Chen, Weibing; Qi, Wenjin; Lu, Wei; Chaudhury, Nikhil Roy; Yuan, Jiangtan; Qin, Lidong; Lou, Jun
2018-03-01
The low toxicity of molybdenum disulfide (MoS 2 ) atomically thin film and microparticles is confirmed via cytotoxicity and patch testing in this report. The toxicity of MoS 2 thin film and microparticles is extensively studied but is still inconclusive due to potential organic contamination in the preparations of samples. Such contamination is avoided here through preparing MoS 2 atomically thin film via direct sulfurization of molybdenum thin film on quartz plate, which permits a direct assessment of its toxicity without any contamination. Six different types of cells, including normal, cancer, and immortal cells, are cultured in the media containing MoS 2 thin film on quartz plates or dispersed MoS 2 microparticles and their viability is evaluated with respect to the concentrations of samples. Detached thin films from the quartz plates are also investigated to estimate the toxicity of dispersed MoS 2 in biological media. Allergy testing on skin of guinea pigs is also conducted to understand their effect on animal skins. By avoiding possible organic contamination, the low toxicity of MoS 2 atomically thin film and microparticles to cells and animal skins paves the way for its applications in flexible biosensing/bioimaging devices and biocompatible coatings. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Improved photoelectrochemical performance of BiVO4/MoO3 heterostructure thin films
NASA Astrophysics Data System (ADS)
Kodan, Nisha; Mehta, B. R.
2018-05-01
Bismuth vanadate (BiVO4) and Molybdenum trioxide (MoO3) thin films have been prepared by RF sputtering technique. BiVO4 thin films were deposited on indium doped tin oxide (In: SnO2; ITO) substrates at room temperature and 80W applied rf power. The prepared BiVO4 thin films were further annealed at 450°C for 2 hours in air to obtain crystalline monoclinic phase and successively coated with MoO3 thin films deposited at 150W rf power and 400°C for 30 minutes. The effect of coupling BiVO4 and MoO3 on the structural, optical and photoelectrochemical (PEC) properties have been studied. Optical studies reveal that coupling of BiVO4 and MoO3 results in improvement of optical absorption in visible region of solar spectrum. PEC study shows approximate 3-fold and 38-fold increment in photocurrent values of BiVO4/MoO3 (0.38 mA/cm2) heterostructure thin film as compared to MoO3 (0.15 mA/cm2) and BiVO4 (10 µA/cm2) thin films at applied bias of 1 V vs Ag/AgCl in 0.5 M Na2SO4 (pH=7) electrolyte.
NASA Astrophysics Data System (ADS)
Jiang, C.; Rumyantsev, S. L.; Samnakay, R.; Shur, M. S.; Balandin, A. A.
2015-02-01
We report on fabrication of MoS2 thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS2 devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS2 thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a "memory step," was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS2 thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS2 thin-film transistors in extreme-temperature electronics and sensors.
NASA Astrophysics Data System (ADS)
Huang, Chung-Che; Al-Saab, Feras; Wang, Yudong; Ou, Jun-Yu; Walker, John C.; Wang, Shuncai; Gholipour, Behrad; Simpson, Robert E.; Hewak, Daniel W.
2014-10-01
Nano-scale MoS2 thin films are successfully deposited on a variety of substrates by atmospheric pressure chemical vapor deposition (APCVD) at ambient temperature, followed by a two-step annealing process. These annealed MoS2 thin films are characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), micro-Raman, X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-VIS-NIR spectrometry, photoluminescence (PL) and Hall Effect measurement. Key optical and electronic properties of APCVD grown MoS2 thin films are determined. This APCVD process is scalable and can be easily incorporated with conventional lithography as the deposition is taking place at room temperature. We also find that the substrate material plays a significant role in the crystalline structure formation during the annealing process and single crystalline MoS2 thin films can be achieved by using both c-plane ZnO and c-plane sapphire substrates. These APCVD grown nano-scale MoS2 thin films show great promise for nanoelectronic and optoelectronic applications.
Electronic Devices Based on Oxide Thin Films Fabricated by Fiber-to-Film Process.
Meng, You; Liu, Ao; Guo, Zidong; Liu, Guoxia; Shin, Byoungchul; Noh, Yong-Young; Fortunato, Elvira; Martins, Rodrigo; Shan, Fukai
2018-05-30
Technical development for thin-film fabrication is essential for emerging metal-oxide (MO) electronics. Although impressive progress has been achieved in fabricating MO thin films, the challenges still remain. Here, we report a versatile and general thermal-induced nanomelting technique for fabricating MO thin films from the fiber networks, briefly called fiber-to-film (FTF) process. The high quality of the FTF-processed MO thin films was confirmed by various investigations. The FTF process is generally applicable to numerous technologically relevant MO thin films, including semiconducting thin films (e.g., In 2 O 3 , InZnO, and InZrZnO), conducting thin films (e.g., InSnO), and insulating thin films (e.g., AlO x ). By optimizing the fabrication process, In 2 O 3 /AlO x thin-film transistors (TFTs) were successfully integrated by fully FTF processes. High-performance TFT was achieved with an average mobility of ∼25 cm 2 /(Vs), an on/off current ratio of ∼10 7 , a threshold voltage of ∼1 V, and a device yield of 100%. As a proof of concept, one-transistor-driven pixel circuit was constructed, which exhibited high controllability over the light-emitting diodes. Logic gates based on fully FTF-processed In 2 O 3 /AlO x TFTs were further realized, which exhibited good dynamic logic responses and voltage amplification by a factor of ∼4. The FTF technique presented here offers great potential in large-area and low-cost manufacturing for flexible oxide electronics.
Preparation of high-oriented molybdenum thin films using DC reactive magnetronsputtering
NASA Astrophysics Data System (ADS)
Shang, Zhengguo; Li, Dongling; Yin, She; Wang, Shengqiang
2017-03-01
Since molybdenum (Mo) thin film has been used widely recently, it attracts plenty of attention, like it is a good candidate of back contact material for CuIn1-xGaxSe2-ySy (CIGSeS) solar cells development; thanks to its more conductive and higher adhesive property. Besides, molybdenum thin film is an ideal material for aluminum nitride (AlN) thin film preparation and attributes to the tiny (-1.0%) lattice mismatch between Mo and AlN. As we know that the quality of Mo thin film is mainly dependent on process conditions, it brings a practical significance to study the influence of process parameters on Mo thin film properties. In this work, various sputtering conditions are employed to explore the feasibility of depositing a layer of molybdenum film with good quality by DC reactive magnetron sputtering. The influence of process parameters such as power, gas flow, substrate temperature and process time on the crystallinity and crystal orientation of Mo thin films is investigated. X-ray diffraction (XRD) measurements and atomic force microscope (AFM) are used to characterize the properties and surface roughness, respectively. According to comparative analysis on the results, process parameters are optimized. The full width at half maximum (FWHM) of the rocking curves of the (110) Mo is decreased to 2.7∘, and the (110) Mo peaks reached 1.2 × 105 counts. The grain size and the surface roughness have been measured as 20 Å and 3.8 nm, respectively, at 200∘C.
Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications.
He, Qiyuan; Zeng, Zhiyuan; Yin, Zongyou; Li, Hai; Wu, Shixin; Huang, Xiao; Zhang, Hua
2012-10-08
By combining two kinds of solution-processable two-dimensional materials, a flexible transistor array is fabricated in which MoS(2) thin film is used as the active channel and reduced graphene oxide (rGO) film is used as the drain and source electrodes. The simple device configuration and the 1.5 mm-long MoS(2) channel ensure highly reproducible device fabrication and operation. This flexible transistor array can be used as a highly sensitive gas sensor with excellent reproducibility. Compared to using rGO thin film as the active channel, this new gas sensor exhibits much higher sensitivity. Moreover, functionalization of the MoS(2) thin film with Pt nanoparticles further increases the sensitivity by up to ∼3 times. The successful incorporation of a MoS(2) thin-film into the electronic sensor promises its potential application in various electronic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis and Characterization of Molybdenum Doped ZnO Thin Films by SILAR Deposition Method
NASA Astrophysics Data System (ADS)
Radha, R.; Sakthivelu, A.; Pradhabhan, D.
2016-08-01
Molybdenum (Mo) doped zinc oxide (ZnO) thin films were deposited on the glass substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) deposition method. The effect of Mo dopant concentration of 5, 6.6 and 10 mol% on the structural, morphological, optical and electrical properties of n-type Mo doped ZnO films was studied. The X-ray diffraction (XRD) results confirmed that the Mo doped ZnO thin films were polycrystalline with wurtzite structure. The field emission scanning electron microscopy (FESEM) studies shows that the surface morphology of the films changes with Mo doping. A blue shift of the optical band gap was observed in the optical studies. Effect of Mo dopant concentration on electrical conductivity was studied and it shows comparatively high electrical conductivity at 10 mol% of Mo doping concentration.
Dey, Arjun; Nayak, Manish Kumar; Esther, A Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A K; Bera, Parthasarathi; Barshilia, Harish C; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D Raghavendra; Sridhara, N; Sharma, Anand Kumar
2016-11-17
Vanadium oxide-molybdenum oxide (VO-MO) thin (21-475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V 2 O 5 , V 2 O 3 and VO 2 along with MoO 3 . Reversible or smart transition was found to occur just above the room temperature i.e., at ~45-50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10 -5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films.
NASA Astrophysics Data System (ADS)
Dey, Arjun; Nayak, Manish Kumar; Esther, A. Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A. K.; Bera, Parthasarathi; Barshilia, Harish C.; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D. Raghavendra; Sridhara, N.; Sharma, Anand Kumar
2016-11-01
Vanadium oxide-molybdenum oxide (VO-MO) thin (21-475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V2O5, V2O3 and VO2 along with MoO3. Reversible or smart transition was found to occur just above the room temperature i.e., at ~45-50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10-5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films.
Room temperature ammonia gas sensing properties of MoS2 nanostructured thin film
NASA Astrophysics Data System (ADS)
Sharma, Shubham; Kumar, Arvind; Kaur, Davinder
2018-05-01
Here, we have fabricated the MoS2 nanostructure thin films on the Si (100) substrate using DC magnetron sputtering technique. The MoS2 thin film sensor shows the selective responses towards the ammonia gas (NH3) under low detection range 10-500 ppm. The sensor displays a significantly high sensing response (Rg/Ra ˜2.2) towards 100 ppm ammonia gas with a very fast response and recovery time of 22 sec and 30 sec respectively. Selectivity and stability investigations exhibit the excellent sensing properties of MoS2 thin film sensor. The working principle and sensing mechanism behind their remarkable performance was also investigated in detail.
NASA Astrophysics Data System (ADS)
Paul, T.; Ghosh, A.
2017-04-01
We have studied the structure and electrical properties of La2Mo2O9 thin films of different thicknesses prepared by the laser deposition technique at different substrate temperatures. The structural properties of the thin films have been investigated using XRD, XPS, AFM, TEM, SEM, and Raman spectroscopy. The electrical transport properties of the thin films have been investigated in wide temperature and frequency ranges. The cubic nature of the thin films has been confirmed from structural analysis. An enhancement of the oxygen ion conductivity of the films up to five orders of magnitude is obtained compared to that of the bulk La2Mo2O9, suggesting usefulness of the thin films as electrolytes in micro-solid oxide fuel cells. The enhanced dc ionic conductivity of the thin films has been interpreted using the rule of the mixture model, while a power law model has been used to investigate the frequency and temperature dependences of the conductivity. The analysis of the results predicts the three-dimensional oxygen ion conduction in the thin films.
MoS2 thin films prepared by sulfurization
NASA Astrophysics Data System (ADS)
Sojková, M.; Chromik, Å.; Rosová, A.; Dobročka, E.; Hutár, P.; Machajdík, D.; Kobzev, A. P.; Hulman, M.
2017-08-01
Sulfurization of a Mo layer is one of the most used methods for preparation of thin MoS2 films. In the method, a sulfur powder and Mo covered substrate are placed in different positions within a furnace, and heated separately. This requires a furnace having at least two zones. Here, we present a simplified version of the method where a one-zone tube furnace was used. A molybdenum film on a substrate and a sulfur powder were placed in the center of the furnace and heated at temperatures above 800°C. Mo films transform into MoS2 in vapors of sulphur at high temperatures. As-prepared films were characterized by number of techniques including X-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman, Rutherford backscattering (RBS) and X-ray photoelectron spectroscopy (XPS). It appears that one-zone sulfurization, with just one annealing temperature used, is a suitable method for fabrication of MoS2 thin films. This method is fast, cheap and easy to scale up.
Transparent Conducting Mo-Doped CdO Thin Films by Spray Pyrolysis Method for Solar Cell Applications
NASA Astrophysics Data System (ADS)
Helen, S. J.; Devadason, Suganthi; Haris, M.; Mahalingam, T.
2018-04-01
Pure and 3%, 5%, and 7% molybdenum-doped cadmium oxide (CdO) thin films have been prepared on glass substrates preheated to 400°C using a spray pyrolysis technique, then analyzed using x-ray diffraction analysis, field-emission scanning electron microscopy, ultraviolet-visible spectroscopy, and photoluminescence and Hall measurements. The films were found to have polycrystalline nature with cubic structure. The crystallite size was calculated to be ˜ 12 nm for various doping concentrations. Doping improved the optical transparency of the CdO thin film, with the 5% Mo-doped film recording the highest transmittance in the optical region. The energy bandgap deduced from optical studies ranged from 2.38 eV and 2.44 eV for different Mo doping levels. The electrical conductivity was enhanced on Mo doping, with the highest conductivity of 1.74 × 103 (Ω cm)-1 being achieved for the 5% Mo-doped CdO thin film.
Superconductor-Insulator transition in sputtered amorphous MoRu and MoRuN thin films
NASA Astrophysics Data System (ADS)
Makise, K.; Shinozaki, B.; Ichikawa, F.
2018-03-01
This work shows the experimental results of the superconductor-insulator (S-I) transition for amorphous molybdenum ruthenium (MoRu) and molybdenum ruthenium nitride (MoRuN) films. These amorphous films onto c-plane sapphire substrates have been interpreted to be homogeneous by XRD and AFM measurements. Electrical and superconducting properties measurements were carried out on MoRu and MoRuN thin films deposited by reactive sputtering technique. We have analysed the data on R sq (T) based on excess conductivity of superconducting films by the AL and MT term and weak localization and electron-electron interaction for the conductance. MoRu films which offer the most homogeneous film morphology, showed a critical sheet resistance of transition, Rc, of ∼ 2 kΩ. This values is smaller than those previously our reported for quench-condensed MoRu films on SiO underlayer held at liquid He temperature.
Chemically deposited nano grain composed MoS(2) thin films for supercapacitor application.
Pujari, R B; Lokhande, A C; Shelke, A R; Kim, J H; Lokhande, C D
2017-06-15
Low temperature soft chemical synthesis approach is employed towards MoS 2 thin film preparation on cost effective stainless steel substrate. 3-D semispherical nano-grain composed surface texture of MoS 2 film is observed through FE-SEM technique. Electrochemical supercapacitor performance of MoS 2 film is tested from cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) techniques in 1M aqueous Na 2 SO 4 electrolyte. Specific capacitance (C s ) of 180Fg -1 with CV cycling stability of 82% for 1000 cycles is achieved. Equivalent series resistance (R s ) of 1.78Ωcm -2 observed through Nyquist plot shows usefulness of MoS 2 thin film for charge conduction in supercapacitor application. Copyright © 2016. Published by Elsevier Inc.
Dey, Arjun; Nayak, Manish Kumar; Esther, A. Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A. K.; Bera, Parthasarathi; Barshilia, Harish C.; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D. Raghavendra; Sridhara, N.; Sharma, Anand Kumar
2016-01-01
Vanadium oxide-molybdenum oxide (VO-MO) thin (21–475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V2O5, V2O3 and VO2 along with MoO3. Reversible or smart transition was found to occur just above the room temperature i.e., at ~45–50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10−5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films. PMID:27853234
Chemical vapor deposition of Mo thin films from Mo(CO){sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, P.; Bond, J.; Westmore, T.
1995-12-01
Low levels of carbon and/or oxygen contamination in metallic thin films significantly alter the physical and chemical properties of these films often rendering them useless for any commercial applications. These impurities are often observed in films grown by a technique called metallorganic chemical vapor deposition (MOCVD). MOCVD films are grown by heating a substrate in the presence of a metallorganic precursor. We wish to identify the source(s) of contamination in films produced from the Group VIB metal hexacarbonyls, M(CO){sub 6}. Towards attaining this goal we have initiated studies on the elemental composition of thin films deposited by MOCVD using Mo(CO){submore » 6} as the precursor. The results obtained so far indicate that the level of contamination of the films partially depends on the deposition temperature. Our results will be compared to published work on films deposited by laser assisted CVD from Mo(CO){sub 6}.« less
Deposition and characterization of molybdenum thin films using dc-plasma magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Majid, E-mail: majids@hotmail.com; Islam, Mohammad, E-mail: mohammad.islam@gmail.com
2013-12-15
Molebdenum (Mo) thin films were deposited on well-cleaned soda-lime glass substrates using DC-plasma magnetron sputtering. In the design of experiment deposition was optimized for maximum beneficial characteristics by monitoring effect of process variables such as deposition power (100–200 W). Their electrical, structural and morphological properties were analyzed to study the effect of these variables. The electrical resistivity of Mo thin films could be reduced by increasing deposition power. Within the range of analyzed deposition power, Mo thin films showed a mono crystalline nature and the crystallites were found to have an orientation along [110] direction. The surface morphology of thinmore » films showed that a highly dense micro structure has been obtained. The surface roughness of films increased with deposition power. The adhesion of Mo thin films could be improved by increasing the deposition power. Atomic force microscopy was used for the topographical study of the films and to determine the roughness of the films. X-ray diffractrometer and scanning electron microscopy analysis were used to investigate the crystallinity and surface morphology of the films. Hall effect measurement system was used to find resistivity, carrier mobility and carrier density of deposited films. The adhesion test was performed using scotch hatch tape adhesion test. Mo thin films prepared at deposition power of 200 W, substrate temperature of 23°C and Ar pressure of 0.0123 mbar exhibited a mono crystalline structure with an orientation along (110) direction, thickness of ∼550 nm and electrical resistivity value of 0.57 × 10{sup −4} Ω cm.« less
Photoresponse properties of large area MoS2 metal–semiconductor–metal photodetectors
NASA Astrophysics Data System (ADS)
Ko, Tsung-Shine; Huang, Yu-Jen; Lin, Der-Yuh; Lin, Chia-Feng; Hong, Bo-Syun; Chen, Hone-Zern
2018-04-01
In this study, a large-area molybdenum disulfide (MoS2) thin film was obtained by low pressure thermal sulfurization. Raman scattering spectrum shows that the peaks at 374 and 403 cm‑1 are from the MoS2 thin film. XRD result reveals peaks at 33 and 58.5° indicating MoS2(100) and (110) crystal planes. By using gold (Au), silver (Ag), and aluminum (Al) as contact materials on the MoS2 thin film, photoresponsivity results indicate that Ag is a suitable material for obtaining a high responsivity for a high-performance photodetector (PD). Photocurrent mapping measurements also reveal that Ag contacts have the best carrier transport characteristic with carrier diffusion length of 101 µm among these contacts. Furthermore, we investigated metal–semiconductor–metal MoS2 thin film PDs with interdigitated fingers of 300, 400, 500, and 600 µm contact widths, which showed that the large contact widths could produce a high photoresponse for PD application owing to low resistance.
NASA Astrophysics Data System (ADS)
Yordanov, R.; Boyadjiev, S.; Georgieva, V.; Vergov, L.
2014-05-01
The present work discusses a technology for deposition and characterization of thin molybdenum oxide (MoOx, MoO3) films studied for gas sensor applications. The samples were produced by reactive radio-frequency (RF) and direct current (DC) magnetron sputtering. The composition and microstructure of the films were studied by XPS, XRD and Raman spectroscopy, the morphology, using high resolution SEM. The research was focused on the sensing properties of the sputtered thin MoO3 films. Highly sensitive gas sensors were implemented by depositing films of various thicknesses on quartz resonators. Making use of the quartz crystal microbalance (QCM) method, these sensors were capable of detecting changes in the molecular range. Prototype QCM structures with thin MoO3 films were tested for sensitivity to NH3 and NO2. Even in as-deposited state and without heating the substrates, these films showed good sensitivity. Moreover, no additional thermal treatment is necessary, which makes the production of such QCM gas sensors simple and cost-effective, as it is fully compatible with the technology for producing the initial resonator. The films are sensitive at room temperature and can register concentrations as low as 50 ppm. The sorption is fully reversible, the films are stable and capable of long-term measurements.
Growth, structure and stability of sputter-deposited MoS2 thin films.
Kaindl, Reinhard; Bayer, Bernhard C; Resel, Roland; Müller, Thomas; Skakalova, Viera; Habler, Gerlinde; Abart, Rainer; Cherevan, Alexey S; Eder, Dominik; Blatter, Maxime; Fischer, Fabian; Meyer, Jannik C; Polyushkin, Dmitry K; Waldhauser, Wolfgang
2017-01-01
Molybdenum disulphide (MoS 2 ) thin films have received increasing interest as device-active layers in low-dimensional electronics and also as novel catalysts in electrochemical processes such as the hydrogen evolution reaction (HER) in electrochemical water splitting. For both types of applications, industrially scalable fabrication methods with good control over the MoS 2 film properties are crucial. Here, we investigate scalable physical vapour deposition (PVD) of MoS 2 films by magnetron sputtering. MoS 2 films with thicknesses from ≈10 to ≈1000 nm were deposited on SiO 2 /Si and reticulated vitreous carbon (RVC) substrates. Samples deposited at room temperature (RT) and at 400 °C were compared. The deposited MoS 2 was characterized by macro- and microscopic X-ray, electron beam and light scattering, scanning and spectroscopic methods as well as electrical device characterization. We find that room-temperature-deposited MoS 2 films are amorphous, of smooth surface morphology and easily degraded upon moderate laser-induced annealing in ambient conditions. In contrast, films deposited at 400 °C are nano-crystalline, show a nano-grained surface morphology and are comparatively stable against laser-induced degradation. Interestingly, results from electrical transport measurements indicate an unexpected metallic-like conduction character of the studied PVD MoS 2 films, independent of deposition temperature. Possible reasons for these unusual electrical properties of our PVD MoS 2 thin films are discussed. A potential application for such conductive nanostructured MoS 2 films could be as catalytically active electrodes in (photo-)electrocatalysis and initial electrochemical measurements suggest directions for future work on our PVD MoS 2 films.
Growth, structure and stability of sputter-deposited MoS2 thin films
Bayer, Bernhard C; Resel, Roland; Müller, Thomas; Skakalova, Viera; Habler, Gerlinde; Abart, Rainer; Cherevan, Alexey S; Eder, Dominik; Blatter, Maxime; Fischer, Fabian; Meyer, Jannik C; Polyushkin, Dmitry K; Waldhauser, Wolfgang
2017-01-01
Molybdenum disulphide (MoS2) thin films have received increasing interest as device-active layers in low-dimensional electronics and also as novel catalysts in electrochemical processes such as the hydrogen evolution reaction (HER) in electrochemical water splitting. For both types of applications, industrially scalable fabrication methods with good control over the MoS2 film properties are crucial. Here, we investigate scalable physical vapour deposition (PVD) of MoS2 films by magnetron sputtering. MoS2 films with thicknesses from ≈10 to ≈1000 nm were deposited on SiO2/Si and reticulated vitreous carbon (RVC) substrates. Samples deposited at room temperature (RT) and at 400 °C were compared. The deposited MoS2 was characterized by macro- and microscopic X-ray, electron beam and light scattering, scanning and spectroscopic methods as well as electrical device characterization. We find that room-temperature-deposited MoS2 films are amorphous, of smooth surface morphology and easily degraded upon moderate laser-induced annealing in ambient conditions. In contrast, films deposited at 400 °C are nano-crystalline, show a nano-grained surface morphology and are comparatively stable against laser-induced degradation. Interestingly, results from electrical transport measurements indicate an unexpected metallic-like conduction character of the studied PVD MoS2 films, independent of deposition temperature. Possible reasons for these unusual electrical properties of our PVD MoS2 thin films are discussed. A potential application for such conductive nanostructured MoS2 films could be as catalytically active electrodes in (photo-)electrocatalysis and initial electrochemical measurements suggest directions for future work on our PVD MoS2 films. PMID:28685112
NASA Astrophysics Data System (ADS)
Wang, L.; Kirk, E.; Wäckerlin, C.; Schneider, C. W.; Hojeij, M.; Gobrecht, J.; Ekinci, Y.
2014-06-01
We present fabrication and characterization of high-resolution and nearly amorphous Mo1 - xNx transmission gratings and their use as masks for extreme ultraviolet (EUV) interference lithography. During sputter deposition of Mo, nitrogen is incorporated into the film by addition of N2 to the Ar sputter gas, leading to suppression of Mo grain growth and resulting in smooth and homogeneous thin films with a negligible grain size. The obtained Mo0.8N0.2 thin films, as determined by x-ray photoelectron spectroscopy, are characterized to be nearly amorphous using x-ray diffraction. We demonstrate a greatly reduced Mo0.8N0.2 grating line edge roughness compared with pure Mo grating structures after e-beam lithography and plasma dry etching. The amorphous Mo0.8N0.2 thin films retain, to a large extent, the benefits of Mo as a phase grating material for EUV wavelengths, providing great advantages for fabrication of highly efficient diffraction gratings with extremely low roughness. Using these grating masks, well-resolved dense lines down to 8 nm half-pitch are fabricated with EUV interference lithography.
Relation between film thickness and surface doping of MoS2 based field effect transistors
NASA Astrophysics Data System (ADS)
Lockhart de la Rosa, César J.; Arutchelvan, Goutham; Leonhardt, Alessandra; Huyghebaert, Cedric; Radu, Iuliana; Heyns, Marc; De Gendt, Stefan
2018-05-01
Ultra-thin MoS2 film doping through surface functionalization with physically adsorbed species is of great interest due to its ability to dope the film without reduction in the carrier mobility. However, there is a need for understanding how the thickness of the MoS2 film is related to the induced surface doping for improved electrical performance. In this work, we report on the relation of MoS2 film thickness with the doping effect induced by the n-dopant adsorbate poly(vinyl-alcohol). Field effect transistors built using MoS2 films of different thicknesses were electrically characterized, and it was observed that the ION/OFF ratio after doping in thin films is more than four orders of magnitudes greater when compared with thick films. Additionally, a semi-classical model tuned with the experimental devices was used to understand the spatial distribution of charge in the channel and explain the observed behavior. From the simulation results, it was revealed that the two-dimensional carrier density induced by the adsorbate is distributed rather uniformly along the complete channel for thin films (<5.2 nm) contrary to what happens for thicker films.
Tc depression and superconductor-insulator transition in molybdenum nitride thin films
NASA Astrophysics Data System (ADS)
Ichikawa, F.; Makise, K.; Tsuneoka, T.; Maeda, S.; Shinozaki, B.
2018-03-01
We have studied that the Tc depression and the superconductor-insulator transition (SIT) in molybdenum nitride (MoN) thin films. Thin films were fabricated by reactive DC magnetron sputtering method onto (100) MgO substrates in the mixture of Ar and N2 gases. Several dozen MoN thin films were prepared in the range of 3 nm < thickness d < 60 nm. The resistance was measured by a DC four-probe technique. It is found that Tc decreases from 6.6 K for thick films with increase of the normal state sheet resistance {R}{{sq}}{{N}} and experimental data were fitted to the Finkel’stein formula using the bulk superconducting transition temperature Tc 0 = 6.45 K and the elastic scattering time of electron τ = 1.6 × 10‑16 s. From this analysis the critical sheet resistance Rc is found about 2 kΩ, which is smaller than the quantum sheet resistance R Q. This value of Rc is almost the same as those for 2D NbN films. The value of τ for MoN films is also the similar value for NbN films 1.0 × 10‑16 s, while Tc 0 is different from that for NbN films 14.85 K. It is indicated that the mechanism of SIT for MoN films is similar to that of NbN films, while the mean free path ℓ for MoN films is larger than that for NbN films.
Properties of Superconducting Mo, Mo2n and Trilayer Mo2n-Mo-Mo2n Thin Films
NASA Technical Reports Server (NTRS)
Barrentine, E. M.; Stevenson, T. R.; Brown, A. D.; Lowitz, A. E.; Noroozian, O.; U-Yen, K.; Eshan, N.; Hsieh, W. T.; Moseley, S. H.; Wollack, E. J.
2014-01-01
We present measurements of the properties of thin film superconducting Mo, Mo2N and Mo2N/Mo/Mo2N trilayers of interest for microwave kinetic inductance detector (MKID) applications. Using microwave resonator devices, we investigate the transition temperature, energy gaps, kinetic inductance, and internal quality factors of these materials. We present an Usadel-based interpretation of the trilayer transition temperature as a function of trilayer thicknesses, and a 2-gap interpretation to understand the change in kinetic inductance and internal resonance quality factor (Q) as a function of temperature.
NASA Astrophysics Data System (ADS)
Chibane, Loundja; Belkaid, Mohamed Said; Zirmi, Rachid; Moussi, Abderrahmane
2017-04-01
Transparent orthorhombic molybdenum trioxide (α-MoO3) thin films were prepared on glass substrates by sol-gel dip coating technique of a quality comparable to those prepared by more sophisticated techniques regarded as very costly and difficult to carry out. The prepared films were annealed in air at different temperatures in the range of 150-350°C. X-ray diffraction analysis of the films prepared at 250°C and 350°C confirmed the formation of a single-phase of MoO3 in an orthorhombic crystal system (α-MoO3). Scanning electron microscopy of the films annealed at 350°C indicated a stack of nano-layers with thickness of approximately 30 nm-40 nm. Fourier transform infrared transmittance analysis revealed the Mo=O stretching vibration, which is an indicator of the layered orthorhombic MoO3 phase. Energy dispersive x-ray analysis confirmed the existence of Mo and O in the deposited films. A maximum optical transmittance of 82% in the visible range was obtained from the films annealed at 350°C. The band gap value of the films was evaluated and it was in the range of 3.28 eV-3.40 eV. The obtained results showed that the α-MoO3 thin films prepared at 350°C exhibit good structural, chemical, and optical properties, which might be of interest to the photovoltaic and optoelectronic devices.
Polarization-dependent optical absorption of MoS₂ for refractive index sensing.
Tan, Yang; He, Ruiyun; Cheng, Chen; Wang, Dong; Chen, Yanxue; Chen, Feng
2014-12-17
As a noncentrosymmetric crystal with spin-polarized band structure, MoS2 nanomaterials have attracts increasing attention in many areas such as lithium ion batteries, flexible electronic devices, photoluminescence and valleytronics. The investigation of MoS2 is mainly focused on the electronics and spintronics instead of optics, which restrict its applications as key elements of photonics. In this work, we demonstrate the first observation of the polarization-dependent optical absorption of the MoS2 thin film, which is integrated onto an optical waveguide device. With this feature, a novel optical sensor combining MoS2 thin-film and a microfluidic structure has been constituted to achieve the sensitive monitoring of refractive index. Our work indicates the MoS2 thin film as a complementary material to graphene for the optical polarizer in the visible light range, and explores a new application direction of MoS2 nanomaterials for the construction of photonic circuits.
Direct observation of MoO 2 crystal growth from amorphous MoO 3 film
NASA Astrophysics Data System (ADS)
Nina, Kenji; Kimura, Yuki; Yokoyama, Kaori; Kido, Osamu; Binyo, Gong; Kaito, Chihiro
2008-08-01
The formation process of MoO 2 crystal from amorphous MoO 3 film has been imaged by in situ observation with a transmission electron microscope. Selective growth of flower-shaped MoO 2 crystals by heating above 673 K in vacuum was directly observed. Since the MoO 2 crystal has metallic conductivity of the order of indium oxide film containing tin (ITO film), the thin film growth of the MoO 2 phase has been discussed on the basis of a new substitute for ITO film.
Summary Abstract: Growth and Alloying of Pd Films on Mo(110) Surfaces
NASA Technical Reports Server (NTRS)
Park, Ch. E.; Poppa, H.; Bauer, E.
1985-01-01
Alloying in small metal particles and in very thin films has recently received considerable attention. In the past it has been generally assumed that alloying is insignificant up to temperatures. Thus many epitaxy experiments of metals on metals with complete miscibility were performed at temperatures between 200 and 400 C and analyzed assuming no alloying. In particular, alloying was not suspected if the film material was not soluble in the substrate. In the present study, which was stimulated by annealing-induced CO adsorption anomalies on thin film surfaces, it has become evident that low temperature alloying can occur in thin films on a metal substrate which is refractory and has very strong interatomic bonds (as evidenced by a high sublimation energy) provided that the substrate is soluble in the film material. A good example of such a film-substrate combination is Pd on Mo. The solubility of Pd in Mo is very at temperatures below 1000 K but Pd can dissolve slightly more than 40 at. % Mo even at low temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyeong-Won; Norton, David P.; Ghosh, Siddhartha, E-mail: ghoshsid@gmail.com
2016-05-14
High quality epitaxial Ba{sub 2}FeMoO{sub 6} thin films and Ba{sub 2}FeMoO{sub 6}–(Ba{sub x}Sr{sub 1−x})TiO{sub 3} bi-layer (BL) and superlattice (SL) structures were grown via pulsed laser deposition under low oxygen pressure, and their structural, magnetic, and magneto-transport properties were examined. Superlattice and bi-layer structures were confirmed by X-ray diffraction patterns. Low temperature magnetic measurement shows that the saturation magnetization (M{sub S}) is significantly higher for SLs and almost similar or lower for BLs, when compared to phase pure Ba{sub 2}FeMoO{sub 6} thin films. The variation of the coercive field (H{sub C}) follows exact opposite trend, where BL samples have highermore » H{sub C} and SL samples have lower H{sub C} than pure Ba{sub 2}FeMoO{sub 6} thin films. Also, a significant decrease of the Curie temperature is found in both BL and SL structures compared to pure Ba{sub 2}FeMoO{sub 6} thin films. Negative magneto-resistance is seen in all the BL and SL structures as well as in pure Ba{sub 2}FeMoO{sub 6} thin films. In contrast to the magnetic properties, the magneto-transport properties do not show much variation with induced strain.« less
NASA Astrophysics Data System (ADS)
Mutta, Geeta R.; Popuri, Srinivasa R.; Wilson, John I. B.; Bennett, Nick S.
2016-11-01
In this work, we aim to develop a viable, inexpensive and non-toxic material for counter electrodes in dye sensitized solar cells (DSSCs). We employed an ultra-simple synthesis process to deposit MoO3 thin films at low temperature by sol-gel spin coating technique. These MoO3 films showed good transparency. It is predicted that there will be 150 times reduction of precursors cost by realizing MoO3 thin films as a counter electrode in DSSCs compared to commercial Pt. We achieved a device efficiency of about 20 times higher than that of the previous reported values. In summary we develop a simple low cost preparation of MoO3 films with an easily scaled up process along with good device efficiency. This work encourages the development of novel and relatively new materials and paves the way for massive reduction of industrial costs which is a prime step for commercialization of DSSCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stöber, Laura, E-mail: laura.stoeber@tuwien.ac.at; Patocka, Florian, E-mail: florian.patocka@tuwien.ac.at; Schneider, Michael, E-mail: michael.schneider@tuwien.ac.at
In this paper, the authors report on the high temperature performance of sputter deposited molybdenum (Mo) and molybdenum nitride (Mo{sub 2}N) thin films. Various argon and nitrogen gas compositions are applied for thin film synthetization, and the amount of nitrogen incorporation is determined by Auger measurements. Furthermore, effusion measurements identifying the binding conditions of the nitrogen in the thin film are performed up to 1000 °C. These results are in excellent agreement with film stress and scanning electron microscope analyses, both indicating stable film properties up to annealing temperatures of 500 °C.
Optical, structural and electrochromic properties of sputter- deposited W-Mo oxide thin films
NASA Astrophysics Data System (ADS)
Gesheva, K.; Arvizu, M. A.; Bodurov, G.; Ivanova, T.; Niklasson, G. A.; Iliev, M.; Vlakhov, T.; Terzijska, P.; Popkirov, G.; Abrashev, M.; Boyadjiev, S.; Jágerszki, G.; Szilágyi, I. M.; Marinov, Y.
2016-10-01
Thin metal oxide films were investigated by a series of characterization techniques including impedance spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, and Atomic Force Microscopy. Thin film deposition by reactive DC magnetron sputtering was performed at the Ångström Laboratory. W and Mo targets (5 cm diameter) and various oxygen gas flows were employed to prepare samples with different properties, whereas the gas pressure was kept constant at about 30 mTorr. The substrates were 5×5 cm2 plates of unheated glass pre-coated with ITO having a resistance of 40 ohm/sq. Film thicknesses were around 300 nm as determined by surface profilometry. Newly acquired equipment was used to study optical spectra, optoelectronic properties, and film structure. Films of WO3 and of mixed W- Mo oxide with three compositions showed coloring and bleaching under the application of a small voltage. Cyclic voltammograms were recorded with a scan rate of 5 mV s-1. Ellipsometric data for the optical constants show dependence on the amount of MoOx in the chemical composition. Single MoOx film, and the mixed one with only 8% MoOx have the highest value of refractive index, and similar dispersion in the visible spectral range. Raman spectra displayed strong lines at wavenumbers between 780 cm-1 and 950 cm-1 related to stretching vibrations of WO3, and MoO3. AFM gave evidence for domains of different composition in mixed W-Mo oxide films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yang; You, Suping; Sun, Kewei
2015-06-15
MoS{sub 2} ultra-thin layers are synthesized using a chemical vapor deposition method based on the sulfurization of molybdenum trioxide (MoO{sub 3}). The ultra-thin layers are characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy and atomic force microscope (AFM). Based on our experimental results, all the processing parameters, such as the tilt angle of substrate, applied voltage, heating time and the weight of source materials have effect on the microstructures of the layers. In this paper, the effects of such processing parameters on the crystal structures and morphologies of the as-grown layers are studied. It is found that the film obtainedmore » with the tilt angle of 0.06° is more uniform. A larger applied voltage is preferred to the growth of MoS{sub 2} thin films at a certain heating time. In order to obtain the ultra-thin layers of MoS{sub 2}, the weight of 0.003 g of source materials is preferred. Under our optimal experimental conditions, the surface of the film is smooth and composed of many uniformly distributed and aggregated particles, and the ultra-thin MoS{sub 2} atomic layers (1∼10 layers) covers an area of more than 2 mm×2 mm.« less
Wang, L; Kirk, E; Wäckerlin, C; Schneider, C W; Hojeij, M; Gobrecht, J; Ekinci, Y
2014-06-13
We present fabrication and characterization of high-resolution and nearly amorphous Mo1 - xNx transmission gratings and their use as masks for extreme ultraviolet (EUV) interference lithography. During sputter deposition of Mo, nitrogen is incorporated into the film by addition of N2 to the Ar sputter gas, leading to suppression of Mo grain growth and resulting in smooth and homogeneous thin films with a negligible grain size. The obtained Mo0.8N0.2 thin films, as determined by x-ray photoelectron spectroscopy, are characterized to be nearly amorphous using x-ray diffraction. We demonstrate a greatly reduced Mo0.8N0.2 grating line edge roughness compared with pure Mo grating structures after e-beam lithography and plasma dry etching. The amorphous Mo0.8N0.2 thin films retain, to a large extent, the benefits of Mo as a phase grating material for EUV wavelengths, providing great advantages for fabrication of highly efficient diffraction gratings with extremely low roughness. Using these grating masks, well-resolved dense lines down to 8 nm half-pitch are fabricated with EUV interference lithography.
Liu, Xianzhe; Xu, Hua; Ning, Honglong; Lu, Kuankuan; Zhang, Hongke; Zhang, Xiaochen; Yao, Rihui; Fang, Zhiqiang; Lu, Xubing; Peng, Junbiao
2018-03-07
Amorphous Silicon-Tin-Oxide thin film transistors (a-STO TFTs) with Mo source/drain electrodes were fabricated. The introduction of a ~8 nm MoO x interlayer between Mo electrodes and a-STO improved the electron injection in a-STO TFT. Mo adjacent to the a-STO semiconductor mainly gets oxygen atoms from the oxygen-rich surface of a-STO film to form MoO x interlayer. The self-formed MoO x interlayer acting as an efficient interface modification layer could conduce to the stepwise internal transport barrier formation while blocking Mo atoms diffuse into a-STO layer, which would contribute to the formation of ohmic contact between Mo and a-STO film. It can effectively improve device performance, reduce cost and save energy for the realization of large-area display with high resolution in future.
Lin, Ziyuan; Zhao, Yuda; Zhou, Changjian; Zhong, Ren; Wang, Xinsheng; Tsang, Yuen Hong; Chai, Yang
2015-12-21
Two-dimensional MoS2 is a promising material for future nanoelectronics and optoelectronics. It has remained a great challenge to grow large-size crystalline and high surface coverage monolayer MoS2. In this work, we investigate the controllable growth of monolayer MoS2 evolving from triangular flakes to continuous thin films by optimizing the concentration of gaseous MoS2, which has been shown a both thermodynamic and kinetic growth factor. A single-crystal monolayer MoS2 larger than 300 μm was successfully grown by suppressing the nuclei density and supplying sufficient source. Furthermore, we present a facile process of transferring the centimeter scale MoS2 assisted with a copper thin film. Our results show the absence of observable residues or wrinkles after we transfer MoS2 from the growth substrates onto flat substrates using this technique, which can be further extended to transfer other two-dimensional layered materials.
NASA Astrophysics Data System (ADS)
Lin, Ziyuan; Zhao, Yuda; Zhou, Changjian; Zhong, Ren; Wang, Xinsheng; Tsang, Yuen Hong; Chai, Yang
2015-12-01
Two-dimensional MoS2 is a promising material for future nanoelectronics and optoelectronics. It has remained a great challenge to grow large-size crystalline and high surface coverage monolayer MoS2. In this work, we investigate the controllable growth of monolayer MoS2 evolving from triangular flakes to continuous thin films by optimizing the concentration of gaseous MoS2, which has been shown a both thermodynamic and kinetic growth factor. A single-crystal monolayer MoS2 larger than 300 μm was successfully grown by suppressing the nuclei density and supplying sufficient source. Furthermore, we present a facile process of transferring the centimeter scale MoS2 assisted with a copper thin film. Our results show the absence of observable residues or wrinkles after we transfer MoS2 from the growth substrates onto flat substrates using this technique, which can be further extended to transfer other two-dimensional layered materials.
Park, Seonyoung; Kim, Seong Yeoul; Choi, Yura; Kim, Myungjun; Shin, Hyunjung; Kim, Jiyoung; Choi, Woong
2016-05-11
We report the interface properties of atomic-layer-deposited Al2O3 thin films on ultraviolet/ozone (UV/O3)-treated multilayer MoS2 crystals. The formation of S-O bonds on MoS2 after low-power UV/O3 treatment increased the surface energy, allowing the subsequent deposition of uniform Al2O3 thin films. The capacitance-voltage measurement of Au-Al2O3-MoS2 metal oxide semiconductor capacitors indicated n-type MoS2 with an electron density of ∼10(17) cm(-3) and a minimum interface trap density of ∼10(11) cm(-2) eV(-1). These results demonstrate the possibility of forming a high-quality Al2O3-MoS2 interface by proper UV/O3 treatment, providing important implications for their integration into field-effect transistors.
Lee, Hee Sung; Shin, Jae Min; Jeon, Pyo Jin; Lee, Junyeong; Kim, Jin Sung; Hwang, Hyun Chul; Park, Eunyoung; Yoon, Woojin; Ju, Sang-Yong; Im, Seongil
2015-05-13
Few-layer MoS2-organic thin-film hybrid complementary inverters demonstrate a great deal of device performance with a decent voltage gain of ≈12, a few hundred pW power consumption, and 480 Hz switching speed. As fabricated on glass, this hybrid CMOS inverter operates as a light-detecting pixel as well, using a thin MoS2 channel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Exciton-dominated dielectric function of atomically thin MoS 2 films
Yu, Yiling; Yu, Yifei; Cai, Yongqing; ...
2015-11-24
We systematically measure the dielectric function of atomically thin MoS 2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5–7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5–7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS 2 films and its contribution to the dielectricmore » function may dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. Lastly, the knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS 2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.« less
Polarization-dependent optical absorption of MoS2 for refractive index sensing
Tan, Yang; He, Ruiyun; Cheng, Chen; Wang, Dong; Chen, Yanxue; Chen, Feng
2014-01-01
As a noncentrosymmetric crystal with spin-polarized band structure, MoS2 nanomaterials have attracts increasing attention in many areas such as lithium ion batteries, flexible electronic devices, photoluminescence and valleytronics. The investigation of MoS2 is mainly focused on the electronics and spintronics instead of optics, which restrict its applications as key elements of photonics. In this work, we demonstrate the first observation of the polarization-dependent optical absorption of the MoS2 thin film, which is integrated onto an optical waveguide device. With this feature, a novel optical sensor combining MoS2 thin-film and a microfluidic structure has been constituted to achieve the sensitive monitoring of refractive index. Our work indicates the MoS2 thin film as a complementary material to graphene for the optical polarizer in the visible light range, and explores a new application direction of MoS2 nanomaterials for the construction of photonic circuits. PMID:25516116
Mo/Si and Mo/Be multilayer thin films on Zerodur substrates for extreme-ultraviolet lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirkarimi, Paul B.; Bajt, Sasa; Wall, Mark A.
2000-04-01
Multilayer-coated Zerodur optics are expected to play a pivotal role in an extreme-ultraviolet (EUV) lithography tool. Zerodur is a multiphase, multicomponent material that is a much more complicated substrate than commonly used single-crystal Si or fused-silica substrates. We investigate the effect of Zerodur substrates on the performance of high-EUV reflectance Mo/Si and Mo/Be multilayer thin films. For Mo/Si the EUV reflectance had a nearly linear dependence on substrate roughness for roughness values of 0.06-0.36 nm rms, and the FWHM of the reflectance curves (spectral bandwidth) was essentially constant over this range. For Mo/Be the EUV reflectance was observed to decreasemore » more steeply than Mo/Si for roughness values greater than approximately 0.2-0.3 nm. Little difference was observed in the EUV reflectivity of multilayer thin films deposited on different substrates as long as the substrate roughness values were similar. (c) 2000 Optical Society of America.« less
Mo/Si and Mo/Be multilayer thin films on Zerodur substrates for extreme-ultraviolet lithography.
Mirkarimi, P B; Bajt, S; Wall, M A
2000-04-01
Multilayer-coated Zerodur optics are expected to play a pivotal role in an extreme-ultraviolet (EUV) lithography tool. Zerodur is a multiphase, multicomponent material that is a much more complicated substrate than commonly used single-crystal Si or fused-silica substrates. We investigate the effect of Zerodur substrates on the performance of high-EUV reflectance Mo/Si and Mo/Be multilayer thin films. For Mo/Si the EUV reflectance had a nearly linear dependence on substrate roughness for roughness values of 0.06-0.36 nm rms, and the FWHM of the reflectance curves (spectral bandwidth) was essentially constant over this range. For Mo/Be the EUV reflectance was observed to decrease more steeply than Mo/Si for roughness values greater than approximately 0.2-0.3 nm. Little difference was observed in the EUV reflectivity of multilayer thin films deposited on different substrates as long as the substrate roughness values were similar.
NASA Astrophysics Data System (ADS)
Guo, Dongyun; Wang, Chuanbin; Shen, Qiang; Zhang, Lianmeng; Li, Meiya; Liu, Jun
2008-12-01
The series of (Bi0.9Ho0.1)4-2x/3Ti3-xMoxO12 (BHTM) (x=0, 0.9%, 1.5%, 3.0%, and 6.0%) thin films on Pt/Ti/SiO2/Si substrates is prepared by sol-gel method, and the effect of Mo content on the microstructure and ferroelectric properties of these films are investigated. When the Mo content is not excessive, the BHTM films consisted of the single phase of Bi-layered Aurivillius phase. The B-site substitution with high-valent cation of Mo6+, in Bi3.6Ho0.4Ti3O12 films, enhanced the 2Pr (remanent polarization) and reduced the 2Ec (coercive field) of these films. The BHTM thin film with x =1.5% exhibited the best electrical properties with 2Pr of 48.4 μC/cm2, 2Ec of 263.5 kV/cm, dielectric constant of 391 (at 1 MHz), good insulting behavior, as well as the fatigue-free characteristic.
The Electrochemical Behavior of Mo-Ta Alloy in Phosphoric Acid Solution for TFT-LCD Application.
Lee, Sang-Hyuk; Kim, Byoung O; Seo, Jong Hyun
2015-10-01
Molybdenum-tantalum alloy thin film is a suitable material for the higher corrosion resistance and low resistivity for gate and data metal lines. In this study, Mo-Ta alloy thin films were prepared by using a DC magnetron co-sputtering system on a glass substrate. An abrupt increase in the etching rates of low Mo-Ta alloys was observed. From the observed impedance analysis, the defect densities in the MoTa oxide films increased from 5.4 x 10(21) (cm(-3)) to 8.02 x 10(21) (cm(-3)) up to the 6 at% of tantalum level; and above the 6 at% of tantalum level, the defect densities decreased. This electrochemical behavior is explained by the mechanical instability of the MoTa oxide film.
Cho, Yunae; Sohn, Ahrum; Kim, Sujung; Hahm, Myung Gwan; Kim, Dong-Ho; Cho, Byungjin; Kim, Dong-Wook
2016-08-24
Molybdenum disulfide (MoS2) has increasingly attracted attention from researchers and is now one of the most intensively explored atomic-layered two-dimensional semiconductors. Control of the carrier concentration and doping type of MoS2 is crucial for its application in electronic and optoelectronic devices. Because the MoS2 layers are atomically thin, their transport characteristics may be very sensitive to ambient gas adsorption and the resulting charge transfer. We investigated the influence of the ambient gas (N2, H2/N2, and O2) choice on the resistance (R) and surface work function (WF) of trilayer MoS2 thin films grown via chemical vapor deposition. We also studied the electrical properties of gold (Au)-nanoparticle (NP)-coated MoS2 thin films; their R value was found to be 2 orders of magnitude smaller than that for bare samples. While the WF largely varied for each gas, R was almost invariant for both the bare and Au-NP-coated samples regardless of which gas was used. Temperature-dependent transport suggests that variable range hopping is the dominant mechanism for electrical conduction for bare and Au-NP-coated MoS2 thin films. The charges transferred from the gas adsorbates might be insufficient to induce measurable R change and/or be trapped in the defect states. The smaller WF and larger localization length of the Au-NP-coated sample, compared with the bare sample, suggest that more carriers and less defects enhanced conduction in MoS2.
Nonvolatile ferroelectric memory based on PbTiO3 gated single-layer MoS2 field-effect transistor
NASA Astrophysics Data System (ADS)
Shin, Hyun Wook; Son, Jong Yeog
2018-01-01
We fabricated ferroelectric non-volatile random access memory (FeRAM) based on a field effect transistor (FET) consisting of a monolayer MoS2 channel and a ferroelectric PbTiO3 (PTO) thin film of gate insulator. An epitaxial PTO thin film was deposited on a Nb-doped SrTiO3 (Nb:STO) substrate via pulsed laser deposition. A monolayer MoS2 sheet was exfoliated from a bulk crystal and transferred to the surface of the PTO/Nb:STO. Structural and surface properties of the PTO thin film were characterized by X-ray diffraction and atomic force microscopy, respectively. Raman spectroscopy analysis was performed to identify the single-layer MoS2 sheet on the PTO/Nb:STO. We obtained mobility value (327 cm2/V·s) of the MoS2 channel at room temperature. The MoS2-PTO FeRAM FET showed a wide memory window with 17 kΩ of resistance variation which was attributed to high remnant polarization of the epitaxially grown PTO thin film. According to the fatigue resistance test for the FeRAM FET, however, the resistance states gradually varied during the switching cycles of 109. [Figure not available: see fulltext.
Growth and interface engineering in thin-film Ba0.6Sr0.4TiO3 /SrMoO3 heterostructures
NASA Astrophysics Data System (ADS)
Radetinac, Aldin; Ziegler, Jürgen; Vafaee, Mehran; Alff, Lambert; Komissinskiy, Philipp
2017-04-01
Epitaxial heterostructures of ferroelectric Ba0.6Sr0.4TiO3 and highly conducting SrMoO3 were grown by pulsed laser deposition on SrTiO3 (0 0 1) substrates. Surface oxidation of the SrMoO3 film is suppressed using a thin cap interlayer of Ba0.6Sr0.4TiO3-δ grown in reduced atmosphere. As shown by X-ray photoelectron spectroscopy, the Mo4+ valence state of the SrMoO3 films is stable upon annealing of the sample in oxygen up to 600 °C. The described oxygen interface engineering enables utilization of the highly conducting material SrMoO3 in multilayer oxide ferroelectric varactors.
Electrical and photovoltaic properties of residue-free MoS2 thin films by liquid exfoliation method
NASA Astrophysics Data System (ADS)
Kyo Lee, Seung; Chu, Dongil; Song, Da Ye; Pak, Sang Woo; Kim, Eun Kyu
2017-05-01
Molybdenum disulfide (MoS2) film fabricated by a liquid exfoliation method has significant potential for various applications, because of its advantages of mass production and low-temperature processes. In this study, residue-free MoS2 thin films were formed during the liquid exfoliation process and their electrical properties were characterized with an interdigitated electrode. Then, the MoS2 film thickness could be controlled by centrifuge condition in the range of 20 ˜ 40 nm, and its carrier concentration and mobility were measured at about 7.36 × 1016 cm-3 and 4.67 cm2 V-1 s-1, respectively. Detailed analysis on the films was done by atomic force microscopy, Raman spectroscopy, and high-resolution transmission electron microscopy measurements for verifying the film quality. For application of the photovoltaic device, a Au/MoS2/silicon/In junction structure was fabricated, which then showed power conversion efficiency of 1.01% under illumination of 100 mW cm-2.
Nur-E-Alam, Mohammad; Belotelov, Vladimir; Alameh, Kamal
2018-01-01
This work is devoted to physical vapor deposition synthesis, and characterisation of bismuth and lutetium-substituted ferrite-garnet thin-film materials for magneto-optic (MO) applications. The properties of garnet thin films sputtered using a target of nominal composition type Bi0.9Lu1.85Y0.25Fe4.0Ga1O12 are studied. By measuring the optical transmission spectra at room temperature, the optical constants and the accurate film thicknesses can be evaluated using Swanepoel’s envelope method. The refractive index data are found to be matching very closely to these derived from Cauchy’s dispersion formula for the entire spectral range between 300 and 2500 nm. The optical absorption coefficient and the extinction coefficient data are studied for both the as-deposited and annealed garnet thin-film samples. A new approach is applied to accurately derive the optical constants data simultaneously with the physical layer thickness, using a combination approach employing custom-built spectrum-fitting software in conjunction with Swanepoel’s envelope method. MO properties, such as specific Faraday rotation, MO figure of merit and MO swing factor are also investigated for several annealed garnet-phase films. PMID:29789463
Synthesis and Characterization of Molybdenum (Mo) Thin Films Using DC-Magnetron Sputtering
NASA Astrophysics Data System (ADS)
Pandharkar, Subhash M.; Rondiya, Sachin R.; Rokade, Avinash V.; Gabhale, Bharat B.; Pathan, Habib M.; Jadkar, Sandesh R.
2018-03-01
In present work, we report synthesis of Mo thin films by DC-magnetron sputtering method. The structural, optical, morphological and electrical properties were investigated as a function of target-to-substrate distance. From the results, it is evident that with increase in target-to-substrate distance the thickness of films decreases while its sheet resistance and electrical resistivity increases, which is confirmed by van der Pauw method. Low angle XRD analysis revealed that with increase in target-to-substrate distance preferred orientation of Mo crystallites changes from (211) to (110) and its size decreases. The FE-SEM analysis revealed a significant change in surface morphology with increase in target-to-substrate distance. UV-Visible spectroscopy analysis showed that Mo films deposited at high target-to-substrate distance have more reflection than those deposited at lower target-to-substrate. Finally, adhesion test was performed using scotch hatch tape adhesion test which show all Mo films have excellent adhesion over the entire range of target-to-substrate distance studied. The employment of such Mo films as back contact can be useful to improve efficiency of CZTS solar cells.
NASA Astrophysics Data System (ADS)
Yao, Hongjun
High temperature superconducting (HTS) materials such as YBCO (Yttrium-Barium-Copper-Oxide) are very attractive in microwave applications because of their extremely low surface resistance. In the proposed all-HTS tunable filter, a layer of HTS thin film on a very thin substrate (100 mum) is needed to act as the toractor that can be rotated to tune the frequency. In order to provide more substrate candidates that meet both electrical and mechanical requirements for this special application, surface resistance of YBCO thin films on various substrates was measured using microstrip ring resonator method. For alumina polycrystalline substrate, a layer of YSZ (Yttrium stabilized Zirconia) was deposited using IBAD (ion beam assisted deposition) method prior to YBCO deposition. The surface resistance of the YBCO thin film on alumina was found to be 22 mO due to high-angle grain boundary problem caused by the mixed in-plane orientations and large FWHM (full width at half maximum) of the thin film. For YBCO thin films on a YSZ single crystal substrate, the surface resistance showed even higher value of 30 mO because of the mixed in-plane orientation problem. However, by annealing the substrate in 200 Torr oxygen at 730°C prior to deposition, the in-plane orientation of YBCO thin films can be greatly improved. Therefore, the surface resistance decreased to 1.4 mO, which is still more than an order higher than the reported best value. The YBCO thin films grown on LaAlO3 single crystal substrate showed perfect in-plane orientation with FWHM less 1°. The surface resistance was as low as 0.032 mO. A tunable spiral resonator made of YBCO thin film on LaAlO3 single crystal substrate demonstrated that the resonant frequency can be tuned in a rang as large as 500 MHz by changing the gap between toractor and substrate. The Q-factor was more than 12,000, which ensured the extraordinarily high sensitivity for the proposed all-HTS tunable filter.
Liquid phase deposition synthesis of hexagonal molybdenum trioxide thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deki, Shigehito; Beleke, Alexis Bienvenu; Kotani, Yuki
2009-09-15
Hexagonal molybdenum trioxide thin films with good crystallinity and high purity have been fabricated by the liquid phase deposition (LPD) technique using molybdic acid (H{sub 2}MoO{sub 4}) dissolved in 2.82% hydrofluoric acid (HF) and H{sub 3}BO{sub 3} as precursors. The crystal was found to belong to a hexagonal hydrate system MoO{sub 3}.nH{sub 2}O (napprox0.56). The unit cell lattice parameters are a=10.651 A, c=3.725 A and V=365.997 A{sup 3}. Scanning electron microscope (SEM) images of the as-deposited samples showed well-shaped hexagonal rods nuclei that grew and where the amount increased with increase in reaction time. X-ray photon electron spectroscopy (XPS) spectramore » showed a Gaussian shape of the doublet of Mo 3d core level, indicating the presence of Mo{sup 6+} oxidation state in the deposited films. The deposited films exhibited an electrochromic behavior by lithium intercalation and deintercalation, which resulted in coloration and bleaching of the film. Upon dehydration at about 450 deg. C, the hexagonal MoO{sub 3}.nH{sub 2}O was transformed into the thermodynamically stable orthorhombic phase. - Abstract: SEM photograph of typical h-MoO{sub 3}.nH{sub 2}O thin film nuclei obtained after 36 h at 40 deg. C by the LPD method. Display Omitted« less
Sun, Yue; Li, Qiang; Tsuchiya, Yuji; ...
2014-12-03
We performed magneto-optical (MO) measurements on FeTe₀̣₅Se₀̣₅ thin films grown on LaAlO₃ (LAO) and Yttria-stabilized zirconia (YSZ) single-crystalline substrates. These thin films show superconducting transition temperature T c ~19 K, 4 K higher than the bulk sample. Typical roof-top patterns can be observed in the MO images of thin films grown on LAO and YSZ, from which a large and homogeneous critical current density J c ~ 3 - 4 x 10⁶ A/cm² at 5 K was obtained. In this study, magnetic flux penetration measurement reveals that the current is almost isotropically distributed in the two thin films. Compared withmore » bulk crystals, FeTe₀̣₅Se₀̣₅ thin film demonstrates not only higher T c, but also much larger J c, which is attractive for applications.« less
NASA Astrophysics Data System (ADS)
Enriquez, Erik; Zhang, Yingying; Chen, Aiping; Bi, Zhenxing; Wang, Yongqiang; Fu, Engang; Harrell, Zachary; Lü, Xujie; Dowden, Paul; Wang, Haiyan; Chen, Chonglin; Jia, Quanxi
2016-08-01
Epitaxial layered ternary metal-nitride FeMoN2, (Fe0.33Mo0.67)MoN2, CoMoN2, and FeWN2 thin films have been grown on c-plane sapphire substrates by polymer-assisted deposition. The ABN2 layer sits on top of the oxygen sublattices of the substrate with three possible matching configurations due to the significantly reduced lattice mismatch. The doping composition and elements affect not only the out-of-plane lattice parameters but also the temperature-dependent electrical properties. These films have resistivity in the range of 0.1-1 mΩ.cm, showing tunable metallic or semiconducting behaviors by adjusting the composition. A modified parallel connection channel model has been used to analyze the grain boundary and Coulomb blockade effect on the electrical properties. The growth of the high crystallinity layered epitaxial thin films provides an avenue to study the composition-structure-property relationship in ABN2 materials through A and B-site substitution.
