits partially occluding the dentin surface. No significant difference was found between SBF and PBS storage. BAG-containing composites placed in close proximity can partially remineralize adjacent demineralized dentin. Copyright © 2018. Published by Elsevier Ltd.

  17. Effect of air polishing with glycine powder on titanium abutment surfaces.

    PubMed

    Cochis, Andrea; Fini, Milena; Carrassi, Antonio; Migliario, Mario; Visai, Livia; Rimondini, Lia

    2013-08-01

    The aim of the present study was to evaluate morphological changes induced by glycine powder air polishing on titanium surfaces and its effect on bacteria recolonization in comparison with sodium bicarbonate powder. 5 mm wide and 1 mm thick titanium grade II disks were divided into three groups of treatments: (i) no treatment; (ii) air polishing with glycine powder; (iii) air polishing with sodium bicarbonate powder. Specimens were characterized by laser profilometry, scanning electron microscopy (SEM) and then installed onto removable appliances worn for 24 h by healthy volunteers. Surface contamination was evaluated using SEM and counting the number of colony forming units (CFU). SEM observation revealed an increased roughness with the formation of craters on samples treated with sodium bicarbonate powder, while not in glycine ones. Statistical analysis failed to show significant differences of both Ra and Rmax parameters in treated groups. SEM observation of specimens surfaces, after 24 h of permanence in the oral cavity, showed a higher contamination of the disks treated with sodium bicarbonate compared with those not treated (P < 0.05). Conversely, the group treated with glycine showed the lower contamination if compared with bicarbonate-treated group (P < 0.05). Air polishing with glycine powder may be considered as a better method to remove plaque from dental implant because glycine is less aggressive than sodium bicarbonate powder. Moreover, the use of glycine powder seems to have an active role on the inhibition of bacterial recolonization of implants in a short test period (24 h). Further studies are needed to demonstrate the bacteriostatic properties of glycine, envisaged on the basis of reduced contamination of the disks polished with glycine compared with those not treated. © 2012 John Wiley & Sons A/S.

  18. An Expanded Very Large Array and CARMA Study of Dusty Disks and Torii with Large Grains in Dying Stars

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Claussen, M. J.; Schnee, S.; Morris, M. R.; Sánchez Contreras, C.

    2011-09-01

    We report the results of a pilot multiwavelength survey in the radio continuum (X, Ka, and Q bands, i.e., from 3.6 cm to 7 mm) carried out with the Expanded Very Large Array (EVLA) in order to confirm the presence of very large dust grains in dusty disks and torii around the central stars in a small sample of post-asymptotic giant branch (pAGB) objects, as inferred from millimeter (mm) and submillimeter (submm) observations. Supporting mm-wave observations were also obtained with the Combined Array for Research in Millimeter-wave Astronomy toward three of our sources. Our EVLA survey has resulted in a robust detection of our most prominent submm emission source, the pre-planetary nebula (PPN) IRAS 22036+5306, in all three bands, and the disk-prominent pAGB object, RV Tau, in one band. The observed fluxes are consistent with optically thin free-free emission, and since they are insignificant compared to their submm/mm fluxes, we conclude that the latter must come from substantial masses of cool, large (mm-sized) grains. We find that the power-law emissivity in the cm-to-submm range for the large grains in IRAS22036 is νβ, with β = 1-1.3. Furthermore, the value of β in the 3-0.85 mm range for the three disk-prominent pAGB sources (β <= 0.4) is significantly lower than that of IRAS22036, suggesting that the grains in pAGB objects with circumbinary disks are likely larger than those in the dusty waists of pre-planetary nebulae.

  19. Disk diffusion quality control guidelines for NVP-PDF 713: a novel peptide deformylase inhibitor.

    PubMed

    Anderegg, Tamara R; Jones, Ronald N

    2004-01-01

    NVP-PDF713 is a peptide deformylase inhibitor that has emerged as a candidate for treating Gram-positive infections and selected Gram-negative species that commonly cause community-acquired respiratory tract infections. This report summarizes the results of a multi-center (seven participants) disk diffusion quality control (QC) investigation for NVP PDF-713 using guidelines of the National Committee for Clinical Laboratory Standards and the standardized disk diffusion method. A total of 420 NVP-PDF 713 zone diameter values were generated for each QC organism. The proposed zone diameter ranges contained 97.6-99.8% of the reported participant results and were: Staphylococcus aureus ATCC 25923 (25-35 mm), Streptococcus pneumoniae ATCC 49619 (30-37 mm), and Haemophilus influenzae ATCC 49247 (24-32 mm). These QC criteria for the disk diffusion method should be applied during the NVP-PDF 713 clinical trials to maximize test accuracy.

  20. Grain growth in Class I protostar Per-emb-50: a dust continuum analysis with NOEMA & SMA .

    NASA Astrophysics Data System (ADS)

    Agurto-Gangas, C.; Pineda, J. E.; Testi, L.; Caselli, P.; Szucs, L.; Tazzari, M.; Dunham, M.; Stephens, I. W.; Miotello, A.

    A good understanding of when dust grains grow from sub-micrometer to millimeter sizes occurs is crucial for models of planet formation. This provides the first step towards the production of pebbles and planetesimals in protoplanetary disks. Thanks to detailed studies of the spectral index in Class II disks, it is well established that Class II objects have already dust grains of millimetres sizes, however, it is not clear when in the star formation process this grain growth occurs. Here, we present interferometric data from NOEMA at 3 mm and SMA at 1.3 mm of the Class I protostar, Per-emb-50, to determine the flux density spectral index at mm-wavelengths of the unresolved disk and the surrounding envelope. We find a spectral index in the unresolved disk 30% smaller than the envelope, alpha env=2.18, comparable to values obtained toward Class 0 sources.

  1. Use of an ultrasonic device for the determination of elastic modulus of dentin.

    PubMed

    Miyazaki, Masashi; Inage, Hirohiko; Onose, Hideo

    2002-03-01

    The mechanical properties of dentin substrate are one of the important factors in determining bond strength of dentin bonding systems. The purpose of this study was to determine the elastic modulus of dentin substrate with the use of an ultrasonic device. The dentin disks of about 1 mm thickness were obtaining from freshly extracted human third molars, and the dentin disk was shaped in a rectangular form with a line diamond point. The size and weight of each specimen was measured to calculate the density of the specimen. The ultrasonic equipment employed in this study was composed of a Pulser-Receiver (Model 5900PR, Panametrics), transducers (V155, V156, Panametrics) and an oscilloscope. The measured two-way transit time through the dentin disk was divided by two to account for the down-and-back travel path, and then multiplied by the velocity of sound in the test material. Measuring the longitudinal and share wave sound velocity determine elastic modulus. The mean elastic modulus of horizontally sectioned specimens was 21.8 GPa and 18.5 GPa for the vertically sectioned specimens, and a significant difference was found between the two groups. The ultrasonic method used in this study shows considerable promise for determination of the elastic modulus of the tooth substrate.

  2. Residual stress profiles in veneering ceramic on Y-TZP, alumina and ZTA frameworks: measurement by hole-drilling.

    PubMed

    Fukushima, K A; Sadoun, M J; Cesar, P F; Mainjot, A K

    2014-02-01

    The residual stress profile developed within the veneering ceramic during the manufacturing process is an important predicting factor in chipping failures, which constitute a well-known problem with yttria-tetragonal-zirconia polycrystal (Y-TZP) based restorations. The objectives of this study are to measure and to compare the residual stress profile in the veneering ceramic layered on three different polycrystalline ceramic framework materials: Y-TZP, alumina polycrystal (AL) and zirconia toughened alumina (ZTA). The stress profile was measured with the hole-drilling method in bilayered disk samples of 19 mm diameter with a 0.7 mm thick Y-TZP, AL or ZTA framework and a 1.5mm thick layer of the corresponding veneering ceramic. The AL samples exhibited increasing compressive stresses with depth, while compressive stresses switching into interior tensile stresses were measured in Y-TZP samples. ZTA samples exhibited compressive stress at the ceramic surface, decreasing with depth up to 0.6mm from the surface, and then becoming compressive again near the framework. Y-TZP samples exhibited a less favorable stress profile than those of AL and ZTA samples. Results support the hypothesis of the occurrence of structural changes within the Y-TZP surface in contact with the veneering ceramic to explain the presence of tensile stresses. Even if the presence of Y-TZP in the alumina matrix seems to negatively affect the residual stress profiles in ZTA samples in comparison with AL samples, the registered profiles remain positive in terms of veneer fracture resistance. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Proposal for agar disk diffusion interpretive criteria for susceptibility testing of bovine mastitis pathogens using cefoperazone 30μg disks.

    PubMed

    Feßler, Andrea T; Kaspar, Heike; Lindeman, Cynthia J; Peters, Thomas; Watts, Jeffrey L; Schwarz, Stefan

    2017-02-01

    Cefoperazone is a third generation cephalosporin which is commonly used for bovine mastitis therapy. Bacterial pathogens involved in bovine mastitis are frequently tested for their susceptibility to cefoperazone. So far, the cefoperazone susceptibility testing using 30μg disks has been hampered by the lack of quality control (QC) ranges as well as the lack of interpretive criteria. In 2014, QC ranges for 30 μg cefoperazone disks have been established for Staphylococcus aureus ATCC ® 25923 and Escherichia coli ATCC ® 25922. As a next step, interpretive criteria for the susceptibility testing of bovine mastitis pathogens should be developed. For this, 637 bovine mastitis pathogens (including 112 S. aureus, 121 coagulase-negative staphylococci (CoNS), 103 E. coli, 101 Streptococcus agalactiae, 100 Streptococcus dysgalactiae and 100 Streptococcus uberis) were investigated by agar disk diffusion according to the document Vet01-A4 of the Clinical and Laboratory Standards Institute (CLSI) using 30μg cefoperazone disks and the results were compared to the corresponding MIC values as determined by broth microdilution also according to the aforementioned CLSI document. Based on the results obtained and taking into account the achievable milk concentration of cefoperazone after regular dosing, the following interpretive criteria were proposed as a guidance for mastitis diagnostic laboratories: for staphylococci and E. coli ≥23mm (susceptible), 18-22mm (intermediate) and ≤17mm (resistant) and for streptococci ≥18mm (susceptible), and ≤17mm (non-susceptible). These proposed interpretive criteria shall contribute to a harmonization of cefoperazone susceptibility testing of bovine mastitis pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. VLA Observations of the Disk around the Young Brown Dwarf 2MASS J044427+2512

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricci, L.; Rome, H.; Pinilla, P.

    We present multi-wavelength radio observations obtained with the VLA of the protoplanetary disk surrounding the young brown dwarf 2MASS J04442713+2512164 (2M0444) in the Taurus star-forming region. 2M0444 is the brightest known brown dwarf disk at millimeter wavelengths, making this an ideal target to probe radio emission from a young brown dwarf. Thermal emission from dust in the disk is detected at 6.8 and 9.1 mm, whereas the 1.36 cm measured flux is dominated by ionized gas emission. We combine these data with previous observations at shorter sub-mm and mm wavelengths to test the predictions of dust evolution models in gas-richmore » disks after adapting their parameters to the case of 2M0444. These models show that the radial drift mechanism affecting solids in a gaseous environment has to be either completely made inefficient, or significantly slowed down by very strong gas pressure bumps in order to explain the presence of mm/cm-sized grains in the outer regions of the 2M0444 disk. We also discuss the possible mechanisms for the origin of the ionized gas emission detected at 1.36 cm. The inferred radio luminosity for this emission is in line with the relation between radio and bolometric luminosity valid for for more massive and luminous young stellar objects, and extrapolated down to the very low luminosity of the 2M0444 brown dwarf.« less

  5. In vitro dentin barrier cytotoxicity testing of some dental restorative materials.

    PubMed

    Jiang, R D; Lin, H; Zheng, G; Zhang, X M; Du, Q; Yang, M

    2017-03-01

    To investigate the cytotoxicity of four dental restorative materials in three-dimensional (3D) L929 cell cultures using a dentin barrier test. The cytotoxicities of light-cured glass ionomer cement (Vitrebond), total-etching adhesive (GLUMA Bond5), and two self-etching adhesives (GLUMA Self Etch and Single Bond Universal) were evaluated. The permeabilities of human dentin disks with thicknesses of 300, 500, and 1000μm were standardized using a hydraulic device. Test materials and controls were applied to the occlusal side of human dentin disks. The 3D-cell scaffolds were placed beneath the dentin disks. After a 24-h contact with the dentin barrier test device, cell viabilities were measured by performing MTT assays. Statistical analysis was performed using the Mann-Whitney U test. The mean (SD) permeabilities of the 300-μm, 500-μm, and 1000-μm dentin disks were 0.626 (0.214), 0.219 (0.0387) and 0.089 (0.028) μlmin -1 cm -2 cm H 2 O -1 . Vitrebond was severely cytotoxic, reducing the cell viability to 10% (300-μm disk), 17% (500μm), and 18% (1000μm). GLUMA Bond5 reduced the cell viability to 40% (300μm), 83% (500μm), and 86% (1000μm), showing moderate cytotoxicity (300-μm) and non-cytotoxicity (500-μm and 1000-μm). Single Bond Universal and GLUMA Self Etch did not significantly reduce cell viability, regardless of the dentin thicknesses, which characterized them as non-cytotoxic. Cytotoxicity varied with the materials tested and the thicknesses of the dentin disks. The tested cytotoxicity of materials applied on 300-, 500-, and 1000-μm dentin disks indicates that the clinical use of the test materials (excepting self-etching adhesives) in deep cavities poses a potential risk of damage to the pulp tissues to an extent, depending on the thickness of the remaining dentin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Macular Choroidal Thickness May Be the Earliest Determiner to Detect the Onset of Diabetic Retinopathy in Patients with Prediabetes: A Prospective and Comparative Study.

    PubMed

    Yazgan, Serpil; Arpaci, Dilek; Celik, Haci Ugur; Dogan, Mustafa; Isık, Irem

    2017-07-01

    To evaluate the macular and peripapillary choroidal thickness and retinal volume in prediabetes. This prospective comparative study included 53 patients with prediabetes and 53 age- and sex-matched healthy subjects. Only right eyes were selected. Choroidal thicknesses (CT) and retinal volume were measured by optical coherence tomography. Macular CT was measured at the seven points including macular center, 1, 2, and 3 mm distances along the temporal and nasal scans. Peripapillary CT was measured at the eight points of the optic disk area. Systemic and laboratory findings of the subjects were also recorded. There were no significant differences in blood pressures, ocular findings including intraocular pressure, visual acuity, and refractive powers, and macular volumes between the two groups (p > 0.005). Macular and peripapillary CT at all measuring points, body mass index (BMI), fasting blood glucose (FBG), hemoglobinA1C, and lipid profile were significantly higher in prediabetic patients (p < 0.05). There was a significant positive correlation between all points of macular choroidal thicknesses with BMI, FBG, and hemoglobin A1C (p < 0.05). Prediabetic factors including impaired FBG, increased hemoglobinA1C, and BMI are independent risk factors for increase in choroidal thickness. Increased macular choroidal thickness may be the earliest determiner to detect the onset of diabetic retinopathy in prediabetes.

  7. Recent Observational Progress on Accretion Disks Around Compact Objects

    NASA Astrophysics Data System (ADS)

    Miller, Jon M.

    2016-04-01

    Studies of accretion disks around black holes and neutron stars over the last ten years have made remarkable progress. Our understanding of disk evolution as a function of mass accretion rate is pushing toward a consensus on thin/thick disk transitions; an apparent switching between disk-driven outflow modes has emerged; and monitoring observations have revealed complex spectral energy distributions wherein disk reprocessing must be important. Detailed studies of disk winds, in particular, have the potential to reveal the basic physical processes that mediate disk accretion, and to connect with numerical simulations. This talk will review these developments and look ahead to the potential of Astro-H.

  8. Two-dimensional modeling of density and thermal structure of dense circumstellar outflowing disks

    NASA Astrophysics Data System (ADS)

    Kurfürst, P.; Feldmeier, A.; Krtička, J.

    2018-06-01

    Context. Evolution of massive stars is affected by a significant loss of mass either via (nearly) spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely the outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around massive stars is still under debate. It is also unclear how various forming physical mechanisms of the circumstellar environment affect its shape and density, as well as its kinematic and thermal structure. Aims: We study the hydrodynamic and thermal structure of optically thick, dense parts of outflowing circumstellar disks that may be formed around various types of critically rotating massive stars, for example, Be stars, B[e] supergiant (sgB[e]) stars or Pop III stars. We calculate self-consistent time-dependent models of temperature and density structure in the disk's inner dense region that is strongly affected by irradiation from a rotationally oblate central star and by viscous heating. Methods: Using the method of short characteristics, we specify the optical depth of the disk along the line-of-sight from stellar poles. Within the optically thick dense region with an optical depth of τ > 2/3 we calculate the vertical disk thermal structure using the diffusion approximation while for the optically thin outer layers we assume a local thermodynamic equilibrium with the impinging stellar irradiation. For time-dependent hydrodynamic modeling, we use two of our own types of hydrodynamic codes: two-dimensional operator-split numerical code based on an explicit Eulerian finite volume scheme on a staggered grid, and unsplit code based on the Roe's method, both including full second-order Navier-Stokes shear viscosity. Results: Our models show the geometric distribution and contribution of viscous heating that begins to dominate in the central part of the disk for mass-loss rates higher than Ṁ ≳ 10-10 M⊙ yr-1. In the models of dense viscous disks with Ṁ > 10-8 M⊙ yr-1, the viscosity increases the central temperature up to several tens of thousands of Kelvins, however the temperature rapidly drops with radius and with distance from the disk midplane. The high mass-loss rates and high viscosity lead to instabilities with significant waves or bumps in density and temperature in the very inner disk region. Conclusions: The two-dimensional radial-vertical models of dense outflowing disks including the full Navier-Stokes viscosity terms show very high temperatures that are however limited to only the central disk cores inside the optically thick area, while near the edge of the optically thick region the temperature may be low enough for the existence of neutral hydrogen, for example.

  9. Modeling the high-frequency complex modulus of silicone rubber using standing Lamb waves and an inverse finite element method.

    PubMed

    Jonsson, Ulf; Lindahl, Olof; Andersson, Britt

    2014-12-01

    To gain an understanding of the high-frequency elastic properties of silicone rubber, a finite element model of a cylindrical piezoelectric element, in contact with a silicone rubber disk, was constructed. The frequency-dependent elastic modulus of the silicone rubber was modeled by a fourparameter fractional derivative viscoelastic model in the 100 to 250 kHz frequency range. The calculations were carried out in the range of the first radial resonance frequency of the sensor. At the resonance, the hyperelastic effect of the silicone rubber was modeled by a hyperelastic compensating function. The calculated response was matched to the measured response by using the transitional peaks in the impedance spectrum that originates from the switching of standing Lamb wave modes in the silicone rubber. To validate the results, the impedance responses of three 5-mm-thick silicone rubber disks, with different radial lengths, were measured. The calculated and measured transitional frequencies have been compared in detail. The comparison showed very good agreement, with average relative differences of 0.7%, 0.6%, and 0.7% for the silicone rubber samples with radial lengths of 38.0, 21.4, and 11.0 mm, respectively. The average complex elastic moduli of the samples were (0.97 + 0.009i) GPa at 100 kHz and (0.97 + 0.005i) GPa at 250 kHz.

  10. A small punch test technique for characterizing the elastic modulus and fracture behavior of PMMA bone cement used in total joint replacement.

    PubMed

    Giddings, V L; Kurtz, S M; Jewett, C W; Foulds, J R; Edidin, A A

    2001-07-01

    Polymethylmethacrylate (PMMA) bone cement is used in total joint replacements to anchor implants to the underlying bone. Establishing and maintaining the integrity of bone cement is thus of critical importance to the long-term outcome of joint replacement surgery. The goal of the present study was to evaluate the suitability of a novel testing technique, the small punch or miniaturized disk bend test, to characterize the elastic modulus and fracture behavior of PMMA. We investigated the hypothesis that the crack initiation behavior of PMMA during the small punch test was sensitive to the test temperature. Miniature disk-shaped specimens, 0.5 mm thick and 6.4 mm in diameter, were prepared from PMMA and Simplex-P bone cement according to manufacturers' instructions. Testing was conducted at ambient and body temperatures, and the effect of test temperature on the elastic modulus and fracture behavior was statistically evaluated using analysis of variance. For both PMMA materials, the test temperature had a significant effect on elastic modulus and crack initiation behavior. At body temperature, the specimens exhibited "ductile" crack initiation, whereas at room temperature "brittle" crack initiation was observed. The small punch test was found to be a sensitive and repeatable test method for evaluating the mechanical behavior of PMMA. In light of the results of this study, future small punch testing should be conducted at body temperature.

  11. Characterizing the Hercules Thick Disk Cloud

    DTIC Science & Technology

    2009-01-01

    merger. Key Words: Astronomy , Hercules Thick Disk Cloud, Galaxy, Star Count, Color, Photometric Parallax 2 Contents Chapter 1... Astronomy : Structure and Kinematics, 2nd ed., New York: W. H. Freeman and Company, 1981, pp 4. 5 Henbest, Guide, pp 10. 6 Mihalas, Galactic, pp 209...studies of astronomy later in his life, he focused on binary star systems and concluded that not all stars have the same absolute magnitude, thus

  12. Abundances of Copper and Zinc in Stars of the Galactic Thin and Thick Disks

    NASA Astrophysics Data System (ADS)

    Gorbaneva, T. I.; Mishenina, T. V.; Basak, N. Yu.; Soubiran, C.; Kovtyukh, V. V.

    The spectra of studied stars were obtained with the ELODIE spectrograph at the 1.93-m telescope of the Observatoire de Haute Provence (France). The determination of Cu and Zn abundances was carried out in LTE assumption by model atmosphere method, for Cu the hyperfine structure was taken into account. Cu and Zn abundance trends for thin and thick disk's stars are presented.

  13. AGES OF 70 DWARFS OF THREE POPULATIONS IN THE SOLAR NEIGHBORHOOD: CONSIDERING O AND C ABUNDANCES IN STELLAR MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Z. S.; Bi, S. L.; Liu, K.

    2016-12-20

    Oxygen and carbon are important elements in stellar populations. Their behavior refers to the formation history of the stellar populations. C and O abundances would also obviously influence stellar opacities and the overall metal abundance Z . With observed high-quality spectroscopic properties, we construct stellar models with C and O elements to give more accurate ages for 70 metal-poor dwarfs, which have been determined to be high- α halo, low- α halo, and thick-disk stars. Our results show that high- α halo stars are somewhat older than low- α halo stars by around 2.0 Gyr. The thick-disk population has anmore » age range in between the two halo populations. The age distribution profiles indicate that high- α halo and low- α halo stars match the in situ accretion simulation by Zolotov et al., and the thick-disk stars might be formed in a relatively quiescent and long-lasting process. We also note that stellar ages are very sensitive to O abundance, since the ages clearly increase with increasing [O/Fe] values. Additionally, we obtain several stars with peculiar ages, including 2 young thick-disk stars and 12 stars older than the universe age.« less

  14. Factors Affecting the Nonlinear Force Versus Distraction Height Curves in an In Vitro C5-C6 Anterior Cervical Distraction Model.

    PubMed

    Wen, Junxiang; Xu, Jianwei; Li, Lijun; Yang, Mingjie; Pan, Jie; Chen, Deyu; Jia, Lianshun; Tan, Jun

    2017-06-01

    In vitro biomechanical study of cervical intervertebral distraction. To investigate the forces required for distraction to different heights in an in vitro C5-C6 anterior cervical distraction model, focusing on the influence of the intervertebral disk, posterior longitudinal ligament (PLL), and ligamentum flavum (LF). No previous studies have reported on the forces required for distraction to various heights or the factors resisting distraction in anterior cervical discectomy and fusion. Anterior cervical distraction at C5-C6 was performed in 6 cadaveric specimens using a biomechanical testing machine, under 4 conditions: A, before disk removal; B, after disk removal; C, after disk and PLL removal; and D, after disk and PLL removal and cutting of the LF. Distraction was performed from 0 to 10 mm at a constant velocity (5 mm/min). Force and distraction height were recorded automatically. The force required increased with distraction height under all 4 conditions. There was a sudden increase in force required at 6-7 mm under conditions B and C, but not D. Under condition A, distraction to 5 mm required a force of 268.3±38.87 N. Under conditions B and C, distraction to 6 mm required <15 N, and further distraction required dramatically increased force, with distraction to 10 mm requiring 115.4±10.67 and 68.4±9.67 N, respectively. Under condition D, no marked increase in force was recorded. Distraction of the intervertebral space was much easier after disk removal. An intact LF caused a sudden marked increase in the force required for distraction, possibly indicating the point at which the LF was fully stretched. This increase in resistance may help to determine the optimal distraction height to avoid stress to the endplate spacer.

  15. Circumstellar Structure Properties of Young Stellar Objects: Envelopes, Bipolar Outflows, and Disks

    NASA Astrophysics Data System (ADS)

    Kwon, Woojin

    2009-12-01

    Physical properties of the three main structures in young stellar objects (YSOs), envelopes, bipolar outflows, and circumstellar disks, have been studied using radio interferometers: the Berkeley-Illinois-Maryland Association (BIMA) array and the Combined Array for Research in Millimeter-wave Astronomy (CARMA). (1) Envelopes. Three Class 0 YSOs (L1448 IRS 2, L1448 IRS 3, and L1157) have been observed by CARMA at λ = 1.3 mm and 2.7 mm continuum. Through visibility modeling to fit the two wavelength continuum data simultaneously, we found that the dust opacity spectral index (β) of Class 0 YSOs is around unity, which implies that dust grains have significantly grown already at the earliest stage. In addition, we discussed the radial dependence of β detected in L1448 IRS 3B and also estimated the density distribution of the three targets. (2) Bipolar outflows. Polarimetric observations in the λ = 1.3 mm continuum and CO, as well as spectral line observations in 13CO and C18O have been carried out toward L1448 IRS 3, which has three Class 0 YSOs, using BIMA. We clearly identified two interacting bipolar outflows from the "binary system" of IRS 3A and 3B and estimated the velocity, inclination, and opening angle of the 3B bipolar outflow, using Bayesian inference. Also, we showed that the "binary system" can be bound gravitationally and we estimated the specific angular momentum, which is between those of binary stars and molecular cloud cores. In addition, we marginally detected linear polarizations at the center of IRS 3B (implying a toroidal magnetic field) in continuum and at the bipolar outflow region in CO. (3) Circumstellar disks. We present the results of 6 objects (CI Tau, DL Tau, DO Tau, FT Tau, Haro 6-13, and HL Tau) in our T Tauri disk survey using CARMA. The data consist of λ = 1.3 mm and 2.7 mm continuum with an angular resolution up to 0.13". Through visibility modeling of two disk models (power-law disk with a Gaussian edge and viscous accretion disk) to fit the two wavelength data simultaneously in Bayesian inference, we constrained disk properties. In addition, we detected a dust lane at 100 AU radius of HL Tau, which is gravitationally unstable and can be fragmented. Besides, CI Tau and DL Tau appear to have a spiral pattern. Moreover, we found that more evolved disks have a shallower density gradient and that disks with a smaller β are less massive, which implies "hidden" masses in the cold midplane and/or in large grains. Finally, we found that the accretion disk model is preferred by HL Tau, which has a strong bipolar outflow and accretion, while the power-law disk model is preferred by DL Tau, which has experienced dust settlement and has weak accretion. This implies that the accretion disk model could be applied to disks only in a limited age range.

  16. [Preliminary analysis about influence of porcelain thickness on interfacial crack of PFM].

    PubMed

    Zhu, Ziyuan; Zhang, Baowei; Zhang, Xiuyin; Xu, Kan; Fang, Ruhua; Wang, Dongmei

    2002-01-01

    This study was about the influence of porcelain thickness on crack at interface. The effect of porcelain thickness on the flaw at the interface between porcelain and metal was studied in three groups with porcelain thickness of 0.5 mm, 1.5 mm and 2.5 mm (metal thickness of 0.5 mm) by means of moire interferometre and interfacial fracture mechanics. The parameter Jc was compared among the three groups and the growing of the flaw was observed. Jc and the extreme strength of group with porcelain thickness of 0.5 mm (2.813 N/m and 9.979 N) were lower than those of the groups with porcelain thickness of 1.5 mm and 2.5 mm (5.395 N/m, 19.134 N and 5.429 N/m, 19.256 N). Flaws extend along the interface in the groups with porcelain thickness of 1.5 mm and 0.5 mm. (1) Fracture resistance of the interface in the groups with porcelain thickness of 1.5 mm and 2.5 mm is similar and it decreases in the group with 0.5 mm thick porcelain. (2) When porcelain is 1.5 mm or 0.5 mm thick, flaws will extend along the interface. When porcelain is 2.5 mm thick, flaws will extend into the porcelain layer.

  17. Status of GRMHD simulations and radiative models of Sgr A*

    NASA Astrophysics Data System (ADS)

    Mościbrodzka, Monika

    2017-01-01

    The Galactic center is a perfect laboratory for testing various theoretical models of accretion flows onto a supermassive black hole. Here, I review general relativistic magnetohydrodynamic simulations that were used to model emission from the central object - Sgr A*. These models predict dynamical and radiative properties of hot, magnetized, thick accretion disks with jets around a Kerr black hole. Models are compared to radio-VLBI, mm-VLBI, NIR, and X-ray observations of Sgr A*. I present the recent constrains on the free parameters of the model such as accretion rate onto the black hole, the black hole angular momentum, and orientation of the system with respect to our line of sight.

  18. Underwater sound transmission through arrays of disk cavities in a soft elastic medium.

    PubMed

    Calvo, David C; Thangawng, Abel L; Layman, Christopher N; Casalini, Riccardo; Othman, Shadi F

    2015-10-01

    Scattering from a cavity in a soft elastic medium, such as silicone rubber, resembles scattering from an underwater bubble in that low-frequency monopole resonance is obtainable in both cases. Arrays of cavities can therefore be used to reduce underwater sound transmission using thin layers and low void fractions. This article examines the role of cavity shape by microfabricating arrays of disk-shaped air cavities into single and multiple layers of polydimethylsiloxane. Comparison is made with the case of equivalent volume cylinders which approximate spheres. Measurements of ultrasonic underwater sound transmission are compared with finite element modeling predictions. The disks provide a deeper transmission minimum at a lower frequency owing to the drum-type breathing resonance. The resonance of a single disk cavity in an unbounded medium is also calculated and compared with a derived estimate of the natural frequency of the drum mode. Variation of transmission is determined as a function of disk tilt angle, lattice constant, and layer thickness. A modeled transmission loss of 18 dB can be obtained at a wavelength about 20 times the three-layer thickness, and thinner results (wavelength/thickness ∼ 240) are possible for the same loss with a single layer depending on allowable hydrostatic pressure.

  19. 3D Radiative Hydrodynamics Simulations of Protoplanetary Disks: A Comparison Between Two Radiative Cooling Algorithms

    NASA Astrophysics Data System (ADS)

    Lord, Jesse W.; Boley, A. C.; Durisen, R. H.

    2006-12-01

    We present a comparison between two three-dimensional radiative hydrodynamics simulations of a gravitationally unstable 0.07 Msun protoplanetary disk around a 0.5 Msun star. The first simulation is the radiatively cooled disk described in Boley et al. (2006, ApJ, 651). This simulation employed an algorithm that uses 3D flux-limited diffusion wherever the vertical Rosseland optical depth is greater than 2/3, which defines the optically thick region. The optically thin atmosphere of the disk, which cools according to its emissivity, is coupled to the optically thick region through an Eddington-like boundary condition. The second simulation employed an algorithm that uses a combination of solving the radiative transfer equation along rays in the z direction and flux limited diffusion in the r and phi directions on a cylindrical grid. We compare the following characteristics of the disk simulations: the mass transport and torques induced by gravitational instabilities, the effective temperature profiles of the disks, the gravitational and Reynolds stresses measured in the disk and those expected in an alpha-disk, and the amplitudes of the Fourier modes. This work has been supported by the National Science Foundation through grant AST-0452975 (astronomy REU program to Indiana University).

  20. A Nipkow disk integrated with Fresnel lenses for terahertz single pixel imaging.

    PubMed

    Li, Chong; Grant, James; Wang, Jue; Cumming, David R S

    2013-10-21

    We present a novel Nipkow disk design for terahertz (THz) single pixel imaging applications. A 100 mm high resistivity (ρ≈3k-10k Ω·cm) silicon wafer was used for the disk on which a spiral array of twelve 16-level binary Fresnel lenses were fabricated using photolithography and a dry-etch process. The implementation of Fresnel lenses on the Nipkow disk increases the THz signal transmission compared to the conventional pinhole-based Nipkow disk by more than 12 times thus a THz source with lower power or a THz detector with lower detectivity can be used. Due to the focusing capability of the lenses, a pixel resolution better than 0.5 mm is in principle achievable. To demonstrate the concept, a single pixel imaging system operating at 2.52 THz is described.

  1. High-Contrast Near-Infrared Imaging Polarimetry of the Protoplanetary Disk around RY Tau

    NASA Technical Reports Server (NTRS)

    Takami, Michihiro; Karr, Jennifer L.; Hashimoto, Jun; Kim, Hyosun; Wisenewski, John; Henning, Thomas; Grady, Carol; Kandori, Ryo; Hodapp, Klaus W.; Kudo, Tomoyuki; hide

    2013-01-01

    We present near-infrared coronagraphic imaging polarimetry of RY Tau. The scattered light in the circumstellar environment was imaged at H-band at a high resolution (approx. 0.05) for the first time, using Subaru-HiCIAO. The observed polarized intensity (PI) distribution shows a butterfly-like distribution of bright emission with an angular scale similar to the disk observed at millimeter wavelengths. This distribution is offset toward the blueshifted jet, indicating the presence of a geometrically thick disk or a remnant envelope, and therefore the earliest stage of the Class II evolutionary phase. We perform comparisons between the observed PI distribution and disk models with: (1) full radiative transfer code, using the spectral energy distribution (SED) to constrain the disk parameters; and (2) monochromatic simulations of scattered light which explore a wide range of parameters space to constrain the disk and dust parameters. We show that these models cannot consistently explain the observed PI distribution, SED, and the viewing angle inferred by millimeter interferometry. We suggest that the scattered light in the near-infrared is associated with an optically thin and geometrically thick layer above the disk surface, with the surface responsible for the infrared SED. Half of the scattered light and thermal radiation in this layer illuminates the disk surface, and this process may significantly affect the thermal structure of the disk.

  2. Use of CFD Analyses to Predict Disk Friction Loss of Centrifugal Compressor Impellers

    NASA Astrophysics Data System (ADS)

    Cho, Leesang; Lee, Seawook; Cho, Jinsoo

    To improve the total efficiency of centrifugal compressors, it is necessary to reduce disk friction loss, which is expressed as the power loss. In this study, to reduce the disk friction loss due to the effect of axial clearance and surface roughness is analyzed and methods to reduce disk friction loss are proposed. The rotating reference frame technique using a commercial CFD tool (FLUENT) is used for steady-state analysis of the centrifugal compressor. Numerical results of the CFD analysis are compared with theoretical results using established experimental empirical equations. The disk friction loss of the impeller is decreased in line with increments in axial clearance until the axial clearance between the impeller disk and the casing is smaller than the boundary layer thickness. In addition, the disk friction loss of the impeller is increased in line with the increments in surface roughness in a similar pattern as that of existing experimental empirical formulas. The disk friction loss of the impeller is more affected by the surface roughness than the change of the axial clearance. To minimize disk friction loss on the centrifugal compressor impeller, the axial clearance and the theoretical boundary layer thickness should be designed to be the same. The design of the impeller requires careful consideration in order to optimize axial clearance and minimize surface roughness.

  3. THE CONTRIBUTION OF SPIRAL ARMS TO THE THICK DISK ALONG THE HUBBLE SEQUENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Medina, L. A.; Pichardo, B.; Moreno, E.

    2015-04-01

    The first mechanism invoked to explain the existence of the thick disk in the Milky Way Galaxy was the spiral arms. Up-to-date work summons several other possibilities that together seem to better explain this component of our Galaxy. All these processes must affect distinct types of galaxies differently, but the contribution of each one has not been straightforward to quantify. In this work, we present the first comprehensive study of the effect of the spiral arms on the formation of thick disks, looking at early- to late-type disk galaxies in an attempt to characterize and quantify this specific mechanism in galactic potentials. To this purpose,more » we perform test particle numerical simulations in a three-dimensional spiral galactic potential (for early- to late-types spiral galaxies). By varying the parameters of the spiral arms we found that the vertical heating of the stellar disk becomes very important in some cases and strongly depends on the galactic morphology, pitch angle, arm mass, and the arm pattern speed. The later the galaxy type, the larger is the effect on the disk heating. This study shows that the physical mechanism causing the vertical heating is different from simple resonant excitation. The spiral pattern induces chaotic behavior not linked necessarily to resonances but to direct scattering of disk stars, which leads to an increase of the velocity dispersion. We applied this study to the specific example of the Milky Way Galaxy, for which we have also added an experiment that includes the Galactic bar. From this study we deduce that the effect of spiral arms of a Milky-Way-like potential on the dynamical vertical heating of the disk is negligible, unlike later galactic potentials for disks.« less

  4. Influence of argon pressure and current density on substrate temperature during magnetron sputtering of hot titanium target

    NASA Astrophysics Data System (ADS)

    Komlev, Anton A.; Minzhulina, Ekaterina A.; Smirnov, Vladislav V.; Shapovalov, Viktor I.

    2018-01-01

    The paper describes physical characteristics of the hot target sputtering process, which have not been known before. To switch a magnetron over to the hot target regime, a titanium disk of 1 mm thick with a 1-mm-gap was attached on a 4-mm-thick copper plate cooled by running water. A thermocouple sensor was used to investigate the thermal processes occurring in substrates. The study was performed at the discharge current density of 20-40 mA/cm2 and argon pressure of 3-7 mTorr. The accuracy of temperature measurement appeared to be within ± 5%, due the application of a chromel-copel thermocouple. The study reveals that under these conditions the heating curves have the inflection points positioned proportionally to the discharge current density and argon pressure on a time axis. The inflection point appears in the kinetic curves due to the finite value of the target heating time constant. The study shows that the substrate fixed temperature and substrate heating time constant depend on the argon pressure and relate to the current density by the polynomials of the first and second degrees, respectively. The influence of a target on the substrate heating kinetics is considered in an analytical description by the introduction of a multiplier in the form of an exponential function of time. The results of the research make a novel contribution to the field of the sputtering process.

  5. Multilayer Disk Reduced Interlayer Crosstalk with Wide Disk-Fabrication Margin

    NASA Astrophysics Data System (ADS)

    Hirotsune, Akemi; Miyauchi, Yasushi; Endo, Nobumasa; Onuma, Tsuyoshi; Anzai, Yumiko; Kurokawa, Takahiro; Ushiyama, Junko; Shintani, Toshimichi; Sugiyama, Toshinori; Miyamoto, Harukazu

    2008-07-01

    To reduce interlayer crosstalk caused by the ghost spot which appears in a multilayer optical disk with more than three information layers, a multilayer disk structure which reduces interlayer crosstalk with a wide disk-fabrication margin was proposed in which the backward reflectivity of the information layers is sufficiently low. It was confirmed that the interlayer crosstalk caused by the ghost spot was reduced to less than the crosstalk from the adjacent layer by controlling backward reflectivity. The wide disk-fabrication margin of the proposed disk structure was indicated by experimentally confirming that the tolerance of the maximum deviation of the spacer-layer thickness is four times larger than that in the previous multilayer disk.

  6. Milky Way Tomography with K and M Dwarf Stars: The Vertical Structure of the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Ferguson, Deborah; Gardner, Susan; Yanny, Brian

    2017-07-01

    We use the number density distributions of K and M dwarf stars with vertical height from the Galactic disk, determined using observations from the Sloan Digital Sky Survey, to probe the structure of the Milky Way disk across the survey’s footprint. Using photometric parallax as a distance estimator we analyze a sample of several million disk stars in matching footprints above and below the Galactic plane, and we determine the location and extent of vertical asymmetries in the number counts in a variety of thin- and thick-disk subsamples in regions of some 200 square degrees within 2 kpc in vertical distance from the Galactic disk. These disk asymmetries present wave-like features as previously observed on other scales and at other distances from the Sun. We additionally explore the scale height of the disk and the implied offset of the Sun from the Galactic plane at different locations, noting that the scale height of the disk can differ significantly when measured using stars only above or only below the plane. Moreover, we compare the shape of the number density distribution in the north for different latitude ranges with a fixed range in longitude and find the shape to be sensitive to the selected latitude window. We explain why this may be indicative of a change in stellar populations in the latitude regions compared, possibly allowing access to the systematic metallicity difference between thin- and thick-disk populations through photometry.

  7. Milky Way Tomography with K and M Dwarf Stars: The Vertical Structure of the Galactic Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, Deborah; Gardner, Susan; Yanny, Brian

    2017-07-10

    We use the number density distributions of K and M dwarf stars with vertical height from the Galactic disk, determined using observations from the Sloan Digital Sky Survey, to probe the structure of the Milky Way disk across the survey’s footprint. Using photometric parallax as a distance estimator we analyze a sample of several million disk stars in matching footprints above and below the Galactic plane, and we determine the location and extent of vertical asymmetries in the number counts in a variety of thin- and thick-disk subsamples in regions of some 200 square degrees within 2 kpc in verticalmore » distance from the Galactic disk. These disk asymmetries present wave-like features as previously observed on other scales and at other distances from the Sun. We additionally explore the scale height of the disk and the implied offset of the Sun from the Galactic plane at different locations, noting that the scale height of the disk can differ significantly when measured using stars only above or only below the plane. Moreover, we compare the shape of the number density distribution in the north for different latitude ranges with a fixed range in longitude and find the shape to be sensitive to the selected latitude window. We explain why this may be indicative of a change in stellar populations in the latitude regions compared, possibly allowing access to the systematic metallicity difference between thin- and thick-disk populations through photometry.« less

  8. Milky Way tomography with K and M dwarf stars: The vertical structure of the galactic disk

    DOE PAGES

    Ferguson, Deborah; Gardner, Susan; Yanny, Brian

    2017-06-02

    Here, we use the number density distributions of K and M dwarf stars with vertical height from the Galactic disk, determined using observations from the Sloan Digital Sky Survey (SDSS), to probe the structure of the Milky Way disk across the survey's footprint. Using photometric parallax as a distance estimator we analyze a sample of several million disk stars in matching footprints above and below the Galactic plane, and we determine the location and extent of vertical asymmetries in the number counts in a variety of thin and thick disk subsamples in regions of some 200 square degrees within 2more » kpc in vertical distance from the Galactic disk. These disk asymmetries present wave-like features as previously observed on other scales and distances from the Sun. We additionally explore the scale height of the disk and the implied offset of the Sun from the Galactic plane at different locations, noting that the scale height of the disk can differ significantly when measured using stars only above or only below the plane. Moreover, we compare the shape of the number density distribution in the north for different latitude ranges with a fixed range in longitude and find the shape to be sensitive to the selected latitude window. We explain why this may be indicative of a change in stellar populations in the compared latitude regions, possibly allowing access to the systematic metallicity difference between thin and thick disk populations through photometry.« less

  9. Study of Shell-Mold Thermal Resistance: Laboratory Measurements, Estimation from Compact Strip Production Plant Data, and Observation of Simulated Flux-Mold Interface

    NASA Astrophysics Data System (ADS)

    González de la C., J. Manuel; Flores F., Tania M.; Castillejos E., A. Humberto

    2016-08-01

    The slag film that forms between the shell and mold in steel continuous casting is key in regulating the heat transfer between them. Generally, the mechanisms proposed are related to the phenomena associated with the formation of crystals in the solid layer of the film, such as the appearance of internal pores and surface roughness, which decrease phononic conduction through the layer and interfacial gap with the mold, respectively, and the emergence of crystals themselves, which reduce the transmissivity of infrared radiation across the layer. Due to the importance of the solid layer, this study investigates experimentally the effective thermal resistance, R T, between a hot Inconel surface and a cold Cu surface separated by an initially glassy slag disk, made from powders for casting low and medium-carbon steels, denoted as A and B, respectively. In the tests, an initially mirror-polished disk is sandwiched for 10,800 seconds while the Inconel temperature, away from the disk face, is maintained steady at a value, T c, between 973 K and 1423 K (700 °C and 1150 °C)-below the liquidus temperature of the slags. The disks have a thickness, d t, between ~0.7 and 3.2 mm. Over the range of conditions studied, mold slag B shows R T 33 pct larger than slag A, and microscopic observation of disks hints that the greater resistance arises from the larger porosity developed in B. This finding is supported by high-temperature confocal laser scanning microscope observations of the evolution of the surface of slag parallelepipeds encased between Pt sheets, which reveal that during devitrification the film surface moves outward not inward, contrary with what is widely claimed. This behavior would favor contact of the slag with the mold for both kinds of powders. However, in the case of slag A, the crystalline grains growing at or near the surface pack closely together, leaving only few and small empty spaces. In slag B, crystalline grains pack loosely and many and large empty spaces arise in and below the surface. Estimation from plant data shows R T values smaller than measured ones, suggesting that the process film slag thickness must be considerably thinner than those of laboratory disks. However, the difference in thermal resistance of both powders, averaged over the mold length, is close to the dissimilarity found in laboratory.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osorio, Mayra; Anglada, Guillem; Macías, Enrique

    We present Very Large Array observations at 7 mm that trace the thermal emission of large dust grains in the HD 169142 protoplanetary disk. Our images show a ring of enhanced emission of radius ∼25-30 AU, whose inner region is devoid of detectable 7 mm emission. We interpret this ring as tracing the rim of an inner cavity or gap, possibly created by a planet or a substellar companion. The ring appears asymmetric, with the western part significantly brighter than the eastern one. This azimuthal asymmetry is reminiscent of the lopsided structures that are expected to be produced as a consequence of trappingmore » of large dust grains. Our observations also reveal an outer annular gap at radii from ∼40 to ∼70 AU. Unlike other sources, the radii of the inner cavity, the ring, and the outer gap observed in the 7 mm images, which trace preferentially the distribution of large (millimeter/centimeter sized) dust grains, coincide with those obtained from a previous near-infrared polarimetric image, which traces scattered light from small (micron-sized) dust grains. We model the broadband spectral energy distribution and the 7 mm images to constrain the disk physical structure. From this modeling we infer the presence of a small (radius ∼0.6 AU) residual disk inside the central cavity, indicating that the HD 169142 disk is a pre-transitional disk. The distribution of dust in three annuli with gaps in between them suggests that the disk in HD 169142 is being disrupted by at least two planets or substellar objects.« less

  11. Generation of dynamo magnetic fields in protoplanetary and other astrophysical accretion disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Levy, E. H.

    1988-01-01

    A computational method for treating the generation of dynamo magnetic fields in astrophysical disks is presented. The numerical difficulty of handling the boundary condition at infinity in the cylindrical disk geometry is overcome by embedding the disk in a spherical computational space and matching the solutions to analytically tractable spherical functions in the surrounding space. The lowest lying dynamo normal modes for a 'thick' astrophysical disk are calculated. The generated modes found are all oscillatory and spatially localized. Tha potential implications of the results for the properties of dynamo magnetic fields in real astrophysical disks are discussed.

  12. Rotation of melting ice disks due to melt fluid flow.

    PubMed

    Dorbolo, S; Adami, N; Dubois, C; Caps, H; Vandewalle, N; Darbois-Texier, B

    2016-03-01

    We report experiments concerning the melting of ice disks (85 mm in diameter and 14 mm in height) at the surface of a thermalized water bath. During the melting, the ice disks undergo translational and rotational motions. In particular, the disks rotate. The rotation speed has been found to increase with the bath temperature. We investigated the flow under the bottom face of the ice disks by a particle image velocimetry technique. We find that the flow goes downwards and also rotates horizontally, so that a vertical vortex is generated under the ice disk. The proposed mechanism is the following. In the vicinity of the bottom face of the disk, the water eventually reaches the temperature of 4 °C for which the water density is maximum. The 4 °C water sinks and generates a downwards plume. The observed vertical vorticity results from the flow in the plume. Finally, by viscous entrainment, the horizontal rotation of the flow induces the solid rotation of the ice block. This mechanism seems generic: any vertical flow that generates a vortex will induce the rotation of a floating object.

  13. Probing the dusty disk around the Herbig Ae star MWC 480

    NASA Astrophysics Data System (ADS)

    Hamidouche, M.; Looney, L. W.; Shaw, J.

    2004-12-01

    It is already quite evident that some Herbig AeBe stars are surrounded by circumstellar dusty disk (e.g. Fuente et al 2003, Natta et al. 2004). We present sub-arcsecond resolution observations at λ = 1mm of dust continuum emission from circumstellar structures around the Herbig AeBe star MWC 480. We have detected a disk-like structure around the star. This is the first well resolved Herbig Ae disk at 1.3 mm. We deduced from the best fit Gaussian a FWHM of 100 AU. We deduce a disk mass of ˜ 0.017 M⊙ assuming optically thin emission. We focus the discussion upon the morphology of the disk and use models to infer the physical parameters (e.g. the density profile). In addition, we discuss a new method with which to fit the numerical model to interferometric data of circumstellar structures around Herbig AeBe stars and T Tauri stars. This method allows us to compare complete Fourier dataset to the Model.

  14. Experimental development of rod pinch diode radiographic source using modified KALI 1000 pulsed power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satyanarayana, N.; Basu, Shibaji; Rajawat, R.K., E-mail: satya_3026@yahoo.com

    2014-07-01

    This paper highlights the development of Rod Pinch (RP) diode for flash X-ray generation as intense radiographic source at BARC, Vizag. The typical RP diode employed used a small diameter (1-2 mm) anode rod extended through a cathode circular aperture (5-6 mm inner diameter). The diode chamber is maintained at 10{sup -5} Torr vacuum by a rotary backed diffusion pump. Experiments performed on a modified Kali 1000 Pulsed Power System (300 kV, 30 kA, 100 ns) were aimed at optimizing the source by maximizing the figure of merit (dose @ 1m in rad/spot diameter{sup 2} in mm{sup 2}) with minimizingmore » of the diode impedance. The typical electron beam parameters used in the experiments are 240-270 kV, 20-25 kA, 100 ns, with a few hundreds of kA/cm{sup 2} current density. The optimization resulted in a configuration with tungsten anode rod having dimensions of a 1.6 mm diameter, tapering extension length 5-25 mm beyond the graphite cathode aperture (Cathode disk ID = 5 mm, thickness = 3mm) to produce a radiation dose of 150-200 milli rad at 1 m distance having an estimated spot-size of 1-2 mm. The radiation emitted from a rod-pinch diode is measured using Thermoluminescence dosimeters (TLDs) at an angular interval of 15° on either side of the rod in horizontal and vertical plane. (author)« less

  15. Young Stellar Objects in Lynds 1641: Disks, Accretion, and Star Formation History

    NASA Astrophysics Data System (ADS)

    Fang, Min; Kim, Jinyoung Serena; van Boekel, Roy; Sicilia-Aguilar, Aurora; Henning, Thomas; Flaherty, Kevin

    2013-07-01

    We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, the Two Micron All Sky Survey, and XMM covering ~1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use these data, along with archival photometric data, to derive spectral types, extinction values, masses, ages, and accretion rates. We obtain a disk fraction of ~50% in L1641. The disk frequency is almost constant as a function of stellar mass with a slight peak at log (M */M ⊙) ≈ -0.25. The analysis of multi-epoch spectroscopic data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses. Forty-six new transition disk (TD) objects are confirmed in this work, and we find that the fraction of accreting TDs is lower than for optically thick disks (40%-45% versus 77%-79%, respectively). We confirm our previous result that the accreting TDs have a median accretion rate similar to normal optically thick disks. We confirm that two star formation modes (isolated versus clustered) exist in L1641. We find that the diskless YSOs are statistically older than the YSOs with optically thick disks and the TD objects have a median age that is intermediate between those of the other two populations. We tentatively study the star formation history in L1641 based on the age distribution and find that star formation started to be active 2-3 Myr ago.

  16. A vacuum (10(exp -9) Torr) friction apparatus for determining friction and endurance life of MoSx films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Honecy, Frank S.; Abel, Phillip B.; Pepper, Stephen V.; Spalvins, Talivaldis; Wheeler, Donald R.

