Bohu, Tsing; Santelli, Cara M; Akob, Denise M.; Neu, Thomas R; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten
2015-01-01
Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.
Bohu, Tsing; Santelli, Cara M; Akob, Denise M; Neu, Thomas R; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten
2015-01-01
Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.
Impact of environmental chemistry on mycogenic Mn oxide minerals
NASA Astrophysics Data System (ADS)
Santelli, C. M.; Farfan, G. A.; Post, A.; Post, J. E.
2012-12-01
Manganese (Mn) oxide minerals are ubiquitous in aquatic and terrestrial environments and their presence can have broad environmental consequences. In particular, Mn oxides scavenge nutrients and metals, degrade complex organics, and oxidize a variety of inorganic contaminants. The "reactivity" of Mn oxides, however, is highly dependent upon crystallite size, composition, and structure, which are largely determined by environmental factors such as solution chemistry. It is has been suggested that most Mn oxides in terrestrial and aquatic environments are formed by microbial activity; indeed, a diversity of Mn(II)-oxidizing bacteria and fungi have been isolated and their mineral byproducts are consistent with those observed in natural systems. Previous studies showed that Mn(II)-oxidizing Ascomycete fungi produce highly-disordered, nanocrystalline Mn oxides that are structurally similar to synthetic δ-MnO2 or natural vernadite. Unlike related studies with Mn-oxidizing bacteria, Mn oxides produced by these fungi did not "age" or transform to more crystalline mineral phases with time. We hypothesize that fungal growth conditions, in particular the low concentration of cations, are inhibiting secondary mineral formation. The overall goal of this research is to examine the structure and speciation of fungally-precipitated Mn oxides with respect to fungal species, time, and concentration of soluble Mn(II), Na, and Ca - three environmentally relevant cations that promote the transformation of δ-MnO2 to more crystalline mineral phases such as feitknechtite, birnessite, or ranciéite. For this study, we examined the Mn oxides formed by different species of Mn(II)-oxidizing fungi (Pyrenochaeta sp., Stagonospora sp., Plectosphaerella cucumerina., and Acremonium strictum). Isolates were grown for 8 or 16 days in a nutrient lean media consisting of yeast extract, trace elements and 0.2 mM MnCl2 supplemented with varying concentrations of Na, Ca, or Mn(II) compounds. The concentration of Mn(II) in solution was held constant (0, 0.15, 0.5, 1.0 and 1.5 mM) only in the Mn-supplemented experiment. Mycogenic Mn oxides were analyzed using X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS). During the experiments, it was observed that each fungal species responded differently to the varying growth media. The addition of Na inhibited growth and oxidation of several species, and the highest concentrations of Mn in solution proved toxic to a few species. Fungi grown with Na produced a highly-disordered phyllomanganate phase similar to birnessite or vernadite. During growth in Ca-rich solutions, however, a more crystalline ranciéite-like phase was formed with 10Å interlayer spacing that collapsed to 7Å upon drying. Although a feitknechtite-like phase was expected in experiments with Mn concentrations greater than 0.5 mM, a birnessite-like phase was formed. This suggests that a more complex solution chemistry is required for transformation to the more crystalline phases, or the presence of the fungal biomass is inhibiting the ripening of the Mn oxides. This information sheds lights on how growth conditions impact the primary (biologically-induced) and secondary (abiotic reactions) mineral products of fungal Mn(II)-oxidation, which ultimately influences the overall impact of these minerals in the environment.
Bohu, Tsing; Santelli, Cara M.; Akob, Denise M.; Neu, Thomas R.; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten
2015-01-01
Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling. PMID:26236307
Diversity of Mn oxides produced by Mn(II)-oxidizing fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santelli, Cara M.; Webb, Samuel M.; Dohnalkova, Alice
Manganese (Mn) oxides are environmentally abundant, highly reactive mineral phases that mediate the biogeochemical cycling of nutrients, contaminants, carbon, and numerous other elements. Despite the belief that microorganisms (specifically bacteria and fungi) are responsible for the majority of Mn oxide formation in the environment, the impact of microbial species, physiology, and growth stage on Mn oxide formation is largely unresolved. Here, we couple microscopic and spectroscopic techniques to characterize the Mn oxides produced by four different species of Mn(II)-oxidizing Ascomycete fungi (Plectosphaerella cucumerina strain DS2psM2a2, Pyrenochaeta sp. DS3sAY3a, Stagonospora sp. SRC1lsM3a, and Acremonium strictum strain DS1bioAY4a) isolated from acid minemore » drainage treatment systems in central Pennsylvania. The site of Mn oxide formation varies greatly among the fungi, including deposition on hyphal surfaces, at the base of reproductive structures (e.g., fruiting bodies), and on envisaged extracellular polymers adjacent to the cell. The primary product of Mn(II) oxidation for all species growing under the same chemical and physical conditions is a nanoparticulate, poorly-crystalline hexagonal birnessite-like phase resembling synthetic d-MnO2. The phylogeny and growth conditions (planktonic versus surface-attached) of the fungi, however, impact the conversion of the initial phyllomanganate to more ordered phases, such as todorokite (A. strictum strain DS1bioAY4a) and triclinic birnessite (Stagonospora sp. SRC1lsM3a). Our findings reveal that the species of Mn(II)-oxidizing fungi impacts the size, morphology, and structure of Mn biooxides, which will likely translate to large differences in the reactivity of the Mn oxide phases.« less
Constraints on superoxide mediated formation of manganese oxides
Learman, Deric R.; Voelker, Bettina M.; Madden, Andrew S.; Hansel, Colleen M.
2013-01-01
Manganese (Mn) oxides are among the most reactive sorbents and oxidants within the environment, where they play a central role in the cycling of nutrients, metals, and carbon. Recent discoveries have identified superoxide (O2−) both of biogenic and abiogenic origin as an effective oxidant of Mn(II) leading to the formation of Mn oxides. Here we examined the conditions under which abiotically produced superoxide led to oxidative precipitation of Mn and the solid-phases produced. Oxidized Mn, as both aqueous Mn(III) and Mn(III/IV) oxides, was only observed in the presence of active catalase, indicating that hydrogen peroxide (H2O2), a product of the reaction of O2− with Mn(II), inhibits the oxidation process presumably through the reduction of Mn(III). Citrate and pyrophosphate increased the yield of oxidized Mn but decreased the amount of Mn oxide produced via formation of Mn(III)-ligand complexes. While complexing ligands played a role in stabilizing Mn(III), they did not eliminate the inhibition of net Mn(III) formation by H2O2. The Mn oxides precipitated were highly disordered colloidal hexagonal birnessite, similar to those produced by biotically generated superoxide. Yet, in contrast to the large particulate Mn oxides formed by biogenic superoxide, abiotic Mn oxides did not ripen to larger, more crystalline phases. This suggests that the deposition of crystalline Mn oxides within the environment requires a biological, or at least organic, influence. This work provides the first direct evidence that, under conditions relevant to natural waters, oxidation of Mn(II) by superoxide can occur and lead to formation of Mn oxides. For organisms that oxidize Mn(II) by producing superoxide, these findings may also point to other microbially mediated processes, in particular enzymatic hydrogen peroxide degradation and/or production of organic ligand metabolites, that allow for Mn oxide formation. PMID:24027565
Miyata, Naoyuki; Tani, Yukinori; Maruo, Kanako; Tsuno, Hiroshi; Sakata, Masahiro; Iwahori, Keisuke
2006-01-01
Ascomycetes that can deposit Mn(III, IV) oxides are widespread in aquatic and soil environments, yet the mechanism(s) involved in Mn oxide deposition remains unclear. A Mn(II)-oxidizing ascomycete, Acremonium sp. strain KR21-2, produced a Mn oxide phase with filamentous nanostructures. X-ray absorption near-edge structure (XANES) spectroscopy showed that the Mn phase was primarily Mn(IV). We purified to homogeneity a laccase-like enzyme with Mn(II) oxidase activity from cultures of strain KR21-2. The purified enzyme oxidized Mn(II) to yield suspended Mn particles; XANES spectra indicated that Mn(II) had been converted to Mn(IV). The pH optimum for Mn(II) oxidation was 7.0, and the apparent half-saturation constant was 0.20 mM. The enzyme oxidized ABTS [2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] (pH optimum, 5.5; Km, 1.2 mM) and contained two copper atoms per molecule. Moreover, the N-terminal amino acid sequence (residues 3 to 25) was 61% identical with the corresponding sequence of an Acremonium polyphenol oxidase and 57% identical with that of a Myrothecium bilirubin oxidase. These results provide the first evidence that a fungal multicopper oxidase can convert Mn(II) to Mn(IV) oxide. The present study reinforces the notion of the contribution of multicopper oxidase to microbially mediated precipitation of Mn oxides and suggests that Acremonium sp. strain KR21-2 is a good model for understanding the oxidation of Mn in diverse ascomycetes. PMID:17021194
Ferromagnetic phase in partially oxidized FeMn films
NASA Astrophysics Data System (ADS)
Svalov, A. V.; Savin, P. A.; Lepalovskij, V. N.; Vas'kovskiy, V. O.; Larrañaga, A.; Kurlyandskaya, G. V.
2018-04-01
The structure, magnetic and magnetoresistive properties of ferromagnetic phase in partially oxidized FeMn films was studied. The oxidation was performed by annealing of the samples under atmospheric pressure in a gas mixture (nitrogen with 0.5% oxygen) at the temperature of 300 °C. The resulting ferromagnetic phase was isotropic in the film plane. The value of the anisotropic magnetoresistance was similar to the value of the anisotropic magnetoresistance usually observed in films of pure iron. The oxidation of antiferromagnetic FeMn films resulted in the appearance of an exchange bias.
Chromium(iii) oxidation by biogenic manganese oxides with varying structural ripening.
Tang, Yuanzhi; Webb, Samuel M; Estes, Emily R; Hansel, Colleen M
2014-09-20
Manganese (Mn) oxides, which are generally considered biogenic in origin within natural systems, are the only oxidants of Cr(iii) under typical environmental conditions. Yet the influence of Mn biooxide mineral structural evolution on Cr(iii) oxidation under varying geochemical conditions is unknown. In this study we examined the role of light, organic carbon, pH, and the structure of biogenic Mn oxides on Cr(iii) oxidation. Aging of Mn oxides produced by a marine bacterium within the widespread Roseobacter clade resulted in structural ripening from a colloidal hexagonal to a particulate triclinic birnessite phase. The structurally diverse Mn oxides were then reacted with aqueous Cr(iii) within artificial seawater in the presence or absence of carbon and light. Here we found that Cr(iii) oxidation capacity was highest at near neutral pH and in the combined presence of carbon and light. Mn oxide ripening from a hexagonal to a triclinic birnessite phase led to decreased Cr(iii) oxidation in the presence of carbon and light, whereas no change in reactivity was observed in the absence of carbon and/or in the dark. As only minimal Cr(iii) oxidation was observed in the absence of Mn oxides, these results strongly point to coupled Mn oxide- and photo-induced generation of organic and/or oxygen radicals involved in Cr(iii) oxidation. Based on Mn oxide concentration and structural trends, we postulate that Mn(ii) produced from the oxidation of Cr(iii) by the primary Mn oxide is recycled in the presence of organics and light conditions, (re)generating secondary hexagonal birnessite and thereby allowing for continuous oxidation of Cr(iii). In the absence of this Mn oxide regeneration, Cr(iii) induced structural ripening of the hexagonal birnessite precludes further Cr(iii) oxidation. These results highlight the complexity of reactions involved in Mn oxide mediated Cr(iii) oxidation and suggest that photochemical carbon reactions are requisite for sustained Cr(iii) oxidation and persistence of reactive Mn oxides.
NASA Technical Reports Server (NTRS)
Canfield, Donald E.; Thamdrup, BO; Hansen, Jens W.
1993-01-01
A combination of porewater and solid phase analysis as well as a series of sediment incubations are used to quantify organic carbon oxidation by dissimilatory Fe reduction, Mn reduction, and sulfate reduction, in sediments from the Skagerrak (located off the northeast coast of Jutland, Denmark). Solid phase data are integrated with incubation results to define the zones of the various oxidation processes. At S(9), surface Mn enrichments of up to 3.5 wt pct were found, and with such a ready source of Mn, dissimilatory Mn reduction was the only significant anaerobic process of carbon oxidation in the surface 10 cm of the sediment. At S(4) and S(6), active Mn reduction occurred; however, most of the Mn reduction may have resulted from the oxidation of acid volatile sulfides and Fe(2+) rather than by a dissimilatory sulfate. Dissolved Mn(2+) was found to completely adsorb onto sediment containing fully oxidized Mn oxides.
NASA Astrophysics Data System (ADS)
Kang, Youn-Bae; Jung, In-Ho
2017-06-01
A critical evaluation and thermodynamic modeling for thermodynamic properties of all oxide phases and phase diagrams in the Fe-Mn-Si-O system (MnO-Mn2O3-SiO2 and FeO-Fe2O3-MnO-Mn2O3-SiO2 systems) are presented. Optimized Gibbs energy parameters for the thermodynamic models of the oxide phases were obtained which reproduce all available and reliable experimental data within error limits from 298 K (25°C) to above the liquidus temperatures at all compositions covering from known oxide phases, and oxygen partial pressure from metal saturation to 0.21 bar. The optimized thermodynamic properties and phase diagrams are believed to be the best estimates presently available. Slag (molten oxide) was modeled using the modified quasichemical model in the pair approximation. Olivine (Fe2SiO4-Mn2SiO4) was modeled using two-sublattice model in the framework of the compound energy formalism (CEF), while rhodonite (MnSiO3-FeSiO3) and braunite (Mn7SiO_{12} with excess Mn2O3) were modeled as simple Henrian solutions. It is shown that the already developed models and databases of two spinel phases (cubic- and tetragonal-(Fe, Mn)3O4) using CEF [Kang and Jung, J. Phys. Chem. Solids (2016), vol. 98, pp. 237-246] can successfully be integrated into a larger thermodynamic database to be used in practically important higher order system such as silicate. The database of the model parameters can be used along with a software for Gibbs energy minimization in order to calculate any type of phase diagram section and thermodynamic properties.
NASA Astrophysics Data System (ADS)
Kim, Young-Min; Jung, In-Ho
2015-06-01
A complete literature review, critical evaluation, and thermodynamic optimization of phase equilibrium and thermodynamic properties of all available oxide phases in the MnO-B2O3 and MnO-B2O3-SiO2 systems at 1 bar pressure are presented. Due to the lack of the experimental data in these systems, the systematic trend of CaO- and MgO-containing systems were taken into account in the optimization. The molten oxide phase is described by the Modified Quasichemical Model. A set of optimized model parameters of all phases is obtained which reproduces all available and reliable thermodynamic and phase equilibrium data. The unexplored binary and ternary phase diagrams of the MnO-B2O3 and MnO-B2O3-SiO2 systems have been predicted for the first time. The thermodynamic calculations relevant to the oxidation of advanced high-strength steels containing boron were performed to find that B can form liquid B2O3-SiO2-rich phase in the annealing furnace under reducing N2-H2 atmosphere, which can significantly influence the wetting behavior of liquid Zn in Zn galvanizing process.
NASA Astrophysics Data System (ADS)
Birkner, Nancy R.
Natural manganese oxides are generally formed in surficial environments that are near ambient temperature and water-rich, and may be exposed to wet-dry cycles and a variety of adsorbate species that influence dramatically their level of hydration. Manganese oxide minerals are often poorly crystalline, nanophase, and hydrous. In the near-surface environment they are involved in processes that are important to life, such as water column oxygen cycling, biomineralization, and transport of minerals/nutrients through soils and water. These processes, often involving transformations among manganese oxide polymorphs, are governed by a complex interplay between thermodynamics and kinetics. Manganese oxides are also used in technology as catalysts, and for other applications. The major goal of this dissertation is to examine the energetics of bulk and nanophase manganese oxide phases as a function of particle size, composition, and surface hydration. Careful synthesis and characterization of manganese oxide phases with different surface areas provided samples for the study of enthalpies of formation by high temperature oxide melt solution calorimetry and of the energetics of water adsorption on their surfaces. These data provide a quantitative picture of phase stability and how it changes at the nanoscale. The surface energy of the hydrous surface of Mn3O4 is 0.96 +/- 0.08 J/m2, of Mn2O3 is 1.29 +/- 0.10 J/m2, and of MnO2 is 1.64 +/- 0.10 J/m2. The surface energy of the anhydrous surface of Mn3O4 is 1.62 +/- 0.08 J/m 2, of Mn2O3 is 1.77 +/- 0.10 J/m 2, and of MnO2 is 2.05 +/- 0.10 J/m2. Supporting preliminary findings (Navrotsky et al., 2010), the spinel phase (Mn3O4) has a lower surface energy (more stabilizing) than bixbyite, while the latter has a smaller surface energy than pyrolusite. These differences significantly change the positions in oxygen fugacity---temperature space of the redox couples Mn3O4-Mn2O 3 and Mn2O3-MnO2 favoring the lower surface enthalpy phase (the spinel Mn3O4) for smaller particle size and in the presence of surface hydration. Chemisorption of water onto anhydrous nanophase Mn2O 3 surfaces promotes rapidly reversible redox phase changes at room temperature as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Water adsorption microcalorimetry (in situ) at room temperature measured the strongly exothermic integral enthalpy of water adsorption (-103.5 kJ/mol) and monitored the energetics of the redox phase transformation. Hydration-driven redox transformation of anhydrous nanophase Mn(III) 2O3, (high surface enthalpy of anhydrous surfaces 1.77 +/- 0.10 J/m2) to Mn(II,III)3O4 (lower surface enthalpy 0.96 +/- 0.08 J/m2) occurred during the first few doses of water vapor. Surface reduction of nanoparticle bixbyite (Mn 2O3) to hausmannite (Mn3O4) occurs under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Layered structure manganese oxides contain alkali or alkaline earth cations and water, are generally fine-grained, and have considerable thermodynamic stability. The surface enthalpies (SE) of layered and tunnel structure complex manganese oxides are significantly lower than those of the binary manganese oxide phases. The SE for hydrous surfaces and overall manganese average oxidation state (AOS) (value in parentheses) are: cryptomelane 0.77 +/- 0.10 J/m 2 (3.78), sodium birnessite 0.69 +/- 0.13 J/m2 (3.56), potassium birnessite 0.55 +/- 0.11 J/m2 (3.52), and calcium birnessite 0.41 +/- 0.11 J/m2 (3.50). Surface enthalpies of hydrous surfaces of the calcium manganese oxide nanosheets are: deltaCa 0.39MnO2.3nH2O 0.75 +/- 0.10 J/m2 (3.89) and deltaCa0.43MnO2.3nH2O 0.57 +/- 0.12 J/m2 (3.68). The surface enthalpy of the complex manganese oxides appears to decrease with decreasing manganese average oxidation state, that is, with greater mixed valence manganese (Mn 3+/4+). Low surface energy suggests loose binding of H2O on the internal and external surfaces and may be critical to catalysis in both natural and technological settings.
Mechanism of MnS Precipitation on Al2O3-SiO2 Inclusions in Non-oriented Silicon Steel
NASA Astrophysics Data System (ADS)
Li, Fangjie; Li, Huigai; Huang, Di; Zheng, Shaobo; You, Jinglin
2018-05-01
This study investigates the mechanism of MnS precipitation on Al2O3-SiO2 inclusions during the solidification of non-oriented silicon steel, especially the influence of the phase structures and sizes of the oxides on the MnS precipitation, by scanning electron microscopy and transmission electron microscopy coupled with energy dispersive spectrometry. The investigation results show that MnS tends to nucleate on submicron-sized Al2O3-SiO2 inclusions formed by interdendritic segregation and that it covers the oxides completely. In addition, MnS can precipitate on micron-sized oxides and its precipitation behavior is governed by the phase structure of the oxides. The MnS embryo formed in a MnO-containing oxide can act as a substrate for MnS precipitation, thus permitting further growth via diffusion of solute atoms from the matrix. MnS also precipitates in a MnO-free oxide by the heterogeneous nucleation mechanism. Furthermore, MnS is less prone to precipitation in the Al2O3-rich regions of the Al2O3-SiO2 inclusions; this can be explained by the high lattice disregistry between MnS and Al2O3.
Periyasamy, Sivakumar; Subramanian, Palaniappan; Levi, Elena; Aurbach, Doron; Gedanken, Aharon; Schechter, Alex
2016-05-18
Spinel nickel manganese oxides, widely used materials in the lithium ion battery high voltage cathode, were studied in urea oxidation catalysis. NiMn2O4, Ni1.5Mn1.5O4, and MnNi2O4 were synthesized by a simple template-free hydrothermal route followed by a thermal treatment in air at 800 °C. Rietveld analysis performed on nonstoichiometric nickel manganese oxide-Ni1.5Mn1.5O4 revealed the presence of three mixed phases: two spinel phases with different lattice parameters and NiO unlike the other two spinels NiMn2O4 and MnNi2O4. The electroactivity of nickel manganese oxide materials toward the oxidation of urea in alkaline solution is evaluated using cyclic voltammetric measurements. Ni1.5Mn1.5O4 exhibits excellent redox characteristics and lower charge transfer resistances in comparison with other compositions of nickel manganese oxides and nickel oxide prepared under similar conditions.The Ni1.5Mn1.5O4modified electrode oxidizes urea at 0.29 V versus Ag/AgCl with a corresponding current density of 6.9 mA cm(-2). At a low catalyst loading of 50 μg cm(-2), the urea oxidation current density of Ni1.5Mn1.5O4 in alkaline solution is 7 times higher than that of nickel oxide and 4 times higher than that of NiMn2O4 and MnNi2O4, respectively.
Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias
2014-08-01
We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1
Manganese in Endeavour Crater Rim Materials, Mars, and Implications for Habitability
NASA Astrophysics Data System (ADS)
Arvidson, R. E.; Catalano, J. G.; Clark, B. C.; Fischer, W. W.; Grotzinger, J. P.; Gellert, R.; Guinness, E. A.; Herkenhoff, K. E.; Johnson, J. R.; McLennan, S. M.; Ming, D. W.; Morris, R. V.; Squyres, S. W.; Yen, A. S.
2014-12-01
The Opportunity Mars rover wheels overturned two adjacent rocks and exposed underlying fracture-filling deposits while exploring the Murray Ridge rim segment of the Noachian-aged Endeavour Crater. These two small rocks, Pinnacle Island (~4 cm across) and Stuart Island (ranging from ~3 to 8 cm wide and ~10 cm long), were subsequently examined in detail to determine the textures, spectral reflectances (0.4 to 1.0 μm), and compositions of the fracture-filling materials. Relatively bright materials with a composition enriched in Mg, Fe, and S, and spectral features indicative of hydrated sulfates, are overlain with a dark, purple mineral phase or phases with a composition enriched in Mn, Ni, P, and Ca, all relative to underlying bedrock. Reflectance spectra for the dark, purple material are consistent with the presence of one or more Mn-oxide phases. Results indicate two aqueous events, one to deposit the Fe and Mg-rich sulfates, and one to deposit the Mn-rich mineral(s), perhaps with scavenging of Ni from the fluid. Ca and P-rich phases (e.g., Ca-phosphates) co-precipitated with Mn-bearing mineral(s) or were incorporated into one or more of them. Mixing of reducing ground waters with an oxidizing atmosphere or other waters likely produced both the S and Mn-enriched deposits. Oxidation of Mn, in particular, requires a very high potential oxidant relative to what is required for S or Fe oxidation. This suggests oxidation by O2 or species derived from O2. Mn-oxide phases would have provided highly favorable substrates for microbial respiration, making this period of aqueous flow through the fractures a potentially habitable environment. These results add to the evolving story of aqueous alteration of Endeavour's rim rocks, including evidence for nontronite, montmorillonite, Ca-sulfate-rich veins, and hematitic concretions.
Browning phenomenon of medieval stained glass windows.
Ferrand, Jessica; Rossano, Stéphanie; Loisel, Claudine; Trcera, Nicolas; van Hullebusch, Eric D; Bousta, Faisl; Pallot-Frossard, Isabelle
2015-04-07
In this work, three pieces of historical on-site glass windows dated from the 13th to 16th century and one archeological sample (8th century) showing Mn-rich brown spots at their surface or subsurface have been characterized by optical microscopy and Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectroscopy. The oxidation state of Mn as well as the Mn environment in the alteration phase have been characterized by X-ray absorption spectroscopy at the Mn K-edge. Results show that the oxidation state of Mn and therefore the nature of the alteration phase varies according to the sample considered and is correlated with the extent of the brown alteration. The larger the brown areas the more oxidized the Mn. However, by contrast with literature, the samples presenting the more extended brown areas are not similar to pyrolusite and contain Mn mainly under a (+III) oxidation state.
Sorption of Ferrioxime B to Synthetic and Biogenic layer type Mn Oxides
NASA Astrophysics Data System (ADS)
Duckworth, O. W.; Bargar, J. R.; Sposito, G.
2005-12-01
Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effect of solid-phase Mn(IV), we studied the sorption reaction of ferrioxamine B [principally the species, Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore, desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over the pH range between 5 and 9. After 72 h equilibration time at pH 8, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-Ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the X-ray absorption spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed with DFOB, but instead is incorporated into the mineral structure, thus implying that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron.
NASA Astrophysics Data System (ADS)
Hort, R. D.; Revil, A.; Munakata-Marr, J.; Mao, D.
2015-07-01
Electrical resistivity measurements can potentially be used to remotely monitor fate and transport of ionic oxidants such as permanganate (MnO4-) during in situ chemical oxidation (ISCO) of contaminants like trichloroethene (TCE). Time-lapse two-dimensional bulk conductivity and induced polarization surveys conducted during a sand tank ISCO simulation demonstrated that MnO4- plume movement could be monitored in a qualitative manner using bulk conductivity tomograms, although chargeability was below sensitivity limits. We also examined changes to in-phase and quadrature electrical conductivity resulting from ion injection, MnO2 and Cl- production, and pH change during TCE and humate oxidation by MnO4- in homogeneous aqueous solutions and saturated porous media samples. Data from the homogeneous samples demonstrated that inversion of the sand tank resistivity data using a common Tikhonov regularization approach was insufficient to recover an accurate conductivity distribution within the tank. While changes to in-phase conductivity could be successfully modeled, quadrature conductivity values could not be directly related to TCE oxidation product or MnO4- concentrations at frequencies consistent with field induced polarization surveys, limiting the utility of quadrature conductivity for monitoring ISCO.
Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments
NASA Astrophysics Data System (ADS)
Aller, Robert C.; Rude, Peter D.
1988-03-01
During the physical or biological reworking of surficial marine sediments, metal oxides are often brought into contact with both solid and dissolved sulfides. Experiments simulating these mixing processes demonstrate that in natural sediments Mn-oxides can completely oxidize solid phase sulfides to SO 4- under anoxic conditions. The major source of sulfur is probably acid volatile sulfide. Minerals containing Mn +4 are apparently more effective than Mn +3 in driving the oxidation. There is slight or no evidence for complete sulfide oxidation by Fe-oxides under similar conditions. The reaction is inhibited by DNP (dinitrophenol) and azide, implying biological mediation by a group of chemolithotrophic bacteria such as the thiobacilli, having a well-organized cytochrome system, oxidative phosphorylation coupled with sulfide oxidation, and possibly aulolrophic CO 2 fixation. Lack of sensitivity to chlorate suggests that a No 3- reductase complex is not involved. Because of metal reduction and the overall stoichiometry of reaction, this sulfide oxidation causes a rise in pH in contrast to oxidation by O 2. Alkalinity is also simultaneously depeleted by Mn, Ca carbonate precipitation. Both manganoan kutnahorite and manganoan calcite are observed to form rapidly (days) during Mn reduction. The oxidation of sulfides by Mn-oxides is likely to be important, but highly variable, in organic-rich shelf sediments and environments such as hydrothermal vents where sulfidic plumes contact oxidized metals. A substantial Proportion of sedimentary sulfide may be oxidized and Mn reduced by this pathway, particularly in bioturbated sediments. The relative roles of lithotrophic (S) and heterotrophic (C) Mn-reduction in marine sediments are presently unknown.
Manganese-oxidizing photosynthesis before the rise of cyanobacteria.
Johnson, Jena E; Webb, Samuel M; Thomas, Katherine; Ono, Shuhei; Kirschvink, Joseph L; Fischer, Woodward W
2013-07-09
The emergence of oxygen-producing (oxygenic) photosynthesis fundamentally transformed our planet; however, the processes that led to the evolution of biological water splitting have remained largely unknown. To illuminate this history, we examined the behavior of the ancient Mn cycle using newly obtained scientific drill cores through an early Paleoproterozoic succession (2.415 Ga) preserved in South Africa. These strata contain substantial Mn enrichments (up to ∼17 wt %) well before those associated with the rise of oxygen such as the ∼2.2 Ga Kalahari Mn deposit. Using microscale X-ray spectroscopic techniques coupled to optical and electron microscopy and carbon isotope ratios, we demonstrate that the Mn is hosted exclusively in carbonate mineral phases derived from reduction of Mn oxides during diagenesis of primary sediments. Additional observations of independent proxies for O2--multiple S isotopes (measured by isotope-ratio mass spectrometry and secondary ion mass spectrometry) and redox-sensitive detrital grains--reveal that the original Mn-oxide phases were not produced by reactions with O2, which points to a different high-potential oxidant. These results show that the oxidative branch of the Mn cycle predates the rise of oxygen, and provide strong support for the hypothesis that the water-oxidizing complex of photosystem II evolved from a former transitional photosystem capable of single-electron oxidation reactions of Mn.
Donakowski, Martin D.; Wallace, Jean M.; Sassin, Megan B.; ...
2016-06-17
Here, by applying differential pair distribution function (DPDF) analyses to the energy–storage relevant MnOx/carbon system— but in a 3D architectural rather than powder–composite configuration—we can remove contributions of the carbon nanofoam paper scaffold and quantify the multiphasic oxide speciation as the nanoscale, disordered MnOx grafted to the carbon walls (MnOx@CNF) structurally rearranges in situ from birnessite AMnOx (A = Na +; Li +) to tetragonal Mn 3O 4 to spinel LiMn 2O 4. The first reaction step involves topotactic exchange of interlayer Na + by Li + in solution followed by thermal treatments to crystal engineer the –10–nm–thick 2D layeredmore » oxide throughout the macroscale nanofoam paper into a spinel phase. The oxide remains affixed to the walls of the nanofoam throughout the phase transformations. The DPDF fits are improved by retention of one plane of birnessite–like oxide after conversion to spinel. We support the DPDF–derived assignments by X–ray photoelectron spectroscopy and Raman spectroscopy, the latter of which tracks how crystal engineering the oxide affects the disorder of the carbon substrate. We further benchmark MnOx@CNF with nonaqueous electrochemical measurements versus lithium as the oxide converts from X–ray–amorphous birnessite to interlayer-registered LiMnOx to spinel. The lamellar AMnOx displays pseudocapacitive electrochemical behavior, with a doubling of specific capacitance for the interlayer–registered LiMnOx, while the spinel LiMn 2O 4@CNF displays a faradaic electrochemical response characteristic of Li–ion insertion. Our results highlight the need for holistic understanding when crystal engineering an (atomistic) charge–storing phase within the (architectural) structure of practical electrodes.« less
Cordierite-supported metal oxide for non-methane hydrocarbon oxidation in cooking oil fumes.
Huang, Yonghai; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Gao, Fengyu; Wang, Jiangen; Yang, Zhongyu
2018-05-21
Cooking emission is an important reason for the air quality deterioration in the metropolitan area in China. Transition metal oxide and different loading of manganese oxide supported on cordierite were prepared by incipient wetness impregnation method and were used for non-methane hydrocarbon (NMHC) oxidation in cooking oil fumes (COFs). The effects of different calcination temperature and different Mn content were also studied. The SEM photographs and CO 2 temperature-programmed desorption revealed 5 wt% Mn/cordierite had the best pore structure and the largest number of the weak and moderate basic sites so it showed the best performance for NMHC oxidation. XRD analysis exhibited 5 wt% Mn/cordierite had the best dispersion of active phase and the active phase was MnO 2 when the calcination temperature was 400℃ which were good for the catalytic oxidation of NMHC.
Chubar, Natalia; Gerda, Vasyl; Szlachta, Małgorzata
2014-11-18
Selenium cycling in the environment is greatly controlled by various minerals, including Mn and Fe hydrous oxides. At the same time, such hydrous oxides are the main inorganic ion exchangers suitable (on the basis of their chemical nature) to sorb (toxic) anions, separating them from water solutions. The mechanism of selenite adsorption by the new mixed adsorbent composed of a few (amorphous and crystalline) phases [maghemite, MnCO3, and X-ray amorphous Fe(III) and Mn(III) hydrous oxides] was studied by extended X-ray absorption fine structure (EXAFS) spectroscopy [supported by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) data]. The complexity of the porous adsorbent, especially the presence of the amorphous phases of Fe(III) and Mn(III) hydrous oxides, is the main reason for its high selenite removal performance demonstrated by batch and column adsorption studies shown in the previous work. Selenite was bound to the material via inner-sphere complexation (via oxygen) to the adsorption sites of the amorphous Fe(III) and Mn(III) oxides. This anion was attracted via bidentate binuclear corner-sharing coordination between SeO3(2-) trigonal pyramids and both FeO6 and MnO6 octahedra; however, the adsorption sites of Fe(III) hydrous oxides played a leading role in selenite removal. The contribution of the adsorption sites of Mn(III) oxide increased as the pH decreased from 8 to 6. Because most minerals have a complex structure (they are seldom based on individual substances) of various crystallinity, this work is equally relevant to environmental science and environmental technology because it shows how various solid phases control cycling of chemical elements in the environment.
Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine.
Akob, Denise M; Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten
2014-08-01
Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Identification of Mn(II)-Oxidizing Bacteria from a Low-pH Contaminated Former Uranium Mine
Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A.; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten
2014-01-01
Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments. PMID:24928873
Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine
Akob, Denise M.; Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A.; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten
2014-01-01
Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments.
Benck, Jesse D.; Gul, Sheraz; Webb, Samuel M.; Yachandra, Vittal K.; Yano, Junko; Jaramillo, Thomas F.
2013-01-01
In-situ x-ray absorption spectroscopy (XAS) is a powerful technique that can be applied to electrochemical systems, with the ability to elucidate the chemical nature of electrocatalysts under reaction conditions. In this study, we perform in-situ XAS measurements on a bifunctional manganese oxide (MnOx) catalyst with high electrochemical activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Using x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS), we find that exposure to an ORR-relevant potential of 0.7 V vs. RHE produces a disordered Mn3II,III,IIIO4 phase with negligible contributions from other phases. After the potential is increased to a highly anodic value of 1.8 V vs. RHE, relevant to the OER, we observe an oxidation of approximately 80% of the catalytic thin film to form a mixed MnIII,IV oxide, while the remaining 20% of the film consists of a less oxidized phase, likely corresponding to unchanged Mn3II,III,IIIO4. XAS and electrochemical characterization of two thin film catalysts with different MnOx thicknesses reveals no significant influence of thickness on the measured oxidation states, at either ORR or OER potentials, but demonstrates that the OER activity scales with film thickness. This result suggests that the films have porous structure, which does not restrict electrocatalysis to the top geometric layer of the film. As the portion of the catalyst film that is most likely to be oxidized at the high potentials necessary for the OER is that which is closest to the electrolyte interface, we hypothesize that the MnIII,IV oxide, rather than Mn3II,III,IIIO4, is the phase pertinent to the observed OER activity. PMID:23758050
Effects of Cobalt on Manganese Oxidation by Pseudomonas putida MnB1
NASA Astrophysics Data System (ADS)
Pena, J.; Bargar, J.; Sposito, G.
2005-12-01
The oxidation of Mn(II) in the environment is thought to occur predominantly through biologically mediated pathways. During the stationary phase of growth, the well-characterized freshwater and soil bacterium Pseudomonas putida MnB1 oxidizes soluble Mn(II) to a poorly crystalline layer type Mn(IV) oxide. These Mn oxide particles (2 - 5 nm thickness) are deposited in a matrix of extracellular polymeric substances (EPS) surrounding the cell, creating a multi-component system distinct from commonly studied synthetic Mn oxides. Accurate characterization of the reactivity of these biomineral assemblages is essential to understanding trace metal biogeochemistry in natural waters and sediments. Moreover, these biogenic oxides may potentially be used for the remediation of surface and ground waters impacted by mining, industrial pollution, and other anthropogenic activities. In this study, we consider the interactions between Co, P. putida MnB1, and its biogenic Mn oxide. Cobalt is a redox-active transition metal which exists in the environment as Co(II) and Co(III). While Co is not generally found in the environment at toxic concentrations, it may be released as a byproduct of mining activities (e.g. levels of up to 20 μM are found in Pinal Creek, AZ, a stream affected by copper mining). In addition, the radionuclide 60Co, formed by neutron activation in nuclear reactors, is of concern at Department of Energy sites, such as that at Hanford, and has several industrial applications, including radiotherapy. We address the following questions: Do high levels of Co inhibit enzymatic processes such as Mn(II) oxidation? Can the multicopper oxidase enzyme involved in Mn(II) oxidation facilitate Co(II) oxidation? Lastly, does the organic matter surrounding the oxides affect Co or Mn oxide reactivity? These issues were approached via wet chemical analysis, synchrotron radiation X-ray diffraction (SR-XRD), and extended X-ray absorption fine structure (EXAFS) spectroscopy. In the presence of both Mn (1 mM) and Co (10-40 μM), Mn oxidation proceeded as it does in the absence of Co; SR-XRD data did not indicate the formation of a separate Co oxide phase, and EXAFS data showed that Co is incorporated into the biooxide structure as Co(III). In the absence of Mn, Co oxide formation was not observed; EXAFS data showed that Co remains as Co(II) and is complexed to cells or EPS. While it cannot be ascertained that Co(II) oxidation and incorporation into the bioxides is completely abiotic, Co(II) is not oxidized by P. putida MnB1 in the absence of Mn.
Indra, Arindam; Menezes, Prashanth W; Schuster, Felix; Driess, Matthias
2015-11-01
Development of efficient bio-inspired water oxidation system with transition metal oxide catalyst has been considered as the one of the most challenging task in the recent years. As the oxygen evolving center of photosystem II consists of Mn4CaO5 cluster, most of the water oxidation study was converged to build up manganese oxide based catalysts. Here we report the synthesis of efficient artificial water oxidation catalysts by transferring the inactive manganese monooxide (MnO) under highly oxidizing conditions with ceric ammonium nitrate (CAN) and ozone (O3). MnO was partially oxidized to form mixed-valent manganese oxide (MnOx) with CAN whereas completely oxidized to mineral phase of ε-MnO2 (Akhtenskite) upon treatment of O3 in acidic solution, which we explore first time as a water oxidation catalyst. Chemical water oxidation, as well as the photochemical water oxidation in the presence of sacrificial electron acceptor and photosensitizer with the presented catalysts were carried out that followed the trends: MnOx>MnO2>MnO. Structural and activity correlation reveals that the presence of larger extent of Mn(III) in MnOx is the responsible factor for higher activity compared to MnO2. Mn(III) species in octahedral system with eg(1) configuration furnishes and facilitates the Mn-O and Mn-Mn bond enlargement with required structural flexibility and disorder in the manganese oxide structure which indeed facilitates water oxidation. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Jinyang; Xu, Tianjiao; Ding, Junying; Ji, Yimei; Ni, Pei; Li, Zhilian
2012-10-15
In situ transformation of 4,4'-Dibromobiphenyl (4,4'-DBB) in water was observed with hydrothermal diamond anvil cell (HDAC) up to 633 K. It shows that 4,4'-DBB dissolves in water to form a homogenous phase at the temperature of 588 K and thus subcritical water oxidation of 4,4'-DBB higher than the temperature can be a homogenous phase. To accelerate the oxidative degradation, some Mn-Ce-Co complex oxide nanoparticles of about 100 nm were prepared by co-precipitation hydrothermal method. The nanoparticles show enough stability and catalytic activity for oxidative degradation of 4,4'-DBB in subcritical water. The catalytic activation increases with some Co doping and as for the complex oxides of Mn(1)Ce(1), Mn(0.9)Ce(1)Co(0.1), Mn(0.5)Ce(1)Co(0.5), Mn(0.1)Ce(1)Co(0.9), and Co(1)Ce(1), the Mn(0.9)Ce(1)Co(0.1) presents the best activation. The main intermediate products of degradation are benzoic acid and phenol. The apparent activation energy (E(a)) is 35.92 with 5% Mn(0.9)Ce(1)Co(0.1) as catalyst and 46.69 kJ/mol with no catalyst about the chemical oxygen demand (COD). Copyright © 2012 Elsevier B.V. All rights reserved.
Roy, Mouni; Basak, Somjyoti; Naskar, Milan Kanti
2016-02-21
A simple soft bi-templating process was used for the synthesis of mesoporous manganese oxide nanostructures using KMnO4 as a precursor and polyethylene glycol and cetyltrimethylammonium bromide as templates in the presence of benzaldehyde as an organic additive in alkaline media, followed by calcination at 400 °C. X-ray diffraction and Raman spectroscopic analysis of the calcined products confirmed the existence of stoichiometric (MnO2 and Mn5O8) and non-stoichiometric mixed phases (MnO2 + Mn5O8) of Mn oxides obtained by tuning the concentration of the additive and the synthesis time. The surface properties of the prepared Mn oxides were determined by X-ray photoelectron spectroscopy. The mesoporosity of the samples was confirmed by N2 adsorption-desorption. Different synthetic conditions resulted in the formation of different morphologies of the Mn oxides (α-MnO2, Mn5O8, and α-MnO2 + Mn5O8), such as nanoparticles, nanorods, and nanowires. The synthesized mesoporous Mn oxide nanostructures were used for the catalytic oxidation of the harmful air pollutant carbon monoxide. The Mn5O8 nanoparticles with the highest Brunauer-Emmett-Teller surface area and the non-stoichiometric manganese oxide (α-MnO2 + Mn5O8) nanorods with a higher Mn(3+) concentration had the best catalytic efficiency.
Lind, Carol J.; Hem, J.D.
1993-01-01
The Pinal creek drainage basin in Arizona is a good example of the principal non-coal source of mining-related acid drainage in the U.S.A., namely copper mining. Infiltration of drainage waters from mining and ore refining has created an acid groundwater plume that has reacted with calcite during passage through the alluvium, thereby becoming less acid. Where O2 is present and the water is partially neutralized, iron oxides have precipitated and, farther downstream where the pH of the stream water is near neutral, high-Mn crusts have developed. Trace metal composition of several phases in the Pinal Creek drainage basin illustrates the changes caused by mining activities and the significant control Mn-crusts and iron oxide deposits exert on the distribution and concentration of trace metals. The phases and locales considered are the dissolved phase of Webster Lake, a former acid waste disposal pond; selected sections of cores drilled in the alluvium within the intermittent reach of Pinal Creek; and the dissolved phase, suspended sediments, and streambed deposits at specified locales along the perennial reach of Pinal creek. In the perennial reach of Pinal Creek, manganese oxides precipitate from the streamflow as non-cemented particulates and coatings of streambed material and as cemented black crusts. Chemical and X-ray diffraction analyses indicate that the non-cemented manganese oxides precipitate in the reaction sequence observed in previous laboratory experiments using simpler solution composition, Mn3O4 to MnOOH to an oxide of higher oxidation number usually <4.0, i.e. Na-birnessite, and that the black cemented crusts contain (Ca,Mn,Mg)CO3 and a 7-A?? phyllomanganate mixture of rancieite ((Ca,Mn)Mn4O9 ?? (3H2O)) and takanelite ((Mn,Ca)Mn4O9 ?? (3H2O)). In the laboratory, aerating and increasing the pH of Pinal Creek water to 9.00 precipitated (Ca,Mn,Mg)CO3 from an anoxic groundwater that contained CO2 HCO3, and precipitated Mn3O4 and subsequently MnOOH from an oxic surface water from which most of the dissolved CO2 had been removed. It is suggested that the black cemented crusts form by precipitation of Fe on the Mn-enriched carbonates, creating a site for the MnFe oxidation cycle and thus encouraging the conversion of the carbonates to 7-A?? physllomanganates. The non-magnetic <63-??m size-fractions of the black cemented crusts consisted mostly of the manganese-calcium oxides but also contained about 20% (Ca,Mn,Mg)CO3, 5% Fe (calculated as FeOOH), 2-4% exchangeable cations, and trace amounts of several silicates. ?? 1992.
Preparation and magnetic properties of multiferroic CuMnO2 nanoparticles.
Kurokawa, Akinobu; Yanoh, Tkuya; Yano, Shinya; Ichiyanagi, Yuko
2014-03-01
CuMnO2 nanoparticles with diameters of 64 nm were synthesized by a novel wet chemical method. An optimized two-step annealing method was developed through the analysis of thermogravimetric differential thermal analysis (TG-DTA) measurements in order to obtain single-phase CuMnO2. A sharp exothermic peak was observed in the DTA curve at approximately 500 K where structural changes of the copper oxides and manganese oxides in the precursor are expected to occur. It is believed that Cu+ ions were oxidized to Cu2+ ions and that Mn2+ ions were oxidized to Mn3+ ions in the Cu-Mn-O system. Deoxidization reactions were also found at approximately 1200 K. The optimized annealing temperature for the first step was determined to be 623 K in air. The optimized annealing temperature for the second step was 1173 K in an Ar atmosphere. Magnetization measurements suggested an antiferromagnetic spin ordering at approximately 50 K. It was expected that Mn3+ spin interactions induced magnetic phase transition affected by definite temperature.
Birkner, Nancy; Navrotsky, Alexandra
2014-01-01
Chemisorption of water onto anhydrous nanophase manganese oxide surfaces promotes rapidly reversible redox phase changes as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Surface reduction of bixbyite (Mn2O3) to hausmannite (Mn3O4) occurs in nanoparticles under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Additionally, transformation does not occur on nanosurfaces passivated by at least 2% coverage of what is likely an amorphous manganese oxide layer. The transformation is due to thermodynamic control arising from differences in surface energies of the two phases (Mn2O3 and Mn3O4) under wet and dry conditions. Such reversible and rapid transformation near room temperature may affect the behavior of manganese oxides in technological applications and in geologic and environmental settings. PMID:24733903
Birkner, Nancy; Navrotsky, Alexandra
2014-04-29
Chemisorption of water onto anhydrous nanophase manganese oxide surfaces promotes rapidly reversible redox phase changes as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Surface reduction of bixbyite (Mn2O3) to hausmannite (Mn3O4) occurs in nanoparticles under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Additionally, transformation does not occur on nanosurfaces passivated by at least 2% coverage of what is likely an amorphous manganese oxide layer. The transformation is due to thermodynamic control arising from differences in surface energies of the two phases (Mn2O3 and Mn3O4) under wet and dry conditions. Such reversible and rapid transformation near room temperature may affect the behavior of manganese oxides in technological applications and in geologic and environmental settings.
NASA Astrophysics Data System (ADS)
Kashiwabara, Teruhiko; Takahashi, Yoshio; Marcus, Matthew A.; Uruga, Tomoya; Tanida, Hajime; Terada, Yasuko; Usui, Akira
2013-04-01
The tungsten (W) species in marine ferromanganese oxides were investigated by wavelength dispersive XAFS method. We found that the W species are in distorted Oh symmetry in natural ferromanganese oxides. The host phase of W is suggested to be Mn oxides by μ-XRF mapping. We also found that the W species forms inner-sphere complexes in hexavalent state and distorted Oh symmetry on synthetic ferrihydrite, goethite, hematite, and δ-MnO2. The molecular-scale information of W indicates that the negatively-charged WO42- ion mainly adsorbs on the negatively-charged Mn oxides phase in natural ferromanganese oxides due to the strong chemical interaction. In addition, preferential adsorption of lighter W isotopes is expected based on the molecular symmetry of the adsorbed species, implying the potential significance of the W isotope systems similar to Mo. Adsorption experiments of W on synthetic ferrihydrite and δ-MnO2 were also conducted. At higher equilibrium concentration, W exhibits behaviors similar to Mo on δ-MnO2 due to their formations of inner-sphere complexes. On the other hand, W shows a much larger adsorption on ferrihydrite than Mo. This is due to the formation of the inner- and outer-sphere complexes for W and Mo on ferrihydrite, respectively. Considering the lower equilibrium concentration such as in oxic seawater, however, the enrichment of W into natural ferromanganese oxides larger than Mo may be controlled by the different stabilities of their inner-sphere complexes on the Mn oxides. These two factors, (i) the stability of inner-sphere complexes on the Mn oxides and (ii) the mode of attachment on ferrihydrite (inner- or outer-sphere complex), are the causes of the different behaviors of W and Mo on the surface of the Fe/Mn (oxyhydr)oxides.
Diffusion Behavior of Mn and Si Between Liquid Oxide Inclusions and Solid Iron-Based Alloy at 1473 K
NASA Astrophysics Data System (ADS)
Kim, Sun-Joong; Tago, Hanae; Kim, Kyung-Ho; Kitamura, Shin-ya; Shibata, Hiroyuki
2018-06-01
In order to clarify the changes in the composition of oxide inclusions in steel, the effect of the metal and oxide composition on the reaction between solid Fe-based alloys and liquid multi-component oxides was investigated using the diffusion couple method at 1473 K. The measured concentration gradients of Mn and Si in the metal indicated that Mn diffused into the metal from the oxide, while the diffusion of Si occurred in the opposite direction. In addition, the MnO content in the oxide decreased with heat treatment time, while the SiO2 content increased. The compositional changes in both phases indicated that the Mn content in the metal near the interface increased with heat treatment with decreasing MnO content in the oxide. Assuming local equilibrium at the interface, the calculated [Mn]2/[Si] ratio at the interface in equilibrium with the oxide increased with increases in the MnO/SiO2 ratio in the oxide. The difference in the [Mn]2/[Si] ratios between the interface and the metal matrix increased, which caused the diffusion of Mn and Si between the multi-component oxide and metal. By measuring the diffusion lengths of Mn and Si in the metal, the chemical diffusion coefficients of Mn and Si were obtained to calculate the composition changes in Mn and Si in the metal. The calculated changes in Mn and Si in the metal agreed with the experimental results.
Crystal structure, chemical expansion and phase stability of HoMnO{sub 3} at high temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selbach, Sverre M., E-mail: selbach@material.ntnu.no; Nordli Lovik, Amund; Bergum, Kristin
Anisotropic thermal and chemical expansion of hexagonal HoMnO{sub 3} was investigated by high temperature X-ray diffraction in inert (N{sub 2}) and oxidizing (air) atmospheres up to 1623 K. A second order structural phase transition directly from P6{sub 3}cm to P6{sub 3}/mmc was found at 1298{+-}4 K in N{sub 2} atmosphere, and 1318{+-}4 K in air. For the low temperature polymorph P6{sub 3}cm the contraction of the c-axis was more rapid in inert than in oxidizing atmosphere. The c-axis of the P6{sub 3}/mmc polymorph of HoMnO{sub 3} displayed anomalously high expansion above 1400 K, which is discussed in relation to chemicalmore » expansion caused by point defects. The a-axis expanded stronger in inert than oxidizing atmosphere. Anisotropic chemical and thermal expansion of the P6{sub 3}cm phase of YMnO{sub 3} in N{sub 2}, air and O{sub 2} atmospheres was found to be qualitatively similar to that of HoMnO{sub 3}. Decomposition of hexagonal HoMnO{sub 3} by two different processes occurs in oxidizing atmosphere above {approx}1200 K followed by nucleation and growth of the perovskite polymorph of HoMnO{sub 3}. A rapid, reconstructive transition from the perovskite back to the hexagonal polymorph was observed in situ at 1623 K upon reduction of the partial pressure of oxygen. A phase stability diagram of the hexagonal and orthorhombic polymorphs is proposed. Finally, distinctly non-linear electrical conductivity was observed for both HoMnO{sub 3} and YMnO{sub 3} in oxidizing atmosphere between 555 and 630 K, and shown to be associated with excess oxygen. - Graphical abstract: Chemical expansion of hexagonal HoMnO{sub 3} is observed during HTXRD in different pO{sub 2}. Oxidizing atmosphere favors the competing perovskite polymorph. Electrical conductivity anomalies related to excess oxygen are found at 550-630 K. Highlights: Black-Right-Pointing-Pointer Thermal evolution of crystal structure of HoMnO{sub 3} studied up to 1623 K in air and N{sub 2}. Black-Right-Pointing-Pointer Anisotropic chemical expansion of HoMnO{sub 3} and YMnO{sub 3} in N{sub 2}, air and O{sub 2}. Black-Right-Pointing-Pointer Hexagonal phase destabilized with respect to perovskite in oxidizing atmosphere. Black-Right-Pointing-Pointer Crystal structure and phase stability discussed in terms of point defect chemistry. Black-Right-Pointing-Pointer Electrical conductivity anomalies associated with excess oxygen at 550-630 K.« less
Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanza, Nina L.; Wiens, Roger C.; Arvidson, Raymond E.
We report that the Curiosity rover observed high Mn abundances (>25 wt % MnO) in fracture-filling materials that crosscut sandstones in the Kimberley region of Gale crater, Mars. The correlation between Mn and trace metal abundances plus the lack of correlation between Mn and elements such as S, Cl, and C, reveals that these deposits are Mn oxides rather than evaporites or other salts. On Earth, environments that concentrate Mn and deposit Mn minerals require water and highly oxidizing conditions; hence, these findings suggest that similar processes occurred on Mars. In conclusion, based on the strong association between Mn-oxide depositionmore » and evolving atmospheric dioxygen levels on Earth, the presence of these Mn phases on Mars suggests that there was more abundant molecular oxygen within the atmosphere and some groundwaters of ancient Mars than in the present day.« less
Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars
Lanza, Nina L.; Wiens, Roger C.; Arvidson, Raymond E.; ...
2016-07-28
We report that the Curiosity rover observed high Mn abundances (>25 wt % MnO) in fracture-filling materials that crosscut sandstones in the Kimberley region of Gale crater, Mars. The correlation between Mn and trace metal abundances plus the lack of correlation between Mn and elements such as S, Cl, and C, reveals that these deposits are Mn oxides rather than evaporites or other salts. On Earth, environments that concentrate Mn and deposit Mn minerals require water and highly oxidizing conditions; hence, these findings suggest that similar processes occurred on Mars. In conclusion, based on the strong association between Mn-oxide depositionmore » and evolving atmospheric dioxygen levels on Earth, the presence of these Mn phases on Mars suggests that there was more abundant molecular oxygen within the atmosphere and some groundwaters of ancient Mars than in the present day.« less
Sorption of Ferric Iron from Ferrioxamine B to Synthetic and Biogenic Layer Type Manganese Oxides
NASA Astrophysics Data System (ADS)
Duckworth, O.; John, B.; Sposito, G.
2006-12-01
Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effects of predominantly Mn(IV) oxides, we studied the sorption reaction of ferrioxamine B [Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(III, IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over at pH 8. After 72 hours equilibration time, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the EXAFS spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to into the mineral structure at multiple sites with no evidence of DFOB complexation, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron in marine and terrestrial environments.
Hansel, Colleen M.; Zeiner, Carolyn A.; Santelli, Cara M.; Webb, Samuel M.
2012-01-01
Manganese (Mn) oxides are among the most reactive minerals within the environment, where they control the bioavailability of carbon, nutrients, and numerous metals. Although the ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides is scattered throughout the bacterial and fungal domains of life, the mechanism and physiological basis for Mn(II) oxidation remains an enigma. Here, we use a combination of compound-specific chemical assays, microspectroscopy, and electron microscopy to show that a common Ascomycete filamentous fungus, Stilbella aciculosa, oxidizes Mn(II) to Mn oxides by producing extracellular superoxide during cell differentiation. The reactive Mn oxide phase birnessite and the reactive oxygen species superoxide and hydrogen peroxide are colocalized at the base of asexual reproductive structures. Mn oxide formation is not observed in the presence of superoxide scavengers (e.g., Cu) and inhibitors of NADPH oxidases (e.g., diphenylene iodonium chloride), enzymes responsible for superoxide production and cell differentiation in fungi. Considering the recent identification of Mn(II) oxidation by NADH oxidase-based superoxide production by a common marine bacterium (Roseobacter sp.), these results introduce a surprising homology between some prokaryotic and eukaryotic organisms in the mechanisms responsible for Mn(II) oxidation, where oxidation appears to be a side reaction of extracellular superoxide production. Given the versatility of superoxide as a redox reactant and the widespread ability of fungi to produce superoxide, this microbial extracellular superoxide production may play a central role in the cycling and bioavailability of metals (e.g., Hg, Fe, Mn) and carbon in natural systems. PMID:22802654
Hansel, Colleen M; Zeiner, Carolyn A; Santelli, Cara M; Webb, Samuel M
2012-07-31
Manganese (Mn) oxides are among the most reactive minerals within the environment, where they control the bioavailability of carbon, nutrients, and numerous metals. Although the ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides is scattered throughout the bacterial and fungal domains of life, the mechanism and physiological basis for Mn(II) oxidation remains an enigma. Here, we use a combination of compound-specific chemical assays, microspectroscopy, and electron microscopy to show that a common Ascomycete filamentous fungus, Stilbella aciculosa, oxidizes Mn(II) to Mn oxides by producing extracellular superoxide during cell differentiation. The reactive Mn oxide phase birnessite and the reactive oxygen species superoxide and hydrogen peroxide are colocalized at the base of asexual reproductive structures. Mn oxide formation is not observed in the presence of superoxide scavengers (e.g., Cu) and inhibitors of NADPH oxidases (e.g., diphenylene iodonium chloride), enzymes responsible for superoxide production and cell differentiation in fungi. Considering the recent identification of Mn(II) oxidation by NADH oxidase-based superoxide production by a common marine bacterium (Roseobacter sp.), these results introduce a surprising homology between some prokaryotic and eukaryotic organisms in the mechanisms responsible for Mn(II) oxidation, where oxidation appears to be a side reaction of extracellular superoxide production. Given the versatility of superoxide as a redox reactant and the widespread ability of fungi to produce superoxide, this microbial extracellular superoxide production may play a central role in the cycling and bioavailability of metals (e.g., Hg, Fe, Mn) and carbon in natural systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui, Yue; Jung, Haesung; Kim, Doyoon
While biomineralization in apoferritin has effectively synthesized highly monodispersed nanoparticles of various metal oxides and hydroxides, the detailed kinetics and mechanisms of Mn(III) (hydr)oxide formation inside apoferritin cavities have not been reported. To address this knowledge gap, we first identified the phase of solid Mn(III) formed inside apoferritin cavities as α-MnOOH. To analyze the oxidation and nucleation mechanism of α-MnOOH inside apoferritin by quantifying oxidized Mn, we used a colorimetric method with leucoberbelin blue (LBB) solution. In this method, LBB disassembled apoferritin by inducing an acidic pH environment, and reduced α-MnOOH nanoparticles. The LBB-enabled kinetic analyses of α-MnOOH nanoparticle formationmore » suggested that the orders of reaction with respect to Mn2+ and OH– are 2 and 4, respectively, and α-MnOOH formation follows two-step pathways: First, soluble Mn2+ undergoes apoferritin-catalyzed oxidation at the ferroxidase dinuclear center, forming a Mn(III)-protein complex, P-[Mn2O2(OH)2]. Second, the oxidized Mn(III) dissociates from the protein binding sites and is subsequently nucleated to form α-MnOOH nanoparticles in the apoferritin cavities. This study reveals key kinetics and mechanistic information on the Mn-apoferritin systems, and the results facilitate applications of apoferritin as a means of nanomaterial synthesis.« less
NASA Astrophysics Data System (ADS)
André, Laurie; Abanades, Stéphane; Cassayre, Laurent
2017-09-01
Metal oxides are potential materials for thermochemical heat storage via reversible endothermal/exothermal redox reactions, and among them, cobalt oxide and manganese oxide are attracting attention. The synthesis of mixed oxides is considered as a way to answer the drawbacks of pure metal oxides, such as slow reaction kinetics, loss-in-capacity over cycles or sintering issues, and the materials potential for thermochemical heat storage application needs to be assessed. This work proposes a study combining thermodynamic calculations and experimental measurements by simultaneous thermogravimetric analysis and calorimetry, in order to identify the impact of iron oxide addition to Co and Mn-based oxides. Fe addition decreased the redox activity and energy storage capacity of Co3O4/CoO, whereas the reaction rate, reversibility and cycling stability of Mn2O3/Mn3O4 was significantly enhanced with added Fe amounts above 15 mol%, and the energy storage capacity was slightly improved. The formation of a reactive cubic spinel explained the improved re-oxidation yield of Mn-based oxides that could be cycled between bixbyite and cubic spinel phases, whereas a low reactive tetragonal spinel phase showing poor re-oxidation was formed below 15 mol% Fe. Thermodynamic equilibrium calculations predict accurately the behavior of both systems. The possibility to identify other suitable mixed oxides becomes conceivable, by enabling the selection of transition metal additives for tuning the redox properties of mixed metal oxides destined for thermochemical energy storage applications.
Nelson, Yarrow M.; Lion, Leonard W.; Ghiorse, William C.; Shuler, Michael L.
1999-01-01
Biogenic Mn oxides were produced by the bacterium Leptothrix discophora SS-1 (= ATCC 3182) in a chemically defined mineral salts medium, and the Pb binding and specific surface area of these oxides were characterized. Growth of SS-1 in the defined medium with pyruvate as a carbon and energy source required the addition of vitamin B12. Complete oxidation of Mn(II) within 60 h required the addition of ≥0.1 μM FeSO4. Pb adsorption isotherms were determined for the biogenic Mn oxides (and associated cells with their extracellular polymer) and compared to the Pb adsorption isotherms of cells and exopolymer alone, as well as to abiotic Mn oxides. The Pb adsorption to cells and exopolymer with biogenic Mn oxides (0.8 mmol of Mn per g) at pH 6.0 and 25°C was 2 orders of magnitude greater than the Pb adsorption to cells and exopolymer alone (on a dry weight basis). The Pb adsorption to the biogenic Mn oxide was two to five times greater than the Pb adsorption to a chemically precipitated abiotic Mn oxide and several orders of magnitude greater than the Pb adsorption to two commercially available crystalline MnO2 minerals. The N2 Brunauer-Emmet-Teller specific surface areas of the biogenic Mn oxide and fresh Mn oxide precipitate (224 and 58 m2/g, respectively) were significantly greater than those of the commercial Mn oxide minerals (0.048 and 4.7 m2/g). The Pb adsorption capacity of the biogenic Mn oxide also exceeded that of a chemically precipitated colloidal hydrous Fe oxide under similar solution conditions. These results show that amorphous biogenic Mn oxides similar to those produced by SS-1 may play a significant role in the control of trace metal phase distribution in aquatic systems. PMID:9872777
NASA Astrophysics Data System (ADS)
Zhang, Xueliang; Yang, Shufeng; Liu, Chengsong; Li, Jingshe; Hao, Weixing
2018-06-01
The effect of heat-treatment temperature on the interfacial reaction between MnO-SiO2-FeO oxide and Fe-Mn-Si alloy was investigated by the diffusion couple method in the temperature range of 1173-1573 K. The reaction at the interface between the alloy and oxide was not obvious during treatment at 1173 K, but, with increasing heat-treatment temperature, the interfacial reaction was strengthened and the proportion of the MnO·SiO2 phase in the oxide increased. The width of the particle-precipitation zone in the alloy increased with increasing temperature from 1173 K to 1473 K but decreased at 1573 K owing to coarsening of the precipitated particles. In addition, Mn2+ and Si4+ in the oxide significantly diffused into the alloy at 1573 K, resulting in an obvious increase of the Mn and Si contents in the alloy near the interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yun; Kukkadapu, Ravi K.; Livi, Kenneth J. T.
The redox state and speciation of metalloid arsenic (As) determine its toxicity and mobility. Knowledge of biogeochemical processes influencing the As redox state is therefore important to understand and predict its environmental behavior. Many previous studies examined As(III) oxidation by various Mn-oxides, but little is known the environmental influences (e.g. co-existing ions) on such process. In this study, we investigated the mechanisms of As(III) oxidation by a poorly crystalline hexagonal birnessite (δ-MnO2) in the presence of Fe(II) using X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy and transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDS). As K-edge X-ray absorption nearmore » edge spectroscopy (XANES) analysis revealed that, at low Fe(II) concentration (100 μM), As(V) was the predominant As species on the solid phase, while at higher Fe(II) concentration (200-1000 μM), both As(III) and As(V) were sorbed on the solid phase. As K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) analysis showed an increasing As-Mn/Fe distance over time, indicating As prefers to bind with the newly formed Fe(III)-(hydr)oxides. As adsorbed on Fe(III)-(hydr)oxides as a bidentate binuclear corner-sharing complex. Both Mössbauer and TEM-EDS investigations demonstrated that the oxidized Fe(III) products formed during Fe(II) oxidation by δ-MnO2 were predominantly ferrihydrite, goethite, and ferric arsenate like compounds. However, Fe EXAFS analysis also suggested the formation of a small amount of lepidocrocite. The Mn K-edge XANES data indicated that As(III) and Fe(II) oxidation occurs as a two electron transfer with δ-MnO2 and the observed Mn(III) is due to conproportionation of surface sorbed Mn(II) with Mn(IV) in δ-MnO2 structure. This study reveals that the mechanisms of As(III) oxidation by δ-MnO2 in the presence of Fe(II) are very complex, involving many simultaneous reactions, and the formation of Fe(III)-(hydr)oxides plays a very important role in reducing As mobility.« less
Structural Characterization of Biogenic Manganese Oxides Produced in Sea Water
NASA Astrophysics Data System (ADS)
Webb, S. M.; Bargar, J. R.; Tebo, B. M.
2003-12-01
Manganese oxides have been coined as the "scavengers of the sea" and play important roles in both marine and freshwater systems. Natural manganese oxide nanoparticles and grain coatings are ubiquitous in the environment and profoundly impact the quality of sediments via their ability to degrade and sequester contaminants. These oxides are believed to form dominantly via oxidation of Mn(II) by marine and freshwater bacteria and have extremely high sorptive capacities for heavy metals. We have used XANES, EXAFS, and synchrotron (SR)-XRD techniques to study biogenic manganese oxides produced by spores of the marine Bacillus sp., strain SG-1 in seawater as a function of reaction time under fully in-situ conditions. The primary biogenic solid-phase Mn oxide product is a hexagonal layered phyollomanganate with an oxidation state similar to that in delta-MnO2. XRD data show the biooxides to have a phyllomanganate 10 basal plane spacing, suggesting the interlayer is hydrated and contains calcium. As the experiment continues, the initial biooxide changes to show triclinic symmetry. Fits to these EXAFS spectra suggest the octahedral layers have low Mn octahedral site vacancies in the lattice and the latyers bend to accommodate Jahn-Teller distortions creating the change in symmetry. The oxides observed in this study as models of Mn(II) bio-oxidation may be representative of the most abundant manganese oxide phase suspended in the oxic and sub-oxic zones of the oceanic water column.
Structural implications for oxygen electrocatalysis in earthabundant transition metal oxides
NASA Astrophysics Data System (ADS)
Gardner, Graeme Patrick
Transition metal oxides and related nitrides/nitride-oxides represent a class of materials that have shown great promise as oxygen electrocatalysts to replace the otherwise non-scalable noble metal-based catalysts currently implemented in commercial technologies. That is, compounds in this class of materials have shown promise as electrocatalysts for both the oxygen evolution (OER) and oxygen reduction reactions (ORR). The two aforementioned half-reactions are at the cornerstone of most renewable energy transformations, as oxygen is an inherently practical and abundant source and sink for electrons. In water electrolysis to produce hydrogen, oxygen is inevitably formed, and in a fuel cell the driving force for extracting electrochemical energy from hydrogen is pairing it with the reduction of oxygen to water. If this can be accomplished reversibly, the problem of "transient" renewable energy and its storage can be mitigated. We have examined many metal oxides and related compounds based upon Earth- abundant transition metals (primarily first row) that are crystalline, yet high surface area, for these important electrocatalytic reactions, and found that crystal structure plays a crucial role in determining activity. In fact, while most studies on heterogeneous catalysis focus on the synthesis of defect-rich, high surface area, practically amorphous materials to elicit high activity, we have found that particular crystalline phases possess not only the appropriate activity, but to some degree more importantly, the stability to be named good catalysts. In Chapter 2, we demonstrate that of the two structural types of lithium cobalt oxide (LiCoO2) - layered (R-3m) and cubic (Fd-3m) - only the cubic phase is revealed to be an efficient and stable catalyst for OER. Whether water oxidation is driven photochemically, or electrochemically, the cubic phase LiCoO2 possessing a spinel-like structure (AB 2O4) with [Co4O4] subunits within the crystal is more active. It is seen that electrochemically, both the cubic and layered phases transform to the spinel LiCo2O4 at surface and subsurface levels. This coincides with partial delithiation that is more extensive in layered LiCoO2. It is revealed that the oxidation of CoMn3+ to Co4+ is accompanied by delithiation in aqueous electrolyte to form the active state of the LiCoO2 catalyst. The electronic properties of the cubic spinel allow for localization of electron holes at cubic core active sites to effect water oxidation, whereas holes are more extensively delocalized in layered LiCoO2 in concert with the Li+ deintercalation reaction. In Chapter 3, we investigate the influence of chemical composition on the catalytic water oxidation activity of Co-substituted spinel LiMn 2O4 and Mn-substituted cubic LiCoO2. We find that in the spinel LiMn2O4, CoMn3+ substitution occurs at the B-site for MnMn3+, and the solid solution limit for starts at 1:1 Co:Mn ratio, where Co begins to go into the A-site. The activity for OER increases with increasing Co, owing to the symmetrization of the M4O4 core structure (Jahn-Teller distortions suppressed), which allows for hole delocalization that enables CoMn 3+/4+ oxidation. The more positive redox potential of Co4+ makes for facile water oxidation. Substituting Mn for Co in cubic LiCoO2 allows for retention of MnMn3+, which has been correlated with water oxidation activity in many catalysts. The solid solution limit in this series is also near 1:1 at the B- site. However, the increase in Mn content corresponds to decreasing activity in both water oxidation and oxygen reduction, which correlates well with decreases in pre- catalytic oxidation and reduction peak yields. The results show replacement of CoMn 3+ with MnMn3+ effectively eliminates active sites. Therefore, MnMn3+ in this electronic and structural environment is not active, which agrees well with a recent literature report on corner- shared MnMn3+ octahedral being necessary to produce OER activity in Mn oxides. Finally, in chapter 4, bifunctional oxygen electrocatalysts are explored in depth with a series of cobalt-molybdenum oxides/nitrides. We demonstrate that CoMoN2, with relatively strong M-N interactions, has ideal electronic properties for ORR, and upon oxidation of the surface, yields an active OER catalyst. However, the surface oxidation is found to be irreversible and once oxidized, the activity for ORR significantly decreases. The surface both before and after catalysis was analyzed by XPS, which showed the suppression of Mo and N signals after exposure to OER conditions, meaning the active catalyst is a Co oxide of high valency (3/4+). The results from this study suggests truly reversible, bifunctional oxygen electrocatalysis may be obtained by designing a catalyst whose surface is only partly oxidized and/or can be reversibly reduced in the potential window relevant to OER and ORR.
Shan, Xiaoqiang; Charles, Daniel S.; Xu, Wenqian; ...
2017-11-22
Manganese-based metal oxide electrode materials are of great importance in electrochemical energy storage for their favorable redox behavior, low cost and environmental-friendliness. However, their storage capacity and cycle life in aqueous Na-ion electrolytes is not satisfactory. In this paper, we report the development of a bi-phase cobalt-manganese oxide (Co-Mn-O) nanostructured electrode material, comprised of a layered MnO 2.H 2O birnessite phase and a (Co 0.83Mn 0.13Va 0.04)tetra(Co 0.38Mn 1.62) octaO 3.72 (Va: vacancy; tetra: tetrahedral sites; octa: octahedral sites) spinel phase, verified by neutron total scattering and pair distribution function analyses. The bi-phase Co-Mn-O material demonstrates an excellent storage capacitymore » towards Na-ions in an aqueous electrolyte (121 mA h g -1 at a scan rate of 1 mV s -1 in the half-cell and 81 mA h g -1 at a current density of 2 A g -1 after 5000 cycles in full-cells), as well as high rate performance (57 mA h g -1 a rate of 360 C). Electro-kinetic analysis and in situ X-ray diffraction measurements further confirm that the synergistic interaction between the spinel and layered phases, as well as the vacancy of the tetrahedral sites of spinel phase, contribute to the improved capacity and rate performance of the Co-Mn-O material by facilitating both diffusion-limited redox and capacitive charge storage processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Xiaoqiang; Charles, Daniel S.; Xu, Wenqian
Manganese-based metal oxide electrode materials are of great importance in electrochemical energy storage for their favorable redox behavior, low cost and environmental-friendliness. However, their storage capacity and cycle life in aqueous Na-ion electrolytes is not satisfactory. In this paper, we report the development of a bi-phase cobalt-manganese oxide (Co-Mn-O) nanostructured electrode material, comprised of a layered MnO 2.H 2O birnessite phase and a (Co 0.83Mn 0.13Va 0.04)tetra(Co 0.38Mn 1.62) octaO 3.72 (Va: vacancy; tetra: tetrahedral sites; octa: octahedral sites) spinel phase, verified by neutron total scattering and pair distribution function analyses. The bi-phase Co-Mn-O material demonstrates an excellent storage capacitymore » towards Na-ions in an aqueous electrolyte (121 mA h g -1 at a scan rate of 1 mV s -1 in the half-cell and 81 mA h g -1 at a current density of 2 A g -1 after 5000 cycles in full-cells), as well as high rate performance (57 mA h g -1 a rate of 360 C). Electro-kinetic analysis and in situ X-ray diffraction measurements further confirm that the synergistic interaction between the spinel and layered phases, as well as the vacancy of the tetrahedral sites of spinel phase, contribute to the improved capacity and rate performance of the Co-Mn-O material by facilitating both diffusion-limited redox and capacitive charge storage processes.« less
Robinson, David M; Go, Yong Bok; Mui, Michelle; Gardner, Graeme; Zhang, Zhijuan; Mastrogiovanni, Daniel; Garfunkel, Eric; Li, Jing; Greenblatt, Martha; Dismukes, G Charles
2013-03-06
Manganese oxides occur naturally as minerals in at least 30 different crystal structures, providing a rigorous test system to explore the significance of atomic positions on the catalytic efficiency of water oxidation. In this study, we chose to systematically compare eight synthetic oxide structures containing Mn(III) and Mn(IV) only, with particular emphasis on the five known structural polymorphs of MnO2. We have adapted literature synthesis methods to obtain pure polymorphs and validated their homogeneity and crystallinity by powder X-ray diffraction and both transmission and scanning electron microscopies. Measurement of water oxidation rate by oxygen evolution in aqueous solution was conducted with dispersed nanoparticulate manganese oxides and a standard ruthenium dye photo-oxidant system. No Ru was absorbed on the catalyst surface as observed by XPS and EDX. The post reaction atomic structure was completely preserved with no amorphization, as observed by HRTEM. Catalytic activities, normalized to surface area (BET), decrease in the series Mn2O3 > Mn3O4 ≫ λ-MnO2, where the latter is derived from spinel LiMn2O4 following partial Li(+) removal. No catalytic activity is observed from LiMn2O4 and four of the MnO2 polymorphs, in contrast to some literature reports with polydispersed manganese oxides and electro-deposited films. Catalytic activity within the eight examined Mn oxides was found exclusively for (distorted) cubic phases, Mn2O3 (bixbyite), Mn3O4 (hausmannite), and λ-MnO2 (spinel), all containing Mn(III) possessing longer Mn-O bonds between edge-sharing MnO6 octahedra. Electronically degenerate Mn(III) has antibonding electronic configuration e(g)(1) which imparts lattice distortions due to the Jahn-Teller effect that are hypothesized to contribute to structural flexibility important for catalytic turnover in water oxidation at the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeamjumnunja, Kannika; Gong, Wenquan; Makarenko, Tatyana
2015-10-15
The A-site ordered double-perovskite oxide, YBaMn{sub 2}O{sub 5+δ}, has been of recent interest for possible application as an oxygen storage material. In the present study, the oxygen non-stoichiometry of YBaMn{sub 2}O{sub 5+δ} has been determined as a function of pO{sub 2} at 650, 700 and 750 °C by Coulometric titration at near-equilibrium conditions. The results confirm that this perovskite oxide has three distinct phases on oxidation/reduction with δ≈0, 0.5 and 1. The stabilities of the YBaMn{sub 2}O{sub 5+δ} phases span a wide range of oxygen partial pressures (∼10{sup −20}≤pO{sub 2}(atm)≤∼1 ) depending on temperature. The phases interconvert at higher pO{submore » 2} values at higher temperatures. The partial molar free energies (Δμ{sub O}) corresponding to the oxidation of YBaMn{sub 2}O{sub 5} to YBaMn{sub 2}O{sub 5.5} and of YBaMn{sub 2}O{sub 5.5} to YBaMn{sub 2}O{sub ∼6} were determined. The value of Δμ{sub O} in both oxidation steps becomes less negative with increasing temperature. At some T and pO{sub 2} conditions, YBaMn{sub 2}O{sub 5+δ} is unstable with respect to decomposition to BaMnO{sub 3−δ} and YMnO{sub 3}. This instability is anticipated from the previous studies of the synthesis of YBaMn{sub 2}O{sub 5+δ} but is more apparent in the present experiments which are necessarily slow in order to achieve equilibrium with respect to the oxygen content. - Highlights: • Determination of the oxygen non-stoichiometry of YBaMn{sub 2}O{sub 5+δ} as a function of pO{sub 2} and T. • Establishments of pO{sub 2} ranges of stability of O{sub 5} and O{sub 5.5} at 650 °C, 700 °C and 750 °C. • Discovery of the kinetic instability of YBaMn{sub 2}O{sub 5+δ} with respect to decomposition to BaMnO{sub 3}−{sub x} and YMnO{sub 3}. • Evaluation of the thermodynamics of the oxidation of YBaMnO{sub 5}.« less
Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ
Bargar, J.R.; Fuller, C.C.; Marcus, M.A.; Brearley, A.J.; Perez De la Rosa, M.; Webb, S.M.; Caldwell, W.A.
2009-01-01
The microbial catalysis of Mn(II) oxidation is believed to be a dominant source of abundant sorption- and redox-active Mn oxides in marine, freshwater, and subsurface aquatic environments. In spite of their importance, environmental oxides of known biogenic origin have generally not been characterized in detail from a structural perspective. Hyporheic zone Mn oxide grain coatings at Pinal Creek, Arizona, a metals-contaminated stream, have been identified as being dominantly microbial in origin and are well studied from bulk chemistry and contaminant hydrology perspectives. This site thus presents an excellent opportunity to study the structures of terrestrial microbial Mn oxides in detail. XRD and EXAFS measurements performed in this study indicate that the hydrated Pinal Creek Mn oxide grain coatings are layer-type Mn oxides with dominantly hexagonal or pseudo-hexagonal layer symmetry. XRD and TEM measurements suggest the oxides to be nanoparticulate plates with average dimensions on the order of 11 nm thick ?? 35 nm diameter, but with individual particles exhibiting thickness as small as a single layer and sheets as wide as 500 nm. The hydrated oxides exhibit a 10-?? basal-plane spacing and turbostratic disorder. EXAFS analyses suggest the oxides contain layer Mn(IV) site vacancy defects, and layer Mn(III) is inferred to be present, as deduced from Jahn-Teller distortion of the local structure. The physical geometry and structural details of the coatings suggest formation within microbial biofilms. The biogenic Mn oxides are stable with respect to transformation into thermodynamically more stable phases over a time scale of at least 5 months. The nanoparticulate layered structural motif, also observed in pure culture laboratory studies, appears to be characteristic of biogenic Mn oxides and may explain the common occurrence of this mineral habit in soils and sediments. ?? 2008 Elsevier Ltd.
Thermodynamics of manganese oxides: Sodium, potassium, and calcium birnessite and cryptomelane
Birkner, Nancy; Navrotsky, Alexandra
2017-01-01
Manganese oxides with layer and tunnel structures occur widely in nature and inspire technological applications. Having variable compositions, these structures often are found as small particles (nanophases). This study explores, using experimental thermochemistry, the role of composition, oxidation state, structure, and surface energy in the their thermodynamic stability. The measured surface energies of cryptomelane, sodium birnessite, potassium birnessite and calcium birnessite are all significantly lower than those of binary manganese oxides (Mn3O4, Mn2O3, and MnO2), consistent with added stabilization of the layer and tunnel structures at the nanoscale. Surface energies generally decrease with decreasing average manganese oxidation state. A stabilizing enthalpy contribution arises from increasing counter-cation content. The formation of cryptomelane from birnessite in contact with aqueous solution is favored by the removal of ions from the layered phase. At large surface area, surface-energy differences make cryptomelane formation thermodynamically less favorable than birnessite formation. In contrast, at small to moderate surface areas, bulk thermodynamics and the energetics of the aqueous phase drive cryptomelane formation from birnessite, perhaps aided by oxidation-state differences. Transformation among birnessite phases of increasing surface area favors compositions with lower surface energy. These quantitative thermodynamic findings explain and support qualitative observations of phase-transformation patterns gathered from natural and synthetic manganese oxides. PMID:28130549
Han, Dong-Wook; Ku, Jun-Hwan; Kim, Ryoung-Hee; Yun, Dong-Jin; Lee, Seok-Soo; Doo, Seok-Gwang
2014-07-01
We report a new discovery for enhancing the energy density of manganese oxide (Nax MnO2 ) cathode materials for sodium rechargeable batteries by incorporation of aluminum. The Al incorporation results in NaAl(0.1) Mn(0.9) O2 with a mixture of tunnel and layered crystal structures. NaAl(0.1) Mn(0.9) O2 shows a much higher initial discharge capacity and superior cycling performance compared to pristine Na(0.65) MnO2 . We ascribe this enhancement in performance to the formation of a new orthorhombic layered NaMnO2 phase merged with a small amount of tunnel Na(0.44) MnO2 phase in NaAl(0.1) Mn(0.9) O2 , and to improvements in the surface stability of the NaAl(0.1) Mn(0.9) O2 particles caused by the formation of Al-O bonds on their surfaces. Our findings regarding the phase transformation and structure stabilization induced by incorporation of aluminum, closely related to the structural analogy between orthorhombic Na(0.44) MnO2 and NaAl(0.1) Mn(0.9) O2 , suggest a strategy for achieving sodium rechargeable batteries with high energy density and stability. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, A. K.
1998-03-01
The deleterious effects of Fe-bearing constituent particles on the fracture toughness of wrought A1 alloys have been known. Recent studies have shown that the presence of Fe-bearing, constituent particles is also determental to the nature and growth of the hard anodic oxide coating formed on such materials. The present study, using a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron probe microanalysis (EPMA), was made to examine the influence of the nature of the Fe-bearing particles on the hard anodizing behavior of AA 7075 extrusion products containing varying amounts of Si, Mn, and Fe impurities. It was found that, in the alloy containing 0.25 wt pct Si, 0.27 wt pct Mn, and 0.25 wt pct Fe, the Fe-bearing constituent particles are based on the Al12(FeMn)3Si phase (bcc with α=1.260 nm). These particles survive the hard anodizing treatment, add resistance to the electrical path, causing a rapid rise in the bath voltage with time, and cause a nonuniform growth of the anodic oxide film. In the materials containing 0.05 wt pct Si, 0.04 wt pct Mn, and 0.18 wt pct Fe, on the other hand, the formation of the Al12(FeMn)3Si-based phase is suppressed, and two different Fe-bearing phases, based on Al-Fe-Cu-Mn-based (simple cubic with a=1.265 nm) and Al7Cu2Fe, respectively form. Neither the Al-Fe-Cu-Mn-based phase nor the Al7Cu2Fe-based phase survive the hard anodizing treatment, and this results in a steady rise in the bath voltage with time and a relatively uniform growth of the anodic oxide film. Consideration of the size of the Fe-bearing, particles reveals that the smaller the particle, the more uniform the growth of the anodic oxide film.
NASA Astrophysics Data System (ADS)
El Abed, A.; Gaudin, E.; Darriet, J.; Whangbo, M.-H.
2002-02-01
Magnetic susceptibility measurements were carried out for two hexagonal perovskite-type oxides Sr1+x(Mn1-xNix)O3 with slightly different compositions (i.e., x={1}/{3} and 0.324). A significant difference in the susceptibilities of the two phases demonstrates the need to control phase compositions accurately. Sr4/3(Mn2/3Ni1/3)O3 consists of two spin sublattices, i.e., the Mn4+ and the Ni2+ ion sublattices. Spin dimer analysis was carried out to examine the relative strengths in the spin exchange interactions of the Mn4+ ion sublattice. The temperature dependence of the magnetic susceptibility of Sr4/3(Mn2/3Ni1/3)O3 was found consistent with a picture in which the Mn4+ ion sublattice has weakly interacting antiferromagnetically coupled (Mn4+)2 dimers, the Ni2+ ion sublattice acts as a paramagnetic system, and the two sublattices are nearly independent.
NASA Astrophysics Data System (ADS)
Yoon, Mi Young; Lee, Eun Jung; Song, Rak Hyun; Hwang, Hae Jin
2011-12-01
MnCo2O4 powder was prepared by a wet chemistry method using metal nitrates and glycine in an aqueous solution. The phase stability, sintering behavior, thermal expansion and electrical conductivity were examined to characterize powder suitability as an interconnect material in solid oxide fuel cells (SOFCs). X-ray diffraction indicated that the MnCo2O4 spinel synthesized by the glycine nitrate process was stable until 1100 °C and it was possible to obtain a fully densified single phase spinel. On the other hand, the MnCo2O4 synthesized by a solid state reaction decomposed into a cubic spinel and CoO after being sintered at 1100 °C. This might be associated with the reduction of Co3+ in the octahedral site of the cubic spinel phase. MnCo2O4 showed a thermal expansion coefficient comparable to that of other SOFCs components, as well as good electrical conductivity. Therefore, MnCo2O4 is a potential candidate for the ceramic interconnects in SOFCs, provided the phase instability under reducing environments can be improved.
Tebo, Bradley M.
2017-01-01
Manganese(IV) oxides, believed to form primarily through microbial activities, are extremely important mineral phases in marine environments where they scavenge a variety of trace elements and thereby control their distributions. The presence of various ions common in seawater are known to influence Mn oxide mineralogy yet little is known about the effect of these ions on the kinetics of bacterial Mn(II) oxidation and Mn oxide formation. We examined factors affecting bacterial Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1 in natural and artificial seawater of varying ionic conditions. Ca2+ concentration dramatically affected Mn(II) oxidation, while Mg2+, Sr2+, K+, Na+ and NO3− ions had no effect. The rate of Mn(II) oxidation at 10mM Ca2+ (seawater composition) was four or five times that without Ca2+. The relationship between Ca2+ content and oxidation rate demonstrates that the equilibrium constant is small (on the order of 0.1) and the binding coefficient is 0.5. The pH optimum for Mn(II) oxidation changed depending on the amount of Ca2+ present, suggesting that Ca2+ exerts a direct effect on the enzyme perhaps as a stabilizing bridge between polypeptide components. We also examined the effect of varying concentrations of NaCl or KNO3 (0 mM – 2000 mM) on the kinetics of Mn(II) oxidation in solutions containing 10 mM Ca2+. Mn(II) oxidation was unaffected by changes in ionic strength (I) below 0.2, but it was inhibited by increasing salt concentrations above this value. Our results suggest that the critical coagulation concentration is around 200 mM of salt (I = ca. 0.2), and that the ionic strength of seawater (I > 0.2) accelerates the precipitation of Mn oxides around the spores. Under these conditions, the aggregation of Mn oxides reduces the supply of dissolved O2 and/or Mn2+ and inhibits the Mn(II) -> Mn(III) step controlling the enzymatic oxidation of Mn(II). Our results suggest that the hardness and ionic strength of the aquatic environment at circumneutral pH strongly influences the rate of biologically mediated Mn(II) oxidation. PMID:29176910
Oxidation of dimethylselenide by δMnO2: oxidation product and factors affecting oxidation rate
Wang, Bronwen; Burau, Richard G.