Surface topography and electrical properties in Sr2FeMoO6 films studied at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Angervo, I.; Saloaro, M.; Mäkelä, J.; Lehtiö, J.-P.; Huhtinen, H.; Paturi, P.
2018-03-01
Pulsed laser deposited Sr2FeMoO6 thin films were investigated for the first time with scanning tunneling microscopy and spectroscopy. The results confirm atomic scale layer growth, with step-terrace structure corresponding to a single lattice cell scale. The spectroscopy research reveals a distribution of local electrical properties linked to structural deformation in the initial thin film layers at the film substrate interface. Significant hole structure giving rise to electrically distinctive regions in thinner film also seems to set a thickness limit for the thinnest films to be used in applications.
NASA Astrophysics Data System (ADS)
Dwivedi, Priyanka; Dhanekar, Saakshi; Das, Samaresh
2016-11-01
Synthesis of orthorhombic (α) MoO3 nano-flakes by dry oxidation of RF sputtered Mo thin film is presented. The influence of Mo thickness variation, oxidation temperature and time on the crystallographic structure, surface morphology and roughness of MoO3 thin films was studied using SEM, AFM, XRD and Raman spectroscopy. A structural study shows that MoO3 is polycrystalline in nature with an α phase. It was noticed that oxidation temperature plays an important role in the formation of nano-flakes. The synthesis technique proposed is simple and suitable for large scale productions. The synthesis parameters were optimized for the fabrication of sensors. Chrome gold-based IDE (interdigitated electrodes) structures were patterned for the electrical detection of organic vapors. Sensors were exposed to wide range 5-100 ppm of organic vapors like ethanol, acetone, IPA (isopropanol alcohol) and water vapors. α-MoO3 nano-flakes have demonstrated selective sensing to acetone in the range of 10-100 ppm at 150 °C. The morphology of such nanostructures has potential in applications such as sensor devices due to their high surface area and thermal stability.
Metal oxides for optoelectronic applications.
Yu, Xinge; Marks, Tobin J; Facchetti, Antonio
2016-04-01
Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III-V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p-n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.
Metal oxides for optoelectronic applications
NASA Astrophysics Data System (ADS)
Yu, Xinge; Marks, Tobin J.; Facchetti, Antonio
2016-04-01
Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III-V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p-n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyeong-Won; Mhin, Sungwook; Jones, Jacob L.
2015-07-21
Epitaxial Ba{sub 2}FeMoO{sub 6} thin films were grown via pulsed laser deposition under low oxygen pressure and their structural, chemical, and magnetic properties were examined, focusing on the effects of oxygen pressure. The chemical disorder, off-stoichiometry in B site cations (Fe and Mo) increased with increasing oxygen pressure and thus magnetic properties were degraded. Interestingly, in contrast, negative magneto-resistance, which is the characteristics of this double perovskite material, was enhanced with increasing oxygen pressure. It is believed that phase segregation of highly disordered thin films is responsible for the increased magneto-resistance of thin films grown at high oxygen pressure. Themore » anomalous Hall effect, which behaves hole-like, was also observed due to spin-polarized itinerant electrons under low magnetic field below 1 T and the ordinary electron-like Hall effect was dominant at higher magnetic fields.« less
NASA Astrophysics Data System (ADS)
Arfaoui, A.; Touihri, S.; Mhamdi, A.; Labidi, A.; Manoubi, T.
2015-12-01
Thin films of molybdenum trioxide and tungsten trioxide were deposited on glass substrates using a simplified thermal evaporation under vacuum method monitored by heat treatment in flowing oxygen at 500 °C for 1 h. The structural and morphological properties of the films were investigated using X-ray diffraction, Raman spectroscopy, atomic force microscopy and scanning electron microscopy. The X-ray diffraction analysis shows that the films of MoO3 and WO3 were well crystallized in orthorhombic and monoclinic phase respectively with the crystallites preferentially oriented toward (2 0 0) direction parallel a-axis for both samples. In literature, we have shown in previous papers that structural and surface morphology of metal thin films play an important role in the gas detection mechanism. In this article, we have studied the response evolution of MoO3 and WO3 thin films sensors ethanol versus time, working temperature and the concentration of the ethanol. It was found that these films had high sensitivity to ethanol, which made them as a good candidate for the ethanol sensor. Finally, the photocatalytic activity of the samples was evaluated with respect to the degradation reaction of a wastewater containing methylene blue (MB) under UV-visible light irradiation. The molybdenum trioxide exhibits a higher degradation rate than the tungsten trioxide thin films under similar experimental conditions.
Activation of electrocatalytic properties of a-C films by doping with MoSe x clusters
NASA Astrophysics Data System (ADS)
Grigoriev, S. N.; Fominski, V. Y.; Romanov, R. I.; Volosova, M. A.; Fominski, D. V.
2017-12-01
Nanocomposite a-C(Mo/MoSe x ) thin films containing amorphous carbon matrix a-C, nano-Mo and MoSe x ≥2 clusters were obtained by pulsed laser co-deposition of carbon and MoSe2. The deposition was carried out at room temperature onto a graphite substrate. Atomic content of the MoSe x≥2 phase did not exceed 25%. The use of a buffer gas at a pressure of 10 Pa allowed to obtain the maximum Se/Mo ratio in the films and to increase the concentration of sp2-hybridized C atoms for high conductivity realization. The formation of MoSe x≥2 cluster inclusions was the essential factor for activation of hydrogen evolution reaction (HER) in 0.5 M H2SO4 aqueous solution. These clusters also promoted cathodic deposition of Pt nanoparticles on the surface of a-C(Mo/MoSe x ) in a H2SO4/KCl solution when a Pt anode was used as a source of Pt. Hybrid Pt/a-C(Mo/MoSe x ) thin-film coatings with a low Pt loading (~6 μg/cm2) exhibit excellent HER property, which noticeably exceeds that of relatively thick Pt coating prepared on a graphite substrate by pulsed laser deposition.
Low Temperature Reactive Sputtering of Thin Aluminum Nitride Films on Metallic Nanocomposites
Ramadan, Khaled Sayed Elbadawi; Evoy, Stephane
2015-01-01
Piezoelectric aluminum nitride thin films were deposited on aluminum-molybdenum (AlMo) metallic nanocomposites using reactive DC sputtering at room temperature. The effect of sputtering parameters on film properties was assessed. A comparative study between AlN grown on AlMo and pure aluminum showed an equivalent (002) crystallographic texture. The piezoelectric coefficients were measured to be 0.5±0.1 C m-2 and 0.9±0.1 C m-2, for AlN deposited on Al/0.32Mo and pure Al, respectively. Films grown onto Al/0.32Mo however featured improved surface roughness. Roughness values were measured to be 1.3nm and 5.4 nm for AlN films grown on AlMo and on Al, respectively. In turn, the dielectric constant was measured to be 8.9±0.7 for AlN deposited on Al/0.32Mo seed layer, and 8.7±0.7 for AlN deposited on aluminum; thus, equivalent within experimental error. Compatibility of this room temperature process with the lift-off patterning of the deposited AlN is also reported. PMID:26193701
Spray pyrolysis synthesized Cu(In,Al)(S,Se)2 thin films solar cells
NASA Astrophysics Data System (ADS)
Aamir Hassan, Muhammad; Mujahid, Mohammad; Woei, Leow Shin; Wong, Lydia Helena
2018-03-01
Cu(In,Al)(S,Se)2 thin films are prepared by the Spray pyrolysis of aqueous precursor solutions of copper, indium, aluminium and sulphur sources. The bandgap of the films was engineered by aluminium (Al) doping in CISSe films deposited on molybdenum (Mo) coated glass substrate. The as-sprayed thin films were selenized at 500 °C for 10 min. Cadmium sulphide (CdS) buffer layer was deposited by chemical bath deposition process. Solar cell devices were fabricated with configuration of glass/Mo/CIASSe/CdS/i-ZnO/AZO. The solar cell device containing thin film of Cu(In,Al)(S,Se)2 with our optimized composition shows j-V characteristics of Voc = 0.47 V, jsc = 21.19 mA cm-2, FF = 52.88% and power conversion efficiency of 5.27%, under AM 1.5, 100 mW cm-2 illumination.
Highly crystalline MoS{sub 2} thin films grown by pulsed laser deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serrao, Claudy R.; You, Long; Gadgil, Sushant
2015-02-02
Highly crystalline thin films of MoS{sub 2} were prepared over large area by pulsed laser deposition down to a single monolayer on Al{sub 2}O{sub 3} (0001), GaN (0001), and SiC-6H (0001) substrates. X-ray diffraction and selected area electron diffraction studies show that the films are quasi-epitaxial with good out-of-plane texture. In addition, the thin films were observed to be highly crystalline with rocking curve full width half maxima of 0.01°, smooth with a RMS roughness of 0.27 nm, and uniform in thickness based on Raman spectroscopy. From transport measurements, the as-grown films were found to be p-type.
Phosphorous doped p-type MoS2 polycrystalline thin films via direct sulfurization of Mo film
NASA Astrophysics Data System (ADS)
Momose, Tomohiro; Nakamura, Atsushi; Daniel, Moraru; Shimomura, Masaru
2018-02-01
We report on the successful synthesis of a p-type, substitutional doping at S-site, MoS2 thin film using Phosphorous (P) as the dopant. MoS2 thin films were directly sulfurized for molybdenum films by chemical vapor deposition technique. Undoped MoS2 film showed n-type behavior and P doped samples showed p-type behavior by Hall-effect measurements in a van der Pauw (vdP) configuration of 10×10 mm2 area samples and showed ohmic behavior between the silver paste contacts. The donor and the acceptor concentration were detected to be ˜2.6×1015 cm-3 and ˜1.0×1019 cm-3, respectively. Hall-effect mobility was 61.7 cm2V-1s-1 for undoped and varied in the range of 15.5 ˜ 0.5 cm2V-1s-1 with P supply rate. However, the performance of field-effect transistors (FETs) declined by double Schottky barrier contacts where the region between Ni electrodes on the source/drain contact and the MoS2 back-gate cannot be depleted and behaves as a 3D material when used in transistor geometry, resulting in poor on/off ratio. Nevertheless, the FETs exhibit hole transport and the field-effect mobility showed values as high as the Hall-effect mobility, 76 cm2V-1s-1 in undoped MoS2 with p-type behavior and 43 cm2V-1s-1 for MoS2:P. Our findings provide important insights into the doping constraints for transition metal dichalcogenides.
Ionescu, Robert; Campbell, Brennan; Wu, Ryan; Aytan, Ece; Patalano, Andrew; Ruiz, Isaac; Howell, Stephen W; McDonald, Anthony E; Beechem, Thomas E; Mkhoyan, K Andre; Ozkan, Mihrimah; Ozkan, Cengiz S
2017-07-25
It is of paramount importance to improve the control over large area growth of high quality molybdenum disulfide (MoS 2 ) and other types of 2D dichalcogenides. Such atomically thin materials have great potential for use in electronics, and are thought to make possible the first real applications of spintronics. Here in, a facile and reproducible method of producing wafer scale atomically thin MoS 2 layers has been developed using the incorporation of a chelating agent in a common organic solvent, dimethyl sulfoxide (DMSO). Previously, solution processing of a MoS 2 precursor, ammonium tetrathiomolybdate ((NH 4 ) 2 MoS 4 ), and subsequent thermolysis was used to produce large area MoS 2 layers. Our work here shows that the use of ethylenediaminetetraacetic acid (EDTA) in DMSO exerts superior control over wafer coverage and film thickness, and the results demonstrate that the chelating action and dispersing effect of EDTA is critical in growing uniform films. Raman spectroscopy, photoluminescence (PL), x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and high-resolution scanning transmission electron microscopy (HR-STEM) indicate the formation of homogenous few layer MoS 2 films at the wafer scale, resulting from the novel chelant-in-solution method.
Lubrication with sputtered MoS2 films: Principles, operation, limitations
NASA Technical Reports Server (NTRS)
Spalvins, T.
1991-01-01
The present practices, limitations, and understanding of thin sputtered MoS2 films are reviewed. Sputtered MoS2 films can exhibit remarkable tribological properties such as ultralow friction coefficients (0.01) and enhanced wear lives (millions of cycles) when used in vacuum or dry air. To achieve these favorable tribological characteristics, the sputtering conditions during deposition must be optimized for adequate film adherence and appropriate structure (morphology) and composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enriquez, Erik M.; Zhang, Yingying; Chen, Aiping
2016-08-26
Epitaxial layered ternary metal-nitride FeMoN 2, (Fe 0.33 Mo 0.67)MoN 2, CoMoN 2, and FeWN 2 thin films have been grown on c-plane sapphire substrates by polymer-assisted deposition. The ABN 2 layer sits on top of the oxygen sublattices of the substrate with three possible matching configurations due to the significantly reduced lattice mismatch. The doping composition and elements affect not only the out-of-plane lattice parameters but also the temperature-dependent electrical properties. These films have resistivity in the range of 0.1–1 mΩ·cm, showing tunable metallic or semiconducting behaviors by adjusting the composition. A modified parallel connection channel model has beenmore » used to analyze the grain boundary and Coulomb blockade effect on the electrical properties. Furthermore, the growth of the high crystallinity layered epitaxial thin films provides an avenue to study the composition-structure-property relationship in ABN 2 materials through A and B-site substitution.« less
Fabrication of thin film TiO2 nanotube arrays on Co-28Cr-6Mo alloy by anodization.
Ni, Jiahua; Frandsen, Christine J; Noh, Kunbae; Johnston, Gary W; He, Guo; Tang, Tingting; Jin, Sungho
2013-04-01
Titanium oxide (TiO2) nanotube arrays were prepared by anodization of Ti/Au/Ti trilayer thin film DC sputtered onto forged and cast Co-28Cr-6Mo alloy substrate at 400 °C. Two different types of deposited film structures (Ti/Au/Ti trilayer and Ti monolayer), and two deposition temperatures (room temperature and 400 °C) were compared in this work. The concentrations of ammonium fluoride (NH4F) and H2O in glycerol electrolyte were varied to study their effect on the formation of TiO2 nanotube arrays on a forged and cast Co-28Cr-6Mo alloy. The results show that Ti/Au/Ti trilayer thin film and elevated temperature sputtered films are favorable for the formation of well-ordered nanotube arrays. The optimized electrolyte concentration for the growth of TiO2 nanotube arrays on forged and cast Co-28Cr-6Mo alloy was obtained. This work contains meaningful results for the application of a TiO2 nanotube coating to a CoCr alloy implant for potential next-generation orthopedic implant surface coatings with improved osseointegrative capabilities. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Zhaojing; Yao, Liyong; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming‐Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun
2017-01-01
Abstract Double layer distribution exists in Cu2SnZnSe4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double‐layer distribution of CZTSe film is eliminated entirely and the formation of MoSe2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSex mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu‐Sn‐Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu2Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm2 and a CZTSe solar cell with efficiency of 7.2% is fabricated. PMID:29610727
Zhang, Zhaojing; Yao, Liyong; Zhang, Yi; Ao, Jianping; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming-Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun
2018-02-01
Double layer distribution exists in Cu 2 SnZnSe 4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double-layer distribution of CZTSe film is eliminated entirely and the formation of MoSe 2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSe x mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu-Sn-Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu 2 Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe 2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm 2 and a CZTSe solar cell with efficiency of 7.2% is fabricated.
Synthesis of Large-area Crystalline MoTe2 Atomic layer from Chemical Vapor Deposition
NASA Astrophysics Data System (ADS)
Zhou, Lin; Zubair, Ahmad; Xu, Kai; Kong, Jing; Dresselhaus, Mildred
The controlled synthesis of highly crystalline large-area molybdenum ditelluride MoTe2 atomic layers is crucial for the practical applications of this emerging material. Here we develop a novel approach for the growth of large-area, uniform and highly crystalline few-layer MoTe2 film via chemical vapour deposition (CVD). Large-area atomically thin MoTe2 film has been successfully synthesized by tellurization of a MoO3 film. The as-grown MoTe2 film is uniform, stoichiometric, and highly crystalline. As a result of the high crystallinity, the electronic properties of MoTe2 film are comparable with that of mechanically exfoliated MoTe2 flakes. Moreover, we found that two different phases of MoTe2 (2H and 1T') can be grown depending on the choice of Mo precursor. Since the MoTe2 film is highly homogenous, and the size of the film is only limited by the substrate and CVD system size, our growth method paves the way for large-scale application of MoTe2 in high performance nanoelectronics and optoelectronics.
Tribological properties of sputtered MoS sub 2 films in relation to film morphology
NASA Technical Reports Server (NTRS)
Spalvins, T.
1980-01-01
Thin sputter deposited MoS2 films in the 2000 to 6000 A thickness range have shown excellent lubricating properties, when sputtering parameters and substrate conditions are properly selected and precisely controlled. The lubricating properties of sputtered MoS2 films are strongly influenced by their crystalline-amorphous structure, morphology and composition. The coefficient of friction can range from 0.04 which is effective lubrication to 0.4 which reflects an absence of lubricating properties. Visual screening and slight wiping of the as-sputtered MoS2 film can identify the integrity of the film. An acceptable film displays a black-sooty surface appearance whereas an unacceptable film has a highly reflective, gray surface and the film is hard and brittle.
Low-Temperature Atomic Layer Deposition of MoS2 Films.
Jurca, Titel; Moody, Michael J; Henning, Alex; Emery, Jonathan D; Wang, Binghao; Tan, Jeffrey M; Lohr, Tracy L; Lauhon, Lincoln J; Marks, Tobin J
2017-04-24
Wet chemical screening reveals the very high reactivity of Mo(NMe 2 ) 4 with H 2 S for the low-temperature synthesis of MoS 2 . This observation motivated an investigation of Mo(NMe 2 ) 4 as a volatile precursor for the atomic layer deposition (ALD) of MoS 2 thin films. Herein we report that Mo(NMe 2 ) 4 enables MoS 2 film growth at record low temperatures-as low as 60 °C. The as-deposited films are amorphous but can be readily crystallized by annealing. Importantly, the low ALD growth temperature is compatible with photolithographic and lift-off patterning for the straightforward fabrication of diverse device structures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
High efficiency copper indium gallium diselenide (CIGS) thin film solar cells
NASA Astrophysics Data System (ADS)
Rajanikant, Ray Jayminkumar
The generation of electrical current from the solar radiation is known as the photovoltaic effect. Solar cell, also known as photovoltaic (PV) cell, is a device that works on the principle of photovoltaic effect, and is widely used for the generation of electricity. Thin film polycrystalline solar cells based on copper indium gallium diselenide (CIGS) are admirable candidates for clean energy production with competitive prices in the near future. CIGS based polycrystalline thin film solar cells with efficiencies of 20.3 % and excellent temperature stability have already been reported at the laboratory level. The present study discusses about the fabrication of CIGS solar cell. Before the fabrication part of CIGS solar cell, a numerical simulation is carried out using One-Dimensional Analysis of Microelectronic and Photonic Structures (AMPS-ID) for understanding the physics of a solar cell device, so that an optimal structure is analyzed. In the fabrication part of CIGS solar cell, Molybdenum (Mo) thin film, which acts as a 'low' resistance metallic back contact, is deposited by RF magnetron sputtering on organically cleaned soda lime glass substrate. The major advantages for using Mo are high temperature, (greater than 600 °C), stability and inertness to CIGS layer (i.e., no diffusion of CIGS into Mo). Mo thin film is deposited at room temperature (RT) by varying the RF power and the working pressure. The Mo thin films deposited with 100 W RF power and 1 mTorr working pressure show a reflectivity of above average 50 % and the low sheet resistance of about 1 O/□. The p-type CIGS layer is deposited on Mo. Before making thin films of CIGS, a powder of CIGS material is synthesized using melt-quenching method. Thin films of CIGS are prepared by a single-stage flash evaporation process on glass substrates, initially, for optimization of deposition parameters and than on Mo coated glass substrates for device fabrication. CIGS thin film is deposited at 250 °C at a pressure of 10-5 mbar. The thickness of the film was kept 1 mum for the solar cell device preparation. Rapid Thermal Annealing (RTA) is carried out of CIGS thin film at 500 °C for 2 minutes in the argon atmosphere. Annealing process mainly improves the grain growth of the CIGS and, hence the surface roughness, which is essential for a multilayered semiconductor structure. Thin layer of n-type highly resistive cadmium sulphide (CdS), generally known as a "buffer" layer, is deposited on CIGS layer by thermal and flash evaporation method at the substrate temperature of 100 °C. The CdS thin film plays a crucial role in the formation of the p-n junction and thus the solar cell device performance. The effect of CdS film substrate temperature ranging from 50 °C to 200 °C is observed. At the 100 °C substrate temperature, CdS thin film shows the near to 85 % of transmission in the visible region and resistivity of the order of greater then 20 x 109 Ocm, which are the essential characteristics of buffer layer. The bi-layer structure of ZnO, containing 70 nm i-ZnO and 500 nm aluminum (Al) doped ZnO, act as a transparent front-contact for CIGS thin film solar cell. These layers were deposited using RF magnetron sputtering. i-ZnO thin film acts as an insulating layer, which prevents the recombination of the photo-generated carries and also minimizes the lattice miss match defects between CdS and Al-ZnO. The resistivity of iZnO and Al-ZnO is of the order of 1012 Ocm and 10-4 Ocm, respectively. Al-ZnO thin films act as transparent conducting top electrode having transparency of about 85 % in the visible region. On Al-ZnO layer the finger-type grid pattern of silver (Ag), 200 nm thick, is deposited for the collection of photo-generated carriers. The thin film based multilayered structure Mo / CIGS / CdS / i-ZnO / Al-ZnO / Ag grid of CIGS solar cell is grown one by one on a single glass substrate. As-prepared CIGS solar cell device shows a minute photovoltaic effect. For the further improvement of the cell we have varied the thickness of the buffer layer i.e. CdS. In addition, the deposition of CdS is carried out using flash evaporation method to improve the CIGS/CdS junction. Heat soak pulses of about 200 °C are also applied for 20 sec for the further upgrading the junction. To protect the CIGS/CdS junction from the high-energy sputtered particles of ZnO, a fine mesh of stainless steel is placed just before the sample holder to enhance the performance of the solar cell. The influence of the thickness of iZnO and CdS has been checked. The maximum V oe and Jsc of about 138 mV and 1.3 mA/cm2 , respectively, are achieved using flash evaporated CIGS layer and flash evaporated CdS thin film. Further improvement of current performance can be done either by adopting some other fabrication method to obtain a denser CIGS absorber layer or replacing the CdS layer with some other efficient buffer layer.
Yao, Liyong; Ao, Jianping; Jeng, Ming-Jer; Bi, Jinlian; Gao, Shoushuai; Sun, Guozhong; He, Qing; Zhou, Zhiqiang; Sun, Yun; Chang, Liann-Be
2016-01-01
The preparation of Cu2ZnSnSe4 (CZTSe) thin films by the selenization of an electrodeposited copper–tin–zinc (CuSnZn) precursor with various Sn contents in low-pressure Se+SnSex vapor was studied. Scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) measurements revealed that the Sn content of the precursor that is used in selenization in a low-pressure Se+SnSex vapor atmosphere only slightly affects the elemental composition of the formed CZTSe films. However, the Sn content of the precursor significantly affects the grain size and surface morphology of CZTSe films. A metal precursor with a very Sn-poor composition produces CZTSe films with large grains and a rough surface, while a metal precursor with a very Sn-rich composition procures CZTSe films with small grains and a compact surface. X-ray diffraction (XRD) and SEM revealed that the metal precursor with a Sn-rich composition can grow a thicker MoSe2 thin film at CZTSe/Mo interface than one with a Sn-poor composition, possibly because excess Sn in the precursor may catalyze the formation of MoSe2 thin film. A CZTSe solar cell with an efficiency of 7.94%was realized by using an electrodeposited metal precursor with a Sn/Cu ratio of 0.5 in selenization in a low-pressure Se+SnSex vapor. PMID:28773366
Tribochemistry of contact interfaces of nanocrystalline molybdenum carbide films
NASA Astrophysics Data System (ADS)
Kumar, D. Dinesh; Kumar, N.; Panda, Kalpataru; Kamalan Kirubaharan, A. M.; Kuppusami, P.
2018-07-01
Transition metal carbides (TMC) are known for their improved tribological properties and are sensitive to the tribo-atmospheric environment. Nanocrystalline molybdenum carbide (MoC) thin films were deposited by DC magnetron sputtering technique using reactive CH4 gas. The friction and wear resistance properties of MoC thin films were significantly improved in humid-atmospheric condition as compared to high-vacuum tribo-condition. A comprehensive chemical analysis of deformed contact interfaces was carried out by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX) and Raman spectroscopy. XPS and Raman spectroscopy showed the formation of stable molybdenum-oxide (MoO), molybdenum carbide (MoC) and amorphous carbon (a-C) tribo-phases. Moreover, during the sliding in humid-atmospheric condition, these phases were extensively deposited on the sliding steel ball counter body which significantly protected against undesirable friction and wear.
Vangelista, Silvia; Cinquanta, Eugenio; Martella, Christian; Alia, Mario; Longo, Massimo; Lamperti, Alessio; Mantovan, Roberto; Basset, Francesco Basso; Pezzoli, Fabio; Molle, Alessandro
2016-04-29
Large-scale integration of MoS2 in electronic devices requires the development of reliable and cost-effective deposition processes, leading to uniform MoS2 layers on a wafer scale. Here we report on the detailed study of the heterogeneous vapor-solid reaction between a pre-deposited molybdenum solid film and sulfur vapor, thus resulting in a controlled growth of MoS2 films onto SiO2/Si substrates with a tunable thickness and cm(2)-scale uniformity. Based on Raman spectroscopy and photoluminescence, we show that the degree of crystallinity in the MoS2 layers is dictated by the deposition temperature and thickness. In particular, the MoS2 structural disorder observed at low temperature (<750 °C) and low thickness (two layers) evolves to a more ordered crystalline structure at high temperature (1000 °C) and high thickness (four layers). From an atomic force microscopy investigation prior to and after sulfurization, this parametrical dependence is associated with the inherent granularity of the MoS2 nanosheet that is inherited by the pristine morphology of the pre-deposited Mo film. This work paves the way to a closer control of the synthesis of wafer-scale and atomically thin MoS2, potentially extendable to other transition metal dichalcogenides and hence targeting massive and high-volume production for electronic device manufacturing.
Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS₂ thin film.
Tsuboi, Yuka; Wang, Feijiu; Kozawa, Daichi; Funahashi, Kazuma; Mouri, Shinichiro; Miyauchi, Yuhei; Takenobu, Taishi; Matsuda, Kazunari
2015-09-14
Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell.
Tailoring the charge carrier in few layers MoS2 field-effect transistors by Au metal adsorbate
NASA Astrophysics Data System (ADS)
Singh, Arun Kumar; Pandey, Rajiv K.; Prakash, Rajiv; Eom, Jonghwa
2018-04-01
It is an essential to tune the charge carrier concentrations in semiconductor in order to approach high-performance of the electronic and optoelectronic devices. Here, we report the effect of thin layer of gold (Au) metal on few layer (FL) molybdenum disulfide (MoS2) by atomic force microscopy (AFM), Raman spectroscopy and electrical charge transport measurements. The Raman spectra and charge transport measurements show that Au thin layer affect the electronic properties of the FL MoS2. After deposition of Au thin layer, the threshold voltages of FL MoS2 field-effect transistors (FETs) shift towards positive gate voltages, this reveal the p-doping in FL MoS2 nanosheets. The shift of peak frequencies of the Raman bands are also analyzed after the deposition of Au metal films of different thickness on FL MoS2 nanosheets. The surface morphology of Au metal on FL MoS2 is characterized by AFM and shows the smoother and denser film in comparison to Au metal on SiO2.
Changes in chemical and optical properties of thin film metal mirrors on LDEF
NASA Technical Reports Server (NTRS)
Peters, Palmer N.; Zwiener, James M.; Gregory, John C.; Raikar, Ganesh N.; Christl, Ligia C.; Wilkes, Donald R.
1995-01-01
Thin films of the metals Cu, Ni, Pt, Au, Sn, Mo, and W deposited on fused silica flats were exposed at ambient temperature on the leading and trailing faces of the LDEF. Reflectances of these films were measured from 250 to 2500 nm and compared with controls. The exposed films were subjected to the LDEF external environment including atomic oxygen, molecular contamination, and solar ultraviolet. Major changes in optical and infrared reflectance were seen for Cu, Mo, Ni, and W films on the leading face of LDEF and are attributed to partial conversion of metal to metal oxide. Smaller changes in optical properties are seen on all films and are probably caused by thin contaminant films deposited on top of the metal. The optical measurements are correlated with film thickness measurements, x-ray photoelectron spectroscopy, optical calculations, and, in the case of Cu, with x-ray diffraction measurements. In a few cases, comparisons with results from a similar UAH experiment on STS-8 have been drawn.
Rhenium Alloys as Ductile Substrates for Diamond Thin-Film Electrodes.
Halpern, Jeffrey M; Martin, Heidi B
2014-02-01
Molybdenum-rhenium (Mo/Re) and tungsten-rhenium (W/Re) alloys were investigated as substrates for thin-film, polycrystalline boron-doped diamond electrodes. Traditional, carbide-forming metal substrates adhere strongly to diamond but lose their ductility during exposure to the high-temperature (1000°C) diamond, chemical vapor deposition environment. Boron-doped semi-metallic diamond was selectively deposited for up to 20 hours on one end of Mo/Re (47.5/52.5 wt.%) and W/Re (75/25 wt.%) alloy wires. Conformal diamond films on the alloys displayed grain sizes and Raman signatures similar to films grown on tungsten; in all cases, the morphology and Raman spectra were consistent with well-faceted, microcrystalline diamond with minimal sp 2 carbon content. Cyclic voltammograms of dopamine in phosphate-buffered saline (PBS) showed the wide window and low baseline current of high-quality diamond electrodes. In addition, the films showed consistently well-defined, dopamine electrochemical redox activity. The Mo/Re substrate regions that were uncoated but still exposed to the diamond-growth environment remained substantially more flexible than tungsten in a bend-to-fracture rotation test, bending to the test maximum of 90° and not fracturing. The W/Re substrates fractured after a 27° bend, and the tungsten fractured after a 21° bend. Brittle, transgranular cleavage fracture surfaces were observed for tungsten and W/Re. A tension-induced fracture of the Mo/Re after the prior bend test showed a dimple fracture with a visible ductile core. Overall, the Mo/Re and W/Re alloys were suitable substrates for diamond growth. The Mo/Re alloy remained significantly more ductile than traditional tungsten substrates after diamond growth, and thus may be an attractive metal substrate for more ductile, thin-film diamond electrodes.
Rhenium Alloys as Ductile Substrates for Diamond Thin-Film Electrodes
Halpern, Jeffrey M.; Martin, Heidi B.
2014-01-01
Molybdenum-rhenium (Mo/Re) and tungsten-rhenium (W/Re) alloys were investigated as substrates for thin-film, polycrystalline boron-doped diamond electrodes. Traditional, carbide-forming metal substrates adhere strongly to diamond but lose their ductility during exposure to the high-temperature (1000°C) diamond, chemical vapor deposition environment. Boron-doped semi-metallic diamond was selectively deposited for up to 20 hours on one end of Mo/Re (47.5/52.5 wt.%) and W/Re (75/25 wt.%) alloy wires. Conformal diamond films on the alloys displayed grain sizes and Raman signatures similar to films grown on tungsten; in all cases, the morphology and Raman spectra were consistent with well-faceted, microcrystalline diamond with minimal sp2 carbon content. Cyclic voltammograms of dopamine in phosphate-buffered saline (PBS) showed the wide window and low baseline current of high-quality diamond electrodes. In addition, the films showed consistently well-defined, dopamine electrochemical redox activity. The Mo/Re substrate regions that were uncoated but still exposed to the diamond-growth environment remained substantially more flexible than tungsten in a bend-to-fracture rotation test, bending to the test maximum of 90° and not fracturing. The W/Re substrates fractured after a 27° bend, and the tungsten fractured after a 21° bend. Brittle, transgranular cleavage fracture surfaces were observed for tungsten and W/Re. A tension-induced fracture of the Mo/Re after the prior bend test showed a dimple fracture with a visible ductile core. Overall, the Mo/Re and W/Re alloys were suitable substrates for diamond growth. The Mo/Re alloy remained significantly more ductile than traditional tungsten substrates after diamond growth, and thus may be an attractive metal substrate for more ductile, thin-film diamond electrodes. PMID:25404788
NASA Astrophysics Data System (ADS)
Singh, Harpal
This dissertation is divided into two categories based upon lubrication functionality and its application. The categories are: Dry film lubrication and Fluid film lubrication with thin film coatings. Thin film coatings examined in this work were deposited using closed field unbalanced magnetron sputtering and RF-DC coupled magnetron sputtering systems. In Dry/Solid film lubrication, the mechanical, structural and tribological properties of two Molybdenum disulphide (MoS2) based coatings are examined and evaluated. Among the two coatings, one coating is doped with Ti (Ti-MoS2) and the other is a combination of metal, lubricant and oxide (Sb2O3/Au - MoS2). These coatings are known to provide low friction in vacuum environments. The goal of this work was to evaluate friction and wear performance of MoS2 doped coatings in unidirectional and reciprocating sliding contact under different environmental conditions. Sliding contact results showed friction and wear dependence on temperature and humidity. The formation and removal of transfer films and the recrystallization and reorientation of basal layers on the steel counterface was observed as the mechanism for low friction. Structural analysis revealed a relationship between the microstructural properties and tribological performance. It was also observed that the addition of dopants (Ti, Au, Sb 2O3) improved the mechanical properties as compared to pure MoS2 coatings. Further, the rolling contact performance of the coatings was measured on a five ball on rod tribometer and a Thrust bearing tribometer under vacuum and air environments. The rolling contact experiments indicated that life of the rolling components depend on the amount of material present between the contacts. Fluid film lubrication with thin film coatings investigates the possibilities to improve the performance and durability of tribological components when oils and thin films are synergistically coupled. In this work, the ability of a Diamond Like Carbon coating to increase the durability of contacting surfaces under boundary lubrication were studied. The performance of highly hydrogenated Diamond Like Carbon (DLC) was evaluated in a mixed sliding and rolling contact. Experimental results show significant improvement in fatigue life of steel specimens after coating with a highly hydrogenated Diamond Like Carbon coating. The improved fatigue life is attributed to the coating microstructure and the mechanical properties.
Tunable passively Q-switched erbium-doped fiber laser with Chitosan/MoS2 saturable absorber
NASA Astrophysics Data System (ADS)
Ahmad, H.; Aidit, S. N.; Ooi, S. I.; Tiu, Z. C.
2018-07-01
Chitosan, an organic polymer derived from the outer skeletons of crustacean and in the cell wall of fungi is explored as polymer host to develop thin film saturable absorber (SA). As a polymer, Chitosan shows high thermal stability as well as significant transmission characteristics. The highly transparent polymer serves as a good host for SA materials, and a composite Chitosan/MoS2 thin film is demonstrated to successfully generate stable Q-switched lasing output at operating wavelength of 1561.5 nm. At maximum pump power of 280.5 mW, the generated pulse exhibits maximum pulse repetition rate and pulse energy of 79.4 kHz and 43.69 nJ respectively as well as minimum pulse width of 1.02 μs. The overall efficiency of the laser cavity with the Chitosan/MoS2 thin film SA is approximately 0.93%. These results reflect the outstanding performance of Chitosan/MoS2 SA as compared to other MoS2 SA prepared using mechanical exfoliation and optical deposition technique. Moreover, the Chitosan polymer is shown to be a highly potential host in the SA fabrication process due to its promising performance which is comparable to PVA.
Monolithic Silicon Microbolometer Materials forUncooled Infrared Detectors
2015-05-21
L. Allara, Mark W. Horn. Vanadium Oxide Thin Films Alloyed with Ti, Zr , Nb , and Mo for Uncooled Infrared Imaging Applications, Journal of...entitled "Thin Film Materials and Devices for Resistive Temperature Sensing Applications" by Hitesh Basantani and the other entitled "Reactive...extension. One was entitled "Thin Film Materials and Devices for Resistive Temperature Sensing Applications" by Hitesh Basantani and the other
Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathy, Sumanta K.; Rajeswari, V. P.
2014-01-28
Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating themore » absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.« less
Thickness-dependent electron mobility of single and few-layer MoS{sub 2} thin-film transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji Heon; Kim, Tae Ho; Lee, Hyunjea
We investigated the dependence of electron mobility on the thickness of MoS{sub 2} nanosheets by fabricating bottom-gate single and few-layer MoS{sub 2} thin-film transistors with SiO{sub 2} gate dielectrics and Au electrodes. All the fabricated MoS{sub 2} transistors showed on/off-current ratio of ∼10{sup 7} and saturated output characteristics without high-k capping layers. As the MoS{sub 2} thickness increased from 1 to 6 layers, the field-effect mobility of the fabricated MoS{sub 2} transistors increased from ∼10 to ∼18 cm{sup 2}V{sup −1}s{sup −1}. The increased subthreshold swing of the fabricated transistors with MoS{sub 2} thickness suggests that the increase of MoS{sub 2}more » mobility with thickness may be related to the dependence of the contact resistance and the dielectric constant of MoS{sub 2} layer on its thickness.« less
Tantalum-based thin film coatings for wear resistant arthroprostheses.
Balagna, C; Faga, M G; Spriano, S
2011-10-01
Cobalt-chromium-molybdenum alloys with high carbon content (HC-CoCrMo) are widely used as materials for arthroprosthesis, in particular in metal-on-metal (MoM) hip joints. In spite of their good wear and corrosion resistance, production of metallic wear particles and metal ion release will occur on a large time-scale. An enhancement of the metal ion level in the patient's blood and urine is often reported in clinical data. Hypersensitivity, inflammatory response and cell necrosis can occur as consequence. So implants on young patients and women on childbearing age are not so widespread. The aim of this research is the realization of a thin film coating in order to improve the biocompatibility of Co-based alloys and to reduce debris production, ion release and citotoxicity. The innovative process consists of a thermal treatment in molten salts, in order to obtain a tantalum enriched thin film coating. Tantalum is chosen because it is considered a biocompatible metal with high corrosion resistance and low ion release. Three HC-CoCrMo alloys, produced by different manufacturing processes, are tested as substrates. The coating is a thin film of TaC or it can be composed by a multilayer of two tantalum carbides and metallic tantalum, depending on the temperature of the treatment and on the carbon content of the substrate. The thin films as well the substrates are characterized from the structural, chemical and morphological point of view. Moreover mechanical behaviour of treated and untreated materials is analyzed by means of nanohardness, scratch and ball-on-disc wear tests. The coating increases the mechanical and tribological properties of HC-CoCrMo.
Magnetoresistance measurements of superconducting molybdenum nitride thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baskaran, R., E-mail: baskaran@igcar.gov.in; Arasu, A. V. Thanikai; Amaladass, E. P.
2016-05-23
Molybdenum nitride thin films have been deposited on aluminum nitride buffered glass substrates by reactive DC sputtering. GIXRD measurements indicate formation of nano-crystalline molybdenum nitride thin films. The transition temperature of MoN thin film is 7.52 K. The transition width is less than 0.1 K. The upper critical field Bc{sub 2}(0), calculated using GLAG theory is 12.52 T. The transition width for 400 µA current increased initially upto 3 T and then decreased, while that for 100 µA current transition width did not decrease.
Temperature dependence of LRE-HRE-TM thin films
NASA Astrophysics Data System (ADS)
Li, Zuoyi; Cheng, Xiaomin; Lin, Gengqi; Li, Zhen; Huang, Zhixin; Jin, Fang; Wang, Xianran; Yang, Xiaofei
2003-04-01
Temperature dependence of the properties of RE-TM thin films is very important for MO recording. In this paper, we studied the temperature dependence of the magnetic and magneto-optical properties of the amorphous LRE-HRE-TM single layer thin films and LRE-HRE-TM/HRE-TM couple-bilayered thin films. For LRE-HRE-TM single layer thin films, the temperature dependence of the magnetization was investigated by using the mean field theory. The experimental and theoretical results matched very well. With the LRE substitution in HRE-TM thin film, the compensation temperature Tcomp decreased and the curie temperature Tc remained unchanged. Kerr rotation angle became larger and the saturation magnetization Ms at room temperature increased. For LRE-HRE-TM/HRE-TM couple-bilayered thin films, comparisons of the temperature dependences of the coercivities and Kerr rotation angles were made between isolated sublayers and couple-bilayered thin film.
Highly Oriented Atomically Thin Ambipolar MoSe2 Grown by Molecular Beam Epitaxy
2017-01-01
Transition metal dichalcogenides (TMDCs), together with other two-dimensional (2D) materials, have attracted great interest due to the unique optical and electrical properties of atomically thin layers. In order to fulfill their potential, developing large-area growth and understanding the properties of TMDCs have become crucial. Here, we have used molecular beam epitaxy (MBE) to grow atomically thin MoSe2 on GaAs(111)B. No intermediate compounds were detected at the interface of as-grown films. Careful optimization of the growth temperature can result in the growth of highly aligned films with only two possible crystalline orientations due to broken inversion symmetry. As-grown films can be transferred onto insulating substrates, allowing their optical and electrical properties to be probed. By using polymer electrolyte gating, we have achieved ambipolar transport in MBE-grown MoSe2. The temperature-dependent transport characteristics can be explained by the 2D variable-range hopping (2D-VRH) model, indicating that the transport is strongly limited by the disorder in the film. PMID:28530829
Method of improving field emission characteristics of diamond thin films
Krauss, A.R.; Gruen, D.M.
1999-05-11
A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.
Method of improving field emission characteristics of diamond thin films
Krauss, Alan R.; Gruen, Dieter M.
1999-01-01
A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.
Ultraclean and Direct Transfer of a Wafer-Scale MoS2 Thin Film onto a Plastic Substrate.
Phan, Hoang Danh; Kim, Youngchan; Lee, Jinhwan; Liu, Renlong; Choi, Yongsuk; Cho, Jeong Ho; Lee, Changgu
2017-02-01
An ultraclean method to directly transfer a large-area MoS 2 film from the original growth substrate to a flexible substrate by using epoxy glue is developed. The transferred film is observed to be free of wrinkles and cracks and to be as smooth as the film synthesized on the original substrate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Guisbiers, G.; Strehle, S.; Van Overschelde, O.; Wautelet, M.
2006-02-01
Residual stresses are commonly generated during the deposition process of thin films and can influence the reliability of the deposited systems e.g. due to fatigue, aging effects or debonding. Therefore, an evaluation of such stresses in thin films is of crucial importance for metallization of microelectronic devices and MEMS. Residual stresses can be determined experimentally by substrate curvature or X-ray diffraction measurements. The modeling of residual stresses generally deals with the calculation of the thermal ones alone. In the present work, a model is proposed, where intrinsic stresses are calculated explicitly based on the Tsui-Clyne model. The aim of this model, called self-consistent model, is to predict residual stresses in thin films independent on measurements. The simulated values are compared with experimental results for the following systems: Ta/Si, Mo/Si, Al/SiO2/Si and Pd/SiO2/Si.
Preventing Thin Film Dewetting via Graphene Capping.
Cao, Peigen; Bai, Peter; Omrani, Arash A; Xiao, Yihan; Meaker, Kacey L; Tsai, Hsin-Zon; Yan, Aiming; Jung, Han Sae; Khajeh, Ramin; Rodgers, Griffin F; Kim, Youngkyou; Aikawa, Andrew S; Kolaczkowski, Mattew A; Liu, Yi; Zettl, Alex; Xu, Ke; Crommie, Michael F; Xu, Ting
2017-09-01
A monolayer 2D capping layer with high Young's modulus is shown to be able to effectively suppress the dewetting of underlying thin films of small organic semiconductor molecule, polymer, and polycrystalline metal, respectively. To verify the universality of this capping layer approach, the dewetting experiments are performed for single-layer graphene transferred onto polystyrene (PS), semiconducting thienoazacoronene (EH-TAC), gold, and also MoS 2 on PS. Thermodynamic modeling indicates that the exceptionally high Young's modulus and surface conformity of 2D capping layers such as graphene and MoS 2 substantially suppress surface fluctuations and thus dewetting. As long as the uncovered area is smaller than the fluctuation wavelength of the thin film in a dewetting process via spinodal decomposition, the dewetting should be suppressed. The 2D monolayer-capping approach opens up exciting new possibilities to enhance the thermal stability and expands the processing parameters for thin film materials without significantly altering their physical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Study on Silver-plated Molybdenum Interconnected Materials for LEO Solar Cell Array
NASA Astrophysics Data System (ADS)
Zhu, Jia-jun; Hu, Yu-hao; Xu, Meng; Yang, Wu-lin; Fu, Li-cai; Li, De-yi; Zhou, Ling-ping
2017-09-01
Atomic oxygen (AO) is one of the most important environmental factors that affected the performance of low earth orbit spacecraft in orbit. In which, silver was the most common materials as the interconnected materials. However, with the poor AO resistance of silver, the interconnectors could be failure easier, and the lifetime of the spacecraft was also reduced. In this paper, the silver-plated molybdenum interconnected materials made by Ag thin films deposited on the Mo foils by vacuum deposition methods was studied. And the effects of the preparation process on the micro-structure of the Ag thin films, the interfacial adhesive strength and the electrical conductivity of the composites were investigated. It was found that the Ag thin films deposited on the Mo substrates coated the Ag thin films by ion beam assisted deposition(IBAD) methods exhibited a perfectly (200) preferred orientation. The interfacial adhesive strength had been increased to 18.58MPa. And the composites also have excellent electrical performance.
Nakamura, A; Shimojima, T; Nakano, M; Iwasa, Y; Ishizaka, K
2016-11-01
We report the ultrafast dynamics of electrons and lattice in transition metal thin films (Au, Cu, and Mo) investigated by a combination of ultrafast electron diffraction (UED) and pump-probe optical methods. For a single-crystalline Au thin film, we observe the suppression of the diffraction intensity occuring in 10 ps, which direcly reflects the lattice thermalization via the electron-phonon interaction. By using the two-temperature model, the electron-phonon coupling constant ( g ) and the electron and lattice temperatures ( T e , T l ) are evaluated from UED, with which we simulate the transient optical transmittance. The simulation well agrees with the experimentally obtained transmittance data, except for the slight deviations at the initial photoexcitation and the relaxed quasi-equilibrium state. We also present the results similarly obtained for polycrystalline Au, Cu, and Mo thin films and demonstrate the electron and lattice dynamics occurring in metals with different electron-phonon coupling strengths.
Li, Meng; Liu, Na; Li, Pan; Shi, Jialin; Li, Guangyong; Xi, Ning; Wang, Yuechao; Liu, Lianqing
2017-03-08
Transition metal dichalcogenides, particularly MoS 2 , have recently received enormous interest in explorations of the physics and technology of nanodevice applications because of their excellent optical and electronic properties. Although monolayer MoS 2 has been extensively investigated for various possible applications, its difficulty of fabrication renders it less appealing than multilayer MoS 2 . Moreover, multilayer MoS 2 , with its inherent high electronic/photonic state densities, has higher output driving capabilities and can better satisfy the ever-increasing demand for versatile devices. Here, we present multilayer MoS 2 back-gate thin-film transistors (TFTs) that can achieve a relatively low subthreshold swing of 0.75 V/decade and a high mobility of 41 cm 2 ·V -1 ·s -1 , which exceeds the typical mobility value of state-of-the-art amorphous silicon-based TFTs by a factor of 80. Ag and Au electrode-based MoS 2 TFTs were fabricated by a convenient and rapid process. Then we performed a detailed analysis of the impacts of metal contacts and MoS 2 film thickness on electronic performance. Our findings show that smoother metal contacts exhibit better electronic characteristics and that MoS 2 film thickness should be controlled within a reasonable range of 30-40 nm to obtain the best mobility values, thereby providing valuable insights regarding performance enhancement for MoS 2 TFTs. Additionally, to overcome the limitations of the conventional fabrication method, we employed a novel approach known as optically induced electrodeposition (OIE), which allows the flexible and precise patterning of metal films and enables rapid and mask-free device fabrication, for TFT fabrication.
Spin pumping in ion-beam sputtered C o2FeAl /Mo bilayers: Interfacial Gilbert damping
NASA Astrophysics Data System (ADS)
Husain, Sajid; Kumar, Ankit; Barwal, Vineet; Behera, Nilamani; Akansel, Serkan; Svedlindh, Peter; Chaudhary, Sujeet
2018-02-01
The spin-pumping mechanism and associated interfacial Gilbert damping are demonstrated in ion-beam sputtered C o2FeAl (CFA)/Mo bilayer thin films employing ferromagnetic resonance spectroscopy. The dependence of the net spin-current transportation on Mo layer thickness, 0 to 10 nm, and the enhancement of the net effective Gilbert damping are reported. The experimental data have been analyzed using spin-pumping theory in terms of spin current pumped through the ferromagnet/nonmagnetic metal interface to deduce the real spin-mixing conductance and the spin-diffusion length, which are estimated to be 1.56 (±0.30 ) ×1019m-2 and 2.61 (±0.15 )nm , respectively. The damping constant is found to be 8.8 (±0.2 ) ×10-3 in the Mo(3.5 nm)-capped CFA(8 nm) sample corresponding to an ˜69 % enhancement of the original Gilbert damping 5.2 (±0.6 ) ×10-3 in the Al-capped CFA thin film. This is further confirmed by inserting the Cu dusting layer which reduces the spin transport across the CFA/Mo interface. The Mo layer thickness-dependent net spin-current density is found to lie in the range of 1 -4 MA m-2 , which also provides additional quantitative evidence of spin pumping in this bilayer thin-film system.
Surface chemistry and microstructure of metallic biomaterials for hip and knee endoprostheses
NASA Astrophysics Data System (ADS)
Jenko, Monika; Gorenšek, Matevž; Godec, Matjaž; Hodnik, Maxinne; Batič, Barbara Šetina; Donik, Črtomir; Grant, John T.; Dolinar, Drago
2018-01-01
The surface chemistry and microstructures of titanium alloys (both new and used) and CoCrMo alloys used for hip and knee endoprostheses were determined using SEM (morphology), EBSD (phase analysis), AES and XPS (surface chemistry). Two new and two used endoprostheses were studied. The SEM SE and BE images showed their microstructures, while the EBSD provided the phases of the materials. During the production of the hip and knee endoprostheses, these materials are subject to severe thermomechanical treatments and physicochemical processes that are decisive for CoCrMo alloys. The AES and XPS results showed that thin oxide films on (a) Ti6Al4V are primarily a mixture of TiO2 with a small amount of Al2O3, while the V is depleted, (b) Ti6Al7Nb is primarily a mixture of TiO2 with a small amount of Al2O3 and Nb2O5, and (c) the CoCrMo alloy is primarily a mixture of Cr2O3 with small amounts of Co and Mo oxides. The thin oxide film on the CoCrMo alloy should prevent intergranular corrosion and improve the biocompatibility. The thin oxide films on the Ti alloys prevent further corrosion, improve the biocompatibility, and affect the osseointegration.
Laser Trimming of CuAlMo Thin-Film Resistors: Effect of Laser Processing Parameters
NASA Astrophysics Data System (ADS)
Birkett, Martin; Penlington, Roger
2012-08-01
This paper reports the effect of varying laser trimming process parameters on the electrical performance of a novel CuAlMo thin-film resistor material. The films were prepared on Al2O3 substrates by direct-current (DC) magnetron sputtering, before being laser trimmed to target resistance value. The effect of varying key laser parameters of power, Q-rate, and bite size on the resistor stability and tolerance accuracy were systematically investigated. By reducing laser power and bite size and balancing this with Q-rate setting, significant improvements in resistor stability and resistor tolerance accuracies of less than ±0.5% were achieved.
Thin film molybdenum silicide as potential temperature sensors for turbine engines
NASA Technical Reports Server (NTRS)
Ho, C. H.; Prakash, S.; Deshpandey, C. V.; Doerr, H. J.; Bunshah, R. F.
1989-01-01
Temperature measurements of Mo-Si-based thin-film resistance thermometers were studied. Annealing in an argon ambient at a temperature above 1000 C for at least 1 h is required to form the stable tetragonal MoSi2 phase. With a crack-free 2-micron-thick AlN barrier layer on top, a sensor was tested up to 1200 C. The resistivity vs temperature characteristic shows the room temperature resistivity and temperature coefficient of resistivity (TCR) of the sensor to be approximately 350 microohm and 0.01195 K, respectively. No film adhesion problems were observed for at least four testing cycles.
Stuffed MO layer as a diffusion barrier in metallizations for high temperature electronics
NASA Technical Reports Server (NTRS)
Boah, J. K.; Russell, V.; Smith, D. P.
1981-01-01
Auger electron spectroscopy was employed to characterize the diffusion barrier properties of molybdenum in the CrSi2/Mo/Au metallization system. The barrier action of Mo was demonstrated to persist even after 2000 hours annealing time at 300 C in a nitrogen ambient. At 340 C annealing temperature, however, rapid interdiffusion was observed to have occurred between the various metal layers after only 261 hours. The presence of controlled amounts of oxygen in the Mo layer is believed to be responsible for suppressing the short circuit interdiffusion between the thin film layers. Above 340 C, its is believed that the increase in the oxygen mobility led to deterioration of its stuffing action, resulting in the rapid interdiffusion of the thin film layers along grain boundaries.
MoRe-based tunnel junctions and their characteristics
NASA Astrophysics Data System (ADS)
Shaternik, V.; Larkin, S.; Noskov, V.; Chubatyy, V.; Sizontov, V.; Miroshnikov, A.; Karmazin, A.
2008-02-01
Perspective Josephson Mo-Re alloy-oxide-Pb, Mo-Re alloy-normal metal-oxide-Pb and Mo-Re alloy-normal metal-oxide-normal metal-Mo-Re alloy junctions have been fabricated and investigated. Thin (~50-100 nm) MoRe superconducting films are deposited on Al2O3 substrates by using a dc magnetron sputtering of MoRe target. Normal metal (Sn, Al) thin films are deposited on the MoRe films surfaces by thermal evaporation of metals in vacuum and oxidized to fabricate junctions oxide barriers. Quasiparticle I-V curves of the fabricated junctions were measured in wide range of voltages. To investigate a transparency spread for the fabricated junctions barriers the computer simulation of the measured quasiparticle I-V curves have been done in framework of the model of multiple Andreev reflections in double-barrier junction interfaces. It's demonstrated the investigated junctions can be described as highly asymmetric double-barrier Josephson junctions with great difference between the two barrier transparencies. The result of the comparison of experimental quasiparticle I-V curves and calculated ones is proposed and discussed. Also I-V curves of the fabricated junctions have been measured under microwave irradiation with 60 GHz frequency, clear Shapiro steps in the measured I-V curves were observed and discussed.
Tunneling Spectroscopy of Superconducting MoN and NbTiN Grown by Atomic Layer Deposition.
Groll, Nickolas; Klug, Jeffrey A.; Cao, Chaoyue; ...
2014-03-03
A tunneling spectroscopy study is presented of superconducting MoN and Nbo.8Tio.2N thin films grown by atomic layer deposition (ALD). The films exhibited a superconducting gap of 2meV and 2.4meV, respectively, with a corresponding critical temperature of 11.5K and 13.4 K, among the highest reported Tc values achieved by the ALD technique.Tunnel junctions were obtained using a mechanical contact method with a Au tip. While the native oxides of these films provided poor tunnel barriers, high quality tunnel junctions with low zero bias conductance (below rvl0%) were obtained using an artificial tunnel barrier of Ah03 on the film's surface grown exmore » situ by ALD. We find a large critical current density on the order of 4 x 106Ncm2 at T =0.8Tc for a 60 run MoN film and demonstrate conformal coating capabilities of ALD onto high aspect ratio geometries. These results suggest that the ALD technique offers significant promise for thin film superconducting device applications.« less
Tunneling spectroscopy of superconducting MoN and NbTiN grown by atomic layer deposition
NASA Astrophysics Data System (ADS)
Groll, Nickolas R.; Klug, Jeffrey A.; Cao, Chaoyue; Altin, Serdar; Claus, Helmut; Becker, Nicholas G.; Zasadzinski, John F.; Pellin, Michael J.; Proslier, Thomas
2014-03-01
A tunneling spectroscopy study is presented of superconducting MoN and Nb0.8Ti0.2N thin films grown by atomic layer deposition (ALD). The films exhibited a superconducting gap of 2 meV and 2.4 meV, respectively, with a corresponding critical temperature of 11.5 K and 13.4 K, among the highest reported Tc values achieved by the ALD technique. Tunnel junctions were obtained using a mechanical contact method with a Au tip. While the native oxides of these films provided poor tunnel barriers, high quality tunnel junctions with low zero bias conductance (below ˜10%) were obtained using an artificial tunnel barrier of Al2O3 on the film's surface grown ex situ by ALD. We find a large critical current density on the order of 4 × 106 A/cm2 at T = 0.8Tc for a 60 nm MoN film and demonstrate conformal coating capabilities of ALD onto high aspect ratio geometries. These results suggest that the ALD technique offers significant promise for thin film superconducting device applications.
Magnetic properties of sputtered Permalloy/molybdenum multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romera, M.; Ciudad, D.; Maicas, M.
2011-10-15
In this work, we report the magnetic properties of sputtered Permalloy (Py: Ni{sub 80}Fe{sub 20})/molybdenum (Mo) multilayer thin films. We show that it is possible to maintain a low coercivity and a high permeability in thick sputtered Py films when reducing the out-of-plane component of the anisotropy by inserting thin film spacers of a non-magnetic material like Mo. For these kind of multilayers, we have found coercivities which are close to those for single layer films with no out-of-plane anisotropy. The coercivity is also dependent on the number of layers exhibiting a minimum value when each single Py layer hasmore » a thickness close to the transition thickness between Neel and Bloch domain walls.« less
Highly Crystalline CVD-grown Multilayer MoSe2 Thin Film Transistor for Fast Photodetector
Jung, Chulseung; Kim, Seung Min; Moon, Hyunseong; Han, Gyuchull; Kwon, Junyeon; Hong, Young Ki; Omkaram, Inturu; Yoon, Youngki; Kim, Sunkook; Park, Jozeph
2015-01-01
Hexagonal molybdenum diselenide (MoSe2) multilayers were grown by chemical vapor deposition (CVD). A relatively high pressure (>760 Torr) was used during the CVD growth to achieve multilayers by creating multiple nuclei based on the two-dimensional crystal growth model. Our CVD-grown multilayer MoSe2 thin-film transistors (TFTs) show p-type-dominant ambipolar behaviors, which are attributed to the formation of Se vacancies generated at the decomposition temperature (650 °C) after the CVD growth for 10 min. Our MoSe2 TFT with a reasonably high field-effect mobility (10 cm2/V · s) exhibits a high photoresponsivity (93.7 A/W) and a fast photoresponse time (τrise ~ 0.4 s) under the illumination of light, which demonstrates the practical feasibility of multilayer MoSe2 TFTs for photodetector applications. PMID:26477744
Pak, Sang Woo; Chu, Dongil; Song, Da Ye; Lee, Seung Kyo; Kim, Eun Kyu
2017-11-24
We report an enhancement of near-infrared (NIR) detectability from amorphous InGaZnO (α-IGZO) thin film transistor in conjunction with randomly distributed molybdenum disulfide (MoS 2 ) flakes. The electrical characteristics of the α-IGZO grown by radio-frequency magnetron sputtering exhibit high effective mobility exceeding 15 cm 2 V -1 s -1 and current on/off ratio up to 10 7 . By taking advantages of the high quality α-IGZO and MoS 2 light absorbing layer, photodetection spectra are able to extend from ultra-violet to NIR range. The α-IGZO channel detector capped by MoS 2 show a photo-responsivity of approximately 14.9 mA W -1 at 1100 nm wavelength, which is five times higher than of the α-IGZO device without MoS 2 layer.
NASA Astrophysics Data System (ADS)
Pak, Sang Woo; Chu, Dongil; Song, Da Ye; Kyo Lee, Seung; Kim, Eun Kyu
2017-11-01
We report an enhancement of near-infrared (NIR) detectability from amorphous InGaZnO (α-IGZO) thin film transistor in conjunction with randomly distributed molybdenum disulfide (MoS2) flakes. The electrical characteristics of the α-IGZO grown by radio-frequency magnetron sputtering exhibit high effective mobility exceeding 15 cm2 V-1 s-1 and current on/off ratio up to 107. By taking advantages of the high quality α-IGZO and MoS2 light absorbing layer, photodetection spectra are able to extend from ultra-violet to NIR range. The α-IGZO channel detector capped by MoS2 show a photo-responsivity of approximately 14.9 mA W-1 at 1100 nm wavelength, which is five times higher than of the α-IGZO device without MoS2 layer.
NASA Astrophysics Data System (ADS)
Hur, Ji-Hyun; Park, Junghak; Jeon, Sanghun
2017-02-01
A model that universally describes the characteristics of photocurrent in molybdenum disulphide (MoS2) thin-film transistor (TFT) photosensors in both ‘light on’ and ‘light off’ conditions is presented for the first time. We considered possible material-property dependent carrier generation and recombination mechanisms in layered MoS2 channels with different numbers of layers. We propose that the recombination rates that are mainly composed of direct band-to-band recombination and interface trap-involved recombination change on changing the light condition and the number of layers. By comparing the experimental results, it is shown that the model performs well in describing the photocurrent behaviors of MoS2 TFT photosensors, including the photocurrent generation under illumination and a hugely long time persistent trend of the photocurrent decay in the dark condition, for a range of MoS2 layer numbers.