    1992-01-01

    The first part of this paper describes an ultrahigh vacuum friction apparatus (tribometer). The tribometer can be used in a ball-on-disk configuration and is specifically designed to measure the friction and endurance life of solid lubricating films such as MoS(x) in vacuum at a pressure of 10 exp -7 Pa. The sliding mode is typically unidirectional at a constant rotating speed. The second part of this paper presents some representative friction and endurance life data for magnetron sputtered MoS(x) films (110 nm thick) deposited on sputter-cleaned 440 C stainless-steel disk substrates, which were slid against a 6-mm-diameter 440 C stainless-steel bearing ball. All experiments were conducted with loads of 0.49 to 3.6 N (average Hertzian contact pressure, 0.33 to 0.69 GPa), at a constant rotating speed of 120 rpm (sliding velocity ranging from 31 to 107 mm/s due to the range of wear track radii involved in the experiments), in a vacuum of 7 x 10 exp -7 Pa and at room temperature. The results indicate that there are similarities in friction behavior of MoS(x) films overs their life cycles regardless of load applied. The coefficient of friction (mu) decreases as load W increases according to mu = kW exp -1/3. The endurance life E of MoS(x) films decreases as the load W increases according to E = KW exp -1.4 for the load range. The load- (or contract-pressure-) dependent endurance life allows us to reduce the time for wear experiments and to accelerate endurance life testing of MoS(x) films. For the magnetron-sputtered MoS(x) films deposited on 440 C stainless-steel disks: the specific wear rate normalized to the load and the number of revolutions was 3 x 10 exp -8 mm exp 3/N-revolution; the specific wear rate normalized to the load and the total sliding distance was 8 x 10 exp -7 mm exp 3/N-m; and the nondimensional wear coefficient of was approximately 5 x 10 exp -6. The values are almost independent of load in the range 0.49 to 3.6 N (average Hertzian contact pressures of 0.33 to 0.69 GPa).

  17. Optical residual stress measurement in TFT-LCD panels

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chung; Sung, Po-Chi

    2017-06-01

    The residual stress of the glass substrate might be one of causes to produce the non-uniform light distribution defect, i.e. Mura, in thin film transistor-liquid crystal display (TFT-LCD) panels. Glass is a birefringent material with very low birefringence. Furthermore, the thinner and thinner thickness request from the market makes the traditional photoelasticity almost impossible to measure the residual stresses produced in thin glass plates. Recently, a low-level stress measurement method called transmissivity extremities theory of photoelasticity (TEToP) was successfully developed to measure the residual stress in glass plate. Besides, to measure the stress of the glass plate in the TFT-LCD panel whose rear surface may has different kinds of coatings, an advanced reflection photoelasticity was also developed. In this paper, three commercially available glass plates with 0.33mm nominal thickness and three glass circular disks with different coatings were inspected to verify the feasibility of the TEToP and the advanced reflection photoelasticity, respectively.

  18. Feasibility of using PZT actuators to study the dynamic behavior of a rotating disk due to rotor-stator interaction.

    PubMed

    Presas, Alexandre; Egusquiza, Eduard; Valero, Carme; Valentin, David; Seidel, Ulrich

    2014-07-07

    In this paper, PZT actuators are used to study the dynamic behavior of a rotating disk structure due to rotor-stator interaction excitation. The disk is studied with two different surrounding fluids-air and water. The study has been performed analytically and validated experimentally. For the theoretical analysis, the natural frequencies and the associated mode shapes of the rotating disk in air and water are obtained with the Kirchhoff-Love thin plate theory coupled with the interaction with the surrounding fluid. A model for the Rotor Stator Interaction that occurs in many rotating disk-like parts of turbomachinery such as compressors, hydraulic runners or alternators is presented. The dynamic behavior of the rotating disk due to this excitation is deduced. For the experimental analysis a test rig has been developed. It consists of a stainless steel disk (r = 198 mm and h = 8 mm) connected to a variable speed motor. Excitation and response are measured from the rotating system. For the rotating excitation four piezoelectric patches have been used. Calibrating the piezoelectric patches in amplitude and phase, different rotating excitation patterns are applied on the rotating disk in air and in water. Results show the feasibility of using PZT to control the response of the disk due to a rotor-stator interaction.

  19. Combined use of a femtosecond laser and a microkeratome in obtaining thin grafts for Descemet stripping automated endothelial keratoplasty: an eye bank study.

    PubMed

    Murta, Joaquim N; Rosa, Andreia M; Quadrado, Maria Joao C; Russo, Ana D; Brito, Sergio S; Silva, Maria Fátima L

    2013-01-01

    To evaluate the use of a femtosecond laser combined with a microkeratome in the preparation of posterior corneal disks for Descemet stripping automated endothelial keratoplasty (DSAEK). This experimental study involved ultrathin DSAEK tissue preparation of 22 donor corneas unsuitable for transplantation. The first cut was performed with an Intralase® FS60 laser and the second cut with a Moria CBm 300-µm microkeratome. The thickness of the first cut was modified for each cornea to obtain a final graft thickness of less than 110 µm. Precut and postcut central pachymetry were performed with an ultrasonic pachymeter. Central endothelial cell density (ECD) was calculated before and 24 hours after tissue preparation. Final graft thickness was 105.0 ± 26.1 (SD) µm (range 65-117). The mean microkeratome head cut thickness was 324.5 ± 10.9 µm (range 310-345). Precut and postcut ECDs averaged 2250 ± 222 and 2093 ± 286 cells/mm2, respectively, representing 6.9% of cell loss. No corneas were perforated. Femtosecond FS60 lasers and Moria CBm 300-µm microkeratomes can be used sequentially to prepare consistently thin DSAEK grafts with no irregular cuts or cornea perforations.

  20. Thermal management of liquid direct cooled split disk laser

    NASA Astrophysics Data System (ADS)

    Yang, Huomu; Feng, Guoying; Zhou, Shouhuan

    2015-02-01

    The thermal effects of a liquid direct cooled split disk laser are modeled and analytically solved. The analytical solutions with the consideration of longitudinal cooling liquid temperature rise have been given to describe the temperature distribution in the split disk and cooling liquid based on the hydrodynamics and heat transfer. The influence of cooling liquid, liquid flowing velocity, thickness of cooling channel and of disk gain medium can also be got from the analytical solutions.

  1. Influence of increment thickness on the similarity of composite shade: a pilot study.

    PubMed

    Roselino, Lourenco de Moraes Rego; Garcia, Lucas da Fonseca Roberti; Sousa, Ana Beatriz Silva; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2012-01-01

    The aim of this study was to evaluate the similarity in shade between increments of different composite thicknesses. Fifty test specimens 12 mm in diameter were fabricated and separated into five groups (n = 10) according to sample thickness: 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm. Specimens were polished with water abrasive papers and silicone points. Next, based on the CIE L*a*b* system, test specimens were submitted to color readouts, and the values obtained for the coordinates L*, a*, and b* for each thickness were compared using one-way ANOVA and a Tukey test (P < 0.05). The results demonstrated that there was a reduction in coordinate L* as the test specimen thickness increased, with statistically significant differences (P < 0.05), except for 2.0 mm and 2.5 mm thicknesses (P > 0.05). Samples 1.5 mm thick presented less variation of a*, while a greater variation occurred for samples 2.5 mm thick, with a significant difference in comparison with the other thicknesses (P < 0.05), except for 2.0 mm (P > 0.05). Samples 0.5 mm thick presented a greater variation of b*, while the lowest variation in this coordinate occurred for samples 2.5 mm thick, which was significantly different from the other samples (P < 0.05). It was concluded that different composite thicknesses do not present similarity of color and have an influence on the final result of esthetic restorations.

  2. Optimization of test parameters for quantitative stress measurements using the miniaturized disk-bend test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, D.E.; Chen, F.C.; Zhang, J.

    A recently-developed miniaturized disk-bend test (MDBT) has been successfully used to evaluate the mechanical properties of a variety of materials, using specimens 3 mm in diameter. The load is applied either by a solid ball (the ball-on ring (BOR) mode), or by a hollow cylinder (the ring-on-ring (ROR) mode). They authors have reproduced the yield stresses of ordered intermetallic compounds and the fracture toughness of several ceramics using analytical solutions to the equations of elasticity theory. Despite this success there are several curious features involved in the analysis of data; for example, in previous tests conducted in the BOR modemore » correct values of the yield stress were obtained using the equations appropriate to clamped specimens, whether or not hey were actually clamped in the test fixture. They show that this is ubiquitous to tests in the BOR mode, and does not arise because of frictional constraints at the supporting ring. They have also completed a thorough evaluation of testing in the ROR mode, in which the yield stresses of cold-rolled or annealed AISI type 302 stainless steel were measured using various combinations of specimen thickness and radii of the loading and supporting rings, and compared to those of tensile specimens machined from the same material. The most accurate and reproducible measurements of the yield strength were obtained for specific combinations of specimen thickness and geometry of the apparatus.« less

  3. Gaps, rings, and non-axisymmetric structures in protoplanetary disks: Emission from large grains

    NASA Astrophysics Data System (ADS)

    Ruge, J. P.; Flock, M.; Wolf, S.; Dzyurkevich, N.; Fromang, S.; Henning, Th.; Klahr, H.; Meheut, H.

    2016-05-01

    Aims: Dust grains with sizes around (sub)mm are expected to couple only weakly to the gas motion in regions beyond 10 au of circumstellar disks. In this work, we investigate the influence of the spatial distribution of these grains on the (sub)mm appearance of magnetized protoplanetary disks. Methods: We perform non-ideal global 3D magneto-hydrodynamic (MHD) stratified disk simulations, including particles of different sizes (50 μm to 1 cm), using a Lagrangian particle solver. Subsequently, we calculate the spatial dust temperature distribution, including the dynamically coupled submicron-sized dust grains, and derive ideal continuum re-emission maps of the disk through radiative transfer simulations. Finally, we investigate the feasibility of observing specific structures in the thermal re-emission maps with the Atacama Large Millimeter/submillimeter Array (ALMA). Results: Depending on the level of turbulence, the radial pressure gradient of the gas, and the grain size, particles settle to the midplane and/or drift radially inward. The pressure bump close to the outer edge of the dead-zone leads to particle-trapping in ring structures. More specifically, vortices in the disk concentrate the dust and create an inhomogeneous distribution of solid material in the azimuthal direction. The large-scale disk perturbations are preserved in the (sub)mm re-emission maps. The observable structures are very similar to those expected from planet-disk interaction. Additionally, the larger dust particles increase the brightness contrast between the gap and ring structures. We find that rings, gaps, and the dust accumulation in the vortex could be traced with ALMA down to a scale of a few astronomical units in circumstellar disks located in nearby star-forming regions. Finally, we present a brief comparison of these structures with those recently found with ALMA in the young circumstellar disks of HL Tau and Oph IRS 48.

  4. Discovery of Small-Scale Spiral Structures in the Disk of SAO 206462 (HD 135344B): Implications for the Physical State of the Disk from Spiral Density Wave Theory

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Currie, T.

    2012-01-01

    We present high-resolution, H-band, imaging observations, collected with Subaru/HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 135344B). Although previous sub-mm imagery suggested the existence of the dust-depleted cavity at r approximates 46 AU, our observations reveal the presence of scattered light components as close as 0".2 (approx 28 AU) from the star. Moreover, we have discovered two small-scale spiral structures lying within 0".5 (approx 70 AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h approx 0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes, independently from sub-mm observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations.

  5. INVESTIGATING PLANET FORMATION IN CIRCUMSTELLAR DISKS: CARMA OBSERVATIONS OF RY Tau AND DG Tau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isella, Andrea; Carpenter, John M.; Sargent, Anneila I., E-mail: isella@astro.caltech.ed

    2010-05-10

    We present CARMA observations of the thermal dust emission from the circumstellar disks around the young stars RY Tau and DG Tau at wavelengths of 1.3 mm and 2.8 mm. The angular resolution of the maps is as high as 0.''15, or 20 AU at the distance of the Taurus cloud, which is a factor of 2 higher than has been achieved to date at these wavelengths. The unprecedented detail of the resulting disk images enables us to address three important questions related to the formation of planets. (1) What is the radial distribution of the circumstellar dust? (2) Doesmore » the dust emission show any indication of gaps that might signify the presence of (proto-)planets? (3) Do the dust properties depend on the orbital radius? We find that modeling the disk surface density in terms of either a classical power law or the similarity solution for viscous disk evolution reproduces the observations well. Both models constrain the surface density between 15 and 50 AU to within 30% for a given dust opacity. Outside this range, the densities inferred from the two models differ by almost an order of magnitude. The 1.3 mm image from RY Tau shows two peaks separated by 0.''2 with a decline in the dust emission toward the stellar position, which is significant at about 2{sigma}-4{sigma}. For both RY Tau and DG Tau, the dust emission at radii larger than 15 AU displays no significant deviation from an unperturbed viscous disk model. In particular, no radial gaps in the dust distribution are detected. Under reasonable assumptions, we exclude the presence of planets more massive than 5 M{sub J} orbiting either star at distances between about 10 and 60 AU, unless such a planet is so young that there has been insufficient time to open a gap in the disk surface density. The radial variation of the dust opacity slope, {beta}, was investigated by comparing the 1.3 mm and 2.8 mm observations. We find mean values of {beta} of 0.5 and 0.7 for DG Tau and RY Tau, respectively. Variations in {beta} are smaller than {Delta}{beta} = 0.7 between 20 and 70 AU. These results confirm that the circumstellar dust throughout these disks differs significantly from dust in the interstellar medium.« less

  6. Friction and wear performance of ion-beam deposited diamondlike carbon films on steel substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdemir, A.; Nichols, F.A.; Pan, X.Z.

    1993-01-01

    In this study, we investigated the friction and wear performance of ion-beam-deposited diamondlike-carbon (DLC) films (1.5 {mu}m thick) on AISI 440C steel substrates. Furthermore, we ran a series of long-duration wear tests under 5, 10, and 20 N load to assess the load-bearing capacity and durability limits of these films under each load. Tests were performed on a ball-on-disk machine in open air at room temperature {approx} 22{plus_minus}1{degrees}C, and humidity, {approx} 30{plus_minus}5%. For the test conditions explored, we found that (1) the steady-state friction coefficients of pairs without a DLC film were in the range of 0.7 to 0.9 andmore » the average wear rates of 440C balls (9.55 mm diameter) sliding against uncoated 440C disks were on the order of 10{sup {minus}5} mm{sup 3}/N.m, depending on contact load; (2) DLC films reduced the steady-state friction coefficients of test pairs by factors of 6 to 8, and the wear rates of pins by factors of 500 to 2000; (3) The wear of disks coated with a DLC film was virtually unmeasurable while the wear of uncoated disks was quite substantial, (4) these DLC films were able to endure the range of loads, 5 to 20 N, without any delamination and to last over a million cycles before wearing out. During long-duration wear tests, the friction coefficients were initially on the order of 0.15, but decreased to some low values of 0.05 to 0.07 after sliding for 15 to 25 km, depending on the load, and remained low until wearing out. This low-friction regime was correlated with the formation of a carbon-rich transfer film on the wear scar of 440C balls. Micro-laser-Raman spectroscopy and scanning-electron microscopy were used to examine the structure and chemistry of worn surfaces and to elucidate the wear- and friction-reducing mechanisms of the DLC film.« less

  7. Friction and wear performance of ion-beam deposited diamondlike carbon films on steel substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdemir, A.; Nichols, F.A.; Pan, X.Z.

    1993-01-01

    In this study, we investigated the friction and wear performance of ion-beam-deposited diamondlike-carbon (DLC) films (1.5 [mu]m thick) on AISI 440C steel substrates. Furthermore, we ran a series of long-duration wear tests under 5, 10, and 20 N load to assess the load-bearing capacity and durability limits of these films under each load. Tests were performed on a ball-on-disk machine in open air at room temperature [approx] 22[plus minus]1[degrees]C, and humidity, [approx] 30[plus minus]5%. For the test conditions explored, we found that (1) the steady-state friction coefficients of pairs without a DLC film were in the range of 0.7 tomore » 0.9 and the average wear rates of 440C balls (9.55 mm diameter) sliding against uncoated 440C disks were on the order of 10[sup [minus]5] mm[sup 3]/N.m, depending on contact load; (2) DLC films reduced the steady-state friction coefficients of test pairs by factors of 6 to 8, and the wear rates of pins by factors of 500 to 2000; (3) The wear of disks coated with a DLC film was virtually unmeasurable while the wear of uncoated disks was quite substantial, (4) these DLC films were able to endure the range of loads, 5 to 20 N, without any delamination and to last over a million cycles before wearing out. During long-duration wear tests, the friction coefficients were initially on the order of 0.15, but decreased to some low values of 0.05 to 0.07 after sliding for 15 to 25 km, depending on the load, and remained low until wearing out. This low-friction regime was correlated with the formation of a carbon-rich transfer film on the wear scar of 440C balls. Micro-laser-Raman spectroscopy and scanning-electron microscopy were used to examine the structure and chemistry of worn surfaces and to elucidate the wear- and friction-reducing mechanisms of the DLC film.« less

  8. Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Matsko, Andrey; Maleki, Lute

    2004-01-01

    An experimental tunable, narrow-band-pass electro-optical filter is based on a whispering-gallery resonator. This device is a prototype of tunable filters needed for the further development of reconfigurable networking wavelength-division multiplexers and communication systems that utilize radio-frequency (more specifically, microwave) subcarrier signals on optical carrier signals. The characteristics of whispering-gallery resonators that make them attractive for such applications include high tuning speed, compactness, wide tuning range, low power consumption, and compatibility with single-mode optical fibers. In addition, relative to Fabry-Perot resonators, these devices offer advantages of greater robustness and lower cost. As described in several prior NASA Tech Briefs articles, a whispering-gallery resonator is a spheroidal, disk-like, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. The experimental whispering-gallery tunable filter (see figure) is made from a disk of Z-cut LiNbO3 of 4.8-mm diameter and 0.17-mm thickness. The perimeter of the disk is rounded to a radius of curvature of 100 m. Metal coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery modes by means of a diamond prism. Another diamond prism is used to couple light from the whispering-gallery modes to an output optical fiber. This device is designed and operated to exploit transverse magnetic (TM) whispering- gallery modes, rather than transverse electric (TE) modes because the resonance quality factors (Q values) of the TM modes are higher. If Q values were not of major concern, it would be better to use the TE modes because the electro-optical shifts of the TE modes are 3 times those of the TM modes.

  9. Foreign Object Damage in Disks of Two Gas-turbine-grade Silicon Nitrides by Steel Ball Projectiles at Ambient Temperature

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Pereira, J. Michael; Janosik, Lesley A.; Bhatt, Ramakrishna T.

    2003-01-01

    Foreign object damage (FOD) behavior of two commercial gas-turbine-grade silicon nitrides, AS800 and SN282, was determined at ambient temperature through postimpact strength testing of disks impacted by steel ball projectiles with a diameter of 1.59 mm in a velocity range from 115 to 440 m/s. AS800 silicon nitride exhibited a greater FOD resistance than SN282, primarily due to its greater value of fracture toughness (k(sub Ic)). The critical impact velocity V(sub c) for which the corresponding postimpact strength was the lowest was V(sub c) approximately equal to 440 and 300 m/s AS800 and SN282, respectively. A unique lower strength regime was typified for both silicon nitrides depending on impact velocity and was attributed to significant radial cracking. The damage generated by projectile impact was typically in the form of ring, radial, and cone cracks with their severity and combination being dependent on impact velocity. Unlike the thick (4 millimeters) flexure bar specimens used in our previous studies, the thin (2 millimeter) disk target specimen exhibited a unique back-side radial cracking on the reverse side just beneath the impact sites at and above impact velocities of 160 meters per second for SN282 and 220 meters per second AS800.

  10. Airborne ultrasonic transducer using polymer-based elastomer with high output-to-weight ratio

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2015-08-01

    With the properties of low density, low elastic modulus, and low mechanical loss, poly(phenylene sulfide) (PPS) is a suitable material as the elastomer in an airborne ultrasonic transducer for generating large vibration velocity. In this study, we design and fabricate a transducer composed of a PPS-based longitudinal vibrator and a PPS-based disk of 0.3 mm thickness to obtain high-intensity ultrasound. The rated sound pressure at a distance of 300 mm reached 38.9 Pa (125 dB, 0 dB re. 0.02 mPa) when the frequency and voltage were 58.90 kHz and 20 V. The weight of this transducer is 6.3 g. The ratio of the sound pressure to the weight of the prototype transducer is 1.8 times larger than that of the commercial transducer. The experimental results indicate that PPS is a good substitute for metal as the elastomer for manufacturing airborne ultrasonic transducers with a high output-to-weight ratio.

  11. Interpretive criteria of antimicrobial disk susceptibility tests with flomoxef.

    PubMed

    Grimm, H

    1991-01-01

    320 recently isolated pathogens, 20 strains from each of 16 species, were investigated using Mueller-Hinton agar and DIN as well as NCCLS standards. The geometric mean of the agar dilution MICs of flomoxef were 0.44 mg/l for Staphylococcus aureus, 0.05 mg/l (Klebsiella oxytoca) to 12.6 mg/l (Enterobacter spp.) for enterobacteriaceae, 33.1 mg/l for Acinetobacter anitratus, 64 mg/l for Enterococcus faecalis, and more than 256 mg/l for Pseudomonas aeruginosa. For disk susceptibility testing of flomoxef a 30 micrograms disk loading and the following interpretation of inhibition zones using the DIN method were recommended: resistant-up to 22 mm (corresponding to MICs of 8 mg/l or more), moderately susceptible-23 to 29 mm (corresponding to MICs from 1 to 4 mg/l), and susceptible-30 mm or more (corresponding to MICs of 0.5 mg/l or less). The respective values for the NCCLS method using the American high MIC breakpoints are: resistant--up to 14 mm (corresponding to MICs of 32 mg/l or more), moderately susceptible--15 to 17 mm (corresponding to MICs of 16 mg/l), and susceptible--18 mm or more (corresponding to MICs of 8 mg/l or less).

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follette, Katherine B.; Close, Laird; Tamura, Motohide

    We present the first near infrared (NIR) spatially resolved images of the circumstellar transitional disk around SR21. These images were obtained with the Subaru HiCIAO camera, adaptive optics, and the polarized differential imaging technique. We resolve the disk in scattered light at H-band for stellocentric 0.''1 {<=} r {<=} 0.''6 (12 {approx}< r {approx}< 75 AU). We compare our results with previously published spatially resolved 880 {mu}m continuum Submillimeter Array images that show an inner r {approx}< 36 AU cavity in SR21. Radiative transfer models reveal that the large disk depletion factor invoked to explain SR21's sub-mm cavity cannot bemore » 'universal' for all grain sizes. Even significantly more moderate depletions ({delta} = 0.1, 0.01 relative to an undepleted disk) than those that reproduce the sub-mm cavity ({delta} {approx} 10{sup -6}) are inconsistent with our H-band images when they are assumed to carry over to small grains, suggesting that surface grains scattering in the NIR either survive or are generated by whatever mechanism is clearing the disk midplane. In fact, the radial polarized intensity profile of our H-band observations is smooth and steeply inwardly-increasing (r {sup -3}), with no evidence of a break at the 36 AU sub-mm cavity wall. We hypothesize that this profile is dominated by an optically thin disk envelope or atmosphere component. We also discuss the compatibility of our data with the previously postulated existence of a sub-stellar companion to SR21 at r {approx} 10-20 AU, and find that we can neither exclude nor verify this scenario. This study demonstrates the power of multiwavelength imaging of transitional disks to inform modeling efforts, including the debate over precisely what physical mechanism is responsible for clearing these disks of their large midplane grains.« less

  13. Assessment of Metronidazole Susceptibility in Helicobacter pylori: Statistical Validation and Error Rate Analysis of Breakpoints Determined by the Disk Diffusion Test

    PubMed Central

    Chaves, Sandra; Gadanho, Mário; Tenreiro, Rogério; Cabrita, José

    1999-01-01

    Metronidazole susceptibility of 100 Helicobacter pylori strains was assessed by determining the inhibition zone diameters by disk diffusion test and the MICs by agar dilution and PDM Epsilometer test (E test). Linear regression analysis was performed, allowing the definition of significant linear relations, and revealed correlations of disk diffusion results with both E-test and agar dilution results (r2 = 0.88 and 0.81, respectively). No significant differences (P = 0.84) were found between MICs defined by E test and those defined by agar dilution, taken as a standard. Reproducibility comparison between E-test and disk diffusion tests showed that they are equivalent and with good precision. Two interpretative susceptibility schemes (with or without an intermediate class) were compared by an interpretative error rate analysis method. The susceptibility classification scheme that included the intermediate category was retained, and breakpoints were assessed for diffusion assay with 5-μg metronidazole disks. Strains with inhibition zone diameters less than 16 mm were defined as resistant (MIC > 8 μg/ml), those with zone diameters equal to or greater than 16 mm but less than 21 mm were considered intermediate (4 μg/ml < MIC ≤ 8 μg/ml), and those with zone diameters of 21 mm or greater were regarded as susceptible (MIC ≤ 4 μg/ml). Error rate analysis applied to this classification scheme showed occurrence frequencies of 1% for major errors and 7% for minor errors, when the results were compared to those obtained by agar dilution. No very major errors were detected, suggesting that disk diffusion might be a good alternative for determining the metronidazole sensitivity of H. pylori strains. PMID:10203543

  14. ALMA 1.3 mm Map of the HD 95086 System

    NASA Astrophysics Data System (ADS)

    Su, Kate Y. L.; MacGregor, Meredith A.; Booth, Mark; Wilner, David J.; Flaherty, Kevin; Hughes, A. Meredith; Phillips, Neil M.; Malhotra, Renu; Hales, Antonio S.; Morrison, Sarah; Ertel, Steve; Matthews, Brenda C.; Dent, William R. F.; Casassus, Simon

    2017-12-01

    Planets and minor bodies such as asteroids, Kuiper-Belt objects, and comets are integral components of a planetary system. Interactions among them leave clues about the formation process of a planetary system. The signature of such interactions is most prominent through observations of its debris disk at millimeter wavelengths where emission is dominated by the population of large grains that stay close to their parent bodies. Here we present ALMA 1.3 mm observations of HD 95086, a young early-type star that hosts a directly imaged giant planet b and a massive debris disk with both asteroid- and Kuiper-Belt analogs. The location of the Kuiper-Belt analog is resolved for the first time. The system can be depicted as a broad (ΔR/R ˜ 0.84), inclined (30° ± 3°) ring with millimeter emission peaked at 200 ± 6 au from the star. The 1.3 mm disk emission is consistent with a broad disk with sharp boundaries from 106 ± 6 to 320 ± 20 au with a surface density distribution described by a power law with an index of -0.5 ± 0.2. Our deep ALMA map also reveals a bright source located near the edge of the ring, whose brightness at 1.3 mm and potential spectral energy distribution are consistent with it being a luminous star-forming galaxy at high redshift. We set constraints on the orbital properties of planet b assuming coplanarity with the observed disk.

  15. Melanocytoma of the optic disk in the Korean population.

    PubMed

    Lee, Christopher S; Bae, Jeong H; Jeon, Ik H; Byeon, Suk H; Koh, Hyoung J; Lee, Sung C

    2010-01-01

    To report on the clinical features and the natural course of optic disk melanocytoma in the Korean population. A retrospective review of medical records was performed on 27 consecutive patients with optic disk melanocytoma. In cases with tumor enlargement, surface area and diameter of tumors were measured from fundus images using computer software. The median age at diagnosis was 46 years with a slight female predominance (63%). The median tumor diameter and height were 3.1 mm and 1.9 mm, respectively. There were no cases with tumor-related visual loss for a median follow-up of 2 years. Tumor enlargement was observed in 4 of 21 patients (19%) that had follow-up of 1 year or more with no malignant transformation. The mean change of tumor surface area was 2.4 mm (52% increase), and the mean change of tumor diameter was 1.8 mm over a mean follow-up of 53 months in 4 cases with tumor growth. Only tumor vascularization on fluorescent angiography correlated with tumor growth (Log-rank test; P = 0.049). Kaplan-Meier survival estimated that the tumor growth was 0% at 1 year, 14% at 5 years, and 57% at 8 years. Optic disk melanocytoma in the Korean population tends to be superiorly located in the optic disk, and visual prognosis was excellent. Periodic ocular examination is warranted because 57% of patients were estimated to show tumor enlargement by 8 years of follow-up.

  16. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    PubMed

    Fuente, Asunción; Baruteau, Clément; Neri, Roberto; Carmona, Andrés; Agúndez, Marcelino; Goicoechea, Javier R; Bachiller, Rafael; Cernicharo, José; Berné, Olivier

    2017-09-01

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0".58×0".78 ≈ 80×110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.

  17. ALMA Reveals Transition of Polarization Pattern with Wavelength in HL Tau’s Disk

    NASA Astrophysics Data System (ADS)

    Stephens, Ian W.; Yang, Haifeng; Li, Zhi-Yun; Looney, Leslie W.; Kataoka, Akimasa; Kwon, Woojin; Fernández-López, Manuel; Hull, Charles L. H.; Hughes, Meredith; Segura-Cox, Dominique; Mundy, Lee; Crutcher, Richard; Rao, Ramprasad

    2017-12-01

    The mechanism for producing polarized emission from protostellar disks at (sub)millimeter wavelengths is currently uncertain. Classically, polarization is expected from non-spherical grains aligned with the magnetic field. Recently, two alternatives have been suggested. One polarization mechanism is caused by self-scattering from dust grains of sizes comparable with the wavelength, while the other mechanism is due to grains aligned with their short axes along the direction of radiation anisotropy. The latter has recently been shown as a likely mechanism for causing the dust polarization detected in HL Tau at 3.1 mm. In this paper, we present ALMA polarization observations of HL Tau for two more wavelengths: 870 μm and 1.3 mm. The morphology at 870 μm matches the expectation for self-scattering, while that at 1.3 mm shows a mix between self-scattering and grains aligned with the radiation anisotropy. The observations cast doubt on the ability of (sub)millimeter continuum polarization to probe disk magnetic fields for at least HL Tau. By showing two distinct polarization morphologies at 870 μm and 3.1 mm and a transition between the two at 1.3 mm, this paper provides definitive evidence that the dominant (sub)millimeter polarization mechanism transitions with wavelength. In addition, if the polarization at 870 μm is due to scattering, the lack of polarization asymmetry along the minor axis of the inclined disk implies that the large grains responsible for the scattering have already settled into a geometrically thin layer, and the presence of asymmetry along the major axis indicates that the HL Tau disk is not completely axisymmetric.

  18. THE STRUCTURE OF PRE-TRANSITIONAL PROTOPLANETARY DISKS. II. AZIMUTHAL ASYMMETRIES, DIFFERENT RADIAL DISTRIBUTIONS OF LARGE AND SMALL DUST GRAINS IN PDS 70 {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, J.; Wisniewski, J.; Tsukagoshi, T.

    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-μm size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum atmore » 1.3 mm and {sup 12}CO J = 2 → 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of ∼65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of ∼80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.« less

  19. The Structure of Pre-Transitional Protoplanetary Disks. II Azimuthal Asymmetries, Different Radial Distributions of Large and Small Dust Grains in PDS 70

    NASA Technical Reports Server (NTRS)

    Hashimoto, J.; Tsukagoshi, T.; Brown, J. M.; Dong, R.; Muto, T.; Zhu, Z.; Wisniewski, J.; Ohashi, N.; Kudo, T.; Kusakabe, N.; hide

    2015-01-01

    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-micron size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum at 1.3 mm and CO-12 J = 2 yields 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of approx. 65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of approx. 80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.

  20. The properties of the disk system of globular clusters

    NASA Technical Reports Server (NTRS)

    Armandroff, Taft E.

    1989-01-01

    A large refined data sample is used to study the properties and origin of the disk system of globular clusters. A scale height for the disk cluster system of 800-1500 pc is found which is consistent with scale-height determinations for samples of field stars identified with the Galactic thick disk. A rotational velocity of 193 + or - 29 km/s and a line-of-sight velocity dispersion of 59 + or - 14 km/s have been found for the metal-rich clusters.

  1. Structure of air shower disc near the core

    NASA Technical Reports Server (NTRS)

    Inoue, N.; Kawamoto, M.; Misaki, Y.; Maeda, T.; Takeuchi, T.; Toyoda, Y.

    1985-01-01

    The longitudinal structure of the air shower disk is studied by measuring the arrival time distributions of air shower particles for showers with electron size in the range 3.2 x 10 to the 5.5. power to 3.2 x 10 to the 7.5 power in the Akeno air-shower array (930 gcm squared atmospheric depth). The average FWHM as a parameter of thickness of air shower disk increases with core distances at less than 50m. AT the present stage, dependence on electron size, zenith angle and air shower age is not apparent. The average thickness of the air shower disk within a core distance of 50m could be determined by an electromagnetic cascade starting from the lower altitude.

  2. Missing mass or missing light?

    NASA Astrophysics Data System (ADS)

    Davies, J. I.

    1990-07-01

    Disney et al. (1989) have argued that the observational data are consistent with disk galaxies being optically thick, particularly in their inner regions. Here, these results are used to reinterpret the radial surface-brightness distributions of spiral galaxies. It is found that the fitting of a profile with an absorbed disk plus bulge leads to both disk and bulge masses (mass in luminous material) that are larger than previously assumed. In addition, it is shown how the rotation velocity, as determined from optical data in the central regions, may systematically underestimate the true rotational velocity in an optically thick disk. If the bulges of late-type galaxies are as large as is hypothesized, then this has important implications in models of galaxy evolution and galaxy dynamics. The model greatly reduces or even eliminates the need for dark matter within the optical radius; it removes a major argument against S0 evolution from later-type galaxies; it accounts for the similarity of rotation curve forms among galaxies of different morphological types; and it leads to a further reappraisal of the observed constancy of the extrapolated central surface brightness of galactic disks.

  3. Gamma-ray bursts from stellar mass accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.

    1993-01-01

    A cosmological model for gamma-ray bursts is explored in which the radiation is produced as a broadly beamed pair fireball along the rotation axis of an accreting black hole. The black hole may be a consequence of neutron star merger or neutron star-black hole merger, but for long complex bursts, it is more likely to come from the collapse of a single Wolf-Rayet star endowed with rotation ('failed' Type Ib supernova). The disk is geometrically thick and typically has a mass inside 100 km of several tenths of a solar mass. In the failed supernova case, the disk is fed for a longer period of time by the collapsing star. At its inner edge the disk is thick to its own neutrino emission and evolves on a viscous time scale of several seconds. In a region roughly 30 km across, interior to the accretion disk and along its axis of rotation, a pair fireball is generated by neutrino annihilation and electron-neutrino scattering which deposit approximately 10 exp 50 ergs/s.

  4. Thin disk laser with unstable resonator and reduced output coupler

    NASA Astrophysics Data System (ADS)

    Gavili, Anwar; Shayganmanesh, Mahdi

    2018-05-01

    In this paper, feasibility of using unstable resonator with reduced output coupling in a thin disk laser is studied theoretically. Unstable resonator is modeled by wave-optics using Collins integral and iterative method. An Yb:YAG crystal with 250 micron thickness is considered as a quasi-three level active medium and modeled by solving rate equations of energy levels populations. The amplification of laser beam in the active medium is calculated based on the Beer-Lambert law and Rigrod method. Using generalized beam parameters method, laser beam parameters like, width, divergence, M2 factor, output power as well as near and far-field beam profiles are calculated for unstable resonator. It is demonstrated that for thin disk laser (with single disk) in spite of the low thickness of the disk which leads to low gain factor, it is possible to use unstable resonator (with reduced output coupling) and achieve good output power with appropriate beam quality. Also, the behavior of output power and beam quality versus equivalent Fresnel number is investigated and optimized value of output coupling for maximum output power is achieved.

  5. High-Resolution Imaging of the Multiphase Interstellar Thick Disk in Two Edge-On Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Rueff, K.

    2009-01-01

    We present broadband and narrow-band images, acquired from Hubble Space Telescope WFPC2 and WIYN 3.5 m telescope respectively, of two edge-on spiral galaxies, NGC 4302 and NGC 4013. These high-resolution images (BVI + H-alpha) provide a detailed view of the thick disk interstellar medium (ISM) in these galaxies. Both galaxies show prominent extraplanar dust-bearing clouds viewed in absorption against the background stellar light. Individual clouds are found to z 2 kpc in each galaxy. These clouds each contain >10^4 to >10^5 solar masses of gas. Both galaxies have extraplanar diffuse ionized gas (DIG), as seen in our H-alpha images and earlier work. In addition to the DIG, discrete H II regions are found at heights up to 1 kpc from both galaxies. We compare the morphologies of the dusty clouds with the DIG in these galaxies and discuss the relationship between these components of the thick disk ISM.

  6. Thickness and roughness measurements for air-dried longleaf pine bark

    Treesearch

    Thomas L. Eberhardt

    2015-01-01

    Bark thicknesses for longleaf pine (Pinus palustris Mill.) were investigated using disks collected from trees harvested on a 70-year-old plantation. Maximum inner bark thickness was relatively constant along the tree bole whereas maximum outer bark thickness showed a definite decrease from the base of the tree to the top. The minimum whole bark thickness followed the...

  7. Development and characterization of a round hand-held silicon photomultiplier based gamma camera for intraoperative imaging

    PubMed Central

    Popovic, Kosta; McKisson, Jack E.; Kross, Brian; Lee, Seungjoon; McKisson, John; Weisenberger, Andrew G.; Proffitt, James; Stolin, Alexander; Majewski, Stan; Williams, Mark B.

    2017-01-01

    This paper describes the development of a hand-held gamma camera for intraoperative surgical guidance that is based on silicon photomultiplier (SiPM) technology. The camera incorporates a cerium doped lanthanum bromide (LaBr3:Ce) plate scintillator, an array of 80 SiPM photodetectors and a two-layer parallel-hole collimator. The field of view is circular with a 60 mm diameter. The disk-shaped camera housing is 75 mm in diameter, approximately 40.5 mm thick and has a mass of only 1.4 kg, permitting either hand-held or arm-mounted use. All camera components are integrated on a mobile cart that allows easy transport. The camera was developed for use in surgical procedures including determination of the location and extent of primary carcinomas, detection of secondary lesions and sentinel lymph node biopsy (SLNB). Here we describe the camera design and its principal operating characteristics, including spatial resolution, energy resolution, sensitivity uniformity, and geometric linearity. The gamma camera has an intrinsic spatial resolution of 4.2 mm FWHM, an energy resolution of 21.1 % FWHM at 140 keV, and a sensitivity of 481 and 73 cps/MBq when using the single- and double-layer collimators, respectively. PMID:28286345

  8. Feasibility of Using PZT Actuators to Study the Dynamic Behavior of a Rotating Disk due to Rotor-Stator Interaction

    PubMed Central

    Presas, Alexandre; Egusquiza, Eduard; Valero, Carme; Valentin, David; Seidel, Ulrich

    2014-01-01

    In this paper, PZT actuators are used to study the dynamic behavior of a rotating disk structure due to rotor-stator interaction excitation. The disk is studied with two different surrounding fluids—air and water. The study has been performed analytically and validated experimentally. For the theoretical analysis, the natural frequencies and the associated mode shapes of the rotating disk in air and water are obtained with the Kirchhoff-Love thin plate theory coupled with the interaction with the surrounding fluid. A model for the Rotor Stator Interaction that occurs in many rotating disk-like parts of turbomachinery such as compressors, hydraulic runners or alternators is presented. The dynamic behavior of the rotating disk due to this excitation is deduced. For the experimental analysis a test rig has been developed. It consists of a stainless steel disk (r = 198 mm and h = 8 mm) connected to a variable speed motor. Excitation and response are measured from the rotating system. For the rotating excitation four piezoelectric patches have been used. Calibrating the piezoelectric patches in amplitude and phase, different rotating excitation patterns are applied on the rotating disk in air and in water. Results show the feasibility of using PZT to control the response of the disk due to a rotor-stator interaction. PMID:25004151

  9. Disk Susceptibility Studies with Cefazolin and Cephalothin

    PubMed Central

    Actor, Paul; Guarini, Joseph; Uri, Joseph; Dickson, Judith; Pauls, John F.; Weisbach, Jerry A.

    1974-01-01

    Cefazolin and cephalothin disk susceptibility and minimal inhibitory concentration determinations were conducted on 591 clinical isolates. Cefazolin demonstrated superior activity, as shown by lower minimal inhibitory concentrations, and a greater percentage of isolates inhibited in the disk susceptibility test. The cephalothin antibiotic class disk by the standard Bauer-Kirby method failed to detect susceptibility to cefazolin in a significant percentage of Escherchia coli, Enterobacter species, and Enterococcus isolates. A separate cefazolin disk with a susceptibility cut-off point of 18 mm is recommended. An alternative to a separate cefazolin disk would be a reinterpretation of the cephalothin susceptibility disk zone diameters so that it would more adequately predict cefazolin activity. PMID:4840450

  10. TURBULENCE, TRANSPORT, AND WAVES IN OHMIC DEAD ZONES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gole, Daniel; Simon, Jacob B.; Armitage, Philip J.

    We use local numerical simulations to study a vertically stratified accretion disk with a resistive mid-plane that damps magnetohydrodynamic (MHD) turbulence. This is an idealized model for the dead zones that may be present at some radii in protoplanetary and dwarf novae disks. We vary the relative thickness of the dead and active zones to quantify how forced fluid motions in the dead zone change. We find that the residual Reynolds stress near the mid-plane decreases with increasing dead zone thickness, becoming negligible in cases where the active to dead mass ratio is less than a few percent. This impliesmore » that purely Ohmic dead zones would be vulnerable to episodic accretion outbursts via the mechanism of Martin and Lubow. We show that even thick dead zones support a large amount of kinetic energy, but this energy is largely in fluid motions that are inefficient at angular momentum transport. Confirming results from Oishi and Mac Low, the perturbed velocity field in the dead zone is dominated by an oscillatory, vertically extended circulation pattern with a low frequency compared to the orbital frequency. This disturbance has the properties predicted for the lowest order r mode in a hydrodynamic disk. We suggest that in a global disk similar excitations would lead to propagating waves, whose properties would vary with the thickness of the dead zone and the nature of the perturbations (isothermal or adiabatic). Flows with similar amplitudes would buckle settled particle layers and could reduce the efficiency of pebble accretion.« less

  11. Indications of M-Dwarf Deficits in the Halo and Thick Disk of the Galaxy

    NASA Technical Reports Server (NTRS)

    Konishi, Mihoko; Shibai, Hiroshi; Sumi, Takahiro; Fukagawa, Misato; Matsuo, Taro; Samland, Matthias S.; Yamamoto, Kodai; Sudo, Jun; Itoh, Yoichi; Arimoto, Nubuo; hide

    2014-01-01

    We compared the number of faint stars detected in deep survey fields with the current stellar distribution model of the Galaxy and found that the detected number in the H band is significantly smaller than the predicted number. This indicates that M-dwarfs, the major component, are fewer in the halo and the thick disk. We used archived data of several surveys in both the north and south field of GOODS (Great Observatories Origins Deep Survey), MODS in GOODS-N, and ERS and CANDELS in GOODS-S. The number density of M-dwarfs in the halo has to be 20 +/- 13% relative to that in the solar vicinity, in order for the detected number of stars fainter than 20.5 mag in the H band to match with the predicted value from the model. In the thick disk, the number density of M-dwarfs must be reduced (52 +/- 13%) or the scale height must be decreased (approximately 600 pc). Alternatively, overall fractions of the halo and thick disks can be significantly reduced to achieve the same effect, because our sample mainly consists of faint M-dwarfs. Our results imply that the M-dwarf population in regions distant from the Galactic plane is significantly smaller than previously thought. We then discussed the implications this has on the suitability of the model predictions for the prediction of non-companion faint stars in direct imaging extrasolar planet surveys by using the best-fit number densities.

  12. Indications of M-Dwarf Deficits in the Halo and Thick Disk of the Galaxy

    NASA Technical Reports Server (NTRS)

    Konishi, Mihoko; Shibai, Hiroshi; Sumi, Takahiro; Fukagawa, Misato; Matsuo, Taro; Samland, Matthias S.; Yamamoto, Kodai; Sudo, Jun; Itoh, Yoichi; Arimoto, Nobuo; hide

    2014-01-01

    We compared the number of faint stars detected in deep survey fields with the current stellar distribution model of the Galaxy and found that the detected number in the H band is significantly smaller than the predicted number. This indicates that M-dwarfs, the major component, are fewer in the halo and the thick disk. We used archived data of several surveys in both the north and south field of GOODS (Great Observatories Origins Deep Survey), MODS in GOODS-N, and ERS and CANDELS in GOODS-S. The number density of M-dwarfs in the halo has to be 20+/-13% relative to that in the solar vicinity, in order for the detected number of stars fainter than 20.5 mag in the H band to match with the predicted value from the model. In the thick disk, the number density of M-dwarfs must be reduced (52+/-13%) or the scale height must be decreased ( approx. 600 pc). Alternatively, overall fractions of the halo and thick disks can be significantly reduced to achieve the same effect, because our sample mainly consists of faint M-dwarfs. Our results imply that the M-dwarf population in regions distant from the Galactic plane is significantly smaller than previously thought. We then discussed the implications this has on the suitability of the model predictions for the prediction of non-companion faint stars in direct imaging extrasolar planet surveys by using the best-fit number densities.

  13. Mapping H-band Scattered Light Emission in the Mysterious SR21Transitional Disk

    NASA Technical Reports Server (NTRS)

    Follette, Katherine B.; Motohide, Tamura; Hashimoto, Jun; Whitney, Barbara; Grady, Carol; Close, Laird; Andrews, Sean M.; Kwon, Jungmi; Wisniewski, John; Brandt, Timothy D.; hide

    2013-01-01

    We present the first near infrared (NIR) spatially resolved images of the circumstellar transitional disk around SR21. These images were obtained with the Subaru HiCIAO camera, adaptive optics, and the polarized differential imaging technique. We resolve the disk in scattered light at H-band for stellocentric 0.1 < or approx. r < or approx. 0.6 (12 < or approx. r < or approx. 75AU). We compare our results with previously published spatially resolved 880 micron continuum Submillimeter Array images that show an inner r < or approx. 36AU cavity in SR21. Radiative transfer models reveal that the large disk depletion factor invoked to explain SR21's sub-mm cavity cannot be "universal" for all grain sizes. Even significantly more moderate depletions (delta = 0.1, 0.01 relative to an undepleted disk) than those that reproduce the sub-mm cavity (delta approx. 10(exp -6) are inconsistent with our H-band images when they are assumed to carry over to small grains, suggesting that surface grains scattering in the NIR either survive or are generated by whatever mechanism is clearing the disk midplane. In fact, the radial polarized intensity profile of our H-band observations is smooth and steeply inwardly-increasing (r(sup -3), with no evidence of a break at the 36AU sub-mm cavity wall. We hypothesize that this profile is dominated by an optically thin disk envelope or atmosphere component.We also discuss the compatibility of our data with the previously postulated existence of a sub-stellar companion to SR21 at r approx. 10-20AU, and find that we can neither exclude nor verify this scenario. This study demonstrates the power of multiwavelength imaging of transitional disks to inform modeling efforts, including the debate over precisely what physical mechanism is responsible for clearing these disks of their large midplane grains.

  14. Far-infrared to Millimeter Data of Protoplanetary Disks: Dust Growth in the Taurus, Ophiuchus, and Chamaeleon I Star-forming Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribas, Álvaro; Espaillat, Catherine C.; Macías, Enrique

    Far-infrared and (sub)millimeter fluxes can be used to study dust in protoplanetary disks, the building blocks of planets. Here, we combine observations from the Herschel Space Observatory with ancillary data of 284 protoplanetary disks in the Taurus, Chamaeleon I, and Ophiuchus star-forming regions, covering from the optical to mm/cm wavelengths. We analyze their spectral indices as a function of wavelength and determine their (sub)millimeter slopes when possible. Most disks display observational evidence of grain growth, in agreement with previous studies. No correlation is found between other tracers of disk evolution and the millimeter spectral indices. A simple disk model ismore » used to fit these sources, and we derive posterior distributions for the optical depth at 1.3 mm and 10 au, the disk temperature at this same radius, and the dust opacity spectral index β . We find the fluxes at 70 μ m to correlate strongly with disk temperatures at 10 au, as derived from these simple models. We find tentative evidence for spectral indices in Chamaeleon I being steeper than those of disks in Taurus/Ophiuchus, although more millimeter observations are needed to confirm this trend and identify its possible origin. Additionally, we determine the median spectral energy distribution of each region and find them to be similar across the entire wavelength range studied, possibly due to the large scatter in disk properties and morphologies.« less

  15. The catalog of edge-on disk galaxies from SDSS. I. The catalog and the structural parameters of stellar disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bizyaev, D. V.; Kautsch, S. J.; Mosenkov, A. V.

    We present a catalog of true edge-on disk galaxies automatically selected from the Seventh Data Release of the Sloan Digital Sky Survey (SDSS). A visual inspection of the g, r, and i images of about 15,000 galaxies allowed us to split the initial sample of edge-on galaxy candidates into 4768 (31.8% of the initial sample) genuine edge-on galaxies, 8350 (55.7%) non-edge-on galaxies, and 1865 (12.5%) edge-on galaxies not suitable for simple automatic analysis because these objects either show signs of interaction and warps, or nearby bright stars project on it. We added more candidate galaxies from RFGC, EFIGI, RC3, andmore » Galaxy Zoo catalogs found in the SDSS footprints. Our final sample consists of 5747 genuine edge-on galaxies. We estimate the structural parameters of the stellar disks (the stellar disk thickness, radial scale length, and central surface brightness) in the galaxies by analyzing photometric profiles in each of the g, r, and i images. We also perform simplified three-dimensional modeling of the light distribution in the stellar disks of edge-on galaxies from our sample. Our large sample is intended to be used for studying scaling relations in the stellar disks and bulges and for estimating parameters of the thick disks in different types of galaxies via the image stacking. In this paper, we present the sample selection procedure and general description of the sample.« less

  16. Modelling of concrete topping thickness effects on the vibration behaviour for lvl-concrete composite floor (LCC)

    NASA Astrophysics Data System (ADS)

    Ghafar, NH Abd; Sahban, N. M.

    2017-11-01

    This research was conducted on 2 m LVL - concrete composite (LCC) floor consisting of two parts between concrete floor and laminated veneer lumber (LVL) timber joist. The floor system was model using SAP 2000 software package. The aim of this research to study the vibration behaviour of the LCC floor with different concrete topping thickness which 25 mm, 65 mm and from 20 mm until 200 mm in every 20 mm interval. Natural frequency decision produced through SAP 2000 in thickness 25 mm and 65 mm is 57.45 Hz and 57.19 Hz. In thickness from 20 mm until 200 mm in every 20 mm interval, optimum value which found is during thickness reach 65 mm. For concrete topping below 65 mm thickness, the mass will be domain the behavior of the floor. When concrete topping increased more than 65 mm, the behavior of the floor will be domain by floor stiffness.

  17. IN SITU ACCRETION OF HYDROGEN-RICH ATMOSPHERES ON SHORT-PERIOD SUPER-EARTHS: IMPLICATIONS FOR THE KEPLER-11 PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikoma, M.; Hori, Y., E-mail: ikoma@eps.s.u-tokyo.ac.jp, E-mail: yasunori.hori@nao.ac.jp

    2012-07-01

    Motivated by recent discoveries of low-density super-Earths with short orbital periods, we have investigated in situ accretion of H-He atmospheres on rocky bodies embedded in dissipating warm disks, by simulating quasi-static evolution of atmospheres that connect to the ambient disk. We have found that the atmospheric evolution has two distinctly different outcomes, depending on the rocky body's mass: while the atmospheres on massive rocky bodies undergo runaway disk-gas accretion, those on light rocky bodies undergo significant erosion during disk dispersal. In the atmospheric erosion, the heat content of the rocky body that was previously neglected plays an important role. Wemore » have also realized that the atmospheric mass is rather sensitive to disk temperature in the mass range of interest in this study. Our theory is applied to recently detected super-Earths orbiting Kepler-11 to examine the possibility that the planets are rock-dominated ones with relatively thick H-He atmospheres. The application suggests that the in situ formation of the relatively thick H-He atmospheres inferred by structure modeling is possible only under restricted conditions, namely, relatively slow disk dissipation and/or cool environments. This study demonstrates that low-density super-Earths provide important clues to understanding of planetary accretion and disk evolution.« less

  18. A Large Asymmetry in the Distribution of Faint Stars in the Inner Galaxy

    NASA Astrophysics Data System (ADS)

    Parker, J. E.; Humphreys, R. M.; Larsen, J. A.