1995-01-01
Volatile dimethylselenide (DMSe) was transformed to a nonvolatile Se compound in a ??-MnO2 suspension. The nonvolatile product was a single compound identified as dimethylselenoxide based on its mass spectra pattern. After 24 h, 100% of the DMSe added to a ??-MnO2 suspension was converted to nonpurgable Se as opposed to 20%, 18%, and 4% conversion for chromate, permanganate, and the filtrate from the suspension, respectively. Manganese was found in solution after reaction. These results imply that the reaction between manganese oxide and DMSe was a heterogeneous redox reaction involving solid phase ??-MnO2 and solution phase DMSe. Oxidation of DMSe to dimethylselenoxide [OSe(CH3)2] by a ??-MnO2 suspension appears to be first order with respect to ??-MnO2, to DMSe, and to hydrogen ion with an overall rate law of d[OSe(CH3)2 ]/dt = 95 M-2 min-1 [MnO2]1[DMSe]1[H+]1 for the MnO2 concentration range of 0.89 ?? 10-3 - 2.46 ?? 10-3 M, the DMSe concentration range of 3.9 ?? 10-7 - 15.5 ?? 10-7 M Se, and a hydrogen ion concentation range of 7.4 ?? 10-6 -9.5 ?? 10-8 M. A general surface site adsorption model is consistent with this rate equation if the uncharged |OMnOH is the surface adsorption site. DMSe acts as a Lewis base, and the manganese oxide surface acts as a Lewis acid. DMSe adsorption to |OMnOH can be viewed as a Lewis acid/ base complex between the largely p orbitals of the DMSe lone pair and the unoccupied eg orbitals on manganese oxide. For such a complex, frontier molecular orbital theory predicts electron transfer to occur via an inner-sphere complex between the DMSe and the manganese oxide. ?? 1995 American Chemical Society.
Effect of chemical pressure on the electronic phase transition in Ca 1-x Sr x Mn 7 O 12 films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huon, A.; Lee, D.; Herklotz, A.
Here, we demonstrate how chemical pressure affects the structural and electronic phase transitions of the quadruple perovskite CaMn 7O 12 by Sr doping, a compound that exhibits a charge-ordering transition above room temperature making it a candidate for oxide electronics. We also have synthesized Ca 1-xSr xMn 7O 12 (0 ≤ x ≤ 0.6) thin films by oxide molecular beam epitaxy on (LaAlO 3) 0.3(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) substrates. The substitution of Sr for Ca results in a linear expansion of the lattice, as revealed by X-ray diffraction. Temperature-dependent resistivity and X-ray diffraction measurements are used to demonstratemore » that the coupled charge-ordering and structural phase transitions can be tuned with Sr doping. An increase in Sr concentration acts to decrease the phase transition temperature (T*) from 426 K at x = 0 to 385 K at x = 0.6. Furthemore, the presence of a tunable electronic phase transition, above room temperature, points to the potential applicability of Ca 1-xSr xMn 7O 12 in sensors or oxide electronics, for example, via charge doping.« less
Effect of chemical pressure on the electronic phase transition in Ca 1-x Sr x Mn 7 O 12 films
Huon, A.; Lee, D.; Herklotz, A.; ...
2017-09-18
Here, we demonstrate how chemical pressure affects the structural and electronic phase transitions of the quadruple perovskite CaMn 7O 12 by Sr doping, a compound that exhibits a charge-ordering transition above room temperature making it a candidate for oxide electronics. We also have synthesized Ca 1-xSr xMn 7O 12 (0 ≤ x ≤ 0.6) thin films by oxide molecular beam epitaxy on (LaAlO 3) 0.3(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) substrates. The substitution of Sr for Ca results in a linear expansion of the lattice, as revealed by X-ray diffraction. Temperature-dependent resistivity and X-ray diffraction measurements are used to demonstratemore » that the coupled charge-ordering and structural phase transitions can be tuned with Sr doping. An increase in Sr concentration acts to decrease the phase transition temperature (T*) from 426 K at x = 0 to 385 K at x = 0.6. Furthemore, the presence of a tunable electronic phase transition, above room temperature, points to the potential applicability of Ca 1-xSr xMn 7O 12 in sensors or oxide electronics, for example, via charge doping.« less
Distribution and speciation of trace elements in iron and manganese oxide cave deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frierdich, Andrew J.; Catalano, Jeffrey G.
2012-10-24
Fe and Mn oxide minerals control the distribution and speciation of heavy metals and trace elements in soils and aquatic systems through chemical mechanisms involving adsorption, incorporation, and electron transfer. The Pautler Cave System in Southwest Illinois, an analog to other temperate carbonate-hosted karst systems, contains Fe and Mn oxide minerals that form in multiple depositional environments and have high concentrations of associated trace elements. Synchrotron-based micro-scanning X-ray fluorescence ({mu}-SXRF) shows unique spatial distributions of Fe, Mn, and trace elements in mineral samples. Profile maps of Mn oxide cave stream pebble coatings show Fe- and As-rich laminations, indicating dynamic redoxmore » conditions in the cave stream. {mu}-SXRF maps demonstrate that Ni, Cu, and Zn correlate primarily with Mn whereas As correlates with both Mn and Fe; As is more enriched in the Fe phase. Zn is concentrated in the periphery of Mn oxide stream pebble coatings, and may be an indication of recent anthropogenic surface activity. X-ray absorption fine structure spectroscopy measurements reveal that As(V) occurs as surface complexes on Mn and Fe oxides whereas Zn(II) associated with Mn oxides is adsorbed to the basal planes of phyllomanganates in a tetrahedral coordination. Co(III) and Se(IV) are also observed to be associated with Mn oxides. The observation of Fe, Mn, and trace element banding in Mn oxide cave stream pebble coatings suggests that these materials are sensitive to and document aqueous redox conditions, similar to ferromanganese nodules in soils and in marine and freshwater sediments. Furthermore, speciation and distribution measurements indicate that these minerals scavenge trace elements and limit the transport of micronutrients and contaminants in karst aquifer systems while also potentially recording changes in anthropogenic surface activity and land-use.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeamjumnunja, Kannika; Gong, Wenquan; Makarenko, Tatyana
The A-site ordered double-perovskite oxides, LnBaMn{sub 2}O{sub 5+δ} (Ln=Gd, Pr), were synthesized and investigated to understand the effect of A site cation substitution on the oxygen storage properties of these materials. The present results are compared with our previous data for YBaMn{sub 2}O{sub 5+δ}. The results clearly reveal that changing the Ln cation strongly influences the oxidation/reduction behavior of LnBaMn{sub 2}O{sub 5+δ}. Based on thermogravimetric analysis data, oxygen uptake begins at lower temperatures in both air and oxygen in compounds with Ln{sup 3+} ions larger than Y{sup 3+}. These oxides exhibit almost complete and reversible oxygen uptake/release between fully-reduced LnBaMn{submore » 2}O{sub 5} and fully-oxidized LnBaMn{sub 2}O{sub 6} during changes of the oxygen partial pressure between air and 1.99% H{sub 2}/Ar. In addition, the oxygen non-stoichiometries of GdBaMn{sub 2}O{sub 5+δ} and PrBaMn{sub 2}O{sub 5+δ} were determined as a function of pO{sub 2} at 600, 650, 700 and 750 °C by Coulometric titration at near-equilibrium conditions. The results confirm that these materials have two distinct phases on oxidation/reduction with δ≈0, 0.5 and a third phase with a range of composition with an oxygen content (5+δ) approaching ~6. The stabilities of the LnBaMn{sub 2}O{sub 5+δ} phases extend over a wide range of oxygen partial pressures (∼10{sup −25}≤pO{sub 2} (atm)≤∼1) depending on temperature. Isothermal experiments show that the larger the Ln{sup 3+} cation the lower pO{sub 2} for phase conversion. At some temperatures and pO{sub 2} conditions, the LnBaMn{sub 2}O{sub 5+δ} compounds are unstable with respect to decomposition to BaMnO{sub 3−δ} and LnMnO{sub 3}. This instability is more apparent in Coulometric titration experiments than in thermogravimetric analysis. The Coulometric titration experiments are necessarily slow in order to achieve equilibrium oxygen compositions. - Graphical abstract: Structure of LnBaMn{sub 2}O{sub 5.5} and the variation of stoichiometry of GdBaMn{sub 2}O{sub 5+x} with −log(pO{sub 2}) Display Omitted - Highlights: • Determination of the oxygen non-stoichiometry of GdBaMn{sub 2}O{sub 5+δ} and PrBaMn{sub 2}O{sub 5+δ} as a function of pO{sub 2} and T. • Establishment of pO{sub 2} ranges of stability of O{sub 5} and O{sub 5.5} at 600 °C, 650 °C, 700 °C and 750 °C. • Investigation of the kinetic instability of LnBaMn{sub 2}O{sub 5+δ} (Ln=Gd, Pr) with respect to decomposition to BaMnO{sub 3−x} and LnMnO{sub 3} • Comparison of the thermodynamics of the oxidation of LnBaMnO{sub 5} (Ln=Y, Gd, Pr) as a function of the rare earth cation size.« less
Control of arsenic mobilization in paddy soils by manganese and iron oxides.
Xu, Xiaowei; Chen, Chuan; Wang, Peng; Kretzschmar, Ruben; Zhao, Fang-Jie
2017-12-01
Reductive mobilization of arsenic (As) in paddy soils under flooded conditions is an important reason for the relatively high accumulation of As in rice, posing a risk to food safety and human health. The extent of As mobilization varies widely among paddy soils, but the reasons are not well understood. In this study, we investigated As mobilization in six As-contaminated paddy soils (total As ranging from 73 to 122 mg kg -1 ) in flooded incubation and pot experiments. Arsenic speciation in the solution and solid phases were determined. The magnitude of As mobilization into the porewater varied by > 100 times among the six soils. Porewater As concentration correlated closely with the concentration of oxalate-extractable As, suggesting that As associated with amorphous iron (oxyhydr)oxides represents the potentially mobilizable pool of As under flooded conditions. Soil containing a high level of manganese oxides showed the lowest As mobilization, likely because Mn oxides retard As mobilization by slowing down the drop of redox potential upon soil flooding and maintaining a higher arsenate to arsenite ratio in the solid and solution phases. Additions of a synthetic Mn oxide (hausmannite) to two paddy soils increased arsenite oxidation, decreased As mobilization into the porewater and decreased As concentrations in rice grain and straw. Consistent with previous studies using simplified model systems or pure mineral phases, the present study shows that Mn oxides and amorphous Fe (oxyhydr)oxides are important factors controlling reductive As mobilization in As-contaminated paddy soils. In addition, this study also suggests a potential mitigation strategy using exogenous Mn oxides to decrease As uptake by rice in paddy soils containing low levels of indigenous Mn oxides, although further work is needed to verify its efficacy and possible secondary effects under field conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gunst, S; Weinbruch, S; Wentzel, M; Ortner, H M; Skogstad, A; Hetland, S; Thomassen, Y
2000-02-01
Aerosol particle samples were collected at ELKEM ASA ferromanganese (FeMn) and silicomanganese (SiMn) smelters at Porsgrunn, Norway, during different production steps: raw material mixing, welding of protective steel casings, tapping of FeMn and slag, crane operation moving the ladles with molten metal, operation of the Metal Oxygen Refinement (MOR) reactor and casting of SiMn. Aerosol fractions were assessed for the analysis of the bulk elemental composition as well as for individual particle analysis. The bulk elemental composition was determined by inductively coupled plasma atomic emission spectrometry. For individual particle analysis, an electron microprobe was used in combination with wavelength-dispersive techniques. Most particles show a complex composition and cannot be attributed to a single phase. Therefore, the particles were divided into six groups according to their chemical composition: Group I, particles containing mainly metallic Fe and/or Mn; Group II, slag particles containing mainly Fe and/or Mn oxides; Group III, slag particles consisting predominantly of oxidized flux components such as Si, Al, Mg, Ca, Na and K; Group IV, particles consisting mainly of carbon; Group V, mixtures of particles from Groups II, III and IV; Group VI, mixtures of particles from Groups II and III. In raw material mixing, particles originating from the Mn ores were mostly found. In the welding of steel casings, most particles were assigned to Group II, Mn and Fe oxides. During the tapping of slag and metal, mostly slag particles from Group III were found (oxides of the flux components). During movement of the ladles, most particles came from Group II. At the MOR reactor, most of the particles belonged to the slag phase consisting of the flux components (Group III). The particles collected during the casting of SiMn were mainly attributed to the slag phase (Groups III and V). Due to the compositional complexity of the particles, toxicological investigations on the kinetics of pure compounds may not be easily associated with the results of this study.
Feng, Yuping; Fornell, Jordina; Zhang, Huiyan; Solsona, Pau; Barό, Maria Dolors; Suriñach, Santiago; Sort, Jordi
2018-01-01
Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU) templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N2 atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe2O3) foams are obtained from the metallic iron slurry independently of the N2 flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N2 flow. While the main phases for a N2 flow rate of 180 L/h are α-Fe2O3 and FeMnO3, the predominant phase for high N2 flow rates (e.g., 650 L/h) is Fe2MnO4. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe2MnO4 foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N2 flow rate (i.e., the amount of Fe2MnO4) is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids. PMID:29439450
Feng, Yuping; Fornell, Jordina; Zhang, Huiyan; Solsona, Pau; Barό, Maria Dolors; Suriñach, Santiago; Pellicer, Eva; Sort, Jordi
2018-02-11
Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU) templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N₂ atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe₂O₃) foams are obtained from the metallic iron slurry independently of the N₂ flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N₂ flow. While the main phases for a N₂ flow rate of 180 L/h are α-Fe₂O₃ and FeMnO₃, the predominant phase for high N₂ flow rates (e.g., 650 L/h) is Fe₂MnO₄. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe₂MnO₄ foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N₂ flow rate (i.e., the amount of Fe₂MnO₄) is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids.
NASA Astrophysics Data System (ADS)
Konishi, Hiroaki; Hirano, Tatsumi; Takamatsu, Daiko; Gunji, Akira; Feng, Xiaoliang; Furutsuki, Sho; Okumura, Takefumi; Terada, Shohei; Tamura, Kazuhisa
2018-06-01
The potential in each state of charge (SOC) during charging of Li1.2Ni0.13Mn0.54Co0.13O2 is higher than that during discharging. In other words, the potential hysteresis occurs between charging and discharging. Furthermore, the potential in each SOC changes according to the charge-discharge operating conditions, indicating that the charge-discharge reaction mechanism is also affected. To clarify the effect of charge-discharge operating conditions on the electrochemical reaction, Li1.2Ni0.13Mn0.54Co0.13O2 was charged and discharged under various charge-discharge operating ranges, and open-circuit potential (OCP), crystal structure, and oxidation states of the transition metals were evaluated by electrochemical measurement, X-ray diffraction (XRD), and X-ray absorption fine structure (XAFS). These results indicate that OCP, lattice parameters, and oxidation states of the transition metals of Li1.2Ni0.13Mn0.54Co0.13O2 in each SOC are not constant. The XRD results indicate that two phases, namely, LiNi0.33Mn0.33Co0.33O2-like and Li2MnO3-like, exist in Li1.2Ni0.13Mn0.54Co0.13O2. For the LiNi0.33Mn0.33Co0.33O2-like phase, the relationship between OCP, lattice parameters, and oxidation states of the transition metals in each SOC is not affected by the charge-discharge operating conditions, indicating that extraction and insertion of lithium ions for the LiNi0.33Mn0.33Co0.33O2-like phase progresses at almost the same potential. Although the extraction and insertion of lithium ions for the Li2MnO3-like phase progresses at almost the same potential in the low-SOC region, the OCP and lattice parameter in each SOC in the high-SOC region are not constant. Therefore, the extraction of lithium ions from the Li2MnO3-like phase in the high-SOC region causes the potential hysteresis of Li1.2Ni0.13Mn0.54Co0.13O2.
Steam Oxidation Behavior of Advanced Steels and Ni-Based Alloys at 800 °C
NASA Astrophysics Data System (ADS)
Dudziak, T.; Boroń, L.; Deodeshmukh, V.; Sobczak, J.; Sobczak, N.; Witkowska, M.; Ratuszek, W.; Chruściel, K.
2017-03-01
This publication studies the steam oxidation behavior of advanced steels (309S, 310S and HR3C) and Ni-based alloys (Haynes® 230®, alloy 263, alloy 617 and Haynes® 282®) exposed at 800 °C for 2000 h under 1 bar pressure, in a pure water steam system. The results revealed that all exposed materials showed relatively low weight gain, with no spallation of the oxide scale within the 2000 h of exposure. XRD analysis showed that Ni-based alloys developed an oxide scale consisting of four main phases: Cr2O3 (alloy 617, Haynes® 282®, alloy 263 and Haynes® 230®), MnCr2O4 (alloy 617, Haynes® 282® and Haynes® 230®), NiCr2O4 (alloy 617) and TiO2 (alloy 263, Haynes® 282®). In contrast, advanced steels showed the development of Cr2O3, MnCr2O4, Mn7SiO12, FeMn(SiO4) and SiO2 phases. The steel with the highest Cr content showed the formation of Fe3O4 and the thickest oxide scale.
Sequestration of Tellurium From Seawater by Ferromanganese Crusts: A XANES/EXAFS Perspective
NASA Astrophysics Data System (ADS)
Hein, J. R.; Bargar, J.; Koschinsky, A.; Dunham, R.; Halliday, A. N.
2007-12-01
Marine iron-oxyhydroxide/manganese-oxide crusts (Fe-Mn crusts) provide the richest known source of tellurium (Te). Te averages about 50 ppm in Fe-Mn crusts distributed globally, with concentrations locally up to 210 ppm. The sorption of Te onto Fe-Mn crusts likely controls the dominant redox species and concentration of Te in the global ocean (Hein et al., 2003). However, little is known about the mechanisms by which Te is sequestered by Fe-Mn crusts and Fe-Mn colloids in the water column, and then stabilized in the Fe/Mn oxyhydroxide/oxide framework. Two primary hypotheses are being tested: (a) Te(IV) is initially the predominant adsorbed species, which is subsequently oxidized on the Fe-oxyhydroxide and/or Mn oxide phases in natural systems and in sorption experiments. (b) Once oxidized, Te(VI) remains tightly bound to the Fe phase in Fe-Mn crusts as adsorbed surface complexes. These hypotheses are being examined by using the Stanford Synchrotron Radiation Laboratory's (SSRL) synchrotron-based XANES (x-ray absorption near-edge structure) spectroscopy to assess Te oxidation state in natural samples and samples in which Te(IV) and Te(VI) were sorbed onto synthetic and natural FeOOH and Mn oxides. EXAFS (extended x-ray absorption fine structure) spectroscopy is being used to resolve the local molecular-scale structure around Te in these same samples. Data have thus far been obtained for six Fe-Mn crusts from a variety of geographic locations and water depths of occurrence, with differing chemical compositions; and two model compounds, Te(IV) sorbed on FeOOH and Te(IV) sorbed on MnO2. XANES data show that for all six Fe-Mn crust samples, 85 to 100 percent of the Te occurs as Te(VI). For the model compounds, about 65 percent of the Te(IV) sorbed onto the MnO2 had oxidized to Te(VI) by the time (one week) the sample was analyzed, whereas Te sorbed onto FeOOH remained at about 100 percent Te(IV). The most striking result from the EXAFS data is that all spectra for the six Fe-Mn crust samples are virtually identical, regardless of location, depositional conditions, or chemical and mineralogical compositions. This uniformity indicates that the local structure around Te is similar for all samples and, therefore, the mode of incorporation of Te into the Fe-Mn crusts does not vary despite varying environments of formation. This implies that a single set of processes applies throughout the global ocean to the incorporation of Te into Fe-Mn crusts. Hein, J.R., Koschinsky, A., and Halliday, A.N., 2003, Geochim. Cosmochim. Acta 67: 1117-1127.
27Al, 63Cu NMR spectroscopy and electrical transport in Heusler Cu-Mn-Al alloy powders
NASA Astrophysics Data System (ADS)
Nadutov, V. M.; Perekos, A. O.; Kokorin, V. V.; Trachevskii, V. V.; Konoplyuk, S. M.; Vashchuk, D. L.
2018-02-01
The ultrafine powder of the Heusler Cu-13,1Mn-12,6Al (wt.%) alloy produced by electrical spark dispersion (ESD) in ethanol and the pellets prepared by pressing of the powders and aged in various gas environment (air, Ar, vacuum) were studied by XRD, nuclear magnetic resonance, magnetic and electric transport methods. The constituent phases were identified as b.c.c. α-Cu-Mn-Al, f.c.c. γ-Cu-Mn-Al, Cu2MnAl, and oxides. The sizes of the coherently scattering domains (CSD) and the saturation magnetizations were in the range of 4-90 nm and 0-1.5 Am2/kg, respectively. 27Al and 63Cu NMR spectra of the powders and pellets have shown hyperfine structure caused by contributions from atomic nuclei of the constituent phases. The aging of pellets in different gas environments had effect on their phase composition but no effect on dispersion of the phases. In contrast to the as-cast alloy, electrical resistance of the pellets evidenced semiconducting behavior at elevated temperatures due to the presence of metal oxides formed on the surfaces of nanoparticles.
NASA Astrophysics Data System (ADS)
Vanderbemden, P.; Rivas-Murias, B.; Lovchinov, V.; Vertruyen, B.
2010-11-01
In this paper, we report low temperature dielectric measurements of bulk composite electroceramic samples containing a colossal magnetoresistive (CMR) manganite phase (La0.7Ca0.3MnO3 [abbreviated LCMO]) and an insulating phase (Mn3O4). Details of the experimental system are given and possible experimental artefacts due to moisture are outlined. For a LCMO volume fraction of ~ 16%, the permittivity of the LCMO/ Mn3O4 composite at T = 50 K is found to be much higher than that of pure Mn3O4 and magnetic field dependent. This effect is related to an extrinsic space charge polarization mechanism between the insulating phase (Mn3O4) and the conducting magnetoresistive phase (LCMO).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Xiaoqiang; Charles, Daniel S.; Xu, Wenqian
Manganese-based metal oxide electrode materials are of great importance in electrochemical energy storage for their favorable redox behavior, low cost and environmental-friendliness. However, their storage capacity and cycle life in aqueous Na-ion electrolytes is not satisfactory. In this paper, we report the development of a bi-phase cobalt-manganese oxide (Co-Mn-O) nanostructured electrode material, comprised of a layered MnO 2.H 2O birnessite phase and a (Co 0.83Mn 0.13Va 0.04)tetra(Co 0.38Mn 1.62) octaO 3.72 (Va: vacancy; tetra: tetrahedral sites; octa: octahedral sites) spinel phase, verified by neutron total scattering and pair distribution function analyses. The bi-phase Co-Mn-O material demonstrates an excellent storage capacitymore » towards Na-ions in an aqueous electrolyte (121 mA h g -1 at a scan rate of 1 mV s -1 in the half-cell and 81 mA h g -1 at a current density of 2 A g -1 after 5000 cycles in full-cells), as well as high rate performance (57 mA h g -1 a rate of 360 C). Electro-kinetic analysis and in situ X-ray diffraction measurements further confirm that the synergistic interaction between the spinel and layered phases, as well as the vacancy of the tetrahedral sites of spinel phase, contribute to the improved capacity and rate performance of the Co-Mn-O material by facilitating both diffusion-limited redox and capacitive charge storage processes.« less
Linking Mn(II)-oxidizing bacteria to natural attenuation at a former U mining site
NASA Astrophysics Data System (ADS)
Akob, D.; Bohu, T.; Beyer, A.; Schäffner, F.; Händel, M.; Johnson, C.; Merten, D.; Büchel, G.; Totsche, K.; Küsel, K.
2012-04-01
Uranium mining near Ronneburg, Germany resulted in widespread environmental contamination with acid mine drainage (AMD) and high concentrations of heavy metals and radionuclides. Despite physical remediation of the area, groundwater is still a source of heavy metal contaminants, e.g., Cd, Ni, Co, Cu and Zn, to nearby ecosystems. However, natural attenuation of heavy metals is occurring in Mn oxide rich soils and sediments ranging in pH from 5 to 7. While microorganisms readily oxidize Mn(II) and precipitate Mn oxides at pH ~7 under oxic conditions, few studies describe Mn(II)-oxidizing bacteria (MOB) at pH ~5 and/or in the presence of heavy metals. In this study we (1) isolated MOB from the contaminated Ronneburg area at pH 5.5 and 7 and (2) evaluated the biological formation of Mn oxides. We isolated nine MOB strains at pH 7 (members of the Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla) and a single isolate at pH 5.5 (Oxalobacteraceae isolate AB_14, within the β-Proteobacteria). LA-ICP-MS showed that all isolates accumulated Mn and Fe in their biomass. However, the Oxalobacteraceae isolate AB_14 oxidizes more Mn without additional Fe in the medium. Preliminary FTIR analysis indicated that all isolates formed precipitates, which showed absorption bands that were characteristic for birnessite. High resolution TEM showed variable morphology of precipitates and EDS confirmed the presence of Mn oxides. Isolate AB_14 was not surrounded with precipitates whereas our Actinobacteria isolate AB_18 was encrusted with Mn oxides. Electron diffraction is currently being used to confirm the presence of birnessite and other Mn oxide phases. This, the first known report of any organism capable of Mn oxidation at low pH, demonstrated that MOB can be involved in the natural attenuation of both moderately acidic and neutral pH soils and sediments via the formation of biogenic Mn oxides. Future work will fully evaluate the minerals formed in this process as well as their interactions with contaminating heavy metals and radionuclides.
Role of manganese dioxide in the recovery of oxide-sulphide zinc ore.
Yang, Kun; Zhang, Libo; Zhu, Xingcai; Peng, Jinhui; Li, Shiwei; Ma, Aiyuan; Li, Haoyu; Zhu, Fei
2018-02-05
In this article, the role of MnO 2 in the recovery of oxide-sulphide zinc ore discussed. Through adopting various modern analysis techniques (such as X-ray diffraction pattern, X-ray photoelectron spectroscopy, scanning electron microscope, energy dispersive X-ray analysis, and fourier transform infrared spectroscopy), the function and mechanism of MnO 2 during the phase transformation process is found out. Thermodynamic mechanisms involved in the phase transformation process with or without addition of manganese dioxide investigated by exploiting the Equilib module of FactSage. What's more, XRD patterns, XPS spectra and SEM-EDAX analyses of zinc calcines verify well the calculations of FactSage. Results reveal that the addition of MnO 2 will produce an aggregation of ZnMn 2 O 4 , a valuable energy material, while roasting on its own, results in generating undesirable Zn 2 SiO 4 , the oxidation degree being relatively low. Moreover, XRD pattern of zinc calcine and FT-IR spectrum of yellow product collected in the calcination process prove that the sulphur-fixing value of the additive MnO 2 , which can promote transforming to the elemental sulphur. The volatile S can be collected through a simple guiding device. In this process, the emission of SO 2 effectively avoids, thus MnO 2 deems as a potential additive in the recovery of oxide-sulphide zinc ore. Copyright © 2017. Published by Elsevier B.V.
Shen, Chong-Heng; Wang, Qin; Fu, Fang; Huang, Ling; Lin, Zhou; Shen, Shou-Yu; Su, Hang; Zheng, Xiao-Mei; Xu, Bin-Bin; Li, Jun-Tao; Sun, Shi-Gang
2014-04-23
In this work, the Li-rich oxide Li1.23Ni0.09Co0.12Mn0.56O2 was synthesized through a facile route called aqueous solution-evaporation route that is simple and without waste water. The as-prepared Li1.23Ni0.09Co0.12Mn0.56O2 oxide was confirmed to be a layered LiMO2-Li2MnO3 solid solution through ex situ X-ray diffraction (ex situ XRD) and transmission electron microscopy (TEM). Electrochemical results showed that the Li-rich oxide Li1.23Ni0.09Co0.12Mn0.56O2 material can deliver a discharge capacity of 250.8 mAhg(-1) in the 1st cycle at 0.1 C and capacity retention of 86.0% in 81 cycles. In situ X-ray diffraction technique (in situ XRD) and ex situ TEM were applied to study structural changes of the Li-rich oxide Li1.23Ni0.09Co0.12Mn0.56O2 material during charge-discharge cycles. The study allowed observing experimentally, for the first time, the existence of β-MnO2 phase that is appeared near 4.54 V in the first charge process, and a phase transformation of the β-MnO2 to layered Li0.9MnO2 is occurred in the initial discharge process by evidence of in situ XRD pattrens and selected area electron diffraction (SAED) patterns at different states of the initial charge and discharge process. The results illustrated also that the variation of the in situ X-ray reflections during charge-discharge cycling are clearly related to the changes of lattice parameters of the as-prepared Li-rich oxide during the charge-discharge cycles.
NASA Astrophysics Data System (ADS)
Sasongko, Muhammad Ilman Nur; Puspitasari, Poppy; Yazirin, Cepi; Tsamroh, Dewi Izzatus; Risdanareni, Puput
2017-09-01
Manganese oxide (MnO) occurs in many rock types and may take the form of minerals. MnO has its drawbacks, namely highly reactive oxidizing species classified as dangerous and explosive at temperatures above 55 °C. Despite this,MnO has excellent magnetic, electrochemical, and conductivity properties, which should be reduced to nano-size to maximize their use and improve the properties of MnO. Phase and morphology characterization of powder this research aims to reduce the grain size of the MnO from micro to nano using the sol-gel method with various sintering times. Sol-gel is a simple synthesis method that has been proven capable of synthesizing a wide variety of micro-sized oxide materials into nano. Sintering time is a technique performed in the synthesis process to dry the material to a temperature above the normal temperature. The temperature used for sintering starting from 600 °C to 1000 °C. Characterizations were done using XRD, SEM, EDX, and FTIR machines. The sintering processes in this study used a temperature of 600 °C with different sintering periods of 30, 60 and 90 minutes. The XRD characterization with a 30-minute sintering time resulted in the smallest MnO in the form crystalline powder of 47.3 nm. The highest intensity (degree of crystallinity) found in MnO sintered for 90 minutes. The results of the morphological characterization of SEM showed a morphological change in MnO from micro-sized triangular to nano-sized spherical shape. The EDX characterization results indicated that the 30-minute sintering caused the lowest change in Mn and the highest change in O. The results of FTIR characterization showed a shift in C-H and Mn-O followed by an increase in the group of N-H, C=O and Mn-O.
In Situ XAS and XRD Studies of Substituted Spinel Lithium Manganese Oxides in the 4-5 V Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBreen, J.; Mukerjee, S.; Yang, X. Q.
Partial substitution of Mn in lithium manganese oxide spinel materials by Cu and Ni greatly affects the electrochemistry and the phase behavior of the cathode. Substitution with either metal or with a combination of both shortens the 4.2 V plateau and results in higher voltage plateaus. In situ x-ray absorption (XAS) studies indicate that the higher voltage plateaus are related to redox processes on the substituents. In situ x-ray diffraction (XRD) on LiCu{sub 0.5}Mn{sub 1.5}O{sub 4} shows single phase behavior during the charge and discharge process. Three phases are observed for LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and two phases are observedmore » in the case of LiNi{sub 0.25}Cu{sub 0.25}Mn{sub 1.5}O{sub 4}. The electrolyte stability is dependent on both the operating voltage and the cathode composition. Even though Ni substituted materials have lower voltages, the electrolyte is more stable in cells with the Cu substituted materials.« less
Fuller, Christopher C.; Bargar, John R.
2014-01-01
The distribution and speciation of Zn sorbed to biogenic Mn oxides forming in the hyporheic zone of Pinal Creek, AZ, was investigated using extended X-ray absorption fine structure (EXAFS) and microfocused synchrotron X-ray fluorescence (μSXRF) mapping, and chemical extraction. μSXRF and chemical extractions show that contaminant Zn co-varied with Mn in streambed sediment grain coatings. Bulk and microfocused EXAFS spectra of Zn in the biogenic Mn oxide coating are indicative of Zn forming triple-corner-sharing inner-sphere complexes over octahedral vacancies in the Mn oxide sheet structure. Zn desorbed in response to the decrease in pH in batch experiments and resulted in near-equal dissolved Zn at each pH over a 10-fold range in the solid/solution ratio. The geometry of sorbed Zn was unchanged after 50% desorption at pH 5, indicating that desorption is not controlled by dissolution of secondary Zn phases. In summary, these findings support the idea that Zn attenuation in Pinal Creek is largely controlled by sorption to microbial Mn oxides forming in the streambed during hyporheic exchange. Sorption to biogenic Mn oxides is likely an important process of Zn attenuation in circum-neutral pH reaches of many acid-mine drainage contaminated streams when dissolved Mn is present.
NASA Astrophysics Data System (ADS)
Krämer, Dennis; Tepe, Nathalie; Bau, Michael
2014-05-01
We conducted experiments with Rare Earths and Yttrium (REY), where the REY were sorbed on synthetic manganese dioxide as well as on coprecipitating manganese (hydr)oxide in the presence and absence of the siderophore desferrioxamine-B (DFOB). Siderophores are a group of globally abundant biogenic complexing agents which are excreted by plants and bacteria to enhance the bioavailability of Fe in oxic environments. The model siderophore used in this study, DFOB, is a hydroxamate siderophore occurring in almost all environmental settings with concentrations in the nanomolar to millimolar range and is one of the most thoroughly studied siderophores. In the absence of siderophores and other organic ligands, trivalent Ce is usually surface-oxidized to tetravalent Ce during sorption onto manganese (hydr)oxides. Such Mn precipitates, therefore, often show positive Ce anomalies, whereas the ambient solutions exhibit negative Ce anomalies (Ohta and Kawabe, 2001). In marked contrast, however, REY sorption in the presence of DFOB produces negative Ce anomalies in the Mn precipitates and a distinct and characteristic positive Ce anomaly in the residual siderophore-bearing solution. Furthermore, the heavy REY with ionic radii larger than the radius of Sm are also almost completely prevented from sorption onto the Mn solid phases. Sorption of REY onto Mn (hydr)oxides in the presence of DFOB creates a distinct and pronounced fractionation of Ce and the heavy REY from the light and middle REY. Apart from Ce, which is oxidized in solution by the siderophore, the distribution of the other REY mimics the stability constants for multi-dentate complexes of REY with DFOB, as determined by Christenson & Schijf (2011). Heavier REY are forming stronger complexes (and are hence better "protected" from sorption) than light REY, excluding Ce. Preferential partitioning of Ce into the liquid phase during the precipitation of Mn (hydr)oxides has only rarely been described for natural Mn (hydr)oxides (e.g., Tanaka et al., 2010, Loges et al., 2012). Our experimental results demonstrate that biogenic organic ligands such as hydroxamate siderophores, may produce solutions with positive Ce anomaly (Bau et al., 2013) and may even counteract the surface oxidation of Ce on Mn (hydr)oxides. References Bau, M., Tepe, N., Mohwinkel, D., 2013. Siderophore-promoted transfer of rare earth elements and iron from volcanic ash into glacial meltwater, river and ocean water. Earth Planet. Sci. Lett. 364, 30-36. Christenson E. A. and Schijf J. (2011) Stability of YREE complexes with the trihydroxamate siderophore desferrioxamine B at seawater ionic strength. Geochim. Cosmochim. Acta 75, 7047-7062. Loges, A., Wagner, T., Barth, M., Bau, M., Göb, S., and Markl, G. 2012. Negative Ce anomalies in Mn oxides: The role of Ce4+ mobility during water-mineral interaction. Geochimica and Cosmochimica Acta 86, 296-317 Ohta A. and Kawabe I. (2001) REE (III) adsorption onto Mn dioxide (delta-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by delta-MnO2. Geochim. Cosmochim. Acta 65, 695-703. Tanaka K., Tani Y., Takahashi Y., Tanimizu M., Suzuki Y., Kozai N. and Ohnuki T. (2010) A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by Acremonium sp. strain KR21-2. Geochim. Cosmochim. Acta 74, 5463-5477.
Kay, J.T.; Conklin, M.H.; Fuller, C.C.; O'Day, P. A.
2001-01-01
A series of column experiments was conducted using manganese oxide coated sediments collected from the hyporheic zone in Pinal Creek (AZ), a metal-contaminated stream, to study the uptake and retention of Mn, Ni, and Co. Experimental variables included the absence (abiotic) and presence (biotic) of active Mn-oxidizing bacteria, the absence and presence of dissolved Mn, and sediment manganese oxide content. Uptake of Mn under biotic conditions was between 8 and 39% higher than under abiotic conditions. Continuous uptake of Mn due to biotic oxidation was evident from extraction of column sediments. Manganese uptake is hypothesized to initially occur as adsorption, which led to subsequent surface and/or microbial oxidation. Complete breakthrough of Ni within 100 pore volumes indicated no process of continuous uptake and was modeled as an equilibrium adsorption process. Nickel uptake in the presence of dissolved Mn was 67-100% reversible. Sediment extractions suggest that Ni uptake occurred through weak and strong adsorption. Continuous uptake of cobalt increased with sediment manganese oxide content, and Co uptake was up to 75% greater under biotic than abiotic conditions. Cobalt uptake was controlled by both existing and newly formed manganese oxides. Only a small amount of Co uptake was reversible (10-25%). XANES spectral analysis indicated that most Co(II) was oxidized to Co(III) and probably incorporated structurally into manganese oxides. Although manganese oxides were the primary phase controlling uptake and retention of Mn, Ni, and Co, the mechanisms varied among the metals.
Phase control of Mn-based spinel films via pulsed laser deposition
Feng, Zhenxing; Chen, Xiao; Fister, Timothy T.; ...
2016-07-06
Phase transformations in battery cathode materials during electrochemical-insertion reactions lead to capacity fading and low cycle life. One solution is to keep the same phase of cathode materials during cation insertion-extraction processes. Here, we demonstrate a novel strategy to control the phase and composition of Mn-based spinel oxides for magnesium-ion battery applications through the growth of thin films on lattice-matched substrates using pulsed laser deposition. Materials at two extreme conditions are considered: fully discharged cathode MgMn 2O 4 and fully charged cathode Mn 2O 4. The tetragonal MgMn 2O 4 (MMO) phase is obtained on MgAl 2O 4 substrates, whilemore » the cubic MMO phase is obtained on MgO substrates. Similarly, growth of the empty Mn 2O 4 spinel in the cubic phase is obtained on an MgO substrate. These results demonstrate the ability to control separately the phase of spinel thin films (e.g., tetragonal vs. cubic MMO) at nominally fixed composition, and to maintain a fixed (cubic) phase while varying its composition (MgxMn 2O 4, for x = 0, 1). As a result, this capability provides a novel route to gain insights into the operation of battery electrodes for energy storage applications.« less
Phase control of Mn-based spinel films via pulsed laser deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Zhenxing; Chen, Xiao; Fister, Timothy T.
Phase transformations in battery cathode materials during electrochemical-insertion reactions lead to capacity fading and low cycle life. One solution is to keep the same phase of cathode materials during cation insertion-extraction processes. Here, we demonstrate a novel strategy to control the phase and composition of Mn-based spinel oxides for magnesium-ion battery applications through the growth of thin films on lattice-matched substrates using pulsed laser deposition. Materials at two extreme conditions are considered: fully discharged cathode MgMn 2O 4 and fully charged cathode Mn 2O 4. The tetragonal MgMn 2O 4 (MMO) phase is obtained on MgAl 2O 4 substrates, whilemore » the cubic MMO phase is obtained on MgO substrates. Similarly, growth of the empty Mn 2O 4 spinel in the cubic phase is obtained on an MgO substrate. These results demonstrate the ability to control separately the phase of spinel thin films (e.g., tetragonal vs. cubic MMO) at nominally fixed composition, and to maintain a fixed (cubic) phase while varying its composition (MgxMn 2O 4, for x = 0, 1). As a result, this capability provides a novel route to gain insights into the operation of battery electrodes for energy storage applications.« less
Li, Hailong; Wu, Chang-Yu; Li, Ying; Li, Liqing; Zhao, Yongchun; Zhang, Junying
2012-12-01
MnO(x)-CeO(2) mixed-oxide supported on TiO(2) (Mn-Ce/Ti) was synthesized by an ultrasound-assisted impregnation method and employed to oxidize elemental mercury (Hg(0)) at 200°C in simulated coal combustion flue gas. Over 90% of Hg(0) oxidation was achieved on the Mn-Ce/Ti catalyst at 200°C under simulated flue gas representing those from burning low-rank coals with a high gas hourly space velocity of 60,000 h(-1). Gas-phase O(2) regenerated the lattice oxygen and replenished the chemisorbed oxygen, which facilitated Hg(0) oxidation. HCl was the most effective flue gas component responsible for Hg(0) oxidation. 10 ppm HCl plus 4% O(2) resulted in 100% Hg(0) oxidation under the experimental conditions. SO(2) competed with Hg(0) for active sites, thus deactivating the catalyst's capability in oxidizing Hg(0). NO covered the active sites and consumed surface oxygen active for Hg(0) oxidation, hence limiting Hg(0) oxidation. Water vapor showed prohibitive effect on Hg(0) oxidation due to its competition with HCl and Hg(0) for active adsorption sites. This study provides information about the promotional or inhibitory effects of individual flue gas components on Hg(0) oxidation over a highly effective Mn-Ce/Ti catalyst. Such knowledge is of fundamental importance for industrial applications of the Mn-Ce/Ti catalyst in coal-fired power plants. Copyright © 2012 Elsevier B.V. All rights reserved.
Narasimhan, T S Lakshmi; Sai Baba, M; Viswanathan, R
2006-12-28
Knudsen effusion mass spectrometric measurements have been performed in the temperature range of 850-950 K over four three-phase mixtures, each phase mixture having at least one phase lying on the MnO-TeO2 binary line of the Mn-Te-O phase diagram, and the rest of the phases lying above this binary line. The three-phase mixtures investigated are Mn3O4 + MnO + Mn6Te5O16; Mn3O4 + Mn6Te5O16 + MnTeO3; Mn3O4 + Mn3TeO6 + MnTeO3; and Mn3TeO6 + MnTeO3 + Mn2Te3O8. The vapor pressures of the gaseous species TeO2, TeO, and Te2 over these three-phase mixtures were measured, and various heterogeneous solid-gas reactions were evaluated along with the homogeneous gas-phase reaction TeO2(g) + 0.5Te2(g) = 2 TeO(g). The enthalpy and Gibbs free energy of formation of the four ternary Mn-Te-O phases were deduced at T = 900 K. These values (in kJ.mol-1), along with the estimated uncertainties in them are Delta(f)H(o)m = 4150 +/- 19, 752 +/- 11, 1710 +/- 11, 1924 +/- 40, and Delta(f)G(o)m= 2835 +/- 28, 511 +/- 11, 1254 +/- 19, 1238 +/- 38, for Mn6Te5O16, MnTeO3, Mn3TeO6, and Mn2Te3O8, respectively. A thermochemical assessment was made to examine the conditions under which the ternary Mn-Te-O phases could be formed on a stainless steel clad of mixed-oxide-fueled (MO2; M = U + Pu) fast breeder nuclear reactors. The phase Mn3TeO6 could be formed when the fuel is even slightly hyperstoichiometric (O/M = 2.0002) and the phase Mn6Te5O16 could also be formed when O/M = 2.0004. The threshold tellurium potential for the formation of Mn3TeO6 is higher than that for MnTe0.80 and CrTe1.10, but is comparable to that for MoTe1.10, and even lower than that for FeTe0.81 or NiTe0.63.
Fuller, Christopher C.; Bargar, John R.
2014-01-01
The distribution and speciation of Zn sorbed to biogenic Mn oxides forming in the hyporheic zone of Pinal Creek, AZ, was investigated using micro-focused Extended X-ray Absorption Fine Structure (EXAFS) and X-ray fluorescence (μSXRF) mapping , bulk EXAFS, and chemical extraction. μSXRF and chemical extractions show that contaminant Zn co-varied with Mn in streambed sediment grain coatings. Bulk and micro-focused EXAFS spectra of Zn in the biogenic Mn oxides coating are indicative of Zn forming triple corner sharing inner-sphere complexes over octahedral vacancies in the Mn oxide sheet structure. Zn desorbed in response to decreasing in pH in batch experiments and resulted in near-equal dissolved Zn at each pH over a 10-fold range in solid to solution ratio. The geometry of sorbed Zn was unchanged after 50% desorption at pH 5, indicating desorption is not controlled by dissolution of secondary Zn phases. In sum, these findings support the idea that Zn attenuation in Pinal Creek is largely controlled by sorption to microbial Mn oxides forming in the streambed during hyporheic exchange. Sorption to biogenic Mn oxides is likely an important process in Zn attenuation in circum-neutral pH reaches of many acid-mine drainage contaminated streams when dissolved Mn is present. PMID:24460038
A High-Pressure Study of Manganese Metal and its Reactions with CO2 at 6, 23, and 44 GPa
NASA Astrophysics Data System (ADS)
Sawchuk, K. L. S.; McGuire, C. P.; Greenburg, A.; Makhluf, A.; Kavner, A.
2017-12-01
The free energies of formation of oxides and carbonates at the extreme pressures and temperatures of Earth's interior provides some of the thermodynamic constrains for models of mantle/core formation and subsequent chemical evolution. The broad goal of our research program is to measure the pressure- and temperature-dependence of free energies of formation of transition metal oxides and carbonates. This requires measurements of the phase stability, density, and thermoelastic properties of metals, oxides, and carbonates at deep-Earth and planetary conditions. Manganese is of interest because it is one of the most abundant transition metal geochemical tracers, it readily forms a carbonate at ambient pressure, and its high-pressure carbonate and oxide densities and equation of state parameters are relatively unknown. Here we report new data on the pressure/volume equation of state and structure of manganese metal as well as its reactions with CO2. These measurements were made using a laser heated diamond anvil cell in conjunction with synchrotron-based X-ray diffraction at beamline 12.2.2 at the Advanced Light Source. Three samples of manganese metal were gas-loaded in a CO2 pressure medium and pressurized to 6, 23, and 44 GPa. Upon laser heating, the CO2 reacted with the Mn metal generating new phases. To analyze the diffraction patterns, we we use a python-based program developed in-house for extracting high resolution 2-dimensional diffraction peak position and intensity information from two-dimensional X-ray diffraction patterns. At each pressure step, the structure and density of the quenched Mn metal phase was determined. At 6 GPa, Mn metal adopts a BCC structure, and at 23 GPa a tetragonal distortion is observed in the lattice. The measured equation of state is in good agreement with an existing meaurement by Fujihisa and Takemura (1995). MnCO3 rhodochrosite is observed in the sample quenched after heating at 6 GPa. Additional high pressure phases are evident in the diffraction patterns from the samples at 23 GPa and 44 GPa. The density and equation of state parameters for our observed oxide, carbonate, and metal manganese structures are used in conjunction with existing thermodynamic information to predict how the free energies of formation of Mn- oxide and Mn-carbonate change as a function of pressure.
Hollandites as a new class of multiferroics
Liu, Shuangyi; Akbashev, Andrew R.; Yang, Xiaohao; Liu, Xiaohua; Li, Wanlu; Zhao, Lukas; Li, Xue; Couzis, Alexander; Han, Myung-Geun; Zhu, Yimei; Krusin-Elbaum, Lia; Li, Jackie; Huang, Limin; Billinge, Simon J. L.; Spanier, Jonathan E.; O'Brien, Stephen
2014-01-01
Discovery of new complex oxides that exhibit both magnetic and ferroelectric properties is of great interest for the design of functional magnetoelectrics, in which research is driven by the technologically exciting prospect of controlling charges by magnetic fields and spins by applied voltages, for sensors, 4-state logic, and spintronics. Motivated by the notion of a tool-kit for complex oxide design, we developed a chemical synthesis strategy for single-phase multifunctional lattices. Here, we introduce a new class of multiferroic hollandite Ba-Mn-Ti oxides not apparent in nature. BaMn3Ti4O14.25, designated BMT-134, possesses the signature channel-like hollandite structure, contains Mn4+ and Mn3+ in a 1:1 ratio, exhibits an antiferromagnetic phase transition (TN ~ 120 K) with a weak ferromagnetic ordering at lower temperatures, ferroelectricity, a giant dielectric constant at low frequency and a stable intrinsic dielectric constant of ~200 (1-100 MHz). With evidence of correlated antiferromagnetic and ferroelectric order, the findings point to an unexplored family of structures belonging to the hollandite supergroup with multifunctional properties, and high potential for developing new magnetoelectric materials. PMID:25160888
Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate.
Chokejaroenrat, Chanat; Comfort, Steve; Sakulthaew, Chainarong; Dvorak, Bruce
2014-03-15
Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO4(-)) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase (14)C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO2 rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with (14)C-TCE. Transport experiments showed that MnO4(-) alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO2 rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO4(-), the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP+MnO4(-) improved TCE destruction by ∼16% over MnO4(-) alone (56.5% vs. 40.1%). These results support combining permanganate with SHMP or SHMP and xanthan as a means of treating high concentrations of TCE in low permeable zones. Copyright © 2014 Elsevier B.V. All rights reserved.
Machado, W; Borrelli, N L; Ferreira, T O; Marques, A G B; Osterrieth, M; Guizan, C
2014-02-15
The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasankumar, T.; Jose, Sujin P., E-mail: sujamystica@yahoo.com; Ilangovan, R.
Nanostructured Mn/Ni mixed metal oxide was synthesized at ambient temperature by facile microwave irradiation technique. The crystal structure and surface morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. X-ray diffraction analysis confirmed the formation of Mn/Ni mixed oxide in rhombohedral phase and the grain size calculated was found to be 87 nm. The irregular spherical morphology of the prepared sample was exhibited by the SEM images. The characteristic peaks of FTIR at about 630 cm{sup −1} and 749 cm{sup −1} were attributed to the Mn-O and Ni-O stretching vibrations respectively. The presence of both Mn and Ni inmore » the prepared sample was validated by the EDS spectra which in turn confirmed the formation of mixed oxide. Cyclic voltammetry and galvanostatic chargedischarge measurements were employed to investigate the electrochemical performance of the mixed oxide. The cyclic voltammetry curves demonstrated good capacitive performance of the sample in the potential window −0.2V to 0.9V. The charge discharge study revealed the suitability of the prepared mixed oxide for the fabrication of supercapacitor electrode.« less
NASA Astrophysics Data System (ADS)
Zhen, Shuying; Sun, Wang; Li, Peiqian; Tang, Guangze; Rooney, David; Sun, Kening; Ma, Xinxin
2016-05-01
In this work Cu1.4Mn1.6O4 (CMO) spinel oxide is prepared and evaluated as a novel cobalt-free cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). Single phase CMO powder with cubic structure is identified using XRD. XPS results confirm that mixed Cu+/Cu2+ and Mn3+/Mn4+ couples exist in the CMO sample, and a maximum conductivity of 78 S cm-1 is achieved at 800 °C. Meanwhile, CMO oxide shows good thermal and chemical compatibility with a 10 mol% Sc2O3 stabilized ZrO2 (ScSZ) electrolyte material. Impedance spectroscopy measurements reveals that CMO exhibits a low polarization resistance of 0.143 Ω cm2 at 800 °C. Furthermore, a Ni-ScSZ/ScSZ/CMO single cell demonstrates a maximum power density of 1076 mW cm-2 at 800 °C under H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that Cu1.4Mn1.6O4 is a superior and promising cathode material for IT-SOFCs.
Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; ...
2015-03-01
Thermal stabilities of a series of blended LiMn 2O 4(LMO)-LiNi 1/3Co 1/3Mn 1/3O 2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn 3O 4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of λ-MnO 2 transforming to β-MnO 2 was observed. Oxygen peak was not observedmore » in all cases, presumably as a result of either consumption by the carbon or detection limit. CO 2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO 2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO 2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.« less
NASA Astrophysics Data System (ADS)
Sun, Zhihao; Wang, Ruofan; Nikiforov, Alexey Y.; Gopalan, Srikanth; Pal, Uday B.; Basu, Soumendra N.
2018-02-01
Cr-poisoning of the cathodes due to the presence of metallic interconnects is detrimental to the performance of intermediate temperature solid oxide fuel cell stacks. Applying a protective coating on the interconnect is an effective solution to preventing Cr-poisoning. In this study, the application of a protective CuMn1.8O4 spinel coating is explored. Dense coatings are deposited on both metallic flat plates and meshes by electrophoretic deposition followed by thermal densification steps. The coating is found to be a mixture of Mn3O4 and cubic spinel phases at room temperature but is a pure cubic spinel phase between 750 °C and 850 °C. A reaction layer between the Cr2O3 scale at the coating/interconnect interface and CuMn1.8O4 coating is found to be a mixture of (Cu,Mn,Cr)3-xO4 cubic spinel phases with Cr-rich precipitates believed to be Cr2O3, indicating that the coating layer acts as a Cr getter. Solubility experiments show that 1 mol of the CuMn1.8O4 phase can getter at least 1.83 mol of Cr2O3 at 800 °C. Electrochemical testing of cells in the presence of coated interconnects show that the CuMn1.8O4 coating getters Cr effectively for 12 days at 800 °C, leading to no performance loss of the cell due to Cr-poisoning.
NASA Astrophysics Data System (ADS)
Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kim, Nam Hoon; Kuila, Tapas; Lee, Joong Hee
2017-02-01
A facile, cost effective and additive-free successive ionic layer adsorption and reaction (SILAR) technique is demonstrated to develop layer-by-layer (LbL) assembly of reduced graphene oxide (RGO) and MnO2 (MnO2-RGOSILAR) on a stainless steel current collector, for designing light-weight and small size supercapacitor electrode. The transmission electron microscopy and field emission scanning electron microscopy images shows uniform distribution of RGO and MnO2 in the MnO2-RGOSILAR. The LbL (MnO2-RGOSILAR) demonstrates improved physical and electrochemical properties over the hydrothermally prepared MnO2-RGO (MnO2-RGOHydro). The electrochemical environment of MnO2-RGOSILAR is explained by constant phase element in the high frequency region, and a Warburg element in the low frequency region in the Z-View fitted Nyquist plot. The equivalent circuit of the MnO2-RGOHydro, displays the co-existence of EDL and constant phase element, indicating inhomogeneous distribution of MnO2 and RGO by the hydrothermal technique. An asymmetric supercapacitor device is designed with MnO2-RGOSILAR as positive electrode, and thermally reduced GO (TRGO) as negative electrode. The designed cell exhibits high energy density of ∼88 Wh kg-1, elevated power density of ∼23,200 W kg-1, and ∼79% retention in capacitance after 10,000 charge-discharge cycles.
Li, Hui; Cho, Kyeongjae; Li, Shunfang; Wang, Weichao
2018-06-13
Ternary oxide nano-clusters compared to unary metallic and binary ones potentially exhibit more remarkable properties due to their higher stoichiometric flexibility in addition to cluster size variations. Herein, by combining with the structural searching scheme CALYPSO, we have built a series of Mn-mullite oxide clusters (SmxMnyOz)n {(xyz) = (125); (115); n = 1-4, 8} prior to investigation of their geometric and electronic structures via first-principles calculations. In small size regime (n < 4), (SmxMnyOz)n prefer nonstoichiometric (Sm1Mn1O5)n phases composed of nonmagnetic MnO4 tetrahedrons. When n ≧ 4, the clusters tend to develop as stoichiometric (Sm1Mn2O5)n species, including magnetic MnOn polyhedrons and Mn-Mn dimers, which contribute 3d-orbitals (dz2 and/or dx2-y2) around the Fermi levels. The different magnetic behaviors of nonstoichiometric and stoichiometric species originate from the distinct couplings of MnOn polyhedronal units, wherein Mn atoms experience different ligand fields and thus display different spin states. Such findings enable the tuning of electronic properties and potential applications in heterogeneous catalysis, electrochemical catalysis, and the related fields via engineering cluster size and stoichiometry.
Nature of the octahedral tilting phase transitions in perovskites: A case study of CaMnO3
NASA Astrophysics Data System (ADS)
Klarbring, Johan; Simak, Sergei I.
2018-01-01
The temperature-induced antiferrodistortive (AFD) structural phase transitions in CaMnO3, a typical perovskite oxide, are studied using first-principles density functional theory calculations. These transitions are caused by tilting of the MnO6 octahedra that are related to unstable phonon modes in the high-symmetry cubic perovskite phase. Transitions due to octahedral tilting in perovskites normally are believed to fit into the standard soft-mode picture of displacive phase transitions. We calculate phonon-dispersion relations and potential-energy landscapes as functions of the unstable phonon modes and argue based on the results that the phase transitions are better described as being of order-disorder type. This means that the cubic phase emerges as a dynamical average when the system hops between local minima on the potential-energy surface. We then perform ab initio molecular dynamics simulations and find explicit evidence of the order-disorder dynamics in the system. Our conclusions are expected to be valid for other perovskite oxides, and we finally suggest how to predict the nature (displacive or order-disorder) of the AFD phase transitions in any perovskite system.
Wei, Z.; Zhu, Y.; Zhang, W.; ...
2015-03-27
Lithium-rich material owns a particularly high capacity owing to the activation of electrochemical inactive Li 2MnO 3 phase. But at the same time, MnO 2 phase formed after Li 2MnO 3 activation confronts a severe problem of converting to spinel phase, and resulting in voltage decay. To our knowledge, this phenomenon is inherent property of layered manganese oxide materials and can hardly be overcome. Based on this, unlike previous reports, herein we design a method for the first time to accelerate the phase transformation by tuning the charge upper-limit voltage at a high value, so the phase transformation process canmore » be finished in a few cycles. Then material structure remains stable while cycling at a low upper-limit voltage. By this novel method voltage decay is eliminated significantly.« less
NASA Astrophysics Data System (ADS)
Vasilyeva, Marina S.; Rudnev, Vladimir S.; Wiedenmann, Florian; Wybornov, Svetlana; Yarovaya, Tatyana P.; Jiang, Xin
2011-11-01
The present paper is devoted to studies of the composition and surface structure, including those after annealing at high temperatures, and catalytic activity in the reaction of naphthalene destruction of Ce-, Zr- and Mn-containing oxide layers on titanium obtained by means of the plasma electrolytic oxidation (PEO) method. The composition and structure of the obtained systems were investigated using the methods of X-ray phase and energy dispersive analysis and scanning electron microscopy (SEM). It was demonstrated that Ce- and Zr- containing structures had relatively high thermal stability: their element and phase compositions and surface structure underwent virtually no changes after annealing in the temperature range 600-800 °C. Annealing of Ce- and Zr-containing coatings in the temperature range 850-900 °C resulted in substantial changes of their surface composition and structure: a relatively homogeneous and porous surface becomes coated by large pole-like crystals. The catalytic studies showed rather high activity of Ce- and Zr-containing coatings in the reaction of naphthalene destruction at temperatures up to 850 °C. Mn-containing structures of the type MnOx + SiO2 + TiO2/Ti have a well-developed surface coated by “nano-whiskers”. The phase composition and surface structure of manganese-containing layers changes dramatically in the course of thermal treatment. After annealing above 600 °C nano-whiskers vanish with formation of molten structures on the surface. The Mn-containing oxide systems demonstrated lower conversion degrees than the Ce- and Zr-containing coatings, which can be attributed to substantial surface modification and formation of molten manganese silicates at high temperatures.
NASA Astrophysics Data System (ADS)
da Silva, Antonio N.; Neto, Antonio B. S.; Oliveira, Alcemira C.; Junior, Manoel C.; Junior, Jose A. L.; Freire, Paulo T. C.; Filho, Josué M.; Oliveira, Alcineia C.; Lang, Rossano
2018-06-01
High temperature and pressure effects on the physicochemical properties of binary oxides catalysts were investigated. The nanocomposites catalysts comprising of CeAl, CeMn and NiAl were characterized through various physicochemical techniques. A study of the temperature and pressure induced phenomena monitored by Raman spectroscopy was proposed and discussed. Spectral modifications of the Raman modes belonging to the CeMn suggest structural changes in the solid due to the MnO2 phase oxidation with increasing temperature. The thermal expansion and lattice anharmonicity effects were observed on CeMn due to lack of stability of the lattice vacancies. The CeAl and NiAl composites presented crystallographic stability at low temperatures however, undertake a phase transformation of NiO/Al2O3 into NiAl2O4, mostly without any deformation in its structure with increasing the temperature. It was also inferred that the binary oxides are more stables in comparison with monoxides. Detailed pressure-dependent Raman measurements of the T2g phonon mode of CeMn and NiAl revealed that the pressure contributes to modify bonds length and reduces the particles sizes of the solids. On the contrary, high pressure on CeAl sample improved the stability with addition of Al2O3 in the CeO2 lattice. The results then suggest a good stability of CeAl and NiAl composite catalysts at high pressure and low temperature and show how to prospect of tuning the catalysis for surface reactions entirely through in situ spectroscopic investigations means.
NASA Astrophysics Data System (ADS)
Yuge, Ryota; Kuroshima, Sadanori; Toda, Akio; Miyazaki, Takashi; Tabuchi, Mitsuharu; Doumae, Kyosuke; Shibuya, Hideka; Tamura, Noriyuki
2017-10-01
Structural change and the charge compensation mechanism of lithium-rich layered cathode (Li1.23Fe0.15Ni0.15Mn0.46O2) in charged and discharged states were investigated. Selected area electron diffraction analysis revealed that in discharged state, an initial structure composed of a single phase of monoclinic layered rock-salt changed to a mixture of hexagonal layered rock-salt and spinel-like structures. In charged state, the spinel-like phase became dominant as transition-metal ions migrate. 57Fe Mössbauer spectroscopy, X-ray absorption spectroscopy (XAS), and Soft-XAS showed that the valence of Fe and Ni ions approximately changed from Fe3+ to Fe3.2+ and Ni2+ to Ni3.5+ during charge-discharge, although Mn ions remained as Mn4+. Various oxidation states of oxide ions such as superoxide, peroxide, and hole states have also been detected in charged state. Considering that actual discharge capacity was 255 mAh/g, the contribution to charge compensation from the valence change of Fe and Ni ions was extremely small, and it only contributed to about one-third of total capacity. Therefore, the mechanism to yield high capacity of the Li1.23Fe0.15Ni0.15Mn0.46O2 cathode relates strongly to the redox reaction of oxide ions. Moreover, the decrease in capacity during charge-discharge cycling was mainly due to the irreversible redox reaction of Mn, Fe, and oxide ions.
NASA Astrophysics Data System (ADS)
Y Neira-Guio, A.; Gómez Cuaspud, J. A.; López, E. Vera; Pineda Triana, Y.
2017-12-01
This paper describes the synthesis and characterization of two spinel and olivine-type multicomponent oxides based on LiMO2 and LiM2O4 systems (M=Co and Mn), which represent the current state of the art in the development of cathodes for Li-ion batteries. A simple combustion synthesis process was employed to obtain the nanometric oxides in powder form (crystal sizes around 5-8nm), with a number of improved surface characteristics. The characterization by X-Ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (SEM, TEM) and X-Ray Fluorescence (XRF), allowed to evaluate the morphology and the stoichiometric compositions of solids, obtaining a concordant pure crystalline phase of LiCoO2 and LiMn2O4 oxides identified in a rhombohedral and cubic phase with punctual group R-3m (1 6 6) and Fm-3m (2 2 5) respectively. The electrical characterization of materials developed by impedance spectroscopy solid state, allowed to determine a p-type semiconducting behaviour with conductivity values of 6.2×10-3 and 2.7×10-7 S for LiCoO2 and LiMn2O4 systems, consistent with the state of the art for such materials.
Secondary Fe- and Mn-Oxides Associated with Faults Near Moab, Utah: Records of Past Fluid Flow
NASA Astrophysics Data System (ADS)
Garcia, V. H.; Reiners, P. W.
2015-12-01
Secondary Fe- and Mn-oxides are locally common near faults and fractures, and as cements within sandstones of the Colorado Plateau, and provide evidence of past fluid-flow. Here we describe textural, mineralogic, and geochronologic observations from fault-zone Fe- and Mn-oxide mineralization in Flat Iron Mesa, near Moab, Utah. Several hypotheses have been proposed for their origin, including reactions associated with the mixing of deep reduced and near-surface oxygenated waters. We integrate field observations, detailed SEM and petrographic observations, geochemical models, (U-Th)/He and Ar/Ar dating, and other data to develop interpretations of the formation of these deposits. SEM imaging shows that sandstone matrix cement adjacent to the faults follows two precipitation sequences: Fe-oxide followed by barite and Fe-oxide followed by Mn-oxide. Dense oxide layers also accumulated in cm-scale fractures near faults, and show the following precipitation sequence: Fe-oxide, barite, Ba rich Mn-oxide, and pure Mn-oxide. The latter sequence is observed at larger scale across faults in one site in Flat Iron Mesa. Our new He dates for Mn-oxides are 1.7-2.9 Ma while Fe-oxide dates are 2.7-3.0 Ma. If these dates represent formation ages, they are consistent with the interpreted precipitation sequence but would require protracted mineralization over Ma-timescales. Alternatively, they may represent varying degrees of He retentivity in earlier formed deposits. Previous Ar/Ar dates have been interpreted as a 20-25 Ma formation age. Ongoing Ar/Ar and He diffusion studies will resolve this discordance. Assuming the previous Ar dates do not reflect contamination by detrital K-bearing phases and do reflect oxide formation, potential interpretations for the younger He ages include recent U-Th addition, recrystallization, later oxide growth, or large diffusive He loss at low temperatures.
Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies.
Bulavchenko, O A; Vinokurov, Z S; Afonasenko, T N; Tsyrul'nikov, P G; Tsybulya, S V; Saraev, A A; Kaichev, V V
2015-09-21
A series of mixed Mn-Zr oxides with different molar ratios Mn/Zr (0.1-9) have been prepared by coprecipitation of manganese and zirconium nitrates and characterized by X-ray diffraction (XRD) and BET methods. It has been found that at concentrations of Mn below 30 at%, the samples are single-phase solid solutions (MnxZr1-xO2-δ) based on a ZrO2 structure. X-ray photoelectron spectroscopy (XPS) measurements showed that manganese in these solutions exists mainly in the Mn(4+) state on the surface. An increase in Mn content mostly leads to an increase in the number of Mn cations in the structure of solid solutions; however, a part of the manganese cations form Mn2O3 and Mn3O4 in the crystalline and amorphous states. The reduction of these oxides with hydrogen was studied by a temperature-programmed reduction technique, in situ XRD, and near ambient pressure XPS in the temperature range from 100 to 650 °C. It was shown that the reduction of the solid solutions MnxZr1-xO2-δ proceeds via two stages. During the first stage, at temperatures between 100 and 500 °C, the Mn cations incorporated into the solid solutions MnxZr1-xO2-δ undergo partial reduction. During the second stage, at temperatures between 500 and 700 °C, Mn cations segregate on the surface of the solid solution. In the samples with more than 30 at% Mn, the reduction of manganese oxides was observed: Mn2O3 → Mn3O4 → MnO.
Large-scale phase separation with nano-twin domains in manganite spinel (Co,Fe,Mn){sub 3}O{sub 4}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horibe, Y., E-mail: horibe@post.matsc.kyutech.ac.jp; Takeyama, S.; Mori, S.
The effect of Mn concentration on the formation of nano-domain structures in the spinel oxide (Co,Fe,Mn){sub 3}O{sub 4} was investigated by electron diffraction, bright-, and dark-field imaging technique with transmission electron microscopy. Large scale phase separation with nano-twin domains was observed in Co{sub 0.6}Fe{sub 1.0}Mn{sub 1.4}O{sub 4}, in contrast to the highly aligned checkerboard nano-domains in Co{sub 0.6}Fe{sub 0.9}Mn{sub 1.5}O{sub 4}. Diffusion of the Mn{sup 3+} ions with the Jahn-Teller distortions is suggested to play an important role in the formation of checkerboard nano-domain structure.
Benincosa, William; Siriwardane, Ranjani; Tian, Hanjing; ...
2017-07-05
Chemical looping combustion (CLC) is a promising combustion technology that generates heat and sequestration-ready carbon dioxide that is undiluted by nitrogen from the combustion of carbonaceous fuels with an oxygen carrier, or metal oxide. This process is highly dependent on the reactivity and stability of the oxygen carrier. The development of oxygen carriers remains one of the major barriers for commercialization of CLC. Synthetic oxygen carriers, consisting of multiple metal components, have demonstrated enhanced performance and improved CLC operation compared to single metal oxides. However, identification of the complex mixed metal oxide phases that form after calcination or during CLCmore » reactions has been challenging. Without an understanding of the dominant metal oxide phase, it is difficult to determine reaction parameters and the oxygen carrier reduction pathway, which are necessary for CLC reactor design. This is particularly challenging for complex multi-component oxygen carriers such as copper iron manganese oxide (CuFeMnO 4). This study aims to differentiate the unique phase formation of a highly reactive, complex trimetallic oxygen carrier, CuFeMnO 4, from its single and bimetallic counterparts using thermochemical and reaction data obtained from simultaneous differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) during temperature programmed reductions (TPR) with methane. DSC/TGA experiments during TPR with methane provides heat flow data and corresponding reaction rate data that can be used to determine reaction routes and mechanisms during methane reduction. Furthermore, non-isothermal TPR data provides the advantage of distinguishing reactions that may not be observable in isothermal analysis. The detailed thermochemical and reaction data, obtained during TPR with methane, distinguished a unique reduction pathway for CuFeMnO 4 that differed from its single and bimetallic counterparts. This is remarkable since X-ray diffraction (XRD) data alone could not be used to distinguish the reactive trimetallic oxide phase due to overlapping peaks from various single and mixed metal oxides. The unique reduction pathway of CuFeMnO 4 was further characterized in this study using in-situ XRD TPR with methane to determine changes in the dominant trimetallic phase that influenced the thermochemical and reaction rate data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benincosa, William; Siriwardane, Ranjani; Tian, Hanjing
Chemical looping combustion (CLC) is a promising combustion technology that generates heat and sequestration-ready carbon dioxide that is undiluted by nitrogen from the combustion of carbonaceous fuels with an oxygen carrier, or metal oxide. This process is highly dependent on the reactivity and stability of the oxygen carrier. The development of oxygen carriers remains one of the major barriers for commercialization of CLC. Synthetic oxygen carriers, consisting of multiple metal components, have demonstrated enhanced performance and improved CLC operation compared to single metal oxides. However, identification of the complex mixed metal oxide phases that form after calcination or during CLCmore » reactions has been challenging. Without an understanding of the dominant metal oxide phase, it is difficult to determine reaction parameters and the oxygen carrier reduction pathway, which are necessary for CLC reactor design. This is particularly challenging for complex multi-component oxygen carriers such as copper iron manganese oxide (CuFeMnO 4). This study aims to differentiate the unique phase formation of a highly reactive, complex trimetallic oxygen carrier, CuFeMnO 4, from its single and bimetallic counterparts using thermochemical and reaction data obtained from simultaneous differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) during temperature programmed reductions (TPR) with methane. DSC/TGA experiments during TPR with methane provides heat flow data and corresponding reaction rate data that can be used to determine reaction routes and mechanisms during methane reduction. Furthermore, non-isothermal TPR data provides the advantage of distinguishing reactions that may not be observable in isothermal analysis. The detailed thermochemical and reaction data, obtained during TPR with methane, distinguished a unique reduction pathway for CuFeMnO 4 that differed from its single and bimetallic counterparts. This is remarkable since X-ray diffraction (XRD) data alone could not be used to distinguish the reactive trimetallic oxide phase due to overlapping peaks from various single and mixed metal oxides. The unique reduction pathway of CuFeMnO 4 was further characterized in this study using in-situ XRD TPR with methane to determine changes in the dominant trimetallic phase that influenced the thermochemical and reaction rate data.« less
Zhang, Xiong; Chen, Yao; Yu, Peng; Ma, Yanwei
2010-11-01
In the present work, amorphous manganese oxide nanomaterials have been synthesized by a common hydrothermal method based on the redox reaction between MnO4(-) and Fe(2+) under an acidic condition. The synthesized MnO2 samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electrochemical studies. XRD results showed that amorphous manganese oxide phase was obtained. XPS quantitative analysis revealed that the atomic ratio of Mn to Fe was 3.5 in the MnO2 samples. TEM images showed the porous structure of the samples. Electrochemical properties of the MnO2 electrodes were studied using cyclic voltammetry and galvanostatic charge-discharge cycling in 1 M Na2SO4 aqueous electrolyte, which showed excellent pseudocapacitance properties. A specific capacitance of 192 Fg(-1) at a current density of 0.5 Ag(-1) was obtained at the potential window from -0.1 to 0.9 V (vs. SCE).
NASA Astrophysics Data System (ADS)
Michotey, V.; Aigle, A.; Armougom, F.; Mejean, V.; Guasco, S.; Bonin, P.
2016-02-01
In sedimentary systems, the repartition of terminal electron-accepting molecules is often stratified on a permanent or seasonal basis. Just below to oxic zone, the suboxic one is characterized by high concentrations of oxidized inorganic compounds such as nitrate, manganese oxides (MnIII/IV) and iron oxides that are in close vicinity. Several studies have reported unexpected anaerobic nitrite/nitrate production at the expense of ammonium mediated by MnIII/IV, however this transient processes is difficult to discern and poorly understood. In the frame of this study, genes organization of nitrate and MnIII/IV respiration was investigated in S.algae. Additional genes were identified in S. algae compare to S. oneidensis: genes coding for nitrate and nitrite reductase (napA-a and nrfA-2) and an OMC protein (mtrH). In contrast to S. oneidensis, an anaerobic transitory nitrite accumulation at the expense of ammonium was observed in S. algae during growth with MnIII/IV, concomitantly with expression of nitrate/nitrite reductase genes (napA, nrfA, nrfA-2). Among the hypothesis explaining this data, the potential putative expression of unidentified gene able to perform ammonium oxidation was not observed on the global transcriptional level, however several signs of oxidative stress were detected and the existence of a secondary reaction generated by a putative oxidative s could not be excluded. Another option could be the action of reverse reaction by an enzyme such as NrfA or NrfA-2 due to the electron flow equilibrium. Whatever the electron acceptor (Nitrate/ MnIII/IV), the unexpected expression level of of omcA, mtrF, mtrH, mtrC was observed and peaked at the end of the exponential phase. Different expression patterns of the omc genes were observed depending on electron acceptor and growth phase. Only mtrF-2 gene was specifically expressed in Mn(III/IV) condition. Nitrate and Mn(III/IV) respirations seem connected at physiological as well as at transcriptional level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Young Joo; Wang, Francis; Grey, Clare P.
{sup 6}Li MAS NMR spectra of lithium manganese oxides with differing manganese oxidation states (LiMn{sub 2}O{sub 4}, Li{sub 4}Mn{sub 5}O{sub 12}, Li{sub 2}Mn{sub 4}O{sub 9}, and Li{sub 2}Mn{sub 2}O{sub 4}) are presented. Improved understanding of the lithium NMR spectra of these model compounds is used to interpret the local structure of the Li{sub x}Mn{sub 2}O{sub 4} cathode materials following electrochemical Li{sup +} deintercalation to various charging levels. In situ x-ray diffraction patterns of the same material during charging are also reported for comparison. Evidence for two-phase behavior for x <0.4 (Li{sub x}Mn{sub 2}O{sub 4}) is seen by both NMR andmore » diffraction.« less
Hein, J.R.; Koschinsky, A.; McIntyre, B.R.
2005-01-01
Mercury- and silver-enriched ferromanganese oxide crusts were recovered at water depths of 1,750 tol,300 m from La Victoria knoll, located about 72 km off the coast of northern Baja California. No other ferromanganese precipitate found so far in the modern ocean basins is similarly enriched in Hg and Ag. The precipitates consist of submetallic gray, brecciated, Mn oxide layers overlain by brown earthy, laminated Fe-Mn oxide crusts. Both oxide types are rich in Hg (to 10 ppm) and Ag (to 5.5 ppm). The Mn-rich layers are composed of ??MnO2, with lesser amounts of 10A?? and 7A?? manganates, whereas the Mn phase in the Fe-Mn crusts is solely ??MnO2. The Fe phase in both layers is X-ray amorphous. Established criteria for distinguishing hydrothermal versus hydrogenetic crusts indicate that the Mn-rich layers are predominantly of low-temperature hydrothermal origin, whereas the Fe-Mn crusts are hydrogenetic, although there is some overlap in the source of chemical components in both types. La Victoria knoll is uplifted continental basement rock with basalt, andesite, and schist cropping out at the surface; the knoll may have an intrusive core. The Hg and Ag were derived from leaching by hydrothermal fluids of organic matter-rich sediments in basins adjacent to La Victoria knoll and, to a lesser extent, from continental basement rocks underlying the knoll and adjacent basins. Both rock types are notably enriched in Ag and Hg. Faults were the main fluid transport pathway, and hydrothermal circulation was driven by high heat flow associated with thinned crust. Other elements derived from the hydrothermal fluids include Tl, Cd, Cr, and Li. The main host for Hg and Ag is FeOOH, although MnO2 likely hosts some of the Ag. Minor sulfide and barite also may contain small amounts of these metals. Possible analogs in the geologic record for this deposit type are found in the Basin and Range province of the western United States and Mexico. The discovery highlights the fact that fluids circulating along faults in the offshore California borderland are transporting potentially toxic metals (Hg, Ag, Tl, As, Cd, Cr, Pb, and Ni) and depositing them on and just below the ocean floor. ?? 2005 Society of Economic Geologists, Inc.
Alkaline-stable nickel manganese oxides with ideal band gap for solar fuel photoanodes.
Suram, Santosh K; Zhou, Lan; Shinde, Aniketa; Yan, Qimin; Yu, Jie; Umehara, Mitsutaro; Stein, Helge S; Neaton, Jeffrey B; Gregoire, John M
2018-05-01
Combinatorial (photo)electrochemical studies of the (Ni-Mn)Ox system reveal a range of promising materials for oxygen evolution photoanodes. X-ray diffraction, quantum efficiency, and optical spectroscopy mapping reveal stable photoactivity of NiMnO3 in alkaline conditions with photocurrent onset commensurate with its 1.9 eV direct band gap. The photoactivity increases upon mixture with 10-60% Ni6MnO8 providing an example of enhanced charge separation via heterojunction formation in mixed-phase thin film photoelectrodes. Density functional theory-based hybrid functional calculations of the band edge energies in this oxide reveal that a somewhat smaller than typical fraction of exact exchange is required to explain the favorable valence band alignment for water oxidation.
Synthesis, characterization and electrochemical performance of Al-substituted Li₂MnO₃
Dhital, Chetan; Huq, Ashfia; Paranthaman, Mariappan Parans; ...
2015-08-08
Li 2MnO 3 is known to be electrochemically inactive due to Mn in tetravalent oxidation state. Several compositions such as Li 2MnO 3 , Li 1.5Al 0.17MnO 3, Li 1.0Al 0.33MnO 3 and Li 0.5Al 0.5MnO 3 were synthesized by a sol–gel Pechini method. All the samples were characterized with x-ray diffraction, Raman, x-ray photoelectron spectroscopy, scanning electron microscopy, Tap density and BET analyzer. X-ray diffraction patterns indicated the presence of monoclinic phase for pristine Li 2MnO 3and mixed monoclinic/spinel phases (Li 2 - xMn 1 - yAl x + yO 3 + z) for Al-substituted Li 2MnO 3compounds. Themore » Al substitution seems to occur both at Li and Mn sites, which could explain the presence of spinel phase. X-ray photoelectron spectroscopy for Mn 2p orbital reveals a significant decrease in binding energy for Li 1.0Al 0.33MnO 3 and Li 0.5Al 0.5MnO 3 compounds. Cyclic voltammetry, charge/discharge cycles and electrochemical impedance spectroscopy were also performed. A discharge capacity of 24 mAh g -1 for Li 2MnO 3, 68 mAh g -1 for Li 1.5Al 0.17MnO 3, 58 mAh g -1 for Li 1.0Al 0.33MnO 3 and 74 mAh g -1 for Li 0.5Al 0.5MnO 3 were obtained. As a result, aluminum substitutions increased the formation of spinel phase which is responsible for cycling.« less
Lee, Seung Y; González-Flores, Diego; Ohms, Jonas; Trost, Tim; Dau, Holger; Zaharieva, Ivelina; Kurz, Philipp
2014-12-01
A mild screen-printing method was developed to coat conductive oxide surfaces (here: fluorine-doped tin oxide) with micrometer-thick layers of presynthesized calcium manganese oxide (Ca-birnessite) particles. After optimization steps concerning the printing process and layer thickness, electrodes were obtained that could be used as corrosion-stable water-oxidizing anodes at pH 7 to yield current densities of 1 mA cm(-2) at an overpotential of less than 500 mV. Analyses of the electrode coatings of optimal thickness (≈10 μm) indicated that composition, oxide phase, and morphology of the synthetic Ca-birnessite particles were hardly affected by the screen-printing procedure. However, a more detailed analysis by X-ray absorption spectroscopy revealed small modifications of both the Mn redox state and the structure at the atomic level, which could affect functional properties such as proton conductivity. Furthermore, the versatile new screen-printing method was used for a comparative study of various transition-metal oxides concerning electrochemical water oxidation under "artificial leaf conditions" (neutral pH, fairly low overpotential and current density), for which a general activity ranking of RuO2 >Co3 O4 ≈(Ca)MnOx ≈NiO was observed. Within the group of screened manganese oxides, Ca-birnessite performed better than "Mn-only materials" such as Mn2 O3 and MnO2 . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel Co- or Ni-Mn binary oxide catalysts with hydroxyl groups for NH3-SCR of NOx at low temperature
NASA Astrophysics Data System (ADS)
Gao, Fengyu; Tang, Xiaolong; Yi, Honghong; Zhao, Shunzheng; Wang, Jiangen; Shi, Yiran; Meng, Xiaomi
2018-06-01
Novel hydroxyl-containing Me-Mn binary oxides (Me = Co, Ni) were prepared for the selective catalytic reduction of NOx with NH3 by a combined complexation-esterification method. The binary oxides of Co-MnOx and Ni-MnOx with mixed crystal phases of Mn3O4 and Co3O4, Mn2O3 and NiMnO3 were obtained at 550 °C. SCR activity decreased in the order of Mn3O4-Co3O4-OH > Mn2O3-NiMnO3-OH > Mn2O3-OH > Mn3O4-OH, benefiting from the high concentration of chemisorbed oxygen and effective electron transformation of cations. Mn2O3-containing catalysts had better selectivity to N2 than those containing Mn3O4. Higher selectivity to N2O over Mn3O4-containing catalysts was attributed to the depth dehydrogenation of coordinated NH3 by the active oxygen species with lower Mnsbnd O band energy. The typical Eley-Rideal mechanism over Mn3O4-OH and Mn3O4-Co3O4-OH, and the additional formation pathway of NH4NO3 species over Mn2O3-OH and Mn2O3-NiMnO3-OH catalysts were proposed via the in-situ DRIFTS experiments. Although the Co and Ni elements had a good role in delaying the poisoning of SO2, these catalysts were eventually sulfated by SO2 over the postponement, which might due to the metal sulfate and ammonia hydrogensulfite species.
Wang, Xiao-Hong; Schlossmacher, Ute; Natalio, Filipe; Schröder, Heinz C; Wolf, Stephan E; Tremel, Wolfgang; Müller, Werner E G
2009-01-01
Ferromanganese [Fe/Mn] crusts formed on basaltic seamounts, gain considerable economic importance due to their high content of Co, Ni, Cu, Zn and Pt. The deposits are predominantly found in the Pacific Ocean in depths of over 1000m. They are formed in the mixing layer between the upper oxygen-minimum zone and the lower oxygen-rich bottom zone. At present an almost exclusive abiogenic origin of crust formation is considered. We present evidence that the upper layers of the crusts from the Magellan Seamount cluster are very rich in coccoliths/coccolithophores (calcareous phytoplankton) belonging to different taxa. Rarely intact skeletons of these unicellular algae are found, while most of them are disintegrated into their composing prisms or crystals. Studies on the chemical composition of crust samples by high resolution SEM combined with an electron probe microanalyzer (EPMA) revealed that they are built of distinct stacked piles of individual compartments. In the center of such piles Mn is the dominant element, while the rims of the piles are rich in Fe (mineralization aspect). The compartments contain coccospheres usually at the basal part. Energy dispersive X-ray spectroscopy (EDX) analyses showed that those coccospheres contain, as expected, CaCO3 but also Mn-oxide. Detailed analysis displayed on the surface of the coccolithophores a high level of CaCO3 while the concentration of Mn-oxide is relatively small. With increasing distance from the coccolithophores the concentration of Mn-oxide increases on the expense of residual CaCO3. We conclude that coccoliths/coccolithophores are crucial for the seed/nucleation phase of crust formation (biomineralization aspect). Subsequently, after the biologically induced mineralization phase Mn-oxide deposition proceeds "auto"catalytically.
Formation of self-organized Mn3O4 nanoinclusions in LaMnO3 films
NASA Astrophysics Data System (ADS)
Pomar, Alberto; Konstantinović, Zorica; Bagués, Nuria; Roqueta, Jaume; López-Mir, Laura; Balcells, Lluis; Frontera, Carlos; Mestres, Narcis; Gutiérrez-Llorente, Araceli; Šćepanović, Maja; Lazarević, Nenad; Popović, Zoran; Sandiumenge, Felip; Martínez, Benjamín; Santiso, José
2016-09-01
We present a single-step route to generate ordered nanocomposite thin films of secondary phase inclusions (Mn3O4) in a pristine perovskite matrix (LaMnO3) by taking advantage of the complex phase diagram of manganese oxides. We observed that in samples grown under vacuum growth conditions from a single LaMnO3 stoichiometric target by Pulsed Laser Deposition, the most favourable mechanism to accommodate Mn2+ cations is the spontaneous segregation of self-assembled wedge-like Mn3O4 ferrimagnetic inclusions inside a LaMnO3 matrix that still preserves its orthorhombic structure and its antiferromagnetic bulk-like behaviour. A detailed analysis on the formation of the self-assembled nanocomposite films evidences that Mn3O4 inclusions exhibit an epitaxial relationship with the surrounding matrix that it may be explained in terms of a distorted cubic spinel with slight ( 9º) c-axis tilting. Furthermore, a Ruddlesden-Popper La2MnO4 phase, helping to the stoichiometry balance, has been identified close to the interface with the substrate. We show that ferrimagnetic Mn3O4 columns influence the magnetic and transport properties of the nanocomposite by increasing its coercive field and by creating local areas with enhanced conductivity in the vicinity of the inclusions.
Enrichment mechanisms of tellurium in ferromanganese crusts
NASA Astrophysics Data System (ADS)
Sakaguchi, A.; Sugiyama, T.; Usui, A.; Takahashi, Y.
2012-04-01
Marine ferromanganese crusts (FMCs) consist of iron (Fe) hydroxides and manganese (Mn) oxides with various minor and trace elements. Especially for tellurium (Te), which is recognized as one of the rare metals, it has been reported that this element is concentrated about 105 times in FMCs compared with earth's crust, and the host phase might be Fe (oxy)hydroxide (Hein et al., 2003). Actually, in our previous study, the high concentration of Te in very surface layers of FMCs was found from the top to halfway down of a seamount in the Pacific Ocean. However, the concentration of Te in surface layers through the seamount showed good correlation with that of Mn instead of Fe. In this study, we attempted to clarify the enrichment mechanism of Te in FMCs with some methods including X-ray absorption fine structure (XAFS) technique for synthesised /natural samples. Seventeen FMC samples were collected from the Takuyo-Daigo seamount, from 950 m (summit) to 3000 m in water depth, with hyper-dolphin (remotely operated vehicle) equipped with live video camera and manipulators. The growth rates of all FMC samples were estimated to be about 3 mm/Ma. Very surface layer (less than 1 mm) of all FMC was analyzed with XRD and XAFS to confirm the mineral composition and speciation of Te. Furthermore, to serve as an aid to clarify the adsorption mechanism of Te on FMCs, distribution coefficients (Kd) and oxidation states were determined through the adsorption experiments of Te(IV) and Te(VI) on ferrihydrite and δ-MnO2. In all the experiments, pH and ionic strength were adjusted to pH 7.5 and 0.7 M, respectively. The oxidation state of Te in water phase was determined with HPLC-ICP-MS. As for the analysis of oxidation and adsorption states on the solid phase, XAFS was employed. The major mineral composition of Fe and Mn had no significant variation through the water depth of Takuyo-Daigo seamount. The oxidation state of Te in all samples showed hexavalent, and there was no significant difference of adsorption state independent of the DO, salinity and temperature in water. It has been reported that Te exists as tetravalent and hexavalent in sea water of the Pacific Ocean (Nozaki, 1996). Thus, it can be said that the Te in sea water is oxidised and incorporated into FMCs. As a result of the adsorption experiments in laboratory, the Kd of Te on ferrihydrite was larger than that of δ-MnO2, and Te(IV) was adsorbed to a larger degree than Te(VI) on both minerals. The adsorption experiments of Te(IV) on δ-MnO2 showed that the solid phase has only hexavalent Te, although the water phase has both tetra and hexavalent species of Te. Te(IV) on ferrihydrite was not oxidized to Te(VI). From these results, it can be suggested that Te(IV) was oxidized by δ-MnO2 and would be adsorbed onto ferrihydrite. Actually, the results of double-cell adsorption experiments support this hypothesis. The detail of our results and discussion will be given in the presentation.