Illyaskutty, Navas; Sreedhar, Sreeja; Sanal Kumar, G; Kohler, Heinz; Schwotzer, Matthias; Natzeck, Carsten; Pillai, V P Mahadevan
2014-11-21
MoO3 nanostructures have been grown in thin film form on five different substrates by RF magnetron sputtering and subsequent annealing; non-aligned nanorods, aligned nanorods, bundled nanowires, vertical nanorods and nanoslabs are formed respectively on the glass, quartz, wafer, alumina and sapphire substrates. The nanostructures formed on these substrates are characterized by AFM, SEM, GIXRD, XPS, micro-Raman, diffuse reflectance and photoluminescence spectroscopy. A detailed growth model for morphology alteration with respect to substrates has been discussed by considering various aspects such as surface roughness, lattice parameters and the thermal expansion coefficient, of both substrates and MoO3. The present study developed a strategy for the choice of substrates to materialize different types MoO3 nanostructures for future thin film applications. The gas sensing tests point towards using these MoO3 nanostructures as principal detection elements in gas sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinovskis, Paulius, E-mail: paulius.malinovskis@kemi.uu.se; Lewin, Erik; Jansson, Ulf
2016-05-15
DC magnetron sputtering was used to deposit molybdenum boride thin films for potential low-friction applications. The films exhibit a nanocomposite structure with ∼10 nm large MoB{sub 2−x} (x > 0.4) grains surrounded by a boron-rich tissue phase. The preferred formation of the metastable and substoichiometric hP3-MoB{sub 2} structure (AlB{sub 2}-type) is explained with kinetic constraints to form the thermodynamically stable hR18-MoB{sub 2} phase with a very complex crystal structure. Nanoindentation revealed a relatively high hardness of (29 ± 2) GPa, which is higher than bulk samples. The high hardness can be explained by a hardening effect associated with the nanocomposite microstructure where the surrounding tissuemore » phase restricts dislocation movement. A tribological study confirmed a significant formation of a tribofilm consisting of molybdenum oxide and boron oxide, however, without any lubricating effects at room temperature.« less
Lubrication and failure mechanisms of molybdenum disulfide films. 1: Effect of atmosphere
NASA Technical Reports Server (NTRS)
Fusaro, R. L.
1978-01-01
Friction, wear, and wear lives of rubbed molybdenum disulfide (MoS2 films applied to sanded 440C HT steel surfaces were evaluated in moist air, dry air, and dry argon. Optical microscope observations were made as a function of sliding distance to determine the effect of moisture and oxygen on the lubricating and failure mechanisms of MoS2 films. In general, the lubrication process consisted of the formation of a thin, metallic colored, coalesced film of MoS2 that flowed between the surfaces in relative motion. In air, failure was due to the transformation of the metallic colored, coalesced films to a black, powdery material. Water in the air appeared to accelerate the transformation rate. In argon, no transformation of MoS2 was observed with the microscope, but cracking and spalling of the coalesced film occurred and resulted in the gradual depletion of the film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, H.M.; Torres, J., E-mail: njtorress@unal.edu.co; Lopez Carreno, L.D.
2013-01-15
Polycrystalline molybdenum tri-oxide thin films were prepared using the spray pyrolysis technique; a 0.1 M solution of ammonium molybdate tetra-hydrated was used as a precursor. The samples were prepared on Corning glass substrates maintained at temperatures ranging between 423 and 673 K. The samples were characterized through micro Raman, X-ray diffraction, optical transmittance and DC electrical conductivity. The species MoO{sub 3} (H{sub 2}O){sub 2} was found in the sample prepared at a substrate temperature of 423 K. As the substrate temperature rises, the water disappears and the samples crystallize into {alpha}-MoO{sub 3}. The optical gap diminishes as the substrate temperaturemore » rises. Two electrical transport mechanisms were found: hopping under 200 K and intrinsic conduction over 200 K. The MoO{sub 3} films' sensitivity was analyzed for CO and H{sub 2}O in the temperature range 160 to 360 K; the results indicate that CO and H{sub 2}O have a reduction character. In all cases, it was found that the sensitivity to CO is lower than that to H{sub 2}O. - Highlights: Black-Right-Pointing-Pointer A low cost technique is used which produces good material. Black-Right-Pointing-Pointer Thin films are prepared using ammonium molybdate tetra hydrated. Black-Right-Pointing-Pointer The control of the physical properties of the samples could be done. Black-Right-Pointing-Pointer A calculation method is proposed to determine the material optical properties. Black-Right-Pointing-Pointer The MoO{sub 3} thin films prepared by spray pyrolysis could be used as gas sensor.« less
NASA Astrophysics Data System (ADS)
Fominski, V. Yu.; Romanov, R. I.; Fominski, D. V.; Dzhumaev, P. S.; Troyan, I. A.
2018-06-01
Pulsed laser ablation of a MoS2 target causes enhanced splashing of the material. So, for MoSx films obtained by pulsed laser deposition (PLD) in the conventional normal incidence (NI) configuration, their typical morphology is characterized by an underlying granular structure with an overlayer of widely dispersed spherical Mo and MoSx particles possessing micro-, sub-micro- and nanometer sizes. We investigated the possibility of using high surface roughness, which occurs due to particle deposition, as a support with a large exposed surface area for thin MoSx catalytic layers for the hydrogen evolution reaction (HER). For comparison, the HER performance of MoSx layers formed by grazing incidence (GI) PLD was studied. During GI-PLD, a substrate was placed along the direction of laser plume transport and few large particles loaded the substrate. The local structure and composition of thin MoSx layers formed by the deposition of the vapor component of the laser plume were varied by changing the pressure of the buffer gas (argon, Ar). In the case of NI-PLD, an increase in Ar pressure caused the formation of quasi-amorphous MoSx (x ≥ 2) films that possessed highly active catalytic sites on the edges of the layered MoS2 nanophase. At the same time, a decrease in the deposition rate of the MoSx film appeared due to the scattering of the vapor flux by Ar molecules during flux transport from the target to the substrate. This effect prevented uniform deposition of the MoSx catalytic film on the surface of most particles, whose deposition rate was independent of Ar pressure. The scattered vapor flux containing Mo and S atoms was a dominant source for MoSx film growth during GI-PLD. The thickness and composition distribution of the MoSx film on the substrate depended on both the pressure of the buffer gas and the distance from the target. For 1.0-2.5 cm from the target, the deposition rate was quite sufficient to form S-enriched quasi-amorphous MoSx (2.5 < x < 6) catalytic films that consisted of densely packed 30-50 nm nanoparticles. The GI-PLD films possessed a greater density of catalytically active sites with a distinct local atomic configuration including edge sites of the layered MoS2 nanophase and diverse S ligands in the amorphous phase, which contained Mo3-S clusters. At a modest loading of ∼300 μg/cm2 on glassy carbon substrates and an overpotential of -140 mV, these films activated H2 production with geometric current densities up to -10 mA/cm2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sardashti, Kasra; Haight, Richard; Anderson, Ryan
2016-06-22
Cryogenic focused ion beam (Cryo-FIB) milling at near-grazing angles is employed to fabricate cross-sections on thin Cu(In,Ga)Se2 with >8x expansion in thickness. Kelvin probe force microscopy (KPFM) on sloped cross sections showed reduction in grain boundaries potential deeper into the film. Cryo Fib-KPFM enabled the first determination of the electronic structure of the Mo/CIGSe back contact, where a sub 100 nm thick MoSey assists hole extraction due to 45 meV higher work function. This demonstrates that CryoFIB-KPFM combination can reveal new targets of opportunity for improvement in thin-films photovoltaics such as high-work-function contacts to facilitate hole extraction through the backmore » interface of CIGS.« less
Sputtering Deposition of Sn-Mo-Based Composite Anode for Thin-Film Li-Ion Batteries
NASA Astrophysics Data System (ADS)
Mani Chandran, T.; Balaji, S.
2016-06-01
The role of electrochemically inactive molybdenum in alleviating the anomalous volume expansion of tin anode upon charge-discharge cycling has been investigated. Tin-molybdenum thin-film composite anodes for Li-ion batteries were prepared using a direct-current sputtering method from a tin metal target incorporating molybdenum element. Results of structural and compositional analyses confirmed the presence of tin and molybdenum. The elemental ratio obtained from energy-dispersive x-ray spectroscopy confirmed the feasibility of tailoring the thin-film composition by varying the ratio of metallic elements present in the sputtering target. Scanning electron micrographs of the samples revealed the occurrence of flower-like open morphology with Mo inclusion in a Sn matrix. The gravimetric discharge capacity for pure Sn, Sn-rich, and Mo-rich samples was 733 mAh g-1, 572 mAh g-1, and 439 mAh g-1, respectively, with capacity retention after 50 cycles of 22%, 61%, and 74%, respectively. Mo inclusion reduced the surface resistivity of the Sn anode after the initial charge-discharge cycle. The charge-transfer resistance after the first cycle for pure Sn, Sn-rich, and Mo-rich samples was 17.395 Ω, 5.345 Ω, and 2.865 Ω, respectively. The lithium-ion diffusion coefficient also increased from 8.68 × 10-8 cm2S-1 for the pure Sn sample to 2.98 × 10-5 cm2S-1 for the Mo-rich sample.
Annealed CVD molybdenum thin film surface
Carver, Gary E.; Seraphin, Bernhard O.
1984-01-01
Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.
Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor.
Choi, Minwoo; Park, Yong Ju; Sharma, Bhupendra K; Bae, Sa-Rang; Kim, Soo Young; Ahn, Jong-Hyun
2018-04-01
Atomically thin molybdenum disulfide (MoS 2 ) has been extensively investigated in semiconductor electronics but has not been applied in a backplane circuitry of organic light-emitting diode (OLED) display. Its applicability as an active drive element is hampered by the large contact resistance at the metal/MoS 2 interface, which hinders the transport of carriers at the dielectric surface, which in turn considerably deteriorates the mobility. Modified switching device architecture is proposed for efficiently exploiting the high- k dielectric Al 2 O 3 layer, which, when integrated in an active matrix, can drive the ultrathin OLED display even in dynamic folding states. The proposed architecture exhibits 28 times increase in mobility compared to a normal back-gated thin-film transistor, and its potential as a wearable display attached to a human wrist is demonstrated.
Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor
Park, Yong Ju
2018-01-01
Atomically thin molybdenum disulfide (MoS2) has been extensively investigated in semiconductor electronics but has not been applied in a backplane circuitry of organic light-emitting diode (OLED) display. Its applicability as an active drive element is hampered by the large contact resistance at the metal/MoS2 interface, which hinders the transport of carriers at the dielectric surface, which in turn considerably deteriorates the mobility. Modified switching device architecture is proposed for efficiently exploiting the high-k dielectric Al2O3 layer, which, when integrated in an active matrix, can drive the ultrathin OLED display even in dynamic folding states. The proposed architecture exhibits 28 times increase in mobility compared to a normal back-gated thin-film transistor, and its potential as a wearable display attached to a human wrist is demonstrated. PMID:29713686
Zinc doping of large-area MoS2 films via chemical vapor deposition
NASA Astrophysics Data System (ADS)
Xu, Enzhi; Liu, Haoming; Park, Kyungwha; Li, Zhen; Losovyj, Yaroslav; Starr, Matthew; Werbianskyj, Madilynn; Fertig, Herbert; Zhang, Shixiong
Atomically thin molybdenum disulfide (MoS2) has attracted significant attention because of its great potential for electronic and optoelectronic applications. Undoped MoS2 is n-type presumably due to the formation of native defects, and realizing p-type conduction has often turned out to be challenging. In this work, we report on the synthesis and characterizations of large-area Zn-doped MoS2 thin films in which the zinc dopant is demonstrated to be p-type. The films were grown by chemical vapor deposition and are monolayers or bilayers with a lateral dimension on the order of millimeters. The p-type nature of Zn dopants was evidenced by the suppression of n-type conduction and a downward shift of the Fermi level with doping. Density-functional-theory calculations were carried out to demonstrate the stability of the Zn dopants and to determine the impurity states. A p-type gate transfer characteristic was observed after the Zn-MoS2 film was thermally annealed in a sulfur atmosphere. This work is supported by the NSF through Grant Nos. DMR-1506460, DMR-1506263, and DMR-1206354, the San Diego Supercomputer Center (SDSC) Gordon under DMR060009N, and by the US-Israel Binational Science Foundation.
Molybdenum oxide and molybdenum oxide-nitride back contacts for CdTe solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drayton, Jennifer A., E-mail: drjadrayton@yahoo.com; Geisthardt, Russell M., E-mail: Russell.Geisthardt@gmail.com; Sites, James R., E-mail: james.sites@colostate.edu
2015-07-15
Molybdenum oxide (MoO{sub x}) and molybdenum oxynitride (MoON) thin film back contacts were formed by a unique ion-beam sputtering and ion-beam-assisted deposition process onto CdTe solar cells and compared to back contacts made using carbon–nickel (C/Ni) paint. Glancing-incidence x-ray diffraction and x-ray photoelectron spectroscopy measurements show that partially crystalline MoO{sub x} films are created with a mixture of Mo, MoO{sub 2}, and MoO{sub 3} components. Lower crystallinity content is observed in the MoON films, with an additional component of molybdenum nitride present. Three different film thicknesses of MoO{sub x} and MoON were investigated that were capped in situ in Ni.more » Small area devices were delineated and characterized using current–voltage (J-V), capacitance–frequency, capacitance–voltage, electroluminescence, and light beam-induced current techniques. In addition, J-V data measured as a function of temperature (JVT) were used to estimate back barrier heights for each thickness of MoO{sub x} and MoON and for the C/Ni paint. Characterization prior to stressing indicated the devices were similar in performance. Characterization after stress testing indicated little change to cells with 120 and 180-nm thick MoO{sub x} and MoON films. However, moderate-to-large cell degradation was observed for 60-nm thick MoO{sub x} and MoON films and for C/Ni painted back contacts.« less
Structural, compositional and optical properties of spin coated MoO3 thin film
NASA Astrophysics Data System (ADS)
Jain, Vishva; Shah, Dimple; Patel, K. D.; Zankat, Chetan
2018-05-01
The attraction towards the MoO3 thin film is due to its wide range of application base on its properties. Its application in the field of energy storage and conversion as a cathode material for rechargeable lithium ion battery, hole selective layer in solar cell and in pseudocapacitors makes it more attractive material. Taking in consideration, economical route and tailoring advantage of film formation we have used spin coating method for the synthesis of the film with Ammonium heptamolybdate (NH4)6Mo7O24 4H2O) and distilled water as the precursor and solvent respectively on the glass substrate. The method also provides the large area synthesis of the film which is beneficial for the commercial applications. The film was spin coated at 1600 rpm with 4 % weight per volume ratio. The film so formed was annealed at 300 °C for 3 hours. The structural investigation was done by the X-Ray diffraction technique which shows the thin film of polycrystalline type. The average crystallize size is about 50 nm. The composition of the film was studied with the help of EDAX. The optical properties were studied by the photoluminescence and UV Spectroscopy. The results from both the characterization are well matched with each other. Photoluminescence studies show band to band emission observed at 416 nm shown in the fig. 5. From UV spectroscopy, using transmission and absorption spectra we observed the band gap edge around 3 eV. This is in accordance with the photoluminescence result.
Development of CIGS2 Thin Films on Ultralightweight Flexible Large Area Foil Sunstrates
NASA Technical Reports Server (NTRS)
Dhere, Neelkanth G.; Gade, Vivek S.; Kadam, Ankur A.; Jahagirdar, Anant H.; Kulkarni, Sachin S.; Bet, Sachin M.
2005-01-01
The development of thin film solar cells is aimed at reducing the costs for photovoltaic systems. Use of thin film technology and thin foil substrate such as 5-mil thick stainless steel foil or 1-mil thick Ti would result in considerable costs savings. Another important aspect is manufacturing cost. Current single crystal technology for space power can cost more than $ 300 per watt at the array level and weigh more than 1 kg/sq m equivalent to specific power of approx. 65 W/kg. Thin film material such as CuIn1-xGaxS2 (CIGS2), CuIn(1-x)Ga(x)Se(2-y)S(y) (CIGSS) or amorphous hydrogenated silicon (a-Si:H) may be able to reduce both the cost and mass per unit area by an order of magnitude. Manufacturing costs for solar arrays are an important consideration for total spacecraft budget. For a medium sized 5kW satellite for example, the array manufacturing cost alone may exceed $ 2 million. Moving to thin film technology could reduce this expense to less than $ 500K. Earlier publications have demonstrated the potential of achieving higher efficiencies from CIGSS thin film solar cells on 5-mil thick stainless steel foil as well as initial stages of facility augmentation for depositing thin film solar cells on larger (6 in x 4 in) substrates. This paper presents the developmental study of achieving stress free Mo coating; uniform coatings of Mo back contact and metallic precursors. The paper also presents the development of sol gel process, refurbishment of selenization/sulfurization furnace, chemical bath deposition (CBD) for n-type CdS and scrubber for detoxification of H2S and H2Se gases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacley, Shanee, E-mail: shanee.pacley@us.af.mil; Brausch, Jacob; Beck-Millerton, Emory
2016-07-15
Monolayer molybdenum disulfide (MoS{sub 2}), a two dimensional semiconducting dichalcogenide material with a bandgap of 1.8–1.9 eV, has demonstrated promise for future use in field effect transistors and optoelectronics. Various approaches have been used for MoS{sub 2} processing, the most common being chemical vapor deposition. During chemical vapor deposition, precursors such as Mo, MoO{sub 3}, and MoCl{sub 5} have been used to form a vapor reaction with sulfur, resulting in thin films of MoS{sub 2}. Currently, MoO{sub 3} ribbons and powder, and MoCl{sub 5} powder have been used. However, the use of ribbons and powder makes it difficult to growmore » large area-continuous films. Sputtering of Mo is an approach that has demonstrated continuous MoS{sub 2} film growth. In this paper, the authors compare the structural properties of MoS{sub 2} grown by sulfurization of pulse vapor deposited MoO{sub 3} and Mo precursor films. In addition, they have studied the effects that reduced graphene oxide (rGO) has on MoS{sub 2} structure. Reports show that rGO increases MoS{sub 2} grain growth during powder vaporization. Herein, the authors report a grain size increase for MoS{sub 2} when rGO was used during sulfurization of both sputtered Mo and MoO{sub 3} precursors. In addition, our transmission electron microscopy results show a more uniform and continuous film growth for the MoS{sub 2} films produced from Mo when compared to the films produced from MoO{sub 3}. Atomic force microscopy images further confirm this uniform and continuous film growth when Mo precursor was used. Finally, x-ray photoelectron spectroscopy results show that the MoS{sub 2} films produced using both precursors were stoichiometric and had about 7–8 layers in thickness, and that there was a slight improvement in stoichiometry when rGO was used.« less
Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear
Chhowalla; Amaratunga
2000-09-14
The tribological properties of solid lubricants such as graphite and the metal dichalcogenides MX2 (where M is molybdenum or tungsten and X is sulphur or selenium) are of technological interest for reducing wear in circumstances where liquid lubricants are impractical, such as in space technology, ultra-high vacuum or automotive transport. These materials are characterized by weak interatomic interactions (van der Waals forces) between their layered structures, allowing easy, low-strength shearing. Although these materials exhibit excellent friction and wear resistance and extended lifetime in vacuum, their tribological properties remain poor in the presence of humidity or oxygen, thereby limiting their technological applications in the Earth's atmosphere. But using MX2 in the form of isolated inorganic fullerene-like hollow nanoparticles similar to carbon fullerenes and nanotubes can improve its performance. Here we show that thin films of hollow MoS2 nanoparticles, deposited by a localized high-pressure arc discharge method, exhibit ultra-low friction (an order of magnitude lower than for sputtered MoS2 thin films) and wear in nitrogen and 45% humidity. We attribute this 'dry' behaviour in humid environments to the presence of curved S-Mo-S planes that prevent oxidation and preserve the layered structure.
Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear
NASA Astrophysics Data System (ADS)
Chhowalla, Manish; Amaratunga, Gehan A. J.
2000-09-01
The tribological properties of solid lubricants such as graphite and the metal dichalcogenides MX2 (where M is molybdenum or tungsten and X is sulphur or selenium) are of technological interest for reducing wear in circumstances where liquid lubricants are impractical, such as in space technology, ultra-high vacuum or automotive transport. These materials are characterized by weak interatomic interactions (van der Waals forces) between their layered structures, allowing easy, low-strength shearing. Although these materials exhibit excellent friction and wear resistance and extended lifetime in vacuum, their tribological properties remain poor in the presence of humidity or oxygen, thereby limiting their technological applications in the Earth's atmosphere. But using MX2 in the form of isolated inorganic fullerene-like hollow nanoparticles similar to carbon fullerenes and nanotubes can improve its performance. Here we show that thin films of hollow MoS2 nanoparticles, deposited by a localized high-pressure arc discharge method, exhibit ultra-low friction (an order of magnitude lower than for sputtered MoS2 thin films) and wear in nitrogen and 45% humidity. We attribute this `dry' behaviour in humid environments to the presence of curved S-Mo-S planes that prevent oxidation and preserve the layered structure.
Lee, Han Sol; Choi, Kyunghee; Kim, Jin Sung; Yu, Sanghyuck; Ko, Kyeong Rok; Im, Seongil
2017-05-10
We report the fabrication of hybrid PN junction diode and complementary (CMOS) inverters, where 2D p-type MoTe 2 and n-type thin film InGaZnO (IGZO) are coupled for each device process. IGZO thin film was initially patterned by conventional photolithography either for n-type material in a PN diode or for n-channel of top-gate field-effect transistors (FET) in CMOS inverter. The hybrid PN junction diode shows a good ideality factor of 1.57 and quite a high ON/OFF rectification ratio of ∼3 × 10 4 . Under photons, our hybrid PN diode appeared somewhat stable only responding to high-energy photons of blue and ultraviolet. Our 2D nanosheet-oxide film hybrid CMOS inverter exhibits voltage gains as high as ∼40 at 5 V, low power consumption less than around a few nW at 1 V, and ∼200 μs switching dynamics.
Mitlin, David; , Ophus, Colin; Evoy, Stephane; Radmilovic, Velimir; Mohammadi, Reza; Westra, Ken; Nelson-Fitzpatrick, Nathaniel; Lee, Zonghoon
2010-07-20
A thin-film composition of nanocrystal molybdenum in an amorphous metallic matrix may be formed by co-sputtering Mo with aluminum or nickel. NEMS cantilevers may be formed from the film. The films exhibit high nanoindentation hardness and a reduction in roughness and intrinsic stress, while maintaining resistivity in the metallic range.
Selenization of CIS and CIGS layers deposited by chemical spray pyrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babu, B. J.; Egaas, B.; Velumani, S.
Cu(In1-xGax)Se2 (CIGS) thin films with x=0 (CIS) and x=0.3 (CIGS) were prepared on Mo-coated glass substrate by using chemical spray pyrolysis at a substrate temperature of 350 degrees C, followed by selenization treatment at 550 degrees C in selenium environment under N2 gas flow. X-ray diffraction patterns of as-deposited CIGS layers on Mo showed polycrystalline chalcopyrite phase with an intense (112) plane. Splitting of (204)/(220) and (116)/(312) planes for the film with x=0.3 reveals deviation of tetragonal nature. Field emission scanning electron microscopy cross-sectional images of selenized films showed clear re-crystallization of grains. During the selenization process of the CIGSmore » absorber, a thin interface layer of MoSe2 is formed. Line mapping of Mo/CIGS layer showed more gallium segregation at the interface of back contact resulting in band gap grading. Chemical composition and mapping of the as-deposited and selenized samples were determined by energy dispersive analysis of X-rays. This work leads to fabrication of low cost and large scale Mo/CIGS/CdS/ZnO/ZnO:Al device structure.« less
Preparation Of Copper Indium Gallium Diselenide Films For Solar Cells
Bhattacharya, Raghu N.; Contreras, Miguel A.; Keane, James; Tennant, Andrew L. , Tuttle, John R.; Ramanathan, Kannan; Noufi, Rommel
1998-08-08
High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.
Study of molybdenum-aluminum interdiffusion kinetics and contact resistance for VLSI applications
NASA Astrophysics Data System (ADS)
Singh, R. N.; Brown, D. M.; Kim, M. J.; Smith, G. A.
1985-12-01
Interdiffusion barrier characteristics of molybdenum thin film with aluminum-1% Si is studied between 733 and 763 K via sheet and contact resistance measurements, Rutherford backscattering spectrometry, secondary ion mass spectrometry, and x-ray diffraction analysis. The results indicate that thermal annealing of Mo/Al-1% Si thin film couples leads to MoAl12 compound formation initially as a nonplanar front, but extensive annealing results in complete transformation of Al-1% Si to MoAl12 and a significant increase in contact resistance. The interdiffusion kinetics is diffusion controlled and shows parabolic time dependence, incubation periods, and extremely high activation energy value of 5.9 eV. The incubation periods and an high activation energy values are explained by the presence of silicon precipitates at the Mo/Al-1% Si interface. Implications of these observations to VLSI device characteristics are discussed and a safe time-temperature processing regime is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Dong-Suk; Kang, Yu-Jin; Park, Jae-Hyung
Highlights: • We developed and investigated source/drain electrodes in oxide TFTs. • The Mo S/D electrodes showed good output characteristics. • Intrinsic TFT parameters were calculated by the transmission line method. - Abstract: This paper investigates the feasibility of a low-resistivity electrode material (Mo) for source/drain (S/D) electrodes in thin film transistors (TFTs). The effective resistances between Mo source/drain electrodes and amorphous zinc–tin-oxide (a-ZTO) thin film transistors were studied. Intrinsic TFT parameters were calculated by the transmission line method (TLM) using a series of TFTs with different channel lengths measured at a low source/drain voltage. The TFTs fabricated with Momore » source/drain electrodes showed good transfer characteristics with a field-effect mobility of 10.23 cm{sup 2}/V s. In spite of slight current crowding effects, the Mo source/drain electrodes showed good output characteristics with a steep rise in the low drain-to-source voltage (V{sub DS}) region.« less
NASA Astrophysics Data System (ADS)
Wang, Guomei
2017-11-01
We experimentally investigated the nonlinear saturable absorption characteristics of molybdenum ditelluride (MoTe2) and demonstrated a wavelength-switchable mode-locked erbium-doped fiber laser (EDFL) by using MoTe2 thin film on side-polished fiber (SPF) as saturable absorber. Here, the MoTe2 thin film was efficiently fabricated via mechanical exfoliation method and transferred onto the SPF with the assistance of polydimethylsiloxane (PDMS). MoTe2-covered SPF (MSPF) exhibits the nonlinear saturable absorption for pulses with different polarization states. Optical solitons with spectral bandwidth of 1.06 (1.31) nm centered at ∼1559 (∼1528) nm and pulse duration of 2.46 (2.04) ps can be obtained from the EDFL by adjusting the polarization controller (PC) properly. The time-bandwidth product (TBP) of the pulses was calculated as 0.322 (0.344).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Kuang-I, E-mail: kilin@mail.ncku.edu.tw; Chen, Yen-Jen; Wang, Bo-Yan
2016-03-21
Room-temperature photoreflectance (PR) and reflectance (R) spectroscopy are utilized to investigate the near-band-edge transitions of molybdenum disulfide (MoS{sub 2}) thin films grown on sapphire substrates by a hot-wall chemical vapor deposition system. The layer thickness and optical properties of the MoS{sub 2} thin films are confirmed by Raman spectroscopy, atomic force microscope, and photoluminescence (PL) analysis. The B exciton shows relatively weak PL intensity in comparing with the A exciton even for monolayer MoS{sub 2} films. In the R spectrum of few‐layer MoS{sub 2}, it is not possible to clearly observe exciton related features. The PR spectra have two sharp,more » derivative-like features on a featureless background. Throughout the PR lineshape fitting, the transition energies are designated as the A and B excitons at the K-point of the Brillouin zone, but at room temperature there seems to be no distinguishable feature corresponding to an H‐point transition for the mono- and few-layer MoS{sub 2} films unlike in bulk. These transition energies are slightly larger than those obtained by PL, which is attributed to the Stokes shifts related to doping level. The obtained values of valence-band spin-orbit splitting are in good agreement with those from other experimental methods. By comparing the PR lineshapes, the dominant modulation mechanism is attributed to variations of the exciton transition energies due to change in the built-in electric field. On the strength of this study, PR spectroscopy is demonstrated as a powerful technique for characterizing the near-band-edge transitions of MoS{sub 2} from monolayer to bulk.« less
Vanadium Oxide Thin Films Alloyed with Ti, Zr, Nb, and Mo for Uncooled Infrared Imaging Applications
NASA Astrophysics Data System (ADS)
Ozcelik, Adem; Cabarcos, Orlando; Allara, David L.; Horn, Mark W.
2013-05-01
Microbolometer-grade vanadium oxide (VO x ) thin films with 1.3 < x < 2.0 were prepared by pulsed direct-current (DC) sputtering using substrate bias in a controlled oxygen and argon environment. These films were systematically alloyed with Ti, Nb, Mo, and Zr using a second gun and radiofrequency (RF) reactive co-sputtering to probe the effects of the transition metals on the film charge transport characteristics. The results reveal that the temperature coefficient of resistance (TCR) and resistivity are unexpectedly similar for alloyed and unalloyed films up to alloy compositions in the ˜20 at.% range. Analysis of the film structures for the case of the 17% Nb-alloyed film by glancing-angle x-ray diffraction and transmission electron microscopy shows that the microstructure remains even with the addition of high concentrations of alloy metal, demonstrating the robust character of the VO x films to maintain favorable electrical transport properties for bolometer applications. Postdeposition thermal annealing of the alloyed VO x films further reveals improvement of electrical properties compared with unalloyed films, indicating a direction for further improvements in the materials.
Aqueous, Room Temperature Deposition of Silicon, Molybdenum and Germanium onto Aluminum Substrates
NASA Astrophysics Data System (ADS)
Krishnamurthy, Aarti Krishna
Electrochemical deposition of active materials such as Si, Mo and Ge is notoriously difficult, so they are typically deposited using expensive vacuum methods such as chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), and magnetron sputtering. However, for most materials, electrochemical deposition has significant advantages of cost, scalability, and manufacturability. There are two main challenges in depositing these materials from aqueous electrolytes at room temperature, namely their highly cathodic standard reduction potential and the formation of native oxides. This has led researchers to use non-aqueous electrolytes such as organic solvents, room temperature ionic liquids (RTILs), and high temperature molten salts. However, these have drawbacks over aqueous electrolytes such as high cost, low conductivity, flammability, and corrosive behavior. During my PhS studies, these two challenges were overcome by using the galvanic method of deposition and by including HF in the electrolyte. Si thin films are employed in a variety of technologies, including microelectronic and photovoltaic devices, Li ion battery anodes, and corrosion-resistant coatings. A galvanic and a combined galvanic/electroless method of Si deposition were developed using aqueous electrolytes at room temperature to obtain nanoporous and compact films, respectively. These films were characterized to understand the surface morphology, thickness, crystallinity, growth rate, composition and nucleation behavior. Approximately 7-10 µm thick compact Si films were achieved with a deposition time of around 28 hours. The galvanic method of deposition was also extended to deposit compact Mo films. Mo thin films have a number of technological applications, including back contacts for CIGS/CZTS photovoltaic devices and corrosion-resistant coatings. Mo thin films were also thoroughly characterized and approximately 4.5 µm thick films were obtained after 3 hours. Similar to Si depostion, a galvanic method of deposition and the galvanic/electroless method of deposition was tested for the deposition of Ge. However no Ge deposit could be consistently obtained, probably due to oxyanion formation in aqueous hexaflurogermante solution.
Hussain, Sajjad; Singh, Jai; Vikraman, Dhanasekaran; Singh, Arun Kumar; Iqbal, Muhammad Zahir; Khan, Muhammad Farooq; Kumar, Pushpendra; Choi, Dong-Chul; Song, Wooseok; An, Ki-Seok; Eom, Jonghwa; Lee, Wan-Gyu; Jung, Jongwan
2016-01-01
We report a simple and mass-scalable approach for thin MoS2 films via RF sputtering combined with the post-deposition annealing process. We have prepared as-sputtered film using a MoS2 target in the sputtering system. The as-sputtered film was subjected to post-deposition annealing to improve crystalline quality at 700 °C in a sulfur and argon environment. The analysis confirmed the growth of continuous bilayer to few-layer MoS2 film. The mobility value of ~29 cm2/Vs and current on/off ratio on the order of ~104 were obtained for bilayer MoS2. The mobility increased up to ~173–181 cm2/Vs, respectively, for few-layer MoS2. The mobility of our bilayer MoS2 FETs is larger than any previously reported values of single to bilayer MoS2 grown on SiO2/Si substrate with a SiO2 gate oxide. Moreover, our few-layer MoS2 FETs exhibited the highest mobility value ever reported for any MoS2 FETs with a SiO2 gate oxide. It is presumed that the high mobility behavior of our film could be attributed to low charged impurities of our film and dielectric screening effect by an interfacial MoOxSiy layer. The combined preparation route of RF sputtering and post-deposition annealing process opens up the novel possibility of mass and batch production of MoS2 film. PMID:27492282
Hori, Tetsuro; Moritou, Hiroki; Fukuoka, Naoki; Sakamoto, Junki; Fujii, Akihiko; Ozaki, Masanori
2010-01-01
Organic thin-film solar cells with a conducting polymer (CP)/fullerene (C60) interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/poly(3-hexylthiophene) (PAT6)/Au have been improved by the insertion of molybdenum trioxide (VI) (MoO3) and zinc oxide charge transport buffer layers. The enhanced photovoltaic properties have been discussed, taking into consideration the ground-state charge transfer between PAT6 and MoO3 by measurement of the differential absorption spectra and the suppressed contact resistance at the interface between the organic and buffer layers. PMID:28883360
The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route
NASA Astrophysics Data System (ADS)
Li, Ji; Ma, Tuteng; Wei, Ming; Liu, Weifeng; Jiang, Guoshun; Zhu, Changfei
2012-06-01
An electrodeposition route for preparing Cu2ZnSnSe4 thin films for thin film solar cell absorber layers is demonstrated. The Cu2ZnSnSe4 thin films are prepared by co-electrodeposition Cu-Zn-Sn metallic precursor and subsequently annealing in element selenium atmosphere. The structure, composition and optical properties of the films were investigated by X-ray diffraction (XRD), Raman spectrometry, energy dispersive spectrometry (EDS) and UV-VIS absorption spectroscopy. The Cu2ZnSnSe4 thin film with high crystalline quality was obtained, the band gap and absorption coefficient were 1.0 eV and 10-4 cm-1, which is quite suitable for solar cells fabrication. A solar cell with the structure of ZnO:Al/i-ZnO/CdS/Cu2ZnSnSe4/Mo/glass was fabricated and achieved an conversion efficiency of 1.7%.
NASA Astrophysics Data System (ADS)
Piazzoni, C.; Blomqvist, M.; Podestà, A.; Bardizza, G.; Bonati, M.; Piseri, P.; Milani, P.; Davies, C.; Hatto, P.; Ducati, C.; Sedláčková, K.; Radnóczi, G.
2008-01-01
We report the production and characterization of nanocomposite thin films consisting of a titanium nitride matrix with embedded molybdenum disulphide fullerene-like nanoparticles. This was achieved by combining a cluster source generating a pulsed supersonic beam of MoS2 clusters with an industrial cathodic arc reactive evaporation apparatus used for TiN deposition. Cluster-assembled films show the presence of MoS2 nanocages and nanostructures and the survival of such structures dispersed in the TiN matrix in the co-deposited samples. Nanotribological characterization by atomic force microscopy shows that the presence of MoS2 nanoparticles even in very low concentration modifies the behaviour of the TiN matrix.
Cold cathode emission studies on topographically modified few layer and single layer MoS2 films
NASA Astrophysics Data System (ADS)
Gaur, Anand P. S.; Sahoo, Satyaprakash; Mendoza, Frank; Rivera, Adriana M.; Kumar, Mohit; Dash, Saroj P.; Morell, Gerardo; Katiyar, Ram S.
2016-01-01
Nanostructured materials, such as carbon nanotubes, are excellent cold cathode emitters. Here, we report comparative field emission (FE) studies on topographically tailored few layer MoS2 films consisting of ⟨0001⟩ plane perpendicular (⊥) to c-axis (i.e., edge terminated vertically aligned) along with planar few layer and monolayer (1L) MoS2 films. FE measurements exhibited lower turn-on field Eto (defined as required applied electric field to emit current density of 10 μA/cm2) ˜4.5 V/μm and higher current density ˜1 mA/cm2, for edge terminated vertically aligned (ETVA) MoS2 films. However, Eto magnitude for planar few layer and 1L MoS2 films increased further to 5.7 and 11 V/μm, respectively, with one order decrease in emission current density. The observed differences in emission behavior, particularly for ETVA MoS2 is attributed to the high value of geometrical field enhancement factor (β), found to be ˜1064, resulting from the large confinement of localized electric field at edge exposed nanograins. Emission behavior of planar few layers and 1L MoS2 films are explained under a two step emission mechanism. Our studies suggest that with further tailoring the microstructure of ultra thin ETVA MoS2 films would result in elegant FE properties.
Preparation of 2D MoSe2/PEDOT:PSS composite and its thermoelectric properties
NASA Astrophysics Data System (ADS)
Li, Xia; Liu, Congcong; Wang, Tongzhou; Wang, Wenfang; Wang, Xiaodong; Jiang, Qinglin; Jiang, Fengxing; Xu, Jingkun
2017-11-01
Nowadays, inorganic/polymer composites have attracted significant interest in thermoelectric field, since the composite materials usually achieve their respective advantages complementary to each other. In this work, molybdenum diselenide (MoSe2) was synthesized by a facile hydrothermal method. Solution processible two-dimensional (2D) MoSe2 nanosheets (NSs) were successfully obtained using dimethylsulfoxide (DMSO) solvent or lithium intercalation procedure. Combined with Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), MoSe2/PEDOT:PSS composite thin films were fabricated by direct vacuum-filtration method. Thermoelectric properties of composite thin films were investigated systematically and found that 2D MoSe2 NSs and PEDOT:PSS have the synergistic effect on improving thermoelectric properties. The maximum power factor was calculated to be 48.6 µW m-1 K-2 with 5 wt% 2D MoSe2 NSs embedding into PEDOT:PSS matrix, which is almost 69% higher than that of pure PEDOT:PSS. These results demonstrate that 2D inorganic/polymer composite method is one of promising strategies to get high-performance polymer-based thermoelectric composites.
Kwon, Junyeon; Hong, Young Ki; Kwon, Hyuk-Jun; Park, Yu Jin; Yoo, Byungwook; Kim, Jiwan; Grigoropoulos, Costas P; Oh, Min Suk; Kim, Sunkook
2015-01-21
We report on optically transparent thin film transistors (TFTs) fabricated using multilayered molybdenum disulfide (MoS2) as the active channel, indium tin oxide (ITO) for the back-gated electrode and indium zinc oxide (IZO) for the source/drain electrodes, respectively, which showed more than 81% transmittance in the visible wavelength. In spite of a relatively large Schottky barrier between MoS2 and IZO, the n-type behavior with a field-effect mobility (μ(eff)) of 1.4 cm(2) V(-1) s(-1) was observed in as-fabricated transparent MoS2 TFT. In order to enhance the performances of transparent MoS2 TFTs, a picosecond pulsed laser was selectively irradiated onto the contact region of the IZO electrodes. Following laser annealing, μ(eff) increased to 4.5 cm(2) V(-1) s(-1), and the on-off current ratio (I(on)/I(off)) increased to 10(4), which were attributed to the reduction of the contact resistance between MoS2 and IZO.
Huang, Wei; Guo, Peijun; Zeng, Li; Li, Ran; Wang, Binghao; Wang, Gang; Zhang, Xinan; Chang, Robert P H; Yu, Junsheng; Bedzyk, Michael J; Marks, Tobin J; Facchetti, Antonio
2018-04-25
Charge transport and film microstructure evolution are investigated in a series of polyethylenimine (PEI)-doped (0.0-6.0 wt%) amorphous metal oxide (MO) semiconductor thin film blends. Here, PEI doping generality is broadened from binary In 2 O 3 to ternary (e.g., In+Zn in IZO, In+Ga in IGO) and quaternary (e.g., In+Zn+Ga in IGZO) systems, demonstrating the universality of this approach for polymer electron doping of MO matrices. Systematic comparison of the effects of various metal ions on the electronic transport and film microstructure of these blends are investigated by combined thin-film transistor (TFT) response, AFM, XPS, XRD, X-ray reflectivity, and cross-sectional TEM. Morphological analysis reveals that layered MO film microstructures predominate in PEI-In 2 O 3 , but become less distinct in IGO and are not detectable in IZO and IGZO. TFT charge transport measurements indicate a general coincidence of a peak in carrier mobility (μ peak ) and overall TFT performance at optimal PEI doping concentrations. Optimal PEI loadings that yield μ peak values depend not only on the MO elemental composition but also, equally important, on the metal atomic ratios. By investigating the relationship between the MO energy levels and PEI doping by UPS, it is concluded that the efficiency of PEI electron-donation is highly dependent on the metal oxide matrix work function in cases where film morphology is optimal, as in the IGO compositions. The results of this investigation demonstrate the broad generality and efficacy of PEI electron doping applied to electronically functional metal oxide systems and that the resulting film microstructure, morphology, and energy level modifications are all vital to understanding charge transport in these amorphous oxide blends.
Nakatsuka, Yuko; Pollok, Kilian; Wieduwilt, Torsten; Langenhorst, Falko; Schmidt, Markus A; Fujita, Koji; Murai, Shunsuke; Tanaka, Katsuhisa; Wondraczek, Lothar
2017-04-01
Magnetooptical (MO) glasses and, in particular, Faraday rotators are becoming key components in lasers and optical information processing, light switching, coding, filtering, and sensing. The common design of such Faraday rotator materials follows a simple path: high Faraday rotation is achieved by maximizing the concentration of paramagnetic ion species in a given matrix material. However, this approach has reached its limits in terms of MO performance; hence, glass-based materials can presently not be used efficiently in thin film MO applications. Here, a novel strategy which overcomes this limitation is demonstrated. Using vitreous films of x FeO·(100 - x )SiO 2 , unusually large Faraday rotation has been obtained, beating the performance of any other glassy material by up to two orders of magnitude. It is shown that this is due to the incorporation of small, ferromagnetic clusters of atomic iron which are generated in line during laser deposition and rapid condensation of the thin film, generating superparamagnetism. The size of these clusters underbids the present record of metallic Fe incorporation and experimental verification in glass matrices.
MoOx thin films deposited by magnetron sputtering as an anode for aqueous micro-supercapacitors
Liu, Can; Li, Zhengcao; Zhang, Zhengjun
2013-01-01
In order to examine the potential application of non-stoichiometric molybdenum oxide as anode materials for aqueous micro-supercapacitors, conductive MoOx films (2 ⩽ x ⩽ 2.3) deposited via RF magnetron sputtering at different temperatures were systematically studied for composition, structure and electrochemical properties in an aqueous solution of Li2SO4. The MoOx (x ≈ 2.3) film deposited at 150 °C exhibited a higher areal capacitance (31 mF cm−2 measured at 5 mV s−1), best rate capability and excellent stability at potentials below −0.1 V versus saturated calomel electrode, compared to the films deposited at room temperature and at higher temperatures. These superior properties were attributed to the multi-valence composition and mixed-phase microstructure, i.e., the coexistence of MoO2 nanocrystals and amorphous MoOx (2.3 < x ⩽ 3). A mechanism combining Mo(IV) oxidation/reduction on the hydrated MoO2 grain surfaces and cation intercalation/extrusion is proposed to illustrate the pseudo-capacitive process. PMID:27877625
MoO x thin films deposited by magnetron sputtering as an anode for aqueous micro-supercapacitors.
Liu, Can; Li, Zhengcao; Zhang, Zhengjun
2013-12-01
In order to examine the potential application of non-stoichiometric molybdenum oxide as anode materials for aqueous micro-supercapacitors, conductive MoO x films (2 ⩽ x ⩽ 2.3) deposited via RF magnetron sputtering at different temperatures were systematically studied for composition, structure and electrochemical properties in an aqueous solution of Li 2 SO 4 . The MoO x ( x ≈ 2.3) film deposited at 150 °C exhibited a higher areal capacitance (31 mF cm -2 measured at 5 mV s -1 ), best rate capability and excellent stability at potentials below -0.1 V versus saturated calomel electrode, compared to the films deposited at room temperature and at higher temperatures. These superior properties were attributed to the multi-valence composition and mixed-phase microstructure, i.e., the coexistence of MoO 2 nanocrystals and amorphous MoO x (2.3 < x ⩽ 3). A mechanism combining Mo(IV) oxidation/reduction on the hydrated MoO 2 grain surfaces and cation intercalation/extrusion is proposed to illustrate the pseudo-capacitive process.
MoOx thin films deposited by magnetron sputtering as an anode for aqueous micro-supercapacitors
NASA Astrophysics Data System (ADS)
Liu, Can; Li, Zhengcao; Zhang, Zhengjun
2013-12-01
In order to examine the potential application of non-stoichiometric molybdenum oxide as anode materials for aqueous micro-supercapacitors, conductive MoOx films (2 ⩽ x ⩽ 2.3) deposited via RF magnetron sputtering at different temperatures were systematically studied for composition, structure and electrochemical properties in an aqueous solution of Li2SO4. The MoOx (x ≈ 2.3) film deposited at 150 °C exhibited a higher areal capacitance (31 mF cm-2 measured at 5 mV s-1), best rate capability and excellent stability at potentials below -0.1 V versus saturated calomel electrode, compared to the films deposited at room temperature and at higher temperatures. These superior properties were attributed to the multi-valence composition and mixed-phase microstructure, i.e., the coexistence of MoO2 nanocrystals and amorphous MoOx (2.3 < x ⩽ 3). A mechanism combining Mo(IV) oxidation/reduction on the hydrated MoO2 grain surfaces and cation intercalation/extrusion is proposed to illustrate the pseudo-capacitive process.
Deposition of highly textured AlN thin films by reactive high power impulse magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreira, Milena A.; Törndahl, Tobias; Katardjiev, Ilia
2015-03-15
Aluminum nitride thin films were deposited by reactive high power impulse magnetron sputtering (HiPIMS) and pulsed direct-current on Si (100) and textured Mo substrates, where the same deposition conditions were used for both techniques. The films were characterized by x-ray diffraction and atomic force microscopy. The results show a pronounced improvement in the AlN crystalline texture for all films deposited by HiPIMS on Si. Already at room temperature, the HiPIMS films exhibited a strong preferred (002) orientation and at 400 °C, no contributions from other orientations were detected. Despite the low film thickness of only 200 nm, an ω-scan full width atmore » half maximum value of 5.1° was achieved on Si. The results are attributed to the high ionization of sputtered material achieved in HiPIMS. On textured Mo, there was no significant difference between the deposition techniques.« less
BiVO4 thin film photoanodes grown by chemical vapor deposition.
Alarcón-Lladó, Esther; Chen, Le; Hettick, Mark; Mashouf, Neeka; Lin, Yongjing; Javey, Ali; Ager, Joel W
2014-01-28
BiVO4 thin film photoanodes were grown by vapor transport chemical deposition on FTO/glass substrates. By controlling the flow rate, the temperatures of the Bi and V sources (Bi metal and V2O5 powder, respectively), and the temperature of the deposition zone in a two-zone furnace, single-phase monoclinic BiVO4 thin films can be obtained. The CVD-grown films produce global AM1.5 photocurrent densities up to 1 mA cm(-2) in aqueous conditions in the presence of a sacrificial reagent. Front illuminated photocatalytic performance can be improved by inserting either a SnO2 hole blocking layer and/or a thin, extrinsically Mo doped BiVO4 layer between the FTO and the CVD-grown layer. The incident photon to current efficiency (IPCE), measured under front illumination, for BiVO4 grown directly on FTO/glass is about 10% for wavelengths below 450 nm at a bias of +0.6 V vs. Ag/AgCl. For BiVO4 grown on a 40 nm SnO2/20 nm Mo-doped BiVO4 back contact, the IPCE is increased to over 40% at wavelengths below 420 nm.
NASA Astrophysics Data System (ADS)
Ravichandran, K.; Dineshbabu, N.; Arun, T.; Manivasaham, A.; Sindhuja, E.
2017-01-01
Transparent conducting oxide films of undoped, Mo doped, Mo + F co-doped ZnO were deposited using a facile homemade nebulizer spray pyrolysis technique. The effects of Mo and F doping on the structural, optical, electrical and surface morphological properties were investigated using XRD, UV-vis-NIR spectroscopy, I-V and Hall probe techniques, FESEM and AFM, and XPS, respectively. The XRD analysis confirms that all the films are well crystallized with hexagonal wurtzite structure. All the synthesized samples exhibit high transmittance (above 85%) in the visible region. The current-voltage (I-V) characteristics show the ohmic conduction nature of the films. The Hall probe measurements show that the synergistic effects of Mo and F doping cause desirable improvements in the quality factor of the ZnO films. A minimum resistivity of 5.12 × 10-3 Ω cm with remarkably higher values of mobility and carrier concentration is achieved for Mo (2 at.%) + F (15 at.%) co-doped ZnO films. A considerable variation in the intensity of deep level emission caused by Mo and F doping is observed in the photoluminescence (PL) studies. The presence of the constituent elements in the samples is confirmed by XPS analysis.
Tunneling Spectroscopy of MoN and NbxTi1-xN Thin Films Grown by Atomic Layer Deposition
NASA Astrophysics Data System (ADS)
Cao, Chaoyue; Groll, Nickolas; Klug, Jeffrey; Becker, Nicholas; Altin, Serdar; Proslier, Thomas; Zasadzinski, John
2014-03-01
Tunneling I(V) and dI/dV vs. V are reported on superconducting thin films of MoN and NbxTi1-xN using a point contact method with a Au tip. The films are grown by the chemical process of atomic layer deposition (ALD) onto various substrates (Si, quartz, sapphire) held at 450 C. Resistively measured superconducting Tc values up to 12K and 13K are found for the MoN and NbxTi1-xN respectively. Artificial tunnel barriers (1-3 nm thick) of Al2O3, also grown by ALD, are shown to provide much improved tunneling characteristics compared to the native oxides. Relatively high quality gap features are observed with zero-bias conductance values as low as ~ 10% of the high bias values. Gap parameters Δ ~ 2.0meV are found for the MoN and Δ ~ 2.0-2.4 meV for the NbxTi1-xN which follow the BCS temperature dependence and close near the measured film Tc indicating bulk superconductivity at the surface. The suitability of such conformal ALD grown films for potential superconducting devices is discussed. This work was supported by the U.S. Department of Energy, Office of Science under contract No. DE-AC02-06CH11357.
NASA Astrophysics Data System (ADS)
Piazzoni, C.; Buttery, M.; Hampson, M. R.; Roberts, E. W.; Ducati, C.; Lenardi, C.; Cavaliere, F.; Piseri, P.; Milani, P.
2015-07-01
Fullerene-like MoS2 and WS2 nanoparticles can be used as building blocks for the fabrication of fluid and solid lubricants. Metal dichalcogenide films have a very low friction coefficient in vacuum, therefore they have mostly been used as solid lubricants in space and vacuum applications. Unfortunately, their use is significantly hampered by the fact that in the presence of humidity, oxygen and moisture, the low-friction properties of these materials rapidly degrade due to oxidation. The use of closed-cage MoS2 and WS2 nanoparticles may eliminate this problem, although the fabrication of lubricant thin films starting from dichalcogenide nanoparticles is, to date, a difficult task. Here we demonstrate the use of supersonic cluster beam deposition for the coating of complex mechanical elements (angular contact ball bearings) with nanostructured MoS2 and WS2 thin films. We report structural and tribological characterization of the coatings in view of the optimization of tribological performances for aerospace applications.
Multilayer films with sharp, stable interfaces for use in EUV and soft X-ray application
Barbee, Jr., Troy W.; Bajt, Sasa
2002-01-01
The reflectivity and thermal stability of Mo/Si (molybdenum/silicon) multilayer films, used in soft x-ray and extreme ultraviolet region, is enhanced by deposition of a thin layer of boron carbide (e.g., B.sub.4 C) between alternating layers of Mo and Si. The invention is useful for reflective coatings for soft X-ray and extreme ultraviolet optics, multilayer for masks, coatings for other wavelengths and multilayers for masks that are more thermally stable than pure Mo/Si multilayers
Spin-resolved photoemission study of epitaxially grown MoSe 2 and WSe 2 thin films
Mo, Sung-Kwan; Hwang, Choongyu; Zhang, Yi; ...
2016-09-12
Few-layer thick MoSe 2 and WSe 2 possess non-trivial spin textures with sizable spin splitting due to the inversion symmetry breaking embedded in the crystal structure and strong spin–orbit coupling. Here, we report a spin-resolved photoemission study of MoSe 2 and WSe 2 thin film samples epitaxially grown on a bilayer graphene substrate. Furthermore, we only found spin polarization in the single- and trilayer samples—not in the bilayer sample—mostly along the out-of-plane direction of the sample surface. The measured spin polarization is found to be strongly dependent on the light polarization as well as the measurement geometry, which reveals intricatemore » coupling between the spin and orbital degrees of freedom in this class of material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Young Ki; Kwon, Junyeon; Hong, Seongin
Various strategies and mechanisms have been suggested for investigating a Schottky contact behavior in molybdenum disulfide (MoS{sub 2}) thin-film transistor (TFT), which are still in much debate and controversy. As one of promising breakthrough for transparent electronics with a high device performance, we have realized MoS{sub 2} TFTs with source/drain electrodes consisting of transparent bi-layers of a conducting oxide over a thin film of low work function metal. Intercalation of a low work function metal layer, such as aluminum, between MoS{sub 2} and transparent source/drain electrodes makes it possible to optimize the Schottky contact characteristics, resulting in about 24-fold andmore » 3 orders of magnitude enhancement of the field-effect mobility and on-off current ratio, respectively, as well as transmittance of 87.4 % in the visible wavelength range.« less
Cleaning of optical surfaces by capacitively coupled RF discharge plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, P. K., E-mail: praveenyadav@rrcat.gov.in; Rai, S. K.; Nayak, M.
2014-04-24
In this paper, we report cleaning of carbon capped molybdenum (Mo) thin film by in-house developed radio frequency (RF) plasma reactor, at different powers and exposure time. Carbon capped Mo films were exposed to oxygen plasma for different durations at three different power settings, at a constant pressure. After each exposure, the thickness of the carbon layer and the roughness of the film were determined by hard x-ray reflectivity measurements. It was observed that most of the carbon film got removed in first 15 minutes exposure. A high density layer formed on top of the Mo film was also observedmore » and it was noted that this layer cannot be removed by successive exposures at different powers. A significant improvement in interface roughness with a slight improvement in top film roughness was observed. The surface roughness of the exposed and unexposed samples was also confirmed by atomic force microscopy measurements.« less
Yi, Qinghua; Zhai, Pengfei; Sun, Yinghui; Lou, Yanhui; Zhao, Jie; Sun, Baoquan; Patterson, Brian; Luo, Hongmei; Zhang, Wenrui; Jiao, Liang; Wang, Haiyan; Zou, Guifu
2015-08-26
In this study, we report the growth of molybdenum oxide (MoOx) film by polymer-assisted deposition (PAD), an environmentally friendly strategy in an aqueous system. The MoOx film has good crystal quality and is dense and smooth. The transparency of the film is >95% in the wavelength range of 300-900 nm. The device based on P3HT:PCBM absorber material was fabricated. The solar cell with PAD-MoOx as an anode interfacial layer exhibits great performance, even better than that of a solar cell with PSS or evaporated MoOx as an anode interfacial layer. More importantly, the solar cells based on the growth of MoOx have a longer term stability than that of solar cells based on PSS. These results demonstrate the aqueous PAD technology provides an alternative strategy not only for the thin films' growth of applied materials but also for the solution processing for the low-cost fabrication of future materials to be applied in the field of solar cells.
Ammonia gas sensors based on poly (3-hexylthiophene)-molybdenum disulfide film transistors.
Xie, Tao; Xie, Guangzhong; Su, Yuanjie; Hongfei, Du; Ye, Zongbiao; Jiang, Yadong
2016-02-12
In this work, in order to enhance the recovery performance of organic thin film transistors (OTFTs) ammonia (NH3) sensors, poly (3-hexylthiophene) (P3HT) and molybdenum disulfide (MoS2) were combined as sensitive materials. Different sensitive film structures as active layers of OTFTs, i.e., P3HT-MoS2 composite film, P3HT/MoS2 bilayer film and MoS2/P3HT bilayer film were fabricated by spray technology. OTFT gas sensors based on P3HT-MoS2 composite film showed a shorter recovery time than others when the ammonia concentration changed from 4 to 20 ppm. Specifically, x-ray diffraction (XRD), Raman and UV-visible absorption were employed to explore the interface properties between P3HT and single-layer MoS2. Through the complementary characterization, a mechanism based on charge transfer is proposed to explain the physical originality of these OTFT gas sensors: closer interlayer d-spacing and better π-π stacking of the P3HT chains in composite film have ensured a short recovery time of OTFT gas sensors. Moreover, sensing mechanisms of OTFTs were further studied by comparing the device performance in the presence of nitrogen or dry air as a carrier gas. This work not only strengthens the fundamental understanding of the sensing mechanism, but provides a promising approach to optimizing the OTFT gas sensors.
Spray-combustion synthesis: Efficient solution route to high-performance oxide transistors
Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P. H.; Bedzyk, Michael J.; Ferragut, Rafael; Marks, Tobin J.; Facchetti, Antonio
2015-01-01
Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations. PMID:25733848
Spray-combustion synthesis: efficient solution route to high-performance oxide transistors.
Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P H; Bedzyk, Michael J; Ferragut, Rafael; Marks, Tobin J; Facchetti, Antonio
2015-03-17
Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations.
Bhattacharya, Raghu N.; Contreras, Miguel A.; Keane, James; Tennant, Andrew L.; Tuttle, John R.; Ramanathan, Kannan; Noufi, Rommel
1998-03-24
High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.
MoOx modified ZnGaO based transparent conducting oxides
NASA Astrophysics Data System (ADS)
Dutta, Titas; Gupta, P.; Bhosle, V.; Narayan, J.
2009-03-01
We report here the growth of high work function bilayered structures of thin MoOx (2.0
Status of flexible CIS research at ISET
NASA Technical Reports Server (NTRS)
Basol, B. M.; Kapur, V. K.; Minnick, A.; Halani, A.; Leidholm, C. R.
1994-01-01
Polycrystalline thin film solar cells fabricated on light-weight, flexible substrates are very attractive for space applications. In this work CulnSe2 (CIS) based thin film devices were processed on metallic foil substrates using the selenization technique. CIS deposition method involved reaction of electron-bean evaporated Cu-In precursor layers with a selenizing atmosphere at around 400 C. Several metallic foils such as Mo, Ti, Al, Ni, and Cu were evaluated as possible substrates for these devices. Solar cells with AM1.5 efficiencies of 9.0-9.34 percent and good mechanical integrity were demonstrated on Mo and Ti foils. Monolithic integration of these devices was also demonstrated up to 4 in x 4 in size.
Scalable Patterning of MoS2 Nanoribbons by Micromolding in Capillaries.
Hung, Yu-Han; Lu, Ang-Yu; Chang, Yung-Huang; Huang, Jing-Kai; Chang, Jeng-Kuei; Li, Lain-Jong; Su, Ching-Yuan
2016-08-17
In this study, we report a facile approach to prepare dense arrays of MoS2 nanoribbons by combining procedures of micromolding in capillaries (MIMIC) and thermolysis of thiosalts ((NH4)2MoS4) as the printing ink. The obtained MoS2 nanoribbons had a thickness reaching as low as 3.9 nm, a width ranging from 157 to 465 nm, and a length up to 2 cm. MoS2 nanoribbons with an extremely high aspect ratio (length/width) of ∼7.4 × 10(8) were achieved. The MoS2 pattern can be printed on versatile substrates, such as SiO2/Si, sapphire, Au film, FTO/glass, and graphene-coated glass. The degree of crystallinity of the as-prepared MoS2 was discovered to be adjustable by varying the temperature through postannealing. The high-temperature thermolysis (1000 °C) results in high-quality conductive samples, and field-effect transistors based on the patterned MoS2 nanoribbons were demonstrated and characterized, where the carrier mobility was comparable to that of thin-film MoS2. In contrast, the low-temperature-treated samples (170 °C) result in a unique nanocrystalline MoSx structure (x ≈ 2.5), where the abundant and exposed edge sites were obtained from highly dense arrays of nanoribbon structures by this MIMIC patterning method. The patterned MoSx was revealed to have superior electrocatalytic efficiency (an overpotential of ∼211 mV at 10 mA/cm(2) and a Tafel slope of 43 mV/dec) in the hydrogen evolution reaction (HER) when compared to the thin-film MoS2. The report introduces a new concept for rapidly fabricating cost-effective and high-density MoS2/MoSx nanostructures on versatile substrates, which may pave the way for potential applications in nanoelectronics/optoelectronics and frontier energy materials.