    2002-12-01

    We present a star count analysis of the faint stars on either side of the Sun-Center line, from l=±20 deg -- ±75 deg and b=+20 deg -- +50 deg with data from 40 POSS I fields. Larsen & Humphreys (1996) found a significant asymmetry in the number of faint blue stars on either side of the line to the Galactic center with significantly more stars observed in the first quadrant. Using a galactic model, we chose color ranges to distinguish between halo/thick disk and old disk stellar populations. Our results indicate that the stellar excess is comprised of mainly halo/thick disk stars and that it increases with fainter magnitudes. In addition, we analyzed the star counts for 40 fields above the plane compared to their 40 complementary fields below the plane (b=±20 deg -- ±50 deg). We find that the excess is also present in quadrant I below the plane. It is possible that the excess in star counts may be due to a bar--induced ``wake", an interaction of the disk by a merger, or a result of a triaxial thick disk/inner halo. Spectroscopic observations have been made using both the CTIO 4 meter and the KPNO WIYN 3.5 meter telescopes with HYDRA to measure the radial velocities and classify nearly 1000 stars. The objective is to determine the extent of the asymmetry and the nature and kinematics of the stars responsible.

  19. Dissipation of circumstellar disks of Be stars

    NASA Astrophysics Data System (ADS)

    Sabogal, B. E.; Ubaque, K. Y.; García-Varela, A.; álvarez, M.; Salas, L.

    2017-07-01

    Studies of L-band spectra of Be stars are useful to set constraints to the models of formation and evolution mechanisms of the circumstellar disks around these stars. Because few such studies have been performed, more of them are needed to confirm the characteristics reported about the optical depth and evolution of these disks. In this work, we studied new L-band spectra of 7 bright galactic Be stars that were obtained by using CID-InSb spectrograph at the 2.1-m telescope at OAN/UNAM San Pedro Martir Observatory, Baja California, Mexico. We used these data to locate these stars, and the Be stars previously studied in the IR, on a flux ratio diagram (log Hu14/Pfγ vs log Hu14/Brα). We found that 28 Cyg has moved significantly along this diagram implying strong changes of its disk from optically thick to an optically thin one between 2001 and 2014. On the base of the absence of emission lines in the spectra, the circumstellar disks of θ CrB and 66 Oph have been almost totally dissipated. These three stars have decaying circumstellar disks. The other stars: γ Cas, φ Per, 28 Tau and o Her have optically thin disks, that have been almost stable in time. It will be important monitoring these and other Be stars in the L-band to observe the changes on their circumstellar disks, and to observe also in this band, the building-up stars, i.e. stars that create a new disk, or that change it from a very tenuous one to an optically thick circumstellar disk. Our spectra contribute to enlarge the infrared spectroscopic database of Be stars.

  20. A high-dispersion molecular gas component in nearby galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldú-Primo, Anahi; Walter, Fabian; Sandstrom, Karin

    2013-12-01

    We present a comprehensive study of the velocity dispersion of the atomic (H I) and molecular (H{sub 2}) gas components in the disks (R ≲ R {sub 25}) of a sample of 12 nearby spiral galaxies with moderate inclinations. Our analysis is based on sensitive high-resolution data from the THINGS (atomic gas) and HERACLES (molecular gas) surveys. To obtain reliable measurements of the velocity dispersion, we stack regions several kiloparsecs in size, after accounting for intrinsic velocity shifts due to galactic rotation and large-scale motions. We stack using various parameters: the galactocentric distance, star formation rate surface density, H Imore » surface density, H{sub 2} surface density, and total gas surface density. We fit single Gaussian components to the stacked spectra and measure median velocity dispersions for H I of 11.9 ± 3.1 km s{sup –1} and for CO of 12.0 ± 3.9 km s{sup –1}. The CO velocity dispersions are thus, surprisingly, very similar to the corresponding ones of H I, with an average ratio of σ{sub HI}/σ{sub CO}= 1.0 ± 0.2 irrespective of the stacking parameter. The measured CO velocity dispersions are significantly higher (factor of ∼2) than the traditional picture of a cold molecular gas disk associated with star formation. The high dispersion implies an additional thick molecular gas disk (possibly as thick as the H I disk). Our finding is in agreement with recent sensitive measurements in individual edge-on and face-on galaxies and points toward the general existence of a thick disk of molecular gas, in addition to the well-known thin disk in nearby spiral galaxies.« less

  1. [Meningococcus profilaxis (author's transl)].

    PubMed

    Pérez Trallero, E; Pérez-Yarza, E; Ruíz Benito, C; Muñóz Baroja, I

    1979-11-25

    In a General Hospital in San Sebastian, 96 cases of Neisseria meningitidis infections were detected in a two years period. By the use of the disk diffusion method, we found that all causative meningococcal strains but 4 were resistant to sulfonamide (with a 300 microgram sulfadiazine disk, all isolates with a zone diameter of less than 20 mm were considered to be resistant of sulfadiazine, whereas those with zone diameters of greater than 30 mm were considered susceptible). No rifampin nor minocycline-resistant meningococci were isolated. All strains had a disk zone diameter (30 micrograms rifampin and 30 micrograms tetracycline) of greater than 20 mm. The serogroups of meningococcal strains were as follows: group A, 1; group B, 67; group C, 5 and 23 were no typed. Children less than four years of age were most frequently attacked (67,7%). The attack rate was only slightly higher in males than in females (52 and 44).

  2. Spall fracture and strength of uranium, plutonium and their alloys under shock wave loading

    NASA Astrophysics Data System (ADS)

    Golubev, Vladimir

    2015-06-01

    Numerous results on studying the spall fracture phenomenon of uranium, two its alloys with molybdenum and zirconium, plutonium and its alloy with gallium under shock wave loading are presented in the paper. The majority of tests were conducted with the samples in the form of disks 4mm in thickness. They were loaded by the impact of aluminum plates 4mm thick through a copper screen serving as the cover or bottom part of a special container. The initial temperature of samples was changed in the range of -196 - 800 C degree for uranium and 40 - 315 C degree for plutonium. The character of spall failure of materials and the degree of damage for all tested samples were observed on the longitudinal metallographic sections of recovered samples. For a concrete test temperature, the impact velocity was sequentially changed and therefore the loading conditions corresponding to the consecutive transition from microdamage nucleation up to complete macroscopic spall fracture were determined. Numerical calculations of the conditions of shock wave loading and spall fracture of samples were performed in the elastoplastic approach. Several two- and three-dimensional effects of loading were taken into account. Some results obtained under conditions of intensive impulse irradiation and intensive explosive loading are presented too. The rather complete analysis and comparison of obtained results with the data of other researchers on the spall fracture of examined materials were conducted.

  3. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuente, Asunción; Bachiller, Rafael; Baruteau, Clément

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0.″58 × 0.″78 ≈ 80 × 110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthalmore » variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.« less

  4. Spiral Structure and Differential Dust Size Distribution in the LkH(alpha) 330 Disk

    NASA Technical Reports Server (NTRS)

    Akiyama, Eiji; Hashimoto, Jun; Liu, Hauyu Baobabu; Li, Jennifer I-hsiu; Bonnefoy, Michael; Dong, Ruobing; Hasegawa, Yasuhiro; Henning, Thomas; Sitko, Michael L.; Janson, Markus; hide

    2016-01-01

    Dust trapping accelerates the coagulation of dust particles, and, thus, it represents an initial step toward the formation of planetesimals. We report H-band (1.6 microns) linear polarimetric observations and 0.87 mm interferometric continuum observations toward a transitional disk around LkH(alpha) 330. As a result, a pair of spiral arms were detected in the H-band emission, and an asymmetric (potentially arm-like) structure was detected in the 0.87 mm continuum emission. We discuss the origin of the spiral arm and the asymmetric structure and suggest that a massive unseen planet is the most plausible explanation. The possibility of dust trapping and grain growth causing the asymmetric structure was also investigated through the opacity index (beta) by plotting the observed spectral energy distribution slope between 0.87 mm from our Submillimeter Array observation and1.3 mm from literature. The results imply that grains are indistinguishable from interstellar medium-like dust in the east side (beta = 2.0 +/- 0.5) but are much smaller in the west side beta = 0.7+0.5 -0.4, indicating differential dust size distribution between the two sides of the disk. Combining the results of near-infrared and submillimeter observations, we conjecture that the spiral arms exist at the upper surface and an asymmetric structure resides in the disk interior. Future observations at centimeter wavelengths and differential polarization imaging in other bands (Y-K) with extreme AO imagers are required to understand how large dust grains form and to further explore the dust distribution in the disk.

  5. Sonographic evaluation of the plantar fascia in asymptomatic subjects.

    PubMed

    Gadalla, N; Kichouh, M; Boulet, C; Machiels, F; De Mey, J; De Maeseneer, M

    2014-01-01

    To evaluate the appearance of the plantar fascia in asymptomatic subjects. Thirty-one asymptomatic subjects were examined by 2 musculoskeletal radiologists. The plantar fascia was evaluated for thickness, echogenicity, vascularity on power Doppler, rupture, fluid adjacent to the fascia, andcalcifications. The study included 14 men and 17 women (age, 17-79 years; mean, 45 years). The mean thickness of the plantar fascia in men was 3.7 mm (range 2.5-7 mm), and in women 3.5 mm (range, 1.7-5.1 mm). The thickness was greater than 4 mm in 4 men (bilateral in 2). The mean thickness of fascias thicker than 4 mm in men was 5.4 mm (range, 4.3-7 mm). The thickness was greater than 4 mm in 5 women ( bilateral in 4). The mean thickness of fascias thicker than 4 mm in women was 4.7 mm (range, 4.2-5.1 mm). There was no statistically significant difference between men and women and between both heels. Hypoechogenicity was observed in 3 men (bilateral in 2), and in 5 women (bilateral in 6). Hypervascularity, rupture, fluid adjacent to the fascia, and calcifications were not observed. A thickness greater than 4 mm and hypoechogenicity, are common in the plantar fascia of asymptomatic subjects. Findings that were not seen in asymptomatic subjects include a thickness greater than 7 mm, hypervascularity on power Doppler, rupture, fluid adjacent to the fascia, and calcifications.

  6. Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang, Condell, Hannah; Wilner, David; Andrews, Sean; Dahm, Scott; Robitaille,Thomas

    2012-01-01

    We present Keck/NIRC2 K(sub s) band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3 - 2.5" (approx equals 35 - 280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx equals 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model fur a single dust belt including a phase function with two components and a 5 - 10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry and the profile at wider separations (r > 110 AU). Although there may be a1ternate explanations, agreement between the SW disk brightness peak and disk's peak rom emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1 - 1 mm-sized grains at approx equal 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.

  7. Accretion tori and cones of ionizing radiation in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Acosta-Pulido, Jose A.; Perez-Fournon, Ismael; Calvani, Massimo; Wilson, Andrew S.

    1990-01-01

    The photoionization of extended narrow-line regions in Seyfert galaxies by the radiation produced in a thick accretion disk is studied. The emission-line spectrum is calculated for a range of black hole masses, varying the values of the ionization parameter and the disk size. It is found that models with a million solar masses fit observations of very large accretion disk sizes, while models with 10 million solar masses fit them better with smaller disks. The latter models are preferable since they have lower super-Eddington accretion rates.

  8. Physical properties of dusty protoplanetary disks in Lupus: evidence for viscous evolution?

    NASA Astrophysics Data System (ADS)

    Tazzari, M.; Testi, L.; Natta, A.; Ansdell, M.; Carpenter, J.; Guidi, G.; Hogerheijde, M.; Manara, C. F.; Miotello, A.; van der Marel, N.; van Dishoeck, E. F.; Williams, J. P.

    2017-10-01

    Context. The formation of planets strongly depends on the total amount as well as on the spatial distribution of solids in protoplanetary disks. Thanks to the improvements in resolution and sensitivity provided by ALMA, measurements of the surface density of mm-sized grains are now possible on large samples of disks. Such measurements provide statistical constraints that can be used to inform our understanding of the initial conditions of planet formation. Aims: We aim to analyze spatially resolved observations of 36 protoplanetary disks in the Lupus star forming complex from our ALMA survey at 890 μm, aiming to determine physical properties such as the dust surface density, the disk mass and size, and to provide a constraint on the temperature profile. Methods: We fit the observations directly in the uv-plane using a two-layer disk model that computes the 890 μm emission by solving the energy balance at each disk radius. Results: For 22 out of 36 protoplanetary disks we derive robust estimates of their physical properties. The sample covers stellar masses between 0.1 and 2 M⊙, and we find no trend in the relationship between the average disk temperatures and the stellar parameters. We find, instead, a correlation between the integrated sub-mm flux (a proxy for the disk mass) and the exponential cut-off radii (a proxy of the disk size) of the Lupus disks. Comparing these results with observations at similar angular resolution of Taurus-Auriga and Ophiuchus disks found in literature and scaling them to the same distance, we observe that the Lupus disks are generally fainter and larger at a high level of statistical significance. Considering the 1-2 Myr age difference between these regions, it is possible to tentatively explain the offset in the disk mass-size relation with viscous spreading, however with the current measurements other mechanisms cannot be ruled out.

  9. Chemo-dynamical signatures in simulated Milky Way-like galaxies

    NASA Astrophysics Data System (ADS)

    Spagna, Alessandro; Curir, Anna; Giammaria, Marco; Lattanzi, Mario G.; Murante, Giuseppe; Re Fiorentin, Paola

    2018-04-01

    We have investigated the chemo-dynamical evolution of a Milky Way-like disk galaxy, AqC4, produced by a cosmological simulation integrating a sub-resolution ISM model. We evidence a global inside-out and upside-down disk evolution, that is consistent with a scenario where the ``thin disk'' stars are formed from the accreted gas close to the galactic plane, while the older ``thick disk'' stars are originated in situ at higher heights. Also, the bar appears the most effective heating mechanism in the inner disk. Finally, no significant metallicity-rotation correlation has been observed, in spite of the presence of a negative [Fe/H] radial gradient.

  10. The structure of protostellar accretion disks and the origin of bipolar flows

    NASA Technical Reports Server (NTRS)

    Wardle, Mark; Koenigl, Arieh

    1993-01-01

    Equations are obtained which govern the disk-wind structure and identify the physical parameters relevant to circumstellar disks. The system of equations is analyzed in the thin-disk approximation, and it is shown that the system can be consistently reduced to a set of ordinary differential equations in z. Representative solutions are presented, and it is shown that the apparent paradox discussed by Shu (1991) is resolved when the finite thickness of the disk is taken into account. Implications of the results for the origin of bipolar flows in young stellar objects and possible application to active galactic nuclei are discussed.

  11. Can dead zones create structures like a transition disk?

    NASA Astrophysics Data System (ADS)

    Pinilla, Paola; Flock, Mario; Ovelar, Maria de Juan; Birnstiel, Til

    2016-12-01

    Context. Regions of low ionisation where the activity of the magneto-rotational instability is suppressed, the so-called dead zones, have been suggested to explain gaps and asymmetries of transition disks. Dead zones are therefore a potential cause for the observational signatures of transition disks without requiring the presence of embedded planets. Aims: We investigate the gas and dust evolution simultaneously assuming simplified prescriptions for a dead zone and a magnetohydrodynamic (MHD) wind acting on the disk. We explore whether the resulting gas and dust distribution can create signatures similar to those observed in transition disks. Methods: We imposed a dead zone and/or an MHD wind in the radial evolution of gas and dust in protoplanetary disks. For the dust evolution, we included the transport, growth, and fragmentation of dust particles. To compare with observations, we produced synthetic images in scattered optical light and in thermal emission at mm wavelengths. Results: In all models with a dead zone, a bump in the gas surface density is produced that is able to efficiently trap large particles (≳ 1 mm) at the outer edge of the dead zone. The gas bump reaches an amplitude of a factor of 5, which can be enhanced by the presence of an MHD wind that removes mass from the inner disk. While our 1D simulations suggest that such a structure can be present only for 1 Myr, the structure may be maintained for a longer time when more realistic 2D/3D simulations are performed. In the synthetic images, gap-like low-emission regions are seen at scattered light and in thermal emission at mm wavelengths, as previously predicted in the case of planet-disk interaction. Conclusions: Main signatures of transition disks can be reproduced by assuming a dead zone in the disk, such as gap-like structure in scattered light and millimetre continuum emission, and a lower gas surface density within the dead zone. Previous studies showed that the Rossby wave instability can also develop at the edge of such dead zones, forming vortices and also creating asymmetries.

  12. IR thermocycler for centrifugal microfluidic platform with direct on-disk wireless temperature measurement system

    NASA Astrophysics Data System (ADS)

    Burger, J.; Gross, A.; Mark, D.; Roth, G.; von Stetten, F.; Zengerle, R.

    2011-06-01

    The direct on-disk wireless temperature measurement system [1,2] presented at μTAS 2010 was further improved in its robustness. We apply it to an IR thermocycler as part of a centrifugal microfluidic analyzer for polymerase chain reactions (PCR). This IR thermocycler allows the very efficient direct heating of aqueous liquids in microfluidic cavities by an IR radiation source. The efficiency factor of this IR heating system depends on several parameters. First there is the efficiency of the IR radiator considering the transformation of electrical energy into radiation energy. This radiation energy needs to be focused by a reflector to the center of the cavity. Both, the reflectors shape and the quality of the reflecting layer affect the efficiency. On the way to the center of the cavity the radiation energy will be diminished by absorption in the surrounding air/humidity and especially in the cavity lid of the microfluidic disk. The transmission spectrum of the lid material and its thickness is of significant impact. We chose a COC polymer film with a thickness of 150 μm. At a peak frequency of the IR radiator of ~2 μm approximately 85 % of the incoming radiation energy passes the lid and is absorbed within the first 1.5 mm depth of liquid in the cavity. As we perform the thermocycling for a PCR, after heating to the denaturation temperature of ~ 92 °C we need to cool down rapidly to the primer annealing temperature of ~ 55 °C. Cooling is realized by 3 ventilators venting air of room temperature into the disk chamber. Due to the air flow itself and an additional rotation of the centrifugal microfluidic disk the PCR reagents in the cavities are cooled by forced air convection. Simulation studies based upon analogous electrical models enable to optimize the disk geometry and the optical path. Both the IR heater and the ventilators are controlled by the digital PID controller HAPRO 0135 [3]. The sampling frequency is set to 2 Hz. It could be further increased up to a maximum value being permitted by the wireless temperature data transmission system. As we are controlling a significantly non-linear process the controller parameters need to be optimized for all temperatures relevant for the PCR thermocycling process. Such we get a dynamic system for both, the heating and the cooling process. Heating rates up to 5 K/s with our IR heater (100 W electrical power) could be achieved. Cooling rates of instantly 1.3 K/s at 20 Hz rotation frequency could be even further increased by higher rotation frequencies, faster air circulation, optimization of the controller parameters or an active air cooling unit.

  13. A new concept in Bitter disk design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, B.J.; Schneider-Muntau, H.J.; Eyssa, Y.M.

    1996-07-01

    A new concept in cooling hole design in Bitter disks that allows for much higher power densities and results in considerably lower hoop stresses has been developed and successfully tested at the National High Magnetic Field Laboratory (NHMFL) in Tallahassee, FL. The new cooling hole shape allows for extreme power densities (up to 12 W.mm{sup 3}) at a moderate heat flux of only 5 W/mm{sup 2}. The new concept also reduces the hoop stress by about 30--50% by making a Bitter disk compliant in the radial direction through staggering small width and closely spaced elongated cooling holes. Finally, the designmore » is optimized for equal temperature.« less

  14. Proton Range Uncertainty Due to Bone Cement Injected Into the Vertebra in Radiation Therapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Young Kyung; Hwang, Ui-Jung; Shin, Dongho, E-mail: dongho@ncc.re.kr

    2011-10-01

    We wanted to evaluate the influence of bone cement on the proton range and to derive a conversion factor predicting the range shift by correcting distorted computed tomography (CT) data as a reference to determine whether the correction is needed. Two CT datasets were obtained with and without a bone cement disk placed in a water phantom. Treatment planning was performed on a set of uncorrected CT images with the bone cement disk, and the verification plan was applied to the same set of CT images with an effective CT number for the bone cement disk. The effective CT numbermore » was determined by measuring the actual proton range with the bone cement disk. The effects of CT number, thicknesses, and position of bone cement on the proton range were evaluated in the treatment planning system (TPS) to draw a conversion factor predicting the range shift by correcting the CT number of bone cement. The effective CT number of bone cement was 260 Hounsfield units (HU). The calculated proton range for native CT data was significantly shorter than the measured proton range. However, the calculated range for the corrected CT data with the effective CT number coincided exactly with the measured range. The conversion factor was 209.6 [HU . cm/mm] for bone cement and predicted the range shift by approximately correcting the CT number. We found that the heterogeneity of bone cement could cause incorrect proton ranges in treatment plans using CT images. With an effective CT number of bone cement derived from the proton range and relative stopping power, a more actual proton range could be calculated in the TPS. The conversion factor could predict the necessity for CT data correction with sufficient accuracy.« less

  15. New generation of compact high power disk lasers

    NASA Astrophysics Data System (ADS)

    Feuchtenbeiner, Stefanie; Zaske, Sebastian; Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Kumkar, Sören; Metzger, Bernd; Killi, Alexander; Haug, Patrick; Speker, Nicolai

    2018-02-01

    New technological developments in high power disk lasers emitting at 1030 nm are presented. These include the latest generation of TRUMPF's TruDisk product line offering high power disk lasers with up to 6 kW output power and beam qualities of up to 4 mm*mrad. With these compact devices a footprint reduction of 50% compared to the previous model could be achieved while at the same time improving robustness and increasing system efficiency. In the context of Industry 4.0, the new generation of TruDisk lasers features a synchronized data recording of all sensors, offering high-quality data for virtual analyses. The lasers therefore provide optimal hardware requirements for services like Condition Monitoring and Predictive Maintenance. We will also discuss its innovative and space-saving cooling architecture. It allows operation of the laser under very critical ambient conditions. Furthermore, an outlook on extending the new disk laser platform to higher power levels will be given. We will present a disk laser with 8 kW laser power out of a single disk with a beam quality of 5 mm*mrad using a 125 μm fiber, which makes it ideally suited for cutting and welding applications. The flexibility of the disk laser platform also enables the realization of a wide variety of beam guiding setups. As an example a new scheme called BrightLine Weld will be discussed. This technology allows for an almost spatter free laser welding process, even at high feed rates.

  16. The SEEDS of Planet Formation: Indirect Signatures of Giant Planets in Transitional Disks

    NASA Technical Reports Server (NTRS)

    Grady, Carol

    2012-01-01

    Circumstellar disks associated with PMS stars are the site where planetesimals form and grow, and ultimately where planets are produced. A key phase in the evolution of such disks is the phase where clearing of the disk has begun, potentially enabling direct detection of giant planets, but the disk retains sufficient material that indirect signatures that these are young planetary systems are also present. After reviewing what has been learned from studies of the IR spectral energy distribution and (sub )mm-interferometry, I will discuss recent results obtained as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS).

  17. Far-infrared to Millimeter Data of Protoplanetary Disks: Dust Growth in the Taurus, Ophiuchus, and Chamaeleon I Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Ribas, Álvaro; Espaillat, Catherine C.; Macías, Enrique; Bouy, Hervé; Andrews, Sean; Calvet, Nuria; Naylor, David A.; Riviere-Marichalar, Pablo; van der Wiel, Matthijs H. D.; Wilner, David

    2017-11-01

    Far-infrared and (sub)millimeter fluxes can be used to study dust in protoplanetary disks, the building blocks of planets. Here, we combine observations from the Herschel Space Observatory with ancillary data of 284 protoplanetary disks in the Taurus, Chamaeleon I, and Ophiuchus star-forming regions, covering from the optical to mm/cm wavelengths. We analyze their spectral indices as a function of wavelength and determine their (sub)millimeter slopes when possible. Most disks display observational evidence of grain growth, in agreement with previous studies. No correlation is found between other tracers of disk evolution and the millimeter spectral indices. A simple disk model is used to fit these sources, and we derive posterior distributions for the optical depth at 1.3 mm and 10 au, the disk temperature at this same radius, and the dust opacity spectral index β. We find the fluxes at 70 μm to correlate strongly with disk temperatures at 10 au, as derived from these simple models. We find tentative evidence for spectral indices in Chamaeleon I being steeper than those of disks in Taurus/Ophiuchus, although more millimeter observations are needed to confirm this trend and identify its possible origin. Additionally, we determine the median spectral energy distribution of each region and find them to be similar across the entire wavelength range studied, possibly due to the large scatter in disk properties and morphologies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  18. Detailed chemical abundance analysis of the thick disk star cluster Gaia 1

    NASA Astrophysics Data System (ADS)

    Koch, Andreas; Hansen, Terese T.; Kunder, Andrea

    2018-01-01

    Star clusters, particularly those objects in the disk-bulge-halo interface are as yet poorly charted, despite the fact that they carry important information about the formation and the structure of the Milky Way. Here, we present a detailed chemical abundance study of the recently discovered object Gaia 1. Photometry has previously suggested it as an intermediate-age, moderately metal-rich system, although the exact values for its age and metallicity remained ambiguous in the literature. We measured detailed chemical abundances of 14 elements in four red giant members, from high-resolution (R = 25 000) spectra that firmly establish Gaia 1 as an object associated with the thick disk. The resulting mean Fe abundance is -0.62 ± 0.03(stat.)± 0.10(sys.) dex, which is more metal-poor than indicated by previous spectroscopy from the literature, but it is fully in line with values from isochrone fitting. We find that Gaia 1 is moderately enhanced in the α-elements, which allowed us to consolidate its membership with the thick disk via chemical tagging. The cluster's Fe-peak and neutron-capture elements are similar to those found across the metal-rich disks, where the latter indicate some level of s-process activity. No significant spread in iron nor in other heavy elements was detected, whereas we find evidence of light-element variations in Na, Mg, and Al. Nonetheless, the traditional Na-O and Mg-Al (anti-)correlations, typically seen in old globular clusters, are not seen in our data. This confirms that Gaia 1 is rather a massive and luminous open cluster than a low-mass globular cluster. Finally, orbital computations of the target stars bolster our chemical findings of Gaia 1's present-day membership with the thick disk, even though it remains unclear which mechanisms put it in that place. This paper includes data gathered with the 2.5 meter du Pont Telescope located at Las Campanas Observatory, Chile.Full Table 2 is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A13

  19. Three-dimensional modelling of thin liquid films over spinning disks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Wray, Alex; Yang, Junfeng; Matar, Omar

    2016-11-01

    In this research the dynamics of a thin film flowing over a rapidly spinning, horizontal disk is considered. A set of non-axisymmetric evolution equations for the film thickness, radial and azimuthal flow rates are derived using a boundary-layer approximation in conjunction with the Karman-Polhausen approximation for the velocity distribution in the film. These highly nonlinear partial differential equations are then solved numerically in order to reveal the formation of two and three-dimensional large-amplitude waves that travel from the disk inlet to its periphery. The spatio-temporal profile of film thickness provides us with visualization of flow structures over the entire disk and by varying system parameters(volumetric flow rate of fluid and rotational speed of disk) different wave patterns can be observed, including spiral, concentric, smooth waves and wave break-up in exceptional conditions. Similar types of waves can be found by experimentalists in literature and CFD simulation and our results show good agreement with both experimental and CFD results. Furthermore, the semi-parabolic velocity profile assumed in our model under the waves is directly compared with CFD data in various flow regimes in order to validate our model. EPSRC UK Programme Grant EP/K003976/1.

  20. Photo-polymerization shrinkage-stress kinetics in resin-composites: methods development.

    PubMed

    Watts, D C; Marouf, A S; Al-Hindi, A M

    2003-01-01

    Studies of free shrinkage-strain kinetics on restoratives have begun to multiply. However, there have been fewer investigations of the more difficult problem of concurrent stress-kinetic measurements. The aim was to outline design parameters for a new methodology for this problem, amenable especially to light-cured materials, and to present illustrative results for a range of restorative composites. Absolute values of stress measurable for a given material and geometry are dependent upon the stiffness of the measurement system. In an infinitely stiff system, the measured stress would also tend towards infinity. Real teeth and their cavities are not infinitely stiff; they have elastic and visco-elastic compliance. Consequently, it is important that some minimal, but essentially constant compliance be allowed, whatever the final or time-dependent modulus of the material may be. This goal has been realised by measurement of the time-development, for a disk-geometry specimen (phi=10, h approximately 1.0 mm) of stress (S(r)), with a calibrated cantilever beam-geometry load cell. A novel specimen-holder design was used for this purpose, held in a rigid base assembly. Specimen thicknesses (or gap-widths) of 0.8 and 1.2 mm were specifically investigated on four representative resin-composites. Concurrent measurements were made of the end-displacement of the cantilever load cell, relative to a lower glass plate retaining the specimen. Load-calibration of the cantilever load cell gave an end-displacement per unit stress of circa 6 microm/MPa. This compares with literature values for cuspal compliance or displacement of circa 20 microm. Re-normalisation of the stress-data was implemented. This was accomplished assuming Hooke's law behavior at each instant and equivalent to a stiffer system, with a correction (multiplier) factor of 4 on the raw-stress values. For the materials examined, resultant maximum-stress levels determined were circa 5-8 MPa Stress-levels obtained at 1.2mm thickness were slightly higher (11-15%) than the level of stress obtained at 0.8 mm thickness. This is attributable to the greater mass of material undergoing shrinkage at 1.2 mm, offset slightly by the different C-factors. The new device is a practical and self-contained system for rapid and accurate measurement of stress-kinetics in photo-polymerising and also self-cure materials.

  1. CO Fundamental Emission from V836 Tauri

    DTIC Science & Technology

    2008-11-10

    systems: formation — planetary systems: protoplanetary disks — stars: individual (V836 Tauri) — stars: pre–main-sequence Online material: color...how either of these hypothesesmay bear on our under- standing of disk dissipation in this system. Subject headinggs: circumstellar matter — planetary ...that can be modeled as an optically thick disk that has an optically thin region (a hole or a gap ) at smaller radii, have been suggested to be in the

  2. Study on EM-parameters and EM-wave absorption properties of materials with bio-flaky particles added

    NASA Astrophysics Data System (ADS)

    Zhang, Wenqiang; Zhang, Deyuan; Xu, Yonggang; McNaughton, Ryan

    2016-01-01

    Bio-flaky particles, fabricated through deposition of carbonyl iron on the surface of disk shaped diatomite, demonstrated beneficial performance on electromagnetic parameters. This paper will detail the improvements to the electromagnetic parameters and absorbing properties of traditional absorbing material generated by the addition of bio-flaky particles. Composites' electromagnetic parameters were measured using the transmission method. Calculated test results confirmed with bio-flaky particles were added, composites' permittivity increased due to the high permeability of bio-flaky particles. Secondly, the permeability of composites increased as a result of the increased volume content of iron particles. Composites with bio-flaky particles added exhibited superlative absorption properties at 0.5 mm thickness, with a maximum reflection loss of approximately -5.1 dB at 14.4 GHz.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Stefan; Espaillat, Catherine; Wilner, David J.

    Pre-transitional disks are protoplanetary disks with a gapped disk structure, potentially indicating the presence of young planets in these systems. In order to explore the structure of these objects and their gap-opening mechanism, we observed the pre-transitional disk V1247 Orionis using the Very Large Telescope Interferometer, the Keck Interferometer, Keck-II, Gemini South, and IRTF. This allows us to spatially resolve the AU-scale disk structure from near- to mid-infrared wavelengths (1.5-13 {mu}m), tracing material at different temperatures and over a wide range of stellocentric radii. Our observations reveal a narrow, optically thick inner-disk component (located at 0.18 AU from the star)more » that is separated from the optically thick outer disk (radii {approx}> 46 AU), providing unambiguous evidence for the existence of a gap in this pre-transitional disk. Surprisingly, we find that the gap region is filled with significant amounts of optically thin material with a carbon-dominated dust mineralogy. The presence of this optically thin gap material cannot be deduced solely from the spectral energy distribution, yet it is the dominant contributor at mid-infrared wavelengths. Furthermore, using Keck/NIRC2 aperture masking observations in the H, K', and L' bands, we detect asymmetries in the brightness distribution on scales of {approx}15-40 AU, i.e., within the gap region. The detected asymmetries are highly significant, yet their amplitude and direction changes with wavelength, which is not consistent with a companion interpretation but indicates an inhomogeneous distribution of the gap material. We interpret this as strong evidence for the presence of complex density structures, possibly reflecting the dynamical interaction of the disk material with sub-stellar mass bodies that are responsible for the gap clearing.« less

  4. Deformation and Life Analysis of Composite Flywheel Disk and Multi-disk Systems

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Saleeb, A. F.; AlZoubi, N. R.

    2001-01-01

    In this study an attempt is made to put into perspective the problem of a rotating disk, be it a single disk or a number of concentric disks forming a unit. An analytical model capable of performing an elastic stress analysis for single/multiple, annular/solid, anisotropic/isotropic disk systems, subjected to both pressure surface tractions, body forces (in the form of temperature-changes and rotation fields) and interfacial misfits is derived and discussed. Results of an extensive parametric study are presented to clearly define the key design variables and their associated influence. In general the important parameters were identified as misfit, mean radius, thickness, material property and/or load gradation, and speed; all of which must be simultaneously optimized to achieve the "best" and most reliable design. Also, the important issue of defining proper performance/merit indices (based on the specific stored energy), in the presence of multiaxiality and material anisotropy is addressed. These merit indices are then utilized to discuss the difference between flywheels made from PMC and TMC materials with either an annular or solid geometry. Finally two major aspects of failure analysis, that is the static and cyclic limit (burst) speeds are addressed. In the case of static limit loads, upper, lower, and out-of-plane bounds for disks with constant thickness are presented for both the case of internal pressure loading (as one would see in a hydroburst test) and pure rotation (as in the case of a free spinning disk). The results (interaction diagrams) are displayed graphically in designer friendly format. For the case of fatigue, a representative fatigue/life master curve is illustrated in which the normalized limit speed versus number of applied cycles is given for a cladded TMC disk application.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Ruobing; Rafikov, Roman; Zhu Zhaohuan

    Through detailed radiative transfer modeling, we present a disk+cavity model to simultaneously explain both the spectral energy distribution (SED) and Subaru H-band polarized light imaging for the pre-transitional protoplanetary disk PDS 70. In particular, we are able to match not only the radial dependence but also the absolute scale of the surface brightness of the scattered light. Our disk model has a cavity 65 AU in radius, which is heavily depleted of sub-micron-sized dust grains, and a small residual inner disk that produces a weak but still optically thick near-IR excess in the SED. To explain the contrast of themore » cavity's edge in the Subaru image, a factor of {approx}1000 depletion for the sub-micron-sized dust inside the cavity is required. The total dust mass of the disk may be on the order of 10{sup -4} M {sub Sun }, only weakly constrained due to the lack of long-wavelength observations and the uncertainties in the dust model. The scale height of the sub-micron-sized dust is {approx}6 AU at the cavity edge, and the cavity wall is optically thick in the vertical direction at H-band. PDS 70 is not a member of the class of (pre-)transitional disks identified by Dong et al., whose members only show evidence of the cavity in the millimeter-size dust but not the sub-micron-sized dust in resolved images. The two classes of (pre-)transitional disks may form through different mechanisms, or they may simply be at different evolution stages in the disk-clearing process.« less

  6. The age of the galactic disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandage, A.

    The galactic disk is a dissipative structure and must, therefore be younger than the halo if galaxy formation generally proceeds by collapse. Just how much younger the oldest stars in the galactic disk are than the oldest halo stars remains an open question. A fast collapse (on a time scale no longer than the rotation period of the extended protogalaxy) permits an age gap of the order of approximately 10 to the 9th power years. A slow collapse, governed by the cooling rate of the partially pressure supported falling gas that formed into what is now the thick stellar disk,more » permits a longer age gap, claimed by some to be as long as 6 Gyr. Early methods of age dating the oldest components of the disk contain implicit assumptions concerning the details of the age-metallicity relation for stars in the solar neighborhood. The discovery that this relation for open clusters outside the solar circle is different that in the solar neighborhood (Geisler 1987), complicates the earlier arguments. The oldest stars in the galactic disk are at least as old as NGC 188. The new data by Janes on NGC 6791, shown first at this conference, suggest a disk age of at least 12.5 Gyr, as do data near the main sequence termination point of metal rich, high proper motion stars of low orbital eccentricity. Hence, a case can still be made that the oldest part of the galactic thick disk is similar in age to the halo globular clusters, if their ages are the same as 47 Tuc.« less

  7. The age of the galactic disk

    NASA Technical Reports Server (NTRS)

    Sandage, Allan

    1988-01-01

    The galactic disk is a dissipative structure and must, therefore be younger than the halo if galaxy formation generally proceeds by collapse. Just how much younger the oldest stars in the galactic disk are than the oldest halo stars remains an open question. A fast collapse (on a time scale no longer than the rotation period of the extended protogalaxy) permits an age gap of the order of approximately 10 to the 9th power years. A slow collapse, governed by the cooling rate of the partially pressure supported falling gas that formed into what is now the thick stellar disk, permits a longer age gap, claimed by some to be as long as 6 Gyr. Early methods of age dating the oldest components of the disk contain implicit assumptions concerning the details of the age-metallicity relation for stars in the solar neighborhood. The discovery that this relation for open clusters outside the solar circle is different that in the solar neighborhood (Geisler 1987), complicates the earlier arguments. The oldest stars in the galactic disk are at least as old as NGC 188. The new data by Janes on NGC 6791, shown first at this conference, suggest a disk age of at least 12.5 Gyr, as do data near the main sequence termination point of metal rich, high proper motion stars of low orbital eccentricity. Hence, a case can still be made that the oldest part of the galactic thick disk is similar in age to the halo globular clusters, if their ages are the same as 47 Tuc.

  8. Fatigue Crack Growth Behavior Evaluation of Grainex Mar-M 247 for NASA's High Temperature, High Speed Turbine Seal Test Rig

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Steinetz, Bruce M.; Rimnac, Clare M.; Lewandowski, John J.

    2008-01-01

    The fatigue crack growth behavior of Grainex Mar-M 247 is evaluated for NASA s Turbine Seal Test Facility. The facility is used to test air-to-air seals primarily for use in advanced jet engine applications. Because of extreme seal test conditions of temperature, pressure, and surface speeds, surface cracks may develop over time in the disk bolt holes. An inspection interval is developed to preclude catastrophic disk failure by using experimental fatigue crack growth data. By combining current fatigue crack growth results with previous fatigue strain-life experimental work, an inspection interval is determined for the test disk. The fatigue crack growth life of the NASA disk bolt holes is found to be 367 cycles at a crack depth of 0.501 mm using a factor of 2 on life at maximum operating conditions. Combining this result with previous fatigue strain-life experimental work gives a total fatigue life of 1032 cycles at a crack depth of 0.501 mm. Eddy-current inspections are suggested starting at 665 cycles since eddy current detection thresholds are currently at 0.381 mm. Inspection intervals are recommended every 50 cycles when operated at maximum operating conditions.

  9. Optimal stapler cartridge selection according to the thickness of the pancreas in distal pancreatectomy

    PubMed Central

    Kim, Hongbeom; Jang, Jin-Young; Son, Donghee; Lee, Seungyeoun; Han, Youngmin; Shin, Yong Chan; Kim, Jae Ri; Kwon, Wooil; Kim, Sun-Whe

    2016-01-01

    Abstract Stapling is a popular method for stump closure in distal pancreatectomy (DP). However, research on which cartridges are suitable for different pancreatic thickness is lacking. To identify the optimal stapler cartridge choice in DP according to pancreatic thickness. From November 2011 to April 2015, data were prospectively collected from 217 consecutive patients who underwent DP with 3-layer endoscopic staple closure in Seoul National University Hospital, Korea. Postoperative pancreatic fistula (POPF) was graded according to International Study Group on Pancreatic Fistula definitions. Staplers were grouped based on closed length (CL) (Group I: CL ≤ 1.5 mm, II: 1.5 mm < CL < 2 mm, III: CL ≥ 2 mm). Compression ratio (CR) was defined as pancreas thickness/CL. Distribution of pancreatic thickness was used to find the cut-off point of thickness which predicts POPF according to stapler groups. POPF developed in 130 (59.9%) patients (Grade A; n = 86 [66.1%], B; n = 44 [33.8%]). The numbers in each stapler group were 46, 101, and 70, respectively. Mean thickness was higher in POPF cases (15.2 mm vs 13.5 mm, P = 0.002). High body mass index (P = 0.003), thick pancreas (P = 0.011), and high CR (P = 0.024) were independent risk factors for POPF in multivariate analysis. Pancreatic thickness was grouped into <12 mm, 12 to 17 mm, and >17 mm. With pancreatic thickness <12 mm, the POPF rate was lowest with Group II (I: 50%, II: 27.6%, III: 69.2%, P = 0.035). The optimal stapler cartridges with pancreatic thickness <12 mm were those in Group II (Gold, CL: 1.8 mm). There was no suitable cartridge for thicker pancreases. Further studies are necessary to reduce POPF in thick pancreases. PMID:27583852

  10. Optimal stapler cartridge selection according to the thickness of the pancreas in distal pancreatectomy.

    PubMed

    Kim, Hongbeom; Jang, Jin-Young; Son, Donghee; Lee, Seungyeoun; Han, Youngmin; Shin, Yong Chan; Kim, Jae Ri; Kwon, Wooil; Kim, Sun-Whe

    2016-08-01

    Stapling is a popular method for stump closure in distal pancreatectomy (DP). However, research on which cartridges are suitable for different pancreatic thickness is lacking. To identify the optimal stapler cartridge choice in DP according to pancreatic thickness.From November 2011 to April 2015, data were prospectively collected from 217 consecutive patients who underwent DP with 3-layer endoscopic staple closure in Seoul National University Hospital, Korea. Postoperative pancreatic fistula (POPF) was graded according to International Study Group on Pancreatic Fistula definitions. Staplers were grouped based on closed length (CL) (Group I: CL ≤ 1.5 mm, II: 1.5 mm < CL < 2 mm, III: CL ≥ 2 mm). Compression ratio (CR) was defined as pancreas thickness/CL. Distribution of pancreatic thickness was used to find the cut-off point of thickness which predicts POPF according to stapler groups.POPF developed in 130 (59.9%) patients (Grade A; n = 86 [66.1%], B; n = 44 [33.8%]). The numbers in each stapler group were 46, 101, and 70, respectively. Mean thickness was higher in POPF cases (15.2 mm vs 13.5 mm, P = 0.002). High body mass index (P = 0.003), thick pancreas (P = 0.011), and high CR (P = 0.024) were independent risk factors for POPF in multivariate analysis. Pancreatic thickness was grouped into <12 mm, 12 to 17 mm, and >17 mm. With pancreatic thickness <12 mm, the POPF rate was lowest with Group II (I: 50%, II: 27.6%, III: 69.2%, P = 0.035).The optimal stapler cartridges with pancreatic thickness <12 mm were those in Group II (Gold, CL: 1.8 mm). There was no suitable cartridge for thicker pancreases. Further studies are necessary to reduce POPF in thick pancreases.

  11. Empirical Temperature Measurement in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Weaver, Erik; Isella, Andrea; Boehler, Yann

    2018-02-01

    The accurate measurement of temperature in protoplanetary disks is critical to understanding many key features of disk evolution and planet formation, from disk chemistry and dynamics, to planetesimal formation. This paper explores the techniques available to determine temperatures from observations of single, optically thick molecular emission lines. Specific attention is given to issues such as the inclusion of optically thin emission, problems resulting from continuum subtraction, and complications of real observations. Effort is also made to detail the exact nature and morphology of the region emitting a given line. To properly study and quantify these effects, this paper considers a range of disk models, from simple pedagogical models to very detailed models including full radiative transfer. Finally, we show how the use of the wrong methods can lead to potentially severe misinterpretations of data, leading to incorrect measurements of disk temperature profiles. We show that the best way to estimate the temperature of emitting gas is to analyze the line peak emission map without subtracting continuum emission. Continuum subtraction, which is commonly applied to observations of line emission, systematically leads to underestimation of the gas temperature. We further show that once observational effects such as beam dilution and noise are accounted for, the line brightness temperature derived from the peak emission is reliably within 10%–15% of the physical temperature of the emitting region, assuming optically thick emission. The methodology described in this paper will be applied in future works to constrain the temperature, and related physical quantities, in protoplanetary disks observed with ALMA.

  12. Nonlinear THz Plamonic Disk Resonators

    NASA Astrophysics Data System (ADS)

    Seren, Huseyin; Zhang, Jingdi; Keiser, George; Maddox, Scott; Fan, Kebin; Cao, Lingyue; Bank, Seth; Zhang, Xin; Averitt, Richard

    2013-03-01

    Particle surface plasmons (PPSs) at visible wavelengths continue to be actively investigated with the goal of nanoscale control of light. In contrast, terahertz (THz) surface plasmon experiments are at a nascent stage of investigation. Doped semiconductors with proper carrier density and mobility support THz PSPs. One approach is to utilize thick doped films etched into subwavelength disks. Given the ease of tuning the semiconductor carrier density, THz PSPs are tunable and exhibit interesting nonlinear THz plasmonic effects. We created THz PSP structures using MBE grown 2um thick InAs films with a doping concentration of 1e17cm-3 on 500um thick semi-insulating GaAs substrate. We patterned 40um diameter disks with a 60um period by reactive ion etching. Our THz time-domain measurements reveal a resonance at 1.1THz which agrees well with simulation results using a Drude model. A nonlinear response occurs at high THz electric field strengths (>50kV/cm). In particular, we observed a redshift and quenching of the resonance due to impact ionization which resulted in changes in the carrier density and effective mass due to inter-valley scattering.

  13. Laser cutting of steel plates up to 100 mm in thickness with a 6-kW fiber laser for application to dismantling of nuclear facilities

    NASA Astrophysics Data System (ADS)

    Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Seon, Sangwoo; Kim, Taek-Soo; Lee, Lim; Lee, Jonghwan

    2018-01-01

    A cutting study with a high-power ytterbium-doped fiber laser was conducted for the dismantling of nuclear facilities. Stainless steel and carbon steel plates of various thicknesses were cut at a laser power of 6-kW. Despite the use of a low output of 6-kW, the cutting was successful for both stainless steel and carbon steel plates of up to 100 mm in thickness. In addition, the maximum cutting speeds against the thicknesses were obtained to evaluate the cutting performance. As representative results, the maximum cutting speeds for a 60-mm thickness were 72 mm/min for the stainless steel plates and 35 mm/min for the carbon steel plates, and those for a 100-mm thickness were 7 mm/min for stainless steel and 5 mm/min for carbon steel plates. These results show an efficient cutting capability of about 16.7 mm by kW, whereas other groups have shown cutting capabilities of ∼10 mm by kW. Moreover, the maximum cutting speeds were faster for the same thicknesses than those from other groups. In addition, the kerf widths of 60-mm and 100-mm thick steels were also obtained as another important parameter determining the amount of secondary waste. The front kerf widths were ∼1.0 mm and the rear kerf widths were larger than the front kerf widths but as small as a few millimeters.

  14. Lamina cribrosa position and Bruch's membrane opening differences between anterior ischemic optic neuropathy and open-angle glaucoma.

    PubMed

    Rebolleda, Gema; Pérez-Sarriegui, Ane; Díez-Álvarez, Laura; De Juan, Victoria; Muñoz-Negrete, Francisco J

    2018-06-01

    To compare the optic nerve head morphology among primary open-angle glaucoma, non-arteritic anterior ischemic optic neuropathy eyes, their fellow healthy eyes and control eyes, using spectral-domain optical coherence tomography with enhanced depth imaging. Observational cross-sectional study including 88 eyes of 68 patients. In this study, 23 non-arteritic anterior ischemic optic neuropathy eyes, 17 fellow unaffected eyes, 25 primary open-angle glaucoma eyes, and 23 age-matched control eyes were included. Peripapillary retinal nerve fiber layer thickness and optic disk area were evaluated. Bruch's membrane opening diameter, optic cup depth, anterior lamina cribrosa depth, and prelaminar tissue thickness were assessed. Non-arteritic anterior ischemic optic neuropathy and primary open-angle glaucoma eyes had similar visual field mean deviation and peripapillary retinal nerve fiber layer thickness (P = 0.6 and P = 0.56, respectively). Bruch's membrane opening diameter was significantly larger in primary open-angle glaucoma eyes than in control eyes (P = 0.02). Lamina cribrosa and disk cup were deeper in eyes with primary open-angle glaucoma than both control and non-arteritic anterior ischemic optic neuropathy eyes (P < 0.001). Prelaminar tissue thickness was significantly thinner in primary open-angle glaucoma eyes than in non-arteritic anterior ischemic optic neuropathy eyes (P < 0.001). Lamina cribrosa was shallower in both non-arteritic anterior ischemic optic neuropathy and unaffected fellow eyes compared to healthy eyes (P < 0.001 and P = 0.04, respectively). No differences were found in the optic disk area. A forward lamina cribrosa placement and not a smaller disk could be involved in the pathogenesis of non-arteritic anterior ischemic optic neuropathy. A significantly larger Bruch's membrane opening diameter was found in primary open-angle glaucoma eyes compared with control eyes. This issue has clinical implications because Bruch's membrane opening has been considered a stable reference for disk-related measures.

  15. Variations the diameter tip of electrode on the resistance spot welding using electrode Cu on worksheet Fe

    NASA Astrophysics Data System (ADS)

    Baskoro, A. S.; Sugeng, S.; Sifa, Agus; Badruzzaman; Endramawan, Tito

    2018-04-01

    Resistance Spot Weld (RSW) is a welding technology which plays an important role that is often used in industry in large manufacturing industries, especially in the automotive sector, some of the parameters are affecting the welding process that give impact in the weld quality, diameter tip important impact on the resistance spot welding, This study can be categorized as experimental study by using Electrode material such as Cu and Fe Worksheet Materials, with a material thickness of 1 mm,0,8 mm, and 0,6 mm on each worksheet, and the large diameter of tip electrode (5√t) depend on the thickness of worksheet. Testing the material in the electrode and the worksheet by testing the composition and tensile test, and the hardness of the material used are to know the material used certainly. The result of the welding process was done by using the parameters voltage of 8KV, with a duty cycle of 50% using a variation of the time 8s-10s, and variations the electrode tip diameter that are affected by the thickness of the worksheet 5\\sqrt{t}, plate thickness used 1 mm, 0,8 mm and 0,6 mm, so that the electrodes was used to a thickness of 1 mm diameter tip electrode 5 mm, thickness 0,8 mm with an electrode tip diameter 4,5 mm and a thickness 0,6 mm with an electrode diameter of 4 mm, with current welding parameter 8kVA, and variations in holding time 10s, 9s and 8s 50% duty cycle, then testing welds with the standard shear test refers ASTM A370-2012 with more results to a thickness of 0,6 has the ability to withstand greater load on the holding time 8s and 9s, 10s, to a thickness 0,8 mm and 1 mm shear test results demonstrate the ability to withstand loads on the holding time of 10s and 9s have a greater ability than 8s on worksheet that has thickness 1 mm at a holding time of 10s, and then Maximum shear test averaging of 36,41 N at a worksheet with a thickness of 0,8 mm (diameter tip 4,5 mm) at a holding time of 8s and a mean minimum shear stress of 23,73 N at worksheet that has thickness 0,6 mm (diameter tip 4 mm).

  16. Malignant melanoma in Ferrara, Northern Italy: epidemiologic survey focusing on tumor thickness.

    PubMed

    Borghi, A; Corazza, M; Minghetti, S; Masarà, A; Virgili, A

    2015-12-01

    Estimates of malignant melanoma (MM) incidence and prognosis vary widely. The present study was performed to analyze epidemiologic and prognostic aspects of primary MM mainly in relation to tumor thickness. We conducted a retrospective study on a cohort of 435 patients with diagnosis of primary MM between 1997 and 2011. In the period 2009-2011, among the MM diagnosed 50.00% were thin, 32.43% in situ and 17.57% thicker while in 1997-1999 MM>1 mm accounted for 51.61% of diagnoses. Mean age of patients affected with thin MM was significantly lower than that of patients with MM>1 mm, and mean thickness resulted significantly lower in female patients than in males. Mean thickness of MM located on easily self-evaluable body areas was significantly lower than in those not accessible for skin self-examination. The commonest histogenetic type was superficially spreading melanoma. Mitotic rate, ulceration and vertical growth phase all resulted related to MM thickness. Out of 61 patients with thin MM who underwent SLNB, 3 resulted positive (4.92%): neither thickness >0.75 mm, nor ulceration, mitotic rate or Clark level were found to be associated with SLNB positivity. Five-year survival rate was 98.3% for thin MM patients and 76.4% for thick MM patients. Our trend analysis evidences a continuing increase of thinner primary MM throughout the study period, potentially enhancing patient prognosis. Regular skin self-examination could contribute to earlier recognition of MM. Identification of more powerful predictors of thin MM prognosis is necessary.

  17. Diamondlike carbon coating as a galvanic corrosion barrier between dental implant abutments and nickel-chromium superstructures.