Recrystallization of Manganite (γ-MnOOH) and Implications for Trace Element Cycling.
Hens, Tobias; Brugger, Joël; Cumberland, Susan A; Etschmann, Barbara; Frierdich, Andrew J
2018-02-06
The recrystallization of Mn(III,IV) oxides is catalyzed by aqueous Mn(II) (Mn(II) aq ) during (bio)geochemical Mn redox cycling. It is poorly understood how trace metals associated with Mn oxides (e.g., Ni) are cycled during such recrystallization. Here, we use X-ray absorption spectroscopy (XAS) to examine the speciation of Ni associated with Manganite (γ-Mn(III)OOH) suspensions in the presence or absence of Mn(II) aq under variable pH conditions (pH 5.5 and 7.5). In a second set of experiments, we used a 62 Ni isotope tracer to quantify the amount of dissolved Ni that exchanges with Ni incorporated in the Manganite crystal structure during reactions in 1 mM Mn(II) aq and in Mn(II)-free solutions. XAS spectra show that Ni is initially sorbed on the Manganite mineral surface and is progressively incorporated into the mineral structure over time (13% after 51 days) even in the absence of dissolved Mn(II). The amount of Ni incorporation significantly increases to about 40% over a period of 51 days when Mn(II) aq is present in solution. Similarly, Mn(II) aq promotes Ni exchange between Ni-substituted Manganite and dissolved Ni(II), with around 30% of Ni exchanged at pH 7.5 over the duration of the experiment. No new mineral phases are detected following recrystallization as determined by X-ray diffraction and XAS. Our results reveal that Mn(II)-catalyzed mineral recrystallization partitions Ni between Mn oxides and aqueous fluids and can therefore affect Ni speciation and mobility in the environment.
Graphene oxide-MnO2 nanocomposite for supercapacitor application
NASA Astrophysics Data System (ADS)
Muhammed Shafi, P.; Vishal, Jose K.; Chandra Bose, A.
2016-09-01
Increased depletion of fossil fuels along with global warming and climate change made the society to think about alternate green and sustainable energy sources and better energy storage devices. Extensive research has been performed on the development of solar cells, fuel cells, Lithium- ion battery and supercapacitors to combat the green house effect and its consequences, and to meet the increased energy crisis. Supercapacitors, also known as electrochemical capacitors are gained a great attention because of their pulse power supply, long cycle life (>100,000), simple principle and high dynamic of charge propagation. Its greater power density than lithium- ion battery and much larger energy density than conventional capacitors brought super capacitors to a promising energy storage device to meet the increased energy demands. Here we demonstrate supercapacitor electrode materials with graphene oxide (electric double layer capacitor) and α-MnO2 nanomaterial (pseudo-capacitor), as well as composite of these materials, which means that the bulk of the material undergoes a fast redox reaction to provide the capacitive response and they exhibit superior specific energies in addition to the carbon-based supercapacitors (double-layer capacitors). A simple soft chemical route is utilized to synthesize graphene oxide, α-MnO2 and graphene oxide-MnO2 composite. The phase and the structure of the synthesized materials are studied using X-ray diffractometry (XRD). The functional group and the presence of impurities are understood from Fourier transform infrared (FTIR) spectra. The capacitive properties of the graphene oxide, graphene oxide - MnO2 nanocomposite and α-MnO2 are tested with the help of cyclic voltammetry (CV) and galvanostatic charge - discharge techniques using 1 M Na2SO4 in aqueous solution as electrolyte. It was found that graphene oxide - MnO2 nanocomposite shows better electrochemical behaviour compared to individual graphene oxide and α-MnO2 nanomaterial.
LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY
Metal oxide phases play an important role in governing the sorption and desorption mechanisms of metals in water, soils, and sediments. Many researchers have examined the efficiency of Pb sorption on Mn, Fe, Al, Ti, and Si oxide surfaces. Most studies concluded that adsorption ...
Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals.
Feng, Xiong Han; Zhai, Li Mei; Tan, Wen Feng; Liu, Fan; He, Ji Zheng
2007-05-01
Several Mn oxide minerals commonly occurring in soils were synthesized by modified or optimized methods. The morphologies, structures, compositions and surface properties of the synthesized Mn oxide minerals were characterized. Adsorption and redox reactions of heavy metals on these minerals in relation to the mineral structures and surface properties were also investigated. The synthesized birnessite, todorokite, cryptomelane, and hausmannite were single-phased minerals and had the typical morphologies from analyses of XRD and TEM/ED. The PZCs of the synthesized birnessite, todorokite and cryptomelane were 1.75, 3.50 and 2.10, respectively. The magnitude order of their surface variable negative charge was: birnessite> or =cryptomelane>todorokite. The hausmannite had a much higher PZC than others with the least surface variable negative charge. Birnessite exhibited the largest adsorption capacity on heavy metals Pb(2+), Cu(2+), Co(2+), Cd(2+) and Zn(2+), while hausmannite the smallest one. Birnessite, cryptomelane and todorokite showed the greatest adsorption capacity on Pb(2+) among the tested heavy metals. Hydration tendency (pK(1)) of the heavy metals and the surface variable charge of the Mn minerals had significant impacts on the adsorption. The ability in Cr(III) oxidation and concomitant release of Mn(2+) varied greatly depending on the structure, composition, surface properties and crystallinity of the minerals. The maximum amounts of Cr(III) oxidized by the Mn oxide minerals in order were (mmol/kg): birnessite (1330.0)>cryptomelane (422.6)>todorokite (59.7)>hausmannite (36.6).
NASA Astrophysics Data System (ADS)
Burlet, Christian; Vanbrabant, Yves; Decree, Sophie
2014-05-01
The largest cobalt ore reserves are located in DRC, the Democratic Republic of Congo. Most of cobalt is observed as black cobaltic oxide minerals: heterogenite [HCoO2] and asbolane [(Ni,Co)2-xMn(O,OH)4.nH2O] which are hardly differentiable since they exhibit similar macroscopic habit and textures. These minerals are frequently observed in similar environment (oxidized horizon of ore deposits) and they are commonly poorly-crystallized limiting their study with XRD. Their chemical composition is also not very well-constrained since they exhibit significant chemical substitutions with cations as Cu, Co, Ni, Mn. Our observations on a set of heterogenite and asbolane samples from DRC combined with samples from other localities shows that each phase, even under an amorphous form, can be readily distinguished by Raman microspectrometry. This technique is therefore attractive during ore deposit characterization campaigns or during the follow-up extraction operations where it is important to distinguish the main constituting Co-phase(s). The main advantage of this technique is its speed since no sample preparation is required during the collection Raman spectra that usually last few tens of seconds. The method provides information at a μm-scale and several points are thus required to fully characterize ore batches composed of different mineralogical phases. Our petrographical observations show also that asbolane and heterogenite mineralogical phases can coexist at a μm-scale as two distinct phases into 'heterogenite' ore. The distinction between heterogenite and asbolane from our sample set can also be conducted on a chemical base showing that heterogenite represents the richer Co-phase with variable Cu concentrations. By contrast, only Mn traces are usually observed in heterogenite minerals from DRC except in few samples, but always in lower concentration than in asbolane. The latter shows variable Mn/(Mn+Co) ratio between 0.85 and 0.3 and the decrease of this value is related to enrichment into Cu. PIC Figure 1. Example of coexisting heterogenite (Het) and asbolane (Asb), with their respective EDS spectrum.1 0.0.1 1Vanbrabant, Y., Burlet, C. and Louis, P., Mineralogical Characterization of Cobaltic Oxides from the Democratic Republic of Congo, in Ni-Co 2013, John Wiley & Sons, Inc., Hoboken, NJ, USA., Pages: 241-254, 2013
The Effects of Bismuth Oxide on Microstructures and Magnetic Properties of Mn-Mg-Al Ferrites
NASA Astrophysics Data System (ADS)
Nekouee, Kh. A.; Rahimi, A. H.; Haghighi, M. Alineghad; Ehsani, N.
2018-04-01
In the present paper, the effects of bismuth oxide as an additive on microstructure and magnetic properties of Mg0.9Mn0.1Al0.4Fe1.6O4 were investigated. Mg-Mn-Al ferrite powders were prepared by the conventional solid state synthesis method. Two different amounts of bismuth oxide (2.5 wt.% and 5 wt.%) were utilized as the sintering aid and their microstructure and physical properties were compared to those of the sample without additives. X-ray diffraction (XRD) analysis indicated that crystal lattice distortion due to the microstructural constraints as the result from incorporation of bismuth oxide into the microstructure was developed by adding bismuth oxide. XRD Rietveld refinement was used to define the cation distribution and to refine the lattice parameter and oxygen parameter for the sample without bismuth oxide as (Mg0.16Mn0.02Al0.15Fe0.77)A(Mg0.74Mn0.08Al0.25Fe0.83)BO4 and 8.3308 Å and 0.2542, respectively. Microstructure studies show that a bismuth rich liquid phase forms during the sintering at 1250°C, which enhances the densification of sintered bodies up to 13% (a relative density of 93%). Magnetization of sintered samples were increased from 21.1 emu/g to 26.2 emu/g upon addition of 2.5 wt.% bismuth oxide and then decreased to 24.9 emu/g when 5 wt.% bismuth oxide was added.
Study of defects and vacancies in structural properties of Mn, co-doped oxides: ZnO
NASA Astrophysics Data System (ADS)
Kumar, Harish; Kaushik, A.; Alvi, P. A.; Dalela, B.; Dalela, S.
2018-05-01
The paper deals with the Structural properties on Mn, Co doped oxides ZnO samples using XRD, Positron Annihilation Lifetime (PAL) Spectra and Raman Spectra. The Mn, Co doped ZnO samples crystallize in a wurtzite structure without any impurity phases in XRD Spectra. The defect state of these samples has been investigated by using positron annihilation lifetime (PAL) spectroscopy technique in which all the relevant lifetime parameters are measured for all the spectra. The results are explained in the direction of doping concentration in these samples in terms of defects structure on Zn lattice site VZn and oxygen defects Vo.
NASA Astrophysics Data System (ADS)
Chakrabartty, Joyprokash; Harnagea, Catalin; Celikin, Mert; Rosei, Federico; Nechache, Riad
2018-05-01
Inorganic ferroelectric perovskites are attracting attention for the realization of highly stable photovoltaic cells with large open-circuit voltages. However, the power conversion efficiencies of devices have been limited so far. Here, we report a power conversion efficiency of 4.20% under 1 sun illumination from Bi-Mn-O composite thin films with mixed BiMnO3 and BiMn2O5 crystal phases. We show that the photocurrent density and photovoltage mainly develop across grain boundaries and interfaces rather than within the grains. We also experimentally demonstrate that the open-circuit voltage and short-circuit photocurrent measured in the films are tunable by varying the electrical resistance of the device, which in turn is controlled by externally applying voltage pulses. The exploitation of multifunctional properties of composite oxides provides an alternative route towards achieving highly stable, high-efficiency photovoltaic solar energy conversion.
NASA Astrophysics Data System (ADS)
Singh, Monika; Kumar, Dinesh; Singh, Akhilesh Kumar
2018-04-01
For solid oxide fuel cell electrode material, calcium doped lanthanum manganite La0.4Ca0.6MnO3 (LCMO) and cerium-incorporated on Ca-site with composition La0.40Ca0.55Ce0.05MnO3 (LCCMO) were synthesized using most feasible and efficient glycine-nitrate method. The formation of crystalline single phase was confirmed by x-ray diffraction (XRD). The Rietveld analysis reveals that both systems crystallize into orthorhombic crystal structure with Pnma space group. Additionally, 8 mole % Y2O3 stabilized ZrO2 (8YSZ) solid electrolyte was also synthesized using high energy ball mill to check the reaction with electrode materials. It was found that the substitution of Ce+4 cations in LCMO perovskite suppressed formation of undesired insulating CaZrO3 phase.
Hong, Yong Seok; Kinney, Kerry A; Reible, Danny D
2011-03-01
Sediment from the Anacostia River (Washington, DC, USA) was suspended in aerobic artificial river water for 14 d to investigate the dynamics of dissolved metals release and related parameters including pH, acid volatile sulfides (AVS), and dissolved/solid phase Fe(2+). To better understand and predict the underlying processes, a mathematical model is developed considering oxidation of reduced species, dissolution of minerals, pH changes, and pH-dependent metals' sorption to sediment. Oxidation rate constants of elemental sulfur and zinc sulfide, and a dissolution rate constant of carbonate minerals, were adjusted to fit observations. The proposed model and parameters were then applied, without further calibration, to literature-reported experimental observations of resuspension in an acid sulfate soil collected in a coastal flood plain. The model provided a good description of the dynamics of AVS, Fe(2+), S(0)((s)), pH, dissolved carbonates concentrations, and the release of Ca((aq)), Mg((aq)), and Zn((aq)) in both sediments. Accurate predictions of Mn((aq)) release required adjustment of sorption partitioning coefficient, presumably due to the presence of Mn scavenging by phases not accounted for in the model. The oxidation of AVS (and the resulting release of sulfide-bound metals) was consistent with a two-step process, a relatively rapid AVS oxidation to elemental sulfur (S(0)((s))) and a slow oxidation of S(0)((s)) to SO(4)(2-)((aq)), with an associated decrease in pH from neutral to acidic conditions. This acidification was the dominant factor for the release of metals into the aqueous phase. Copyright © 2010 SETAC.
Oxide reduction during triggered-lightning fulgurite formation
NASA Astrophysics Data System (ADS)
Jones, B. E.; Jones, K. S.; Rambo, K. J.; Rakov, V. A.; Jerald, J.; Uman, M. A.
2005-03-01
In this study triggered-lightning induced fulgurites were formed in 99.9% pure binary oxides of manganese (MnO) and nickel (NiO) in order to study oxide reduction mechanisms. The fulgurite formation process involved packing the oxide in PVC holders and using the standard rocket-and-wire technique to trigger a lightning strike through the oxide at the International Center for Lightning Research and Testing in Camp Blanding, Florida. These two oxides were chosen from the thermodynamic extrapolation of the oxide stability using the Ellingham Diagram. This diagram indicates that NiO is significantly less stable than MnO. Fulgurites from the pure oxides were analyzed in a scanning electron microscope (SEM); secondary electron images, backscattered images and energy dispersive spectroscopy (EDS) were used to determine the microstructure and composition of the fulgurites. SEM/EDS analysis of the NiO and MnO prior to fulgurite formation confirmed they were pure binary oxides with no metallic contamination. After fulgurite formation, it was found that the nickel oxide fulgurite contained metallic nickel particles; the manganese oxide fulgurite showed no metallic phase formation. Transmission electron microscopy (TEM) examination confirmed that the MnO was a pure oxide with no sign of metallic phase formation. However, TEM results of the NiO showed that approximately 50% of the NiO was reduced to metallic face-centered cubic Ni. The Ni and NiO were observed to be coherent with the [1 0 0]Ni//[1 0 0]NiO and [1 1 0]Ni//[1 1 0]NiO. These results are consistent with the aforementioned thermodynamic stability calculations and show that the presence of carbonaceous material or mixtures of oxides is not necessary for oxide reduction during fulgurite formation. These studies do not rule out the possibility that electrolysis plays a role in oxide reduction. However, these fulgurites were made simultaneously during the same lightning strike and therefore were subjected to the same electrical current, and thus it is proposed the thermodynamic stability of the oxide must play a role in oxide reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaur, Anshu, E-mail: gauranshu20@gmail.com, E-mail: ahamed.vza@gmail.com; Mohiddon, Md. Ahamad, E-mail: gauranshu20@gmail.com, E-mail: ahamed.vza@gmail.com; Prasad, Muvva D.
2016-05-23
The growth and oxidation study of pulsed laser deposited MnCo{sub 2}O{sub 4} protective layer on SS430 substrate for solid oxide fuel cell application is demonstrated. MnCo{sub 2}O{sub 4} has been achieved in three different ways including, deposition at higher substrate temperature (700°C), and deposition at room temperature on pre-oxidized and untreated SS430 substrate followed by annealing at 700°C for 2 hrs. X-ray diffraction and Raman spectroscopy has been applied to demonstrate the kind of phases developed in each case. These three samples were subjected to heat treatment at 750°C for 5 hr. The extent of undesired Fe{sub 2}O{sub 3} phasemore » formation in the post deposition heat treated samples is discussed based on Raman spectroscopic results.« less
Magnetic excitations in the orbital disordered phase of MnV2O4
NASA Astrophysics Data System (ADS)
Matsuura, Keisuke; Sagayama, Hajime; Uehara, Amane; Nii, Yoichi; Kajimoto, Ryoichi; Kamazawa, Kazuya; Ikeuchi, Kazuhiko; Ji, Sungdae; Abe, Nobuyuki; Arima, Taka-hisa
2018-05-01
We have investigated the temperature dependence of magnetic dynamics in a spinel-type vanadium oxide MnV2O4 by inelastic neutron scattering. The scattering intensity of excitation around 20 meV disappears in the collinear intermediate-temperature cubic-ferrimagnetic phase, which reveals that this excitation should be peculiar to the orbital ordered phase. We have found a weakly dispersive mode emergent from a non-integer wavevector (1.4,1.4,0) at 56 K, which lies in the cubic-ferrimagnetic phase between non-coplanar ferrimagnetic and paramagnetic phases. This indicates that the probable presence of an incommensurate instability in the simple collinear structure.
Raman microscopy of lithium-manganese-rich transition metal oxide cathodes
Ruther, Rose E.; Callender, Andrew F.; Zhou, Hui; ...
2014-11-15
Lithium-rich and manganese-rich (LMR) layered transition metal (TM) oxide composites with general formula xLi 2MnO 3·(1-x)LiMO 2 (M = Ni, Co, Mn) are promising cathode candidates for high energy density lithium ion batteries. Lithium-manganese-rich TM oxides crystallize as a nanocomposite layered phase whose structure further evolves with electrochemical cycling. Raman spectroscopy is a powerful tool to monitor the crystal chemistry and correlate phase changes with electrochemical behavior. While several groups have reported Raman spectra of lithium rich TM oxides, the data show considerable variability in terms of both the vibrational features observed and their interpretation. In this paper, Raman microscopymore » is used to investigate lithium-rich and manganese-rich TM cathodes as a function of voltage and electrochemical cycling at various temperatures. No growth of a spinel phase is observed within the cycling conditions. However, analysis of the Raman spectra does indicate the structure of LMR-NMC deviates significantly from an ideal layered phase. Finally, the results also highlight the importance of using low laser power and large sample sizes to obtain consistent data sets.« less
Structural response of phyllomanganates to wet aging and aqueous Mn(II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinkle, Margaret A. G.; Flynn, Elaine D.; Catalano, Jeffrey G.
Naturally occurring Mn(IV/III) oxides are often formed through microbial Mn(II) oxidation, resulting in reactive phyllomanganates with varying Mn(IV), Mn(III), and vacancy contents. Residual aqueous Mn(II) may adsorb in the interlayer of phyllomanganates above vacancies in their octahedral sheets. The potential for interlayer Mn(II)-layer Mn(IV) comproportionation reactions and subsequent formation of structural Mn(III) suggests that aqueous Mn(II) may cause phyllomanganate structural changes that alters mineral reactivity or trace metal scavenging. Here we examine the effects of aging phyllomanganates with varying initial vacancy and Mn(III) content in the presence and absence of dissolved Mn(II) at pH 4 and 7. Three phyllomanganates weremore » studied: two exhibiting turbostratic layer stacking (δ-MnO2 with high vacancy content and hexagonal birnessite with both vacancies and Mn(III) substitutions) and one with rotationally ordered layer stacking (triclinic birnessite containing predominantly Mn(III) substitutions). Structural analyses suggest that during aging at pH 4, Mn(II) adsorbs above vacancies and promotes the formation of phyllomanganates with rotationally ordered sheets and mixed symmetries arranged into supercells, while structural Mn(III) undergoes disproportionation. These structural changes at pH 4 correlate with reduced Mn(II) uptake onto triclinic and hexagonal birnessite after 25 days relative to 48 h of reaction, indicating that phyllomanganate reactivity decreases upon aging with Mn(II), or that recrystallization processes involving Mn(II) uptake occur over 25 days. At pH 7, Mn(II) adsorbs and causes limited structural effects, primarily increasing sheet stacking in δ-MnO2. These results show that aging-induced structural changes in phyllomanganates are affected by aqueous Mn(II), pH, and initial solid-phase Mn(III) content. In conclusion, such restructuring likely alters manganese oxide reactions with other constituents in environmental and geologic systems, particularly trace metals and redox-active compounds.« less
Structural response of phyllomanganates to wet aging and aqueous Mn(II)
Hinkle, Margaret A. G.; Flynn, Elaine D.; Catalano, Jeffrey G.
2016-08-06
Naturally occurring Mn(IV/III) oxides are often formed through microbial Mn(II) oxidation, resulting in reactive phyllomanganates with varying Mn(IV), Mn(III), and vacancy contents. Residual aqueous Mn(II) may adsorb in the interlayer of phyllomanganates above vacancies in their octahedral sheets. The potential for interlayer Mn(II)-layer Mn(IV) comproportionation reactions and subsequent formation of structural Mn(III) suggests that aqueous Mn(II) may cause phyllomanganate structural changes that alters mineral reactivity or trace metal scavenging. Here we examine the effects of aging phyllomanganates with varying initial vacancy and Mn(III) content in the presence and absence of dissolved Mn(II) at pH 4 and 7. Three phyllomanganates weremore » studied: two exhibiting turbostratic layer stacking (δ-MnO2 with high vacancy content and hexagonal birnessite with both vacancies and Mn(III) substitutions) and one with rotationally ordered layer stacking (triclinic birnessite containing predominantly Mn(III) substitutions). Structural analyses suggest that during aging at pH 4, Mn(II) adsorbs above vacancies and promotes the formation of phyllomanganates with rotationally ordered sheets and mixed symmetries arranged into supercells, while structural Mn(III) undergoes disproportionation. These structural changes at pH 4 correlate with reduced Mn(II) uptake onto triclinic and hexagonal birnessite after 25 days relative to 48 h of reaction, indicating that phyllomanganate reactivity decreases upon aging with Mn(II), or that recrystallization processes involving Mn(II) uptake occur over 25 days. At pH 7, Mn(II) adsorbs and causes limited structural effects, primarily increasing sheet stacking in δ-MnO2. These results show that aging-induced structural changes in phyllomanganates are affected by aqueous Mn(II), pH, and initial solid-phase Mn(III) content. In conclusion, such restructuring likely alters manganese oxide reactions with other constituents in environmental and geologic systems, particularly trace metals and redox-active compounds.« less
NASA Astrophysics Data System (ADS)
El Abed, Ahmed; Gaudin, Etienne; zur Loye, Hans-Conrad; Darriet, Jacques
2003-01-01
We report the structure determination of two new phases belonging to the A 1+ x(A' xB 1- x)O 3 family of oxides with A=Sr, A'=Cu, and B=Mn, where x=3/11 and x=0.3244, corresponding to a commensurate and incommensurate composite structure, respectively. These two compounds are the first examples of oxides belonging to the Sr 1+ x(Cu xMn 1- x)O 3 family. Their structures were solved in the (3+1) dimensional superspace formalism as modulated composite structures with two subsystems [(Cu,Mn)O 3] and [Sr]. The superspace group used to solve the structures is R 3¯m(00γ)0s . The first phase ( x=3/11), corresponding to the chemical formula Sr 14Cu 3Mn 8O 33, was obtained as a single crystal with unit cell parameters of a=9.6025(3) Å and c1=2.5660(8) Å ( q=7/11 c1∗, Z=3), where c1 is the lattice parameter corresponding to the c-axis of the trigonal subsystem [(Cu,Mn)O 3]. The second phase ( x=0.3244(1)), is a polycrystalline sample with unit cell parameters of a=9.5933(7) and c1=2.5933(3) ( q=0.6622 c1∗, Z=3). In both structures, one dimensional chains run along the c-axis which contain octahedra and trigonal prisms occupied by manganese and copper atoms, respectively. The refinement results show that in both cases copper occupies the rectangular faces of the trigonal prism while manganese occupies the octahedral sites. The magnetic measurements of the polycrystalline phase (Sr 1+ x(Cu xMn 1- x)O 3, x=0.3244(2)) and the Curie constant obtained from the high temperature susceptibility are in agreement with a spin state configuration of S=3/2 for Mn 4+ and S=1/2 for Cu 2+.
Reduction Kinetics of Wüstite Scale on Pure Iron and Steel Sheets in Ar and H2 Gas Mixture
NASA Astrophysics Data System (ADS)
Mao, Weichen; Sloof, Willem G.
2017-10-01
A dense and closed Wüstite scale is formed on pure iron and Mn alloyed steel after oxidation in Ar + 33 vol pct CO2 + 17 vol pct CO gas mixture. Reducing the Wüstite scale in Ar + H2 gas mixture forms a dense and uniform iron layer on top of the remaining Wüstite scale, which separates the unreduced scale from the gas mixture. The reduction of Wüstite is controlled by the bulk diffusion of dissolved oxygen in the formed iron layer and follows parabolic growth rate law. The reduction kinetics of Wüstite formed on pure iron and on Mn alloyed steel are the same. The parabolic rate constant of Wüstite reduction obeys an Arrhenius relation with an activation energy of 104 kJ/mol if the formed iron layer is in the ferrite phase. However, at 1223 K (950 °C) the parabolic rate constant of Wüstite reduction drops due to the phase transformation of the iron layer from ferrite to austenite. The effect of oxygen partial pressure on the parabolic rate constant of Wüstite reduction is negligible when reducing in a gas mixture with a dew point below 283 K (10 °C). During oxidation of the Mn alloyed steel, Mn is dissolved in the Wüstite scale. Subsequently, during reduction of the Wüstite layer, Mn diffuses into the unreduced Wüstite. Ultimately, an oxide-free iron layer is obtained at the surface of the Mn alloyed steel, which is beneficial for coating application.
Ravella, Uday K; Liu, Jingjing; Corbel, Gwenaël; Skinner, Stephen J; Lacorre, Philippe
2016-08-23
Among standard high-temperature cathode materials for solid oxide fuel cells, La0.8 Sr0.2 MnO3-δ (LSM) displays the least reactivity with the oxide-ion conductor La2 Mo2 O9 (LMO), yet a reaction is observed at high processing temperatures, identified by using XRD and focused ion beam secondary-ion mass spectrometry (FIB-SIMS) after annealing at 1050 and 1150 °C. Additionally, Sr and Mn solutions were deposited and annealed on LMO pellets, as well as a Mo solution on a LSM pellet. From these studies several reaction products were identified by using XRD and located by using FIB-SIMS on the surface of pelletised samples. We used depth profiling to show that the reactivity extended up to ∼10 μm from the surface region. If Sr was present, a SrMoO4 -type scheelite phase was always observed as a reaction product, and if Mn was present, LaMnO3+δ single crystals were observed on the surface of the LMO pellets. Additional phases such as La2 MoO6 and La6 MoO12 were also detected depending on the configuration and annealing temperature. Reaction mechanisms and detailed reaction formulae are proposed to explain these observations. The strongest driving force for cationic diffusion appears to originate from Mo(6+) and Mn(3+) cations, rather than from Sr(2+) . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Radial elemental and phase separation in Ni-Mn-Ga glass-coated microwires
NASA Astrophysics Data System (ADS)
Shevyrtalov, S.; Zhukov, A.; Medvedeva, S.; Lyatun, I.; Zhukova, V.; Rodionova, V.
2018-05-01
In this manuscript, radial elemental and phase separation in Ni-Mn-Ga glass-coated microwires with high excess Ni as a result of high-temperature annealing was observed. Partial manganese evaporation from the outer part of the metallic nucleus and glass melting results in the formation of manganese oxide at the surface. The lack of manganese due to its evaporation induces Ni3Ga formation in the intermediate part, while in the middle part of the metallic nucleus, the residual L21 phase with an average chemical composition of Ni60Mn9Ga31 remains. The layered structure exhibits soft ferromagnetic behavior below 270 K. The results were discussed taking into account the chemical composition, arising internal stresses, recrystallization, and atomic ordering.
Schäffner, F; Merten, D; Pollok, K; Wagner, S; Knoblauch, S; Langenhorst, F; Büchel, G
2015-12-01
Extensive uranium mining in the former German Democratic Republic (GDR) in eastern Thuringia and Saxony took place during the period of 1946-1990. During mining activities, pelitic sediments rich in organic carbon and uranium were processed and exposed to oxygen. Subsequent pyrite oxidation and acidic leaching lead to partial contamination of the area with heavy metals and acid mine drainage (AMD) even few years after completion of remediation. One of those areas is the former heap Gessen (Ronneburg, Germany) were the residual contamination can be found 10 m under the base of the former heap containing partly permeable drainage channels. Actually, in such a system, a rapid but locally restricted mineralization of Mn oxides takes place under acidic conditions. This formation can be classified as a natural attenuation process as certain heavy metals, e.g., Cd (up to 6 μg/g), Ni (up to 311 μg/g), Co (up to 133 μg/g), and Zn (up to 104 μg/g) are bound to this phases. The secondary minerals occur as colored layers close to the shallow aquifer in glacial sediments and could be identified as birnessite and todorokite as Mn phase. The thermodynamic model shows that even small changes in the system are sufficient to shift either the pH or the Eh in the direction of stable Mn oxide phases in this acidic system. As a consequence of 9-15-year-long formation process (or even less), the supergene mineralization provides a cost-efficient contribution for remediation (natural attenuation) strategies of residual with heavy metals (e.g., Cd, Co, Ni, Zn) contaminated substrates.
Brown, J.G.; Glynn, P.D.
2003-01-01
The kinetics of carbonate and Mn oxide dissolution under acidic conditions were examined through the in situ exposure of pure phase samples to acidic ground water in Pinal Creek Basin, Arizona. The average long-term calculated in situ dissolution rates for calcite and dolomite were 1.65??10-7 and 3.64??10-10 mmol/(cm2 s), respectively, which were about 3 orders of magnitude slower than rates derived in laboratory experiments by other investigators. Application of both in situ and lab-derived calcite and dolomite dissolution rates to equilibrium reactive transport simulations of a column experiment did not improve the fit to measured outflow chemistry: at the spatial and temporal scales of the column experiment, the use of an equilibrium model adequately simulated carbonate dissolution in the column. Pyrolusite (MnO2) exposed to acidic ground water for 595 days increased slightly in weight despite thermodynamic conditions that favored dissolution. This result might be related to a recent finding by another investigator that the reductive dissolution of pyrolusite is accompanied by the precipitation of a mixed Mn-Fe oxide species. In PHREEQC reactive transport simulations, the incorporation of Mn kinetics improved the fit between observed and simulated behavior at the column and field scales, although the column-fitted rate for Mn-oxide dissolution was about 4 orders of magnitude greater than the field-fitted rate. Remaining differences between observed and simulated contaminant transport trends at the Pinal Creek site were likely related to factors other than the Mn oxide dissolution rate, such as the concentration of Fe oxide surface sites available for adsorption, the effects of competition among dissolved species for available surface sites, or reactions not included in the model.
Metal Inhibition of Growth and Manganese Oxidation in Pseudomonas putida GB-1
NASA Astrophysics Data System (ADS)
Pena, J.; Sposito, G.
2009-12-01
Biogenic manganese oxides (MnO2) are ubiquitous nanoparticulate minerals that contribute to the adsorption of nutrient and toxicant metals, the oxidative degradation of various organic compounds, and the respiration of metal-reducing bacteria in aquatic and terrestrial environments. The formation of these minerals is catalyzed by a diverse and widely-distributed group of bacteria and fungi, often through the enzymatic oxidation of aqueous Mn(II) to Mn(IV). In metal-impacted ecosystems, toxicant metals may alter the viability and metabolic activity of Mn-oxidizing organisms, thereby limiting the conditions under which biogenic MnO2 can form and diminishing their potential as adsorbent materials. Pseudomonas putida GB-1 (P. putida GB-1) is a model Mn-oxidizing laboratory culture representative of freshwater and soil biofilm-forming bacteria. Manganese oxidation in P. putida GB-1 occurs via two single-electron-transfer reactions, involving a multicopper oxidase enzyme found on the bacterial outer membrane surface. Near the onset of the stationary phase of growth, dark brown MnO2 particles are deposited in a matrix of bacterial cells and extracellular polymeric substances, thus forming heterogeneous biomineral assemblages. In this study, we assessed the influence of various transition metals on microbial growth and manganese oxidation capacity in a P. putida GB-1 culture propagated in a nutrient-rich growth medium. The concentration-response behavior of actively growing P. putida GB-1 cells was investigated for Fe, Co, Ni, Cu and Zn at pH ≈ 6 in the presence and absence of 1 mM Mn. Toxicity parameters such as EC0, EC50 and Hillslope, and EC100 were obtained from the sigmoidal concentration-response curves. The extent of MnO2 formation in the presence of the various metal cations was documented 24, 50, 74 and 104 h after the metal-amended medium was inoculated. Toxicity values were compared to twelve physicochemical properties of the metals tested. Significant correlations were found between EC50 values and reduction potential, electronegativity and the covalent index. Thus, metal toxicity in P. putida GB-1 appears to be modulated by the metals’ propensity to participate in covalent interactions and generate oxidative stress. This study provides a quantitative measure of metal tolerance in P. putida GB-1, as well as operational limits for Mn oxidation in this model system, both of which have important implications for the reactivity of P. putida-MnO2 assemblages formed in metal-impacted ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aslam, I., E-mail: ia31@msstate.edu
2016-10-15
Site-specific studies were carried out to characterize the interface of a galvanized dual-phase (DP) steel. Focused ion beam (FIB) was used to prepare specimens in the interface region (~ 100 nm thick) between the coating and the substrate. Transmission electron microscopy (TEM), scanning TEM (STEM), and high resolution TEM (HRTEM) were performed to resolve the phases and the structures at the interface between the zinc (Zn) coating and the steel substrate. The STEM and TEM results showed that a continuous manganese oxide (MnO) film with a thickness of ~ 20 nm was present on the surface of the substrate whilemore » no silicon (Si) oxides were resolved. Internal oxide particles were observed as well in the sub-surface region. Despite the presence of the continuous oxide film, a well-developed inhibition layer was observed right on top of the oxide film. The inhibition layer has a thickness of ~ 100 nm. Possible mechanisms for the growth of the inhibition layer were discussed. - Highlights: •Site-specific examinations were performed on the Zn/steel interface. •Continuous external MnO oxides (20 nm) were observed at the interface. •No Si oxides were observed at the interface. •Internal oxide particles were distributed in the subsurface. •A continuous inhibition layer grew on top of the external oxides.« less
NASA Astrophysics Data System (ADS)
Dwivedi, G. D.; Kumar, Abhishek; Yang, K. S.; Chen, B. Y.; Liu, K. W.; Chatterjee, Sandip; Yang, H. D.; Chou, H.
2016-05-01
Structural phase transition and Néel temperature (TN) enhancement were observed in Cr-substituted Mn3O4 spinels. Structural, magnetic, and dielectric properties of (Mn1-xCrx)3O4 (where x = 0.00, 0.10, 0.20, 0.25, 0.30, 0.40, and 0.50) were investigated. Cr-substitution induces room temperature structural phase transition from tetragonally distorted I41/amd (x = 0.00) to cubic Fd 3 ¯ m (x = 0.50). TN is found to increase from 43 K (x = 0.00) to 58 K (x = 0.50) with Cr-substitution. The spin ordering-induced dielectric anomaly near TN ensures that magneto-dielectric coupling persists in the cubic x = 0.50 system. X-ray absorption spectra reveal that Cr exists in a trivalent oxidation state and prefers the octahedral (Oh)-site, replacing Mn3+. Due to a reduction in the Jahn-Teller active Mn3+ cation and an increase in the smaller Cr3+ cation, the system begins to release the geometrical frustration by lowering its degeneracy. Consequently, a phase transition, from distorted tetragonal structure to the more symmetric cubic phase, occurs.
Manganese (Mn) Oxidation Increases Intracellular Mn in Pseudomonas putida GB-1
Banh, Andy; Chavez, Valarie; Doi, Julia; Nguyen, Allison; Hernandez, Sophia; Ha, Vu; Jimenez, Peter; Espinoza, Fernanda; Johnson, Hope A.
2013-01-01
Bacterial manganese (Mn) oxidation plays an important role in the global biogeochemical cycling of Mn and other compounds, and the diversity and prevalence of Mn oxidizers have been well established. Despite many hypotheses of why these bacteria may oxidize Mn, the physiological reasons remain elusive. Intracellular Mn levels were determined for Pseudomonas putida GB-1 grown in the presence or absence of Mn by inductively coupled plasma mass spectrometry (ICP-MS). Mn oxidizing wild type P. putida GB-1 had higher intracellular Mn than non Mn oxidizing mutants grown under the same conditions. P. putida GB-1 had a 5 fold increase in intracellular Mn compared to the non Mn oxidizing mutant P. putida GB-1-007 and a 59 fold increase in intracellular Mn compared to P. putida GB-1 ∆2665 ∆2447. The intracellular Mn is primarily associated with the less than 3 kDa fraction, suggesting it is not bound to protein. Protein oxidation levels in Mn oxidizing and non oxidizing cultures were relatively similar, yet Mn oxidation did increase survival of P. putida GB-1 when oxidatively stressed. This study is the first to link Mn oxidation to Mn homeostasis and oxidative stress protection. PMID:24147089
Mn(II) Oxidation by the Multicopper Oxidase Complex Mnx: A Binuclear Activation Mechanism.
Soldatova, Alexandra V; Tao, Lizhi; Romano, Christine A; Stich, Troy A; Casey, William H; Britt, R David; Tebo, Bradley M; Spiro, Thomas G
2017-08-23
The bacterial protein complex Mnx contains a multicopper oxidase (MCO) MnxG that, unusually, catalyzes the two-electron oxidation of Mn(II) to MnO 2 biomineral, via a Mn(III) intermediate. Although Mn(III)/Mn(II) and Mn(IV)/Mn(III) reduction potentials are expected to be high, we find a low reduction potential, 0.38 V (vs Normal Hydrogen Electrode, pH 7.8), for the MnxG type 1 Cu 2+ , the electron acceptor. Indeed the type 1 Cu 2+ is not reduced by Mn(II) in the absence of molecular oxygen, indicating that substrate oxidation requires an activation step. We have investigated the enzyme mechanism via electronic absorption spectroscopy, using chemometric analysis to separate enzyme-catalyzed MnO 2 formation from MnO 2 nanoparticle aging. The nanoparticle aging time course is characteristic of nucleation and particle growth; rates for these processes followed expected dependencies on Mn(II) concentration and temperature, but exhibited different pH optima. The enzymatic time course is sigmoidal, signaling an activation step, prior to turnover. The Mn(II) concentration and pH dependence of a preceding lag phase indicates weak Mn(II) binding. The activation step is enabled by a pK a > 8.6 deprotonation, which is assigned to Mn(II)-bound H 2 O; it induces a conformation change (consistent with a high activation energy, 106 kJ/mol) that increases Mn(II) affinity. Mnx activation is proposed to decrease the Mn(III/II) reduction potential below that of type 1 Cu(II/I) by formation of a hydroxide-bridged binuclear complex, Mn(II)(μ-OH)Mn(II), at the substrate site. Turnover is found to depend cooperatively on two Mn(II) and is enabled by a pK a 7.6 double deprotonation. It is proposed that turnover produces a Mn(III)(μ-OH) 2 Mn(III) intermediate that proceeds to the enzyme product, likely Mn(IV)(μ-O) 2 Mn(IV) or an oligomer, which subsequently nucleates MnO 2 nanoparticles. We conclude that Mnx exploits manganese polynuclear chemistry in order to facilitate an otherwise difficult oxidation reaction, as well as biomineralization. The mechanism of the Mn(III/IV) conversion step is elucidated in an accompanying paper .
Wang, Wenzheng; Wang, Honglei; Zhu, Tianle; Fan, Xing
2015-07-15
Ag/HZSM-5, Mn/HZSM-5, Ce/HZSM-5, Ag-Mn/HZSM-5 and Ce-Mn/HZSM-5 were prepared by impregnation method. Both their adsorption capacity and catalytic activity were investigated for the removal of gas phase low-concentration toluene by periodical operation of adsorption and non-thermal plasma regeneration. Results show that catalysts loaded with Ag (Ag/HZSM-5 and Ag-Mn/HZSM-5) had larger adsorption capacity for toluene than the other catalysts. And Ag-Mn/HZSM-5 displayed the best catalytic performance for both toluene oxidation by non-thermal plasma and byproducts suppression. On the other hand, the deactivated catalyst can be fully regenerated by calcining in air stream when its adsorption capacity and catalytic activity of the Ag-Mn/HZSM-5 catalyst was found to be decreased after 10 cycles of periodical adsorption and non-thermal regeneration. Copyright © 2015. Published by Elsevier B.V.
Koschinsky, A.; Hein, J.R.
2003-01-01
Marine Fe-Mn oxyhydroxide crusts form by precipitation of dissolved components from seawater. Three hydrogenetic crust samples (one phosphatized) and two hydrothermal Mn-oxide samples were subjected to a sequential-leaching procedure in order to determine the host phases of 40 elements. Those host-phase associations are discussed with respect to element speciation in seawater. The partitioning of elements between the two major phases, Mn oxide and Fe oxyhydroxide, can in a first-order approximation be explained by a simple sorption model related to the inorganic speciation of the elements in seawater, as has been proposed in earlier models. Free and weakly complexed cations, such as alkali and alkaline earth metals, Mn, Co, Ni, Zn, T1(I), and partly Y, are sorbed preferentially on the negatively charged surface of the MnO2 in hydrogenetic crusts. The driving force is a strong coulombic interaction. All neutral or negatively charged chloro (Cd, Hg, T1), carbonate (Cu, Y, Pb, and U), and hydroxide (Be, Sc, Ti, Fe, Zr, Nb, In, Sn, Sb, Te, Hf, Ta, Bi, Th, and T1(III)) complexes and oxyanions (V, Cr, As, Se, Mo, and W) bind to the slightly positively charged surface of the amorphous FeOOH phase. While coulombic interaction can explain the sorption of the negatively charged species, the binding of neutral species is based on specific chemical interaction. Organic complexation of elements in deep-ocean water seems to be at most of minor importance. Surface oxidation can explain some strong metal associations, e.g. of Co and T1 with the MnO2 and Te with the FeOOH. Sorption reactions initially driven by coulombic forces are often followed by the formation of specific bonds between the adsorbate and the atoms of the oxide surface. Differences in the associations of some metals between the non-phosphatized and phosphatized hydrogenetic crusts and between the hydrogenetic and the hydrothermal samples reflect the different physico-chemical environments of formation and speciations in oxic seawater vs. less-oxic fluids, especially for the redox-sensitive metals such as Mo and V. These environmental-related differences indicate that the methodology of chemical speciation used here in combination with spectroscopic methods may allow for the detection of changes in paleoceanographic conditions recorded during the several tens of millions of years of crust growth. ?? 2003 Elsevier Science B.V. All rights reserved.
Dissolution kinetics of iron-, manganese-, and copper-containing synthetic hydroxyapatites
NASA Technical Reports Server (NTRS)
Sutter, B.; Hossner, L. R.; Ming, D. W.
2005-01-01
Micronutrient-substituted synthetic hydroxyapatite (SHA) is being evaluated by the National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program for crop production on long-duration human missions to the International Space Station or for future Lunar or Martian outposts. The stirred-flow technique was utilized to characterize Ca, P, Fe, Mn, and Cu release characteristics from Fe-, Mn-, and Cu-containing SHA in deionized (DI) water, citric acid, and diethylene-triamine-pentaacetic acid (DTPA). Initially, Ca and P release rates decreased rapidly with time and were controlled by a non-SHA calcium phosphate phase(s) with low Ca/P solution molar ratios (0.91-1.51) relative to solid SHA ratios (1.56-1.64). At later times, Ca/P solution molar ratios (1.47-1.79) were near solid SHA ratios and release rates decreased slowly indicating that SHA controlled Ca and P release. Substituted SHA materials had faster dissolution rates relative to unsubstituted SHA. The initial metal release rate order was Mn >> Cu > Fe which followed metal-oxide/phosphate solubility suggesting that poorly crystalline metal-oxides/phosphates were dominating metal release. Similar metal release rates for all substituted SHA (approximately 0.01 cmol kg-1 min-1) at the end of the DTPA experiment indicated that SHA dissolution was supplying the metals into solution and that poorly crystalline metal-oxide/phosphates were not controlling metal release. Results indicate that non-SHA Ca-phosphate phases and poorly crystalline metal-oxide/phosphates will contribute Ca, P, and metals. After these phases have dissolved, substituted SHA will be the source of Ca, P, and metals for plants.
Discovery and Characterization of a Pourbaix-Stable, 1.8 eV Direct Gap Bismuth Manganate Photoanode
Newhouse, Paul F.; Reyes-Lillo, Sebastian E.; Li, Guo; ...
2017-11-13
Solar-driven oxygen evolution is a critical technology for renewably synthesizing hydrogen- and carbon-containing fuels in solar fuel generators. New photoanode materials are needed to meet efficiency and stability requirements, motivating materials explorations for semiconductors with (i) band-gap energy in the visible spectrum and (ii) stable operation in aqueous electrolyte at the electrochemical potential needed to evolve oxygen from water. Motivated by the oxygen evolution competency of many Mn-based oxides, the existence of several Bi-containing ternary oxide photoanode materials, and the variety of known oxide materials combining these elements with Sm, we explore the Bi-Mn-Sm oxide system for new photoanodes. Throughmore » the use of a ferri/ferrocyanide redox couple in high-throughput screening, BiMn 2O 5 and its alloy with Sm are identified as photoanode materials with a near-ideal optical band gap of 1.8 eV. Using density functional theory-based calculations of the mullite Bi 3+ Mn 3+ Mn 4+O 5 phase, we identify electronic analogues to the well-known BiVO 4 photoanode and demonstrate excellent Pourbaix stability above the oxygen evolution Nernstian potential from pH 4.5 to 15. Lastly, our suite of experimental and computational characterization indicates that BiMn 2O 5 is a complex oxide with the necessary optical and chemical properties to be an efficient, stable solar fuel photoanode.« less
Discovery and Characterization of a Pourbaix-Stable, 1.8 eV Direct Gap Bismuth Manganate Photoanode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newhouse, Paul F.; Reyes-Lillo, Sebastian E.; Li, Guo
Solar-driven oxygen evolution is a critical technology for renewably synthesizing hydrogen- and carbon-containing fuels in solar fuel generators. New photoanode materials are needed to meet efficiency and stability requirements, motivating materials explorations for semiconductors with (i) band-gap energy in the visible spectrum and (ii) stable operation in aqueous electrolyte at the electrochemical potential needed to evolve oxygen from water. Motivated by the oxygen evolution competency of many Mn-based oxides, the existence of several Bi-containing ternary oxide photoanode materials, and the variety of known oxide materials combining these elements with Sm, we explore the Bi-Mn-Sm oxide system for new photoanodes. Throughmore » the use of a ferri/ferrocyanide redox couple in high-throughput screening, BiMn 2O 5 and its alloy with Sm are identified as photoanode materials with a near-ideal optical band gap of 1.8 eV. Using density functional theory-based calculations of the mullite Bi 3+ Mn 3+ Mn 4+O 5 phase, we identify electronic analogues to the well-known BiVO 4 photoanode and demonstrate excellent Pourbaix stability above the oxygen evolution Nernstian potential from pH 4.5 to 15. Lastly, our suite of experimental and computational characterization indicates that BiMn 2O 5 is a complex oxide with the necessary optical and chemical properties to be an efficient, stable solar fuel photoanode.« less
NASA Astrophysics Data System (ADS)
Reed, John; van der Ven, Anton; Ceder, Gerbrand
2001-03-01
The viability of rechargeable lithium batteries in many applications hinges on finding electrode materials with high capacity, excellent chemical and phase stability, and low cost. LiCoO_2, the intercalation oxide currently used is too expensive and unsafe for large-scale batteries. Manganese oxides are a possible low cost alternative, but spinel LiMn_2O _4, the common form of the material, has too low a capacity and some stability problems. Recently, layered LiMnO _2, isostructural to LiCoO _2, has been synthesized. After a few battery cycles this material irreversibly transforms to a spinel structure, with loss of battery capacity. In this work we use Density Functional Theory to investigate why LiMnO2 transforms so rapidly to spinel but LiCoO 2 does not, even though both are known to be thermodynamically unstable towards this transformation. We find that the difference between the two compound is due to remarkably rapid diffusion of Mn ^3+. Diffusion of Mn^3+ occurs by disproportionation into Mn ^2+ an Mn ^4+ which gives the system a remarkable flexibility in its hybridization with the oxygen ions, even at the saddle point for diffusion. This knowledge has now been used to suggest compositional modifications of LiMnO 2 which slow down or even prevent the transformation to a spinel.
From dust to varnish: Geochemical constraints on rock varnish formation in the Negev Desert, Israel
NASA Astrophysics Data System (ADS)
Goldsmith, Yonaton; Stein, Mordechai; Enzel, Yehouda
2014-02-01
Chemical compositions of rock varnish from the Negev Desert of Israel and local settled dust were used to constrain the mechanisms of varnish formation and patterns of Mn enrichment and accumulation in the varnish. Rock varnish was sampled from coeval, undisturbed prehistoric flint artifacts along a south-north climatic transect (˜30-120 mm/yr of rain). Our analyses indicate that Mn, Ba and Pb in the varnish are significantly enriched (˜100×) in respect to the local settling dust and that Mn content systematically fluctuates with depth in the varnish. The varnish and settled dust data combined with basic thermodynamic and kinetic reasoning are used to constrain the following geochemical model of rock varnish formation: dust accumulates in micro-basins on exposed rock surfaces, under pH ˜8 (common Negev value) and during wetting by dew and rain, Mn in the dust is mobilized and leached to a depth of ˜5 μm under the varnish surface where Hollandite Mn-oxides precipitate and are adsorbed onto and between the porous clay minerals that comprise most of the varnish. During its mobile phase Mn-oxide is negatively charged and adsorbs rare earth elements. Once the solution dries abrasion removes the upper, weakly cemented dust sediment, which contains mainly Si, Al and Fe (which are not mobile at pH ˜8). Ca is also removed in large quantities. Mn, Ba, Pb and the REE are deposited at a depth and thus, protected from erosion. Reoccurrences of these processes result in a noticeable accumulation of these elements, but not of Si, Al or Fe. The alternating Mn-rich and Mn-poor laminas form as a result of a competition between the leaching rate of Mn and the adhesion rate of the clay minerals. When moisture is high (low), lamina with high (low) Mn/clay mineral ratio forms. The oxidation states involved in the varnish formation are unknown, therefore, to use Morgan's calculations we must assume, in agreement with the thermodynamic considerations (presented above), that during its varnish formation, Mn2+ is oxidized by one of the mechanisms presented by Morgan (2005). Morgan's data pertains to the rate in which Mn2+ is removed from the solution, and not to the rate of precipitation of Mn-oxides; the assumption used here is that the formation rate of Mn oxides is equal or faster than the removal rate of Mn2+, and therefore it is governed by the removal rate of Mn2+ from the solution. The efficiency of dissolution and deposition of Mn in varnish is unknown. Therefore, our calculations are based on full utilization (i.e., all Mn in the dust is transformed into Mn oxides in the varnish). Dust is abundant and its supply does not limit the process: this assumption is probably valid for deserts in general and more so to the central and southern Negev. Oxidation can occur only when moisture is available. The main moisture contributor to the Negev varnish is most likely dew (Goldsmith et al., 2012). To quantify the annual dew amounts, we used Zangvil (1996) data of an average of ˜1400 h/yr, which was measured over a six year period (at Sde Boker located between Divshon I and Nahal Boker in Fig. 1). For the following calculations, we used sites located in the central Negev, where it can be assumed that these sites experienced a similar moister regime as in Sde Boker. Morgan (2005) calculated the half-life for oxidation of Mn2+ in an aqueous environment. As stated above, these conditions prevail during ˜1400 h yr-1. With a Mn concentration in the dust of ˜500 ppm, the maximum amounts of Mn that would accumulate a year is: 35,000, 490, and 36 ppmMn yr-1 via bacterial oxidation, metal oxide catalysts, and homogenous solution oxidation, respectively.To estimate accumulation rates of Mn in the varnish, we calculated the total amount of Mn (MnTOT) in the measured profiles of the varnish by using an integral of the area under the graphs of [Mn]/depth (% atom/μm) (see appendix in Goldsmith, 2011). The MnTOT was divided by 9000 yr (the time interval since formation of the artifacts). The results (Table 3) indicate that the average Mn accumulation rates in the varnish range between 680 and 320 ppmMn yr-1. These accumulation rates are similar to the rates calculated by Morgan (2005) for oxidation via metal oxide catalysts (490 ppmMn yr-1). These rates are far below the Mn accumulation rates if bacteria oxidation was the primary process. Though, it is important to note that different bacteria might have lower oxidation rates, therefore, not completely eliminating the possible contribution of bacteria to the process.In the case of rock varnish, the major potential catalyst is clay minerals and not metal oxides. The adsorption of Mn on clay minerals was discussed by Garvie et al. (2008, Fig. 3) who state that “Nanometer-scale mixtures of Si- and Fe-rich material surrounded by Mn-rich material are common”. Clay minerals accelerate Mn(II) oxidation to a lesser degree than metal oxides (Wilson, 1980). Though, we have not identified in the literature rates of Mn adsorption on clay minerals to compare with the average Mn accumulation rates in the Negev varnish. This obstacle prevents drawing a firm conclusion based on oxidation rates alone. However, as a first order approximation, these estimations do point to a scenario of Mn accumulation via adsorption on a mixture of clay minerals and metal oxides. Rates associated with bacteria would have accumulated much larger amounts of Mn.
Manganese-oxidizing photosynthesis before the rise of cyanobacteria
NASA Astrophysics Data System (ADS)
Johnson, J. E.; Webb, S.; Thomas, K. S.; Ono, S.; Kirschvink, J. L.; Fischer, W. W.
2012-12-01
The evolution of oxygenic photosynthesis was a singularity that fundamentally transformed our planet's core biogeochemical cycles and changed the redox structure of Earth's surface, crust, and mantle. To date, understanding the evolution of this molecular machinery has largely been derived from comparative biology. Several biochemical innovations enabled water-splitting, including a central photosynthetic pigment with a higher redox potential and coupled photosystems. However the critical photochemical invention was the water oxidizing complex (WOC) of photosystem II, a cubane cluster of four redox-active Mn atoms and a Ca atom bound by oxo bridges, that couple the single electron photochemistry of the photosystem to the four-electron oxidation of water to O2. Transitional forms of the WOC have been postulated, including an Mn-containing catalase-like peptide using an H2O2 donor, or uptake and integration of environmental Mn-oxides. One attractive hypothesis from the perspective of modern photo-assembly of the WOC posits an initial Mn(II)-oxidizing photosystem as a precursor to the WOC (Zubay, 1996; Allen and Martin, 2007). To test these hypotheses, we studied the behavior of the ancient Mn cycle captured by 2415 ± 6 Ma scientific drill cores retrieved by the Agouron Drilling Project through the Koegas Subgroup in Griqualand West, South Africa. This succession contains substantial Mn-enrichments (up to 17 wt.% in bulk). To better understand the petrogenesis and textural context of these deposits, we employed a novel X-ray absorption spectroscopy microprobe to make redox maps of ultra-thin sample sections at a 2μm scale. Coupled to light and electron microscopy and C isotopic measurements, we observe that all of the Mn is present as Mn(II), contained within carbonate minerals produced from early diagenetic reduction of Mn-oxide phases with organic matter. To assay the environmental oxidant responsible for the production of the Mn-oxides we examined two independent techniques sensitive to low levels of environmental O2—multiple sulfur isotopes analyzed using whole-rock IRMS and texture-specific SIMS techniques, and the presence of redox-sensitive detrital grains. Despite the conspicuous oxidation of Mn, both proxies reveal a lack of significant molecular oxygen present in the environment at this time (O2 << 1 ppm). These results provide strong geological support for the idea that an early Mn-oxidizing photosystem once existed as a transitional form prior to the evolution of the WOC of photosystem II and oxygenic photosynthesis. [Refs: Zubay J (1996) Origins of Life on the Earth and in the Cosmos, Academic Press: San Diego. Allen JF, Martin W (2007) Evolutionary biology: Out of thin air, Nature, 445, 610-612.
Al-Mn CVD-FBR coating on P92 steel as protection against steam oxidation at 650 °C: TGA-MS study
NASA Astrophysics Data System (ADS)
Castañeda, S. I.; Pérez, F. J.
2018-02-01
The initial stages oxidation of the P92 ferritic/martensitic steel with and without Al-Mn coating at 650 °C in Ar+40%H2O for 240 h were investigated by mass spectrometry (MS) and thermogravimetric analysis (TGA). TGA-MS measurements were conducted in a closed steam loop. An Al-Mn coating was deposited on P92 steel at 580 °C for 2 h by chemical vapour deposition in a fluidized bed reactor (CVD-FBR). The coating as-deposited was treated in the same reactor at 700 °C in Ar for 2h, in order to produce aluminide phases that form the protective alumina layer (Al2O3) during oxidation. MS measurements at 650 °C of the Al-Mn/P92 sample for 200 h indicated the presence of (Al-Mn-Cr-Fe-O) volatile species of small intensity. Uncoated P92 steel oxidized under the same steam oxidation conditions emitted greater intensities of volatile species of Cr, Fe and Mo in comparison with intensities from coated steel. TGA measurements verified that the mass gained by the coated sample was up to 300 times lower than for uncoated P92 steel. The morphology, composition and structure of samples by Scanning Electron Microscopy SEM, Backscattered Electron (BSE) detection, X-ray Energy Dispersive Spectrometry (EDAX) and X-ray Diffraction (XRD) are described.
Zhang, Y; Liu, B S; Zhang, F M; Zhang, Z F
2013-03-15
Several MCM-41 materials were synthesized at different conditions by hydrothermal procedure using cheap and easily available industrial water glass as silica source. Fe doped manganese-based oxide/MCM-41 sorbents were prepared by a sol-gel method. The effects of loadings of metal oxide, Fe/Mn molar ratios over MCM-41 and reaction temperature on the performance of sorbent for hot coal gas desulfurization were investigated. Various techniques such as BET, XRD, XPS, LRS and HRTEM were used to characterize the sorbents. The result indicated Fe(3+) ions could occupy a position of Mn(3+) in cubic lattice of Mn2O3 and the (FexMn2-x)O3 solid solution is mainly active phase of sorbent. Moreover, the result of nine successive sulfurization-regeneration cycles of sorbent showed high sulfur adsorption capacity and endurable stability of FeMn4Ox/MCM-41 for H2S removal. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Komaba, Shinichi; Yabuuchi, Naoaki; Ikemoto, Sachi
2010-01-01
To study crystallization process of spinel-type Li 1+xMn 2-xO 4, in-situ high-temperature X-ray diffraction technique (HT-XRD) was utilized for the mixture consisting of Li 2CO 3 and Mn 2O 3 as starting material in the temperature range of 25-700 °C. In-situ HT-XRD analysis directly revealed that crystallization process of Li 1+xMn 2-xO 4 was significantly affected by the difference in the Li/Mn molar ratio in the precursor. Single phase of stoichiometric LiMn 2O 4 formed at 700 °C. The formation of single phase of spinel was achieved at the lower temperature than the stoichiometric sample as Li/Mn molar ratio in the precursor increased. Lattice parameter of the stoichiometric LiMn 2O 4 at 25 °C was 8.24 Å and expanded to 8.31 Å at 700 °C, which corresponds to the approximately 3% expansion in the unit cell volume. From the slope of the lattice parameter change as a function of temperatures, linear thermal expansion coefficient of the stoichiometric LiMn 2O 4 was calculated to be 1.2×10 -5 °C -1 in this temperature range. When the Li/Mn molar ratio in Li 1+xMn 2-xO 4 increased ( x > 0.1), the spinel phase segregated into the Li 1+yMn 2-yO 4 ( x > y) and Li 2MnO 3 during heating, which involved the oxygen loss from the materials. During the cooling process from 700 °C, and the segregated phase merged into Li 1+xMn 2-xO 4 with oxygen incorporation. Such trend directly observed by in-situ HT-XRD was supported by thermal gravimetric analysis as reversible weight (oxygen) loss/gain at higher temperature (500-700 °C).
NASA Astrophysics Data System (ADS)
Julien, C.; Ruth Mangani, I.; Selladurai, S.; Massot, M.
2002-08-01
The LiMn 2O 4 co-doped with copper and chromium forming LiMn 2- yCr y/2 Cu y/2 O 4 spinel phases have been synthesized by wet chemistry technique using an aqueous solution of metal acetates and dicarboxylic acid (succinic acid) as a complexing agent. The structural properties of the synthesized products have been investigated by X-ray powder diffraction, Raman scattering, and Fourier-transform infrared spectroscopy. To improve the rechargeable capacity of Li//LiMn 2- yCr y/2 Cu y/2 O 4 cells, the electrochemical features of LiMn 2- yCr y/2 Cu y/2 O 4 compounds have been evaluated as positive electrode materials. The structural properties of these oxides are very similar to LiMn 2O 4, their electrochemical performances show that the capacity is maintained 95% of the initial value at the 36th cycle for y=0.1, this being explained by the change of Mn 3+/Mn 4+ ratio in doped phases.
Hexavalent Chromium Generation within Naturally Structured Soils and Sediments
Hausladen, Debra M.; Fendorf, Scott
2017-01-13
Chromium(VI) produced from the oxidation of indigenous Cr(III) minerals is increasingly being recognized as a threat to groundwater quality. A critical determinant of Cr(VI) generation within soils and sediments is the necessary interaction of two low-solubility phases$-$Cr(III) silicates or (hydr)oxides and Mn(III/IV) oxides—that lead to its production. Here in this paper, we investigate the potential for Cr(III) oxidation by Mn oxides within fixed solid matrices common to soils and sediments. Artificial aggregates were constructed from Cr(OH) 3- and Cr 0.25Fe 0.75(OH) 3-coated quartz grains and either mixed with synthetic birnessite or inoculated with the Mn(II)-oxidizing bacterium Leptothrix cholodnii. In aggregatesmore » simulating low organic carbon environments, we observe Cr(VI) concentrations within advecting solutes at levels more than twenty-times the California drinking water standard. Chromium(VI) production is highly dependent on Cr-mineral solubility; increasing Fe-substitution (x = 0 to x = 0.75) decreases the solubility of the solid and concomitantly decreases total Cr(VI) generation by 37%. In environments with high organic carbon, reducing conditions within aggregate cores (microbially) generate sufficient Fe(II) to suppress Cr(VI) efflux. Our results illustrate Cr(VI) generation from reaction with Mn oxides within structured media simulating soils and sediments and provide insight into how fluctuating hydrologic and redox conditions impact coupled processes controlling Cr and Mn cycling.« less
Hexavalent Chromium Generation within Naturally Structured Soils and Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausladen, Debra M.; Fendorf, Scott
Chromium(VI) produced from the oxidation of indigenous Cr(III) minerals is increasingly being recognized as a threat to groundwater quality. A critical determinant of Cr(VI) generation within soils and sediments is the necessary interaction of two low-solubility phases$-$Cr(III) silicates or (hydr)oxides and Mn(III/IV) oxides—that lead to its production. Here in this paper, we investigate the potential for Cr(III) oxidation by Mn oxides within fixed solid matrices common to soils and sediments. Artificial aggregates were constructed from Cr(OH) 3- and Cr 0.25Fe 0.75(OH) 3-coated quartz grains and either mixed with synthetic birnessite or inoculated with the Mn(II)-oxidizing bacterium Leptothrix cholodnii. In aggregatesmore » simulating low organic carbon environments, we observe Cr(VI) concentrations within advecting solutes at levels more than twenty-times the California drinking water standard. Chromium(VI) production is highly dependent on Cr-mineral solubility; increasing Fe-substitution (x = 0 to x = 0.75) decreases the solubility of the solid and concomitantly decreases total Cr(VI) generation by 37%. In environments with high organic carbon, reducing conditions within aggregate cores (microbially) generate sufficient Fe(II) to suppress Cr(VI) efflux. Our results illustrate Cr(VI) generation from reaction with Mn oxides within structured media simulating soils and sediments and provide insight into how fluctuating hydrologic and redox conditions impact coupled processes controlling Cr and Mn cycling.« less
Lafferty, Brandon J.; Ginder-Vogel, Matthew; Zhu, Mengqiang; Livi, Kenneth J. T.; Sparks, Donald L.
2010-01-01
Arsenite (AsIII) oxidation by manganese oxides (Mn-oxides) serves to detoxify and, under many conditions, immobilize arsenic (As) by forming arsenate (AsV). AsIII oxidation by MnIV-oxides can be quite complex, involving many simultaneous forward reactions and subsequent back reactions. During AsIII oxidation by Mn-oxides, a reduction in oxidation rate is often observed, which is attributed to Mn-oxide surface passivation. X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) data show that MnII sorption on a poorly-crystalline hexagonal birnessite (δ-MnO2) is important in passivation early during reaction with AsIII. Also, it appears that MnIII in the δ-MnO2 structure is formed by conproportionation of sorbed MnII and MnIV in the mineral structure. The content of MnIII within the δ-MnO2 structure appears to increase as the reaction proceeds. Binding of AsV to δ-MnO2 also changes as MnIII becomes more prominent in the δ-MnO2 structure. The data presented indicate that AsIII oxidation and AsV sorption by poorly-crystalline δ-MnO2 is greatly affected by Mn oxidation state in the δ-MnO2 structure. PMID:20977204
A metallic interconnect for a solid oxide fuel cell stack
NASA Astrophysics Data System (ADS)
England, Diane Mildred
A solid oxide fuel cell (SOFC) electrochemically converts the chemical energy of reaction into electrical energy. The commercial success of planar, SOFC stack technology has a number of challenges, one of which is the interconnect that electrically and physically connects the cathode of one cell to the anode of an adjacent cell in the SOFC stack and in addition, separates the anodic and cathodic gases. An SOFC stack operating at intermediate temperatures, between 600°C and 800°C, can utilize a metallic alloy as an interconnect material. Since the interconnect of an SOFC stack must operate in both air and fuel environments, the oxidation kinetics, adherence and electronic resistance of the oxide scales formed on commercial alloys were investigated in air and wet hydrogen under thermal cycling conditions to 800°C. The alloy, Haynes 230, exhibited the slowest oxidation kinetics and the lowest area-specific resistance as a function of oxidation time of all the alloys in air at 800°C. However, the area-specific resistance of the oxide scale formed on Haynes 230 in wet hydrogen was unacceptably high after only 500 hours of oxidation, which was attributed to the high resistivity of Cr2O3 in a reducing atmosphere. A study of the electrical conductivity of the minor phase manganese chromite, MnXCr3-XO4, in the oxide scale of Haynes 230, revealed that a composition closer to Mn2CrO4 had significantly higher electrical conductivity than that closer to MnCr 2O4. Haynes 230 was coated with Mn to form a phase closer to the Mn2CrO4 composition for application on the fuel side of the interconnect. U.S. Patent No. 6,054,231 is pending. Although coating a metallic alloy is inexpensive, the stringent economic requirements of SOFC stack technology required an alloy without coating for production applications. As no commercially available alloy, among the 41 alloys investigated, performed to the specifications required, a new alloy was created and designated DME-A2. The oxide scale formed on DME-A2 at 800°C exhibited extremely high electrical conductivity with respect to the commercially available alloys studied. This new alloy shows great promise for use as an interconnect material for a planar SOFC stack operating at intermediate temperatures.
Najafpour, Mohammad Mahdi; Mostafalu, Ramin; Hołyńska, Małgorzata; Ebrahimi, Foad; Kaboudin, Babak
2015-11-01
Nano-sized Mn oxides contain Mn3O4, β-MnOOH and Mn2O3 have been prepared by a previously reported method using thermal decomposition of β-cyclodextrin-Mn complexes. In the next step, the water-oxidizing activities of these Mn oxides using cerium(IV) ammonium nitrate as a chemical oxidant are studied. The turnover frequencies for β-MnO(OH) and Mn3O4 are 0.24 and 0.01-0.17 (mmol O2/mol Mns), respectively. Subsequently, water-oxidizing activities of these compounds are compared to the other previously reported Mn oxides. Important factors affecting water oxidation by these Mn oxides are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Tang, Yuanzhi; Zeiner, Carolyn A; Santelli, Cara M; Hansel, Colleen M
2013-04-01
Microbially mediated oxidation of Mn(II) to Mn(III/IV) oxides influences the cycling of metals and remineralization of carbon. Despite the prevalence of Mn(II)-bearing minerals in nature, little is known regarding the ability of microbes to oxidize mineral-hosted Mn(II). Here, we explored oxidation of the Mn(II)-bearing mineral rhodochrosite (MnCO3 ) and characteristics of ensuing Mn oxides by six Mn(II)-oxidizing Ascomycete fungi. All fungal species substantially enhanced rhodochrosite dissolution and surface modification. Mineral-hosted Mn(II) was oxidized resulting in formation of Mn(III/IV) oxides that were all similar to δ-MnO2 but varied in morphology and distribution in relation to cellular structures and the MnCO3 surface. For four fungi, Mn(II) oxidation occurred along hyphae, likely mediated by cell wall-associated proteins. For two species, Mn(II) oxidation occurred via reaction with fungal-derived superoxide produced at hyphal tips. This pathway ultimately resulted in structurally unique Mn oxide clusters formed at substantial distances from any cellular structure. Taken together, findings for these two fungi strongly point to a role for fungal-derived organic molecules in Mn(III) complexation and Mn oxide templation. Overall, this study illustrates the importance of fungi in rhodochrosite dissolution, extends the relevance of biogenic superoxide-based Mn(II) oxidation and highlights the potential role of mycogenic exudates in directing mineral precipitation. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Sutherland, K. M.; Wankel, S. D.; Hansel, C. M.
2016-12-01
Manganese (Mn) oxides are a ubiquitous mineralogical component of surface Earth and Mars. Mn(III/IV) oxides are potent environmental sorbents and oxidants that play a crucial role in the fate of organic matter. The processes by which Mn(II) oxidation occurs in natural systems are poorly understood, but a number of studies have implicated microogranisms as the primary agents of Mn(II) oxidation in terrestrial and marine environments. The ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides transcends the boundaries of biological domain, with an abundance of well-characterized prokaryotes as well as eukaryotic fungi with the ability to oxidize Mn(II) to Mn(III/IV) oxides. Biological Mn(II) oxidation proceeds directly through enzymatic activity or indirectly through the production of reactive oxygen species. Building upon earlier research suggesting that stable oxygen isotope fractionation could be used to fingerprint unique Mn(II)-oxidizing organisms or distinct oxidation pathways, here we use culture-based studies of Mn(II)-oxidizing bacteria and fungi to determine the kinetic oxygen isotope effects associated with Mn(II) oxidation. Since the oxygen molecules in Mn(III/IV) oxides are comprised of oxygen from both precursor water and molecular oxygen, we used a two-fold approach to constrain isotope fractionation with respect to each oxygen source. We used open system oxidation experiments using oxygen-18 labeled water in parallel with closed system Rayleigh distillation oxidation experiments to fully constrain isotope fractionation associated with oxygen atom incorporation during Mn(II) oxidation. Our results suggest commonalities among fractionation factors from groups of Mn(II)-oxidizing organisms that have similar oxidation mechanisms. These results suggest that stable oxygen isotopes of Mn(III/IV) oxides have the potential to distinguish between Mn(II) oxidation pathways in nature, providing a way to determine which groups of Mn(II) oxidizers may be active in present and past surface Earth environments.
Intrinsic Origins of Crack Generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 Layered Oxide Cathode Material.
Lim, Jin-Myoung; Hwang, Taesoon; Kim, Duho; Park, Min-Sik; Cho, Kyeongjae; Cho, Maenghyo
2017-01-03
Ni-rich LiNi 0.8 Co 0.1 Mn 0.1 O 2 layered oxide cathodes have been highlighted for large-scale energy applications due to their high energy density. Although its specific capacity is enhanced at higher voltages as Ni ratio increases, its structural degradation due to phase transformations and lattice distortions during cycling becomes severe. For these reasons, we focused on the origins of crack generation from phase transformations and structural distortions in Ni-rich LiNi 0.8 Co 0.1 Mn 0.1 O 2 using multiscale approaches, from first-principles to meso-scale phase-field model. Atomic-scale structure analysis demonstrated that opposite changes in the lattice parameters are observed until the inverse Li content x = 0.75; then, structure collapses due to complete extraction of Li from between transition metal layers. Combined-phase investigations represent the highest phase barrier and steepest chemical potential after x = 0.75, leading to phase transformations to highly Li-deficient phases with an inactive character. Abrupt phase transformations with heterogeneous structural collapse after x = 0.81 (~220 mAh g -1 ) were identified in the nanodomain. Further, meso-scale strain distributions show around 5% of anisotropic contraction with lower critical energy release rates, which cause not only micro-crack generations of secondary particles on the interfaces between the contracted primary particles, but also mechanical instability of primary particles from heterogeneous strain changes.
Jara-Marini, Martín E; García-Camarena, Raúl; Gómez-Álvarez, Agustín; García-Rico, Leticia
2015-07-01
The aim of this study was to evaluate Fe and Mn distribution in geochemical fractions of the surface sediment of four oyster culture sites in the Sonora coast, Mexico. A selective fractionation scheme to obtain five fractions was adapted for the microwave system. Surface sediments were analyzed for carbonates, organic matter contents, and Fe and Mn in geochemical fractions. The bulk concentrations of Fe ranged from 10,506 to 21,918 mg/kg (dry weight, dry wt), and the bulk concentrations of Mn ranged from 185.1 to 315.9 mg/kg (dry wt) in sediments, which was low and considered as non-polluted in all of the sites. The fractionation study indicated that the major geochemical phases for the metals were the residual, as well as the Fe and Mn oxide fractions. The concentrations of metals in the geochemical fractions had the following order: residual > Fe and Mn oxides > organic matter > carbonates > interchangeable. Most of the Fe and Mn were linked to the residual fraction. Among non-residual fractions, high percentages of Fe and Mn were linked to Fe and Mn oxides. The enrichment factors (EFs) for the two metals were similar in the four studied coasts, and the levels of Fe and Mn are interpreted as non-enrichment (EF < 1) because the metals concentrations were within the baseline concentrations. According to the environmental risk assessment codes, Fe and Mn posed no risk and low risk, respectively. Although the concentrations of Fe and Mn were linked to the residual fraction, the levels in non-residual fractions may significantly result in the transference of other metals, depending on several physico-chemical and biological factors.
NASA Astrophysics Data System (ADS)
Lee, Sang-Hoon; Na, Hye-Sung; Park, Gi-Deok; Kim, Byung-Hoon; Song, Sang-Woo; Kang, Chung-Yun
2013-09-01
The effect of Ti on the ferrite-phase transformation in the middle portion of high-thickness Cr-Mo steel vessels was studied. The phase diagrams and ferrite continuous cooling transformation (CCT) curves were calculated thermodynamically, and dilatometry tests were performed to determine the start and finish times of the ferrite transformation. When the Ti concentration was 0.015 mass%, Δ( F s - F f ) of ferrite CCT curve decreased owing to an increase in the concentration of Mn dissolved as a result of (Mn, Ti) oxide formation. When the Ti concentration was 0.03 mass% or greater, the ferrite CCT curves shifted considerably to the right along the time axis owing to an increase in Ti oxide formation and the precipitation of Ti4C2S2, both of which affect the concentration of Mn dissolved in the austenite matrix. As a result, a completely bainitic structure was obtained when the Ti concentration was 0.03 mass% or greater.
In situ spectroscopic and solution analyses of the reductive dissolution of Mn02 by Fe(II)
Villinski, John E.; O'Day, Peggy A.; Corley, Timothy L.; Conklin, Martha H.
2001-01-01
The reductive dissolution of MnO2 by Fe(II) under conditions simulating acid mine drainage (pH 3, 100 mM SO42-) was investigated by utilizing a flow-through reaction cell and synchrotron X-ray absorption spectroscopy. This configuration allows collection of in situ, real-time X-ray absorption near-edge structure (XANES) spectra and bulk solution samples. Analysis of the solution chemistry suggests that the reaction mechanism changed (decreased reaction rate) as MnO2 was reduced and Fe(III) precipitated, primarily as ferrihydrite. Simultaneously, we observed an additional phase, with the local structure of jacobsite (MnFe2O4), in the Mn XANES spectra of reactants and products. The X-ray absorbance of this intermediate phase increased during the experiment, implying an increase in concentration. The presence of this phase, which probably formed as a surface coating, helps to explain the reduced rate of dissolution of manganese(IV) oxide. In natural environments affected by acid mine drainage, the formation of complex intermediate solid phases on mineral surfaces undergoing reductive dissolution may likewise influence the rate of release of metals to solution.
Doerr, Nora A; Ptacek, Carol J; Blowes, David W
2005-06-01
The Nickel Rim aquifer has been impacted for five decades by a metal-rich plume generated from the Nickel Rim mine tailings impoundment. Metals released by the oxidation of pyrrhotite in the unsaturated zone of the tailings migrate into the downgradient aquifer, affecting both the groundwater and the aquifer solids. A reactive barrier has been installed in the aquifer to remove sulfate and metals from the groundwater. The effect of the reactive barrier on metal concentrations in the aquifer solids has not previously been studied. In this study, a series of selective extraction procedures was applied to cores of aquifer sediment, to ascertain the distribution of metals among various solid phases present in the aquifer. Extraction results were combined with groundwater chemistry, geochemical modelling and solid-phase microanalyses, to assess the potential mobility of metals under changing geochemical conditions. Reactions within the reactive barrier caused an increase in the solid-phase carbonate content downgradient from the barrier. The concentrations of poorly crystalline, oxidized phases of Mn and Fe, as well as concentrations of Cr(III) associated with oxidized Fe, and poorly crystalline Zn, are lower downgradient from the barrier, whereas total solid-phase metal concentrations remain constant. Iron and Mn accumulate as oxidized, easily extractable forms in a peat layer overlying the aquifer. Although these oxides may buffer reducing plumes, they also have the potential to release metals to the groundwater, should a reduced condition be imposed on the aquifer by remedial actions.
NASA Astrophysics Data System (ADS)
Chae, Seulki; Soon, Jiyong; Jeong, Hyejeong; Lee, Tae jin; Ryu, Ji Heon; Oh, Seung M.
2018-07-01
In this study, (pentafluorophenylpropyl)trimethoxysilane (PFPPS) is grafted on a nickel-doped manganese spinel (LiNi0.5Mn1.5O4, LNMO) surface to suppress the failure modes in the 5-V positive electrode; electrolyte oxidation/film deposition, acid generation, and metal (Ni and Mn) dissolution. Vapor-phase molecular layer deposition is used to deposit a uniformly covered PFPPS layer on the LNMO surface. When the Li/LNMO cell is cycled at 3.5-4.9 V (vs. Li/Li+), the PFPPS moiety on the LNMO surface remains intact (not oxidized) under the highly oxidizing condition. Several beneficial features are observed with the PFPPS grafting. The oxidative electrolyte decomposition is mitigated, which increases the Coulombic efficiency of the Li/LNMO cell. Consequently, the surface film deposition and cell polarization are reduced, improving the capacity retention. Moreover, the acid generation and metal dissolution are also mitigated.
Lazareva, Svetlana; Ismagilov, Zinfer; Kuznetsov, Vadim; Shikina, Nadezhda; Kerzhentsev, Mikhail
2018-02-05
Huge amounts of nuclear waste, including depleted uranium, significantly contribute to the adverse environmental situation throughout the world. An approach to the effective use of uranium oxides in catalysts for the deep oxidation of chlorine-containing hydrocarbons is suggested. Investigation of the catalytic activity of the synthesized supported uranium oxide catalysts doped with Cr, Mn and Co transition metals in the chlorobenzene oxidation showed that these catalysts are comparable with conventional commercial ones. Physicochemical properties of the catalysts were studied by X-ray diffraction, temperature-programmed reduction with hydrogen (H 2 -TPR), and Fourier transform infrared spectroscopy. The higher activity of Mn- and Co-containing uranium oxide catalysts in the H 2 -TPR and oxidation of chlorobenzene in comparison with non-uranium catalysts may be related to the formation of a new disperse phase represented by uranates. The study of chlorobenzene adsorption revealed that the surface oxygen is involved in the catalytic process.
The Origin of Uni-axial Negative Thermal Expansion in a Layered Perovskite
NASA Astrophysics Data System (ADS)
Ablitt, Chris; Craddock, Sarah; Senn, Mark; Mostofi, Arash; Bristowe, Nicholas
Using first-principles calculations within the quasi-harmonic approximation (QHA), we explain the origin of experimentally observed uni-axial negative thermal expansion (NTE) in a layered perovskite: the Ruddlesden-Popper (RP) oxide Ca2MnO4, which has anti-ferromagnetic ordering at low temperatures and is closely related to Ca3Mn2O7, which exhibits hybrid improper ferroelectricity and uni-axial NTE in competing phases. Dynamic tilts of MnO6 octahedra, common in many complex oxides, drive the expansion of the a axis and contraction of the c axis of the tetragonal NTE phase. We find that ferroelastic RP phases with a frozen octahedral rotation are unusually compliant to particular combinations of strains along different axes. The atomic mechanism responsible is characteristic of the perovskite/rock-salt interfaces present in the RP structure. We show that the contribution from this anisotropic elasticity must be taken into account in order to accurately predict NTE over the temperature range observed in experiment. A similar compliance to cooperative strains is found in other systems with uni-axial NTE. The development of this mechanistic understanding of NTE in complex oxides may pave the way for designing tunable multifunctional materials. The authors would like to acknowledge support from the EPSRC and the Centre for Doctoral Training in Theory and Simulation of Materials.
Zhang, Zhen; Zhang, Zhongming; Chen, Hong; Liu, Jin; Liu, Chang; Ni, Hong; Zhao, Changsong; Ali, Muhammad; Liu, Fan; Li, Lin
2015-01-01
In this manuscript, we report that a bacterial multicopper oxidase (MCO266) catalyzes Mn(II) oxidation on the cell surface, resulting in the surface deposition of Mn(III) and Mn(IV) oxides and the gradual formation of bulky oxide aggregates. These aggregates serve as nucleation centers for the formation of Mn oxide micronodules and Mn-rich sediments. A soil-borne Escherichia coli with high Mn(II)-oxidizing activity formed Mn(III)/Mn(IV) oxide deposit layers and aggregates under laboratory culture conditions. We engineered MCO266 onto the cell surfaces of both an activity-negative recipient and wild-type strains. The results confirmed that MCO266 governs Mn(II) oxidation and initiates the formation of deposits and aggregates. By contrast, a cell-free substrate, heat-killed strains, and intracellularly expressed or purified MCO266 failed to catalyze Mn(II) oxidation. However, purified MCO266 exhibited Mn(II)-oxidizing activity when combined with cell outer membrane component (COMC) fractions in vitro. We demonstrated that Mn(II) oxidation and aggregate formation occurred through an oxygen-dependent biotic transformation process that requires a certain minimum Mn(II) concentration. We propose an approximate electron transfer pathway in which MCO266 transfers only one electron to convert Mn(II) to Mn(III) and then cooperates with other COMC electron transporters to transfer the other electron required to oxidize Mn(III) to Mn(IV). PMID:26039669
Zhang, Zhen; Zhang, Zhongming; Chen, Hong; Liu, Jin; Liu, Chang; Ni, Hong; Zhao, Changsong; Ali, Muhammad; Liu, Fan; Li, Lin
2015-06-03
In this manuscript, we report that a bacterial multicopper oxidase (MCO266) catalyzes Mn(II) oxidation on the cell surface, resulting in the surface deposition of Mn(III) and Mn(IV) oxides and the gradual formation of bulky oxide aggregates. These aggregates serve as nucleation centers for the formation of Mn oxide micronodules and Mn-rich sediments. A soil-borne Escherichia coli with high Mn(II)-oxidizing activity formed Mn(III)/Mn(IV) oxide deposit layers and aggregates under laboratory culture conditions. We engineered MCO266 onto the cell surfaces of both an activity-negative recipient and wild-type strains. The results confirmed that MCO266 governs Mn(II) oxidation and initiates the formation of deposits and aggregates. By contrast, a cell-free substrate, heat-killed strains, and intracellularly expressed or purified MCO266 failed to catalyze Mn(II) oxidation. However, purified MCO266 exhibited Mn(II)-oxidizing activity when combined with cell outer membrane component (COMC) fractions in vitro. We demonstrated that Mn(II) oxidation and aggregate formation occurred through an oxygen-dependent biotic transformation process that requires a certain minimum Mn(II) concentration. We propose an approximate electron transfer pathway in which MCO266 transfers only one electron to convert Mn(II) to Mn(III) and then cooperates with other COMC electron transporters to transfer the other electron required to oxidize Mn(III) to Mn(IV).
NASA Astrophysics Data System (ADS)
Kraemer, Dennis; Tepe, Nathalie; Pourret, Olivier; Bau, Michael
2017-01-01
We present experimental results on the sorption behavior of rare earth elements and yttrium (REY) on precipitating manganese (hydr)oxide in the presence of the biogenic siderophore desferrioxamine B (DFOB). In marked contrast to inorganic systems, where preferential adsorption of HREY and depletion of LREY is commonly observed in manganese (hydr)oxide precipitates, sorption of REY in presence of the DFOB siderophore leads to HREY-depleted and LREY-enriched patterns in the precipitates. Moreover, our data indicate that surface oxidation of Ce(III) to Ce(IV) during sorption onto manganese (hydr)oxides and the resulting development of a positive Ce anomaly, which are commonly observed in inorganic experiments, are prevented in the presence of DFOB. Instead, Ce(III) is oxidized to Ce(IV) but associated with the dissolved desferrioxamine B which forms complexes with Ce(IV), that are at least twenty orders of magnitude more stable than those with Ce(III) and REY(III). The overall result is the formation of a positive Ce anomaly in the solution and a negative Ce anomaly in the Mn (hydr)oxides. The distribution of the strictly trivalent REY and Eu(III) between the manganese (hydr)oxide phase and the remaining ambient solution mimics the distribution of published stability constants for complexes of REY(III) with DFOB, i.e. the heavy REY form more stable complexes with the ligand and hence are better shielded from sorption than the LREY. Surface complexation modeling corroborates our experimental results. Negative Ce anomalies in Mn precipitates have been described from biogenic Mn oxides. Our results provide experimental evidence for the development of negative Ce anomalies in abiogenic Mn (hydr)oxide precipitates and show that the presence of the widespread siderophore desferrioxamine B during mineral precipitation results in HREY-depleted Mn (hydr)oxides with negative Ce anomalies.
Correlating Local Structure with Electrochemical Activity in L i2MnO 3
Nanda, Jagjit; Sacci, Robert L.; Veith, Gabriel M.; ...