NASA Astrophysics Data System (ADS)
Falola, Bamidele Daniel
Energy storage provides sustainability when coupled with renewable but intermittent energy sources such as solar, wave and wind power, and electrochemical supercapacitors represent a new storage technology with high power and energy density. For inclusion in supercapacitors, transition metal oxide and sulfide electrodes such as RuO2, IrO2, TiS2, and MoS2 exhibit rapid faradaic electron-transfer reactions combined with low resistance. The pseudocapacitance of RuO2 is about 720 F/g, and is 100 times greater than double-layer capacitance of activated carbon electrodes. Due to the two-dimensional layered structure of MoS2, it has proven to be an excellent electrode material for electrochemical supercapacitors. Cathodic electrodeposition of MoS2 onto glassy carbon electrodes is obtained from electrolytes containing (NH4)2MoS 4 and KCl. Annealing the as-deposited Mo sulfide deposit improves the capacitance by a factor of 40x, with a maximum value of 360 F/g for 50 nm thick MoS2 films. The effects of different annealing conditions were investigated by XRD, AFM and charge storage measurements. The specific capacitance measured by cyclic voltammetry is highest for MoS2 thin films annealed at 500°C for 3h and much lower for films annealed at 700°C for 1 h. Inclusion of copper as a dopant element into electrodeposited MoS2 thin films for reducing iR drop during film charge/discharge is also studied. Thin films of Cu-doped MoS2 are deposited from aqueous electrolytes containing SCN-, which acts as a complexing agent to shift the cathodic Cu deposition potential, which is much more anodic than that of MoS2. Annealed, Cu-doped MoS2 films exhibit enhanced charge storage capability about 5x higher than undoped MoS2 films. Coal combustion is currently the largest single anthropogenic source of CO2 emissions, and due to the growing concerns about climate change, several new technologies have been developed to mitigate the problem, including oxyfuel coal combustion, which makes CO2 sequestration easier. One complication of oxyfuel coal combustion is that corrosion problems can be exacerbated due to flue gas recycling, which is employed to dilute the pure O2 feed and reduce the flame temperature. Refractory metal diffusion coatings of Ti and Zr atop P91 steel were created and tested for their ability to prevent corrosion in an oxidizing atmosphere at elevated temperature. Using pack cementation, diffusion coatings of thickness approximately 12 and 20 microm are obtained for Ti and Zr, respectively. The effects of heating to 950°C for 24 hr in 5% O2 in He are studied in situ by thermogravimetric analyses (TGA), and ex situ by SEM analyses and depth profiling by EDX. For Ti-coated, Zr-coated and uncoated P91 samples, extended heating in an oxidizing environment causes relatively thick oxide growth, but extensive oxygen penetration greater than 2.7 mm below the sample surface, and eventual oxide exfoliation, are observed only for the uncoated P91 sample. For the Ti- and Zr-coated samples, oxygen penetrates approximately 16 and 56 microm, respectively, below the surface. in situ TGA verifies that Ti-and Zr-coated P91 samples undergo far smaller mass changes during corrosion than uncoated samples, reaching close to steady state mass after approximately four hours.
Fast growth rate of epitaxial β-Ga2O3 by close coupled showerhead MOCVD
NASA Astrophysics Data System (ADS)
Alema, Fikadu; Hertog, Brian; Osinsky, Andrei; Mukhopadhyay, Partha; Toporkov, Mykyta; Schoenfeld, Winston V.
2017-10-01
We report on the growth of epitaxial β-Ga2O3 thin films on c-plane sapphire substrates using a close coupled showerhead MOCVD reactor. Ga(DPM)3 (DPM = dipivaloylmethanate), triethylgallium (TEGa) and trimethylgallium (TMGa) metal organic (MO) precursors were used as Ga sources and molecular oxygen was used for oxidation. Films grown from each of the Ga sources had high growth rates, with up to 10 μm/hr achieved using a TMGa precursor at a substrate temperature of 900 °C. As confirmed by X-ray diffraction, the films grown from each of the Ga sources were the monoclinic (2 bar 0 1) oriented β-Ga2O3 phase. The optical bandgap of the films was also estimated to be ∼4.9 eV. The fast growth rate of β-Ga2O3 thin films obtained using various Ga-precursors has been achieved due to the close couple showerhead design of the MOCVD reactor as well as the separate injection of oxygen and MO precursors, preventing the premature oxidation of the MO sources. These results suggest a pathway to overcoming the long-standing challenge of realizing fast growth rates for Ga2O3 using the MOCVD method.
A Novel and Facile Route to Synthesize Atomic-Layered MoS2 Film for Large-Area Electronics.
Boandoh, Stephen; Choi, Soo Ho; Park, Ji-Hoon; Park, So Young; Bang, Seungho; Jeong, Mun Seok; Lee, Joo Song; Kim, Hyeong Jin; Yang, Woochul; Choi, Jae-Young; Kim, Soo Min; Kim, Ki Kang
2017-10-01
High-quality and large-area molybdenum disulfide (MoS 2 ) thin film is highly desirable for applications in large-area electronics. However, there remains a challenge in attaining MoS 2 film of reasonable crystallinity due to the absence of appropriate choice and control of precursors, as well as choice of suitable growth substrates. Herein, a novel and facile route is reported for synthesizing few-layered MoS 2 film with new precursors via chemical vapor deposition. Prior to growth, an aqueous solution of sodium molybdate as the molybdenum precursor is spun onto the growth substrate and dimethyl disulfide as the liquid sulfur precursor is supplied with a bubbling system during growth. To supplement the limiting effect of Mo (sodium molybdate), a supplementary Mo is supplied by dissolving molybdenum hexacarbonyl (Mo(CO) 6 ) in the liquid sulfur precursor delivered by the bubbler. By precisely controlling the amounts of precursors and hydrogen flow, full coverage of MoS 2 film is readily achievable in 20 min. Large-area MoS 2 field effect transistors (FETs) fabricated with a conventional photolithography have a carrier mobility as high as 18.9 cm 2 V -1 s -1 , which is the highest reported for bottom-gated MoS 2 -FETs fabricated via photolithography with an on/off ratio of ≈10 5 at room temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Graczyk, Piotr; Trzaskowska, Aleksandra; Załȩski, Karol; Mróz, Bogusław
2016-07-01
Full ferroelastic and simultaneously ferroelectric materials are interesting candidates for applications in devices based on multiferroic heterostructures. They should allow for non-volatile and low-power writing of data bits in magnetoelectric random access memories. Moreover, ferroelasticity, in contrast to piezoelectric material, make magnetic information in ferromagnetic film resistant to external fields. As an example for such a system, we have studied the magnetoelastic interaction between a thin ferromagnetic layer of {{Ni}}85{{Fe}}15 with a full ferroelastic-ferroelectric gadolinium molybdate {{Gd}}2{({{MoO}}4)}3 crystal. We have investigated the influence of {{Gd}}2{({{MoO}}4)}3 spontaneous strain onto magnetic properties of thin ferromagnetic film. Particularly, we have shown by Brillouin spectroscopy, that it is possible to modulate surface spin wave frequency of {{Ni}}85{{Fe}}15 by spontaneous strain of gadolinium molybdate substrate.
NASA Astrophysics Data System (ADS)
Lin, Yow-Jon; Chang, Hsing-Cheng; Liu, Day-Shan
2015-03-01
Tuning charge transport in the bottom-contact pentacene-based organic thin-film transistors (OTFTs) using a MoO x capping layer that serves to the electron-phonon coupling modification is reported. For OTFTs with a MoO x front gate, the enhanced field-effect carrier mobility is investigated. The time domain data confirm the electron-trapping model. To understand the origin of a mobility enhancement, an analysis of the temperature-dependent Hall-effect characteristics is presented. Similarly, the Hall-effect carrier mobility was dramatically increased by capping a MoO x layer on the pentacene front surface. However, the carrier concentration is not affected. The Hall-effect carrier mobility exhibits strong temperature dependence, indicating the dominance of tunneling (hopping) at low (high) temperatures. A mobility enhancement is considered to come from the electron-phonon coupling modification that results from the contribution of long-lifetime electron trapping.
Polycrystalline silicon thin-film transistors fabricated by Joule-heating-induced crystallization
NASA Astrophysics Data System (ADS)
Hong, Won-Eui; Ro, Jae-Sang
2015-01-01
Joule-heating-induced crystallization (JIC) of amorphous silicon (a-Si) films is carried out by applying an electric pulse to a conductive layer located beneath or above the films. Crystallization occurs across the whole substrate surface within few tens of microseconds. Arc instability, however, is observed during crystallization, and is attributed to dielectric breakdown in the conductor/insulator/transformed polycrystalline silicon (poly-Si) sandwich structures at high temperatures during electrical pulsing for crystallization. In this study, we devised a method for the crystallization of a-Si films while preventing arc generation; this method consisted of pre-patterning an a-Si active layer into islands and then depositing a gate oxide and gate electrode. Electric pulsing was then applied to the gate electrode formed using a Mo layer. The Mo layer was used as a Joule-heat source for the crystallization of pre-patterned active islands of a-Si films. JIC-processed poly-Si thin-film transistors (TFTs) were fabricated successfully, and the proposed method was found to be compatible with the standard processing of coplanar top-gate poly-Si TFTs.
Studies of the Superconducting Transition in the Mo/Au-Bilayer Thin Films
NASA Technical Reports Server (NTRS)
Sadleir, John; Smith, Stephen; Iyomoto, naoko; Bandler, Simon; Chervenak, Jay; Brown, Ari; Brekowsky, Regis; Kilbourne, Caroline; Robinson, Ian
2007-01-01
At NASA Goddard, microcalorimeter arrays using superconducting transition edge sensor thermometers (TESs) are under development for high energy resolution X-ray astrophysics applications. We report on our studies of the superconducting transition in our Mo/Au-bilayer TES films including: low current measurements of the superconducting bilayer's resistance transition versus temperature on pixels with different normal metal absorber attachment designs and measured temperature scaling of the critical current and critical magnetic field.
Growth and physical investigations of sprayed ZnMoO4 thin films along with wettability tests
NASA Astrophysics Data System (ADS)
Askri, Besma; Mhamdi, Ammar; Mahdhi, Noureddine; Amlouk, Mosbah
2018-06-01
Ternary oxides based on zinc and molybdenum elements have known as semiconductor oxides with large band gap energies. With the focus mainly on their synthesis by cost-effective process as thin films, the aspect of their stability and reactivity as transparent layers against both UV radiation and oxidation under wet medium due to their oxygen deficiency has so far not been investigated. This work covers the synthesis as well as the structural, electrical and the wettability properties of ZnMoO4 thin films which have been prepared by the spray pyrolysis method on glass substrates at 460 °C. First, X-ray diffraction analysis shows that this oxide crystallizes in triclinic structure with the space group P-1. The thickness value of ZnMoO4 thin film of about 1.5 μm was estimated by spectroscopic ellipsometry (SE). Moreover, a special emphasis has been focused on the photoluminescence properties of such films to reach possible presence of defaults and oxygen vacancy. Second, the electrical conductivity, conduction mechanism, relaxation model of these films were indeed studied using impedance spectroscopy technique in the frequency range 10-1-106 Hz at various temperatures (25-300 °C). At high temperature, σAC conductivity obeys to the power law established by Jonscher. Besides, the variation of σDC with the inverse of the temperature follows Arrhenius law. This evolution suggests that the conduction process is thermally activated and the activation energy of this process is equal to 0.97 eV. Finally, the wettability tests reveal that zinc molybdates loses its hydrophobic character during aging under UV radiation to become completely hydrophilic. All these physical investigations demonstrated that such ternary oxide contains oxygen deficiency which may be of interest for photocatalytic purposes and pave the way for various sensitivity applications like gas and bio-sensors.
NASA Technical Reports Server (NTRS)
Finkbeiner, Fred Michael; Adams, Joseph S.; Bandler, Simon R.; Betancour-Martinez, Gabriele L.; Brown, Ari David; Chang, Meng-Ping; Chervenak, James A.; Chiao, Meng P.; Datesman, Aaron; Eckart, Megan E.;
2016-01-01
We are exploring the properties of electron-beam evaporated molybdenum thin films on silicon nitride coated silicon wafers at substrate temperatures between room temperature and 650 C. The temperature dependence of film stress, transition temperature, and electrical properties are presented. X-ray diffraction measurements are performed to gain information on molybdenum crystallite size and growth. Results show the dominant influence of the crystallite size on the intrinsic properties of our films. Wafer-scale uniformity, wafer yield, and optimal thermal bias regime for TES fabrication are discussed.
Utama, M Iqbal Bakti; Lu, Xin; Zhan, Da; Ha, Son Tung; Yuan, Yanwen; Shen, Zexiang; Xiong, Qihua
2014-11-07
Patterning two-dimensional materials into specific spatial arrangements and geometries is essential for both fundamental studies of materials and practical applications in electronics. However, the currently available patterning methods generally require etching steps that rely on complicated and expensive procedures. We report here a facile patterning method for atomically thin MoSe2 films using stripping with an SU-8 negative resist layer exposed to electron beam lithography. Additional steps of chemical and physical etching were not necessary in this SU-8 patterning method. The SU-8 patterning was used to define a ribbon channel from a field effect transistor of MoSe2 film, which was grown by chemical vapor deposition. The narrowing of the conduction channel area with SU-8 patterning was crucial in suppressing the leakage current within the device, thereby allowing a more accurate interpretation of the electrical characterization results from the sample. An electrical transport study, enabled by the SU-8 patterning, showed a variable range hopping behavior at high temperatures.
Prospects of e-beam evaporated molybdenum oxide as a hole transport layer for perovskite solar cells
NASA Astrophysics Data System (ADS)
Ali, F.; Khoshsirat, N.; Duffin, J. L.; Wang, H.; Ostrikov, K.; Bell, J. M.; Tesfamichael, T.
2017-09-01
Perovskite solar cells have emerged as one of the most efficient and low cost technologies for delivering of solar electricity due to their exceptional optical and electrical properties. Commercialization of the perovskite solar cells is, however, limited because of the higher cost and environmentally sensitive organic hole transport materials such as spiro-OMETAD and PEDOT:PSS. In this study, an empirical simulation was performed using the Solar Cell Capacitance Simulator software to explore the MoOx thin film as an alternative hole transport material for perovskite solar cells. In the simulation, properties of MoOx thin films deposited by the electron beam evaporation technique from high purity (99.99%) MoO3 pellets at different substrate temperatures (room temperature, 100 °C and 200 °C) were used as input parameters. The films were highly transparent (>80%) and have low surface roughness (≤2 nm) with bandgap energy ranging between 3.75 eV and 3.45 eV. Device simulation has shown that the MoOx deposited at room temperature can work in both the regular and inverted structures of the perovskite solar cell with a promising efficiency of 18.25%. Manufacturing of the full device is planned in order to utilize the MoOx as an alternative hole transport material for improved performance, good stability, and low cost of the perovskite solar cell.
Synthesis and characterization of RuS2 nanostructures.
Díaz, David; Castillo-Blum, Silvia E; Alvarez-Fregoso, Octavio; Rodríguez-Gattorno, Geonel; Santiago-Jacinto, Patricia; Rendon, Luis; Ortiz-Frade, Luis; León-Paredes, Yolia-Judith
2005-12-08
Small naked ruthenium sulfide nanoparticles (NPs) with narrow size distribution (2.5 +/- 0.4 nm of diameter) were synthesized in DMSO colloidal dispersions, under mild reaction conditions and using commercial RuCl3 as precursor. To test the chemical reactivity with soft and hard bases, fresh presynthesized RuS2 colloids were mixed with triethylamine (N(Et)3) and ammonium tetrathiomolybdate ((NH4)2MoS4) dimethyl sulfoxide solutions. Naked N(Et)3 and [MoS4](2-)-capped RuS2 nanoparticle colloids were characterized using UV-visible electronic absorption and emission spectroscopies and high-resolution transmission electron microscopy (HR-TEM). It has also been shown that capped RuS2-[MoS4]2- nanoparticles yield MoO3 crystalline matrix by means of HR-TEM experiments. The emission spectra of RuS2 and N(Et)3-RuS2 dispersions show that both nanosized materials have strong fluorescence. The existence of the ruthenium precursor species in solution was established by cyclic voltammetry. Moreover, naked RuS2 NPs were mixed with a chemical mixture with composition similar to gasoline (dibenzothiophene (Bz2S, 400 ppm), hexane, and toluene (55:45% v/v)). The reaction mixture consisted of two phases; in the polar phase, we found evidences of a strong interaction of Bz2S and toluene with the naked RuS2 NPs. We have also obtained self-organized thin films of capped N(Et)3- and RuS2-[MoS4]2- nanoparticles. In both cases, the shape and thickness of the resulting thin films were controlled by a dynamic vacuum procedure. The thin films have been characterized by atomic force microscopy, scanning electron microscopy, HR-TEM, energy dispersion spectroscopy, X-ray diffraction, and absorbance and fluorescence spectroscopies.
Domain Engineered Magnetoelectric Thin Films for High Sensitivity Resonant Magnetic Field Sensors
2012-02-28
texture E analysis w cated by poo re accounted n measurem 8 sol-gel samp d PZT sol-g as utilized t r fit between in the mo ent spot). les shown i el...nsformer str nted by aero ure. ure 34: Un were grow as varied in D) as show texturing in . D pattern of the films d ucture. Figu sol jet depo ipoled PZT ...the detailed characterization was the development of prediction models for texturing of PZT sol-gel thin films, an understanding of the analytical
Electrical properties of CZTS thin films
NASA Astrophysics Data System (ADS)
Rao, M. C.; Kumar, M. Seshu; Lakshmi, K.; Rao, K. Koteswara; Parimala, M. P. D.; Basha, S. K. Shahenoor
2018-05-01
CZTS (Cu2ZnSnS4) thin films have been coated on to FTO and MO glass substrates by single step electro deposition process. Different characterization techniques were performed on to the prepared samples such as DSC and Raman studies. The Phase transition and weight loss of the precursors can be measured by DSC analysis. Raman spectrum is used to identify the functional groups and chemical structure involved in the materials. Electrical measurements confirm the nature of the film and also depend on the charge concentration present in the samples.
Van der Waals epitaxy of functional MoO{sub 2} film on mica for flexible electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Chun-Hao; Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan; Lin, Jheng-Cyuan
Flexible electronics have a great potential to impact consumer electronics and with that our daily life. Currently, no direct growth of epitaxial functional oxides on commercially available flexible substrates is possible. In this study, in order to address this challenge, muscovite, a common layered oxide, is used as a flexible substrate that is chemically similar to typical functional oxides. We fabricated epitaxial MoO{sub 2} films on muscovite via pulsed laser deposition technique. A combination of X-ray diffraction and transmission electron microscopy confirms van der Waals epitaxy of the heterostructures. The electrical transport properties of MoO{sub 2} films are similar tomore » those of the bulk. Flexible or free-standing MoO{sub 2} thin film can be obtained and serve as a template to integrate additional functional oxide layers. Our study demonstrates a remarkable concept to create flexible electronics based on functional oxides.« less
Copper-Zinc-Tin-Sulfur Thin Film Using Spin-Coating Technology
Yeh, Min-Yen; Lei, Po-Hsun; Lin, Shao-Hsein; Yang, Chyi-Da
2016-01-01
Cu2ZnSnS4 (CZTS) thin films were deposited on glass substrates by using spin-coating and an annealing process, which can improve the crystallinity and morphology of the thin films. The grain size, optical gap, and atomic contents of copper (Cu), zinc (Zn), tin (Sn), and sulfur (S) in a CZTS thin film absorber relate to the concentrations of aqueous precursor solutions containing copper chloride (CuCl2), zinc chloride (ZnCl2), tin chloride (SnCl2), and thiourea (SC(NH2)2), whereas the electrical properties of CZTS thin films depend on the annealing temperature and the atomic content ratios of Cu/(Zn + Sn) and Zn/Sn. All of the CZTS films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS), Raman spectroscopy, and Hall measurements. Furthermore, CZTS thin film was deposited on an n-type silicon substrate by using spin-coating to form an Mo/p-CZTS/n-Si/Al heterostructured solar cell. The p-CZTS/n-Si heterostructured solar cell showed a conversion efficiency of 1.13% with Voc = 520 mV, Jsc = 3.28 mA/cm2, and fill-factor (FF) = 66%. PMID:28773647
NASA Astrophysics Data System (ADS)
Utama, M. Iqbal Bakti; Lu, Xin; Zhan, Da; Ha, Son Tung; Yuan, Yanwen; Shen, Zexiang; Xiong, Qihua
2014-10-01
Patterning two-dimensional materials into specific spatial arrangements and geometries is essential for both fundamental studies of materials and practical applications in electronics. However, the currently available patterning methods generally require etching steps that rely on complicated and expensive procedures. We report here a facile patterning method for atomically thin MoSe2 films using stripping with an SU-8 negative resist layer exposed to electron beam lithography. Additional steps of chemical and physical etching were not necessary in this SU-8 patterning method. The SU-8 patterning was used to define a ribbon channel from a field effect transistor of MoSe2 film, which was grown by chemical vapor deposition. The narrowing of the conduction channel area with SU-8 patterning was crucial in suppressing the leakage current within the device, thereby allowing a more accurate interpretation of the electrical characterization results from the sample. An electrical transport study, enabled by the SU-8 patterning, showed a variable range hopping behavior at high temperatures.Patterning two-dimensional materials into specific spatial arrangements and geometries is essential for both fundamental studies of materials and practical applications in electronics. However, the currently available patterning methods generally require etching steps that rely on complicated and expensive procedures. We report here a facile patterning method for atomically thin MoSe2 films using stripping with an SU-8 negative resist layer exposed to electron beam lithography. Additional steps of chemical and physical etching were not necessary in this SU-8 patterning method. The SU-8 patterning was used to define a ribbon channel from a field effect transistor of MoSe2 film, which was grown by chemical vapor deposition. The narrowing of the conduction channel area with SU-8 patterning was crucial in suppressing the leakage current within the device, thereby allowing a more accurate interpretation of the electrical characterization results from the sample. An electrical transport study, enabled by the SU-8 patterning, showed a variable range hopping behavior at high temperatures. Electronic supplementary information (ESI) available: Further experiments on patterning and additional electrical characterizations data. See DOI: 10.1039/c4nr03817g
Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry
NASA Astrophysics Data System (ADS)
Li, Dahai; Song, Xiongfei; Xu, Jiping; Wang, Ziyi; Zhang, Rongjun; Zhou, Peng; Zhang, Hao; Huang, Renzhong; Wang, Songyou; Zheng, Yuxiang; Zhang, David Wei; Chen, Liangyao
2017-11-01
As a promising candidate for applications in future electronic and optoelectronic devices, MoS2 has been a research focus in recent years. Therefore, investigating its optical properties is of practical significance. Here we synthesized different MoS2 thin films with quantitatively controlled thickness and sizable thickness variation, which is vital to find out the thickness-dependent regularity. Afterwards, several characterization methods, including X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), Raman spectroscopy, photoluminescence (PL), optical absorption spectra, and spectroscopic ellipsometry (SE), were systematically performed to character the optical properties of as-grown samples. Accurate dielectric constants of MoS2 are obtained by fitting SE data using point-by-point method, and precise energies of interband transitions are directly extracted from the Lorentz dispersion model. We assign these energies to different interband electronic transitions between the valence bands and conduction bands in the Brillouin zone. In addition, the intrinsic physical mechanisms existing in observed phenomena are discussed in details. Results derived from this work are reliable and provide a better understanding of MoS2, which can be expected to help people fully employ its potential for wider applications.
Enhanced carrier mobility of multilayer MoS2 thin-film transistors by Al2O3 encapsulation
NASA Astrophysics Data System (ADS)
Kim, Seong Yeoul; Park, Seonyoung; Choi, Woong
2016-10-01
We report the effect of Al2O3 encapsulation on the carrier mobility and contact resistance of multilayer MoS2 thin-film transistors by statistically investigating 70 devices with SiO2 bottom-gate dielectric. After Al2O3 encapsulation by atomic layer deposition, calculation based on Y-function method indicates that the enhancement of carrier mobility from 24.3 cm2 V-1 s-1 to 41.2 cm2 V-1 s-1 occurs independently from the reduction of contact resistance from 276 kΩ.μm to 118 kΩ.μm. Furthermore, contrary to the previous literature, we observe a negligible effect of thermal annealing on contact resistance and carrier mobility during the atomic layer deposition of Al2O3. These results demonstrate that Al2O3 encapsulation is a useful method of improving the carrier mobility of multilayer MoS2 transistors, providing important implications on the application of MoS2 and other two-dimensional materials into high-performance transistors.
Arab, Abbas; Li, Qiliang
2015-01-01
In this work, we have studied thermoelectric properties of monolayer and fewlayer MoS2 in both armchair and zigzag orientations. Density functional theory (DFT) using non-equilibrium Green’s function (NEGF) method has been implemented to calculate the transmission spectra of mono- and fewlayer MoS2 in armchair and zigzag directions. Phonon transmission spectra are calculated based on parameterization of Stillinger-Weber potential. Thermoelectric figure of merit, ZT, is calculated using these electronic and phonon transmission spectra. In general, a thermoelectric generator is composed of thermocouples made of both n-type and p-type legs. Based on our calculations, monolayer MoS2 in armchair orientation is found to have the highest ZT value for both p-type and n-type legs compared to all other armchair and zigzag structures. We have proposed a thermoelectric generator based on monolayer MoS2 in armchair orientation. Moreover, we have studied the effect of various dopant species on thermoelectric current of our proposed generator. Further, we have compared output current of our proposed generator with those of Silicon thin films. Results indicate that thermoelectric current of MoS2 armchair monolayer is several orders of magnitude higher than that of Silicon thin films. PMID:26333948
Arab, Abbas; Li, Qiliang
2015-09-03
In this work, we have studied thermoelectric properties of monolayer and fewlayer MoS2 in both armchair and zigzag orientations. Density functional theory (DFT) using non-equilibrium Green's function (NEGF) method has been implemented to calculate the transmission spectra of mono- and fewlayer MoS2 in armchair and zigzag directions. Phonon transmission spectra are calculated based on parameterization of Stillinger-Weber potential. Thermoelectric figure of merit, ZT, is calculated using these electronic and phonon transmission spectra. In general, a thermoelectric generator is composed of thermocouples made of both n-type and p-type legs. Based on our calculations, monolayer MoS2 in armchair orientation is found to have the highest ZT value for both p-type and n-type legs compared to all other armchair and zigzag structures. We have proposed a thermoelectric generator based on monolayer MoS2 in armchair orientation. Moreover, we have studied the effect of various dopant species on thermoelectric current of our proposed generator. Further, we have compared output current of our proposed generator with those of Silicon thin films. Results indicate that thermoelectric current of MoS2 armchair monolayer is several orders of magnitude higher than that of Silicon thin films.
Plasma-assisted synthesis of MoS2
NASA Astrophysics Data System (ADS)
Campbell, Philip M.; Perini, Christopher J.; Chiu, Johannes; Gupta, Atul; Ray, Hunter S.; Chen, Hang; Wenzel, Kevin; Snyder, Eric; Wagner, Brent K.; Ready, Jud; Vogel, Eric M.
2018-03-01
There has been significant interest in transition metal dichalcogenides (TMDs), including MoS2, in recent years due to their potential application in novel electronic and optical devices. While synthesis methods have been developed for large-area films of MoS2, many of these techniques require synthesis temperatures of 800 °C or higher. As a result of the thermal budget, direct synthesis requiring high temperatures is incompatible with many integrated circuit processes as well as flexible substrates. This work explores several methods of plasma-assisted synthesis of MoS2 as a way to lower the synthesis temperature. The first approach used is conversion of a naturally oxidized molybdenum thin film to MoS2 using H2S plasma. Conversion is demonstrated at temperatures as low as 400 °C, and the conversion is enabled by hydrogen radicals which reduce the oxidized molybdenum films. The second method is a vapor phase reaction incorporating thermally evaporated MoO3 exposed to a direct H2S plasma, similar to chemical vapor deposition (CVD) synthesis of MoS2. Synthesis at 400 °C results in formation of super-stoichiometric MoS2 in a beam-interrupted growth process. A final growth method relies on a cyclical process in which a small amount of Mo is sputtered onto the substrate and is subsequently sulfurized in a H2S plasma. Similar results could be realized using an atomic layer deposition (ALD) process to deposit the Mo film. Compared to high temperature synthesis methods, the lower temperature samples are lower quality, potentially due to poor crystallinity or higher defect density in the films. Temperature-dependent conductivity measurements are consistent with hopping conduction in the plasma-assisted synthetic MoS2, suggesting a high degree of disorder in the low-temperature films. Optimization of the plasma-assisted synthesis process for slower growth rate and better stoichiometry is expected to lead to high quality films at low growth temperature.
Formation of pyrite (FeS{sub 2}) thin films by thermal sulfurization of dc magnetron sputtered iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soukup, R. J.; Prabukanthan, P.; Ianno, N. J.
2011-01-15
Iron films deposited by direct current magnetron sputtering onto glass substrates were converted into FeS{sub 2} films by thermal sulfurization. Experiments were carried out to optimize the sulfurization process, and the formation of FeS{sub 2} thin films was investigated under different annealing temperatures and times. High quality FeS{sub 2} films were fabricated using this process, and single phase pyrite films were obtained after sulfurization in a sulfur and nitrogen atmosphere at 450 deg. C for 1 h. Film crystallinity and phase identification were determined by using x-ray diffraction. The cubic phase pyrite films prepared were p-type, and scanning electron microscopymore » studies exhibited a homogeneous surface of pyrite. The authors have found that the best Ohmic contact for their pyrite thin films, using inexpensive metals, was Ni. The following were chosen for the study: Al, Mo, Fe, and Ni, and the one that led to the lowest resistance, 333 {Omega}, was Ni.« less
Alzahly, Shaykha; Yu, LePing; Shearer, Cameron J; Gibson, Christopher T; Shapter, Joseph G
2018-04-21
Molybdenum disulphide (MoS₂) is one of the most studied and widely applied nanomaterials from the layered transition-metal dichalcogenides (TMDs) semiconductor family. MoS₂ has a large carrier diffusion length and a high carrier mobility. Combining a layered structure of single-wall carbon nanotube (SWCNT) and MoS₂ with n-type silicon (n-Si) provided novel SWCNT/n-Si photovoltaic devices. The solar cell has a layered structure with Si covered first by a thin layer of MoS₂ flakes and then a SWCNT film. The films were examined using scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The MoS₂ flake thickness ranged from 5 to 90 nm while the nanosheet’s lateral dimensions size ranged up to 1 μm². This insertion of MoS₂ improved the photoconversion efficiency (PCE) of the SWCNT/n-Si solar cells by approximately a factor of 2.
Ouyang, Qingling; Zeng, Shuwen; Jiang, Li; Hong, Liying; Xu, Gaixia; Dinh, Xuan-Quyen; Qian, Jun; He, Sailing; Qu, Junle; Coquet, Philippe; Yong, Ken-Tye
2016-01-01
In this work, we designed a sensitivity-enhanced surface plasmon resonance biosensor structure based on silicon nanosheet and two-dimensional transition metal dichalcogenides. This configuration contains six components: SF10 triangular prism, gold thin film, silicon nanosheet, two-dimensional MoS2/MoSe2/WS2/WSe2 (defined as MX2) layers, biomolecular analyte layer and sensing medium. The minimum reflectivity, sensitivity as well as the Full Width at Half Maximum of SPR curve are systematically examined by using Fresnel equations and the transfer matrix method in the visible and near infrared wavelength range (600 nm to 1024 nm). The variation of the minimum reflectivity and the change in resonance angle as the function of the number of MX2 layers are presented respectively. The results show that silicon nanosheet and MX2 layers can be served as effective light absorption medium. Under resonance conditions, the electrons in these additional dielectric layers can be transferred to the surface of gold thin film. All silicon-MX2 enhanced sensing models show much better performance than that of the conventional sensing scheme where pure Au thin film is used, the highest sensitivity can be achieved by employing 600 nm excitation light wavelength with 35 nm gold thin film and 7 nm thickness silicon nanosheet coated with monolayer WS2. PMID:27305974
NASA Astrophysics Data System (ADS)
Yan, B. X.; Luo, S. Y.; Mao, X. G.; Shen, J.; Zhou, Q. F.
2013-01-01
Mo-doped TiO2 multilayer thin films were prepared by RF magnetron co-sputtering. Microstructures, crystallite parameters and the absorption band were investigated with atomic force microscopy, X-ray diffraction and ultraviolet-visible spectroscopy. Internal carrier transport characteristics and the photoelectric property of different layer-assemble modes were examined on an electrochemical workstation under visible light. The result indicates that the double-layer structure with an undoped surface layer demonstrated a red-shifted absorption edge and a much stronger photocurrent compared to the uniformly doped sample, signifying that the electric field implanted at the interface between particles in different layers accelerated internal charge transfer effectively. However, a heavily doped layer implanted at the bottom of the three-layer film merely brought about negative effects on the photoelectric property, mainly because of the Schottky junction existing above the substrate. Nevertheless, this obstacle was successfully eliminated by raising the Mo concentration to 1020 cm-3, where the thickness of the depletion layer fell into the order of angstroms and the tunneling coefficient manifested a dramatic increase. Under this circumstance, the Schottky junction disappeared and the strongest photocurrent was observed in the three-layer film.
Orthorhombic MoO3 nanobelts based NO2 gas sensor
NASA Astrophysics Data System (ADS)
Mane, A. A.; Moholkar, A. V.
2017-05-01
Molybdenum trioxide (MoO3) nanobelts have been deposited onto the glass substrates using chemical spray pyrolysis (CSP) deposition method. The XRD patterns reveal that films are polycrystalline having an orthorhombic crystal structure. Raman spectra confirm that the films are orthorhombic in phase. The XPS study shows the presence of two well resolved spectral lines of Mo-3d core levels appearing at the binding energy values of 232.82 eV and 235.95 eV corresponding to Mo-3d5/2 and Mo-3d3/2, respectively. These binding energy values are assigned to Mo6+ oxidation state of fully oxidized MoO3. The FE-SEM micrographs show the formation of nanobelts-like morphology. The AFM micrographs reveal that the RMS surface roughness increases from 16.5 nm to 17.5 nm with increase in film thickness from 470 nm to 612 nm and then decreases to 16 nm for 633 nm film thickness. The band gap energy is found to be decreased from 3.40 eV to 3.38 eV. To understand the electronic transport phenomenon in MoO3 thin films, dielectric properties are studied. For 612 nm film thickness, the highest NO2 gas response of 68% is obtained at an operating temperature of 200 °C for 100 ppm concentration with response and recovery times of 15 s and 150 s, respectively. The lower detection limit is found to be 10 ppm which is half of the immediately dangerous to life or health (IDLH) value of 20 ppm. Finally, NO2 gas sensing mechanism in an orthorhombic MoO3 crystal structure is discussed in detail.
Enhanced photoresponse characteristics of transistors using CVD-grown MoS2/WS2 heterostructures
NASA Astrophysics Data System (ADS)
Shan, Junjie; Li, Jinhua; Chu, Xueying; Xu, Mingze; Jin, Fangjun; Fang, Xuan; Wei, Zhipeng; Wang, Xiaohua
2018-06-01
Semiconductor heterostructures based on transition metal dichalcogenides provide a broad platform to research two-dimensional nanomaterials and design atomically thin devices for fundamental and applied interests. The MoS2/WS2 heterostructure was prepared on SiO2/Si substrate by chemical vapor deposition (CVD) in our research. And the optical properties of the heterostructure was characterized by Raman and photoluminescence (PL) spectroscopy. The similar 2 orders of magnitude decrease of PL intensity in MoS2/WS2 heterostructures was tested, which is attribute to the electrical and optical modulation effects are connected with the interfacial charge transfer between MoS2 and WS2 films. Using MoS2/WS2 heterostructure as channel material of the phototransistor, we demonstrated over 50 folds enhanced photoresponsivity of multilayer MoS2 field-effect transistor. The results indicate that the MoS2/WS2 films can be a promising heterostructure material to enhance the photoresponse characteristics of MoS2-based phototransistors.
Glancing angle deposition of sculptured thin metal films at room temperature
NASA Astrophysics Data System (ADS)
Liedtke, S.; Grüner, Ch; Lotnyk, A.; Rauschenbach, B.
2017-09-01
Metallic thin films consisting of separated nanostructures are fabricated by evaporative glancing angle deposition at room temperature. The columnar microstructure of the Ti and Cr columns is investigated by high resolution transmission electron microscopy and selective area electron diffraction. The morphology of the sculptured metallic films is studied by scanning electron microscopy. It is found that tilted Ti and Cr columns grow with a single crystalline morphology, while upright Cr columns are polycrystalline. Further, the influence of continuous substrate rotation on the shaping of Al, Ti, Cr and Mo nanostructures is studied with view to surface diffusion and the shadowing effect. It is observed that sculptured metallic thin films deposited without substrate rotation grow faster compared to those grown with continuous substrate rotation. A theoretical model is provided to describe this effect.
NASA Astrophysics Data System (ADS)
Makise, Kazumasa; Ichikawa, Fusao; Asano, Takayuki; Shinozaki, Bunju
2018-02-01
We report on the superconductor-insulator transitions (SITs) of disordered molybdenum nitride (MoN) thin films on (1 0 0) MgO substrates as a function of the film thickness and magnetic fields. The T c of the superconducting MoN films, which exhibit a sharp superconducting transition, monotonically decreases as the normal state R sq increases with a decreasing film thickness. For several films with different thicknesses, we estimate the critical field H c and the product zν ≃ 0.6 of the dynamical exponent z and the correlation length exponent ν using a finite scaling analysis. The value of this product can be explained by the (2 + 1) XY model. We found that the Hall resistance ΔR xy (H) is maximized when the magnetic field satisfies H HP(T) \\propto |1 - T/T C0| in the superconducting state and also in the normal states owning to the superconducting fluctuation corresponding to the ghost critical magnetic field. We measured the Hall conductivity δσ xy (H) = σ xy (H) - σ xyn and fit the Gaussian approximation theory for δσ xy (H) to the experimental data. Agreement between the data and the theory beyond H c suggests the survival of the Cooper pair in the insulating region of the SIT.
Makise, Kazumasa; Ichikawa, Fusao; Asano, Takayuki; Shinozaki, Bunju
2018-02-14
We report on the superconductor-insulator transitions (SITs) of disordered molybdenum nitride (MoN) thin films on (1 0 0) MgO substrates as a function of the film thickness and magnetic fields. The T c of the superconducting MoN films, which exhibit a sharp superconducting transition, monotonically decreases as the normal state R sq increases with a decreasing film thickness. For several films with different thicknesses, we estimate the critical field H c and the product zν ≃ 0.6 of the dynamical exponent z and the correlation length exponent ν using a finite scaling analysis. The value of this product can be explained by the (2 + 1) XY model. We found that the Hall resistance ΔR xy (H) is maximized when the magnetic field satisfies H HP (T) [Formula: see text] |1 - T/T C0 | in the superconducting state and also in the normal states owning to the superconducting fluctuation corresponding to the ghost critical magnetic field. We measured the Hall conductivity δσ xy (H) = σ xy (H) - [Formula: see text] and fit the Gaussian approximation theory for δσ xy (H) to the experimental data. Agreement between the data and the theory beyond H c suggests the survival of the Cooper pair in the insulating region of the SIT.
Properties of mixed molybdenum oxide iridium oxide thin films synthesized by spray pyrolysis
NASA Astrophysics Data System (ADS)
Patil, P. S.; Kawar, R. K.; Sadale, S. B.; Inamdar, A. I.; Deshmukh, H. P.
2006-09-01
Molybdenum-doped iridium oxide thin films have been deposited onto corning glass- and fluorine-doped tin oxide coated corning glass substrates at 350 °C by using a pneumatic spray pyrolysis technique. An aqueous solution of 0.01 M ammonium molybdate was mixed with 0.01 M iridium trichloride solution in different volume proportions and the resultant solution was used as a precursor solution for spraying. The as-deposited samples were annealed at 600 °C in air medium for 1 h. The structural, electrical and optical properties of as-deposited and annealed Mo-doped iridium oxide were studied and values of room temperature electrical resistivity, and thermoelectric power were estimated. The as-deposited samples with 2% Mo doping exhibit more pronounced electrochromism than other samples, including pristine Ir oxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Praveen Kumar, E-mail: praveenyadav@rrcat.gov.in; Nayak, Maheswar; Rai, Sanjay Kumar
The authors report the effect of argon ion to molybdenum atom ratio (r) on the microstructure of low energy (70 eV) argon ion assisted electron beam evaporated Mo thin films. Surface roughness, morphology, and crystallinity of Mo films are found to strongly depend on “r.” Increase of “r” from 0 to 100 induces gradual loss in crystallinity, reduction in surface roughness and systematic increase in density of the film. For “r” ∼ 100, average atomic density of the film approaches the bulk value (97%) with lowest surface roughness. Further, increasing “r” up to 170 reduces the atomic density, increases roughness, and increase inmore » crystallinity induced by low energy Ar ion beam. The observed surface roughness and grain size determined by x-ray reflectivity and glancing incidence x-ray diffraction correlate well with atomic force microscopy measurements. This study demonstrates that for r = 100 one gets lowest roughness Mo film with highest density and nearly amorphous microstructure. The growth model is discussed by structural zone model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gershinsky, G; Yoo, HD; Gofer, Y
Electrochemical, surface, and structural studies related to rechargeable Mg batteries were carried out with monolithic thin-film cathodes comprising layered V2O5 and MoO3. The reversible intercalation reactions of these electrodes with Mg ion in nonaqueous Mg salt solutions were explored using a variety of analytical tools. These included slow-scan rate cyclic voltammetry (SSCV), chrono-potentiometry (galvanostatic cycling), Raman and photoelectron spectroscopies, high-resolution microscopy, and XRD. The V2O5 electrodes exhibited reversible Mg-ion intercalation at capacities around 150-180 mAh g(-1) with 100% efficiency. A capacity of 220 mAh g(-1) at >95% efficiency was obtained with MoO3 electrodes. By applying the electrochemical driving force sufficientlymore » slowly it was possible to measure the electrodes at equilibrium conditions and verify by spectroscopy, microscopy, and diffractometry that these electrodes undergo fully reversible structural changes upon Mg-ion insertion/deinsertion cycling.« less
A simple structure of Cu2ZnSnS4/CdS solar cells prepared by sputtering
NASA Astrophysics Data System (ADS)
Li, Zhishan; Wang, Shurong; Ma, Xun; Yang, Min; Jiang, Zhi; Liu, Tao; Lu, Yilei; Liu, Sijia
2017-12-01
In this work, Cu2ZnSnS4 (CZTS) thin films were grown on Mo-coated Soda-lime-glass (SLG) substrates by annealing of sputtered ZnS/Sn/CuS precursors at 580 ℃ for 15 min. As a try, the CZTS solar cells were fabricated using simple structure of Mo-coated SLG/CZTS/CdS/Al and traditional structure of Mo-coated SLG/CZTS/CdS/i-ZnO/In2O3:SnO2 (ITO)/Al, respectively. The results show that the CZTS device with simple structure can achieve same level of the open circuit voltage (Voc) compared with that of traditional structure. In addition, the power conversion efficiency of 2.95% and 3.59% were obtained with simple structure and traditional structure, respectively. The CZTS solar cell with simple structure provides a promising way and an easy process to prepare high-performance CZTS thin film solar cells which is available to large-scale industrial production in the future.
NASA Astrophysics Data System (ADS)
Shaari, Safizan; Naka, Shigeki; Okada, Hiroyuki
2018-04-01
We investigated the gate-bias and temperature dependence of the voltage-current (V-I) characteristics of dinaphtho[2,3-b:2‧,3‧-d]thiophene with MoO3/Au electrodes. The insertion of the MoO3 layer significantly improved the device performance. The temperature dependent V-I characteristics were evaluated and could be well fitted by the Schottky thermionic emission model with barrier height under forward- and reverse-biased regimes in the ranges of 33-57 and 49-73 meV, respectively. However, at a gate voltage of 0 V, at which a small activation energy was obtained, we needed to consider another conduction mechanism at the grain boundary. From the obtained results, we concluded that two possible conduction mechanisms governed the charge injection at the metal electrode-organic semiconductor interface: the Schottky thermionic emission model and the conduction model in the organic thin-film layer and grain boundary.
Lin, Yung-Chen; Bilgin, Ismail; Ahmed, Towfiq; ...
2016-09-21
Heterostructuring provides novel opportunities for exploring emergent phenomena and applications by developing designed properties beyond those of homogeneous materials. Advances in nanoscience enable the preparation of heterostructures formed incommensurate materials. Two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, are of particular interest due to their distinct physical characteristics. There have been recent changes in new research areas related to 2D/2D heterostructures. But, other heterostructures such as 2D/three-dimensional (3D) materials have not been thoroughly studied yet although the growth of 3D materials on 2D materials creating 2D/3D heterostructures with exceptional carrier transport properties has been reported. Here also wemore » report a novel heterostructure composed of Ge and monolayer MoS 2, prepared by chemical vapor deposition. A single crystalline Ge (110) thin film was grown on monolayer MoS 2. The electrical characteristics of Ge and MoS 2 in the Ge/MoS 2 heterostructure were remarkably different from those of isolated Ge and MoS 2. The field-effect conductivity type of the monolayer MoS 2 is converted from n-type to p-type by growth of the Ge thin film on top of it. Undoped Ge on MoS 2 is highly conducting. The observations can be explained by charge transfer in the heterostructure as opposed to chemical doping via the incorporation of impurities, based on our first-principles calculations.« less
1993-12-01
diamond carbon on diamond Measurements of CVD diamond grown directly on Mo TEM specimen grids were made through a collaboration with the Fritz Haber ...Hawaii, May 1993. 2. --- , University of Illinois at Chicago, March 1993. 3. --- , Fritz Haber Institute, Berlin, June 1993. 3.0 Appendix: 8 1 Real...University, Athens OH 45701 -2979 *Permanent address: Fritz Haber Institute, Berlin, Germany. Thin (1Onm) carbon films are found to adhere to Chemical Vapor
Effects on crystal structure of CZTS thin films owing to deionized water and sulfurization treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadi, Samia Ahmed; Chelvanathan, Puvaneswaran; Islam, M. A.
2015-05-15
To condense the cost and increase the production, using abundantly obtainable non-toxic elements, Cu{sub 2}ZnSnS{sub 4} (CZTS) seem to be a strong contender among the photovoltaic thin film technologies. Cu{sub 2}ZnSnS{sub 4} thin films were fabricated by RF magnetron sputtering system. CZTS were sputtered on Molybdenum (Mo) coated soda lime glass (SLG) using a single target sputtering technique. The sputtering parameters (base pressure, working pressure, Argon (Ar) flow rate, RF power and sputtering time) were kept same for all three types of films. For sulfurization, the temperature used was 500 °C. Finally, As-deposited film was immersed in DIW before undergoingmore » identical sulfurization profile. As-deposited film (Sample A), sulfurized films (Sample B) and sulfurized plus DIW treated (Sample C) were compared in terms of their structural properties by means of X-Ray Diffraction (XRD) measurement and Atomic Force Microscopy (AFM). Sample B and C showed peak of (1 1 2) planes of CZTS which are characteristics of stannite structure. Post deposition treatment on CZTS films proved to be beneficial as evident from the observed enhancement in the crystallinity and grain growth. Significant difference on grain size and area roughness could be observed from the AFM measurement. The roughness of Sample A, B and C increased from 5.007 nm to 20.509 nm and 14.183 nm accordingly. From XRD data secondary phases of Cu{sub x}MoS{sub x} could be observed.« less
Investigation of the distribution of localised and extended states in amorphous MoOx
NASA Astrophysics Data System (ADS)
Dizayee, Wala; Ying, Minju; Griffin, Jonathan; Alqahtani, Mohammed S.; Buckley, Alastair; Fox, A. Mark; Gehring, Gillian A.
2018-05-01
Amorphous films of MoOx have both structural disorder and also chemical disorder for x<3. We have shown that this disorder can introduce localised states in thin films and have shown that the existence of localised states can be deduced from the XPS data that identifies the relevant occupations of different ionisation states of the Mo ions. This effect, which depends on both the oxygen concentration and the method of fabrication, is more important than electron-electron interactions in producing the observed localisation. We have also shown that magneto-optical dichroism is also a powerful technique to determine the energy distribution of localised and delocalised states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, Jagrati, E-mail: jdwivedi.phy@gmail.com; Mishra, Ashutosh; Gupta, Ranjeeta
2016-05-23
Structural changes occurring in a thin amorphous Co{sub 23}Fe{sub 60}B{sub 17} film sandwiched between two Mo layers, as a function of thermal annealing has been studied. Thermal stability of the Co{sub 23}Fe{sub 60}B{sub 17} film is found to be significantly lower than the bulk ribbons. SIMS measurements show that during crystallization, boron which is expelled out of the crystallites, has a tendency to move towards the surface. No significant diffusion of boron in Mo buffer layer is observed. This result is in contrast with some earlier studies where it was proposed that the role of buffer layer of refractory metalmore » is to absorb boron which is expelled out of the bcc FeCo phase during crystallization.« less
Sputter-deposited WO x and MoO x for hole selective contacts
Bivour, Martin; Zähringer, Florian; Ndione, Paul F.; ...
2017-09-21
Here, reactive sputter deposited tungsten and molybdenum oxide (WO x, MoO x) thin films are tested for their ability to form a hole selective contact for Si wafer based solar cells. A characterization approach based on analyzing the band bending induced in the c-Si absorber and the external and implied open-circuit voltage of test structures was used. It is shown that the oxygen partial pressure allows to tailor the selectivity to some extent and that a direct correlation between induced band bending and hole selectivity exists. Although the selectivity of the sputtered films is inferior to the reference films depositedmore » by thermal evaporation, these results demonstrate a good starting point for further optimizations of sputtered WO x and MoO x towards higher work functions to improve the hole selectivity.« less
Sputter-deposited WO x and MoO x for hole selective contacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bivour, Martin; Zähringer, Florian; Ndione, Paul F.
Here, reactive sputter deposited tungsten and molybdenum oxide (WO x, MoO x) thin films are tested for their ability to form a hole selective contact for Si wafer based solar cells. A characterization approach based on analyzing the band bending induced in the c-Si absorber and the external and implied open-circuit voltage of test structures was used. It is shown that the oxygen partial pressure allows to tailor the selectivity to some extent and that a direct correlation between induced band bending and hole selectivity exists. Although the selectivity of the sputtered films is inferior to the reference films depositedmore » by thermal evaporation, these results demonstrate a good starting point for further optimizations of sputtered WO x and MoO x towards higher work functions to improve the hole selectivity.« less
Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng
2016-02-10
Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement.
Guillén, María G.; Gámez, Francisco; Suárez, Belén; Queirós, Carla; Silva, Ana M. G.; Barranco, Ángel; Sánchez-Valencia, Juan Ramón; Pedrosa, José María; Lopes-Costa, Tânia
2017-01-01
The incorporation of a prototypical rosamine fluorescent dye from organic solutions into transparent and microstructured columnar TiO2 and SiO2 (MO2) thin films, prepared by evaporation at glancing angles (GAPVD), was evaluated. The aggregation of the adsorbed molecules, the infiltration efficiency and the adsorption kinetics were studied by means of UV-Vis absorption and fluorescence spectroscopies. Specifically, the infiltration equilibrium as well as the kinetic of adsorption of the emitting dye has been described by a Langmuir type adsorption isotherm and a pseudosecond order kinetic model, respectively. The anchoring mechanism of the rosamine to the MO2 matrix has been revealed by specular reflectance Fourier transform infrared spectroscopy and infiltration from aqueous solutions at different pH values. Finally, the sensing performance towards NO2 gas of optimized films has been assessed by following the changes of its fluorescence intensity revealing that the so-selected device exhibited improved sensing response compared to similar hybrid films reported in the literature. PMID:28772484
Colin, J J; Diot, Y; Guerin, Ph; Lamongie, B; Berneau, F; Michel, A; Jaouen, C; Abadias, G
2016-02-01
An experimental setup designed for in situ electrical resistance measurement during thin film growth is described. The custom-built sample holder with a four-point probe arrangement can be loaded into a high-vacuum magnetron sputter-deposition chamber through a load-lock transfer system, allowing measurements on series of samples without venting the main chamber. Electrical contact is ensured with circular copper tracks inserted in a Teflon plate on a mounting holder station inside the deposition chamber. This configuration creates the possibility to measure thickness-dependent electrical resistance changes with sub-monolayer resolution and is compatible with use of sample rotation during growth. Examples are presented for metallic films with high adatom mobility growing in a Volmer-Weber mode (Ag and Pd) as well as for refractory metal (Mo) with low adatom mobility. Evidence for an amorphous-to-crystalline phase transition at a film thickness of 2.6 nm is reported during growth of Mo on an amorphous Si underlayer, supporting previous findings based on in situ wafer curvature measurements.
NASA Astrophysics Data System (ADS)
Jalili, Helia
The idea of half-metallic ferromagnets was first introduced by de Groot et al. in 1983 based on their calculations. The density of state at the Fermi level for half-metallic ferromagnet is completely polarized, meaning that only one of the spin up or spin down channel exists and has metallic behaviour while the other spin channel behaves as a semiconductor or insulator. This unusual electronic structure can be seen in different materials including Sr2FeMoO6, CrO2 and Mn-based Heusler alloys. The high spin polarization degree of the half-metallic ferromagnets makes them a perfect candidate to be used as a spin-injector/detector in spin-based electronics device (spintronics). However, the degree of spin polarization of these materials, particularly in the multilayered structure spintronic devices, strongly depends on the surface/interface quality and the presence of defects, which was the subject of the present study. Pulsed laser deposition (PLD) has been used to grow two examples of the half-metallic ferromagnets, namely, Sr2FeMoO6 and CrO2. The effects of the growth conditions (deposition temperature, gas pressure, laser power, target-to-substrate distance, post-annealing) and of the substrate lattice mismatch and thickness evolution have been studied. By optimizing the growth conditions, nanocrystalline Sr2FeMoO6 films have been grown on a Si(100) substrate for the first time. This single-phase Sr 2FeMoO6 film was obtained at a temperature as low as 600°C, and it exhibits a high saturation magnetic moment of 3.4 muB per formula unit at 77 K. By using glancing-incidence X-ray diffraction with different incident beam angles, the crystal structure of the film was sampled as a function of depth. Despite the lack of good lattice matching with the Si substrate, a preferential orientation of the nanocrystals in the film was observed for the as-grown Sr2FeMoO6 films thicker than 60 nm. Furthermore, effects of the deposition temperature on the epitaxial growth of the Sr2FeMoO6 films on MgO(001) have been studied by means of high-resolution X-ray diffraction. The film grown at 800°C was post-annealed in oxygen, producing epitaxial films of SrMoO4 on top of the Sr2FeMoO6 film. The corresponding magnetization data showed that the post-annealing treatment lowered the saturation magnetic moment from 3.4 muB per formula unit (or /f.u.) for the as-grown Sr2FeMoO6 film to 1.4 muB/f.u. after annealing. X-ray photoemission measurements as a function of sputtering time further revealed the presence of SrMoO4 on both the as-grown and annealed films, and their corresponding depth profiles indicated a thicker SrMoO 4 overlayer on the annealed film. The intensity ratios of the 3d features of Mo4+, Mo5+, and Mo6+ for Sr 2FeMoO6 remained unchanged with sputtering depth (after 160 s of sputtering), supporting the conclusion that the observed secondary phase (SrMoO4) was formed predominantly on the surface and not in the sub-grain boundaries of the as-grown Sr2FeMoO6 film. The epitaxial growth evolution of Sr2FeMoO6 films of different thickness on substrates of MgO(001), SrTiO3(100) and LaAlO3(100) have also been studied. For each thickness, surface morphology, grain size, film epitaxy, and crystal quality were determined by atomic force microscopy and X-ray diffraction (o-2theta scan and reciprocal space mapping). For thicker films (˜120 nm), high resolution X-ray diffraction studies revealed that SrMoO4 and other parasitic phases tend to forms on SrTiO3 and LaAlO3 substrates, but not on those grown on MgO substrates. As a second part of the project, single-phase CrO2 nanostructured thin films have been grown for the first time directly on MgO(001) by PLD from a metallic Cr target in an O2 environment. X-ray diffraction shows that these films are strained and consist of CrO2 crystallites with two possible epitaxial relationships to the substrate: either CrO 2(110) or CrO2(200) is parallel to MgO(001). X-ray photoemission further confirms that the films are primarily CrO2 covered with a thin CrO3 overlayer, and indicates its complete synthesis without any residual metallic Cr.
Growth of Cu2ZnSnS4(CZTS) by Pulsed Laser Deposition for Thin film Photovoltaic Absorber Material
NASA Astrophysics Data System (ADS)
Nandur, Abhishek; White, Bruce
2014-03-01
CZTS (Cu2ZnSnS4) has become the subject of intense interest because it is an ideal candidate absorber material for thin-film solar cells with an optimal band gap (1.5 eV), high absorption coefficient (104 cm-1) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since thin films are deposited under high vacuum with excellent stoichiometry transfer from the target. CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of laser energy fluence and substrate temperature and post-deposition sulfur annealing on the surface morphology, composition and optical absorption have been investigated. Optimal CZTS thin films exhibited a band gap of 1.54 eV with an absorption coefficient of 4x104cm-1. A solar cell utilizing PLD grown CZTS with the structure SLG/Mo/CZTS/CdS/ZnO/ITO showed a conversion efficiency of 5.85% with Voc = 376 mV, Jsc = 38.9 mA/cm2 and Fill Factor, FF = 0.40.
NASA Astrophysics Data System (ADS)
Zhai, Yong; Li, Fumin; Ling, Lanyun; Chen, Chong
2016-10-01
In this work, the Ag2S nanocrystalline thin films are deposited on ITO glass via molecular precursor decomposition (MPD) method and newly developed HRTD method for organic solar cells (ITO/Ag2S/P3HT:PCBM/MoO3/Au) as an electron selective layer and a light absorption material. The surface morphology, structure characterization, and optical property of the Ag2S films prepared by these two methods were compared and the effect of the prepared Ag2S film on the device performance is investigated. It is found that the Ag2S films prepared by HRTD method have lower roughness and better uniformity than the corresponding films prepared by the MPD method. In addition, a more effective and rapid transporting ability for the electrons and holes in the ITO/Ag2S(HRTD, n)/P3HT:PCBM/MoO3/Au cells is found, which reduces the charge recombination, and thus, improves the device performance. The highest efficiency of 3.21% achieved for the ITO/Ag2S(HRTD, 50)/P3HT:PCBM/MoO3/Au cell is 93% higher than that of the ITO/Ag2S(MPD, 2)/P3HT:PCBM/MoO3/Au cell.
Alzahly, Shaykha; Yu, LePing; Gibson, Christopher T.
2018-01-01
Molybdenum disulphide (MoS2) is one of the most studied and widely applied nanomaterials from the layered transition-metal dichalcogenides (TMDs) semiconductor family. MoS2 has a large carrier diffusion length and a high carrier mobility. Combining a layered structure of single-wall carbon nanotube (SWCNT) and MoS2 with n-type silicon (n-Si) provided novel SWCNT/n-Si photovoltaic devices. The solar cell has a layered structure with Si covered first by a thin layer of MoS2 flakes and then a SWCNT film. The films were examined using scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The MoS2 flake thickness ranged from 5 to 90 nm while the nanosheet’s lateral dimensions size ranged up to 1 μm2. This insertion of MoS2 improved the photoconversion efficiency (PCE) of the SWCNT/n-Si solar cells by approximately a factor of 2. PMID:29690503
NASA Astrophysics Data System (ADS)
Fekih, Z.; Ghellai, N.; Fortas, G.; Chiboub, N.; Sam, S.; Chabanne-sari, N. E.; Gabouze, N.
In this work, thin films of metal alloys (Co-Mo) have been electrodeposited onto silicon (Si) surface. The effects of two different additives (H3BO3 and Na2CO3) and the pH of the solution on the electrochemically deposited films (morphology, stochiometry…) have been investigated. The properties of the deposits were characterized by using X-Rays Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The results show that the morphology and the film composition depend on both the pH of the solution and the additives. The presence of boric acid favors the Mo deposition. Crack-free homogeneous deposits with a low percentage of molybdenum can be easily obtained from high pH bath. The deposits were shown to exhibits a good crystalline structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dougherty, B.L.
New limits on half-lives for several double beta decay modes of /sup 100/Mo were obtained with a novel experimental system which included thin source films interleaved with a coaxial array of windowless silicon detectors. Segmentation and timing information allowed backgrounds originating in the films to be studied in some detail. Dummy films containing /sup 96/Mo were used to assess remaining backgrounds. With 0.1 mole years of /sup 100/Mo data collected, the lower half-life limits at 90% confidence were 2.7 /times/ 10/sup 18/ years for decay via the two-neutrino mode, 5.2 /times/10/sup 19/ years for decay with the emission of amore » Majoron, and 1.6 /times/ 10/sup 20/ years and 2.2 /times/ 10/sup 21/ years for neutrinoless 0/sup +/ ..-->.. 2/sup +/ and 0/sup +/ ..-->.. 0/sup +/ transitions, respectively. 50 refs., 38 figs., 11 tabs.« less
Uniform large-area growth of nanotemplated high-quality monolayer MoS2
NASA Astrophysics Data System (ADS)
Young, Justin R.; Chilcote, Michael; Barone, Matthew; Xu, Jinsong; Katoch, Jyoti; Luo, Yunqiu Kelly; Mueller, Sara; Asel, Thaddeus J.; Fullerton-Shirey, Susan K.; Kawakami, Roland; Gupta, Jay A.; Brillson, Leonard J.; Johnston-Halperin, Ezekiel
2017-06-01
Over the past decade, it has become apparent that the extreme sensitivity of 2D crystals to surface interactions presents a unique opportunity to tune material properties through surface functionalization and the mechanical assembly of 2D heterostructures. However, this opportunity carries with it a concurrent challenge: an enhanced sensitivity to surface contamination introduced by standard patterning techniques that is exacerbated by the difficulty in cleaning these atomically thin materials. Here, we report a templated MoS2 growth technique wherein Mo is deposited onto atomically stepped sapphire substrates through a SiN stencil with feature sizes down to 100 nm and subsequently sulfurized at high temperature. These films have a quality comparable to the best MoS2 prepared by other methodologies, and the thickness of the resulting MoS2 patterns can be tuned layer-by-layer by controlling the initial Mo deposition. The quality and thickness of the films are confirmed by scanning electron, scanning tunneling, and atomic force microscopies; Raman, photoluminescence, and x-ray photoelectron spectroscopies; and electron transport measurements. This approach critically enables the creation of patterned, single-layer MoS2 films with pristine surfaces suitable for subsequent modification via functionalization and mechanical stacking. Further, we anticipate that this growth technique should be broadly applicable within the family of transition metal dichalcogenides.
Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.
1987-08-07
An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.
Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.
1989-01-01
An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.
Klepper, C. C.; Williams, J. M.; Truhan, J.J.; Qu, J.; Riester, L.; Hazelton, R. C.; Moschella, J.J.; Blau, P.J.; Anderson, J.P.; Popoola, O.O.; Keitz, M.D.
2008-01-01
This paper presents experimental evidence that thin (<∼200 nm) boron coatings, deposited with a (vacuum) cathodic arc technique on pre-polished Co-Cr-Mo surfaces, could potentially extend the life of metal-on-polymer orthopedic devices using cast Co-Cr-Mo alloy for the metal component. The primary tribological test used a linear, reciprocating pin-on-disc arrangement, with pins made of ultra-high molecular weight polyethylene. The disks were cast Co-Cr-Mo samples that were metallographically polished and then coated with boron at a substrate bias of 500 V and at about 100 °C. The wear tests were carried out in a saline solution to simulate the biological environment. The improvements were manifested by the absence of a detectable wear track scar on the coated metal component, while significant polymer transfer film was detected on the uncoated (control) samples tested under the same conditions. The polymer transfer track was characterized with both profilometry and Rutherford Backscattering Spectroscopy. Mechanical characterization of the thin films included nano-indentation, as well as additional pin-on-disk tests with a steel ball to demonstrate adhesion, using ultra-high frequency acoustic microscopy to probe for any void occurrence at the coating-substrate interface. PMID:19340285
Tan, Chaoliang; Zhao, Wei; Chaturvedi, Apoorva; ...
2016-02-24
The high-yield and scalable production of single-layer ternary transition metal dichalcogenide nanosheets with ≈66% of metallic 1T phase, including MoS 2xSe 2(1-x) and Mo xW 1-xS 2 is here achieved via electrochemical Li-intercalation and the exfoliation method. Thin film MoS 2xSe 2(1-x) nanosheets drop-cast on a fluorine-doped tin oxide substrate are used as an efficient electrocatalyst on the counter electrode for the tri-iodide reduction in a dye-sensitized solar cell.
Profilometry of thin films on rough substrates by Raman spectroscopy
Ledinský, Martin; Paviet-Salomon, Bertrand; Vetushka, Aliaksei; Geissbühler, Jonas; Tomasi, Andrea; Despeisse, Matthieu; De Wolf , Stefaan; Ballif , Christophe; Fejfar, Antonín
2016-01-01
Thin, light-absorbing films attenuate the Raman signal of underlying substrates. In this article, we exploit this phenomenon to develop a contactless thickness profiling method for thin films deposited on rough substrates. We demonstrate this technique by probing profiles of thin amorphous silicon stripes deposited on rough crystalline silicon surfaces, which is a structure exploited in high-efficiency silicon heterojunction solar cells. Our spatially-resolved Raman measurements enable the thickness mapping of amorphous silicon over the whole active area of test solar cells with very high precision; the thickness detection limit is well below 1 nm and the spatial resolution is down to 500 nm, limited only by the optical resolution. We also discuss the wider applicability of this technique for the characterization of thin layers prepared on Raman/photoluminescence-active substrates, as well as its use for single-layer counting in multilayer 2D materials such as graphene, MoS2 and WS2. PMID:27922033
Onset of two-dimensional superconductivity in space charge doped few-layer molybdenum disulfide
NASA Astrophysics Data System (ADS)
Biscaras, Johan; Chen, Zhesheng; Paradisi, Andrea; Shukla, Abhay
2015-11-01
Atomically thin films of layered materials such as molybdenum disulfide (MoS2) are of growing interest for the study of phase transitions in two-dimensions through electrostatic doping. Electrostatic doping techniques giving access to high carrier densities are needed to achieve such phase transitions. Here we develop a method of electrostatic doping which allows us to reach a maximum n-doping density of 4 × 1014 cm-2 in few-layer MoS2 on glass substrates. With increasing carrier density we first induce an insulator to metal transition and subsequently an incomplete metal to superconductor transition in MoS2 with critical temperature ~10 K. Contrary to earlier reports, after the onset of superconductivity, the superconducting transition temperature does not depend on the carrier density. Our doping method and the results we obtain in MoS2 for samples as thin as bilayers indicates the potential of this approach.
Electron Excess Doping and Effective Schottky Barrier Reduction on the MoS2/h-BN Heterostructure.
Joo, Min-Kyu; Moon, Byoung Hee; Ji, Hyunjin; Han, Gang Hee; Kim, Hyun; Lee, Gwanmu; Lim, Seong Chu; Suh, Dongseok; Lee, Young Hee
2016-10-12
Layered hexagonal boron nitride (h-BN) thin film is a dielectric that surpasses carrier mobility by reducing charge scattering with silicon oxide in diverse electronics formed with graphene and transition metal dichalcogenides. However, the h-BN effect on electron doping concentration and Schottky barrier is little known. Here, we report that use of h-BN thin film as a substrate for monolayer MoS 2 can induce ∼6.5 × 10 11 cm -2 electron doping at room temperature which was determined using theoretical flat band model and interface trap density. The saturated excess electron concentration of MoS 2 on h-BN was found to be ∼5 × 10 13 cm -2 at high temperature and was significantly reduced at low temperature. Further, the inserted h-BN enables us to reduce the Coulombic charge scattering in MoS 2 /h-BN and lower the effective Schottky barrier height by a factor of 3, which gives rise to four times enhanced the field-effect carrier mobility and an emergence of metal-insulator transition at a much lower charge density of ∼1.0 × 10 12 cm -2 (T = 25 K). The reduced effective Schottky barrier height in MoS 2 /h-BN is attributed to the decreased effective work function of MoS 2 arisen from h-BN induced n-doping and the reduced effective metal work function due to dipole moments originated from fixed charges in SiO 2 .
NASA Astrophysics Data System (ADS)
Nag, Manoj; Bhoolokam, Ajay; Steudel, Soeren; Chasin, Adrian; Myny, Kris; Maas, Joris; Groeseneken, Guido; Heremans, Paul
2014-11-01
We report on the impact of source/drain (S/D) metal (molybdenum) etch and the final passivation (SiO2) layer on the bias-stress stability of back-channel-etch (BCE) configuration based amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). It is observed that the BCE configurations TFTs suffer poor bias-stability in comparison to etch-stop-layer (ESL) TFTs. By analysis with transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), as well as by a comparative analysis of contacts formed by other metals, we infer that this poor bias-stability for BCE transistors having Mo S/D contacts is associated with contamination of the back channel interface, which occurs by Mo-containing deposits on the back channel during the final plasma process of the physical vapor deposited SiO2 passivation.
NASA Astrophysics Data System (ADS)
Hur, Ji-Hyun; Park, Junghak; Kim, Deok-kee; Jeon, Sanghun
2017-04-01
We propose a model that describes the operation characteristics of a two-dimensional electron gas (2DEG) in a monolayer transition-metal dichalcogenide thin-film transistor (TFT) having trapped charges near the channel interface. We calculate the drift mobility of the carriers scattered by charged defects located in the channel or near the channel interfaces. The calculated drift mobility is a function of the 2DEG areal density of interface traps. Finally, we calculate the model transfer (ID-VG S ) and output (ID-VS D ) characteristics and verify them by comparing with the experimental results performed with monolayer MoS2 TFTs. We find the modeled results to be excellently consistent with the experiments. This proposed model can be utilized for measuring the interface-trapped charge and trap site densities from the measured transfer curves directly, avoiding more complicated and expensive measurement methods.
Plasma-assisted physical vapor deposition surface treatments for tribological control
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis
1990-01-01
In any mechanical or engineering system where contacting surfaces are in relative motion, adhesion, wear, and friction affect reliability and performance. With the advancement of space age transportation systems, the tribological requirements have dramatically increased. This is due to the optimized design, precision tolerance requirements, and high reliability expected for solid lubricating films in order to withstand hostile operating conditions (vacuum, high-low temperatures, high loads, and space radiation). For these problem areas the ion-assisted deposition/modification processes (plasma-based and ion beam techniques) offer the greatest potential for the synthesis of thin films and the tailoring of adherence and chemical and structural properties for optimized tribological performance. The present practices and new approaches of applying soft solid lubricant and hard wear resistant films to engineering substrates are reviewed. The ion bombardment treatments have increased film adherence, lowered friction coefficients, and enhanced wear life of the solid lubricating films such as the dichalcogenides (MoS2) and the soft metals (Au, Ag, Pb). Currently, sputtering is the preferred method of applying MoS2 films; and ion plating, the soft metallic films. Ultralow friction coefficients (less than 0.01) were achieved with sputtered MoS2. Further, new diamond-like carbon and BN lubricating films are being developed by using the ion assisted deposition techniques.
Impact of MoO3 interlayer on the energy level alignment of pentacene-C60 heterostructure.
Zou, Ye; Mao, Hongying; Meng, Qing; Zhu, Daoben
2016-02-28
Using in situ ultraviolet photoelectron spectroscopy, the electronic structure evolutions at the interface between pentacene and fullerene (C60), a classical organic donor-acceptor heterostructure in organic electronic devices, on indium-tin oxide (ITO) and MoO3 modified ITO substrates have been investigated. The insertion of a thin layer MoO3 has a significant impact on the interfacial energy level alignment of pentacene-C60 heterostructure. For the deposition of C60 on pentacene, the energy difference between the highest occupied molecular orbital of donor and the lowest unoccupied molecular orbital of acceptor (HOMO(D)-LUMO(A)) offset of C60/pentacene heterostructure increased from 0.86 eV to 1.54 eV after the insertion of a thin layer MoO3 on ITO. In the inverted heterostructrure where pentacene was deposited on C60, the HOMO(D)-LUMO(A) offset of pentacene/C60 heterostructure increased from 1.32 to 2.20 eV after MoO3 modification on ITO. The significant difference of HOMO(D)-LUMO(A) offset shows the feasibility to optimize organic electronic device performance through interfacial engineering approaches, such as the insertion of a thin layer high work function MoO3 films.
MoS2 monolayers on nanocavities: enhancement in light-matter interaction
NASA Astrophysics Data System (ADS)
Janisch, Corey; Song, Haomin; Zhou, Chanjing; Lin, Zhong; Elías, Ana Laura; Ji, Dengxin; Terrones, Mauricio; Gan, Qiaoqiang; Liu, Zhiwen
2016-06-01
Two-dimensional (2D) atomic crystals and van der Waals heterostructures constitute an emerging platform for developing new functional ultra-thin electronic and optoelectronic materials for novel energy-efficient devices. However, in most thin-film optical applications, there is a long-existing trade-off between the effectiveness of light-matter interactions and the thickness of semiconductor materials, especially when the materials are scaled down to atom thick dimensions. Consequently, enhancement strategies can introduce significant advances to these atomically thick materials and devices. Here we demonstrate enhanced absorption and photoluminescence generation from MoS2 monolayers coupled with a planar nanocavity. This nanocavity consists of an alumina nanolayer spacer sandwiched between monolayer MoS2 and an aluminum reflector, and can strongly enhance the light-matter interaction within the MoS2, increasing the exclusive absorption of monolayer MoS2 to nearly 70% at a wavelength of 450 nm. The nanocavity also modifies the spontaneous emission rate, providing an additional design freedom to control the interaction between light and 2D materials.
Truong, Thai Giang; Dierre, Benjamin; Grasset, Fabien; Saito, Noriko; Saito, Norio; Nguyen, Thi Kim Ngan; Takahashi, Kohsei; Uchikoshi, Tetsuo; Amela-Cortes, Marian; Molard, Yann; Cordier, Stéphane; Ohashi, Naoki
2016-01-01
The development of phosphor devices free of heavy metal or rare earth elements is an important issue for environmental reasons and energy efficiency. Different mixtures of ZnO nanocrystals with Cs 2 Mo 6 I 8 (OOC 2 F 5 ) 6 cluster compound (CMIF) dispersed into polyvinylpyrrolidone matrix have been prepared by very simple and low cost solution chemistry. The resulting solutions have been used to fabricate highly transparent and luminescent films by dip coating free of heavy metal or rare earth elements. The luminescence properties of solution and dip-coated films were investigated. The luminescence of such a system is strongly dependent on the ratios between ZnO and CMIF amounts, the excitation wavelength and the nature of the system. By varying these two parameters (ratio and wavelength), a large variety of colors, from blue to red as well as white, can be achieved. In addition, differences in the luminescence properties have been observed between solutions and thin films as well as changes of CMIF emission band maximum wavelength. This may suggest some possible interactions between the different luminophore centers, such as energy transfer or ligands exchange on the Mo 6 clusters.
Truong, Thai Giang; Dierre, Benjamin; Grasset, Fabien; Saito, Noriko; Saito, Norio; Nguyen, Thi Kim Ngan; Takahashi, Kohsei; Uchikoshi, Tetsuo; Amela-Cortes, Marian; Molard, Yann; Cordier, Stéphane; Ohashi, Naoki
2016-01-01
Abstract The development of phosphor devices free of heavy metal or rare earth elements is an important issue for environmental reasons and energy efficiency. Different mixtures of ZnO nanocrystals with Cs2Mo6I8(OOC2F5)6 cluster compound (CMIF) dispersed into polyvinylpyrrolidone matrix have been prepared by very simple and low cost solution chemistry. The resulting solutions have been used to fabricate highly transparent and luminescent films by dip coating free of heavy metal or rare earth elements. The luminescence properties of solution and dip-coated films were investigated. The luminescence of such a system is strongly dependent on the ratios between ZnO and CMIF amounts, the excitation wavelength and the nature of the system. By varying these two parameters (ratio and wavelength), a large variety of colors, from blue to red as well as white, can be achieved. In addition, differences in the luminescence properties have been observed between solutions and thin films as well as changes of CMIF emission band maximum wavelength. This may suggest some possible interactions between the different luminophore centers, such as energy transfer or ligands exchange on the Mo6 clusters. PMID:27877895
NASA Astrophysics Data System (ADS)
Truong, Thai Giang; Dierre, Benjamin; Grasset, Fabien; Saito, Noriko; Saito, Norio; Nguyen, Thi Kim Ngan; Takahashi, Kohsei; Uchikoshi, Tetsuo; Amela-Cortes, Marian; Molard, Yann; Cordier, Stéphane; Ohashi, Naoki
2016-01-01
The development of phosphor devices free of heavy metal or rare earth elements is an important issue for environmental reasons and energy efficiency. Different mixtures of ZnO nanocrystals with Cs2Mo6I8(OOC2F5)6 cluster compound (CMIF) dispersed into polyvinylpyrrolidone matrix have been prepared by very simple and low cost solution chemistry. The resulting solutions have been used to fabricate highly transparent and luminescent films by dip coating free of heavy metal or rare earth elements. The luminescence properties of solution and dip-coated films were investigated. The luminescence of such a system is strongly dependent on the ratios between ZnO and CMIF amounts, the excitation wavelength and the nature of the system. By varying these two parameters (ratio and wavelength), a large variety of colors, from blue to red as well as white, can be achieved. In addition, differences in the luminescence properties have been observed between solutions and thin films as well as changes of CMIF emission band maximum wavelength. This may suggest some possible interactions between the different luminophore centers, such as energy transfer or ligands exchange on the Mo6 clusters.
Effects of temperature and surface contamination on D retention in ultrathin Li films on TZM
Capece, A. M.; Roszell, J. P.; Skinner, C. H.; ...
2014-10-29
Here in this work, we investigate deuterium retention at the Mo-Li interface by studying thin Li films three monolayers thick on a TZM Mo alloy. Li films at temperatures between 315 and 460 K were exposed to a deuterium ion beam and D retention was measured using temperature programmed desorption. In the absence of oxygen, D is retained as LiD, and the relative amount of retained D decreases with increasing substrate temperature. In three-monolayer thick lithium oxide films, the amount of D retained was 2.5 times higher than the amount retained as LiD in the metallic Li film. However, oxygenmore » reduces the thermal stability of D in the film, causing D 2O and D 2 to be released from the surface at temperatures 150-200 K below the LiD decomposition temperature. These results highlight the importance of maintaining a metallic Li layer for high D retention in Li films on TZM at elevated temperatures.« less
Effects of temperature and surface contamination on D retention in ultrathin Li films on TZM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capece, A. M.; Roszell, J. P.; Skinner, C. H.
Here in this work, we investigate deuterium retention at the Mo-Li interface by studying thin Li films three monolayers thick on a TZM Mo alloy. Li films at temperatures between 315 and 460 K were exposed to a deuterium ion beam and D retention was measured using temperature programmed desorption. In the absence of oxygen, D is retained as LiD, and the relative amount of retained D decreases with increasing substrate temperature. In three-monolayer thick lithium oxide films, the amount of D retained was 2.5 times higher than the amount retained as LiD in the metallic Li film. However, oxygenmore » reduces the thermal stability of D in the film, causing D 2O and D 2 to be released from the surface at temperatures 150-200 K below the LiD decomposition temperature. These results highlight the importance of maintaining a metallic Li layer for high D retention in Li films on TZM at elevated temperatures.« less
NASA Astrophysics Data System (ADS)
Abusnina, Mohamed; Moutinho, Helio; Al-Jassim, Mowafak; DeHart, Clay; Matin, Mohammed
2014-09-01
In this work, Cu2ZnSnS4 (CZTS) thin films were prepared by the sulfurization of metal precursors deposited sequentially via radio frequency magnetron sputtering on Mo-coated soda-lime glass. The stack order of the precursors was Mo/Zn/Sn/Cu. Sputtered precursors were annealed in sulfur atmosphere with nine different conditions to study the impact of sulfurization time and substrate temperature on the structural, morphological, and optical properties of the final CZTS films. X-ray fluorescence was used to determine the elemental composition ratio of the metal precursors. Final CZTS films were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). XRD and EDS were combined to investigate the films' structure and to identify the presence of secondary phases. XRD analysis indicated an improvement in film crystallinity with an increase of the substrate temperature and annealing times. Also indicated was the minimization and/or elimination of secondary phases when the films experienced longer annealing time. EDS revealed slight Sn loss in films sulfurized at 550°C; however, an increase of the sulfurization temperature to 600°C did not confirm these results. SEM study showed that films treated with higher temperatures exhibited dense morphology, indicating the completion of the sulfurization process. The estimated absorption coefficient was on the order of 104 cm-1 for all CZTS films, and the values obtained for the optical bandgap energy of the films were between 1.33 eV and 1.52 eV.
Synthesis of millimeter-scale transition metal dichalcogenides single crystals
Gong, Yongji; Ye, Gonglan; Lei, Sidong; ...
2016-02-10
The emergence of semiconducting transition metal dichalcogenide (TMD) atomic layers has opened up unprecedented opportunities in atomically thin electronics. Yet the scalable growth of TMD layers with large grain sizes and uniformity has remained very challenging. Here is reported a simple, scalable chemical vapor deposition approach for the growth of MoSe2 layers is reported, in which the nucleation density can be reduced from 105 to 25 nuclei cm -2, leading to millimeter-scale MoSe 2 single crystals as well as continuous macrocrystalline films with millimeter size grains. The selective growth of monolayers and multilayered MoSe2 films with well-defined stacking orientation canmore » also be controlled via tuning the growth temperature. In addition, periodic defects, such as nanoscale triangular holes, can be engineered into these layers by controlling the growth conditions. The low density of grain boundaries in the films results in high average mobilities, around ≈42 cm 2 V -1 s -1, for back-gated MoSe 2 transistors. This generic synthesis approach is also demonstrated for other TMD layers such as millimeter-scale WSe 2 single crystals.« less
Fernández-Martínez, Rodolfo; Caballero, Raquel; Guillén, Cecilia; Gutiérrez, María Teresa; Rucandio, María Isabel
2005-05-01
CuIn(1-x)Ga(x)Se2 [CIGS; x=Ga/(In+Ga)] thin films are among of the best candidates as absorber materials for solar cell applications. The material quality and main properties of the polycrystalline absorber layer are critically influenced by deviations in the stoichiometry, particularly in the Cu/(In+Ga) atomic ratio. In this work a simple, sensitive and accurate method has been developed for the quantitative determination of these thin films by inductively coupled plasma optical emission spectrometry (ICP-OES). The proposed method involves an acid digestion of the samples to achieve the complete solubilization of CIGS, followed by the analytical determination by ICP-OES. A digestion procedure with 50% HNO3 alone or in the presence of 10% HCl was performed to dissolve those thin films deposited on glass or Mo-coated glass substrates, respectively. Two analytical lines were selected for each element (Cu 324.754 and 327.396 nm, Ga 294.364 and 417.206 nm, In 303.936 and 325.609 nm, Se 196.090 and 203.985 nm, and Mo 202.030 and 379.825 nm) and a study of spectral interferences was performed which showed them to be suitable, since they offered a high sensitivity and no significant inter-element interferences were detected. Detection limits for all elements at the selected lines were found to be appropriate for this kind of application, and the relative standard deviations were lower than 1.5% for all elements with the exception of Se (about 5%). The Cu/(In+Ga) atomic ratios obtained from the application of this method to CIGS thin films were consistent with the study of the structural and morphological properties by X-ray diffraction (XRD) and scanning electron microscopy (SEM).
NASA Astrophysics Data System (ADS)
Mostovyi, Andrii I.; Solovan, Mykhailo M.; Brus, Viktor V.; Pullerits, Toǧnu; Maryanchuk, Pavlo D.
2018-01-01
MoOx/n-CdTe photosensitive heterostructures were prepared by the deposition of molybdenum oxide thin films onto three different n-type CdTe substrates (ρ1=0.4 Ωṡcm, ρ2=10 Ωṡcm, ρ3=40 Ωṡcm) by DC reactive magnetron sputtering. The height of the potential barrier and series resistance of the MoOx/CdTe heterojunctions were investigated. The dominating current transport mechanisms through the heterojunctions were determined at forward and reverse biases.
Preparation of multilayered nanocrystalline thin films with composition-modulated interfaces
NASA Astrophysics Data System (ADS)
Biro, D.; Barna, P. B.; Székely, L.; Geszti, O.; Hattori, T.; Devenyi, A.
2008-06-01
The properties of multilayer thin film structures depend on the morphology and structure of interfaces. A broad interface, in which the composition is varying, can enhance, e.g., the hardness of multilayer thin films. In the present experiments multilayers of TiAlN and CrN as well as TiAlN, CrN and MoS 2 were studied by using unbalanced magnetron sputter sources. The sputter sources were arranged side by side on an arc. This arrangement permits development of a transition zone between the layers, where the composition changes continuously. The multilayer system was deposited by one-fold oscillating movement of substrates in front of sputter sources. Thicknesses of layers could be changed both by oscillation frequency and by the power applied to sputter sources. Ti/Al: 50/50 at%, pure chromium and MoS 2 targets were used in the sputter sources. The depositions were performed in an Ar-N 2 mixture at 0.22 Pa working pressure. The sputtering power of the TiAl source was feed-back adjusted in fuzzy-logic mode in order to avoid fluctuation of the TiAl target sputter rate due to poisoning of the target surface. Structure characterization of films deposited on <1 0 0> Si wafers covered by thermally grown SiO 2 was performed by cross-sectional transmission electron microscopy. At first a 100 nm thick Cr base layer was deposited on the substrate to improve adhesion, which was followed by a CrN transition layer. The CrN transition layer was followed by a 100 nm thick TiAlN/CrN multilayer system. The TiAlN/CrN/MoS 2 multilayer system was deposited on the surface of this underlayer system. The underlayer systems Cr, CrN and TiAlN/CrN were crystalline with columnar structure according to the morphology of zone T of the structure zone models. The column boundaries contained segregated phases showing up in the under-focused TEM images. The surface of the underlayer system was wavy due to dome-shaped columns. The nanometer-scaled TiAlN/CrN/MoS 2 multilayer system followed this waviness. Crystallinity of the TiAlN and CrN layers in the multilayer system decreases with increasing thickness of the MoS 2 layer.
Soft x ray optics by pulsed laser deposition
NASA Technical Reports Server (NTRS)
Fernandez, Felix E.
1994-01-01
A series of molybdenum thin film depositions by PLD (Pulsed Laser Deposition) have been carried out, seeking appropriate conditions for multilayer fabrication. Green (532 nm) and UV (355 nm) light pulses, in a wide range of fluences, were used. Relatively large fluences (in comparison with Si) are required to cause evaporation of molybdenum. The optical penetration depths and reflectivities for Mo at these two wavelengths are comparable, which means that results should be, and do appear to be similar for equal fluences. For all fluences above threshold used, a large number of incandescent particles is ejected by the target (either a standard Mo sputtering target or a Mo sheet were tried), together with the plasma plume. Most of these particles are clearly seen to bounce off the substrate. The films were observed with light microscopy using Nomarski and darkfield techniques. There is no evidence of large debris. Smooth films plus micron-sized droplets are usually seen. The concentration of these droplets embedded in the film appears not to vary strongly with the laser fluence employed. Additional characterization with SEM and XRD is under way.
Universal Method for Creating Hierarchical Wrinkles on Thin-Film Surfaces.
Jung, Woo-Bin; Cho, Kyeong Min; Lee, Won-Kyu; Odom, Teri W; Jung, Hee-Tae
2018-01-10
One of the most interesting topics in physical science and materials science is the creation of complex wrinkled structures on thin-film surfaces because of their several advantages of high surface area, localized strain, and stress tolerance. In this study, a significant step was taken toward solving limitations imposed by the fabrication of previous artificial wrinkles. A universal method for preparing hierarchical three-dimensional wrinkle structures of thin films on a multiple scale (e.g., nanometers to micrometers) by sequential wrinkling with different skin layers was developed. Notably, this method was not limited to specific materials, and it was applicable to fabricating hierarchical wrinkles on all of the thin-film surfaces tested thus far, including those of metals, two-dimensional and one-dimensional materials, and polymers. The hierarchical wrinkles with multiscale structures were prepared by sequential wrinkling, in which a sacrificial layer was used as the additional skin layer between sequences. For example, a hierarchical MoS 2 wrinkle exhibited highly enhanced catalytic behavior because of the superaerophobicity and effective surface area, which are related to topological effects. As the developed method can be adopted to a majority of thin films, it is thought to be a universal method for enhancing the physical properties of various materials.
NASA Astrophysics Data System (ADS)
Gułkowski, Sławomir; Krawczak, Ewelina
2017-10-01
Among a variety of the thin film solar cell technologies of second generation, copper-indium-gallium-diselenide device (CIGS) with the latest highest lab cell efficiency record of 22.4 % seems to be the most promising for the power generation. This is partly due to the advantages of using low cost films of few microns thick not only as a metallic contacts but also as a main structure of the solar cell consisted of high quality semiconductor layers. This paper reports the experimental studies of the CIGS absorber formation on Soda Lime Glass substrate covered by thin molybdenum film as a back contact layer. All structures were deposited with the use of magnetron sputtering method only. Technological parameters of the deposition process such as deposition power, pressure and deposition time were optimized for each layer of the structure. Mo back contact was examined in terms of resistivity. EDS measurements were carried out to verify stoichiometric composition of CIGS absorber. Thin film of Al was used as a top contact in order to examine the quality of p-n junction. The I-V electrical characteristic of the p-n junction was analysed in terms of solar cell application.
Wafer-scale synthesis of monolayer and few-layer MoS2 via thermal vapor sulfurization
NASA Astrophysics Data System (ADS)
Robertson, John; Liu, Xue; Yue, Chunlei; Escarra, Matthew; Wei, Jiang
2017-12-01
Monolayer molybdenum disulfide (MoS2) is an atomically thin, direct bandgap semiconductor crystal potentially capable of miniaturizing optoelectronic devices to an atomic scale. However, the development of 2D MoS2-based optoelectronic devices depends upon the existence of a high optical quality and large-area monolayer MoS2 synthesis technique. To address this need, we present a thermal vapor sulfurization (TVS) technique that uses powder MoS2 as a sulfur vapor source. The technique reduces and stabilizes the flow of sulfur vapor, enabling monolayer wafer-scale MoS2 growth. MoS2 thickness is also controlled with great precision; we demonstrate the ability to synthesize MoS2 sheets between 1 and 4 layers thick, while also showing the ability to create films with average thickness intermediate between integer layer numbers. The films exhibit wafer-scale coverage and uniformity, with electrical quality varying depending on the final thickness of the grown MoS2. The direct bandgap of grown monolayer MoS2 is analyzed using internal and external photoluminescence quantum efficiency. The photoluminescence quantum efficiency is shown to be competitive with untreated exfoliated MoS2 monolayer crystals. The ability to consistently grow wafer-scale monolayer MoS2 with high optical quality makes this technique a valuable tool for the development of 2D optoelectronic devices such as photovoltaics, detectors, and light emitters.
Interface structure and composition of MoO3/GaAs(0 0 1)
NASA Astrophysics Data System (ADS)
Sarkar, Anirban; Ashraf, Tanveer; Grafeneder, Wolfgang; Koch, Reinhold
2018-04-01
We studied growth, structure, stress, oxidation state as well as surface and interface structure and composition of thermally-evaporated thin MoO3 films on the technologically important III/V-semiconductor substrate GaAs(0 0 1). The MoO3 films grow with Mo in the 6+ oxidation state. The electrical resistance is tunable by the oxygen partial pressure during deposition from transparent insulating to semi-transparant halfmetallic. In the investigated growth temperature range (room temperature to 200 °C) no diffraction spots are detected by x-ray diffraction. However, high resolution transmission electron microscopy reveals the formation of MoO3 nanocrystal grains with diameters of 5–8 nm. At the interface a ≈3 nm-thick intermediate layer has formed, where the single-crystal lattice of GaAs gradually transforms to the nanocrystalline MoO3 structure. This interpretation is corroborated by our in situ and real-time stress measurements evidencing a two-stage growth process as well as by elemental interface analysis revealing coexistance of Ga, As, Mo, and oxygen in a intermediate layer of 3–4 nm.
NASA Technical Reports Server (NTRS)
Zhou, Andy F.; Erwin, J. Kevin; Mansuripur, M.
1992-01-01
A new and comprehensive dielectric tensor characterization instrument is presented for characterization of magneto-optical recording media and non-magnetic thin films. Random and systematic errors of the system are studied. A series of TbFe, TbFeCo, and Co/Pt samples with different composition and thicknesses are characterized for their optical and magneto-optical properties. The optical properties of several non-magnetic films are also measured.
Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals
NASA Astrophysics Data System (ADS)
Wei Shih, Chen; Chin, Albert; Fu Lu, Chun; Fang Su, Wei
2016-01-01
High mobility channel thin-film-transistor (TFT) is crucial for both display and future generation integrated circuit. We report a new metal-oxide TFT that has an ultra-thin 4.5 nm SnO2 thickness for both active channel and source-drain regions, very high 147 cm2/Vs field-effect mobility, high ION/IOFF of 2.3 × 107, small 110 mV/dec sub-threshold slope, and a low VD of 2.5 V for low power operation. This mobility is already better than chemical-vapor-deposition grown multi-layers MoS2 TFT. From first principle quantum-mechanical calculation, the high mobility TFT is due to strongly overlapped orbitals.
Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals
Wei Shih, Chen; Chin, Albert; Fu Lu, Chun; Fang Su, Wei
2016-01-01
High mobility channel thin-film-transistor (TFT) is crucial for both display and future generation integrated circuit. We report a new metal-oxide TFT that has an ultra-thin 4.5 nm SnO2 thickness for both active channel and source-drain regions, very high 147 cm2/Vs field-effect mobility, high ION/IOFF of 2.3 × 107, small 110 mV/dec sub-threshold slope, and a low VD of 2.5 V for low power operation. This mobility is already better than chemical-vapor-deposition grown multi-layers MoS2 TFT. From first principle quantum-mechanical calculation, the high mobility TFT is due to strongly overlapped orbitals. PMID:26744240
Room temperature electrical properties of solution derived p-type Cu{sub 2}ZnSnS{sub 4} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Goutam Kumar; Dixit, Ambesh, E-mail: ambesh@iitj.ac.in
2016-05-06
Electrical properties of solution processed Cu{sub 2}ZnSnS{sub 4} (CZTS) compound semiconductor thin film structures on molybdenum (Mo) coated glass substrates are investigated using Mott-Schottky and Impedance spectroscopy measurements at room temperature. These measurements are carried out in sodium sulfate (Na{sub 2}SO{sub 4}) electrolytic medium at pH ~ 9.5. The inversion/depletion/accumulation regions are clearly observed in CZTS semiconductor −Na{sub 2}SO{sub 4} electrolyte interface and measured flat band potential is ~ −0.27 V for CZTS thin film electrode. The positive slope of the depletion region confirms the intrinsic p-type characteristics of CZTS thinfilms with ~ 2.5× 10{sup 19} holes/m{sup 3}. The high frequencymore » impedance measurements showed ~ 30 Ohm electrolyte resistance for the investigated configuration.« less
NASA Astrophysics Data System (ADS)
Deniz, Hakan; Preziosi, Daniele; Alexe, Marin; Hesse, Dietrich
2017-01-01
We report the growth of high-quality epitaxial Sr2FeMoO6 (SFMO) thin films on various unconventional oxide substrates, such as TbScO3, DyScO3, and Sr2Al0.3Ga0.7TaO6 (SAGT) as well as on the most commonly used one, SrTiO3 (STO), by pulsed laser deposition. The films were found to contain a foreign nano-scale phase coherently embedded inside the SFMO film matrix. Through energy dispersive X-ray spectroscopy and scanning transmission electron microscopy, we identified the foreign phase to be Sr2-xFe1+yMo1-yO6, an off-stoichiometric derivative of the SFMO compound with Fe rich content (y ≈ 0.6) and a fairly identical crystal structure to SFMO. The films on STO and SAGT exhibited very good magnetic properties with high Curie temperature values. All the samples have fairly good conducting behavior albeit the presence of a foreign phase. Despite the relatively large number of items of the foreign phase, there is no significant deterioration in the properties of the SFMO films. We discuss in detail how magneto-transport properties are affected by the foreign phase.
NASA Astrophysics Data System (ADS)
Maslyanchuk, O. L.; Solovan, M. M.; Brus, V. V.; Kulchynsky, V. V.; Maryanchuk, P. D.; Fodchuk, I. M.; Gnatyuk, V. A.; Aoki, T.; Potiriadis, C.; Kaissas, Y.
2017-05-01
The charge transport mechanism and spectrometric properties of the X-ray and γ-ray detectors, fabricated by the deposition of molybdenum oxide thin films onto semi-insulating p-CdTe crystals were studied. The current transport processes in the Mo-MoOx/p-CdTe/MoOx-Mo structure are well described in the scope of the carrier's generation in the space-charge region and the space-charge-limited current models. The lifetime of charge carriers, the energy of hole traps, and the density of discrete trapping centers were determined from the comparison of the experimental data and calculations. Spectrometric properties of Mo-MoOx/p-CdTe/MoOx-Mo structures were also investigated. It is shown that the investigated heterojunctions have demonstrated promising characteristics for practical application in X-ray and γ-ray detector fabrication.
Synthesis and Analysis of MnTiO3 Thin Films on ITO Coated Glass Substrates
NASA Astrophysics Data System (ADS)
Martin, Emerick; Sahiner, Mehmet-Alper
Perovskites like Manganese Titanium Oxide have interesting chemical properties that may be advantageous to the development of p-n junction photovoltaic cells. Due to the limited understanding behind the compound, it is essential to know the characteristics of it when it is deposited in thin film form. The cells were created using pulsed laser deposition method for two separate mediums (first layers after ITO). ZnO was deposited onto ITO glass for the first sample. For the second sample, a layer of pure Molybdenum was deposited onto the ITO glass. The MnTiO3 was then deposited onto both samples. There was a target thickness of 1000 Angstroms, but ellipsometry shows that, for the Mo based sample, that film thickness was around 1500 Angstroms. There were inconclusive results for the ZnO based sample. The concentration of active carriers was measured using a Hall Effect apparatus for the Mo based sample. The XRD analyses were used to confirm the perovskite structure of the films. Measurements for photoelectric conversion efficiency were taken using a Keathley 2602 ScourceMeter indicated low values for efficiency. The structural information that is correlated with the low electrical performance of this sample will be discussed. SHU-NJSGC Summer 2015 Fellowship.
Advances in sputtered and ion plated solid film lubrication
NASA Technical Reports Server (NTRS)
Spalvins, T.
1985-01-01
The glow discharge or ion assisted vacuum deposition techniques, primarily sputtering and ion plating, have rapidly emerged and offer great potential to deposit solid lubricants. The increased energizing of these deposition processes lead to improved adherence and coherence, favorable morphological growth, higher density, and reduced residual stresses in the film. These techniques are of invaluable importance where high precision machines tribo-components require very thin, uniform lubricating films (0.2 m), which do not interface with component tolerances. The performance of sputtered MoS2 films and ion plated Au and Pb films are described in terms of film thickness, coefficient of friction, and wear lives.
Onset of two-dimensional superconductivity in space charge doped few-layer molybdenum disulfide
Biscaras, Johan; Chen, Zhesheng; Paradisi, Andrea; Shukla, Abhay
2015-01-01
Atomically thin films of layered materials such as molybdenum disulfide (MoS2) are of growing interest for the study of phase transitions in two-dimensions through electrostatic doping. Electrostatic doping techniques giving access to high carrier densities are needed to achieve such phase transitions. Here we develop a method of electrostatic doping which allows us to reach a maximum n-doping density of 4 × 1014 cm−2 in few-layer MoS2 on glass substrates. With increasing carrier density we first induce an insulator to metal transition and subsequently an incomplete metal to superconductor transition in MoS2 with critical temperature ≈10 K. Contrary to earlier reports, after the onset of superconductivity, the superconducting transition temperature does not depend on the carrier density. Our doping method and the results we obtain in MoS2 for samples as thin as bilayers indicates the potential of this approach. PMID:26525386
NASA Astrophysics Data System (ADS)
El Kazzi, S.; Mortelmans, W.; Nuytten, T.; Meersschaut, J.; Carolan, P.; Landeloos, L.; Conard, T.; Radu, I.; Heyns, M.; Merckling, C.
2018-04-01
We present in this paper the use of Gas Source Molecular Beam Epitaxy for the large-scale growth of transition metal dichalcogenides. Fiber-textured MoS2 co-deposited thin films (down to 1 MLs) are grown on commercially 200 mm wafer size templates where MX2 crystalline layers are achieved at temperatures ranging from RT to 550 °C. Raman Spectroscopy and photoluminescence measurements along with X-Ray Photoelectron Spectroscopy show that a low growth rate is essential for complete Mo sulfurization during MoS2 co-deposition. Finally, cross-section Transmission Electron Microscopy investigations are discussed to highlight the influence of SiO2 and Al2O3 used surfaces on MoS2 deposition.
Effect of Al2O3 encapsulation on multilayer MoSe2 thin-film transistors
NASA Astrophysics Data System (ADS)
Lee, Hyun Ah; Yeoul Kim, Seong; Kim, Jiyoung; Choi, Woong
2017-03-01
We report the effect of Al2O3 encapsulation on the device performance of multilayer MoSe2 thin-film transistors based on statistical investigation of 29 devices with a SiO2 bottom-gate dielectric. On average, Al2O3 encapsulation by atomic layer deposition increased the field-effect mobility from 10.1 cm2 V-1 s-1 to 14.8 cm2 V-1 s-1, decreased the on/off-current ratio from 8.5 × 105 to 2.3 × 105 and negatively shifted the threshold voltage from -1.1 V to -8.1 V. Calculation based on the Y-function method indicated that the enhancement of intrinsic carrier mobility occurred independently of the reduction of contact resistance after Al2O3 encapsulation. Furthermore, contrary to previous reports in the literature, we observe a negligible effect of thermal annealing on contact resistance and carrier mobility during the atomic layer deposition of Al2O3. These results demonstrate that Al2O3 encapsulation is a useful method for improving the carrier mobility of multilayer MoSe2 transistors, providing important implications on the application of MoSe2 and other 2D materials into high-performance transistors.
Lattice instability and elastic response of metastable Mo1-xSix thin films
NASA Astrophysics Data System (ADS)
Fillon, A.; Jaouen, C.; Michel, A.; Abadias, G.; Tromas, C.; Belliard, L.; Perrin, B.; Djemia, Ph.
2013-11-01
We present a detailed experimental study on Mo1-xSix thin films, an archetypal alloy system combining metallic and semiconductor materials. The correlations between structure and elastic response are comprehensively investigated. We focus on assessing trends for understanding the evolution of elastic properties upon Si alloying in relation to the structural state (crystalline vs amorphous), bonding character (metallic vs covalent), and local atomic environment. By combining picosecond ultrasonics and Brillouin light scattering techniques, a complete set of effective elastic constants and mechanical moduli (B, G, E) is provided in the whole compositional range, covering bcc solid solutions (x < 0.20) and the amorphous phase (0.20 < x < 1.0). A softening of the shear and Young moduli and a concomitant decrease of the Debye temperature is revealed for crystalline alloys, with a significant drop being observed at x ˜ 0.2 corresponding to the limit of crystal lattice stability. Amorphous alloys exhibit a more complex elastic response, related to variations in coordination number, atomic volume, and bonding state, depending on Si content. Finally, distinct evolutions of the G/B ratio as a function of Cauchy pressure are reported for crystalline and amorphous alloys, enabling us to identify signatures of ductility vs brittleness in the features of the local atomic environment. This work paves the way to design materials with improved mechanical properties by appropriate chemical substitution or impurity incorporation during thin-film growth.
Reconfigurable p-n junction diodes and the photovoltaic effect in exfoliated MoS{sub 2} films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutar, Surajit; Agnihotri, Pratik; Comfort, Everett
2014-03-24
Realizing basic semiconductor devices such as p-n junctions are necessary for developing thin-film and optoelectronic technologies in emerging planar materials such as MoS{sub 2}. In this work, electrostatic doping by buried gates is used to study the electronic and optoelectronic properties of p-n junctions in exfoliated MoS{sub 2} flakes. Creating a controllable doping gradient across the device leads to the observation of the photovoltaic effect in monolayer and bilayer MoS{sub 2} flakes. For thicker flakes, strong ambipolar conduction enables realization of fully reconfigurable p-n junction diodes with rectifying current-voltage characteristics, and diode ideality factors as low as 1.6. The spectralmore » response of the photovoltaic effect shows signatures of the predicted band gap transitions. For the first excitonic transition, a shift of >4{sub kB}T is observed between monolayer and bulk devices, indicating a thickness-dependence of the excitonic coulomb interaction.« less
Enhanced pinning in superconducting thin films with graded pinning landscapes
NASA Astrophysics Data System (ADS)
Motta, M.; Colauto, F.; Ortiz, W. A.; Fritzsche, J.; Cuppens, J.; Gillijns, W.; Moshchalkov, V. V.; Johansen, T. H.; Sanchez, A.; Silhanek, A. V.
2013-05-01
A graded distribution of antidots in superconducting a-Mo79Ge21 thin films has been investigated by magnetization and magneto-optical imaging measurements. The pinning landscape has maximum density at the sample border, decreasing linearly towards the center. Its overall performance is noticeably superior than that for a sample with uniformly distributed antidots: For high temperatures and low fields, the critical current is enhanced, whereas the region of thermomagnetic instabilities in the field-temperature diagram is significantly suppressed. These findings confirm the relevance of graded landscapes on the enhancement of pinning efficiency, as recently predicted by Misko and Nori [Phys. Rev. B 85, 184506 (2012)].
Nanostructured Transparent Conducting Oxides for Device Applications
NASA Astrophysics Data System (ADS)
Dutta, Titas
2011-12-01
Research on transparent conducting oxides (TCOs) alternative to indium tin oxide (ITO) has attracted a lot of attention due to the serious concern related to cost and chemical stability of indium tin oxide. The primary aim of this research is to develop low cost alternative transparent conducting oxides with an eye towards (1) increasing the organic solar cell efficiency and (2) fabricating transparent electronic devices utilizing p-type TCOs. To investigate the fundamental properties, the novel TCO films have been grown on sapphire and economical glass substrates using pulsed laser deposition (PLD) technique. The films were also grown under different deposition conditions in order to understand the effect of processing parameters on the film properties. The characteristics of the thin films have been investigated in detail using (X-ray diffraction, TEM, X-ray photoelectron spectroscopy (XPS), UV- photoelectron spectroscopy (UPS), four probe resistivity and UV-Vis transmittance measurements) in order to establish processing-structure-property correlation. ZnO doped with group III elements is a promising candidate because of its superior stability in hydrogen environment, benign nature and relatively inexpensive supply. However, ZnO based TCO films suffer from low work function (4.4 eV, compared to that of 4.8 eV for ITO), which increases the energy barrier and affects the carrier transport across ZnGa0.05O/organic layer interface. To overcome this issue of ZnO based TCOs, the growth of bilayered structure consisting of very thin MoOx (2.0 < x < 2.75), and/or p-Li xNi1-xO (0 ≤ x≤ 0.07) over layer on Zn0.95Ga 0.05O (GZO) film by pulsed laser ablation is proposed. The multiple oxidation states present in the over layers (Mo4+, Mo 5+ and Mo6+ in MoOx and Ni2+ and Ni3+ in NiO1+x), which result in desired TCO characteristics were determined and controlled by growth parameters and optimal target composition. These optimized bilayer films exhibited good optical transmittance (≥ 80%) and low resistivity of ˜ 10-4 O-cm. The optimized NiO1+x / GZO and MoOx / GZO bilayers showed significant increase in work function values (˜5.3 eV). The work function of the bilayer films was tuned by varying the processing conditions and doping of over layers. Preliminary test device results of the organic photovoltaic cells (OPVs) based on these surfaces modified TCO layers have shown an increase in the open circuit voltage (Voc) and/or increase in Fill factor (FF) and the power conversion efficiency of these devices. These results suggest that the surface modified GZO films have a potential to substitute for ITO in transparent electrode applications. To gain a better understanding of the fundamentals and factors affecting the properties of p-type TCO, NiO thin films have been grown on c-sapphire and glass substrates with controlled properties. Growth of NiO on c-sapphire occurs epitaxially in [111] direction with two types of crystalline grains rotated by 60° with respect to each other. We have also investigated the effects of the deposition parameters and Li doping concentration variations on the electrical and optical properties of NiO thin films. The analysis of the resistivity measurement showed that doped Li+ ions occupy the substitutional sites in the NiO films, enhancing the p-type conductivity. The minimum resistivity of 0.15 O-cm was obtained for Li0.07Ni 0.93O film. The results of this research help to understand the conduction mechanisms in TCOs and are critical to further improvement and optimization of TCO properties. This work has also demonstrated interesting possibilities for fabricating a p-LixNi1-xO/ i-MgZnO /n-ZnO heterojunction diode on c-sapphire. It has been demonstrated that epitaxial LixNi 1-xO can be grown on ZnO integrated with c-sapphire. Heteroeptaxial growth of the p-n junction is technologically important as it minimizes the electron scattering at the interface. The insertion of i-MgZnO between the p and n layer led to improved current-voltage characteristics with reduced leakage current. An attempt has been made to elucidate the role of point defects, in controlling the carrier concentration and transport characteristics of nanostructured TCO films. This study presents the systematic changes in structural, electrical and optical properties of NiO thin films introduced by nanosecond duration Ultraviolet Excimer laser pulses. NiO films show transformation from p-type semiconducting to n-type conducting behavior with three order of magnitude decrease in resistivity, while maintaining its cubic crystal structure and good epitaxial relationship. This phenomenon is reversible via oxygen annealing. From XPS analysis, a strong correlation has been established between n-type conductivity and non-equilibrium concentrations of laser induced Ni 0-like defect states.
NASA Astrophysics Data System (ADS)
Ibrahim, Khalil; Mahbubur Rahman, M.; Taha, Hatem; Mohammadpour, Ehsan; Zhou, Zhifeng; Yin, Chun-Yang; Nikoloski, Aleksandar; Jiang, Zhong-Tao
2018-05-01
Mo, CrN, and Mo:CrN sputtered coatings synthesized onto silicon Si(100) substrates were investigated as solar selective surfaces and their potential applications in optical devices. These coatings were characterized using XRD, SEM, UV-vis, and FTIR techniques. XRD investigation, showed a change in CrN thin film crystallite characteristic due to Mo doping. Compared to the CrN coating, the Mo:CrN film has a higher lattice parameter and lower grain size of 4.19 nm and 106.18 nm, respectively. FESEM morphology confirmed the decrement in Mo:CrN crystal size due to Mo doping. Optical analysis showed that in the visible range of the solar spectrum, the CrN coatings exhibit the highest solar absorptance of 66% while the lowest thermal emittance value of 5.67 was recorded for the CrN coating doped with Mo. Consequently, the highest solar selectivity of 9.6, and the energy band-gap of 2.88 eV were achieved with the Mo-doped CrN coatings. Various optical coefficients such as optical absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constants, and energy loss functions of these coatings were also estimated from the optical reflectance data recorded in the wavelength range of 190-2300 nm.
2D materials integrated in Si3N4 photonics platform
NASA Astrophysics Data System (ADS)
Faneca, Joaquin; Hogan, Benjamin T.; Torres Alonso, E.; Craciun, Monica; Baldycheva, Anna
2018-02-01
In this paper, we discuss a back-end CMOS fabrication process for the large-scale integration of 2D materials on SOI (siliconon-insulator) platform and present a complete theoretical study of the change in the effective refractive index of 2D materialsenabled silicon nitride waveguide structures. The chemical vapour deposition (CVD) and liquid exfoliation fabrication methods are described for the fabrication of graphene, WS2 and MoS2 thin films. Finite-difference frequency-domain (FDFD) approach and the Transfer Matrix Method were used in order to mathematically describe these structures. The introduction of thin films of 2D material onto Si3N4 waveguide structures allows manipulation of the optical characteristics to a high degree of precision by varying the Fermi-level through the engineering of the number of atomically thin layers or by electrical tuning, for example. Based on the proposed tuning approach, designs of graphene, WS2 and MoS2 enabled Si3N4 micro-ring structures are presented for the visible and NIR range, which demonstrate versatility and desirable properties for a wide range of applications, such as bio-chemical sensing and optical communications.
Liu, S W; Divayana, Y; Sun, X W; Wang, Y; Leck, K S; Demir, H V
2011-02-28
We fabricated and demonstrated improved organic light emitting diodes (OLEDs) in a thin film architecture of indium tin oxide (ITO)/ molybdenum trioxide (MoO3) (20 nm)/N,N'-Di(naphth-2-yl)-N,N'-diphenyl-benzidine (NPB) (50 nm)/ tris-(8-hydroxyquinoline) (Alq3) (70 nm)/Mg:Ag (200 nm) using an oblique angle deposition technique by which MoO3 was deposited at oblique angles (θ) with respect to the surface normal. It was found that, without sacrificing the power efficiency of the device, the device current efficiency and external quantum efficiency were significantly enhanced at an oblique deposition angle of θ=60° for MoO3.
NASA Astrophysics Data System (ADS)
Ma, Ruixin; Yang, Fan; Li, Shina; Zhang, Xiaoyong; Li, Xiang; Cheng, Shiyao; Liu, Zilin
2016-04-01
CZTSSe is an important earth abundant collection of materials for the development of low cost and high efficiency thin film solar cells. This work developed a simple non-vacuum-based route to fabricate CZTSSe absorber films. This was demonstrated by first synthesizing Cu2ZnSnS4 (CZTS) nano-crystalline based on solid-phase synthesis. Then a stable colloidal ink composed of CZTS nano-crystalline was blade coated on Mo-coated substrates followed by an annealing process under Ar atmosphere. After CZTS films formation, the films were sintered into CZTSSe absorber films by exposing them under Selenium vapor. The formation of a kesterite type CZTS was confirmed using X-ray diffraction and Raman scattering measurements. The band gap of CZTSSe absorber films was determined to be 1.26 eV, which was appropriate for use as an absorber layer in thin film solar cells. The CZTSSe absorber films showed a good photovoltatic performance, demonstrating this simple approach had great potential for CZTSSe solar cell production.
Influence of phase transformation on stress evolution during growth of metal thin films on silicon.
Fillon, A; Abadias, G; Michel, A; Jaouen, C; Villechaise, P
2010-03-05
In situ stress measurements during two-dimensional growth of low mobility metal films on amorphous Si were used to demonstrate the impact of interface reactivity and phase transformation on stress evolution. Using Mo1-xSix films as examples, the results show that the tensile stress rise, which develops after the film has become crystalline, is correlated with an increase in lateral grain size. The origin of the tensile stress is attributed to the volume change resulting from the alloy crystallization, which occurs at a concentration-dependent critical thickness.
Superconductor-Metal-Insulator transition in two dimensional Ta thin Films
NASA Astrophysics Data System (ADS)
Park, Sun-Gyu; Kim, Eunseong
2013-03-01
Superconductor-insulator transition has been induced by tuning film thickness or magnetic field. Recent electrical transport measurements of MoGe, Bi, Ta thin films revealed an interesting intermediate metallic phase which intervened superconducting and insulating phases at certain range of magnetic field. Especially, Ta thin films show the characteristic IV behavior at each phase and the disorder tuned intermediate metallic phase [Y. Li, C. L. Vicente, and J. Yoon, Physical Review B 81, 020505 (2010)]. This unexpected metallic phase can be interpreted as a consequence of vortex motion or contribution of fermionic quasiparticles. In this presentation, we report the scaling behavior during the transitions in Ta thin film as well as the transport measurements in various phases. Critical exponents v and z are obtained in samples with wide ranges of disorder. These results reveal new universality class appears when disorder exceeds a critical value. Dynamical exponent z of Superconducting sample is found to be 1, which is consistent with theoretical prediction of unity. z in a metallic sample is suddenly increased to be approximately 2.5. This critical exponent is much larger than the value found in other system and theoretical prediction. We gratefully acknowledge the financial support by the National Research Foundation of Korea through the Creative Research Initiatives.
Ultra-fast movies of thin-film laser ablation
NASA Astrophysics Data System (ADS)
Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.
2012-11-01
Ultra-short-pulse laser irradiation of thin molybdenum films from the glass substrate side initiates an intact Mo disk lift off free from thermal effects. For the investigation of the underlying physical effects, ultra-fast pump-probe microscopy is used to produce stop-motion movies of the single-pulse ablation process, initiated by a 660-fs laser pulse. The ultra-fast dynamics in the femtosecond and picosecond ranges are captured by stroboscopic illumination of the sample with an optically delayed probe pulse of 510-fs duration. The nanosecond and microsecond delay ranges of the probe pulse are covered by an electronically triggered 600-ps laser. Thus, the setup enables an observation of general laser ablation processes from the femtosecond delay range up to the final state. A comparison of time- and space-resolved observations of film and glass substrate side irradiation of a 470-nm molybdenum layer reveals the driving mechanisms of the Mo disk lift off initiated by glass-side irradiation. Observations suggest that a phase explosion generates a liquid-gas mixture in the molybdenum/glass interface about 10 ps after the impact of the pump laser pulse. Then, a shock wave and gas expansion cause the molybdenum layer to bulge, while the enclosed liquid-gas mixture cools and condenses at delay times in the 100-ps range. The bulging continues for approximately 20 ns, when an intact Mo disk shears and lifts off at a velocity of above 70 m/s. As a result, the remaining hole is free from thermal effects.
Luo, Dongxiang; Xu, Hua; Zhao, Mingjie; Li, Min; Xu, Miao; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao
2015-02-18
Amorphous indium-gallium-zinc-oxide thin film transistors (α-IGZO TFTs) with damage-free back channel wet-etch (BCE) process were achieved by introducing a carbon nanofilm as a barrier layer. We investigate the effects of different source-and-drain (S/D) materials on TFT performance. We find the TFT with Ti/C S/D electrodes exhibits a superior performance with higher output current, lower threshold voltage, and higher effective electron mobility compared to that of Mo/C S/D electrodes. Transmittance electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) are employed to analysis the interfacial interaction between S/D metal/C/α-IGZO layers. The results indicate that the better performance of TFTs with Ti/C electrodes should be attributed to the formations of Ti-C and Ti-O at the Ti/C-contact regions, which lead to a lower contact resistance, whereas Mo film is relatively stable and does not react easily with C nanofilm, resulting in a nonohmic contact behavior between Mo/C and α-IGZO layer. However, both kinds of α-IGZO TFTs show good stability under thermal bias stress, indicating that the inserted C nanofilms could avoid the impact on the α-IGZO channel regions during S/D electrodes formation. Finally, we successfully fabricated a high-definition active-matrix organic lighting emitting diode prototype driven by α-IGZO TFTs with Ti/C electrodes in a pilot line.
High-Speed Scalable Silicon-MoS2 P-N Heterojunction Photodetectors
Dhyani, Veerendra; Das, Samaresh
2017-01-01
Two-dimensional molybdenum disulfide (MoS2) is a promising material for ultrasensitive photodetector owing to its favourable band gap and high absorption coefficient. However, their commercial applications are limited by the lack of high quality p-n junction and large wafer scale fabrication process. A high speed Si/MoS2 p-n heterojunction photodetector with simple and CMOS compatible approach has been reported here. The large area MoS2 thin film on silicon platform has been synthesized by sulfurization of RF-sputtered MoO3 films. The fabricated molecular layers of MoS2 on silicon offers high responsivity up to 8.75 A/W (at 580 nm and 3 V bias) with ultra-fast response of 10 μsec (rise time). Transient measurements of Si/MoS2 heterojunction under the modulated light reveal that the devices can function up to 50 kHz. The Si/MoS2 heterojunction is found to be sensitive to broadband wavelengths ranging from visible to near-infrared light with maximum detectivity up to ≈1.4 × 1012 Jones (2 V bias). Reproducible low dark current and high responsivity from over 20 devices in the same wafer has been measured. Additionally, the MoS2/Si photodetectors exhibit excellent stability in ambient atmosphere. PMID:28281652
NASA Astrophysics Data System (ADS)
Liu, Hongfei; Yang, Ren Bin; Yang, Weifeng; Jin, Yunjiang; Lee, Coryl J. J.
2018-05-01
Ultrathin MoO3 layers have been grown on Si substrates at 120 °C by atomic layer deposition (ALD) using molybdenum hexacarbonyl [Mo(CO)6] and ozone (O3) as the Mo- and O-source precursors, respectively. The ultrathin films were further annealed in air at Tann = 550-750 °C for 15 min. Scanning-electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy have been employed to evaluate the morphological and elemental properties as well as their evolutions upon annealing of the thin films. They revealed an interfacial SiOx layer in between the MoO3 layer and the Si substrate; this SiOx layer converted into SiO2 during the annealing; and the equivalent thickness of the MoO3 (SiO2) layer decreased (increased) with the increase in Tann. Particles with diameters smaller than 50 nm emerged at Tann = 550 °C and their sizes (density) were reduced (increased) by increasing Tann to 650 °C. A further increase of Tann to 750 °C resulted in telephone-cord-like MoO3 structures, initiated from isolated particles on the surface. These observations have been discussed and interpreted based on temperature-dependent atomic interdiffusions, surface evaporations, and/or melting of MoO3, which shed new light on ALD MoO3 towards its electronic applications.
Copper:molybdenum sub-oxide blend as transparent conductive electrode (TCE) indium free
NASA Astrophysics Data System (ADS)
Hssein, Mehdi; Cattin, Linda; Morsli, Mustapha; Addou, Mohammed; Bernède, Jean-Christian
2016-05-01
Oxide/metal/oxide structures have been shown to be promising alternatives to ITO. In such structures, in order to decrease the high light reflection of the metal film it is embedded between two metal oxides dielectric. MoO3-x is often used as oxide due to its capacity to be a performing anode buffer layer in organic solar cells, while silver is the metal the most often used [1]. Some attempts to use cheaper metal such as copper have been done. However it was shown that Cu diffuses strongly into MoO3-x [2]. Here we used this property to grow simple new transparent conductive oxide (TCE), i.e., Cu: MoO3-x blend. After the deposition of a thin Cu layer, a film of MoO3-x is deposited by sublimation. An XPS study shows more than 50% of Cu is present at the surface of the structure. In order to limit the Cu diffusion an ultra-thin Al layer is deposited onto MoO3-x. Then, in order to obtain a good hole collecting contact with the electron donor of the organic solar cells, a second MoO3-x layer is deposited. After optimization of the thickness of the different layers, the optimum structure is as follow: Cu (12 nm) : MoO3-x (20 nm)/Al (0.5 nm)/ MoO3-x (10 nm). The sheet resistance of this structure is Rsq = 5.2 Ω/sq. and its transmittance is Tmax = 65%. The factor of merit ϕM = T10/Rsq. = 2.41 × 10-3 Ω-1, which made this new TCE promising as anode in organic solar cells. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui
Transistors and tunnel diodes enabled by large-scale MoS2 nanosheets grown on GaN
NASA Astrophysics Data System (ADS)
San Yip, Pak; Zou, Xinbo; Cho, Wai Ching; Wu, Kam Lam; Lau, Kei May
2017-07-01
We report growth, fabrication, and device results of MoS2-based transistors and diodes implemented on a single 2D/3D material platform. The 2D/3D platform consists of a large-area MoS2 thin film grown on SiO2/p-GaN substrates. Atomic force microscopy, scanning electron microscopy, and Raman spectroscopy were used to characterize the thickness and quality of the as-grown MoS2 film, showing that the large-area MoS2 nanosheet has a smooth surface morphology constituted by small grains. Starting from the same material, both top-gated MoS2 field effect transistors and MoS2/SiO2/p-GaN heterojunction diodes were fabricated. The transistors exhibited a high on/off ratio of 105, a subthreshold swing of 74 mV dec-1, field effect mobility of 0.17 cm2 V-1 s-1, and distinctive current saturation characteristics. For the heterojunction diodes, current-rectifying characteristics were demonstrated with on-state current density of 29 A cm-2 and a current blocking property up to -25 V without breakdown. The reported transistors and diodes enabled by the same 2D/3D material stack present promising building blocks for constructing future nanoscale electronics.