    PubMed

    Ozkomur, Ahmet; Erbil, Mehmet; Akova, Tolga

    2013-01-01

    The objectives of this study were to evaluate the galvanic corrosion behavior between titanium and nickel-chromium (Ni-Cr) alloy, to investigate the effect of diamondlike carbon (DLC) coating over titanium on galvanic corrosion behavior between titanium and Ni-Cr alloy, and to evaluate the effect of DLC coating over titanium abutments on the fit and integrity of prosthetic assemblies by scanning electron microcopy (SEM). Five Ni-Cr and 10 titanium disks with a diameter of 5 mm and thickness of 3 mm were prepared. DLC coating was applied to five titanium disks. Electrode samples were prepared, and open circuit potential measurements, galvanic current measurements over platinum electrodes, and potentiodynamic polarization tests were carried out. For the SEM evaluation, 20 Ni-Cr alloy and 10 gold alloy superstructures were cast and prepared over 30 abutments. DLC coating was applied to 10 of the abutments. Following the fixation of prosthetic assemblies, the samples were embedded in acrylic resin and cross sectioned longitudinally. Internal fit evaluations were carried out through examination of the SEM images. Titanium showed more noble and electrochemically stable properties than Ni-Cr alloy. DLC coating over the cathode electrode served as an insulating film layer over the surface and prevented galvanic coupling. Results of the SEM evaluations indicated that the DLC-coated and titanium abutments showed no statistically significant difference in fit. Hence, no adverse effects on the adaptation of prosthetic components were found with the application of DLC coating over abutment surfaces. DLC coating might serve as a galvanic corrosion barrier between titanium abutments and Ni-Cr superstructures.

  18. Effect of surface acid etching on the biaxial flexural strength of two hot-pressed glass ceramics.

    PubMed

    Hooshmand, Tabassom; Parvizi, Shaghayegh; Keshvad, Alireza

    2008-07-01

    The purpose of this study was to assess the effect of surface acid etching on the biaxial flexural strength of two hot-pressed glass ceramics reinforced by leucite or lithium disilicate crystals. Forty glass ceramic disks (14-mm diameter, 2-mm thick) consisting of 20 leucite-based ceramic disks (IPS Empress) and 20 lithia disilicate-based ceramic (IPS Empress 2) were produced by hot-pressing technique. All specimens were polished and then cleaned ultrasonically in distilled water. Ten specimens of each ceramic group were then etched with 9% hydrofluoric (HF) acid gel for 2 minutes and cleaned ultrasonically again. The biaxial flexural strength was measured by the piston-on-three-ball test in a universal testing machine. Data based on ten specimens in each group were analyzed by two-way ANOVA (alpha= 0.05). Microstructure of ceramic surfaces before and after acid etching was also examined by a scanning electron microscope. The mean biaxial flexural strength values for each group tested were (in MPa): nonetched IPS Empress = 118.6 +/- 25.5; etched IPS Empress = 102.9 +/- 15.4; nonetched IPS Empress 2 = 283.0 +/- 48.5; and etched IPS Empress 2 = 250.6 +/- 34.6. The results showed that the etching process reduced the biaxial flexural strengths significantly for both ceramic types (p= 0.025). No significant interaction between the ceramic type and etching process was found (p= 0.407). From the results, it was concluded that surface HF acid etching could have a weakening effect on hot-pressed leucite or lithia disilicate-based glass ceramic systems.

  19. THE EVOLUTION OF CIRCUMPLANETARY DISKS AROUND PLANETS IN WIDE ORBITS: IMPLICATIONS FOR FORMATION THEORY, OBSERVATIONS, AND MOON SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shabram, Megan; Boley, Aaron C.

    2013-04-10

    Using radiation hydrodynamics simulations, we explore the evolution of circumplanetary disks around wide-orbit proto-gas giants. At large distances from the star ({approx}100 AU), gravitational instability followed by disk fragmentation can form low-mass substellar companions (massive gas giants and/or brown dwarfs) that are likely to host large disks. We examine the initial evolution of these subdisks and their role in regulating the growth of their substellar companions, as well as explore consequences of their interactions with circumstellar material. We find that subdisks that form in the context of GIs evolve quickly from a very massive state. Long-term accretion rates from themore » subdisk onto the proto-gas giant reach {approx}0.3 Jupiter masses kyr{sup -1}. We also find consistency with previous simulations, demonstrating that subdisks are truncated at {approx}1/3 of the companion's Hill radius and are thick, with (h/r) of {approx}> 0.2. The thickness of subdisks draws to question the use of thin-disk approximations for understanding the behavior of subdisks, and the morphology of subdisks has implications for the formation and extent of satellite systems. These subdisks create heating events in otherwise cold regions of the circumstellar disk and serve as planet formation beacons that can be detected by instruments such as ALMA.« less

  20. The Effect of Core and Veneering Design on the Optical Properties of Polyether Ether Ketone.

    PubMed

    Zeighami, S; Mirmohammadrezaei, S; Safi, M; Falahchai, S M

    2017-12-01

    This study aimed to evaluate the effect of core shade and core and veneering thickness on color parameters and translucency of polyether ether ketone (PEEK). Sixty PEEK discs (0.5 and 1 mm in thickness) with white and dentine shades were veneered with A2 shade indirect composite resin with 0.5, 1 and 1.5 mm thickness (n=5). Cores without the veneering material served as controls for translucency evaluation. Color parameters were measured by a spectroradiometer. Color difference (ΔE₀₀) and translucency parameters (TP) were computed. Data were analyzed using one-way ANOVA and Tukey's test (for veneering thickness) and independent t-test (for core shade and thickness) via SPSS 20.0 (p⟨0.05). Regarding the veneering thickness, white cores of 0.5 mm thickness showed significant differences in all color parameters. In white cores of 1 mm thickness and dentine cores of 0.5 and 1 mm thickness, there were statistically significant differences only in L∗, a∗ and h∗. The mean TP was significantly higher in all white cores of 1 mm thickness than dentine cores of 1 mm. Considering ΔE₀₀=3.7 as clinically unacceptable, only three groups had higher mean ΔE₀₀ values. Core shade, core thickness, and the veneering thickness affected the color and translucency of PEEK restorations. Copyright© 2017 Dennis Barber Ltd.

  1. Concept designs of nonrotating-type centrifugal blood pump and basic study on output characteristics of the oscillating disk-type centrifugal pump.

    PubMed

    Kabei, N; Tuichiya, K; Sakurai, Y

    1994-09-01

    When designing a turbo-type blood pump as an artificial heart, the gap between a rotating shaft and a pump housing should be perfectly sealed to prevent any leakage or contamination through a seal. In addition, blood coagulation in a blood chamber must be avoided. To overcome these problems, we proposed five different nonrotating-type turbo pumps: a caudal-fin-type axial-flow pump, a caudal-fin-type centrifugal pump, a nutating-column-type centrifugal pump, a nutating-collapsible-tube-type centrifugal pump, and an oscillating-disk-type centrifugal pump. We selected and developed the oscillating-disk-type centrifugal pump that consists of a disk, a driving rod, a seal, an oscillation mechanism, and a pump housing. The disk is mounted on the end of the rod, which is connected to a high-speed DC motor through an oscillation mechanism. The rod and the disk do not rotate, but they oscillate in the pump housing. This movement of the disk generates forward fluid flow around the axis (i.e., the rotational fluid flow). Centrifugal force due to fluid rotation supports the pressure difference between the outlet and the inlet. The diameter of the disk is 39 mm, the maximum inner diameter of the pump housing is 40 mm, and the volume of the blood chamber for 25 degrees' oscillation is 16.9 ml. The performance of the pump was tested in a mock circulatory system.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Strain rate dependent orthotropic properties of pristine and impulsively loaded porcine temporomandibular joint disk.

    PubMed

    Beatty, M W; Bruno, M J; Iwasaki, L R; Nickel, J C

    2001-10-01

    The purpose of this study was to characterize the tensile stress-strain behavior of the porcine temporomandibular joint (TMJ) disk with respect to collagen orientation and strain rate dependency. The apparent elastic modulus, ultimate tensile strength, and strain at maximum stress were measured at three elongation rates (0.5, 50, and 500 mm/min) for dumbbell-shaped samples oriented along either anteroposterior or mediolateral axes of the disks. In order to study the effects of impact-induced fissuring on the mechanical behavior, the same properties were measured along each orientation at an elongation rate of 500 mm/min for disks subjected to impulsive loads of 0.5 N. s. The results suggested a strongly orthotropic nature to the healthy pristine disk. The values for the apparent modulus and ultimate strength were 10-fold higher along the anteroposterior axis (p < or = 0.01), which represented the primary orientation of the collagen fibers. Strain rate dependency was evident for loading along the anteroposterior axis but not along the mediolateral axis. No significant differences in any property were noted between pristine and impulsively loaded disks for either orientation (p > 0.05). The results demonstrated the importance of choosing an orthotropic model for the TMJ disk to conduct finite element modeling, to develop failure criteria, and to construct tissue-engineered replacements. Impact-induced fissuring requires further study to determine if the TMJ disk is orthotropic with respect to fatigue.

  3. Accretion Disks in Supersoft X-ray Sources

    NASA Technical Reports Server (NTRS)

    Popham, Robert; DiStefano, Rosanne

    1996-01-01

    We examine the role of the accretion disk in the steady-burning white dwarf model for supersoft sources. The accretion luminosity of the disk is quite small compared to the nuclear burning luminosity of the central source. Thus, in contrast to standard accretion disks, the main role of the disk is to reprocess the radiation from the white dwarf. We calculate models of accretion disks around luminous white dwarfs and compare the resulting disk fluxes to optical and UV observations of the LMC supersoft sources CAL 83, CAL 87, and RX J0513.9-6951. We find that if the white dwarf luminosity is near the upper end of the steady-burning region, and the flaring of the disk is included, then reprocessing by the disk can account for the UV fluxes and a substantial fraction of the optical fluxes of these systems. Reprocessing by the companion star can provide additional optical flux, and here too the disk plays an important role: since the disk is fairly thick, it shadows a significant fraction of the companion's surface.

  4. High power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Holzer, Marco

    2011-02-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With well over 1000 high power disk lasers installations, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain important details of the TruDisk laser series and process relevant features of the system, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  5. Foundations of Black Hole Accretion Disk Theory.

    PubMed

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  6. Giant quiescent solar filament observed with high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuckein, C.; Verma, M.; Denker, C.

    2016-05-01

    Aims: An extremely large filament was studied in various layers of the solar atmosphere. The inferred physical parameters and the morphological aspects are compared with smaller quiescent filaments. Methods: A giant quiet-Sun filament was observed with the high-resolution Echelle spectrograph at the Vacuum Tower Telescope at Observatorio del Teide, Tenerife, Spain, on 2011 November 15. A mosaic of spectra (ten maps of 100″ × 182″) was recorded simultaneously in the chromospheric absorption lines Hα and Na I D2. Physical parameters of the filament plasma were derived using cloud model (CM) inversions and line core fits. The spectra were complemented with full-disk filtergrams (He I λ10830 Å, Hα, and Ca II K) of the Chromospheric Telescope (ChroTel) and full-disk magnetograms of the Helioseismic and Magnetic Imager (HMI). Results: The filament had extremely large linear dimensions (~817 arcsec), which corresponds to about 658 Mm along a great circle on the solar surface. A total amount of 175119 Hα contrast profiles were inverted using the CM approach. The inferred mean line-of-sight (LOS) velocity, Doppler width, and source function were similar to previous works of smaller quiescent filaments. However, the derived optical thickness was higher. LOS velocity trends inferred from the Hα line core fits were in accord but weaker than those obtained with CM inversions. Signatures of counter-streaming flows were detected in the filament. The largest brightening conglomerates in the line core of Na I D2 coincided well with small-scale magnetic fields as seen by HMI. Mixed magnetic polarities were detected close to the ends of barbs. The computation of photospheric horizontal flows based on HMI magnetograms revealed flow kernels with a size of 5-8 Mm and velocities of 0.30-0.45 km s-1 at the ends of the filament. Conclusions: The physical properties of extremely large filaments are similar to their smaller counterparts, except for the optical thickness, which in our sample was found to be higher. We found that a part of the filament, which erupted the day before, is in the process of reestablishing its initial configuration.

  7. Large size crystalline vs. co-sintered ceramic Yb(3+):YAG disk performance in diode pumped amplifiers.

    PubMed

    Albach, Daniel; Chanteloup, Jean-Christophe

    2015-01-12

    A comprehensive experimental benchmarking of Yb(3+):YAG crystalline and co-sintered ceramic disks of similar thickness and doping level is presented in the context of high average power laser amplifier operation. Comparison is performed considering gain, depolarization and wave front deformation quantitative measurements and analysis.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pott, Jorg-Uwe; Perrin, Marshall D.; Furlan, Elise

    With the Keck Interferometer, we have studied at 2 {mu}m the innermost regions of several nearby, young, dust-depleted 'transitional' disks. Our observations target five of the six clearest cases of transitional disks in the Taurus/Auriga star-forming region (DM Tau, GM Aur, LkCa 15, UX Tau A, and RY Tau) to explore the possibility that the depletion of optically thick dust from the inner disks is caused by stellar companions rather than the more typical planet-formation hypothesis. At the 99.7% confidence level, the observed visibilities exclude binaries with flux ratios of at least 0.05 and separations ranging from 2.5 to 30more » mas (0.35-4 AU) over {approx}>94% of the area covered by our measurements. All targets but DM Tau show near-infrared (NIR) excess in their spectral energy distribution (SED) higher than our companion flux ratio detection limits. While a companion has previously been detected in the candidate transitional disk system CoKu Tau/4, we can exclude similar mass companions as the typical origin for the clearing of inner dust in transitional disks and of the NIR excess emission. Unlike CoKu Tau/4, all our targets show some evidence of accretion. We find that all but one of the targets are clearly spatially resolved, and UX Tau A is marginally resolved. Our data are consistent with hot material on small scales (0.1 AU) inside of and separated from the cooler outer disk, consistent with the recent SED modeling. These observations support the notion that some transitional disks have radial gaps in their optically thick material, which could be an indication for planet formation in the habitable zone ({approx} a few AU) of a protoplanetary disk.« less

  9. In-plane inertial coupling in tuned and severely mistuned bladed disks

    NASA Technical Reports Server (NTRS)

    Crawley, E. F.

    1982-01-01

    A model has been developed and verified for blade-disk-shaft coupling in rotors due to the in-plane rigid body modes of the disk. An analytic model has been developed which couples the in-plane rigid body modes of the disk on an elastic shaft with the blade bending modes. Bench resonance test were carried out on the M.I.T. Compressor Rotor, typical of research rotors with flexible blades and a thick rigid disk. When the rotor was carefully tuned, the structural coupling of the blades by the disks was confined to zero and one nodal diameter modes, whose modal frequencies were greater than the blade cantilever frequency. In the case of the tuned rotor, and in two cases where severe mistuning was intentionally introduced, agreement between the predicted and observed natural frequencies is excellent. The analytic model was then extended to include the effects of constant angular rotation of the disk.

  10. Theory of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shields, G. A.

    1986-01-01

    The involvement of accretion disks around supermassive black holes in the theory of active galactic nuclei (AGN) is discussed. The physics of thin and thick accretion disks is discussed and the partition between thermal and nonthermal energy production in supermassive disks is seen as uncertain. The thermal limit cycle may operate in supermassive disks (Shields, 1985), with accumulation of gas in the disk for periods of 10 to the 4th to 10 to the 7th years, punctuated by briefer outbursts during which the mass is rapidly transferred to smaller radii. An extended X-ray source in AGN is consistent with observations (Tennant and Mushotsky, 1983), and a large wind mass loss rate exceeding the central accretion rate means that only a fraction of the mass entering the disk will reach the central object; the rest being lost to the wind. Controversy in the relationship between the broad lines and the disk is also discussed.

  11. Analytic Expressions for the Inner-rim Structure of Passively Heated Protoplanetary Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, Takahiro; Okuzumi, Satoshi; Flock, Mario, E-mail: t_ueda@geo.titech.ac.jp

    We analytically derive the expressions for the structure of the inner region of protoplanetary disks based on the results from the recent hydrodynamical simulations. The inner part of a disk can be divided into four regions: a dust-free region with a gas temperature in the optically thin limit, an optically thin dust halo, an optically thick condensation front, and the classical, optically thick region, in order from the innermost to the outermost. We derive the dust-to-gas mass ratio profile in the dust halo using the fact that partial dust condensation regulates the temperature relative to the dust evaporation temperature. Beyondmore » the dust halo, there is an optically thick condensation front where all the available silicate gas condenses out. The curvature of the condensation surface is determined by the condition that the surface temperature must be nearly equal to the characteristic temperature ∼1200 K. We derive the midplane temperature in the outer two regions using the two-layer approximation, with the additional heating by the condensation front for the outermost region. As a result, the overall temperature profile is step-like, with steep gradients at the borders between the outer three regions. The borders might act as planet traps where the inward migration of planets due to gravitational interaction with the gas disk stops. The temperature at the border between the two outermost regions coincides with the temperature needed to activate magnetorotational instability, suggesting that the inner edge of the dead zone must lie at this border. The radius of the dead zone inner edge predicted from our solution is ∼2–3 times larger than that expected from the classical optically thick temperature.« less

  12. Analytic Expressions for the Inner-rim Structure of Passively Heated Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Okuzumi, Satoshi; Flock, Mario

    2017-07-01

    We analytically derive the expressions for the structure of the inner region of protoplanetary disks based on the results from the recent hydrodynamical simulations. The inner part of a disk can be divided into four regions: a dust-free region with a gas temperature in the optically thin limit, an optically thin dust halo, an optically thick condensation front, and the classical, optically thick region, in order from the innermost to the outermost. We derive the dust-to-gas mass ratio profile in the dust halo using the fact that partial dust condensation regulates the temperature relative to the dust evaporation temperature. Beyond the dust halo, there is an optically thick condensation front where all the available silicate gas condenses out. The curvature of the condensation surface is determined by the condition that the surface temperature must be nearly equal to the characteristic temperature ˜1200 K. We derive the midplane temperature in the outer two regions using the two-layer approximation, with the additional heating by the condensation front for the outermost region. As a result, the overall temperature profile is step-like, with steep gradients at the borders between the outer three regions. The borders might act as planet traps where the inward migration of planets due to gravitational interaction with the gas disk stops. The temperature at the border between the two outermost regions coincides with the temperature needed to activate magnetorotational instability, suggesting that the inner edge of the dead zone must lie at this border. The radius of the dead zone inner edge predicted from our solution is ˜2-3 times larger than that expected from the classical optically thick temperature.

  13. Comparison of different grinding procedures on the flexural strength of zirconia.

    PubMed

    Işeri, Ufuk; Ozkurt, Zeynep; Yalnız, Ayşe; Kazazoğlu, Ender

    2012-05-01

    The surface of zirconia ceramic is damaged during grinding, which may affect the mechanical properties of the material. The purpose of this study was to compare the biaxial flexural strength of zirconia after different grinding procedures and to measure the temperature rise from grinding. Forty disk-shaped zirconia specimens (15 × 1.2 mm) with a smaller disk in the center of each disk (1 × 3 mm) were divided into 4 groups (n=10). The specimens were ground with a high-speed handpiece and micromotor with 2 different grinding protocols, continual grinding and periodic grinding (10 seconds grinding with 10 seconds duration), until the smaller disk was removed. Control specimens without the center disk (n=10) were analyzed without grinding. The biaxial flexural strengths of the disks were determined in a universal testing machine at a crosshead speed of 0.5 mm/min. The fracture strength (MPa) was recorded, and the results were analyzed using a 1-way ANOVA, Tukey HSD test, Student's t test, and Pearson correlation test (α=05). All grinding procedures significantly decreased flexural strength (P<.01). The mean flexural strength of the high-speed handpiece groups was higher (815 MPa) than that of the micromotor groups (718 MPa). The temperature values obtained from micromotor grinding (127°C) were significantly higher than those from high-speed handpiece grinding (63°C) (P<.01). Grinding zirconia decreased flexural strength. Zirconia material ground with a high-speed handpiece run continually caused the least reduction in flexural strength. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  14. Edge-facet pumped, multi-aperture, thin-disk laser geometry for very high average power output scaling

    DOEpatents

    Zapata, Luis E.

    2004-12-21

    The average power output of a laser is scaled, to first order, by increasing the transverse dimension of the gain medium while increasing the thickness of an index matched light guide proportionately. Strategic facets cut at the edges of the laminated gain medium provide a method by which the pump light introduced through edges of the composite structure is trapped and passes through the gain medium repeatedly. Spontaneous emission escapes the laser volume via these facets. A multi-faceted disk geometry with grooves cut into the thickness of the gain medium is optimized to passively reject spontaneous emission generated within the laser material, which would otherwise be trapped and amplified within the high index composite disk. Such geometry allows the useful size of the laser aperture to be increased, enabling the average laser output power to be scaled.

  15. Development of Planar Optics for an Optical Tracking Sensor

    NASA Astrophysics Data System (ADS)

    Kawano, Hiroyuki; Sasagawa, Tomohiro

    1998-10-01

    An optical tracking sensor for large-capacity flexible disk drive (FDD) is demonstrated. The passive optics is compact and lightweight (5.4 mm length×3.6 mm width×1.2 mm height in size and 18 mg weight). It comprises all passive optical elements necessary for optical tracking, e.g., a focusing lens, a three-beam grating, an aperture and a beam splitter grating. Three beams were focused to a predetermined spot size of 13 µm at designed intervals of 110 µm on a disk surface and the reflected beams were successfully guided to photodiodes. This confirms that the application of the planar optical technique is very useful for realizing a compact and light optical sensor.

  16. Analysis of stress on mucosa and basal bone underlying complete dentures with different reliner material thicknesses: a three-dimensional finite element study.

    PubMed

    Lima, J B G; Orsi, I A; Borie, E; Lima, J H F; Noritomi, P Y

    2013-10-01

    The aim of this study was to determine the optimal thickness of reliner material that provides the least amount of stress on thin mucosa and supporting bone in patients with complete removable dentures using a three-dimensional finite element analyses. The model was obtained from two CT scans of edentulous mandibles with dentures supported by the alveolar ridge. After virtual reconstruction, the three-dimensional models were exported to the solidworks cad software and divided into six groups based on the thickness of the reliner material as follows: (i) without material, (ii) 0·5 mm, (iii) 1 mm, (iv) 1·5 mm, (v) 2 mm and (vi) 2·5 mm. The applied load was 60 N and perpendicular to the long axis of the alveolar ridge of all the prosthetic teeth, and the mucosal thickness used was 1 mm. The analyses were based on the maximum principal stress in the fibromucosa and the minimum principal stress in the basal bone. Stress concentration was observed in the anterior zone of the mandible in the mucosa and in the bone. The maximum and minimum principal stress in the mucosa and bone, respectively, decreased, whereas the thickness of the reliner material increased until 2 mm, which transmitted the lowest stress, compared with the control. Reliner materials with a thickness of 2·5 mm showed higher stress values than those with a thickness of 2 mm. In conclusion, reliner material with a thickness of 2 mm transmitted the lowest amount of stress to the mucosa and bone in 1 mm of mucosa thickness. © 2013 John Wiley & Sons Ltd.

  17. New method of assessing the relationship between buccal bone thickness and gingival thickness

    PubMed Central

    2016-01-01

    Purpose The aim of this study was to determine the relationship between buccal bone thickness and gingival thickness by means of a noninvasive and relatively accurate digital registration method. Methods In 20 periodontally healthy subjects, cone-beam computed tomographic images and intraoral scanned files were obtained. Measurements of buccal bone thickness and gingival thickness at the central incisors, lateral incisors, and canines were performed at points 0–5 mm from the alveolar crest on the superimposed images. The Friedman test was used to compare buccal bone and gingival thickness for each depth between the 3 tooth types. Spearman's correlation coefficient was calculated to assess the correlation between buccal bone thickness and gingival thickness. Results Of the central incisors, 77% of all sites had a buccal thickness of 0.5–1.0 mm, and 23% had a thickness of 1.0–1.5 mm. Of the lateral incisors, 71% of sites demonstrated a buccal bone thickness <1.0 mm, as did 63% of the canine sites. For gingival thickness, the proportion of sites <1.0 mm was 88%, 82%, and 91% for the central incisors, lateral incisors, and canines, respectively. Significant differences were observed in gingival thickness at the alveolar crest level (G0) between the central incisors and canines (P=0.032) and between the central incisors and lateral incisors (P=0.013). At 1 mm inferior to the alveolar crest, a difference was found between the central incisors and canines (P=0.025). The lateral incisors and canines showed a significant difference for buccal bone thickness 5 mm under the alveolar crest (P=0.025). Conclusions The gingiva and buccal bone of the anterior maxillary teeth were found to be relatively thin (<1 mm) overall. A tendency was found for gingival thickness to increase and bone thickness to decrease toward the root apex. Differences were found between teeth at some positions, although the correlation between buccal bone thickness and soft tissue thickness was generally not significant. PMID:28050315

  18. Effect of small floating disks on the propagation of gravity waves

    NASA Astrophysics Data System (ADS)

    De Santi, F.; Olla, P.

    2017-04-01

    A dispersion relation for gravity waves in water covered by disk-like impurities embedded in a viscous matrix is derived. The macroscopic equations are obtained by ensemble-averaging the fluid equations at the disk scale in the asymptotic limit of long waves and low disk surface fraction. Various regimes are identified depending on the disk radii and the thickness and viscosity of the top layer. Semi-quantitative analysis in the close-packing regime suggests dramatic modification of the dynamics, with orders of magnitude increase in wave damping and wave dispersion. A simplified model working in this regime is proposed. Possible applications to wave propagation in an ice-covered ocean are discussed and comparison with field data is provided.

  19. Method for optical pumping of thin laser media at high average power

    DOEpatents

    Zapata, Luis E [Livermore, CA; Beach, Raymond J [Livermore, CA; Honea, Eric C [Sunol, CA; Payne, Stephen A [Castro Valley, CA

    2004-07-13

    A thin, planar laser material is bonded to a light guide of an index-matched material forming a composite disk. Diode array or other pump light is introduced into the composite disk through the edges of the disk. Pump light trapped within the composite disk depletes as it multi-passes the laser medium before reaching an opposing edge of the disk. The resulting compound optical structure efficiently delivers concentrated pump light and to a laser medium of minimum thickness. The external face of the laser medium is used for cooling. A high performance cooler attached to the external face of the laser medium rejects heat. Laser beam extraction is parallel to the heat flux to minimize optical distortions.

  20. Effect of layer thickness on the elution of bulk-fill composite components.

    PubMed

    Rothmund, Lena; Reichl, Franz-Xaver; Hickel, Reinhard; Styllou, Panorea; Styllou, Marianthi; Kehe, Kai; Yang, Yang; Högg, Christof

    2017-01-01

    An increment layering technique in a thickness of 2mm or less has been the standard to sufficiently convert (co)monomers. Bulk fill resin composites were developed to accelerate the restoration process by enabling up to 4mm thick increments to be cured in a single step. The aim of the present study is to investigate the effect of layer thickness on the elution of components from bulk fill composites. The composites ELS Bulk fill, SDR Bulk fill and Venus Bulkfill were polymerized according to the instruction of the manufacturers. For each composite three groups with four samples each (n=4) were prepared: (1) samples with a layer thickness of 2mm; (2) samples with a layer thickness of 4mm and (3) samples with a layer thickness of 6mm. The samples were eluted in methanol and water for 24h and 7 d. The eluates were analyzed by gas chromatography/mass spectrometry (GC/MS). A total of 11 different elutable substances have been identified from the investigated composites. Following methacrylates showed an increase of elution at a higher layer thickness: TEGDMA (SDR Bulk fill, Venus Bulk fill), EGDMA (Venus Bulk fill). There was no significant difference in the elution of HEMA regarding the layer thickness. The highest concentration of TEGDMA was 146μg/mL for SDR Bulk fill at a layer thickness of 6mm after 7 d in water. The highest HEMA concentration measured at 108μg/mL was detected in the methanol eluate of Venus Bulk fill after 7 d with a layer thickness of 6mm. A layer thickness of 4mm or more can lead to an increased elution of some bulk fill components, compared to the elution at a layer thickness of 2mm. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Effect of antipronation foot orthosis geometry on compression of heel and arch soft tissues.

    PubMed

    Sweeney, Declan; Nester, Christopher; Preece, Stephen; Mickle, Karen

    2015-01-01

    This study aimed to understand how systematic changes in arch height and two designs of heel wedging affect soft tissues under the foot. Soft tissue thickness under the heel and navicular was measured using ultrasound. Heel pad thickness was measured when subjects were standing on a flat surface and standing on an orthosis with 4 and 8 degree extrinsic wedges and 4 mm and 8 mm intrinsic wedges (n = 27). Arch soft tissue thickness was measured when subjects were standing and when standing on an orthosis with -6 mm, standard, and +6 mm increments in arch height (n = 25). Extrinsic and intrinsic heel wedges significantly increased soft tissue thickness under the heel compared with no orthosis. The 4 and 8 degree extrinsic wedges increased tissue thickness by 28% and 27.6%, respectively, while the 4 mm and 8 mm intrinsic wedges increased thickness by 23% and 14.6%, respectively. Orthotic arch height significantly affected arch soft tissue thickness. Compared with the no orthosis condition, the -6 mm, standard, and +6 mm arch heights decreased arch tissue thickness by 9%, 10%, and 11.8%, respectively. This study demonstrates that change in orthotic geometry creates different plantar soft tissue responses that we expect to affect transmission of force to underlying foot bones.

  2. Effect of water storage and surface treatments on the tensile bond strength of IPS Empress 2 ceramic.

    PubMed

    Salvio, Luciana A; Correr-Sobrinho, Lourenço; Consani, Simonides; Sinhoreti, Mário A C; de Goes, Mario F; Knowles, Jonathan C

    2007-01-01

    The aim of this study was to evaluate the effect of water storage (24 hours and 1 year) on the tensile bond strength between the IPS Empress 2 ceramic and Variolink II resin cement under different superficial treatments. One hundred and eighty disks with diameters of 5.3 mm at the top and 7.0 mm at the bottom, and a thickness of 2.5 mm were made, embedded in resin, and randomly divided into six groups: Groups 1 and 4 = 10% hydrofluoric acid for 20 seconds; Groups 2 and 5 = sandblasting for 5 seconds with 50 microm aluminum oxide; and Groups 3 and 6 = sandblasting for 5 seconds with 100 microm aluminum oxide. Silane was applied on the treated ceramic surfaces, and the disks were bonded into pairs with adhesive resin cement. The samples of Groups 1 to 3 were stored in distilled water at 37 degrees C for 24 hours, and Groups 4 to 6 were stored for 1 year. The samples were subjected to a tensile strength test in an Instron universal testing machine at a crosshead speed of 1.0 mm/min, until failure. The data were submitted to analysis of variance and Tukey's test (5%). The means of the tensile bond strength of Groups 1, 2, and 3 (15.54 +/- 4.53, 10.60 +/- 3.32, and 7.87 +/- 2.26 MPa) for 24-hour storage time were significantly higher than those observed for the 1-year storage (Groups 4, 5, and 6: 10.10 +/- 3.17, 6.34 +/- 1.06, and 2.60 +/- 0.41 MPa). The surface treatments with 10% hydrofluoric acid (15.54 +/- 4.53 and 10.10 +/- 3.17 MPa) showed statistically higher tensile bond strengths compared with sandblasting with 50 microm(10.60 +/- 3.32 and 6.34 +/- 1.06 MPa) and 100 microm (7.87 +/- 2.26 and 2.60 +/- 0.41 MPa) aluminum oxide for the storage time 24 hours and 1 year. Storage time significantly decreased the tensile bond strength for both ceramic surface treatments. The application of 10% hydrofluoric acid resulted in stronger tensile bond strength values than those achieved with aluminum oxide.

  3. Continuum Reverberation Mapping of AGN Accretion Disks

    NASA Astrophysics Data System (ADS)

    Fausnaugh, Michael M.; Peterson, Bradley M.; Starkey, David A.; Horne, Keith; AGN Storm Collaboration

    2017-12-01

    We show recent detections of inter-band continuum lags in three AGN (NGC 5548, NGC 2617, and MCG+08-11-011), which provide new constraints on the temperature profiles and absolute sizes of the accretion disks. We find lags larger than would be predicted for standard geometrically thin, optically thick accretion disks by factors of 2.3 to 3.3. For NGC 5548, the data span UV through optical/near-IR wavelengths, and we are able to discern a steeper temperature profile than the T˜ R^{-3/4} expected for a standard thin disk . Using a physical model, we are also able to estimate the inclinations of the disks for two objects. These results are similar to those found from gravitational microlensing of strongly lensed quasars, and provide a complementary approach for investigating the accretion disk structure in local, low luminsoity AGN.

  4. Radiative Transfer Modeling in Proto-planetary Disks

    NASA Astrophysics Data System (ADS)

    Kasper, David; Jang-Condell, Hannah; Kloster, Dylan

    2016-01-01

    Young Stellar Objects (YSOs) are rich astronomical research environments. Planets form in circumstellar disks of gas and dust around YSOs. With ever increasing capabilities of the observational instruments designed to look at these proto-planetary disks, most notably GPI, SPHERE, and ALMA, more accurate interfaces must be made to connect modeling of the disks with observation. PaRTY (Parallel Radiative Transfer in YSOs) is a code developed previously to model the observable density and temperature structure of such a disk by self-consistently calculating the structure of the disk based on radiative transfer physics. We present upgrades we are implementing to the PaRTY code to improve its accuracy and flexibility. These upgrades include: creating a two-sided disk model, implementing a spherical coordinate system, and implementing wavelength-dependent opacities. These upgrades will address problems in the PaRTY code of infinite optical thickness, calculation under/over-resolution, and wavelength-independent photon penetration depths, respectively. The upgraded code will be used to better model disk perturbations resulting from planet formation.

  5. Cosmic ray propagation and containment

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1976-01-01

    The cosmic rays, an active gaseous component of the disk of the galaxy, are considered along with their propagation and containment as a part of the general dynamics of the disk. The sources of cosmic rays are a matter of speculation. The disk is inflated by the cosmic ray gas pressure comparable to the magnetic pressure, but the rate of inflation is unknown. The time spent by the individual cosmic ray particles in the disk is inversely proportional to the cosmic ray production rate. It is evident from the decay of Be(1c) that the cosmic rays circulate through a volume of space perhaps ten times the thickness of the gaseous disk, suggesting a magnetic halo extending out approximately 1 kpc from either face of the disk. The cosmic rays may be responsible for the halo by inflating the magnetic fields of the disk. Extension of the fields to 1 kpc would imply a high production rate and short life of cosmic rays in the dense gaseous disk of the galaxy.

  6. Role of Retinal Nerve Fiber Layer Thickness and Optic Disk Measurement by OCT on Early Diagnosis of Glaucoma.

    PubMed

    Hua, Zanmei; Fang, Qiuyun; Sha, Xiangyin; Yang, Ruiming; Hong, Zuopeng

    2015-03-01

    Glaucoma is an eye disease that can lead to irreversible optic nerve damage and cause blindness. Optical coherence tomography (OCT) allows an early diagnosis of glaucoma by the measurements of the retinal nerve fiber and optic disc parameters. A retrospective study was designed to analyze the effects of the measurement of the retinal nerve fiber layer (RNFL) thickness and the optic disc tomography by spectral-domain OCT on the early diagnosis of suspected glaucoma and primary open angle glaucoma (POAG). This was a clinical case-control study. The RNFL thickness around the optic disc and optic disk tomographic parameters of the control (n = 51, 98 eyes), suspected glaucoma (n = 81, 146 eyes), and POAG groups (n = 55, 106 eyes) were measured by OCT. The parameters included superior, inferior, nasal and temporal mean RNFL thickness, disc area (DA), cup area (CA), rim area (RA), disc volume (DV), cup volume (CV), rim volume (RV), cup/disc area ratio (CA/DA), rim/disc area ratio (RA/DA), cup/disc volume ratio (CV/DV) and rim/disc volume ratio (RV/DV). Superior, nasal, and mean RNFL parameters, DA, CA,RA, DV, CV, CA/DA, RA/DA, CV/DV and RV/DV significantly differed among three groups by single-factorial ANOVA. Inferior and temporal RNFL thickness significantly differed between the control and POAG groups. No significant difference was observed in RV among three groups. In the POAG group, the maximum area under the ROC curve (AROC) of mean RNFL thickness was 0.845. The maximum AROC of optic disk parameters was RA/DA (0.998), followed by CA/DA (0.997). The AROC of CA, RA, CV, and DV were all > 0.900. OCT may serve as a useful diagnostic modality in distinguishing suspected glaucoma from POAG.

  7. SU-E-T-232: Custom High-Dose-Rate Brachytherapy Surface Mold Applicators: The Importance Source to Skin Distance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S; Demanes, J; Kamrava, M

    2015-06-15

    Purpose: Surface mold applicators can be customized to fit irregular skin surfaces that are difficult to treat with other radiation therapy techniques. Optimal design of customized HDR skin brachytherapy is not well-established. We evaluated the impact of applicator thickness (source to skin distance) on target dosimetry. Methods: 27 patients had 34 treated sites: scalp 4, face 13, extremity 13, and torso 4. Custom applicators were constructed from 5–15 mm thick thermoplastic bolus molded over the skin lesion. A planar array of plastic brachytherapy catheters spaced 5–10 mm apart was affixed to the bolus. CT simulation was used to contour themore » target volume and to determine the prescription depth. Inverse planning simulated annealing followed by graphical optimization was used to plan and deliver 40–56 Gy in 8–16 fractions. Target coverage parameters (D90, Dmean, and V100) and dose uniformity (V110–200, D0.1cc, D1cc, and D2cc) were studied according to target depth (<5mm vs. ≥5mm) and applicator thickness (5–10mm vs. ≥10mm). Results: The average prescription depth was 4.2±1.5mm. The average bolus thickness was 9.2±2.4mm. The median CTV volume was 10.0 cc (0.2–212.4 cc). Similar target coverage was achieved with prescription depths of <5mm and ≥5mm (Dmean = 113.8% vs. 112.4% and D90 = 100.2% vs. 98.3%). The <5mm prescription depth plans were more uniform (D0.1cc = 131.8% vs. 151.8%). Bolus thickness <10mm vs. ≥10mm plans also had similar target coverage (Dmean = 118.2% vs. 110.7% and D90 = 100.1% vs. 99.0%). Applicators ≥10mm thick, however, provide more uniform target dosimetry (D0.1cc = 146.9% vs. 139.5%). Conclusion: Prescription depth is based upon the thickness of the lesion and upon the clinical needs of the patient. Applicators ≥10mm thick provide more dose uniformity than 5–10mm thick applicators. Applicator thickness is an important variable that should be considered during treatment planning to achieve optimal dose uniformity.« less

  8. Thin endometrium in donor oocyte recipients: enigma or obstacle for implantation?

    PubMed

    Dain, Lena; Bider, David; Levron, Jacob; Zinchenko, Viktor; Westler, Sharon; Dirnfeld, Martha

    2013-11-01

    To evaluate the combined effect of endometrial thickness and anatomic uterine factors on clinical outcome in oocyte donation recipients. Retrospective analysis of oocyte donation cycles conducted between 2005 and 2010. Two private IVF centers. A total of 737 donor oocyte cycles. None. Clinical pregnancy and live birth rates. No statistically significant difference was found in clinical pregnancy rates and live birth rates in cycles with endometrial thickness <6 mm compared with those with endometrial thickness >10 mm. However, a relatively high rate of live births was found within a medium range of endometrial thickness (8.2-10 mm). All intrauterine adhesion cases occurred in cycles with thinner endometrium. No statistically significant difference was found in clinical pregnancy rates and live birth rates in cycles with endometrial thickness <6 mm compared with those with thickness >6 mm. A relatively high rate of live births was found within a medium range of endometrial thickness (9.1-10 mm). Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. Effect of Specimen Thickness on the Creep Response of a Single Crystal Superalloy (Preprint)

    DTIC Science & Technology

    2012-01-01

    0.38mm. 3.1.2. Fractography Figure 5: SEM images of the sheet specimen of thickness 3.18mm creep tested at 760◦C/758MPa, (a) Specimen reconstructed after...with dotted rectangle in (b). To further explore the mechanism behind thickness debit effect, we performed stan- dard fractography using secondary...thickness 3.18mm ruptured after 210hours. 3.2.3. Fractography The SEM image of the reconstructed creep ruptured specimen of thickness 3.18mm is shown in

  10. A Study of Inner Disk Gas around Young Stars in the Lupus Complex

    NASA Astrophysics Data System (ADS)

    Arulanantham, Nicole Annemarie; France, Kevin; Hoadley, Keri

    2018-06-01

    We present a study of molecular hydrogen at the surfaces of the disks around five young stars in the Lupus complex: RY Lupi, RU Lupi, MY Lupi, Sz 68, and TYC 7851. Each system was observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST), and we detect a population of fluorescent H2 in all five sources. The temperatures required for LyA fluorescence to proceed (T ~ 1500-2500 K) place the gas within ~15 AU of the central stars. We have used these features to extract the radial distribution of H2 in the inner disk, where planet formation may already be taking place. The objects presented here have very different outer disk morphologies, as seen by ALMA via 890 micron dust continuum emission, ranging from full disks with no signs of cavities to systems with large regions that are clearly depleted (e.g. TYC 7851, with a cavity extending to 75 and 60 AU in dust and gas, respectively). Our results are interpreted in conjunction with sub-mm data from the five systems in an effort to piece together a more complete picture of the overall disk structure. We have previously applied this multi-wavelength approach to RY Lupi, including 4.7 micron IR-CO emission in our analysis. These IR-CO and UV-H2 observations were combined with 10 micron silicate emission, the 890 micron dust continuum, and 1.3 mm CO observations from the literature to infer a gapped structure in the inner disk. This single system has served as a testing ground for the larger Lupus complex sample, which we compare here to examine any trends between the outer disk morphology and inner disk gas distributions.

  11. Cannibals in the thick disk: the young α-rich stars as evolved blue stragglers

    NASA Astrophysics Data System (ADS)

    Jofré, P.; Jorissen, A.; Van Eck, S.; Izzard, R. G.; Masseron, T.; Hawkins, K.; Gilmore, G.; Paladini, C.; Escorza, A.; Blanco-Cuaresma, S.; Manick, R.

    2016-10-01

    Spectro-seismic measurements of red giants enabled the recent discovery of stars in the thick disk that are more massive than 1.4 M⊙. While it has been claimed that most of these stars are younger than the rest of the typical thick disk stars, we show evidence that they might be products of mass transfer in binary evolution, notably evolved blue stragglers. We took new measurements of the radial velocities in a sample of 26 stars from APOKASC, including 13 "young" stars and 13 "old" stars with similar stellar parameters but with masses below 1.2 M⊙ and found that more of the young starsappear to be in binary systems with respect to the old stars.Furthermore, we show that the young stars do not follow the expected trend of [C/H] ratios versus mass for individual stars. However, with a population synthesis of low-mass stars including binary evolution and mass transfer, we can reproduce the observed [C/N] ratios versus mass. Our study shows how asteroseismology of solar-type red giants provides us with a unique opportunity to study the evolution of field blue stragglers after they have left the main-sequence.

  12. The Gaia-ESO Survey: Separating disk chemical substructures with cluster models. Evidence of a separate evolution in the metal-poor thin disk

    NASA Astrophysics Data System (ADS)

    Rojas-Arriagada, A.; Recio-Blanco, A.; de Laverny, P.; Schultheis, M.; Guiglion, G.; Mikolaitis, Š.; Kordopatis, G.; Hill, V.; Gilmore, G.; Randich, S.; Alfaro, E. J.; Bensby, T.; Koposov, S. E.; Costado, M. T.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Lind, K.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Zaggia, S.; Chiappini, C.

    2016-02-01

    Context. Recent spectroscopic surveys have begun to explore the Galactic disk system on the basis of large data samples, with spatial distributions sampling regions well outside the solar neighborhood. In this way, they provide valuable information for testing spatial and temporal variations of disk structure kinematics and chemical evolution. Aims: The main purposes of this study are to demonstrate the usefulness of a rigorous mathematical approach to separate substructures of a stellar sample in the abundance-metallicity plane, and provide new evidence with which to characterize the nature of the metal-poor end of the thin disk sequence. Methods: We used a Gaussian mixture model algorithm to separate in the [Mg/Fe] vs. [Fe/H] plane a clean disk star subsample (essentially at RGC< 10 kpc) from the Gaia-ESO survey (GES) internal data release 2 (iDR2). We aim at decomposing it into data groups highlighting number density and/or slope variations in the abundance-metallicity plane. An independent sample of disk red clump stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) was used to cross-check the identified features. Results: We find that the sample is separated into five groups associated with major Galactic components; the metal-rich end of the halo, the thick disk, and three subgroups for the thin disk sequence. This is confirmed with the sample of red clump stars from APOGEE. The three thin disk groups served to explore this sequence in more detail. The two metal-intermediate and metal-rich groups of the thin disk decomposition ([Fe/H] > -0.25 dex) highlight a change in the slope at solar metallicity. This holds true at different radial regions of the Milky Way. The distribution of Galactocentric radial distances of the metal-poor part of the thin disk ([Fe/H] < -0.25 dex) is shifted to larger distances than those of the more metal-rich parts. Moreover, the metal-poor part of the thin disk presents indications of a scale height intermediate between those of the thick and the rest of the thin disk, and it displays higher azimuthal velocities than the latter. These stars might have formed and evolved in parallel and/or dissociated from the inside-out formation taking place in the internal thin disk. Their enhancement levels might be due to their origin from gas pre-enriched by outflows from the thick disk or the inner halo. The smooth trends of their properties (their spatial distribution with respect to the plane, in particular) with [Fe/H] and [Mg/Fe] suggested by the data indicates a quiet dynamical evolution, with no relevant merger events. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 188.B-3002. These data products have been processed by the Cambridge Astronomy Survey Unit (CASU) at the Institute of Astronomy, University of Cambridge, and by the FLAMES/UVES reduction team at INAF/Osservatorio Astrofisico di Arcetri. These data have been obtained from the Gaia-ESO Survey Data Archive, prepared and hosted by the Wide Field Astronomy Unit, Institute for Astronomy, University of Edinburgh, which is funded by the UK Science and Technology Facilities Council.

  13. [Measurement and comparison of the spectral transmittance of cerinate porcelain and human enamel].

    PubMed

    Chen, Ji-Hua; Zhou, Guo-Feng; Wei, Zhang-Rui; Wang, Hui; Zhao, San-Jun

    2006-12-01

    To measure the spectral transmittance of Cerinate porcelain veneer and enamel in different color and different thickness. Samples of Cerinate porcelain veneers were prepared in different thickness (0.50 mm, 0.75 mm, 1.00 mm) and different Vita shade (A1, A2, A3). Enamel samples in shade A2 were made with three thickness (0.50 mm, 0.75 mm, 1.00 mm). A spectrophotometer with spectra range (380-800 nm) was employed to measure the spectral transmittance. Spectral transmittance decreased with the increasing in the thickness of specimens and decreasing in the color darkness. The transmittance of Cerinate porcelain veneer material and enamel in the same color and same thickness hadn't significant difference. The key factor to spectral transmittance of porcelain veneer materials is veneer's thickness, and the color of the materials has also some influence on it. Cerinate porcelain veneers can properly recover the transparency of teeth.

  14. Using a Divided Bar Apparatus to Measure Thermal Conductivity of Samples of Odd Sizes and Shapes

    NASA Astrophysics Data System (ADS)

    Crowell, J. "; Gosnold, W. D.

    2012-12-01

    Standard procedure for measuring thermal conductivity using a divided bar apparatus requires a sample that has the same surface dimensions as the heat sink/source surface in the divided bar. Heat flow is assumed to be constant throughout the column and thermal conductivity (K) is determined by measuring temperatures (T) across the sample and across standard layers and using the basic relationship Ksample=(Kstandard*(ΔT1+ΔT2)/2)/(ΔTsample). Sometimes samples are not large enough or of correct proportions to match the surface of the heat sink/source, however using the equations presented here the thermal conductivity of these samples can still be measured with a divided bar. Measurements were done on the UND Geothermal Laboratories stationary divided bar apparatus (SDB). This SDB has been designed to mimic many in-situ conditions, with a temperature range of -20C to 150C and a pressure range of 0 to 10,000 psi for samples with parallel surfaces and 0 to 3000 psi for samples with non-parallel surfaces. The heat sink/source surfaces are copper disks and have a surface area of 1,772 mm2 (2.74 in2). Layers of polycarbonate 6 mm thick with the same surface area as the copper disks are located in the heat sink and in the heat source as standards. For this study, all samples were prepared from a single piece of 4 inch limestone core. Thermal conductivities were measured for each sample as it was cut successively smaller. The above equation was adjusted to include the thicknesses (Th) of the samples and the standards and the surface areas (A) of the heat sink/source and of the sample Ksample=(Kstandard*Astandard*Thsample*(ΔT1+ΔT3))/(ΔTsample*Asample*2*Thstandard). Measuring the thermal conductivity of samples of multiple sizes, shapes, and thicknesses gave consistent values for samples with surfaces as small as 50% of the heat sink/source surface, regardless of the shape of the sample. Measuring samples with surfaces smaller than 50% of the heat sink/source surface resulted in thermal conductivity values which were too high. The cause of the error with the smaller samples is being examined as is the relationship between the amount of error in the thermal conductivity and the difference in surface areas. As more measurements are made an equation to mathematically correct for the error is being developed on in case a way to physically correct the problem cannot be determined.

  15. A thermoelastic transversely isotropic thick walled cylinder/disk application: An analytical solution and study

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.

    1989-01-01

    A continuum theory is utilized to represent the thermoelastic behavior of a thick walled composite cylinder that can be idealized as transversely isotropic. A multiaxial statement of the constitutive theory employed is presented, as well as the out of the plane of isotropy, plane stress, and plane strain reductions. The derived analytical solution presented is valid for a cylindrical tube or thin disk with a concentric hole, subjected to internal and/or external pressure and a general radial temperature distribution. A specific problem examined is that of a thick walled cylinder subjected to an internal and external pressure loading and a linear radial temperature distribution. The results are expressed in nondimensional form and the effects on the response behavior are examined for various material properties, fiber orientation and types of loadings.

  16. The influence of head diameter and wall thickness on deformations of metallic acetabular press-fit cups and UHMWPE liners: a finite element analysis.

    PubMed

    Goebel, Paul; Kluess, Daniel; Wieding, Jan; Souffrant, Robert; Heyer, Horst; Sander, Manuela; Bader, Rainer

    2013-03-01

    To increase the range of motion of total hip endoprostheses, prosthetic heads need to be enlarged, which implies that the cup and/or liner thickness must decrease. This may have negative effects on the wear rate, because the acetabular cups and liners could deform during press-fit implantation and hip joint loading. We compared the metal cup and polyethylene liner deformations that occurred when different wall thicknesses were used in order to evaluate the resulting changes in the clearance of the articulating region. A parametric finite element model utilized three cup and liner wall thicknesses to analyze cup and liner deformations after press-fit implantation into the pelvic bone. The resultant hip joint force during heel strike was applied while the femur was fixed, accounting for physiological muscle forces. The deformation behavior of the liner under joint loading was therefore assessed as a function of the head diameter and the resulting clearance. Press-fit implantation showed diametral cup deformations of 0.096, 0.034, and 0.014 mm for cup wall thicknesses of 3, 5, and 7 mm, respectively. The largest deformations (average 0.084 ± 0.003 mm) of liners with thicknesses of 4, 6, and 8 mm occurred with the smallest cup wall thickness (3 mm). The smallest liner deformation (0.011 mm) was obtained with largest cup and liner wall thicknesses. Under joint loading, liner deformations in thin-walled acetabular cups (3 mm) reduced the initial clearance by about 50 %. Acetabular press-fit cups with wall thicknesses of ≤5 mm should only be used in combination with polyethylene liners >6 mm thick in order to minimize the reduction in clearance.

  17. The effect of prolonged exposure to 750 C air on the tribological performance of PM212

    NASA Technical Reports Server (NTRS)

    Bemis, Kirk; Bogdanski, Michael S.; Dellacorte, Christopher; Sliney, Harold E.