2015-07-31
Li 2MnO 3 is of interest as one component of the composite lithium-rich oxides, which are under development for high capacity, high voltage cathodes in lithium ion batteries. Despite such practical importance, the mechanism of electrochemical activity in Li 2MnO 3 is contested in the literature, as are the effects of long-term electrochemical cycling. Here, Raman spectroscopy and mapping are used to follow the chemical and structural changes that occur in Li 2MnO 3. Both conventional slurry electrodes and thin films are studied as a function of the state of charge (voltage) and cycle number. Thin films have similar electrochemicalmore » properties as electrodes prepared from slurries, but allow for spectroscopic investigations on uniform samples without carbon additives. Spectral changes correlate well with electrochemical activity and support a mechanism whereby capacity is lost upon extended cycling due to the formation of new manganese oxide phases. Raman mapping of both thin film and slurry electrodes charged to different voltages reveals significant variation in the local structure. Poor conductivity and slow kinetics associated with a two-phase reaction mechanism contribute to the heterogeneity.« less
Zhang, Haitao; Yang, Jen-Hsien; Shpanchenko, Roman V; Abakumov, Artem M; Hadermann, Joke; Clérac, Rodolphe; Dikarev, Evgeny V
2009-09-07
Heterometallic lead-manganese beta-diketonates have been isolated in pure form by several synthetic methods that include solid-state and solution techniques. Two compounds with different Pb/Mn ratios, PbMn(2)(hfac)(6) (1) and PbMn(hfac)(4) (2) (hfac = hexafluoroacetylacetonate), can be obtained in quantitative yield by using different starting materials. Single crystal X-ray investigation revealed that the solid-state structure of 1 contains trinuclear molecules in which lead metal center is sandwiched between two [Mn(hfac)(3)] units, while 2 consists of infinite chains of alternating [Pb(hfac)(2)] and [Mn(hfac)(2)] fragments. The heterometallic structures are held together by strong Lewis acid-base interactions between metal atoms and diketonate ligands acting in chelating-bridging fashion. Spectroscopic investigation confirmed the retention of heterometallic structures in solutions of non-coordinating solvents as well as upon sublimation-deposition procedure. Thermal decomposition of heterometallic diketonates has been systematically investigated in a wide range of temperatures and annealing times. For the first time, it has been shown that thermal decomposition of heterometallic diketonates results in mixed-metal oxides, while both the structure of precursors and the thermolysis conditions have a significant influence on the nature of the resulting oxides. Five different Pb-Mn oxides have been detected by X-ray powder diffraction when studying the decomposition of 1 and 2 in the temperature range 500-800 degrees C. The phase that has been previously reported as "Pb(0.43)MnO(2.18)" was synthesized in the pure form by decomposition of 1, and crystallographically characterized. The orthorhombic unit cell parameters of this oxide, obtained by electron diffraction technique, have been subsequently refined using X-ray powder diffraction data. Besides that, a previously unknown lead-manganese oxide has been obtained at low temperature decomposition and short annealing times. The parameters of its monoclinically distorted unit cell have been determined. The EDX analysis revealed that this compound has a Pb/Mn ratio close to 1:4 and contains no appreciable amount of fluorine.
da Silva Santos, Vivian; Bisen-Hersh, Emily; Yu, Yingchun; Cabral, Ingridy Simone Ribeiro; Nardini, Viviani; Culbreth, Megan; Teixeira da Rocha, João Batista; Barbosa, Fernando; Aschner, Michael
2014-01-01
Manganese (Mn) is an essential element for human health. However, at high concentrations Mn may be neurotoxic. Mn accumulates in astrocytes, affecting their redox status. In view of the high antioxidant and anti-inflammatory properties of the exotic Brazilian fruit açaí (Euterpe oleracea Mart.), its methanolic extract was obtained by solid-phase extraction (SPE). This açaí extract showed considerable anthocyanins content and direct antioxidant capacity. The açaí extract scavenged 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH•) with an EC₅₀ of 19.1 ppm, showing higher antioxidant activity compared to butylated hydroxytoluene (BHT), but lower than ascorbic acid and quercetin. This obtained açaí extract also attenuated Mn-induced oxidative stress in primary cultured astrocytes. Specifically, the açaí extract at an optimal and nutritionally relevant concentration of 0.1 μg/ml prevented Mn-induced oxidative stress by (1) restoring GSH/GSSG ratio and net glutamate uptake, (2) protecting astrocytic membranes from lipid peroxidation, and (3) decreasing Mn-induced expression of erythroid 2-related factor (Nrf2) protein. A larger quantity of açaí extract exacerbated the effects of Mn on these parameters except with respect to lipid peroxidation assessed by means of F₂-isoprostanes. These studies indicate that at nutritionally relevant concentration, anthocyanins obtained from açaí protect astrocytes against Mn neurotoxicity, but at high concentrations, the "pro-oxidant" effects of its constituents likely prevail. Future studies may be profitably directed at potential protective effects of açaí anthocyanins in nutraceutical formulations.
NASA Astrophysics Data System (ADS)
Park, Seon-Yeong; Choe, Han-Cheol
2018-02-01
In this study, Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetrons sputtering for dental applications were studied using different experimental techniques. Mn coating films were formed on Ti-29Nb-xHf alloys by a radio frequency magnetron sputtering technique for 0, 1, 3, and 5 min at 45 W. The microstructure, composition, and phase structure of the coated alloys were examined by optical microscopy, field emission scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The microstructure of Ti-29Nb alloy showed α" phase in the needle-like structure and Ti-29Nb-15Hf alloy showed β phase in the equiaxed structure. As the sputtering time increased, the circular particles of Mn coatings on the Ti-29Nb alloy increased at inside and outside surfaces. As the sputtering time increased, [Mn + Ca/P] ratio of the plasma electrolytic oxidized films in Ti- 29Nb-xHf alloys increased. The corrosion potential (Ecorr) of Mn coatings on the Ti-29Nb alloy showed higher than that of Mn coatings on the Ti-29Nb-15Hf alloy. The passive current density (Ipass) of the Mn coating on the Ti-29Nb alloy and Mn coatings on the Ti-29Nb-15Hf alloy was less noble than the non-Mn coated Ti-29Nb and Ti-29Nb-15Hf alloys surface.
Influence of Oxygen Stoichiometry Variations on the Properties of CaMnO3 thin films
NASA Astrophysics Data System (ADS)
Goehringer, Tyler; Yong, Grace; Otouloumougoye, Brenda; Keshavarz, Camron; Sharma, Prahash; Tanyi, E. Kevin; Schaefer, David; Kolagani, Rajeswari
2013-03-01
The family of alkaline-earth doped rare earth manganese oxides RE1-xAExMnO3 exhibit a rich variety of electronic phases depending on the cation stoichiometry. In thin films of these materials, the oxygen stoichiometry is also a variable, and together with cation stoichiometry is known to play a key role in determining the equilibrium phase. The cation and oxygen stoichiometry variations influence electrical and magnetic properties through changes in the mixed valence state of Mn, i.e. the ratio of Mn3+ to Mn4+ ions. CaMnO3 is one of the end members of this family with x =1. Stoichiometric CaMnO3 is a canted antiferromagnetic insulator with the Mn ion in the Mn4+ valence state. We will present our results on the effects of oxygen content variation on the structural, electrical, and magnetoresistive properties CaMnO3 thin films grown by Pulsed Laser Deposition. These results will be compared to the effects of oxygen stoichiometry variation in thin films of its doped counter-part La1-xCaxMnO3. We will also discuss surface morphology changes associated with variation in oxygen stoichiometry which may be associated with different surface terminations. We acknowledge support from the NSF grant ECCS 1128586 at Towson University.
Koski, R.A.
1988-01-01
Petrographic and chemical data presented and discussed permit the following conclusions regarding the high-latitude Gulf of Alaska (GA) Fe-Mn deposits: 1) thick (10-50 mm) Fe-Mn crusts form on alkali-basalt and volcaniclastic substrates by hydrogenetic processes, contain delta -MnO2 as the principal Mn phase, and have compositions similar to those of seamount crusts from comparable depths in the Hawaiian archipelago. GA crusts have higher Mn/Fe and lower Co contents than crusts from low-altitude, central Pacific seamounts; 2) thin (<10 mm) crusts on tuffaceous conglomerate, sandstone and phosphorite have a high proportion of crystalline Mn oxides and are genetically related to vein deposits; 3) vein deposits of todorokite and cryptomelane form during low-T oxidative diagenesis of volcanogenic sediment. Mn and other transition metals are supplied during the initial palagonitization of basaltic glass. The oxidation of Fe2+ to Fe3+ in palagonite and the dissolution of the diluted microfossil fraction of the sediment lower the Eh of the ambient pore fluid and enhance the solubility of Mn2+. The K released during the formation of palagonite may be redeposited in secondary phyllosilicate minerals, phillipsite, todorokite and cryptomelane; 4) the vein deposits formed soon after the deposition of sediment derived from the erosion and mass wasting of Mill Seamount but before crust deposition. Therefore, the deposition of hydrogenous crusts and the deposition of diagenetic veins are chemically distinct processes in time and space.-J.M.H.
Tunable magnetic and transport properties of Mn3Ga thin films on Ta/Ru seed layer
NASA Astrophysics Data System (ADS)
Hu, Fang; Xu, Guizhou; You, Yurong; Zhang, Zhi; Xu, Zhan; Gong, Yuanyuan; Liu, Er; Zhang, Hongguo; Liu, Enke; Wang, Wenhong; Xu, Feng
2018-03-01
Hexagonal D019-type Mn3Z alloys that possess large anomalous and topological-like Hall effects have attracted much attention due to their great potential in antiferromagnetic spintronic devices. Herein, we report the preparation of Mn3Ga films in both tetragonal and hexagonal phases with a tuned Ta/Ru seed layer on a thermally oxidized Si substrate. Large coercivity together with large anomalous Hall resistivity is found in the Ta-only sample with a mixed tetragonal phase. By increasing the thickness of the Ru layer, the tetragonal phase gradually disappears and a relatively pure hexagonal phase is obtained in the Ta(5)/Ru(30) buffered sample. Further magnetic and transport measurements revealed that the anomalous Hall conductivity nearly vanishes in the pure hexagonal sample, while an abnormal asymmetric hump structure emerges in the low field region. The extracted additional Hall term is robust in a large temperature range and presents a sign reversal above 200 K. The abnormal Hall properties are proposed to be closely related to the frustrated spin structure of D019 Mn3Ga.
Secretome-based Manganese(II) Oxidation by Filamentous Ascomycete Fungi
NASA Astrophysics Data System (ADS)
Zeiner, C. A.; Purvine, S.; Zink, E.; Paša-Tolić, L.; Chaput, D.; Wu, S.; Santelli, C. M.; Hansel, C. M.
2017-12-01
Manganese (Mn) oxides are among the strongest oxidants in the environment, and Mn(II) oxidation to Mn(III/IV) (hydr)oxides includes both abiotic and microbially-mediated processes. While white-rot Basidiomycete fungi oxidize Mn(II) using laccases and Mn peroxidases in association with lignocellulose degradation, the mechanisms by which filamentous Ascomycete fungi oxidize Mn(II) and a physiological role for Mn(II) oxidation in these organisms remain poorly understood. Through a combination of chemical and in-gel assays, bulk mass spectrometry, and iTRAQ proteomics, we demonstrate enzymatic Mn(II) oxidation in the secretomes of three phylogenetically diverse Ascomycetes that were isolated from Mn-laden sediments. Candidate Mn(II)-oxidizing enzymes were species-specific and included bilirubin oxidase and tyrosinase in Stagonospora sp. SRC1lsM3a, GMC oxidoreductase in Paraconiothyrium sporulosum AP3s5-JAC2a, and FAD-binding oxidoreductases in Pyrenochaeta sp. DS3sAY3a. These findings were supported by full proteomic characterization of the secretomes, which revealed a lack of Mn, lignin, and versatile peroxidases in these Ascomycetes but a substantially higher proportion of LMCOs and GMC oxidoreductases compared to wood-rot Basidiomycetes. We also identified the potential for indirect enzymatic Mn(II) oxidation by hydroxyl radical, as the secretomes were rich in diverse lignocellulose-degrading enzymes that could participate in Fenton chemistry. A link between Mn(II) oxidation and carbon oxidation analogous to white-rot Basidiomycetes remains unknown in these Ascomycetes. Interestingly, growth rates on rich medium were unaffected by the presence of Mn(II), and the production of Mn(II)-oxidizing proteins in the secretome was constitutive and not inducible by Mn(II). Thus, no physiological benefit of Mn(II) oxidation in these Ascomycetes has yet been identified, and Mn(II) oxidation appears to be a side reaction. Future work will explore the lignin-degrading capacity of these fungi and any associated role of Mn(II) oxidation.
NASA Astrophysics Data System (ADS)
Lan, Shuai; Wang, Xiaoming; Xiang, Quanjun; Yin, Hui; Tan, Wenfeng; Qiu, Guohong; Liu, Fan; Zhang, Jing; Feng, Xionghan
2017-08-01
Oxidation of Mn(II) is an important process that controls the mobility and bioavailability of Mn, as well as the formation of Mn (oxyhydr)oxides in natural systems. It was found that the surfaces of minerals, such as iron (oxyhydr)oxides, can accelerate Mn(II) oxidation to a certain degree, but the underlying mechanism has not been clearly understood. This study explores the reaction pathways and mechanisms of Mn(II) oxidation on ferrihydrite surfaces at neutral pH, commonly found in natural environments, by comparisons with montmorillonite, amorphous Al(OH)3, goethite, and magnetite using macroscopic experiments and spectroscopic analyses. Results show that when Mn(II) concentrations are below 4 mM, macroscopic Mn(II) adsorption on the three iron (oxyhydr)oxide surfaces conforms well to the Langmuir equation, with ferrihydrite showing the highest adsorption capacity. With Mn(II) concentrations ranging within 6-24 mM, the adsorbed Mn(II) is mainly oxidized into manganite (γ-MnOOH) and/or feitknechtite (β-MnOOH) by dissolved O2, and Mn(II) removal on a unit mass basis in the presence of magnetite is the highest compared with ferrihydrite and goethite. Ferrihydrite, a semiconductor material, shows stronger catalytic ability for Mn(II) oxidation on the same surface area than insulator minerals (i.e., montmorillonite and amorphous Al(OH)3). Additionally, the products of Mn(II) oxidation in the presence of semiconductor iron (oxyhydr)oxides (i.e., ferrihydrite, goethite, or magnetite) at the same Fe/Mn molar ratio include both manganite and a small amount of Mn(IV) minerals, and the Mn average oxidation states (Mn AOSs) of these products follow the order: magnetite > goethite > ferrihydrite. Magnetite and goethite, with relatively smaller SSAs and lower band gap energies, exhibit greater catalysis for Mn(II) oxidation than ferrihydrite at the same Fe/Mn ratio, which goes against the conventional interfacial effect and is related to the electrochemical properties. Thus, the Mn(II) catalytic oxidation by O2 on ferrihydrite surfaces should include an electrochemical pathway, i.e., electron transfer (ET) in the Mn(II)-Conduction Band (CB)Ferrihydrite-O2 complexes, in addition to the conventional two interfacial catalytic pathways, i.e., ET in the Mn(II)-Fe(II, III)-O2 complexes and direct ET in the Mn(II)-O2 complexes. These results reveal new implications for understanding the processes and mechanisms of Mn(II) oxidation on iron (oxyhydr)oxide surfaces and the abiotic formation of Mn (oxyhydr)oxides in surface environments.
Manganese oxide arrays on carbon fiber paper and its application for PEMFC
NASA Astrophysics Data System (ADS)
Lu, Lu; Zhao, Yu; Deng, Han; Xu, Bing
2018-02-01
C-MnO2 was synthesized by direct hydrothermal decomposition of KMnO4. The structure and morphology of C-MnO2 was characterized by XRD and SEM, electrochemical performances were investigated by cyclic voltammetry. The effects of hydrothermal temperatures, and time were systemat ically investigated. The XRD pattern can be identified as a α-types space group, and it matches well with Bragg reflection of the standard α-MnO2, suggesting that a targeted α-MnO2 has been successfully synthesized. The results show that pure phase MnO2 nanorods can be obtained in 160 °C. C-MnO2 composites show a larger current response and C-MnO2 composite material has improved the efficiency of the large current charge and discharge.
NASA Astrophysics Data System (ADS)
Tumiati, Simone; Godard, Gaston; Martin, Silvana; Malaspina, Nadia; Poli, Stefano
2015-06-01
The manganese ore of Praborna (Italian Western Alps) is embedded within a metasedimentary sequence belonging to a subduction mélange equilibrated at high-pressure (HP) conditions (ca. 2 GPa) during the Alpine orogenesis. The pervasive veining of the ore and the growth of "pegmatoid" HP minerals suggest that these Mn-rich rocks strongly interacted with slab-derived fluids during HP metamorphism. These rocks are in textural and chemical equilibrium with the veins and in contact with sulphide- and magnetite-bearing metabasites at the bottom of the sequence. They contain braunite (Mn2+Mn3+6SiO12), quartz, pyroxmangite (Mn2+SiO3), and minor hematite, omphacite, piemontite and spessartine-rich garnet. Sulphides are absent in the Mn-rich rocks, whereas sulphates (barite, celestine) occur together with As- and Sb-oxides and silicates. This rock association provides an excellent natural laboratory to constrain the redox conditions in subducting oceanic slab mélanges at HP and fluid-present conditions. Similarly to Fe-bearing minerals, Mn oxides and silicates can be regarded as natural redox-sensors. A thermodynamic dataset for these Mn-bearing minerals is built, using literature data as well as new thermal expansion parameters for braunite aud pyrolusite, derived from experiments. Based on this dataset and the observed assemblages at Praborna, thermodynamic calculations show that these mélange rocks are characterised by ultra-oxidized conditions (∆FMQ up to + 12.7) if the chemical potential of oxygen (or the oxygen fugacity fO2) is accounted for. On the other hand, if the molar quantity of oxygen is used as the independent state variable to quantify the bulk oxidation state, the ore appears only moderately oxidized and comparable to typical subduction-slab mafic eclogites. Such an apparent contradiction may happen in rock systems whenever oxygen is improperly considered as a perfectly mobile component. In the Earth's mantle, redox reactions take place mainly between solid oxides and silicates, because O2 is a negligible species in the fluid phase. Therefore, the description of the redox conditions of most petrological systems requires the introduction of an extensive variable, namely the oxygen molar quantity (nO2). As a consequence, the oxygen chemical potential, and thus fO2, becomes a dependent state variable, not univocally indicative of the redox conditions of the entire rock column of a subduction zone, from the dehydrating oceanic crust to the overlying mantle wedge. On a more general basis, the comparison of fO2 retrieved from different bulk compositions and different phase assemblages is sometimes challenging and should be undertaken with care. From the study of mélange rocks at Praborna, the distribution of oxygen at subduction zones could be modelled as an oxidation gradient, grading from a maximum in the subducted altered oceanic crust to a minimum in the overlying peridotites of the mantle hanging-wall.
Oxygen isotope analysis of bacterial and fungal manganese oxidation.
Sutherland, K M; Wankel, S D; Hansel, C M
2018-07-01
The ability of micro-organisms to oxidize manganese (Mn) from Mn(II) to Mn(III/IV) oxides transcends boundaries of biological clade or domain. Many bacteria and fungi oxidize Mn(II) to Mn(III/IV) oxides directly through enzymatic activity or indirectly through the production of reactive oxygen species. Here, we determine the oxygen isotope fractionation factors associated with Mn(II) oxidation via various biotic (bacteria and fungi) and abiotic Mn(II) reaction pathways. As oxygen in Mn(III/IV) oxides may be derived from precursor water and molecular oxygen, we use a twofold approach to determine the isotope fractionation with respect to each oxygen source. Using both 18 O-labeled water and closed-system Rayleigh distillation approaches, we constrain the kinetic isotope fractionation factors associated with O atom incorporation during Mn(II) oxidation to -17.3‰ to -25.9‰ for O 2 and -1.9‰ to +1.8‰ for water. Results demonstrate that stable oxygen isotopes of Mn(III/IV) oxides have potential to distinguish between two main classes of biotic Mn(II) oxidation: direct enzymatic oxidation in which O 2 is the oxidant and indirect enzymatic oxidation in which superoxide is the oxidant. The fraction of Mn(III/IV) oxide-associated oxygen derived from water varies significantly (38%-62%) among these bio-oxides with only weak relationship to Mn oxidation state, suggesting Mn(III) disproportionation may account for differences in the fraction of mineral-bound oxygen from water and O 2 . Additionally, direct incorporation of molecular O 2 suggests that Mn(III/IV) oxides contain a yet untapped proxy of δ18OO2 of environmental O 2 , a parameter reflecting the integrated influence of global respiration, photorespiration, and several other biogeochemical reactions of global significance. © 2018 John Wiley & Sons Ltd.
End-of-life Zn-MnO2 batteries: electrode materials characterization.
Cabral, Marta; Pedrosa, F; Margarido, F; Nogueira, C A
2013-01-01
Physical and chemical characterization of several sizes and shapes of alkaline and saline spent Zn-MnO2 batteries was carried out, aiming at contributing for a better definition of the applicable recycling processes. The characterization essays included the mass balance of the components, cathode and anode elemental analysis, the identification of zinc and manganese bearing phases and the morphology analysis of the electrode particles. The electrode materials correspond to 64-79% of the total weigh of the batteries, with the cathodes having clearly the highest contribution (usually more than 50%). The steel components, mainly from the cases, are also important (17-30%). Elemental analysis showed that the electrodes are highly concentrated in zinc (from 48-87% in anodes) and manganese (from 35-50% in cathodes). X-Ray powder diffraction allowed for identifying several phases in the electrodes, namely zinc oxide, in the anodes of all the types of saline and alkaline batteries tested, while zinc hydroxide chloride and ammine zinc chloride only appear in some types of saline batteries. The manganese found in the cathode materials is present as two main phases, MnO x Mn2O3 and ZnO x Mn2O3, the latter corroborating that zinc migration from anode to cathode occurs during the batteries lifespan. A unreacted MnO2 phase was also found presenting a low crystalline level. Leaching trials with diluted HCI solutions of alkaline and saline battery samples showed that all zinc species are reactive attaining easily over than 90% leaching yields, and about 30% of manganese, present as Mn(II/III) forms. The MnO2 phase is less reactive and requires higher temperatures to achieve a more efficient solubilization.
TERMINAL ELECTRON ACCEPTOR MASS BALANCE: LIGHT NONAQUEOUS PHASE LIQUIDS AND NATURAL ATTENUATION
Nonaqueous phase liquids (NAPLs) in subsurface systems contain a relatively large amount of biodegradable organic material. During the biochemical oxidation of the organic compounds in the NAPL, electrons are transferred to terminal electron acceptors (TEA) (i.e., O2, NO3-, Mn(I...
Iron, Manganese and Copper Release from Synthetic Hydroxyapatite
NASA Technical Reports Server (NTRS)
Sutter, B.; Hossner, L. R.; Ming, Douglas W.
1999-01-01
Kinetic stir-flow dissolution experiments were performed on iron- (Fe-SHA), manganese- (Mn-SHA), and copper- (Cu-SHA) containing synthetic hydroxyapatites. Solution treatments consisted of de-ionized water, citric acid and DTPA. Initially, Mn concentrations were higher than Cu concentrations and Fe concentrations were the lowest in all treatments. At later times Mn and Cu concentrations dropped in the DTPA treatment while Fe rose to the concentration similar to Mn and Cu. At all times, metal release concentrations in the water and citric acid treatments followed the trend of Mn>Cu>Fe. Rietveld analysis of x-ray diffraction data and ^31P NMR indicated that the metals substituted for Ca in the SHA structure. However, EPR data suggested that a metal (hydr)oxide phase existed either on the SHA surface or between the SHA crystallites. The metal concentration trend of Mn>Cu>Fe suggested that the initial solution metal concentrations are dependent on the dissolution of (hydr)oxides from SHA surfaces or between SHA crystallites. Similar metal concentrations at later times in the DTPA experiments suggests that metal concentrations were controlled by the release of Mn, Cu, or Fe from the SHA structure.
Enhanced electrochemical performance of LiMn2O4 by constructing a stable Mn2+-rich interface
NASA Astrophysics Data System (ADS)
Lu, Zhongpei; Lu, Xiaojun; Ding, Jingjing; Zhou, Ting; Ge, Tao; Yang, Gang; Yin, Fan; Wu, Mingfang
2017-12-01
Spinel LiMn2O4 has drawn continuous attentions due to its low cost, good electrochemical performance, environmental friendliness and natural abundant resources. In view of its severe capacity fading, some types of manganese-based compounds with different Mn oxidation states are selected to protect bare LiMn2O4 by constructing a stable coating layer. In this work, LiMn2O4@LiMnPO4 composite, spherical LiMn2O4 (LMO) as core and Mn2+-rich phase of LiMnPO4 (LMP) as shell, is designed and synthesized. Two composites of LiMn2O4 particles coated with 3 wt% and 10 wt% LiMnPO4 have been compared studied. After 100 cycles at 0.5C rate, the two samples deliver capacity retentions of 96.63% and 93.23% of their initial capacities. Moreover, LMO coated by 3 wt% LiMnPO4 delivers 100.3 mAh g-1 after 200 cycles at 10C rate and 76.3 mAh g-1 after 1000 cycles at 20C rate, much higher than bare LiMn2O4 with 90 mAh g-1 and 45.8 mAh g-1, respectively. This core-shell structure with Mn2+-rich phase as a coating layer effectively enhance the material's cycling performance and rate capacity by reducing the contact of LiMn2O4 with electrolyte.
McNulty, David; Geaney, Hugh; O’Dwyer, Colm
2017-01-01
We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li2O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications. PMID:28186183
McNulty, David; Geaney, Hugh; O'Dwyer, Colm
2017-02-10
We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li 2 O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications.
NASA Astrophysics Data System (ADS)
Liu, Shiyuan; Wang, Lijun; Chou, Kuochih
2018-03-01
Using vanadium slag as raw material, Metal-doped Mn-Zn ferrites were synthesized by multi-step processes including chlorination of iron and manganese by NH4Cl, selective oxidation of Fe cation, and hydrothermal synthesis. The phase composition and magnetic properties of synthesized metal-doped Mn-Zn ferrite were characterized by X-ray powder diffraction, Raman spectroscopy, transmission electron microscopy (TEM), X-ray photon spectra (XPS) and physical property measurement. It was found that Mn/Zn mole ratio significantly affected the magnetic properties and ZnCl2 content significantly influenced the purity of the phase of ferrite. Synthesized metal-doped Mn-Zn ferrite, exhibiting a larger saturation magnetization (Ms = 60.01 emu/g) and lower coercivity (Hc = 8.9 Oe), was obtained when the hydrothermal temperature was controlled at 200 °C for 12 h with a Mn/Zn mole ratio of 4. The effect of ZnCl2 content, Mn/Zn mole ratio and temperature on magnetic properties of the synthesized metal-doped Mn-Zn ferrite were systemically investigated. This process provided a new insight to utilize resources in the aim of obtaining functional materials.
Zhang, Zhongming; Chen, Hong; Liu, Jin; Ali, Muhammad; Liu, Fan; Li, Lin
2013-01-01
Manganese-oxidizing bacteria in the aquatic environment have been comprehensively investigated. However, little information is available about the distribution and biogeochemical significance of these bacteria in terrestrial soil environments. In this study, stratified soils were initially examined to investigate the community structure and diversity of manganese-oxidizing bacteria. Total 344 culturable bacterial isolates from all substrata exhibited Mn(II)-oxidizing activities at the range of 1 µM to 240 µM of the equivalent MnO2. The high Mn(II)-oxidizing isolates (>50 mM MnO2) were identified as the species of phyla Actinobacteria, Firmicutes and Proteobacteria. Seven novel Mn(II)-oxidizing bacterial genera (species), namely, Escherichia, Agromyces, Cellulomonas, Cupriavidus, Microbacterium, Ralstonia, and Variovorax, were revealed via comparative phylogenetic analysis. Moreover, an increase in the diversity of soil bacterial community was observed after the combined enrichment of Mn(II) and carbon-rich complex. The phylogenetic classification of the enriched bacteria represented by predominant denaturing gradient gel electrophoresis bands, was apparently similar to culturable Mn(II)-oxidizing bacteria. The experiments were further undertaken to investigate the properties of the Mn oxide aggregates formed by the bacterial isolates with high Mn(II)-oxidizing activity. Results showed that these bacteria were closely encrusted with their Mn oxides and formed regular microspherical aggregates under prolonged Mn(II) and carbon-rich medium enrichment for three weeks. The biotic oxidation of Mn(II) to Mn(III/IV) by these isolates was confirmed by kinetic examinations. X-ray diffraction assays showed the characteristic peaks of several Mn oxides and rhodochrosite from these aggregates. Leucoberbelin blue tests also verified the Mn(II)-oxidizing activity of these aggregates. These results demonstrated that Mn oxides were formed at certain amounts under the enrichment conditions, along with the formation of rhodochrosite in such aggregates. Therefore, this study provides insights into the structure and diversity of soil-borne bacterial communities in Mn(II)-oxidizing habitats and supports the contribution of soil-borne Mn(II)-oxidizing bacteria to Mn oxide mineralization in soils. PMID:24069232
Chemical processes for the extreme enrichment of tellurium into marine ferromanganese oxides
NASA Astrophysics Data System (ADS)
Kashiwabara, Teruhiko; Oishi, Yasuko; Sakaguchi, Aya; Sugiyama, Toshiki; Usui, Akira; Takahashi, Yoshio
2014-04-01
Tellurium, an element of growing economic importance, is extremely enriched in marine ferromanganese oxides. We investigated the mechanism of this enrichment using a combination of spectroscopic analysis and adsorption/coprecipitation experiments. X-ray Absorption Near-Edge Structure (XANES) analysis showed that in adsorption/coprecipitation systems, Te(IV) was oxidized on δ-MnO2 and not oxidized on ferrihydrite. Extended X-ray Absorption Fine Structure (EXAFS) analysis showed that both Te(IV) and Te(VI) were adsorbed on the surface of δ-MnO2 and ferrihydrite via formation of inner-sphere complexes. In addition, Te(VI) can be structurally incorporated into the linkage of Fe octahedra through a coprecipitation process because of its molecular geometry that is similar to the Fe octahedron. The largest distribution coefficient obtained in the adsorption/coprecipitation experiments was for the Te(VI)/ferrihydrite coprecipitation system, and it was comparable to those calculated from the distribution between natural ferromanganese oxides and seawater. Our XAFS and micro-focused X-ray fluorescence (μ-XRF) mapping of natural ferromanganese oxides showed that Te was structurally incorporated as Te(VI) in Fe (oxyhydr)oxide phases. We conclude that the main process for the enrichment of Te in ferromanganese oxides is structural incorporation of Te(VI) into Fe (oxyhydr)oxide phases through coprecipitation. This mechanism can explain the unique degree of enrichment of Te compared with other oxyanions, which are mainly enriched via adsorption on the surface of the solid structures. In particular, the great contrast in the distributions of Te and Se is caused by their oxidized species: (i) the similar geometry of the Te(VI) molecule to Fe octahedron, and (ii) quite soluble nature of Se(VI). Coexisting Mn oxide phases may promote structural incorporation of Te(VI) by oxidation of Te(IV), although the surface oxidation itself may not work as the critical enrichment process as in the case of some cations. This enrichment mechanism also means that ferromanganese oxides mainly scavenge dominant Te(VI) species from seawater and do not affect its species distribution in seawater, as described in a previous model. The variation in Te abundances and the correlation of Te concentration with the growth rate of natural ferromanganese oxides are consistent with the coprecipitation mechanism.
Intrinsic Origins of Crack Generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 Layered Oxide Cathode Material
Lim, Jin-Myoung; Hwang, Taesoon; Kim, Duho; Park, Min-Sik; Cho, Kyeongjae; Cho, Maenghyo
2017-01-01
Ni-rich LiNi0.8Co0.1Mn0.1O2 layered oxide cathodes have been highlighted for large-scale energy applications due to their high energy density. Although its specific capacity is enhanced at higher voltages as Ni ratio increases, its structural degradation due to phase transformations and lattice distortions during cycling becomes severe. For these reasons, we focused on the origins of crack generation from phase transformations and structural distortions in Ni-rich LiNi0.8Co0.1Mn0.1O2 using multiscale approaches, from first-principles to meso-scale phase-field model. Atomic-scale structure analysis demonstrated that opposite changes in the lattice parameters are observed until the inverse Li content x = 0.75; then, structure collapses due to complete extraction of Li from between transition metal layers. Combined-phase investigations represent the highest phase barrier and steepest chemical potential after x = 0.75, leading to phase transformations to highly Li-deficient phases with an inactive character. Abrupt phase transformations with heterogeneous structural collapse after x = 0.81 (~220 mAh g−1) were identified in the nanodomain. Further, meso-scale strain distributions show around 5% of anisotropic contraction with lower critical energy release rates, which cause not only micro-crack generations of secondary particles on the interfaces between the contracted primary particles, but also mechanical instability of primary particles from heterogeneous strain changes. PMID:28045118
Mn(II,III) oxidation and MnO 2 mineralization by an expressed bacterial multicopper oxidase
Butterfield, Cristina N.; Soldatova, Alexandra V.; Lee, Sung -Woo; ...
2013-07-01
Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of themore » enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. Lastly, with the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs.« less
Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase
NASA Astrophysics Data System (ADS)
Butterfield, Cristina N.; Soldatova, Alexandra V.; Lee, Sung-Woo; Spiro, Thomas G.; Tebo, Bradley M.
2013-07-01
Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of the enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. With the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs.
Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase
Butterfield, Cristina N.; Soldatova, Alexandra V.; Lee, Sung-Woo; Spiro, Thomas G.; Tebo, Bradley M.
2013-01-01
Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of the enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. With the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs. PMID:23818588
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Williams; Zhao, Ji-Cheng
Cost effective and high performance alloys that are capable of operating at 760 °C or higher for extended periods of time under a very aggressive environment are critically required for the design and development of advanced ultrasupercritical (AUSC) boilers and steam turbines. Finely dispersed Laves phase precipitates have been shown by Takeyama and co-workers to be a viable strengthening mechanism in high temperature austenitic steels. There is currently no straightforward theory that can predict what other intermetallic phases can serve as potent precipitation-strengthening phases for steels; thus we employed a highly effective dual-anneal diffusion multiple (DADM) approach to screen formore » viable strengthening precipitates over a wide range of compositions. From the Fe-Co-Cr-Ni-Mo DADMs, the Fe-Cr-Mo based Chi phase was identified as a new strengthening phase for high temperature ferritic steels; and from the Fe-Mn-Cr-Nb-Ni-Mo-FeAl DADMs, the Laves phase was identified as a viable strengthening precipitate in Fe-Mn and Fe-Ni based austenitic steels. After identification of viable strengthening phases from the DADMs that covered compositions in the basic ternary and quaternary systems, we employed computation thermodynamics to perform multicomponent alloy design and optimization. For the new the Chi-phase strengthened steels, we performed thermodynamic calculations to vary the volume fraction of the Chi phase and introduced Nb and carbon to promote the formation of stable carbides for grain size control during solution heat treatment. For the Fe-Ni-Mn based austenitic steels, we performed extensive parametric optimization of compositions in order to reduce the expensive Ni content, add Cr and Al for oxidation resistance, and balance the alloying contents (Ni, Mn, Cr, Al, Mo) to suppress the ferritic phase and promote the austenitic matrix phase. Four steels (two ferritic + two austenitic) were designed and tested. The two Chi-phase strengthened ferritic steels exhibited excellent oxidation resistance and good creep-rupture strength at moderate temperatures, considering their ferritic matrix that usually results in lower creep resistance than austenitic steels. These steels showed brittleness and sample-to-sample variability in ductility. The low ductility might be due to the macro segregation during solidification or the significant grain growth during the solution heat treatments. We believe there is no inherent brittleness based on the chemistry of the steels. The creep-rupture performance of the steels is comparable to the 9Cr steels. Due to their ferritic matrix, the new Chi-phase strengthened ferritic steels may not be suited for the 760 °C AUSC applications, but they are very good candidates for intermediate temperature applications due to their outstanding oxidation resistance and high strength. Further study is required to find the source of low and highly variable ductility. We believe the compositions of the Chi-phase strengthened steels are not inherently brittle. The Chi-phase strengthened ferritic steels may also be excellent candidates for intermediate-temperature and room-temperature cast stainless steels, thus we highly recommend further investigations. The two Mn-containing austenitic steels based on the Laves phase showed good ductility, excellent oxidation resistance (slightly inferior to the two ferritic steels) at high temperatures and moderate creep strength. The creep-strength of the two austenitic steels based on the Larson-Miller parameters is higher than that of the traditional 316 stainless steels, but lower than the alumina-forming alloys (AFAs) developed at Oak Ridge National Laboratories. We do not recommend high priority in further studying these compositions unless higher Cr alloys are required for hot-corrosion resistance.« less
Asa, Subas Chandra; Rath, Prasanta; Panda, Unmesh Chandra; Parhi, Pankaj Kumar; Bramha, Satyanarayan
2013-08-01
In the present study, concentration of some selected trace metals (Fe, Mn, Ni, Co, Pb, Zn, Cu, Cr and Cd) are measured in Brahmani, Baitarani river complex along with Dhamara estuary and its near shore. Chemical partitioning has been made to establish association of metals into different geochemical phases. The exchangeable fraction is having high environmental risk among non-lithogeneous phases due to greater potential for mobility into pore water. The metals with highest bio-availability being Cd, Zn and Cr. The metals like Mn, Zn, Cd and Cu represent an appreciable portion in carbonate phase. Fe-Mn oxides act as efficient scavenger for most of the metals playing a prime role in controlling their fate and transport. Among non-lithogeneous phases apart from reducible, Cr showed a significant enrichment in organic phase. Risk assessment code values indicate that all metals except Fe fall under medium-risk zone. In estuarine zone Cd, Zn, Pb and Cr are released to 32.43, 26.10, 21.81 and 20 %, respectively, indicating their significant bio-availability pose high ecological risk. A quantitative approach has been made through the use of different risk indices like enrichment factor, geo-accumulation index and pollution load index. Factor analysis indicates that in riverine zone, Fe-Mn oxides/hydroxides seem to play an important role in scavenging metals, in estuarine zone, organic precipitation and adsorption to the fine silt and clay particles while in coastal zone, co-precipitation with Fe could be the mechanism for the same. Canonical discriminant function indicates that it is highly successful in discriminating the groups as predicted.
Menezes, Prashanth W; Indra, Arindam; Sahraie, Nastaran Ranjbar; Bergmann, Arno; Strasser, Peter; Driess, Matthias
2015-01-01
Recently, there has been much interest in the design and development of affordable and highly efficient oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalysts that can resolve the pivotal issues that concern solar fuels, fuel cells, and rechargeable metal-air batteries. Here we present the synthesis and application of porous CoMn2 O4 and MnCo2 O4 spinel microspheres as highly efficient multifunctional catalysts that unify the electrochemical OER with oxidant-driven and photocatalytic water oxidation as well as the ORR. The porous materials were prepared by the thermal degradation of the respective carbonate precursors at 400 °C. The as-prepared spinels display excellent performances in electrochemical OER for the cubic MnCo2 O4 phase in comparison to the tetragonal CoMn2 O4 material in an alkaline medium. Moreover, the oxidant-driven and photocatalytic water oxidations were performed and they exhibited a similar trend in activity to that of the electrochemical OER. Remarkably, the situation is reversed in ORR catalysis, that is, the oxygen reduction activity and stability of the tetragonal CoMn2 O4 catalyst outperformed that of cubic MnCo2 O4 and rivals that of benchmark Pt catalysts. The superior catalytic performance and the remarkable stability of the unifying materials are attributed to their unique porous and robust microspherical morphology and the intrinsic structural features of the spinels. Moreover, the facile access to these high-performance materials enables a reliable and cost-effective production on a large scale for industrial applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Catalytic properties of mesoporous Al–La–Mn oxides prepared via spray pyrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Goun; Jung, Kyeong Youl; Lee, Choul-Ho
Highlights: • Al–La–Mn oxides were prepared using spray pyrolysis. • Al–La–Mn oxides exhibit large and uniform pore sizes. • Mesoporous Al–La–Mn oxides were compared with those prepared by conventional precipitation. • Mesoporous Al–La–Mn oxides show superior activity in decomposition of hydrogen peroxide. - Abstract: Mesoporous Al–La–Mn oxides are prepared via spray pyrolysis and are applied to the catalytic decomposition of hydrogen peroxide. The characteristics of the mesoporous Al–La–Mn oxides are examined using N{sub 2} adsorption, X-ray diffraction, and X-ray fluorescence measurements. The surface area and pore size of the Al–La–Mn oxides prepared via spray pyrolysis are larger than those ofmore » the Al–La–Mn oxides prepared using a precipitation method. The catalytic performance of the materials during the decomposition of hydrogen peroxide is examined in a pulse-injection reactor. It is confirmed that the mesoporous Al–La–Mn oxides prepared via spray pyrolysis exhibit higher catalytic activity and stability in the decomposition of hydrogen peroxide than Al–La–Mn oxides prepared using a conventional precipitation method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishitani, Junichi, E-mail: jnishitani@issp.u-tokyo.ac.jp; Lippmaa, Mikk; Suemoto, Tohru
The dynamics of photoexcited electrons in various excited d-states was investigated in a transition metal oxide MnO by tunable optical pump-terahertz probe measurements. Photoexcited electrons in the lowest excited d-state showed the longest relaxation time among the three excited d-states that are accessible in MnO at room temperature. The relaxation rate in the lowest excited d-state showed a drastic increase below the Neel temperature T{sub N} = 120 K in MnO. We conclude that this increase is caused by the appearance of a decay channel related to magnetic-excitation-assisted photoluminescence from self-trapped exciton (STE) states. The opening of relaxation channels to the STE statesmore » in an antiferromagnetic phase suggests that it may be possible to control photocarrier lifetime by magnetic order in transition metal oxides.« less
Unraveling the role of animal heme peroxidases in superoxide mediated Mn oxide formation
NASA Astrophysics Data System (ADS)
Learman, D. R.; Hansel, C. M.
2013-12-01
Manganese(III,IV) oxides are important in the environment as they can impact the fate of a broad range of nutrients (e.g. carbon and phosphate) and contaminates (e.g. lead and chromium). Bacteria play a valuable role in the production of Mn oxides, yet the mechanisms and physiological reasons remain unclear. Roseobacter sp. AzwK-3b, an organism within the abundant and ubiquitous Roseobacter clade, has recently been shown to oxidize Mn(II) via a novel pathway that involves enzymatic extracellular superoxide production. However, in reactions with only Mn(II) and abiotically generated superoxide, we find superoxide alone is not enough to produce Mn(III,IV) oxides. Scavenging of the byproduct hydrogen peroxide (via the addition of catalase) is required to generate Mn oxides via abiotic reaction of Mn(II) with superoxide. Thus, R. AzwK-3b must produce superoxide and also scavenge hydrogen peroxide to form Mn oxides. Further, in-gel Mn(II) oxidation assay revealed a protein band that could generate Mn oxides in the presence of soluble Mn(II). This Mn(II)-oxidizing protein band was excised from the gel and the peptides identified via mass spectrometry. An animal heme peroxidase (AHP) was the predominant protein found in this band. This protein is homologous to the AHPs previously implicated as a Mn(II)-oxidizing enzyme within the Alphaproteobacteria, Erythrobacter SD-21 and Aurantimonas manganoxydans strain SI85-9A1. Currently, protein expression of the AHPs in R. AzwK-3b is being examined to determine if expression is correlated with Mn(II) concentration or oxidative stress. Our data suggests that AHPs do not directly oxidize Mn(II) but rather plays a role in scavenging hydrogen peroxide and/or producing an organic Mn(III) ligand that complexes Mn(III) and likely aids in Mn oxide precipitation.
NASA Astrophysics Data System (ADS)
Lysyuk, G. N.
2011-10-01
Manganese oxides, which are widespread and of great practical importance, are formed and transformed by the active role of microorganisms. Manganese aggregates occur as both crystallized varieties and disordered fine-grained phases with significant ore grade and up to 50-60 vol % of X-ray amorphous components. X-ray amorphous nanosizedMn oxides in Fe-Mn nodules from the Pacific Ocean floor were examined from the standpoint of their biogenic origin. SEM examination showed abundant mineralized biofilms on the studied samples. The chemical composition of bacterial mass is as follows (wt %): 28.34 MnO, 17.14 Fe2O3, 7.11 SiO2, 2.41 CaO, 17.90 TiO2, 1.74Na2O,1.73 A12O3,1.30 MgO, 1.25P2O5,1.25 SO3,0.68 CoO, 0.54 CuO, 0.53 NiO, and 0.50 K2O. The chemical composition of fossilized cyanobacterial mats within the interlayer space of nodules is as follows (wt %): 48.35 MnO, 6.23 Fe2O3, 8.76 MgO, 5.05 A12O3, 4.45 SiO2, 3.63 NiO, 2.30 Na2O, 2.19 CuO, 1.31 CaO, and 0.68 K2O is direct evidence for participation of bacteria in Mn oxide formation. This phase consists of mineralized glycocalix consisting of nanosized flakes of todorokite. Native metals (Cu, Fe, and Zn) as inclusions 10-20 μm in size were identified in ferromanganese nodules as well. The formation of native metals can be explained by their crystallization at highly reducing conditions maintained by organic matter.
Oxidative Formation and Removal of Complexed Mn(III) by Pseudomonas Species
Wright, Mitchell H.; Geszvain, Kati; Oldham, Véronique E.; Luther, George W.; Tebo, Bradley M.
2018-01-01
The observation of significant concentrations of soluble Mn(III) complexes in oxic, suboxic, and some anoxic waters has triggered a re-evaluation of the previous Mn paradigm which focused on the cycling between soluble Mn(II) and insoluble Mn(III,IV) species as operationally defined by filtration. Though Mn(II) oxidation in aquatic environments is primarily bacterially-mediated, little is known about the effect of Mn(III)-binding ligands on Mn(II) oxidation nor on the formation and removal of Mn(III). Pseudomonas putida GB-1 is one of the most extensively investigated of all Mn(II) oxidizing bacteria, encoding genes for three Mn oxidases (McoA, MnxG, and MopA). P. putida GB-1 and associated Mn oxidase mutants were tested alongside environmental isolates Pseudomonas hunanensis GSL-007 and Pseudomonas sp. GSL-010 for their ability to both directly oxidize weakly and strongly bound Mn(III), and to form these complexes through the oxidation of Mn(II). Using Mn(III)-citrate (weak complex) and Mn(III)-DFOB (strong complex), it was observed that P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 and mutants expressing only MnxG and McoA were able to directly oxidize both species at varying levels; however, no oxidation was detected in cultures of a P. putida mutant expressing only MopA. During cultivation in the presence of Mn(II) and citrate or DFOB, P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 formed Mn(III) complexes transiently as an intermediate before forming Mn(III/IV) oxides with the overall rates and extents of Mn(III,IV) oxide formation being greater for Mn(III)-citrate than for Mn(III)-DFOB. These data highlight the role of bacteria in the oxidative portion of the Mn cycle and suggest that the oxidation of strong Mn(III) complexes can occur through enzymatic mechanisms involving multicopper oxidases. The results support the observations from field studies and further emphasize the complexity of the geochemical cycling of manganese. PMID:29706936
Oxidative Formation and Removal of Complexed Mn(III) by Pseudomonas Species.
Wright, Mitchell H; Geszvain, Kati; Oldham, Véronique E; Luther, George W; Tebo, Bradley M
2018-01-01
The observation of significant concentrations of soluble Mn(III) complexes in oxic, suboxic, and some anoxic waters has triggered a re-evaluation of the previous Mn paradigm which focused on the cycling between soluble Mn(II) and insoluble Mn(III,IV) species as operationally defined by filtration. Though Mn(II) oxidation in aquatic environments is primarily bacterially-mediated, little is known about the effect of Mn(III)-binding ligands on Mn(II) oxidation nor on the formation and removal of Mn(III). Pseudomonas putida GB-1 is one of the most extensively investigated of all Mn(II) oxidizing bacteria, encoding genes for three Mn oxidases (McoA, MnxG, and MopA). P. putida GB-1 and associated Mn oxidase mutants were tested alongside environmental isolates Pseudomonas hunanensis GSL-007 and Pseudomonas sp. GSL-010 for their ability to both directly oxidize weakly and strongly bound Mn(III), and to form these complexes through the oxidation of Mn(II). Using Mn(III)-citrate (weak complex) and Mn(III)-DFOB (strong complex), it was observed that P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 and mutants expressing only MnxG and McoA were able to directly oxidize both species at varying levels; however, no oxidation was detected in cultures of a P. putida mutant expressing only MopA. During cultivation in the presence of Mn(II) and citrate or DFOB, P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 formed Mn(III) complexes transiently as an intermediate before forming Mn(III/IV) oxides with the overall rates and extents of Mn(III,IV) oxide formation being greater for Mn(III)-citrate than for Mn(III)-DFOB. These data highlight the role of bacteria in the oxidative portion of the Mn cycle and suggest that the oxidation of strong Mn(III) complexes can occur through enzymatic mechanisms involving multicopper oxidases. The results support the observations from field studies and further emphasize the complexity of the geochemical cycling of manganese.
Structural Variation of LaMnO3+δ by Oxygen Nonstoichiometry
NASA Astrophysics Data System (ADS)
Niwa, Eiki; Maeda, Hiroki; Hashimoto, Takuya; Mizusaki, Junichiro
2013-07-01
The relationship between oxygen content and crystal structure of LaMnO3+δ, which is mother phase of cathode material for solid oxide fuel cells, has been investigated by X-ray diffraction, thermogravimetry and iodometric titration. It was confirmed that LaMnO3+δ with different oxygen content can be prepared by controlling sintering temperature in static air. Crystal system of LaMnO3.17±0.02 and LaMnO3.13±0.01 at room temperature was rhombohedral with space group of Rbar {3}c, whereas crystal structure of LaMnO3.08±0.01 was orthorhombic whose space group was proposed to be Pmna (No. 53). With increase of oxygen content in LaMnO3+δ, molar volume decreased and higher crystal symmetry was obtained.
B-site cation order/disorder and their valence states in Ba3MnNb2O9 perovskite oxide
NASA Astrophysics Data System (ADS)
Xin, Yan; Huang, Qing; Shafieizadeh, Zahra; Zhou, Haidong
2018-06-01
Polycrystalline samples Ba3MnNb2O9 synthesized by solid state reaction and single crystal samples grown by optical floating zone have been characterized using scanning transmission electron microscopy and electron energy loss spectroscopy. Three types of B-site Mn and Nb ordering phase are observed: fully ordered 1Mn:2Nb; fully disordered; nano-sized 1Mn:1Nb ordered. No electronic structure change for crystals with different ordering/disordering. The Mn valence is determined to be 2+, and Nb valence is 5+. Oxygen 2p orbitals hybridize with Mn 3d and Nb 4d orbitals. Factors that affect the electron energy loss near edge structures of transition metal white-lines in electron energy loss spectroscopy are explicitly illustrated and discussed.
NASA Astrophysics Data System (ADS)
Yao, Lide; Inkinen, Sampo; van Dijken, Sebastiaan
2017-02-01
Resistive switching in transition metal oxides involves intricate physical and chemical behaviours with potential for non-volatile memory and memristive devices. Although oxygen vacancy migration is known to play a crucial role in resistive switching of oxides, an in-depth understanding of oxygen vacancy-driven effects requires direct imaging of atomic-scale dynamic processes and their real-time impact on resistance changes. Here we use in situ transmission electron microscopy to demonstrate reversible switching between three resistance states in epitaxial La2/3Sr1/3MnO3 films. Simultaneous high-resolution imaging and resistance probing indicate that the switching events are caused by the formation of uniform structural phases. Reversible horizontal migration of oxygen vacancies within the manganite film, driven by combined effects of Joule heating and bias voltage, predominantly triggers the structural and resistive transitions. Our findings open prospects for ionotronic devices based on dynamic control of physical properties in complex oxide nanostructures.
NASA Astrophysics Data System (ADS)
Babakhani, Banafsheh
The aim of this thesis work was to synthesize Mn-based oxide electrodes with high surface area structures by anodic electrodeposition for application as electrochemical capacitors. Rod-like structures provide large surface areas leading to high specific capacitances. Since templated electrosynthesis of rods is not easy to use in practical applications, it is more desirable to form rod-like structures without using any templates. In this work, Mn oxide electrodes with rod-like structures (˜1.5 µm in diameter) were synthesized from a solution of 0.01 M Mn acetate under galvanostatic control without any templates, on Au coated Si substrates. The electrochemical properties of the synthesized nanocrystalline electrodes were investigated to determine the effect of morphology, chemistry and crystal structure on the corresponding electrochemical behavior of Mn oxide electrodes. Mn oxides prepared at different current densities showed a defective antifluoritetype crystal structure. The rod-like Mn oxide electrodes synthesized at low current densities (5 mAcm.2) exhibited a high specific capacitance due to their large surface areas. Also, specific capacity retention after 250 cycles in an aqueous solution of 0.5 M Na2SO4 at 100 mVs -1 was about 78% of the initial capacity (203 Fg-1 ). To improve the electrochemical capacitive behavior of Mn oxide electrodes, a sequential approach and a one-step method were adopted to synthesize Mn oxide/PEDOT electrodes through anodic deposition on Au coated Si substrates from aqueous solutions. In the former case, free standing Mn oxide rods (about 10 µm long and less than 1.5 µm in diameter) were first synthesized, then coated by electro-polymerization of a conducting polymer (PEDOT) giving coaxial rods. The one-step, co-electrodeposition method produced agglomerated Mn oxide/PEDOT particles. The electrochemical behavior of the deposits depended on the morphology and crystal structure of the fabricated electrodes, which were affected by the composition and pH of the electrolyte, temperature, current density and polymer deposition time. Mn oxide/PEDOT coaxial core/shell rods consisted of MnO2 with an antifluorite-type structure coated with amorphous PEDOT. The Mn oxide/PEDOT coaxial core/shell electrodes prepared by the sequential method showed significantly better specific capacity and redox performance properties relative to both uncoated Mn oxide rods and co- electrodeposited Mn oxide/PEDOT electrodes. The best specific capacitance for Mn oxide/PEDOT rods produced sequentially was ˜295 F g-1 with ˜92% retention after 250 cycles in 0.5 M Na2SO4 at 100 mV s-1. To further improve the electrochemical capacitive behavior of Mn oxide electrodes, Co-doped and Fe-doped Mn oxide electrodes with a rod-like morphology and antifluorite-type crystal structure were synthesized by anodic electrodeposition, on Au coated Si substrates, from dilute solutions of Mn acetate and Co sulphate and Mn acetate and Fe chloride. Also, Mn-Co oxide/PEDOT coaxial core/shell rods were synthesized by applying a shell of PEDOT on Mn-Co oxide electrodes. Mn-Co oxide/PEDOT electrodes consisted of MnO2, with partial Co 2+ and Co3+ ion substitution for Mn4+, and amorphous PEDOT. Mn-Fe oxide electrodes consisted of MnO2, with partial Fe2+ and Fe3+ ion substitution for Mn4+. Electrochemical analysis showed that the capacitance values for all deposits increased with increasing scan rate to 100 mVs -1, and then decreased after 100 mVs-1. The Mn-Co oxide/PEDOT electrodes showed improved specific capacity and electrochemical cyclability relative to uncoated Mn-Co oxides and Mn-Fe oxides. Mn-Co oxide/PEDOT electrodes with rod-like structures had high capacitances (up to 310 Fg -1) at a scan rate of 100 mVs-1 and maintained their capacitance after 500 cycles in 0.5 M Na2SO4 (91% retention). Capacitance reduction for the deposits was mainly due to the loss of Mn ions by dissolution in the electrolyte solution. To better understand the nucleation and growth mechanisms of Mn oxide electrodes, the effects of supersaturation ratio on the morphology and crystal structure of electrodeposited Mn oxide were studied. By changing deposition parameters, including deposition current density, electrolyte composition, pH and temperature, a series of nanocrystalline Mn oxide electrodes with various morphologies (continuous coatings, rod-like structures, aggregated rods and thin sheets) and an antifluorite-type crystal structure was obtained. Mn oxide thin sheets showed instantaneous nucleation and single crystalline growth; rods had a mix of instantaneous/progressive nucleation and polycrystalline growth and continuous coatings formed by progressive nucleation and polycrystalline growth. Electrochemical analysis revealed the best capacitance behaviour obtained for Mn oxide thin sheets followed by Mn oxide rods, with dimensions on the microscale, and then continuous coatings. The highest specific capacitance (˜230 Fg-1) and capacitance retention rates (˜88%) were obtained for Mn oxide thin sheets after 250 cycles in 0.5 M Na2 SO4 at 20 mVs-1.
NASA Astrophysics Data System (ADS)
Li, X. David; Schwartz, Franklin W.
2004-01-01
Previous studies on in situ chemical oxidation of trichloroethylene (TCE) with potassium permanganate indicated that the solid reaction product, Mn oxide, could reduce the permeability of the porous medium and impact the success of dense non-aqueous phase liquid (DNAPL) removal. In order to address the issue of permeability reduction caused by precipitation, this study investigated the mineralogy of Mn oxides and the possibilities of removing the solid precipitates by dissolution. The solid reaction product from the oxidation of TCE by permanganate is semi-amorphous potassium-rich birnessite, which has a layered mineral structure with an interlayer spacing of 7.3 Å. The chemical formula is K 0.854Mn 1.786O 4·1.55H 2O. It has a relatively small specific surface area at 23.6±0.82 m 2/g. Its point of zero charge (pzc) was measured as 3.7±0.4. This birnessite is a relatively active species and could participate in various reactions with existing organic and inorganic matter. The dissolution kinetics of Mn oxide was evaluated in batch experiments using solutions of citric acid, oxalic acid, and ethylenediaminetetraacetic acid (EDTA). Initial dissolution rates were determined to be 0.126 mM/m 2/h for citric acid, 1.35 mM/m 2/h for oxalic acid, and 5.176 mM/m 2/h for EDTA. These rates compare with 0.0025 mM/m 2/h for nitric acid at pH=2. Organic acids dissolve Mn oxide quickly. Reaction rates increase with acid concentration, as tested with citric acid. The dissolution mechanism likely involves proton and ligand-promoted dissolution and reductive dissolution. Citric and oxalic acid can induce ligand-promoted dissolution, while EDTA can induce ligand-promoted and reductive dissolutions. At low pH, proton-promoted dissolution seems to occur with all the acids tested, but this process is not dominant. Reductive dissolution appears to be the most effective process in dissolving the solid, followed by ligand-promoted dissolution. These experiments indicate the significant potential in using these organic acids to remove precipitates formed during the oxidation reaction.
Hein, J.R.; Koschinsky, A.; Halliday, A.N.
2003-01-01
Hydrogenetic ferromanganese oxyhydroxide crusts (Fe-Mn crusts) precipitate out of cold ambient ocean water onto hard-rock surfaces (seamounts, plateaus, ridges) at water depths of about 400 to 4000 m throughout the ocean basins. The slow-growing (mm/Ma) Fe-Mn crusts concentrate most elements above their mean concentration in the Earth's crust. Tellurium is enriched more than any other element (up to about 50,000 times) relative to its Earth's crustal mean of about 1 ppb, compared with 250 times for the next most enriched element. We analyzed the Te contents for a suite of 105 bulk hydrogenetic crusts and 140 individual crust layers from the global ocean. For comparison, we analyzed 10 hydrothermal stratabound Mn-oxide samples collected from a variety of tectonic environments in the Pacific. In the Fe-Mn crust samples, Te varies from 3 to 205 ppm, with mean contents for Pacific and Atlantic samples of about 50 ppm and a mean of 39 ppm for Indian crust samples. Hydrothermal Mn samples have Te contents that range from 0.06 to 1 ppm. Continental margin Fe-Mn crusts have lower Te contents than open-ocean crusts, which is the result of dilution by detrital phases and differences in growth rates of the hydrogenetic phases. Correlation coefficient matrices show that for hydrothermal deposits, Te has positive correlations with elements characteristic of detrital minerals. In contrast, Te in open-ocean Fe-Mn crusts usually correlates with elements characteristic of the MnO2, carbonate fluorapatite, and residual biogenic phases. In continental margin crusts, Te also correlates with FeOOH associated elements. In addition, Te is negatively correlated with water depth of occurrence and positively correlated with crust thickness. Q-mode factor analyses support these relationships. However, sequential leaching results show that most of the Te is associated with FeOOH in Fe-Mn crusts and ???10% is leached with the MnO2. Thermodynamic calculations indicate that Te occurs predominantly as H5TeO6- in ocean water. The speciation of Te in ocean water and charge balance considerations indicate that Te should be scavenged by FeOOH, which is in agreement with our leaching results. The thermodynamically more stable Te(IV) is less abundant by factors of 2 to 3.5 than Te(VI) in ocean water. This can be explained by preferential (not exclusive) scavenging of Te(IV) by FeOOH at the Fe-Mn crust surface and by Fe-Mn colloids in the water column. We propose a model in which the extreme enrichment of Te in Fe-Mn crusts is likely the result of an oxidation reaction on the surface of FeOOH. A similar oxidation process has been confirmed for Co, Ce, and Tl at the surface of MnO2 in crusts, but has not been suggested previously to occur in association with FeOOH in Fe-Mn crusts. Mass-balance considerations indicate that ocean floor Fe-Mn deposits are the major sink for Te in the oceans. The concentration and redox chemistry of Te in the global ocean are likely controlled by scavenging on Fe-Mn colloids in the water column and Fe-Mn deposits on the ocean floor, as is also the case for Ce. ?? 2003 Elsevier Science Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.
The phases of A 2Mn 8O 16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d electrons are more explicitly considered with the DFT + Umore » approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn 3+ centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Lastly, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.« less
Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.
2017-12-01
The phases of A 2Mn 8O 16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d electrons are more explicitly considered with the DFT + Umore » approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn 3+ centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Lastly, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.« less
NASA Astrophysics Data System (ADS)
Kaltak, Merzuk; Fernández-Serra, Marivi; Hybertsen, Mark S.
2017-12-01
The phases of A2Mn8O16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3 d electrons are more explicitly considered with the DFT + U approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn3 + centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Finally, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.
Sakamoto, Hiroki; Shimizu, Tatsuki; Nagao, Ryo; Noguchi, Takumi
2017-02-08
Photosynthetic water oxidation performed at the Mn 4 CaO 5 cluster in photosystem II plays a crucial role in energy production as electron and proton sources necessary for CO 2 fixation. Molecular oxygen, a byproduct, is a source of the oxygenic atmosphere that sustains life on earth. However, the molecular mechanism of water oxidation is not yet well-understood. In the reaction cycle of intermediates called S states, the S 2 → S 3 transition is particularly important; it consists of multiple processes of electron transfer, proton release, and water insertion, and generates an intermediate leading to O-O bond formation. In this study, we monitored the reaction process during the S 2 → S 3 transition using time-resolved infrared spectroscopy to clarify its molecular mechanism. A change in the hydrogen-bond interaction of the oxidized Y Z • radical, an immediate electron acceptor of the Mn 4 CaO 5 cluster, was clearly observed as a ∼100 μs phase before the electron-transfer phase with a time constant of ∼350 μs. This observation provides strong experimental evidence that rearrangement of the hydrogen-bond network around Y Z • , possibly due to the movement of a water molecule located near Y Z • to the Mn site, takes place before the electron transfer. The electron transfer was coupled with proton release, as revealed by a relatively high deuterium kinetic isotope effect of 1.9. This proton release, which decreases the redox potential of the Mn 4 CaO 5 cluster to facilitate electron transfer to Y Z • , was proposed to determine, as a rate-limiting step, the relatively slow electron-transfer rate of the S 2 → S 3 transition.
NASA Astrophysics Data System (ADS)
Gázquez, Fernando; Calaforra, José-María; Rull, Fernando
2012-12-01
This paper examines the greyish-blue deposits that were recently discovered in the lower levels of the Sima de la Higuera Cave (Murcia, SE Spain) which occur as patinas over the walls and ceilings, as well as coating boxwork formations. Their mineralogy was determined using XRD and micro-Raman spectroscopy, while EDX microanalysis was used to determine their elemental composition. The mineralogical analyses revealed the presence of Mn oxides (todorokite and pyrolusite) and Fe with a low degree of crystallinity, whereas EDX microprobe showed elevated concentrations of Mn (38.2 wt.%), Fe (15.2 wt.%) and Pb (8.1 wt.%). The ferromanganese oxyhydroxides occur as botryoidal aggregates overlying blades of calcite that have a visibly sugary texture. The speleogenetic model proposed describes (1) an initial phase of precipitation of hydrothermal calcite veins (of hypogenic origin) within the fissures of the host rock under phreatic conditions and (2) a subsequent vadose phase involving preferential corrosion of the carbonate host rock caused by lowering of the pH resulting from CO2 diffusion in condensed water and oxidation of Fe and Mn under aerobic conditions, probably mediated by microorganisms. It is this later phase that gave rise to the boxwork. The boxwork of the Sima de la Higuera Cave is a singular example of a formation that is generated by dissolution-corrosion of the rock due to acidification caused by oxidation of iron and manganese.
Miara, Lincoln; Windmüller, Anna; Tsai, Chih-Long; Richards, William D; Ma, Qianli; Uhlenbruck, Sven; Guillon, Olivier; Ceder, Gerbrand
2016-10-12
The reactivity of mixtures of high voltage spinel cathode materials Li 2 NiMn 3 O 8 , Li 2 FeMn 3 O 8 , and LiCoMnO 4 cosintered with Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 and Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12 electrolytes is studied by thermal analysis using X-ray-diffraction and differential thermoanalysis and thermogravimetry coupled with mass spectrometry. The results are compared with predicted decomposition reactions from first-principles calculations. Decomposition of the mixtures begins at 600 °C, significantly lower than the decomposition temperature of any component, especially the electrolytes. For the cathode + Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12 mixtures, lithium and oxygen from the electrolyte react with the cathodes to form highly stable Li 2 MnO 3 and then decompose to form stable and often insulating phases such as La 2 Zr 2 O 7 , La 2 O 3 , La 3 TaO 7 , TiO 2 , and LaMnO 3 which are likely to increase the interfacial impedance of a cathode composite. The decomposition reactions are identified with high fidelity by first-principles calculations. For the cathode + Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 mixtures, the Mn tends to oxidize to MnO 2 or Mn 2 O 3 , supplying lithium to the electrolyte for the formation of Li 3 PO 4 and metal phosphates such as AlPO 4 and LiMPO 4 (M = Mn, Ni). The results indicate that high temperature cosintering to form dense cathode composites between spinel cathodes and oxide electrolytes will produce high impedance interfacial products, complicating solid state battery manufacturing.
NASA Astrophysics Data System (ADS)
Zhao, Pengfei; Liang, Chongyun; Gong, Xiwen; Gao, Ran; Liu, Jiwei; Wang, Min; Che, Renchao
2013-08-01
Monodispersed manganese oxide (Mn1-xCox)3O4 (0 <= x <= 0.5) nanoparticles, less than 10 nm size, are respectively synthesized via a facile thermolysis method at a rather low temperature, ranging from 90 to 100 °C, without any inertia gas for protection. The influences of the Co dopant content on the critical reaction temperature required for the nanoparticle formation, electronic band structures, magnetic properties, and the microwave absorption capability of (Mn1-xCox)3O4 are comprehensively investigated by means of both experimental and theoretical approaches including powder X-ray diffraction (XRD), electron energy loss spectroscopy (EELS), super conductivity quantum interference device (SQUID) examination, and first-principle simulations. Co is successfully doped into the Mn atomic sites of the (Mn1-xCox)3O4 lattice, which is further confirmed by EELS data acquired from one individual nanoparticle. Therefore, continuous solid solutions of well-crystallized (Mn1-xCox)3O4 products are achieved without any impurity phase or phase separation. With increases in the Co dopant concentration x from 0 to 0.5, the lattice parameters change systemically, where the overall saturation magnetization at 30 K increases due to the more intense coupling of the 3d electrons between Mn and Co, as revealed by simulations. The microwave absorption properties of the (Mn1-xCox)3O4 nanoparticles are examined between 2 and 18 GHz. The maximum absorption peak -11.0 dB of the x = 0 sample is enhanced to -11.5 dB for x = 0.2, -12.7 dB for x = 0.25, -15.6 dB for x = 0.33, and -24.0 dB for x = 0.5 respectively, suggesting the Co doping effects. Our results might provide novel insights into the understanding of the influences of metallic ion doping on the electromagnetic properties of metallic oxide nanomaterials.Monodispersed manganese oxide (Mn1-xCox)3O4 (0 <= x <= 0.5) nanoparticles, less than 10 nm size, are respectively synthesized via a facile thermolysis method at a rather low temperature, ranging from 90 to 100 °C, without any inertia gas for protection. The influences of the Co dopant content on the critical reaction temperature required for the nanoparticle formation, electronic band structures, magnetic properties, and the microwave absorption capability of (Mn1-xCox)3O4 are comprehensively investigated by means of both experimental and theoretical approaches including powder X-ray diffraction (XRD), electron energy loss spectroscopy (EELS), super conductivity quantum interference device (SQUID) examination, and first-principle simulations. Co is successfully doped into the Mn atomic sites of the (Mn1-xCox)3O4 lattice, which is further confirmed by EELS data acquired from one individual nanoparticle. Therefore, continuous solid solutions of well-crystallized (Mn1-xCox)3O4 products are achieved without any impurity phase or phase separation. With increases in the Co dopant concentration x from 0 to 0.5, the lattice parameters change systemically, where the overall saturation magnetization at 30 K increases due to the more intense coupling of the 3d electrons between Mn and Co, as revealed by simulations. The microwave absorption properties of the (Mn1-xCox)3O4 nanoparticles are examined between 2 and 18 GHz. The maximum absorption peak -11.0 dB of the x = 0 sample is enhanced to -11.5 dB for x = 0.2, -12.7 dB for x = 0.25, -15.6 dB for x = 0.33, and -24.0 dB for x = 0.5 respectively, suggesting the Co doping effects. Our results might provide novel insights into the understanding of the influences of metallic ion doping on the electromagnetic properties of metallic oxide nanomaterials. Electronic supplementary information (ESI) available: Fig. S1. A digital photo showing the large-scale synthesis of our monodispersed (Mn1-xCox)3O4 Fig. S2. Microwave absorption measurements; Fig. S3. Schematic diagram of the microwave absorption mechanism of the (Mn1-xCox)3O4. See DOI: 10.1039/c3nr02287k
High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour Crater, Mars
Arvidson, Raymond E.; Squyres, Steven W.; Morris, Richard V.; Knoll, Andrew H.; Gellert, Ralf; Clark, Benton C.; Catalano, Jeffrey G.; Jolliff, Bradley L.; McLennan, Scott M.; Herkenhoff, Kenneth E.; VanBommel, Scott; Mittelfehldt, David W.; Grotzinger, John P.; Guinness, Edward A.; Johnson, Jeffrey R.; Bell, James F.; Farrand, William H.; Stein, Nathan; Fox, Valerie K.; Golombek, Matthew P.; Hinkle, Margaret A. G.; Calvin, Wendy M.; de Souza, Paulo A.
2016-01-01
Mars Reconnaissance Orbiter HiRISE images and Opportunity rover observations of the ~22 km wide Noachian age Endeavour Crater on Mars show that the rim and surrounding terrains were densely fractured during the impact crater-forming event. Fractures have also propagated upward into the overlying Burns formation sandstones. Opportunity’s observations show that the western crater rim segment, called Murray Ridge, is composed of impact breccias with basaltic compositions, as well as occasional fracture-filling calcium sulfate veins. Cook Haven, a gentle depression on Murray Ridge, and the site where Opportunity spent its sixth winter, exposes highly fractured, recessive outcrops that have relatively high concentrations of S and Cl, consistent with modest aqueous alteration. Opportunity’s rover wheels serendipitously excavated and overturned several small rocks from a Cook Haven fracture zone. Extensive measurement campaigns were conducted on two of them: Pinnacle Island and Stuart Island. These rocks have the highest concentrations of Mn and S measured to date by Opportunity and occur as a relatively bright sulfate-rich coating on basaltic rock, capped by a thin deposit of one or more dark Mn oxide phases intermixed with sulfate minerals. We infer from these unique Pinnacle Island and Stuart Island rock measurements that subsurface precipitation of sulfate-dominated coatings was followed by an interval of partial dissolution and reaction with one or more strong oxidants (e.g., O2) to produce the Mn oxide mineral(s) intermixed with sulfate-rich salt coatings. In contrast to arid regions on Earth, where Mn oxides are widely incorporated into coatings on surface rocks, our results demonstrate that on Mars the most likely place to deposit and preserve Mn oxides was in fracture zones where migrating fluids intersected surface oxidants, forming precipitates shielded from subsequent physical erosion.
NASA Astrophysics Data System (ADS)
Thompsen, J. M.; Brewster, M. A.; Ziurys, L. M.
2002-06-01
The pure rotational spectrum of MnS (v=0) in its X 6Sigma+ ground state has been recorded using millimeter and submillimeter direct absorption techniques in the range 160-502 GHz. MnS was synthesized in the gas phase by the reaction of manganese vapor and CS2 in a high-temperature Broida-type oven. Fourteen rotational transitions for this radical were measured, each consisting of six fine-structure components. In the lower rotational lines, hyperfine structure, arising from the 55Mn nuclear spin of 5/2, was also resolved in each spin component. These data were analyzed using a case (b) Hamiltonian, and rotational, fine structure, and hyperfine parameters determined for MnS. In the analysis, the third-order correction to the spin-rotation interaction, gammaS, and the fourth-order spin-spin coupling term, theta, were found necessary for an acceptable fit. The hyperfine constants determined suggest that MnS is more covalent than MnO, but more ionic than MnH. There additionally appears to be considerable sdsigma hybridization in molecular orbital formation for this molecule. Bond lengths of the 3d transition-metal sulfides were compared as well, and those of MnS, CuS, and TiS do not follow the trend of their oxide analogs. This result indicates that there are significant bonding differences between transition-metal sulfides and transition-metal oxides.
NASA Astrophysics Data System (ADS)
Ha, Sang Bu; Cho, Pyeong-Seok; Cho, Yoon Ho; Lee, Dokyol; Lee, Jong-Heun
A range of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ (LSCM) powders is prepared by the carbonate coprecipitation method for use as anodes in solid oxide fuel cells. The supersaturation ratio (R = [(NH 4) 2CO 3]/([La 3+] + [Sr 2+] + [Cr 3+] + [Mn 2+])) during the coprecipitation determines the relative compositions of La, Sr, Cr, and Mn. The composition of the precursor approaches the stoichiometric one at the supersaturation range of 4 ≤ R ≤ 12.5, whereas Sr and Mn components are deficient at R < 4 and excessive at R = 25. The fine and phase-pure LSCM powders are prepared by heat treatment at very low temperature (1000 °C) at R = 7.5 and 12.5. By contrast, the solid-state reaction requires a higher heat-treatment temperature (1400 °C). The catalytic activity of the LSCM electrodes is enhanced by using carbonate-derived powders to manipulate the electrode microstructures.
Hao, Yao-Ming; Lou, Shi-Yun; Zhou, Shao-Min; Yuan, Rui-Jian; Zhu, Gong-Yu; Li, Ning
2012-02-02
In this study, a series of manganese [Mn]-doped zinc oxide [ZnO] hierarchical microspheres [HMSs] are prepared by hydrothermal method only using zinc acetate and manganese acetate as precursors and ethylene glycol as solvent. X-ray diffraction indicates that all of the as-obtained samples including the highest Mn (7 mol%) in the crystal lattice of ZnO have a pure phase (hexagonal wurtzite structure). A broad Raman spectrum from as-synthesized doping samples ranges from 500 to 600 cm-1, revealing the successful doping of paramagnetic Mn2+ ions in the host ZnO. Optical absorption analysis of the samples exhibits a blueshift in the absorption band edge with increasing dopant concentration, and corresponding photoluminescence spectra show that Mn doping suppresses both near-band edge UV emission and defect-related blue emission. In particular, magnetic measurements confirm robust room-temperature ferromagnetic behavior with a high Curie temperature exceeding 400 K, signifying that the as-formed Mn-doped ZnO HMSs will have immense potential in spintronic devices and spin-based electronic technologies.
The catalytic pyrolysis of food waste by microwave heating.
Liu, Haili; Ma, Xiaoqian; Li, Longjun; Hu, ZhiFeng; Guo, Pingsheng; Jiang, Yuhui
2014-08-01
This study describes a series of experiments that tested the use of microwave pyrolysis for treating food waste. Characteristics including rise in temperature, and the three-phase products, were analyzed at different microwave power levels, after adding 5% (mass basis) metal oxides and chloride salts to the food waste. Results indicated that, the metal oxides MgO, Fe₂O₃ and MnO₂ and the chloride salts CuCl₂ and NaCl can lower the yield of bio-oil and enhance the yield of gas. Meanwhile, the metal oxides MgO and MnO₂ can also lower the low heating value (LHV) of solid residues and increase the pH values of the lower layer bio-oils. However, the chloride salts CuCl₂ and NaCl had the opposite effects. The optimal microwave power for treating food waste was 400W; among the tested catalysts, CuCl₂ was the best catalyst and had the largest energy ratio of production to consumption (ERPC), followed by MnO₂. Copyright © 2014 Elsevier Ltd. All rights reserved.
Iron and Manganese Pyrophosphates as Cathodes for Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hui; Upreti, Shailesh; Chernova, Natasha A.
2015-10-15
The mixed-metal phases, (Li{sub 2}Mn{sub 1-y}Fe{sub y}P{sub 2}O{sub 7}, 0 {le} y {le} 1), were synthesized using a 'wet method', and found to form a solid solution in the P2{sub 1}/a space group. Both thermogravimetric analysis and magnetic susceptibility measurements confirm the 2+ oxidation state for both the Mn and Fe. The electrochemical capacity improves as the Fe concentration increases, as do the intensities of the redox peaks of the cyclic voltammogram, indicating higher lithium-ion diffusivity in the iron phase. The two Li{sup +} ions in the three-dimensional tunnel structure of the pyrophosphate phase allows for the cycling of moremore » than one lithium per redox center. Cyclic voltammograms show a second oxidation peak at 5 V and 5.3 V, indicative of the extraction of the second lithium ion, in agreement with ab initio computation predictions. Thus, electrochemical capacities exceeding 200 Ah/kg may be achieved if a stable electrolyte is found.« less
Biological Low-pH Mn(II) Oxidation in a Manganese Deposit Influenced by Metal-Rich Groundwater
Bohu, Tsing; Akob, Denise M.; Abratis, Michael; Lazar, Cassandre S.
2016-01-01
ABSTRACT The mechanisms, key organisms, and geochemical significance of biological low-pH Mn(II) oxidation are largely unexplored. Here, we investigated the structure of indigenous Mn(II)-oxidizing microbial communities in a secondary subsurface Mn oxide deposit influenced by acidic (pH 4.8) metal-rich groundwater in a former uranium mining area. Microbial diversity was highest in the Mn deposit compared to the adjacent soil layers and included the majority of known Mn(II)-oxidizing bacteria (MOB) and two genera of known Mn(II)-oxidizing fungi (MOF). Electron X-ray microanalysis showed that romanechite [(Ba,H2O)2(Mn4+,Mn3+)5O10] was conspicuously enriched in the deposit. Canonical correspondence analysis revealed that certain fungal, bacterial, and archaeal groups were firmly associated with the autochthonous Mn oxides. Eight MOB within the Proteobacteria, Actinobacteria, and Bacteroidetes and one MOF strain belonging to Ascomycota were isolated at pH 5.5 or 7.2 from the acidic Mn deposit. Soil-groundwater microcosms demonstrated 2.5-fold-faster Mn(II) depletion in the Mn deposit than adjacent soil layers. No depletion was observed in the abiotic controls, suggesting that biological contribution is the main driver for Mn(II) oxidation at low pH. The composition and species specificity of the native low-pH Mn(II) oxidizers were highly adapted to in situ conditions, and these organisms may play a central role in the fundamental biogeochemical processes (e.g., metal natural attenuation) occurring in the acidic, oligotrophic, and metalliferous subsoil ecosystems. IMPORTANCE This study provides multiple lines of evidence to show that microbes are the main drivers of Mn(II) oxidation even at acidic pH, offering new insights into Mn biogeochemical cycling. A distinct, highly adapted microbial community inhabits acidic, oligotrophic Mn deposits and mediates biological Mn oxidation. These data highlight the importance of biological processes for Mn biogeochemical cycling and show the potential for new bioremediation strategies aimed at enhancing biological Mn oxidation in low-pH environments for contaminant mitigation. PMID:26969702
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, K.D.; Sposito, G.
2010-02-01
Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.
NASA Astrophysics Data System (ADS)
Kozawa, Takahiro; Murakami, Takeshi; Naito, Makio
2016-07-01
The Ni-doped lithium manganese oxide, LiNi0.5Mn1.5O4, has received much attention as a cathode active material in high-energy lithium-ion batteries (LIBs). This active material has two different spinel structures depending on the ordering state of the Ni and Mn ions. The ordered LiNi0.5Mn1.5O4 spinel has an inferior cathode performance than the disordered phase because of its poor electronic conductivity. However, the ordered LiNi0.5Mn1.5O4 spinel possesses the potential advantage of avoiding dissolution of the Mn ion, which is an issue for the disordered spinel. The improvement of cathode performance is important for future applications. Here, we report a unique approach to improve the cathode performance of the ordered LiNi0.5Mn1.5O4 spinel. The mechanical treatment using an attrition-type mill successfully inserted lattice strains into the ordered LiNi0.5Mn1.5O4 spinel structure without a phase transformation to the disordered phase. The insertion of lattice strains by mechanical stresses provided an increased discharge capacity and a decreased charge transfer resistance. This limited crystal structure modification improved the cathode performance. The present work has the potential for application of the mechanically treated ordered LiNi0.5Mn1.5O4 spinel as a cathode for high-energy LIBs.
Study on the mechanism of a manganese-based catalyst for catalytic NOX flue gas denitration
NASA Astrophysics Data System (ADS)
Zhang, Lei; Wen, Xin; Lei, Zhang; Gao, Long; Sha, Xiangling; Ma, Zhenhua; He, Huibin; Wang, Yusu; Jia, Yang; Li, Yonghui
2018-04-01
Manganese-based bimetallic catalysts were prepared with self-made pyrolysis coke as carrier and its denitration performance of low-temperature SCR (selective catalyst reduction) was studied. The effects of different metal species, calcination temperature, calcination time and the metal load quantity on the denitration performance of the catalyst were studied by orthogonal test. The denitration mechanism of the catalyst was analyzed by XRD (X-ray diffraction), SEM (scanning electron microscope), BET test and transient test. The experiments show that: * The denitration efficiency of Mn-based bimetallic catalysts mainly relates to the metal type, the metal load quantity and the catalyst adjuvant type. * The optimal catalyst preparation conditions are as follows: the load quantity of monometallic MnO2 is 10%, calcined at 300°C for 4h, and then loaded with 8% CeO2, calcined at 350°Cfor 3h. * The denitration mechanism of manganese-based bimetallic oxide catalysts is stated as: NH3 is firstly adsorbed by B acid center Mn-OH which nears Mn4+==O to form NH4+, NH4+ was then attacked by the gas phase NO to form N2, H2O and Mn3+-OH. Finally, Mn3+-OH was oxidized by O2 to regenerate Mn4+.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seung-Yong; Wu, Lijun; Poyraz, Altug S.
Manganese oxide (α-MnO 2) has been considered as a promising energy material, including as a lithium-based battery electrode candidate, due to its environmental friendliness. Thanks to its unique 1D [2 × 2] tunnel structure, α-MnO 2 can be applied to a cathode by insertion reaction and to an anode by conversion reaction in corresponding voltage ranges, in a lithium-based battery. Numerous reports have attributed its remarkable performance to its unique tunnel structure; however, the precise electrochemical reaction mechanism remains unknown. In this study, finding of the lithiation mechanism of α-MnO 2 nanowire by in situ transmission electron microscopy (TEM) ismore » reported. By elaborately modifying the existing in situ TEM experimental technique, rapid lithium-ion diffusion through the tunnels is verified. Furthermore, by tracing the full lithiation procedure, the evolution of the MnO intermediate phase and the development of the MnO and Li 2O phases with preferred orientations is demonstrated, which explains how the conversion reaction occurs in α-MnO 2 material. This study provides a comprehensive understanding of the electrochemical lithiation process and mechanism of α-MnO 2 material, in addition to the introduction of an improved in situ TEM biasing technique.« less
Lee, Seung-Yong; Wu, Lijun; Poyraz, Altug S.; ...
2017-10-06
Manganese oxide (α-MnO 2) has been considered as a promising energy material, including as a lithium-based battery electrode candidate, due to its environmental friendliness. Thanks to its unique 1D [2 × 2] tunnel structure, α-MnO 2 can be applied to a cathode by insertion reaction and to an anode by conversion reaction in corresponding voltage ranges, in a lithium-based battery. Numerous reports have attributed its remarkable performance to its unique tunnel structure; however, the precise electrochemical reaction mechanism remains unknown. In this study, finding of the lithiation mechanism of α-MnO 2 nanowire by in situ transmission electron microscopy (TEM) ismore » reported. By elaborately modifying the existing in situ TEM experimental technique, rapid lithium-ion diffusion through the tunnels is verified. Furthermore, by tracing the full lithiation procedure, the evolution of the MnO intermediate phase and the development of the MnO and Li 2O phases with preferred orientations is demonstrated, which explains how the conversion reaction occurs in α-MnO 2 material. This study provides a comprehensive understanding of the electrochemical lithiation process and mechanism of α-MnO 2 material, in addition to the introduction of an improved in situ TEM biasing technique.« less
Zhang, Gaosheng; Liu, Huijuan; Qu, Jiuhui; Jefferson, William
2012-01-15
Arsenate retention, arsenite sorption and oxidation on the surfaces of Fe-Mn binary oxides may play an important role in the mobilization and transformation of arsenic, due to the common occurrence of these oxides in the environment. However, no sufficient information on the sorption behaviors of arsenic on Fe-Mn binary oxides is available. This study investigated the influences of Mn/Fe molar ratio, solution pH, coexisting calcium ions, and humic acids have on arsenic sorption by Fe-Mn binary oxides. To create Fe-Mn binary oxides, simultaneous oxidation and co-precipitation methods were employed. The Fe-Mn binary oxides exhibited a porous crystalline structure similar to 2-line ferrihydrite at Mn/Fe ratios 1:3 and below, whereas exhibited similar structures to δ-MnO(2) at higher ratios. The As(V) sorption maximum was observed at a Mn/Fe ratio of 1:6, but As(III) uptake maximum was at Mn/Fe ratio 1:3. However, As(III) adsorption capacity was much higher than that of As(V) at each Mn/Fe ratio. As(V) sorption was found to decrease with increasing pH, while As(III) sorption edge was different, depending on the content of MnO(2) in the binary oxides. The presence of Ca(2+) enhanced the As(V) uptake under alkaline pH, but did not significantly influence the As(III) sorption by 1:9 Fe-Mn binary oxide; whereas the presence of humic acid slightly reduced both As(V) and As(III) uptake. These results indicate that As(III) is more easily immobilized than As(V) in the environment, where Fe-Mn binary oxides are available as sorbents and they represent attractive adsorbents for both As(V) and As(III) removal from water and groundwater. Copyright © 2011 Elsevier Inc. All rights reserved.
Whitney, P.R.
1981-01-01
Manganese oxide coatings on gravels from 255 sites on tributary streams in the Genesee River Watershed were analyzed for Mn, Fe, Zn, Cd, Co, Ni, Pb, and Cu. The results were compared with data on bedrock geology, surficial geology and land use, using factor analysis and stepwise multiple regression. All metals except Pb show strong positive correlation with Mn. This association results from the well-known tendency of Mn oxide precipitates to adsorb and incorporate dissolved trace metals. Pb may be present in a separate phase on the gravel surfaces; alternatively Pb abundance may be so strongly influenced by environmental factors that the effect of varying abundance of the carrier phase becomes relatively unimportant. When the effects of varying Mn abundance are allowed for, Pb and to a lesser extent Zn and Cu abundances are seen to be related to commercial, industrial and residential land use. In addition to this pollution effect, all the trace metals, Cd and Ni most strongly, tend to be more abundant in oxide coatings from streams in the forested uplands in the southern part of the area. This probably reflects increased geochemical mobility of the metals in the more acid soils and groundwater of the southern region. A strong Zn anomaly is present in streams draining areas underlain by the Lockport Formation. Oxide coatings in these streams contain up to 5% Zn, originating from disseminated sphalerite in the Lockport and secondary Zn concentrations in the overlying muck soils. The same group of metals, plus calcium and loss on ignition, were determined in the silt and clay (minus 230 mesh) fraction of stream sediments from 129 of the same sites, using a hot nitric acid leach. The amounts of manganese in the sediments are low (average 1020 ppm) and manganese oxides are, at most, of relatively minor significance in the trace-metal geochemistry of these sediments. The bulk of the trace metals in sediment appears to be associated with iron oxides, clays and organic matter. ?? 1981.
Diverse manganese(II)-oxidizing bacteria are prevalent in drinking water systems.