Construction of MoS2/Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor
NASA Astrophysics Data System (ADS)
Wu, Di; Lou, Zhenhua; Wang, Yuange; Xu, Tingting; Shi, Zhifeng; Xu, Junmin; Tian, Yongtao; Li, Xinjian
2017-10-01
Few-layer MoS2 thin films were synthesized by a two-step thermal decomposition process. In addition, MoS2/Si nanowire array (SiNWA) heterojunctions exhibiting excellent gas sensing properties were constructed and investigated. Further analysis reveals that such MoS2/SiNWA heterojunction devices are highly sensitive to nitric oxide (NO) gas under reverse voltages at room temperature (RT). The gas sensor demonstrated a minimum detection limit of 10 ppb, which represents the lowest value obtained for MoS2-based sensors, as well as an ultrahigh response of 3518% (50 ppm NO, ˜50% RH), with good repeatability and selectivity of the MoS2/SiNWA heterojunction. The sensing mechanisms were also discussed. The performance of the MoS2/SiNWA heterojunction gas sensors is superior to previous results, revealing that they have great potential in applications relating to highly sensitive gas sensors.
Construction of MoS2/Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor.
Wu, Di; Lou, Zhenhua; Wang, Yuange; Xu, Tingting; Shi, Zhifeng; Xu, Junmin; Tian, Yongtao; Li, Xinjian
2017-10-27
Few-layer MoS 2 thin films were synthesized by a two-step thermal decomposition process. In addition, MoS 2 /Si nanowire array (SiNWA) heterojunctions exhibiting excellent gas sensing properties were constructed and investigated. Further analysis reveals that such MoS 2 /SiNWA heterojunction devices are highly sensitive to nitric oxide (NO) gas under reverse voltages at room temperature (RT). The gas sensor demonstrated a minimum detection limit of 10 ppb, which represents the lowest value obtained for MoS 2 -based sensors, as well as an ultrahigh response of 3518% (50 ppm NO, ∼50% RH), with good repeatability and selectivity of the MoS 2 /SiNWA heterojunction. The sensing mechanisms were also discussed. The performance of the MoS 2 /SiNWA heterojunction gas sensors is superior to previous results, revealing that they have great potential in applications relating to highly sensitive gas sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Pingrui; Liu, Ziyang; Liu, Dongyang
Pentacene organic thin-film transistors (OTFTs) were prepared by introducing 4, 4″-tris(3-methylphenylphenylamino) triphenylamine (m-MTDATA): MoO{sub 3}, Pentacene: MoO{sub 3}, and Pentacene: m-MTDATA: MoO{sub 3} as buffer layers. These OTFTs all showed significant performance improvement comparing to the reference device. Significantly, we observe that the device employing Pentacene: m-MTDATA: MoO{sub 3} buffer layer can both take advantage of charge transfer complexes formed in the m-MTDATA: MoO{sub 3} device and suitable energy level alignment existed in the Pentacene: MoO{sub 3} device. These two parallel paths led to a high mobility, low threshold voltage, and contact resistance of 0.72 cm{sup 2}/V s, −13.4 V,more » and 0.83 kΩ at V{sub ds} = − 100 V. This work enriches the understanding of MoO{sub 3} doped organic materials for applications in OTFTs.« less
High performance broadband photodetector based on MoS2/porous silicon heterojunction
NASA Astrophysics Data System (ADS)
Dhyani, Veerendra; Dwivedi, Priyanka; Dhanekar, Saakshi; Das, Samaresh
2017-11-01
A high speed efficient broadband photodetector based on a vertical n-MoS2/p-porous silicon heterostructure has been demonstrated. Large area MoS2 on electrochemical etched porous silicon was grown by sulphurization of a sputtered MoO3 thin film. A maximum responsivity of 9 A/W (550-850 nm) with a very high detectivity of ˜1014 Jones is observed. Transient measurements show a fast response time of ˜9 μs and is competent to work at high frequencies (˜50 kHz). The enhanced photodetection performance of the heterojunction made on porous silicon over that made on planar silicon is explained in terms of higher interfacial barrier height, superior light trapping property, and larger junction area in the MoS2/porous silicon junction.
Electronic properties of in-plane phase engineered 1T'/2H/1T' MoS2
NASA Astrophysics Data System (ADS)
Thakur, Rajesh; Sharma, Munish; Ahluwalia, P. K.; Sharma, Raman
2018-04-01
We present the first principles studies of semi-infinite phase engineered MoS2 along zigzag direction. The semiconducting (2H) and semi-metallic (1T') phases are known to be stable in thin-film MoS2. We described the electronic and structural properties of the infinite array of 1T'/2H/1T'. It has been found that 1T'phase induced semi-metallic character in 2H phase beyond interface but, only Mo atoms in 2H phase domain contribute to the semi-metallic nature and S atoms towards semiconducting state. 1T'/2H/1T' system can act as a typical n-p-n structure. Also high holes concentration at the interface of Mo layer provides further positive potential barriers.
Dressick, Walter J.; Soto, Carissa M.; Fontana, Jake; Baker, Colin C.; Myers, Jason D.; Frantz, Jesse A.; Kim, Woohong
2014-01-01
We present a method of Cu(In,Ga)S2 (CIGS) thin film formation via conversion of layer-by-layer (LbL) assembled Cu-In-Ga oxide (CIGO) nanoparticles and polyelectrolytes. CIGO nanoparticles were created via a novel flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films were assembled by alternately dipping quartz, Si, and/or Mo substrates into a solution of either polydopamine (PDA) or polystyrenesulfonate (PSS) and then in the CIGO-PAH dispersion to fabricate films as thick as 1–2 microns. PSS/CIGO-PAH films were found to be inadequate due to weak adhesion to the Si and Mo substrates, excessive particle diffusion during sulfurization, and mechanical softness ill-suited to further processing. PDA/CIGO-PAH films, in contrast, were more mechanically robust and more tolerant of high temperature processing. After LbL deposition, films were oxidized to remove polymer and sulfurized at high temperature under flowing hydrogen sulfide to convert CIGO to CIGS. Complete film conversion from the oxide to the sulfide is confirmed by X-ray diffraction characterization. PMID:24941104
A direct thin-film path towards low-cost large-area III-V photovoltaics
Kapadia, Rehan; Yu, Zhibin; Wang, Hsin-Hua H.; Zheng, Maxwell; Battaglia, Corsin; Hettick, Mark; Kiriya, Daisuke; Takei, Kuniharu; Lobaccaro, Peter; Beeman, Jeffrey W.; Ager, Joel W.; Maboudian, Roya; Chrzan, Daryl C.; Javey, Ali
2013-01-01
III-V photovoltaics (PVs) have demonstrated the highest power conversion efficiencies for both single- and multi-junction cells. However, expensive epitaxial growth substrates, low precursor utilization rates, long growth times, and large equipment investments restrict applications to concentrated and space photovoltaics (PVs). Here, we demonstrate the first vapor-liquid-solid (VLS) growth of high-quality III-V thin-films on metal foils as a promising platform for large-area terrestrial PVs overcoming the above obstacles. We demonstrate 1–3 μm thick InP thin-films on Mo foils with ultra-large grain size up to 100 μm, which is ~100 times larger than those obtained by conventional growth processes. The films exhibit electron mobilities as high as 500 cm2/V-s and minority carrier lifetimes as long as 2.5 ns. Furthermore, under 1-sun equivalent illumination, photoluminescence efficiency measurements indicate that an open circuit voltage of up to 930 mV can be achieved, only 40 mV lower than measured on a single crystal reference wafer. PMID:23881474
Combinatorial search of rare-earth free permanent magnets
NASA Astrophysics Data System (ADS)
Gao, Tieren; Takeuchi, Ichiro; Fackler, Sean; Fang, Lei; Zhang, Ying; Krammer, Matthew; Anderson, Iver; McCallum, Bill; University of Maryland Collaboration; Ames Laboratory Collaboration
2013-03-01
Permanent magnets play important roles in modern technologies such as in generators, motors, speakers, and relays. Today's high performance permanent magnets contain at least one rare earth element such as Nd, Sm, Pr and Dy. However, rare earth elements are increasingly rare and expensive, and alternative permanent magnet materials which do not contain them are needed by the industry. We are using the thin film composition spread technique to explore novel compositions of permanent magnets without rare-earth. Ternary co-sputtering is used to generate composition spreads. We have thus far looked at Mo doped Fe-Co as one of the initial systems to search for possible compounds with enhanced coercive fields. The films were deposited on Si (100) substrates and annealed at different temperatures. The structural properties of films are mapped by synchrotron diffraction. We find that there is a structural transition from a crystalline to an amorphous state at about 20% atomic Mo. With increasing annealing temperature, the Mo onset concentration of the structural transition increases from 25% for 600°C to 35% for 700°C. We find that some of compounds display enhanced coercive field. With increasing Mo concentration, the magnetization of Fe-Co-Mo begins to switch from in-plane to out-of-plane direction. This work is funded by the BREM (Beyond Rare-earth Magnet) project (DOE EERE).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Di; Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures; Yu, Guoqiang, E-mail: guoqiangyu@ucla.edu
2016-05-23
We study spin-orbit-torque (SOT)-driven magnetization switching in perpendicularly magnetized Ta/Mo/Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB)/MgO films. The thermal tolerance of the perpendicular magnetic anisotropy (PMA) is enhanced, and the films sustain the PMA at annealing temperatures of up to 430 °C, due to the ultra-thin Mo layer inserted between the Ta and CoFeB layers. More importantly, the Mo insertion layer also allows for the transmission of the spin current generated in the Ta layer due to spin Hall effect, which generates a damping-like SOT and is able to switch the perpendicular magnetization. When the Ta layer is replaced by a Pt layer,more » i.e., in a Pt/Mo/CoFeB/MgO multilayer, the direction of the SOT-induced damping-like effective field becomes opposite because of the opposite sign of spin Hall angle in Pt, which indicates that the SOT-driven switching is dominated by the spin current generated in the Ta or Pt layer rather than the Mo layer. Quantitative characterization through harmonic measurements reveals that the large SOT effective field is preserved for high annealing temperatures. This work provides a route to applying SOT in devices requiring high temperature processing steps during the back-end-of-line processes.« less
III-Vs at Scale: A PV Manufacturing Cost Analysis of the Thin Film Vapor-Liquid-Solid Growth Mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Maxwell; Horowitz, Kelsey; Woodhouse, Michael
The authors present a manufacturing cost analysis for producing thin-film indium phosphide modules by combining a novel thin-film vapor-liquid-solid (TF-VLS) growth process with a standard monolithic module platform. The example cell structure is ITO/n-TiO2/p-InP/Mo. For a benchmark scenario of 12% efficient modules, the module cost is estimated to be $0.66/W(DC) and the module cost is calculated to be around $0.36/W(DC) at a long-term potential efficiency of 24%. The manufacturing cost for the TF-VLS growth portion is estimated to be ~$23/m2, a significant reduction compared with traditional metalorganic chemical vapor deposition. The analysis here suggests the TF-VLS growth mode could enablemore » lower-cost, high-efficiency III-V photovoltaics compared with manufacturing methods used today and open up possibilities for other optoelectronic applications as well.« less
Electrical resistivity of CuAlMo thin films grown at room temperature by dc magnetron sputtering
NASA Astrophysics Data System (ADS)
Birkett, Martin; Penlington, Roger
2016-07-01
We report on the thickness dependence of electrical resistivity of CuAlMo films grown by dc magnetron sputtering on glass substrates at room temperature. The electrical resistance of the films was monitored in situ during their growth in the thickness range 10-1000 nm. By theoretically modelling the evolution of resistivity during growth we were able to gain an insight into the dominant electrical conduction mechanisms with increasing film thickness. For thicknesses in the range 10-25 nm the electrical resistivity is found to be a function of the film surface roughness and is well described by Namba’s model. For thicknesses of 25-40 nm the experimental data was most accurately fitted using the Mayadas and Shatkes model which accounts for grain boundary scattering of the conduction electrons. Beyond 40 nm, the thickness of the film was found to be the controlling factor and the Fuchs-Sonheimer (FS) model was used to fit the experimental data, with diffuse scattering of the conduction electrons at the two film surfaces. By combining the Fuchs and Namba (FN) models a suitable correlation between theoretical and experimental resistivity can be achieved across the full CuAlMo film thickness range of 10-1000 nm. The irreversibility of resistance for films of thickness >200 nm, which demonstrated bulk conductivity, was measured to be less than 0.03% following subjection to temperature cycles of -55 and +125 °C and the temperature co-efficient of resistance was less than ±15 ppm °C-1.
Scaling of elongation transition thickness during thin-film growth on weakly interacting substrates
NASA Astrophysics Data System (ADS)
Lü, B.; Souqui, L.; Elofsson, V.; Sarakinos, K.
2017-08-01
The elongation transition thickness ( θElong) is a central concept in the theoretical description of thin-film growth dynamics on weakly interacting substrates via scaling relations of θElong with respect to rates of key atomistic film-forming processes. To date, these scaling laws have only been confirmed quantitatively by simulations, while experimental proof has been left ambiguous as it has not been possible to measure θElong. Here, we present a method for determining experimentally θElong for Ag films growing on amorphous SiO2: an archetypical weakly interacting film/substrate system. Our results confirm the theoretically predicted θElong scaling behavior, which then allow us to calculate the rates of adatom diffusion and island coalescence completion, in good agreement with the literature. The methodology presented herein casts the foundation for studying growth dynamics and cataloging atomistic-process rates for a wide range of weakly interacting film/substrate systems. This may provide insights into directed growth of metal films with a well-controlled morphology and interfacial structure on 2D crystals—including graphene and MoS2—for catalytic and nanoelectronic applications.
Toward low friction in water for Mo2N/Ag coatings by tailoring the wettability
NASA Astrophysics Data System (ADS)
Dai, Xuan; Wen, Mao; Huang, Keke; Wang, Xin; Yang, Lina; Wang, Jia; Zhang, Kan
2018-07-01
Increasing demands for robust surfaces in harsh conditions, such as erosion, abrasion and sea-water, has stimulated the development of self-lubricated protective coatings. Meanwhile, due to the oil crisis, research in water lubrication again attracts much attention from both academics and practical engineers. Here, a higher hydrophilicity accompanying with a remarkable drop of friction coefficient in water environment was achieved successfully in Mo2N/Ag coatings by increasing Ag content. To do these, the Mo2N/Ag coatings with different Ag content were deposited by co-sputtering, which exhibit a nanocomposite structure consisting of precipitate Ag embedded in the Mo2N matrix. The high hydrophilicity can be ascribed to the combined contributions of the partial oxidation of Mo2N and high polarity of Ag precipitates. The decrease of friction coefficient is illustrated by the colloidal friction products and a mode with electric double layer. In which, enhanced hydrophilicity will result in forming a thin "water film" layer between the interface of counterpart and the coatings. And the MoOx/Ag2Mo4O13 derived from the hydrolysis action of Mo2N/Ag sliding in water could function as lubricant phase. Meanwhile, these negative charged MoOx/Ag2Mo4O13 colloidal particles induce the rearrangement of positive ions in the "water film" and form an electric double layer, which also contributes to the decrease of friction coefficient.
NASA Astrophysics Data System (ADS)
Chen, Chang Pang; Ong, Bin Leong; Ong, Sheau Wei; Ong, Weijie; Tan, Hui Ru; Chai, Jian Wei; Zhang, Zheng; Wang, Shi Jie; Pan, Ji Sheng; Harrison, Leslie John; Kang, Hway Chuan; Tok, Eng Soon
2017-10-01
Room temperature growth of HfO2 thin film on clean 2H-MoS2 via plasma-sputtering of Hf-metal target in an argon/oxygen environment was studied in-situ using x-ray photoelectron spectroscopy (XPS). The deposited film was observed to grow akin to a layer-by-layer growth mode. At the onset of growth, a mixture of sulfate- and sulfite-like species (SOx2- where x = 3, 4), and molybdenum trioxide (MoO3), are formed at the HfO2/MoS2 interface. An initial decrease in binding energies for both Mo 3d and S 2p core-levels of the MoS2 substrate by 0.4 eV was also observed. Their binding energies, however, did not change further with increasing HfO2 thickness. There was no observable change in the Hf4f core-level binding energy throughout the deposition process. With increasing HfO2 deposition, MoO3 becomes buried at the interface while SOx2- was observed to be present in the film. The shift of 0.4 eV for both Mo 3d and S 2p core-levels of the MoS2 substrate can be attributed to a charge transfer from the substrate to the MoO3/SOx2--like interface layer. Consequently, the Type I heterojunction valence band offset (conduction band offset) becomes 1.7 eV (2.9 eV) instead of 1.3 eV (3.3 eV) expected from considering the bulk HfO2 and MoS2 valence band offset (conduction band offset). The formation of these states and its influence on band offsets will need to be considered in their device applications.
Thermal stability of MBE-grown epitaxial MoSe2 and WSe2 thin films
NASA Astrophysics Data System (ADS)
Chang, Young Jun; Choy, Byoung Ki; Phark, Soo-Hyon; Kim, Minu
Layered transition metal dichalcogenides (TMDs) draw much attention, because of its unique optical properties and band structures depending on the layer thicknesses. However, MBE growth of epitaxial films demands information about thermal stability of stoichiometry and related electronic structure for high temperature range. We grow epitaxial MoSe2 and WSe2 ultrathin films by using molecular beam epitaxy (MBE). We characterize stoichiometry of films grown at various growth temperature by using various methods, XPS, EDX, and TOF-MEIS. We further test high temperature stability of electronic structure for those films by utilizing in-situ ellipsometry attached to UHV chamber. We discuss threshold temperatures up to 700~1000oC, at which electronic phases changes from semiconductor to metal due to selenium deficiency. This information can be useful for potential application of TMDs for fabrication of Van der Waals multilayers and related devices. This research was supported by Nano.Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning. (2009-0082580), NRF-2014R1A1A1002868.
NASA Astrophysics Data System (ADS)
Xiao, Zhiyong
In this dissertation, I present the scanning microscopy and electrical transport studies of ferroelectric thin films and ferroic/2D van der Waals heterostructures. Based on the conducting probe atomic force microscopy and piezo-response force microscopy (PFM) studies of the static and dynamic behavior of ferroelectric domain walls (DW), we found that the ferroelectric polymer poly(vinylidene-fluoride-trifluorethylene) P(VDF-TrFE) is composed of two-dimensional (2D) ferroelectric monolayers (MLs) that are weakly coupled to each other. We also observed polarization asymmetry in epitaxial thin films of ferroelectric Pb(Zr,Ti)O3, which is attributed to the screening properties of the underlying conducting oxide. PFM studies also reveal ferroelectric relaxor-type behavior in ultrathin Sr(Zr,Ti)O3 films epitaxially deposited on Ge. We exploited scanning-probe-controlled domain patterning in a P(VDF-TrFE) top layer to induce nonvolatile modulation of the conduction characteristic of ML molybdenum disulfide (MoS2) between a transistor and a junction state. In the presence of a DW, MoS2 exhibits rectified Ids-Vds (IV) characteristics that are well described by the thermionic emission model. This approach can be applied to a wide range of van der Waals materials to design various functional homojunctions and nanostructures. We also studied the interfacial charge transfer effect between graphene and magnetoelectric Cr2O3 via electrostatic force microscopy and Kelvin probe force microscopy, which reveal p-type doping with up to 150 meV shift of the Fermi level. The graphene/Cr2O3 heterostructure is promising for developing magnetoelectric graphene transistors for spintronic applications.
Salvatore, Giovanni A; Münzenrieder, Niko; Barraud, Clément; Petti, Luisa; Zysset, Christoph; Büthe, Lars; Ensslin, Klaus; Tröster, Gerhard
2013-10-22
Recently, transition metal dichalcogenides (TMDCs) have attracted interest thanks to their large field effective mobility (>100 cm(2)/V · s), sizable band gap (around 1-2 eV), and mechanical properties, which make them suitable for high performance and flexible electronics. In this paper, we present a process scheme enabling the fabrication and transfer of few-layers MoS2 thin film transistors from a silicon template to any arbitrary organic or inorganic and flexible or rigid substrate or support. The two-dimensional semiconductor is mechanically exfoliated from a bulk crystal on a silicon/polyvinyl alcohol (PVA)/polymethyl methacrylane (PMMA) stack optimized to ensure high contrast for the identification of subnanometer thick flakes. Thin film transistors (TFTs) with structured source/drain and gate electrodes are fabricated following a designed procedure including steps of UV lithography, wet etching, and atomic layer deposited (ALD) dielectric. Successively, after the dissolution of the PVA sacrificial layer in water, the PMMA film, with the devices on top, can be transferred to another substrate of choice. Here, we transferred the devices on a polyimide plastic foil and studied the performance when tensile strain is applied parallel to the TFT channel. We measured an electron field effective mobility of 19 cm(2)/(V s), an I(on)/I(off)ratio greater than 10(6), a gate leakage current as low as 0.3 pA/μm, and a subthreshold swing of about 250 mV/dec. The devices continue to work when bent to a radius of 5 mm and after 10 consecutive bending cycles. The proposed fabrication strategy can be extended to any kind of 2D materials and enable the realization of electronic circuits and optical devices easily transferrable to any other support.
CMOS-compatible batch processing of monolayer MoS2 MOSFETs
NASA Astrophysics Data System (ADS)
Xiong, Kuanchen; Kim, Hyun; Marstell, Roderick J.; Göritz, Alexander; Wipf, Christian; Li, Lei; Park, Ji-Hoon; Luo, Xi; Wietstruck, Matthias; Madjar, Asher; Strandwitz, Nicholas C.; Kaynak, Mehmet; Lee, Young Hee; Hwang, James C. M.
2018-04-01
Thousands of high-performance 2D metal-oxide-semiconductor field effect transistors (MOSFETs) were fabricated on wafer-scale chemical vapor deposited MoS2 with fully-CMOS-compatible processes such as photolithography and aluminum metallurgy. The yield was greater than 50% in terms of effective gate control with less-than-10 V threshold voltage, even for MOSFETs having deep-submicron gate length. The large number of fabricated MOSFETs allowed statistics to be gathered and the main yield limiter to be attributed to the weak adhesion between the transferred MoS2 and the substrate. With cut-off frequencies approaching the gigahertz range, the performances of the MOSFETs were comparable to that of state-of-the-art MoS2 MOSFETs, whether the MoS2 was grown by a thin-film process or exfoliated from a bulk crystal.
NASA Astrophysics Data System (ADS)
Yang, Hae In; Park, Seonyoung; Choi, Woong
2018-06-01
We report the modification of the optoelectronic properties of mechanically-exfoliated single layer MoS2 by ultraviolet-ozone exposure. Photoluminescence emission of pristine MoS2 monotonically decreased and eventually quenched as ultraviolet-ozone exposure time increased from 0 to 10 min. The reduction of photoluminescence emission accompanied reduction of Raman modes, suggesting structural degradation in ultraviolet-ozone exposed MoS2. Analysis with X-ray photoelectron spectroscopy revealed that the formation of Ssbnd O and Mosbnd O bonding increases with ultraviolet-ozone exposure time. Measurement of electrical transport properties of MoS2 in a bottom-gate thin-film transistor configuration suggested the presence of insulating MoO3 after ultraviolet-ozone exposure. These results demonstrate that ultraviolet-ozone exposure can significantly influence the optoelectronic properties of single layer MoS2, providing important implications on the application of MoS2 and other two-dimensional materials into optoelectronic devices.
Li, Jian; Kirkwood, Robert A; Baker, Luke J; Bosworth, David; Erotokritou, Kleanthis; Banerjee, Archan; Heath, Robert M; Natarajan, Chandra M; Barber, Zoe H; Sorel, Marc; Hadfield, Robert H
2016-06-27
We present low temperature nano-optical characterization of a silicon-on-insulator (SOI) waveguide integrated SNSPD. The SNSPD is fabricated from an amorphous Mo83Si17 thin film chosen to give excellent substrate conformity. At 350 mK, the SNSPD exhibits a uniform photoresponse under perpendicular illumination, corresponding to a maximum system detection efficiency of approximately 5% at 1550 nm wavelength. Under these conditions 10 Hz dark count rate and 51 ps full width at half maximum (FWHM) timing jitter is observed.
Pulsed Laser Deposition of Carbide Coatings for Rolling and Sliding Contact Applications
2003-03-01
C. Mfiller and R. F. Haglund, eds.) Springler-Verlag(1991), Heidelberg, p. 3 0 1 24. L. Wiedeman, and H . Helvajian , I. Appi. Phys. 70, (1991) 4513...films were tested in air (45% R/ H ) using a pin-on-disk test. We found that, in comparison to MoS2 alone, the films with added Cr, Ti and TiC all...American Ceramic Society, v. 84 pp. 672-674 (2001). 10. H . X. Ji, C. C. Amato-Wierda, "Chemical Vapor Deposition of Ti-W-C Thin Films," Surface and Coatings
Magnetron sputtering fabrication and photoelectric properties of WSe2 film solar cell device
NASA Astrophysics Data System (ADS)
Mao, Xu; Zou, Jianpeng; Li, Hongchao; Song, Zhengqi; He, Siru
2018-06-01
Tungsten diselenide (WSe2) films with different growing orientations exhibit diverse photoelectric properties. The WSe2 film with C-axis⊥substrate texture has been prepared and applied to thin-film solar cells. W nanofilms with a thickness of 270 nm were deposited onto the Mo bottom electrode and then heat-treated in selenium vapor to synthesize WSe2 films with a thickness of 1 μm. ZnO films were deposited onto WSe2 films to form a P-N junction and ITO films were deposited subsequently as the conductive layer. X-ray diffractometry, scanning electron microscopy and UV-vis-NIR spectro-analysis instrument were employed to analyze the phase composition, optical absorptivity and micromorphology of WSe2 films and the WSe2 solar cell device. WSe2 films exhibit excellent photoelectric performance with an optical absorption coefficient greater than 105 cm-1 across the visible spectrum. The calculated direct and indirect band gap of the WSe2 films is 1.48 eV and 1.25 eV, respectively. With the application of standard glass/Mo/WSe2/ZnO/ITO/Ag device structure, the open-circuit voltage of the battery device is 82 mV. The short-circuit current density is 2.98 mA/cm2 and the filling factor is 0.32. The photoelectric conversion efficiency of the WSe2 film solar cell device is 0.79%.
Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe2 channels
NASA Astrophysics Data System (ADS)
Wang, Xudong; Liu, Chunsen; Chen, Yan; Wu, Guangjian; Yan, Xiao; Huang, Hai; Wang, Peng; Tian, Bobo; Hong, Zhenchen; Wang, Yutao; Sun, Shuo; Shen, Hong; Lin, Tie; Hu, Weida; Tang, Minghua; Zhou, Peng; Wang, Jianlu; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao; Li, Zheng
2017-06-01
Graphene and other two-dimensional materials have received considerable attention regarding their potential applications in nano-electronics. Here, we report top-gate nonvolatile memory field-effect transistors (FETs) with different layers of MoSe2 nanosheets channel gated by ferroelectric film. The conventional gate dielectric of FETs was replaced by a ferroelectric thin film that provides a ferroelectric polarization electric field, and therefore defined as an Fe-FET where the poly (vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) was used as the gate dielectric. Among the devices with MoSe2 channels of different thicknesses, the device with a single layer of MoSe2 exhibited a large hysteresis of electronic transport with an over 105 write/erase ratio, and displayed excellent retention and endurance performance. The possible mechanism of the device’s good properties was qualitatively analyzed using band theory. Additionally, a comprehensive study comparing the memory properties of MoSe2 channels of different thicknesses is presented. Increasing the numbers of MoSe2 layers was found to cause a reduced memory window. However, MoSe2 thickness of 5 nm yielded a write/erase ratio of more than 103. The results indicate that, based on a Fe-FET structure, the combination of two-dimensional semiconductors and organic ferroelectric gate dielectrics shows good promise for future applications in nonvolatile ferroelectric memory.
Suppressing hillock formation in Si-supported pure Al films
NASA Astrophysics Data System (ADS)
Liu, N. Z.; Liu, Y.
2018-04-01
To suppress the hillock formation and hence improve the service performance of pure Al thin films deposited on Si substrate, dependence of hillock formation on film thickness and annealing temperature was systematically investigated. Experimental results revealed that the hillock volume increased linearly with both the film thickness and annealing temperature. While the evolution of hillock density with film thickness was complicated, strongly depending on the annealing temperature. It was evident that the hillock formation could be effectively suppressed at a critical annealing temperature especially in thinner thickness, similar to the previous findings in Mo/glass-supported pure Al films. These experimental evidences clearly demonstrated that the hillock formation should be controlled by the plastic deformation in the surrounding film, which was further rationalized by a micromechanics model.
Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
R, Lisha; P, Geetha; B, Aravind P.
2015-06-24
The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness andmore » composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.« less
Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films
NASA Astrophysics Data System (ADS)
R, Lisha; T, Hysen; P, Geetha; B, Aravind P.; Ojha, S.; Avasthi, D. K.; Ramanujan, R. V.; Anantharaman, M. R.
2015-06-01
The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.
NASA Astrophysics Data System (ADS)
Kim, TaeWan; Mun, Jihun; Park, Hyeji; Joung, DaeHwa; Diware, Mangesh; Won, Chegal; Park, Jonghoo; Jeong, Soo-Hwan; Kang, Sang-Woo
2017-05-01
Semiconducting two-dimensional (2D) materials, particularly extremely thin molybdenum disulfide (MoS2) films, are attracting considerable attention from academia and industry owing to their distinctive optical and electrical properties. Here, we present the direct growth of a MoS2 monolayer with unprecedented spatial and structural uniformity across an entire 8 inch SiO2/Si wafer. The influences of growth pressure, ambient gases (Ar, H2), and S/Mo molar flow ratio on the MoS2 layered growth were explored by considering the domain size, nucleation sites, morphology, and impurity incorporation. Monolayer MoS2-based field effect transistors achieve an electron mobility of 0.47 cm2 V-1 s-1 and on/off current ratio of 5.4 × 104. This work demonstrates the potential for reliable wafer-scale production of 2D MoS2 for practical applications in next-generation electronic and optical devices.
Yu, Xinge; Zhou, Nanjia; Smith, Jeremy; Lin, Hui; Stallings, Katie; Yu, Junsheng; Marks, Tobin J; Facchetti, Antonio
2013-08-28
We report here a bilayer metal oxide thin film transistor concept (bMO TFT) where the channel has the structure: dielectric/semiconducting indium oxide (In2O3) layer/semiconducting indium gallium oxide (IGO) layer. Both semiconducting layers are grown from solution via a low-temperature combustion process. The TFT mobilities of bottom-gate/top-contact bMO TFTs processed at T = 250 °C are ~5tmex larger (~2.6 cm(2)/(V s)) than those of single-layer IGO TFTs (~0.5 cm(2)/(V s)), reaching values comparable to single-layer combustion-processed In2O3 TFTs (~3.2 cm(2)/(V s)). More importantly, and unlike single-layer In2O3 TFTs, the threshold voltage of the bMO TFTs is ~0.0 V, and the current on/off ratio is significantly enhanced to ~1 × 10(8) (vs ~1 × 10(4) for In2O3). The microstructure and morphology of the In2O3/IGO bilayers are analyzed by X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy, revealing the polycrystalline nature of the In2O3 layer and the amorphous nature of the IGO layer. This work demonstrates that solution-processed metal oxides can be implemented in bilayer TFT architectures with significantly enhanced performance.
NASA Astrophysics Data System (ADS)
Broadway, David M.; Ramsey, Brian D.; O'Dell, Stephen L.; Gurgew, Danielle
2017-09-01
We present in-situ stress measurement results for single and multilayer thin-films deposited by magnetron sputtering. In particular, we report on the influence of the material interfaces on the ensuing stress in both the transient and steady-state regimes of film growth. This behavior is used to determine the appropriate thicknesses of the constituent layers that will result in a net tensile stress in multilayers composed of various material combinations. These multilayers can then be used to compensate the compressive integrated stress in single and multilayer EUV and x-ray optical coatings. The use of multilayers to compensate the integrated stress might be advantageous because, unlike single layers of chromium, the roughness is not expected to increase with the total thickness of the multilayer. In this paper, we demonstrate the technique for W/Si and Mo/Si multilayers and discuss its application to other material combinations.
Heterogeneous integration of low-temperature metal-oxide TFTs
NASA Astrophysics Data System (ADS)
Schuette, Michael L.; Green, Andrew J.; Leedy, Kevin D.; McCandless, Jonathan P.; Jessen, Gregg H.
2017-02-01
The breadth of circuit fabrication opportunities enabled by metal-oxide thin-film transistors (MO-TFTs) is unprecedented. Large-area deposition techniques and high electron mobility are behind their adoption in the display industry, and substrate agnosticism and low process temperatures enabled the present wave of flexible electronics research. Reports of circuits involving complementaryMO-TFTs, oxide-organic hybrid combinations, and even MO-TFTs integrated onto Si LSI back end of line interconnects demonstrate this technology's utility in 2D and 3D monolithic heterogeneous integration (HI). In addition to a brief literature review focused on functional HI between MO-TFTs and a variety of dissimilar active devices, we share progress toward integrating MO-TFTs with compound semiconductor devices, namely GaN HEMTs. A monolithically integrated cascode topology was used to couple a HEMT's >200 V breakdown characteristic with the gate driving characteristic of an IGZO TFT, effectively shifting the HEMT threshold voltage from -3 V to +1 V.
Large theoretical thermoelectric power factor of suspended single-layer MoS{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babaei, Hasan, E-mail: babaei@illinois.edu, E-mail: babaei@auburn.edu; Mechanical Engineering Department, Auburn University, Auburn, Alabama 36849-5341; Khodadadi, J. M.
2014-11-10
We have calculated the semi-classical thermoelectric power factor of suspended single-layer (SL)- MoS{sub 2} utilizing electron relaxation times derived from ab initio calculations. Measurements of the thermoelectric power factor of SL-MoS{sub 2} on substrates reveal poor power factors. In contrast, we find the thermoelectric power factor of suspended SL-MoS{sub 2} to peak at ∼2.8 × 10{sup 4} μW/m K{sup 2} at 300 K, at an electron concentration of 10{sup 12} cm{sup −2}. This figure is higher than that in bulk Bi{sub 2}Te{sub 3}, for example. Given its relatively high thermal conductivity, suspended SL-MoS{sub 2} may hold promise for in-plane thin-film Peltiermore » coolers, provided reasonable mobilities can be realized.« less
Steichen, Marc; Thomassey, Matthieu; Siebentritt, Susanne; Dale, Phillip J
2011-03-14
The electrochemical deposition of Ga and Cu-Ga alloys from the deep eutectic solvent choline chloride/urea (Reline) is investigated to prepare CuGaSe(2) (CGS) semiconductors for their use in thin film solar cells. Ga electrodeposition is difficult from aqueous solution due to its low standard potential and the interfering hydrogen evolution reaction (HER). Ionic liquid electrolytes offer a better thermal stability and larger potential window and thus eliminate the interference of solvent breakdown reactions during Ga deposition. We demonstrate that metallic Ga can be electrodeposited from Reline without HER interference with high plating efficiency on Mo and Cu electrodes. A new low cost synthetic route for the preparation of CuGaSe(2) absorber thin films is presented and involves the one-step electrodeposition of Cu-Ga precursors from Reline followed by thermal annealing. Rotating disk electrode (RDE) cyclic voltammetry (CV) is used in combination with viscosity measurements to determine the diffusion coefficients of gallium and copper ions in Reline. The composition of the codeposited Cu-Ga precursor layers can be controlled to form Cu/Ga thin films with precise stoichiometry, which is important for achieving good optoelectronic properties of the final CuGaSe(2) absorbers. The morphology, the chemical composition and the crystal structure of the deposited thin films are analysed by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) and X-ray diffraction (XRD). Annealing of the Cu-Ga films in a selenium atmosphere allowed the formation of high quality CuGaSe(2) absorber layers. Completed CGS solar cells achieved a 4.1% total area power conversion efficiency.
2014-01-01
Cu2ZnSnSe4 (CZTSe) thin films are prepared by the electrodeposition of stack copper/tin/zinc (Cu/Sn/Zn) precursors, followed by selenization with a tin source at a substrate temperature of 530°C. Three selenization processes were performed herein to study the effects of the source of tin on the quality of CZTSe thin films that are formed at low Se pressure. Much elemental Sn is lost from CZTSe thin films during selenization without a source of tin. The loss of Sn from CZTSe thin films in selenization was suppressed herein using a tin source at 400°C (A2) or 530°C (A3). A copper-poor and zinc-rich CZTSe absorber layer with Cu/Sn, Zn/Sn, Cu/(Zn + Sn), and Zn/(Cu + Zn + Sn) with metallic element ratios of 1.86, 1.24, 0.83, and 0.3, respectively, was obtained in a selenization with a tin source at 530°C. The crystallized CZTSe thin film exhibited an increasingly (112)-preferred orientation at higher tin selenide (SnSe x ) partial pressure. The lack of any obvious Mo-Se phase-related diffraction peaks in the X-ray diffraction (XRD) diffraction patterns may have arisen from the low Se pressure in the selenization processes. The scanning electron microscope (SEM) images reveal a compact surface morphology and a moderate grain size. CZTSe solar cells with an efficiency of 4.81% were produced by the low-cost fabrication process that is elucidated herein. PMID:25593559
Metallic molybdenum disulfide nanosheet-based electrochemical actuators.
Acerce, Muharrem; Akdoğan, E Koray; Chhowalla, Manish
2017-09-21
Actuators that convert electrical energy to mechanical energy are useful in a wide variety of electromechanical systems and in robotics, with applications such as steerable catheters, adaptive wings for aircraft and drag-reducing wind turbines. Actuation systems can be based on various stimuli, such as heat, solvent adsorption/desorption, or electrochemical action (in systems such as carbon nanotube electrodes, graphite electrodes, polymer electrodes and metals). Here we demonstrate that the dynamic expansion and contraction of electrode films formed by restacking chemically exfoliated nanosheets of two-dimensional metallic molybdenum disulfide (MoS 2 ) on thin plastic substrates can generate substantial mechanical forces. These films are capable of lifting masses that are more than 150 times that of the electrode over several millimetres and for hundreds of cycles. Specifically, the MoS 2 films are able to generate mechanical stresses of about 17 megapascals-higher than mammalian muscle (about 0.3 megapascals) and comparable to ceramic piezoelectric actuators (about 40 megapascals)-and strains of about 0.6 per cent, operating at frequencies up to 1 hertz. The actuation performance is attributed to the high electrical conductivity of the metallic 1T phase of MoS 2 nanosheets, the elastic modulus of restacked MoS 2 layers (2 to 4 gigapascals) and fast proton diffusion between the nanosheets. These results could lead to new electrochemical actuators for high-strain and high-frequency applications.
Metallic molybdenum disulfide nanosheet-based electrochemical actuators
NASA Astrophysics Data System (ADS)
Acerce, Muharrem; Akdoğan, E. Koray; Chhowalla, Manish
2017-09-01
Actuators that convert electrical energy to mechanical energy are useful in a wide variety of electromechanical systems and in robotics, with applications such as steerable catheters, adaptive wings for aircraft and drag-reducing wind turbines. Actuation systems can be based on various stimuli, such as heat, solvent adsorption/desorption, or electrochemical action (in systems such as carbon nanotube electrodes, graphite electrodes, polymer electrodes and metals). Here we demonstrate that the dynamic expansion and contraction of electrode films formed by restacking chemically exfoliated nanosheets of two-dimensional metallic molybdenum disulfide (MoS2) on thin plastic substrates can generate substantial mechanical forces. These films are capable of lifting masses that are more than 150 times that of the electrode over several millimetres and for hundreds of cycles. Specifically, the MoS2 films are able to generate mechanical stresses of about 17 megapascals—higher than mammalian muscle (about 0.3 megapascals) and comparable to ceramic piezoelectric actuators (about 40 megapascals)—and strains of about 0.6 per cent, operating at frequencies up to 1 hertz. The actuation performance is attributed to the high electrical conductivity of the metallic 1T phase of MoS2 nanosheets, the elastic modulus of restacked MoS2 layers (2 to 4 gigapascals) and fast proton diffusion between the nanosheets. These results could lead to new electrochemical actuators for high-strain and high-frequency applications.
Zorba, S; Le, Q T; Watkins, N J; Yan, L; Gao, Y
2001-09-01
Atomic force microscopy was used to study the growth modes (on SiO2, MoS2, and Au substrates) and the current-voltage (I-V) characteristics of organic semiconductor pentacene. Pentacene films grow on SiO2 substrate in a layer-by-layer manner with full coverage at an average thickness of 20 A and have the highest degree of molecular ordering with large dendritic grains among the pentacene films deposited on the three different substrates. Films grown on MoS2 substrate reveal two different growth modes, snowflake-like growth and granular growth, both of which seem to compete with each other. On the other hand, films deposited on Au substrate show granular structure for thinner coverages (no crystal structure) and dendritic growth for higher coverages (crystal structure). I-V measurements were performed with a platinum tip on a pentacene film deposited on a Au substrate. The I-V curves on pentacene film reveal symmetric tunneling type character. The field dependence of the current indicates that the main transport mechanism at high field intensities is hopping (Poole-Frenkel effect). From these measurements, we have estimated a field lowering coefficient of 9.77 x 10(-6) V-1/2 m1/2 and an ideality factor of 18 for pentacene.
Wen, Shiya; Li, Miaozi; Yang, Junyu; Mei, Xianglin; Wu, Bin; Liu, Xiaolin; Heng, Jingxuan; Qin, Donghuan; Hou, Lintao; Xu, Wei; Wang, Dan
2017-11-08
CdSe x Te 1-x semiconductor nanocrystals (NCs), being rod-shaped/irregular dot-shaped in morphology, have been fabricated via a simple hot-injection method. The NCs composition is well controlled through varying molar ratios of Se to Te precursors. Through changing the composition of the CdSe x Te 1-x NCs, the spectral absorption of the NC thin film between 570-800 nm is proved to be tunable. It is shown that the bandgap of homogeneously alloyed CdSe x Te 1-x active thin film is nonlinearly correlated with the different compositions, which is perceived as optical bowing. The solar cell devices based on CdSe x Te 1-x NCs with the structure of ITO/ZnO/CdSe/CdSe x Te 1-x /MoO x /Au and the graded bandgap ITO/ZnO/CdSe( w / o )/CdSe x Te 1-x /CdTe/MoO x /Au are systematically evaluated. It was found that the performance of solar cells degrades almost linearly with the increase of alloy NC film thickness with respect to ITO/ZnO/CdSe/CdSe 0.2 Te 0.8 /MoO x /Au. From another perspective, in terms of the graded bandgap structure of ITO/ZnO/CdSe/CdSe x Te 1-x /CdTe/MoO x /Au, the performance is improved in contrast with its single-junction analogues. The graded bandgap structure is proved to be efficient when absorbing spectrum and the solar cells fabricated under the structure of ITO/ZnO/CdSe 0.8 Te 0.2 /CdSe 0.2 Te 0.8 /CdTe/MoO x /Au indicate power conversion efficiency (PCE) of 6.37%, a value among the highest for solution-processed inversely-structured CdSe x Te 1-x NC solar cells. As the NC solar cells are solution-processed under environmental conditions, they are promising for fabricating solar cells at low cost, roll by roll and in large area.
Wen, Shiya; Li, Miaozi; Yang, Junyu; Mei, Xianglin; Wu, Bin; Liu, Xiaolin; Heng, Jingxuan; Hou, Lintao; Xu, Wei; Wang, Dan
2017-01-01
CdSexTe1−x semiconductor nanocrystals (NCs), being rod-shaped/irregular dot-shaped in morphology, have been fabricated via a simple hot-injection method. The NCs composition is well controlled through varying molar ratios of Se to Te precursors. Through changing the composition of the CdSexTe1−x NCs, the spectral absorption of the NC thin film between 570–800 nm is proved to be tunable. It is shown that the bandgap of homogeneously alloyed CdSexTe1−x active thin film is nonlinearly correlated with the different compositions, which is perceived as optical bowing. The solar cell devices based on CdSexTe1−x NCs with the structure of ITO/ZnO/CdSe/CdSexTe1−x/MoOx/Au and the graded bandgap ITO/ZnO/CdSe(w/o)/CdSexTe1−x/CdTe/MoOx/Au are systematically evaluated. It was found that the performance of solar cells degrades almost linearly with the increase of alloy NC film thickness with respect to ITO/ZnO/CdSe/CdSe0.2Te0.8/MoOx/Au. From another perspective, in terms of the graded bandgap structure of ITO/ZnO/CdSe/CdSexTe1−x/CdTe/MoOx/Au, the performance is improved in contrast with its single-junction analogues. The graded bandgap structure is proved to be efficient when absorbing spectrum and the solar cells fabricated under the structure of ITO/ZnO/CdSe0.8Te0.2/CdSe0.2Te0.8/CdTe/MoOx/Au indicate power conversion efficiency (PCE) of 6.37%, a value among the highest for solution-processed inversely-structured CdSexTe1−x NC solar cells. As the NC solar cells are solution-processed under environmental conditions, they are promising for fabricating solar cells at low cost, roll by roll and in large area. PMID:29117132
Dalapati, Goutam Kumar; Zhuk, Siarhei; Masudy-Panah, Saeid; Kushwaha, Ajay; Seng, Hwee Leng; Chellappan, Vijila; Suresh, Vignesh; Su, Zhenghua; Batabyal, Sudip Kumar; Tan, Cheng Cheh; Guchhait, Asim; Wong, Lydia Helena; Wong, Terence Kin Shun; Tripathy, Sudhiranjan
2017-05-02
We have investigated the impact of Cu 2 ZnSnS 4 -Molybdenum (Mo) interface quality on the performance of sputter-grown Cu 2 ZnSnS 4 (CZTS) solar cell. Thin film CZTS was deposited by sputter deposition technique using stoichiometry quaternary CZTS target. Formation of molybdenum sulphide (MoS x ) interfacial layer is observed in sputter grown CZTS films after sulphurization. Thickness of MoS x layer is found ~142 nm when CZTS layer (550 nm thick) is sulphurized at 600 °C. Thickness of MoS x layer significantly increased to ~240 nm in case of thicker CZTS layer (650 nm) under similar sulphurization condition. We also observe that high temperature (600 °C) annealing suppress the elemental impurities (Cu, Zn, Sn) at interfacial layer. The amount of out-diffused Mo significantly varies with the change in sulphurization temperature. The out-diffused Mo into CZTS layer and reconstructed interfacial layer remarkably decreases series resistance and increases shunt resistance of the solar cell. The overall efficiency of the solar cell is improved by nearly five times when 600 °C sulphurized CZTS layer is applied in place of 500 °C sulphurized layer. Molybdenum and sulphur diffusion reconstruct the interface layer during heat treatment and play the major role in charge carrier dynamics of a photovoltaic device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Ziyun, E-mail: z.lin@unsw.edu.au; Wu, Lingfeng; Jia, Xuguang
2015-07-28
Vertically structured Si quantum dots (QDs) solar cells with molybdenum (Mo) interlayer on quartz substrates would overcome current crowding effects found in mesa-structured cells. This study investigates the compatibility between boron (B) doped Si QDs bilayers and Mo-fused silica substrate. Both Si/SiO{sub 2} and Si/SiN{sub x} based QDs bilayers were studied. The material compatibility under high temperature treatment was assessed by examining Si crystallinity, microstress, thin film adhesion, and Mo oxidation. It was observed that the presence of Mo interlayer enhanced the Si QDs size confinement, crystalline fraction, and QDs size uniformity. The use of B doping was preferred comparedmore » to phosphine (PH{sub 3}) doping studied previously in terms of better surface and interface properties by reducing oxidized spots on the film. Though crack formation due to thermal mismatch after annealing remained, methods to overcome this problem were proposed in this paper. Schematic diagram to fabricate full vertical structured Si QDs solar cells was also suggested.« less
Modification of molybdenum surface by low-energy oxygen implantation at room temperature
NASA Astrophysics Data System (ADS)
Kavre Piltaver, Ivna; Jelovica Badovinac, Ivana; Peter, Robert; Saric, Iva; Petravic, Mladen
2017-12-01
We have studied the initial stages of oxide formation on molybdenum surfaces under 1 keV O2+ ion bombardment at room temperature (RT), using x-ray photoelectron spectroscopy around Mo 3d or O 1s core-levels and the valence band photoemission. The results are compared with the oxidation mechanism of thermally oxidized Mo at RT. The thermal oxidation reveals the formation of a very thin MoO2 layer that prevents any further adsorption of oxygen at higher oxygen doses. Oxygen implantation is more efficient in creating thicker oxide films with the simultaneous formation of several oxide compounds. The oxidation rates of MoO2 and Mo2O5 follow the parabolic growth rate consistent with the mass transport driven by diffusion of either neutral or singly and doubly charged oxygen interstitials. The oxidation of MoO3, which occurs at a later oxidation stage, follows the logarithmic rate driven by the diffusion of cations in an electric field.
High performance MoS2 TFT using graphene contact first process
NASA Astrophysics Data System (ADS)
Chang Chien, Chih-Shiang; Chang, Hsun-Ming; Lee, Wei-Ta; Tang, Ming-Ru; Wu, Chao-Hsin; Lee, Si-Chen
2017-08-01
An ohmic contact of graphene/MoS2 heterostructure is determined by using ultraviolet photoelectron spectroscopy (UPS). Since graphene shows a great potential to replace metal contact, a direct comparison of Cr/Au contact and graphene contact on the MoS2 thin film transistor (TFT) is made. Different from metal contacts, the work function of graphene can be modulated. As a result, the subthreshold swing can be improved. And when Vg
NASA Astrophysics Data System (ADS)
Park, Junghak; Hur, Ji-Hyun; Jeon, Sanghun
2018-04-01
The threshold voltage instabilities and huge hysteresis of MoS2 thin film transistors (TFTs) have raised concerns about their practical applicability in next-generation switching devices. These behaviors are associated with charge trapping, which stems from tunneling to the adjacent trap site, interfacial redox reaction and interface and/or bulk trap states. In this report, we present quantitative analysis on the electron charge trapping mechanism of MoS2 TFT by fast pulse I-V method and the space charge limited current (SCLC) measurement. By adopting the fast pulse I-V method, we were able to obtain effective mobility. In addition, the origin of the trap states was identified by disassembling the sub-gap states into interface trap and bulk trap states by simple extraction analysis. These measurement methods and analyses enable not only quantitative extraction of various traps but also an understanding of the charge transport mechanism in MoS2 TFTs. The fast I-V data and SCLC data obtained under various measurement temperatures and ambient show that electron transport to neighboring trap sites by tunneling is the main charge trapping mechanism in thin-MoS2 TFTs. This implies that interfacial traps account for most of the total sub-gap states while the bulk trap contribution is negligible, at approximately 0.40% and 0.26% in air and vacuum ambient, respectively. Thus, control of the interface trap states is crucial to further improve the performance of devices with thin channels.
Park, Junghak; Hur, Ji-Hyun; Jeon, Sanghun
2018-04-27
The threshold voltage instabilities and huge hysteresis of MoS 2 thin film transistors (TFTs) have raised concerns about their practical applicability in next-generation switching devices. These behaviors are associated with charge trapping, which stems from tunneling to the adjacent trap site, interfacial redox reaction and interface and/or bulk trap states. In this report, we present quantitative analysis on the electron charge trapping mechanism of MoS 2 TFT by fast pulse I-V method and the space charge limited current (SCLC) measurement. By adopting the fast pulse I-V method, we were able to obtain effective mobility. In addition, the origin of the trap states was identified by disassembling the sub-gap states into interface trap and bulk trap states by simple extraction analysis. These measurement methods and analyses enable not only quantitative extraction of various traps but also an understanding of the charge transport mechanism in MoS 2 TFTs. The fast I-V data and SCLC data obtained under various measurement temperatures and ambient show that electron transport to neighboring trap sites by tunneling is the main charge trapping mechanism in thin-MoS 2 TFTs. This implies that interfacial traps account for most of the total sub-gap states while the bulk trap contribution is negligible, at approximately 0.40% and 0.26% in air and vacuum ambient, respectively. Thus, control of the interface trap states is crucial to further improve the performance of devices with thin channels.
Interstitial Mo-Assisted Photovoltaic Effect in Multilayer MoSe2 Phototransistors.
Kim, Sunkook; Maassen, Jesse; Lee, Jiyoul; Kim, Seung Min; Han, Gyuchull; Kwon, Junyeon; Hong, Seongin; Park, Jozeph; Liu, Na; Park, Yun Chang; Omkaram, Inturu; Rhyee, Jong-Soo; Hong, Young Ki; Yoon, Youngki
2018-03-01
Thin-film transistors (TFTs) based on multilayer molybdenum diselenide (MoSe 2 ) synthesized by modified atmospheric pressure chemical vapor deposition (APCVD) exhibit outstanding photoresponsivity (103.1 A W -1 ), while it is generally believed that optical response of multilayer transition metal dichalcogenides (TMDs) is significantly limited due to their indirect bandgap and inefficient photoexcitation process. Here, the fundamental origin of such a high photoresponsivity in the synthesized multilayer MoSe 2 TFTs is sought. A unique structural characteristic of the APCVD-grown MoSe 2 is observed, in which interstitial Mo atoms exist between basal planes, unlike usual 2H phase TMDs. Density functional theory calculations and photoinduced transfer characteristics reveal that such interstitial Mo atoms form photoreactive electronic states in the bandgap. Models indicate that huge photoamplification is attributed to trapped holes in subgap states, resulting in a significant photovoltaic effect. In this study, the fundamental origin of high responsivity with synthetic MoSe 2 phototransistors is identified, suggesting a novel route to high-performance, multifunctional 2D material devices for future wearable sensor applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Park, Jeong Woo; Tak, Young Jun; Na, Jae Won; Lee, Heesoo; Kim, Won-Gi; Kim, Hyun Jae
2018-05-16
We suggest thermal treatment with static magnetic fields (SMFs) or rotating magnetic fields (RMFs) as a new technique for the activation of indium-gallium-zinc oxide thin-film transistors (IGZO TFTs). Magnetic interactions between metal atoms in IGZO films and oxygen atoms in air by SMFs or RMFs can be expected to enhance metal-oxide (M-O) bonds, even at low temperature (150 °C), through attraction of metal and oxygen atoms having their magnetic moments aligned in the same direction. Compared to IGZO TFTs with only thermal treatment at 300 °C, IGZO TFTs under an RMF (1150 rpm) at 150 °C show superior or comparable characteristics: field-effect mobility of 12.68 cm 2 V -1 s -1 , subthreshold swing of 0.37 V dec -1 , and on/off ratio of 1.86 × 10 8 . Although IGZO TFTs under an SMF (0 rpm) can be activated at 150 °C, the electrical performance is further improved in IGZO TFTs under an RMF (1150 rpm). These improvements of IGZO TFTs under an RMF (1150 rpm) are induced by increases in the number of M-O bonds due to enhancement of the magnetic interaction per unit time as the rpm value increases. We suggest that this new process of activating IGZO TFTs at low temperature widens the choice of substrates in flexible or transparent devices.
Magnetron Sputtered Molybdenum Oxide for Application in Polymers Solar Cells
NASA Astrophysics Data System (ADS)
Sendova-Vassileva, M.; Dikov, Hr; Vitanov, P.; Popkirov, G.; Gergova, R.; Grancharov, G.; Gancheva, V.
2016-10-01
Thin films of molybdenum oxide were deposited by radio frequency (RF) magnetron sputtering in Ar from a MoO3 target at different deposition power on glass and silicon substrates. The thickness of the films was determined by profilometer measurements and by ellipsometry. The films were annealed in air at temperatures between 200 and 400°C in air. The optical transmission and reflection spectra were measured. The conductivity of the as deposited and annealed films was determined. The crystal structure was probed by Raman spectroscopy. The oxidation state of the surface was studied by X-ray photoelectron spectroscopy (XPS) spectroscopy. The deposition technique described above was used to experiment with MoOx as a hole transport layer (HTL) in polymer solar cells with bulk hetrojunction active layer, deposited by spin coating. The performance of these layers was compared with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), which is the standard material used in this role. The measured current-voltage characteristics of solar cells with the structure glass/ITO/HTL/Poly(3-hexyl)thiophene (P3HT):[6,6]-phenyl-C61- butyric acid methyl ester (PCBM)/Al demonstrate that the studied MoOx layer is a good HTL and leads to comparable characteristics to those with PEDOT:PSS. On the other hand the deposition by magnetron sputtering guarantees reliable and repeatable HTLs.
Nanosecond laser scribing of CIGS thin film solar cell based on ITO bottom contact
NASA Astrophysics Data System (ADS)
Kuk, Seungkuk; Wang, Zhen; Fu, Shi; Zhang, Tao; Yu, Yi Yin; Choi, JaeMyung; Jeong, Jeung-hyun; Hwang, David J.
2018-03-01
Cu(In,Ga)Se2 (CIGS) thin films, a promising photovoltaic architecture, have mainly relied on Molybdenum for the bottom contact. However, the opaque nature of Molybdenum (Mo) poses limitations in module level fabrication by laser scribing as a preferred method for interconnect. We examined the P1, P2, and P3 laser scribing processes on CIGS photovoltaic architecture on the indium tin oxide (ITO) bottom contact with a cost-effective nanosecond pulsed laser of 532 nm wavelength. Laser illuminated from the substrate side, enabled by the transparent bottom contact, facilitated selective laser energy deposition onto relevant interfaces towards high-quality scribing. Parametric tuning procedures are described in conjunction with experimental and numerical investigation of relevant mechanisms, and preliminary mini-module fabrication results are also presented.
Yu, Woo Jong; Li, Zheng; Zhou, Hailong; Chen, Yu; Wang, Yang; Huang, Yu; Duan, Xiangfeng
2014-01-01
The layered materials such as graphene have attracted considerable interest for future electronics. Here we report the vertical integration of multi-heterostructures of layered materials to enable high current density vertical field-effect transistors (VFETs). An n-channel VFET is created by sandwiching few-layer molybdenum disulfide (MoS2) as the semiconducting channel between a monolayer graphene and a metal thin film. The VFETs exhibit a room temperature on-off ratio >103, while at same time deliver a high current density up to 5,000 A/cm2, sufficient for high performance logic applications. This study offers a general strategy for the vertical integration of various layered materials to obtain both p- and n-channel transistors for complementary logic functions. A complementary inverter with larger than unit voltage gain is demonstrated by vertically stacking the layered materials of graphene, Bi2Sr2Co2O8 (p-channel), graphene, MoS2 (n-channel), and metal thin film in sequence. The ability to simultaneously achieve high on-off ratio, high current density, and logic integration in the vertically stacked multi-heterostructures can open up a new dimension for future electronics to enable three-dimensional integration. PMID:23241535
Sputtering phenomena in ion thrusters
NASA Technical Reports Server (NTRS)
Robinson, R. S.; Rossnagel, S. M.
1983-01-01
Sputtering effects in discharge chambers of ion thrusters are lifetime limiting in basically two ways: (1) ion bombardment of critical thruster components at energies sufficient to cause sputtering removes significant quantities of material; enough to degrade operation through adverse dimensional changes or possibly lead to complete component failure, and (2) metals sputtered from these intensely bombarded components are deposited in other locations as thin films and subsequently flake or peel off; the flakes then lodge elsewhere in the discharge chamber with the possibility of providing conductive paths for short circuiting of thruster components such as the ion optics. This experimental work has concentrated in two areas. The first has been to operate thrusters for multi-hour periods and to observe and measure the films found inside the thruster. The second was to simulate the environment inside the discharge chamber of the thruster by means of a dual ion beam system. Here, films were sputter deposited in the presence of a second low energy bombarding beam to simulate film deposition on thruster interior surfaces that undergo simultaneous sputtering and deposition. Mo presents serious problems for use in a thruster as far as film deposition is concerned. Mo films were found to be in high stress, making them more likely to peel and flake.