    1994-01-01

    The effect of prolonged exposure to 750 C air on the tribological performance and dimensional stability of PM212, a high temperature, self-lubricating composite, is studied. PM212, by weight, contains 70 percent metal-bonded Cr3C2, 15 percent BaF2/CaF2 eutectic, and 15 percent silver. Rub blocks were fabricated from PM212 by cold isostatic pressing followed by sintering. Prior to tribo-testing, the rub blocks were exposed to 750 C air for periods ranging from 100 to 1000 hours. Then, the rub blocks were slid against nickel-based superalloy disks in a double-rub-block tribometer in air under a 66 N load at temperatures from 25 to 750 C with a sliding velocity of 0.36 m/s. Unexposed rub blocks were tested for baseline comparison. Friction coefficients ranged from 0.24 to 0.37 for the unexposed rub blocks and from 0.32 to 0.56 for the exposed ones. Wear for both the composite blocks and superalloy disks was typically in the moderate to low range of 10(exp -5) to 10(exp -6) mm(exp 3)/N-m. Friction and wear data were similar for the rub blocks exposed for 100, 500, and 1000 hours. Prolonged exposure to 750 C air increased friction and wear of the PM212 rub blocks at room temperature, but their triboperformance remained unaffected at higher temperatures, probably due to the formation of lubricious metal oxides. Dimensional stability of the composite was studied by exposing specimens of varying thicknesses for 500 hours in air at 750 C. Block thicknesses were found to increase with increased exposure time until steady state was reached after 100 hours of exposure, probably due to oxidation.

  18. [A study of linearity and reciprocity during shock applied with a hammer to human dry skull].

    PubMed

    Kumazawa, Y; Sekiguchi, J; Saito, M; Honma, K; Toyoda, M; Matsuo, E

    1990-09-01

    The authors used a human dry skull on which the cranial bone mandible had been joined with an artificial articulator disk to form a single unit. Impact acceleration corresponding to weak and strong tapping was considered a dynamic load in examining the vibration transfer characteristics of the facial cranial bone when impact was applied from the mentum section in a situation designed to be closer to reality. Flexion injection type (resonance frequency f0 = 100 to 150 Hz, produced by GC Corp.) was applied to the human dry skull as an artificial periodontal membrane at thickness of 0.3 mm. In addition, Exaflex heavy body type (f0 = 400 Hz, produced by GC Corp.) was applied as an artificial disk. This was then placed on a damper produced by spreading a rubber dam sheet with a thickness of 35 microns on a tire tube with a diameter of 35 cm and an air pressure of 35 kg/cm2. Investigations were then made concerning linearity and reciprocity to determine whether an experimental system could be achieved or not. This was then followed by modal analysis. As a result, the following matters were ascertained: (1) The resonating area differed according to the extent of the force. (2) An increase in the viscoelastic elements of the silicon was accompanied by attenuation of force. (3) Directionality of force attenuation was caused by the complexity of bone structure. (4) A tapping force of 0.3G or 1G was sufficiently attenuated by the facial cranial bone. (5) The transfer function at the bone seams and thinner areas of the bones was insufficient for modal analysis of the facial region and total cranial bone of the human dry skull.

  19. Resolving the Nuclear Obscuring Disk in the Compton-thick Seyfert Galaxy NGC 5643 with ALMA

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, A.; Pereira-Santaella, M.; García-Burillo, S.; Davies, R. I.; Combes, F.; Asmus, D.; Bunker, A.; Díaz-Santos, T.; Gandhi, P.; González-Martín, O.; Hernán-Caballero, A.; Hicks, E.; Hönig, S.; Labiano, A.; Levenson, N. A.; Packham, C.; Ramos Almeida, C.; Ricci, C.; Rigopoulou, D.; Rosario, D.; Sani, E.; Ward, M. J.

    2018-06-01

    We present ALMA Band 6 12CO(2–1) line and rest-frame 232 GHz continuum observations of the nearby Compton-thick Seyfert galaxy NGC 5643 with angular resolutions 0.″11–0.″26 (9–21 pc). The CO(2–1) integrated line map reveals emission from the nuclear and circumnuclear region with a two-arm nuclear spiral extending ∼10″ on each side. The circumnuclear CO(2–1) kinematics can be fitted with a rotating disk, although there are regions with large residual velocities and/or velocity dispersions. The CO(2–1) line profiles of these regions show two different velocity components. One is ascribed to the circular component and the other to the interaction of the AGN outflow, as traced by the [O III]λ5007 Å emission, with molecular gas in the disk a few hundred parsecs from the AGN. On nuclear scales, we detected an inclined CO(2–1) disk (diameter 26 pc, FWHM) oriented almost in a north–south direction. The CO(2–1) nuclear kinematics can be fitted with a rotating disk that appears to be tilted with respect to the large-scale disk. There are strong non-circular motions in the central 0.″2–0.″3 with velocities of up to 110 km s‑1. In the absence of a nuclear bar, these motions could be explained as radial outflows in the nuclear disk. We estimate a total molecular gas mass for the nuclear disk of M(H2) = 1.1 × 107 M ⊙ and an H2 column density toward the location of the AGN of N(H2) ∼ 5 × 1023 cm‑2, for a standard CO-to-H2 conversion factor. We interpret this nuclear molecular gas disk as the obscuring torus of NGC 5643 as well as the collimating structure of the ionization cone.

  20. Endometrial thickness affects the outcome of in vitro fertilization and embryo transfer in normal responders after GnRH antagonist administration.

    PubMed

    Wu, Yu; Gao, Xiaohong; Lu, Xiang; Xi, Ji; Jiang, Shan; Sun, Yin; Xi, Xiaowei

    2014-10-09

    The goal of this study was to assess the association between endometrial thickness on the chorionic gonadotropin (hCG) day and in vitro fertilization and embryo transfer (IVF-ET) outcome in normal responders after GnRH antagonist administration. A retrospective cohort study was performed in normal responders with GnRH antagonist administration from January 2011-December 2013. Patients were divided into four groups according to endometrial thickness, as follows: <7 mm (group 1), > = 7- < 8 mm (group 2), > = 8- < 14 mm (group 3), and > =14 mm (group 4). A total of 2106 embryo transfer cycles were analyzed. The pregnancy rate (PR) was 44.87%.The clinical pregnancy rate, ongoing pregnancy rate and the implantation rate (17.28%, 13.79%, 10.17%, respectively) were significantly lower in group 1 compared to the other three groups (p < 0.05). The miscarriage rate was higher in patients with endometrial thickness less than 7 mm. The clinical pregnancy rate, ongoing pregnancy rate and implantation rate were highest in patients with endometrial thickness higher than 14 mm, but showed no difference in patients with those of endometrial thickness between 8-14 mm. There is a correlation between endometrial thickness measured on hCG day and clinical outcome in normal responders with GnRH antagonist administration. The pregnancy rate was lower in patients with endometrial thickness less than 7 mm compared with patients with endometrial thickness more than 7 mm.

  1. You’re Cut Off: HD and MHD Simulations of Truncated Accretion Disks

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2017-01-01

    Truncated accretion disks are commonly invoked to explain the spectro-temporal variability from accreting black holes in both small systems, i.e. state transitions in galactic black hole binaries (GBHBs), and large systems, i.e. low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the disk behavior is lacking. We present well-resolved hydrodynamic (HD) and magnetohydrodynamic (MHD) numerical models that use a toy cooling prescription to produce the first sustained truncated accretion disks. Using these simulations, we study the dynamics, angular momentum transport, and energetics of a truncated disk in the two different regimes. We compare the behaviors of the HD and MHD disks and emphasize the need to incorporate a full MHD treatment in any discussion of truncated accretion disk evolution.

  2. High-power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Ryba, Tracey; Holzer, Marco

    2012-03-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With about 2,000 high power disk lasers installations, and a demand upwards of 1,000 lasers per year, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain recent advances in disk laser technology and process relevant features of the laser, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  3. AN UNBIASED 1.3 mm EMISSION LINE SURVEY OF THE PROTOPLANETARY DISK ORBITING LkCa 15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punzi, K. M.; Kastner, J. H.; Hily-Blant, P.

    2015-06-01

    The outer (>30 AU) regions of the dusty circumstellar disk orbiting the ∼2–5 Myr old, actively accreting solar analog LkCa 15 are known to be chemically rich, and the inner disk may host a young protoplanet within its central cavity. To obtain a complete census of the brightest molecular line emission emanating from the LkCa 15 disk over the 210–270 GHz (1.4–1.1 mm) range, we have conducted an unbiased radio spectroscopic survey with the Institute de Radioastronomie Millimétrique (IRAM) 30 m telescope. The survey demonstrates that in this spectral region, the most readily detectable lines are those of CO andmore » its isotopologues {sup 13}CO and C{sup 18}O, as well as HCO{sup +}, HCN, CN, C{sub 2}H, CS, and H{sub 2}CO. All of these species had been previously detected in the LkCa 15 disk; however, the present survey includes the first complete coverage of the CN (2–1) and C{sub 2}H (3–2) hyperfine complexes. Modeling of these emission complexes indicates that the CN and C{sub 2}H either reside in the coldest regions of the disk or are subthermally excited, and that their abundances are enhanced relative to molecular clouds and young stellar object environments. These results highlight the value of unbiased single-dish line surveys in guiding future high-resolution interferometric imaging of disks.« less

  4. Influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage restorations.

    PubMed

    Bakeman, E M; Rego, N; Chaiyabutr, Y; Kois, J C

    2015-01-01

    This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (p<0.001); however, the thickness of ceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (p<0.05). There was no significant difference in fracture resistance values between a lithium disilicate ceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.

  5. Detection of normal plantar fascia thickness in adults via the ultrasonographic method.

    PubMed

    Abul, Kadir; Ozer, Devrim; Sakizlioglu, Secil Sezgin; Buyuk, Abdul Fettah; Kaygusuz, Mehmet Akif

    2015-01-01

    Heel pain is a prevalent concern in orthopedic clinics, and there are numerous pathologic abnormalities that can cause heel pain. Plantar fasciitis is the most common cause of heel pain, and the plantar fascia thickens in this process. It has been found that thickening to greater than 4 mm in ultrasonographic measurements can be accepted as meaningful in diagnoses. Herein, we aimed to measure normal plantar fascia thickness in adults using ultrasonography. We used ultrasonography to measure the plantar fascia thickness of 156 healthy adults in both feet between April 1, 2011, and June 30, 2011. These adults had no previous heel pain. The 156 participants comprised 88 women (56.4%) and 68 men (43.6%) (mean age, 37.9 years; range, 18-65 years). The weight, height, and body mass index of the participants were recorded, and statistical analyses were conducted. The mean ± SD (range) plantar fascia thickness measurements for subgroups of the sample were as follows: 3.284 ± 0.56 mm (2.4-5.1 mm) for male right feet, 3.3 ± 0.55 mm (2.5-5.0 mm) for male left feet, 2.842 ± 0.42 mm (1.8-4.1 mm) for female right feet, and 2.8 ± 0.44 mm (1.8-4.3 mm) for female left feet. The overall mean ± SD (range) thickness for the right foot was 3.035 ± 0.53 mm (1.8-5.1 mm) and for the left foot was 3.053 ± 0.54 mm (1.8-5.0 mm). There was a statistically significant and positive correlation between plantar fascia thickness and participant age, weight, height, and body mass index. The plantar fascia thickness of adults without heel pain was measured to be less than 4 mm in most participants (~92%). There was no statistically significant difference between the thickness of the right and left foot plantar fascia.

  6. Hubble Space Telescope observations of the dwarf Nova Z Chamaeleontis through two eruption cycles

    NASA Technical Reports Server (NTRS)

    Robinson, E. L.; Wood, Janet H.; Bless, R. C.; Clemens, J. C.; Dolan, J. F.; Elliot, J. L.; Nelson, M. J.; Percival, J. W.; Taylor, M. J.; Van Citters, G. W.

    1995-01-01

    We have obtained the first high-speed photometry of the eclipsing dwarf nova Z Cha at ultraviolet wavelengths with the Hubble Space Telescope (HST). We observed the eclipse roughly every 4 days over two cycles of the normal eruptions of Z Cha, giving a uniquely complete coverage of its outburst cycle. The accretion disk dominated the ultraviolet light curve of Z Cha at the peak of an eruption; the white dwarf, the bright spot on the edge of the disk, and the boundary layer were all invisible. We were able to obtain an axisymmetric map of the accretion disk at this time only by adopting a flared disk with an opening angle of approximately 8 deg. The run of brightness temperature with radius in the disk at the peak of the eruption was too flat to be consistent with a steady state, optically thick accretion disk. The local rate of mass flow through the disk was approximately 5 x 10(exp -10) solar masses/yr near the center of the disk and approximately 5 x 10(exp -9) solar masses/yr near the outer edge. The white dwarf, the accretion disk, and the boundary layer were all significant contributors to the ultraviolet flux on the descending branches of the eruptions. The temperature of the white dwarf during decline was 18,300 K less than T(sub wd) less than 21,800 K, which is significantly greater than at minimum light. Six days after the maximum of an eruption Z Cha has faded to near minimum light at ultraviolet wavelenghts, but was still approximately 70% brighter at minimum light in the B band. About one-quarter of the excess flux in the B band came from the accretion disk. Thus, the accretion disk faded and became invisible at ultraviolet wavelengths before it faded at optical wavelenghts. The disk did, however, remain optically thick and obscured the lower half of the white dwarf at ultraviolet and possibly at optical wavelenghts for 2 weeks after the eruption ended. By the third week after eruptiuons the eclipse looked like a simple occultation of an unobscured, spherical white dwarf by a dark secondary star. The center of the accretion disk was, therfore, optically thin at ultraviolet wavelenghts and the boundary layer was too faint to be visible.

  7. [The effect of core veneer thickness ratio on the flexural strength of diatomite-based dental ceramic].

    PubMed

    Jiang, Jie; Zhang, Xin; Gao, Mei-qin; Zhang, Fei-min; Lu, Xiao-li

    2015-06-01

    To evaluate the effect of different core veneer thickness ratios on the flexural strength and failure mode of bilayered diatomite-based dental ceramics. Diatomite-based dental ceramics blocks (16 mm×5.4 mm×1 mm) were sintered with different thickness of veneer porcelains: 0 mm (group A), 0.6 mm (group B), 0.8 mm (group C) and 1.0 mm (group D). Flexural strength was detected and scanning electron microscope was used to observe the interface microstructure. Statistical analysis was performed using SPSS 17.0 software package. With the increase of the thickness of the veneer porcelain, flexural strength of group C showed highest flexural strength up to (277.24±5.47) MPa. Different core veneer thickness ratios can significantly influence the flexural strength of bilayered diatomite-based dental ceramics. Supported by Science and Technology Projects of Nantong City (HS2013010).

  8. Effect of Various Interface Thicknesses on the Behaviour of Infilled frame Subjected to Lateral Load

    NASA Astrophysics Data System (ADS)

    Senthil, K.; Muthukumar, S.; Rupali, S.; Satyanarayanan, K. S.

    2018-03-01

    Two dimensional numerical investigations were carried out to study the influence of interface thickness on the behaviour of reinforced concrete frames subjected to in-plane lateral loads using commercial finite element tool SAP 2000. The cement mortar, cork and foam was used as interface material and their effect was studied by varying thicknesses as 6, 8, 10, 14 and 20 mm. The effect of lateral loads on infill masonry wall was also studied by varying arbitrary loads as 10, 20, 40 and 60 kN. The resistance of the frame with cement mortar was found maximum with the interface thickness 10 mm therefore, it is concluded that the maximum influence of interface thickness of 10 mm was found effective. The resistance of integral infill frame with cork and foam interface was found maximum with the interface thickness 6 mm and it is concluded that 6 mm thick interface among the chosen thickness was found effective.

  9. Fracture load of ceramic restorations after fatigue loading.

    PubMed

    Baladhandayutham, Balasudha; Lawson, Nathaniel C; Burgess, John O

    2015-08-01

    A clinician must decide what ceramic coping and veneer material to prescribe based on the amount of tooth reduction possible and the desired esthetic outcome of the restoration. The purpose of this in vitro study was to compare the fracture strength of monolithic and bilayered lithium disilicate (IPS e.max) and zirconia (LAVA) crowns at clinically relevant thicknesses after load cycling. Crowns (n=8) were fabricated from 6 groups: 1.2-mm monolithic lithium disilicate, 1.5-mm monolithic lithium disilicate, 1.5-mm bilayered lithium disilicate with hand-layered veneer, 0.6 mm monolithic zirconia, 1.2-mm bilayered zirconia with hand-layered veneer, and 1.2-mm bilayered zirconia with milled veneer (dimension represents thickness at the occlusal pit). Crowns were cemented to identical milled resin dies with resin-modified glass ionomer cement. Cemented crowns were stored at 37°C for 24 hours and load cycled for 200,000 cycles at 25 N at a rate of 40 cycles/minute. The ultimate fracture load for each specimen was measured in a universal testing machine. Data were analyzed with a 1-way ANOVA and Tukey honest significant difference post hoc analysis (α=.05). Mean ±SD fracture load values were 1465 ±330 N for monolithic lithium disilicate (1.2-mm thickness) and 2027 ±365 N (1.5-mm thickness) and 1732 ±315 N for bilayered hand-veneered lithium disilicate (1.5-mm thickness). Fracture loads were 1669 ±311 N for monolithic zirconia crowns (0.6mm thickness), 2625 ±300 N for zirconia milled-veneered (1.2-mm thickness), and 2655 ±590N for zirconia hand-veneered crowns (1.2mm thickness). One-way ANOVA showed a statistically significant difference among the groups (P<.01). Veneered zirconia crowns showed the highest fracture strength, 1.2-mm hand veneered zirconia was similar to that of 1.5-mm monolithic zirconia, and all other groups were not statistically different. Crowns of 1.2-mm bilayered zirconia had higher fracture loads than 0.6-mm zirconia or 1.2-mm lithium disilicate monolithic crowns. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Comparison of disk diffusion and agar dilution methods for gentamicin susceptibility testing of Neisseria gonorrhoeae.

    PubMed

    Gianecini, Ricardo; Oviedo, Claudia; Irazu, Lucia; Rodríguez, Marcelo; Galarza, Patricia

    2018-03-29

    Gentamicin is a promising antibiotic for the treatment of multidrug-resistant gonorrhea. The aim of this study was to analyze the suitability and reliably of disk diffusion to monitor the susceptibility to gentamicin. We studied 237 Neisseria gonorrhoeae isolates obtained in 2013 and 2015. Reference MICs were correlated with inhibition zone diameters (in millimeters) of gentamicin 10 µg disks manufactured by BBL and Oxoid. The Pearson correlation between disk diffusion and agar dilution was r = -.68 (P < 0.001) for BBL disk and r = -.71 (P < 0.001) for Oxoid disk. No very major or major discrepancies were detected. However, a high percentage of minor discrepancies was observed (44.7%, BBL disk) and (21.9%, Oxoid disk). By adjusting the susceptible breakpoint to S ≥ 17 mm, the minor discrepancies rate was reduced to 19.4% (BBL disk) and 10.1% (Oxoid disk). The disk diffusion may be a screening method in clinical laboratories to detect the gentamicin susceptibility of N. gonorrhoeae. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Tumour thickness as a predictor of nodal metastases in oral cancer: comparison between tongue and floor of mouth subsites.

    PubMed

    Balasubramanian, Deepak; Ebrahimi, Ardalan; Gupta, Ruta; Gao, Kan; Elliott, Michael; Palme, Carsten E; Clark, Jonathan R

    2014-12-01

    To identify whether tumour thickness as a predictor of nodal metastases in oral squamous cell carcinoma differs between tongue and floor of mouth (FOM) subsites. Retrospective review of 343 patients treated between 1987 and 2012. The neck was considered positive in the presence of pathologically proven nodal metastases on neck dissection or during follow-up. There were 222 oral tongue and 121 FOM tumours. In patients with FOM tumours 2.1-4mm thick, the rate of nodal metastases was 41.7%. In contrast, for tongue cancers of a similar thickness the rate was only 11.2%. This increased to 38.5% in patients with tongue cancers that were 4.1-6mm thick. Comparing these two subsites, FOM cancers cross the critical 20% threshold of probability for nodal metastases between 1 and 2mm whereas tongue cancers cross the 20% threshold just under 4mm thickness. On logistic regression adjusting for relevant covariates, there was a significant difference in the propensity for nodal metastases based on tumour thickness according to subsite (p=0.028). Thin FOM tumours (2.1-4mm) have a high rate of nodal metastases. Elective neck dissection is appropriate in FOM tumours ⩾2mm thick and in tongue tumours ⩾4mm thick. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Gaps in Protoplanetary Disks as Signatures of Planets. III. Polarization

    NASA Astrophysics Data System (ADS)

    Jang-Condell, Hannah

    2017-01-01

    Polarimetric observations of T Tauri and Herbig Ae/Be stars are a powerful way to image protoplanetary disks. However, interpretation of these images is difficult because the degree of polarization is highly sensitive to the angle of scattering of stellar light off the disk surface. We examine how disks with and without gaps created by planets appear in scattered polarized light as a function of inclination angle. Isophotes of inclined disks without gaps are distorted in polarized light, giving the appearance that the disks are more eccentric or more highly inclined than they truly are. Apparent gap locations are unaffected by polarization, but the gap contrast changes. In face-on disks with gaps, we find that the brightened far edge of the gap scatters less polarized light than the rest of the disk, resulting in slightly decreased contrast between the gap trough and the brightened far edge. In inclined disks, gaps can take on the appearance of being localized “holes” in brightness rather than full axisymmetric structures. Photocenter offsets along the minor axis of the disk in both total intensity and polarized intensity images can be readily explained by the finite thickness of the disk. Alone, polarized scattered light images of disks do not necessarily reveal intrinsic disk structure. However, when combined with total intensity images, the orientation of the disk can be deduced and much can be learned about disk structure and dust properties.

  13. Angular dependence of the response of the nanoDot OSLD system for measurements at depth in clinical megavoltage beams.

    PubMed

    Lehmann, Joerg; Dunn, Leon; Lye, Jessica E; Kenny, John W; Alves, Andrew D C; Cole, Andrew; Asena, Andre; Kron, Tomas; Williams, Ivan M

    2014-06-01

    The purpose of this investigation was to assess the angular dependence of a commercial optically stimulated luminescence dosimeter (OSLD) dosimetry system in MV x-ray beams at depths beyond d(max) and to find ways to mitigate this dependence for measurements in phantoms. Two special holders were designed which allow a dosimeter to be rotated around the center of its sensitive volume. The dosimeter's sensitive volume is a disk, 5 mm in diameter and 0.2 mm thick. The first holder rotates the disk in the traditional way. It positions the disk perpendicular to the beam (gantry pointing to the floor) in the initial position (0°). When the holder is rotated the angle of the disk towards the beam increases until the disk is parallel with the beam ("edge on," 90°). This is referred to as Setup 1. The second holder offers a new, alternative measurement position. It positions the disk parallel to the beam for all angles while rotating around its center (Setup 2). Measurements with five to ten dosimeters per point were carried out for 6 MV at 3 and 10 cm depth. Monte Carlo simulations using GEANT4 were performed to simulate the response of the active detector material for several angles. Detector and housing were simulated in detail based on microCT data and communications with the manufacturer. Various material compositions and an all-water geometry were considered. For the traditional Setup 1 the response of the OSLD dropped on average by 1.4% ± 0.7% (measurement) and 2.1% ± 0.3% (Monte Carlo simulation) for the 90° orientation compared to 0°. Monte Carlo simulations also showed a strong dependence of the effect on the composition of the sensitive layer. Assuming the layer to completely consist of the active material (Al2O3) results in a 7% drop in response for 90° compared to 0°. Assuming the layer to be completely water, results in a flat response within the simulation uncertainty of about 1%. For the new Setup 2, measurements and Monte Carlo simulations found the angular dependence of the dosimeter to be below 1% and within the measurement uncertainty. The dosimeter system exhibits a small angular dependence of approximately 2% which needs to be considered for measurements involving other than normal incident beams angles. This applies in particular to clinical in vivo measurements where the orientation of the dosimeter is dictated by clinical circumstances and cannot be optimized as otherwise suggested here. When measuring in a phantom, the proposed new setup should be considered. It changes the orientation of the dosimeter so that a coplanar beam arrangement always hits the disk shaped detector material from the thin side and thereby reduces the angular dependence of the response to within the measurement uncertainty of about 1%. This improvement makes the dosimeter more attractive for clinical measurements with multiple coplanar beams in phantoms, as the overall measurement uncertainty is reduced. Similarly, phantom based postal audits can transition from the traditional TLD to the more accurate and convenient OSLD.

  14. Line formation in the hot spot region of cataclysmic variable accretion disks

    NASA Technical Reports Server (NTRS)

    Elitzur, Moshe; Clarke, John T.; Kallman, T. R.

    1988-01-01

    The paper presents a theoretical analysis of the emission lines observed in the cataclysmic variable A0 Psc (=H2252-035), including detailed modeling of the hydrogen Balmer line emission. The analysis makes it possible to deduce the physical conditions in the so called 'hot spot', or 'bulge' region where the accretion column hits the rim of the accretion disk. It is concluded that the bulge is optically thick to the ionizing disk radiation. Consequently, its disk illuminated face is fully ionized whereas the side facing away from the disk is neutral, resulting in modulation of the observed emission lines with the orbital period. The density in the hot spot is about 5 x 10 to the 12th to 10 to the 13th/cu cm.

  15. Polarization Science with the ngVLA: magnetic fields and dust properties in cores, disks and on larger scales

    NASA Astrophysics Data System (ADS)

    Matthews, Brenda; Hull, Chat

    2018-01-01

    Polarization capabilities of the ngVLA will enable exploration of a wide range of phenomena including: (1) magnetic fields in protostellar cores and protoplanetary disks via polarized emission from magnetically aligned dust grains and spectral lines, including in regions optically thick at ALMA wavelengths; (2) polarization from dust scattering in disks, (3) spectral-line polarization from the Zeeman and Goldreich-Kylafis effects, and (4) magnetic fields in protostellar jets and OB-star-forming cores via synchrotron emission.We will discuss each of these science drivers in turn, with a particular emphasis on why the ngVLA provides a unique means of probing dust properties in the midplane of protoplanetary disks and hence the building blocks of planets in the innermost regions of disks.

  16. Gas in Protoplanetary and Debris Disks: Insights from UV Spectroscopy

    NASA Technical Reports Server (NTRS)

    Roberge, Aki

    2008-01-01

    Over the last two decades, observations of protoplanetary and debris disks have played an important role in the new field of extrasolar planetary studies. Many are familiar with the extensive work on the cold circumstellar dust present in these disks done using infrared and sub-millimeter photometry and spectroscopy. However. UV spectroscopy has made some unique contributions by probing the elusive but vital gas component in protoplanetary and debris disks. In this talk, I will outline our picture of the evolution of protoplanetary disks and discuss the importance of the gas component. New insights obtained from UV spectroscopy will be highlighted, as well as some new puzzles. Finally, I will touch on upcoming studies of gas in protoplanetary and debris disks, some at UV wavelengths, some at far-IR and sub-mm wavelengths.

  17. Immunohistochemical study of extracellular matrices and elastic fibers in a human sternoclavicular joint.

    PubMed

    Shimada, K; Takeshige, N; Moriyama, H; Miyauchi, Y; Shimada, S; Fujimaki, E

    1997-12-01

    In this study, we clarified the distribution of elastic and oxytalan fibers in a human sternoclavicular joint (SCJ) using a color image system and in extracellular matrices using immunoperoxidase staining. Fine elastic fibers (EFs) were scattered in the fibrous layer of the sternoclavicular disk. This articular disk was composed of a collagenous bundle on the sternum side of the articular disk in the SCJ and cellular components including connective tissue on the clavicular side of the articular disk. The thickness of the disk gradually increased from the inferior to superior portion. Collagen fibers type I, III and V and other extracellular matrices (ECMs) were detected in the hypertrophic zone in the clavicular and sternum side of the SCJ and in the connective tissue of the articulatio condylar. On the cervical surface of the articular disk, cellular activity was higher than on the sternum surface.

  18. Modeling of a diode-pumped thin-disk cesium vapor laser

    NASA Astrophysics Data System (ADS)

    An, Guofei; Cai, He; Liu, Xiaoxu; Han, Juhong; Zhang, Wei; Wang, Hongyuan; Wang, You

    2018-03-01

    A diode pumped alkali laser (DPAL) provides a significant potential for construction of high-powered lasers. Until now, a series of models have been established to analyze the kinetic process and most of them are based on the end-pumped alkali laser system in which the vapor cell are usually cylindrical and cuboid. In this paper, a mathematic model is constructed to investigate the kinetic processes of a diode pumped thin-disk cesium vapor laser, in which the cesium vapor and the buffer gases are beforehand filled in a sealed glass cell with a thin-disk structure. We systemically study the influences of the cell temperature and cell thickness on the output features of a thin-disk DPAL. Further, we study the thin-disk DPAL with the W-shaped resonator and multiple-disk configuration. To the best of our knowledge, there have not been any similar reports so far.

  19. Thin Disks Gone MAD: Magnetically Arrested Accretion in the Thin Regime

    NASA Astrophysics Data System (ADS)

    Avara, Mark J.; McKinney, Jonathan C.; Reynolds, Christopher S.

    2015-01-01

    The collection and concentration of surrounding large scale magnetic fields by black hole accretion disks may be required for production of powerful, spin driven jets. So far, accretion disks have not been shown to grow sufficient poloidal flux via the turbulent dynamo alone to produce such persistent jets. Also, there have been conflicting answers as to how, or even if, an accretion disk can collect enough magnetic flux from the ambient environment. Extending prior numerical studies of magnetically arrested disks (MAD) in the thick (angular height, H/R~1) and intermediate (H/R~.2-.6) accretion regimes, we present our latest results from fully general relativistic MHD simulations of the thinnest BH (H/R~.1) accretion disks to date exhibiting the MAD mode of accretion. We explore the significant deviations of this accretion mode from the standard picture of thin, MRI-driven accretion, and demonstrate the accumulation of large-scale magnetic flux.

  20. Generation and maintenance of bisymmetric spiral magnetic fields in disk galaxies in differential rotation

    NASA Astrophysics Data System (ADS)

    Sawa, Takeyasu; Fujimoto, M.

    1993-05-01

    The approximate dynamo equation, which yields asymptotic solutions for the large scale bisymmetric spiral (BSS) magnetic fields rotating rigidly over a large area of the galactic disk, is derived. The vertical thickness and the dynamo strength of the gaseous disk which are necessary to generate and sustain the BSS magnetic fields is determined. The globally BSS magnetic fields which propagate over the disk as a wave without being twisted more tightly are reproduced. A poloidal field configuration is theoretically predicted in the halo around the disk, and is observed in the edge-on galaxy NGC4631. Mathematical methods for the galactic dynamo are shown to be equivalent. Those methods give different growth rates between the BSS and the axisymmetric spiral (ASS) magnetic fields in the disk. Magnetohydrodynamical excitation is discussed between the BSS magnetic fields and the two armed spiral density waves.

  1. A NICER View of the Accretion Disk in GX 339-4

    NASA Astrophysics Data System (ADS)

    Steiner, James Francis; Bulbul, Esra; Cackett, Ed; Fabian, Andy; Gendreau, Keith C.; Neilsen, Joseph; Ranga Reddy Pasham, Dheeraj; Remillard, Ron; Uttley, Phil; Wood, Kent S.

    2018-01-01

    The poster-child black hole transient GX 339-4 has gone into outburst once again. With no pileup, low-background, and high fidelity in the soft X-ray bandpass, NICER is uniquely positioned to detect emergent thermal disk emission from an optically thick accretion flow approaching the innermost-stable circular orbit. We present NICER's results on the 2017 outburst, and detail its implications for the disk-truncation controversy. We also investigate the X-ray state evolution, as seen in NICER's spectral range of 0.2 to 12 keV.

  2. Thermally induced optical deformation of a Nd:YVO4 active disk under the action of multi-beam spatially periodic diode pumping

    NASA Astrophysics Data System (ADS)

    Guryev, D. A.; Nikolaev, D. A.; Tsvetkov, V. B.; Shcherbakov, I. A.

    2018-05-01

    A study of how the transverse distribution of an optical path changes in a Nd:YVO4 active disk was carried out in a ten-beam spatially periodic diode pumping in the one-dimensional case. The pumping beams’ transverse dimensions were comparable with the distances between them. The investigations were carried out using laser interferometry methods. It was found that the optical thickness changing in the active disk along the line of pumping spots was well described by a Gaussian function.

  3. Discovery of Small-Scale Spiral Structures in the Disk of SAO 206462 (HD 135344B)(exp 1): Implications for the Physical State of the Disk from Spiral Density Wave Theory

    NASA Technical Reports Server (NTRS)

    Muto, T.; Grady, C. A.; Hashimoto, J.; Fukagawa, M.; Hornbeck, J. B.; Sitko, M.; Russell, R.; Werren, C.; Cure, M; Currie, T.; hide

    2012-01-01

    We present high-resolution, H-band, imaging observations, collected with Subaru /HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 1353448). Although previous sub-mm imagery suggested the existence of the dust-depleted cavity at r <= 46 AU, our observations reveal the presence of scattered light components as close as O".2 (approx 28 AU) from the star. Moreover , we have discovered two small-scale spiral structures lying within 0".5 (approx 70 AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h approx. 0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes. independently from sub-nun observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations,

  4. The color masking ability of a zirconia ceramic on the substrates with different values.

    PubMed

    Tabatabaian, Farhad; Javadi Sharif, Mahdiye; Massoumi, Farhood; Namdari, Mahshid

    2017-01-01

    Background. The color masking ability of a restoration plays a significant role in coveringa discolored substructure; however, this optical property of zirconia ceramics has not been clearly determined yet. The aim of this in vitro study was to evaluate the color masking ability of a zirconia ceramic on substrates with different values. Methods. Ten zirconia disk specimens,0.5 mm in thickness and 10 mm in diameter, were fabricated by a CAD/CAM system. Four substrates with different values were prepared, including: white (control), light grey, dark grey, and black. The disk specimens were placed over the substratesfor spectrophotometric measurements. A spectrophotometer measured the L * , a * , and b * color attributes of the specimens. Additionally, ΔE values were calculated to determine the color differences between each group and the control,and were then compared with the perceptional threshold of ΔE=2.6. Repeated-measures ANOVA, Bonferroni, and one-sample t-test were used to analyze data. All the tests were carried out at 0.05 level of significance. Results. The means and standard deviations of ΔE values for the three groups of light grey, dark grey and black were 9.94±2.11, 10.40±2.09, and 13.34±1.77 units, respectively.Significant differences were detected between the groups in the ΔE values (P<0.0001).The ΔE values in all the groups were more than the predetermined perceptional threshold(ΔE>2.6) (P<0.0001). Conclusion. Within the limitations of this study, it was concluded that the tested zirconia ceramic did not exhibit sufficient color masking ability to hide the grey and black substrates.

  5. New conversion factors between human and automatic readouts of the CDMAM phantom for CR systems

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Homolka, Peter; Osanna-Elliot, Angelika; Kaar, Marcus; Semtrus, Friedrich; Figl, Michael

    2016-03-01

    Mammography screenings demand for profound image quality (IQ) assessment to guarantee their screening success. The European protocol for the quality control of the physical and technical aspects of mammography screening (EPQCM) suggests a contrast detail phantom such as the CDMAM phantom to evaluate IQ. For automatic evaluation a software is provided by the EUREF. As human and automatic readouts differ systematically conversion factors were published by the official reference organisation (EUREF). As we experienced a significant difference for these factors for Computed Radiography (CR) systems we developed an objectifying analysis software which presents the cells including the gold disks randomly in thickness and rotation. This allows to overcome the problem of an inevitable learning effect where observers know the position of the disks in advance. Applying this software, 45 computed radiography (CR) systems were evaluated and the conversion factors between human and automatic readout determined. The resulting conversion factors were compared with the ones resulting from the two methods published by EUREF. We found our conversion factors to be substantially lower than those suggested by EUREF, in particular 1.21 compared to 1.42 (EUREF EU method) and 1.62 (EUREF UK method) for 0.1 mm, and 1.40 compared to 1.73 (EUREF EU) and 1.83 (EUREF UK) for 0.25 mm disc diameter, respectively. This can result in a dose increase of up to 90% using either of these factors to adjust patient dose in order to fulfill image quality requirements. This suggests the need of an agreement on their proper application and limits the validity of the assessment methods. Therefore, we want to stress the need for clear criteria for CR systems based on appropriate studies.

  6. Lubricant distribution and its effect on slider air bearing performance over bit patterned media disk of disk drives

    NASA Astrophysics Data System (ADS)

    Wu, Lin

    2011-04-01

    The distribution dynamics of a thin lubricant film on a bit-patterned media disk and its effect on the performance of the ultralow flying air bearing slider of disk drives are studied by direct numerical simulations. Our analysis shows that the physics governing lubricant distribution dynamics changes when deep enough sub-100-nm nanostructures are patterned on the disk surface. Air shearing under the slider that dominates lubricant flow on a flat disk may become negligible on a bit-patterned media disk. Surface tension and disjoining pressure become dominant factors instead. Our results show that disks with nanoscale patterns/roughness may no longer be treated as flat, and the air bearing load may strongly depend not only on the geometric detail of disk patterns but also on how lubricants are distributed on the patterns when slider-disk clearance is reduced to sub-10-nm. Air bearing load and consequently the slider's flying attitude are affected by disk pattern geometry, average lubricant thickness, and material properties of lubricant such as the surface tension coefficient and Hamaker constant. The significantly expanded parameter space, upon which ultralow flying slider's dynamics depends, has to be seriously considered in evaluating the head/disk interface tribology performance of next generation patterned media magnetic recording systems.

  7. Anchoring Polar Magnetic Field in a Stationary Thick Accretion Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samadi, Maryam; Abbassi, Shahram, E-mail: samadimojarad@um.ac.ir

    We investigate the properties of a hot accretion flow bathed in a poloidal magnetic field. We consider an axisymmetric viscous-resistive flow in the steady-state configuration. We assume that the dominant mechanism of energy dissipation is due to turbulence viscosity and magnetic diffusivity. A certain fraction of that energy can be advected toward the central compact object. We employ the self-similar method in the radial direction to find a system of ODEs with just one varible, θ in the spherical coordinates. For the existence and maintenance of a purely poloidal magnetic field in a rotating thick disk, we find that themore » necessary condition is a constant value of angular velocity along a magnetic field line. We obtain an analytical solution for the poloidal magnetic flux. We explore possible changes in the vertical structure of the disk under the influences of symmetric and asymmetric magnetic fields. Our results reveal that a polar magnetic field with even symmetry about the equatorial plane makes the disk vertically thin. Moreover, the accretion rate decreases when we consider a strong magnetic field. Finally, we notice that hot magnetized accretion flows can be fully advected even in a slim shape.« less

  8. Estimation of limit strains in disk-type flywheels made of a compliant elastomeric matrix composite undergoing radial creep

    NASA Astrophysics Data System (ADS)

    Portnov, G. G.; Bakis, Ch. E.

    2000-01-01

    Fiber reinforced elastomeric matrix composites (EMCs) offer several potential advantages for construction of rotors for flywheel energy storage systems. One potential advantage, for safety considerations, is the existence of maximum stresses near the outside radius of thick circumferentially wound EMC disks, which could lead to a desirable self-arresting failure mode at ultimate speeds. Certain unidirectionally reinforced EMCs, however, have been noted to creep readily under the influence of stress transverse to the fibers. In this paper, stress redistribution in a spinning thick disk made of a circumferentially filament wound EMC material on a small rigid hub has been analyzed with the assumption of total radial stress relaxation due to radial creep. It is shown that, following complete relaxation, the circumferential strains and stresses are maximized at the outside radius of the disk. Importantly, the radial tensile strains are three times greater than the circumferential strains at any given radius. Therefore, a unidirectional EMC material system that can safely endure transverse tensile creep strains of at least three times the elastic longitudinal strain capacity of the same material is likely to maintain the theoretically safe failure mode despite complete radial stress relaxation.

  9. The Evolution of a Planet-Forming Disk Artist Concept Animation

    NASA Image and Video Library

    2004-12-09

    This frame from an animation shows the evolution of a planet-forming disk around a star. Initially, the young disk is bright and thick with dust, providing raw materials for building planets. In the first 10 million years or so, gaps appear within the disk as newborn planets coalesce out of the dust, clearing out a path. In time, this planetary "debris disk" thins out as gravitational interactions with numerous planets slowly sweep away the dust. Steady pressure from the starlight and solar winds also blows out the dust. After a few billion years, only a thin ring remains in the outermost reaches of the system, a faint echo of the once-brilliant disk. Our own solar system has a similar debris disk -- a ring of comets called the Kuiper Belt. Leftover dust in the inner portion of the solar system is known as "zodiacal dust." Bright, young disks can be imaged directly by visible-light telescopes, such as NASA's Hubble Space Telescope. Older, fainter debris disks can be detected only by infrared telescopes like NASA's Spitzer Space Telescope, which sense the disks' dim heat. http://photojournal.jpl.nasa.gov/catalog/PIA07099

  10. Determination of elastic stresses in gas-turbine disks

    NASA Technical Reports Server (NTRS)

    Manson, S S

    1947-01-01

    A method is presented for the calculation of elastic stresses in symmetrical disks typical of those of a high-temperature gas turbine. The method is essentially a finite-difference solution of the equilibrium and compatibility equations for elastic stresses in a symmetrical disk. Account can be taken of point-to-point variations in disk thickness, in temperature, in elastic modulus, in coefficient of thermal expansion, in material density, and in Poisson's ratio. No numerical integration or trial-and-error procedures are involved and the computations can be performed in rapid and routine fashion by nontechnical computers with little engineering supervision. Checks on problems for which exact mathematical solutions are known indicate that the method yields results of high accuracy. Illustrative examples are presented to show the manner of treating solid disks, disks with central holes, and disks constructed either of a single material or two or more welded materials. The effect of shrink fitting is taken into account by a very simple device.

  11. The flow of a thin liquid film on a stationary and rotating disk. I - Experimental analysis and flow visualization

    NASA Technical Reports Server (NTRS)

    Thomas, S.; Faghri, A.; Hankey, W.

    1990-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed was 0-300 RPM and the flow rate was 7.0-15.0 LPM. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Surface waves were found in the supercritical and subcritical regions at all flow rates studied. When the rotational speed of the disk is low, a standing wave at the edge of the disk was present. As the rotational speed increased, the surface waves changed from the wavy-laminar region to a region in which the waves ran nearly radially across the disk on top of a thin substrate of fluid.

  12. Transport Phenomena in Thin Rotating Liquid Films Including: Nucleate Boiling

    NASA Technical Reports Server (NTRS)

    Faghri, Amir

    2005-01-01

    In this grant, experimental, numerical and analytical studies of heat transfer in a thin liquid film flowing over a rotating disk have been conducted. Heat transfer coefficients were measured experimentally in a rotating disk heat transfer apparatus where the disk was heated from below with electrical resistance heaters. The heat transfer measurements were supplemented by experimental characterization of the liquid film thickness using a novel laser based technique. The heat transfer measurements show that the disk rotation plays an important role on enhancement of heat transfer primarily through the thinning of the liquid film. Experiments covered both momentum and rotation dominated regimes of the flow and heat transfer in this apparatus. Heat transfer measurements have been extended to include evaporation and nucleate boiling and these experiments are continuing in our laboratory. Empirical correlations have also been developed to provide useful information for design of compact high efficiency heat transfer devices. The experimental work has been supplemented by numerical and analytical analyses of the same problem. Both numerical and analytical results have been found to agree reasonably well with the experimental results on liquid film thickness and heat transfer Coefficients/Nusselt numbers. The numerical simulations include the free surface liquid film flow and heat transfer under disk rotation including the conjugate effects. The analytical analysis utilizes an integral boundary layer approach from which

  13. A Unified Model for Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Dai, Lixin; McKinney, Jonathan C.; Roth, Nathaniel; Ramirez-Ruiz, Enrico; Miller, M. Coleman

    2018-06-01

    In the past few years wide-field optical and UV transient surveys and X-ray telescopes have allowed us to identify a few dozen candidate tidal disruption events (TDEs). While in theory the physical processes in TDEs are ubiquitous, a few distinct classes of TDEs have been observed. Some TDEs radiate mainly in NUV/optical, while others produce prominent X-rays. Moreover, relativistic jets have been observed in only a handful of TDEs. This diversity might be related to the details of the super-Eddington accretion and emission physics relevant to TDE disks. In this Letter, we utilize novel three-dimensional general relativistic radiation magnetohydrodynamics simulations to study the super-Eddington compact disk phase expected in TDEs. Consistent with previous studies, geometrically thick disks, wide-angle optically thick fast outflows, and relativistic jets are produced. The outflow density and velocity depend sensitively on the inclination angle, and hence so does the reprocessing of emission produced from the inner disk. We then use Monte Carlo radiative transfer to calculate the reprocessed spectra and find that that the observed ratio of optical to X-ray fluxes increases with increasing inclination angle. This naturally leads to a unified model for different classes of TDEs in which the spectral properties of the TDE depend mainly on the viewing angle of the observer with respect to the orientation of the disk.

  14. Resistance Spot Welding of AA5052 Sheet Metal of Dissimilar Thickness

    NASA Astrophysics Data System (ADS)

    Mat Din, N. A.; Zuhailawati, H.; Anasyida, A. S.

    2016-02-01

    Resistance spot welding of dissimilar thickness of AA5052 aluminum alloy was performed in order to investigate the effect of metal thickness on the weldment strength. Resistance spot welding was done using a spot welder machine available in Coraza Systems Sdn Bhd using a hemispherical of chromium copper electrode tip with radius of 6.00 mm under 14 kA of current and 0.02 bar of pressure for all thickness combinations. Lap joint configuration was produced between 2.0 mm thick sheet and 1.2 - 3.2 mm thick sheet, respectively. Microstructure of joint showed asymmetrical nugget shape that was larger on the thicker side indicating larger molten metal volume. Joint 2.0 mm x 3.2 mm sheets has the lowest hardness in both transverse direction and through thickness direction because less heat left in the weld nugget. The microstructure shows that this joint has coarse grains of HAZ. As thickness of sheet metal increased, the failure load of the joints increased. However, there was no linear correlation established between joint strength and metal thickness due to different shape of fusion zone in dissimilar thickness sheet metal.

  15. HERSCHEL OBSERVATIONS OF GAS AND DUST IN THE UNUSUAL 49 Ceti DEBRIS DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberge, A.; Kamp, I.; Montesinos, B.

    2013-07-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the ''Gas in Protoplanetary Systems'' (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 {mu}m; 49 Cet is significantly extended in the 70 {mu}m image, spatially resolving the outer dust disk formore » the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O I] 63 {mu}m and [C II] 158 {mu}m. The C II line was detected at the 5{sigma} level-the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the O I line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C II emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.« less

  16. Herschel Observations of Gas and Dust in the Unusual 49 Ceti Debris Disk

    NASA Technical Reports Server (NTRS)

    Roberge, A.; Kamp, I.; Montesinos, B.; Dent, W. R. F.; Meeus, G.; Donaldson, J. K.; Olofsson, J.; Moor, A.; Augereau, J.-C.; Howard, C.; hide

    2013-01-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the “Gas in Protoplanetary Systems” (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 micron; 49 Cet is significantly extended in the 70 micron image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O i] 63 micron and [C ii] 158 micron. The C ii line was detected at the 5 sigma level—the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the Oi line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C ii emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.

  17. Herschel Observations of Gas and Dust in the Unusual 49 Ceti Debris Disk

    NASA Astrophysics Data System (ADS)

    Roberge, A.; Kamp, I.; Montesinos, B.; Dent, W. R. F.; Meeus, G.; Donaldson, J. K.; Olofsson, J.; Moór, A.; Augereau, J.-C.; Howard, C.; Eiroa, C.; Thi, W.-F.; Ardila, D. R.; Sandell, G.; Woitke, P.

    2013-07-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the "Gas in Protoplanetary Systems" (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 μm 49 Cet is significantly extended in the 70 μm image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O I] 63 μm and [C II] 158 μm. The C II line was detected at the 5σ level—the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the O I line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C II emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.

  18. Impact of different thickness of the smooth heated surface on flow boiling heat transfer

    NASA Astrophysics Data System (ADS)

    Strąk, Kinga; Piasecka, Magdalena

    2018-06-01

    This paper presents a comparison of the performance of three smooth heated surfaces with different thicknesses. Analysis was carried out on an experimental setup for flow boiling heat transfer. The most important element of the setup was the test section with a rectangular minichannel, 1.7 mm deep, 16 mm wide and 180 mm long, oriented vertically. The heated element for the FC-72 Fluorinert flowing in the minichannel was designated as a Haynes-230 alloy plate (0.10 mm and 0.45 mm thick) or a Hastelloy X alloy plate (0.65 mm thick). Infrared thermography was used to measure the temperature of the outer plate surface. The local values of the heat transfer coefficient for stationary state conditions were calculated using a simple one-dimensional method. The experimental results were presented as the relationship between the heat transfer coefficients in the subcooled boiling region and the distance along the minichannel length and boiling curves. The highest local heat transfer coefficients were recorded for the surface of 0.10 mm thick heated plate at the outlet and 0.45 mm thick plate at the minichannel inlet. All boiling curves were typical in shape.

  19. Complex Analysis of Diffusion Transport and Microstructure of an Intervertebral Disk.

    PubMed

    Byvaltsev, V A; Kolesnikov, S I; Belykh, E G; Stepanov, I A; Kalinin, A A; Bardonova, L A; Sudakov, N P; Klimenkov, I V; Nikiforov, S B; Semenov, A V; Perfil'ev, D V; Bespyatykh, I V; Antipina, S L; Giers, M; Prul, M

    2017-12-01

    We studied the relationship between diffusion transport and morphological and microstructural organization of extracellular matrix of human intervertebral disk. Specimens of the lumbar intervertebral disks without abnormalities were studied ex vivo by diffusion-weighed magnetic resonance imaging, histological and immunohistochemical methods, and electron microscopy. Distribution of the diffusion coefficient in various compartments of the intervertebral disk was studied. Significant correlations between diffusion coefficient and cell density in the nucleus pulposus, posterior aspects of annulus fibrosus, and endplate at the level of the posterior annulus fibrosus were detected for each disk. In disks with nucleus pulposus diffusion coefficient below 15×10 -4 mm 2 /sec, collagens X and XI were detected apart from aggrecan and collagens I and II. The results supplement the concept on the relationship between the microstructure and cell composition of various compartments of the intervertebral disk and parameters of nutrient transport.

  20. Low concentrations of folate, not hyperhomocysteinemia, are associated with carotid intima-media thickness.

    PubMed

    Durga, Jane; Bots, Michiel L; Schouten, Evert G; Kok, Frans J; Verhoef, Petra

    2005-04-01

    We examined whether total homocysteine, B vitamins and the 5,10-methylenetetrahydrofolate reductase (MTHFR) 677C-->T polymorphism are related to common carotid intima-media thickness, a marker of atherosclerosis, and carotid distension, a marker of arterial stiffness. We used cross-sectional data from 819 individuals aged 50-70 years. B-mode ultrasound of the distal common carotid arteries was performed to determine maximum carotid intima-media thickness, mean carotid intima-media thickness and distension. Carotid intima-media thickness and distension did not differ across homocysteine, serum folate, vitamin B(6) and vitamin B(12) quartiles or between MTHFR C677T genotype. Erythrocyte folate was independently associated with maximum carotid intima-media thickness (mean difference first versus third quartile, 0.03 mm, 95% CI 0.004-0.06 mm; first versus fourth quartile, 0.03 mm, 95% CI -0.002 to 0.06 mm). Further adjustment for homocysteine did not affect this association. Folate deficient subjects had greater maximum carotid intima-media thickness than those with high-normal folate concentrations (serum folate: mean difference 0.05 mm, 95% CI 0.01-0.08 mm; erythrocyte folate: mean difference 0.04 mm, 95% CI -0.03 to 0.11 mm). Low folate concentrations, independent of hyperhomocysteinemia, may promote atherogenesis. Our findings confirm the null association of homocysteine with carotid intima-media thickness observed in other population-based studies, suggesting that hyperhomocysteinemia does not perpetuate atherosclerosis or arterial stiffness.

  1. The influence of secondary reconstruction slice thickness on NewTom 3G cone beam computed tomography-based radiological interpretation of sheep mandibular condyle fractures.

    PubMed

    Sirin, Yigit; Guven, Koray; Horasan, Sinan; Sencan, Sabri; Bakir, Baris; Barut, Oya; Tanyel, Cem; Aral, Ali; Firat, Deniz

    2010-11-01

    The objective of this study was to examine the diagnostic accuracy of the different secondary reconstruction slice thicknesses of cone beam computed tomography (CBCT) on artificially created mandibular condyle fractures. A total of 63 sheep heads with or without condylar fractures were scanned with a NewTom 3G CBCT scanner. Multiplanar reformatted (MPR) views in 0.2-mm, 1-mm, 2-mm, and 3-mm secondary reconstruction slice thicknesses were evaluated by 7 observers. Inter- and intraobserver agreements were calculated with weighted kappa statistics. The receiver operating characteristic (ROC) curve analysis was used to statistically compare the area under the curve (AUC) of each slice thickness. The kappa coefficients varied from fair and to excellent. The AUCs of 0.2-mm and 1-mm slice thicknesses were found to be significantly higher than those of 2 mm and 3 mm for some type of fractures. CBCT was found to be accurate in detecting all variants of fractures at 0.2 mm and 1 mm. However, 2-mm and 3-mm slices were not suitable to detect fissure, complete, and comminuted types of mandibular condyle fractures. Copyright © 2010 Mosby, Inc. All rights reserved.