Marcus, Daniel N; Pinto, Ameet; Anantharaman, Karthik; Ruberg, Steven A; Kramer, Eva L; Raskin, Lutgarde; Dick, Gregory J
2017-04-01
Manganese (Mn) oxides are highly reactive minerals that influence the speciation, mobility, bioavailability and toxicity of a wide variety of organic and inorganic compounds. Although Mn(II)-oxidizing bacteria are known to catalyze the formation of Mn oxides, little is known about the organisms responsible for Mn oxidation in situ, especially in engineered environments. Mn(II)-oxidizing bacteria are important in drinking water systems, including in biofiltration and water distribution systems. Here, we used cultivation dependent and independent approaches to investigate Mn(II)-oxidizing bacteria in drinking water sources, a treatment plant and associated distribution system. We isolated 29 strains of Mn(II)-oxidizing bacteria and found that highly similar 16S rRNA gene sequences were present in all culture-independent datasets and dominant in the studied drinking water treatment plant. These results highlight a potentially important role for Mn(II)-oxidizing bacteria in drinking water systems, where biogenic Mn oxides may affect water quality in terms of aesthetic appearance, speciation of metals and oxidation of organic and inorganic compounds. Deciphering the ecology of these organisms and the factors that regulate their Mn(II)-oxidizing activity could yield important insights into how microbial communities influence the quality of drinking water. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Estes, E R; Andeer, P F; Nordlund, D; Wankel, S D; Hansel, C M
2017-01-01
Manganese (Mn) oxides participate in a range of interactions with organic carbon (OC) that can lead to either carbon degradation or preservation. Here, we examine the abundance and composition of OC associated with biogenic and environmental Mn oxides to elucidate the role of Mn oxides as a reservoir for carbon and their potential for selective partitioning of particular carbon species. Mn oxides precipitated in natural brackish waters and by Mn(II)-oxidizing marine bacteria and terrestrial fungi harbor considerable levels of organic carbon (4.1-17.0 mol OC per kg mineral) compared to ferromanganese cave deposits which contain 1-2 orders of magnitude lower OC. Spectroscopic analyses indicate that the chemical composition of Mn oxide-associated OC from microbial cultures is homogeneous with bacterial Mn oxides hosting primarily proteinaceous carbon and fungal Mn oxides containing both protein- and lipopolysaccharide-like carbon. The bacterial Mn oxide-hosted proteins are involved in both Mn(II) oxidation and metal binding by these bacterial species and could be involved in the mineral nucleation process as well. By comparison, the composition of OC associated with Mn oxides formed in natural settings (brackish waters and particularly in cave ferromanganese rock coatings) is more spatially and chemically heterogeneous. Cave Mn oxide-associated organic material is enriched in aliphatic C, which together with the lower carbon concentrations, points to more extensive microbial or mineral processing of carbon in this system relative to the other systems examined in this study, and as would be expected in oligotrophic cave environments. This study highlights Mn oxides as a reservoir for carbon in varied environments. The presence and in some cases dominance of proteinaceous carbon within the biogenic and natural Mn oxides may contribute to preferential preservation of proteins in sediments and dominance of protein-dependent metabolisms in the subsurface biosphere. © 2016 John Wiley & Sons Ltd.
Chokejaroenrat, Chanat; Kananizadeh, Negin; Sakulthaew, Chainarong; Comfort, Steve; Li, Yusong
2013-11-19
The residual buildup and treatment of dissolved contaminants in low permeable zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate into LPZs to treat dissolved-phase TCE. This was accomplished by conducting transport experiments that quantified the ability of xanthan-MnO4(-) solutions to penetrate and cover (i.e., sweep) an LPZ that was surrounded by transmissive sands. By incorporating the non-Newtonian fluid xanthan with MnO4(-), penetration of MnO4(-) into the LPZ improved dramatically and sweeping efficiency reached 100% in fewer pore volumes. To quantify how xanthan improved TCE removal, we spiked the LPZ and surrounding sands with (14)C-lableled TCE and used a multistep flooding procedure that quantified the mass of (14)C-TCE oxidized and bypassed during treatment. Results showed that TCE mass removal was 1.4 times greater in experiments where xanthan was employed. Combining xanthan with MnO4(-) also reduced the mass of TCE in the LPZ that was potentially available for rebound. By coupling a multiple species reactive transport model with the Brinkman equation for non-Newtonian flow, the simulated amount of (14)C-TCE oxidized during transport matched experimental results. These observations support the use of xanthan as a means of enhancing MnO4(-) delivery into LPZs for the treatment of dissolved-phase TCE.
Matsushita, Shuji; Komizo, Daisuke; Cao, Linh Thi Thuy; Aoi, Yoshiteru; Kindaichi, Tomonori; Ozaki, Noriatsu; Imachi, Hiroyuki; Ohashi, Akiyoshi
2018-03-01
Biogenic manganese oxide (BioMnO x ) can efficiently adsorb various minor metals. The production of BioMnO x in reactors to remove metals during wastewater treatment processes is a promising biotechnological method. However, it is difficult to preferentially enrich manganese-oxidizing bacteria (MnOB) to produce BioMnO x during wastewater treatment processes. A unique method of cultivating MnOB using methane-oxidizing bacteria (MOB) to produce soluble microbial products is proposed here. MnOB were successfully enriched in a methane-fed reactor containing MOB. BioMnO x production during the wastewater treatment process was confirmed. Long-term continual operation of the reactor allowed simultaneous removal of Mn(II), Co(II), and Ni(II). The Co(II)/Mn(II) and Ni(II)/Mn(II) removal ratios were 53% and 19%, respectively. The degree to which Mn(II) was removed indicated that the enriched MnOB used utilization-associated products and/or biomass-associated products. Microbial community analysis revealed that methanol-oxidizing bacteria belonging to the Hyphomicrobiaceae family played important roles in the oxidation of Mn(II) by using utilization-associated products. Methane-oxidizing bacteria were found to be inhibited by MnO 2 , but the maximum Mn(II) removal rate was 0.49 kg m -3 d -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Secondary battery material and synthesis method
Liu, Hongjian; Kepler, Keith Douglas; Wang, Yu
2013-10-22
A composite Li.sub.1+xMn.sub.2-x-yM.sub.yO.sub.4 cathode material stabilized by treatment with a second transition metal oxide phase that is highly suitable for use in high power and energy density Li-ion cells and batteries. A method for treating a Li.sub.1+xMn.sub.2-x-yM.sub.yO.sub.4 cathode material utilizing a dry mixing and firing process.
Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging.
Lu, Jian; Ma, Shuli; Sun, Jiayu; Xia, Chunchao; Liu, Chen; Wang, Zhiyong; Zhao, Xuna; Gao, Fabao; Gong, Qiyong; Song, Bin; Shuai, Xintao; Ai, Hua; Gu, Zhongwei
2009-05-01
Iron oxide nanoparticles are effective contrast agents for enhancement of magnetic resonance imaging at tissue, cellular or even molecular levels. In this study, manganese doped superparamagnetic iron oxide (Mn-SPIO) nanoparticles were used to form ultrasensitive MRI contrast agents for liver imaging. Hydrophobic Mn-SPIO nanoparticles are synthesized in organic phase and then transferred into water with the help of block copolymer mPEG-b-PCL. These Mn-SPIO nanoparticles are self-assembled into small clusters (mean diameter approximately 80nm) inside micelles as revealed by transmission electron microscopy. Mn-SPIO nanoparticles inside micelles decrease PCL crystallization temperatures, as verified from differential scanning calorimetry and Fourier transform infrared spectroscopy. The Mn-SPIO based nanocomposites are superparamagnetic at room temperature. At the magnetic field of 1.5T, Mn-SPIO nanoparticle clustering micelles have a T(2) relaxivity of 270 (Mn+Fe)mM(-1)s(-1), which is much higher than single Mn-SPIO nanoparticle containing lipid-PEG micelles. This clustered nanocomposite has brought significant liver contrast with signal intensity changes of -80% at 5min after intravenous administration. The time window for enhanced-MRI can last about 36h with obvious contrast on liver images. This sensitive MRI contrast agent may find applications in identification of small liver lesions, evaluation of the degree of liver cirrhosis, and differential diagnosis of other liver diseases.
Oxygen Isotope Signatures of Biogenic Manganese(III/IV) Oxides
NASA Astrophysics Data System (ADS)
Sutherland, K. M.; Hansel, C. M.; Wankel, S. D.
2015-12-01
Manganese (Mn) oxide minerals are pervasive throughout a number of surface earth environments as rock varnishes, ferromanganese nodules, crusts around deep-sea vents, and cave deposits among many other marine, freshwater, and terrestrial deposits. Mn(III,IV) oxides are also among the strongest sorbents and oxidants in surface earth environments and are crucial to understanding the fate of organic matter in sedimentary environments. The precipitation of Mn oxide minerals proceeds via both abiotic and biotic oxidation pathways, the latter due to the indirect or direct activity of Mn(II)- oxidizing microorganisms, including bacteria and fungi. Although the precipitation of Mn oxides is believed to be primarily controlled by Mn(II)-oxidizing organisms in most surface earth environments, confirmation of this generally held notion has remained illusive and limits our understanding of their formation on Earth and beyond (e.g., Mars). Previous work provided evidence that O atom incorporation by specific Mn oxidation pathways may exhibit unique and predictable isotopic fractionation. In this study, we expand upon this evidence by measuring the oxygen isotope signature of several biogenic and abiogenic Mn oxide minerals synthesized under a range of oxygen-18 labeled water. These results allow us to determine the relative amount oxygen atoms derived from water and molecular oxygen that are incorporated in the oxide and shed light on corresponding isotope fractionation factors. Additionally, we show that, once precipitated, Mn oxide isotope signatures are robust with respect to aqueous oxygen isotope exchange. The study provides a foundation on which to study and interpret Mn oxides in natural environments and determine which environmental controls may govern Mn(II) oxidation.
Banakar, V.K.; Hein, J.R.; Rajani, R.P.; Chodankar, A.R.
2007-01-01
The major element relationships in ferromanganese (Fe-Mn) crusts from Afanasiy-Nikitin seamount (ANS), eastern equatorial Indian Ocean, appear to be atypical. High positive correlations (r = 0.99) between Mn/Co and Fe/Co ratios, and lack of correlation of those ratios with Co, Ce, and Ce/Co, indicate that the ANS Fe-Mn crusts are distinct from Pacific seamount Fe-Mn crusts, and reflect region-specific chemical characteristics. The platinum group elements (PGE: Ir, Ru, Rh, Pt, and Pd) and Au in ANS Fe-Mn crusts are derived from seawater and are mainly of terrestrial origin, with a minor cosmogenic component. The Ru/Rh (0.5-2) and Pt/Ru ratios (7-28) are closely comparable to ratios in continental basalts, whereas Pd/Ir ratios exhibit values ( 0.75) correlations between water depth and Mn/Co, Fe/Co, Ce/Co, Co, and the PGEs. Fractionation of the PGE-Au from seawater during colloidal precipitation of the major-oxide phases is indicated by well-defined linear positive correlations (r > 0.8) of Co and Ce with Ir, Ru, Rh, and Pt; Au/Co with Mn/Co; and by weak or no correlations of Pd with water depth, Co-normalized major-element ratios, and with the other PGE (r < 0.5). The strong enrichment of Pt (up to 1 ppm) relative to the other PGE and its positive correlations with Ce and Co demonstrate a common link for the high concentrations of all three elements, which likely involves an oxidation reaction on the Mn-oxide and Fe-oxyhydroxide surfaces. The documented fractionation of PGE-Au and their positive association with redox sensitive Co and Ce may have applications in reconstructing past-ocean redox conditions and water masses.
NASA Astrophysics Data System (ADS)
Lakhani, Archana; Kushwaha, Pallavi; Rawat, R.; Kumar, Kranti; Banerjee, A.; Chaddah, P.
2010-01-01
Glass-like arrest has recently been reported in various magnetic materials. As in structural glasses, the kinetics of a first order transformation is arrested while retaining the higher entropy phase as a non-ergodic state. We show visual mesoscopic evidence of the irreversible transformation of the arrested antiferromagnetic-insulating phase in Pr0.5Ca0.5Mn0.975Al0.025O3 to its equilibrium ferromagnetic-metallic phase with an isothermal increase of magnetic field, similar to its iso-field transformation on warming. The magnetic field dependence of the non-equilibrium to equilibrium transformation temperature is shown to be governed by Le Chatelier's principle.
Dick, Gregory J.; Torpey, Justin W.; Beveridge, Terry J.; Tebo, Bradley M.
2008-01-01
Microorganisms catalyze the formation of naturally occurring Mn oxides, but little is known about the biochemical mechanisms of this important biogeochemical process. We used tandem mass spectrometry to directly analyze the Mn(II)-oxidizing enzyme from marine Bacillus spores, identified as an Mn oxide band with an in-gel activity assay. Nine distinct peptides recovered from the Mn oxide band of two Bacillus species were unique to the multicopper oxidase MnxG, and one peptide was from the small hydrophobic protein MnxF. No other proteins were detected in the Mn oxide band, indicating that MnxG (or a MnxF/G complex) directly catalyzes biogenic Mn oxide formation. The Mn(II) oxidase was partially purified and found to be resistant to many proteases and active even at high concentrations of sodium dodecyl sulfate. Comparative analysis of the genes involved in Mn(II) oxidation from three diverse Bacillus species revealed a complement of conserved Cu-binding regions not present in well-characterized multicopper oxidases. Our results provide the first direct identification of a bacterial enzyme that catalyzes Mn(II) oxidation and suggest that MnxG catalyzes two sequential one-electron oxidations from Mn(II) to Mn(III) and from Mn(III) to Mn(IV), a novel type of reaction for a multicopper oxidase. PMID:18165363
Evolution of Inclusions During 1473 K Heating Process in EH36 Shipbuilding Steel with Mg Addition
NASA Astrophysics Data System (ADS)
Wang, Qiyu; Zou, Xiaodong; Matsuura, Hiroyuki; Wang, Cong
2018-04-01
Inclusion evolution behaviors of EH36 shipbuilding steel with Mg addition were systematically investigated during a 1473 K heating process by means of ex situ SEM examination and in situ CSLM observations. It has been shown that individual MnS inclusions are the dominating phase in the cast billet. However, their number density decreases substantially after heating, while the density of MnS and oxides combined type inclusions is on the rise. In addition, coarsening, split and movement behaviors of MnS inclusions at high temperature are demonstrated here.
Evolution of Inclusions During 1473 K Heating Process in EH36 Shipbuilding Steel with Mg Addition
NASA Astrophysics Data System (ADS)
Wang, Qiyu; Zou, Xiaodong; Matsuura, Hiroyuki; Wang, Cong
2017-12-01
Inclusion evolution behaviors of EH36 shipbuilding steel with Mg addition were systematically investigated during a 1473 K heating process by means of ex situ SEM examination and in situ CSLM observations. It has been shown that individual MnS inclusions are the dominating phase in the cast billet. However, their number density decreases substantially after heating, while the density of MnS and oxides combined type inclusions is on the rise. In addition, coarsening, split and movement behaviors of MnS inclusions at high temperature are demonstrated here.
Najafpour, Mohammad Mahdi; Heidari, Sima; Amini, Emad; Khatamian, Masoumeh; Carpentier, Robert; Allakhverdiev, Suleyman I
2014-04-05
One challenge in artificial photosynthetic systems is the development of artificial model compounds to oxidize water. The water-oxidizing complex of Photosystem II which is responsible for biological water oxidation contains a cluster of four Mn ions bridged by five oxygen atoms. Layered Mn oxides as efficient, stable, low cost, environmentally friendly and easy to use, synthesize, and manufacture compounds could be considered as functional and structural models for the site. Because of the related structure of these Mn oxides and the catalytic centre of the active site of the water oxidizing complex of Photosystem II, the study of layered Mn oxides may also help to understand more about the mechanism of water oxidation by the natural site. This review provides an overview of the current status of layered Mn oxides in artificial photosynthesis and discuss the sophisticated design strategies for Mn oxides as water oxidizing catalysts. Copyright © 2014 Elsevier B.V. All rights reserved.
Evidence for Different Reaction Pathways for Liquid and Granular Micronutrients in a Calcareous Soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hettiarachchi, Ganga M.; McLaughlin, Mike J.; Scheckel, Kirk G.
2008-06-16
The benefits of Mn and Zn fluid fertilizers over conventional granular products in calcareous sandy loam soils have been agronomically demonstrated. We hypothesized that the differences in the effectiveness between granular and fluid Mn and Zn fertilizers is due to different Mn and Zn reaction processes in and around fertilizer granules and fluid fertilizer bands. We used a combination of several synchrotron-based x-ray techniques, namely, spatially resolved micro-x-ray fluorescence (?-XRF), micro-x-ray absorption near edge structure spectroscopy (?-XANES), and bulk-XANES and -extended x-ray absorption fine structure (EXAFS) spectroscopy, along with several laboratory-based x-ray techniques to speciate different fertilizer-derived Mn and Znmore » species in highly calcareous soils to understand the chemistry underlying the observed differential behavior of fluid and granular micronutrient forms. Micro-XRF mapping of soil-fertilizer reactions zones indicated that the mobility of Mn and Zn from liquid fertilizer was greater than that observed for equivalent granular sources of these micronutrients in soil. After application of these micronutrient fertilizers to soil, Mn and Zn from liquid fertilizers were found to remain in comparatively more soluble solid forms, such as hydrated Mn phosphate-like, Mn calcite-like, adsorbed Zn-like, and Zn silicate-like phases, whereas Mn and Zn from equivalent granular sources tended to transform into comparatively less soluble solid forms such as Mn oxide-like, Mn carbonate-like, and Zn phosphate-like phases.« less
Jiang, Jin; Gao, Yuan; Pang, Su-Yan; Lu, Xue-Ting; Zhou, Yang; Ma, Jun; Wang, Qiang
2015-01-06
Recent studies have shown that manganese dioxide (MnO2) can significantly accelerate the oxidation kinetics of phenolic compounds such as triclosan and chlorophenols by potassium permanganate (Mn(VII)) in slightly acidic solutions. However, the role of MnO2 (i.e., as an oxidant vs catalyst) is still unclear. In this work, it was demonstrated that Mn(VII) oxidized triclosan (i.e., trichloro-2-phenoxyphenol) and its analogue 2-phenoxyphenol, mainly generating ether bond cleavage products (i.e., 2,4-dichlorophenol and phenol, respectively), while MnO2 reacted with them producing appreciable dimers as well as hydroxylated and quinone-like products. Using these two phenoxyphenols as mechanistic probes, it was interestingly found that MnO2 formed in situ or prepared ex situ greatly accelerated the kinetics but negligibly affected the pathways of their oxidation by Mn(VII) at acidic pH 5. The yields (R) of indicative products 2,4-dichlorophenol and phenol from their respective probes (i.e., molar ratios of product formed to probe lost) under various experimental conditions were quantified. Comparable R values were obtained during the treatment by Mn(VII) in the absence vs presence of MnO2. Meanwhile, it was confirmed that MnO2 could accelerate the kinetics of Mn(VII) oxidation of refractory nitrophenols (i.e., 2-nitrophenol and 4-nitrophenol), which otherwise showed negligible reactivity toward Mn(VII) and MnO2 individually, and the effect of MnO2 was strongly dependent upon its concentration as well as solution pH. These results clearly rule out the role of MnO2 as a mild co-oxidant and suggest a potential catalytic effect on Mn(VII) oxidation of phenolic compounds regardless of their susceptibility to oxidation by MnO2.
Unlu, Ilyas; Spencer, Julie A; Johnson, Kelsea R; Thorman, Rachel M; Ingólfsson, Oddur; McElwee-White, Lisa; Fairbrother, D Howard
2018-03-14
Electron-induced surface reactions of (η 5 -C 5 H 5 )Fe(CO) 2 Mn(CO) 5 were explored in situ under ultra-high vacuum conditions using X-ray photoelectron spectroscopy and mass spectrometry. The initial step involves electron-stimulated decomposition of adsorbed (η 5 -C 5 H 5 )Fe(CO) 2 Mn(CO) 5 molecules, accompanied by the desorption of an average of five CO ligands. A comparison with recent gas phase studies suggests that this precursor decomposition step occurs by a dissociative ionization (DI) process. Further electron irradiation decomposes the residual CO groups and (η 5 -C 5 H 5 , Cp) ligand, in the absence of any ligand desorption. The decomposition of CO ligands leads to Mn oxidation, while electron stimulated Cp decomposition causes all of the associated carbon atoms to be retained in the deposit. The lack of any Fe oxidation is ascribed to either the presence of a protective carbonaceous matrix around the Fe atoms created by the decomposition of the Cp ligand, or to desorption of both CO ligands bound to Fe in the initial decomposition step. The selective oxidation of Mn in the absence of any Fe oxidation suggests that the fate of metal atoms in mixed-metal precursors for focused electron beam induced deposition (FEBID) will be sensitive to the nature and number of ligands in the immediate coordination sphere. In related studies, the composition of deposits created from (η 5 -C 5 H 5 )Fe(CO) 2 Mn(CO) 5 under steady state deposition conditions, representative of those used to create nanostructures in electron microscopes, were measured and found to be qualitatively consistent with predictions from the UHV surface science studies.
NASA Astrophysics Data System (ADS)
Feng, Xu; Cox, David F.
2018-09-01
The oxidation of clean and Na precovered MnO(100) has been investigated by X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and temperature programmed desorption (TPD) of adsorbed water. XPS results indicate that Mn3O4-like and Mn2O3-like surfaces can be formed by various oxidation treatments of clean and nearly-stoichiometric MnO(100), while a NaMnO2-like surface can be produced by the oxidation of MnO(100) pre-covered with multilayers of metallic Na. Water TPD results indicate that water adsorption/desorption is sensitive to the available oxidation states of surface Mn cations, and can be used to distinguish between surfaces exposing Mn2+and Mn3+ cations, or a combination of these oxidation states. Carbon dioxide and water TPD results from the NaMnO2-like surface indicate that pre-adsorbed water blocks the uptake of CO2, while water displaces pre-adsorbed CO2. No indication of a strong reactive interaction is observed between CO2, water and the NaMnO2-like surface under the conditions of our study.
Bocher, L; Aguirre, M H; Logvinovich, D; Shkabko, A; Robert, R; Trottmann, M; Weidenkaff, A
2008-09-15
Perovskite-type CaMn(1-x)Nb(x)O(3+/-delta) (x = 0.02, 0.05, and 0.08) compounds were synthesized by applying both a "chimie douce" (SC) synthesis and a classical solid state reaction (SSR) method. The crystallographic parameters of the resulting phases were determined from X-ray, electron, and neutron diffraction data. The manganese oxidations states (Mn(4+)/Mn(3+)) were investigated by X-ray photoemission spectroscopy. The orthorhombic CaMn(1-x)Nb(x)O(3+/-delta) (x = 0.02, 0.05, and 0.08) phases were studied in terms of their high-temperature thermoelectric properties (Seebeck coefficient, electrical resistivity, and thermal conductivity). Differences in electrical transport and thermal properties can be correlated with different microstructures obtained by the two synthesis methods. In the high-temperature range, the electron-doped manganate phases exhibit large absolute Seebeck coefficient and low electrical resistivity values, resulting in a high power factor, PF (e.g., for x = 0.05, S(1000K) = -180 microV K(-1), rho(1000K) = 16.8 mohms cm, and PF > 1.90 x 10(-4) W m(-1) K(-2) for 450 K < T < 1070 K). Furthermore, lower thermal conductivity values are achieved for the SC-derived phases (kappa < 1 W m(-1) K(-1)) compared to the SSR compounds. High power factors combined with low thermal conductivity (leading to ZT values > 0.3) make these phases the best perovskitic candidates as n-type polycrystalline thermoelectric materials operating in air at high temperatures.
Ferroelectric control of a Mott insulator
Yamada, Hiroyuki; Marinova, Maya; Altuntas, Philippe; Crassous, Arnaud; Bégon-Lours, Laura; Fusil, Stéphane; Jacquet, Eric; Garcia, Vincent; Bouzehouane, Karim; Gloter, Alexandre; Villegas, Javier E.; Barthélémy, Agnès; Bibes, Manuel
2013-01-01
The electric field control of functional properties is an important goal in oxide-based electronics. To endow devices with memory, ferroelectric gating is interesting, but usually weak compared to volatile electrolyte gating. Here, we report a very large ferroelectric field-effect in perovskite heterostructures combining the Mott insulator CaMnO3 and the ferroelectric BiFeO3 in its “supertetragonal” phase. Upon polarization reversal of the BiFeO3 gate, the CaMnO3 channel resistance shows a fourfold variation around room temperature, and a tenfold change at ~200 K. This is accompanied by a carrier density modulation exceeding one order of magnitude. We have analyzed the results for various CaMnO3 thicknesses and explain them by the electrostatic doping of the CaMnO3 layer and the presence of a fixed dipole at the CaMnO3/BiFeO3 interface. Our results suggest the relevance of ferroelectric gates to control orbital- or spin-ordered phases, ubiquitous in Mott systems, and pave the way toward efficient Mott-tronics devices. PMID:24089020
Biological low pH Mn(II) oxidation in a manganese deposit influenced by metal-rich groundwater
Bohu, Tsing; Akob, Denise M.; Abratis, Michael; Lazar, Cassandre S.; Küsel, Kirsten
2016-01-01
The mechanisms, key organisms, and geochemical significance of biological low-pH Mn(II) oxidation are largely unexplored. Here, we investigated the structure of indigenous Mn(II)-oxidizing microbial communities in a secondary subsurface Mn oxide deposit influenced by acidic (pH 4.8) metal-rich groundwater in a former uranium mining area. Microbial diversity was highest in the Mn deposit compared to the adjacent soil layers and included the majority of known Mn(II)-oxidizing bacteria (MOB) and two genera of known Mn(II)-oxidizing fungi (MOF). Electron X-ray microanalysis showed that romanechite [(Ba,H2O)2(Mn4+,Mn3+)5O10] was conspicuously enriched in the deposit. Canonical correspondence analysis revealed that certain fungal, bacterial, and archaeal groups were firmly associated with the autochthonous Mn oxides. Eight MOB within the Proteobacteria, Actinobacteria, and Bacteroidetes and one MOF strain belonging to Ascomycota were isolated at pH 5.5 or 7.2 from the acidic Mn deposit. Soil-groundwater microcosms demonstrated 2.5-fold-faster Mn(II) depletion in the Mn deposit than adjacent soil layers. No depletion was observed in the abiotic controls, suggesting that biological contribution is the main driver for Mn(II) oxidation at low pH. The composition and species specificity of the native low-pH Mn(II) oxidizers were highly adapted to in situ conditions, and these organisms may play a central role in the fundamental biogeochemical processes (e.g., metal natural attenuation) occurring in the acidic, oligotrophic, and metalliferous subsoil ecosystems.
Metal oxide nanoparticle-modified graphene oxide for removal of elemental mercury.
Liu, Yuxi; Chen, Gang; Tian, Chong; Gupta, Rajender; Wang, Xiaogang; Zeng, Hongbo
2018-06-05
Mercury is an extremely toxic element that is primarily released by anthropogenic activities and natural sources. Controlling Hg emissions, especially from coal combustion flue gas, is of practical importance in protecting the environment and preventing human health risks. In the present work, three metal oxides (MnO 2 , CuO, and ZnO) were loaded on graphene oxide (GO) sorbents (designated as MnO 2 -GO, CuO-GO, and ZnO-GO). All three adsorbents were successfully synthesized and were well characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the metal oxide nanoparticles (NPs) successfully decorated the GO. The elemental Hg adsorption capabilities of the three sorbents were subsequently evaluated using an in-house built setup for cold vapour atomic fluorescence spectrophotometry (CVAFS) with argon as the carrier gas for mercury detection. The testing temperature ranged from 50°C to 200°C at intervals of 50°C. MnO 2 -GO showed an excel lent Hg 0 adsorption capacity via chemisorption from 50 to 150°C and a mercury removal efficiency as high as 85% at 200°C, indicating that the MnO 2 -NP-modified GO is applicable for enhancing gas-phase elemental mercury removal. However, neither CuO-GO nor ZnO-GO performed well. This work provides useful insights into the development of novel sorbent materials for the elemental mercury removal from flue gases.
Soldatova, Alexandra V.; Butterfield, Cristina; Oyerinde, Oyeyemi F.; Tebo, Bradley M.; Spiro, Thomas G.
2013-01-01
Global cycling of environmental manganese requires catalysis by bacteria and fungi for MnO2 formation, since abiotic Mn(II) oxidation is slow under ambient conditions. Genetic evidence from several bacteria implicates multicopper oxidases (MCOs) as being required for MnO2 formation. However, MCOs catalyze one-electron oxidations, whereas conversion of Mn(II) to MnO2 is a two-electron process. Trapping experiments with pyrophosphate (PP), a Mn(III) chelator, have demonstrated that Mn(III) is an intermediate in Mn(II) oxidation when mediated by exosporium from the Mn-oxidizing bacterium Bacillus SG-1. The reaction of Mn(II) depends on O2 and is inhibited by azide, consistent with MCO catalysis. We show that the subsequent conversion of Mn(III) to MnO2 also depends on O2 and is inhibited by azide. Thus, both oxidation steps appear to be MCO-mediated, likely by the same enzyme, indicated by genetic evidence to be the MnxG gene product. We propose a model of how the manganese oxidase active site may be organized to couple successive electron transfers to the formation of polynuclear Mn(IV) complexes as precursors to MnO2 formation. PMID:22892957
Byles, B. W.; Palapati, N. K. R.; Subramanian, A.; ...
2016-04-29
Single nanowires of two manganese oxide polymorphs (α-MnO 2 and todorokite manganese oxide), which display a controlled size variation in terms of their square structural tunnels, were isolated onto nanofabricated platforms using dielectrophoresis. This platform allowed for the measurement of the electronic conductivity of these manganese oxides, which was found to be higher in α-MnO 2 as compared to that of the todorokite phase by a factor of similar to 46. Despite this observation of substantially higher electronic conductivity in α-MnO 2, the todorokite manganese oxide exhibited better electrochemical rate performance as a Li-ion battery cathode. The relationship between thismore » electrochemical performance, the electronic conductivities of the manganese oxides, and their reported ionic conductivities is discussed for the first time, clearly revealing that the rate performance of these materials is limited by their Li + diffusivity, and not by their electronic conductivity. This result reveals important new insights relevant for improving the power density of manganese oxides, which have shown promise as a low-cost, abundant, and safe alternative for next-generation cathode materials. Moreover, the presented experimental approach is suitable for assessing a broader family of one-dimensional electrode active materials (in terms of their electronic and ionic conductivities) for both Li-ion batteries and for electrochemical systems utilizing charge-carrying ions beyond Li +.« less
Biological Superoxide In Manganese Oxide Formation
NASA Astrophysics Data System (ADS)
Hansel, C.; Learman, D.; Zeiner, C.; Santelli, C. M.
2011-12-01
Manganese (Mn) oxides are among the strongest sorbents and oxidants within the environment, controlling the fate and transport of numerous elements and the degradation of recalcitrant carbon. Both bacteria and fungi mediate the oxidation of Mn(II) to Mn(III/IV) oxides but the genetic and biochemical mechanisms responsible remain poorly understood. Furthermore, the physiological basis for microbial Mn(II) oxidation remains an enigma. We have recently reported that a common marine bacterium (Roseobacter sp. AzwK-3b) oxidizes Mn(II) via reaction with extracellular superoxide (O2-) produced during exponential growth. Here we expand this superoxide-mediated Mn(II) oxidation pathway to fungi, introducing a surprising homology between prokaryotic and eukaryotic metal redox processes. For instance, Stibella aciculosa, a common soil Ascomycete filamentous fungus, precipitates Mn oxides at the base of asexual reproductive structures (synnemata) used to support conidia (Figure 1). This distribution is a consequence of localized production of superoxide (and it's dismutation product hydrogen peroxide, H2O2), leading to abiotic oxidation of Mn(II) by superoxide. Disruption of NADPH oxidase activity using the oxidoreductase inhibitor DPI leads to diminished cell differentiation and subsequent Mn(II) oxidation inhibition. Addition of Cu(II) (an effective superoxide scavenger) leads to a concentration dependent decrease in Mn oxide formation. We predict that due to the widespread production of extracellular superoxide within the fungal and likely bacterial kingdoms, biological superoxide may be an important contributor to the cycling of Mn, as well as other metals (e.g., Hg, Fe). Current and future explorations of the genes and proteins involved in superoxide production and Mn(II) oxidation will ideally lend insight into the physiological and biochemical basis for these processes.
THE WEATHERING OF A SULFIDE OREBODY: SPECIATION AND FATE OF SOME POTENTIAL CONTAMINANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courtin-Nomade, Alexandra; Grosbois, Cecile; Marcus, Matthew A.
2010-07-16
Various potentially toxic trace elements such as As, Cu, Pb and Zn have been remobilized by the weathering of a sulfide orebody that was only partially mined at Leona Heights, California. As a result, this body has both natural and anthropogenically modified weathering profiles only 500 m apart. The orebody is located in a heavily urbanized area in suburban Oakland, and directly affects water quality in at least one stream by producing acidic conditions and relatively high concentrations of dissolved elements (e.g., {approx}500 mg/L Cu, {approx}3700 mg/L Zn). Micrometric-scale mineralogical investigations were performed on the authigenic metal-bearing phases (less thanmore » 10 {mu}m in size) using electron-probe micro-analysis (EPMA), micro-Raman, micro X-ray absorption spectroscopy (mXAS), scanning X-ray diffraction (mSXRD) and scanning X-ray fluorescence (mSXRF) mapping techniques. Those measurements were coupled with classical mineralogical laboratory techniques, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Authigenic metal-bearing phases identified are mainly sulfates (jarosite, epsomite, schwertmannite), Fe (oxy-)hydroxides (goethite, hematite and poorly crystalline Fe products) and poorly crystalline Mn (hydr-)oxides. Sulfates and Fe (oxy-)hydroxides are the two main secondary products at both sites, whereas Mn (hydr-) oxides were only observed in the samples from the non-mining site. In these samples, the various trace elements show different affinities for Fe or Mn compounds. Lead is preferentially associated with Mn (hydr-)oxides and As with Fe (oxy-)hydroxides or sulfates. Copper association with Mn and Fe phases is questionable, and the results obtained rather indicate that Cu is present as individual Cu-rich grains (Cu hydroxides). Some ochreous precipitates were found at both sites and correspond to a mixture of schwertmannite, goethite and jarosite containing some potentially toxic trace elements such as Cu, Pb and Zn. According to the trace element distribution and relative abundance of the unweathered sulfides, this orebody still represents a significant reservoir of potential contaminants for the watershed, especially in the non-mining site, as a much greater proportion of sulfides is left to react and because of the lower porosity in this site.« less
The weathering of a sulfide orebody: Speciation and fate of some potential contaminants
Courtin-Nomade, A.; Grosbois, C.; Marcus, M.A.; Fakra, S.C.; Beny, J.-M.; Foster, A.L.
2009-01-01
Various potentially toxic trace elements such as As, Cu, Pb and Zn have been remobilized by the weathering of a sulfide orebody that was only partially mined at Leona Heights, California. As a result, this body has both natural and anthropogeni- cally modified weathering profiles only 500 m apart. The orebody is located in a heavily urbanized area in suburban Oakland, and directly affects water quality in at least one stream by producing acidic conditions and relatively high concentrations of dissolved elements (e.g., ??500 ??g/L Cu, ??3700 ??g/L Zn). Micrometric-scale mineralogical investigations were performed on the authigenic metal-bearing phases (less than 10 ??m in size) using electron-probe micro-analysis (EPMA), micro-Raman, micro X-ray absorption spectroscopy (??XAS), scanning X-ray diffraction ((??SXRD) and scanning X-ray fluorescence (??-SXRF) mapping techniques. Those measurements were coupled with classical mineralogical laboratory techniques, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Authigenic metal-bearing phases identified are mainly sulfates (jarosite, epsomite, schwertmannite), Fe (oxy-)hydroxides (goethite, hematite and poorly crystalline Fe products) and poorly crystalline Mn (hydr-)oxides. Sulfates and Fe (oxy-)hydroxides are the two main secondary products at both sites, whereas Mn (hydr-) oxides were only observed in the samples from the non-mining site. In these samples, the various trace elements show different affinities for Fe or Mn compounds. Lead is preferentially associated with Mn (hydr-)oxides and As with Fe (oxy-)hydroxides or sulfates. Copper association with Mn and Fe phases is questionable, and the results obtained rather indicate that Cu is present as individual Cu-rich grains (Cu hydroxides). Some ochreous precipitates were found at both sites and correspond to a mixture of schwertmannite, goethite and jarosite containing some potentially toxic trace elements such as Cu, Pb and Zn. According to the trace element distribution and relative abundance of the unweathered sulfides, this orebody still represents a significant reservoir of potential contaminants for the watershed, especially at the non-mining site, as a much greater proportion of sulfides is left to react and because of the lower porosity at this site.
Theoretical investigation of the reaction of Mn+ with ethylene oxide.
Li, Yuanyuan; Guo, Wenyue; Zhao, Lianming; Liu, Zhaochun; Lu, Xiaoqing; Shan, Honghong
2012-01-12
The potential energy surfaces of Mn(+) reaction with ethylene oxide in both the septet and quintet states are investigated at the B3LYP/DZVP level of theory. The reaction paths leading to the products of MnO(+), MnO, MnCH(2)(+), MnCH(3), and MnH(+) are described in detail. Two types of encounter complexes of Mn(+) with ethylene oxide are formed because of attachments of the metal at different sites of ethylene oxide, i.e., the O atom and the CC bond. Mn(+) would insert into a C-O bond or the C-C bond of ethylene oxide to form two different intermediates prior to forming various products. MnO(+)/MnO and MnH(+) are formed in the C-O activation mechanism, while both C-O and C-C activations account for the MnCH(2)(+)/MnCH(3) formation. Products MnO(+), MnCH(2)(+), and MnH(+) could be formed adiabatically on the quintet surface, while formation of MnO and MnCH(3) is endothermic on the PESs with both spins. In agreement with the experimental observations, the excited state a(5)D is calculated to be more reactive than the ground state a(7)S. This theoretical work sheds new light on the experimental observations and provides fundamental understanding of the reaction mechanism of ethylene oxide with transition metal cations.
NASA Astrophysics Data System (ADS)
Dick, Gregory J.; Clement, Brian G.; Webb, Samuel M.; Fodrie, F. Joel; Bargar, John R.; Tebo, Bradley M.
2009-11-01
Microorganisms play important roles in mediating biogeochemical reactions in deep-sea hydrothermal plumes, but little is known regarding the mechanisms that underpin these transformations. At Guaymas Basin (GB) in the Gulf of California, hydrothermal vents inject fluids laden with dissolved Mn(II) (dMn) into the deep waters of the basin where it is oxidized and precipitated as particulate Mn(III/IV) oxides, forming turbid hydrothermal "clouds". Previous studies have predicted extremely short residence times for dMn at GB and suggested they are the result of microbially-mediated Mn(II) oxidation and precipitation. Here we present biogeochemical results that support a central role for microorganisms in driving Mn(II) oxidation in the GB hydrothermal plume, with enzymes being the primary catalytic agent. dMn removal rates at GB are remarkably fast for a deep-sea hydrothermal plume (up to 2 nM/h). These rapid rates were only observed within the plume, not in background deep-sea water above the GB plume or at GB plume depths (˜1750-2000 m) in the neighboring Carmen Basin, where there is no known venting. dMn removal is dramatically inhibited under anoxic conditions and by the presence of the biological poison, sodium azide. A conspicuous temperature optimum of dMn removal rates (˜40 °C) and a saturation-like (i.e. Michaelis-Menten) response to O 2 concentration were observed, indicating an enzymatic mechanism. dMn removal was resistant to heat treatment used to select for spore-forming organisms, but very sensitive to low concentrations of added Cu, a cofactor required by the putative Mn(II)-oxidizing enzyme. Extended X-ray absorption fine structure spectroscopy (EXAFS) and synchrotron radiation-based X-ray diffraction (SR-XRD) revealed the Mn oxides to have a hexagonal birnessite or δ-MnO 2-like mineral structure, indicating that these freshly formed deep-sea Mn oxides are strikingly similar to primary biogenic Mn oxides produced by laboratory cultures of bacteria. Overall, these results reveal a vigorous Mn biogeochemical cycle in the GB hydrothermal plume, where a distinct microbial community enzymatically catalyzes rapid Mn(II) oxidation and the production of Mn biooxides.
Role of ligands in permanganate oxidation of organics.
Jiang, Jin; Pang, Su-Yan; Ma, Jun
2010-06-01
We previously demonstrated that several ligands such as phosphate, pyrophosphate, EDTA, and humic acid could significantly enhance permanganate oxidation of triclosan (one phenolic biocide), which was explained by the contribution of ligand-stabilized reactive manganese intermediates in situ formed upon permanganate reduction. To further understand the underlying mechanism, we comparatively investigated the influence of ligands on permanganate oxidation of bisphenol A (BPA, one phenolic endocrine-disrupting chemical), carbamazepine (CBZ, a pharmaceutical containing the olefinic group), and methyl p-tolyl sulfoxide (TMSO, a typical oxygen-atom acceptor). Selected ligands exerted oxidation enhancement for BPA but had negligible influence for CBZ and TMSO. This was mainly attributed to the effects of identified Mn(III) complexes, which would otherwise disproportionate spontaneously in the absence of ligands. The one-electron oxidant Mn(III) species exhibited no reactivity toward CBZ and TMSO for which the two-electron oxygen donation may be the primary oxidation mechanism but readily oxidized BPA. The latter case was a function of pH, the complexing ligand, and the molar [Mn(III)]:[ligand] ratio, generally consistent with the patterns of ligand-affected permanganate oxidation. Moreover, the combination of the one-electron reduction of Mn(III) (Mn(III) + e(-) -->Mn(II)) and the Mn(VII)/Mn(II) reaction in excess ligands (Mn(VII) + 4Mn(II) ----> (ligands) 5Mn(III)) suggested a catalytic role of the Mn(III)/Mn(II) pair in permanganate oxidation of some phenolics in the presence of ligands.
Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H.; Navrotsky, Alexandra
2013-01-01
Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn3+/Mn4+ ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states. PMID:23667149
Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H; Navrotsky, Alexandra
2013-05-28
Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn(3+)/Mn(4+) ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states.
NASA Astrophysics Data System (ADS)
Dar, M. A.; Varshney, Dinesh
2018-02-01
Nanocrystalline samples of Zn0.94Mn0.06O and transition metal (TM) doped Zn0.94Mn0.01TM0.05O (TM = Co, Ni, and Cu) were prepared by sol-gel auto combustion method. X-ray diffraction (XRD) pattern infers that all synthesized samples except Zn0.94Mn0.01Ni0.05O and Zn0.94Mn0.01Cu0.05O with secondary phases of NiO and CuO are in single phase with hexagonal wurtzite structure (P63mc space group). Raman spectroscopy reveals four vibrational phonon modes are centered at 331, 380, 410, and 438 cm-1, assigned as E2 (H)-E2(L), A1(TO), E1(TO), and E1(LO) modes, respectively. A Raman spectrum of Zn0.94Mn0.01TM0.05O is entirely different from undoped Zn0.94Mn0.06O sample. Also, the infrared spectrum of transition metal doped samples is completely different from undoped Zn0.94Mn0.06O. Similar spectra are observed for Zn0.94Mn0.01Co0.05O, Zn0.94Mn0.01NiO, Zn0.94Mn0.01Cu0.05O and Zn0.94Mn0.01Zn0.05O samples. It was found that the band gap of Zn0.94Mn0.06O increased from 3.19 to 3.25eV by doping 5% transition metal oxide. Improved dielectric constant and reduced dielectric loss is measured for Zn0.94Mn0.01Ni/Cu0.05O as compared to Zn0.94Mn0.06O.
Electrical, Thermal, and Magnetic Properties of Single Crystal CaMn2O4 Marokite
NASA Astrophysics Data System (ADS)
White, B. D.; Neumeier, J. J.; Souza, J. A.; Chiorescu, C.; Cohn, J. L.
2008-03-01
CaMn2O4 was first described [1] in 1963 as a natural mineral called Marokite. Since its discovery, it has been studied as a minor structural impurity phase in CMR- related CaMnO3 and for its structural similarities to high-pressure phases of spinel-oxide compounds. However, little attention has previously been paid to physical properties beyond its temperature-dependent magnetization. We will present a detailed physical properties study of CaMn2O4 single crystals grown by the optical floating zone method. [2] These measurements, several of which display anisotropy as a result of an orthorhombic crystal structure, include electrical transport, thermal transport, thermal expansion, heat capacity, and magnetization. [1] C. Gaudefroy, G. Jouravsky, F. Permingeat, Bull. Soc. Franc. Min'er. Crist. 86 (1963) 359. [2] B. D. White, C. A. M. dos Santos, J. A. Souza, K. J. McClellan, J. J. Neumeier submitted to J. Cryst. Growth.
A novel technique to determine cobalt exchangeability in soils using isotope dilution.
Wendling, Laura A; Kirby, Jason K; McLaughlin, Michael J
2008-01-01
The environmental risk posed by Co contamination is largely a function of its oxidation state. Our objective was to assess the potential biological availability of Co and the reactions and fate of soluble Co(II) after addition to soils with varying physical and chemical characteristics. A potential risk in quantifying exchangeable Co in soils using isotope dilution techniques is the possible presence of two species of Co in soil solution and adsorbed on soil solid phases [Co(II) and Co(III)], coupled with the possibility that when an isotope of Co is added it may undergo a change in oxidation state during the measurement phase. In this study, we have utilized an isotope dilution technique with cation exchange and high-performance liquid chromatography-inductively coupled plasma-mass spectrometry to determine the isotopically exchangeable Co fraction in several soils with varying characteristics such as differing Al, Fe, and Mn oxide content; pH; and organic carbon content. The application of the cation exchange procedure adjusts measurements of isotopically exchangeable Co to correct for the presence of non-exchangeable 57Co not in equilibrium with the solution phase. Results indicated that oxidation of added 57Co(II) to 57Co(III) or precipitation of 57Co(II) may occur on the surfaces of some soils, particularly those with a high pH or substantial quantities of Mn oxide minerals. No detectable Co(III)(aq) was found in the aqueous extracts of the soils examined.
NASA Astrophysics Data System (ADS)
Weil, Matthias; Kremer, Reinhard K.
2017-01-01
Chemical vapour transport reactions (900 °C → 820 °C, Cl2 or Br2 as transport agent) of in situ formed Mn3(AsO4)2 yielded the orthoarsenates(V) α-Mn3(AsO4)2 and β-Mn3(AsO4)2 as well as the oxoarsenate(V) halide compounds Mn7(AsO4)4Cl2, Mn11(AsO4)7Cl, Mn11(AsO4)7Br and Mn5(AsO4)3Cl. The crystal structures of all six phases were determined from single crystal X-ray diffraction data. The crystal structures of α-and β-Mn3(AsO4)2 are isotypic with the corresponding phosphate phases γ- and α-Mn3(PO4)2, respectively, and are reported here for the first time. A comparative discussion with other structures of general composition M3(AsO4)2 (M = Mg; divalent first-row transition metal) is given. The unique crystal structures of Mn7(AsO4)4Cl2 and that of the two isotypic Mn11(AsO4)7X (X = Cl, Br) structures are composed of two [MnO5] polyhedra, two [MnO4Cl2] polyhedra (one with site symmetry 1 bar), two AsO4 tetrahedra, and one [MnO5] polyhedron, three [MnO6] octahedra (one with site symmetry.m.), one [MnO4X], one [MnO5X] polyhedron and four AsO4 tetrahedra, respectively. The various polyhedra of the three arsenate(V) halides are condensed into three-dimensional framework structures by corner- and edge-sharing. Mn5(AsO4)3Cl adopts the chloroapatite structure. The magnetic and thermal properties of pure polycrystalline samples of a-Mn3(AsO4)2 were investigated in more detail. The magnetic susceptibility proves all Mn atoms to be in the oxidation state +2 yielding an effective magnetic moment per Mn atom of 5.9 μB. Long-range antiferromagnetic ordering is observed below 8.2 K consistent with the negative Curie-Weiss temperature of -50 K derived from the high temperature susceptibility data.
Manganese(II)-oxidizing Bacillus spores in Guaymas Basin hydrothermal sediments and plumes.
Dick, Gregory J; Lee, Yifan E; Tebo, Bradley M
2006-05-01
Microbial oxidation and precipitation of manganese at deep-sea hydrothermal vents are important oceanic biogeochemical processes, yet nothing is known about the types of microorganisms or mechanisms involved. Here we report isolation of a number of diverse spore-forming Mn(II)-oxidizing Bacillus species from Guaymas Basin, a deep-sea hydrothermal vent environment in the Gulf of California, where rapid microbially mediated Mn(II) oxidation was previously observed. mnxG multicopper oxidase genes involved in Mn(II) oxidation were amplified from all Mn(II)-oxidizing Bacillus spores isolated, suggesting that a copper-mediated mechanism of Mn(II) oxidation could be important at deep-sea hydrothermal vents. Phylogenetic analysis of 16S rRNA and mnxG genes revealed that while many of the deep-sea Mn(II)-oxidizing Bacillus species are very closely related to previously recognized isolates from coastal sediments, other organisms represent novel strains and clusters. The growth and Mn(II) oxidation properties of these Bacillus species suggest that in hydrothermal sediments they are likely present as spores that are active in oxidizing Mn(II) as it emerges from the seafloor.
Oxidation Of Manganese At Kimberley, Gale Crater: More Free Oxygen In Mars' Past?
NASA Technical Reports Server (NTRS)
Lanza, N. L.; Wiens, R. C.; Arvidson, R. E.; Clark, B. C.; Fischer, W. W.; Gellert, R.; Grotzinger, J. P.; Hurowitz, J. A.; McLennan, S. M.; Morris, R. V.;
2015-01-01
High Mn concentrations provide unique indicators of water-rich environments and their redox state. Very high-potential oxidants are required to oxidize Mn to insoluble, high-valence oxides that can precipitate and concentrate Mn in rocks and sediments; these redox potentials are much higher than those needed to oxidize Fe or S. Consequently, Mn-rich rocks on Earth closely track the rise of atmospheric oxygen. Given the association between Mn-rich rocks and the redox state of surface environments, observations of anomalous Mn enrichments on Mars raise similar questions about redox history, solubility and aqueous transport, and availability as a metabolic substrate. Our observations suggest that at least some of the high Mn present in Gale crater occurs in the form of Mn-oxides filling veins that crosscut sand-stones, requiring post-depositional precipitation as highly oxidizing fluids moved through the fractured strata after their deposition and lithification.
Jung, Haesung; Jun, Young-Shin
2016-01-05
The early formation of manganese (hydr)oxide nanoparticles at mineral-water interfaces is crucial in understanding how Mn oxides control the fate and transport of heavy metals and the cycling of nutrients. Using atomic force microscopy, we investigated the heterogeneous nucleation and growth of Mn (hydr)oxide under varied ionic strengths (IS; 1-100 mM NaNO3). Experimental conditions (i.e., 0.1 mM Mn(2+) (aq) concentration and pH 10.1) were chosen to be relevant to Mn remediation sites. We found that IS controls Mn(OH)2 (aq) formation, and that the controlled Mn(OH)2 (aq) formation can affect the system's saturation and subsequent Mn(OH)2 (s) and further Mn3O4 (s) nanoparticle formation. In 100 mM IS system, nucleated Mn (hydr)oxide particles had more coverage on the quartz substrate than those in 1 mM and 10 mM IS systems. This high IS also resulted in low supersaturation ratio and thus favor heterogeneous nucleation, having better structural matching between nucleating Mn (hydr)oxides and quartz. The unique information obtained in this work improves our understanding of Mn (hydr)oxide formation in natural as well as engineered aqueous environments, such as groundwater contaminated by natural leachate and acid mine drainage remediation.
NASA Astrophysics Data System (ADS)
Huang, Jiajia; Liu, Haodong; Hu, Tao; Meng, Ying Shirley; Luo, Jian
2018-01-01
WO3 doping and accompanying spontaneous formation of a surface phase can substantially improve the discharge capacity, rate capability, and cycling stability of Co-free Li-rich layered oxide Li1.13Ni0.3Mn0.57O2 cathode material. X-ray photoelectron spectroscopy, in conjunction with ion sputtering, shows that W segregates to the particle surfaces, decreases the surface Ni/Mn ratio, and changes the surface valence state. High-resolution transmission electron microscopy further suggests that W segregation increases surface structural disorder. The spontaneous and simultaneous changes in the surface structure, composition, and valence state represent the formation of a surface phase (complexion) as the preferred surface thermodynamic state. Consequently, the averaged discharge capacity is increased by ∼13% from 251 to 284 mAh g-1 at a low rate of C/20 and by ∼200% from 30 to 90 mAh g-1 at a high rate of 40C, in comparison with an undoped specimen processed under identical conditions. Moreover, after 100 cycles at a charge/discharge rate of 1C, the WO3 doped specimen retained a discharge capacity of 188 mAh g-1, being 27% higher than that of the undoped specimen. In a broader context, this work exemplifies an opportunity of utilizing spontaneously-formed surface phases as a scalable and cost-effective method to improve materials properties.
Lan, Shuai; Ying, Hong; Wang, Xiaoming; Liu, Fan; Tan, Wenfeng; Huang, Qiaoyun; Zhang, Jing; Feng, Xionghan
2018-01-01
Arsenic is a carcinogenic element that exists primarily as arsenate [As(V)] and arsenite [As(III)] in the nature environment, with As(III) being more toxic and mobile of the two species. In addition, ferrihydrite, which is widely distributed in soils and aquatic environments, can catalyze the oxidation of Mn(II) and accelerate the formation of high-valence Mn, which can significantly influence the speciation, toxicity, and mobility of As when these species co-exist. In this context, we herein explored the mechanism of As(III) oxidation in the presence of ferrihydrite and Mn(II) using a kinetic approach combined with multiple spectroscopic techniques, including X-ray absorption near edge spectroscopy, in situ horizontal attenuated total-reflectance Fourier transform infrared spectroscopy, and in situ quick scanning X-ray absorption spectroscopy. Our results indicate that efficient As(III) oxidation by dissolved O 2 occurs on the surface of ferrihydrite in the presence of aqueous Mn(II). Compared with As(III) oxidation in the presence of ferrihydrite and Mn oxides (i.e., Mn oxides/hydroxides), the degree of As(III) oxidation in the ferrihydrite-Mn(II) system was significantly higher, and the majority of generated As(V) was adsorbed on the mineral (i.e., ferrihydrite) surface. Furthermore, As(III) oxidation was enhanced upon increasing both the molar ratio of Mn(II)/As(III) and the solution pH. The greater As(III) oxidation by O 2 in the ferrihydrite-Mn(II) system was mainly attributed to the formation of a strong oxidant of the instantaneous intermediate Mn(III) species via Mn(II) oxidation under catalysis by the ferrihydrite surface. Moreover, As(III) oxidation occurred mainly on the ferrihydrite surface and was accompanied by the regeneration of Mn(II), thereby rendering it recyclable. These results therefore provide new insights into the mechanism of As(III) oxidation on the surfaces of Fe oxides (i.e., Fe oxides/hydroxides) in the presence of aqueous Mn(II) as well as the new details regarding the electron transfer mechanisms between the As(III)-Mn(II, III)-O 2 species at the ferrihydrite surface, and could lead to novel approaches for As(III) contaminant remediation in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synthesis and characterization of single-phase Mn-doped ZnO
NASA Astrophysics Data System (ADS)
Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D.; Bandyopadhyay, S.; Chattopadhyay, S.; Sarkar, A.
2009-05-01
Different samples of Zn 1-xMn xO series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn 2O 4 apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation ( τ1) at defect site ( τ2) and average ( τav) increases with milling time.
Manganese Driven Carbon Oxidation along Oxic-Anoxic Interfaces in Forest Soils
NASA Astrophysics Data System (ADS)
Jones, M. E.; Keiluweit, M.
2017-12-01
Soils are the largest and most dynamic terrestrial carbon pool, storing a total of 3000 Pg of C - more than the atmosphere and biosphere combined. Because microbial oxidation determines the proportion of carbon that is either stored in the soil or emitted as climate active CO2, its rate directly impacts the global carbon cycle. Recently, a strong correlation between oxidation rates and manganese (Mn) content has been observed in forest soils globally, leading researchers conclude that Mn "is the single main factor governing" the oxidation of plant-derived particulate organic carbon (POC). Many soils are characterized by steep oxygen gradients, forming oxic-anoxic transitions that enable rapid redox cycling of Mn. Oxic-anoxic interfaces have been shown to promote fungal Mn oxidation and the formation of ligand-stabilized Mn(III), which ranks second only to superoxide as the most powerful oxidizing agent in the environment. Here we examined fungal Mn(III) formation along redox gradients in forest soils and their impact on POC oxidation rates. In both field and laboratory settings, oxic-anoxic transition zones showed the greatest Mn(III) concentrations, along with enhanced fungal growth, oxidative potential, production of soluble oxidation products, and CO2 production. Additional electrochemical and X-ray (micro)spectroscopic analyses indicated that oxic-anoxic interfaces represent ideal niches for fungal Mn(III) formation, owing to the ready supply of Mn(II), ligands and O2. Combined, our results suggest that POC oxidation relies on fungal Mn cycling across oxic-anoxic interfaces to produce Mn(III) based oxidants. Because predicted changes in the frequency and timing of precipitation dramatically alter soil moisture regimes in forest soils, understanding the mechanistic link between Mn cycling and carbon oxidation along oxic-anoxic interfaces is becoming increasingly important.
Hu, Xiaoshi; Lou, Xiaobing; Li, Chao; Yang, Qi; Chen, Qun; Hu, Bingwen
2018-05-02
Rational design and delicate control on the textural properties of metal-oxide materials for diverse structure-dependent applications still remain formidable challenges. Here, we present an eco-friendly and facile approach to smartly fabricate three-dimensional (3D) layer-by-layer manganese oxide (MnO x ) hierarchical mesoporous microcuboids from a Mn-MOF-74-based template, using a one-step solution-phase reaction scheme at room temperature. Through the controlled exchange of metal-organic framework (MOF) ligand with OH - in alkaline aqueous solution and in situ oxidation of manganese hydroxide intermediate, the Mn-MOF-74 template/precursor was readily converted to Mn 3 O 4 or δ-MnO 2 counterpart consisting of primary nanoparticle and nanosheet building blocks, respectively, with well-retained morphology. By X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy, high-resolution TEM, N 2 adsorption-desorption analysis and other techniques, their crystal structure, detailed morphology, and microstructure features were unambiguously revealed. Specifically, their electrochemical Li-ion insertion/extraction properties were well evaluated, and it turns out that these unique 3D microcuboids could achieve a sustained superior lithium-storage performance especially at high rates benefited from the well-orchestrated structural characteristics (Mn 3 O 4 microcuboids: 890.7, 767.4, 560.1, and 437.1 mAh g -1 after 400 cycles at 0.2, 0.5, 1, and 2 A g -1 , respectively; δ-MnO 2 microcuboids: 991.5, 660.8, 504.4, and 362.1 mAh g -1 after 400 cycles at 0.2, 0.5, 1, and 2 A g -1 , respectively). To our knowledge, this is the most durable high-rate capability as well as the highest reversible capacity ever reported for pure MnO x anodes, which even surpass most of their hybrids. This facile, green, and economical strategy renews the traditional MOF-derived synthesis for highly tailorable functional materials and opens up new opportunities for metal-oxide electrodes with high performance.
Anaerobic ammonium oxidation mediated by Mn-oxides: from sediment to strain level.
Javanaud, Cedric; Michotey, Valerie; Guasco, Sophie; Garcia, Nicole; Anschutz, Pierre; Canton, Mathieu; Bonin, Patricia
2011-11-01
Nitrite and (29)N(2) productions in slurry incubations of anaerobically sediment after (15)NO(3) or (15)NH(4) labelling in the presence of Mn-oxides suggested that anaerobic Mn-oxides mediated nitrification coupled with denitrification in muddy intertidal sediments of Arcachon Bay (SW Atlantic French coast). From this sediment, bacterial strains were isolated and physiologically characterized in terms of Mn-oxides and nitrate reduction as well as potential anaerobic nitrification. One of the isolated strain, identified as Marinobacter daepoensis strain M4AY14, was a denitrifier. Nitrous oxide production by this strain was demonstrated in the absence of nitrate and with Mn-oxides and NH(4) amendment, giving indirect proof of anaerobic nitrate or nitrite production. Anaerobic Mn-oxide-mediated nitrification was confirmed by (29)N(2) production in the presence of (15)NO(3) and (14)NH(4) under denitrifying conditions. Anaerobic nitrification by M4AY14 seemed to occur only in the absence of nitrate, or at nitrate levels lower than that of Mn-oxides. Most of the other isolates were affiliated with the Shewanella genus and were able to use both nitrate and Mn-oxides as electron acceptors. When both electron acceptors were present, whatever their concentrations, nitrate and Mn-oxide reduction co-occurred. These data indicate that bacterial Mn-oxide reduction could be an important process in marine sediments with low oxygen concentrations, and demonstrate for the first time the role of bacteria in anaerobic Mn-mediated nitrification. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Enhancement of redox- and phase-stability of thermoelectric CaMnO3-δ by substitution
NASA Astrophysics Data System (ADS)
Thiel, Philipp; Populoh, Sascha; Yoon, Songhak; Weidenkaff, Anke
2015-09-01
Redox Reactivity and structural phase transitions have a major impact on transport and me-chemical properties of thermoelectric CaMnO3-δ. In this study series of Ca1-xAxMn1-yByO3-δ (0≤x,y≤0.8) compounds, each with A-site (Dy3+, Yb3+) or B-site (Nb5+, Ta5+ and Mo6+, W6+) substitution, were synthesized and crystallographically analyzed. It was found that the high-temperature oxygen content is widely independent from the substituent. Subsequently, with increasing temperature the differences in the Seebeck coefficient vanish above 1200 K. With increasing substitution the orthorhombic distortion of the perovskite-like phase increases. The orthorhombic distortion and the upper temperature limit of the stability of the orthorhombic crystal structure show an almost linear dependency. Accordingly, the mechanical stability of all-oxides thermoelectric converters at temperatures exceeding 1000 K will be increased employing materials with high substitution level and substituents inducing a high orthorhombic distortion.
Park, A Reum; Kim, Jung Sub; Kim, Kwang Su; Zhang, Kan; Park, Juhyun; Park, Jong Hyeok; Lee, Joong Kee; Yoo, Pil J
2014-02-12
Although Si is a promising high-capacity anode material for Li-ion batteries (LIB), it suffers from capacity fading due to excessively large volumetric changes upon Li insertion. Nanocarbon materials have been used to enhance the cyclic stability of LIB anodes, but they have an inherently low specific capacity. To address these issues, we present a novel ternary nanocomposite of Si, Mn, and reduced graphene oxide (rGO) for LIB anodes, in which the Si-Mn alloy offers high capacity characteristics and embedded rGO nanosheets confer structural stability. Si-Mn/rGO ternary nanocomposites were synthesized by mechanical complexation and subsequent thermal reduction of mixtures of Si nanoparticles, MnO2 nanorods, and rGO nanosheets. Resulting ternary nanocomposite anodes displayed a specific capacity of 600 mAh/g with ∼90% capacity retention after 50 cycles at a current density of 100 mA/g. The enhanced performance is attributed to facilitated Li-ion reactions with the MnSi alloy phase and the formation of a structurally reinforced electroconductive matrix of rGO nanosheets. The ternary nanocomposite design paradigm presented in this study can be exploited for the development of high-capacity and long-life anode materials for versatile LIB applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahdavi, Vahid, E-mail: v-mahdavi@araku.ac.ir; Soleimani, Shima
2014-03-01
Graphical abstract: Oxidation of various alcohols is studied in the liquid phase over new composite mixed oxide (V{sub 2}O{sub 5}/OMS-2) catalyst using tert-butyl hydroperoxide (TBHP). The activity of V{sub 2}O{sub 5}/OMS-2 samples was considerably increased with respect to OMS-2 catalyst and these samples are found to be suitable for the selective oxidation of alcohols. - Highlights: • V{sub 2}O{sub 5}/K-OMS-2 with different V/Mn molar ratios prepared by the impregnation method. • Oxidation of alcohols was studied in the liquid phase over V{sub 2}O{sub 5}/K-OMS-2 catalyst. • V{sub 2}O{sub 5}/K-OMS-2 catalyst had excellent activity for alcohol oxidation. • Benzyl alcohol oxidationmore » using excess TBHP followed a pseudo-first order kinetic. • The selected catalyst was reused without significant loss of activity. - Abstract: This work reports the synthesis and characterization of mixed oxide vanadium–manganese V{sub 2}O{sub 5}/K-OMS-2 at various V/Mn molar ratios and prepared by the impregnation method. Characterization of these new composite materials was made by elemental analysis, BET, XRD, FT-IR, SEM and TEM techniques. Results of these analyses showed that vanadium impregnated samples contained mixed phases of cryptomelane and crystalline V{sub 2}O{sub 5} species. Oxidation of various alcohols was studied in the liquid phase over the V{sub 2}O{sub 5}/K-OMS-2 catalyst using tert-butyl hydroperoxide (TBHP) and H{sub 2}O{sub 2} as the oxidant. Activity of the V{sub 2}O{sub 5}/K-OMS-2 samples was increased considerably with respect to K-OMS-2 catalyst due to the interaction of manganese oxide and V{sub 2}O{sub 5}. The kinetic of benzyl alcohol oxidation using excess TBHP over V{sub 2}O{sub 5}/K-OMS-2 catalyst was investigated at different temperatures and a pseudo-first order reaction was determined with respect to benzyl alcohol. The effects of reaction time, oxidant/alcohol molar ratio, reaction temperature, solvents, catalyst recycling potential and leaching were investigated.« less
Synthesis and property of spinel porous ZnMn2O4 microspheres
NASA Astrophysics Data System (ADS)
Guo, N.; Wei, X. Q.; Deng, X. L.; Xu, X. J.
2015-11-01
Mesoporous ternary zinc manganese oxides on the Ti sheet substrate are prepared by easy and fast hydrothermal method for the first time. The obtained ZnMn2O4 materials with homogenously distributed pores have been characterized by XRD, SEM and Raman spectra, which show the good crystal phase and particles for improving supercapacitive performance. XRD and SEM images show that the as-prepared samples have good crystallinity, and ZnMn2O4 microsphere has an average diameter of 10 μm. In addition, ZnMn2O4 are also characterized in 2 M KOH solution using three-electrode system. In the work, we study that different substrates (Ti, carbon and nickel foam) have an important effect on the electrochemical performance of the samples. The research of cyclic voltammogram (CV) indicates that the obtained specific capacitance (155 F g-1) values on nickel foam substrate for the ZnMn2O4 microspheres are higher than the values reported for some inexpensive oxides. However, the specific capacitance of all ZnMn2O4 samples has almost no change at two different scan rates which shows good long-term cycling stability. The electrochemical impedance spectroscopy with a small resistance reveals that the as-synthesized samples have good frequency response characteristics. These results indicate that the unique ZnMn2O4 electrode would be a promising electrode for high-performance supercapacitor applications.
Maitra, Urmimala; Naidu, B S; Govindaraj, A; Rao, C N R
2013-07-16
Prompted by the early results on the catalytic activity of LiMn2O4 and related oxides in the photochemical oxidation of water, our detailed study of several manganese oxides has shown that trivalency of Mn is an important factor in determining the catalytic activity. Thus, Mn2O3, LaMnO3, and MgMn2O4 are found to be very good catalysts with turnover frequencies of 5 × 10(-4) s(-1), 4.8 × 10(-4) s(-1), and 0.8 × 10(-4) s(-1), respectively. Among the cobalt oxides, Li2Co2O4 and LaCoO3--especially the latter--exhibit excellent catalytic activity, with the turnover frequencies being 9 × 10(-4) s(-1) and 1.4 × 10(-3) s(-1), respectively. The common feature among the catalytic Mn and Co oxides is not only that Mn and Co are in the trivalent state, but Co(3+) in the Co oxides is in the intermediate t2g(5)e(g)(1) state whereas Mn(3+) is in the t2g(3e(g)(1) state. The presence of the e(g)(1) electron in these Mn and Co oxides is considered to play a crucial role in the photocatalytic properties of the oxides.
Maitra, Urmimala; Naidu, B. S.; Govindaraj, A.; Rao, C. N. R.
2013-01-01
Prompted by the early results on the catalytic activity of LiMn2O4 and related oxides in the photochemical oxidation of water, our detailed study of several manganese oxides has shown that trivalency of Mn is an important factor in determining the catalytic activity. Thus, Mn2O3, LaMnO3, and MgMn2O4 are found to be very good catalysts with turnover frequencies of 5 × 10−4 s−1, 4.8 × 10−4 s−1, and 0.8 ×10−4 s−1, respectively. Among the cobalt oxides, Li2Co2O4 and LaCoO3—especially the latter—exhibit excellent catalytic activity, with the turnover frequencies being 9 × 10−4 s−1 and 1.4 × 10−3 s−1, respectively. The common feature among the catalytic Mn and Co oxides is not only that Mn and Co are in the trivalent state, but Co3+ in the Co oxides is in the intermediate t2g5eg1 state whereas Mn3+ is in the t2g3eg1 state. The presence of the eg1 electron in these Mn and Co oxides is considered to play a crucial role in the photocatalytic properties of the oxides. PMID:23818589
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Jihoon; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712; Azad, Abul K.
2015-03-15
The Ti and Mn replaced complex perovskites, Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (Ln: La, Nd and Sm), were reported as potential anode materials for high temperature-operating solid oxide fuel cells (HT-SOFCs). For the present research study, synthesis, crystallographic, thermal and electrical conductivity properties of Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} complex perovskites were investigated using X-ray diffraction (XRD), Rietveld method, thermogravimetric analysis (TGA) and electrical conductivity to apply these oxide materials for the HT-SOFC anode materials. XRD results showed that Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} oxide systems synthesized as single phases did not react with 8 mol% yttriamore » stabilized zirconia (8YSZ) and 10 mol% Gd-doped cerium oxide (CGO91) up to 1500 °C and did not decompose under dry 3.9% hydrogen at 850 °C. The crystal structures of La{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (LSTM), Nd{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (NSTM) and Sm{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (SSTM) showed orthorhombic symmetry with the space group Pbnm and SSTM showed a more distorted structure. Thermogravimetric analysis (TGA) proved weight gains in these three sample occurred under oxidizing conditions and weight loss under reducing conditions. Electrical conductivity values of NSTM were higher than those of LSTM and SSTM under oxidizing and reducing conditions. - Graphical abstract: The B-site cations (Ti/Mn) are surrounded by regular octahedra of oxygen in Nd{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d}(NSTM). These octahedra are linked together in a corner sharing three dimensional framework, while Nd/Sr ion occupies 12-coordinated A-site between these octahedra. The Ti/Mn–O{sub 6} octahedra are elongated along the c-axis. The crystal structure distortion was due to the smaller ionic radius of the A-site cations, which force the (Ti/Mn)–O{sub 6} octahedra to tilt in order to optimize the A–O bond distances. The same structural symmetry was found when the samples were reduced in 3.9% H{sub 2} in Ar at 900 °C for 12 h. - Highlights: • Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} oxide systems do not react with 8YSZ and CGO91. • LSTM, NSTM and SSTM show orthorhombic symmetry with the space group Pbnm. • LSTM shows relatively lower onset temperature in Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d}. • Electrical conductivity values of NSTM are higher than those of LSTM and SSTM.« less
Asaikkutti, Annamalai; Bhavan, Periyakali Saravana; Vimala, Karuppaiya; Karthik, Madhayan; Cheruparambath, Praseeja
2016-05-01
The green synthesized Mn3O4 nanoparticles (manganese-oxide nanoparticles) using Ananas comosus (L.) peel extract was characterized by various techniques. HR-SEM photograph showed that manganese-oxide nanoparticles (Mn-oxide NPs) were spherical in shape, with an average size of 40-50 nm. The Zeta potential revealed the surface charge of Mn-oxide NPs to be negative. Further, the Mn-oxide NPs were dietary supplemented for freshwater prawn Macrobrachium rosenbergii. The experimental basal diets were supplemented with Mn-oxide NPs at the rates of 0 (control), 3.0, 6.0, 9.0, 12, 15 and 18 mg/kg dry feed weight. The as-supplemented Mn-oxide NPs were fed in M. rosenbergii for a period of 90 days. The experimental study demonstrated that prawns fed with diet supplemented with 3-18 mg Mn-oxide NPs/kg shows enhanced (P<0.05) growth performance, including final weight and weight gain (WG). Significant differences (P<0.05) in feed conversion ratio (FCR) were observed in prawn fed with different diets. Additionally, prawns fed with 3.0-18 mg/kg Mn-oxide NPs supplemented diets achieved significant (P<0.05) improvement in growth performance, digestive enzyme activities and muscle biochemical compositions, while, the prawns fed with 16 mg/kg of Mn-oxide NPs showed enhanced performance. Prawns fed on diet supplemented with 16 mg/kg Mn-oxide NPs showed significantly (P<0.05) higher total protein level. The antioxidants enzymatic activity (SOD and CAT) metabolic enzymes status in muscle and hepatopancreas showed no significant (P>0.05) alterations in prawns fed with 3.0-18 mg/kg of Mn-oxide NPs supplemented diets. Consequently, the present work proposed that 16 mg/kg of Mn-oxide NPs could be supplemented for flexible enhanced survival, growth and production of M. rosenbergii. Therefore, the data of the present study recommend the addition of 16 mg/kg of Mn-oxide NPs diet to developed prawn growth and antioxidant defense system. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Trouwborst, Robert E.; Johnston, Anne; Koch, Gretchen; Luther, George W.; Pierson, Beverly K.
2007-10-01
We studied the role of microbial photosynthesis in the oxidation of Fe(II) to Fe(III) in a high Fe(II) and high Mn(II) hot spring devoid of sulfide and atmospheric oxygen in the source waters. In situ light and dark microelectrode measurements of Fe(II), Mn(II) and O 2 were made in the microbial mat consisting of cyanobacteria and anoxygenic photosynthetic Chloroflexus sp. We show that Fe(II) oxidation occurred when the mat was exposed to varying intensities of sunlight but not near infrared light. We did not observe any Mn(II) oxidation under any light or dark condition over the pH range 5-7. We observed the impact of oxygenic photosynthesis on Fe(II) oxidation, distinct from the influence of atmospheric O 2 and anoxygenic photosynthesis. In situ Fe(II) oxidation rates in the mats and cell suspensions exposed to light are consistent with abiotic oxidation by O 2. The oxidation of Fe(II) to form primary Fe(III) phases contributed to banded iron-formations (BIFs) during the Precambrian. Both oxygenic photosynthesis, which produces O 2 as an oxidizing waste product, and anoxygenic photosynthesis in which Fe(II) is used to fix CO 2 have been proposed as Fe(II) oxidation mechanisms. Although we do not know the specific mechanisms responsible for all Precambrian Fe(II) oxidation, we assessed the relative importance of both mechanisms in this modern hot spring environment. In this environment, cyanobacterial oxygen production accounted for all the observed Fe(II) oxidation. The rate data indicate that a modest population of cyanobacteria could have mediated sufficient Fe(II) oxidation for some BIFs.
Microbe–microbe interactions trigger Mn(II)-oxidizing gene expression
Liang, Jinsong; Bai, Yaohui; Men, Yujie; Qu, Jiuhui
2017-01-01
Manganese (Mn) is an important metal in geochemical cycles. Some microorganisms can oxidize Mn(II) to Mn oxides, which can, in turn, affect the global cycles of other elements by strong sorption and oxidation effects. Microbe–microbe interactions have important roles in a number of biological processes. However, how microbial interactions affect Mn(II) oxidation still remains unknown. Here, we investigated the interactions between two bacteria (Arthrobacter sp. and Sphingopyxis sp.) in a co-culture, which exhibited Mn(II)-oxidizing activity, although neither were able to oxidize Mn(II) in isolation. We demonstrated that the Mn(II)-oxidizing activity in co-culture was most likely induced via contact-dependent interactions. The expressed Mn(II)-oxidizing protein in the co-culture was purified and identified as a bilirubin oxidase belonging to strain Arthrobacter. Full sequencing of the bilirubin oxidase-encoding gene (boxA) was performed. The Mn(II)-oxidizing protein and the transcripts of boxA were detected in the co-culture, but not in either of the isolated cultures. This indicate that boxA was silent in Arthrobacter monoculture, and was activated in response to presence of Sphingopyxis in the co-culture. Further, transcriptomic analysis by RNA-Seq, extracellular superoxide detection and cell density quantification by flow cytometry indicate induction of boxA gene expression in Arthrobacter was co-incident with a stress response triggered by co-cultivation with Sphingopyxis. Our findings suggest the potential roles of microbial physiological responses to stress induced by other microbes in Mn(II) oxidation and extracellular superoxide production. PMID:27518809
Escande, Vincent; Renard, Brice-Loïc; Grison, Claude
2015-04-01
Among the phytotechnologies used for the reclamation of degraded mining sites, phytoextraction aims to diminish the concentration of polluting elements in contaminated soils. However, the biomass resulting from the phytoextraction processes (highly enriched in polluting elements) is too often considered as a problematic waste. The manganese-enriched biomass derived from native Mn-hyperaccumulating plants of New Caledonia was presented here as a valuable source of metallic elements of high interest in chemical catalysis. The preparation of the catalyst Eco-Mn1 and reagent Eco-Mn2 derived from Grevillea exul exul and Grevillea exul rubiginosa was investigated. Their unusual polymetallic compositions allowed to explore new reactivity of low oxidative state of manganese-Mn(II) for Eco-Mn1 and Mn(IV) for Eco-Mn2. Eco-Mn1 was used as a Lewis acid to catalyze the acetalization/elimination of aldehydes into enol ethers with high yields; a new green and stereoselective synthesis of (-)-isopulegol via the carbonyl-ene cyclization of (+)-citronellal was also performed with Eco-Mn1. Eco-Mn2 was used as a mild oxidative reagent and controlled the oxidation of aliphatic alcohols into aldehydes with quantitative yields. Oxidative cleavage was interestingly noticed when Eco-Mn2 was used in the presence of a polyol. Eco-Mn2 allowed direct oxidative iodination of ketones without using iodine, which is strongly discouraged by new environmental legislations. Finally, the combination of the properties in the Eco-Mn catalysts and reagents gave them an unprecedented potential to perform sequential tandem oxidation processes through new green syntheses of p-cymene from (-)-isopulegol and (+)-citronellal; and a new green synthesis of functionalized pyridines by in situ oxidation of 1,4-dihydropyridines.
NASA Astrophysics Data System (ADS)
Kerboas, Camille; Pena, Jasquelin; De Anna, Pietro
2017-04-01
In aquatic and subsurface environments, sedimentation may influence bacterial transport. Microorganisms that carry out biomineralization reactions may exhibit distinct transport properties from non-biomineralizing organisms due an apparent increase in density caused by biomineral production. For several decades, the biomineralization of manganese (Mn) has been recognized to be a major environmental process, whereby Mn oxide (MnO2(s)) minerals participate in a plethora of biogeochemical processes including contaminant adsorption, organic matter oxidation. Typically, manganese biomineralization proceeds through the enzymatic oxidation of aqueous Mn2+ to Mn4+ and precipitation of MnO2(s) in a biofilm matrix outside the bacterial cell. Here, we present a study of the impact of biomineralization on the sedimentation properties of bacteria at small scales (over mm distances) under hydrostatic conditions. We hypothesize that bacteria will sediment faster when biomineralization is active due to encrustation of the organisms by mineral particles. To test this hypothesis, we tracked the vertical notion of individual bacteria (Pseudomonas putida GB-1) using time-lapse video-microscopy. We compared the sedimentation velocity of bacteria in the case where significant biomineralization had occurred, as inferred from bulk measurements of solid phase Mn, with the sinking velocity of bacteria grown without Mn. We calibrated the proposed method by comparing velocity measurements of sinking polystyrene micro-sphere of known density and size with Stokes law, obtaining results that were accurate within 1% of the theoretical value (29.4 nm/s). We also measured a diffusion coefficient of 7x10-13 m2/s for the particles. Following this approach, we measured the sedimentation velocity of P. putida with and without MnO2(s). Our results show that biomineralization leads to faster sedimentation of the bacteria. In natural environments, biomineralization reactions may increase the sinking velocity of bacteria and therefore contribute to the physical separation of organisms according to phenotype and give rise to localized spots of high mineralization rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Tianyuan; Xu, Gui -Liang; Zeng, Xiaoqiao
In situ high energy X-ray diffraction (HEXRD) and in situ X-ray absorption near edge spectroscopy (XANES) were carried out to understand the soild state synthesis of Na xMnO 2, with particular interest on the synthesis of P2 type Na 2/3MnO 2. It was found that there were multi intermediate phases formed before NaMnO 2 appeared at about 600 °C. And the final product after cooling process is a combination of O'3 NaMnO 2 with P2 Na 2/3MnO 2. A P2 type Na 2/3MnO 2 was synthesized at reduced temperature (600 °C). The influence of Na 2CO 3 impurity on themore » electrochemical performance of P2 Na 2/3MnO 2 was thoroughly investigated in our work. It was found that the content of Na 2CO 3 can be reduced by optimizing Na 2CO 3/MnCO 3 ratio during the solid state reaction or other post treatment such as washing with water. Lastly, we expected our results could provide a good guide for future development of high performance cathode materials for sodium-ion batteries.« less
Ma, Tianyuan; Xu, Gui -Liang; Zeng, Xiaoqiao; ...
2016-12-07
In situ high energy X-ray diffraction (HEXRD) and in situ X-ray absorption near edge spectroscopy (XANES) were carried out to understand the soild state synthesis of Na xMnO 2, with particular interest on the synthesis of P2 type Na 2/3MnO 2. It was found that there were multi intermediate phases formed before NaMnO 2 appeared at about 600 °C. And the final product after cooling process is a combination of O'3 NaMnO 2 with P2 Na 2/3MnO 2. A P2 type Na 2/3MnO 2 was synthesized at reduced temperature (600 °C). The influence of Na 2CO 3 impurity on themore » electrochemical performance of P2 Na 2/3MnO 2 was thoroughly investigated in our work. It was found that the content of Na 2CO 3 can be reduced by optimizing Na 2CO 3/MnCO 3 ratio during the solid state reaction or other post treatment such as washing with water. Lastly, we expected our results could provide a good guide for future development of high performance cathode materials for sodium-ion batteries.« less
Soldatova, Alexandra V; Romano, Christine A; Tao, Lizhi; Stich, Troy A; Casey, William H; Britt, R David; Tebo, Bradley M; Spiro, Thomas G
2017-08-23
The bacterial manganese oxidase MnxG of the Mnx protein complex is unique among multicopper oxidases (MCOs) in carrying out a two-electron metal oxidation, converting Mn(II) to MnO 2 nanoparticles. The reaction occurs in two stages: Mn(II) → Mn(III) and Mn(III) → MnO 2 . In a companion study , we show that the electron transfer from Mn(II) to the low-potential type 1 Cu of MnxG requires an activation step, likely forming a hydroxide bridge at a dinuclear Mn(II) site. Here we study the second oxidation step, using pyrophosphate (PP) as a Mn(III) trap. PP chelates Mn(III) produced by the enzyme and subsequently allows it to become a substrate for the second stage of the reaction. EPR spectroscopy confirms the presence of Mn(III) bound to the enzyme. The Mn(III) oxidation step does not involve direct electron transfer to the enzyme from Mn(III), which is shown by kinetic measurements to be excluded from the Mn(II) binding site. Instead, Mn(III) is proposed to disproportionate at an adjacent polynuclear site, thereby allowing indirect oxidation to Mn(IV) and recycling of Mn(II). PP plays a multifaceted role, slowing the reaction by complexing both Mn(II) and Mn(III) in solution, and also inhibiting catalysis, likely through binding at or near the active site. An overall mechanism for Mnx-catalyzed MnO 2 production from Mn(II) is presented.
NASA Astrophysics Data System (ADS)
Wang, Kuang-Kuo; Hsu, Chiung-Wen; Chang, Liuwen; Gan, Dershin; Yang, Kuo-Cheng
2013-11-01
This study investigated the interaction between the Al in the Zn bath and the surface oxides formed by selective oxidation on a 1.2Si-1.5Mn TRIP steel during hot-dip galvanizing. XPS and TEM were employed for characterization. The results indicated that the amorphous xMnO·SiO2 oxide could react with Al to form a Si-Mn-Al-containing oxide. The crystalline MnSiO3 and Mn2SiO4 oxides could be largely reduced by Al to form holes in the oxide film. Consequently, the steel covered by a layer of mixed xMnO·SiO2 and MnSiO3 could form a continuous Fe2Al5 inhibition layer and showed the highest galvanizability among the three samples examined.
Novel photoinduced phase transitions in transition metal oxides and diluted magnetic semiconductors.
Mizokawa, Takashi
2012-10-23
Some transition metal oxides have frustrated electronic states under multiphase competition due to strongly correlated d electrons with spin, charge, and orbital degrees of freedom and exhibit drastic responses to external stimuli such as optical excitation. Here, we present photoemission studies on Pr0.55(Ca1 - ySry)0.45MnO3 (y = 0.25), SrTiO3, and Ti1 - xCoxO2 (x = 0.05, 0.10) under laser illumination and discuss electronic structural changes induced by optical excitation in these strongly correlated oxides. We discuss the novel photoinduced phase transitions in these transition metal oxides and diluted magnetic semiconductors on the basis of polaronic pictures such as orbital, ferromagnetic, and ferroelectric polarons.
NASA Astrophysics Data System (ADS)
Wan, Houzhao; Lv, Lin; Peng, Lu; Ruan, Yunjun; Liu, Jia; Ji, Xiao; Miao, Ling; Jiang, Jianjun
2015-07-01
Hollow spiny shell Ni-Mn precursors composed of one-dimensional nanoneedles were synthesized via a simple hydrothermal method without any template. The hollow Spiny shell Ni-Mn oxides are obtained under thermal treatment at different temperatures. The BET surface areas of Ni-Mn oxides reach up to 112 and 133 m2 g-1 when calcination temperatures occur at 300 and 400 °C, respectively. The electrochemical performances of as-synthesized hollow spiny shell Ni-Mn oxides gradually die down with annealing temperatures increasing. The porous hollow spiny shell Ni-Mn oxide obtained at 300 °C delivers a maximum capacitance of 1140 F g-1 at a high current density of 1 A g-1 after 1000th cycles and the specific capacitance of Ni-Mn oxide will increase with cycling times increasing. So, porous hollow spiny shell Ni-Mn oxide obtained at low annealing temperature can form a competitive electrode material for supercapacitors.
Zhu, Mengqiang; Paul, Kristian W; Kubicki, James D; Sparks, Donald L
2009-09-01
Density functional theory (DFT) calculations were used to investigate As(V) and As(III) surface complex structures and reaction energies on both Mn(III) and Mn(IV) sites in an attempt to better understand As(III) oxidation bybirnessite, a layered Mn-dioxide mineral. Edge-sharing dioctahedral Mn(III) and Mn(IV) clusters with different combinations of surface functional groups (>MnOH and >MnOH2) were employed to mimic pH variability. Results show that As(V) adsorption was more thermodynamically favorable than As(III) adsorption on both Mn(III) and Mn(IV) surface sites under simulated acidic pH conditions. Therefore, we propose that As(V) adsorption inhibits As(III) oxidation by blocking adsorption sites. Under simulated acidic pH conditions, Mn(IV) sites exhibited stronger adsorption affinity than Mn(III) sites for both As(III) and As(V). Overall, we hypothesize that Mn(III) sites are less reactive in terms of As(III) oxidation due to their lower affinity for As(III) adsorption, higher potential to be blocked by As(V) complexes, and slower electron transfer rates with adsorbed As(III). Results from this study offer an explanation regarding the experimental observations of Mn(III) accumulation on birnessite and the long residence time of As(III) adsorption complexes on manganite (r-MnOOH) during As(III) oxidation.