Synthesis of Monolayer MoS2 by Chemical Vapor Deposition
NASA Astrophysics Data System (ADS)
Withanage, Sajeevi; Lopez, Mike; Dumas, Kenneth; Jung, Yeonwoong; Khondaker, Saiful
Finite and layer-tunable band gap of transition metal dichalcogenides (TMDs) including molybdenum disulfide (MoS2) are highlighted over the zero band gap graphene in various semiconductor applications. Weak interlayer Van der Waal bonding of bulk MoS2 allows to cleave few to single layer MoS2 using top-down methods such as mechanical and chemical exfoliation, however few micron size of these flakes limit MoS2 applications to fundamental research. Bottom-up approaches including the sulfurization of molybdenum (Mo) thin films and co-evaporation of Mo and sulfur precursors received the attention due to their potential to synthesize large area. We synthesized monolayer MoS2 on Si/SiO2 substrates by atmospheric pressure Chemical Vapor Deposition (CVD) methods using sulfur and molybdenum trioxide (MoO3) as precursors. Several growth conditions were tested including precursor amounts, growth temperature, growth time and flow rate. Raman, photoluminescence (PL) and atomic force microscopy (AFM) confirmed monolayer islands merging to create large area were observed with grain sizes up to 70 μm without using any seeds or seeding promoters. These studies provide in-depth knowledge to synthesize high quality large area MoS2 for prospective electronics applications.
Klinkert, T; Theys, B; Patriarche, G; Jubault, M; Donsanti, F; Guillemoles, J-F; Lincot, D
2016-10-21
Being at the origin of an ohmic contact, the MoSe 2 interfacial layer at the Mo/Cu(In,Ga)Se 2 interface in CIGS (Cu(In,Ga)Se 2 and related compounds) based solar cells has allowed for very high light-to-electricity conversion efficiencies up to 22.3%. This article gives new insights into the formation and the structural properties of this interfacial layer. Different selenization-steps of a Mo covered glass substrate prior to the CIGS deposition by co-evaporation led to MoSe 2 interfacial layers with varying thickness and orientation, as observed by x-ray diffraction and atomic resolution transmission electron microscopy. A novel model based on the anisotropy of the Se diffusion coefficient in MoSe 2 is proposed to explain the results. While the series resistance of finished CIGS solar cells is found to correlate with the MoSe 2 orientation, the adhesion forces between the CIGS absorber layer and the Mo substrate stay constant. Their counter-intuitive non-correlation with the configuration of the MoSe 2 interfacial layer is discussed and related to work from the literature.
CIGS thin film solar cell prepared by reactive co-sputtering
NASA Astrophysics Data System (ADS)
Kim, Jeha; Lee, Ho-Sub; Park, Nae-Man
2013-09-01
The reactive co-sputtering was developed as a new way of preparing high quality CuInGaSe2(CIGS) films from two sets of targets; Cu0.6Ga 0.4 and Cu0.4In0.6 alloy and Cu and (In0.7Ga0.3)2Se3 compound targets. During sputtering, Cu, In, Ga metallic elements as well as the compound materials were reacted to form CIGS simultaneously in highly reactive elemental Se atmosphere generated by a thermal cracker. CIGS layer had been grown on Mo/soda-lime glass(SLG) at 500°C. For both sets of targets, we controlled the composition of CIGS thin film by changing the RF power for target components. All the films showed a preferential (112) orientation as observed from X-ray diffraction analysis. The composition ratios of CIGS were easily set to 0.71-0.95, 0.10-0.30 for [Cu]/[III] and [Ga]/[III], respectively. The grain size and the surface roughness of a CIGS film increased as the [Cu]/[III] ratios increased. The solar cells were fabricated using a standard base line process in the device structure of grid/ITO/i-ZnO/CdS/CIGS/Mo/ SLG. The best performance was obtained the performance of Voc = 0.45 V, Jsc =35.6, FF = 0.535, η = 8.6% with a 0.9 μm-CIGS solar cell from alloy targets while Voc = 0.54 V, Jsc =30.8, FF = 0.509, η = 8.5% with a 0.8 μm-CIGS solar cell from Cu and (In0.7Ga0.3)2Se3.
Frictional and morphological properties of Au-MoS2 films sputtered from a compact target
NASA Technical Reports Server (NTRS)
Spalvins, T.
1984-01-01
AuMoS2 films 0.02 to 1.2 microns thick were sputtered from target compacted from 5 wt % Au + 95 wt % MoS2, to investigate the frictional and morphological film growth characteristics. The gold dispersion effects in MoS2 films are of interest to increase the densitification and strengthening of the film structure. Three microstructural growth stages were identified on the nano-micro-macrostructural level. During sliding both sputtered Au-MoS2 and MoS2 films have a tendency to break within the columner region. The remaining or effective film, about 0.2 microns thick, performs the lubrication. The Au-MoS2 films displayed a lower friction coefficient with a high degree of frictional stability and less wear debris generation as compared to pure MoS2 films. The more favorable frictional characteristics of the Au-MoS2 films are attributed to the effective film thickness and the high density packed columner zone which has a reduced effect on the fragmentation of the tapered crystallites during fracture.
NASA Astrophysics Data System (ADS)
Liu, Xiaolei; Cui, Hongtao; Hao, Xiaojing; Huang, Shujuan; Conibeer, Gavin
2017-12-01
Molybdenum (Mo) thin films are still a dominant choice for the back contact layer of Cu(In,Ga)Se2 (CIGS) and Cu2ZnSnS4 (CZTS) solar cells. This paper presents a review of Mo back contacts for CIGS and CZTS solar cells, including the requirements for a good back contact, the reason for the choice of Mo, and post-treatment. Additionally, a Mo bilayer back contact was fabricated by varying the argon (Ar) pressure during sputtering to provide both low resistivity and good adhesion to the soda-lime glass substrate. The effects of vacuum thermal annealing on the electrical, morphological and structural properties of the Mo bilayer were also investigated. Vacuum thermal annealing was seen to densify the Mo bilayer, reduce the sheet resistance, and improve the bilayer's adhesion to the soda-lime glass. The Mo bilayer back contact with a low sheet resistance of 0.132 Ω/□ and strong adhesion was made for chalcogenide- and kesterite-based solar cells.
A kinetic model for stress generation in thin films grown from energetic vapor fluxes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chason, E.; Karlson, M.; Colin, J. J.
We have developed a kinetic model for residual stress generation in thin films grown from energetic vapor fluxes, encountered, e.g., during sputter deposition. The new analytical model considers sub-surface point defects created by atomic peening, along with processes treated in already existing stress models for non-energetic deposition, i.e., thermally activated diffusion processes at the surface and the grain boundary. According to the new model, ballistically induced sub-surface defects can get incorporated as excess atoms at the grain boundary, remain trapped in the bulk, or annihilate at the free surface, resulting in a complex dependence of the steady-state stress on themore » grain size, the growth rate, as well as the energetics of the incoming particle flux. We compare calculations from the model with in situ stress measurements performed on a series of Mo films sputter-deposited at different conditions and having different grain sizes. The model is able to reproduce the observed increase of compressive stress with increasing growth rate, behavior that is the opposite of what is typically seen under non-energetic growth conditions. On a grander scale, this study is a step towards obtaining a comprehensive understanding of stress generation and evolution in vapor deposited polycrystalline thin films.« less
NASA Astrophysics Data System (ADS)
Gleich, Stephan; Fager, Hanna; Bolvardi, Hamid; Achenbach, Jan-Ole; Soler, Rafael; Pradeep, Konda Gokuldoss; Schneider, Jochen M.; Dehm, Gerhard; Scheu, Christina
2017-08-01
In this work, the nanostructure of a Mo2BC hard coating was determined by several transmission electron microscopy methods and correlated with the mechanical properties. The coating was deposited on a Si (100) wafer by bipolar pulsed direct current magnetron sputtering from a Mo2BC compound target in Ar at a substrate temperature of 630 °C. Transmission electron microscopy investigations revealed structural features at various length scales: bundles (30 nm to networks of several micrometers) consisting of columnar grains (˜10 nm in diameter), grain boundary regions with a less ordered atomic arrangement, and defects including disordered clusters (˜1.5 nm in diameter) as well as stacking faults within the grains. The most prominent defect with a volume fraction of ˜0.5% is the disordered clusters, which were investigated in detail by electron energy loss spectroscopy and atom probe tomography. The results provide conclusive evidence that Ar is incorporated into the Mo2BC film as disordered Ar-rich Mo-B-C clusters of approximately 1.5 nm in diameter. Hardness values of 28 ± 1 GPa were obtained by nanoindentation tests. The Young's modulus of the Mo2BC coating exhibits a value of 462 ± 9 GPa, which is consistent with ab initio calculations for crystalline and defect free Mo2BC and measurements of combinatorically deposited Mo2BC thin films at a substrate temperature of 900 °C. We conclude that a reduction of the substrate temperature of 270 °C has no significant influence on hardness and Young's modulus of the Mo2BC hard coating, even if its nanostructure exhibits defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinde, Sachin M.; Tanemura, Masaki; Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp
2014-12-07
Combination of two dimensional graphene and semi-conducting molybdenum disulfide (MoS{sub 2}) is of great interest for various electronic device applications. Here, we demonstrate fabrication of a hybridized structure with the chemical vapor deposited graphene and MoS{sub 2} crystals to configure a memory device. Elongated hexagonal and rhombus shaped MoS{sub 2} crystals are synthesized by sulfurization of thermally evaporated molybdenum oxide (MoO{sub 3}) thin film. Scanning transmission electron microscope studies reveal atomic level structure of the synthesized high quality MoS{sub 2} crystals. In the prospect of a memory device fabrication, poly(methyl methacrylate) (PMMA) is used as an insulating dielectric material asmore » well as a supporting layer to transfer the MoS{sub 2} crystals. In the fabricated device, PMMA-MoS{sub 2} and graphene layers act as the functional and electrode materials, respectively. Distinctive bistable electrical switching and nonvolatile rewritable memory effect is observed in the fabricated PMMA-MoS{sub 2}/graphene heterostructure. The developed material system and demonstrated memory device fabrication can be significant for next generation data storage applications.« less
NASA Astrophysics Data System (ADS)
Li, Xianglin; Puttaswamy, Manjunath; Wang, Zhiwei; Kei Tan, Chiew; Grimsdale, Andrew C.; Kherani, Nazir P.; Tok, Alfred Iing Yoong
2017-11-01
MoS2 thin films are obtained by atomic layer deposition (ALD) in the temperature range of 120-150 °C using Mo(CO)6 and dimethyl disulfide (DMDS) as precursors. A pressure tuned stop-flow ALD process facilitates the precursor adsorption and enables the deposition of MoS2 on high porous three dimensional (3D) nanostructures. As a demonstration, a TiO2/MoS2 core/shell inverse opal (TiO2/MoS2-IO) structure has been fabricated through ALD of TiO2 and MoS2 on a self-assembled multilayer polystyrene (PS) structure template. Due to the self-limiting surface reaction mechanism of ALD and the utilization of pressure tuned stop-flow ALD processes, the as fabricated TiO2/MoS2-IO structure has a high uniformity, reflected by FESEM and FIB-SEM characterization. A crystallized TiO2/MoS2-IO structure can be obtained through a post annealing process. As a 3D photonic crystal, the TiO2/MoS2-IO exhibits obvious stopband reflecting peaks, which can be adjusted through changing the opal diameters as well as the thickness of MoS2 layer.
Electron Emission Observations from As-Grown and Vacuum-Coated Chemical Vapor Deposited Diamond
NASA Technical Reports Server (NTRS)
Lamouri, A.; Wang, Yaxin; Mearini, G. T.; Krainsky, I. L.; Dayton, J. A., Jr.; Mueller,W.
1996-01-01
Field emission has been observed from chemical vapor deposited diamond grown on Mo and Si substrates. Emission was observed at fields as low as 20 kV/cm. The samples were tested in the as-grown form, and after coating with thin films of Au, CsI, and Ni. The emission current was typically maximum at the onset of the applied field, but was unstable, and decreased rapidly with time from the as-grown films. Thin Au layers, approximately 15 nm thick, vacuum deposited onto the diamond samples significantly improved the stability of the emission current at values approximately equal to those from uncoated samples at the onset of the applied field. Thin layers of CsI, approximately 5 nm thick, were also observed to improve the stability of the emission current but at values less than those from the uncoated samples at the onset of the applied field. While Au and CsI improved the stability of the emission, Ni was observed to have no effect.
NASA Astrophysics Data System (ADS)
Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus
The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.
NASA Astrophysics Data System (ADS)
Hassan, Mohamed Elfatih; Cong, Longchao; Liu, Guanglong; Zhu, Duanwei; Cai, Jianbo
2014-03-01
C-TiO2 thin films were synthesized by a modified sol-gel route based on the self-assembly technique exploiting Tween80 (T80) as a pore directing agent and carbon source. The effect of calcination time on the photocatalytic activity of C-doped TiO2 catalyst was studied. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transforms infrared (FTIR), UV-vis diffuse reflectance spectroscopy, and photoluminescence spectra (PL). The XRD results showed that C-TiO2 sample calcined at 400 °C for various times exhibited anatase phase and no other crystal phase was identified. C-TiO2 exhibited a shift in an absorption edge of samples in the visible region than that of conventional or reference TiO2. The XPS results showed an existence of C in the TiO2 catalysts and C might be existed as Csbnd Osbnd Ti group. Moreover, the C-TiO2 thin film calcined at 400 °C for 30 min showed the lowest PL intensity due to a decrease in the recombination rate of photogenerated electrons and holes under UV light irradiation. Also the photocatalytic activity of synthesized catalyst was evaluated by decomposition of methyl orange (MO) under visible light irradiation. The results showed that the optimum preparations of C-TiO2 thin films were found to be under calcination temperature of 400, calcination time of 30 min, and with preparation 9 layers film.
Prospects of In/CdTe X- and γ-ray detectors with MoO Ohmic contacts
NASA Astrophysics Data System (ADS)
Maslyanchuk, Olena L.; Solovan, Mykhailo M.; Maistruk, Eduard V.; Brus, Viktor V.; Maryanchuk, Pavlo D.; Gnatyuk, Volodymyr A.; Aoki, Toru
2018-01-01
The present paper analyzes the charge transport mechanisms and spectrometric properties of In/CdTe/MoOx heterojunctions prepared by magnetron sputtering of indium and molybdenum oxide thin films onto semi-insulating p-type single-crystal CdTe semiconductor, produced by Acrorad Co. Ltd. Current-voltage characteristics of the detectors at different temperatures were investigated. The charge transport mechanisms in the heterostructures under investigation were determined: the generation-recombination in the space charge region (SCR) at relatively low voltages and the space charge limited currents at high voltages. The spectra of 137Cs and 241Am isotopes taken at different applied bias voltages are presented. It is shown that the In/CdTe/MoOx structures can be used as X/γ-ray detectors in the spectrometric mode.
Fabrication and investigation of photosensitive MoOx/n-CdTe heterojunctions
NASA Astrophysics Data System (ADS)
Solovan, M. M.; Gavaleshko, N. M.; Brus, V. V.; Mostovyi, A. I.; Maryanchuk, P. D.; Tresso, E.
2016-10-01
MoOx/n-CdTe photosensitive heterostructures were prepared by the deposition of molybdenum oxide thin films onto n-type single-crystal CdTe substrates by DC reactive magnetron sputtering. The obtained heterojunctions possessed sharply defined rectifying properties with the rectification ration RR ˜ 106. The temperature dependences of the height of the potential barrier and series resistance of the MoOx/CdTe heterojunctions were investigated. The dominating current transport mechanisms through the heterojunctions were determined at forward and reverse biases. The analysis of capacitance-voltage (C-V) characteristics, measured at different frequencies of the small amplitude AC signal and corrected by the effect of the series resistance, provided evidence of the presence of electrically charged interface states, which significantly affect the measured capacitance.
Few layered MoO3 nano sheets-SWCNT composite thin film as supercapacitor electrode
NASA Astrophysics Data System (ADS)
Dutta, Shibsankar; Akther, Jasim; De, Sukanta
2017-05-01
The increasing demands for clean and renewable energy, the advantages of high power density, long lasting and high efficiency have made Supercapacitor as one of the major emerging energy storage device.The 2D layered metal oxide nanocomposite with SWCNT is the promising candidate for energy storage and conversion. In this work we exfoliate the crystalline bulk MoO3 by simple liquid phase exfoliation to give multi-layer MoO3 dispersed in a suitable solvent. As the electrical conductivity of MoO3 is very low so, the dispersion was used to make hybrid material with SWCNT dispersion by vacuum filtration. The SWCNT-MoO3 composite showed an areal capacitance value of 1290 µF/cm2 at 10 mV/s in PVA-H2 SO4 solid gel electrolyte. This composite based electrode provides an energy density of 0.092 µWh/cm2 and a power density of 9.54 µW/cm2 at 0.01 mA/cm2
Atomic layer deposition of two dimensional MoS{sub 2} on 150 mm substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdivia, Arturo; Conley, John F., E-mail: jconley@eecs.oregonstate.edu; Tweet, Douglas J.
2016-03-15
Low temperature atomic layer deposition (ALD) of monolayer to few layer MoS{sub 2} uniformly across 150 mm diameter SiO{sub 2}/Si and quartz substrates is demonstrated. Purge separated cycles of MoCl{sub 5} and H{sub 2}S precursors are used at reactor temperatures of up to 475 °C. Raman scattering studies show clearly the in-plane (E{sup 1}{sub 2g}) and out-of-plane (A{sub 1g}) modes of MoS{sub 2}. The separation of the E{sup 1}{sub 2g} and A{sub 1g} peaks is a function of the number of ALD cycles, shifting closer together with fewer layers. X-ray photoelectron spectroscopy indicates that stoichiometry is improved by postdeposition annealing in amore » sulfur ambient. High resolution transmission electron microscopy confirms the atomic spacing of monolayer MoS{sub 2} thin films.« less
Performance of Magnetic Penetration Thermometers for X-Ray Astronomy
NASA Technical Reports Server (NTRS)
Nagler, P. C.; Adams, J. S.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Hsieh, W. T.; Kelly, D. P.; Porst, J. P.; Sadleir, J. E.; Seidel, G. M.;
2012-01-01
The ideal X-ray camera for astrophysics would have more than a million pixels and provide an energy resolution of better than leV FWHM for energies up to 10 keY. We have microfabricated and characterized thin-film magnetic penetration thermometers (MPTs) that show great promise towards meeting these capabilities. MPTs operate in similar fashion to metallic magnetic calorimeters (MMCs), except that a superconducting sensor takes the place of a paramagnetic sensor and it is the temperature dependence of the superconductor's diamagnetic response that provides the temperature sensitivity. We present a description of the design and performance of our prototype thin-film MPTs with MoAu bilayer sensors, which have demonstrated an energy resolution of approx 2 eV FWHM at 1.5 keY and 4.3 eV FWHM at 5.9 keY.
Enhanced absorption with quantum dots, metal nanoparticles, and 2D materials
NASA Astrophysics Data System (ADS)
Simsek, Ergun; Mukherjee, Bablu; Guchhait, Asim; Chan, Yin Thai
2016-03-01
We fabricate and characterize mono- and few- layers of MoS2 and WSe2 on glass and SiO2/Si substrates. PbS quantum dots and/or Au nanoparticles are deposited on the fabricated thin metal dichalcogenide films by controlled drop casting and electron beam evaporation techniques. The reflection spectra of the fabricated structures are measured with a spatially resolved reflectometry setup. Both experimental and numerical results show that surface functionalization with metal nanoparticles can enhance atomically thin transition metal dichalcogenides' absorption and scattering capabilities, however semiconducting quantum dots do not create such effect.
Bilayered Oxide thin films for transparent electrode application
NASA Astrophysics Data System (ADS)
Dutta, Titas; Narayan, Jagdish
2008-10-01
Ga doped ZnO films with electrical and optical properties comparable to indium tin oxide (ITO) is a promising candidate for transparent conducting oxides (TCOs) because of its superior stability in hydrogen environment, benign nature and relatively inexpensive supply. However, ZnO based TCO films suffer from low work function, which is a critical parameter for device applications. We report here the growth of a novel bilayered structure consisting of very thin (few monolayers) ITO, MoOx layer on Zn0.95Ga0.05O film for transparent electrode applications by using pulsed laser deposition technique at different temperatures and oxygen partial pressure. The characteristics of the ITO film and the heterostructure have been investigated in detail using XRD, TEM, XPS, and electrical and optical property measurements. It is envisaged that the overall transmittance and the resistivity are dictated by the thicker layer of ZnGa0.05O beneath the ITO layer. Hence, this study is aimed to improve the surface characteristics without affecting the overall transmittance and sheet resistance. This will enhance the transport of the carriers across the heterojunction in the device, thus, resulting in the increase in device efficiency.
The effect of Na on Cu-K-In-Se thin film growth
NASA Astrophysics Data System (ADS)
Muzzillo, Christopher P.; Tong, Ho Ming; Anderson, Timothy J.
2018-04-01
Co-evaporation of Cu-KF-In-Se was performed on substrates with varied Na supply. Compositions of interest for photovoltaic absorbers were studied, with ratios of (K + Cu)/In ∼ 0.85 and K/(K + Cu) ∼ 0-0.57. Bare soda-lime glass (SLG) substrates had the highest Na supply as measured by secondary ion mass spectrometry, while SLG/Mo and SLG/SiO2/Mo substrates led to 3x and 3000x less Na in the growing film, respectively. Increased Na supply favored Cu1-xKxInSe2 (CKIS) alloy formation as proven by X-ray diffraction (XRD), while decreased Na supply favored the formation of CuInSe2 + KInSe2 mixed-phase films. Scanning electron microscopy and energy dispersive X-ray spectroscopy revealed the KInSe2 precipitates to be readily recognizable planar crystals. Extrinsic KF addition during film growth promoted diffusion of Na out from the various substrates and into the growing film, in agreement with previous reports. Time-resolved photoluminescence showed enhanced minority carrier lifetimes for films with moderate K compositions (0.04 < K/(K + Cu) < 0.14) grown on SLG/Mo. Due to the relatively high detection limit of KInSe2 by XRD and the low magnitude of chalcopyrite lattice shift for CKIS alloys with these compositions, it is unclear if the lifetime gains were associated with CKIS alloying, minor KInSe2 content, or both. The identified Na-K interdependency can be used to engineer alkali metal bonding in Cu(In,Ga)(Se,S)2 absorbers to optimize both initial and long-term photovoltaic power generation.
The effect of Na on Cu-K-In-Se thin film growth
Muzzillo, Christopher P.; Tong, Ho Ming; Anderson, Timothy J.
2018-02-27
Co-evaporation of Cu-KF-In-Se was performed on substrates with varied Na supply. Compositions of interest for photovoltaic absorbers were studied, with ratios of (K + Cu)/In ~ 0.85 and K/(K + Cu) ~ 0-0.57. Bare soda-lime glass (SLG) substrates had the highest Na supply as measured by secondary ion mass spectrometry, while SLG/Mo and SLG/SiO 2/Mo substrates led to 3x and 3000x less Na in the growing film, respectively. Increased Na supply favored Cu 1-xK xInSe 2 (CKIS) alloy formation as proven by X-ray diffraction (XRD), while decreased Na supply favored the formation of CuInSe 2 + KInSe 2 mixed-phase films.more » Scanning electron microscopy and energy dispersive X-ray spectroscopy revealed the KInSe 2 precipitates to be readily recognizable planar crystals. Extrinsic KF addition during film growth promoted diffusion of Na out from the various substrates and into the growing film, in agreement with previous reports. Time-resolved photoluminescence showed enhanced minority carrier lifetimes for films with moderate K compositions (0.04 < K/(K + Cu) < 0.14) grown on SLG/Mo. Due to the relatively high detection limit of KInSe 2 by XRD and the low magnitude of chalcopyrite lattice shift for CKIS alloys with these compositions, it is unclear if the lifetime gains were associated with CKIS alloying, minor KInSe 2 content, or both. The identified Na-K interdependency can be used to engineer alkali metal bonding in Cu(In,Ga)(Se,S) 2 absorbers to optimize both initial and long-term photovoltaic power generation.« less
The effect of Na on Cu-K-In-Se thin film growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzillo, Christopher P.; Tong, Ho Ming; Anderson, Timothy J.
Co-evaporation of Cu-KF-In-Se was performed on substrates with varied Na supply. Compositions of interest for photovoltaic absorbers were studied, with ratios of (K + Cu)/In ~ 0.85 and K/(K + Cu) ~ 0-0.57. Bare soda-lime glass (SLG) substrates had the highest Na supply as measured by secondary ion mass spectrometry, while SLG/Mo and SLG/SiO 2/Mo substrates led to 3x and 3000x less Na in the growing film, respectively. Increased Na supply favored Cu 1-xK xInSe 2 (CKIS) alloy formation as proven by X-ray diffraction (XRD), while decreased Na supply favored the formation of CuInSe 2 + KInSe 2 mixed-phase films.more » Scanning electron microscopy and energy dispersive X-ray spectroscopy revealed the KInSe 2 precipitates to be readily recognizable planar crystals. Extrinsic KF addition during film growth promoted diffusion of Na out from the various substrates and into the growing film, in agreement with previous reports. Time-resolved photoluminescence showed enhanced minority carrier lifetimes for films with moderate K compositions (0.04 < K/(K + Cu) < 0.14) grown on SLG/Mo. Due to the relatively high detection limit of KInSe 2 by XRD and the low magnitude of chalcopyrite lattice shift for CKIS alloys with these compositions, it is unclear if the lifetime gains were associated with CKIS alloying, minor KInSe 2 content, or both. The identified Na-K interdependency can be used to engineer alkali metal bonding in Cu(In,Ga)(Se,S) 2 absorbers to optimize both initial and long-term photovoltaic power generation.« less
Theoretical investigations on a class of double-focus planar lens on the anisotropic material
NASA Astrophysics Data System (ADS)
Bozorgi, Mahdieh; Atlasbaf, Zahra
2017-05-01
We study a double-focus lens constituted of V-shaped plasmonic nano-antennas (VSPNAs) on the anisotropic TiO2 thin film. The phase and amplitude variations of cross-polarized scattered wave from a unit cell are computed by the developed fast Method of Moments (MoM) in which the dyadic Green's function is evaluated with the transmission line model in the spectral domain. Using the calculated phase and amplitude diagrams, a double-focus lens on the anisotropic thin film is designed in 2 μm. To validate the numerical results, the designed lens is analysed using a full-wave EM-solver. The obtained results show a tunable asymmetric behavior in the focusing intensity of the focal spots for different incident polarizations. It is shown that changing the thickness of anisotropic thin film leads to the changing in such an asymmetric behavior and also the intensity ratio of two focal spots. In addition, the lens performance is examined in the broadband wavelength range from 1.76 to 2.86 μm. It is achieved that the increasing the wavelength leads to decreasing the focal distances of the designed lens and increasing its numerical aperture (NA).
NASA Astrophysics Data System (ADS)
Gabovich, A. M.; Il'chenko, L. G.; Pashitskii, E. A.; Romanov, Yu. A.
1980-04-01
Using the Poisson equation Green function for a self-consistent field in a spatially inhomogeneous system, expressions for the electrostatic energy and screened charge interaction near the surface of a semi-infinite metal and a thin quantizing film are derived. It is shown that the decrease law and Friedel oscillation amplitude of adsorbed atom indirect interaction are determined by the electron spectrum character and the Fermi surface shape. The results obtained enable us to explain, in particular, the submonolayer adsorbed film structure on the W and Mo surfaces.
Stress measurement in thin films by geometrical optics
NASA Technical Reports Server (NTRS)
Rossnagel, S. M.; Gilstrap, P.; Rujkorakarn, R.
1982-01-01
A variation of Newton's rings experiment is proposed for measuring film stress. The procedure described, the geometrical optics method, is used to measure radii of curvature for a series of film depositions with Ta, Al, and Mo films. The method has a sensitivity of 1 x 10 to the 9th dyn/sq cm, corresponding to the practical radius limit of about 50 m, and a repeatability usually within five percent. For the purposes of comparison, radii are also measured by Newton's rings method and the Talysurf method; all results are found to be in general agreement. Measurement times are also compared: the geometrical optics method requires only 1/2-1 minute. It is concluded that the geometrical optics method provides an inexpensive, fast, and a reasonably correct technique with which to measure stresses in film.
Fundamentals of Intrinsic Stress during Silicide Formation
NASA Astrophysics Data System (ADS)
Özçelik, A.; van Bockstael, C.; Detavernier, C.; Vanmeirhaeghe, R.
2007-04-01
Silicides are a very useful group of materials which can be used to make electrical contacts to circuits in electronic devices with an extremely high performance. The stress in thin films is an increasingly important technological issue from the standpoint of reliability and performance in IC processing. Manufacturers of micro electronic devices have to control the stress levels in the contact films to avoid device failures. Phase transitions such as silicidation or even a simple rearrangement of atoms like relaxation in the metal film cause a difference in the volume of the film from its starting value. This volume change produces stress inside the film. In this work we analyzed the stress evolution during the silicidation reaction of some metals such as W and Mo by using a home built in situ stress system at the University of Ghent.
NASA Astrophysics Data System (ADS)
Lu, Qin; Fang, Cizhe; Liu, Yan; Shao, Yao; Han, Genquan; Zhang, Jincheng; Hao, Yue
2018-04-01
Two-dimensional (2D) materials are promising candidates for atomically thin nanoelectronics. Among them, MoS2 has attracted considerable attention in the nanoscience and nanotechnology community owing to its unique characteristics including high electron mobility and intrinsic band gap. In this study, we experimentally explored the contact resistances of MoS2 films based on much layered graphene films as electrodes using the circular transmission line model (CTLM). The variation in the chemical composition of the material is thoroughly analyzed by Raman and X-ray photoelectric spectroscopy (XPS) measurements. Experimental results demonstrate that annealing followed by oxygen plasma treatment can effectively improve the contact resistance. Furthermore, the current-voltage curves measured after different annealing temperatures indicate good linear characteristics, which means a marked improvement in electrical property. Calculations show that a relatively low contact resistance of ˜4.177 kΩ (ignoring its size) without back gate voltage in a single-layer graphene/MoS2 structure at an optimal annealing temperature of 500 °C is achieved. This work about the effect of annealing temperature on contact resistance can also be employed for other 2D materials, which lays a foundation for further development of novel 2D material devices.
Effect of post-annealing on sputtered MoS2 films
NASA Astrophysics Data System (ADS)
Wong, W. C.; Ng, S. M.; Wong, H. F.; Cheng, W. F.; Mak, C. L.; Leung, C. W.
2017-12-01
Typical routes for fabricating MoS2-based electronic devices rely on the transfer of as-prepared flakes to target substrates, which is incompatible with conventional device fabrication methods. In this work we investigated the preparation of MoS2 films by magnetron sputtering. By subjecting room-temperature sputtered MoS2 films to post-annealing at mild conditions (450 °C in a nitrogen flow), crystalline MoS2 films were formed. To demonstrate the compatibility of the technique with typical device fabrication processes, MoS2 was prepared on epitaxial magnetic oxide films of La0.7Sr0.3MnO3, and the magnetic behavior of the films were unaffected by the post-annealing process. This work demonstrates the possibility of fabricating electronic and spintronic devices based on continuous MoS2 films prepared by sputtering deposition.
NASA Astrophysics Data System (ADS)
Małek, Anna K.; Marszałek, Konstanty W.; Rydosz, Artur M.
2016-12-01
Recently photovoltaics attracts much attention of research and industry. The multidirectional studies are carried out in order to improve solar cells performance, the innovative materials are still searched and existing materials and technology are optimized. In the multilayer structure of CIGS solar cells molybdenum (Mo) layer is used as a back contact. Mo layers meet all requirements for back side electrode: low resistivity, good adhesion to the substrate, high optical reflection in the visible range, columnar structure for Na ions diffusion, formation of an ohmic contact with the ptype CIGS absorber layer, and high stability during the corrosive selenization process. The high adhesion to the substrate and low resistivity in single Mo layer is difficult to be achieved because both properties depend on the deposition parameters, particularly on working gas pressure. Therefore Mo bilayers are applied as a back contact for CIGS solar cells. In this work the Mo layers were deposited by medium frequency sputtering at different process parameters. The effect of substrate temperature within the range of 50°C-200°C and working gas pressure from 0.7 mTorr to 7 mTorr on crystalline structure of Mo layers was studied.
NASA Astrophysics Data System (ADS)
Sitko, Rafał
2008-11-01
Knowledge of X-ray tube spectral distribution is necessary in theoretical methods of matrix correction, i.e. in both fundamental parameter (FP) methods and theoretical influence coefficient algorithms. Thus, the influence of X-ray tube distribution on the accuracy of the analysis of thin films and bulk samples is presented. The calculations are performed using experimental X-ray tube spectra taken from the literature and theoretical X-ray tube spectra evaluated by three different algorithms proposed by Pella et al. (X-Ray Spectrom. 14 (1985) 125-135), Ebel (X-Ray Spectrom. 28 (1999) 255-266), and Finkelshtein and Pavlova (X-Ray Spectrom. 28 (1999) 27-32). In this study, Fe-Cr-Ni system is selected as an example and the calculations are performed for X-ray tubes commonly applied in X-ray fluorescence analysis (XRF), i.e., Cr, Mo, Rh and W. The influence of X-ray tube spectra on FP analysis is evaluated when quantification is performed using various types of calibration samples. FP analysis of bulk samples is performed using pure-element bulk standards and multielement bulk standards similar to the analyzed material, whereas for FP analysis of thin films, the bulk and thin pure-element standards are used. For the evaluation of the influence of X-ray tube spectra on XRF analysis performed by theoretical influence coefficient methods, two algorithms for bulk samples are selected, i.e. Claisse-Quintin (Can. Spectrosc. 12 (1967) 129-134) and COLA algorithms (G.R. Lachance, Paper Presented at the International Conference on Industrial Inorganic Elemental Analysis, Metz, France, June 3, 1981) and two algorithms (constant and linear coefficients) for thin films recently proposed by Sitko (X-Ray Spectrom. 37 (2008) 265-272).
MoS2 solid-lubricating film fabricated by atomic layer deposition on Si substrate
NASA Astrophysics Data System (ADS)
Huang, Yazhou; Liu, Lei; Lv, Jun; Yang, Junjie; Sha, Jingjie; Chen, Yunfei
2018-04-01
How to reduce friction for improving efficiency in the usage of energy is a constant challenge. Layered material like MoS2 has long been recognized as an effective surface lubricant. Due to low interfacial shear strengths, MoS2 is endowed with nominal frictional coefficient. In this work, MoS2 solid-lubricating film was directly grown by atomic layer deposition (ALD) on Si substrate using MoCl5 and H2S. Various methods were used to observe the grown MoS2 film. Moreover, nanotribological properties of the film were observed by an atomic force microscope (AFM). Results show that MoS2 film can effectively reduce the friction force by about 30-45% under different loads, indicating the huge application value of the film as a solid lubricant. Besides the interlayer-interfaces-sliding, the smaller capillary is another reason why the grown MoS2 film has smaller friction force than that of Si.
NASA Astrophysics Data System (ADS)
Miyake, Shugo; Matsui, Genzou; Ohta, Hiromichi; Hatori, Kimihito; Taguchi, Kohei; Yamamoto, Suguru
2017-07-01
Thermal microscopes are a useful technology to investigate the spatial distribution of the thermal transport properties of various materials. However, for high thermal effusivity materials, the estimated values of thermophysical parameters based on the conventional 1D heat flow model are known to be higher than the values of materials in the literature. Here, we present a new procedure to solve the problem which calculates the theoretical temperature response with the 3D heat flow and measures reference materials which involve known values of thermal effusivity and heat capacity. In general, a complicated numerical iterative method and many thermophysical parameters are required for the calculation in the 3D heat flow model. Here, we devised a simple procedure by using a molybdenum (Mo) thin film with low thermal conductivity on the sample surface, enabling us to measure over a wide thermal effusivity range for various materials.
NASA Astrophysics Data System (ADS)
Shimizu, Makoto; Kohiyama, Asaka; Yugami, Hiroo
2018-06-01
The thermal stability of spectrally selective few-layer metallo-dielectric structures is evaluated to analyze their potential as absorber and emitter materials in solar thermophotovoltaic (STPV) systems. High-efficiency (e.g., STPV) systems require materials with spectrally selective properties, especially at high temperatures (>1273 K). Aiming to develop such materials for high-temperature applications, we propose a few-layer structure composed of a refractory metal (i.e., Mo) nanometric film sandwiched between the layers of a dielectric material (i.e., hafnium oxide, HfO2) deposited on a Mo bulk substrate. In vacuum conditions (<5 × 10-2 Pa), the few-layer structure shows thermal stability at 1423 K for at least 1 h. At 1473 K, the spectral selectivity was degraded. This could have been caused by the oxidation of the Mo thin film by the residual oxygen through the grain boundaries of the upper HfO2 layer. This experiment showed the potential stability of few-layer structures for applications working at temperatures greater than 1273 K as well as the degradation mechanism of the few-layer structure. This characteristic is expected to help improve the thermal stability in few-layer structures further.
Patterned growth of p-type MoS 2 atomic layers using sol-gel as precursor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Wei; Lin, Junhao; Feng, Wei
2D layered MoS 2 has drawn intense attention for its applications in flexible electronic, optoelectronic, and spintronic devices. Most of the MoS 2 atomic layers grown by conventional chemical vapor deposition techniques are n-type due to the abundant sulfur vacancies. Facile production of MoS 2 atomic layers with p-type behavior, however, remains challenging. Here, a novel one-step growth has been developed to attain p-type MoS 2 layers in large scale by using Mo-containing sol–gel, including 1% tungsten (W). Atomic-resolution electron microscopy characterization reveals that small tungsten oxide clusters are commonly present on the as-grown MoS 2 film due to themore » incomplete reduction of W precursor at the reaction temperature. These omnipresent small tungsten oxide clusters contribute to the p-type behavior, as verified by density functional theory calculations, while preserving the crystallinity of the MoS 2 atomic layers. The Mo containing sol–gel precursor is compatible with the soft-lithography techniques, which enables patterned growth of p-type MoS 2 atomic layers into regular arrays with different shapes, holding great promise for highly integrated device applications. Lastly, an atomically thin p–n junction is fabricated by the as-prepared MoS 2, which shows strong rectifying behavior.« less
Patterned growth of p-type MoS 2 atomic layers using sol-gel as precursor
Zheng, Wei; Lin, Junhao; Feng, Wei; ...
2016-07-19
2D layered MoS 2 has drawn intense attention for its applications in flexible electronic, optoelectronic, and spintronic devices. Most of the MoS 2 atomic layers grown by conventional chemical vapor deposition techniques are n-type due to the abundant sulfur vacancies. Facile production of MoS 2 atomic layers with p-type behavior, however, remains challenging. Here, a novel one-step growth has been developed to attain p-type MoS 2 layers in large scale by using Mo-containing sol–gel, including 1% tungsten (W). Atomic-resolution electron microscopy characterization reveals that small tungsten oxide clusters are commonly present on the as-grown MoS 2 film due to themore » incomplete reduction of W precursor at the reaction temperature. These omnipresent small tungsten oxide clusters contribute to the p-type behavior, as verified by density functional theory calculations, while preserving the crystallinity of the MoS 2 atomic layers. The Mo containing sol–gel precursor is compatible with the soft-lithography techniques, which enables patterned growth of p-type MoS 2 atomic layers into regular arrays with different shapes, holding great promise for highly integrated device applications. Lastly, an atomically thin p–n junction is fabricated by the as-prepared MoS 2, which shows strong rectifying behavior.« less
New Insight into Nuclear Reactions in Solids
NASA Astrophysics Data System (ADS)
Miley, George H.
2003-04-01
Earlier work by the author disclosed evidence for nuclear transmutations in multi-layer thin-film Ni/Pd electrodes loaded to a high ratio of hydrogen/film metal using an electrolytic technique [1]. Non-natural isotopes abundances were found for select products. A distinctive characteristic of this and similar experiments by others is a product yield curve vs. mass with four high yield peaks distributed between low and high masses. Attempts to explain this observation have evolved around the original swimming electron layer (SEL) theory [2]. In addition, CR-39 track detector measurements have revealed low-level emission of 1.6 MeV protons and 16 MeV alpha particles from the front face of the thin film electrodes during runs [3]. Most recently Mitsubishi Corp. researchers have reported a real-time transmutation measurement using built-in XPS diagnostics where a surface layer of Sr-88 was transmuted into Mo-96 over a 200 hour run period during the diffusion of deuterium through a multi-layer thin-film Pd/CaO substrate [4]. Likewise in a companion experiment, Cs-133 was transmuted into Pr-141. These products exhibit a large deviation from natural isotopic abundance, and the characteristic signature is a mass change of 8 and charge change of 4. These various phenomena along with a preliminary theory involving SEL and orbital mixing will be presented. The objective is to provide a unified understanding of both types of experiments presented in Refs. 1 and 3. [1] G.H. Miley and J. A. Patterson, "Nuclear Transmutations in Thin-Film Nickel Coatings Undergoing Electrolysis," J. New Energy, 1, 3, 5-30 (1996). [2] H. Hora, et al., "Screening in Cold Fusion Derived from D D Reactions," Physics Ltrs. A, 175, 138-143, (1993). [3] A. Lipson, et al., "In-situ long - range alpha particles and X-ray detection in Pd thin film-cathodes during electrolysis in, Li2SO4/H2O, Bult. APS, 47, 1,Pt. II, 1219, Indianapolis, (2002). [4] Y. Iwamura, T. Itoh, et al., "Low energy nuclear reaction induced by D gas permeation through multilayer film," Japanese J. Physics, 41, pt. 1, 7A, 4642, (2002).
Use of aluminum oxide as a permeation barrier for producing thin films on aluminum substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Provo, James L., E-mail: jlprovo@verizon.net
2016-07-15
Aluminum has desirable characteristics of good thermal properties, good electrical characteristics, good optical properties, and the characteristic of being nonmagnetic and having a low atomic weight (26.98 g atoms), but because of its low melting point (660 °C) and ability as a reactive metal to alloy with most common metals in use, it has been ignored as a substrate material for use in processing thin films. The author developed a simple solution to this problem, by putting a permeation barrier of alumina (Al{sub 2}O{sub 3}) onto the surface of pure Al substrates by using a standard chemical oxidation process of the surfacemore » (i.e., anodization), before additional film deposition of reactive metals at temperatures up to 500 °C for 1-h, without the formation of alloys or intermetallic compounds to affect the good properties of Al substrates. The chromic acid anodization process used (MIL-A-8625) produced a film barrier of ∼(500–1000) nm of alumina. The fact that refractory Al{sub 2}O{sub 3} can inhibit the reaction of metals with Al at temperatures below 500 °C suggests that Al is a satisfactory substrate if properly oxidized prior to film deposition. To prove this concept, thin film samples of Cr, Mo, Er, Sc, Ti, and Zr were prepared on anodized Al substrates and studied by x-ray diffraction, Rutherford ion back scattering, and Auger/argon sputter surface profile analysis to determine any film substrate interactions. In addition, a major purpose of our study was to determine if ErD{sub 2} thin films could be produced on Al substrates with fully hydrided Er films. Thus, a thin film of ErD{sub 2} on an anodized Al substrate was prepared and studied, with and without the alumina permeation barrier. Films for study were prepared on 1.27 cm diameter Al substrates with ∼500 nm of the metals studied after anodization. Substrates were weighed, cleaned, and vacuum fired at 500 °C prior to use. The Al substrates were deposited using standard electron beam cold crucible evaporation techniques, and after deposition the Er film was hydrided with D{sub 2} gas using a standard nonair exposure hydriding technique. All processing was conducted in an all metal ion pumped ultrahigh vacuum system. Results showed that e-beam deposition of films studied onto Al substrates could be successfully performed, if a permeation barrier of Al{sub 2}O{sub 3} from 500 to 1000 nm was made prior to thin film deposition up to temperatures of 500 °C for 1-h. Hydrides also, could be produced with full gas/metal atomic ratios of ∼2.0 as evidenced by the ErD{sub 2} films produced. Thus, the use of a simple permeation barrier of Al{sub 2}O{sub 3} on Al substrates prior to additional metal film deposition was proven to be a successful method of producing both thin metal films and hydride films of various types for many applications.« less
NASA Astrophysics Data System (ADS)
Pulliam, Elias; Hoover, George; Tiparti, Dhruv; Ryu, Donghyeon
2017-04-01
Aerospace structural systems are prone to structural damage during their use by vibration, impact, material degradation, and other factors. Due to the harsh environments in which aerospace structures operate, aerospace structures are susceptible to various types of damage and often their structural integrity is jeopardized unless damage onset is detected in timely manner. Yet, current state-of-the-art sensor technologies are still limited for structural health monitoring (SHM) of aerospace structures due to their high power consumption, need for large form factor design, and manageable integration into aerospace structures. This study proposes a design of multilayered self-powered strain sensor by coupling mechano-luminescent (ML) property of copper-doped zinc sulfide (ZnS:Cu) and mechano-optoelectronic (MO) property of poly(3-hexylthiophene) (P3HT). One functional layer of the self-powered strain sensor is ZnS:Cu-based elastomeric composites that emit light in response to mechanical deformation. Another functional layer is P3HT-based thin films that generate direct current (DC) under light illumination and DC magnitude changes with applied strain. First, ML light emission characteristics of ZnS:Cu-based composites are studied under cyclic tensile strain with two various maximum strain up to 10% and 15% at various loading frequencies from 5 Hz to 20 Hz. Second, piezo-optical properties of P3HT-based thin films are investigated by acquiring light absorption of the thin films at various strains from 0% to 2% tensile strain. Last, micro-mechanical properties of the P3HT-based thin films are characterized using nanoindentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C. L.; Carlstrom, J. E.; Datesman, A.
2008-04-01
The implementation of TES based microbolometer arrays will achieve unprecedented sensitivities for mm and sub-mm astronomy through fabrication of large format arrays and improved linearity and stability arising from strong electro-thermal feedback. We report on progress in developing TES microbolometers using Mo/Au thin films and Au absorbing structures. We present measurements of suppressing the thermal conductance through the etching of features on a continuous Silicon-Nitride window.
Bromination Improves Tetraazapentacene´s Electron Mobilities.
Reiss, Hilmar; Ji, Lei; Han, Jie; Koser, Silke; Tverskoy, Olena; Freudenberg, Jan; Moos, Michael; Friedrich, Alexandra; Krummenacher, Ivo; Lambert, Christoph; Braunschweig, Holger; Dreuw, Andreas; Marder, Todd B; Bunz, Uwe Heiko
2018-05-31
A cyclocondensation-based preparation of tetra¬bro¬mo¬tetra-azapentacene (BrTAP) is described using TIPS-ethynyl-substi-tuted diaminoarenes with in-situ obtained 4,5-dibromocyclohexa-3,5-diene-1,2-dione. BrTAP is easily reduced to its air stable radical anion; elec¬tron mobilities > 0.56 cm2 V 1 s 1 are achieved in thin film transistors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magnetic field modification of optical magnetic dipoles.
Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David
2015-03-11
Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate.
Flexible low-power RF nanoelectronics in the GHz regime using CVD MoS2
NASA Astrophysics Data System (ADS)
Yogeesh, Maruthi
Two-dimensional (2D) materials have attracted substantial interest for flexible nanoelectronics due to the overall device mechanical flexibility and thickness scalability for high mechanical performance and low operating power. In this work, we demonstrate the first MoS2 RF transistors on flexible substrates based on CVD-grown monolayers, featuring record GHz cutoff frequency (5.6 GHz) and saturation velocity (~1.8×106 cm/s), which is significantly superior to contemporary organic and metal oxide thin-film transistors. Furthermore, multicycle three-point bending results demonstrated the electrical robustness of our flexible MoS2 transistors after 10,000 cycles of mechanical bending. Additionally, basic RF communication circuit blocks such as amplifier, mixer and wireless AM receiver have been demonstrated. These collective results indicate that MoS2 is an ideal advanced semiconducting material for low-power, RF devices for large-area flexible nanoelectronics and smart nanosystems owing to its unique combination of large bandgap, high saturation velocity and high mechanical strength.
Exciton band structure in layered MoSe2: from a monolayer to the bulk limit.
Arora, Ashish; Nogajewski, Karol; Molas, Maciej; Koperski, Maciej; Potemski, Marek
2015-12-28
We present the micro-photoluminescence (μPL) and micro-reflectance contrast (μRC) spectroscopy studies on thin films of MoSe(2) with layer thicknesses ranging from a monolayer (1L) up to 5L. The thickness dependent evolution of the ground and excited state excitonic transitions taking place at various points of the Brillouin zone is determined. Temperature activated energy shifts and linewidth broadenings of the excitonic resonances in 1L, 2L and 3L flakes are accounted for by using standard formalisms previously developed for semiconductors. A peculiar shape of the optical response of the ground state (A) exciton in monolayer MoSe(2) is tentatively attributed to the appearance of a Fano-type resonance. Rather trivial and clearly decaying PL spectra of monolayer MoSe(2) with temperature confirm that the ground state exciton in this material is optically bright in contrast to a dark exciton ground state in monolayer WSe(2).
Exciton band structure in layered MoSe2: from a monolayer to the bulk limit
NASA Astrophysics Data System (ADS)
Arora, Ashish; Nogajewski, Karol; Molas, Maciej; Koperski, Maciej; Potemski, Marek
2015-12-01
We present the micro-photoluminescence (μPL) and micro-reflectance contrast (μRC) spectroscopy studies on thin films of MoSe2 with layer thicknesses ranging from a monolayer (1L) up to 5L. The thickness dependent evolution of the ground and excited state excitonic transitions taking place at various points of the Brillouin zone is determined. Temperature activated energy shifts and linewidth broadenings of the excitonic resonances in 1L, 2L and 3L flakes are accounted for by using standard formalisms previously developed for semiconductors. A peculiar shape of the optical response of the ground state (A) exciton in monolayer MoSe2 is tentatively attributed to the appearance of a Fano-type resonance. Rather trivial and clearly decaying PL spectra of monolayer MoSe2 with temperature confirm that the ground state exciton in this material is optically bright in contrast to a dark exciton ground state in monolayer WSe2.
[Research of the surface oxide film on anodizing Ni-Cr porcelain alloy].
Zhu, Song; Sun, Hong-Chen; Zhang, Jing-Wei; Li, Zong-Hui
2006-08-01
To study the shape, thickness and oxide percentage of major metal element of oxide film on Ni-Cr porcelain alloy after anodizing pretreatment. 10 samples were made and divided into 2 groups at random. Then after surface pretreatment, the oxide films of two samples of each group were analyzed using electronic scanning microscope. The rest 3 samples were measured by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Lightly selective solution appeared because the different component parts of the alloy have dissimilar electrode, whose dissolve velocity were quite unlike. The sample's metal surface expanded, so the mechanical interlocking of porcelain and metal increased bond strength. The thickness of oxide film was 1.72 times of the control samples. The oxide percentage of major metal elements such as Cr, Ni and Mo were higher, especially Cr. It initially involved the formation of a thin oxide bound to the alloy and second, the ability of the formed oxide to saturate the porcelain, completing the chemical bond of porcelain to metal. The method of anodizing Ni-Cr porcelain alloy can easily control the forming of oxide film which was thin and its surface pattern was uniform. It is repeated and a good method of surface pretreatment before firing cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mokurala, Krishnaiah; Mallick, Sudhanshu; Bhargava, Parag
Direct solution coating technique has emerged as a promising economically viable process for earth abundant chalcogenide absorber materials for photovoltaic applications. Here, direct ethanol based dip coating of earth abundant Cu2NiSnS4 (CNTS) films on soda lime glass (SLG), molybdenum coated glass (Mo), and fluorine doped tin oxide coated glass (FTO) substrates is investigated. The structural and morphological properties of pre-annealed and sulfurized CNTS films coated on SLG, FTO, and Mo substrates are reported. The influence of dipping cycles on composition and optoelectronic properties of pre-annealed and sulfurized CNTS films deposited on SLG substrate is presented. Energy dispersive spectroscopy (EDS) andmore » X-ray fluorescence (XRF) analysis reveal how changes in thickness and elemental composition affect morphology and optoelectronic properties. The obtained absorption coefficient, optical bandgap, resistivity and mobility of pre - annealed and sulfurized films are found to be 104 cm-1, 1.5 eV, 0.48 Ocm, 3.4 cm2/Vs and 104 cm-1, 1.29 eV, 0.14 Ocm, 11.0 cm2/Vs, respectively. These properties are well suited for photovoltaic applications and lead to the conclusion that the direct ethanol based dip coating can be an alternative economically viable process for the fabrication of earth abundant CNTS absorber layers for thin film solar cells.« less
Electron-beam-induced current at absorber back surfaces of Cu(In,Ga)Se{sub 2} thin-film solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavalakkatt, J.; Abou-Ras, D., E-mail: daniel.abou-ras@helmholtz-berlin.de; Nichterwitz, M.
2014-01-07
The present work reports on investigations of the influence of the microstructure on electronic properties of Cu(In,Ga)Se{sub 2} (CIGSe) thin-film solar cells. For this purpose, ZnO/CdS/CIGSe stacks of these solar cells were lifted off the Mo-coated glass substrates. The exposed CIGSe backsides of these stacks were investigated by means of electron-beam-induced current (EBIC) and cathodoluminescence (CL) measurements as well as by electron backscattered diffraction (EBSD). EBIC and CL profiles across grain boundaries (GBs), which were identified by EBSD, do not show any significant changes at Σ3 GBs. Across non-Σ3 GBs, on the other hand, the CL signals exhibit local minimamore » with varying peak values, while by means of EBIC, decreased and also increased short-circuit current values are measured. Overall, EBIC and CL signals change across non-Σ3 GBs always differently. This complex situation was found in various CIGSe thin films with different [Ga]/([In]+[Ga]) and [Cu]/([In]+[Ga]) ratios. A part of the EBIC profiles exhibiting reduced signals across non-Σ3 GBs can be approximated by a simple model based on diffusion of generated charge carriers to the GBs.« less
Self-contained in-vacuum in situ thin film stress measurement tool
NASA Astrophysics Data System (ADS)
Reinink, J.; van de Kruijs, R. W. E.; Bijkerk, F.
2018-05-01
A fully self-contained in-vacuum device for measuring thin film stress in situ is presented. The stress was measured by measuring the curvature of a cantilever on which the thin film was deposited. For this, a dual beam laser deflectometer was used. All optics and electronics needed to perform the measurement are placed inside a vacuum-compatible vessel with the form factor of the substrate holders of the deposition system used. The stand-alone nature of the setup allows the vessel to be moved inside a deposition system independently of optical or electronic feedthroughs while measuring continuously. A Mo/Si multilayer structure was analyzed to evaluate the performance of the setup. A radius of curvature resolution of 270 km was achieved. This allows small details of the stress development to be resolved, such as the interlayer formation between the layers and the amorphous-to-crystalline transition of the molybdenum which occurs at around 2 nm. The setup communicates with an external computer via a Wi-Fi connection. This wireless connection allows remote control over the acquisition and the live feedback of the measured stress. In principle, the vessel can act as a general metrology platform and add measurement capabilities to deposition setups with no modification to the deposition system.
NASA Astrophysics Data System (ADS)
Baniecki, J. D.; Ishii, M.; Aso, H.; Kobayashi, K.; Kurihara, K.; Yamanaka, K.; Vailionis, A.; Schafranek, R.
2011-12-01
Above room temperature electronic transport properties of SrxTiyO3-δ films with cation A/B = (La + Sr/Nb + Ti) ratios of 0.9 to 1.2 are compared to STO single crystals with combined Hall carrier densities of 3 × 1016 cm-3 ≤ nH ≤ 1022 cm-3. In contrast to Hall mobility which is single crystal-like (μH ≈ 6 cm2/Vs) only near A/B = 1, the Seebeck coefficient (S) is single crystal-like over a range of nonstoichiometry. For nH < 1020 cm-3, S is well described by nondegenerate band-like transport with a constant effective mass m∗/mo ≈ 5-8. For nH > 1021 cm-3, S is metallic-like with m∗/mo ˜ 8. No marked increase in m∗ with decreasing nH owing to a carrier filling dependence is observed.
NASA Technical Reports Server (NTRS)
Wheeler, D. R.; Brainard, W. A.
1978-01-01
Radiofrequency sputtering was used to deposit Mo2C, Mo2B5, and MoSi2 coatings on 440C steel substrates. Both sputter etched and preoxidized substrates were used, and the films were deposited with and without a substrate bias of -300 V. The composition of the coatings was measured as a function of depth by X-ray photoelectron spectroscopy combined with argon ion etching. In the interfacial region there was evidence that bias produced a graded interface in Mo2B5 but not in Mo2C. Oxides of iron and of all film constituents except carbon were presented in all cases but the iron oxide concentration was higher and the layer thicker on the preoxidized substrates. The film and iron oxides were mixed in the MoSi2 and Mo2C films but layered in the Mo2B5 film. The presence of mixed oxides correlates with enhanced film adhesion.
NASA Astrophysics Data System (ADS)
Zhao, Zhao
Thin films have been widely used in various applications. This research focuses on the characterization of novel thin films in the integrated circuits and photovoltaic techniques. The ion implanted layer in silicon can be treated as ion implanted thin film, which plays an essential role in the integrated circuits fabrication. Novel rapid annealing methods, i.e. microwave annealing and laser annealing, are conducted to activate ion dopants and repair the damages, and then are compared with the conventional rapid thermal annealing (RTA). In terms of As+ and P+ implanted Si, the electrical and structural characterization confirms that the microwave and laser annealing can achieve more efficient dopant activation and recrystallization than conventional RTA. The efficient dopant activation in microwave annealing is attributed to ion hopping under microwave field, while the liquid phase growth in laser annealing provides its efficient dopant activation. The characterization of dopants diffusion shows no visible diffusion after microwave annealing, some extent of end range of diffusion after RTA, and significant dopant diffusion after laser annealing. For photovoltaic applications, an indium-free novel three-layer thin-film structure (transparent composited electrode (TCE)) is demonstrated as a promising transparent conductive electrode for solar cells. The characterization of TCE mainly focuses on its optical and electrical properties. Transfer matrix method for optical transmittance calculation is validated and proved to be a desirable method for predicting transmittance of TCE containing continuous metal layer, and can estimate the trend of transmittance as the layer thickness changes. TiO2/Ag/TiO2 (TAgT) electrode for organic solar cells (OSCs) is then designed using numerical simulation and shows much higher Haacke figure of merit than indium tin oxide (ITO). In addition, TAgT based OSC shows better performance than ITO based OSC when compatible hole transfer layer is employed. The electrical and structural characterization of hole transfer layers (HTLs) in OSCs reveals MoO3 is the compatible HTL for TAgT anode. In the end, the reactive ink printed Ag film for solar cell contact application is studied by characterizing its electromigration lifetime. A percolative model is proposed and validated for predicting the resistivity and lifetime of printed Ag thin films containing porous structure.
Atomic layer deposition of molybdenum disulfide films using MoF 6 and H 2 S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mane, Anil U.; Letourneau, Steven; Mandia, David J.
2018-01-01
Molybdenum sulfide films were grown by atomic layer deposition on silicon and fused silica substrates using molybdenum hexafluoride (MoF6) and hydrogen sulfide at 200 degrees C. In situ quartz crystal microbalance (QCM) measurements confirmed linear growth at 0.46 angstrom/cycle and self-limiting chemistry for both precursors. Analysis of the QCM step shapes indicated that MoS2 is the reaction product, and this finding is supported by x-ray photoelectron spectroscopy measurements showing that Mo is predominantly in the Mo(IV) state. However, Raman spectroscopy and x-ray diffraction measurements failed to identify crystalline MoS2 in the as-deposited films, and this might result from unreacted MoFxmore » residues in the films. Annealing the films at 350 degrees C in a hydrogen rich environment yielded crystalline MoS2 and reduced the F concentration in the films. Optical transmission measurements yielded a bandgap of 1.3 eV. Finally, the authors observed that the MoS2 growth per cycle was accelerated when a fraction of the MoF6 pulses were substituted with diethyl zinc. Published by the AVS« less
Todt, Michael A.; Isenberg, Allan E.; Nanayakkara, Sanjini U.; ...
2018-03-06
Semiconducting transition-metal dichalcogenide (TMD) nanoflake thin films are promising large-area electrodes for photo-electrochemical solar energy conversion applications. However, their energy conversion efficiencies are typically much lower than those of bulk electrodes. It is unclear to what extent this efficiency gap stems from differences among nanoflakes (e.g., area, thickness, and surface structural features). It is also unclear whether individual exfoliated nanoflakes can achieve energy conversion efficiencies similar to those of bulk crystals. Here, we use a single-nanoflake photo-electrochemical approach to show that there are both highly active and completely inactive nanoflakes within a film. For the exfoliated MoSe 2 samples studiedmore » herein, 7% of nanoflakes are highly active champions, whose photocurrent efficiency exceeds that of the bulk crystal. However, 66% of nanoflakes are inactive spectators, which are mostly responsible for the overall lower photocurrent efficiency compared to the bulk crystal. The photocurrent collection efficiency increases with nanoflake area and decreases more at perimeter edges than at interior step edges. These observations, which are hidden in ensemble-level measurements, reveal the underlying performance issues of exfoliated TMD electrodes for photo-electrochemical energy conversion applications.« less
Electrochemical preparation of carbon films with a Mo2C interlayer in LiCl-NaCl-Na2CO3 melts
NASA Astrophysics Data System (ADS)
Ge, Jianbang; Wang, Shuai; Zhang, Feng; Zhang, Long; Jiao, Handong; Zhu, Hongmin; Jiao, Shuqiang
2015-08-01
The electrodeposition of carbon films with a Mo2C interlayer was investigated in LiCl-NaCl-Na2CO3 melts at 900 °C. Cyclic voltammetry was applied to study the electrochemical reaction mechanism on Mo and Pt electrodes, indicating that, two reduction reactions including carbon deposition and carbon monoxide evolution, may take place on the two electrodes simultaneously during the cathodic sweep. Carbon films with a continuous Mo2C interlayer were prepared by constant voltage electrolysis, showing a good adhesion between Mo substrate and carbon films. The carbon films with a Mo2C interlayer were characterized using X-ray diffraction measurement, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The results reveal that carbon materials deposited on the electrodes are mainly composed of graphite and carbon diffusion in Mo (or Mo2C) leads to the formation and growth of Mo2C interlayer.