  2. Flexural impact force absorption of mouthguard materials using film sensor system.

    PubMed

    Reza, Fazal; Churei, Hiroshi; Takahashi, Hidekazu; Iwasaki, Naohiko; Ueno, Toshiaki

    2014-06-01

    Several methods have been used to measure the impact force absorption capacities of mouthguard materials; however, the relationships among these measurement systems have not been clearly determined. The purpose of the present study was to evaluate the impact force-absorbing capability of materials using a drop-ball system with film sensors and load cells to clarify the relationship between these two sensor systems. Disk-shaped specimens (1, 2, and 3 mm thick) were prepared using three commercial thermoplastic mouthguard materials (Bioplast, Impact Guard, MG 21) and one experimental mouthguard material [mixture of Poly (ethyl methacrylate)]. Impact force was applied by letting a stainless steel ball drop free-fall onto the specimens and then measuring the impact load under each specimen using a film sensor system and a load cell sensor system. The total load measured with the film sensor system decreased with an increase in mouthguard thickness, while almost none of the transmitted impact forces measured with the load cell system were statistically different. The film sensor system was considered to be superior to the load cell system because the maximum stress and stress area could be determined. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Correlation of central and peripheral corneal thickness in healthy corneas.

    PubMed

    Fares, Usama; Otri, Ahmad Muneer; Al-Aqaba, Mouhamed Ali; Dua, Harminder S

    2012-02-01

    To study the thickness profile of the normal cornea in order to establish any correlation between central and peripheral points. Sixty-seven eyes of 40 patients were subjected to central corneal thickness measurement (CCT) with an ultrasound pachymeter (UP) and corneal thickness mapping with the Oculus Pentacam. The corneal apex thickness (CAT), pupil centre thickness (recorded as CCT and corresponded to CCT of UP) and thickness at the thinnest location (CTL) were obtained and compared with each other. Corneal thickness data at 3 mm and 7 mm temporally, nasally, superiorly and inferiorly from the corneal apex were obtained. The mean corneal thickness values along the 2, 4, 6, 8 and 10 mm diameter concentric circles, with the CTL as the centre, were also obtained. The above data at different points were statistically correlated. There was no significant difference between CCT readings measured by UP and Pentacam (P=0.721). There was high positive correlation between the CAT values and the thickness at 3 mm (R≥0.845, P<0.001) and at 7 mm points (R≥0.654, P<0.001). A gradual increase in thickness was noted from the centre to the periphery with a high positive correlation between the CTL values and the mean thickness at the circles of 2, 4, 6, 8 and 10 mm (R≥0.635, P<0.001). The results suggest that central corneal thickness can serve as a good guide for predicting peripheral thickness. For surgical procedures specifically undertaken at mid-peripheral and peripheral zones, the actual measurements at the site of surgery may confer some advantage. Copyright © 2011 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  4. Cosmic-ray propagation and containment

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1977-01-01

    The cosmic rays are an active gaseous component of the disk of the galaxy, and their propagation and containment is a part of the general dynamics of the disk. The sources of cosmic rays are a matter of speculation. The disk is inflated by the cosmic-ray gas pressure, P, comparable to the magnetic pressure B super 2/ 8 pi, but the rate of inflation is unknown. The time spent by the individual cosmic-ray particles in the disk is inversely proportional to the cosmic-ray production rate and may be anything from 100,000 to more than 10 million years. It is evident from the decay of Be(10) that the cosmic rays circulate through a volume of space perhaps ten times the thickness of the gaseous disk, suggesting a magnetic halo extending out approximately 1 kpc from either face of the disk. The cosmic rays may be responsible for the halo by inflating the magnetic fields of the disk. Extension of the fields to 1 kpc would imply a high production rate and short life of cosmic rays in the dense gaseous disk of the galaxy.

  5. The Circumstellar Environment of Low Mass Star Forming Regions

    NASA Technical Reports Server (NTRS)

    Butner, Harold M.

    1997-01-01

    We have obtained the complete SED from 10 microns out to 1.3 mm for all of our sources. We have the FIR imaging data, processed to reveal the maximum angular resolution possible, which allows us to model the disk. To model the disk, we have high resolution millimeter interferometry data.

  6. Electric Field Tunable Microwave and MM-wave Ferrite Devices

    DTIC Science & Technology

    2010-04-30

    xm thick YIG film grown by liquid-phase epitaxy on a (111) gadolinium gallium garnet was used. A PZT plate with the dimensions 4x1x0.5 mm3 was...of width ~ 150 micron and length 20 mm. An YIG film , 6 u.m thick, 0.5 mm in width and 2.5 mm long, grown on a 0.5 mm thick gadolinium gallium garnet ...yttrium iron garnet film and a ceramic barium strontium titanate slab. The electrical tunability of the differential phase shift Acp is achieved through

  7. Influence of the gel thickness on in vivo hyaline cartilage regeneration induced by double-network gel implanted at the bottom of a large osteochondral defect: short-term results.

    PubMed

    Matsuda, Hidetoshi; Kitamura, Nobuto; Kurokawa, Takayuki; Arakaki, Kazunobu; Gong, Jian Ping; Kanaya, Fuminori; Yasuda, Kazunori

    2013-01-31

    A double-network (DN) gel, which is composed of poly(2-acrylamido-2-methylpropanesulfonic acid) and poly(N,N'-dimethyl acrylamide), can induce hyaline cartilage regeneration in vivo in a large osteochondral defect. The purpose of this study was to clarify the influence of the thickness of the implanted DN gel on the induction ability of hyaline cartilage regeneration. Thirty-eight mature rabbits were used in this study. We created an osteochondral defect having a diameter of 4.3-mm in the patellofemoral joint. The knees were randomly divided into 4 groups (Group I: 0.5-mm thick gel, Group II: 1.0-mm thick gel, Group III: 5.0-mm thick gel, and Group IV: untreated control). Animals in each group were further divided into 3 sub-groups depending on the gel implant position (2.0-, 3.0-, or 4.0-mm depth from the articular surface) in the defect. The regenerated tissues were evaluated with the Wayne's gross and histological grading scales and real time PCR analysis of the cartilage marker genes at 4 weeks. According to the total Wayne's score, when the depth of the final vacant space was set at 2.0 mm, the scores in Groups I, II, and III were significantly greater than that Group IV (p<0.05), although there were no significant differences between Groups I and IV at a 3.0-mm deep vacant space. The expression levels of type-2 collagen in Groups II and III were significantly higher (p<0.05) than that in Group IV. The 1.0-mm thick DN gel sheet had the same ability to induce hyaline cartilage regeneration as the 5.0-mm thick DN gel plug. However, the induction ability of the 0.5-mm thick sheet was significantly lower when compared with the 1.0-mm thick gel sheet. The 1.0-mm DN gel sheet is a promising device to establish a cell-free cartilage regeneration strategy that minimizes bone loss from the gel implantation.

  8. Impact of abutment material on peri-implant soft tissue color. An in vitro study.

    PubMed

    Sala, Leticia; Bascones-Martínez, Antonio; Carrillo-de-Albornoz, Ana

    2017-09-01

    The objectives of the present study is to determine the differences in peri-implant soft tissue color with the utilization of titanium, titanium gold-plated, white zirconia, Vita Classical (VC) A4-shaded zirconia, and fluorescent white zirconia abutments and to establish the influence of gingival thickness on the resulting color. Four implants were contralaterally inserted in 19 fresh pig mandibles, and the color of the peri-implant mucosa with the different abutments was spectrophotometrically measured at 1-, 2-, and 3-mm height from the margin. At 1-mm height, titanium significantly differed from all zirconia abutments in lightness (L*), chroma along red axis (a*), and chroma along yellow-blue axis (b*) parameters. At 2 mm, all zirconia abutments differed from titanium in b* but only fluorescent zirconia in a*. At 3 mm, titanium differed from VC A4-shaded and fluorescent zirconia abutments in b*. At soft tissue thicknesses <1 and 1-2 mm, titanium differed from fluorescent zirconia in a* and b* and from VC A4-shaded zirconia in b*; at thickness >2 mm, no differences were found among abutments. All abutments differed from natural teeth in a* and b* at all heights and thicknesses except for fluorescent zirconia at thickness >2 mm. The Euclidean distance (ΔΕ) differed between titanium abutments and gold, VC A4, and fluorescent zirconia at <1- and 1-2-mm thicknesses. The natural gingival color was not reproduced with any abutment at gingival thicknesses <2 mm. The worst color match was with titanium abutments and the best with fluorescent zirconia, followed by VC A4-shaded zirconia. At gingival thicknesses >2 mm, no differences were detected among abutments. This study demonstrates that the type of abutment and the gingival thickness affect the resulting peri-implant gingival color.

  9. Effect of ceramic thickness and composite bases on stress distribution of inlays--a finite element analysis.

    PubMed

    Durand, Letícia Brandão; Guimarães, Jackeline Coutinho; Monteiro Junior, Sylvio; Baratieri, Luiz Narciso

    2015-01-01

    The purpose of this study was to determine the effect of cavity depth, ceramic thickness, and resin bases with different elastic modulus on von Mises stress patterns of ceramic inlays. Tridimensional geometric models were developed with SolidWorks image software. The differences between the models were: depth of pulpal wall, ceramic thickness, and presence of composite bases with different thickness and elastic modulus. The geometric models were constrained at the proximal surfaces and base of maxillary bone. A load of 100 N was applied. The stress distribution pattern was analyzed with von Mises stress diagrams. The maximum von Mises stress values ranged from 176 MPa to 263 MPa and varied among the 3D-models. The highest von Mises stress value was found on models with 1-mm-thick composite resin base and 1-mm-thick ceramic inlay. Intermediate values (249-250 MPa) occurred on models with 2-mm-thick composite resin base and 1-mm-thick ceramic inlay and 1-mm-thick composite resin base and 2-mm-thick ceramic inlay. The lowest values were observed on models restored exclusively with ceramic inlay (176 MPa to 182 MPa). It was found that thicker inlays distribute stress more favorably and bases with low elastic modulus increase stress concentrations on the internal surface of the ceramic inlay. The increase of ceramic thickness tends to present more favorable stress distribution, especially when bonded directly onto the cavity without the use of supporting materials. When the use of a composite base is required, composite resin with high elastic modulus and reduced thickness should be preferred.

  10. Origin of the Local Group satellite planes

    NASA Astrophysics Data System (ADS)

    Banik, Indranil; O'Ryan, David; Zhao, Hongsheng

    2018-04-01

    We attempt to understand the planes of satellite galaxies orbiting the Milky Way (MW) and M31 in the context of Modified Newtonian Dynamics (MOND), which implies a close MW-M31 flyby occurred ≈8 Gyr ago. Using the timing argument, we obtain MW-M31 trajectories consistent with cosmological initial conditions and present observations. We adjust the present M31 proper motion within its uncertainty in order to simulate a range of orbital geometries and closest approach distances. Treating the MW and M31 as point masses, we follow the trajectories of surrounding test particle disks, thereby mapping out the tidal debris distribution. Around each galaxy, the resulting tidal debris tends to cluster around a particular orbital pole. We find some models in which these preferred spin vectors align fairly well with those of the corresponding observed satellite planes. The radial distributions of material in the simulated satellite planes are similar to what we observe. Around the MW, our best-fitting model yields a significant fraction (0.22) of counter-rotating material, perhaps explaining why Sculptor counter-rotates within the MW satellite plane. In contrast, our model yields no counter-rotating material around M31. This is testable with proper motions of M31 satellites. In our best model, the MW disk is thickened by the flyby 7.65 Gyr ago to a root mean square height of 0.75 kpc. This is similar to the observed age and thickness of the Galactic thick disk. Thus, the MW thick disk may have formed together with the MW and M31 satellite planes during a past MW-M31 flyby.

  11. Quantitative evaluation of the relationship between dorsal wall length, sole thickness, and rotation of the distal phalanx in the bovine claw using computed tomography.

    PubMed

    Tsuka, T; Murahata, Y; Azuma, K; Osaki, T; Ito, N; Okamoto, Y; Imagawa, T

    2014-10-01

    Computed tomography (CT) was performed on 800 untrimmed claws (400 inner claws and 400 outer claws) of 200 pairs of bovine hindlimbs to investigate the relationships between dorsal wall length and sole thickness, and between dorsal wall length and the relative rotation angle of distal phalanx-to-sole surface (S-D angle). Sole thickness was 3.8 and 4.0 mm at the apex of the inner claws and outer claws, respectively, with dorsal wall lengths <70 mm. These sole thickness values were less than the critical limit of 5 mm, which is associated with a softer surface following thinning of the soles. A sole thickness of 5 mm at the apex was estimated to correlate with dorsal wall lengths of 72.1 and 72.7 mm for the inner and outer claws, respectively. Sole thickness was 6.1 and 6.4 mm at the apex of the inner and outer claws, respectively, with dorsal wall lengths of 75 mm. These sole thickness values were less than the recommended sole thickness of 7 mm based on the protective function of the soles. A sole thickness >7 mm at the apex was estimated to correlate with a dorsal wall length of 79.8 and 78.4mm for the inner and outer claws, respectively. The S-D angles were recorded as anteversions of 2.9° and 4.7° for the inner and outer claws, respectively, with a dorsal wall length of 75 mm. These values indicate that the distal phalanx is likely to have rotated naturally forward toward the sole surface. The distal phalanx rotated backward to the sole surface at 3.2° and 7.6° for inner claws with dorsal wall lengths of 90-99 and ≥100 mm, respectively; and at 3.5° for outer claws with a dorsal wall length ≥100 mm. Dorsal wall lengths of 85.7 and 97.2 mm were estimated to correlate with a parallel positional relationship of the distal phalanx to the sole surface in the inner and outer claws, respectively. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. The radar cross section of dielectric disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1982-01-01

    A solution is presented for the backscatter (nonstatic) radar cross section of dielectric disks of arbitrary shape, thickness and dielectric constant. The result is obtained by employing a Kirchhoff type approximation to obtain the fields inside the disk. The internal fields induce polarization and conduction currents from which the scattered fields and the radar cross section can be computed. The solution for the radar cross section obtained in this manner is shown to agree with known results in the special cases of normal incidence, thin disks and perfect conductivity. The solution can also be written as a product of the reflection coefficient of an identically oriented slab times the physical optics solution for the backscatter cross section of a perfectly conducting disk of the same shape. This result follows directly from the Kirchhoff type approximation without additional assumptions.

  13. Emergency department CT screening of patients with nontraumatic neurological symptoms referred to the posterior fossa: comparison of thin versus thick slice images.

    PubMed

    Kamalian, Shervin; Atkinson, Wendy L; Florin, Lauren A; Pomerantz, Stuart R; Lev, Michael H; Romero, Javier M

    2014-06-01

    Evaluation of the posterior fossa (PF) on 5-mm-thick helical CT images (current default) has improved diagnostic accuracy compared to 5-mm sequential CT images; however, 5-mm-thick images may not be ideal for PF pathology due to volume averaging of rapid changes in anatomy in the Z-direction. Therefore, we sought to determine if routine review of 1.25-mm-thin helical CT images has superior accuracy in screening for nontraumatic PF pathology. MRI proof of diagnosis was obtained within 6 h of helical CT acquisition for 90 consecutive ED patients with, and 88 without, posterior fossa lesions. Helical CT images were post-processed at 1.25 and 5-mm-axial slice thickness. Two neuroradiologists blinded to the clinical/MRI findings reviewed both image sets. Interobserver agreement and accuracy were rated using Kappa statistics and ROC analysis, respectively. Of the 90/178 (51 %) who were MR positive, 60/90 (66 %) had stroke and 30/90 (33 %) had other etiologies. There was excellent interobserver agreement (κ > 0.97) for both thick and thin slice assessments. The accuracy, sensitivity, and specificity for 1.25-mm images were 65, 44, and 84 %, respectively, and for 5-mm images were 67, 45, and 85 %, respectively. The diagnostic accuracy was not significantly different (p > 0.5). In this cohort of patients with nontraumatic neurological symptoms referred to the posterior fossa, 1.25-mm-thin slice CT reformatted images do not have superior accuracy compared to 5-mm-thick images. This information has implications on optimizing resource utilizations and efficiency in a busy emergency room. Review of 1.25-mm-thin images may help diagnostic accuracy only when review of 5-mm-thick images as current default is inconclusive.

  14. GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. III. POLARIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang-Condell, Hannah

    2017-01-20

    Polarimetric observations of T Tauri and Herbig Ae/Be stars are a powerful way to image protoplanetary disks. However, interpretation of these images is difficult because the degree of polarization is highly sensitive to the angle of scattering of stellar light off the disk surface. We examine how disks with and without gaps created by planets appear in scattered polarized light as a function of inclination angle. Isophotes of inclined disks without gaps are distorted in polarized light, giving the appearance that the disks are more eccentric or more highly inclined than they truly are. Apparent gap locations are unaffected bymore » polarization, but the gap contrast changes. In face-on disks with gaps, we find that the brightened far edge of the gap scatters less polarized light than the rest of the disk, resulting in slightly decreased contrast between the gap trough and the brightened far edge. In inclined disks, gaps can take on the appearance of being localized “holes” in brightness rather than full axisymmetric structures. Photocenter offsets along the minor axis of the disk in both total intensity and polarized intensity images can be readily explained by the finite thickness of the disk. Alone, polarized scattered light images of disks do not necessarily reveal intrinsic disk structure. However, when combined with total intensity images, the orientation of the disk can be deduced and much can be learned about disk structure and dust properties.« less

  15. A SUPER-EDDINGTON, COMPTON-THICK WIND IN GRO J1655–40?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilsen, J.; Homan, J.; Rahoui, F.

    2016-05-01

    During its 2005 outburst, GRO J1655–40 was observed at high spectral resolution with the Chandra High-Energy Transmission Grating Spectrometer, revealing a spectrum rich with blueshifted absorption lines indicative of an accretion disk wind—apparently too hot, too dense, and too close to the black hole to be driven by radiation pressure or thermal pressure (Miller et al.). However, this exotic wind represents just one piece of the puzzle in this outburst, as its presence coincides with an extremely soft and curved X-ray continuum spectrum, remarkable X-ray variability (Uttley and Klein-Wolt), and a bright, unexpected optical/infrared blackbody component that varies on themore » orbital period. Focusing on the X-ray continuum and the optical/infrared/UV spectral energy distribution, we argue that the unusual features of this “hypersoft state” are natural consequences of a super-Eddington Compton-thick wind from the disk: the optical/infrared blackbody represents the cool photosphere of a dense, extended outflow, while the X-ray emission is explained as Compton scattering by the relatively cool, optically thick wind. This wind obscures the intrinsic luminosity of the inner disk, which we suggest may have been at or above the Eddington limit.« less

  16. Soft X-ray streak camera for laser fusion applications

    NASA Astrophysics Data System (ADS)

    Stradling, G. L.

    1981-04-01

    The development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development is reviewed as well as laser fusion and laser fusion diagnostics. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV are also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown.

  17. Effects of Metal Ions on the Aluminum Electrodeposition from Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Caporali, Stefano; Martinuzzi, Stefano M.; Von Czarnecki, Peter; Schubert, Thomas J. S.; Bardi, Ugo

    2017-02-01

    In this study, we report on the effects of three common transition metal ions, i.e., Ni2+, Cu2+ and Fe3+ on the electrodeposition of aluminum from a chloroaluminate ionic liquid, evaluated by means of electrochemical and morphological investigation. Aiming at the determination of the morphological and chemical effects on the aluminum coatings, variable amounts of ions were introduced into the electroplating bath. Thick (about 20 μm) Al coatings were obtained by direct deposition (galvanostatic, 10 mA cm2, 2 h) on brass or carbon steel substrates (10 mm diameter disks), and their morphology was examined via rugosimetry, optical and electron microscopy. The chemical composition of the deposits was provided by EDX analysis. Nickel and iron resulted to have only moderate effects on the coatings properties, but copper affected the process even in tiny amounts being detected in the deposits for bath content as low as 10 ppm.

  18. Contrast-detail phantom scoring methodology.

    PubMed

    Thomas, Jerry A; Chakrabarti, Kish; Kaczmarek, Richard; Romanyukha, Alexander

    2005-03-01

    Published results of medical imaging studies which make use of contrast detail mammography (CDMAM) phantom images for analysis are difficult to compare since data are often not analyzed in the same way. In order to address this situation, the concept of ideal contrast detail curves is suggested. The ideal contrast detail curves are constructed based on the requirement of having the same product of the diameter and contrast (disk thickness) of the minimal correctly determined object for every row of the CDMAM phantom image. A correlation and comparison of five different quality parameters of the CDMAM phantom image determined for obtained ideal contrast detail curves is performed. The image quality parameters compared include: (1) contrast detail curve--a graph correlation between "minimal correct reading" diameter and disk thickness; (2) correct observation ratio--the ratio of the number of correctly identified objects to the actual total number of objects multiplied by 100; (3) image quality figure--the sum of the product of the diameter of the smallest scored object and its relative contrast; (4) figure-of-merit--the zero disk diameter value obtained from extrapolation of the contrast detail curve to the origin (e.g., zero disk diameter); and (5) k-factor--the product of the thickness and the diameter of the smallest correctly identified disks. The analysis carried out showed the existence of a nonlinear relationship between the above parameters, which means that use of different parameters of CDMAM image quality potentially can cause different conclusions about changes in image quality. Construction of the ideal contrast detail curves for CDMAM phantom is an attempt to determine the quantitative limits of the CDMAM phantom as employed for image quality evaluation. These limits are determined by the relationship between certain parameters of a digital mammography system and the set of the gold disks sizes in the CDMAM phantom. Recommendations are made on selections of CDMAM phantom regions which should be used for scoring at different image quality and which scoring methodology may be most appropriate. Special attention is also paid to the use of the CDMAM phantom for image quality assessment of digital mammography systems particularly in the vicinity of the Nyquist frequency.

  19. Spine detection in CT and MR using iterated marginal space learning.

    PubMed

    Michael Kelm, B; Wels, Michael; Kevin Zhou, S; Seifert, Sascha; Suehling, Michael; Zheng, Yefeng; Comaniciu, Dorin

    2013-12-01

    Examinations of the spinal column with both, Magnetic Resonance (MR) imaging and Computed Tomography (CT), often require a precise three-dimensional positioning, angulation and labeling of the spinal disks and the vertebrae. A fully automatic and robust approach is a prerequisite for an automated scan alignment as well as for the segmentation and analysis of spinal disks and vertebral bodies in Computer Aided Diagnosis (CAD) applications. In this article, we present a novel method that combines Marginal Space Learning (MSL), a recently introduced concept for efficient discriminative object detection, with a generative anatomical network that incorporates relative pose information for the detection of multiple objects. It is used to simultaneously detect and label the spinal disks. While a novel iterative version of MSL is used to quickly generate candidate detections comprising position, orientation, and scale of the disks with high sensitivity, the anatomical network selects the most likely candidates using a learned prior on the individual nine dimensional transformation spaces. Finally, we propose an optional case-adaptive segmentation approach that allows to segment the spinal disks and vertebrae in MR and CT respectively. Since the proposed approaches are learning-based, they can be trained for MR or CT alike. Experimental results based on 42 MR and 30 CT volumes show that our system not only achieves superior accuracy but also is among the fastest systems of its kind in the literature. On the MR data set the spinal disks of a whole spine are detected in 11.5s on average with 98.6% sensitivity and 0.073 false positive detections per volume. On the CT data a comparable sensitivity of 98.0% with 0.267 false positives is achieved. Detected disks are localized with an average position error of 2.4 mm/3.2 mm and angular error of 3.9°/4.5° in MR/CT, which is close to the employed hypothesis resolution of 2.1 mm and 3.3°. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Circumstellar Disks Around Rapidly Rotating Be-type Stars

    NASA Astrophysics Data System (ADS)

    Touhami, Yamina

    2012-01-01

    Be stars are rapidly rotating B-type stars that eject large amounts of gaseous material into a circumstellar equatorial disk. The existence of this disk has been confirmed through the presence of several observational signatures such as the strong hydrogen emission lines, the IR flux excess, and the linear polarization detected from these systems. Here we report simultaneous near-IR interferometric and spectroscopic observations of circumstellar disks around Be stars obtained with the CHARA Array long baseline interferometer and the Mimir spectrograph at Lowell observatory. The goal of this project was to measure precise angular sizes and to characterize the fundamental geometrical and physical properties of the circumstellar disks. We were able to determine spatial extensions, inclinations, and position angles, as well as the gas density profile of the circumstellar disks using an elliptical Gaussian model and a physical thick disk model, and we show that the K-band interferometric angular sizes of the circumstellar disks are correlated with the H-alpha angular sizes. By combining the projected rotational velocity of the Be star with the disk inclination derived from interferometry, we provide estimates of the equatorial rotational velocities of these rapidly rotating Be stars.

  1. Minimum inhibitory concentration breakpoints and disk diffusion inhibitory zone interpretive criteria for tilmicosin susceptibility testing against Pasteurella multocida and Actinobacillus pleuropneumoniae associated with porcine respiratory disease.

    PubMed

    Shryock, Thomas R; Staples, J Mitchell; DeRosa, David C

    2002-09-01

    Tilmicosin is a novel macrolide antibiotic developed for exclusive use in veterinary medicine. Tilmicosin has been approved as a feed premix to control porcine respiratory disease associated with Pasteurella multocida and Actinobacillus pleuropneumoniae. The development of antimicrobial susceptibility testing guidelines for tilmicosin was predicated on the relationship of clinical efficacy studies that demonstrated a favorable therapeutic outcome, on pharmacokinetic data, and on in vitro test data, as recommended by the National Committee for Clinical Laboratory Standards (NCCLS). The approved breakpoints for the minimum inhibitory concentration dilution testing for both species are resistant, > or = 32 microg/ml, and susceptible, < or = 16 microg/ml. The zone of inhibition interpretive criteria for disk diffusion testing with a 15-microg tilmicosin disk are resistant, < or = 10 mm, and susceptible, > or = 11 mm.

  2. VizieR Online Data Catalog: ALMA survey of protoplanetary disks in sigma Ori (Ansdell+, 2017)

    NASA Astrophysics Data System (ADS)

    Ansdell, M.; Williams, J. P.; Manara, C. F.; Miotello, A.; Facchini, S.; van der Marel, N.; Testi, L.; van Dishoeck, E. F.

    2017-08-01

    Our sample consists of the 92 Young Stellar Objects (YSOs) in σ Orionis with infrared excesses consistent with the presence of a protoplanetary disk. hese sources are identified by cross-matching the Class II and transition disk (TD) candidates from the Spitzer survey of Hernandez et al. 2007 (Cat. J/ApJ/662/1067) with the Mayrit catalog (Caballero 2008, Cat. J/A+A/478/667). Both catalogs are expected to be complete down to the brown dwarf limit. Disk classifications are based on the Spitzer/Infrared Array Camera (IRAC) Spectral Energy Distribution (SED) slope, as described in Hernandez et al. 2007 (Cat. J/ApJ/662/1067). We also include in our sample a Class I disk (source 1153), as it is located near the Spitzer/IRAC color cutoff for Class II disks. Our Band 6 Atacama Large Millimeter/sub-millimeter Array (ALMA) observations were obtained on 2016 July 30 and 31 during Cycle 3 (Project ID: 2015.1.00089.S; PI: Williams). The array configuration used 36 and 37 12m antennas on July 30 and 31, respectively, with baselines of 15-1124m on both runs. The correlator setup included two broadband continuum windows centered on 234.293 and 216.484GHz with bandwidths of 2.000 and 1.875GHz and channel widths of 15.625 and 0.976MHz, respectively. The bandwidth-weighted mean continuum frequency was 225.676GHz (1.33mm). The spectral windows covered the 12CO (230.538GHz), 13CO (220.399GHz), and C18O (219.560GHz) J=2-1 transitions at velocity resolutions of 0.16-0.17km/s. These spectral windows were centered on 230.531, 220.392, and 219.554GHz with bandwidths of 11.719MHz and channel widths of 0.122MHz. On-source integration times were 1.2 minutes per object for an average continuum rms of 0.15mJy/beam (Table1). This sensitivity was based on the James Clerk Maxwell Telescope (JCMT)/Submillimeter Common User Bolometer Array (SCUBA)-2 survey of σ Orionis disks by Williams et al. 2013 (Cat. J/MNRAS/435/1671), who found that stacking their individual non-detections revealed a mean 850μm continuum signal of 1.3mJy at 4σ significance. The sensitivity of our ALMA survey was therefore chosen to provide ~3-4σ detections of such disks at 1.3mm, based on an extrapolation of the 850μm mean signal using a spectral slope of α=2-3. Table1 presents the 1.33mm continuum flux densities and associated uncertainties (F1.33mm). Table2 gives our integrated line fluxes or upper limits. (2 data files).

  3. Radial Peripapillary Capillary Network in Patients with Retinitis Pigmentosa: An Optical Coherence Tomography Angiography Study.

    PubMed

    Mastropasqua, Rodolfo; Borrelli, Enrico; Agnifili, Luca; Toto, Lisa; Di Antonio, Luca; Senatore, Alfonso; Palmieri, Michele; D'Uffizi, Alessandro; Carpineto, Paolo

    2017-01-01

    To investigate radial peripapillary capillary (RPC) network in patients affected by retinitis pigmentosa (RP). Eleven patients (22 eyes) with previous diagnosis of RP and 16 age-matched healthy subjects (16 eyes) were enrolled. The diagnosis of RP was made based on both clinical features and electrophysiological examination. All patients underwent a complete ophthalmologic examination, including optical coherence tomography angiography and visual field (VF). The primary outcomes were the RPC vessel density in the peripapillary and disk areas; the secondary outcomes were the peripapillary retinal nerve fiber layer (RNFL) thickness and the mean defect at VF. A total of 19 eyes of 11 RP patients (5 males, 6 females) and 16 eyes of 16 healthy subjects (10 males, 6 females) were included for the analysis. RPC vessel density in the disk area was 46.5 ± 7.1% in the RP group and 45.4 ± 10.6% in the control group ( p  = 0.754). RPC vessel density in the peripapillary area was significantly reduced in the RP group after the comparison with the control group (52.5 ± 5.0 and 57.2 ± 5.1%, respectively, p  = 0.011). RNFL thickness was 85.9 ± 20.4 μm in the RP group and 104.0 ± 6.4 μm in the control group ( p  = 0.002). RPC vessel density was significantly correlated with RNFL thickness values in RP patients, both in the disk and in the peripapillary area (Rho = 0.599 and p  = 0.007 in the disk area, Rho = 0.665 and p  = 0.002 in the peripapillary area, respectively). We showed that density of RPC is reduced in these patients in the peripapillary area. Moreover, the RPC vessel density correlates with the RNFL thickness.

  4. Sagittal alignment after lumbar interbody fusion: comparing anterior, lateral, and transforaminal approaches.

    PubMed

    Watkins, Robert G; Hanna, Robert; Chang, David; Watkins, Robert G

    2014-07-01

    Retrospective radiographic analysis. To determine which lumbar interbody technique is most effective for restoring lordosis, increasing disk height, and reducing spondylolisthesis. Lumbar interbody fusions are performed in hopes of increasing fusion potential, correcting deformity, and indirectly decompressing nerve roots. No published study has directly compared anterior, lateral, and transforaminal lumber interbody fusions in terms of ability to restore lordosis, increase disk height, and reduce spondylolisthesis. Lumbar interbody fusion techniques were retrospectively compared in terms of improvement of lordosis, disk height, and spondylolisthesis between preoperative and follow-up lateral radiographs. A total of 220 consecutive patients with 309 operative levels were compared by surgery type: anterior (184 levels), lateral (86 levels), and transforaminal (39 levels). Average follow-up was 19.2 months (range, 1-56 mo), with no statistical difference between the groups. Intragroup analysis showed that the anterior (4.5 degrees) and lateral (2.2 degrees) groups significantly improved lordosis from preoperative to follow-up, whereas the transforaminal (0.8 degrees) group did not. Intergroup analysis showed that the anterior group significantly improved lordosis more than both the lateral and transforaminal groups. The anterior (2.2 mm) and lateral (2.0 mm) groups both significantly improved disk height more than the transforaminal (0.5 mm) group. All 3 groups significantly reduced spondylolisthesis, with no difference between the groups. After lumbar interbody fusion, improvement of lordosis was significant for both the anterior and lateral groups, but not the transforaminal group. Intergroup analysis showed the anterior group had significantly improved lordosis compared to both the other groups. The anterior and lateral groups had significantly increased disk height compared to the transforaminal group. All the 3 groups significantly reduced spondylolisthesis, with no difference between the groups.

  5. Permeability of cork to gases.

    PubMed

    Faria, David P; Fonseca, Ana L; Pereira, Helen; Teodoro, Orlando M N D

    2011-04-27

    The permeability of gases through uncompressed cork was investigated. More than 100 samples were assessed from different plank qualities to provide a picture of the permeability distribution. A novel technique based on a mass spectrometer leak detector was used to directly measure the helium flow through the central area of small disks 10 mm in diameter and 2 mm thick. The permeability for nitrogen, oxygen, and other gases was measured by the pressure rise technique. Boiled and nonboiled cork samples from different sections were evaluated. An asymmetric frequency distribution ranging 3 orders of magnitude (roughly from 1 to 1000 μmol/(cm·atm·day)) for selected samples without macroscopic defects was found, having a peak below 100 μmol/(cm·atm·day). Correlation was found between density and permeability: higher density samples tend to show lower permeability. However, boiled cork showed a mean lower permeability despite having a lower density. The transport mechanism of gases through cork was also examined. Calculations suggest that gases permeate uncompressed cork mainly through small channels between cells under a molecular flow regime. The diameter of such channels was estimated to be in the range of 100 nm, in agreement with the plasmodesmata size in the cork cell walls.

  6. 78 FR 30271 - Stainless Steel Plate in Coils From Belgium, South Africa, and Taiwan: Notice of Court Decision...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... nominal thickness of 4.75 mm, but an actual thickness of less than 4.75 mm.\\4\\ \\1\\ See ArcelorMittal....75 millimeters (mm), but an actual thickness of less than 4.75 mm, is subject to the AD and CVD Orders on SSPC.\\1\\ On March 26, 2013, the United States Court of International Trade (CIT) sustained the...

  7. Effect of different dental ceramic systems on the wear of human enamel: An in vitro study.

    PubMed

    Zandparsa, Roya; El Huni, Rabie M; Hirayama, Hiroshi; Johnson, Marc I

    2016-02-01

    The wear of tooth structure opposing different advanced dental ceramic systems requires investigation. The purpose of this in vitro study was to compare the wear of advanced ceramic systems against human enamel antagonists. Four ceramic systems (IPS e.max Press, IPS e.max CAD, Noritake Super Porcelain EX-3, and LAVA Plus Zirconia) and 1 control group containing human enamel specimens were used in this study (n = 12). All specimens were fabricated as disks 11 mm in diameter and 3 mm thick. The mesiopalatal cusps of the maxillary third molars were prepared to serve as the enamel styluses. All specimens were embedded individually in 25 mm(3) autopolymerizing acrylic resin blocks. Wear was measured with a cyclic loading machine and a newly designed wear simulator. All enamel styluses (cusps) were scanned using the Activity 880 digital scanner (SmartOptics). Data from the base line and follow-up scans were collected and compared with Qualify 2012 3-dimensional (3D) and 2D digital inspection software (Geomagic), which aligned the models and detected the geometric changes and the wear caused by the antagonist specimen. One-way ANOVA was used to analyze the collected data. After 125,000 bidirectional loading cycles, the mean loss of opposing enamel volume for the enamel disks in the control group was 37.08 μm(3), the lowest mean value for IPS e.max Press system was 39.75 μm(3); 40.58 μm(3) for IPS e.max CAD; 45.08 μm(3) for Noritake Super Porcelain EX-3 system; and 48.66 μm(3) for the Lava Plus Zirconia system. No statically significant differences were found among the groups in opposing enamel volume loss (P=.225) or opposing enamel height loss (P=.149). In terms of opposing enamel height loss, Lava Plus Zirconia system showed the lowest mean value of 27.5 μm. The mean value for the IPS e.max CAD system was 27.91 μm; 29.08 μm for the control enamel; 33.25 μm for the IPS e.max Press system; and 34.75 μm for the Noritake Super Porcelain EX-3 system. Within the limitations of this in vitro study, no differences were found in the linear and volumetric reduction of enamel cusps abraded against enamel disks and all other ceramic specimens. All ceramic systems exhibited high durability and were wear-friendly to opposing enamel. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers.

    PubMed

    Sazegari, Vahid; Milani, Mohammad Reza Jafari; Jafari, Ahmad Khayat

    2010-12-20

    We employ a Monte Carlo ray-tracing code along with the ANSYS package to predict the optical and structural behavior in end-pumped CW Yb:YAG disk lasers. The presence of inhomogeneous temperature, stress, and strain distributions is responsible for many deleterious effects for laser action through disk fracture, strain-induced birefringence, and thermal lensing. The thermal lensing, in turn, results in the optical phase distortion in solid-state lasers. Furthermore, the dependence of optical phase distortion on variables such as the heat transfer coefficient, the cooling fluid temperature, and crystal thickness is discussed.

  9. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Miller, R. A.; Sudbrack, C. K.; Draper, S. L.; Nesbitt, J.; Telesman, J.; Ngo, V.; Healy, J.

    2015-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 C and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 C. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. The effects of this cyclic oxidation on resistance to subsequent hot corrosion attack were examined.

  10. Chemistry in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Semenov, D. A.

    2012-01-01

    In this lecture I discuss recent progress in the understanding of the chemical evolution of protoplanetary disks that resemble our Solar system during the first ten million years. At the verge of planet formation, strong variations of temperature, density, and radiation intensities in these disks lead to a layered chemical structure. In hot, dilute and heavily irradiated atmosphere only simple radicals, atoms, and atomic ions can survive, formed and destroyed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex (organic) species are synthesized.

  11. Abundances of disk and bulge giants from high-resolution optical spectra. II. O, Mg, Ca, and Ti in the bulge sample

    NASA Astrophysics Data System (ADS)

    Jönsson, H.; Ryde, N.; Schultheis, M.; Zoccali, M.

    2017-02-01

    Context. Determining elemental abundances of bulge stars can, via chemical evolution modeling, help to understand the formation and evolution of the bulge. Recently there have been claims both for and against the bulge having a different [α/Fe] versus [Fe/H] trend as compared to the local thick disk. This could possibly indicate a faster, or at least different, formation timescale of the bulge as compared to the local thick disk. Aims: We aim to determine the abundances of oxygen, magnesium, calcium, and titanium in a sample of 46 bulge K giants, 35 of which have been analyzed for oxygen and magnesium in previous works, and compare this sample to homogeneously determined elemental abundances of a local disk sample of 291 K giants. Methods: We used spectral synthesis to determine both the stellar parameters and elemental abundances of the bulge stars analyzed here. We used the exact same method that we used to analyze the comparison sample of 291 local K giants in Paper I of this series. Results: Compared to the previous analysis of the 35 stars in our sample, we find lower [Mg/Fe] for [Fe/H] >-0.5, and therefore contradict the conclusion about a declining [O/Mg] for increasing [Fe/H]. We instead see a constant [O/Mg] over all the observed [Fe/H] in the bulge. Furthermore, we find no evidence for a different behavior of the alpha-iron trends in the bulge as compared to the local thick disk from our two samples. Note to the reader: following the publication of the corrigendum, the subtitle of the article was corrected on April 6, 2017. "O, Mg, Co, and Ti" has been replaced by "O, Mg, Ca, and Ti".Based on observations collected at the European Southern Observatory, Chile (ESO programs 71.B-0617(A), 073.B-0074(A), and 085.B-0552(A)).

  12. Tumour thickness as a determinant of nodal metastasis in oral tongue carcinoma.

    PubMed

    Wang, Kejia; Veivers, David

    2017-09-01

    Tumour thickness is a strong predictor for cervical node involvement in oral cavity squamous cell carcinomas (SCCs), with a recent meta-analysis concluding a 4-mm optimal prognostic cut-off point. No consensus has been reached for the tumour thickness cut-off for oral tongue SCCs. A retrospective review of prospectively collected data from 112 patients by the Northern Sydney Cancer Centre (Australia) with primary oral tongue SCC was conducted. Tumour thickness was measured by standard histopathological techniques and cervical node involvement was determined either from neck dissection histopathology or by clinical and radiological follow-up. Neck dissection was performed in 78 patients (70%). Tumour thickness was a significant predictor of cervical node disease (P < 0.01), with a median tumour thickness of 5.5 mm. Cervical node metastasis rates for tumours <2, 2-3.9 and ≥4 mm thick were 10%, 42.1% and 46.5%, respectively. The rate of cervical node metastasis was significantly higher for patients with tumours thicker than a cut-off of 2 mm (odds ratio: 7.53, P < 0.01). A 4-mm thickness cut-off was also statistically significant (P < 0.05); however, the odds ratio was smaller at 2.52. Despite some previous evidence for a 4-mm tumour thickness cut-off in oral tongue SCCs, thinner tumours (2-3.9 mm) can also have a propensity for cervical node metastasis. Patients in this category require close monitoring for regional recurrence if they do not have a neck dissection. © 2016 Royal Australasian College of Surgeons.

  13. Conservative GRMHD simulations of moderately thin, tilted accretion disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teixeira, Danilo Morales; Fragile, P. Chris; Zhuravlev, Viacheslav V.

    2014-12-01

    This paper presents our latest numerical simulations of accretion disks that are misaligned with respect to the rotation axis of a Kerr black hole. In this work, we use a new, fully conservative version of the Cosmos++ general relativistic magnetohydrodynamics (GRMHD) code, coupled with an ad hoc cooling function designed to control the thickness of the disk. Together these allow us to simulate the thinnest tilted accretion disks ever using a GRMHD code. In this way, we are able to probe the regime where the dimensionless stress and scale height of the disk become comparable. We present results for bothmore » prograde and retrograde cases. The simulated prograde tilted disk shows no sign of Bardeen-Petterson alignment even in the innermost parts of the disk. The simulated retrograde tilted disk, however, does show modest alignment. The implication of these results is that the parameter space associated with Bardeen-Petterson alignment for prograde disks may be rather small, only including very thin disks. Unlike our previous work, we find no evidence for standing shocks in our simulated tilted disks. We ascribe this to the black hole spin, tilt angle, and disk scale height all being small in these simulations. We also add to the growing body of literature pointing out that the turbulence driven by the magnetorotational instability in global simulations of accretion disks is not isotropic. Finally, we provide a comparison between our moderately thin, untilted reference simulation and other numerical simulations of thin disks in the literature.« less

  14. A possible mechanism to detect super-earth formation in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Chiang, Eugene; Li, Hui; Li, Shengtai

    2017-06-01

    Using combined gas+dust global hydrodynamics and radiative transfer simulations, we calculate the distribution of gas and sub-mm-sized dust in protoplanetary disks with a super-Earth at tens of AU, and examine observational signatures of such systems in resolved observations. We confirm previous results that in a typical disk with a low viscosity ($\\alpha\\lesssim10^{-4}$), a super-Earth is able to open two gaps at $\\sim$scale-height away around its orbit in $\\sim$mm-sized dust (St$\\sim$0.01), due to differential dust drift in a perturbed gas background. Additional rings and gaps may also be produced under certain conditions. These features, particularly a signature ``double-gap'' feature, can be detected in a Taurus target by ALMA in dust continuum under an angular resolution of $\\sim0\\arcsec.025$ with two hours of integration. The features are robust --- it can survive in a variety of background disk profiles, withstand modest planetary radial migration ($|r/\\dot{r}|\\sim$ a few Myr), and last for thousands of orbits. Multiple ring/gap systems observed by ALMA were typically modeled using multiple (Saturn-to-Jupiter sized) planets. Here, we argue that a single super-Earth in a low viscosity disk could produce multiple rings and gaps as well. By examining the prevalence of such features in nearby disks, upcoming high angular resolution ALMA surveys may infer how common super-Earth formation events are at tens of au.

  15. Study on profile measurement of extruding tire tread by laser

    NASA Astrophysics Data System (ADS)

    Wang, LiangCai; Zhang, Wanping; Zhu, Weihu

    1996-10-01

    This paper presents a new 2D measuring system-profile measurement of extruding tire tread by laser. It includes the thickness measurement of extruding tire tread by laser and the width measurement of extruding tire tread using Moire Fringe. The system has been applied to process line of extruding tire tread. Two measuring results have been obtained. One is a standard profile picture of extruding tire tread including seven measuring values. Another one is a series of thickness and width values. When the scanning speed < 100mm/sec and total width < 800mm. The measuring errors of width < +/- 0.5mm. While the thickness range is < 40mm. The measuring errors of thickness < +/- 0.1mm.

  16. A comparison of resistance to fracture among four commercially available forms of hydroxyapatite cement.

    PubMed

    Miller, Lee; Guerra, Aldo Benjamin; Bidros, Rafi Sirop; Trahan, Christopher; Baratta, Richard; Metzinger, Stephen Eric

    2005-07-01

    Hydroxyapatite cement is a relatively new biomaterial that has found widespread use in craniomaxillofacial surgery. Despite its common usage, complication rates as high as 32% have been reported. When failed implants are removed, implant fracture has been cited as a potential cause of failure. The purpose of this study was to evaluate resistance to fracture among 4 commercially available hydroxyapatite cement formulations. The materials tested included Norian Craniofacial Repair System (carbonated apatite cement) (AO North America, Devon, PA), Norian CRS Fast Set Putty (carbonated apatite cement) (AO North America), BoneSource (hydroxyapatite cement) (Stryker Leibinger, Portage, MI), and Mimix (hydroxyapatite cement) (Walter Lorenz Surgical, Inc, Jacksonville, FL). To ensure consistency, all materials were embedded in acrylic wells. Each material was placed into a well 2.54 cm in diameter and 0.953 cm in thickness. The materials were prepared per manufacturer specifications. All materials were incubated at 37.0 degrees C, in 6% CO2, 100% humidity for 36 hours. Using the Bionix MTS Test System, a 12-mm-diameter probe applied incremental force to the center of the disk at a rate of 0.1 mm per second. The transmitted force was measured using a Bionix MTS Axial-Torsional Load Transducer for each disk. The force which resulted in fracture was recorded for each material. Ten disks of each material were processed by this method, for a total of 40 disks. The significance of resistance to fracture for the 4 compounds was analyzed using 1-way analysis of variance with post hoc Scheffe method. Mean fracture force with related P values was plotted for direct comparison of group outcomes. Material type contributed significantly to variance in fracture force for the biomaterials studied. Norian CRS required the greatest mean fracture force (1385 N, SD+/-292 N), followed by Norian CRS Fast Set Putty (1143 N, SD+/-193 N). Mimix required a mean fracture force of 740 N, SD+/-79 N. BoneSource required a mean fracture force of 558 N, SD+/-150 N. Mimix and BoneSource required significantly less force for fracture when compared with Norian CRS and Fast Set Putty (P<0.01). Comparisons of fracture load resistance between 4 commonly used bone substitute materials have not been previously reported. Increasing biomaterial strength may reduce complications resulting from reinjury to cranioplasty sites. In this model, Norian CRS and Norian CRS Fast Set Putty demonstrated a significantly greater resistance to fracture when compared with BoneSource and Mimix.

  17. Three-dimensional discrete element method simulation of core disking

    NASA Astrophysics Data System (ADS)

    Wu, Shunchuan; Wu, Haoyan; Kemeny, John

    2018-04-01

    The phenomenon of core disking is commonly seen in deep drilling of highly stressed regions in the Earth's crust. Given its close relationship with the in situ stress state, the presence and features of core disking can be used to interpret the stresses when traditional in situ stress measuring techniques are not available. The core disking process was simulated in this paper using the three-dimensional discrete element method software PFC3D (particle flow code). In particular, PFC3D is used to examine the evolution of fracture initiation, propagation and coalescence associated with core disking under various stress states. In this paper, four unresolved problems concerning core disking are investigated with a series of numerical simulations. These simulations also provide some verification of existing results by other researchers: (1) Core disking occurs when the maximum principal stress is about 6.5 times the tensile strength. (2) For most stress situations, core disking occurs from the outer surface, except for the thrust faulting stress regime, where the fractures were found to initiate from the inner part. (3) The anisotropy of the two horizontal principal stresses has an effect on the core disking morphology. (4) The thickness of core disk has a positive relationship with radial stress and a negative relationship with axial stresses.

  18. Effects of porcelain thickness on the flexural strength and crack propagation in a bilayered zirconia system.

    PubMed

    Figueiredo, Viviane Maria Gonçalves de; Pereira, Sarina Maciel Braga; Bressiani, Eduardo; Valera, Márcia Carneiro; Bottino, Marco Antônio; Zhang, Yu; Melo, Renata Marques de

    2017-01-01

    This study evaluated the influence of porcelain (VM9, VITA Zahnfabrik, Germany) thickness on the flexural strength and crack propagation in bilayered zirconia systems (YZ, VITA Zahnfabrik, Germany). Thirty zirconia bars (20.0x4.0x1.0 mm) and six zirconia blocks (12.0x7.5x1.2 mm) were prepared and veneered with porcelain with different thickness: 1 mm, 2 mm, or 3 mm. The bars of each experimental group (n=10) were subjected to four-point flexural strength testing. In each ceramic block, a Vickers indentation was created under a load of 10 kgf for 10 seconds, for the propagation of cracks. The results of flexural strength were evaluated by One-way ANOVA and Tukey's test, with a significance level of 5%. The factor "thickness of the porcelain" was statistically significant (p=0.001) and the l-mm group presented the highest values of flexural strength. The cracks were predominant among the bending specimens with 1 and 2 mm of porcelain, and catastrophic failures were found in 50% of 3-mm-thick porcelain. After the indentation of blocks, the most severe defects were observed in blocks with 3-mm-thick porcelain. The smallest (1 mm) thickness of porcelain on the zirconia infrastructure presented higher values of flexural strength. Better resistance to defect propagation was observed near the porcelain/ zirconia interface for all groups. Higher flexural strength was found for a thinner porcelain layer in a bilayered zirconia system. The damage caused by a Vickers indentation near and far the interface with the zirconia shows that the stress profiles are different.

  19. Effects of porcelain thickness on the flexural strength and crack propagation in a bilayered zirconia system

    PubMed Central

    de Figueiredo, Viviane Maria Gonçalves; Pereira, Sarina Maciel Braga; Bressiani, Eduardo; Valera, Márcia Carneiro; Bottino, Marco Antônio; Zhang, Yu; de Melo, Renata Marques

    2017-01-01

    Abstract Objective: This study evaluated the influence of porcelain (VM9, VITA Zahnfabrik, Germany) thickness on the flexural strength and crack propagation in bilayered zirconia systems (YZ, VITA Zahnfabrik, Germany). Material and Methods: Thirty zirconia bars (20.0x4.0x1.0 mm) and six zirconia blocks (12.0x7.5x1.2 mm) were prepared and veneered with porcelain with different thickness: 1 mm, 2 mm, or 3 mm. The bars of each experimental group (n=10) were subjected to four-point flexural strength testing. In each ceramic block, a Vickers indentation was created under a load of 10 kgf for 10 seconds, for the propagation of cracks. Results: The results of flexural strength were evaluated by One-way ANOVA and Tukey's test, with a significance level of 5%. The factor “thickness of the porcelain” was statistically significant (p=0.001) and the l-mm group presented the highest values of flexural strength. The cracks were predominant among the bending specimens with 1 and 2 mm of porcelain, and catastrophic failures were found in 50% of 3-mm-thick porcelain. After the indentation of blocks, the most severe defects were observed in blocks with 3-mm-thick porcelain. Conclusion: The smallest (1 mm) thickness of porcelain on the zirconia infrastructure presented higher values of flexural strength. Better resistance to defect propagation was observed near the porcelain/ zirconia interface for all groups. Higher flexural strength was found for a thinner porcelain layer in a bilayered zirconia system. The damage caused by a Vickers indentation near and far the interface with the zirconia shows that the stress profiles are different. PMID:29069155

  20. Influence of veneer thickness on residual stress profile in veneering ceramic: measurement by hole-drilling.

    PubMed

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2012-02-01

    The veneering process of frameworks induces residual stresses and can initiate cracks when combined with functional stresses. The stress distribution within the veneering ceramic as a function of depth is a key factor influencing failure by chipping. This is a well-known problem with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objective of this study is to investigate the influence of veneer thickness on the stress profile in zirconia- and metal-based structures. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. The stress profile was measured in bilayered disc samples of 20 mm diameter, with a 1 mm thick zirconia or metal framework. Different veneering ceramic thicknesses were performed: 1 mm, 1.5 mm, 2 mm, 2.5 mm and 3 mm. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth up to 0.5-1.0 mm from the surface, and then becoming compressive again near the framework, except for the 1.5 mm-veneered zirconia samples which exhibited interior tensile stresses. Stresses in the surface of metal samples were not influenced by veneer thickness. Variation of interior stresses at 1.2 mm from the surface in function of veneer thickness was inverted for metal and zirconia samples. Veneer thickness influences in an opposite way the residual stress profile in metal- and in zirconia-based structures. A three-step approach and the hypothesis of the crystalline transformation are discussed to explain the less favorable residual stress development in zirconia samples. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. The effect of finish line preparation and layer thickness on the failure load and fractography of ZrO2 copings.