Kunkalekar, R K; Prabhu, M S; Naik, M M; Salker, A V
2014-01-01
Palladium, ruthenium and silver-doped MnO2 and silver doped Mn2O3 nanoparticles were synthesized by simple co-precipitation technique. SEM-TEM analysis revealed the nano-size of these synthesized samples. XPS data illustrates that Mn is present in 4+ and 3+ oxidation states in MnO2 and Mn2O3 respectively. Thermal analysis gave significant evidence for the phase changes with increasing temperature. Antibacterial activity of these synthesized nanoparticles on three Gram positive bacterial cultures (Staphylococcus aureus ATCC 6538, Streptococcus epidermis ATCC 12228, Bacillus subtilis ATCC 6633) and three Gram negative cultures (Escherichia coli ATCC 8739, Salmonella abony NCTC 6017 and Klebsiella pneumoniae ATCC 1003) was investigated using a disc diffusion method and live/dead assay. Only Ag-doped MnO2 and Ag-doped Mn2O3 nanoparticles showed antibacterial property against all six-test bacteria but Ag-doped MnO2 was found to be more effective than Ag-doped Mn2O3. Copyright © 2013 Elsevier B.V. All rights reserved.
Bao, Han; Burnap, Robert L.
2015-01-01
Photosynthetic water oxidation is catalyzed by the Mn4CaO5 cluster of photosystem II. Recent studies implicate an oxo bridge atom, O5, of the Mn4CaO5 cluster, as the “slowly exchanging” substrate water molecule. The D1-V185N mutant is in close vicinity of O5 and known to extend the lag phase and retard the O2 release phase (slow phase) in this critical last S3+→S0 transition of water oxidation. The pH dependence, hydrogen/deuterium (H/D) isotope effect, and temperature dependence on the O2 release kinetics for this mutant were studied using time-resolved O2 polarography, and comparisons were made with WT and two mutants of the putative proton gate D1-D61. Both kinetic phases in V185N are independent of pH and buffer concentration and have weaker H/D kinetic isotope effects. Each phase is characterized by a parallel or even lower activation enthalpy but a less favorable activation entropy than the WT. The results indicate new rate-determining steps for both phases. It is concluded that the lag does not represent inhibition of proton release but rather, slowing of a previously unrecognized kinetic phase involving a structural rearrangement or tautomerism of the S3+ ground state as it approaches a configuration conducive to dioxygen formation. The parallel impacts on both the lag and O2 formation phases suggest a common origin for the defects surmised to be perturbations of the H-bond network and the water cluster adjacent to O5. PMID:26508637
Mn-Oxide Minerals from a Terrestrial Cave Environment: Biomarkers for the Search for Life on Mars?
NASA Technical Reports Server (NTRS)
Spilde, M. N.; Brearley, A. J.; Papike, J. J.
2001-01-01
Mn-oxides are promising biomarkers because microbes greatly accelerate Mn-oxide formation rates and produce distinctive oxidation states. Mn minerals in terrestrial caves form subaerially and could conceivably be present in the subsurface of Mars. Additional information is contained in the original extended abstract.
As(III) oxidation by MnO2 during groundwater treatment.
Gude, J C J; Rietveld, L C; van Halem, D
2017-03-15
The top layer of natural rapid sand filtration was found to effectively oxidise arsenite (As(III)) in groundwater treatment. However, the oxidation pathway has not yet been identified. The aim of this study was to investigate whether naturally formed manganese oxide (MnO 2 ), present on filter grains, could abiotically be responsible for As(III) oxidation in the top of a rapid sand filter. For this purpose As(III) oxidation with two MnO 2 containing powders was investigated in aerobic water containing manganese(II) (Mn(II)), iron(II) (Fe(II)) and/or iron(III) (Fe(III)). The first MnO 2 powder was a very pure - commercially available - natural MnO 2 powder. The second originated from a filter sand coating, produced over 22 years in a rapid filter during aeration and filtration. Jar test experiments showed that both powders oxidised As(III). However, when applying the MnO 2 in aerated, raw groundwater, As(III) removal was not enhanced compared to aeration alone. It was found that the presence of Fe(II)) and Mn(II) inhibited As(III) oxidation, as Fe(II) and Mn(II) adsorption and oxidation were preferred over As(III) on the MnO 2 surface (at pH 7). Therefore it is concluded that just because MnO 2 is present in a filter bed, it does not necessarily mean that MnO 2 will be available to oxidise As(III). However, unlike Fe(II), the addition of Fe(III) did not hinder As(III) oxidation on the MnO 2 surface; resulting in subsequent effective As(V) removal by the flocculating hydrous ferric oxides. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH
NASA Astrophysics Data System (ADS)
Mayanna, Sathish; Peacock, Caroline L.; Schäffner, Franziska; Grawunder, Anja; Merten, Dirk; Kothe, Erika; Büchel, Georg
2014-05-01
The precipitation of biogenic Mn oxides at acidic pH is rarely reported and poorly understood, compared to biogenic Mn oxide precipitation at near neutral conditions. Here we identified and investigated the precipitation of biogenic Mn oxides in acidic soil, and studied their role in the retention of heavy metals, at the former uranium mining site of Ronneburg, Germany. The site is characterized by acidic pH, low carbon content and high heavy metal loads including rare earth elements. Specifically, the Mn oxides were present in layers identified by detailed soil profiling and within these layers pH varied from 4.7 to 5.1, Eh varied from 640 to 660 mV and there were enriched total metal contents for Ba, Ni, Co, Cd and Zn in addition to high Mn levels. Using electron microprobe analysis, synchrotron X-ray diffraction and X-ray absorption spectroscopy, we identified poorly crystalline birnessite (δ-MnO2) as the dominant Mn oxide in the Mn layers, present as coatings covering and cementing quartz grains. With geochemical modelling we found that the environmental conditions at the site were not favourable for chemical oxidation of Mn(II), and thus we performed 16S rDNA sequencing to isolate the bacterial strains present in the Mn layers. Bacterial phyla present in the Mn layers belonged to Firmicutes, Actinobacteria and Proteobacteria, and from these phyla we isolated six strains of Mn(II) oxidizing bacteria and confirmed their ability to oxidise Mn(II) in the laboratory. The biogenic Mn oxide layers act as a sink for metals and the bioavailability of these metals was much lower in the Mn layers than in adjacent layers, reflecting their preferential sorption to the biogenic Mn oxide. In this presentation we will report our findings, concluding that the formation of natural biogenic poorly crystalline birnessite can occur at acidic pH, resulting in the formation of a biogeochemical barrier which, in turn, can control the mobility and bioavailability of heavy metals in acidic soil environments.
Agrawal, Richa; Adelowo, Ebenezer; Baboukani, Amin Rabiei; Villegas, Michael Franc; Henriques, Alexandra; Wang, Chunlei
2017-07-26
In this study, porous manganese oxide (MnO x ) thin films were synthesized via electrostatic spray deposition (ESD) and evaluated as pseudocapacitive electrode materials in neutral aqueous media. Very interestingly, the gravimetric specific capacitance of the ESD-based electrodes underwent a marked enhancement upon electrochemical cycling, from 72 F∙g -1 to 225 F∙g -1 , with a concomitant improvement in kinetics and conductivity. The change in capacitance and resistivity is attributed to a partial electrochemical phase transformation from the spinel-type hausmannite Mn₃O₄ to the conducting layered birnessite MnO₂. Furthermore, the films were able to retain 88.4% of the maximal capacitance after 1000 cycles. Upon verifying the viability of the manganese oxide films for pseudocapacitive applications, the thin films were integrated onto carbon micro-pillars created via carbon microelectromechanical systems (C-MEMS) for examining their application as potential microelectrode candidates. In a symmetric two-electrode cell setup, the MnO x /C-MEMS microelectrodes were able to deliver specific capacitances as high as 0.055 F∙cm -2 and stack capacitances as high as 7.4 F·cm -3 , with maximal stack energy and power densities of 0.51 mWh·cm -3 and 28.3 mW·cm -3 , respectively. The excellent areal capacitance of the MnO x -MEs is attributed to the pseudocapacitive MnO x as well as the three-dimensional architectural framework provided by the carbon micro-pillars.
The Energetics of Oxide Multilayer Systems: SOFC Cathode and Electrolyte Materials
NASA Astrophysics Data System (ADS)
Kemik, Nihan
Complex oxides are evoking a surge of scientific and technological interest due to the unexpected properties of their interfaces which have been shown to differ from the constituent materials. Layered oxide structures have found wide use in applications ranging from electronic and magnetic devices to solid oxide fuel cells (SOFCs). For devices such as SOFCs which utilize multilayers at elevated temperatures, it is critical to know the relative stabilities of these interfaces since they directly influence the device performance. In this work, we explored the energetics of two oxide multilayer systems which are relevant for SOFCs components using high temperature solution calorimetry and differential scanning calorimetry (DSC). The fundamental understanding of the interfacial and structural properties of multilayers combined with the information about phase stabilities is essential in materials selection for components for intermediate temperature SOFC's. For cathode materials, we investigated the family of perovskite oxides, La0.7Sr0.3MO3, where M=Mn and Fe, as well as their solid solution phase. Manganites have been the most investigated cathode material, while the ferrites are also being considered for future use due to their thermodynamic stability and close thermal expansion coefficient with the commonly used electrolyte materials. For the bulk La0.7Sr0.3FexMn1-xO 3 solid solution, high temperature oxide melt drop solution calorimetry was performed to determine the enthalpies of formation from binary oxides and the enthalpy of mixing. It was shown that the symmetry of the perovskite structure, the valence of transition metal, and the energetics are highly interdependent and the balance between the different valence states of the Mn and Fe ions is the main factor in determining the energetics. The energetics of interfaces in multilayered structures was investigated by high temperature oxide melt solution calorimetry for the first time. The drop solution calorimetry results of La0.7Sr0.3MnO3(LSMO)/La0.7 Sr0.3FeO3(LSFO) multilayers and LSMO film are highly exothermic and differ from the bulk material with the same composition. The magnetic and electronic properties of LSMO/LSFO superlattices are highly dependent on the thickness and the structure of the individual layers. Resonant X-Ray reflectivity (XRR) technique was utilized to characterize the structure of the LSMO/LSFO superlattices. It was shown that the XRR spectra taken at the Mn and Fe absorption edges can provide more structural information than the spectra at the X-ray energy of a conventional Cu source. With this non-destructive technique, we demonstrated the ability to compare the intermixing behavior and thickness regularity throughout the thickness of different superlattice structures. For electrolyte materials, we studied the yttria stabilized zirconia (YSZ) /Al2O3 multilayer system. Differential scanning calorimetry (DSC) was used to study the crystallization of the YSZ layers to explore the effect of the interfaces on phase stabilities. It was observed that the crystallization temperature increased and the enthalpy became more exothermic as the interfacial area increased. This work demonstrated that DSC is a promising technique to study the thin film reactions and explore the interfacial enthalpies in oxide multilayer systems.
40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for the...
40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for the...
40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for the...
40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for the...
40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for the...
Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts
NASA Astrophysics Data System (ADS)
Little, S. H.; Sherman, D. M.; Vance, D.; Hein, J. R.
2014-06-01
The isotopic systems of the transition metals are increasingly being developed as oceanic tracers, due to their tendency to be fractionated by biological and/or redox-related processes. However, for many of these promising isotope systems the molecular level controls on their isotopic fractionations are only just beginning to be explored. Here we investigate the relative roles of abiotic and biotic fractionation processes in controlling modern seawater Cu and Zn isotopic compositions. Scavenging to Fe-Mn oxides represents the principal output for Cu and Zn to sediments deposited under normal marine (oxic) conditions. Using Fe-Mn crusts as an analogue for these dispersed phases, we investigate the phase association and crystal chemistry of Cu and Zn in such sediments. We present the results of an EXAFS study that demonstrate unequivocally that Cu and Zn are predominantly associated with the birnessite (δ-MnO2) phase in Fe-Mn crusts, as previously predicted from sequential leaching experiments (e.g., Koschinsky and Hein, 2003). The crystal chemistry of Cu and Zn in the crusts implies a reduction in coordination number in the sorbed phase relative to the free metal ion in seawater. Thus, theory would predict equilibrium fractionations that enrich the heavy isotope in the sorbed phase (e.g., Schauble, 2004). In natural samples, Fe-Mn crusts and nodules are indeed isotopically heavy in Zn isotopes (at ∼1‰) compared to deep seawater (at ∼0.5‰), consistent with the predicted direction of equilibrium isotopic fractionation based on our observations of the coordination environment of sorbed Zn. Further, ∼50% of inorganic Zn‧ is chloro-complexed (the other ∼50% is present as the free Zn2+ ion), and complexation by Cl- is also predicted to favour equilibrium partitioning of light Zn isotopes into the dissolved phase. The heavy Zn isotopic composition of Fe-Mn crusts and nodules relative to seawater can therefore be explained by an inorganic fractionation during uptake. However, Cu in Fe-Mn crusts is isotopically light (at ∼0.3 to 0.5‰) compared to the dissolved phase in seawater (at ∼0.9‰). We suggest that this is because dissolved Cu in the oceans is overwhelmingly complexed to strong organic ligands, which are better competitors for the heavy isotope.
NASA Astrophysics Data System (ADS)
Li, F. H.; Bi, H.; Huang, D. X.; Zhang, M.; Song, Y. B.
2018-01-01
Co(II), Mn(II), Cu(II) and Cr(III) salen type complexes were synthesized in situ in Y zeolite by the reaction of ion-exchanged metal ions with the flexible ligand molecules that had diffused into the cavities. Data of characterization indicates the formation of metal salen complexes in the pores without affecting the zeolite framework structure, the absence of any extraneous species and the geometry of encapsulated complexes. The catalytic activity results show that Cosalcyen Y exhibited higher catalytic activity in the water phase selective oxidation of benzyl alcohol, which could be attributed to their geometry and the steric environment of the metal actives sites.
Why did Nature choose manganese to make oxygen?
Armstrong, Fraser A
2007-01-01
This paper discusses the suitability of manganese for its function in catalysing the formation of molecular oxygen from water. Manganese is an abundant element. In terms of its inherent properties, Mn has a particularly rich redox chemistry compared with other d-block elements, with several oxidizing states accessible. The most stable-state Mn2+ behaves like a Group 2 element—it is mobile, weakly complexing, easily taken up by cells and redox-inactive in simple aqueous media. Only in the presence of suitable ligands does Mn2+ become oxidized, so it provides an uncomplicated building unit for the oxygen-evolving centre (OEC). The intermediate oxidation states Mn(III) and Mn(IV) are strongly complexed by O2− and form robust mixed-valence poly-oxo clusters in which the Mn(IV)/Mn(III) ratio can be elevated, one electron at a time, accumulating oxidizing potential and capacity. The OEC is a Mn4CaOx cluster that undergoes sequential oxidations by P680+ at potentials above 1 V, ultimately to a super-oxidized level that includes one Mn(V) or a Mn(IV)-oxyl radical. The latter is powerfully oxidizing and provides the crucial ‘power stroke’ necessary to generate an O–O bond. This leaves a centre still rich in Mn(IV), ensuring a rapid follow-through to O2. PMID:17971329
One-step large scale gas phase synthesis of Mn2 + doped ZnS nanoparticles in reducing flames
NASA Astrophysics Data System (ADS)
Athanassiou, E. K.; Grass, R. N.; Stark, W. J.
2010-05-01
Metal sulfide nanoparticles have attracted considerable interest because of their unique semiconducting and electronic properties. In order to prepare these fascinating materials at an industrial scale, however, solvent-free, dry processes would be most advantageous. In the present work, we demonstrate how traditional oxide nanoparticle synthesis in flames can be extended to sulfides if we apply a careful control on flame gas composition and sulfur content. The ultra-fast (<1 ms) gas phase kinetics at elevated temperatures allow direct sulfidization of metals in flames (\\mathrm {MO}_{x} \\Rightarrow \\mathrm {MS}_{x} ). As a representative example, we prepared air-stable Mn2 + doped zinc sulfide nanoparticles. Post-sintering of the initially polycrystalline nanopowder resulted in a material of high crystallinity and improved photoluminescence. An analysis of the thermodynamics, gas composition, and kinetics in these reducing flames indicates that the here-presented extension of flame synthesis provides access to a broad range of metal sulfide nanoparticles and offers an alternative to non-oxide phosphor preparation.
Oxidations of alkenes and lignin model compounds in aqueous dispersions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Weiming.
1991-01-01
The objective was to develop methods to oxidize water-immiscible alkenes and lignin model compounds with polymer colloid supported transition metal catalysts. The oxidations of organic compounds were carried out in aqueous phase with several water-soluble oxidants and dioxygen. Cationic polymer latexes were prepared by the emulsion copolymerization of vinylbenzyl chloride, divinylbenzene, and vinyl octadecyl ether, or styrene, or n-decyl methacrylate, and the subsequent quaternization of copolymers with trimethylamine. The latex particles were 44 nm to 71 nm in diameter. The latex bound Mn porphyrin catalysts were formed with MnTSPP [TSPP = meso-tetrakis(2,6-dichloro-3-sulfonatophenyl)porphyrin], which catalyzed the oxidation of cyclohexene, cycloocetene, allylbenzene,more » and 1-octene by sodium hypochlorite (NaOCl) and potassium peroxymonosulfate (KHSO[sub 5]). The latex bound porphyrin catalysts showed higher activity than MnTSPP in solution. Oxidations of 3,4-dimethoxybenzyl alcohol (DMBA), 4-hydroxy-3-methoxytoluene (HMT), and 3,4-dimethoxytoluene (DMT) were performed with either dioxygen or hydrogen peroxide and CoPcTS (PcTS = tetrasulfonatophthalocyanine), FePcTS, CuPcTS, NiPcTS, FeTCPP [TCPP = meso-tetrakis(4-carboxyphenyl)porphyrin], and MnTSPP. CoPcTS catalyzed the autoxidation of DMBA and HMT at 70-85[degrees]C and pH [ge] 8. All catalysts were active for the oxidation of DMBA, HMT, and DMT with H[sub 2]O[sub 2]. Aqueous solutions of KHSO[sub 5] oxidized water-immiscible alkenes at room temperature in the absence of organic solvent. The acidic pH [le] 1.7 solutions of commercial 2KHSO[sub 5][center dot]K[sub 2]SO[sub 4] in water produced diols from all reactive alkenes except cyclooctene. Adjustment of initial pH to [ge]6.7 with NaHCO[sub 3] enabled selective epoxidations.« less
Early Diagenesis of Trace Elements in Modern Fjord Sediments of the High Arctic
NASA Astrophysics Data System (ADS)
Herbert, L.; Riedinger, N.; Aller, R. C.; Jørgensen, B. B.; Wehrmann, L.
2017-12-01
Marine sediments are critical repositories for elements that are only available at trace concentrations in seawater, such as Fe, Mn, Co, Ni, As, Mo, and U. The behavior of these trace elements in the sediment is governed by a dynamic interplay of diagenetic reactions involving organic carbon, Fe and Mn oxides, and sulfur phases. In the Arctic fjords of Svalbard, glacial meltwater delivers large amounts of reactive Fe and Mn oxides to the sediment, while organic carbon is deposited episodically and diluted by lithogenic material. These conditions result in pronounced Fe and Mn cycling, which in turn drives other diagenetic processes such as rapid sulfide oxidation. These conditions make the Svalbard fjords ideal sites for investigating trace element diagenesis because they allow resolution of the interconnections between Fe and Mn dynamics and trace element cycling. In August 2016, we collected sediment cores from three Svalbard fjords and analyzed trace elements in the pore water and solid sediment over the top meter. Initial results reveal the dynamic nature of these fjords, which are dominated by non-steady state processes and episodic events such as meltwater pulses and phytoplankton blooms. Within this system, the distribution of As appears to be strongly linked to the Fe cycle, while Co and Ni follow Mn; thus, these three elements may be released from the sediment through diffusion and bioturbation along with Fe and Mn. The pore water profiles of U and Mo indicate removal processes that are independent from Fe or Mn, and which are rather unexpected given the apparent diagenetic conditions. Our results will help elucidate the processes controlling trace element cycling in a dynamic, glacially impacted environment and will ultimately contribute to our understanding of the role of fjords in the biogeochemical cycling of trace elements in a rapidly changing Arctic Ocean.
40 CFR 721.10010 - Barium manganese oxide (BaMnO3).
Code of Federal Regulations, 2011 CFR
2011-07-01
... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN P-00... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Barium manganese oxide (BaMnO3). 721...
40 CFR 721.10010 - Barium manganese oxide (BaMnO3).
Code of Federal Regulations, 2010 CFR
2010-07-01
... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN P-00... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium manganese oxide (BaMnO3). 721...
40 CFR 721.10010 - Barium manganese oxide (BaMnO3).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN P-00...
40 CFR 721.10010 - Barium manganese oxide (BaMnO3).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN P-00...
40 CFR 721.10010 - Barium manganese oxide (BaMnO3).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN P-00...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gou, Gaoyang; Charles, Nenian; Shi, Jing
2017-09-11
The double perovskite CaMnTi2O6, is a rare A site ordered perovskite oxide that exhibits a sizable ferroelectric polarization and relatively high Curie temperature. Using first-principles calculations combined with detailed symmetry analyses, we identify the origin of the ferroelectricity in CaMnTi2O6. We further explore the material properties of CaMnTi2O6, including its ferroelectric polarization, dielectric and piezoelectric responses, magnetic order, electronic structure, and optical absorption coefficient. It is found that CaMnTi2O6 exhibits room-temperature-stable ferroelectricity and moderate piezoelectric responses. Moreover, CaMnTi2O6 is predicted to have a semiconducting energy band gap similar to that of BiFeO3, and its band gap can further be tuned-viamore » distortions of the planar Mn-O bond lengths. CaMnTi2O6 exemplifies a new class of single-phase semiconducting ferroelectric perovskites for potential applications in ferroelectric photovoltaic solar cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Haesung; Chadha, Tandeep S.; Kim, Doyoon
This study introduces a new and previously unconsidered fast abiotic formation of Mn(IV) oxides. We report photochemically assisted fast abiotic oxidation of Mn 2+ (aq) to Mn(IV) (s) by superoxide radicals generated from nitrate photolysis. This photochemical pathway generates randomly stacked layered birnessite (δ-MnO 2) nanosheets.
Ma, Yun-Sheng; Li, Yi-Zhi; Song, You; Zheng, Li-Min
2008-06-02
The oxidation of MnII carboxylates by (NBu4)Cr2O7 in the presence of different phosphonic acids and chelating ligands results in six CrIII-doped tetranuclear manganese clusters formulated [Mn3CrO2(O2CCH3)4(O3PC5H4N)2(bpy)2] (1), [Mn3CrO2(O2CCH3)4(O3PC5H4N)2(phen)2] (2), [Mn3CrO2(O2CPh)4(O3PC5H4NO)2(phen)2] (3), [Mn3CrO2(O2CPh)4(O3PC6H11)2(bpy)2] (4), [Mn 3CrO2(O2CPh)4(O3PC6H11)2(phen) 2] (5), and [Mn3CrO2(O2CCH3)4(O3PC6H11)2(bpy)2] (6). Single-crystal X-ray analyses reveal that all the compounds contain similar [M4O2]8+ cores with the four metal sites arranged in planar topologies. The metal ions within the core are bridged by both carboxylate and phosphonate ligands. Temperature-dependent magnetic measurements show that in all cases dominant antiferromagnetic interactions are propagated between the metal centers. The ac magnetic measurements on compounds 5 and 6 reveal that both the in-phase and the out-of-phase signals are frequency dependent, characteristic of single-molecule magnet behaviors.
Permien, Stefan; Indris, Sylvio; Hansen, Anna-Lena; Scheuermann, Marco; Zahn, Dirk; Schürmann, Ulrich; Neubüser, Gero; Kienle, Lorenz; Yegudin, Eugen; Bensch, Wolfgang
2016-06-22
Conversion reactions deliver much higher capacities than intercalation/deintercalation reactions of commercial Li ion batteries. However, the complex reaction pathways of conversion reactions occurring during Li uptake and release are not entirely understood, especially the irreversible capacity loss of Mn(III)-containing oxidic spinels. Here, we report for the first time on the electrochemical Li uptake and release of Co(II)Mn(III)Fe(III)O4 spinel nanoparticles and the conversion reaction mechanisms elucidated by combined operando X-ray diffraction, operando and ex-situ X-ray absorption spectroscopy, transmission electron microscopy, (7)Li NMR, and molecular dynamics simulation. The combination of these techniques enabled uncovering the pronounced electronic changes and structural alterations on different length scales in a unique way. The spinel nanoparticles undergo a successive phase transition into a mixed monoxide caused by a movement of the reduced cations from tetrahedral to octahedral positions. While the redox reactions Fe(3+) ↔ Fe(0) and Co(2+) ↔ Co(0) occur for many charge/discharge cycles, metallic Mn nanoparticles formed during the first discharge can only be oxidized to Mn(2+) during charge. This finding explains the partial capacity loss reported for Mn(III)-based spinels. Furthermore, the results of the investigations evidence that the reaction mechanisms on the nanoscale are very different from pathways of microcrystalline materials.
Structural characterization of Co100-xFex nano-oxide layer
NASA Astrophysics Data System (ADS)
Endo, Hiroaki; Doi, Masaaki; Hasegawa, Naoya; Sahashi, Masashi
2006-04-01
For the structural characterization of a Co100-xFex nano-oxide layer (NOL), the exchange bias properties of the Co100-xFex-natural oxidized NOL in the specular spin-valve (SPSV) system were investigated. The exchange bias energy (Jex) increased monotonically with the increasing Fe content for the Co100-xFex-NOL. The enhancement of both the magnetoresistance ratio and the exchange bias field (Hex) was realized by increasing the Fe content in the Co100-xFex-NOL. It should be mentioned that Hex more than 800 Oe is obtained by the insertion of Co30Fe70-NOL, even in NOL-SPSV, which is a remarkably higher pinning field than that ever reported on IrMn-SV. This high exchange bias field is considered to be realized by the formation of an Fe-rich fcc phase at the interface of IrMn.
High Mass Loading MnO2 with Hierarchical Nanostructures for Supercapacitors.
Huang, Zi-Hang; Song, Yu; Feng, Dong-Yang; Sun, Zhen; Sun, Xiaoqi; Liu, Xiao-Xia
2018-04-24
Metal oxides have attracted renewed interest as promising electrode materials for high energy density supercapacitors. However, the electrochemical performance of metal oxide materials deteriorates significantly with the increase of mass loading due to their moderate electronic and ionic conductivities. This limits their practical energy. Herein, we perform a morphology and phase-controlled electrodeposition of MnO 2 with ultrahigh mass loading of 10 mg cm -2 on a carbon cloth substrate to achieve high overall capacitance without sacrificing the electrochemical performance. Under optimum conditions, a hierarchical nanostructured architecture was constructed by interconnection of primary two-dimensional ε-MnO 2 nanosheets and secondary one-dimensional α-MnO 2 nanorod arrays. The specific hetero-nanostructures ensure facile ionic and electric transport in the entire electrode and maintain the structure stability during cycling. The hierarchically structured MnO 2 electrode with high mass loading yields an outstanding areal capacitance of 3.04 F cm -2 (or a specific capacitance of 304 F g -1 ) at 3 mA cm -2 and an excellent rate capability comparable to those of low mass loading MnO 2 electrodes. Finally, the aqueous and all-solid asymmetric supercapacitors (ASCs) assembled with our MnO 2 cathode exhibit extremely high volumetric energy densities (8.3 mWh cm -3 at the power density of 0.28 W cm -3 for aqueous ASC and 8.0 mWh cm -3 at 0.65 W cm -3 for all-solid ASC), superior to most state-of-the-art supercapacitors.
NASA Astrophysics Data System (ADS)
Ha, T. M. P.; Luong, N. T.; Le, P. N.
2016-11-01
In Vietnam for recent years, a large amount of hazardous waste containing nickel (Ni) derived from discharged catalyst of fertilizer plants has caused environmental problems in landfill overloading and the risk of soil or surface water sources pollution. Taking advantage of discharged catalyst, recycling Ni components and then synthesizing new catalysts apply for mono-nitrogen oxides (NOx) treatments is an approach to bring about both economic and environmental benefits. This study was carried out with the main objective: Evaluate the performance of modified catalysts (using recovered Ni from the discharged RKS-2-7H catalyst of Phu My Fertilizer Plant) on NOx treatment. The catalysts was synthesized and modified with active phases consist of recovered Ni and commercial Barium oxide (BaO), Manganese dioxide (MnO2) / Cerium (IV) oxide (CeO2) on the support Aluminium oxide (γ-Al2O3). The results show that the modified catalysts with Ni, Ba, Ce was not more beneficial for NOx removal than which with Ni, Ba, Mn. 98% NOx removal at 350°C with the start temperature at 115°C and the T60 value at 307°C can be obtained with 10Ni10Ba10Mn/Al catalyst.
High-temperature oxidation/corrosion of iron-based superalloys
NASA Technical Reports Server (NTRS)
Lemkey, F. D.; Smeggil, J. G.; Bailey, R. S.; Schuster, J. C.; Nowotny, H.
1987-01-01
The oxidation and sulfidation of several novel iron-base superalloys were evaluated in high-temperature cyclic tests. The experimental austenitic alloys examined were modifications of NASAUT-4GA which were developed for Stirling-engine application. The weight gains and resulting surface scales were measured and analyzed. Mixed oxide scales were found to form on all specimens exposed above 871 C. The build-up of these scales led to a depletion of Mn and Cr in a zone adjacent to the oxides. In addition, the initial oxidation of the Fe-rich alloy was inhibited by a thin but tenacious Si layer which formed at the interface between oxides and the parent layer. Sulfidation tests using Na2SO4 coatings resulted in the formation of a protective spinel and alpha-Fe2O3 phases. Preferential attack of the carbide phase by hydrogen was not observed after 350 h at 871 C.
NASA Astrophysics Data System (ADS)
Goto, K. T.; Ito, T.; Suzuki, K.; Anbar, A. D.; Gordon, G. W.; Kashiwabara, T.; Takaya, Y.; Shimoda, G.; Nozaki, T.; Kiyokawa, S.; Tetteh, G. M.; Nyame, F. K.
2014-12-01
Multiple lines of evidence suggest that the first major oxidation of the atmosphere-ocean system occurred during the Paleoproterozoic. However, the course of this redox transition remains elusive. A number of large Mn deposits are distributed in Paleoproterozoic sedimentary successions. As Mn is a redox-sensitive element characterized by high redox potential, knowledge of the Mn cycle in Paleoproterozoic seawater may provide insight into redox evolution during this period. Here, we investigate the Mn cycle in Paleoproterozoic seawater based on the Re-Os and Mo isotope compositions, and the abundance of major and trace elements, in Mn-rich sedimentary rocks from the Nsuta deposit of the Birimian Supergroup, Ghana. The Mn ore is composed mainly of rhodochrosite and is distributed at the boundaries between sedimentary rocks and tholeiitic volcanic rocks. The Re-Os isochron age (2217 ± 100 Ma) we obtained was consistent with U-Pb zircon ages of the volcanic rocks. The manganophile elements, except for Mo, show no enrichment, which is similar to modern hydrothermal Mn oxides. The PAAS-normalized REE compositions show positive Ce anomaly, indicative of Ce enrichment due to the oxidation of Ce(III) by Mn(IV). These findings suggest that Mn ore formed from primary precipitation of Mn oxides from hydrothermal fluids as they were mixed with bottom seawater at ~2.2 Ga. Thus, the bottom seawater would have been sufficiently oxygenated for the precipitation of Mn oxides at ~2.2 Ga. The Nsuta ore samples exhibit slight Mo enrichment, but Mo/Mn ratios are orders of magnitude lower than those in modern hydrothermal Mn oxides. We also found that the Mo isotopes in the Nsuta ore are ~0.7‰ heavier than those in modern hydrothermal and hydrogenous Mn oxides. As Mo in hydrothermal Mn oxides is sourced primarily from seawater (Goto et al., in prep), these results may reflect smaller oceanic Mo inventory and heavier seawater Mo isotope composition at 2.2 Ga than those of present-day. Our calculation using a simple mass balance model suggests that substantial removal of light Mo by Mn oxides may have caused such oceanic conditions. Our findings are consistent with the recently proposed 'oxygen overshoot' model (Bekker and Holland, 2012) and low Mo contents in ~2.2-Ga black shales and sedimentary pyrites (e.g., Scott et al., 2008).
NASA Astrophysics Data System (ADS)
Zhang, Shiming; Tang, Tian; Ma, Zhihua; Gu, Haitao; Du, Wubing; Gao, Mingxia; Liu, Yongfeng; Jian, Dechao; Pan, Hongge
2018-03-01
The poor cycling stability of Li- and Mn-rich layered oxide cathodes used in lithium-ion batteries (LIBs) has severely limited their practical application. Unfortunately, current strategies to improve their lifecycle sacrifice initial capacity. In this paper, we firstly report the synergistic improvement of the electrochemical performance of a Li1.2Ni0.13Co0.13Mn0.54O2 (LNCMO) cathode material, including gains for capacity, cycling stability, and rate capability, by the partial substitution of Li+ ions by Mg2+ ions. Electrochemical performance is evaluated by a galvanostatic charge and discharge test and electrochemical impedance spectroscopy (EIS). Structure and morphology are characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Compared with the substitution of transition metal (TM) ions with Mg2+ ions reported previously, the substitution of Li+ ions by Mg2+ ions not only drastically ameliorates the capacity retention and rate performance challenges of LNCMO cathodes but also markedly suppresses their voltage fading, due to the inhibition of the migration of TM ions during cycling, while also increasing the capacity of the cathode due to an increased abundance of the Li2MO3 phase.
Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi
NASA Astrophysics Data System (ADS)
Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.
2015-02-01
High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.
Settivari, Raja; VanDuyn, Natalia; LeVora, Jennifer; Nass, Richard
2013-09-01
Exposure to high levels of manganese (Mn) results in a neurological condition termed manganism, which is characterized by oxidative stress, abnormal dopamine (DA) signaling, and cell death. Epidemiological evidence suggests correlations with occupational exposure to Mn and the development of the movement disorder Parkinson's disease (PD), yet the molecular determinants common between the diseases are ill-defined. Glutathione S-transferases (GSTs) of the class pi (GSTπ) are phase II detoxification enzymes that conjugate both endogenous and exogenous compounds to glutathione to reduce cellular oxidative stress, and their decreased expression has recently been implicated in PD progression. In this study we demonstrate that a Caenorhabditis elegans GSTπ homologue, GST-1, inhibits Mn-induced DA neuron degeneration. We show that GST-1 is expressed in DA neurons, Mn induces GST-1 gene and protein expression, and GST-1-mediated neuroprotection is dependent on the PD-associated transcription factor Nrf2/SKN-1, as a reduction in SKN-1 gene expression results in a decrease in GST-1 protein expression and an increase in DA neuronal death. Furthermore, decreases in gene expression of the SKN-1 inhibitor WDR-23 or the GSTπ-binding cell death activator JNK/JNK-1 result in an increase in resistance to the metal. Finally, we show that the Mn-induced DA neuron degeneration is independent of the dopamine transporter DAT, but is largely dependent on the caspases CED-3 and the novel caspase CSP-1. This study identifies a C. elegans Nrf2/SKN-1-dependent GSTπ homologue, cell death effectors of GSTπ-associated xenobiotic-induced pathology, and provides the first in vivo evidence that a phase II detoxification enzyme may modulate DA neuron vulnerability in manganism. Copyright © 2013 Elsevier Inc. All rights reserved.
Identification of a Third Mn(II) Oxidase Enzyme in Pseudomonas putida GB-1
Smesrud, Logan; Tebo, Bradley M.
2016-01-01
ABSTRACT The oxidation of soluble Mn(II) to insoluble Mn(IV) is a widespread bacterial activity found in a diverse array of microbes. In the Mn(II)-oxidizing bacterium Pseudomonas putida GB-1, two Mn(II) oxidase genes, named mnxG and mcoA, were previously identified; each encodes a multicopper oxidase (MCO)-type enzyme. Expression of these two genes is positively regulated by the response regulator MnxR. Preliminary investigation into putative additional regulatory pathways suggested that the flagellar regulators FleN and FleQ also regulate Mn(II) oxidase activity; however, it also revealed the presence of a third, previously uncharacterized Mn(II) oxidase activity in P. putida GB-1. A strain from which both of the Mn(II) oxidase genes and fleQ were deleted exhibited low levels of Mn(II) oxidase activity. The enzyme responsible was genetically and biochemically identified as an animal heme peroxidase (AHP) with domain and sequence similarity to the previously identified Mn(II) oxidase MopA. In the ΔfleQ strain, P. putida GB-1 MopA is overexpressed and secreted from the cell, where it actively oxidizes Mn. Thus, deletion of fleQ unmasked a third Mn(II) oxidase activity in this strain. These results provide an example of an Mn(II)-oxidizing bacterium utilizing both MCO and AHP enzymes. IMPORTANCE The identity of the Mn(II) oxidase enzyme in Pseudomonas putida GB-1 has been a long-standing question in the field of bacterial Mn(II) oxidation. In the current work, we demonstrate that P. putida GB-1 employs both the multicopper oxidase- and animal heme peroxidase-mediated pathways for the oxidation of Mn(II), rendering this model organism relevant to the study of both types of Mn(II) oxidase enzymes. The presence of three oxidase enzymes in P. putida GB-1 deepens the mystery of why microorganisms oxidize Mn(II) while providing the field with the tools necessary to address this question. The initial identification of MopA as a Mn(II) oxidase in this strain required the deletion of FleQ, a regulator involved in both flagellum synthesis and biofilm synthesis in Pseudomonas aeruginosa. Therefore, these results are also an important step toward understanding the regulation of Mn(II) oxidation. PMID:27084014
Influence of extractable soil manganese on oxidation capacity of different soils in Korea
NASA Astrophysics Data System (ADS)
Chon, Chul-Min; Kim, Jae Gon; Lee, Gyoo Ho; Kim, Tack Hyun
2008-08-01
We examined the relationship between soil oxidation capacity and extractable soil manganese, iron oxides, and other soil properties. The Korean soils examined in this study exhibited low to medium Cr oxidation capacities, oxidizing 0.00-0.47 mmol/kg, except for TG-4 soils, which had the highest capacity for oxidizing added Cr(III) [>1.01 mmol/kg of oxidized Cr(VI)]. TG and US soils, with high Mn contents, had relatively high oxidation capacities. The Mn amounts extracted by dithionite-citrate-bicarbonate (DCB) (Mnd), NH2OH·HCl (Mnh), and hydroquinone (Mnr) were generally very similar, except for the YS1 soils, and were well correlated. Only small proportions of either total Mn or DCB-extractable Mn were extracted by NH2OH·HCl and hydroquinone in the YS1 soils, suggesting inclusion of NH2OH·HCl and hydroquinone-resistant Mn oxides, because these extractants are weaker reductants than DCB. No Cr oxidation test results were closely related to total Mn concentrations, but Mnd, Mnh, and Mnr showed a relatively high correlation with the Cr tests ( r = 0.655-0.851; P < 0.01). The concentrations of Mnd and Mnh were better correlated with the Cr oxidation tests than was the Mnr concentration, suggesting that the oxidation capacity of our soil samples can be better explained by Mnd and Mnh than by Mnr. The first component in principal components analysis indicated that extractable soil Mn was a main factor controlling net Cr oxidation in the soils. Total soil Mn, Fe oxides, and the clay fraction are crucial for predicting the mobility of pollutants and heavy metals in soils. The second principal component indicated that the presence of Fe oxides in soils had a significant relationship with the clay fraction and total Mn oxide, and was also related to heavy-metal concentrations (Zn, Cd, and Cu, but not Pb).
Mineral phases and metals in baghouse dust from secondary ...
Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78 BHD samples collected from 13 different SAP facilities across the U.S. were investigated. The XRD semi-quantitative analysis of BHD samples suggests the presence of metallic aluminum, aluminum oxide, aluminum nitride and its oxides, spinel, elpasolite as well as diaspora. BHD also contains halite, sylvite and fluorite, which are used as fluxes in SAP activities. Total aluminum (Al) in the BHD samples averaged 18% by weight. Elevated concentrations of trace metals (>100 µgL-1 As; >1000 µgL-1 Cu, Mn, Se, Pb, Mn and Zn) were also detected in the leachate. The U.S. toxicity characteristic leaching procedure (TCLP) results showed that some samples leached above the toxicity limit for Cd, Pb and Se. Exceeding the TCLP limits in all sample is independent of facilities generating the BHD. From the metal content perspective only, it appears that BHD has a higher potential to exhibit toxicity characteristics than salt cake (the largest waste stream generated by SAP facilities). The objective of this study was to investigate BHD from SAP facilities in the U.S. by determining the mineral phases and the metal (Al, As, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Pb, Se and Zn) content of the sample
Coexistence of Fe(II)- and Mn(II)-oxidizing bacteria govern the formation of deep sea umber deposits
NASA Astrophysics Data System (ADS)
Peng, Xiaotong; Ta, Kaiwen; Chen, Shun; Zhang, Lijuan; Xu, Hengchao
2015-11-01
The genesis of umber deposits has remained controversial for several decades. Recently, microbial Fe(II) oxidation associated with low-temperature diffuse venting has been identified as a key process for the formation of umber deposits, but the exact biogeochemical mechanisms involved to the precipitation of Mn oxides in umber deposits still remain unknown. Here, we used nano secondary ion mass spectrometer, synchrotron-based X-ray absorption spectroscopy, electron microscopy, and molecular techniques to demonstrate the coexistence of two types of metal-oxidizing bacteria within deep-sea hydrothermal umber deposits at the South Mid-Atlantic Ridge, where we found unique spheroids composed of biogenic Fe oxyhydroxides and Mn oxides in the deposits. Our data show that Fe oxyhydroxides and Mn oxides are metabolic by-products of lithotrophic Fe(II)-oxidizing bacteria and heterotrophic Mn(II)-oxidizing bacteria, respectively. The hydrothermal vents fuel lithotrophic microorganisms, which constitute a trophic base that might support the activities of heterogenic Mn(II)-oxidizing bacteria. The biological origin of umber deposits shed light on the importance of geomicrobiological interaction in triggering the formation of metalliferous deposits, with important implications for the generation of submarine Mn deposits and crusts.
NASA Astrophysics Data System (ADS)
Choi, Soon-Mok; Lim, Chang-Hyun; Seo, Won-Seon
2011-05-01
Perovskite oxides have attracted considerable attention in the area of thermoelectrics owing to the advantages of their isotropic crystal structure and straightforward control of their electrical properties. Among the many perovskites, different types of polycrystalline Ca1- x R x MnO3 (R: Pr, Nd, Sm) were prepared by solid-state reaction in this study. Three different rare-earth dopants were substituted at the Ca-ion site at various amounts. Considering phase stability, rare-earth ions with nearly the same ionic radius as Ca2+ were selected. To assess thermoelectric performance, the electrical conductivity, Seebeck coefficient, and power factor were measured, and phase analysis was conducted. The effects of ionic radius variation on single phase formation and the effect of doping amount on carrier concentration are discussed.
Filipek, L.H.; Chao, T.T.; Carpenter, R.H.
1981-01-01
A sequential extraction scheme is utilized to determine the geochemical partitioning of Cu, Zn and Pb among hydrous Mn- and Fe-oxides, organics and residual crystalline silicates and oxides in the minus-80-mesh ( Fe-oxides > Mn-oxides; Zn, Mn-oxides {reversed tilde equals} organics > Fe-oxides; Pb, Fe-oxides > organics > Mn-oxides. In the sediments, organics are the most efficient scavengers of all three ore metals. These results emphasize the importance of organics as sinks for the ore metals, even in environments with high concentrations of Mn- and Fe-oxides. Of the ore metals, Zn appears to be the most mobile, and is partitioned most strongly into the coatings. However, anomaly contrast for hydromorphic Zn, normalized to the MnFe-oxide or organic content, is similar in sediments and coatings. Cu shows the highest anomaly on the boulder coatings, probably due to precipitation of a secondary Cu mineral. In contrast, detrital Pb in the pan concentrates shows a better anomaly than any hydromorphic Pb component. ?? 1981.
O-H bond oxidation by a monomeric Mn(III)-OMe complex.
Wijeratne, Gayan B; Day, Victor W; Jackson, Timothy A
2015-02-21
Manganese-containing, mid-valent oxidants (Mn(III)-OR) that mediate proton-coupled electron-transfer (PCET) reactions are central to a variety of crucial enzymatic processes. The Mn-dependent enzyme lipoxygenase is such an example, where a Mn(III)-OH unit activates fatty acid substrates for peroxidation by an initial PCET. This present work describes the quantitative generation of the Mn(III)-OMe complex, [Mn(III)(OMe)(dpaq)](+) (dpaq = 2-[bis(pyridin-2-ylmethyl)]amino-N-quinolin-8-yl-acetamidate) via dioxygen activation by [Mn(II)(dpaq)](+) in methanol at 25 °C. The X-ray diffraction structure of [Mn(III)(OMe)(dpaq)](+) exhibits a Mn-OMe group, with a Mn-O distance of 1.825(4) Å, that is trans to the amide functionality of the dpaq ligand. The [Mn(III)(OMe)(dpaq)](+) complex is quite stable in solution, with a half-life of 26 days in MeCN at 25 °C. [Mn(III)(OMe)(dpaq)](+) can activate phenolic O-H bonds with bond dissociation free energies (BDFEs) of less than 79 kcal mol(-1) and reacts with the weak O-H bond of TEMPOH (TEMPOH = 2,2'-6,6'-tetramethylpiperidine-1-ol) with a hydrogen/deuterium kinetic isotope effect (H/D KIE) of 1.8 in MeCN at 25 °C. This isotope effect, together with other experimental evidence, is suggestive of a concerted proton-electron transfer (CPET) mechanism for O-H bond oxidation by [Mn(III)(OMe)(dpaq)](+). A kinetic and thermodynamic comparison of the O-H bond oxidation reactivity of [Mn(III)(OMe)(dpaq)](+) to other M(III)-OR oxidants is presented as an aid to gain more insight into the PCET reactivity of mid-valent oxidants. In contrast to high-valent counterparts, the limited examples of M(III)-OR oxidants exhibit smaller H/D KIEs and show weaker dependence of their oxidation rates on the driving force of the PCET reaction with O-H bonds.
ALA16VAL-MnSOD gene polymorphism and stroke: Association with dyslipidemia and glucose levels.
Flores, Ariane Ethur; Pascotini, Eduardo Tanuri; Kegler, Aline; Gabbi, Patricia; Bochi, Guilherme Vargas; Barbisan, Fernanda; Duarte, Thiago; Prado, Ana Lucia Cervi; Duarte, Marta M M F; da Cruz, Ivana B M; Moresco, Rafael Noal; Santos, Adair Roberto Soares; Bresciani, Guilherme; Royes, Luiz Fernando Freire; Fighera, Michele Rechia
2017-09-05
Stroke risk has been associated to the progression of carotid plaques due to high glucose levels and lipid accumulation, which are greatly associated to cerebral injury, brain oxidative stress, and apoptosis. The ALA16VAL-MnSOD gene single nucleotide polymorphism (SNP) has shown to modulate risk factors of several metabolic and vascular diseases, such as blood glucose (GLU) and lipid levels. However, the association of these factors in stroke patients has not been studied to date. Thus, we evaluated the influence of the Ala16Val-MnSOD SNP on lipid profile, GLU levels, oxidative and DNA damage of 44 patients in a late phase of stroke (>6months). The statistical analysis showed a greater proportion of VV carries in stroke patients. The results also indicated that stroke patients had higher cholesterol (CHO) and GLU levels when compared to healthy counterparts. Interestingly, V allele carriers with stroke showed higher levels of CHO and GLU when compared to AA stroke and healthy counterparts. Our findings suggest that oxidative stress markers are still increased even after 6 months of cerebral injury. Furthermore, we propose that the Ala16Val-MnSOD SNPs may contribute to hypercholesterolemia and higher GLU levels, increasing the risk to neurovascular events that may lead to stroke. Copyright © 2017 Elsevier B.V. All rights reserved.
Nakamura, Shin; Ota, Kai; Shibuya, Yuichi; Noguchi, Takumi
2016-01-26
Photosynthetic water oxidation takes place at the Mn4CaO5 cluster in photosystem II. Around the Mn4CaO5 cluster, a hydrogen bond network is formed by several water molecules, including four water ligands. To clarify the role of this water network in the mechanism of water oxidation, we investigated the effects of the removal of Ca(2+) and substitution with metal ions on the vibrations of water molecules coupled to the Mn4CaO5 cluster by means of Fourier transform infrared (FTIR) difference spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. The OH stretching vibrations of nine water molecules forming a network between D1-D61 and YZ were calculated using the QM/MM method. On the the calculated normal modes, a broad positive feature at 3200-2500 cm(-1) in an S2-minus-S1 FTIR spectrum was attributed to the vibrations of strongly hydrogen-bonded OH bonds of water involving the vibrations of water ligands to a Mn ion and the in-phase coupled vibration of a water network connected to YZ, while bands in the 3700-3500 cm(-1) region were assigned to the coupled vibrations of weakly hydrogen-bonded OH bonds of water. All the water bands were lost upon Ca(2+) depletion and Ba(2+) substitution, which inhibit the S2 → S3 transition, indicating that a solid water network was broken by these treatments. By contrast, Sr(2+) substitution slightly altered the water bands around 3600 cm(-1), reflecting minor modification in water interactions, consistent with the retention of water oxidation activity with a decreased efficiency. These results suggest that the water network around the Mn4CaO5 cluster plays an essential role in the water oxidation mechanism particularly in a concerted process of proton transfer and water insertion during the S2 → S3 transition.
Preparation and Properties of (YCa)(TiMn)O3−δ Ceramics Interconnect of Solid Oxide Fuel Cells
Liou, Yi-Cheng; Tsai, Wen-Chou; Yen, Hao-Hsuan; Chang, Yung-Chia
2015-01-01
(YCa)(TiMn)O3–δ ceramics prepared using a reaction-sintering process were investigated. Without any calcination involved, the mixture of raw materials was pressed and sintered directly. Y2Ti2O7 instead of YTiO3 formed when a mixture of Y2O3 and TiO2 with Y/Ti ratio 1/1 were sintered in air. Y2Ti2O7, YTiO2.085 and some unknown phases were detected in Y0.6Ca0.4Ti0.6Mn0.4O3–δ. Monophasic Y0.6Ca0.4Ti0.4Mn0.6O3–δ ceramics were obtained after 1400–1500 °C sintering. Dense Y0.6Ca0.4Ti0.4Mn0.6O3–δ with a density 4.69 g/cm3 was observed after 1500 °C/4 h sintering. Log σ for Y0.6Ca0.4Ti0.6Mn0.4O3–δ increased from –3.73 Scm–1 at 350 °C to –2.14 Scm–1 at 700 °C. Log σ for Y0.6Ca0.4Ti0.4Mn0.6O3–δ increased from –2.1 Scm–1 at 350 °C to –1.36 Scm–1 at 700 °C. Increasing Mn content decreased activation energy Ea and increased electrical conductivity. Reaction-sintering process is proved to be a simple and effective method to obtain (YCa)(TiMn)O3–δ ceramics for interconnects in solid oxide fuel cells. PMID:28793436
Fernández-Fueyo, Elena; Acebes, Sandra; Ruiz-Dueñas, Francisco J.; ...
2014-11-22
The genome ofCeriporiopsis subvermisporaincludes 13 manganese peroxidase (MnP) genes representative of the three subfamilies described in ligninolytic fungi, which share an Mn 2+-oxidation site and have varying lengths of the C-terminal tail. We expressed short, long and extralong MnPs heterologously and biochemically characterized, and the first structure of an extralong MnP was solved. Its C-terminal tail surrounds the haem-propionate access channel, contributing to Mn 2+oxidation by the internal propionate, but prevents the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), which is only oxidized by short MnPs and by shortened-tail variants from site-directed mutagenesis. Furthermore, the tail, which is anchored by numerous contacts, notmore » only affects the catalytic properties of long/extralong MnPs but is also associated with their high acidic stability. Cd 2+binds at the Mn 2+-oxidation site and competitively inhibits oxidation of both Mn 2+and ABTS. Moreover, mutations blocking the haem-propionate channel prevent substrate oxidation. This agrees with molecular simulations that position ABTS at an electron-transfer distance from the haem propionates of anin silicoshortened-tail form, while it cannot reach this position in the extralong MnP crystal structure. Small differences exist between the long and the extralong MnPs, which do not justify their classification as two different subfamilies, but they significantly differ from the short MnPs, with the presence/absence of the C-terminal tail extension being implicated in these differences.« less
Nam, Inho; Kim, Nam Dong; Kim, Gil-Pyo; Park, Junsu; Yi, Jongheop
2012-07-01
A supercapacitor has the advantages of both the conventional capacitors and the rechargeable batteries. Mn oxide is generally recognized one of the potential materials that can be used for a supercapacitor, but its low conductivity is a limiting factor for electrode materials. In this study, a hybrid of amorphous Mn oxide (AMO) and ordered mesoporous carbon (OMC) was prepared and characterized using X-ray diffraction, transmission electron microscopy, N2/77 K sorption techniques, and electrochemical analyses. The findings indicate that the electrochemical activities of Mn oxide were facilitated when it was in the hybrid state because OMC acted as a pathway for both the electrolyte ions and the electrons due to the characteristics of the ordered mesoporous structure. The ordered mesoporous structure of OMC was well maintained even after hybridization with amorphous Mn oxide. The electrochemical-activity tests revealed that the AMO/OMC hybrid had a higher specific capacitance and conductivity than pure Mn oxide. In the case where the Mn/C weight ratio was 0.75, the composite showed a high capacitance of 153 F/g, which was much higher than that for pure Mn oxide, due to the structural effects of OMC.
NASA Astrophysics Data System (ADS)
Bao, Shuo; Luo, Shaohua; Wang, Zhiyuan; Wang, Qing; Hao, Aimin; Zhang, Yahui; Wang, Yingling
2017-09-01
P2-type manganese-based ternary transition metal oxides have triggered extensive researches as potential cathode materials for sodium ion batteries. However, these kinds of materials display the large difference in electrochemical performance with sodium content varying from 0.45 to 0.8, the relevant investigations on effects of sodium content are insufficient. In this work, we synthesize a series of spherical P2-type cathode materials NaxNi0.167Co0.167Mn0.67O2 with different sodium content (x = 0.45, 0.55, 0.67, 0.8, 0.9, 1) and investigate the effects of sodium content on structure and electrochemical performance. The results reveal that NaxNi0.167Co0.167Mn0.67O2 (x = 0.45, 0.55) consist of P2-phase and P3-phase, while NaxNi0.167Co0.167Mn0.67O2 (x = 0.67, 0.8, 0.9, 1) exhibit pure P2-phase. Na0.45Ni0.167Co0.167Mn0.67O2 delivers an initial discharge capacity of 143 mAh g-1, while a fast capacity decay is observed after 50 cycles. In comparison, Na0.67Ni0.167Co0.167Mn0.67O2 shows excellent cycling stability and rate performance. The significant difference in electrochemical performance is attributed to the initial sodium content, which leads to the existence of P3-phase. Moreover, higher sodium content promotes primary particles to grow larger and thicker, which is not favorable for the diffusion of Na+. Generally, Na0.67Ni0.167Co0.167Mn0.67O2 is favored by suitable sodium content, offers excellent electrochemical performance in terms of capacity, rate performance and cycling stability.
Activated carbon doped with biogenic manganese oxides for the removal of indigo carmine.
Hu, Yichen; Chen, Xiao; Liu, Zhiqiang; Wang, Gejiao; Liao, Shuijiao
2016-01-15
Indigo carmine (IC) is one of the oldest, most important, and highly toxic dyes which is released from the effluents of many industries and results in serious pollution in water. In this study, the biogenic Mn oxides were activated by NaOH and then heated for 3 h at 350 °C to produce activated carbon doped with Mn oxide (Bio-MnOx-C), which were produced by culturing Mn (II)-oxidizing bacterial strain MnI7-9 in liquid A medium at 28 °C with 10 mmol/L MnCl2. Bio-MnOx-C was characterized by SEM, TEM, IR, XPS, XRD, etc. It contained C, O, and Mn which comprised Mn (IV) and Mn (III) valence states at a ratio of 3.81:1. It had poorly crystalline ε-MnO2 with a specific surface area of 130.94 m(2)/g. A total of 0.1 g Bio-MnOx-C could remove 45.95 g IC from 500 mg/L IC solution after 0.5 h contact time. IC removal by Bio-MnOx-C included a rapid oxidation reaction and the removal reaction followed second-order kinetic equation. These results confirmed that Bio-MnOx-C could be a potential material for wastewater remediation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hydrothermal mineralization along submarine rift zones, Hawaii
Hein, J.R.; Gibbs, A.E.; Clague, D.A.; Torresan, M.
1996-01-01
Describes mineralization of midplate submarine rift zones and hydrothermal manganese oxide mineralization of midplate volcanic edifices. Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks; both deposit types are composed of todorokite and birnessite. Unlike most other hydrothermal Mn oxide deposits, those from Hawaiian rift zones are enriched in the trace metals Zn, Co, Ba, Mo, Sr, V, and especially Ni. Metals are derived from three sources: mafic and ultramafic rocks leached by circulating hydrothermal fluids, clastic material (in Mn-cemented sandstone), and seawater that mixed with the hydrothermal fluids. Precipitation of Mn oxide below the seafloor is indicated by its occurrence as cement, growth textures that show mineralizing fluids were introduced from below, and pervasive replacement of original matrix of clastic rocks.Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks. Both deposit types are composed of todorokite and birnessite. This article describes in detail the specific characteristics of these Mn oxides.
NASA Astrophysics Data System (ADS)
McFadden, Anthony; Wilson, Nathaniel; Brown-Heft, Tobias; Pennachio, Daniel; Pendharkar, Mihir; Logan, John A.; Palmstrøm, Chris J.
2017-12-01
The interface formation in epitaxial MgO /Co2MnSi (001) films was studied using in-situ X-ray photoelectron spectroscopy (XPS). MgO was deposited on single crystal Co2MnSi (001) layers using e-beam evaporation: a technique which is expected to oxidize the Co2MnSi layer somewhat due to the rise in oxygen partial pressure during MgO deposition while leaving the deposited MgO oxygen deficient. Not unexpectedly, we find that e-beam evaporation of MgO raises the oxygen background in the deposition chamber to a level that readily oxidizes the Co2MnSi surface, with oxygen bonding preferentially to Mn and Si over Co. Interestingly, this oxidation causes an elemental segregation, with Mn-Si effectively moving toward the surface, resulting in an MgO /Co2MnSi interface with a composition significantly differing from the original surface of the unoxidized Co2MnSi film. As MgO is deposited on the oxidized Co2MnSi , the Mn-oxides are reduced, while the Si oxide remains, and is only somewhat reduced after additional annealing in ultrahigh vacuum. Annealing after the MgO is grown on Co2MnSi causes oxygen to move away from the oxidized Co2MnSi interface toward the surface and into the MgO. This observation is consistent with an increase in the tunneling magnetoresistance ratio with post-growth annealing measured in fabricated magnetic tunnel junctions (MTJs). The findings are discussed in light of fabrication of MgO/Heusler based MTJs, where the exponential decay of tunneling probability with contact separation exemplifies the importance of the ferromagnet/tunnel barrier interface.
Mahmoud, Mohamed; Gad-Allah, Tarek A; El-Khatib, K M; El-Gohary, Fatma
2011-11-01
This study focused on the use of spinel manganese-cobalt (Mn-Co) oxide, prepared by a solid state reaction, as a cathode catalyst to replace platinum in microbial fuel cells (MFCs) applications. Spinel Mn-Co oxides, with an Mn/Co atomic ratios of 0.5, 1, and 2, were prepared and examined in an air cathode MFCs which was fed with a molasses-laden synthetic wastewater and operated in batch mode. Among the three Mn-Co oxide cathodes and after 300 h of operation, the Mn-Co oxide catalyst with Mn/Co atomic ratio of 2 (MnCo-2) exhibited the highest power generation 113 mW/m2 at cell potential of 279 mV, which were lower than those for the Pt catalyst (148 mW/m2 and 325 mV, respectively). This study indicated that using spinel Mn-Co oxide to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Manganese Oxidizing Bacteria in Guaymas Basin Hydrothermal Fluids, Sediments, and Plumes
NASA Astrophysics Data System (ADS)
Dick, G. J.; Tebo, B. M.
2002-12-01
The active seafloor hydrothermal system at Guaymas Basin in the Gulf of California is unique in that spreading centers are covered with thick sediments, and hydrothermal fluids are injected into a semi-enclosed basin. This hydrothermal activity is the source of a large input of dissolved manganese [Mn(II)] into Guaymas Basin, and the presence of a large standing stock of particulate manganese in this basin has been taken as evidence for a short residence time of dissolved Mn(II) with respect to oxidation, suggestive of bacterial catalysis. During a recent Atlantis/Alvin expedition (R/V Atlantis Cruise #7, Leg 11, Jim Cowen Chief Scientist), large amounts of particulate manganese oxides were again observed in Guaymas Basin hydrothermal plumes. The goal of the work presented here was to identify bacteria involved in the oxidation of Mn(II) in Guaymas Basin, and to determine what molecular mechanisms drive this process. Culture-based methods were employed to isolate Mn(II)-oxidizing bacteria from Guaymas Basin hydrothermal fluids, sediments, and plumes, and numerous Mn(II)-oxidizing bacteria were identified based on the formation of orange, brown, or black manganese oxides on bacterial colonies on agar plates. The Mn(II)-oxidizing bacteria were able to grow at temperatures from 12 to 50°C, and a selection of the isolates were chosen for phylogenetic (16S rRNA genes) and microscopic characterization. Endospore-forming Bacillus species accounted for many of the Mn(II)-oxidizing isolates obtained from both hydrothermal sediments and plumes, while members of the alpha- and gamma-proteobacteria were also found. Mn(II)-oxidizing enzymes from previously characterized Bacillus spores are known to be active at temperatures greater than 50°C. The presence of Mn(II)-oxidizing spores - some of which are capable of growing at elevated temperatures - in hydrothermal fluids and sediments at Guaymas Basin suggests that Mn(II) oxidation may be occurring immediately or very soon after hydrothermal fluids emerge from the seafloor.
Ivarsson, Magnus; Peckmann, Jörn; Tehler, Anders; Broman, Curt; Bach, Wolfgang; Behrens, Katharina; Reitner, Joachim; Böttcher, Michael E.; Norbäck Ivarsson, Lena
2015-01-01
Fungi have been recognized as a frequent colonizer of subseafloor basalt but a substantial understanding of their abundance, diversity and ecological role in this environment is still lacking. Here we report fossilized cryptoendolithic fungal communities represented by mainly Zygomycetes and minor Ascomycetes in vesicles of dredged volcanic rocks (basanites) from the Vesteris Seamount in the Greenland Basin. Zygomycetes had not been reported from subseafloor basalt previously. Different stages in zygospore formation are documented in the studied samples, representing a reproduction cycle. Spore structures of both Zygomycetes and Ascomycetes are mineralized by romanechite-like Mn oxide phases, indicating an involvement in Mn(II) oxidation to form Mn(III,VI) oxides. Zygospores still exhibit a core of carbonaceous matter due to their resistance to degradation. The fungi are closely associated with fossiliferous marine sediments that have been introduced into the vesicles. At the contact to sediment infillings, fungi produced haustoria that penetrated and scavenged on the remains of fragmented marine organisms. It is most likely that such marine debris is the main carbon source for fungi in shallow volcanic rocks, which favored the establishment of vital colonies. PMID:26181773
Molten salt synthesis of La0.8Sr0.2MnO3 powders for SOFC cathode electrode
NASA Astrophysics Data System (ADS)
Gu, Sin-il; Shin, Hyo-soon; Hong, Youn-woo; Yeo, Dong-hun; Kim, Jong-hee; Nahm, Sahn; Yoon, Sang-ok
2012-08-01
For La0.8Sr0.2MnO3 (LSM) perovskite, used as the cathode material for solid oxide fuel cells (SOFC), it is known that the formation of a triple-phase-boundary is restrained due to the formation of a second phase at the YSZ/electrode interface at high temperature. To decrease the 2nd phase, lowering the sintering temperature has been used. LSM powder was synthesized by molten salt synthesis method to control its particle size, shape, and agglomeration. We have characterized the phase formation, particle size, shape, and sintering behavior of LSM in the synthesis using the variation of KCl, LiCl, KF and its mixed salts as raw materials. In the case of KCl and KCl-KF salts, the particle size and shape of the LSM was well controlled and synthesized. However, in the case of LiCl and KCl-LiCl salts, LiMnOx as 2nd phase and LSM were synthesized simultaneously. In the case of the mixed salt of KCl-KF, the growth mechanism of the LSM particle was changed from `diffusion-controlled' to `reaction-controlled' according to the amount of mixed salt. The sintering temperature can be decreased below 1000 °C by using the synthesized LSM powder.
NASA Astrophysics Data System (ADS)
Goto, K. T.; Ito, T.; Suzuki, K.; Kashiwabara, T.; Takaya, Y.; Shimoda, G.; Nozaki, T.; Kiyokawa, S.; Tetteh, G. M.; Nyame, F. K.
2013-12-01
Oxygenation of the atmosphere and oceans has influenced the evolution of ocean chemistry and diversification of early life. A number of large manganese (Mn) deposits are distributed in the Paleoproterozoic sedimentary successions that were formed during the great oxidation event (GOE) around 2.4-2.2 Ga (Meynard, 2010). Due to the high redox potential of Mn, occurrences of Mn deposits have been regarded as important evidence for a highly oxidized environment during the Paleoproterozoic (Kirschvink et al., 2000). Furthermore, because Mn oxides strongly adsorb various elements, including bioessential elements such as Mo, formation of large Mn deposits may have affected the seawater chemical composition and ecology during the Paleoproterozoic. However, the genesis of each Mn deposit is poorly constrained, and the relationships among the formation of Mn deposits, the evolution of atmospheric and ocean chemistry, and the diversification of early life are still ambiguous. In this study, we report the Re-Os isotope compositions, rare earth element (REE) compositions, and abundance of manganophile elements in the Mn carbonate ore and host sedimentary rock samples collected from the Nsuta Mn deposit of the Birimian Supergroup, Ghana. The Nsuta deposit is one of the largest Paleoproterozoic Mn deposits, although its genesis remains controversial (Melcher et al., 1995; Mucke et al., 1999). The composite Re-Os isochron age (2149 × 130 Ma) of the Mn carbonate and sedimentary rock samples was consistent with the depositional age of the sedimentary rocks (~2.2 Ga) presumed from the U-Pb zircon age of volcanic rocks (Hirdes and Davis, 1998), suggesting that the timing of Mn ore deposition was almost equivalent to the host rock sedimentation. The PAAS-normalized REE pattern showed a positive Eu anomaly in all samples and a positive Ce anomaly only in the Mn carbonate ore. These REE patterns indicate the possible contribution of Eu-enriched fluids derived from hydrothermal activity and Ce enrichment due to the oxidation of Ce(III) by Mn(IV) during an ore formation. Among the manganophile elements, merely Mo is enriched in the Mn carbonate ore compared with the host sedimentary rocks. The profile of manganophile elements was similar to that of modern hydrothermal Mn oxide (Kuhn et al., 2003), although the exact Mo concentration was much lower. These geochemical lines of evidence provide the following plausible genetic model for the Nsuta deposits: (1) Mn(II) was derived from hydrothermal vents, (2) Mn(II) was oxidized to Mn(IV) oxide by the oxygenated seawater, (3) the precipitation of Mn oxide is almost concurrent with the deposition of the host sedimentary rocks, (4) Mn oxide was diagenetically transformed to be a Mn carbonate ore. The geochemical features of the Nsuta deposits suggest that, as in the present oxic oceans, Mn oxide was a potential sink for several trace elements in the Paleoproterozoic oceans. The low-Mo concentration in the Mn carbonate ore probably reflects the large difference between the chemical compositions of Paleoproterozoic and present seawater, implying the prevalence of reduced marine conditions even during the GOE (Scott et al., 2008)
NASA Astrophysics Data System (ADS)
Santelli, C. M.; Chaput, D.; Hansel, C. M.; Burgos, W. D.
2014-12-01
Manganese is a pollutant in worldwide environments contaminated with metals and organics, such as acid mine drainage (AMD), freshwater ponds, and agricultural waste storage sites. Microorganisms contribute to the removal of dissolved Mn compounds in the environment by promoting Mn(II) oxidation reactions. The oxidation of Mn(II) results in the precipitation of sparingly soluble Mn(IV) oxide minerals, effectively removing the metal from the aqueous milieu (e.g., groundwater or wastewater streams). In recent years, our research has identified a diversity of Mn(II)-oxidizing fungi inhabiting these polluted environments, however their overall contribution to the remediation process in situ remains poorly understood. Here we present results of culture-based and Next Generation Sequencing (NGS) studies in AMD treatment systems actively remediating Mn and other metals where we profile the bacterial, fungal, algal and archaeal communities to determine the overall community diversity and to establish the relative abundance of known Mn(II) oxidizers. A variety of treatment systems with varying Mn-removal efficiencies were sampled to understand the relationship between remediation efficiency and microbial community composition and activity. Targeted-amplicon sequencing of DNA and RNA of the 16S rRNA genes (bacteria and archaea), 23S rRNA genes (algae) and ITS region (fungi) was performed using both 454 pyrosequencing and Illumina platforms. Results showed that only the fungal taxonomic profiles significantly differed between sites that removed the majority of influent Mn and those that did not. Specifically, Ascomycota (which include known Mn(II) oxidizers isolated from these treatment systems) dominated greater efficiency systems whereas less efficient systems were dominated by Basidiomycota. Furthermore, known Mn(II) oxidizers accounted for only a minor proportion of bacterial sequences but a far greater proportion of fungal sequences. These culture-independent studies lend further evidence to numerous culture-based studies (of AMD remediation systems here, as well as a variety of other metal-rich systems) that establish Mn(II)-oxidizing fungi as important contributors to the remediation of Mn, and likely other metals, in metal polluted environments.
NASA Astrophysics Data System (ADS)
Foster, A. L.; Klofas, J. M.; Hein, J. R.; Koschinsky, A.; Bargar, J.; Dunham, R. E.; Conrad, T. A.
2011-12-01
Marine ferromanganese crusts and nodules ("Fe-Mn crusts") are considered a potential mineral resource due to their accumulation of several economically-important elements at concentrations above mean crustal abundances. They are typically composed of intergrown Fe oxyhydroxide and Mn oxide; thicker (older) crusts can also contain carbonate fluorapatite. We used X-ray absorption fine-structure (XAFS) spectroscopy, a molecular-scale structure probe, to determine the speciation of several elements (Te, Bi, Mo, Zr, Pt) in Fe-Mn crusts. As a first step in analysis of this dataset, we have conducted principal component analysis (PCA) of Te K-edge and Mo K-edge, k3-weighted XAFS spectra. The sample set consisted of 12 homogenized, ground Fe-Mn crust samples from 8 locations in the global ocean. One sample was subjected to a chemical leach to selectively remove Mn oxides and the elements associated with it. The samples in the study set contain 50-205 mg/kg Te (average = 88) and 97-802 mg/kg Mo (average = 567). PCAs of background-subtracted, normalized Te K-edge and Mo K-edge XAFS spectra were performed on a data matrix of 12 rows x 122 columns (rows = samples; columns = Te or Mo fluorescence value at each energy step) and results were visualized without rotation. The number of significant components was assessed by the Malinowski indicator function and ability of the components to reconstruct the features (minus noise) of all sample spectra. Two components were significant by these criteria for both Te and Mo PCAs and described a total of 74 and 75% of the total variance, respectively. Reconstruction of potential model compounds by the principal components derived from PCAs on the sample set ("target transformation") provides a means of ranking models in terms of their utility for subsequent linear-combination, least-squares (LCLS) fits (the next step of data analysis). Synthetic end-member models of Te4+, Te6+, and Mo adsorbed to Fe(III) oxyhydroxide and Mn oxide were tested. Te6+ sorbed to Fe oxyhydroxide and Mo sorbed to Fe oxyhydroxide were identified as the best models for Te and Mo PCAs, respectively. However, in the case of Mo, least-squares fits contradicted these results, indicating that about 80% of Mo in crust samples was associated with Mn oxides. Ultimately it was discovered that the sample from which Mn oxide had been leached was skewing the results in the Mo PCA but not in the Te PCA. When the leached sample was removed and the Mo PCA repeated (n = 11), target transformation indicated that Mo sorbed to Mn oxide was indeed the best model for the set. Our results indicate that Te and Mo are strongly partitioned into different phases in these Fe-Mn crusts, and emphasize the importance of evaluating outliers and their effects on PCA.
NASA Astrophysics Data System (ADS)
Surour, Adel A.
2015-01-01
In the Jabal Samran area (western Saudi Arabia), secondary copper mineralization in a NE-trending shear zone in which the arc metavolcanic host rocks (dacite-rhyodacite) show conjugate fractures and extensive hydrothermal alteration and bleaching. The zones contain frequent Fe-Mn(III) oxyhydroxides (FeOH-MnOH) that resulted from oxidation of pyrite and Mn-bearing silicates. In the bleached part, the groundmass is represented by Fe-bearing interstratified illite-smectite with up to 4.02 wt% FeOt. FeOH-MnOH are pre-weathering phases formed by hydrothermal alteration in a submarine environment prior to uplifting. Five varieties of FeOH are distinguished, four of them are exclusively hydrothermal with ∼20 wt% H2O whereas the fifth contains ∼31-33 wt% H2O and might represent reworking of earlier hydrothermal FeOH phases by weathering. FeOH fills thin fractures in the form of veinlets and crenulated laminae or as a pseudomorph for pyrite, goethite and finally ferrihydrite, and this oxyhydroxide is characterized by positive correlation of Fe2O3 with SiO2 and Al2O3. On the other hand, MOH shows positive correlation between MnO2 and Al2O3 whereas it is negative between Fe2O3 and SiO2. Paratacamite is the most common secondary copper mineral that fills fractures and post-dates FeOH and MnOH. It is believed that Cl- in the structure of paratacamite represents inherited marine storage rather than from surfacial evaporates or meteoric water. The mineralogy of slags suggests a complicated mineral assemblage that includes native Cu prills, synthetic spinifixed Mn-rich amphiboles with 16.73 wt% MnO, brown glass and Ca-Mn-Fe phase close to the olivine structure. EMPA indicate that the some Cu prills have either grey discontinuous boarder zone of S-rich Mn-Cu alloy (with up to 21.95 wt% S and 19.45 wt% Mn) or grey Cu-Mn-Fe alloy (with up to 15.9 wt% Cu, 39. 12 wt% Mn and 61.64 wt% Fe). Mn in the Cu prills is expelled inward as Cu-Mn-Fe alloy inclusions whereas S is expelled outward as S-rich Mn-Cu alloy crust. Remains in the Samran smelter sites suggest the use of charcoal as a source of energy, quartzite as a flux and an air-cooling technique was used.
Coprecipitation mechanisms and products in manganese oxidation in the presence of cadmium
Hem, J.D.; Lind, Carol J.
1991-01-01
Manganese oxidation products were precipitated in an aerated open-aqueous system where a continuous influx of mixed Mn2+ and Cd2+ solution was supplied and pH was maintained with an automated pH-stat adding dilute NaOH. X-ray diffraction and electron diffraction identified the solids produced as mixtures of Cd2Mn34+O8, Mn2+2Mn4+3O8, MnO2 (ramsdellite), and CdCO3. Mean oxidation numbers of the total precipitated Mn as great as 3.6 were reached during titrations. During subsequent aging in solution, oxidation numbers between 3.8 and 3.9 were reached in some precipitates in less than 40 days. Conditional oxidation rate constants calculated from a crystal-growth equation applied to titration data showed the overall precipitation rate, without considering manganese oxidation state in the precipitate, was increased by a factor of ~4 to ~7 when the mole ratio (Cd/Mn + Cd) of cadmium in the feed solution was 0.40 compared with rate constants for hausmannite (Mn2+Mn23+O4 precipitation under similar conditions but without accessory metals. Kinetic experiments were made to test effects of various Cd/Mn + Cd mole ratios and rates of addition of the feed solution, different temperatures from 5.0 to 35??C, and pH from 8.0 to 9.0. Oxidation rates were slower when the Cd mole ratio was less than 0.40. The rate increased by a factor of ~10 when pH was raised one-half unit. The effect of temperature on the rate constants was also substantial, but the meaning of this is uncertain because the rate of formation of Mn4+ oxide in the absence of Cd or other accessory metals was too slow to be measurable in titration experiments. The increased rate of Mn4+ oxide formation in the presence of Cd2+ can be ascribed to the formation of a labile adsorbed intermediate, CdMn2O4 Int, an analog of hausmannite, formed on precipitate surfaces at the beginning of the oxidation process. The increased lability of this structure, resulting from coordination-chemical behavior of Cd2+ during the titration, causes a rapid second-stage rearrangement and facilitates disproportionation of the Mn3+ ions. The Mn2+ ions thus released provide a positive feedback mechanism that couples the two steps of the conversion of Mn2+ to Mn4+ more closely than is possible when other metal ions besides manganese are not present. During aging of precipitates in contact with solutions, proportions of Cd2Mn3O8 and MnO2 increased at the expense of other precipitate components. ?? 1991.
Oxidative removal of Mn(II) from solution catalysed by the γ-FeOOH (lepidocrocite) surface
NASA Astrophysics Data System (ADS)
Sung, Windsor; Morgan, James J.
1981-12-01
A laboratory study was undertaken to ascertain the role of surface catalysis in Mn(II) oxidative removal. γ-FeOOH, a ferric oxyhydroxide formed by O2 oxidation of ferrous iron in solution, was studied in the following ways: surface charge characteristics by acid base titration, adsorption of Mn(II) and surface oxidation of Mn(II). A rate law was formulated to account for the effects of pH and the amount of surface on the surface oxidation rate of Mn(II). The presence of milli-molar levels of γ-FeOOH was shown to reduce significantly the half-life of Mn(II) in 0.7 M NaCl from hundreds of hours to hours. The numerical values of the surface rate constants for the γ-FeOOH and that reported for colloidal MnO2 are comparable in order of magnitude.
Effects of dew point on selective oxidation of TRIP steels containing Si, Mn, and B
NASA Astrophysics Data System (ADS)
Lee, Suk-Kyu; Kim, Jong-Sang; Choi, Jin-Won; Kang, Namhyun; Cho, Kyung-Mox
2011-04-01
The selective oxidation of Si, Mn, and B on TRIP steel surfaces is a widely known phenomenon that occurs during heat treatment. However, the relationship between oxide formation and the annealing factors is not completely understood. This study examines the effect of the annealing conditions (dew point and annealing temperature) on oxide formation. A low dew point of -40 °C leads to the formation of Si-based oxides on the surface. A high dew point of -20 °C changes the oxide type to Mn-based oxides because the formation of Si oxides on the surface is suppressed by internal oxidation. Mn-based oxides exhibit superior wettability due to aluminothermic reduction during galvanizing.
Ye, Xiaodong; Fels, Diane; Tovmasyan, Artak; Aird, Katherine M.; Dedeugd, Casey; Allensworth, Jennifer L.; Kos, Ivan; Park, Won; Spasojevic, Ivan; Devi, Gayathri R.; Dewhirst, Mark W.; Leong, Kam W.; Batinic-Haberle, Ines
2012-01-01
Due to the ability to easily accept and donate electrons Mn(III) N-alkylpyridylporphyrins (MnPs) can dismute O2˙−, reduce peroxynitrite, but also generate reactive species and behave as pro-oxidants if conditions favour such action. Herein two ortho isomers, MnTE-2-PyP5+, MnTnHex-2-PyP5+, and a meta isomer MnTnHex-3-PyP5+, which differ greatly with regard to their metal-centered reduction potential, E1/2 (MnIIIP/MnIIP) and lipophilicity, were explored. Employing MnIIIP/MnIIP redox system for coupling with ascorbate, these MnPs catalyze ascorbate oxidation and thus peroxide production. Consequently, cancer oxidative burden may be enhanced, which in turn would suppress its growth. Cytotoxic effects on Caco-2, Hela, 4T1, HCT116 and SUM149 were studied. When combined with ascorbate, MnPs killed cancer cells via peroxide produced outside of the cell. MnTE-2-PyP5+ was the most efficacious catalyst for peroxide production, while MnTnHex-3-PyP5+ is most prone to oxidative degradation with H2, and thus the least efficacious. A 4T1 breast cancer mouse study of limited scope and success was conducted. The tumour oxidative stress was enhanced and its microvessel density reduced when mice were treated either with ascorbate or MnP/ascorbate; the trend towards tumour growth suppression was detected. PMID:21859376
Iron Drinking Water Pipe Corrosion Products: Concentrators of Toxic Metals
2013-01-01
health risk. In addition Pb corrosion products may be sinks for other metals such as chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn). These...Vanadium K-Edge X-ray Absorption Near-Edge Structure Interpretation: Application to the Speciation of Vanadium in Oxide Phases from Steel Slag ’, Journal
The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques.
Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong; Pan, Min
2017-09-28
Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R² > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II) adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X₂Cd) at low pH and inner-sphere surface complexation sites (SOCd⁺ and (SO)₂CdOH - species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water-mineral interface.
Dissimilatory Fe(III) and Mn(IV) reduction.
Lovley, D R
1991-01-01
The oxidation of organic matter coupled to the reduction of Fe(III) or Mn(IV) is one of the most important biogeochemical reactions in aquatic sediments, soils, and groundwater. This process, which may have been the first globally significant mechanism for the oxidation of organic matter to carbon dioxide, plays an important role in the oxidation of natural and contaminant organic compounds in a variety of environments and contributes to other phenomena of widespread significance such as the release of metals and nutrients into water supplies, the magnetization of sediments, and the corrosion of metal. Until recently, much of the Fe(III) and Mn(IV) reduction in sedimentary environments was considered to be the result of nonenzymatic processes. However, microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV) have recently been discovered. With Fe(III) or Mn(IV) as the sole electron acceptor, these organisms can completely oxidize fatty acids, hydrogen, or a variety of monoaromatic compounds. This metabolism provides energy to support growth. Sugars and amino acids can be completely oxidized by the cooperative activity of fermentative microorganisms and hydrogen- and fatty-acid-oxidizing Fe(III) and Mn(IV) reducers. This provides a microbial mechanism for the oxidation of the complex assemblage of sedimentary organic matter in Fe(III)- or Mn(IV)-reducing environments. The available evidence indicates that this enzymatic reduction of Fe(III) or Mn(IV) accounts for most of the oxidation of organic matter coupled to reduction of Fe(III) and Mn(IV) in sedimentary environments. Little is known about the diversity and ecology of the microorganisms responsible for Fe(III) and Mn(IV) reduction, and only preliminary studies have been conducted on the physiology and biochemistry of this process. PMID:1886521
Formation of Deep Sea Umber Deposits Linked to Microbial Metal Oxidation at the South Atlantic Ridge
NASA Astrophysics Data System (ADS)
Peng, Xiaotong; Ta, Kaiwen; Chen, Shun; Zhang, Lijuan; Xu, Hengchao
2015-04-01
Umber deposits are important metalliferous deposits, which occur in off-axis half-graben structures at ancient and modern ocean floor. The genesis of umber deposits has remained controversial for several decades. Recently, microbial Fe(II) oxidation associated with low-temperature diffuse venting has been identified as a key process for the formation of umber deposits, but the exact biochemical mechanisms involved to the precipitation of Mn oxides and co-precipitation of Fe oxyhydroxides and Mn oxides in umber deposits still remain unknown. Here, we used nano secondary ion mass spectrometer, synchrotron-based X-ray absorption spectroscopy, electron microscopy, and molecular techniques to demonstrate the coexistence of two types of metal-oxidizing bacteria within deep-sea hydrothermal umber deposits at the South Atlantic Ridge, where we found unique spheroids composed of biogenic Fe oxyhydroxides and Mn oxides in the deposits. Our data suggest that Fe oxyhydroxides and Mn oxides are metabolic by-products of lithotrophic Fe(II)-oxidizing bacteria and heterotrophic Mn(II)-oxidizing bacteria, respectively. The hydrothermal vents fuel lithotrophic Fe(II)-oxidizing bacteria, which constitute a trophic base that may support the activities of heterotrophic Mn(II)-oxidizing bacteria. The biological origin of umber deposits underscore the importance of geomicrobiologcial interaction in triggering the formation of deep-sea deposits, with important implications for the generation of submarine Mn deposits and crusts.
Chiu, Chun-Hsiang; Hsi, Hsing-Cheng; Lin, Hong-Ping; Chang, Tien-Chin
2015-06-30
This research investigated the effects of manganese oxide (MnOx) impregnation on the physical/chemical properties and multi pollutant control effectiveness of Hg(0) and NO using a V2O5-WO3/TiO2-SiO2 selective catalytic reduction (SCR) catalyst. Raw and MnOx-treated SCR samples were bean-shaped nanoparticles with sizes within 10-30 nm. Impregnating MnOx of ≤ 5 wt% caused limited changes in physical properties of the catalyst. The decrease in surface area when the impregnated MnOx amount was 10 wt% may stem from the pore blockage and particle growth or aggregation of the catalyst. Mn(4+) was the main valence state of impregnated MnOx. Apparent crystallinity of MnOx was not observed based on X-ray diffraction. MnOx impregnation enhanced the Hg(0) oxidation and NO/SO2 removal of SCR catalyst. The 5 and 10% MnOx-impregnated samples had the greatest multi pollutant control potentials for Hg(0) oxidation and NO removal; however, the increasing SO2 removal that may be mainly due to SO2-SO3 conversion should be cautioned. HCl and O2 greatly promoted Hg(0) oxidation. SO2 enhanced Hg(0) oxidation at ≤ 200 ppm while NO and NH3 consistently inhibited Hg(0) oxidation. Elevating flue gas temperature enhanced Hg(0) oxidation. Overall, MnOx-impregnated catalysts show stable and consistent multi pollutant removal effectiveness under the test conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoeber, Stefan, E-mail: stefan.stoeber@geo.uni-halle.de; Redhammer, Guenther; Schorr, Susan
2013-01-15
Four different brownmillerite solid solutions Ca{sub 2}Al{sub x}(Fe{sub 0.5}Mn{sub 0.5}){sub 2-x}O{sub 5+{delta}} with 1/2{<=}x{<=}4/3 were synthesized by a solid oxide ceramic method. The phases crystallize either in a primitive centered orthorhombic cell with space group Pnma or in a body centered cell with space group I2mb dependent on the aluminum concentration present in the solid solution. Mn{sup 3+} ions occupy exclusively site 4a coordinated by six oxygen anions. Increasing Mn{sup 3+} concentrations cause a remarkable distortion of the octahedron and indirectly of the tetrahedron, resulting in twisted and tilted octahedral layers as well as buckled tetrahedral chains. The influences aremore » discussed on the site 4a of trivalent manganese due to its Jahn-Teller activity, with regard to the occupation of octahedron and tetrahedron with different sized iron and aluminum ions. - Graphical Abstract: The coupled substitution Fe{sup 3+}>Mn{sup 3+}+Fe{sup 3+} <=>2 Al{sup 3+} in brownmillerite phases (Ca{sub 2}(Fe{sub 0.5}Mn{sub 0.5}){sub 2-x}Al{sub x}O{sub 5+{delta}}) changes predominantly their structural properties, which is essential for the hydration performance of the calcium aluminate cement, where brownmillerites occur as clinker phases. Highlights: Black-Right-Pointing-Pointer We present structural data of four Ca-Al-Fe-Mn-brownmillerites. Black-Right-Pointing-Pointer Mn{sup 3+}-ions occupy exclusively the octahedrally coordinated site 0,0,0. Black-Right-Pointing-Pointer Bonds and angles of the octahedrally coordinated site are distorted strongly. Black-Right-Pointing-Pointer Mn{sup 3+}-ions influence indirectly the shape of the tetrahedron. Black-Right-Pointing-Pointer Mn{sup 3+}-ions stabilize Pnma instead of I2mb in Ca-Al-Fe-Mn-brownmillerites.« less
NASA Astrophysics Data System (ADS)
Arshadi, M.; Rajaram, H.; Detwiler, R. L.; Jones, T.
2012-12-01
Permanganate oxidation of DNAPL- contaminated fractured rock is an effective remediation technology. Permanganate ion reacts with dissolved DNAPL in a bi-molecular oxidation-reduction reaction. The consumption of dissolved DNAPL in this reaction results in increased concentration gradients away from the free-phase DNAPL, resulting in reaction-enhanced mass transfer, which accelerates contaminant removal. The specific objective of our research was to perform high-resolution non-intrusive experimental studies of permanganate oxidation in a 15.24 × 15.24 cm, transparent, analog, variable-aperture fracture with complex initial TCE entrapped phase geometry. Our experimental system uses light-transmission techniques to accurately measure both fracture aperture and the evolution of individual entrapped DNAPL blobs during the remediation experiments at high resolution (pixel size : 6.2×10-3 cm). Three experiments were performed with different flow rates and permanganate inflow concentrations to observe DNAPL-permanganate interactions across a broader range of conditions. Prior to initiating each experiment, the aperture field within the fracture was measured. The oxidation experiment was initiated by TCE injection into the water saturated fracture till the TCE reached the outflow end, followed by water re-injection through the fracture. The flowing water mobilized some TCE. We continued injection of water till TCE mobilization ceased, leaving behind the residual TCE entrapped within the variable-aperture fracture. Subsequently, permanganate injection through the fracture resulted in propagation of a fingered reaction front into the fracture. We developed image processing algorithms to analyze the evolution of DNAPL phase geometry over the duration of the experiment. The permanganate consumption rate varied significantly within the fracture due to the complex flow and DNAPL concentration fields. Precipitated MnO2 was clearly evident on the downstream side of DNAPL blobs near the inflow boundary indicating high reaction rates in these regions. This behavior is explained by the diversion of permanganate around entrapped DNAPL blobs and downstream advection of dissolved DNAPL. Our results indicate that the total rate of mass transfer from the DNAPL blobs is higher at early times, when not much MnO2 has formed and precipitated. With time, MnO2 precipitation in the fracture leads to changes the aperture field and flow field. Precipitated MnO2 around TCE blobs also decreases the DNAPL accessible surface area. By comparing the results of three experiments, we conclude that low permanganate concentrations and high flow rates lead to more efficient DNAPL remediation, resulting from the fact that under these conditions there would be slower MnO2 formation and less precipitation within the fracture. We also present results on the time-evolution of fracture-scale permanganate consumption and DNAPL removal rates. The experimental observations are being used to develop improved high-resolution numerical models of reactive transport in variable-aperture fractures. The overall goal is to relate the coupled processes of DNAPL removal, permanganate consumption, MnO2 formation and associated changes in aperture and interface area; to derive fracture-scale effective representations of these processes.
Song, Yang; Jiang, Jin; Ma, Jun; Pang, Su-Yan; Liu, Yong-Ze; Yang, Yi; Luo, Cong-Wei; Zhang, Jian-Qiao; Gu, Jia; Qin, Wen
2015-10-06
In this study, it was, interestingly, found that 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonate (ABTS), a widely used electron shuttle, could greatly accelerate the oxidation of substituted phenols by potassium permanganate (Mn(VII)) in aqueous solutions at pH 5-9. This was attributed to the fact that these substituted phenols could be readily oxidized by the stable radical cation (ABTS(•+)), which was quickly produced from the oxidation of ABTS by Mn(VII). The reaction of Mn(VII) with ABTS exhibited second-order kinetics, with stoichiometries of ∼5:1 at pH 5-6 and ∼3:1 at pH 7-9, and the rate constants varied negligibly from pH 5 to 9 (k = (9.44 ± 0.21) × 10(4) M(-1) s(-1)). Comparatively, the reaction of ABTS(•+) with phenol showed biphasic kinetics. The second-order rate constants for the reactions of ABTS(•+) with substituted phenols obtained in the initial phase were strongly affected by pH, and they were several orders of magnitude higher than those for the reactions of Mn(VII) with substituted phenols at each pH. Good Hammett-type correlations were found for the reactions of ABTS(•+) with undissociated (log(k) = 2.82-4.31σ) and dissociated phenols (log(k) = 7.29-5.90σ). The stoichiometries of (2.2 ± 0.06):1 (ABTS(•+) in excess) and (1.38 ± 0.18):1 (phenol in excess) were achieved in the reaction of ABTS(•+) with phenol, but they exhibited no pH dependency.
Water oxidation catalyzed by the tetranuclear Mn complex [Mn(IV)4O5(terpy)4(H2O)2](ClO4)6.
Gao, Yunlong; Crabtree, Robert H; Brudvig, Gary W
2012-04-02
The tetranuclear manganese complex [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) (1; terpy = 2,2':6',2″-terpyridine) gives catalytic water oxidation in aqueous solution, as determined by electrochemistry and GC-MS. Complex 1 also exhibits catalytic water oxidation when adsorbed on kaolin clay, with Ce(IV) as the primary oxidant. The redox intermediates of complex 1 adsorbed on kaolin clay upon addition of Ce(IV) have been characterized by using diffuse reflectance UV/visible and EPR spectroscopy. One of the products in the reaction on kaolin clay is Mn(III), as determined by parallel-mode EPR spectroscopic studies. When 1 is oxidized in aqueous solution with Ce(IV), the reaction intermediates are unstable and decompose to form Mn(II), detected by EPR spectroscopy, and MnO(2). DFT calculations show that the oxygen in the mono-μ-oxo bridge, rather than Mn(IV), is oxidized after an electron is removed from the Mn(IV,IV,IV,IV) tetramer. On the basis of the calculations, the formation of O(2) is proposed to occur by reaction of water with an electrophilic manganese-bound oxyl radical species, (•)O-Mn(2)(IV/IV), produced during the oxidation of the tetramer. This study demonstrates that [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) may be relevant for understanding the role of the Mn tetramer in photosystem II.
Sun, Bo; Dong, Hongyu; He, Di; Rao, Dandan; Guan, Xiaohong
2016-02-02
Permanganate can be activated by bisulfite to generate soluble Mn(III) (noncomplexed with ligands other than H2O and OH(-)) which oxidizes organic contaminants at extraordinarily high rates. However, the generation of Mn(III) in the permanganate/bisulfite (PM/BS) process and the reactivity of Mn(III) toward emerging contaminants have never been quantified. In this work, Mn(III) generated in the PM/BS process was shown to absorb at 230-290 nm for the first time and disproportionated more easily at higher pH, and thus, the utilization rate of Mn(III) for decomposing organic contaminant was low under alkaline conditions. A Mn(III) generation and utilization model was developed to get the second-order reaction rate parameters of benzene oxidation by soluble Mn(III), and then, benzene was chosen as the reference probe to build a competition kinetics method, which was employed to obtain the second-order rate constants of organic contaminants oxidation by soluble Mn(III). The results revealed that the second-order rate constants of aniline and bisphenol A oxidation by soluble Mn(III) were in the range of 10(5)-10(6) M(-1) s(-1). With the presence of soluble Mn(III) at micromolar concentration, contaminants could be oxidized with the observed rates several orders of magnitude higher than those by common oxidation processes, implying the great potential application of the PM/BS process in water and wastewater treatment.
The geochemical cycling of trace elements in a biogenic meromictic lake
NASA Astrophysics Data System (ADS)
Balistrieri, Laurie S.; Murray, James W.; Paul, Barbara
1994-10-01
The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d -1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn).
The geochemical cycling of trace elements in a biogenic meromictic lake
Balistrieri, L.S.; Murray, J.W.; Paul, B.
1994-01-01
The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d-1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn). ?? 1994.
Formation of Manganese Oxide Coatings onto Sand for Adsorption of Trace Metals from Groundwater.
Tilak, A S; Ojewole, S; Williford, C W; Fox, G A; Sobecki, T M; Larson, S L
2013-11-01
Manganese oxide (MnO) occurs naturally in soil and has a high affinity for trace metals adsorption. In this work, we quantified the factors (pH; flow rate; use of oxidants such as bleach, HO, and O; initial Mn(II) concentrations; and two types of geologic media) affecting MnO coatings onto Ottawa and aquifer sand using batch and column experiments. The batch experiments consisted of manual and automated titration, and the column experiments mimicked natural MnO adsorption and oxidation cycles as a strategy for in situ adsorption. A Pb solution of 50 mg L was passed through MnO-coated sand at a flow rate of 4 mL min to determine its adsorption capacity. Batch experimental results showed that MnO coatings increased from pH 6 to 8, with maximum MnO coating occurring at pH 8. Regarding MnO coatings, bleach and O were highly effective compared with HO. The Ottawa sand had approximately twice the MnO coating of aquifer sand. The sequential increase in initial Mn(II) concentrations on both sands resulted in incremental buildup of MnO. The automated procedure enhanced MnO coatings by 3.5 times compared with manual batch experiments. Column results showed that MnO coatings were highly dependent on initial Mn(II) and oxidant concentrations, pH, flow rate, number of cycles (h), and the type of geologic media used. Manganese oxide coating exceeded 1700 mg kg for Ottawa sand and 130 mg kg for aquifer sand. The Pb adsorption exceeded 2200 mg kg for the Ottawa sand and 300 mg kg for the aquifer sand. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Microbial oxidation and reduction of manganese: consequences in groundwater and applications.
Gounot, A M
1994-08-01
In the natural environment, manganese is found as reduced soluble or adsorbed Mn(II) and insoluble Mn(III) and Mn(IV) oxides. Mn oxidation has been reported in various microorganisms. Several possible pathways, indirect or direct, have been proposed. A wider variety of Mn-reducing microorganisms, from highly aerobic to strictly anaerobic, has been described. The mechanisms of Mn reduction can be either an indirect process resulting from interactions with organic or inorganic compounds, or a direct enzymatic (electron-transfer) reaction. The role of microorganisms in Mn cycle is now well demonstrated by various methods in superficial natural environments, and research has been initiated on subsurface sediments. Observations in vivo (Rhône valley) and under in vitro suggested that bacterial activities are the main processes that promote manganese evolution and migration in shallow aquifers. After the building of hydroelectric dams, the stream of the Rhône was modified, giving rise to mud deposition on the bank. In the mud, bacteria are stimulated by the high organic content and consume oxygen. The redox potential drops. The manganese oxides previously formed under aerobic conditions are reduced and soluble manganese (Mn(II)) migrates into the aquifer. If the subsurface sediments are coarse-grained, the aquifer is well aerated, allowing the re-oxidation of Mn(II) by the oligotrophic attached bacteria in aquifer sediments. If the aquifer is confined, aeration is not sufficient for Mn-reoxidation. Mn(II) remains in a reduced state and migrates to the wells. Furthermore, the presence of organic matter in subsurface sediments results in the reduction of previously formed Mn oxides. Pseudo-amorphous manganese oxides, which were probably recently formed by bacteria, are more readily reduced than old crystalline manganese oxides. Although the concentrations of soluble manganese found in groundwaters are not toxic, it still is a problem since its oxidation results in darkening of water and plugging of pipes in drinking or industrial water systems. Soluble manganese can be removed from water by biological processes involving manganese-oxidizing bacteria, either in situ, or in sand filters after pumping. Various procedures are mentioned.
Diverse functions of cationic Mn(III) substituted N-pyridylporphyrins, known as SOD mimics
Batinic-Haberle, Ines; Rajic, Zrinka; Tovmasyan, Artak; Ye, Xiaodong; Leong, Kam W.; Dewhirst, Mark W.; Vujaskovic, Zeljko; Benov, Ludmil; Spasojevic, Ivan
2011-01-01
Oxidative stress, a redox imbalance between the endogenous reactive species and antioxidant systems, is common to numerous pathological conditions such as cancer, central nervous system injuries, radiation injury, diabetes etc. Therefore, compounds able to reduce oxidative stress have been actively sought for over 3 decades. Superoxide is the major species involved in oxidative stress either in its own right or through its progeny, such as ONOO−, H2O2, ·OH, CO3·−, and ·NO2. Therefore, the very first compounds developed in the late 1970-ies were the superoxide dismutase (SOD) mimics. Thus far the most potent mimics have been the cationic meso Mn(III) N-substituted pyridylporphyrins and N,N′-disubstituted imidazolylporphyrins (MnPs), some of them with kcat(O2·−) similar to the kcat of SOD enzymes. Most frequently studied are ortho isomers MnTE-2-PyP5+, MnTnHex-2-PyP5+, and MnTDE-2-ImP5+. The ability to disproportionate O2·− parallels their ability to remove the other major oxidizing species, peroxynitrite, ONOO−. The same structural feature that gives rise to the high kcat (O2·−) and kred (ONOO−), allows MnPs to strongly impact the activation of the redox-sensitive transcription factors, HIF-1α, NF-κB, AP-1, and SP-1, and therefore modify the excessive inflammatory and immune responses. Coupling with cellular reductants and other redox-active endogenous proteins seems to be involved in the actions of Mn porphyrins. While hydrophilic analogues, such as MnTE-2-PyP5+ and MnTDE-2-ImP5+ are potent in numerous animal models of diseases, the lipophilic analogues were developed to cross blood brain barrier and target central nervous system and critical cellular compartment, mitochondria. The modification of its structure, aimed to preserve the SOD-like potency and lipophilicity, and diminish the toxicity, has presently been pursued. The pulmonary radioprotection by MnTnHex-2-PyP5+ was the first efficacy study performed successfully with non-human primates. The Phase I toxicity clinical trials were done on amyotrophic lateral sclerosis patients with N,N′-diethylimidazolium analogue, MnTDE-2-ImP5+ (AEOL10150). Its aggressive development as a wide spectrum radioprotector by Aeolus Pharmaceuticals has been supported by USA Federal government. The latest generation of compounds, bearing oxygens in pyridyl substituents is presently under aggressive development for cancer and CNS injuries at Duke University and is supported by Duke Translational Research Institute, The Wallace H. Coulter Translational Partners Grant Program, Preston Robert Tisch Brain Tumor Center at Duke, and National Institute of Allergy and Infectious Diseases. Metal center of cationic manganese porphyrins easily accepts and donates electrons as exemplified in the catalysis of O2·− dismutation. Thus such compounds may be equally good anti- and pro-oxidants; in either case the beneficial therapeutic effects may be observed. Moreover, while the in vivo effects may appear antioxidative, the mechanism of action of MnPs that produced such effects may be pro-oxidative; the most obvious example being the inhibition of NF-κB. The experimental data therefore teach us that we need to distinguish between the mechanism/s of action/s of MnPs and the effects we observe. A number of factors impact the type of action of MnPs leading to favorable therapeutic effects: levels of reactive species and oxygen, levels of endogenous antioxidants (enzymes and low-molecular compounds), levels of MnPs, their site of accumulation, and the mutual encounters of all of those species. The complexity of in vivo redox systems and the complex redox chemistry of MnPs challenge and motivate us to further our understanding of the physiology of the normal and diseased cell with ultimate goal to successfully treat human diseases. PMID:21616142
Clarke, Catherine; Tourney, Janette; Johnson, Karen
2012-02-29
PAHs are a common problem in contaminated urban soils due to their recalcitrance. This study presents results on the oxidation of anthracene on synthetic and natural Mn oxide surfaces. Evaporation of anthracene spiked Mn oxide slurries in air results in the oxidation of 30% of the anthracene to anthraquinone. Control minerals, quartz and calcite, also oxidised a small but significant proportion of the anthracene (4.5% and 14% conversion, respectively) when spiked mineral slurries were evaporated in air. However, only Mn oxide minerals showed significant anthracene oxidation (5-10%) when evaporation took place in the absence of oxygen (N2 atmosphere). In the fully hydrated systems where no drying took place, natural Mn oxides showed an increase in anthracene oxidation with decreasing pH, with a conversion of 75% anthracene at pH 4. These results show both acidification and drying favor the oxidation of anthracene on Mn oxide mineral surfaces. It has also been demonstrated that non-redox active mineral surfaces, such as calcite, may play a role in contaminant breakdown during wetting and drying sequences. Given that climate changes suggest that wetting and drying sequences are likely to become more significant these results have important implications for contaminated land remediation technologies. Copyright © 2012 Elsevier B.V. All rights reserved.
Structure and Electrical Properties of Mn-Cu-O Spinels
NASA Astrophysics Data System (ADS)
Bobruk, M.; Durczak, K.; Dąbek, J.; Brylewski, T.
2017-04-01
The study presents the results of structural and electrical conductivity investigations of a Cu1.3Mn1.7O4 spinel obtained using EDTA gel processes. An amorphous gel was synthesized and calcinated for 5 h in air at temperatures of 673, 773, 873, and 973 K. When calcinating the gel at temperatures below 973 K, the obtained powders consisted of two phases—the regular Cu1.5Mn1.5O4 spinel and manganese(III) oxide. At 973 K, Mn2O3 was no longer observed, but a new Mn3O4 phase appeared in addition to the Cu1.5Mn1.5O4 spinel. Green bodies prepared from these powders were sintered for 2 h in air at 1393 K. The obtained sinters had a porosity of around 12% and were composed predominantly of the spinel phase, with minor amounts of Mn3O4 and, in the case of three of four sinters—CuO. Electrical conductivity measurements were taken over the temperature range of 300-1073 K. A change in the character of conductivity of the studied sinters was observed in the range of 400-430 K, and it was associated with an increase in activation energy from 0.20 to 0.56 eV. The electrical conductivity of the studied sinters ranged from 74.8 to 88.4 S cm-1, which makes the Cu1.3Mn1.7O4 material suitable for application as a protective-conducting coating in IT-SOFC ferritic stainless steel interconnects.
Wang, Huibo; Gao, Rui; Li, Zhengyao; Sun, Limei; Hu, Zhongbo; Liu, Xiangfeng
2018-05-07
P2-type layered oxides based on the elements Fe and Mn have attracted great interest as sodium ion battery (SIB) cathode materials owing to their inexpensive metal constituents and high specific capacity. However, they suffer from rapid capacity fading and complicated phase transformations. In this study, we modulate the crystal structure and optimize the electrochemical performances of Na 0.67 Mn 0.5 Fe 0.5 O 2 by Al doping for Mn or Fe, respectively, and the roles of Al in the enhancement of the rate capability and cycling performance are unraveled. (1) The substitution of Al for Mn or Fe decreases the lattice parameters a and c but enlarges d spacing and lengthens Na-O bonds, which enhances Na + diffusion and rate capability especially for Na 0.67 Mn 0.5 Fe 0.47 Al 0.03 O 2 . (2) Al doping reduces the thickness of TMO 2 and strengthens TM-O/O-O bonding. This enhances the layered structure stability and the capacity retention. (3) Al doping mitigates Mn 3+ and Jahn-Teller distortion, mitigating the irreversible phase transition. (4) Al doping also alleviates the lattice volume variation and the structure strain. This further improves the stability of the layered structure and the cycling performances particularly in the case of Al doping for Fe. The in-depth insights into the roles of Al substitution might be also useful for designing high-performance cathode materials for SIBs through appropriate lattice doping.
Liu, Wenbo; Langenhoff, Alette A M; Sutton, Nora B; Rijnaarts, Huub H M
2018-05-18
Applying manganese(IV)- or iron(III)-(hydr)oxides to remove pharmaceuticals from water could be attractive, due to the capacity of these metal oxides to remove pharmaceuticals and be regenerated. As pharmaceutical removal under anaerobic conditions is foreseen, Mn(IV) or Fe(III) regeneration under anaerobic conditions, or with minimum oxygen dosage, is preferred. In this study, batch experiments are performed to investigate (1) Mn(IV) and Fe(III) regeneration from Mn(II) and Fe(II); (2) the pharmaceutical removal during biological Mn(IV) and Fe(III) regeneration; and (3) anaerobic abiotic pharmaceutical removal with different Mn(IV) or Fe(III) species. Results show that biological re-oxidation of reduced Mn(II) to Mn(IV) occurs under oxygen-limiting conditions. Biological re-oxidation of Fe(II) to Fe(III) is obtained with nitrate under anaerobic conditions. Both bio-regenerated Mn(IV)-oxides and Fe(III)-hydroxides are amorphous. The pharmaceutical removal is insignificant by Mn(II)- or Fe(II)-oxidizing bacteria during regeneration. Finally, pharmaceutical removal is investigated with various Mn(IV) and Fe(III) sources. Anaerobic abiotic removal using Mn(IV) produced from drinking water treatment plants results in 23% metoprolol and 44% propranolol removal, similar to chemically synthesized Mn(IV). In contrast, Fe(III) from drinking water treatment plants outperformed chemically or biologically synthesized Fe(III); Fe (III) from drinking water treatment can remove 31-43% of propranolol via anaerobic abiotic process. In addition, one of the Fe(III)-based sorbents tested, FerroSorp ® RW, can also remove propranolol (20-25%). Biological regeneration of Mn(IV) and Fe(III) from the reduced species Mn(II) and Fe(II) could be more effective in terms of cost and treatment efficiency. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Heat resistant alloys as interconnect materials of reduced temperature SOFCs
NASA Astrophysics Data System (ADS)
Jian, Li; Jian, Pu; Guangyuan, Xie; Shunxu, Wang; Jianzhong, Xiao
Heat-resistant alloys, Haynes 230 and SS310, were exposed to air and humidified H 2 at 750 °C for up to 1000 h, respectively, simulating the environments in reduced temperature solid oxide fuel cells (SOFCs). The oxidized samples were characterized by using SEM, EDS and X-ray diffraction to obtain the morphology, thickness, composition and crystal structure of the oxide scales. A mechanism for the formation of metallic Ni-rich nodules on top of the oxide scale in Haynes 230 sample oxidized in humidified H 2 was established. Thermodynamic analysis confirmed that MnCr 2O 4 is the favored spinel phase, together with Cr 2O 3, in the oxide scales.
Romain, Sophie; Rich, Jordi; Sens, Cristina; Stoll, Thibaut; Benet-Buchholz, Jordi; Llobet, Antoni; Rodriguez, Montserrat; Romero, Isabel; Clérac, Rodolphe; Mathonière, Corine; Duboc, Carole; Deronzier, Alain; Collomb, Marie-Noëlle
2011-09-05
A new pentanuclear bis(triple-helical) manganese complex has been isolated and characterized by X-ray diffraction in two oxidation states: [{Mn(II)(μ-bpp)(3)}(2)Mn(II)(2)Mn(III)(μ-O)](3+) (1(3+)) and [{Mn(II)(μ-bpp)(3)}(2)Mn(II)Mn(III)(2)(μ-O)](4+) (1(4+)). The structure consists of a central {Mn(3)(μ(3)-O)} core of Mn(II)(2)Mn(III) (1(3+)) or Mn(II)Mn(III)(2) ions (1(4+)) which is connected to two apical Mn(II) ions through six bpp(-) ligands. Both cations have a triple-stranded helicate configuration, and a pair of enantiomers is present in each crystal. The redox properties of 1(3+) have been investigated in CH(3)CN. A series of five distinct and reversible one-electron waves is observed in the -1.0 and +1.50 V potential range, assigned to the Mn(II)(4)Mn(III)/Mn(II)(5), Mn(II)(3)Mn(III)(2)/Mn(II)(4)Mn(III), Mn(II)(2)Mn(III)(3)/Mn(II)(3)Mn(III)(2), Mn(II)Mn(III)(4)/Mn(II)(2)Mn(III)(3), and Mn(III)(5)/Mn(II)Mn(III)(4) redox couples. The two first oxidation processes leading to Mn(II)(3)Mn(III)(2) (1(4+)) and Mn(II)(2)Mn(III)(3) (1(5+)) are related to the oxidation of the Mn(II) ions of the central core and the two higher oxidation waves, close in potential, are thus assigned to the oxidation of the two apical Mn(II) ions. The 1(4+) and 1(5+) oxidized species and the reduced Mn(4)(II) (1(2+)) species are quantitatively generated by bulk electrolyses demonstrating the high stability of the pentanuclear structure in four oxidation states (1(2+) to 1(5+)). The spectroscopic characteristics (X-band electron paramagnetic resonance, EPR, and UV-visible) of these species are also described as well as the magnetic properties of 1(3+) and 1(4+) in solid state. The powder X- and Q-band EPR signature of 1(3+) corresponds to an S = 5/2 spin state characterized by a small zero-field splitting parameter (|D| = 0.071 cm(-1)) attributed to the two apical Mn(II) ions. At 40 K, the magnetic behavior is consistent for 1(3+) with two apical S = 5/2 {Mn(II)(bpp)(3)}(-) and one S = 2 noninteracting spins (11.75 cm(3) K mol(-1)), and for 1(4+) with three S = 5/2 noninteracting spins (13.125 cm(3) K mol(-1)) suggesting that the {Mn(II)(2)Mn(III)(μ(3)-O)}(5+) and {Mn(II)Mn(III)(2)(μ(3)-O)}(6+) cores behave at low temperature like S = 2 and S = 5/2 spin centers, respectively. The thermal behavior below 40 K highlights the presence of intracomplex magnetic interactions between the two apical spins and the central core, which is antiferromagnetic for 1(3+) leading to an S(T) = 3 and ferromagnetic for 1(4+) giving thus an S(T) = 15/2 ground state.
Chemistry of manganese precipitation in Pinal Creek, Arizona, USA: A laboratory study
Hem, J.D.; Lind, Carol J.
1994-01-01
Groundwater underlying the valley of Pinal Creek downstream from Globe, Arizona, has been contaminated by low-pH metal-enriched wastewater from copper mining and ore processing at Miami, Arizona. At present, the acidity and most of the dissolved metal content, except for Mn, of the wastewater is removed by reactions with carbonate and other solids in the alluvial aquifer before the neutralized contaminated water enters the creek channel and becomes surface flow. Where flow in the creek is perennial, Mn-bearing precipitates are formed in the stream bed and in some places in the subsurface. As an aid to understanding the processes involved and explaining the mineralogy of the precipitates, closely controlled laboratory redox titration experiments were performed on samples of surface flow and groundwater taken near the head of perennial flow in the creek. The high content of dissolved Ca, Mg, Mn and COP2 species in the neutralized contaminated groundwater caused precipitation of some of the Mn as kutnahorite, (Mn, Mg)Ca(CO3)2, when the experimental system was held between pH 8.5 and 9.0 while CO2-free air was bubbled into the solution. Hausmannite and manganite also were precipitated, in somewhat lower amounts. When the concentrations of dissolved CO2 species in the groundwater sample were decreased before the experiment was started, the Mn precipitated was predominantly in the oxides hausmannite and manganite. In some of the experimental titrations clinoenstatite, (MgSiO3), was precipitated. After titrations were stopped the solutions and precipitates were allowed to stand, with limited access to the atmosphere, for several months. During this aging period the degree of oxidation of the precipitated Mn increased and in one precipitate from an experimental solution the Ca + Mn4+ oxides todorokite and takanelite were identified. These oxides also have been identified in streambed precipitates. Some of these precipitates also gave X-ray diffraction reflections for kutnahorite. Thermodynamic feasibilities of eight potential chemical reactions forming solid phases of interest were evaluated by calculating their respective reaction affinities attained during titration and aging. The results are in general agreement with the indications for the presence of these species given by X-ray and electron diffraction. The presence of carbonates in precipitated encrustations formed from groundwater below the land surface and their occurrence in manganese oxide crusts that precipitate from the creek water, also are predicted by these results. ?? 1994.
Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume.
Dick, Gregory J; Tebo, Bradley M
2010-05-01
Hydrothermal plumes are hot spots of microbial biogeochemistry in the deep ocean, yet little is known about the diversity or ecology of microorganisms inhabiting plumes. Recent biogeochemical evidence shows that Mn(II) oxidation in the Guaymas Basin (GB) hydrothermal plume is microbially mediated and suggests that the plume microbial community is distinct from deep-sea communities. Here we use a molecular approach to compare microbial diversity in the GB plume and in background deep seawater communities, and cultivation to identify Mn(II)-oxidizing bacteria from plumes and sediments. Despite dramatic differences in Mn(II) oxidation rates between plumes and background seawater, microbial diversity and membership were remarkably similar. All bacterial clone libraries were dominated by Gammaproteobacteria and archaeal clone libraries were dominated by Crenarchaeota. Two lineages, both phylogenetically related to methanotrophs and/or methylotrophs, were consistently over-represented in the plume. Eight Mn(II)-oxidizing bacteria were isolated, but none of these or previously identified Mn(II) oxidizers were abundant in clone libraries. Taken together with Mn(II) oxidation rates measured in laboratory cultures and in the field, these results suggest that Mn(II) oxidation in the GB hydrothermal plume is mediated by genome-level dynamics (gene content and/or expression) of microorganisms that are indigenous and abundant in the deep sea but have yet to be unidentified as Mn(II) oxidizers.
Yoshinaga, Taizo; Saruyama, Masaki; Xiong, Anke; Ham, Yeilin; Kuang, Yongbo; Niishiro, Ryo; Akiyama, Seiji; Sakamoto, Masanori; Hisatomi, Takashi; Domen, Kazunari; Teranishi, Toshiharu
2018-06-14
The effect of cobalt doping into a manganese oxide (tetragonal spinel Mn 3 O 4 ) nanoparticle cocatalyst up to Co/(Co + Mn) = 0.4 (mol/mol) on the activity of photocatalytic water oxidation was studied. Monodisperse ∼10 nm Co y Mn 1-y O (0 ≤y≤ 0.4) nanoparticles were uniformly loaded onto photocatalysts and converted to Co x Mn 3-x O 4 nanoparticles through calcination. 40 mol% cobalt-doped Mn 3 O 4 nanoparticle-loaded Rh@Cr 2 O 3 /SrTiO 3 photocatalyst exhibited 1.8 times-higher overall water splitting activity than that with pure Mn 3 O 4 nanoparticles. Investigation on the band structure and electrocatalytic water oxidation activity of Co x Mn 3-x O 4 nanoparticles revealed that the Co doping mainly contributes to the improvement of water oxidation kinetics on the surface of the cocatalyst nanoparticles.
Elemental Mercury Oxidation over Fe-Ti-Mn Spinel: Performance, Mechanism, and Reaction Kinetics.
Xiong, Shangchao; Xiao, Xin; Huang, Nan; Dang, Hao; Liao, Yong; Zou, Sijie; Yang, Shijian
2017-01-03
The design of a high-performance catalyst for Hg 0 oxidation and predicting the extent of Hg 0 oxidation are both extremely limited due to the uncertainties of the reaction mechanism and the reaction kinetics. In this work, Fe-Ti-Mn spinel was developed as a high-performance catalyst for Hg 0 oxidation, and the reaction mechanism and the reaction kinetics of Hg 0 oxidation over Fe-Ti-Mn spinel were studied. The reaction orders of Hg 0 oxidation over Fe-Ti-Mn spinel with respect to gaseous Hg 0 concentration and gaseous HCl concentration were approximately 1 and 0, respectively. Therefore, Hg 0 oxidation over Fe-Ti-Mn spinel mainly followed the Eley-Rideal mechanism (i.e., the reaction of gaseous Hg 0 with adsorbed HCl), and the rate of Hg 0 oxidation mainly depended on Cl • concentration on the surface. As H 2 O, SO 2 , and NO not only inhibited Cl • formation on the surface but also interfered with the interface reaction between gaseous Hg 0 and Cl • on the surface, Hg 0 oxidation over Fe-Ti-Mn spinel was obviously inhibited in the presence of H 2 O, SO 2 , and NO. Furthermore, the extent of Hg 0 oxidation over Fe-Ti-Mn spinel can be predicted according to the kinetic parameter k E-R , and the predicted result was consistent with the experimental result.
40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese strontium oxide...
40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese strontium oxide...
40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese strontium oxide...
40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese strontium oxide...
40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese strontium oxide...
NASA Astrophysics Data System (ADS)
Jilbert, Tom; Tiihonen, Rosa; Myllykangas, Jukka-Pekka; Asmala, Eero; Hietanen, Susanna
2016-04-01
Iron (Fe) and manganese (Mn) play important roles in sedimentary carbon cycling in both freshwater and marine systems. Dissimilatory reduction of Fe and Mn oxides is known to be a major pathway of suboxic organic matter remineralization in surface sediments, while recent studies have shown that Fe and Mn oxides may be involved in the anaerobic oxidation of methane deeper in the sediment column (e.g., Egger et al., 2015). Estuaries are transitional environments, characterized by gradients of salinity and redox conditions which impact on the mobility of Fe and Mn. In turn, the distribution of Fe and Mn in estuarine sediments, and the role of the two metals in carbon cycling, is expected to be spatially heterogeneous. However, few studies have attempted to describe the sedimentary distribution of Fe and Mn in the context of processes occurring in the estuarine water column. In particular, salinity-driven flocculation and redox shuttling are two key processes whose relative impacts on sedimentary Fe and Mn have not been clearly demonstrated. In this study we investigated the coupled water column and sedimentary cycling of Fe and Mn along a 60km non-tidal estuarine transect in the Gulf of Finland, Baltic Sea. We show that riverine Fe entering the estuary as colloidal oxides associated with dissolved organic matter (DOM) is quickly flocculated and sedimented within 5 km of the river mouth, despite the shallow lateral salinity gradient. Sediments within this range are enriched in Fe (up to twice the regional average), principally in the form of crystalline Fe oxides as determined by sequential extractions. The high crystallinity implies relative maturity of the oxide mineralogy, likely due to sustained oxic conditions and long residence time in the river catchment. Despite the reducing conditions below the sediment-water interface, Fe is largely retained in the sediments close to the river mouth. In contrast, sedimentary Mn concentrations are highest in a deep silled basin more than 10km downstream. Throughout the estuary, Mn oxides are reductively dissolved shallower in the sediment column than Fe oxides, resulting in strong effluxes of dissolved Mn from the sediments. Subsequent oxidation of bottom water dissolved Mn to particulate oxides and lateral transport ("redox shuttling") account for the sedimentary Mn enrichments in the deep silled basin. Porewater data suggest that the heterogeneity of Fe and Mn availability in the estuarine sediments may influence the relative importance of the two metals for anaerobic oxidation of methane. Egger, M. et al., Environmental Science and Technology 49(1), 277-283, 2015.
Biogenic Mn-Oxides in Subseafloor Basalts
Ivarsson, Magnus; Broman, Curt; Gustafsson, Håkan; Holm, Nils G.
2015-01-01
The deep biosphere of the subseafloor basalts is recognized as a major scientific frontier in disciplines like biology, geology, and oceanography. Recently, the presence of fungi in these environments has involved a change of view regarding diversity and ecology. Here, we describe fossilized fungal communities in vugs in subseafloor basalts from a depth of 936.65 metres below seafloor at the Detroit Seamount, Pacific Ocean. These fungal communities are closely associated with botryoidal Mn oxides composed of todorokite. Analyses of the Mn oxides by Electron Paramagnetic Resonance spectroscopy (EPR) indicate a biogenic signature. We suggest, based on mineralogical, morphological and EPR data, a biological origin of the botryoidal Mn oxides. Our results show that fungi are involved in Mn cycling at great depths in the seafloor and we introduce EPR as a means to easily identify biogenic Mn oxides in these environments. PMID:26107948
Wu, Kun; Liu, Rui-Ping; Liu, Hui-Juan; Lan, Hua-Chun; Qu, Jiu-Hui
2012-11-15
Field studies were conducted to evaluate the feasibility of an in situ formed Fe-Mn binary oxide (in situ FMBO) for improving arsenic (As) removal in the aeration-direct filtration process. The transformation and transportation of As, Fe, and Mn in the filter bed were also investigated. The in situ FMBO increased the As removal efficiency by 20-50% to keep the residual As below 10 μg/L. The optimum FMBO dosage was determined to be 0.55 mg/L with the Fe/Mn ratio as 10:1. The removal of Fe, Mn, turbidity, and particles was also improved to a large extent. The in situ FMBO favored the transformation of soluble As, Fe, and Mn into the solid phases, benefiting the removal of these pollutants by the subsequent filtration. Moreover, the deposited precipitates onto the filter media were characterized, as indicated by the analyses of SEM/EDS and particle size distribution. The long-term experiments exhibited decreased head loss growth and prolonged run length, suggesting an enhanced pollutant catching capacity of the filter media. The full-scale field study with a flow of 10,000 m3/d confirmed positive effects of in situ FMBO on As removal, with the average effluent As concentration reduced from 20 μg/L to 6 μg/L (reagent cost=0.006 ¥/m3). Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahn, Juhyeon; Susanto, Dieky; Noh, Jae-Kyo; Ali, Ghulam; Cho, Byung Won; Chung, Kyung Yoon; Kim, Jong Hak; Oh, Si Hyoung
2017-08-01
In this study, we target to find a new composition for a layered mixed metal oxide, which has a high structural stability and a good electrochemical performance. Our strategy is to alter the transition metal composition focusing on the relative amounts of redox active Ni and Co to the inactive Mn, based on highly-stabilized LiNi1/3Co1/3Mn1/3O2. X-ray absorption near-edge structure and X-ray diffraction analyses show that the degree of cation disorder decreases on increasing the ratio of Ni and Co to Mn, by the presence of Ni3+, suggesting that slightly higher Ni and Co contents lead to improved structural stability. Electrochemical studies demonstrate that LiNi0.4Co0.4Mn0.2O2 cathodes exhibit considerable improvements in both the reversible capacity and the rate capabilities at a voltage range of 2.5-4.6 V. In situ XRD measurements reveal that LiNi0.4Co0.4Mn0.2O2 maintains a single-phase and undergoes lesser structural variations compared to controlled compositions during a delithiation process up to 4.6 V, while achieving a high reversible capacity over 200 mAh g-1. As a result, LiNi0.4Co0.4Mn0.2O2 experiences fewer structural degradations during electrochemical cycling, which explains the excellent long-term cycling performance.
Microstructure and Phase Analysis in Mn-Al and Zr-Co Permanent Magnets
NASA Astrophysics Data System (ADS)
Lucis, Michael J.
In America's search for energy independence, the development of rare-earth free permanent magnets is one hurdle that still stands in the way. Permanent magnet motors provide a higher efficiency than induction motors in applications such as hybrid vehicles and wind turbines. This thesis investigates the ability of two materials, Mn-Al and Zr-Co, to fill this need for a permanent magnet material whose components are readily available within the U.S. and whose supply chain is more stable than that of the rare-earth materials. This thesis focuses on the creation and optimization of these two materials to later be used as the hard phase in nanocomposites with high energy products (greater than 10 MGOe). Mn-Al is capable of forming the pure L10 structure at a composition of Mn54Al43C3. When Mn is replaced by Fe or Cu using the formula Mn48Al43C3T6 the anisotropy constant is lowered from 1.3·107 ergs/cm3 to 1.0·107 ergs/cm3 and 0.8·10 7 ergs/cm3 respectively. Previous studies have reported a loss in magnetization in Mn-Al alloys during mechanical milling. The reason for this loss in magnetization was investigated and found to be due to the formation of the equilibrium beta-Mn phase of the composition Mn3Al2 and not due to oxidation or site disorder. It was also shown that fully dense Mn-Al permanent magnets can be created at hot pressing temperatures at or above 700°C and that the epsilon-phase to tau-phase transition and consolidation can be combined into a single processing step. The addition of small amounts of Cu to the alloy, 3% atomic, can increase the compaction density allowing high densities to be achieved at lower pressing temperatures. While the structure is still under debate, alloys at the composition Zr2Co11 in the Zr-Co system have been shown to have hard magnetic properties. This thesis shows that multiple structures exist at this Zr2Co11 composition and that altering the cooling rate during solidification of the alloy affects the ratio of the phase composition and therefore affects the magnetic properties. Phase diagrams for the Zr-Co system show that the Zr2Co11 phase is stable to a temperature of 1272°C, at which point the Zr6Co23 phase is the most favorable. However, this thesis shows that the Zr6Co23 phase forms at room temperature during high energy mechanical milling and at annealing temperatures as low as 600°C. Since high energy mechanical milling was not a potential method to creating single crystalline particles, hydrogen embrittlement was investigated. Hydrochloric acid was used to induce hydrogen embrittlement in the Zr2Co11 alloy, modifying the fracture characteristics of the alloy causing it to occur primarily along grain boundaries resulting in single crystalline particles with remanent magnetization enhancement.
Thanh-Nho, Nguyen; Strady, Emilie; Nhu-Trang, Tran-Thi; David, Frank; Marchand, Cyril
2018-04-01
Mangroves can be considered as biogeochemical reactors along (sub)tropical coastlines, acting both as sinks or sources for trace metals depending on environmental factors. In this study, we characterized the role of a mangrove estuary, developing downstream a densely populated megacity (Ho Chi Minh City, Vietnam), on the fate and partitioning of trace metals. Surface water and suspended particulate matter were collected at four sites along the estuarine salinity gradient during 24 h cycling in dry and rainy seasons. Salinity, pH, DO, TSS, POC, DOC, dissolved and particulate Fe, Mn, Cr, As, Cu, Ni, Co and Pb were measured. TSS was the main trace metals carrier during their transit in the estuary. However, TSS variations did not explain the whole variability of metals distribution. Mn, Cr and As were highly reactive metals while the other metals (Fe, Ni, Cu, Co and Pb) presented stable log K D values along the estuary. Organic matter dynamic appeared to play a key role in metals fractioning. Its decomposition during water transit in the estuary induced metal desorption, especially for Cr and As. Conversely, dissolved Mn concentrations decreased along the estuary, which was suggested to result from Mn oxidative precipitation onto solid phase due to oxidation and pH changes. Extra sources as pore-water release, runoff from adjacent soils, or aquaculture effluents were suggested to be involved in trace metal dynamic in this estuary. In addition, the monsoon increased metal loads, notably dissolved and particulate Fe, Cr, Ni and Pb. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Koschinsky, Andrea
Heavy metal distributions in deep-sea surface sediments and pore water profiles from five areas in the Peru Basin were investigated with respect to the redox environment and diagenetic processes in these areas. The 10-20-cm-thick Mn oxide-rich and minor metal-rich top layer is underlain by an increase in dissolved Mn and Ni concentrations resulting from the reduction of the MnO 2 phase below the oxic zone. The mobilised associated metals like Co, Zn and Cu are partly immobilised by sorption on clay, organic or Fe compounds in the post-oxic environment. Enrichment of dissolved Cu, Zn, Ni, Co, Pb, Cd, Fe and V within the upper 1-5 cm of the oxic zone can be attributed to the degradation of organic matter. In a core from one area at around 22-25 cm depth, striking enrichments of these metals in dissolved and solid forms were observed. Offset distributions between oxygen penetration and Mn reduction and the thickness of the Mn oxide-rich layer indicate fluctuations of the Mn redox boundary on a short-term time scale. Within the objectives of the German ATESEPP research programme, the effect of an industrial impact such as manganese nodule mining on the heavy metal cycle in the surface sediment was considered. If the oxic surface were to be removed or disturbed, oxygen would penetrate deep into the formerly suboxic sediment and precipitate Mn 2+ and metals like Ni and Co which are preferably scavenged by MnO 2. The solid enrichments of Cd, V, and other metals formed in post-oxic environments would move downward with the new redox boundary until a new equilibrium between oxygen diffusion and consumption is reached.
Structural and magnetic properties of SrMn1-xRuxO3 perovskites
NASA Astrophysics Data System (ADS)
Dabrowski, B.; Kolesnik, S.; Chmaissem, O.; Maxwell, T.
2007-03-01
Ferromagnetism of SrRuO3 is unique among 4d transition metal based perovskite oxides. On substitution of Mn its TC decreases from 163 K to 0 for x˜0.5-0.6 followed by a formation of an antiferromagnetic insulating state at a quantum critical point. The other end member of the SrMn1-xRuxO3 family, a cubic perovskite SrMnO3 is a G-type antiferromagnet with TN=233 K. We have synthesized the complete SrMn1-xRuxO3 solid solution. The polycrystalline samples were characterized by neutron difraction, magnetic, and transport experiments. The incorporation of Ru in the SrMnO3 matrix (0.1<=x<=0.4) results in a phase transition to a C-type antiferromagnetic state accompanied by a cubic-tetragonal transition. The intermediate substitution level induces a spin-glass behavior, due to competing ferro- and antiferromagnetic interactions. Mixed valence Mn^3+/Mn^4+ and Ru^4+/Ru^5+ pairs introduce additional frustration to the magnetic states. The glassy behavior can be observed for x up to 0.7 in the tetragonal structure. Supported by NSF (DMR-0302617) and the U.S. Department of Education
The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques
Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong
2017-01-01
Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II) adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X2Cd) at low pH and inner-sphere surface complexation sites (SOCd+ and (SO)2CdOH− species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water–mineral interface. PMID:28956849
Brown, Colby R; McCalla, Eric; Watson, Cody; Dahn, J R
2015-06-08
Combinatorial synthesis has proven extremely effective in screening for new battery materials for Li-ion battery electrodes. Here, a study in the Li-Ni-Mn-Co-O system is presented, wherein samples with nearly 800 distinct compositions were prepared using a combinatorial and high-throughput method to screen for single-phase materials of high interest as next generation positive electrode materials. X-ray diffraction is used to determine the crystal structure of each sample. The Gibbs' pyramid representing the pseudoquaternary system was studied by making samples within three distinct pseudoternary planes defined at fractional cobalt metal contents of 10%, 20%, and 30% within the Li-Ni-Mn-Co-O system. Two large single-phase regions were observed in the system: the layered region (ordered rocksalt) and cubic spinel region; both of which are of interest for next-generation positive electrodes in lithium-ion batteries. These regions were each found to stretch over a wide range of compositions within the Li-Ni-Mn-Co-O pseudoquaternary system and had complex coexistence regions existing between them. The sample cooling rate was found to have a significant effect on the position of the phase boundaries of the single-phase regions. The results of this work are intended to guide further research by narrowing the composition ranges worthy of study and to illustrate the broad range of applications where solution-based combinatorial synthesis can have significant impact.
Nowlan, G.A.
1976-01-01
Correlation studies of 400 samples of sieved stream sediments and 325 samples of fluvial, concretionary Mn-Fe oxides from Maine resulted in the separation of elements into the following categories: (1) elements not scavenged by Mn-Fe oxides - B, Cr, K, Mg, Rb, Sc, Ti, V, and Zr; (2) elements probably not scavenged by Mn-Fe oxides - Ag, Be, Ca, Ga, La, Sb, and Y; (3) elements scavenged weakly by Mn-Fe oxides - Cu, Mo, Pb, and Sr; (4) elements scavenged strongly by Mn oxides - Ba, Cd, Co, Ni, Tl, and Zn; and (5) elements scavenged strongly by Fe oxides - As and In. Studies of the scavenged elements showed that the deviation from the mean is characteristically greater in oxide samples as compared to sieved sediments from the same locality. However, a significant increase in contrast between anomalous and background localities, when oxides are the sample medium, more than offsets the disadvantage of data scatter. The use of oxides as a sampling medium clearly and significantly accentuates anomalous localities. In general, non-ratioed data on oxides give very nearly the same results as data consisting of scavenged elements ratioed to Mn and Fe. However, ratioed data expand the geographic area of specific anomalies. Cd and Zn consistently show strong correlations with concretionary Mn-Fe oxides, but their concentrations in the oxides do not generally show as much contrast between anomalous and background localities as do Cu, Mo, and Pb. These latter elements are strongly scavenged where rocks are mineralized. ?? 1976.
First Principles Study on the CO Oxidation on Mn-Embedded Divacancy Graphene
Jiang, Quanguo; Zhang, Jianfeng; Ao, Zhimin; Huang, Huajie; He, Haiyan; Wu, Yuping
2018-01-01
The CO oxidation mechanism on graphene with divacancy (DG) embedded with transition metal from Sc to Zn has been studied by using first principles calculations. The results indicate that O2 molecule is preferentially adsorbed on Sc, Ti, V, Cr, Mn, and Fe-DG, which can avoid the CO poisoning problem that many catalysts facing and is beneficial to the CO oxidation progress. Further study indicates that Mn-DG shows the best catalytic properties for CO oxidation with consideration of both Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) oxidation mechanisms. Along the ER mechanism, the reaction energy barrier for the first step (CO free + O2 pre-adsorbed → OOCO) is 0.96 eV. Along the LH mechanism, the energy barrier for the rate limiting step (CO adsorbed + O2 adsorbed → OOCO) is only 0.41 eV, indicating that the CO oxidation on Mn-DG will occur along LH mechanism. The Hirshfeld charge distributions of O2 and CO molecules is tuned by the embedded Mn atom, and the charge transfer from the embedded Mn atom to the adsorbed molecules plays an important role for the CO oxidation. The result shows that the Mn-embedded divacancy graphene is a noble-metal free and efficient catalyst for CO oxidation at low temperature.
Structural, optical, dielectric and magnetic studies of gadolinium-added Mn-Cu nanoferrites
NASA Astrophysics Data System (ADS)
Kanna, R. Rajesh; Lenin, N.; Sakthipandi, K.; Kumar, A. Senthil
2018-05-01
Spinel ferrite with the general formula Mn1-xCuxFe1.85Gd0.15O4 (x = 0.2, 0.4, 0.6 and 0.8) was synthesized using the standard sonochemical method. The structure, optical, morphology, dielectric and magnetic properties of the prepared Mn1-xCuxFe1.85Gd0.15O4 nanoferrites were exhaustively investigated using various characterization techniques. The phase purity, secondary phase and crystallite parameters were studied from X-ray diffraction patterns. Fourier transform infrared spectra showed two absorption bands of transition metal oxides in the frequency range from 400 to 650 cm-1, which are related to asymmetric stretching modes of the spinel ferrites (AB2O4). Raman spectra have five active modes illustrating the vibration of O2- ions at both tetrahedral (A) site and octahedral (B) site ions. The wide and narrow scan spectrum from X-ray photoelectron spectroscopy results confirmed the presence of Mn, Cu, Gd, Fe, C and O elements in the composition. The oxidation state and core level of the photo electron peaks of Mn 2p, Cu 2p, Gd 3d, Fe 2p and O 1s were analyzed. The influence of the Cu2+ concentration in Mn1-xCuxFe1.85Gd0.15O4 on the morphology, varying from nanorods, nanoflakes to spherical, was explored on the basis of scanning electron microscopy images. Ultraviolet diffuse reflectance spectroscopy studies indicated that the optical bandgap (5.12-5.32 eV) of the nanoferrites showed an insulating behavior. The dielectric constant, loss tangent and complex dielectric constant values decreased with an increase in frequency with the addition of Gd3+ content. A vibrating sample magnetometer showed that the prepared nanoferrites had a soft ferromagnetic nature. The magnetic parameter changed markedly with an increase in the Cu content in Mn1-xCuxFe1.85Gd0.15O4 nanoferrites. The optical, dielectric and magnetic properties were considerably enhanced with the addition of Gd3+ ions in the spinel nanoferrites.
Critical Surface Parameters for the Oxidative Coupling of Methane over the Mn-Na-W/SiO2 Catalyst.
Hayek, Naseem S; Lucas, Nishita S; Warwar Damouny, Christine; Gazit, Oz M
2017-11-22
The work here presents a thorough evaluation of the effect of Mn-Na-W/SiO 2 catalyst surface parameters on its performance in the oxidative coupling of methane (OCM). To do so, we used microporous dealuminated β-zeolite (Zeo), or mesoporous SBA-15 (SBA), or macroporous fumed silica (Fum) as precursors for catalyst preparation, together with Mn nitrate, Mn acetate and Na 2 WO 4 . Characterizing the catalysts by inductively coupled plasma-optical emission spectroscopy, N 2 physisorption, X-ray diffraction, high-resolution scanning electron microscopy-energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, and catalytic testing enabled us to identify critical surface parameters that govern the activity and C 2 selectivity of the Mn-Na-W/SiO 2 catalyst. Although the current paradigm views the phase transition of silica to α-cristobalite as the critical step in obtaining dispersed and stable metal sites, we show that the choice of precursors is equally or even more important with respect to tailoring the right surface properties. Specifically, the SBA-based catalyst, characterized by relatively closed surface porosity, demonstrated low activity and low C 2 selectivity. By contrast, for the same composition, the Zeo-based catalyst showed an open surface pore structure, which translated up to fourfold higher activity and enhanced selectivity. By varying the overall composition of the Zeo catalysts, we show that reducing the overall W concentration reduces the size of the Na 2 WO 4 species and increases the catalytic activity linearly as much as fivefold higher than the SBA catalyst. This linear dependence correlates well to the number of interfaces between the Na 2 WO 4 and Mn 2 O 3 species. Our results combined with prior studies lead us to single out the interface between Na 2 WO 4 and Mn 2 O 3 as the most probable active site for OCM using this catalyst. Synergistic interactions between the various precursors used and the phase transition are discussed in detail, and the conclusions are correlated to surface properties and catalysis.
NASA Astrophysics Data System (ADS)
Papagianni, Christina
Pr0.7Ca0.3MnO3 (PCMO) manganese oxide belongs in the family of materials known as transition metal oxides. These compounds have received increased attention due to their perplexing properties such as Colossal Magnetoresistance effect, Charge-Ordered phase, existence of phase-separated states etc. In addition, it was recently discovered that short electrical pulses in amplitude and duration are sufficient to induce reversible and non-volatile resistance changes in manganese perovskite oxide thin films at room temperature, known as the EPIR effect. The existence of the EPIR effect in PCMO thin films at room temperature opens a viable way for the realization of fast, high-density, low power non-volatile memory devices in the near future. The purpose of this study is to investigate, optimize and understand the properties of Pr0.7Ca0.3MnO 3 (PCMO) thin film devices and to identify how these properties affect the EPIR effect. PCMO thin films were deposited on various substrates, such as metals, and conducting and insulating oxides, by pulsed laser and radio frequency sputtering methods. Our objective was to understand and compare the induced resistive states. We attempted to identify the induced resistance changes by considering two resistive models to be equivalent to our devices. Impedance spectroscopy was also utilized in a wide temperature range that was extended down to 70K. Fitted results of the temperature dependence of the resistance states were also included in this study. In the same temperature range, we probed the resistance changes in PCMO thin films and we examined whether the phase transitions affect the EPIR effect. In addition, we included a comparison of devices with electrodes consisting of different size and different materials. We demonstrated a direct relation between the EPIR effect and the phase diagram of bulk PCMO samples. A model that could account for the observed EPIR effect is presented.
NASA Astrophysics Data System (ADS)
Cavazos, A. R.; Taillefert, M.; Glass, J. B.
2016-12-01
The oceans are a significant of nitrous oxide (N2O) to the atmosphere. Current models of global oceanic N2O flux focus on microbial N2O cycling and often ignore abiotic reactions, such as the thermodynamically favorable oxidation of the nitrification intermediate hydroxylamine (NH2OH) by Mn(IV) or Fe(III). At circumneutral pH, NH2OH oxidation is more thermodynamically favorable via Mn(IV) than Fe(III) reduction. We characterized the kinetics of NH2OH oxidation in synthetic ocean water at pH 5.1-8.8 using microsensor electrodes to measure real-time N2O production. N2O production rates and yield were greater when NH2OH was oxidized by Mn(IV) than Fe(III). Accordingly, the reduction of Mn(IV) was first order with respect to NH2OH whereas the reduction of Fe(III) was zero order with respect to NH2OH. Interestingly, the order of the reaction with respect to Mn(IV) appears to be negative whereas the reaction is second order with respect to Fe(III). The inverse order with respect to Mn(IV) may be due to the aggregation of particles in seawater, which decreases their surface area and changes their reactivity. Finally, the reaction is first order with respect to protons with Fe(III) as the oxidant but zero order with Mn(IV). The stronger effect of the pH on the reaction with Fe(III) as the oxidant compared to Mn(IV) reflects the stoichiometry of these two reactions, as each mole of N2O produced by Fe(III) reduction consumes eight protons while each mole of N2O produced with Mn(IV) as the oxidant requires only four protons. Our data show that abiotic NH2OH oxidation by Mn(IV) or Fe(III) particles may represent a significant source of N2O in seawater. These findings suggest that abiotic N2O production in marine waters may be significant in areas of the oceans where particulate metals originating from aerosols, dust, or rivers may react with NH2OH released from ammonia-oxidizing microorganisms.
MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells.
Zhou, Chunmei; Wang, Hongjuan; Peng, Feng; Liang, Jiahua; Yu, Hao; Yang, Jian
2009-07-07
Pt/MnO2/carbon nanotube (CNT) and PtRu/MnO2/CNT nanocomposites were synthesized by successively loading hydrous MnO2 and Pt (or PtRu alloy) nanoparticles on CNTs and were used as anodic catalysts for direct methanol fuel cells (DMFCs). The existence of MnO2 on the surface of CNTs effectively increases the proton conductivity of the catalyst, which then could remarkably improve the performance of the catalyst in methanol electro-oxidation. As a result, Pt/MnO2/CNTs show higher electrochemical active surface area and better methanol electro-oxidation activity, compared with Pt/CNTs. As PtRu alloy nanoparticles were deposited on the surface of MnO2/CNTs instead of Pt, the PtRu/MnO2/CNT catalyst shows not only excellent electro-oxidation activity to methanol with forward anodic peak current density of 901 A/gPt but also good CO oxidation ability with lower preadsorbed CO oxidation onset potential (0.33 V vs Ag/AgCl) and peak potential (0.49 V vs Ag/AgCl) at room temperature.
NASA Astrophysics Data System (ADS)
Cui, B.; Song, C.; Li, F.; Zhong, X. Y.; Wang, Z. C.; Werner, P.; Gu, Y. D.; Wu, H. Q.; Saleem, M. S.; Parkin, S. S. P.; Pan, F.
2017-10-01
Manipulation of oxygen vacancies (VO ) in single oxide layers by varying the electric field can result in significant modulation of the ground state. However, in many oxide multilayers with strong application potentials, e.g., ferroelectric tunnel junctions and solid-oxide fuel cells, understanding VO behavior in various layers under an applied electric field remains a challenge, owing to complex VO transport between different layers. By sweeping the external voltage, a reversible manipulation of VO and a corresponding fixed magnetic phase transition sequence in cobaltite/manganite (SrCoO3 -x/La0.45Sr0.55MnO3 -y ) heterostructures are reported. The magnetic phase transition sequence confirms that the priority of electric-field-induced VO formation or annihilation in the complex bilayer system is mainly determined by the VO formation energies and Gibbs free-energy differences, which is supported by theoretical analysis. We not only realize a reversible manipulation of the magnetic phase transition in an oxide bilayer but also provide insight into the electric-field control of VO engineering in heterostructures.
Mattioli, Giuseppe; Zaharieva, Ivelina; Dau, Holger; Guidoni, Leonardo
2015-08-19
Amorphous transition-metal (hydr)oxides are considered as the most promising catalysts that promote the oxidation of water to molecular oxygen, protons, and "energized" electrons, and, in turn, as fundamental parts of "artificial leaves" that can be exploited for large scale generation of chemical fuels (e.g., hydrogen) directly from sunlight. We present here a joint theoretical-experimental investigation of electrodeposited amorphous manganese oxides with different catalytic activities toward water oxidation (MnCats). Combining the information content of X-ray absorption fine structure (XAFS) measurements with the predictive power of ab initio calculations based on density functional theory, we have been able to identify the essential structural and electronic properties of MnCats. We have elucidated (i) the localization and structural connection of Mn(II), Mn(III), and Mn(IV) ions in such amorphous oxides and (ii) the distribution of protons at the MnCat/water interface. Our calculations result in realistic 3D models of the MnCat atomistic texture, formed by the interconnection of small planar Mn-oxo sheets cross-linked through different kinds of defective Mn atoms, isolated or arranged in closed cubane-like units. Essential for the catalytic activity is the presence of undercoordinated Mn(III)O5 units located at the boundary of the amorphous network, where they are ready to act as hole traps that trigger the oxidation of neighboring water molecules when the catalyst is exposed to an external positive potential. The present validation of a sound 3D model of MnCat improves the accuracy of XAFS fits and opens the way for the development of mechanistic schemes of its functioning beyond a speculative level.
Oh, Pilgun; Oh, Seung -Min; Li, Wangda; ...
2016-05-30
The Ni-rich layered oxides with a Ni content of >0.5 are drawing much attention recently to increase the energy density of lithium-ion batteries. However, the Ni-rich layered oxides suffer from aggressive reaction of the cathode surface with the organic electrolyte at the higher operating voltages, resulting in consequent impedance rise and capacity fade. To overcome this difficulty, we present here a heterostructure composed of a Ni-rich LiNi 0.7Co 0.15Mn 0.15O 2 core and a Li-rich Li 1.2-xNi 0.2Mn 0.6O 2 shell, incorporating the advantageous features of the structural stability of the core and chemical stability of the shell. With amore » unique chemical treatment for the activation of the Li 2MnO 3 phase of the shell, a high capacity is realized with the Li-rich shell material. Aberration-corrected scanning transmission electron microscopy (STEM) provides direct evidence for the formation of surface Li-rich shell layer. Finally, the heterostructure exhibits a high capacity retention of 98% and a discharge- voltage retention of 97% during 100 cycles with a discharge capacity of 190 mA h g -1 (at 2.0–4.5 V under C/3 rate, 1C = 200 mA g -1).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Gao; Yu, Lin, E-mail: gych@gdut.edu.cn; Lin, Ting
2014-09-15
Branched β-MnO{sub 2} bipods with novel nanopincer morphology were prepared by a facile one-pot hydrothermal method via a redox reaction between NaClO{sub 3} and MnSO{sub 4} in sulfuric acid solution without using any surfactants or templates. The products were characterized in detail by various techniques including X-ray powder diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, surface area analyzer, field emission scanning electron microscopy and transmission electron microscopy. Results show that the obtained β-MnO{sub 2} nanopincers consist of two sharp nanorods with a diameter of 100–200 nm and a length of 1–2 μm. The concentration of H{sub 2}SO{sub 4} solution plays anmore » important role in controlling the crystal phase and morphology of the final product. A possible formation mechanism for the β-MnO{sub 2} nanopincers was proposed. Moreover, these β-MnO{sub 2} nanostructures exhibited better catalytic performance than the commercial MnO{sub 2} particles to decompose methyl blue (MB) in the presence of H{sub 2}O{sub 2}. - Graphical abstract: Branched β-MnO{sub 2} bipods with novel nanopincer morphology were prepared by a facile one-pot hydrothermal method through oxidizing MnSO{sub 4} with NaClO{sub 3} in H2SO{sub 4} condition without using any surfactants or templates. - Highlights: {sup •} Branched β-MnO{sub 2} nanopincers were prepared by a facile one-pot hydrothermal method. {sup •} Morphology and crystal phase of MnO{sub 2} were controlled by the H{sub 2}SO{sub 4} concentration. {sup •} A possible formation mechanism for the obtained β-MnO{sub 2} nanopincers was proposed. {sup •} The products showed great catalytic performance in degradation of methylene blue.« less
Ardini, Matteo; Fiorillo, Annarita; Fittipaldi, Maria; Stefanini, Simonetta; Gatteschi, Dante; Ilari, Andrea; Chiancone, Emilia
2013-06-01
The ferroxidase center of DNA-binding protein from starved cells (Dps) is a major player in the iron oxidation/detoxification process that leads to a decreased reactive oxygen species production. The possible Mn(II) participation in this process has been studied in Dps from Kineococcus radiotolerans, a radiation-resistant bacterium with a high cytosolic Mn/Fe ratio and a high capacity to survive ionizing and stress conditions. The X-ray structure of recombinant K. radiotolerans Dps loaded with Mn(II) has been solved at 2.0Å resolution. Mn(II) binding to K. radiotolerans Dps and its effect on Fe(II) oxidation have been characterized in spectroscopic measurements. In K. radiotolerans Dps, the Fe-Fe ferroxidase center can have a Mn-Fe composition. Mn(II) binds only at the high affinity, so-called A site, whereas Fe(II) binds also at the low affinity, so-called B site. The Mn-Fe and Fe-Fe centers behave distinctly upon iron oxidation by O2. A site-bound Mn(II) or Fe(II) plays a catalytic role, while B site-bound Fe(II) behaves like a substrate and can be replaced by another Fe(II) after oxidation. When H2O2 is the Fe(II) oxidant, single electrons are transferred to aromatic residues near the ferroxidase center and give rise to intra-protein radicals thereby limiting OH release in solution. The presence of the Mn-Fe center results in significant differences in the development of such intra-protein radicals. Mn(II) bound at the Dps ferroxidase center A site undergoes redox cycling provided the B site contains Fe. The results provide a likely molecular mechanism for the protective role of Mn(II) under oxidative stress conditions as it participates in redox cycling in the hetero-binuclear ferroxidase center. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Du, Jinpeng; Qu, Zhenping; Dong, Cui; Song, Lixin; Qin, Yuan; Huang, Na
2018-03-01
Mn-Ce oxides catalysts were synthesized by a novel method combining redox-precipitation and hydrothermal approach. The results indicate that the ratio between manganese and cerium plays a crucial role in the formation of catalysts, and the textual properties as well as catalytic activity are remarked affected. Mn0.6Ce0.4O2 possesses a predominant catalytic activity in the oxidation of toluene, over 70% of toluene is converted at 200 °C, and the complete conversion temperature is 210 °C. The formation of Mn-Ce solid solution markedly improves the surface area as well as pore volume of Mn-Ce oxide catalyst, and Mn0.6Ce0.4O2 possesses the largest surface area of 298.5 m2/g. The abundant Ce3+ and Mn3+ on Mn0.6Ce0.4O2 catalyst facilitate the formation of oxygen vacancies, and improve the transfer of oxygen in the catalysts. Meanwhile, it is found that cerium in Mn-Ce oxide plays a key role in the adsorption of toluene, while manganese is proved to be crucial in the oxidation of toluene, the cooperation between manganese and cerium improves the catalytic reaction process. In addition, the reaction process is investigated by in situ DRIFT measurement, and it is found that the adsorbed toluene could be oxidized to benzyl alcohol as temperature rises around 80-120 °C that can be further be oxidized to benzoic acid. Then benzoic acid could be decomposed to formate and/or carbonate species as temperature rises to form CO2 and H2O. In addition, the formed by-product phenol could be further oxidized into CO2 and H2O when the temperature is high enough.
Najafpour, Mohammad Mahdi; Rahimi, Fahime; Fathollahzadeh, Maryam; Haghighi, Behzad; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I
2014-07-28
Herein, we report on nano-sized Mn oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing compounds in artificial photosynthesis. The composites are synthesized by different and simple procedures and characterized by a number of methods. The water-oxidizing activities of these composites are also considered in the presence of cerium(IV) ammonium nitrate. Some composites are efficient Mn-based catalysts with TOF (mmol O2 per mol Mn per second) ~ 2.6.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández-Fueyo, Elena; Acebes, Sandra; Ruiz-Dueñas, Francisco J.
2014-12-01
The variable C-terminal tail of manganese peroxidases, a group of enzymes involved in lignin degradation, is implicated in their catalytic and stability properties, as shown by new crystal structures, molecular-simulation and directed-mutagenesis data. Based on this structural–functional evaluation, short and long/extralong manganese peroxidase subfamilies have been accepted; the latter are characterized by exceptional stability, while it is shown for the first time that the former are able to oxidize other substrates at the same site where manganese(II) is oxidized. The genome of Ceriporiopsis subvermispora includes 13 manganese peroxidase (MnP) genes representative of the three subfamilies described in ligninolytic fungi, whichmore » share an Mn{sup 2+}-oxidation site and have varying lengths of the C-terminal tail. Short, long and extralong MnPs were heterologously expressed and biochemically characterized, and the first structure of an extralong MnP was solved. Its C-terminal tail surrounds the haem-propionate access channel, contributing to Mn{sup 2+} oxidation by the internal propionate, but prevents the oxidation of 2, 2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), which is only oxidized by short MnPs and by shortened-tail variants from site-directed mutagenesis. The tail, which is anchored by numerous contacts, not only affects the catalytic properties of long/extralong MnPs but is also associated with their high acidic stability. Cd{sup 2+} binds at the Mn{sup 2+}-oxidation site and competitively inhibits oxidation of both Mn{sup 2+} and ABTS. Moreover, mutations blocking the haem-propionate channel prevent substrate oxidation. This agrees with molecular simulations that position ABTS at an electron-transfer distance from the haem propionates of an in silico shortened-tail form, while it cannot reach this position in the extralong MnP crystal structure. Only small differences exist between the long and the extralong MnPs, which do not justify their classification as two different subfamilies, but they significantly differ from the short MnPs, with the presence/absence of the C-terminal tail extension being implicated in these differences.« less
Berlinger, B; Náray, M; Sajó, I; Záray, G
2009-06-01
In this work, welding fume samples were collected in a welding plant, where corrosion-resistant steel and unalloyed structural steel were welded by gas metal arc welding (GMAW) and manual metal arc welding (MMAW) techniques. The welding fumes were sampled with a fixed-point sampling strategy applying Higgins-Dewell cyclones. The following solutions were used to dissolve the different species of Ni and Mn: ammonium citrate solution [1.7% (m/v) diammonium hydrogen citrate and 0.5% (m/v) citric acid monohydrate] for 'soluble' Ni, 50:1 methanol-bromine solution for metallic Ni, 0.01 M ammonium acetate for soluble Mn, 25% acetic acid for Mn(0) and Mn(2+) and 0.5% hydroxylammonium chloride in 25% acetic acid for Mn(3+) and Mn(4+). 'Insoluble' Ni and Mn contents of the samples were determined after microwave-assisted digestion with the mixture of concentrated (cc). HNO(3), cc. HCl and cc. HF. The sample solutions were analysed by inductively coupled plasma quadrupole mass spectrometry and inductively coupled plasma atomic emission spectrometry. The levels of total Ni and Mn measured in the workplace air were different because of significant differences of the fume generation rates and the distributions of the components in the welding fumes between the welding processes. For quality control of the leaching process, dissolution of the pure stoichiometric Mn and Ni compounds and their mixtures weighing was investigated using the optimized leaching conditions. The results showed the adequacy of the procedure for the pure metal compounds. Based on the extraction procedures, the predominant oxidation states of Ni and Mn proved to be very different depending on the welding techniques and type of the welded steels. The largest amount of Mn in GMAW fumes were found as insoluble Mn (46 and 35% in case of corrosion-resistant steel and unalloyed structural steel, respectively), while MMAW fumes contain mainly soluble Mn, Mn(0) and Mn(2+) (78%) and Mn(3+) and Mn(4+) (54%) in case of corrosion-resistant steel and unalloyed structural steel, respectively. According to the results of the leaching procedures, GMAW fumes are rich in oxidic Ni (79%), while Ni compounds in welding fumes generated during MMAW are mainly in easily soluble form (44%). The crystalline phases were identified in each welding fume by X-ray powder diffraction (XRPD) technique as well. From the XRPD spectra, it is clear that GMAW fumes contain predominantly magnetite (FeFe(2)O(4)). In case of structural steel welding, there was a little amount of ferrite (alpha-Fe) also found. Welding fume generated during MMAW of structural steel contained a complex alkali-alkali earth fluoride phase (KCaF(3)-CaF(2)) and some magnetite and jakobsite (MnFe(2)O(4)). The XRPD results did not fully confirm the ones obtained from the extraction experiments. However, some results, for example the rate of soluble Ni and Mn compounds compared to the total, can be useful for further investigations of welding fumes.
Wang, Xinghao; Liu, Jiaoqin; Qu, Ruijuan; Wang, Zunyao; Huang, Qingguo
2017-08-10
Nanostructured manganese oxides, e.g. MnO 2 , have shown laccase-like catalytic activities, and are thus promising for pollutant oxidation in wastewater treatment. We have systematically compared the laccase-like reactivity of manganese oxide nanomaterials of different crystallinity, including α-, β-, γ-, δ-, and ɛ-MnO 2 , and Mn 3 O 4 , with 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS) and 17β-estradiol (E2) as the probing substrates. The reaction rate behaviors were examined with regard to substrate oxidation and oxygen reduction to evaluate the laccase-like catalysis of the materials, among which γ-MnO 2 exhibits the best performance. Cyclic voltammetry (CV) was employed to assess the six MnO x nanomaterials, and the results correlate well with their laccase-like catalytic activities. The findings help understand the mechanisms of and the factors controlling the laccase-like reactivity of different manganese oxides nanomaterials, and provide a basis for future design and application of MnO x -based catalysts.
Lin, Jr-Lin; Hua, Lap-Cuong; Wu, Yuting; Huang, Chihpin
2016-02-01
Preoxidation is manipulated to improve performance of algae and soluble manganese (Mn) removal by coagulation-sedimentation for water treatment plants (WTPs) when large amount of soluble Mn presents in algae-laden waters. This study aimed to investigate the effects of preoxidation on the performance of coagulation-sedimentation for the simultaneous removal of algae and soluble Mn, including ionic and complexed Mn. NaOCl, ClO2, and KMnO4 were used to pretreat such algae-laden and Mn containing waters. The variation of algal cell viability, residual cell counts, and concentrations of Mn species prior to and after coagulation-sedimentation step were investigated. Results show that NaOCl dosing was effective in reducing the viability of algae, but precipitated little Mn. ClO2 dosing had a strongest ability to lower algae viability and oxidize ionic and complexed soluble Mn, where KMnO4 dosing oxidized ionic and complexed Mn instead of reducing the viability of cells. Preoxidation by NaOCl only improved the algae removal by sedimentation, whereas most of soluble Mn still remained. On the other hand, ClO2 preoxidation substantially improved the performance of coagulation-sedimentation for simultaneous removal of algae and soluble Mn. Furthermore, KMnO4 preoxidation did improve the removal of algae by sedimentation, but left significant residual Mn in the supernatant. Images from FlowCAM showed changes in aspect ratio (AR) and transparency of algae-Mn flocs during oxidation-assisted coagulation, and indicates that an effective oxidation can improve the removal of most compact algae-Mn flocs by sedimentation. It suggests that an effective preoxidation for reducing algal cell viability and the concentration of soluble Mn is a crucial step for upgrading the performance of coagulation-sedimentation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hoque, Raza Rafiqul; Goswami, K G; Kusre, B C; Sarma, K P
2011-06-01
Heavy metal (Fe, Mn, Zn, Cu, Ni, Pb, and Cd) concentrations and their chemical speciations were investigated for the first time in bed sediments of Bharali River, a major tributary of the Brahmaputra River of the Eastern Himalayas. Levels of Fe, Mn, Pb, and Cd in the bed sediments were much below the average Indian rivers; however, Cu and Zn exhibit levels on the higher side. Enrichment factors (EF) of all metals was greater than 1 and a higher trend of EF was seen in the abandoned channel for most metals. Pb showed maximum EF of 32 at site near an urban center. The geoaccumulation indices indicate that Bharali river is moderately polluted. The metals speciations, done by a sequential extraction regime, show that Cd, Cu, and Pb exhibit considerable presence in the exchangeable and carbonate fraction, thereby showing higher mobility and bioavailability. On the other hand, Ni, Mn, and Fe exhibit greater presence in the residual fraction and Zn was dominant in the Fe-Mn oxide phase. Inter-species correlations at three sites did not show similar trends for metal pairs indicating potential variations in the contributing sources.
Structural insight of the charge-ordering phenomena in manganites
NASA Astrophysics Data System (ADS)
Garcia, Joaquin
2005-03-01
Recent experiments using x-ray absorption spectroscopy (XAS) and x-ray resonant scattering (XRS) techniques show that the conventional description of the so-called charge ordering phases of manganites in terms of Mn^3+/Mn^4+ ionic ordering is far from reality. I present here the XRS study of the low temperature phase of Nd0.5Sr0.5MnO3 manganite. Strong resonances are observed in the energy dependent spectra of (300), (030) and (05/20) reflections. Their azimuthal and polarization dependencies are well explained by the anisotropy of the local geometrical structure. Two different Mn sites were found. One of them is surrounded by a tetragonal distorted oxygen octahedron, whereas the other site has a nearly regular octahedral environment. The charge separation between the intermediate valence states is less than 0.2 e-. The analysis performed resolves some of the apparent contradictions with previous XRS and XAS experiments in manganites. These results joined to those recently obtained on the Verwey transition in magnetite indicate that the electronic states in transition-metal oxides need to be described in terms of band states instead of localized ones. Colaborators: G. Sub'ias, J. Blasco, M. G. Proietti, M. S'anchez and J. Herrero-Martin
Li, Chun; Han, Xiaopeng; Cheng, Fangyi; Hu, Yuxiang; Chen, Chengcheng; Chen, Jun
2015-06-04
Spinel-type oxides are technologically important in many fields, including electronics, magnetism, catalysis and electrochemical energy storage and conversion. Typically, these materials are prepared by conventional ceramic routes that are energy consuming and offer limited control over shape and size. Moreover, for mixed-metal oxide spinels (for example, Co(x)Mn(3-x)O4), the crystallographic phase sensitively correlates with the metal ratio, posing great challenges to synthesize active product with simultaneously tuned phase and composition. Here we report a general synthesis of ultrasmall cobalt manganese spinels with tailored structural symmetry and composition through facile solution-based oxidation-precipitation and insertion-crystallization process at modest condition. As an example application, the nanocrystalline spinels catalyse the oxygen reduction/evolution reactions, showing phase and composition co-dependent performance. Furthermore, the mild synthetic strategy allows the formation of homogeneous and strongly coupled spinel/carbon nanocomposites, which exhibit comparable activity but superior durability to Pt/C and serve as efficient catalysts to build rechargeable Zn-air and Li-air batteries.
Qin, Xing; Sun, Xianhua; Huang, Huoqing; Bai, Yingguo; Wang, Yuan; Luo, Huiying; Yao, Bin; Zhang, Xiaoyu; Su, Xiaoyun
2017-01-01
Manganese peroxidase is one of the Class II fungal peroxidases that are able to oxidize the low redox potential phenolic lignin compounds. For high redox potential non-phenolic lignin degradation, mediators such as GSH and unsaturated fatty acids are required in the reaction. However, it is not known whether carboxylic acids are a mediator for non-phenolic lignin degradation. The white rot fungus Irpex lacteus is one of the most potent fungi in degradation of lignocellulose and xenobiotics. Two manganese peroxidases ( Il MnP1 and Il MnP2) from I. lacteus CD2 were over-expressed in Escherichia coli and successfully refolded from inclusion bodies. Both Il MnP1 and Il MnP2 oxidized the phenolic compounds efficiently. Surprisingly, they could degrade veratryl alcohol, a non-phenolic lignin compound, in a Mn 2+ -dependent fashion. Malonate or oxalate was found to be also essential in this degradation. The oxidation of non-phenolic lignin was further confirmed by analysis of the reaction products using LC-MS/MS. We proved that Mn 2+ and a certain carboxylate are indispensable in oxidation and that the radicals generated under this condition, specifically superoxide radical, are at least partially involved in lignin oxidative degradation. Il MnP1 and Il MnP2 can also efficiently decolorize dyes with different structures. We provide evidence that a carboxylic acid may mediate oxidation of non-phenolic lignin through the action of radicals. MnPs, but not LiP, VP, or DyP, are predominant peroxidases secreted by some white rot fungi such as I. lacteus and the selective lignocellulose degrader Ceriporiopsis subvermispora . Our finding will help understand how these fungi can utilize MnPs and an excreted organic acid, which is usually a normal metabolite, to efficiently degrade the non-phenolic lignin. The unique properties of Il MnP1 and Il MnP2 make them good candidates for exploring molecular mechanisms underlying non-phenolic lignin compounds oxidation by MnPs and for applications in lignocellulose degradation and environmental remediation.
Significant improvement in Mn2O3 transition metal oxide electrical conductivity via high pressure
Hong, Fang; Yue, Binbin; Hirao, Naohisa; Liu, Zhenxian; Chen, Bin
2017-01-01
Highly efficient energy storage is in high demand for next-generation clean energy applications. As a promising energy storage material, the application of Mn2O3 is limited due to its poor electrical conductivity. Here, high-pressure techniques enhanced the electrical conductivity of Mn2O3 significantly. In situ synchrotron micro X-Ray diffraction, Raman spectroscopy and resistivity measurement revealed that resistivity decreased with pressure and dramatically dropped near the phase transition. At the highest pressure, resistivity reduced by five orders of magnitude and the sample showed metal-like behavior. More importantly, resistivity remained much lower than its original value, even when the pressure was fully released. This work provides a new method to enhance the electronic properties of Mn2O3 using high-pressure treatment, benefiting its applications in energy-related fields. PMID:28276479
The effects of iron(II) on the kinetics of arsenic oxidation and sorption on manganese oxides.
Wu, Yun; Li, Wei; Sparks, Donald L
2015-11-01
In this study, As(III) oxidation kinetics by a poorly-crystalline phyllomanganate (δ-MnO2) in the presence and absence of dissolved Fe(II) was investigated using stirred-flow and batch experiments. Chemically synthetic δ-MnO2 was reacted with four influent solutions, containing the same As(III) concentration but different Fe(II) concentrations, at pH 6. The results show an initial rapid As(III) oxidation by δ-MnO2, which is followed by an appreciably slow reaction after 8h. In the presence of Fe(II), As(III) oxidation is inhibited due to the competitive oxidation of Fe(II) as well as the formation of Fe(III)-(hydr)oxides on the δ-MnO2 surface. However, the sorption of As(III), As(V) and Mn(II) are increased, for the newly formed Fe(III)-(hydr)oxides provide additional sorption sites. This study suggests that the competitive oxidation of Fe(II) and consequently the precipitation of Fe(III) compounds on the δ-MnO2 surface play an important role in As(III) oxidation and As sequestration. Understanding these processes would be helpful in developing in situ strategies for remediation of As-contaminated waters and soils. Copyright © 2015 Elsevier Inc. All rights reserved.
Elastic and Mechanical Properties of the MAX Phases
NASA Astrophysics Data System (ADS)
Barsoum, Michel W.; Radovic, Miladin
2011-08-01
The more than 60 ternary carbides and nitrides, with the general formula Mn+1AXn—where n = 1, 2, or 3; M is an early transition metal; A is an A-group element (a subset of groups 13-16); and X is C and/or N—represent a new class of layered solids, where Mn+1Xn layers are interleaved with pure A-group element layers. The growing interest in the Mn+1AXn phases lies in their unusual, and sometimes unique, set of properties that can be traced back to their layered nature and the fact that basal dislocations multiply and are mobile at room temperature. Because of their chemical and structural similarities, the MAX phases and their corresponding MX phases share many physical and chemical properties. In this paper we review our current understanding of the elastic and mechanical properties of bulk MAX phases where they differ significantly from their MX counterparts. Elastically the MAX phases are in general quite stiff and elastically isotropic. The MAX phases are relatively soft (2-8 GPa), are most readily machinable, and are damage tolerant. Some of them are also lightweight and resistant to thermal shock, oxidation, fatigue, and creep. In addition, they behave as nonlinear elastic solids, dissipating 25% of the mechanical energy during compressive cycling loading of up to 1 GPa at room temperature. At higher temperatures, they undergo a brittle-to-plastic transition, and their mechanical behavior is a strong function of deformation rate.
CotA, a Multicopper Oxidase from Bacillus pumilus WH4, Exhibits Manganese-Oxidase Activity
Su, Jianmei; Bao, Peng; Bai, Tenglong; Deng, Lin; Wu, Hui; Liu, Fan; He, Jin
2013-01-01
Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II) were 14.85±1.17 mM, 3.01×10−6±0.21 M·min−1 and 0.32±0.02 s−1, respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a potential biocatalyst for Mn(II) removal. PMID:23577125
Evolution of Oxide Inclusions in Si-Mn Killed Steels During Hot-Rolling Process
NASA Astrophysics Data System (ADS)
Yang, Wen; Guo, Changbo; Zhang, Lifeng; Ling, Haitao; Li, Chao
2017-10-01
The evolution of oxide inclusions in Si-Mn killed steels refined by slags of different basicity during a four-pass industrial hot-rolling process was investigated using an automated microscopy system. High-basicity refining slag induced the formation of CaO- and Al2O3-containing inclusions, while refining slag with 0.8 basicity induced dominant inclusions of SiO2 and MnO-SiO2. CaO-SiO2-Al2O3 inclusions mainly formed endogenously during solidification and cooling of Ca-containing steels, where Ca originated from slag-steel reactions. However, the larger-sized higher-CaO inclusions originated from slag entrainment. Different inclusions presented different hot-rolling behaviors. The inclusion composition changed by deformation and new phase formation. The dominant oxide types were unchanged under refinement by low-basicity slag; however, they changed under refinement with high-basicity slag. The deformation index of inclusions decreased with increasing accumulated reduction (AR) of the steel. The difference in deformation index between different inclusion types was the largest in the first rolling stage and decreased in subsequent stages. SiO2-CaO and SiO2-MnO-CaO inclusions had larger deformation indices during hot rolling but smaller indices in the last two stages. High-basicity slag increased inclusion complexity; from the perspective of cold-drawing performance, low-basicity refining slag is better for the industrial production of tire-cord steels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, Albert; Kabir, Sadia; Matanovic, Ivana
This paper reports the fabrication and electrochemical performance of a hybrid catalyst composed of Pd nanoparticles and atomically dispersed Mn active centers integrated into the nitrogen-doped three-dimensional graphene nanosheets (Pd/Mn-N-3D-GNS). Our results show that the synergistic integration of both Pd nanoparticles and atomically dispersed Mn can be used to enhance the activity toward the electrochemical oxidation of organic acids at biologically relevant pH values. The hybrid catalyst (Pd/Mn-N-3D-GNS) showed increased maximum currents toward the oxidation of oxalic acid when compared to its individual catalysts, namely, Pd/3D-GNS and Mn N-3D-GNS catalysts. The hybrid also showed a decreased onset potential for oxidationmore » of mesoxalic acid as compared to Mn-N-3D-GNS and decreased onset potentials for the oxidation of glyoxalic acid when compared to both of its constituent catalysts. Oxidation of formic acid was also tested and the hybrid was shown to catalyze both dehydration and dehydrogenation mechanisms of formic acid electro-oxidation. Using density functional theory calculations, it was elucidated that a two-site catalysis most likely promotes dehydrogenation reaction for formic acid oxidation, which can explain the selectivity of Pd nanoparticles and atomically dispersed Mn towards the dehydrogenation/ dehydration pathway.« less
Perry, Albert; Kabir, Sadia; Matanovic, Ivana; ...
2017-06-16
This paper reports the fabrication and electrochemical performance of a hybrid catalyst composed of Pd nanoparticles and atomically dispersed Mn active centers integrated into the nitrogen-doped three-dimensional graphene nanosheets (Pd/Mn-N-3D-GNS). Our results show that the synergistic integration of both Pd nanoparticles and atomically dispersed Mn can be used to enhance the activity toward the electrochemical oxidation of organic acids at biologically relevant pH values. The hybrid catalyst (Pd/Mn-N-3D-GNS) showed increased maximum currents toward the oxidation of oxalic acid when compared to its individual catalysts, namely, Pd/3D-GNS and Mn N-3D-GNS catalysts. The hybrid also showed a decreased onset potential for oxidationmore » of mesoxalic acid as compared to Mn-N-3D-GNS and decreased onset potentials for the oxidation of glyoxalic acid when compared to both of its constituent catalysts. Oxidation of formic acid was also tested and the hybrid was shown to catalyze both dehydration and dehydrogenation mechanisms of formic acid electro-oxidation. Using density functional theory calculations, it was elucidated that a two-site catalysis most likely promotes dehydrogenation reaction for formic acid oxidation, which can explain the selectivity of Pd nanoparticles and atomically dispersed Mn towards the dehydrogenation/ dehydration pathway.« less
Jiang, Jin; Pang, Su-Yan; Ma, Jun; Liu, Huiling
2012-02-07
In this study, five selected environmentally relevant phenolic endocrine disrupting chemicals (EDCs), estrone, 17β-estradiol, estriol, 17α-ethinylestradiol, and 4-n-nonylphenol, were shown to exhibit similarly appreciable reactivity toward potassium permanganate [Mn(VII)] with a second-order rate constant at near neutral pH comparable to those of ferrate(VI) and chlorine but much lower than that of ozone. In comparison with these oxidants, however, Mn(VII) was much more effective for the oxidative removal of these EDCs in real waters, mainly due to the relatively high stability of Mn(VII) therein. Mn(VII) concentrations at low micromolar range were determined by an ABTS [2,2-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid diammonium] spectrophotometric method based on the stoichiometric reaction of Mn(VII) with ABTS [Mn(VII) + 5ABTS → Mn(II) + 5ABTS(•+)] forming a stable green radical cation (ABTS(•+)). Identification of oxidation products suggested the initial attack of Mn(VII) at the hydroxyl group in the aromatic ring of EDCs, leading to a series of quinone-like and ring-opening products. The background matrices of real waters as well as selected model ligands including phosphate, pyrophosphate, NTA, and humic acid were found to accelerate the oxidation dynamics of these EDCs by Mn(VII). This was explained by the effect of in situ formed dissolved Mn(III), which could readily oxidize these EDCs but would disproportionate spontaneously without stabilizing agents.
Sherman, David M.
1990-01-01
Metal-metal charge-transfer and magnetic exchange interactions have important effects on the optical spectra, crystal chemistry, and physics of minerals. Previous molecular orbital calculations have provided insight on the nature of Fe2+-Fe3+ and Fe2+-Ti4+ charge-transfer transitions in oxides and silicates. In this work, spin-unrestricted molecular orbital calculations on (FeMnO10) clusters are used to study the nature of magnetic exchange and electron delocalization (charge transfer) associated with Fe3+-Mn2+, Fe3+-Mn3+, and Fe2+-Mn3+ interactions in oxides and silicates.