    PubMed

    Reich, Sven; Petschelt, Anselm; Lohbauer, Ulrich

    2008-05-01

    To prevent tooth weakening or pulp irritation, there is a need for a minimally invasive method of preparing single anterior crowns. Restoration dimensions for reduced coping thicknesses or less invasive finish line preparations are required. The purposed of this in vitro was to study investigate the fracture performance of high-strength zirconia copings, compare knife-edge margins with chamfer finish lines, and examine the effect of reducing the layer thickness from 0.5 mm to 0.3 mm. Y-TZP zirconia copings were manufactured on brass dies of a maxillary central incisor. Forty copings, with 2 layer thicknesses (0.5 and 0.3 mm), and 2 finish line preparations (knife edge and chamfer; n=10) were cemented using a conventional glass ionomer cement and stored in distilled water at 37 degrees C for 24 hours. The copings were vertically loaded until fracture using a universal testing machine. Data were analyzed by 2-way ANOVA (alpha=.05). Fractographic examination was performed using scanning electron microscopy and confocal laser scanning microscopy. A significantly higher mean failure load was measured for knife-edge (0.5 mm, 1110 +/-175 N; 0.3 mm, 730 +/-160 N) versus chamfer (0.5 mm, 697 +/-126 N; 0.3 mm, 455 +/-79 N) preparations (P<.001), and for 0.5-mm versus 0.3-mm thickness layers (P<.001). Knife-edge preparations present a promising alternative to chamfer finish lines; the fracture load required for knife-edge preparations was 38% greater than that required for chamfer preparations, regardless of coping thickness. Reducing the thickness of a single crown coping from 0.5 to 0.3 mm resulted in a 35% reduction in fracture load required for either preparation type.

  2. Improvement of the Shock Absorption Ability of a Face Guard by Incorporating a Glass-Fiber-Reinforced Thermoplastic and Buffering Space

    PubMed Central

    Churei, Hiroshi; Takayanagi, Haruka; Iwasaki, Naohiko; Takahashi, Hidekazu; Uo, Motohiro

    2018-01-01

    This study aimed to evaluate the shock absorption ability of trial face guards (FGs) incorporating a glass-fiber-reinforced thermoplastic (GF) and buffering space. The mechanical properties of 3.2 mm and 1.6 mm thick commercial medical splint materials (Aquaplast, AP) and experimental GF prepared from 1.6 mm thick AP and fiberglass cloth were determined by a three-point bending test. Shock absorption tests were conducted on APs with two different thicknesses and two types of experimental materials, both with a bottom material of 1.6 mm thick AP and a buffering space of 30 mm in diameter (APS) and with either (i) 1.6 mm thick AP (AP-APS) or (ii)  1.6 mm thick GF (GF-APS) covering the APS. The GF exhibited significantly higher flexural strength (64.4 MPa) and flexural modulus (7.53 GPa) than the commercial specimens. The maximum load of GF-APS was 75% that of 3.2 mm AP, which is widely used clinically. The maximum stress of the GF-APS only could not be determined as its maximum stress is below the limits of the analysis materials used (<0.5 MPa). Incorporating a GF and buffering space would enhance the shock absorption ability; thus, the shock absorption ability increased while the total thickness and weight decreased. PMID:29854774

  3. Improvement of the Shock Absorption Ability of a Face Guard by Incorporating a Glass-Fiber-Reinforced Thermoplastic and Buffering Space.

    PubMed

    Wada, Takahiro; Churei, Hiroshi; Takayanagi, Haruka; Iwasaki, Naohiko; Ueno, Toshiaki; Takahashi, Hidekazu; Uo, Motohiro

    2018-01-01

    This study aimed to evaluate the shock absorption ability of trial face guards (FGs) incorporating a glass-fiber-reinforced thermoplastic (GF) and buffering space. The mechanical properties of 3.2 mm and 1.6 mm thick commercial medical splint materials (Aquaplast, AP) and experimental GF prepared from 1.6 mm thick AP and fiberglass cloth were determined by a three-point bending test. Shock absorption tests were conducted on APs with two different thicknesses and two types of experimental materials, both with a bottom material of 1.6 mm thick AP and a buffering space of 30 mm in diameter (APS) and with either (i) 1.6 mm thick AP (AP-APS) or (ii)  1.6 mm thick GF (GF-APS) covering the APS. The GF exhibited significantly higher flexural strength (64.4 MPa) and flexural modulus (7.53 GPa) than the commercial specimens. The maximum load of GF-APS was 75% that of 3.2 mm AP, which is widely used clinically. The maximum stress of the GF-APS only could not be determined as its maximum stress is below the limits of the analysis materials used (<0.5 MPa). Incorporating a GF and buffering space would enhance the shock absorption ability; thus, the shock absorption ability increased while the total thickness and weight decreased.

  4. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  5. Ability of the Confined Explosive Component Water Gap Test STANAG 4363 to Assess the Shock Sensitivity of MM-Scale Detonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefrancois, A S; Roeske, F; Benterou, J

    2006-02-10

    The Explosive Component Water Gap Test (ECWGT) has been validated to assess the shock sensitivity of lead and booster components having a diameter larger than 5 mm. Several countries have investigated by experiments and numerical simulations the effect of confinement on the go/no go threshold for Pentaerythritol Tetranitrate (PETN) pellets having a height and diameter of 3 mm, confined by a steel annulus of wall thickness 1-3.5 mm. Confinement of the PETN by a steel annulus of the same height of the pellet with 1-mm wall thickness makes the component more sensitive (larger gap). As the wall thickness is increasedmore » to 2-mm, the gap increases a lesser amount, but when the wall thickness is increased to 3.5-mm a decrease in sensitivity is observed (smaller gap). This decrease of the water gap has been reproduced experimentally. Recent numerical simulations using Ignition and Growth model [1] for the PETN Pellet have reproduced the experimental results for the steel confinement up to 2 mm thick [2]. The presence of a stronger re-shock following the first input shock from the water and focusing on the axis have been identified in the pellet due to the steel confinement. The double shock configuration is well-known to lead in some cases to shock desensitization. This work presents the numerical simulations using Ignition and Growth model for LX16 (PETN based HE) and LX19 (CL20 based HE) Pellets [3] in order to assess the shock sensitivity of mm-scale detonators. The pellets are 0.6 mm in diameter and 3 mm length with different type of steel confinement 2.2 mm thick and 4.7 mm thick. The influence of an aluminum confinement is calculated for the standard LX 16 pellet 3 mm in diameter and 3 mm in height. The question of reducing the size of the donor charge is also investigated to small scale the test itself.« less

  6. The influence of stiffening ribs on the natural frequencies of butterfly valve disks

    NASA Astrophysics Data System (ADS)

    Ursoniu, C.; Pepa, D.; Tufoi, M.; Gillich, R. N.

    2017-01-01

    In this paper a study regarding the influence of the ribs shape on the dynamic behavior of butterfly valves, in terms of natural frequency variation, is presented. This behavior is important because the valve disk vibrates due to fluid flow when it is fully or partially open. If the disk is “locked in”, which means that frequency of oscillation is equal to the frequency of vortex shedding, the negative effect of resonance occurs, and harming of the structure is expected. The phenomenon is undesired and can be avoided by designing the disk in order to have the natural frequencies higher as the shedding frequencies. The study is performed via the finite element method (FEM) and first concerns in finding the proper disk thickness for the valve’s geometrical input parameters by static analysis. Afterward, modal analysis on disks with stiffness ribs of various shapes and positions is made. As a result, guidelines for designing the disk’s stiffening elements are provided.

  7. Chemical Evolution of a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Semenov, Dmitry A.

    2011-12-01

    In this paper we review recent progress in our understanding of the chemical evolution of protoplanetary disks. Current observational constraints and theoretical modeling on the chemical composition of gas and dust in these systems are presented. Strong variations of temperature, density, high-energy radiation intensities in these disks, both radially and vertically, result in a peculiar disk chemical structure, where a variety of processes are active. In hot, dilute and heavily irradiated atmosphere only the most photostable simple radicals and atoms and atomic ions exist, formed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich ion-molecule and radical-radical chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex polyatomic (organic) species are synthesized. Dynamical processes affect disk chemical composition by enriching it in abundances of complex species produced via slow surface processes, which will become detectable with ALMA.

  8. Simulation of a data archival and distribution system at GSFC

    NASA Technical Reports Server (NTRS)

    Bedet, Jean-Jacques; Bodden, Lee; Dwyer, AL; Hariharan, P. C.; Berbert, John; Kobler, Ben; Pease, Phil

    1993-01-01

    A version-0 of a Data Archive and Distribution System (DADS) is being developed at GSFC to support existing and pre-EOS Earth science datasets and test Earth Observing System Data and Information System (EOSDIS) concepts. The performance of DADS is predicted using a discrete event simulation model. The goals of the simulation were to estimate the amount of disk space needed and the time required to fulfill the DADS requirements for ingestion (14 GB/day) and distribution (48 GB/day). The model has demonstrated that 4 mm and 8 mm stackers can play a critical role in improving the performance of the DADS, since it takes, on average, 3 minutes to manually mount/dismount tapes compared to less than a minute with stackers. With two 4 mm stackers and two 8 mm stackers, and a single operator per shift, the DADS requirements can be met within 16 hours using a total of 9 GB of disk space. When the DADS has no stacker, and the DADS depends entirely on operators to handle the distribution tapes, the simulation has shown that the DADS requirements can still be met within 16 hours, but a minimum of 4 operators per shift were required. The compression/decompression of data sets is very CPU intensive, and relatively slow when performed in software, thereby contributing to an increase in the amount of disk space needed.

  9. Analysis of heterogeneities in strain and microstructure in aluminum alloy and magnesium processed by high-pressure torsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Subrata, E-mail: subrata.panda@univ-lorrain

    2017-01-15

    Two distinct bulk light metals were opted to study the shear strain evolution and associated heterogeneities in texture/microstructure development during torsional straining by high pressure torsion (HPT): a face centered cubic Al alloy (A5086) and a hexagonal commercial purity Mg. Relatively thick disk samples - four times thicker than usually employed in HPT process - were processed to 180° and 270° rotations. With the help of X-ray tomography, the shear strain gradients were examined in the axial direction. The results showed strongly localized shear deformation in the middle plane of the disks in both materials. These gradients involved strong heterogeneitiesmore » in texture, microstructure and associated hardness, in particular through the thickness direction at the periphery of the disk where the interplay between significant strain hardening and possible dynamic recrystallization could occur. - Highlights: •HPT processing was conducted on bulk specimens thicker than the usual thin-disks. •The Al alloy (A5086) and commercial purity magnesium samples were compared. •Distributions of strain and microhardness were evaluated in the radial and axial direction. •Plastic deformation is highly localized in the middle plane at outer edge in both materials. •Different DRX rates governed the differences in microstructure and hardening behavior.« less

  10. Luminescence and Luminescence Quenching of K2Bi(PO4)(MoO4):Eu3+ Phosphors with Efficiencies Close to Unity.

    PubMed

    Grigorjevaite, Julija; Katelnikovas, Arturas

    2016-11-23

    A very good light emitting diode (LED) phosphor must have strong absorption, high quantum efficiency, high color purity, and high quenching temperature. Our synthesized K 2 Bi(PO 4 )(MoO 4 ):Eu 3+ phosphors possess all of the mentioned properties. The excitation of these phosphors with the near-UV or blue radiation results in a bright red luminescence dominated by the 5 D 0 → 7 F 2 transition at ∼615 nm. Color coordinates are very stable when changing Eu 3+ concentration or temperature in the range of 77-500 K. Furthermore, samples doped with 50% and 75% Eu 3+ showed quantum efficiencies close to 100% which is a huge benefit for practical application. Temperature dependent luminescence measurements showed that phosphor performance increases with increasing Eu 3+ concentration. K 2 Eu(PO 4 )(MoO 4 ) sample at 400 K lost only 20% of the initial intensity at 77 K and would lose half of the intensity only at 578 K. Besides, the ceramic disks with thicknesses of 0.33 and 0.89 mm were prepared from K 2 Eu(PO 4 )(MoO 4 ) powder, and it turned out that they efficiently converted the radiation of 375 nm LED to the red light. The conversion of 400 nm LED radiation to the red light was not complete; thus, the light sources with various tints of purple color were obtained. The combination of ceramic disks with 455 nm LED yielded the light sources with tints of blue color due to the low absorption of ceramic disk in this spectral range. In addition, these phosphors possess a very unique emission spectra; thus, they could also be applied in luminescent security pigments.

  11. Rationale behind the design and comparative evaluation of an all-in-one self-etch model adhesive.

    PubMed

    Kanehira, Masafumi; Finger, Werner J; Ishihata, Hiroshi; Hoffmann, Marcus; Manabe, Atsufumi; Shimauchi, Hidetoshi; Komatsu, Masashi

    2009-06-01

    To investigate and compare bonding and dentin sealing efficacy of a marketed all-in-one and an experimental model adhesive with minimum effective amounts of acidic monomer and water. Composition of model adhesive (NAD) in mass%: UDMA (45), 4-META (20), H2O (7.5), and acetone (27.5). For characterization of a reasonable NAD application procedure shear bond strengths (SBS, n=8) were determined on human enamel and dentin. Clearfil S3 Bond (TSB; Kuraray) served as reference. SBSs were evaluated after 10 min, 1 and 7 days, and 1 month, marginal adaptation (n=8) was assessed in cylindrical butt-joint dentin cavities. Diffusive and convective water fluxes through 1mm thick adhesive-coated dentin disks (n=6) were qualitatively and quantitatively analyzed. SBSs proved that application of NAD in one coat with 20s agitated dwell time was > or =20 MPa, enamel SBSs (24h) were 25 MPa, p>0.05. Dentin SBSs for TSB and NAD were not different (p>0.05) at the four stages (means: 18.9, 23.5, 25.4, and 23.6 MPa). Five and seven of the eight bonded restorations with TSB and NAD were gap-free (p>0.05). Dentin disks treated with EDTA from both sides or one side only were highly permeable for liquid, whereas adhesive-coated dentin disks showed no permeability at 0 and 2.5 kPa water pressure. Within the limitations of this study the model adhesive tested represents a promising basic composition for all-in-one adhesives, eliminating common problems encountered with single step adhesives such as phase separation and permeability.

  12. In vivo biocompatibility evaluation of Cibacron blue-agarose.

    PubMed

    Kao, J M; Rose, R; Yousef, M; Hunter, S K; Rodgers, V G

    1999-12-15

    This study investigated the biocompatibility of Cibacron blue-agarose as a biomaterial for microencapsulation. Cibacron blue-agarose is known to have an affinity for albumin under certain pH conditions and in the proper steric environment. Thus it was postulated that the material's high affinity for host albumin might reduce a secondary immune response and reduce the fibrotic overgrowth that often accompanies transplanted foreign materials. In vivo tests were performed using the Lewis rat model. Both Cibacron blue-agarose and plain agarose disks were prepared, with some disks from each group being pre-exposed to sera from Lewis rats. The disks were transplanted into the peritoneal cavities of Lewis rats. After 115 days the disks were excised. Fibrotic overgrowth was analyzed using light microscopy, and a blind study was used to measure the average growth thickness on each disk. The results demonstrated that all disks developed some fibrotic encapsulation and that the presence of Cibacron blue was not significant in reducing fibrotic overgrowth (p = 0.62). Agarose disks pre-exposed to sera had significantly less average overgrowth than any other group (p = 0. 06). Copyright 1999 John Wiley & Sons, Inc.

  13. Butterfly-valve inductive orientation detector

    NASA Astrophysics Data System (ADS)

    Garrett, Steven

    1980-04-01

    Relative changes of inductance ΔL/L of a single layer coil surrounding a thin electrically conducting disk which can rotate about an axis perpendicular to the coil axis are studied experimentally as a means of measuring angular displacements. ΔL/L is found to be a strong function of disk diameter and is weakly dependent on the ratio of disk thickness to electromagnetic skin depth when this ratio is of the order unity. Values of ΔL/L as a function of disk diameter are given for lead, brass and copper. Detection sensitivities using a resonant tank circuit or an astatic transformer are given in terms of ΔL/L and it is shown that sensitivities of the order of 10-3 to 10-4 deg are practical. Application of this system to the Rayleigh disk and cryogenic environments are emphasized and an expression for the magnetic torque due to detection currents is given.

  14. Differences in the Gas and Dust Distribution in the Transitional Disk of a Sun-like Young Star, PDS 70

    NASA Astrophysics Data System (ADS)

    Long, Zachary C.; Akiyama, Eiji; Sitko, Michael; Fernandes, Rachel B.; Assani, Korash; Grady, Carol A.; Cure, Michel; Danchi, William C.; Dong, Ruobing; Fukagawa, Misato; Hasegawa, Yasuhiro; Hashimoto, Jun; Henning, Thomas; Inutsuka, Shu-Ichiro; Kraus, Stefan; Kwon, Jungmi; Lisse, Carey M.; Baobabu Liu, Hauyu; Mayama, Satoshi; Muto, Takayuki; Nakagawa, Takao; Takami, Michihiro; Tamura, Motohide; Currie, Thayne; Wisniewski, John P.; Yang, Yi

    2018-05-01

    We present ALMA 0.87 mm continuum, HCO+ J = 4–3 emission line, and CO J = 3–2 emission line data of the disk of material around the young, Sun-like star PDS 70. These data reveal the existence of a possible two-component transitional disk system with a radial dust gap of 0.″42 ± 0.″05, an azimuthal gap in the HCO+ J = 4–3 moment zero map, as well as two bridge-like features in the gas data. Interestingly these features in the gas disk have no analog in the dust disk making them of particular interest. We modeled the dust disk using the Monte Carlo radiative transfer code HOCHUNK3D using a two-disk component. We find that there is a radial gap that extends from 15 to 60 au in all grain sizes, which differs from previous work.

  15. Mass storage technology in networks

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Takeda, Toru; Itao, Kiyoshi; Kaneko, Reizo

    1990-08-01

    Trends and features of mass storage subsystems in network are surveyed and their key technologies spotlighted. Storage subsystems are becoming increasingly important in new network systems in which communications and data processing are systematically combined. These systems require a new class of high-performance mass-information storage in order to effectively utilize their processing power. The requirements of high transfer rates, high transactional rates and large storage capacities, coupled with high functionality, fault tolerance and flexibility in configuration, are major challenges in storage subsystems. Recent progress in optical disk technology has resulted in improved performance of on-line external memories to optical disk drives, which are competing with mid-range magnetic disks. Optical disks are more effective than magnetic disks in using low-traffic random-access file storing multimedia data that requires large capacity, such as in archive use and in information distribution use by ROM disks. Finally, it demonstrates image coded document file servers for local area network use that employ 130mm rewritable magneto-optical disk subsystems.

  16. Effects of Detector Thickness on Geometric Sensitivity and Event Positioning Errors in the Rectangular PET/X Scanner

    NASA Astrophysics Data System (ADS)

    MacDonald, Lawrence R.; Hunter, William C. J.; Kinahan, Paul E.; Miyaoka, Robert S.

    2013-10-01

    We used simulations to investigate the relationship between sensitivity and spatial resolution as a function of crystal thickness in a rectangular PET scanner intended for quantitative assessment of breast cancers. The system had two 20 × 15-cm2 and two 10 × 15-cm2 flat detectors forming a box, with the larger detectors separated by 4 or 8 cm. Depth-of-interaction (DOI) resolution was modeled as a function of crystal thickness based on prior measurements. Spatial resolution was evaluated independent of image reconstruction by deriving and validating a surrogate metric from list-mode data ( dFWHM). When increasing crystal thickness from 5 to 40 mm, and without using DOI information, the dFWHM for a centered point source increased from 0.72 to 1.6 mm. Including DOI information improved dFWHM by 12% and 27% for 5- and 40-mm-thick crystals, respectively. For a point source in the corner of the FOV, use of DOI information improved dFWHM by 20% (5-mm crystal) and 44% (40-mm crystal). Sensitivity was 7.7% for 10-mm-thick crystals (8-cm object). Increasing crystal thickness on the smaller side detectors from 10 to 20 mm (keeping 10-mm crystals on the larger detectors) boosted sensitivity by 24% (relative) and degraded dFWHM by only 3%/8% with/without DOI information. The benefits of measuring DOI must be evaluated in terms of the intended clinical task of assessing tracer uptake in small lesions. Increasing crystal thickness on the smaller side detectors provides substantial sensitivity increase with minimal accompanying loss in resolution.

  17. The Radial Distribution of Mono-metallicity Populations in the Galactic Disk as Evidence for Two-phase Disk Formation

    NASA Astrophysics Data System (ADS)

    Domínguez-Tenreiro, R.; Obreja, A.; Brook, C. B.; Martínez-Serrano, F. J.; Serna, A.

    2017-09-01

    Recent determinations of the radial distributions of mono-metallicity populations (MMPs, I.e., stars in narrow bins in [Fe/H] within wider [α/Fe] ranges) by the SDSS-III/APOGEE DR12 survey cast doubts on the classical thin- and thick-disk dichotomy. The analysis of these observations led to the non-[α /Fe] enhanced populations splitting into MMPs with different surface densities according to their [Fe/H]. By contrast, [α /Fe] enhanced (I.e., old) populations show a homogeneous behavior. We analyze these results in the wider context of disk formation within non-isolated halos embedded in the Cosmic Web, resulting in a two-phase mass assembly. By performing hydrodynamical simulations in the context of the ΛCDM model, we have found that the two phases of halo mass assembly (an early fast phase, followed by a slow phase with low mass-assembly rates) are very relevant to determine the radial structure of MMP distributions, while radial mixing only plays a secondary role, depending on the coeval dynamical and/or destabilizing events. Indeed, while the frequent dynamical violent events occuring at high redshift remove metallicity gradients and imply efficient stellar mixing, the relatively quiescent dynamics after the transition keeps [Fe/H] gaseous gradients and prevents newly formed stars from suffering strong radial mixing. By linking the two-component disk concept with the two-phase halo mass-assembly scenario, our results set halo virialization (the event marking the transition from the fast to the slow phases) as the separating event that marks periods that are characterized by different physical conditions under which thick- and thin-disk stars were born.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomlinson, Kurt; Seagle, C. T.; Huang, H.

    A measurement instrument utilizing dual, chromatic, confocal, distance sensors has been jointly developed by General Atomics (GA) and Sandia National Laboratories (SNL) for thickness and flatness measurement of target components used in dynamic materials properties (DMP) experiments on the SNL Z-Machine (Z). Compared to previous methods used in production of these types of targets, the tool saves time and yields a 4x reduction in thickness uncertainty which is one of the largest sources of error in equation of state (EOS) measurements critical to supporting the NNSA’s Stockpile Stewardship program and computer modeling of high energy density experiments. It has numerousmore » differences from earlier instruments operating on the dual confocal sensor principle to accommodate DMP components including larger lateral travel, longer working distance, ability to measure flatness in addition to thickness, built-in thickness calibration standards for quickly checking calibration before and after each measurement, and streamlined operation. Thickness and flatness of 0.2mm-3.3mm thick sections of diamond machined copper and aluminum can be measured to “sub-micron” accuracy. Sections up to 6mm thick can be measured with as-yet undermined accuracy. Furthermore, samples must have one surface which is flat to within 300µm, lateral dimensions of no more than 50mm x 50mm, and height less than 40mm.« less

  19. Enhanced Dual Confocal Measurement System

    DOE PAGES

    Tomlinson, Kurt; Seagle, C. T.; Huang, H.; ...

    2017-11-29

    A measurement instrument utilizing dual, chromatic, confocal, distance sensors has been jointly developed by General Atomics (GA) and Sandia National Laboratories (SNL) for thickness and flatness measurement of target components used in dynamic materials properties (DMP) experiments on the SNL Z-Machine (Z). Compared to previous methods used in production of these types of targets, the tool saves time and yields a 4x reduction in thickness uncertainty which is one of the largest sources of error in equation of state (EOS) measurements critical to supporting the NNSA’s Stockpile Stewardship program and computer modeling of high energy density experiments. It has numerousmore » differences from earlier instruments operating on the dual confocal sensor principle to accommodate DMP components including larger lateral travel, longer working distance, ability to measure flatness in addition to thickness, built-in thickness calibration standards for quickly checking calibration before and after each measurement, and streamlined operation. Thickness and flatness of 0.2mm-3.3mm thick sections of diamond machined copper and aluminum can be measured to “sub-micron” accuracy. Sections up to 6mm thick can be measured with as-yet undermined accuracy. Furthermore, samples must have one surface which is flat to within 300µm, lateral dimensions of no more than 50mm x 50mm, and height less than 40mm.« less

  20. Generalized Joint Hypermobility Is Predictive of Hip Capsular Thickness.

    PubMed

    Devitt, Brian M; Smith, Bjorn N; Stapf, Robert; Tacey, Mark; O'Donnell, John M

    2017-04-01

    The pathomechanics of hip microinstability are not clearly defined but are thought to involve anatomical abnormalities, repetitive forces across the hip, and ligamentous laxity. The purpose of this study was to explore the relationship between generalized joint hypermobility (GJH) and hip capsular thickness. The hypothesis was that GJH would be predictive of a thin hip capsule. Cross-sectional study; Level of evidence, 3. A prospective study was performed on 100 consecutive patients undergoing primary hip arthroscopy for the treatment of hip pain. A Beighton test score (BTS) was obtained prior to each procedure. The maximum score was 9, and a score of ≥4 was defined as hypermobile. Capsular thickness at the level of the anterior portal, corresponding to the location of the iliofemoral ligament, was measured arthroscopically using a calibrated probe. The presence of ligamentum teres (LT) pathology was also recorded. Fifty-five women and 45 men were included in the study. The mean age was 32 years (range, 18-45 years). The median hip capsule thickness was statistically greater in men than women (12.5 and 7.5 mm, respectively). The median BTS for men was 1 compared with 4 for women ( P < .001). A statistically significant association was found between BTS and capsular thickness; a BTS of <4 is strongly predictive of having a capsular thickness of ≥10 mm, while a BTS ≥4 correlates with a capsular thickness of <10 mm. There was a statistically greater incidence of LT tears in patients with a capsular thickness of ≤7.5 mm and a BTS of ≥4 ( P < .001). Measurement of the GJH is highly predictive of hip capsular thickness. A BTS of <4 correlates significantly with a capsular thickness of ≥10 mm, while a BTS ≥4 correlates significantly with a thickness of <10 mm.

  1. Near-infrared structure of fast and slow-rotating disk galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schechtman-Rook, Andrew; Bershady, Matthew A., E-mail: andrew@astro.wisc.edu

    We investigate the stellar disk structure of six nearby edge-on spiral galaxies using high-resolution JHK {sub s}-band images and three-dimensional radiative transfer models. To explore how mass and environment shape spiral disks, we selected galaxies with rotational velocities between 69 km s{sup –1} 150 km s{sup –1}) galaxies, only NGC 4013 has the super-thin+thin+thick nested disk structure seen in NGC 891 and the Milky Way, albeit with decreased oblateness, while NGC 1055, a disturbed massive spiral galaxy, contains disks with h{sub z} ≲ 200 pc. NGC 4565, another fast-rotator, contains a prominent ring at a radius ∼5 kpc but nomore » super-thin disk. Despite these differences, all fast-rotating galaxies in our sample have inner truncations in at least one of their disks. These truncations lead to Freeman Type II profiles when projected face-on. Slow-rotating galaxies are less complex, lacking inner disk truncations and requiring fewer disk components to reproduce their light distributions. Super-thin disk components in undisturbed disks contribute ∼25% of the total K {sub s}-band light, up to that of the thin-disk contribution. The presence of super-thin disks correlates with infrared flux ratios; galaxies with super-thin disks have f{sub K{sub s}}/f{sub 60} {sub μm}≤0.12 for integrated light, consistent with super-thin disks being regions of ongoing star-formation. Attenuation-corrected vertical color gradients in (J – K {sub s}) correlate with the observed disk structure and are consistent with population gradients with young-to-intermediate ages closer to the mid-plane, indicating that disk heating—or cooling—is a ubiquitous phenomenon.« less

  2. Angular dependence of the response of the nanoDot OSLD system for measurements at depth in clinical megavoltage beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, Joerg, E-mail: Joerg.Lehmann@sydney.edu.au; Institute of Medical Physics, University of Sydney, Physics Road A28, Sydney, NSW 2006; School of Applied Sciences, Royal Melbourne Institute of Technology

    Purpose: The purpose of this investigation was to assess the angular dependence of a commercial optically stimulated luminescence dosimeter (OSLD) dosimetry system in MV x-ray beams at depths beyondd{sub max} and to find ways to mitigate this dependence for measurements in phantoms. Methods: Two special holders were designed which allow a dosimeter to be rotated around the center of its sensitive volume. The dosimeter's sensitive volume is a disk, 5 mm in diameter and 0.2 mm thick. The first holder rotates the disk in the traditional way. It positions the disk perpendicular to the beam (gantry pointing to the floor)more » in the initial position (0°). When the holder is rotated the angle of the disk towards the beam increases until the disk is parallel with the beam (“edge on,” 90°). This is referred to as Setup 1. The second holder offers a new, alternative measurement position. It positions the disk parallel to the beam for all angles while rotating around its center (Setup 2). Measurements with five to ten dosimeters per point were carried out for 6 MV at 3 and 10 cm depth. Monte Carlo simulations using GEANT4 were performed to simulate the response of the active detector material for several angles. Detector and housing were simulated in detail based on microCT data and communications with the manufacturer. Various material compositions and an all-water geometry were considered. Results: For the traditional Setup 1 the response of the OSLD dropped on average by 1.4% ± 0.7% (measurement) and 2.1% ± 0.3% (Monte Carlo simulation) for the 90° orientation compared to 0°. Monte Carlo simulations also showed a strong dependence of the effect on the composition of the sensitive layer. Assuming the layer to completely consist of the active material (Al{sub 2}O{sub 3}) results in a 7% drop in response for 90° compared to 0°. Assuming the layer to be completely water, results in a flat response within the simulation uncertainty of about 1%. For the new Setup 2, measurements and Monte Carlo simulations found the angular dependence of the dosimeter to be below 1% and within the measurement uncertainty. Conclusions: The dosimeter system exhibits a small angular dependence of approximately 2% which needs to be considered for measurements involving other than normal incident beams angles. This applies in particular to clinicalin vivo measurements where the orientation of the dosimeter is dictated by clinical circumstances and cannot be optimized as otherwise suggested here. When measuring in a phantom, the proposed new setup should be considered. It changes the orientation of the dosimeter so that a coplanar beam arrangement always hits the disk shaped detector material from the thin side and thereby reduces the angular dependence of the response to within the measurement uncertainty of about 1%. This improvement makes the dosimeter more attractive for clinical measurements with multiple coplanar beams in phantoms, as the overall measurement uncertainty is reduced. Similarly, phantom based postal audits can transition from the traditional TLD to the more accurate and convenient OSLD.« less

  3. The use of acellular dermal matrix membrane for vertical soft tissue augmentation during submerged implant placement: a case series.

    PubMed

    Puisys, Algirdas; Vindasiute, Egle; Linkevciene, Laura; Linkevicius, Tomas

    2015-04-01

    To evaluate the efficiency of acellular dermal matrix membrane to augment vertical peri-implant soft tissue thickness during submerged implant placement. Forty acellular dermal matrix-derived allogenic membranes (AlloDerm, BioHorizons, Birmingham, AL, USA) and 42 laser-modified surface internal hex implants (BioHorizons Tapered Laser Lok, Birmingham, AL, USA) were placed in submerged approach in 40 patients (15 males and 25 females, mean age 42.5 ± 1.7) with a thin vertical soft tissue thickness of 2 mm or less. After 3 months, healing abutments were connected to implants, and the augmented soft tissue thickness was measured with periodontal probe. The gain in vertical soft tissue volume was calculated. Mann-Whitney U-test was applied and significance was set to 0.05. All 40 allografts healed successfully. Thin soft tissue before augmentation had an average thickness of 1.54 ± 0.51 mm SD (range, 0.5-2.0 mm, median 1.75 mm), and after soft tissue augmentation with acellular dermal matrix, thickness increased to 3.75 ± 0.54 mm SD (range, 3.0-5.0 mm, median 4.0 mm) at 3 months after placement. This difference between medians was found to be statistically significant (P < 0.001). Mean increase in soft tissue thickness was 2.21 ± 0.85 mm SD (range, 1.0-4.5 mm, median 2.0 mm). It can be concluded that acellular dermal matrix membrane can be successfully used for vertical soft tissue augmentation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. A three-dimensional finite element evaluation of magnetic attachment attractive force and the influence of the magnetic circuit.

    PubMed

    Kumano, Hirokazu; Nakamura, Yoshinori; Kanbara, Ryo; Takada, Yukyo; Ochiai, Kent T; Tanaka, Yoshinobu

    2014-01-01

    The finite element method has been considered to be excellent evaluative technique to study magnetic circuit optimization. The present study analyzed and quantitatively evaluated the different effects of magnetic circuit on attractive force and magnetic flux density using a three-dimensional finite element method for comparative evaluation. The diameter of a non-magnetic material in the shield disk of a magnetic assembly was variably increased by 0.1 mm to a maximum 2.0 mm in this study design. The analysis results demonstrate that attractive force increases until the diameter of the non-magnetic spacing material reaches a diameter of 0.5 mm where it peaks and then decreases as the overall diameter increases over 0.5 mm. The present analysis suggested that the attractive force for a magnetic attachment is optimized with an appropriate magnetic assembly shield disk diameter using a non-magnetic material to effectively change the magnetic circuit efficiency and resulting retention.

  5. Relationship between the Elemental Abundances and the Kinematics of Galactic-Field RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Marsakov, V. A.; Gozha, M. L.; Koval, V. V.

    2018-01-01

    Data of our compiled catalog containing the positions, velocities, and metallicities of 415 RR Lyrae variable stars and the relative abundances [el/Fe] of 12 elements for 101 RR Lyrae stars, including four α elements (Mg, Ca, Si, and Ti), are used to study the relationships between the chemical and spatial-kinematic properties of these stars. In general, the dependences of the relative abundances of α elements on metallicity and velocity for the RR Lyrae stars are approximately the same as those for field dwarfs. Despite the usual claim that these stars are old, among them are representatives of the thin disk, which is the youngest subsystem of the Galaxy. Attention is called to the problem of lowmetallicity RR Lyrae stars. Most RR Lyrae stars that have the kinematic properties of thick disk stars have metallicities [Fe/H] < -1.0 and high ratios [α/Fe] ≈ 0.4, whereas only about 10% of field dwarfs belonging to the so-called "low-metallicity tail" have this chemical composition. At the same time, there is a sharp change in [α/Fe] in RR Lyrae stars belonging just to the thick disk, providing evidence for a long period of formation of this subsystem. The chemical compositions of SDSS J1707+58, V455 Oph, MACHO176.18833.411, V456 Ser, and BPSCS 30339-046 do not correspond to their kinematics.While the first three of these stars belong to the halo, according to their kinematics, the last two belong to the thick disk. It is proposed that they are all most likely extragalactic, but the possible appearance of some of them in the solar neighborhood as a result of the gravitational action of the bar on field stars cannot be ruled out.

  6. WE-F-16A-02: Design, Fabrication, and Validation of a 3D-Printed Proton Filter for Range Spreading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remmes, N; Courneyea, L; Corner, S

    2014-06-15

    Purpose: To design, fabricate and test a 3D-printed filter for proton range spreading in scanned proton beams. The narrow Bragg peak in lower-energy synchrotron-based scanned proton beams can result in longer treatment times for shallow targets due to energy switching time and plan quality degradation due to minimum monitor unit limitations. A filter with variable thicknesses patterned on the same scale as the beam's lateral spot size will widen the Bragg peak. Methods: The filter consists of pyramids dimensioned to have a Gaussian distribution in thickness. The pyramids are 2.5mm wide at the base, 0.6 mm wide at the peak,more » 5mm tall, and are repeated in a 2.5mm pseudo-hexagonal lattice. Monte Carlo simulations of the filter in a proton beam were run using TOPAS to assess the change in depth profiles and lateral beam profiles. The prototypes were constrained to a 2.5cm diameter disk to allow for micro-CT imaging of promising prototypes. Three different 3D printers were tested. Depth-doses with and without the prototype filter were then measured in a ~70MeV proton beam using a multilayer ion chamber. Results: The simulation results were consistent with design expectations. Prototypes printed on one printer were clearly unacceptable on visual inspection. Prototypes on a second printer looked acceptable, but the micro-CT image showed unacceptable voids within the pyramids. Prototypes from the third printer appeared acceptable visually and on micro-CT imaging. Depth dose scans using the prototype from the third printer were consistent with simulation results. Bragg peak width increased by about 3x. Conclusions: A prototype 3D printer pyramid filter for range spreading was successfully designed, fabricated and tested. The filter has greater design flexibility and lower prototyping and production costs compared to traditional ridge filters. Printer and material selection played a large role in the successful development of the filter.« less

  7. Recent development of disk lasers at TRUMPF

    NASA Astrophysics Data System (ADS)

    Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Ackermann, Matthias; Bauer, Dominik; Scharun, Michael; Killi, Alexander

    2016-03-01

    The disk laser is one of the most important laser concepts for today's industrial laser market. Offering high brilliance at low cost, high optical efficiency and great application flexibility the disk laser paved the way for many industrial laser applications. Over the past years power and brightness increased and the disk laser turned out to be a very versatile laser source, not only for welding but also for cutting. Both, the quality and speed of cutting are superior to CO2-based lasers for a vast majority of metals, and, most important, in a broad thickness range. In addition, due to the insensitivity against back reflections the disk laser is well suited for cutting highly reflective metal such as brass or copper. These advantages facilitate versatile cutting machines and explain the high and growing demand for disk lasers for applications besides welding applications that can be observed today. From a today's perspective the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over fiber lasers or direct diode lasers. This paper will give insight in the latest progress in kilowatt class cw disk laser technology at TRUMPF and will discuss recent power scaling results as well.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K. H.; Watson, Dan M.; Manoj, P.

    We present 5-40 {mu}m Spitzer Infrared Spectrograph spectra of a collection of transitional disks, objects for which the spectral energy distribution (SED) indicates central clearings (holes) or gaps in the dust distribution, in the Chamaeleon I star-forming region. Like their counterparts in the Taurus-Auriga star-forming region that we have previously observed, the spectra of these young objects (1-3 Myr old) reveal that the central clearings or gaps are very sharp-edged, and are surrounded by optically thick dusty disks similar to those around other classical T Tauri stars in the Chamaeleon I association. Also like the Taurus transitional disks, the Chamaeleonmore » I transitional disks have extremely large depletion factors for small dust grains in their gaps, compared to the full accretion disks whose SEDs are represented by the median SED of Class II objects in the region. We find that the fraction of transitional disks in the Chamaeleon I cloud is somewhat higher than that in the Taurus-Auriga cloud, possibly indicating that the frequency of transitional disks, on average, increases with cluster age. We also find a significant correlation between the stellar mass and the radius of the outer edge of the gap. We discuss the disk structures implied by the spectra and the constraints they place on gap-formation mechanisms in protoplanetary disks.« less

  9. Photo-reverberation Mapping of a Protoplanetary Accretion Disk around a T Tauri Star

    NASA Astrophysics Data System (ADS)

    Meng, Huan; Plavchan, Peter; Rieke, George

    2016-01-01

    Theoretical models and spectroscopic observations of newborn stars suggest that protoplantary disks have an inner "wall" at a distance set by the disk interaction with the star. Around T Tauri stars, the size of this disk hole is expected to be on a 0.1-AU scale that is unresolved by current adaptive optics imaging, though some model-dependent constraints have been obtained by near-infrared interferometry. Here we report the first measurement of the inner disk wall around a solar-mass young stellar object, YLW 16B in the ρ Ophiuchi star-forming region, by detecting the light travel time of the variable radiation from the stellar surface to the disk. Consistent time lags were detected on two nights, when the time series in H and K bands were synchronized while the 4.5 μm emission lagged by 74.5±3.2 seconds. Considering the nearly edge-on geometry of the disk, the inner rim should be 0.084±0.004 AU from the protostar on average. This size is likely larger than the range of magnetospheric truncations, but consistent with an optically and geometrically thick disk front at the dust sublimation radius at ~1500 K. The detection of a definite time lag places new constraints on the geometry of the disk.

  10. Pattern Formation in Diffusion Flames Embedded in von Karman Swirling Flows

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha

    2006-01-01

    Pattern formation is observed in nature in many so-called excitable systems that can support wave propagation. It is well-known in the field of combustion that premixed flames can exhibit patterns through differential diffusion mechanism between heat and mass. However, in the case of diffusion flames where fuel and oxidizer are separated initially there have been only a few observations of pattern formation. It is generally perceived that since diffusion flames do not possess an inherent propagation speed they are static and do not form patterns. But in diffusion flames close to their extinction local quenching can occur and produce flame edges which can propagate along stoichiometric surfaces. Recently, we reported experimental observations of rotating spiral flame edges during near-limit combustion of a downward-facing polymethylmethacrylate disk spinning in quiescent air. These spiral flames, though short-lived, exhibited many similarities to patterns commonly found in quiescent excitable media including compound tip meandering motion. Flame disks that grow or shrink with time depending on the rotational speed and in-depth heat loss history of the fuel disk have also been reported. One of the limitations of studying flame patterns with solid fuels is that steady-state conditions cannot be achieved in air at normal atmospheric pressure for experimentally reasonable fuel thickness. As a means to reproduce the flame patterns observed earlier with solid fuels, but under steady-state conditions, we have designed and built a rotating, porous-disk burner through which gaseous fuels can be injected and burned as diffusion flames. The rotating porous disk generates a flow of air toward the disk by a viscous pumping action, generating what is called the von K rm n boundary layer which is of constant thickness over the entire burner disk. In this note we present a map of the various dynamic flame patterns observed during the combustion of methane in air as a function of fuel flow rate and the burner rotational speed.

  11. Geometrically thin, hot accretion disks - Topology of the thermal equilibrium curves

    NASA Technical Reports Server (NTRS)

    Kusunose, Masaaki; Mineshige, Shin

    1992-01-01

    All the possible thermal equilibrium states of geometrically thin alpha-disks around stellar-mass black holes are presented. A (vertically) one-zone disk model is employed and it is assumed that a main energy source is viscous heating of protons and that cooling is due to bremsstrahlung and Compton scattering. There exist various branches of the thermal equilibrium solution, depending on whether disks are effectively optically thick or thin, radiation pressure-dominated or gas pressure-dominated, composed of one-temperature plasmas or of two-temperature plasmas, and with high concentration of e(+)e(-) pairs or without pairs. The thermal equilibrium curves at high temperatures (greater than or approximately equal to 10 exp 8 K) are substantially modified by the presence of e(+)e(-) pairs. The thermal stability of these branches are examined.

  12. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Miller, Robert A.; Sudbrack, Chantal K.; Draper, Susan L.; Nesbitt, James A.; Rogers, Richard B.; Telesman, Ignacy; Ngo, Vanda; Healy, Jonathan

    2016-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 degrees Centigrade and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 degrees Centigrade. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. This cyclic oxidation did not impair the coating's resistance to subsequent hot corrosion pitting attack.

  13. Three-Layered Atmospheric Structure in Accretion Disks Around Stellar-Mass Black Holes

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Cui, Wei; Chen, Wan; Yao, Yangsen; Zhang, Xiaoling; Sun, Xuejun; Wu, Xue-Bing; Xu, Haiguang

    2000-01-01

    Modeling of the x-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40 reveals a three-layered atmospheric structure in the inner region of the inner accretion disks. Above the cold and optically thick disk with a temperature of 0.2 to 0.5 kiloelectron volts, there is a warm layer with a temperature of 1.0 to 1.5 kiloelectron volts and an optical depth around 10. Sometimes there is also a much hotter, optically thin corona above the warm layer, with a temperature of 100 kiloelectron volts or higher and an optical depth around unity. The structural similarity between the accretion disks and the solar atmosphere suggests that similar physical processes may be operating in these different systems.

  14. Three-layered atmospheric structure in accretion disks around stellar-mass black holes

    PubMed

    Zhang; Cui; Chen; Yao; Zhang; Sun; Wu; Xu

    2000-02-18

    Modeling of the x-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40 reveals a three-layered atmospheric structure in the inner region of their accretion disks. Above the cold and optically thick disk with a temperature of 0.2 to 0.5 kiloelectron volts, there is a warm layer with a temperature of 1.0 to 1.5 kiloelectron volts and an optical depth around 10. Sometimes there is also a much hotter, optically thin corona above the warm layer, with a temperature of 100 kiloelectron volts or higher and an optical depth around unity. The structural similarity between the accretion disks and the solar atmosphere suggests that similar physical processes may be operating in these different systems.

  15. Time-dependent fracture probability of bilayer, lithium-disilicate-based, glass-ceramic, molar crowns as a function of core/veneer thickness ratio and load orientation.

    PubMed

    Anusavice, Kenneth J; Jadaan, Osama M; Esquivel-Upshaw, Josephine F

    2013-11-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Predicted fracture probabilities (Pf) for centrally loaded 1.6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8mm/0.8mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4mm/1.2mm). CARES/Life results support the proposed crown design and load orientation hypotheses. The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  16. Importance of contact lens power and thickness in oxygen transmissibility.

    PubMed

    Lira, Madalena; Pereira, Clara; Real Oliveira, M Elisabete C D; Castanheira, Elisabete M S

    2015-04-01

    The aim of this work was to study the central and peripheral thickness of several contact lenses (CL) with different powers and analyze how thickness variation affects CL oxygen transmissibility. Four daily disposable and five monthly or biweekly CL were studied. The powers of each CL were: the maximum negative power of each brand; -6.00 D; -3.00 D; zero power (-0.25 D or -0.50 D), +3.00 D and +6.00 D. Central and peripheral thicknesses were measured with an electronic thickness gauge. Each lens was measured five times (central and 3mm paracentral) and the mean value was considered. Using the values of oxygen permeability given by the manufacturers and the measured thicknesses, the variation of oxygen transmissibility with lens power was determined. For monthly or biweekly lenses, central thickness changed between 0.061 ± 0.002 mm and 0.243 ± 0.002 mm, and peripheral thickness varied between 0.084 ± 0.002 mm and 0.231 ± 0.015 mm. Daily disposable lenses showed central values ranging between 0.056 ± 0.0016 mm and 0.205 ± 0.002 mm and peripheral values between 0.108 ± 0.05 and 0.232 ± 0.011 mm. Oxygen transmissibility (in units) of monthly or biweekly CL ranged between 39.4 ± 0.3 and 246.0 ± 14.4 and for daily disposable lenses the values range between 9.5 ± 0.5 and 178.1 ± 5.1. The central and peripheral thicknesses change significantly when considering the CL power and this has a significant impact on the oxygen transmissibility. Eyecare practitioners must have this fact in account when high power plus or minus lenses are fitted or when continuous wear is considered. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  17. Time-dependent fracture probability of bilayer, lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation

    PubMed Central

    Anusavice, Kenneth J.; Jadaan, Osama M.; Esquivel–Upshaw, Josephine

    2013-01-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. Objective The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6 mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Materials and methods Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Results Predicted fracture probabilities (Pf) for centrally-loaded 1,6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8 mm/0.8 mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4 mm/1.2 mm). Conclusion CARES/Life results support the proposed crown design and load orientation hypotheses. Significance The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. PMID:24060349

  18. Multicenter Validation Study of Pathologic Response and Tumor Thickness at the Tumor–Normal Liver Interface as Independent Predictors of Disease-Free Survival after Preoperative Chemotherapy and Surgery for Colorectal Liver Metastases

    PubMed Central

    Brouquet, Antoine; Zimmitti, Giuseppe; Kopetz, Scott; Stift, Judith; Julié, Catherine; Lemaistre, Anne-Isabelle; Agarwal, Atin; Patel, Viren; Benoist, Stephane; Nordlinger, Bernard; Gandini, Alessandro; Rivoire, Michel; Stremitzer, Stefan; Gruenberger, Thomas; Vauthey, Jean-Nicolas; Maru, Dipen M.

    2014-01-01

    Purpose To validate pathologic markers of response to preoperative chemotherapy as predictors of disease-free survival (DFS) after resection of colorectal liver metastases (CLM). Patients and Methods One hundred seventy one patients who underwent resection of CLM after preoperative chemotherapy at 4 centers were studied. Pathologic response defined as proportion of tumor cells remaining (categorized complete (0%), major (<50%) or minor (≥50%)) and tumor thickness at tumor–normal liver interface (TNI) (categorized <0.5 mm, 0.5 mm-<5 mm and ≥5 mm)—were assessed by a central pathology reviewer and local pathologists. Results Pathologic response was complete in 8%, major in 49% and minor in 43%. Tumor thickness at the TNI was <0.5 mm in 21%, 0.5 mm-<5 mm in 56% and ≥5 mm in 23%.In multivariate analyses, using either pathologic response or tumor thickness at TNI, pathologic response (P=.002,.009), tumor thickness at TNI (P=0.015, <.001), duration of preoperative chemotherapy(P=.028,.043), number of CLM (P=.038,.037) and margin (P=.011,.016) were associated with DFS. In a multivariate analysis using both parameters, tumor thickness at TNI (P=.004,.015), duration of preoperative chemotherapy(P=.025), number of nodules(P=.027) and margin(P=.014) were associated with DFS. Tumor size by pathology examination was the predictor of pathologic response. Predictors of tumor thickness at the TNI were tumor size and chemotherapy regimen. There was near perfect agreement for pathologic response (κ=.82) and substantial agreement (κ=.76) for tumor thickness between central reviewer and local pathologists. Conclusion Pathologic response and tumor thickness at the TNI are valid predictors of DFS after preoperative chemotherapy and surgery for CLM. PMID:23868456

  19. An assessment of regional differences in corneal thickness in normal human eyes, using the Orbscan II or ultrasound pachymetry.

    PubMed

    Doughty, Michael J; Jonuscheit, Sven

    2007-04-01

    In recent years, there has been increasing interest in the characteristics of the peripheral cornea close to the limbus, in both tonometry measures and refractive surgery, but there is relatively little information on these characteristics as provided by modern day pachymetry instruments such as the Orbscan (Bausch & Lomb, Rochester, New York). The current study was therefore undertaken to assess the corneal thickness profile along the horizontal meridian by this scanning slit light method, comparing the data with that obtained with an ultrasound pachymeter. Noncontact specular microscopy was first performed on 17 adults (aged between 20 and 64 years) to check that the corneas were normal. Then, 3 assessments of the corneal thickness profile across the horizontal meridian were taken using the Orbscan II, and both the regional map data (7-mm-diameter measurement ring, 1-mm sample zones) and the point data from the numerical pachymetry output were used to extract data at specific locations nominally 0.5 mm apart. Ultrasound pachymetry (under topical anesthesia with benoxinate 0.4%) was then used to obtain thickness values at central, mid-peripheral (2.75 mm), and peripheral locations close to the limbus (4.5 mm). Specular microscopy yielded mean thickness of 0.529 +/- 0.032 mm, whereas single-point Orbscan readings at the geometric center of the cornea averaged 0.579 +/- 0.037 mm. Orbscan readings around the 7-mm-diameter measurement zone along the horizontal meridian averaged 0.681 +/- 0.034 mm (i.e., were 0.101 mm or 17.6% greater; P < 0.001). Mid-peripheral readings taken from the numerical maps at 2.5 to 3.0 mm averaged 0.645 mm (or 11% higher than central point readings), whereas peripheral readings between 4.0 and 4.5 mm averaged 0.727 mm (i.e., 26% higher than central point values). In marked contrast, ultrasound readings in the mid-periphery (2.75 mm) averaged just 0.553 mm (or 5.5% greater than the central corneal thickness [CCT]) and just 0.612 mm (i.e., 16.6% higher) in the periphery (4.5 mm). CCT profiles generated from the Orbscan numerical output across the horizontal meridian showed a predictable progressive increase in thickness from the center to the 4.5-mm location on both the temporal and nasal side. The mean differences between the Orbscan II and ultrasound pachymetry measures were thus not constant across the cornea. Without correction, these differences were close to 0.05 mm at the center but more than 0.100 mm at the peripheral sites, and proportional differences persisted after application of the default acoustic factor of 0.92 for the Orbscan readings. Orbscan II and ultrasound pachymetry measures generate a rather different profile for corneal thickness. The data from the 2 techniques should be considered as reporting different characteristics, rather than attempts being made to align Orbscan measurements to those of the ultrasound method. A single acoustic correction factor cannot be logically applied to all corneal thickness measures made with an Orbscan II.