Microbial Manganese and Sulfate Reduction in Black Sea Shelf Sediments
Thamdrup, Bo; Rosselló-Mora, Ramón; Amann, Rudolf
2000-01-01
The microbial ecology of anaerobic carbon oxidation processes was investigated in Black Sea shelf sediments from mid-shelf with well-oxygenated bottom water to the oxic-anoxic chemocline at the shelf-break. At all stations, organic carbon (Corg) oxidation rates were rapidly attenuated with depth in anoxically incubated sediment. Dissimilatory Mn reduction was the most important terminal electron-accepting process in the active surface layer to a depth of ∼1 cm, while SO42− reduction accounted for the entire Corg oxidation below. Manganese reduction was supported by moderately high Mn oxide concentrations. A contribution from microbial Fe reduction could not be discerned, and the process was not stimulated by addition of ferrihydrite. Manganese reduction resulted in carbonate precipitation, which complicated the quantification of Corg oxidation rates. The relative contribution of Mn reduction to Corg oxidation in the anaerobic incubations was 25 to 73% at the stations with oxic bottom water. In situ, where Mn reduction must compete with oxygen respiration, the contribution of the process will vary in response to fluctuations in bottom water oxygen concentrations. Total bacterial numbers as well as the detection frequency of bacteria with fluorescent in situ hybridization scaled to the mineralization rates. Most-probable-number enumerations yielded up to 105 cells of acetate-oxidizing Mn-reducing bacteria (MnRB) cm−3, while counts of Fe reducers were <102 cm−3. At two stations, organisms affiliated with Arcobacter were the only types identified from 16S rRNA clone libraries from the highest positive MPN dilutions for MnRB. At the third station, a clone type affiliated with Pelobacter was also observed. Our results delineate a niche for dissimilatory Mn-reducing bacteria in sediments with Mn oxide concentrations greater than ∼10 μmol cm−3 and indicate that bacteria that are specialized in Mn reduction, rather than known Mn and Fe reducers, are important in this niche. PMID:10877783
Pettong, Tanut; Iamprasertkun, Pawin; Krittayavathananon, Atiweena; Sukha, Phansiri; Sirisinudomkit, Pichamon; Seubsai, Anusorn; Chareonpanich, Metta; Kongkachuichay, Paisan; Limtrakul, Jumras; Sawangphruk, Montree
2016-12-14
The working potential of symmetric supercapacitors is not so wide because one type of material used for the supercapacitor electrodes prefers either positive or negative charge to both charges. To address this problem, a novel asymmetrical supercapacitor (ASC) of battery-type MnCo 2 O 4 nanofibers (NFs)//N-doped reduced graphene oxide aerogel (N-rGO AE ) was fabricated in this work. The MnCo 2 O 4 NFs at the positive electrode store the negative charges, i.e., solvated OH - , while the N-rGO AE at the negative electrode stores the positive charges, i.e., solvated K + . An as-fabricated aqueous-based MnCo 2 O 4 //N-rGO AE ASC device can provide a wide operating potential of 1.8 V and high energy density and power density at 54 W h kg -1 and 9851 W kg -1 , respectively, with 85.2% capacity retention over 3000 cycles. To understand the charge storage reaction mechanism of the MnCo 2 O 4 , the synchrotron-based X-ray absorption spectroscopy (XAS) technique was also used to determine the oxidation states of Co and Mn at the MnCo 2 O 4 electrode after being electrochemically tested. The oxidation number of Co is oxidized from +2.76 to +2.85 after charging and reduced back to +2.75 after discharging. On the other hand, the oxidation state of Mn is reduced from +3.62 to +3.44 after charging and oxidized to +3.58 after discharging. Understanding in the oxidation states of Co and Mn at the MnCo 2 O 4 electrode here leads to the awareness of the uncertain charge storage mechanism of the spinel-type oxide materials. High-performance ASC here in this work may be practically used in high-power applications.
Understanding the evolution of S- and I-type granitic plutons through analysis of apatite.
NASA Astrophysics Data System (ADS)
Hess, B. L.; Fiege, A.; Tailby, N.
2017-12-01
The major and trace element composition of apatites from the Lachlan fold belt (LFB) S- and I-type granitoids (Australia) and the Central French Massif (CFM) S-type leucogranites (France) were analyzed to investigate their compositional and redox variation. Apatite is a common accessory mineral in magmatic systems that can incorporate a variety of trace elements, including the polyvalent elements sulfur (S), iron (Fe), and manganese (Mn). It was recently discovered that apatite can incorporate three oxidation states of S (S6+, S4+, S2-) into its structure as a function of oxygen fugacity [1]. However, the oxidation states of Mn and Fe in apatite are essentially unknown (2+ and/or 3+). In this study, we collected many electron probe line transects across apatites in several different host phases from a variety of S- and I-type plutons. The F-H-Cl contents of the S- and I-type LFB samples were similar ( 2.9 wt% F, 0.4 wt% Cl, 0.5 wt% OH). The CFM S-types contained virtually no Cl and ranged from near-endmember OH-apatite to near-endmember F-apatite. The apatites of all studied the S- and I-type plutons are characterized by similar ranges of Fe content (<1.5 wt% Fe), while Mn reaches much higher concentrations in the S-type when compared to I-type apatites (<6.5 wt% Mn). The S content of the apatites varies significantly, from <50 ppm S in the LFB S-types, up to 2,000 ppm S in the LFB I-types, and reaching 1,650 ppm S in the CFM S-types. The elevated S contents in the LFB I-type and CFM S-type apatites allowed us to measure the S oxidation states by using X-ray absorption near-edge structure (XANES) spectroscopy. The spectra show variability in S oxidation states ranging from mostly sulfate down to nearly equal S6+/S2- ratios, indicating redox variations during apatite formation. The S-type Mn + Fe content plots in a 1:1 ratio against calcium (Ca) in atoms per formula unit, while the I-type apatites have too low Mn and Fe to show a clear trend. Thus, divalent Mn and Fe probably replace Ca2+ in the S-types' apatite structure, while the incorporation of trivalent Mn or Fe in apatite is rather unlikely. We suggest that Mn and Fe contents in apatite may become a useful tracer of melt evolution once the distributions coefficients are experimentally calibrated. [1] Konecke et al. (2017), Am Mineral
Schreiber, Roy E; Cohen, Hagai; Leitus, Gregory; Wolf, Sharon G; Zhou, Ang; Que, Lawrence; Neumann, Ronny
2015-07-15
Manganese(IV,V)-hydroxo and oxo complexes are often implicated in both catalytic oxygenation and water oxidation reactions. Much of the research in this area is designed to structurally and/or functionally mimic enzymes. On the other hand, the tendency of such mimics to decompose under strong oxidizing conditions makes the use of molecular inorganic oxide clusters an enticing alternative for practical applications. In this context it is important to understand the reactivity of conceivable reactive intermediates in such an oxide-based chemical environment. Herein, a polyfluoroxometalate (PFOM) monosubstituted with manganese, [NaH2(Mn-L)W17F6O55](q-), has allowed the isolation of a series of compounds, Mn(II, III, IV and V), within the PFOM framework. Magnetic susceptibility measurements show that all the compounds are high spin. XPS and XANES measurements confirmed the assigned oxidation states. EXAFS measurements indicate that Mn(II)PFOM and Mn(III)PFOM have terminal aqua ligands and Mn(V)PFOM has a terminal hydroxo ligand. The data are more ambiguous for Mn(IV)PFOM where both terminal aqua and hydroxo ligands can be rationalized, but the reactivity observed more likely supports a formulation of Mn(IV)PFOM as having a terminal hydroxo ligand. Reactivity studies in water showed unexpectedly that both Mn(IV)-OH-PFOM and Mn(V)-OH-PFOM are very poor oxygen-atom donors; however, both are highly reactive in electron transfer oxidations such as the oxidation of 3-mercaptopropionic acid to the corresponding disulfide. The Mn(IV)-OH-PFOM compound reacted in water to form O2, while Mn(V)-OH-PFOM was surprisingly indefinitely stable. It was observed that addition of alkali cations (K(+), Rb(+), and Cs(+)) led to the aggregation of Mn(IV)-OH-PFOM as analyzed by electron microscopy and DOSY NMR, while addition of Li(+) and Na(+) did not lead to aggregates. Aggregation leads to a lowering of the entropic barrier of the reaction without changing the free energy barrier. The observation that O2 formation is fastest in the presence of Cs(+) and ∼fourth order in Mn(IV)-OH-PFOM supports a notion of a tetramolecular Mn(IV)-hydroxo intermediate that is viable for O2 formation in an oxide-based chemical environment. A bimolecular reaction mechanism involving a Mn(IV)-hydroxo based intermediate appears to be slower for O2 formation.
Coupled biotic-abiotic oxidation of organic matter by biogenic MnO_{2}
NASA Astrophysics Data System (ADS)
Gonzalez, Julia; Peña, Jasquelin
2016-04-01
Some reactive soil minerals are strongly implicated in stabilising organic matter. However, others can play an active role in the oxidation of organic molecules. In natural systems, layer-type manganese oxide minerals (MnO2) typically occur as biomineral assemblages consisting of mineral particles and microbial biomass. Both the mineral and biological fractions of the assemblage can be powerful oxidants of organic C. The biological compartment relies on a set of enzymes to drive oxidative transformations of reduced C-substrates, whereas MnO2 minerals are strong, less specific abiotic oxidants that are assumed to rely on interfacial interactions between C-substrates and the mineral surface. This project aims to understand the coupling between microbial C mineralization and abiotic C oxidation mediated by MnO2 in bacterial-MnO2 assemblages. Specifically, under conditions of high C turnover, microbial respiration can significantly alter local pH, dissolved oxygen and pool of available reductants, which may modify rates and mechanism of C oxidation by biotic and abiotic components. We first investigated changes in the solution chemistry of Pseudomonas putida suspensions exposed to varying concentrations of glucose, chosen to represent readily bioavailable substrates in soils. Glucose concentrations tested ranged between 0 and 5.5mM and changes in pH, dissolved oxygen and dissolved organic and inorganic carbon were tracked over 48h. We then combined literature review and wet-chemical experiments to compile the pH dependence of rates of organic substrate oxidation by MnO2, including glucose. Our results demonstrate a strong pH dependence for these abiotic reactions. In assemblages of P. putida - MnO2, kinetic limitations for abiotic C oxidation by MnO2 are overcome by changes in biogeochemical conditions that result from bacterial C metabolism. When extrapolated to a soil solution confronted to an input of fresh dissolved organic matter, bacterial C metabolism of the labile fraction may lower solution pH into a regime that favours abiotic oxidation of recalcitrant C by MnO2. This project demonstrates that the co-occurrence of mineral particles with metabolically active cells provides a direct link between the C and Mn cycles.
Kim, Myeong-Seong; Kim, Hyun-Kyung; Lee, Suk-Woo; Kim, Dong-Hyun; Ruan, Dianbo; Chung, Kyung Yoon; Lee, Sang Hyun; Roh, Kwang Chul; Kim, Kwang-Bum
2016-01-01
Microsized, spherical, three-dimensional (3D) graphene-based composites as electrode materials exhibit improved tap density and electrochemical properties. In this study, we report 3D LiMn0.75Fe0.25PO4/reduced graphene oxide microspheres synthesized by one-step salt-assisted spray drying using a mixed solution containing a precursor salt and graphene oxide and a subsequent heat treatment. During this process, it was found that the type of metal salt used has significant effects on the morphology, phase purity, and electrochemical properties of the synthesized samples. Furthermore, the amount of the chelating agent used also affects the phase purity and electrochemical properties of the samples. The composite exhibited a high tap density (1.1 g cm−3) as well as a gravimetric capacity of 161 mA h g−1 and volumetric capacity of 281 mA h cm−3 at 0.05 C-rate. It also exhibited excellent rate capability, delivering a discharge capacity of 90 mA h g−1 at 60 C-rate. Furthermore, the microspheres exhibited high energy efficiency and good cyclability, showing a capacity retention rate of 93% after 1000 cycles at 10 C-rate. PMID:27220812
Manganese Health Research Program (MHRP)
2008-01-01
NO3)2 Manganese sulphate or Manganese (II) sulphate – MnSO4 Manganese sulphide or Manganese (II) sulphide – MnS Manganese oxide – MnO Barium... sulphide or Manganese (II) sulphide – MnS 1344-43-0 Manganese oxide – MnO 7787-35-1 Barium manganate - BaMnO4 10294-64-1 Potassium manganate – K2MnO4...Characterization of welding fumes and their potential neurotoxic effects. International Workshop: Neurotoxic Metals- Lead, Mercury , and Manganese
Lee, Hae-Min; Lee, Kangtaek; Kim, Chang-Koo
2014-01-09
Manganese-nickel (Mn-Ni) oxide films were electrodeposited on a graphite sheet in a bath consisting of manganese acetate and nickel chloride, and the structural, morphological, and electrochemical properties of these films were investigated. The electrodeposited Mn-Ni oxide films had porous structures covered with nanofibers. The X-ray diffractometer pattern revealed the presence of separate manganese oxide (g-MnO₂) and nickel oxide (NiO) in the films. The electrodeposited Mn-Ni oxide electrode exhibited a specific capacitance of 424 F/g in Na₂SO₄ electrolyte. This electrode maintained 86% of its initial specific capacitance over 2000 cycles of the charge-discharge operation, showing good cycling stability.
NASA Astrophysics Data System (ADS)
Santamarta, Ruben; Evirgen, Alper; Perez-Sierra, Aquilina M.; Pons, Jaume; Cesari, Eduard; Karaman, Ibrahim; Noebe, Ron D.
2015-11-01
Among all the promising high-temperature shape memory alloys (HTSMAs), the Ni-Mn-Ga and the Ni-Ti-Hf/Zr systems exhibit interesting shape memory and superelastic properties that may place them in a good position for potential applications. The present work shows that thermal treatments play a crucial role in controlling the martensitic phase transformation characteristics of both systems, but in different ways. On one hand, the equilibrium phase diagram of the Ni-Mn-Ga family allows selecting compositions with high transformation temperatures and outstanding thermal stability at relatively high temperatures in air, showing no significant changes in the transformation behavior for continuous aging up to ˜5 years at 500 °C. Moreover, the excellent thermal stability correlates with a good thermal cyclic stability and an exceptional oxidation resistance of the parent phase. On the other hand, precipitation processes controlled by thermal treatments are needed to manipulate the transformation temperatures, mechanical properties, and thermal stability of Ni-rich Ni-Ti-Hf/Zr alloys to become HTSMAs. These changes in the functional properties are a consequence of the competition between the mechanical and compositional effects of the precipitates on the martensitic transformation.
Kan, Wang Hay; Huq, Ashfia; Manthiram, Arumugam
2015-10-28
The thermal conversion of chemically delithiated layered Li 0.5Ni 1–yMn yO 2 (0.2 ≤ y ≤ 0.5) into spinel-like LiNi 2–yMn yO 4 (0.4 ≤ y ≤ 1) has been systematically investigated in this paper. The formed spinel-like phases are metastable and cannot be accessed by a conventional high-temperature solid-state method. The layered-to-spinel transformation mechanism has been studied by the Rietveld refinement of in situ neutron diffraction as a function of temperature (25–300 °C). In particular, the ionic diffusion of Li and M ions is quantified at different temperatures. Electrochemistry of the metastable spinel-like phases obtained has been studied inmore » lithium-ion cells. A bond valence sum map has been performed to understand the ionic diffusion of lithium ions in the Ni-rich layered, spinel, and rock-salt structures. Finally, the study can aid the understanding of the possible phases that could be formed during the cycling of Ni-rich layered oxide cathodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kan, Wang Hay; Huq, Ashfia; Manthiram, Arumugam
The thermal conversion of chemically delithiated layered Li 0.5Ni 1–yMn yO 2 (0.2 ≤ y ≤ 0.5) into spinel-like LiNi 2–yMn yO 4 (0.4 ≤ y ≤ 1) has been systematically investigated in this paper. The formed spinel-like phases are metastable and cannot be accessed by a conventional high-temperature solid-state method. The layered-to-spinel transformation mechanism has been studied by the Rietveld refinement of in situ neutron diffraction as a function of temperature (25–300 °C). In particular, the ionic diffusion of Li and M ions is quantified at different temperatures. Electrochemistry of the metastable spinel-like phases obtained has been studied inmore » lithium-ion cells. A bond valence sum map has been performed to understand the ionic diffusion of lithium ions in the Ni-rich layered, spinel, and rock-salt structures. Finally, the study can aid the understanding of the possible phases that could be formed during the cycling of Ni-rich layered oxide cathodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kan, Wang Hay; Huq, Ashfia; Manthiram, Arumugam
The thermal conversion of chemically delithiated layered Li 0.5Ni 1-yMn yO 2 (0.2 ≤ y ≤ 0.5) into spinel-like LiNi 2-yMn yO 4 (0.4 ≤ y ≤ 1) has been systematically investigated. The formed spinel-like phases are metastable and cannot be accessed by a conventional high-temperature solid-state method. The layered-to-spinel transformation mechanism has been studied by the Rietveld refinement of in situ neutron diffraction as a function of temperature (25–300 °C). In particular, the ionic diffusion of Li and M ions is quantified at different temperatures. Electrochemistry of the metastable spinel-like phases obtained has been studied in lithium-ion cells. Amore » bond valence sum map has been performed to understand the ionic diffusion of lithium ions in the Ni-rich layered, spinel, and rock-salt structures. The study can aid the understanding of the possible phases that could be formed during the cycling of Ni-rich layered oxide cathodes.« less
Cloud chemistry in eastern China: Observations from Mt. Tai
NASA Astrophysics Data System (ADS)
Collett, J. L.; Shen, X.; Lee, T.; Wang, X.; Li, Y.; Wang, W.; Wang, T.
2010-07-01
Until recently, studies of fog and cloud chemistry in China have been rare - even though the fate of China’s large sulfur dioxide emissions depends, in part, on the ability of regional clouds to support rapid aqueous oxidation to sulfate. Sulfur dioxide oxidized in regional clouds is more likely to be removed by wet deposition while sulfur dioxide that undergoes slower gas phase oxidation is expected to survive longer in the atmosphere and be transported over a much broader spatial scale. Two 2008 field campaigns conducted at Mt. Tai, an isolated peak on the NE China plain, provide insight into the chemical composition of regional clouds and the importance of various aqueous phase sulfur oxidation pathways. Single and two-stage Caltech Active Strand Cloudwater Collectors were used to collect bulk and drop size-resolved samples of cloudwater. Collected cloudwater was analyzed for key species that influence in-cloud sulfate production, including pH, S(IV), H2O2, Fe and Mn. Other major cloud solutes, including inorganic ions, total organic carbon (TOC), formaldehyde, and organic acids were also analyzed, as were gas phase concentrations of SO2, O3, and H2O2. A wide range of cloud pH was observed, from below 3 to above 6. High concentrations of cloudwater sulfate were consistent with abundant sulfur dioxide emissions in the region. Sampled clouds were also found to contain high concentrations of ammonium, nitrate, and organic carbon. Peak TOC concentrations reached approximately 200 ppmC, among the highest concentrations ever measured in cloudwater. Hydrogen peroxide was found to be the dominant aqueous phase S(IV) oxidant when cloud pH was less than approximately 5.4. Despite its fast reaction with sulfur dioxide in cloud droplets, high concentrations of residual hydrogen peroxide were measured in some clouds implying a substantial additional capacity for sulfate production. Ozone was found to be an important S(IV) oxidant when cloud pH was high. Oxidation of S(IV) by oxygen, catalyzed by Fe (III) and Mn(II) was generally the second or third fastest pathway for sulfate production. Differences between the pH and trace metal concentrations of small and large cloud droplets were observed, giving rise to aqueous phase sulfate production rates that were drop size-dependent for the ozone and metal-catalyzed pathways.
Oxidative removal of aqueous steroid estrogens by manganese oxides.
Xu, Lei; Xu, Chao; Zhao, Meirong; Qiu, Yuping; Sheng, G Daniel
2008-12-01
This study investigated the oxidative removal of steroid estrogens from water by synthetic manganese oxide (MnO2) and the factors influencing the reactions. Using 1 x 10(-5)M MnO2 at pH 4, estrone (E1), 17beta-estradiol (E2), estriol (E3) and 17alpha-ethinylestradiol (EE2), all at 4 x 10(-6)M, were rapidly removed within 220 min, indicating the effectiveness of MnO2 as an oxidizing agent towards estrogens. E2 removal increased with decreasing pH over the tested range of 4-8, due most likely to increased oxidizing power of MnO2 and a cleaner reactive surface in acidic solutions. Coexisting metal ions of 0.01 M (Cu(II), Zn(II), Fe(III) and Mn(II)) and Mn(II) released from MnO2 reduction competed with E2 for reactive sites leading to reduced E2 removal. Observed differential suppression on E2 removal may be related to different speciations of metals, as suggested by the MINTEQ calculations, and hence their different adsorptivities on MnO2. By suppressing the metal effect, humic acid substantially enhanced E2 removal. This was attributed to complexation of humic acid with metal ions. With 0.01 M ZnCl2 in solutions containing 1 mg l(-1) humic acid, the binding of humic acid for Zn(II) was determined at 251 mmol g(-1). An in vitro assay using human breast carcinoma MCF-7 cells indicated a near elimination of estrogenic activities without secondary risk of estrogen solutions treated with MnO2. Synthetic MnO2 is therefore a promising chemical agent under optimized conditions for estrogen removal from water. Metal chelators recalcitrant to MnO2 oxidation may be properly used to further enhance the MnO2 performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dublet, Gabrielle; Juillot, Farid; Brest, Jessica
Because they can host significant amounts of Co, the Mn-oxides are commonly considered as the major Co-bearing mineral species in lateritic environments. However, little is known about the process leading to the formation and/or the weathering of these Co-rich Mn-oxides. This lack of knowledge is mainly due to the fact that Co concentrations are too low in primary silicates for classical speciation analysis. In this study, we investigated both Co and Mn speciation in a 64 m thick lateritic regolith developed upon peridotites in New Caledonia, by combining High Energy Resolution Fluorescence Detection X-ray absorption Near Edge Structure (HERFD-XANES) spectroscopymore » at the Co K-edge with classical XANES spectroscopy at the Mn K-edge, bulk chemistry (ICP) and mineralogy (XRD). The results obtained provide new insights into the evolution of Co and Mn speciation as a function of the weathering stages. Co and Mn primarily occur as Co(II) and Mn(II,III) in olivine and serpentine in the bedrock. During the first weathering stage, these forms of Co and Mn are progressively oxidized toward Co(III) and Mn(III,IV), which occur mainly as Co(III)-bearing Mn(III/IV)-oxides in the transition between the saprolite and the laterite. In the uppermost lateritic horizons, long-time weathering resulted in a strong leaching of Co and Mn, and the remaining of these elements occurs as Co(II) and Mn(III) substituting for Fe(III) in goethite. Finally, this latter scavenging process emphasizes the importance of Fe-oxides for the long-term stabilization of Co and Mn in such deeply weathered laterites.« less
Comparative study of the mechanical and tribological properties of a Hadfield and a Fermanal steel
NASA Astrophysics Data System (ADS)
Astudillo A., P. C.; Soriano G., A. F.; Barona Osorio, G. M.; Sánchez Sthepa, H.; Ramos, J.; Durán, J. F.; Pérez Alcázar, G. A.
2017-11-01
In this study, Fe-12.50Mn-1.10C-1.70Cr-0.40Mo-0.40Si-0.50(max)P-0.50(max)S (Hadfield alloy) and Fe-28.4Mn-0.86C-1.63Al-0.42Cu-1.80Mo-1.59Si-0.60W (Fermanal alloy) (Wt. %) in the aged condition were compared in terms of its tribological and microstructural properties. The x-ray diffraction (XRD) patterns were refined with the lines of the austenitic γ-phase, Chromium Iron Carbide (Cr2Fe14C), Iron Carbide (Fe2C), and Iron Oxide (Fe0.974O (II)) for the Hadfield alloy, and the lines of the austenitic γ-phase, martensite (M), Mn1.1Al0.9 phase and iron carbide (Fe7C3) for the Fermanal alloy. Mössbauer spectra were fit with two sites for the Hadfield alloy, which displayed as a broad singlet because of the austenitic disordered phase, and had a magnetic hyperfine field distribution, which corresponds to the Cr2Fe14C ferromagnetic carbides found by XRD. There were two paramagnetic sites, a singlet, which corresponds to the austenite disordered phase, and a doublet, which can be attributed to the Fe7C3 carbide. The obtained Rockwell C hardness for aged Hadfield and Fermanal alloys were 43.786 and 50.018 HRc, respectively.
Superoxide Production by a Manganese-Oxidizing Bacterium Facilitates Iodide Oxidation
Li, Hsiu-Ping; Daniel, Benjamin; Creeley, Danielle; Grandbois, Russell; Zhang, Saijin; Xu, Chen; Ho, Yi-Fang; Schwehr, Kathy A.; Kaplan, Daniel I.; Santschi, Peter H.; Hansel, Colleen M.
2014-01-01
The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I−), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2−). In the absence of Mn2+, Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 μM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments. PMID:24561582
Superoxide production by a manganese-oxidizing bacterium facilitates iodide oxidation.
Li, Hsiu-Ping; Daniel, Benjamin; Creeley, Danielle; Grandbois, Russell; Zhang, Saijin; Xu, Chen; Ho, Yi-Fang; Schwehr, Kathy A; Kaplan, Daniel I; Santschi, Peter H; Hansel, Colleen M; Yeager, Chris M
2014-05-01
The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I(-)), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2(-)). In the absence of Mn(2+), Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 μM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments.
Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Haghighi, Behzad; Tomo, Tatsuya; Shen, Jian-Ren; Allakhverdiev, Suleyman I
2015-02-01
"Back to Nature" is a promising way to solve the problems that we face today, such as air pollution and shortage of energy supply based on conventional fossil fuels. A Mn cluster inside photosystem II catalyzes light-induced water-splitting leading to the generation of protons, electrons and oxygen in photosynthetic organisms, and has been considered as a good model for the synthesis of new artificial water-oxidizing catalysts. Herein, we surveyed the structural and functional details of this cluster and its surrounding environment. Then, we review the mechanistic findings concerning the cluster and compare this biological catalyst with nano-sized Mn oxides, which are among the best artificial Mn-based water-oxidizing catalysts. Copyright © 2014 Elsevier B.V. All rights reserved.
Oxygen-participated electrochemistry of new lithium-rich layered oxides Li3MRuO5 (M = Mn, Fe).
Laha, S; Natarajan, S; Gopalakrishnan, J; Morán, E; Sáez-Puche, R; Alario-Franco, M Á; Dos Santos-Garcia, A J; Pérez-Flores, J C; Kuhn, A; García-Alvarado, F
2015-02-07
We describe the synthesis, crystal structure and lithium deinsertion-insertion electrochemistry of two new lithium-rich layered oxides, Li3MRuO5 (M = Mn, Fe), related to rock salt based Li2MnO3 and LiCoO2. The Li3MnRuO5 oxide adopts a structure related to Li2MnO3 (C2/m) where Li and (Li0.2Mn0.4Ru0.4) layers alternate along the c-axis, while the Li3FeRuO5 oxide adopts a near-perfect LiCoO2 (R3[combining macron]m) structure where Li and (Li0.2Fe0.4Ru0.4) layers are stacked alternately. Magnetic measurements indicate for Li3MnRuO5 the presence of Mn(3+) and low spin configuration for Ru(4+) where the itinerant electrons occupy a π*-band. The onset of a net maximum in the χ vs. T plot at 9.5 K and the negative value of the Weiss constant (θ) of -31.4 K indicate the presence of antiferromagnetic superexchange interactions according to different pathways. Lithium electrochemistry shows a similar behaviour for both oxides and related to the typical behaviour of Li-rich layered oxides where participation of oxide ions in the electrochemical processes is usually found. A long first charge process with capacities of 240 mA h g(-1) (2.3 Li per f.u.) and 144 mA h g(-1) (1.38 Li per f.u.) is observed for Li3MnRuO5 and Li3FeRuO5, respectively. An initial sloping region (OCV to ca. 4.1 V) is followed by a long plateau (ca. 4.3 V). Further discharge-charge cycling points to partial reversibility (ca. 160 mA h g(-1) and 45 mA h g(-1) for Mn and Fe, respectively). Nevertheless, just after a few cycles, cell failure is observed. X-ray photoelectron spectroscopy (XPS) characterisation of both pristine and electrochemically oxidized Li3MRuO5 reveals that in the Li3MnRuO5 oxide, Mn(3+) and Ru(4+) are partially oxidized to Mn(4+) and Ru(5+) in the sloping region at low voltage, while in the long plateau, O(2-) is also oxidized. Oxygen release likely occurs which may be the cause for failure of cells upon cycling. Interestingly, some other Li-rich layered oxides have been reported to cycle acceptably even with the participation of the O(2-) ligand in the reversible redox processes. In the Li3FeRuO5 oxide, the oxidation process appears to affect only Ru (4+ to 5+ in the sloping region) and O(2-) (plateau) while Fe seems to retain its 3+ state.
Webb, S.M.; Fuller, C.C.; Tebo, B.M.; Bargar, J.R.
2006-01-01
Biogenic manganese oxides are common and an important source of reactive mineral surfaces in the environment that may be potentially enhanced in bioremediation cases to improve natural attenuation. Experiments were performed in which the uranyl ion, UO22+ (U(VI)), at various concentrations was present during manganese oxide biogenesis. At all concentrations, there was strong uptake of U onto the oxides. Synchrotron-based extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray diffraction (XRD) studies were carried out to determine the molecular-scale mechanism by which uranyl is incorporated into the oxide and how this incorporation affects the resulting manganese oxide structure and mineralogy. The EXAFS experiments show that at low concentrations (2 mol % U, >4 ??M U(VI) in solution), the presence of U(VI) affects the stability and structure of the Mn oxide to form poorly ordered Mn oxide tunnel structures, similar to todorokite. EXAFS modeling shows that uranyl is present in these oxides predominantly in the tunnels of the Mn oxide structure in a tridentate complex. Observations by XRD corroborate these results. Structural incorporation may lead to more stable U(VI) sequestration that may be suitable for remediation uses. These observations, combined with the very high uptake capacity of the Mn oxides, imply that Mn-oxidizing bacteria may significantly influence dissolved U(VI) concentrations in impacted waters via sorption and incorporation into Mn oxide biominerals. ?? 2006 American Chemical Society.
NASA Astrophysics Data System (ADS)
Fernandes, Sheryl Oliveira; Javanaud, Cedric; Aigle, Axel; Michotey, Valérie D.; Guasco, Sophie; Deborde, Jonathan; Deflandre, Bruno; Anschutz, Pierre; Bonin, Patricia C.
2015-04-01
Field measurements in the Arcachon Bay (southwest France) indicated anaerobic production of NOx via nitrification, which was coupled to the reduction of Mn-oxides. To prove the occurrence of this process, laboratory microcosm experiments were set up. A 15N tracer-based approach was used to track if NOx produced through Mn-oxide-mediated anaerobic nitrification would be reduced to N2 via denitrification or anammox. We also hypothesized the generation of the potent greenhouse gas nitrous oxide (N2O) during nitrification-denitrification in the presence of Mn-oxides. The microcosms were prepared using sediment sectioned at varying depths (0-2.5, 2.5-4.5, 4.5-8.5, 8.5-12 and 12-17 cm) during two sampling campaigns in October (fall) and January (winter). Labeling with 15NO3- revealed low N2 production originating from NO3- in the water column (Pw), which did not increase significantly on amendment with Mn-oxides during both sampling periods. However, for both seasons, a significant increase of N2 produced via nitrification (Pn) was observed upon addition of Mn-oxides reaching 76-fold enhancement at ≤ 2.5 cm. To support these results, sediment slurries of October were subjected to amendment of 15NH4+, 14NO3- with or without addition of Mn-oxides. A substantial production of P15 (N2 production from 15NH4+) within 0-17 cm provided further evidence on nitrification-denitrification mediated by Mn-oxides probably with minimal intervention of anammox. In organically rich sediments, anaerobic nitrification-denitrification mediated by Mn-oxides could play an important role in lowering re-mineralized NH4+ levels in the benthic system. As hypothesized, significant production of N2O through the pathway was observed revealing newer mechanisms leading to the generation of the radiative gas.
Coprecipitation and redox reactions of manganese oxides with copper and nickel
Hem, J.D.; Lind, Carol J.; Roberson, C.E.
1989-01-01
Open-system, continuous-titration experiments have been done in which a slow flux of ???0.02 molar solution of Mn2+ chloride, nitrate, or perchlorate with Cu2+ or Ni2+ in lesser concentrations was introduced into an aerated reactor solution held at constant temperature and at constant pH by a pH-stat titrator that added dilute NaOH. The resulting mixtures of metal oxyhydroxides and their native solutions were aged for periods as long as 2 1/2 years. Fresh and aged precipitates were characterized by chemical analysis, oxidation state determinations, X-ray and electron diffraction, and electron microscopy. The precipitates can be described as mixtures of oxide and oxyhydroxide species, using concepts of equilibrium and nonequilibrium chemical thermodynamics. The metal-ion content of the aged precipitates in systems that contained copper is distributed among three principal components. One of these is a mixed oxide Cu2Mn3O8 in which all Mn is in the 4+ oxidation state. A major component in all precipitates is feitknechtite, ??MnOOH. These forms are supplemented by CuO or by birnessite or ramsdellite forms of MnO2 where stoichiometry and thermodynamic calculations predict them. In systems that contained nickel and manganese, identifiable components included ??MnOOH, Ni(OH)2, and the same two forms of MnO2. The oxidation number of the precipitated manganese increased during aging, and the pH of the supernatant solution decreased. The maximum Mn oxidation number observed was 3.55 in an Mn + Cu precipitate aged for 18 months. Concentrations of Cu2+ and Ni2+ generally decreased to values substantially below those predicted by oxide or hydroxide equilibrium. Scavenging effects of this type are common in natural aqueous systems. ?? 1989.
Coprecipitation and redox reactions of manganese oxides with copper and nickel
NASA Astrophysics Data System (ADS)
Hem, J. D.; Lind, C. J.; Roberson, C. E.
1989-11-01
Open-system, continuous-titration experiments have been done in which a slow flux of ˜0.02 molar solution of Mn 2+ chloride, nitrate, or perchlorate with Cu 2+ or Ni 2+ in lesser concentrations was introduced into an aerated reactor solution held at constant temperature and at constant pH by a pH-stat titrator that added dilute NaOH. The resulting mixtures of metal oxyhydroxides and their native solutions were aged for periods as long as 2 1/2 years. Fresh and aged precipitates were characterized by chemical analysis, oxidation state determinations, X-ray and electron diffraction, and electron microscopy. The precipitates can be described as mixtures of oxide and oxyhydroxide species, using concepts of equilibrium and nonequilibrium chemical thermodynamics. The metal-ion content of the aged precipitates in systems that contained copper is distributed among three principal components. One of these is a mixed oxide Cu 2Mn 3O 8 in which all Mn is in the 4+ oxidation state. A major component in all precipitates is feitknechtite, βMnOOH. These forms are supplemented by CuO or by birnessite or ramsdellite forms of MnO 2 where stoichiometry and thermodynamic calculations predict them. In systems that contained nickel and manganese, identifiable components included βMnOOH, Ni(OH) 2, and the same two forms of MnO 2. The oxidation number of the precipitated manganese increased during aging, and the pH of the supernatant solution decreased. The maximum Mn oxidation number observed was 3.55 in an Mn + Cu precipitate aged for 18 months. Concentrations of Cu 2+ and Ni 2+ generally decreased to values substantially below those predicted by oxide or hydroxide equilibrium. Scavenging effects of this type are common in natural aqueous systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Leigang; Boullay, Philippe; Lu, Ping
2017-02-01
Room-temperature (RT) multiferroics, possessing ferroelectricity and ferromagnetism simultaneously at RT, hold great promise in miniaturized devices including sensors, actuators, transducers, and multi-state memories. In this work, we report a novel 2D layered RT multiferroic system with self-assembled layered supercell structure consisting of two mismatch-layered sub-lattices of [Bi 3O 3+δ] and [MO 2] 1.84 (M=Al/Mn, simply named as BAMO), i.e., alternative layered stacking of two mutually incommensurate sublattices made of a three-layer-thick Bi-O slab and a one-layer-thick Al/Mn-O octahedra slab along the out-of-plane direction. Strong room-temperature multiferroic responses, e.g., ferromagnetic and ferroelectric properties, have been demonstrated and attributed to the highlymore » anisotropic 2D nature of the non-ferromagnetic and ferromagnetic sublattices which are highly mismatched. The work demonstrates an alternative design approach for new 2D layered oxide materials that hold promises as single-phase multiferroics, 2D oxides with tunable bandgaps, and beyond.« less
Mohanty, Debasish; Sefat, Athena S.; Payzant, E. Andrew; ...
2015-02-19
Making all-electric vehicles (EVs) commonplace in transportation applications will require affordable high-power and high-energy-density lithium-ion batteries (LIBs). The quest for suitable cathode materials to meet this end has currently plateaued with the discovery of high-voltage (≥4.7 V vs. Li +), high capacity (~250 mAh/g) lithium–manganese-rich (LMR) layered composite oxides. In spite of the promise of LMR oxides in high-energy-density LIBs, an irreversible structural change has been identified in this work that is governed by the formation of a ‘permanent’ spin-glass type magnetically frustrated phase indicating a dominant AB 2O 4 (A = Li, B = Mn) type spinel after amore » short-term lithium deintercalation (charging) and intercalation (discharging) process. Furthermore, reduction of transition metal (Mn) ions from the 4+ state (pristine LMR) to 3+ (cycled LMR), which alters the intercalation redox chemistry and suggests the presence of ‘unfilled’ lithium vacancies and/or oxygen vacancies in the lattice after cycling, has presented a major stumbling block. Finally, these situations result in both loss of capacity and fading of the voltage profile, and these combined effects significantly reduce the high energy density over even short-term cycling.« less
Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries
Manthiram, Arumugam; Choi, Wongchang
2014-05-13
The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn.sub.2-y-zLi.sub.yM.sub.zO.sub.4 oxide with NH.sub.4HF.sub.2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.
Lattice-cell orientation disorder in complex spinel oxides
Chen, Yan; Cheng, Yongqiang; Li, Juchuan; ...
2016-11-07
Transition metal (TM) substitution has been widely applied to change complex oxides crystal structures to create high energy density electrodes materials in high performance rechargeable lithium-ion batteries. The complex local structure in the oxides imparted by the TM arrangement often impacts their electrochemical behaviors by influencing the diffusion and intercalation of lithium. Here, a major discrepancy is demonstrated between the global and local structures of the promising high energy density and high voltage LiNi 0.5Mn 1.5O 4 spinel cathode material that contradicts the existing structural models. A new single-phase lattice-cell orientation disorder model is proposed as the mechanism for themore » local ordering that explains how the inhomogeneous local distortions and the coherent connection give rise to the global structure in the complex oxide. As a result, the single-phase model is consistent with the electrochemical behavior observation of the materials.« less
Duckworth, O W; Rivera, N A; Gardner, T G; Andrews, M Y; Santelli, C M; Polizzotto, M L
2017-01-25
Manganese oxides, which may be biogenically produced in both pristine and contaminated environments, have a large affinity for many trace metals. In this study, water and Mn oxide-bearing biofilm samples were collected from the components of a pump and treat remediation system at a superfund site. To better understand the factors leading to their formation and their effects on potentially toxic metal fate, we conducted a chemical, microscopic, and spectroscopic characterization of these biofilm samples. Scanning electron microscopy revealed the presence of Mn oxides in close association with biological structures with morphologies consistent with fungi. X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) revealed the oxides to be a mixture of layer and tunnel structure Mn(iv) oxides. In addition, XAS suggested that Ba, Co, and Zn all primarily bind to oxides in the biofilm in a manner that is analogous to synthetic or laboratory grown bacteriogenic Mn oxides. The results indicate that Mn oxides produced by organisms in the system may effectively scavenge metals, thus highlighting the potential utility of these organisms in designed remediation systems.
Dublet, Gabrielle; Juillot, Farid; Brest, Jessica; ...
2017-07-21
Because they can host significant amounts of Co, the Mn-oxides are commonly considered as the major Co-bearing mineral species in lateritic environments. However, little is known about the process leading to the formation and/or the weathering of these Co-rich Mn-oxides. This lack of knowledge is mainly due to the fact that Co concentrations are too low in primary silicates for classical speciation analysis. In this study, we investigated both Co and Mn speciation in a 64 m thick lateritic regolith developed upon peridotites in New Caledonia, by combining High Energy Resolution Fluorescence Detection X-ray absorption Near Edge Structure (HERFD-XANES) spectroscopymore » at the Co K-edge with classical XANES spectroscopy at the Mn K-edge, bulk chemistry (ICP) and mineralogy (XRD). The results obtained provide new insights into the evolution of Co and Mn speciation as a function of the weathering stages. Co and Mn primarily occur as Co(II) and Mn(II,III) in olivine and serpentine in the bedrock. During the first weathering stage, these forms of Co and Mn are progressively oxidized toward Co(III) and Mn(III,IV), which occur mainly as Co(III)-bearing Mn(III/IV)-oxides in the transition between the saprolite and the laterite. In the uppermost lateritic horizons, long-time weathering resulted in a strong leaching of Co and Mn, and the remaining of these elements occurs as Co(II) and Mn(III) substituting for Fe(III) in goethite. Finally, this latter scavenging process emphasizes the importance of Fe-oxides for the long-term stabilization of Co and Mn in such deeply weathered laterites.« less
NASA Astrophysics Data System (ADS)
Dublet, Gabrielle; Juillot, Farid; Brest, Jessica; Noël, Vincent; Fritsch, Emmanuel; Proux, Olivier; Olivi, Luca; Ploquin, Florian; Morin, Guillaume
2017-11-01
Because they can host significant amounts of Co, the Mn-oxides are commonly considered as the major Co-bearing mineral species in lateritic environments. However, little is known about the process leading to the formation and/or the weathering of these Co-rich Mn-oxides. This lack of knowledge is mainly due to the fact that Co concentrations are too low in primary silicates for classical speciation analysis. In this study, we investigated both Co and Mn speciation in a 64 m thick lateritic regolith developed upon peridotites in New Caledonia, by combining High Energy Resolution Fluorescence Detection X-ray absorption Near Edge Structure (HERFD-XANES) spectroscopy at the Co K-edge with classical XANES spectroscopy at the Mn K-edge, bulk chemistry (ICP) and mineralogy (XRD). The results obtained provide new insights into the evolution of Co and Mn speciation as a function of the weathering stages. Co and Mn primarily occur as Co(II) and Mn(II,III) in olivine and serpentine in the bedrock. During the first weathering stage, these forms of Co and Mn are progressively oxidized toward Co(III) and Mn(III,IV), which occur mainly as Co(III)-bearing Mn(III/IV)-oxides in the transition between the saprolite and the laterite. In the uppermost lateritic horizons, long-time weathering resulted in a strong leaching of Co and Mn, and the remaining of these elements occurs as Co(II) and Mn(III) substituting for Fe(III) in goethite. This latter scavenging process emphasizes the importance of Fe-oxides for the long-term stabilization of Co and Mn in such deeply weathered laterites.
Lassalle-Kaiser, Benedikt; Hureau, Christelle; Pantazis, Dimitrios A; Pushkar, Yulia; Guillot, Régis; Yachandra, Vittal K; Yano, Junko; Neese, Frank; Anxolabéhère-Mallart, Elodie
2010-07-01
Activation of a water molecule by the electrochemical oxidation of a Mn-aquo complex accompanied by the loss of protons is reported. The sequential (2 × 1 electron/1 proton) and direct (2 electron/2 proton) proton-coupled electrochemical oxidation of a non-porphyrinic six-coordinated Mn(II)OH 2 complex into a mononuclear Mn(O) complex is described. The intermediate Mn(III)OH 2 and Mn(III)OH complexes are electrochemically prepared and analysed. Complete deprotonation of the coordinated water molecule in the Mn(O) complex is confirmed by electrochemical data while the analysis of EXAFS data reveals a gradual shortening of an Mn-O bond upon oxidation from Mn(II)OH 2 to Mn(III)OH and Mn(O). Reactivity experiments, DFT calculations and XANES pre-edge features provide strong evidence that the bonding in Mn(O) is best characterized by a Mn(III)-oxyl description. Such oxyl species could play a crucial role in natural and artificial water splitting reactions. We provide here a synthetic example for such species, obtained by electrochemical activation of a water ligand.
Biogeochemistry of manganese in ferruginous Lake Matano, Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, C.; Crowe, S.A.; Sturm, A.
2012-12-13
This study explores Mn biogeochemistry in a stratified, ferruginous lake, a modern analogue to ferruginous oceans. Intense Mn cycling occurs in the chemocline where Mn is recycled at least 15 times before sedimentation. The product of biologically catalyzed Mn oxidation in Lake Matano is birnessite. Although there is evidence for abiotic Mn reduction with Fe(II), Mn reduction likely occurs through a variety of pathways. The flux of Fe(II) is insufficient to balance the reduction of Mn at 125m depth in the water column, and Mn reduction could be a significant contributor to CH{sub 4} oxidation. By combining results from synchrotron-basedmore » X-ray fluorescence and X-ray spectroscopy, extractions of sinking particles, and reaction transport modeling, we find the kinetics of Mn reduction in the lake's reducing waters are sufficiently rapid to preclude the deposition of Mn oxides from the water column to the sediments underlying ferruginous water. This has strong implications for the interpretation of the sedimentary Mn record.« less
NASA Astrophysics Data System (ADS)
Pourmajidian, Maedeh; McDermid, Joseph R.
2018-03-01
The present study investigates the selective oxidation of a 0.1C-6Mn-2Si medium-Mn advanced high-strength steel during austenization annealing heat treatments as a function of process atmosphere oxygen partial pressure and annealing time. It was determined that the surface oxide growth kinetics followed a parabolic rate law with the minimum rate belonging to the lowest oxygen partial pressure atmosphere at a dew point of 223 K (- 50 °C). The chemistry of the surface and subsurface oxides was studied using STEM + EELS on the sample cross sections, and it was found that the surface oxides formed under the 223 K (- 50 °C) dew-point atmosphere consisted of a layered configuration of SiO2, MnSiO3, and MnO, while in the case of the higher pO2 process atmospheres, only MnO was detected at the surface. Consistent with the Wagner calculations, it was shown that the transition to internal oxidation for Mn occurred under the 243 K (- 30 °C) and 278 K (+ 5 °C) dew-point atmospheres. However, the predictions of the external to internal oxidation for Si using the Wagner model did not correlate well with the experimental findings nor did the predictions of the Mataigne et al. model for multi-element alloys. Investigations of the internal oxide network at the grain boundaries revealed a multilayer oxide structure composed of amorphous SiO2 and crystalline MnSiO3, respectively, at the oxide core and outer shell. A mechanism for the formation of the oxide morphologies observed, based on kinetic and thermodynamic factors, was proposed. It is expected that only the fine and nodule-like MnO oxides formed on the surface of the samples annealed under the 278 K (+ 5 °C) dew-point process atmosphere for 60 and 120 seconds are sufficiently thin and of the desired dispersed morphology to promote reactive wetting by the molten galvanizing bath.
XPS and EELS characterization of Mn2SiO4, MnSiO3 and MnAl2O4
NASA Astrophysics Data System (ADS)
Grosvenor, A. P.; Bellhouse, E. M.; Korinek, A.; Bugnet, M.; McDermid, J. R.
2016-08-01
X-ray Photoelectron Spectroscopy (XPS) and Electron Energy Loss Spectroscopy (EELS) are strong candidate techniques for characterizing steel surfaces and substrate-coating interfaces when investigating the selective oxidation and reactive wetting of advanced high strength steels (AHSS) during the continuous galvanizing process. However, unambiguous identification of ternary oxides such as Mn2SiO4, MnSiO3, and MnAl2O4 by XPS or EELS, which can play a significant role in substrate reactive wetting, is difficult due to the lack of fully characterized standards in the literature. To resolve this issue, samples of Mn2SiO4, MnSiO3 and MnAl2O4 were synthesized and characterized by XPS and EELS. The unique features of the XPS and EELS spectra for the Mn2SiO4, MnSiO3 and MnAl2O4 standards were successfully derived, thereby allowing investigators to fully differentiate and identify these oxides at the surface and subsurface of Mn, Si and Al alloyed AHSS using these techniques.
Long-term litter decomposition controlled by manganese redox cycling
Keiluweit, Marco; Nico, Peter; Harmon, Mark E.; Mao, Jingdong; Pett-Ridge, Jennifer; Kleber, Markus
2015-01-01
Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of litter was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn2+ provided by fresh plant litter to produce oxidative Mn3+ species at sites of active decay, with Mn eventually accumulating as insoluble Mn3+/4+ oxides. Formation of reactive Mn3+ species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn3+-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn3+ species in the litter layer. This observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant–soil system may have a profound impact on litter decomposition rates. PMID:26372954
Long-term litter decomposition controlled by manganese redox cycling.
Keiluweit, Marco; Nico, Peter; Harmon, Mark E; Mao, Jingdong; Pett-Ridge, Jennifer; Kleber, Markus
2015-09-22
Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of litter was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn(2+) provided by fresh plant litter to produce oxidative Mn(3+) species at sites of active decay, with Mn eventually accumulating as insoluble Mn(3+/4+) oxides. Formation of reactive Mn(3+) species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn(3+)-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn(3+) species in the litter layer. This observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant-soil system may have a profound impact on litter decomposition rates.
Microbial reduction of manganese oxides - Interactions with iron and sulfur
NASA Technical Reports Server (NTRS)
Myers, Charles R.; Nealson, Kenneth H.
1988-01-01
Alteromonas putrefaciens (strain MR-1) is capable of rapid Mn(IV) reduction under conditions of neutral pH and temperatures characteristic of the Oneida Lake, New York, sediments from which it was isolated. MR-1 also reduces Fe(3+) to Fe(2+), and disproportionates thiosulfate to sulfide and sulfite; independently, the Fe(2+) and sulfide act as rapid reductants of Mn. The addition of Fe(3+) or thiosulfate to cultures of MR-1 in the presence of oxidized Mn increases the rate and the extent of Mn reduction relative to that observed in the absence of Fe(3+) or thiosulfate. Furthermore, when Fe(3+) and Mn oxides are present conjointly, Fe(2+) does not appear until the reduction of the oxidized Mn is complete. These results demonstrate that the observed rates of Fe(2+) and sulfide production may underestimate the total rates of Fe and sulfate reduction in those environments containing oxidized Mn. These results also demonstrate the potential impact that a single microbe can exert on sediment geochemistry, and provide the basis for preliminary models of the complexity of microbial and geochemical interactions that occur.
Batistel, Fernanda; Osorio, Johan S.; Ferrari, Annarita; Trevisi, Erminio; Socha, Michael T.; Loor, Juan J.
2016-01-01
The peripartum (or transition) period is the most-critical phase in the productive life of lactating dairy cows and optimal supply of trace minerals through more bioavailable forms could minimize the negative effects associated with this phase. Twenty Holstein cows received a common prepartal diet and postpartal diet. Both diets were partially supplemented with an inorganic (INO) mix of Zn, Mn, and Cu to supply 35, 45, and 6 ppm, respectively, of the diet dry matter (DM). Cows were assigned to treatments in a randomized completed block design, receiving an daily oral bolus with INO or organic trace minerals (AAC) Zn, Mn, Cu, and Co to achieve 75, 65, 11, and 1 ppm supplemental, respectively, in the diet DM. Liver tissue and blood samples were collected throughout the experiment. The lower glutamic-oxaloacetic transaminase concentration after 15 days in milk in AAC cows indicate lower hepatic cell damage. The concentration of cholesterol and albumin increased, while IL-6 decreased over time in AAC cows compared with INO indicating a lower degree of inflammation and better liver function. Although the acute-phase protein ceruloplasmin tended to be lower in AAC cows and corresponded with the reduction in the inflammatory status, the tendency for greater serum amyloid A concentration in AAC indicated an inconsistent response on acute-phase proteins. Oxygen radical absorbance capacity increased over time in AAC cows. Furthermore, the concentrations of nitric oxide, nitrite, nitrate, and the ferric reducing ability of plasma decreased with AAC indicating a lower oxidative stress status. The expression of IL10 and ALB in liver tissue was greater overall in AAC cows reinforcing the anti-inflammatory response detected in plasma. The greater overall expression of PCK1 in AAC cows indicated a greater gluconeogenic capacity, and partly explained the greater milk production response over time. Overall, feeding organic trace minerals as complexed with amino acids during the transition period improved liver function and decreased inflammation and oxidative stress. PMID:27243218
NASA Astrophysics Data System (ADS)
Brylewski, T.; Kruk, A.; Bobruk, M.; Adamczyk, A.; Partyka, J.; Rutkowski, P.
2016-11-01
The study describes CuxMn1.25-0.5xCo1.75-0.5xO4 (x = 0, 0.1, 0.3 and 0.5) spinels synthesized using EDTA gel processes in order to optimize the performance of high-quality spinel protective-conducting films deposited on steel interconnects. The powders obtained after 12 h of calcination in air at 1073 K are solely cubic spinels. Sintering these spinels for 12 h in air at 1423 K also leads to the formation of small amounts of CoO, Mn2O3 or CuO; the type of phase depends on the quantity of copper introduced into the manganese-cobalt lattice. The highest electrical conductivity at 1073 K is observed for Cu0.3Mn1.1Co1.6O4 (162 S·cm-1), which is closely correlated with the lowest activation energy of conduction over the entire temperature range (373≤T≤1073 K); the lowest conductivity is measured for Mn1.25Co1.75O4 (84 Sṡcm-1). The study confirms the suitability of the Cu0.3Mn1.1Co1.6O4 spinel as a potential material for the preparation of protective-conducting coatings on the surface of the DIN 50049 ferritic steel applied in IT-SOFC interconnects. The area-specific resistance of coated steel is 0.08 Ω·cm2, which is lower than that of bare steel after 300 h of oxidation at 1073 K. Cr vaporization tests show that the Cu0.3Mn1.1Co1.6O4 coating is efficient at blocking the outward diffusion of chromium.
Kim, Min Sik; Lee, Hye-Jin; Lee, Ki-Myeong; Seo, Jiwon; Lee, Changha
2018-05-23
Oxidative degradation of six representative microcystins (MCs) (MC-RR, -LR, -YR, -LF, -LW and -LA) by potassium permanganate (KMnO4; Mn(VII)) was investigated, focusing on the temperature- and pH-dependent reaction kinetics, the effect of dissolved organic matter (DOM), and the oxidation mechanisms. Second-order rate constants for the reactions of the six MCs with Mn(VII) (kMn(VII),MC) were determined to be 160.4-520.1 M-1 s-1 (MC-RR > -LR -YR > -LF -LW > -LA) at pH 7.2 and 21°C. The kMn(VII),MC values exhibited activation energies ranging from 15.1 to 22.4 kJ mol-1. With increasing pH from 2 to 11, the kMn(VII),MC values decreased until pH 5, and plateaued over the pH range of 5-11, except for that of MC-YR (which increased at pH > 8). Species-specific second-order rate constants were calculated using predicted pKa values of MCs. The oxidation of MCs in natural waters was accurately predicted by the kinetic model using kMn(VII),MC and Mn(VII) exposure ([Mn(VII)]dt) values. Among different characteristics of DOM in natural waters, UV254, SUVA254, and the abundance of humic-like substances characterized by fluorescence spectroscopy exhibited good correlation with [Mn(VII)]dt. A thorough product study of MC-LR oxidation by Mn(VII) was performed using liquid chromatography-mass spectrometry.
Enzymatic Manganese(II) Oxidation by Metabolically Dormant Spores of Diverse Bacillus Species
Francis, Chris A.; Tebo, Bradley M.
2002-01-01
Bacterial spores are renowned for their longevity, ubiquity, and resistance to environmental insults, but virtually nothing is known regarding whether these metabolically dormant structures impact their surrounding chemical environments. In the present study, a number of spore-forming bacteria that produce dormant spores which enzymatically oxidize soluble Mn(II) to insoluble Mn(IV) oxides were isolated from coastal marine sediments. The highly charged and reactive surfaces of biogenic metal oxides dramatically influence the oxidation and sorption of both trace metals and organics in the environment. Prior to this study, the only known Mn(II)-oxidizing sporeformer was the marine Bacillus sp. strain SG-1, an extensively studied bacterium in which Mn(II) oxidation is believed to be catalyzed by a multicopper oxidase, MnxG. Phylogenetic analysis based on 16S rRNA and mnxG sequences obtained from 15 different Mn(II)-oxidizing sporeformers (including SG-1) revealed extensive diversity within the genus Bacillus, with organisms falling into several distinct clusters and lineages. In addition, active Mn(II)-oxidizing proteins of various sizes, as observed in sodium dodecyl sulfate-polyacrylamide electrophoresis gels, were recovered from the outer layers of purified dormant spores of the isolates. These are the first active Mn(II)-oxidizing enzymes identified in spores or gram-positive bacteria. Although extremely resistant to denaturation, the activities of these enzymes were inhibited by azide and o-phenanthroline, consistent with the involvement of multicopper oxidases. Overall, these studies suggest that the commonly held view that bacterial spores are merely inactive structures in the environment should be revised. PMID:11823231
Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe.
Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena
2016-09-28
The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La 3+ -Mn 4+ and Eu 3+ -Fe 3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La 3+ -Mn 4+ and Eu 3+ -Fe 3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications.
Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe
Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena
2016-01-01
The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La3+–Mn4+ and Eu3+–Fe3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La3+–Mn4+ and Eu3+–Fe3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications. PMID:28773925
Bai, Yaohui; Chang, Yangyang; Liang, Jinsong; Chen, Chen; Qu, Jiuhui
2016-12-01
High concentrations of iron (Fe(II)) and manganese (Mn(II)) often occur simultaneously in groundwater. Previously, we demonstrated that Fe(II) and Mn(II) could be oxidized to biogenic Fe-Mn oxides (BFMO) via aeration and microbial oxidation, and the formed BFMO could further oxidize and adsorb other pollutants (e.g., arsenic (As(III)) and antimony (Sb(III))). To apply this finding to groundwater remediation, we established four quartz-sand columns for treating groundwater containing Fe(II), Mn(II), As(III), and Sb(III). A Mn-oxidizing bacterium (Pseudomonas sp. QJX-1) was inoculated into two parallel bioaugmented columns. Long-term treatment (120 d) showed that bioaugmentation accelerated the formation of Fe-Mn oxides, resulting in an increase in As and Sb removal. The bioaugmented columns also exhibited higher overall treatment effect and anti-shock load capacity than that of the non-bioaugmented columns. To clarify the causal relationship between the microbial community and treatment effect, we compared the biomass of active bacteria (reverse-transcribed real-time PCR), bacterial community composition (Miseq 16S rRNA sequencing) and community function (metagenomic sequencing) between the bioaugmented and non-bioaugmented columns. Results indicated that the QJX1 strain grew steadily and attached onto the filter material surface in the bioaugmented columns. In general, the inoculated strain did not significantly alter the composition of the indigenous bacterial community, but did improve the relative abundances of xenobiotic metabolism genes and Mn oxidation gene. Thus, bioaugmentation intensified microbial degradation/utilization for the direct removal of pollutants and increased the formation of Fe-Mn oxides for the indirect removal of pollutants. Our study provides an alternative method for the treatment of groundwater containing high Fe(II), Mn(II) and As/Sb. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lassalle-Kaiser, Benedikt; Hureau, Christelle; Pantazis, Dimitrios A.; Pushkar, Yulia; Guillot, Régis; Yachandra, Vittal K.; Yano, Junko; Neese, Frank; Anxolabéhère-Mallart, Elodie
2014-01-01
Activation of a water molecule by the electrochemical oxidation of a Mn-aquo complex accompanied by the loss of protons is reported. The sequential (2 × 1 electron/1 proton) and direct (2 electron/2 proton) proton-coupled electrochemical oxidation of a non-porphyrinic six-coordinated Mn(II)OH2 complex into a mononuclear Mn(O) complex is described. The intermediate Mn(III)OH2 and Mn(III)OH complexes are electrochemically prepared and analysed. Complete deprotonation of the coordinated water molecule in the Mn(O) complex is confirmed by electrochemical data while the analysis of EXAFS data reveals a gradual shortening of an Mn–O bond upon oxidation from Mn(II)OH2 to Mn(III)OH and Mn(O). Reactivity experiments, DFT calculations and XANES pre-edge features provide strong evidence that the bonding in Mn(O) is best characterized by a Mn(III)-oxyl description. Such oxyl species could play a crucial role in natural and artificial water splitting reactions. We provide here a synthetic example for such species, obtained by electrochemical activation of a water ligand. PMID:24772190
Nascimento, Sabrina; Baierle, Marília; Göethel, Gabriela; Barth, Anelise; Brucker, Natália; Charão, Mariele; Sauer, Elisa; Gauer, Bruna; Arbo, Marcelo Dutra; Altknecht, Louise; Jager, Márcia; Dias, Ana Cristina Garcia; de Salles, Jerusa Fumagalli; Saint' Pierre, Tatiana; Gioda, Adriana; Moresco, Rafael; Garcia, Solange Cristina
2016-05-01
Environmental exposure to manganese (Mn) results in several toxic effects, mainly neurotoxicity. This study investigated associations among Mn exposure, neuropsychological performance, biomarkers of oxidative damage and early kidney dysfunction in children aged 6-12 years old. Sixty-three children were enrolled in this study, being 43 from a rural area and 20 from an urban area. Manganese was quantified in blood (B-Mn), hair (H-Mn) and drinking water using inductively coupled plasma mass spectrometry (ICP-MS). The neuropsychological functions assessed were attention, perception, working memory, phonological awareness and executive functions - inhibition. The Intelligence quotient (IQ) was also evaluated. The biomarkers malondialdehyde (MDA), protein carbonyls (PCO), δ-aminolevulinate dehydratase (ALA-D), reactivation indexes with dithiothreitol (ALA-RE/DTT) and ZnCl2 (ALA-RE/ZnCl2), non-protein thiol groups, as well as microalbuminuria (mALB) level and N-acetyl-β-D-glucosaminidase (NAG) activity were assessed. The results demonstrated that Mn levels in blood, hair and drinking water were higher in rural children than in urban children (p<0.01). Adjusted for potential confounding factors, IQ, age, gender and parents' education, significant associations were observed mainly between B-Mn and visual attention (β=0.649; p<0.001). Moreover, B-Mn was negatively associated with visual perception and phonological awareness. H-Mn was inversely associated with working memory, and Mn levels from drinking water with written language and executive functions - inhibition. Rural children showed a significant increase in oxidative damage to proteins and lipids, as well as alteration in kidney function biomarkers (p<0.05). Moreover, significant associations were found between B-Mn, H-Mn and Mn levels in drinking water and biomarkers of oxidative damage and kidney function, besides between some oxidative stress biomarkers and neuropsychological tasks (p<0.05). The findings of this study suggest an important association between environmental exposure to Mn and toxic effects on neuropsychological function, oxidative damage and kidney function in children. Copyright © 2016 Elsevier Inc. All rights reserved.
Influence of oxygenation on chromium redox reactions with manganese sulfide (MnS(s)).
Wadhawan, Amar R; Livi, Kenneth J; Stone, Alan T; Bouwer, Edward J
2015-03-17
Manganese sulfide (MnS(s)) minerals exist in sulfidic environments and can have unique reactive abilities because of sulfide, which is a known reductant, and Mn, the oxyhydroxides of which are known oxidants. This study elucidated the role of MnS(s) in controlling Cr speciation with implications on its fate and toxicity in the natural environment, specifically sulfidic sediments that undergo biogeochemical changes due to sediment resuspension during dredging, bioturbation, and flood events. In continuously mixed batch reaction experiments, aqueous CrVI reduction under anaerobic conditions occurred primarily on the surface of MnS(s) displaying a biphasic behavior- the initial rapid removal of CrVI from solution was followed by a slow decline due to surface passivation by reaction products, mainly sorbed or precipitated CrIII. The reaction progress increased with MnS(s) surface area loading but decreased on increasing CrVI concentration and pH, suggesting that surface site regeneration through product desorption was the rate-controlling mechanism. Below circum-neutral pH, higher solubility of MnS(s) resulted in additional CrVI reduction by reduced sulfur species in solution, whereas increased CrIII solubility lowered surface passivation allowing for more reactive sites to participate in the reaction. Aeration of MnS(s) at pH≥7 caused the formation of a heterogeneous MnIII(hydr)oxide that was composed of hausmanite and manganite. CrVI reoccurrence was observed on aeration of CrVI-spiked MnS(s) from the oxidation of product CrIII. The reoccurrence at pH≥7 was attributed to the oxidation of product CrIII by MnIII(hydr)oxide, whereas the reoccurrence at pH<7 was hypothesized from the oxidation of product CrIII by intermediate aqueous MnIII and/or sulfur species. Just as with Cr, MnS(s) may play an important role in speciation, fate, and transport of other environmental contaminants.
Porous Ni-Co-Mn oxides prisms for high performance electrochemical energy storage
NASA Astrophysics Data System (ADS)
Zhao, Jianbo; Li, Man; Li, Junru; Wei, Chengzhen; He, Yuyue; Huang, Yixuan; Li, Qiaoling
2017-12-01
Porous Ni-Co-Mn oxides prisms have been successfully synthesized via a facile route. The process involves the preparation of nickel-cobalt-manganese acetate hydroxide by a simple co-precipitation method and subsequently the thermal treatment. The as-synthesized Ni-Co-Mn oxides prisms had a large surface area (96.53 m2 g-1) and porous structure. As electrode materials for supercapacitors, porous Ni-Co-Mn oxides prisms showed a high specific capacitance of 1623.5 F g-1 at 1.0 A g-1. Moreover, the porous Ni-Co-Mn oxides prisms were also employed as positive electrode materials to assemble flexible solid-state asymmetric supercapacitors. The resulting flexible device had a maximum volumetric energy density (0.885 mW h cm-3) and power density (48.9 mW cm-3). Encouragingly, the flexible device exhibited good cycling stability with only about 2.2% loss after 5000 charge-discharge cycles and excellent mechanical stability. These results indicate that porous Ni-Co-Mn oxides prisms have the promising application in high performance electrochemical energy storage.
Moorhead-Rosenberg, Zach; Huq, Ashfia; Goodenough, John B.; ...
2015-10-05
The electronic and electrochemical properties of the high-voltage spinel LiMn 1.5Ni 0.5O 4 as a function of cation ordering and lithium content have been investigated. Conductivity and activation energy measurements confirm that charge transfer occurs by small polaron hopping and the charge carrier conduction is easier in the Ni:3d band than in the in Mn:3d band. Seebeck coefficient data reveal that the Ni 2+/ 3+. and Ni 3+/ 4+ redox couples are combined in a single,3d band, and that maximum charge carrier concentration occurs where the average Ni oxidation state is close to 3+, corresponding to x = 0.5 inmore » Li Li 1-xMn 1.5Ni 0.5O 4. Furthermore, maximum electronic conductivity is found at x = 0.5, regardless of cation ordering. The thermodynamically stable phases formed during cycling were investigated by recording the X-ray diffraction (XRD) of chemically delithiated powders. The more ordered spinels maintained two separate two-phase regions upon lithium extraction, while the more disordered samples exhibited a solid-solubility region from LiMn 1.5Ni 0.5O 4 to Li 0.5Mn 1.5Ni 0.5O 4. The conductivity and phase-transformation data of four samples with varying degrees of cation ordering were compared to the electrochemical data collected with lithium cells. Only the most ordered spinel showed inferior rate performance, while the sample annealed for a shorter time performed comparable to the unannealed or disordered samples. Our results challenge the most common beliefs about high-voltage spinel: (i) low Mn 3+ content is responsible for poor rate performance and (ii) thermodynamically stable solid-solubility is critical for fast kinetics.« less
Pathways of organic carbon oxidation in three continental margin sediments
NASA Technical Reports Server (NTRS)
Canfield, D. E.; Jorgensen, B. B.; Fossing, H.; Glud, R.; Gundersen, J.; Ramsing, N. B.; Thamdrup, B.; Hansen, J. W.; Nielsen, L. P.; Hall, P. O.
1993-01-01
We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most important and of a similar magnitude. Overall, most of the measured O2 flux into the sediment was used to oxidized reduced inorganic species and not organic carbon. We suspect that the importance of O2 respiration in many coastal sediments has been overestimated, whereas metal oxide reduction (both Fe and Mn reduction) has probably been well underestimated.
Rashid, Goran M M; Taylor, Charles R; Liu, Yangqingxue; Zhang, Xiaoyang; Rea, Dean; Fülöp, Vilmos; Bugg, Timothy D H
2015-10-16
The valorization of aromatic heteropolymer lignin is an important unsolved problem in the development of a biomass-based biorefinery, for which novel high-activity biocatalysts are needed. Sequencing of the genomic DNA of lignin-degrading bacterial strain Sphingobacterium sp. T2 revealed no matches to known lignin-degrading genes. Proteomic matches for two manganese superoxide dismutase proteins were found in partially purified extracellular fractions. Recombinant MnSOD1 and MnSOD2 were both found to show high activity for oxidation of Organosolv and Kraft lignin, and lignin model compounds, generating multiple oxidation products. Structure determination revealed that the products result from aryl-Cα and Cα-Cβ bond oxidative cleavage and O-demethylation. The crystal structure of MnSOD1 was determined to 1.35 Å resolution, revealing a typical MnSOD homodimer harboring a five-coordinate trigonal bipyramidal Mn(II) center ligated by three His, one Asp, and a water/hydroxide in each active site. We propose that the lignin oxidation reactivity of these enzymes is due to the production of a hydroxyl radical, a highly reactive oxidant. This is the first demonstration that MnSOD is a microbial lignin-oxidizing enzyme.
Kinetics of the solid-state carbothermic reduction of wessel manganese ores
NASA Astrophysics Data System (ADS)
Akdogan, Guven; Eric, R. Hurman
1995-02-01
Reduction of manganese ores from the Wessel mine of South Africa has been investigated in the temperature range 1100 °C to 1350 °C with pure graphite as the reductant under argon atmosphere. The rate and degree of reduction were found to increase with increasing temperature and decreasing particle sizes of both the ore and the graphite. The reduction was found to occur in two stages: (1) The first stage includes the rapid reduction of higher oxides of manganese and iron to MnO and FeO. The rate control appears to be mixed, both inward diffusion of CO and outward diffusion of CO2 across the porous product layer, and the reaction of carbon monoxide on the pore walls of the oxide phase play important roles. The values of effective CO-CO2 diffusivities generated by the mathematical model are in the range from 2.15 x 10-5 to 6.17 X 10-5 cm2.s-1 for different ores at 1300 °C. Apparent activation energies range from 81. 3 to 94.6 kJ/kg/mol. (2) The second stage is slower during which MnO and FeO are reduced to mixed carbide of iron and manganese. The chemical reaction between the manganous oxide and carbon dissolved in the metal phase or metal carbide seems to be the rate-controlling process The rate constant of chemical reaction between MnO and carbide on the surface of the impervious core was found to lie in the range from 1.53 x 10-8 to 1.32 x 10-7 mol . s-1 . cm-2. Apparent activation energies calculated are in the range from 102.1 to 141.7 kJ/kg/mol.
Wang, Jiancheng; Qiu, Biao; Han, Lina; Feng, Gang; Hu, Yongfeng; Chang, Liping; Bao, Weiren
2012-04-30
Activated carbon (AC) supported manganese oxide sorbents were prepared by the supercritical water impregnation (SCWI) using two different precursor of Mn(NO(3))(2) (SCW(N)) and Mn(Ac)(2)·4H(2)O (SCW(A)). Their capacities of removing H(2)S from coal gas were evaluated and compared to the sorbents prepared by the pore volume impregnation (PVI) method. The structure and composition of different sorbents were characterized by XRD, SEM, TEM, XPS and XANES techniques. It is found that the precursor of active component plays the crucial role and SCW(N) sorbents show much better sulfidation performance than the SCW(A) sorbents. This is because the Mn(3)O(4) active phase of the SCW(N) sorbents are well dispersed on the AC support, while the Mn(2)SiO(4)-like species in the SCW(A) sorbent can be formed and seriously aggregated. The SCW(N) sorbents with 2.80% and 5.60% manganese are favorable for the sulfidation reaction, since the Mn species are better dispersed on the SCW(N) sorbents than those on the PV(N) sorbents and results in the better sulfidation performance of the SCW(N) sorbents. As the Mn content increases to 11.20%, the metal oxide particles on AC supports aggregate seriously, which leads to poorer sulfidation performance of the SCW(N)11.20% sorbents than that of the PV(N)11.20% sorbents. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Manrong; Retuerto, Maria; Bok Go, Yong
2013-01-15
Single crystals of Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} were prepared from NaCl+KCl flux. This compound adopts KSbO{sub 3}-type crystal structure as evidenced by electron and single crystal X-ray diffraction analysis. The three-dimensional channel structure is formed by corner-sharing octahedral (Mn{sub 0.63}Te{sub 0.37}){sub 2}O{sub 10} dimers and two identical (Bi1){sub 4}(Bi2){sub 2} interpenetrating lattices. The intra-dimer Mn/Te-Mn/Te distances in Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} are short and are consistent with weak metal-metal interactions. The mixed oxidation state of manganese and the edge-sharing octahedral features are confirmed by X-ray near edge absorption spectroscopy measurements, which indicate Bi{sub 3}(Mn{sup III}{sub 1.1}Mn{sup IV}{sub 0.8})Te{supmore » VI}{sub 1.1}O{sub 11} with 57.7% Mn{sup 3+} and 42.3% Mn{sup 4+}. The partial substitution of Te for Mn perturbs long-range magnetic interactions, thereby destroying the ferromagnetic ordering found in Bi{sub 3}Mn{sub 3}O{sub 11} (T{sub C}=150 K). - Graphical abstract: Single crystal of Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} was grown from NaCl+KCl binary flux, suggesting that the high pressure Bi{sub 3}Mn{sub 3}O{sub 11} phase can be stabilized by partial substitution of Mn by Te at ambient pressure. Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} adopts a typical three dimensional KSbO{sub 3}-type crystal structure with three interpenetrating lattices and weak intra-dimmer metal-metal interaction caused by the d electrons of Mn. The edge-shared (Mn{sub 0.63}Te{sub 0.37}){sub 2}O{sub 10} octahedral dimer and mixed oxidation state of manganese (Bi{sub 3}(Mn{sup III}{sub 1.1}Mn{sup IV}{sub 0.8})Te{sup VI}{sub 1.1}O{sub 11} with 57.7% Mn{sup 3+} and 42.3% Mn{sup 4+}) features were evidenced by X-ray absorption near edge spectroscopy. Compared with Bi{sub 3}Mn{sub 3}O{sub 11}, the Te substituted Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} relaxes the crystal structure, but destroys the long-range magnetic ordering and gives short-range magnetic ordering below 5 K. Highlights: Black-Right-Pointing-Pointer High pressure Bi{sub 3}Mn{sub 3}O{sub 11} is stabilized by partial Te substitution at ambient pressure. Black-Right-Pointing-Pointer New KSbO{sub 3}-type Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} single crystal was grown from binary flux. Black-Right-Pointing-Pointer The presence of mixed oxidation state of manganese is evidenced by XANES study. Black-Right-Pointing-Pointer The Te-substitution destroys the long-range magnetic ordering and relaxes the structure.« less
Visser, Hendrik; Anxolabéhère-Mallart, Elodie; Bergmann, Uwe; Glatzel, Pieter; Robblee, John H.; Cramer, Stephen P.; Girerd, Jean-Jacques; Sauer, Kenneth; Klein, Melvin P.; Yachandra, Vittal K.
2014-01-01
Two structurally homologous Mn compounds in different oxidation states were studied to investigate the relative influence of oxidation state and ligand environment on Mn K-edge X-ray absorption near-edge structure (XANES) and Mn Kβ X-ray emission spectroscopy (Kβ XES). The two manganese compounds are the di-μ-oxo compound [L′2MnIIIO2MnIVL′2](ClO4)3, where L′ is 1,10-phenanthroline (Cooper, S. R.; Calvin, M. J. Am. Chem. Soc. 1977, 99, 6623–6630) and the linear mono-μ-oxo compound [LMnIIIOMnIIIL](ClO4)2, where L− is the monoanionic N,N-bis(2-pyridylmethyl)-N′-salicylidene-1,2-diaminoethane ligand (Horner, O.; Anxolabéhère-Mallart, E.; Charlot, M. F.; Tchertanov, L.; Guilhem, J.; Mattioli, T. A.; Boussac, A.; Girerd, J.-J. Inorg. Chem. 1999, 38, 1222–1232). Preparative bulk electrolysis in acetonitrile was used to obtain higher oxidation states of the compounds: the MnIVMnIV species for the di-μ-oxo compound and the MnIIIMnIV and MnIVMnIV species for the mono-μ-oxo compound. IR, UV/vis, EPR, and EXAFS spectra were used to determine the purity and integrity of the various sample solutions. The Mn K-edge XANES spectra shift to higher energy upon oxidation when the ligand environment remains similar. However, shifts in energy are also observed when only the ligand environment is altered. This is achieved by comparing the di-μ-oxo and linear mono-μ-oxo Mn–Mn moieties in equivalent oxidation states, which represent major structural changes. The magnitude of an energy shift due to major changes in ligand environment can be as large as that of an oxidation-state change. Therefore, care must be exercised when correlating the Mn K-edge energies to manganese oxidation states without taking into account the nature of the ligand environment and the overall structure of the compound. In contrast to Mn K-edge XANES, Kβ XES spectra show less dependence on ligand environment. The Kβ1,3 peak energies are comparable for the di-μ-oxo and mono-μ-oxo compounds in equivalent oxidation states. The energy shifts observed due to oxidation are also similar for the two different compounds. The study of the different behavior of the XANES pre-edge and main-edge features in conjunction with Kβ XES provides significant information about the oxidation state and character of the ligand environment of manganese atoms. PMID:11459481
NASA Astrophysics Data System (ADS)
Davis, R.; Tebo, B. M.
2013-12-01
Microbial activity has long been recognized as being important to the fate of manganese (Mn) in hydrothermal systems, yet we know very little about the organisms that catalyze Mn oxidation, the mechanisms by which Mn is oxidized or the physiological function that Mn oxidation serves in these hydrothermal systems. Hydrothermal vents with thick ferromanganese microbial mats and Mn oxide-coated rocks observed throughout the Pacific Ring of Fire are ideal models to study the mechanisms of microbial Mn oxidation, as well as primary productivity in these metal-cycling ecosystems. We sampled ferromanganese microbial mats from Vai Lili Vent Field (Tmax=43°C) located on the Eastern Lau Spreading Center and Mn oxide-encrusted rhyolytic pumice (4°C) from Niua South Seamount on the Tonga Volcanic Arc. Metagenomic libraries were constructed and assembled from these samples and key genes known to be involved in Mn oxidation and carbon fixation pathways were identified in the reconstructed genomes. The Vai Lili metagenome assembled to form 121,157 contiguous sequences (contigs) greater than 1000bp in length, with an N50 of 8,261bp and a total metagenome size of 593 Mbp. Contigs were binned using an emergent self-organizing map of tetranucleotide frequencies. Putative homologs of the multicopper Mn-oxidase MnxG were found in the metagenome that were related to both the Pseudomonas-like and Bacillus-like forms of the enzyme. The bins containing the Pseudomonas-like mnxG genes are most closely related to uncultured Deltaproteobacteria and Chloroflexi. The Deltaproteobacteria bin appears to be an obligate anaerobe with possible chemoautotrophic metabolisms, while the Chloroflexi appears to be a heterotrophic organism. The metagenome from the Mn-stained pumice was assembled into 122,092 contigs greater than 1000bp in length with an N50 of 7635 and a metagenome size of 385 Mbp. Both forms of mnxG genes are present in this metagenome as well as the genes encoding the putative Mn oxidases McoA and MopA. The greater diversity of Mn oxidase pathways in this metagenome suggests a more diverse Mn oxidizing microbial community in the cold pumice sample. Key enzymes for four of the six known carbon fixation pathways (the Calvin Cycle, the reductive TCA cycle, the Wood-Ljungdahl pathway, and the 3-hydroxypropionate/4-hydroxybutyrate Cycle) were also identified in both samples indicating primary production occurs via a diverse community of carbon fixing organisms. Together, these samples contain active, diverse populations of Mn oxidizing bacteria living in association with microbial communities supported by chemoautotrophic carbon fixation.
Zhang, Yanhua; Regmi, Rajesh; Liu, Yi; Lawes, Gavin; Brock, Stephanie L
2014-07-22
Small changes in the synthesis of MnAs nanoparticles lead to materials with distinct behavior. Samples prepared by slow heating to 523 K (type-A) exhibit the characteristic magnetostructural transition from the ferromagnetic hexagonal (α) to the paramagnetic orthorhombic (β) phase of bulk MnAs at Tp = 312 K, whereas those prepared by rapid nucleation at 603 K (type-B) adopt the β structure at room temperature and exhibit anomalous magnetic properties. The behavior of type-B nanoparticles is due to P-incorporation (up to 3%), attributed to reaction of the solvent (trioctylphosphine oxide). P-incorporation results in a decrease in the unit cell volume (∼1%) and shifts Tp below room temperature. Temperature-dependent X-ray diffraction reveals a large region of phase-coexistence, up to 90 K, which may reflect small differences in Tp from particle-to-particle within the nearly monodisperse sample. The large coexistence range coupled to the thermal hysteresis results in process-dependent phase mixtures. As-prepared type-B samples exhibiting the β structure at room temperature convert to a mixture of α and β after the sample has been cooled to 77 K and rewarmed to room temperature. This change is reflected in the magnetic response, which shows an increased moment and a shift in the temperature hysteresis loop after cooling. The proportion of α present at room temperature can also be augmented by application of an external magnetic field. Both doped (type-B) and undoped (type-A) MnAs nanoparticles show significant thermal hysteresis narrowing relative to their bulk phases, suggesting that formation of nanoparticles may be an effective method to reduce thermal losses in magnetic refrigeration applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermann, S.D.; Gese, N.J.; Wurth, L.A.
An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electro-metallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li{sub 2}O at 650 C. degrees with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide.more » In the absence of zirconium or sodium oxide, the electrolytic reduction of MnO showed nearly complete conversion to metal. The electrolytic reduction of a blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O showed substantial reduction of manganese, but only 8.5% of the zirconium was found in the metal phase. The electrolytic reduction of the same blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O - 6.2 wt% Na{sub 2}O showed substantial reduction of manganese, but zirconium reduction was even less at 2.4%. This study concluded that ZrO{sub 2} cannot be substantially reduced to metal in an electrolytic reduction system with LiCl - 1 wt% Li{sub 2}O at 650 C. degrees due to the perceived preferential formation of lithium zirconate. This study also identified a possible interference that sodium oxide may have on the same system by introducing a parasitic and cyclic reaction of dissolved sodium metal between oxidation at the anode and reduction at the cathode. When applied to oxidized sodium-bonded EBR-II fuel (e.g., U-10Zr), the prescribed electrolytic reduction system would not be expected to substantially reduce zirconium oxide, and the accumulation of sodium in the electrolyte could interfere with the reduction of uranium oxide, or at least render it less efficient.« less
Batinic-Haberle, Ines; Tovmasyan, Artak; Spasojevic, Ivan
2015-08-01
Most of the SOD mimics thus far developed belong to the classes of Mn-(MnPs) and Fe porphyrins(FePs), Mn(III) salens, Mn(II) cyclic polyamines and metal salts. Due to their remarkable stability we have predominantly explored Mn porphyrins, aiming initially at mimicking kinetics and thermodynamics of the catalysis of O2(-) dismutation by SOD enzymes. Several MnPs are of potency similar to SOD enzymes. The in vivo bioavailability and toxicity of MnPs have been addressed also. Numerous in vitro and in vivo studies indicate their impressive therapeutic efficacy. Increasing insight into complex cellular redox biology has been accompanied by increasing awareness of complex redox chemistry of MnPs. During O2(-) dismutation process, the most powerful Mn porphyrin-based SOD mimics reduce and oxidize O2(-) with close to identical rate constants. MnPs reduce and oxidize other reactive species also (none of them specific to MnPs), acting as reductants (antioxidant) and pro-oxidants. Distinction must be made between the type of reactions of MnPs and the favorable therapeutic effects we observe; the latter may be of either anti- or pro-oxidative nature. H2O2/MnP mediated oxidation of protein thiols and its impact on cellular transcription seems to dominate redox biology of MnPs. It has been thus far demonstrated that the ability of MnPs to catalyze O2(-) dismutation parallels all other reactivities (such as ONOO(-) reduction) and in turn their therapeutic efficacies. Assuming that all diseases have in common the perturbation of cellular redox environment, developing SOD mimics still seems to be the appropriate strategy for the design of potent redox-active therapeutics. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dalili, N.; Clark, M. P.; Davari, E.; Ivey, D. G.
2016-10-01
Manganese oxide has been investigated extensively as an electrochemical capacitor or supercapacitor electrode material. Manganese oxide is inexpensive to fabricate and exhibits relatively high capacitance values, i.e., in excess of 200 F g-1 in many cases; the actual value depends very much on the fabrication method and test conditions. The cycling behavior of Mn oxide, fabricated using anodic electrodeposition, is investigated using slice and view techniques, via a dual scanning electron microscope (SEM) and focused ion beam (FIB) instrument to generate three-dimensional (3D) images, coupled with electrochemical characterization. The initial as-fabricated electrode has a rod-like appearance, with a fine-scale, sheet-like morphology within the rods. The rod-like structure remains after cycling, but there are significant morphological changes. These include partial dissolution of Mn oxide followed by redeposition of Mn oxide in regions close to the substrate. The redeposited material has a finer morphology than the original as-fabricated Mn oxide. The Mn oxide coverage is also better near the substrate. These effects result in an increase in the specific capacitance.
NASA Astrophysics Data System (ADS)
Postma, D.; Appelo, C. A. J.
2000-04-01
The reduction of Mn-oxide by Fe2+ was studied in column experiments, using a column filled with natural Mn-oxide coated sand. Analysis of the Mn-oxide indicated the presence of both Mn(III) and Mn(IV) in the Mn-oxide. The initial exchange capacity of the column was determined by displacement of adsorbed Ca2+ with Mg2+. Subsequently a FeCl2 solution was injected into the column causing the reduction of the Mn-oxide and the precipitation of Fe(OH)3. Finally the exchange capacity of the column containing newly formed Fe(OH)3 was determined by injection of a KBr solution. During injection of the FeCl2 solution into the column, an ion distribution pattern was observed in the effluent that suggests the formation of separate reaction fronts for Mn(III)-oxide and Mn(IV)-oxide travelling at different velocities through the column. At the proximal reaction front, Fe2+ reacts with MnO2 producing Fe(OH)3, Mn2+ and H+. The protons are transported downstream and cause the disproportionation of MnOOH at a separate reaction front. Between the two Mn reaction fronts, the dissolution and precipitation of Fe(OH)3 and Al(OH)3 act as proton buffers. Reactive transport modeling, using the code PHREEQC 2.0, was done to quantify and analyze the reaction controls and the coupling between transport and chemical processes. A model containing only mineral equilibria constraints for birnessite, manganite, gibbsite, and ferrihydrite, was able to explain the overall reaction pattern with the sequential appearance of Mn2+, Al3+, Fe3+, and Fe2+ in the column outlet solution. However, the initial breakthrough of a peak of Ca2+ and the observed pH buffering indicated that exchange processes were of importance as well. The amount of potential exchangers, such as birnessite and ferrihydrite, did vary in the course of the experiment. A model containing surface complexation coupled to varying concentrations of birnessite and ferrihydrite and a constant charge exchanger in addition to mineral equilibria provided a satisfactory description of the distribution of all solutes in time and space. However, the observed concentration profiles are more gradual than indicated by the equilibrium model. Reaction kinetics for the dissolution of MnO2 and MnOOH and dissolution of Al(OH)3 were incorporated in the model, which explained the shape of the breakthrough curves satisfactorily. The results of this study emphasize the importance of understanding the interplay between chemical reactions and transport in addition to interactions between redox, proton buffering, and adsorption processes when dealing with natural sediments. Reactive transport modeling is a powerful tool to analyze and quantify such interactions.