  20. THE EVOLUTION OF INNER DISK GAS IN TRANSITION DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoadley, K.; France, K.; McJunkin, M.

    2015-10-10

    Investigating the molecular gas in the inner regions of protoplanetary disks (PPDs) provides insight into how the molecular disk environment changes during the transition from primordial to debris disk systems. We conduct a small survey of molecular hydrogen (H{sub 2}) fluorescent emission, using 14 well-studied Classical T Tauri stars at two distinct dust disk evolutionary stages, to explore how the structure of the inner molecular disk changes as the optically thick warm dust dissipates. We simulate the observed Hi-Lyman α-pumped H{sub 2} disk fluorescence by creating a 2D radiative transfer model that describes the radial distributions of H{sub 2} emissionmore » in the disk atmosphere and compare these to observations from the Hubble Space Telescope. We find the radial distributions that best describe the observed H{sub 2} FUV emission arising in primordial disk targets (full dust disk) are demonstrably different than those of transition disks (little-to-no warm dust observed). For each best-fit model, we estimate inner and outer disk emission boundaries (r{sub in} and r{sub out}), describing where the bulk of the observed H{sub 2} emission arises in each disk, and we examine correlations between these and several observational disk evolution indicators, such as n{sub 13–31}, r{sub in,} {sub CO}, and the mass accretion rate. We find strong, positive correlations between the H{sub 2} radial distributions and the slope of the dust spectral energy distribution, implying the behavior of the molecular disk atmosphere changes as the inner dust clears in evolving PPDs. Overall, we find that H{sub 2} inner radii are ∼4 times larger in transition systems, while the bulk of the H{sub 2} emission originates inside the dust gap radius for all transitional sources.« less

  1. TRANSITIONAL DISKS AND THEIR ORIGINS: AN INFRARED SPECTROSCOPIC SURVEY OF ORION A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K. H.; Watson, Dan M.; Manoj, P.

    Transitional disks are protoplanetary disks around young stars, with inner holes or gaps which are surrounded by optically thick outer, and often inner, disks. Here we present observations of 62 new transitional disks in the Orion A star-forming region. These were identified using the Spitzer Space Telescope's Infrared Spectrograph and followed up with determinations of stellar and accretion parameters using the Infrared Telescope Facility's SpeX. We combine these new observations with our previous results on transitional disks in Taurus, Chamaeleon I, Ophiuchus, and Perseus, and with archival X-ray observations. This produces a sample of 105 transitional disks of ''cluster'' agemore » 3 Myr or less, by far the largest hitherto assembled. We use this sample to search for trends between the radial structure in the disks and many other system properties, in order to place constraints on the possible origins of transitional disks. We see a clear progression of host-star accretion rate and the different disk morphologies. We confirm that transitional disks with complete central clearings have median accretion rates an order of magnitude smaller than radially continuous disks of the same population. Pre-transitional disks-those objects with gaps that separate inner and outer disks-have median accretion rates intermediate between the two. Our results from the search for statistically significant trends, especially related to M-dot , strongly support that in both cases the gaps are far more likely to be due to the gravitational influence of Jovian planets or brown dwarfs orbiting within the gaps, than to any of the photoevaporative, turbulent, or grain-growth processes that can lead to disk dissipation. We also find that the fraction of Class II YSOs which are transitional disks is large, 0.1-0.2, especially in the youngest associations.« less

  2. The Transitional Protoplanetary Disk Frequency as a Function of Age: Disk Evolution in the Coronet Cluster, Taurus, and Other 1--8 Myr-old Regions

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Sicilia-Aguilar, Auora

    2011-01-01

    We present Spitzer 3.6-24 micron photometry and spectroscopy for stars in the 1-3 Myr-old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. (2008). Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. (2008) to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters - IC 348, NGC 2362, and eta Cha -- to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks -- those with inner holes and those that are homologously depleted. The percentage of disks in the transitional phase increases from approx.15-20% at 1-2 Myr to > 50% at 5-8 Myr; the mean transitional disk lifetime is closer to approx. 1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. (2009) and Sicilia-Aguilar et al. (2009). In the Coronet Cluster and IC 348, transitional disks are more numerous for very low-mass M3--M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically-thick primordial disks is Mdisk approx. 0.001-0.003 M*. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full SED modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.

  3. The Transitional Protoplanetary Disk Frequency as a Function of Age: Disk Evolution In the Coronet Cluster, Taurus, and Other 1-8 Myr Old Regions

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Sicilia-Aguilar, Aurora

    2011-05-01

    We present Spitzer 3.6-24 μm photometry and spectroscopy for stars in the 1-3 Myr old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters—IC 348, NGC 2362, and η Cha—to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks—those with inner holes and those that are homologously depleted. The percentage of disks in the transitional phase increases from ~15%-20% at 1-2 Myr to >=50% at 5-8 Myr the mean transitional disk lifetime is closer to ~1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. and Sicilia-Aguilar et al. In the Coronet Cluster and IC 348, transitional disks are more numerous for very low mass M3-M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral-type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically thick primordial disks is M disk ≈ 0.001-0.003 M sstarf. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full spectral energy distribution modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.

  4. Comparative evaluation of canal transportation, centering ability, and remaining dentin thickness between WaveOne and ProTaper rotary by using cone beam computed tomography: An in vitro study

    PubMed Central

    Jain, Aditi; Asrani, Hemant; Singhal, Abhinav Chand; Bhatia, Taranjeet Kaur; Sharma, Vaibhav; Jaiswal, Pragya

    2016-01-01

    Aims: To compare the canal transportation, centering ability, and remaining dentin thickness of WaveOne and ProTaper systems using cone beam computed tomography. Subjects and Methods: Forty extracted human single-rooted premolars were used in the present study. Preinstrumentation scanning of all teeth was taken; canal curvatures were calculated, and the samples were randomly divided into two groups, with twenty samples in each group; one group was instrumented with WaveOne system and the other group with ProTaper rotary system. Postinstrumentation scans were performed, and the two scans were compared to determine canal transportation, centering ability, and remaining dentin thickness at 3 mm, 6 mm, and 9 mm from the root apex. Statistical Analysis Used: Student's unpaired t-test. Results: Using Student's unpaired t-test, results were as follows: for canal transportation, Group 1 showed significant difference at 3 mm and 6 mm and insignificant difference at 9 mm while Group 2 showed insignificant difference in all the three regions. For centering ability and remaining dentin thickness, Group 1 showed insignificant difference at 3 mm and 9 mm while significant difference at 6 mm was obtained. When comparison of remaining dentin thickness was done at three levels using two groups WaveOne and ProTaper, there was no significant difference between two groups. Conclusions: (1) WaveOne single reciprocation file system respected better canal anatomy better than ProTaper. (2) Individually, centering ability of WaveOne was better at 3 mm, 6 mm, and 9 mm levels. (3) However, ProTaper individually was better centered at 3 mm (apical third) and 9 mm (coronal 3rd) levels than 6 mm level (middle third). PMID:27656063

  5. Light Scattering by Marine Particles: Modeling with Non-spherical Shapes

    DTIC Science & Technology

    2006-01-01

    3896. Gordon, H.R. and Tao Du., 2001, Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi ... huxleyi using disk-like shapes. Gordon and Du [2001] and Gordon [2004] found that the shape of the backscattering spectrum of detached coccoliths...from E. huxleyi could be well reproduced using a shape consisting of two parallel disks (diameter ~ 2.75 μm and thickness 0.05 μm) separated by 0.3

  6. Comparative investigation of five nanoparticles in flow of viscous fluid with Joule heating and slip due to rotating disk

    NASA Astrophysics Data System (ADS)

    Qayyum, Sumaira; Khan, Muhammad Ijaz; Hayat, Tasawar; Alsaedi, Ahmed

    2018-04-01

    Present article addresses the comparative study for flow of five water based nanofluids. Flow in presence of Joule heating is generated by rotating disk with variable thickness. Nanofluids are suspension of Silver (Ag), Copper (Cu), Copper oxide (CuO), Aluminum oxide or Alumina (Al2O3), Titanium oxide or titania (TiO2) and water. Boundary layer approximation is applied to partial differential equations. Using Von Karman transformations the partial differential equations are converted to ordinary differential equations. Convergent series solutions are obtained. Graphical results are presented to examine the behaviors of axial, radial and tangential velocities, temperature, skin friction and Nusselt number. It is observed that radial, axial and tangential velocities decay for slip parameters. Axial velocity decays for larger nanoparticle volume fraction. Effect of nanofluids on velocities dominant than base material. Temperature rises for larger Eckert number and temperature of silver water nanofluid is more because of its higher thermal conductivity. Surface drag force reduces for higher slip parameters. Transfer of heat is more for larger disk thickness index.

  7. Sol-Gel Derived Active Material for Yb Thin-Disk Lasers

    PubMed Central

    Almeida, Rui M.; Ribeiro, Tiago

    2017-01-01

    A ytterbium doped active material for thin-disk laser was developed based on aluminosilicate and phosphosilicate glass matrices containing up to 30 mol% YbO1.5. Thick films and bulk samples were prepared by sol-gel processing. The structural nature of the base material was assessed by X-ray diffraction and Raman spectroscopy and the film morphology was evidenced by scanning electron microscopy. The photoluminescence (PL) properties of different compositions, including emission spectra and lifetimes, were also studied. Er3+ was used as an internal reference to compare the intensities of the Yb3+ PL peaks at ~ 1020 nm. The Yb3+ PL lifetimes were found to vary between 1.0 and 0.5 ms when the Yb concentration increased from 3 to 30 mol%. Based on a figure of merit, the best active material selected was the aluminosilicate glass composition 71 SiO2-14 AlO1.5-15 YbO1.5 (in mol%). An active disk, ~ 36 μm thick, consisting of a Bragg mirror, an aluminosilicate layer doped with 15 mol% Yb and an anti-reflective coating, was fabricated. PMID:28869488

  8. Thickness effect of kenaf cellulose membrane on its morphological, physical and tensile properties

    NASA Astrophysics Data System (ADS)

    Hashim, Sharifah Nurul Ain Syed; Zakaria, Sarani; Jaafar, Sharifah Nabihah Syed; Chia, Chin Hua

    2016-11-01

    Dissolution of kenaf core cellulose was undergone in NaOH/Urea solvent and the cellulose solution was casted with three different thicknesses (0.04 mm, 0.06 mm and 0.07 mm) followed by coagulation in 5 % of H2SO4 to form regenerated cellulose membrane. The XRD results showed that the crystallinity index (CrI) of kenaf core cellulose membrane decreased after been regenerated into cellulose II. The surface morphology showed that the pores of the membrane became smaller as the thickness of cellulose membrane increased. The transparency tests demonstrated the thinner samples (0.04 mm) gave higher light transmittance than the thickest samples (0.07 mm). The kenaf core membrane with 0.07 mm thickness possessed highest tensile strength and breaking elongation at σ = 33.48 and ɛ = 8.03 relatively and also exhibited the largest pore size.

  9. Modular Polyethylene Inserts for Total Knee Arthroplasty: Can Surgeons Detect 1-mm Thickness Increments?

    PubMed

    Yoo, Joanne Y; Cai, Jenny; Chen, Antonia F; Austin, Matthew S; Sharkey, Peter F

    2016-05-01

    Some manufacturers have introduced polyethylene (PE) inserts in 1-mm increment thickness options to allow for finer adjustments in total knee arthroplasty kinematics. Two surgeons with extensive experience performed 88 total knee arthroplasties using implants with 1-mm PE inserts. After trial components were inserted and the optimal PE thickness was selected, the insert was removed and a trial insert size was randomly chosen from opaque envelopes (1-mm smaller, same size, and 1-mm larger). The knee was re-examined and the surgeon determined which size PE had been placed. Surgeons reliably determined insert thicknesses in 62.5% (55 of 88; P = .050) of trials. Surgeons were not able to accurately detect 1-mm incremental changes of trial PE implants on a consistent basis. The potential clinical usefulness of this concept should be further evaluated. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. An Azimuthal Asymmetry in the LkHα 330 Disk

    NASA Astrophysics Data System (ADS)

    Isella, Andrea; Pérez, Laura M.; Carpenter, John M.; Ricci, Luca; Andrews, Sean; Rosenfeld, Katherine

    2013-09-01

    Theory predicts that giant planets and low mass stellar companions shape circumstellar disks by opening annular gaps in the gas and dust spatial distribution. For more than a decade it has been debated whether this is the dominant process that leads to the formation of transitional disks. In this paper, we present millimeter-wave interferometric observations of the transitional disk around the young intermediate mass star LkHα 330. These observations reveal a lopsided ring in the 1.3 mm dust thermal emission characterized by a radius of about 100 AU and an azimuthal intensity variation of a factor of two. By comparing the observations with a Gaussian parametric model, we find that the observed asymmetry is consistent with a circular arc, that extends azimuthally by about 90° and emits about 1/3 of the total continuum flux at 1.3 mm. Hydrodynamic simulations show that this structure is similar to the azimuthal asymmetries in the disk surface density that might be produced by the dynamical interaction with unseen low mass companions orbiting within 70 AU from the central star. We argue that such asymmetries might lead to azimuthal variations in the millimeter-wave dust opacity and in the dust temperature, which will also affect the millimeter-wave continuum emission. Alternative explanations for the observed asymmetry that do not require the presence of companions cannot be ruled out with the existing data. Further observations of both the dust and molecular gas emission are required to derive firm conclusions on the origin of the asymmetry observed in the LkHα 330 disk.

  11. Behaviour study of thick laminated composites: Experimentation and finite element analyses

    NASA Astrophysics Data System (ADS)

    Duchaine, Francois

    In today's industries, it is common practice to utilize composite materials in very large and thick structures like bridge decks, high pressure vessels, wind turbine blades and aircraft parts to mention a few. Composite materials are highly favoured due to their physical characteristics: low weight, low cost, adaptable mechanical properties, high specific strength and stiffness. The use of composite materials for large structures has however raised several concerns in the prediction of the behaviour of thick laminated composite parts. A lack of knowledge and experience in the use of composite materials during the design, sizing and manufacturing of thick composite parts can lead to catastrophic events. In this thesis, it was supposed that the elastic material properties may vary with the laminate thickness. In order to measure the influence of the thickness on nine orthotropic elastic material properties (E1, E2, E3, nu12, nu 13, nu23, G12, G13 and G23), three categories of thickness have been defined using a comparison between the classical lamination theory (CLT), different beam theories and a numerical 3D solid finite element analysis (FEA) model. The defined categories are: thin laminates for thicknesses below 6 mm (0.236"), moderately thick laminates for thicknesses up to 16 mm (0.630") and thick laminates for thicknesses above 16 mm (0.630"). For three different thicknesses (thin -- 1.5 mm, moderately thick -- 10 mm and thick -- 20 mm), the influence of the thickness on the orthotropic elastic material properties of unidirectional (UD) fibreglass/epoxy laminates has been measured. A torsion test on rectangular bar is also proposed to measure the influence of the thickness on G13 and G23. The nine elastic material properties, in function of the thickness, have been used in CLT and 3D solid FEA model in order to predict the axial Young's modulus and Poisson's ratios of cross-ply and quasi-isotropic laminates. Experimental results have also been obtained for those laminates. The analysis of test results with CLT and FEA showed that the variation of elastic material properties with the thickness is not significant for in-plane problems. On the other hand, a substantial influence has been highlighted on UD elastic material properties driven by the matrix like E 2, E3, nu13 and G12. .

  12. Relative Translucency of a Multilayered Ultratranslucent Zirconia Material.

    PubMed

    Shamseddine, Loubna; Majzoub, Zeina

    2017-12-01

    The aim of this study was to compare the translucency parameter (TP) of ultratranslucent multilayered (UTML) zirconia according to thickness and layer level. Rectangles of UTML zirconia with four layers [dentin layer (DEL), first transitional layer (FTL), second transitional layer (STL), and enamel layer (ENL)] and four different thicknesses (0.4, 0.6, 0.8, and 1 mm) were milled from blanks. Digital images were taken in a dark studio against white and black backgrounds under simulated daylight illumination and international commission on illumination (CIE) Lab* color values recorded using Photoshop Creative Cloud software. The TP was computed and compared according to thickness and layer level using analysis of variance (ANOVA) followed by Bonferroni post hoc analysis for multiple comparisons. Significance was set at p < 0.05. In each thickness, TP values were similar between any two layers. The significant effect of thickness on the TP was observed only in the first two layers. In the DEL, translucency was significantly greater at 0.4 mm than all other thicknesses. In the FTL, differences were significant between 0.4 and 0.8 mm and between 0.4 and 1 mm. The investigated zirconia does not seem to show gradational changes in relative translucency from dentin to enamel levels regardless of the thickness used. Thickness affected the TP only in the first two layers with better translu-cency at 0.4 mm. Since relative translucency does not seem to be significantly different between layers, clinicians can modify the apicocoronal positioning of the UTML layers within the restoration according to the desired Chroma without any implications on the clinically perceived translucency. While the thickness of 0.4 mm may be suggested for anterior esthetic veneers because of its higher translucency, the other thicknesses of 0.6 to 1 mm can be used to mask colored abutments in full contour restorations.

  13. Boundary Conditions of Radiative Cooling in Gravitationally Unstable Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Cai, K.; Durisen, R. H.; Mejía, A. C.

    2004-05-01

    In order to create 3D hydrodynamic disk simulations which reproduce the observable properties of young stellar disks and which realistically probe the possibility of planet formation by gravitational instabilities, it is crucial to include a proper treatment of the radiative energy transport within the disk. Our recent simulations (Mejía 2004, Ph.D. dissertation) suggest that the boundary conditions between optically thin and thick regions are important in treating radiative cooling in protoplanetary disks. Although the initial cooling times are shorter than one rotation period, these disks adjust their structures over a few rotations to much longer cooling times, at which Gammie's (2001) criterion predicts they are stable against fragmentation into dense clumps. In fact, the disks do not fragment in Mejía's calculations. Boss (2001, 2002), on the other hand, using different boundary conditions, finds rapid cooling and fragmentation in his own disk simulations with radiative cooling. He attributes the rapid cooling to convection, which does not occur in Mejía's calculations. This apparent disagreement is critical because disk fragmentation has been proposed as a gas giant planet formation mechanism. To test the importance of boundary conditions, we are running simulations which compare a Boss-like treatment of boundary conditions with Mejía's for the case of a disk heated from above by a hot envelope. Preliminary results will be presented.

  14. Disk Evolution in Cep OB2: Results from the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Sicilia-Aguilar Aurora; Hartmann, Lee W.; Calvet Nuria; Megeath, S. T.; Muzerolle, James; Allen, Lori; D'Alessio, Paola; Merin, Bruno; Stauffer, John; Lada, Charles; hide

    2006-01-01

    We presented the results of an infrared imaging survey of Tr 37 and NGC 7160 using the IRAC and MIPS instruments on board the Spitzer Space Telescope. Our observations cover the wavelength range from 3.6 to 24 microns, allowing us to detect disk emission over a typical range of radii 0.1 to 20 AU from the central star. In Tr 37, with an age of about 4 Myr, about 48% of the low-mass stars exhibit detectable disk emission in the IRAC bands. Roughly 10% of the stars with disks may be "transition" objects, with essentially photospheric fluxes at wavelengths i 4.5 microns but with excesses at longer wavelengths, indicating an optically thin inner disk. The median optically thick disk emission in Tr 37 is lower than the corresponding median for stars in the younger Taurus region; the decrease in infrared excess is larger at 6-8 microns than at 24 microns, suggesting that grain growth and/or dust settling has proceeded faster at smaller disk radii, as expected on general theoretical grounds. Only about 4% of the low-mass stars in the 10 Myr old cluster NGC 7160 show detectable infrared disk emission. We also find evidence for 24 micron excesses around a few intermediate-mass stars, which may represent so-called "debris disk" systems. Our observations provided new constraints on disk evolution through an important age range.

  15. CT liver volumetry using three-dimensional image data in living donor liver transplantation: Effects of slice thickness on volume calculation

    PubMed Central

    Hori, Masatoshi; Suzuki, Kenji; Epstein, Mark L.; Baron, Richard L.

    2011-01-01

    The purpose was to evaluate a relationship between slice thickness and calculated volume on CT liver volumetry by comparing the results for images with various slice thicknesses including three-dimensional images. Twenty adult potential liver donors (12 men, 8 women; mean age, 39 years; range, 24–64) underwent CT with a 64-section multi-detector row CT scanner after intra-venous injection of contrast material. Four image sets with slice thicknesses of 0.625 mm, 2.5 mm, 5 mm, and 10 mm were used. First, a program developed in our laboratory for automated liver extraction was applied to CT images, and the liver boundary was obtained automatically. Then, an abdominal radiologist reviewed all images on which automatically extracted boundaries were superimposed, and edited the boundary on each slice to enhance the accuracy. Liver volumes were determined by counting of the voxels within the liver boundary. Mean whole liver volumes estimated with CT were 1322.5 cm3 on 0.625-mm, 1313.3 cm3 on 2.5-mm, 1310.3 cm3 on 5-mm, and 1268.2 cm3 on 10-mm images. Volumes calculated for three-dimensional (0.625-mm-thick) images were significantly larger than those for thicker images (P<.0001). Partial liver volumes of right lobe, left lobe, and lateral segment were also evaluated in a similar manner. Estimated maximum differences in calculated volumes of lateral segment was −10.9 cm3 (−4.6%) between 0.625-mm and 5-mm images. In conclusion, liver volumes calculated on 2.5-mm or thicker images were significantly smaller than volumes calculated on three-dimensional images. If a maximum error of 5% in the calculated graft volume is within the range of having an insignificant clinical impact, 5-mm thick images are acceptable for CT volumetry. If not, three-dimensional images could be essential. PMID:21850689

  16. Automatic Optical Crack Tracking for Double Cantilever Beam Specimens

    DTIC Science & Technology

    2015-01-01

    Developments Corp., Brookeville, OH, USA) are stacked in a [90/0]8 layup sequence. An Ethylene tetrafluoroethylene ( ETFE ) film (25μm thick) is placed...DCB samples are cut using a diamond-blade wet saw from the 4-mm-thick panel to approximately 25 mm wide and 150 mm long (60 mm ETFE , 90 mm neat...to the interior ETFE film termination interface is approximately 47 mm. Crosshead speed is (+) 5 mm/min during loading and (−) 25 mm/min for

  17. Shock Desensitization Effect in the STANAG 4363 Confined Explosive Component Water Gap Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefrancois, A S; Lee, R S; Tarver, C M

    2006-06-07

    The Explosive Component Water Gap Test (ECWGT) in the Stanag 4363 has been recently investigated to assess the shock sensitivity of lead and booster components having a diameter less than 5 mm. For that purpose, Pentaerythritol Tetranitrate (PETN) based pellets having a height and diameter of 3 mm have been confined by a steel annulus of wall thickness 1-3.5 mm and with the same height as the pellet. 1-mm wall thickness makes the component more sensitive (larger gap). As the wall thickness is increased to 2-mm, the gap increases a lesser amount, but when the wall thickness is increased tomore » 3.5-mm a decrease in sensitivity is observed (smaller gap). This decrease of the water gap has been reproduced experimentally by many nations. Numerical simulations using Ignition and Growth model have been performed in this paper and have reproduced the experimental results for the steel confinement up to 2 mm thick and aluminum confinement. A stronger re-shock following the first input shock from the water is focusing on the axis due to the confinement. The double shock configuration is well-known to lead in some cases to shock desensitization.« less

  18. The End of Protoplanetary Disk Evolution: An ALMA Survey of Upper Scorpius

    NASA Astrophysics Data System (ADS)

    Barenfeld, Scott A.; Carpenter, John M.; Sargent, Anneila I.; Ricci, Luca; Isella, Andrea

    2017-01-01

    The evolution of the mass of solids in circumstellar disks is a key factor in determining how planets form. Infrared observations have established that the dust in primordial disks vanishes around the majority of stars by an age of 5-10 Myr. However, how this disappearance proceeds is poorly constrained. Only with longer wavelength observations, where the dust emission is optically thin, is it possible to measure disk dust mass and how it varies as a function of age. To this end, we have obtained ALMA 0.88 mm observations of over 100 sources with suspected circumstellar disks in the Upper Scorpius OB Association (Upper Sco). The 5-11 Myr age of Upper Sco suggests that any such disks will be quite evolved, making this association an ideal target to compare to systems of younger disks in order to study evolution. With ALMA, we achieve an order of magnitude improvement in sensitivity over previous (sub)millimeter surveys of Upper Sco and detect 58 disks in the continuum. We calculate the total dust masses of these disks and compare their masses to those of younger disks in Taurus, Lupus, and Chamaeleon. We find strong evidence for a decline in disk dust mass between these 1-3 Myr old systems and the 5-11 Myr old Upper Sco. Our results represent the first definitive measurement of a decline in disk dust mass with age.

  19. Radiopacity Evaluation of Gutta-Percha Points in Thinner Samples than the ANSI/ADA Recommendation.

    PubMed

    Petry, Bruna Lucian; Bodanezi, Augusto; Baldasso, Flávia Emi Razera; Delai, Débora; Larentis, Naiara Leites; Fontanella, Vania Regina Camargo; Kopper, Patrícia Maria Poli

    2017-01-01

    The aim of this study was to evaluate the radiopacity of different gutta-percha points (Endo Points®, Dentsply®, Tanari®, Meta®, Roeko® and Odous®) in samples of 1 mm thick as established by ANSI/ADA Specification #57 and ISO 6876/2001, in comparison with thinner samples. Twelve test specimens for each material, four for each thickness (0.3, 0.6, and 1 mm and diameter of 8 mm), were laminated and compressed between two polished glass plates until the desirable thickness. Digital radiographs were obtained along with a graduated aluminum stepwedge varying from 1 to 10 mm in thickness. The X-ray unit was set at 70 kVp, 10 mA and 0.4 s exposure time, at a focal distance of 36 cm. One calibrated observer quantified the average values of pixels with Adobe Photoshop® software. Data were analyzed using ANOVA and Tukey tests, at 5% significance level. At 0.6 and 1 mm thickness, all the tested materials showed radiopacity higher than 3 mm of aluminum (reference value). At 0.3 mm thickness, Odous and Tanari presented significantly less radiopacity than the reference, and the other materials showed similar radiopacity to the reference. The study concluded that the materials demonstrated different radiopacities and all had values above the minimum recommended by ANSI/ADA specification #57, being Odous and Tanari less radiopaque than the reference value in thinner samples (0.3mm).

  20. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections

    DOEpatents

    Huang, Kevin [Export, PA; Ruka, Roswell J [Pittsburgh, PA

    2012-05-08

    An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.

  1. Impact verification of space suit design for space station

    NASA Technical Reports Server (NTRS)

    Fish, Richard H.

    1987-01-01

    The ballistic limits of single sheet and double sheet structures made of 6061 T6 Aluminum of 1.8 mm and larger nominal thickness were investigated for projectiles of 1.5 mm diameter fired in the Vertical Gun Range Test Facility and NASA Ames Research Center. The hole diameters and sheet deformation behavior were studied for various ratios of sheet spacing to projectile diameter. The results indicate that for projectiles of less than 1.5 mm diameter the ballistic limit exceeds the nominal 10 km/sec orbital debris encounter velocity, if a single-sheet suit of 1.8 mm thickness is behind a single bumper sheet of 1 mm thickness spaced 12.5 mm apart.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Currie, Thayne; Sicilia-Aguilar, Aurora

    We present Spitzer 3.6-24 {mu}m photometry and spectroscopy for stars in the 1-3 Myr old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters-IC 348, NGC 2362, and {eta} Cha-to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks-those with inner holes and thosemore » that are homologously depleted. The percentage of disks in the transitional phase increases from {approx}15%-20% at 1-2 Myr to {>=}50% at 5-8 Myr; the mean transitional disk lifetime is closer to {approx}1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. and Sicilia-Aguilar et al. In the Coronet Cluster and IC 348, transitional disks are more numerous for very low mass M3-M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral-type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically thick primordial disks is M{sub disk} {approx} 0.001-0.003 M{sub *}. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full spectral energy distribution modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.« less

  3. Influence of implant abutment material and ceramic thickness on optical properties.

    PubMed

    Jirajariyavej, Bundhit; Wanapirom, Peeraphorn; Anunmana, Chuchai

    2018-05-01

    Anterior shade matching is an essential factor influencing the esthetics of a ceramic restoration. Dentists face a challenge when the color of an implant abutment creates an unsatisfactory match with the ceramic restoration or neighboring teeth. The purpose of this in vitro study was to evaluate the influence of abutment material and ceramic thickness on the final color of different ceramic systems. Four experimental and control ceramic specimens in shade A3 were cut from IPS e.max CAD, IPS Empress CAD, and VITA Suprinity PC blocks. These specimens had thicknesses of 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm, respectively, for the experimental groups, and 4 mm for the controls. Background abutment specimens were fabricated to yield 3 different shades: white zirconia, yellow zirconia, and titanium at a 3-mm thickness. All 3 ceramic specimens in each thickness were placed in succession on different abutment backgrounds with glycerin optical fluid in between, and the color was measured. A digital spectrophotometer was used to record the specimen color value in the Commission Internationale De L'éclairage (CIELab) color coordinates system and to calculate the color difference (ΔE) between the control and experimental groups. The Kruskal-Wallis test was used to analyze the effect of ceramic thickness on different abutments, and the pair-wise test was used to evaluate within the group (α=.05). The color differences between the test groups and the control decreased with increasing ceramic thickness for every background material. In every case, significant differences were found between 1.0- and 2.5-mm ceramic thicknesses. Only certain 2.5-mm e.max CAD, VITA Suprinity PC, and Empress CAD specimens on yellow-shade zirconia or VITA Suprinity PC on titanium were identified as clinically acceptable (ΔE<3). Increasing ceramic restoration thickness over the abutment background decreased the color mismatch. Increasing the thickness of ceramic on a yellow-shaded zirconia abutment rather than on titanium or white zirconia yielded a more esthetic color for the whole restoration. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Embedded Protostellar Disks Around (Sub-)Solar Stars. II. Disk Masses, Sizes, Densities, Temperatures, and the Planet Formation Perspective

    NASA Astrophysics Data System (ADS)

    Vorobyov, Eduard I.

    2011-03-01

    We present basic properties of protostellar disks in the embedded phase of star formation (EPSF), which is difficult to probe observationally using available observational facilities. We use numerical hydrodynamics simulations of cloud core collapse and focus on disks formed around stars in the 0.03-1.0 M sun mass range. Our obtained disk masses scale near-linearly with the stellar mass. The mean and median disk masses in the Class 0 and I phases (M mean d,C0 = 0.12 M sun, M mdn d,C0 = 0.09 M sun and M mean d,CI = 0.18 M sun, M mdn d,CI = 0.15 M sun, respectively) are greater than those inferred from observations by (at least) a factor of 2-3. We demonstrate that this disagreement may (in part) be caused by the optically thick inner regions of protostellar disks, which do not contribute to millimeter dust flux. We find that disk masses and surface densities start to systematically exceed that of the minimum mass solar nebular for objects with stellar mass as low as M * = 0.05-0.1 M sun. Concurrently, disk radii start to grow beyond 100 AU, making gravitational fragmentation in the disk outer regions possible. Large disk masses, surface densities, and sizes suggest that giant planets may start forming as early as in the EPSF, either by means of core accretion (inner disk regions) or direct gravitational instability (outer disk regions), thus breaking a longstanding stereotype that the planet formation process begins in the Class II phase.

  5. Optimal slice thickness for cone-beam CT with on-board imager

    PubMed Central

    Seet, KYT; Barghi, A; Yartsev, S; Van Dyk, J

    2010-01-01

    Purpose: To find the optimal slice thickness (Δτ) setting for patient registration with kilovoltage cone-beam CT (kVCBCT) on the Varian On Board Imager (OBI) system by investigating the relationship of slice thickness to automatic registration accuracy and contrast-to-noise ratio. Materials and method: Automatic registration was performed on kVCBCT studies of the head and pelvis of a RANDO anthropomorphic phantom. Images were reconstructed with 1.0 ≤ Δτ (mm) ≤ 5.0 at 1.0 mm increments. The phantoms were offset by a known amount, and the suggested shifts were compared to the known shifts by calculating the residual error. A uniform cylindrical phantom with cylindrical inserts of various known CT numbers was scanned with kVCBCT at 1.0 ≤ Δτ (mm) ≤ 5.0 at increments of 0.5 mm. The contrast-to-noise ratios for the inserts were measured at each Δτ. Results: For the planning CT slice thickness used in this study, there was no significant difference in residual error below a threshold equal to the planning CT slice thickness. For Δτ > 3.0 mm, residual error increased for both the head and pelvis phantom studies. The contrast-to-noise ratio is proportional to slice thickness until Δτ = 2.5 mm. Beyond this point, the contrast-to-noise ratio was not affected by Δτ. Conclusion: Automatic registration accuracy is greatest when 1.0 ≤ Δτ (mm) ≤ 3.0 is used. Contrast-to-noise ratio is optimal for the 2.5 ≤ Δτ (mm) ≤ 5.0 range. Therefore 2.5 ≤ Δτ (mm) ≤ 3.0 is recommended for kVCBCT patient registration where the planning CT is 3.0 mm. PMID:21611047

  6. The clinical effect of acellular dermal matrix on gingival thickness and root coverage compared to coronally positioned flap alone.

    PubMed

    Woodyard, James G; Greenwell, Henry; Hill, Margaret; Drisko, Connie; Iasella, John M; Scheetz, James

    2004-01-01

    The primary aim of this randomized, controlled, blinded, clinical investigation was to compare the coronally positioned flap (CPF) plus an acellular dermal matrix (ADM) allograft to CPF alone to determine their effect on gingival thickness and percent root coverage. Twenty-four subjects with one Miller Class I or II buccal recession defect of > or = 3 mm were treated with a CPF plus ADM or a CPF alone. Multiple additional recession sites were treated with the same flap procedure, and all sites were studied for 6 months. Tissue thickness was measured at the sulcus base and at the mucogingival junction of all teeth, with an SDM ultrasonic gingival thickness meter. For the ADM sites, mean initial recession of 3.46 mm was reduced to 0.04 mm for defect coverage of 3.42 mm or 99% (P < 0.05). For the CPF group, mean initial recession of 3.27 mm was reduced to 1.08 mm for defect coverage of 2.19 mm or 67% (P < 0.05). The difference between ADM and CPF groups was statistically significant (P < 0.05). Marginal soft-tissue thickness was increased by 0.40 mm (P < 0.05) for the ADM group, whereas the CPF group remained essentially unchanged. Keratinized tissue was increased for the ADM group by 0.81 mm (P < 0.05), whereas the CPF group increased by 0.33 mm (P > 0.05). No additional root coverage was gained due to creeping attachment between 2 and 6 months for either group. Treatment with a CPF plus an ADM allograft significantly increased gingival thickness when compared with a CPF alone. Recession defect coverage was significantly improved with the use of ADM.

  7. A modified thickness extensional disk transducer.

    PubMed

    Trolier, S E; Xu, Q C; Newnham, R E

    1988-01-01

    Photolithography and chemical etching were investigated as a means of patterning miniature piezoelectric devices. Using a processing procedure analogous to that utilized in the production of integrated circuitry, concentrated hydrochloric acid and a commercially available photoresist were used to fabricate a number of complex structures from soft lead zirconate titanate (PZT) substrates. Among the devices produced in this manner was a modified thickness-mode resonator etched to destroy the simple geometry responsible for radial vibrations. The resultant transducer demonstrated significantly smaller amplitudes for lateral resonances and a marked reduction in the effective planar coupling coefficient over the unaltered disk. The results indicate that photolithographic patterning is useful both for eliminating spurious resonances from transducers for medical imaging or nondestructive evaluation and for engineering low planar coupling coefficients into a variety of substrate materials.

  8. Discovery of a Possible Early-T Thick-disk Subdwarf from the AllWISE2 Motion Survey

    NASA Astrophysics Data System (ADS)

    Kellogg, Kendra; Kirkpatrick, J. Davy; Metchev, Stanimir; Gagné, Jonathan; Faherty, Jacqueline K.

    2018-02-01

    We have discovered a potential T0 ± 1 subdwarf from a search for sources in the AllWISE2 Motion Survey that do not have counterparts in surveys at shorter wavelengths. With a tangential velocity of ∼170 km s‑1, this object—WISE J071121.36–573634.2—has kinematics that are consistent with the thick-disk population of the Milky Way. Spectral fits suggest a low-metallicity for this object but also allow for the possibility of unresolved multiplicity. If WISE J0711–5736 is indeed an sdT0 dwarf, it would be only the second early-T subdwarf discovered to date. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  9. High-speed fiber laser cutting of thick stainless steel for dismantling tasks

    NASA Astrophysics Data System (ADS)

    Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Seon, Sangwoo; Kim, Taek-Soo; Lee, Lim; Choi, Byung-Seon; Moon, Jei-Kwon

    2017-09-01

    A high-speed fiber laser cutting technology of thick steels for dismantling tasks was achieved using a 6-kW fiber laser system. At first, a new cutting head for efficient cutting of thick steels was developed, which was composed by a collimator with a focal length of 160 mm and mirror-type focusing objects with a long focal length of 600 mm. The long focal length of the focusing object made it possible for the beam size to be small through the thick cutting material and the cutting efficiency was expected to increase compared with the short focal length. In addition, folding the beam facilitated the compact cutting head with a size of 160 mm (width) × 80 mm (height) × 640 mm (length) and a weight of 6.9 kg. In the cutting experiment, the laser beam was delivered to the cutting head by a 25-m long process fiber with a core diameter of 100 μm. The cutting performances were studied against the thicknesses of stainless steel plates. A maximum cutting speed of 72 mm/min was obtained for the 60-mm thick stainless steel plate cutting and the cut specimen showed an excellent kerf shape and a narrow kerf width. To the best of our knowledge, this cutting speed was higher than other previously reported results when cutting with a 6-kW laser power.

  10. Improvement of Output Power of ECF Micromotor

    NASA Astrophysics Data System (ADS)

    Yokota, Shinichi; Kawamura, Kiyomi; Takemura, Kenjiro; Edamura, Kazuya

    Electro-conjugate fluid (ECF) is a kind of dielectric fluids, which produces jet-flow (ECF jet) when subjected to a high DC voltage. By using the ECF jet, a new type of micromotor with simple structure and lightweight can be realized. Up to now, we developed a disk-plate type ECF micromotor with inner diameter of 9 mm. In this study, we develope novel ECF micromotors with inner diameter of 5 mm in order to improve the output power density. First, we designed and produced the ECF micromotors with 4-layered and 8-layered disk plate rotors. Then, the performances of the motors are measured. The experimental results confirm the motor developed has a higher performance than the previous ones.

  11. The effects of slice thickness and radiation dose level variations on computer-aided diagnosis (CAD) nodule detection performance in pediatric chest CT scans

    NASA Astrophysics Data System (ADS)

    Emaminejad, Nastaran; Lo, Pechin; Ghahremani, Shahnaz; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael F.

    2017-03-01

    For pediatric oncology patients, CT scans are performed to assess treatment response and disease progression. CAD may be used to detect lung nodules which would reflect metastatic disease. The purpose of this study was to investigate the effects of reducing radiation dose and varying slice thickness on CAD performance in the detection of solid lung nodules in pediatric patients. The dataset consisted of CT scans of 58 pediatric chest cases, from which 7 cases had lung nodules detected by radiologist, and a total of 28 nodules were marked. For each case, the original raw data (sinogram data) was collected and a noise addition model was used to simulate reduced-dose scans of 50%, 25% and 10% of the original dose. In addition, the original and reduced-dose raw data were reconstructed at slice thicknesses of 1.5 and 3 mm using a medium sharp (B45) kernel; the result was eight datasets (4 dose levels x 2 thicknesses) for each case An in-house CAD tool was applied on all reconstructed scans, and results were compared with the radiologist's markings. Patient level mean sensitivities at 3mm thickness were 24%, 26%, 25%, 27%, and at 1.5 mm thickness were 23%, 29%, 35%, 36% for 10%, 25%, 50%, and 100% dose level, respectively. Mean FP numbers were 1.5, 0.9, 0.8, 0.7 at 3 mm and 11.4, 3.5, 2.8, 2.8 at 1.5 mm thickness for 10%, 25%, 50%, and 100% dose level respectively. CAD sensitivity did not change with dose level for 3mm thickness, but did change with dose for 1.5 mm. False Positives increased at low dose levels where noise values were high.

  12. CLINICAL CHARACTERISTICS OF IDIOPATHIC FOVEOMACULAR RETINOSCHISIS.

    PubMed

    Maruko, Ichiro; Morizane, Yuki; Kimura, Shuhei; Shiode, Yusuke; Hosokawa, Mio; Sekiryu, Tetsuju; Iida, Tomohiro; Shiraga, Fumio

    2016-08-01

    To describe the clinical features of idiopathic foveomacular retinoschisis not in association with myopia, glaucoma, optic disk pit, or juvenile retinoschisis. Retrospective observational case series. Five eyes of five patients with idiopathic foveomacular retinoschisis were included. The patients were 2 men and 3 women (average age, 75.2 years; range, 71-78 years). The average spherical equivalent was +2.40 diopters (range, +0.88 to +5.75 diopters), and the average axial length was 22.0 mm (range, 21.1-23.1 mm). All patients had retinoschisis from the macula to the optic disk in the affected eye. No patients had retinoschisis in the fellow eye. The average best-corrected visual acuity was 20/44 (68 Early Treatment Diabetic Retinopathy Study letter score). Idiopathic foveomacular retinoschisis is not inherited or associated with myopia, vitreomacular traction syndrome, optic pit, or glaucoma but is associated with older age, unilaterality, hyperopia with short axial length, complete posterior vitreous detachment, and weak leakage from the optic disk on fluorescein angiography.

  13. Modification of the laser triangulation method for measuring the thickness of optical layers

    NASA Astrophysics Data System (ADS)

    Khramov, V. N.; Adamov, A. A.

    2018-04-01

    The problem of determining the thickness of thin films by the method of laser triangulation is considered. An expression is derived for the film thickness and the distance between the focused beams on the photo detector. The possibility of applying the chosen method for measuring thickness is in the range [0.1; 1] mm. We could resolve 2 individual light marks for a minimum film thickness of 0.23 mm. We resolved with the help of computer processing of photos with a resolution of 0.10 mm. The obtained results can be used in ophthalmology for express diagnostics during surgical operations on the corneal layer.

  14. Suprascarpal fat pad thickness may predict venous drainage patterns in abdominal wall flaps.

    PubMed

    Bast, John; Pitcher, Austin A; Small, Kevin; Otterburn, David M

    2016-02-01

    Abdominal wall flaps are routinely used in reconstructive procedures. In some patients inadequate venous drainage from the deep vein may cause fat necrosis or flap failure. Occasionally the superficial inferior epigastric vessels (SIEV) are of sufficient size to allow for microvascular revascularization. This study looked at the ratio of the sub- and suprascarpal fat layers, the number of deep system perforators, and SIEV diameter to determine any correlation of the fat topography and SIEV. 50 abdominal/pelvic CT angiograms (100 hemiabdomens) were examined in women aged 34-70 years for number of perforators, SIEV diameter, and fat pad thickness above and below Scarpa's fascia. Data was analyzed using multivariate model. The average suprascarpal and subscarpal layers were 18.6 ± 11.5 mm and 6.2 ± 7.2 mm thick, respectively. The average SIEV diameter was 2.06 ± 0.81 mm and the average number of perforators was 2.09 ± 1.03 per hemiabdomen. Hemiabdomens with suprascarpal thickness>23 mm had greater SIEV diameter [2.69 mm vs. 1.8 mm (P < 0.0001)] The fat layer thickness did not correlate with the number of perforators. Neither subscarpal fat thickness nor suprascarpal-to-subscarpal fat layer thickness correlated significantly with SIEV caliber or number of perforators in multivariate model. Suprascarpal fat pad thicker than 23 mm had larger SIEVs irrespective of the number of deep system perforators. This may indicate a cohort of patients at risk of venous congestion from poor venous drainage if only the deep system is revascularized. We recommend harvesting the SIEV in patients with suprascarpal fat pad >23 mm to aid in superficial drainage. © 2015 Wiley Periodicals, Inc.

  15. Effects of rolling friction on a spinning coin or disk

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2018-05-01

    Experimental and theoretical results are presented concerning the motion of a spinning disk on a horizontal surface. The disk precesses about a vertical axis while falling either quickly or slowly onto the surface depending on the coefficient of rolling friction. The rate of fall also depends on the offset distance, in the rolling direction, between the centre of mass and the line of action of the normal reaction force. Euler’s angular momentum equations are solved to obtain estimates of both the coefficient of friction and the offset distance for a 50.6 mm diameter brass disk spinning on three different surfaces. The fall times varied from about 3 s on P800 emery paper to about 30 s on glass.

  16. Are Locked Facets a Contraindication for Extreme Lateral Interbody Fusion?

    PubMed

    Navarro-Ramirez, Rodrigo; Lang, Gernot; Moriguchi, Yu; Elowitz, Eric; Corredor, Jose Alfredo; Avila, Mauricio J; Gotfryd, Alberto; Alimi, Marjan; Gandevia, Lena; Härtl, Roger

    2017-04-01

    Extreme lateral interbody fusion (ELIF) has gained popularity as a minimally invasive treatment allowing for indirect decompression of neural elements. However, evidence regarding the influence of facet degeneration (FD) and facet tropism (FT) toward indirect decompression is lacking. The aim of the study was to evaluate whether indirect decompression is impaired by FD and FT in patients undergoing ELIF. Thirty-seven patients undergoing ELIF were included in a retrospective study. Radiographic parameters including disk height, segmental disk angle, foraminal area, FD, FT, and clinical outcome parameters (Oswestry Disability Index and Visual Analog Scale) were measured preoperatively and postoperatively. FD and FT were correlated with radiographic and clinical outcome parameters in order to determine predictors restricting indirect decompression. Thirty-seven patients with a total of 74 levels were analyzed. Clinical and radiographic outcome measures including central canal area (Δ = +17.2 mm 2 ), mean disk height (Δ = +3 mm), and foraminal area (Δ = +9.9 mm 2 ) revealed significant improvement compared with before surgery (P ≤ 0.05). Patients with severe FD (grade 4) were more likely to have FT ≥ 12 degrees (32.3%) than patients without/mild (grades 0 and 1; 10%) or moderate FD (grades 2 and 3; 13%), P ≤ 0.05. FD and FT did not affect disk height restoration, foraminal area, canal surface area, or clinical outcome measures (P ≥ 0.05). Indirect decompression of neural elements in ELIF is not impaired by FD and FT are not relative contraindications in patients undergoing ELIF. Copyright © 2016. Published by Elsevier Inc.

  17. In vitro evaluation of Augmentin by broth microdilution and disk diffusion susceptibility testing: regression analysis, tentative interpretive criteria, and quality control limits.

    PubMed Central

    Fuchs, P C; Barry, A L; Thornsberry, C; Gavan, T L; Jones, R N

    1983-01-01

    Augmentin (Beecham Laboratories, Bristol, Tenn.), a combination drug consisting of two parts amoxicillin to one part clavulanic acid and a potent beta-lactamase inhibitor, was evaluated in vitro in comparison with ampicillin or amoxicillin or both for its inhibitory and bactericidal activities against selected clinical isolates. Regression analysis was performed and tentative disk diffusion susceptibility breakpoints were determined. A multicenter performance study of the disk diffusion test was conducted with three quality control organisms to determine tentative quality control limits. All methicillin-susceptible staphylococci and Haemophilus influenzae isolates were susceptible to Augmentin, although the minimal inhibitory concentrations for beta-lactamase-producing strains of both groups were, on the average, fourfold higher than those for enzyme-negative strains. Among the Enterobacteriaceae, Augmentin exhibited significantly greater activity than did ampicillin against Klebsiella pneumoniae, Citrobacter diversus, Proteus vulgaris, and about one-third of the Escherichia coli strains tested. Bactericidal activity usually occurred at the minimal inhibitory concentration. There was a slight inoculum concentration effect on the Augmentin minimal inhibitory concentrations. On the basis of regression and error rate-bounded analyses, the suggested interpretive disk diffusion susceptibility breakpoints for Augmentin are: susceptible, greater than or equal to 18 mm; resistant, less than or equal to 13 mm (gram-negative bacilli); and susceptible, greater than or equal to 20 mm (staphylococci and H. influenzae). The use of a beta-lactamase-producing organism, such as E. coli Beecham 1532, is recommended for quality assurance of Augmentin susceptibility testing. PMID:6625554

  18. Simulation on Effect of Preform Diameter in Injection Stretch Blow Molding

    NASA Astrophysics Data System (ADS)

    Tan, Z. Q.; Rosli, Nurrina; Oktaviandri, Muchamad

    2018-03-01

    Polyethylene terephthalate (PET) is the most common material of resin for manufacturing plastic bottle by injection stretch blow molding due to its excellent properties. As various issues of health and environmental hazards due to the PET use have risen, PET bottle manufacture may be improved by minimizing the wall thickness to reduce the PET use. One of the critical qualifications of the manufacturing process which lead to the wall thickness distribution is the initial preform diameter. In this project, we used the ANSYS Polyflow with aim to evaluate the wall thickness distribution of PET bottle for different diameter of initial preform. As a result, only 4 mm preform diameter presented wall thickness below than 1 mm. On the other hand, at least 6 mm preform diameter can permit the wall thickness 1.3 mm i.e. at the shoulder area.

  19. A Probabilistic Method for Estimation of Bowel Wall Thickness in MR Colonography

    PubMed Central

    Menys, Alex; Jaffer, Asif; Bhatnagar, Gauraang; Punwani, Shonit; Atkinson, David; Halligan, Steve; Hawkes, David J.; Taylor, Stuart A.

    2017-01-01

    MRI has recently been applied as a tool to quantitatively evaluate the response to therapy in patients with Crohn’s disease, and is the preferred choice for repeated imaging. Bowel wall thickness on MRI is an important biomarker of underlying inflammatory activity, being abnormally increased in the acute phase and reducing in response to successful therapy; however, a poor level of interobserver agreement of measured thickness is reported and therefore a system for accurate, robust and reproducible measurements is desirable. We propose a novel method for estimating bowel wall-thickness to improve the poor interobserver agreement of the manual procedure. We show that the variability of wall thickness measurement between the algorithm and observer measurements (0.25mm ± 0.81mm) has differences which are similar to observer variability (0.16mm ± 0.64mm). PMID:28072831

  20. Influence of light polymerization modes on degree of conversion and crosslink density of dental composites.

    PubMed

    da Silva, Eduardo Moreira; Poskus, Laiza Tatiana; Guimarães, José Guilherme Antunes; de Araújo Lima Barcellos, Alexandre; Fellows, Carlos Eduardo

    2008-03-01

    This study analyzed the influence of light polymerization modes on crosslink density (CD) and the degree of conversion (DC) of dental composites. A minifilled hybrid and a nanofilled dental composite were photoactivated with two light polymerization modes: Conventional-850 mW/cm2 for 20 s and Gradual-50 up to 1,000 mW/cm2 for 10 s+1,000 mW/cm2 for 10 s. DC was determined by the use of FT-Raman-spectrometer. A softening test, using Knoop diamond indentation, was carried out at the top and bottom of 2 mm thick dental composite disks, before and after storage in 100% ethanol for 24 h, in order to represent the amount of crosslink density. Data were analyzed by ANOVA and Student-Newman-Keuls' multiple range test (alpha=0.05). The DC was influenced by light polymerization modes, with Gradual mode presenting lower DC. On bottom surfaces, the nanofilled dental composite was more susceptible to softening by ethanol than minifilled hybrid, and gradual light polymerization of nanofilled dental composite resulted in more softening than when conventional light polymerization was used. The results suggest that nanofilled composites are capable undergoing more plasticization if applied in thick increments.

Top