NASA Astrophysics Data System (ADS)
Wang, L.; Jiang, M.; Wang, E. B.; Duan, L. Y.; Hao, N.; Lan, Y.; Xu, L.; Li, Z.
2003-11-01
Ultrathin multilayer films of the wheel-shaped molybdenum polyoxometalate cluster (Mo 38) n and poly(allylamine hydrochloride)(PAH) have been prepared by the layer-by-layer (LbL) self-assembly method. The ((Mo 38) n/PAH) m multilayer films have been characterized by X-ray photoelectron spectra (XPS) and atomic force microscopy (AFM). UV-VIS measurements reveal regular film growth with each (Mo 38) n adsorption. The electrochemistry behavior of the film at room temperature was investigated.
2007-10-12
Vincent, Magnetism Magnetic Materials (LAW3MO5), Vifia del Mar, Chile, December 11-15, 2005. 5. Nanomagnetism, Ivan K. Schuller, Pan America Advanced Study Institute, PASI 2007, Zacatecas , Mexico , June 19, 2007. 6 ...project explored the design, preparation, measurement and theoretical study of these novel magnetic devices. Modem thin film techniques (sputtering and...results to motion associated with the unstable nature of mechanical contacts In order to exploit BMR from a device point of view (or to make it useful in a
1986-11-15
0, 2, 3.5, 5, 6.5, 8, 10, and 12 V 1 1-2 (a) Strain-Induced Band Lineups for a Free-Standing InGaAs/GaAs Superlattice. (b) Effect of Applied...Numbers of Lasers Are Operated Simultaneously (and Electrically Connected in Parallel). The Six Light Output vs Current Characteristics Shown Are Those...Lengths 11; Centered on z•,. and Constant Width Aw Are Laser-Etched Sequentially into Thin Films of Cr-Cr203 or Mo to Provide Controlled Amplitude or
NASA Astrophysics Data System (ADS)
Tolpygo, Sergey K.; Bolkhovsky, Vladimir; Oates, Daniel E.; Rastogi, Ravi; Zarr, Scott; Day, Alexandra L.; Weir, Tarence J.; Wynn, Alex; Johnson, Leonard M.
2018-06-01
Recent progress in superconductor electronics fabrication has enabled single-flux-quantum (SFQ) digital circuits with close to one million Josephson junctions (JJs) on 1-cm$^2$ chips. Increasing the integration scale further is challenging because of the large area of SFQ logic cells, mainly determined by the area of resistively shunted Nb/AlO$_x$-Al/Nb JJs and geometrical inductors utilizing multiple layers of Nb. To overcome these challenges, we are developing a fabrication process with self-shunted high-J$_c$ JJs and compact thin-film MoN$_x$ kinetic inductors instead of geometrical inductors. We present fabrication details and properties of MoN$_x$ films with a wide range of T$_c$, including residual stress, electrical resistivity, critical current, and magnetic field penetration depth {\\lambda}$_0$. As kinetic inductors, we implemented Mo$_2$N films with T$_c$ about 8 K, {\\lambda}$_0$ about 0.51 {\\mu}m, and inductance adjustable in the range from 2 to 8 pH/sq. We also present data on fabrication and electrical characterization of Nb-based self-shunted JJs with AlO$_x$ tunnel barriers and J$_c$ = 0.6 mA/{\\mu}m$^2$, and with 10-nm thick Si$_{1-x}$Nb$_x$ barriers, with x from 0.03 to 0.15, fabricated on 200-mm wafers by co-sputtering. We demonstrate that the electron transport mechanism in Si$_{1-x}$Nb$_x$ barriers at x < 0.08 is inelastic resonant tunneling via chains of multiple localized states. At larger x, their Josephson characteristics are strongly dependent on x and residual stress in Nb electrodes, and in general are inferior to AlO$_x$ tunnel barriers.
Graphene as tunable contact for high performance thin film transistor
NASA Astrophysics Data System (ADS)
Liu, Yuan
Graphene has been one of the most extensively studied materials due to its unique band structure, the linear dispersion at the K point. It gives rise to novel phenomena, such as the anomalous quantum Hall effect, and has opened up a new category of "Fermi-Dirac" physics. Graphene has also attracted enormous attention for future electronics because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. However, graphene has zero intrinsic band gap, thus can not be used as the active channel material for logic transistors with sufficient on/off current ratio. Previous approaches to address this challenge include the induction of a transport gap in graphene nanostructures or bilayer graphene. However, these approaches have proved successful in improving the on-- off ratio of the resulting devices, but often at a severe sacrifice of the deliverable current density. Alternatively, with a finite density of states, tunable work-function and optical transparency, graphene can function as a unique tunable contact material to create a new structure of electronic devices. In this thesis, I will present my effort toward on-off ratio of graphene based vertical thin film transistor. I will include the work form four of my first author publication. I will first present my research studies on the a dramatic enhancement of the overall quantum efficiency and spectral selectivity of graphene photodetector, by coupling with plasmonic nanostructures. It is observed that metallic plasmonic nanostructures can be integrated with graphene photodetectors to greatly enhance the photocurrent and external quantum efficiency by up to 1,500%. Plasmonic nanostructures of variable resonance frequencies selectively amplify the photoresponse of graphene to light of different wavelengths, enabling highly specific detection of multicolours. Then I will show a new design of highly flexible vertical TFTs (VTFTs) with superior electrical performance and mechanical robustness. By using the graphene as a work-function tunable contact for amorphous indium gallium zinc oxide (IGZO) thin film, the vertical current flow across the graphene-IGZO junction can be effectively modulated by an external gate potential to enable VTFTs with a highest on-off ratio exceeding 105. The unique vertical transistor architecture can readily enable ultrashort channel devices with very high delivering current and exceptional mechanical flexibility. Furthermore, I will, demonstrate a new design strategy for vertical OTFT with ultra-short channel length without using conventional high-resolution lithography process. They can deliver a high current density over 1.8 A/ cm2 and thus enable a high cutoff frequency devices (~ 0.4 MHz) comparable with the ultra-short channel organic transistors. Importantly, with unique vertical architecture, the entire organic channel material is sandwiched between the source and drain electrodes and is thus naturally protected to ensure excellent air-stability. Finally I will present a new strategy by using graphene as the back electrodes to achieve Ohmic contact to MoS2. With a finite density of states, the Fermi level of graphene can be readily tuned by a gate potential to enable a nearly perfect band alignment with MoS2. For the first time, a transparent contact to MoS2 is demonstrated with zero contact barrier and linear output behaviour at cryogenic temperatures (down to 1.9 K) for both monolayer and multilayer MoS2. Benefiting from the barrier-free transparent contacts, we show that a metal-insulator-transition (MIT) can be observed in a two-terminal MoS2 device, a phenomenon that could be easily masked by Schottky barriers found in conventional metal-contacted MoS2 devices. With further passivation by boron nitride (BN) encapsulation, we demonstrate a record-high extrinsic (two-terminal) field effect mobility up to 1300 cm2/V s in MoS2 at low temperature. These findings can open up exciting new opportunities for atomically thin 2D semiconductors as well as other conventional semiconductors in general.
NASA Astrophysics Data System (ADS)
Ito, Yuta; Akaike, Kouki; Fukuda, Takeshi; Sato, Daisuke; Fuse, Takuya; Iwahashi, Takashi; Ouchi, Yukio; Kanai, Kaname
2018-05-01
Molybdenum oxide (MoOx) is widely used as the hole-transport layer in bulk-heterojunction organic photovoltaics (BHJ-OPVs). During the fabrication of solution-processed BHJ-OPVs on vacuum-deposited MoOx film, the film must be exposed to N2 atmosphere in a glove box, where the donor/acceptor blends are spin-coated from a mixed solution. Employing photoelectron spectroscopy, we reveal that the exposure of the MoOx film to such atmosphere contaminates the MoOx surface. Annealing the contaminated MoOx film at 160 °C for 5 min, prior to spin-coating the blend film, can partially remove the carbon and oxygen adsorbed on the MoOx surface during the exposure of MoOx. However, the contamination layer on the MoOx surface does not affect the energy-level alignment at the interface between MoOx and the donor/acceptor blend. Hence, significant improvement in the performance of BHJ-OPVs by mildly annealing the MoOx layer, which was previously reported, can be explained by the reduction of undesired contamination.
Electronic Structure and Surface Physics of Two-dimensional Material Molybdenum Disulfide
NASA Astrophysics Data System (ADS)
Jin, Wencan
The interest in two-dimensional materials and materials physics has grown dramatically over the past decade. The family of two-dimensional materials, which includes graphene, transition metal dichalcogenides, phosphorene, hexagonal boron nitride, etc., can be fabricated into atomically thin films since the intralayer bonding arises from their strong covalent character, while the interlayer interaction is mediated by weak van der Waals forces. Among them, molybdenum disulfide (MoS2) has attracted much interest for its potential applications in opto-electronic and valleytronics devices. Previously, much of the experimental studies have concentrated on optical and transport measurements while neglecting direct experimental determination of the electronic structure of MoS2, which is crucial to the full understanding of its distinctive properties. In particular, like other atomically thin materials, the interactions with substrate impact the surface structure and morphology of MoS2, and as a result, its structural and physical properties can be affected. In this dissertation, the electronic structure and surface structure of MoS2 are directly investigated using angle-resolved photoemission spectroscopy and cathode lens microscopy. Local-probe angle-resolved photoemission spectroscopy measurements of monolayer, bilayer, trilayer, and bulk MoS 2 directly demonstrate the indirect-to-direct bandgap transition due to quantum confinement as the MoS2 thickness is decreased from multilayer to monolayer. The evolution of the interlayer coupling in this transition is also investigated using density functional theory calculations. Also, the thickness-dependent surface roughness is characterized using selected-area low energy electron diffraction (LEED) and the surface structural relaxation is investigated using LEED I-V measurements combined with dynamical LEED calculations. Finally, bandgap engineering is demonstrated via tuning of the interlayer interactions in van der Waals interfaces by twisting the relative orientation in bilayer-MoS2 and graphene-MoS 2-heterostructure systems.
Inter-Layer Coupling Induced Valence Band Edge Shift in Mono- to Few-Layer MoS2
Trainer, Daniel J.; Putilov, Aleksei V.; Di Giorgio, Cinzia; Saari, Timo; Wang, Baokai; Wolak, Mattheus; Chandrasena, Ravini U.; Lane, Christopher; Chang, Tay-Rong; Jeng, Horng-Tay; Lin, Hsin; Kronast, Florian; Gray, Alexander X.; Xi, Xiaoxing X.; Nieminen, Jouko; Bansil, Arun; Iavarone, Maria
2017-01-01
Recent progress in the synthesis of monolayer MoS2, a two-dimensional direct band-gap semiconductor, is paving new pathways toward atomically thin electronics. Despite the large amount of literature, fundamental gaps remain in understanding electronic properties at the nanoscale. Here, we report a study of highly crystalline islands of MoS2 grown via a refined chemical vapor deposition synthesis technique. Using high resolution scanning tunneling microscopy and spectroscopy (STM/STS), photoemission electron microscopy/spectroscopy (PEEM) and μ-ARPES we investigate the electronic properties of MoS2 as a function of the number of layers at the nanoscale and show in-depth how the band gap is affected by a shift of the valence band edge as a function of the layer number. Green’s function based electronic structure calculations were carried out in order to shed light on the mechanism underlying the observed bandgap reduction with increasing thickness, and the role of the interfacial Sulphur atoms is clarified. Our study, which gives new insight into the variation of electronic properties of MoS2 films with thickness bears directly on junction properties of MoS2, and thus impacts electronics application of MoS2. PMID:28084465
Inter-layer coupling induced valence band edge shift in mono- to few-layer MoS 2
Trainer, Daniel J.; Putilov, Aleksei V.; Di Giorgio, Cinzia; ...
2017-01-13
In this study, recent progress in the synthesis of monolayer MoS 2, a two-dimensional direct band-gap semiconductor, is paving new pathways toward atomically thin electronics. Despite the large amount of literature, fundamental gaps remain in understanding electronic properties at the nanoscale. Here,we report a study of highly crystalline islands of MoS 2 grown via a refined chemical vapor deposition synthesis technique. Using high resolution scanning tunneling microscopy and spectroscopy (STM/STS), photoemission electron microscopy/spectroscopy (PEEM) and μ-ARPES we investigate the electronic properties of MoS 2 as a function of the number of layers at the nanoscale and show in-depth how themore » band gap is affected by a shift of the valence band edge as a function of the layer number. Green’s function based electronic structure calculations were carried out in order to shed light on the mechanism underlying the observed bandgap reduction with increasing thickness, and the role of the interfacial Sulphur atoms is clarified. Our study, which gives new insight into the variation of electronic properties of MoS 2 films with thickness bears directly on junction properties of MoS2, and thus impacts electronics application of MoS 2.« less
Atomic layer deposition of a MoS₂ film.
Tan, Lee Kheng; Liu, Bo; Teng, Jing Hua; Guo, Shifeng; Low, Hong Yee; Tan, Hui Ru; Chong, Christy Yuen Tung; Yang, Ren Bin; Loh, Kian Ping
2014-09-21
A mono- to multilayer thick MoS₂ film has been grown by using the atomic layer deposition (ALD) technique at 300 °C on a sapphire wafer. ALD provides precise control of the MoS₂ film thickness due to pulsed introduction of the reactants and self-limiting reactions of MoCl₅ and H₂S. A post-deposition annealing of the ALD-deposited monolayer film improves the crystallinity of the film, which is evident from the presence of triangle-shaped crystals that exhibit strong photoluminescence in the visible range.
Photocathode quantum efficiency of ultrathin Cs2Te layers on Nb substrates
NASA Astrophysics Data System (ADS)
Yusof, Zikri; Denchfield, Adam; Warren, Mark; Cardenas, Javier; Samuelson, Noah; Spentzouris, Linda; Power, John; Zasadzinski, John
2017-12-01
The quantum efficiencies (QE) of photocathodes consisting of bulk Nb substrates coated with thin films of Cs2Te are reported. Using the standard recipe for Cs2Te deposition developed for Mo substrates (220 Å Te thickness), a QE ˜11 % - 13 % at light wavelength of 248 nm is achieved for the Nb substrates, consistent with that found on Mo. Systematic reduction of the Te thickness for both Mo and Nb substrates reveals a surprisingly high residual QE ˜6 % for a Te layer as thin as 15 Å. A phenomenological model based on the Spicer three-step model along with a solution of the Fresnel equations for reflectance, R , leads to a reasonable fit of the thickness dependence of QE and suggests that layers thinner than 15 Å may still have a relatively high QE. Preliminary investigation suggests an increased operational lifetime as well. Such an ultrathin, semiconducting Cs2Te layer may be expected to produce minimal Ohmic losses for rf frequencies ˜1 GHz . The result thus opens the door to the potential development of a Nb (or Nb3Sn ) superconducting photocathode with relatively high QE and minimal rf impedance to be used in a superconducting radiofrequency (SRF) photoinjector.
Effect of annealing on doping of graphene with molybdenum oxide
NASA Astrophysics Data System (ADS)
Ishikawa, Ryousuke; Watanabe, Sho; Nishida, Hiroki; Aoyama, Yuki; Oya, Tomoya; Nomoto, Takahiro; Tsuboi, Nozomu
2018-04-01
We investigated the effect of post-annealing on the doping of graphene with MoO3 in this study. The as-deposited molybdenum oxide thin film prepared using our method was not completely oxidized; in addition, it was in an amorphous state, due to which its doping effect was not significant. As the post-deposition annealing temperature was increased, the oxidation and crystallization of the molybdenum oxide progressed and the doping effect increased accordingly. After annealing at 350 °C, the holes were the most doped and the sheet resistance was the lowest. The doped graphene film obtained in this study shows higher doping effect and stability compared to other dopants.
Optical Physics of Cu(In,Ga)Se2 Solar Cells and Their Layer Components
NASA Astrophysics Data System (ADS)
Ibdah, Abedl-Rahman
Polycrystalline Cu(In1-xGax)Se 2 (CIGS) thin film technology has emerged as a promising candidate for low cost and high performance solar modules. The efficiency of CIGS solar cells is strongly influenced by several key factors. Among these factors include Ga composition and its profile in the absorber layer, copper content in this layer, and the solar cell multilayer structure. As a result, tools for the characterization of thin film CIGS solar cells and their layer components are becoming increasingly essential in research and manufacturing. Spectroscopic ellipsometry is a non-invasive technique that can serve as an accurate probe of component layer optical properties and multilayer structures, and can be applied as a diagnostic tool for real-time, in-line, and off-line monitoring and analysis in small area solar cell fabrication as well as in large area photovoltaics manufacturing. Implementation of spectroscopic ellipsometry provides unique insights into the properties of complete solar cell multilayer structures and their layer components. These insights can improve our understanding of solar cell structures, overcome challenges associated with solar cell fabrication, and assist in process monitoring and control on a production line. In this dissertation research, Cu(In,Ga)Se2 films with different Cu contents have been prepared by the one stage co-evaporation process. These films have been studied by real time spectroscopic ellipsometry (RTSE) during deposition, and by in-situ SE at the deposition temperature as well as at room temperature to extract the dielectric functions (epsilon1, epsilon 2) of the thin film materials. Analytical expressions for the room temperature dielectric functions were developed, and the free parameters that describe these analytical functions were in turn expressed as functions of the Cu content. As a result of this parameterization, the dielectric function spectra (epsilon 1, epsilon2) can be predicted for any desired composition within the range of the samples investigated. This capability was applied for mapping the structural and compositional variations of CIGS thin films deposited over a 10 cm x 10 cm substrate area. In another application presented in this dissertation, a non-invasive method utilizing ex-situ spectroscopic ellipsometry analysis has been developed and applied to determine non-destructively the Ga compositional profile in CIGS absorbers. The method employs parameterized dielectric function spectra (epsilon1, epsilon2) of CIGS versus Ga content to probe the compositional variation with depth into the absorber. In addition, a methodology for prediction of the external quantum efficiency (QE) including optical gains and losses for a CIGS solar cell has been developed. The methodology utilizes ex-situ spectroscopic ellipsometry analysis of a complete solar cell, with no free parameters, to deduce the multilayer solar cell structure non-invasively and simulate optical light absorption in each of the layer components. In the case of high efficiency CIGS solar cells, with minimal electronic losses, QE spectra are predicted from the sum of optical absorption in the active layer components. For such solar cells with ideal photo-generated charge carrier collection, the SE-predicted QE spectra are excellent representation of the measured ones. Since the QE spectra as well as the short circuit current density (Jsc) can be calculated directly from SE analysis results, then the predicted QE from SE can be compared with the experimental QE to evaluate electronic losses based on the difference between the spectra. Moreover, the calculated Jsc can be used as a key parameter for the design and optimization of anti-reflection coating structures. Because the long term production potential of CIGS solar modules may be limited by the availability of indium, it becomes important to reduce the thickness of the CIGS absorber layer. Thickness reduction would reduce the quantity of indium required for production which would in turn reduce costs. A decrease in short-circuit current density (Jsc) is expected, however, upon thinning the CIGS absorber due to incomplete absorption. To clarify the limits of obtainable Jsc in ultra-thin CIGS solar cells with Mo back contacts, optical properties and multilayer structural data are deduced via spectroscopic ellipsometry analysis and used to predict the QE spectra and maximum obtainable Jsc values upon thinning the absorber. Moreover, SE-guided optical design of ultra-thin CIGS solar cells has been demonstrated. In the case of solar cells fabricated on Mo, thinning the absorber in a CIGS solar cell is associated with significant optical losses in the Mo containing back contact layers. This is due in part to the poor optical reflectance of Mo. Such optical losses may be reduced by employing a back contact design with improved reflectance. Thus, alternative novel solar cell structures with ultra-thin absorbers and improved back contact reflectance have been designed and investigated using SE and the optical modeling methods. In addition to optical losses, electronic losses in the ultra-thin solar cells have been evaluated. By separating the absorber layer into sub-layer regions (for example, near-junction, bulk, and near-back-contact) and varying carrier collection probability in these regions, the contribution of each region to the current can be estimated. Based on this separation, the origin of the electronic losses has been identified as near the back contact.
Corrosion behavior of steels in liquid lead bismuth with low oxygen concentrations
NASA Astrophysics Data System (ADS)
Kurata, Yuji; Futakawa, Masatoshi; Saito, Shigeru
2008-02-01
Corrosion tests in pots were conducted to elucidate corrosion behavior of various steels in liquid lead-bismuth for 3000 h under the condition of an oxygen concentration of 5 × 10 -8 wt% at 450 °C and an oxygen concentration of 3 × 10 -9 wt% at 550 °C, respectively. Significant corrosion was not observed at 450 °C for ferritic/martensitic steels, F82H, Mod.9Cr-1Mo steel, 410SS, 430SS except 2.25Cr-1Mo steel. Pb-Bi penetration into steels and dissolution of elements into Pb-Bi were severe at 550 °C even for ferritic/martensitic steels. Typical dissolution attack occurred for pure iron both at 550 °C without surface Fe 3O 4 and at 450 °C with a thin Fe 3O 4 film. Ferritization due to dissolution of Ni and Cr, and Pb-Bi penetration were recognized for austenitic stainless steels, 316SS and 14Cr-16Ni-2Mo steel at both temperatures of 450 °C and 550 °C. The phenomena were mitigated for 18Cr-20Ni-5Si steel. In some cases oxide films could not be a corrosion barrier in liquid lead-bismuth.
High temperature regenerative H.sub.2 S sorbents
NASA Technical Reports Server (NTRS)
Flytani-Stephanopoulos, Maria (Inventor); Gavalas, George R. (Inventor); Tamhankar, Satish S. (Inventor)
1988-01-01
Efficient, regenerable sorbents for removal of H.sub.2 S from high temperature gas streams comprise porous, high surface area particles. A first class of sorbents comprise a thin film of binary oxides that form a eutectic at the temperature of the gas stream coated onto a porous, high surface area refractory support. The binary oxides are a mixture of a Group VB or VIB metal oxide with a Group IB, IIB or VIII metal oxide such as a film of V-Zn-O, V-Cu-O, Cu-Mo-O, Zn-Mo-O or Fe-Mo-O coated on an alumina support. A second class of sorbents consist of particles of unsupported mixed oxides in the form of highly dispersed solid solutions of solid compounds characterized by small crystallite size, high porosity and relatively high surface area. The mixed oxide sorbents contain one Group IB, IIB or VIIB metal oxide such as copper, zinc or manganese and one or more oxides of Groups IIIA, VIB or VII such as aluminum, iron or molybdenum. The presence of iron or aluminum maintains the Group IB, IIB or VIIB metal in its oxidized state. Presence of molybdenum results in eutectic formation at sulfidation temperature and improves the efficiency of the sorbent.
Morpho-Structural Characterization of WC20Co Deposited Layers
NASA Astrophysics Data System (ADS)
Tugui, C. A.; Vizureanu, P.
2017-06-01
Hydroelectric power plants use the power of water to produce electricity. In this paper we propose a solution that will increase the efficiency of turbine operation by implementing new innovative technologies to increase the working characteristics by depositing hard thin films of tungsten carbide. For this purpose hard tough deposits with WC20Co and Jet Plasma Jet on X3CrNiMo13-4 stainless steel were used for the realization of the Francis turbine with vertical shaft.
Ultrasonic attenuation in superconducting molybdenum-rhenium alloys.
NASA Technical Reports Server (NTRS)
Ashkin, M.; Deis, D. W.; Gottlieb, M.; Jones, C. K.
1971-01-01
Investigation of longitudinal sound attenuation in superconducting Mo-Re alloys as a function of temperature, magnetic field, and frequency. Evaporated thin film CdS transducers were used for the measurements at frequencies up to 3 GHz. The normal state attenuation coefficient was found to be proportional to the square of frequency over this frequency range. Measurements in zero magnetic field yielded a value of the energy gap parameter close to the threshold value of 3.56 kTc, appropriate to a weakly coupled dirty limit superconductor.
NASA Astrophysics Data System (ADS)
Gunawan; Haris, A.; Widiyandari, H.; Septina, W.; Ikeda, S.
2017-02-01
Copper chalcopyrite semiconductors include a wide range of compounds that are of interest for photoelectrochemical water splitting which enables them to be used as photochatodes for H2 generation. Among them, CuInS2 is one of the most important materials due to its optimum band gap energy for sunlight absorption. In the present study, we investigated the application of CuInS2 fabricated by electrodeposition as photochatodes for water splitting. Thin film of CuInS2 chalcopyrite was formed on Mo-coated glass substrate by stacked electrodeposition of copper and indium followed by sulfurization under H2S flow. The films worked as a H2 liberation electrode under cathodic polarization from a solution containing Na2SO4 after loading Pt deposits on the film. Introduction of an n-type CdS layer by chemical bath deposition on the CuInS2 surface before the Pt loading resulted appreciable improvements of H2 liberation efficiency and a higher photocurrent onset potential. Moreover, the use of In2S3 layer as an alternative n-type layer to the CdS significantly improved the H2 liberation performance: the CuInS2 film modified with In2S3 and Pt deposits worked as an efficient photocathode for photoelectrochemical water splitting.
Spotting 2D atomic layers on aluminum nitride thin films.
Chandrasekar, Hareesh; Bharadwaj B, Krishna; Vaidyuala, Kranthi Kumar; Suran, Swathi; Bhat, Navakanta; Varma, Manoj; Srinivasan Raghavan
2015-10-23
Substrates for 2D materials are important for tailoring their fundamental properties and realizing device applications. Aluminum nitride (AIN) films on silicon are promising large-area substrates for such devices in view of their high surface phonon energies and reasonably large dielectric constants. In this paper epitaxial layers of AlN on 2″ Si wafers have been investigated as a necessary first step to realize devices from exfoliated or transferred atomic layers. Significant thickness dependent contrast enhancements are both predicted and observed for monolayers of graphene and MoS2 on AlN films as compared to the conventional SiO2 films on silicon, with calculated contrast values approaching 100% for graphene on AlN as compared to 8% for SiO2 at normal incidences. Quantitative estimates of experimentally measured contrast using reflectance spectroscopy show very good agreement with calculated values. Transistors of monolayer graphene on AlN films are demonstrated, indicating the feasibility of complete device fabrication on the identified layers.
NASA Astrophysics Data System (ADS)
Ostos, C.; Martínez-Sarrión, M. L.; Mestres, L.; Delgado, E.; Prieto, P.
2009-10-01
Rare-earth ( RE) doped Ba(Zr,Ti)O 3 (BZT) thin films were prepared by rf-magnetron sputtering from a Ba 0.90Ln0.067Zr 0.09Ti 0.91O 3 ( Ln=La, Nd) target. The films were deposited at a substrate temperature of 600 °C in a high oxygen pressure atmosphere. X-ray diffraction (XRD) patterns of RE-BZT films revealed a <001> epitaxial crystal growth on Nb-doped SrTiO 3, <001> and <011> growth on single-crystal Si, and a <111>-preferred orientation on Pt-coated Si substrates. Scanning electron microscopy (SEM) showed uniform growth of the films deposited, along with the presence of crystals of about half-micron size on the film's surface. Transmission electron microscopy (TEM) evidenced high crystalline films with thicknesses of about 100 nm for 30 min of sputtering. Electron-probe microanalysis (EPMA) corroborated the growth rate (3.0-3.5 nm/min) of films deposited on Pt-coated Si substrates. X-ray photoelectron spectroscopy (XPS), in depth profile mode, showed variations in photoelectron Ti 2 p doublet positions at lower energies with spin-orbital distances characteristic of BaTiO 3-based compounds. The XPS analysis revealed that lanthanide ions positioned onto the A-site of the BZT-perovskite structure increasing the MO 6-octahedra distortion ( M=Ti, Zr) and, thereby, modifying the Ti-O binding length. Polarization-electric field hysteresis loops on Ag/ RE-doped BZT/Pt capacitor showed good ferroelectric behavior and higher remanent polarization values than corresponding non-doped system.
Combinatorial investigation of the effects of sodium on Cu 2ZnSnSe4 polycrystalline thin films
NASA Astrophysics Data System (ADS)
Gibbs, Alex Hilton
Cu2ZnSnSe4 (CZTSe) possess highly suitable optical and electronic properties for use as an absorber layer in thin film solar cells. CZTSe also has potential to achieve terawatt level solar energy production due to its inexpensive and abundant material constituents. Currently, fabricating CZTSe devices with the expected theoretical performance has not been achieved, making the growth and formation of CZTSe an interesting topic of research. In this work, a two-step vacuum fabrication process consisting of RF co-sputtering followed by reactive annealing was explored as a viable technique for synthesizing CZTSe thin films. Furthermore, the enhancement of the fabrication process by the incorporation of sodium during annealing was studied using a combinatorial approach. Film composition was analyzed using electron dispersive spectroscopy. Structure, phase morphology, and formation were determined using scanning electron microscopy, x-ray diffraction, atomic force microscopy and raman spectroscopy. Optical and electronic properties were characterized using UV-Vis and Voc were measurements under a one sun solar simulator. RF co-sputtering CuSe, ZnSe, and SnSe precursors produced films with good thickness uniformity, adhesion and stoichiometry control over 3 x 3 in 2 substrates. Composition measurements showed that the precursor films maintained stability during an annealing process of 580° C for 20 minutes producing near stoichiometric CZTSe. However, grain size was small with an average diameter of 350 nm. The CZTSe film produced by this process exhibited a suitable absorption coefficient of > 104 cm-1 and aband gap near 1.0 eV. The film also produced an XRD pattern consistent with tetragonal CZTSe with no secondary phase formation with the exception of approximately 12.5 nm of interfacial MoSe2 formation at the back contact. The combinatorial investigation of the influence of sodium on CZTSe growth and morphology was achieved using a custom built constant withdraw shutter to evaporate NaF with a 0-60 nm thickness spread on the substrate prior to precursor sputtering. This experiment showed that the incorporation of NaF did enhance grain size; however, there was little correlation with initial NaF composition observed. It is concluded that NaF undergoes high degree of vapor transport and readily distributes nonuniformly throughout the film during the annealing process and also potentially escapes the annealing environment if not properly contained. An experiment on achieving Na incorporation by diffusion from a soda lime glass substrate resulted in a far more uniform enhancement of grain growth. The experiment also revealed that NaF greatly reduced precursor film adhesion to the substrate due to the hygroscopic nature of NaF. X-ray diffraction measurements also showed that the addition of the NaF layer was could potentially suppress the formation of MoSe2.
NASA Astrophysics Data System (ADS)
Thibau, Emmanuel S.
Organometal halide perovskites have recently emerged as promising materials for fundamentally low-cost, high-performance optoelectronics. In this thesis, we utilize thermal co-evaporation of PbI2 and CH3NH 3 I to fabricate thin films of CH3NH3PbI 3. We first investigate the effect of stoichiometry on some of its structural, optical and electronic properties. Then, we study the energy level alignment of CH3NH3PbI3 with 6 organic semiconductors, revealing good agreement between the data and the theory of vacuum level alignment. Finally, the interface formed between CH3NH 3PbI3 and MoO3 is examined. The findings suggest migration of iodide species into the oxide layer, resulting in deterioration of its chemical and electronic properties. Insertion of an organic interlayer is shown to mitigate these undesirable effects. The results of this work could be of use in device engineering, where knowledge of such interfacial phenomena is of utmost importance in achieving optimized device structures.
NASA Astrophysics Data System (ADS)
Liu, Kong; Lu, Shudi; Yue, Shizhong; Ren, Kuankuan; Azam, Muhammad; Tan, Furui; Wang, Zhijie; Qu, Shengchun; Wang, Zhanguo
2016-11-01
To enable organic solar cells with a competent charge transport efficiency, reducing the thickness of active layer without sacrificing light absorption efficiency turns out to be of high feasibility. Herein, organic solar cells on wrinkled metal surface are designed. The purposely wrinkled Al/Au film with a smooth surface provides a unique scaffold for constructing thin organic photovoltaic devices by avoiding pinholes and defects around sharp edges in conventional nanostructures. The corresponding surface light trapping effect enables the thin active layer (PTB7-Th:PC71BM) with a high absorption efficiency. With the innovative MoO3/Ag/ZnS film as the top transparent electrode, the resulting Indium Tin Oxide-free wrinkled devices show a power conversion efficiency as 7.57% (50 nm active layer), higher than the planner counterparts. Thus, this paper provides a new methodology to improve the performance of organic solar cells by balancing the mutual restraint factors to a high level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Minghua, E-mail: mhli@ustb.edu.cn; Department of Electrical Engineering, University of California, Los Angeles, California 90095; Lu, Jinhui
2016-04-15
We studied the thermal stability of perpendicular magnetic anisotropy (PMA) in Ta/Mo/CoFeB/MgO/Ta films with and without inserted Mo layers. In the absence of a Mo layer, the films show PMA at annealing temperatures below 300 °C. On the other hand, the insertion of a Mo layer preserves PMA at annealing temperatures of up to 500 °C; however, a higher annealing temperature leads to the collapse of PMA. X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM) were used to study the microstructure of the films to understand the deterioration of PMA. The XPS results show that the segregation ofmore » Ta is partly suppressed by inserting a Mo layer. Once inserted, Mo does not remain at the interface of Ta and CoFeB but migrates to the surface of the films. The HRTEM results show that the crystallization of the MgO (001) texture is improved owing to the higher annealing temperature of the Mo inserted sample. A smooth and clear CoFeB/MgO interface is evident. The inserted Mo layer not only helps to obtain sharper and smoother interfaces but also contributes to the crystallization after the higher annealing temperature of films.« less
Fan, Dawei; Hao, Jingcheng
2009-05-28
Hybrid films composed of chitosan and Keplerate-type polyoxometalate, {Mo72Fe30} (Mo72VIFe30IIIO252L102.ca.180H2O, L=H2O/CH3COO-/Mo2O8/9n-), were fabricated on quartz, silicon, and ITO substrates by layer-by-layer (LbL) method. The LbL films were characterized by UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and cyclic voltammetry (CV). UV-vis spectra show that the absorbance values at characteristic wavelengths of the multilayer films increase almost linearly with the number of chitosan/{Mo72Fe30} bilayers. XPS spectra confirm the incorporation of chitosan and {Mo72Fe30} into the films. The electrocatalytic reduction of ClO3-, BrO3-, and IO3- by chitosan/{Mo72Fe30} hybrid films in an acidic aqueous solution shows an electrocatalytic reduction activity of IO3->BrO3->ClO3-. In particular, the modified electrodes exhibited high electrocatalytic activity for reduction of IO3-.
NASA Astrophysics Data System (ADS)
Beaujour, Jean-Marc
2010-03-01
Transition metal ferromagnetic films with perpendicular magnetic anisotropy (PMA) have ferromagnetic resonance (FMR) linewidths that are one order of magnitude larger than soft magnetic materials, such as pure iron (Fe) and permalloy (NiFe) thin films. We have conducted systematic studies of a variety of thin film materials with perpendicular magnetic anisotropy to investigate the origin of the enhanced FMR linewidths, including Ni/Co and CoFeB/Co/Ni multilayers. In Ni/Co multilayers the PMA was systematically reduced by irradiation with Helium ions, leading to a transition from out-of-plane to in-plane easy axis with increasing He ion fluence [1,2]. The FMR linewidth depends linearly on frequency for perpendicular applied fields and increases significantly when the magnetization is rotated into the film plane with an applied in-plane magnetic field. Irradiation of the film with Helium ions decreases the PMA and the distribution of PMA parameters, leading to a large reduction in the FMR linewidth for in-plane magnetization. These results suggest that fluctuations in the PMA lead to a large two magnon scattering contribution to the linewidth for in-plane magnetization and establish that the Gilbert damping is enhanced in such materials (α˜0.04, compared to α˜0.002 for pure Fe) [2]. We compare these results to those on CoFeB/Co/Ni and published results on other thin film materials with PMA [e.g., Ref. 3]. [1] D. Stanescu et al., J. Appl. Phys. 103, 07B529 (2008). [2] J-M. L. Beaujour, D. Ravelosona, I. Tudosa, E. Fullerton, and A. D. Kent, Phys. Rev. B RC 80, 180415 (2009). [3] N. Mo, J. Hohlfeld, M. ulIslam, C. S. Brown, E. Girt, P. Krivosik, W. Tong, A. Rebel, and C. E. Patton, Appl. Phys. Lett. 92, 022506 (2008). *Research done in collaboration with: A. D. Kent, New York University, D. Ravelosona, Institut d'Electronique Fondamentale, UMR CNRS 8622, Universit'e Paris Sud, E. E. Fullerton, Center for Magnetic Recording Research, UCSD, and supported by NSF-DMR-0706322.
NASA Astrophysics Data System (ADS)
Yoshida, Y.; Miura, S.; Tsuchiya, Y.; Ichino, Y.; Awaji, S.; Matsumoto, K.; Ichinose, A.
2017-10-01
This paper reviews the progress of studies to determine optimum shapes of the artificial pinning center (APC) of REBa2Cu3O y thin films and coated conductors towards superconducting magnets operating at temperatures of 77 K or less. Superconducting properties vary depending on the kind and quantity of BaMO3 materials. Therefore, we study changes in the shapes of nanorods that are due to the difference in the quality of additives and growth temperature. In addition, we aim to control the APC using an optimum shape that matches the operating temperature. In particular, we describe the shape control of nanorods in SmBCO thin films and coated conductors by employing lower temperature growth (LTG) technology using seed layers. From the cross-sectional transmission electron microscopy observations, we confirmed that using the LTG method, the BaHfO3 (BHO) nanorods, which were comparatively thin and short in length, formed a firework structure in the case of SmBCO films with coated conductors. The superconducting properties in the magnetic field of the SmBCO-coated conductor with the optimum amount of BHO showed that {F}{{p}}\\max = 1.6 TN m-3 on a single crystalline substrate and 1.5 TN m-3 on metallic substrate with a biaxially textured MgO layer fabricated by ion-beam assisted deposition method tape 4.2 K.
Diao, Chien-Chen; Kuo, Hsin-Hui; Tzou, Wen-Cheng; Chen, Yen-Lin; Yang, Cheng-Fu
2014-01-03
In this study, a new thin-film deposition process, spray coating method (SPM), was investigated to deposit the high-densified CuInSe₂ absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe₂ precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe₂ absorber layers. After spraying on Mo/glass substrates, the CuInSe₂ thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N₂ as atmosphere. When the CuInSe₂ thin films were annealed, without extra Se or H₂Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe₂ absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe₂ absorber layers could be controlled as the volume of used dispersed CuInSe₂-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe₂ absorber layers obtained by the Spray Coating Method.
Relativistic space-charge-limited current for massive Dirac fermions
NASA Astrophysics Data System (ADS)
Ang, Y. S.; Zubair, M.; Ang, L. K.
2017-04-01
A theory of relativistic space-charge-limited current (SCLC) is formulated to determine the SCLC scaling, J ∝Vα/Lβ , for a finite band-gap Dirac material of length L biased under a voltage V . In one-dimensional (1D) bulk geometry, our model allows (α ,β ) to vary from (2,3) for the nonrelativistic model in traditional solids to (3/2,2) for the ultrarelativistic model of massless Dirac fermions. For 2D thin-film geometry we obtain α =β , which varies between 2 and 3/2, respectively, at the nonrelativistic and ultrarelativistic limits. We further provide rigorous proof based on a Green's-function approach that for a uniform SCLC model described by carrier-density-dependent mobility, the scaling relations of the 1D bulk model can be directly mapped into the case of 2D thin film for any contact geometries. Our simplified approach provides a convenient tool to obtain the 2D thin-film SCLC scaling relations without the need of explicitly solving the complicated 2D problems. Finally, this work clarifies the inconsistency in using the traditional SCLC models to explain the experimental measurement of a 2D Dirac semiconductor. We conclude that the voltage scaling 3 /2 <α <2 is a distinct signature of massive Dirac fermions in a Dirac semiconductor and is in agreement with experimental SCLC measurements in MoS2.
Transparent Large-Area MoS2 Phototransistors with Inkjet-Printed Components on Flexible Platforms.
Kim, Tae-Young; Ha, Jewook; Cho, Kyungjune; Pak, Jinsu; Seo, Jiseok; Park, Jongjang; Kim, Jae-Keun; Chung, Seungjun; Hong, Yongtaek; Lee, Takhee
2017-10-24
Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have gained considerable attention as an emerging semiconductor due to their promising atomically thin film characteristics with good field-effect mobility and a tunable band gap energy. However, their electronic applications have been generally realized with conventional inorganic electrodes and dielectrics implemented using conventional photolithography or transferring processes that are not compatible with large-area and flexible device applications. To facilitate the advantages of 2D TMDCs in practical applications, strategies for realizing flexible and transparent 2D electronics using low-temperature, large-area, and low-cost processes should be developed. Motivated by this challenge, we report fully printed transparent chemical vapor deposition (CVD)-synthesized monolayer molybdenum disulfide (MoS 2 ) phototransistor arrays on flexible polymer substrates. All the electronic components, including dielectric and electrodes, were directly deposited with mechanically tolerable organic materials by inkjet-printing technology onto transferred monolayer MoS 2 , and their annealing temperature of <180 °C allows the direct fabrication on commercial flexible substrates without additional assisted-structures. By integrating the soft organic components with ultrathin MoS 2 , the fully printed MoS 2 phototransistors exhibit excellent transparency and mechanically stable operation.
NASA Astrophysics Data System (ADS)
Kwon, Hyuk-Jun; Chung, Seungjun; Jang, Jaewon; Grigoropoulos, Costas P.
2016-10-01
Patterns formed by the laser direct writing (LDW) lithography process are used either as channels or barriers for MoS2 transistors fabricated via inkjet printing. Silver (Ag) nanoparticle ink is printed over patterns formed on top of the MoS2 flakes in order to construct high-resolution source/drain (S/D) electrodes. When positive photoresist is used, the produced grooves are filled with inkjetted Ag ink by capillary forces. On the other hand, in the case of negative photoresist, convex barrier-like patterns are written on the MoS2 flakes and patterns, dividing the printed Ag ink into the S/D electrodes by self-alignment. LDW lithography combined with inkjet printing is applied to MoS2 thin-film transistors that exhibit moderate electrical performance such as mobility and subthreshold swing. However, especially in the linear operation regime, their features are limited by the contact effect. The Y-function method can exclude the contact effect and allow proper evaluation of the maximum available mobility and contact resistance. The presented fabrication methods may facilitate the development of cost-effective fabrication processes.
NASA Astrophysics Data System (ADS)
Kohnehpoushi, Saman; Nazari, Pariya; Abdollahi Nejand, Bahram; Eskandari, Mehdi
2018-05-01
In this work MoS2 thin film was studied as a potential two-dimensional (2D) hole-transporting material for fabrication of low-cost, durable and efficient perovskite solar cells. The thickness of MoS2 was studied as a potential factor in reaching high power conversion efficiency in perovskite solar cells. The thickness of the perovskite layer and the different metal back contacts gave distinct photovoltaic properties to the designed cells. The results show that a single sheet of MoS2 could considerably improve the power conversion efficacy of the device from 10.41% for a hole transport material (HTM)-free device to 20.43% for a device prepared with a 0.67 nm thick MoS2 layer as a HTM. On the back, Ag and Al collected the carriers more efficiently than Au due to the value of their metal contact work function with the TiO2 conduction band. The present work proposes a new architecture for the fabrication of low-cost, durable and efficient perovskite solar cells made from a low-cost and robust inorganic HTM and electron transport material.
Kohnehpoushi, Saman; Nazari, Pariya; Nejand, Bahram Abdollahi; Eskandari, Mehdi
2018-05-18
In this work MoS 2 thin film was studied as a potential two-dimensional (2D) hole-transporting material for fabrication of low-cost, durable and efficient perovskite solar cells. The thickness of MoS 2 was studied as a potential factor in reaching high power conversion efficiency in perovskite solar cells. The thickness of the perovskite layer and the different metal back contacts gave distinct photovoltaic properties to the designed cells. The results show that a single sheet of MoS 2 could considerably improve the power conversion efficacy of the device from 10.41% for a hole transport material (HTM)-free device to 20.43% for a device prepared with a 0.67 nm thick MoS 2 layer as a HTM. On the back, Ag and Al collected the carriers more efficiently than Au due to the value of their metal contact work function with the TiO 2 conduction band. The present work proposes a new architecture for the fabrication of low-cost, durable and efficient perovskite solar cells made from a low-cost and robust inorganic HTM and electron transport material.
NASA Astrophysics Data System (ADS)
Li, Hao; Xie, Mingling; Zhang, Guangan; Fan, Xiaoqiang; Li, Xia; Zhu, Minhao; Wang, Liping
2018-03-01
The Pb-Ti/MoS2 nanoscaled multilayer films with different bilayer period were deposited by unbalanced magnetron sputtering system. The morphology, microstructure, mechanical and tribological properties of the films were investigated. It was found that the film changed from multilayer structure to composite structure as the bilayer period decreased from 25 nm to 6 nm, due to the diffusion effect. The multilayer film showed a pronounced (002) diffraction peak, the growth of the MoS2 platelets below the interface were affected by Pb and Ti, and the c-axis of MoS2 platelets were inclined to the substrate at an angle of -30° to 30°. The hardness of the film ranged from 5.9 to 7.2 GPa depending on the bilayer period. The tribological behavior of the films was performed under vacuum, and the friction coefficient were typically below 0.25. Furthermore, the nanoscale multilayer film with a bilayer period of 20 nm exhibits much better mechanical and tribological properties than pure MoS2. The result indicates that the nanoscale multilayer is a design methodology for developing high basal plane oriented and vacuum solid lubricating MoS2 based materials.
Zhou, Fangzhou; Zeng, Fangqin; Liu, Xu; Liu, Fangyang; Song, Ning; Yan, Chang; Pu, Aobo; Park, Jongsung; Sun, Kaiwen; Hao, Xiaojing
2015-10-21
Back contact modification plays an important role in improving energy conversion efficiency of Cu2ZnSnS4 (CZTS) thin film solar cells. In this paper, an ultrathin carbon layer is introduced on molybdenum (Mo)-coated soda lime glass (SLG) prior to the deposition of CZTS precursor to improve the back contact and therefore enhance CZTS solar cell efficiency. By introducing this layer, the short circuit current (Jsc) and device conversion efficiency increase for both nonvacuum (sol-gel) and vacuum (sputtering) methods. Specifically, for the sol-gel based process, Jsc increases from 13.60 to 16.96 mA/cm(2) and efficiency from 4.47% to 5.52%, while for the sputtering based process, Jsc increases from 17.50 to 20.50 mA/cm(2) and efficiency from 4.10% to 5.20%. Furthermore, introduction of this layer does not lead to any deterioration of either open circuit voltage (Voc) or fill factor (FF).
Durand, Corentin; Zhang, Xiaoguang; Fowlkes, Jason; ...
2015-01-16
We study the electrical transport properties of atomically thin individual crystalline grains of MoS 2 with four-probe scanning tunneling microscopy. The monolayer MoS 2 domains are synthesized by chemical vapor deposition on SiO 2/Si substrate. Temperature dependent measurements on conductance and mobility show that transport is dominated by an electron charge trapping and thermal release process with very low carrier density and mobility. The effects of electronic irradiation are examined by exposing the film to electron beam in the scanning electron microscope in an ultrahigh vacuum environment. The irradiation process is found to significantly affect the mobility and the carriermore » density of the material, with the conductance showing a peculiar time-dependent relaxation behavior. It is suggested that the presence of defects in active MoS 2 layer and dielectric layer create charge trapping sites, and a multiple trapping and thermal release process dictates the transport and mobility characteristics. The electron beam irradiation promotes the formation of defects and impact the electrical properties of MoS 2. Finally, our study reveals the important roles of defects and the electron beam irradiation effects in the electronic properties of atomic layers of MoS 2.« less
Ultrahigh broadband photoresponse of SnO2 nanoparticle thin film/SiO2/p-Si heterojunction.
Ling, Cuicui; Guo, Tianchao; Lu, Wenbo; Xiong, Ya; Zhu, Lei; Xue, Qingzhong
2017-06-29
The SnO 2 /Si heterojunction possesses a large band offset and it is easy to control the transportation of carriers in the SnO 2 /Si heterojunction to realize high-response broadband detection. Therefore, we investigated the potential of the SnO 2 nanoparticle thin film/SiO 2 /p-Si heterojunction for photodetectors. It is demonstrated that this heterojunction shows a stable, repeatable and broadband photoresponse from 365 nm to 980 nm. Meanwhile, the responsivity of the device approaches a high value in the range of 0.285-0.355 A W -1 with the outstanding detectivity of ∼2.66 × 10 12 cm H 1/2 W -1 and excellent sensitivity of ∼1.8 × 10 6 cm 2 W -1 , and its response and recovery times are extremely short (<0.1 s). This performance makes the device stand out among previously reported oxide or oxide/Si based photodetectors. In fact, the photosensitivity and detectivity of this heterojunction are an order of magnitude higher than that of 2D material based heterojunctions such as (Bi 2 Te 3 )/Si and MoS 2 /graphene (photosensitivity of 7.5 × 10 5 cm 2 W -1 and detectivity of ∼2.5 × 10 11 cm H 1/2 W -1 ). The excellent device performance is attributed to the large Fermi energy difference between the SnO 2 nanoparticle thin film and Si, SnO 2 nanostructure, oxygen vacancy defects and thin SiO 2 layer. Consequently, practical highly-responsive broadband PDs may be actualized in the future.
Groundwater Molybdenum from Emerging Industries in Taiwan.
Tsai, Kuo-Sheng; Chang, Yu-Min; Kao, Jimmy C M; Lin, Kae-Long
2016-01-01
This study determined the influence of emerging industries development on molybdenum (Mo) groundwater contamination. A total of 537 groundwater samples were collected for Mo determination, including 295 samples from potentially contaminated areas of 3 industrial parks in Taiwan and 242 samples from non-potentially contaminated areas during 2008-2014. Most of the high Mo samples are located downstream from a thin film transistor-liquid crystal display (TFT-LCD) panel factory. Mean groundwater Mo concentrations from potentially contaminated areas (0.0058 mg/L) were significantly higher (p < 0.05) than those from non-potentially contaminated areas (0.0022 mg/L). The highest Mo wastewater concentrations in the effluent from the optoelectronics industry and following wastewater batch treatment were 0.788 and 0.0326 mg/L, respectively. This indicates that wastewater containing Mo is a possible source of both groundwater and surface water contamination. Nine samples of groundwater exceed the World Health Organization's suggested drinking water guideline of 0.07 mg/L. A non-carcinogenic risk assessment for Mo in adults and children using the Mo concentration of 0.07 mg/L yielded risks of 0.546 and 0.215, respectively. These results indicate the importance of the development of a national drinking water quality standard for Mo in Taiwan to ensure safe groundwater for use. According to the human health risk calculation, the groundwater Mo standard is suggested as 0.07 mg/L. Reduction the discharge of Mo-contaminated wastewater from factories in the industrial parks is also the important task in the future.
Krause, Bärbel; Abadias, Gregory; Michel, Anny; Wochner, Peter; Ibrahimkutty, Shyjumon; Baumbach, Tilo
2016-12-21
The kinetics of phase transitions during formation of small-scale systems are essential for many applications. However, their experimental observation remains challenging, making it difficult to elucidate the underlying fundamental mechanisms. Here, we combine in situ and real-time synchrotron X-ray diffraction (XRD) and X-ray reflectivity (XRR) experiments with substrate curvature measurements during deposition of nanoscale Mo and Mo 1-x Si x films on amorphous Si (a-Si). The simultaneous measurements provide direct evidence of a spontaneous, thickness-dependent amorphous-to-crystalline (a-c) phase transition, associated with tensile stress build-up and surface roughening. This phase transformation is thermodynamically driven, the metastable amorphous layer being initially stabilized by the contributions of surface and interface energies. A quantitative analysis of the XRD data, complemented by simulations of the transformation kinetics, unveils an interface-controlled crystallization process. This a-c phase transition is also dominating the stress evolution. While stress build-up can significantly limit the performance of devices based on nanostructures and thin films, it can also trigger the formation of these structures. The simultaneous in situ access to the stress signal itself, and to its microstructural origins during structure formation, opens new design routes for tailoring nanoscale devices.
Antonelou, Aspasia; Syrrokostas, George; Sygellou, Lamprini; Leftheriotis, George; Dracopoulos, Vassileios; Yannopoulos, Spyros N
2016-01-29
The growth of MoS2 films by sulfurization of Mo foils at atmospheric pressure is reported. The growth procedure provides, in a controlled way, mono- and few-layer thick MoS2 films with substrate-scale uniformity across square-centimeter area on commercial foils without any pre- or post-treatment. The prepared few-layer MoS2 films are investigated as counter electrodes for dye-sensitized solar cells (DSSCs) by assessing their ability to catalyse the reduction of I3(-) to I(-) in triiodide redox shuttles. The dependence of the MoS2 catalytic activity on the number of monolayers is explored down to the bilayer thickness, showing performance similar to that of, and stability against corrosion better than, Pt-based nanostructured film. The DSSC with the MoS2-Mo counter electrode yields a photovoltaic energy conversion efficiency of 8.4%, very close to that of the Pt-FTO-based DSSC, i.e. 8.7%. The current results disclose a facile, cost-effective and green method for the fabrication of mechanically robust and chemically stable, few-layer MoS2 on flexible Mo substrates and further demonstrate that efficient counter electrodes for DSSCs can be prepared at thicknesses down to the 1-2 nm scale.
Object representation and magnetic moments in thin alkali films
NASA Astrophysics Data System (ADS)
Garrett, Douglas C.
2008-10-01
This thesis is broken into two parts a computer vision part and a solid state physics part. In the computer vision part of the thesis (chapters 1 through 5), the concept of an architecture is discussed with a review of what is known about the brain's visual architecture as it applies to object representation. With this in mind we review the two main types of architectures that are used in computer vision for object representation. A specific object representation is then implemented and optimized to solve a problem in object tracking. This representation is then used to derive the fiducial points of a face using two distinct methods. One using evolutionary algorithms and another by a Bayesian analysis of the feature responses drawn from a gallery of faces. The evolved fiducial representation is tested as a facial detection system. It is shown that the Bayesian analysis of facial images gives an entropy measure that can be used to further improve detection results in the facial detection system. In addition, two similarity metrics are explored in the context of facial detection. It is found that a normalized vector dot product substantially outperforms the Euclidean distance measure. The solid state part of the thesis is composed of two self contained chapters. An effort has been made to reduce the redundancies between the material but some will necessarily remain (i.e., short descriptions of the experimental setup). Both chapters deal with the phenomenon of magnetism of atomic impurities in and on thin metal host films. The important difference between the chapters, besides the results, lies in the experimental technique used to measure the magnetism. In chapter 6, thin films of Pb are covered in situ with sub monolayers of V, Mo and Co in the range between 0.01 and 1 monolayers. If the surface impurities are magnetic they will reduce the superconducting transition temperature of the Pb film. From the reduction of Tc the magnetic dephasing rate of the surface impurities 1/taus and their magnetic cross section sigmas are calculated. We find that single V surface impurities are magnetic while single Mo and Co impurities are non-magnetic. Co surface clusters are magnetic. In chapter 7, thin films of Na, K, Rb and Cs are quench condensed, then covered with 1/100 of a mono-layer of Ti and finally covered with the original host. The magnetization of the films is measured by means of the anomalous Hall effect. An anomalous Hall resistance RAHE is observed for Ti on the surface of K, Rb and Cs and for Ti inside of Cs. Essentially the RAHE varies linearly with the magnetic field and is inversely proportional to the inverse temperature. A small non-linearity of RAHE suggests a Ti moment of about 1microB.
NASA Astrophysics Data System (ADS)
Fries, Marc Douglas
A course of research has been performed to assess the suitability of nanocrystal-line diamond (NCD) films on Ti-6Al-4V alloy as wear-resistant coatings in biomedical implant use. A series of temporomandibular (TMJ) joint condyle simulants were polished and acid-passivated as per ASTM F86 standard for surface preparation of implants. A 3-mum-thick coating of NCD film was deposited by microwave plasma chemical vapor deposition (MPCVD) over the hemispherical articulation surfaces of the simulants. Plasma chemistry conditions were measured and monitored by optical emission spectroscopy (OES), using hydrogen as a relative standard. The films consist of diamond grains around 20 nm in diameter embedded in an amorphous carbon matrix, free of any detectable film stress gradient. Hardness averages 65 GPa and modulus measures 600 GPa at a depth of 250 nm into the film surface. A diffuse film/substrate boundary produces a minimal film adhesion toughness (GammaC) of 158 J/m2. The mean RMS roughness is 14.6 +/- 4.2 nm, with an average peak roughness of 82.6 +/- 65.9 nm. Examination of the surface morphology reveals a porous, dendritic surface. Wear testing resulted in two failed condylar coatings out of three tests. No macroscopic delamination was found on any sample, but micron-scale film pieces broke away, exposing the substrate. Electrochemical corrosion testing shows a seven-fold reduction in corrosion rate with the application of an NCD coating as opposed to polished, passivated Ti-6Al-4V, producing a corrosion rate comparable to wrought Co-Cr-Mo. In vivo biocompatibility testing indicates that implanted NCD films did not elicit an immune response in the rabbit model, and osteointegration was apparent for both compact and trabecular bone on both NCD film and bare Ti-6Al-4V. Overall, NCD thin film material is reasonably smooth, biocompatible, and very well adhered. Wear testing indicates that this material is unacceptable for use in demanding TMJ applications without improvements to wear resistance behavior. Identified problems include high surface roughness due to an inadequate seeding procedure and a porous film surface. It is believed that these problems can be solved by future research, in which case NCD thin films should prove to-be well-suited as wear resistant coatings in biomedical applications.
Meyer, Jens; Kidambi, Piran R; Bayer, Bernhard C; Weijtens, Christ; Kuhn, Anton; Centeno, Alba; Pesquera, Amaia; Zurutuza, Amaia; Robertson, John; Hofmann, Stephan
2014-06-20
The interface structure of graphene with thermally evaporated metal oxide layers, in particular molybdenum trioxide (MoO3), is studied combining photoemission spectroscopy, sheet resistance measurements and organic light emitting diode (OLED) characterization. Thin (<5 nm) MoO3 layers give rise to an 1.9 eV large interface dipole and a downwards bending of the MoO3 conduction band towards the Fermi level of graphene, leading to a near ideal alignment of the transport levels. The surface charge transfer manifests itself also as strong and stable p-type doping of the graphene layers, with the Fermi level downshifted by 0.25 eV and sheet resistance values consistently below 50 Ω/sq for few-layer graphene films. The combination of stable doping and highly efficient charge extraction/injection allows the demonstration of simplified graphene-based OLED device stacks with efficiencies exceeding those of standard ITO reference devices.
2016-05-26
AFRL-RX-WP-JA-2017-0137 IMPACT OF REDUCED GRAPHENE OXIDE ON MOS2 GROWN BY SULFURIZATION OF SPUTTERED MOO3 AND MO PRECURSOR FILMS...OXIDE ON MOS2 GROWN BY SULFURIZATION OF SPUTTERED MOO3 AND Mo PRECURSOR FILMS (POSTPRINT) 5a. CONTRACT NUMBER FA8650-11-D-5401-0008 5b. GRANT...2016. © 2016 American Vacuum Society. The U.S. Government is joint author of the work and has the right to use, modify , reproduce, release, perform
NASA Astrophysics Data System (ADS)
Huai, Yiming; Gan, Huadong; Wang, Zihui; Xu, Pengfa; Hao, Xiaojie; Yen, Bing K.; Malmhall, Roger; Pakala, Nirav; Wang, Cory; Zhang, Jing; Zhou, Yuchen; Jung, Dongha; Satoh, Kimihiro; Wang, Rongjun; Xue, Lin; Pakala, Mahendra
2018-02-01
High volume spin transfer torque magnetoresistance random access memory (STT-MRAM) for standalone and embedded applications requires a thin perpendicular magnetic tunnel junction (pMTJ) stack (˜10 nm) with a tunnel magnetoresistance (TMR) ratio over 200% after high temperature back-end-of-line (BEOL) processing up to 400 °C. A thin reference layer with low magnetic moment and strong perpendicular magnetic anisotropy (PMA) is key to reduce the total thickness of the full pMTJ stack. We demonstrated strong interfacial PMA and a perpendicular Ruderman-Kittel-Kasuya-Yosida exchange interaction in the Co/Ir system. Owing to the additional high PMA at the Ir/Co interface in combination with a conventional CoFeB/MgO interface in the Ir/Co/Mo/CoFeB/MgO reference layer, the full film pMTJ showed a TMR ratio over 210% after annealing at 400 °C for 150 min. The high TMR ratio can be attributed to the thin stack design by combining a thin reference layer with the efficient compensation by a thin pinned layer. The annealing stability may be explained by the absence of solid solution in the Co-Ir system and the low oxygen affinity of Mo in the reference layer and the free layer. High device performance with a TMR ratio over 210% was also confirmed after subjecting the patterned devices to BEOL processing temperatures of up to 400 °C. This proposed pMTJ design is suitable for both standalone and embedded STT-MRAM applications.
Back surface studies of Cu(In,Ga)Se2 thin film solar cells
NASA Astrophysics Data System (ADS)
Simchi, Hamed
Cu(In,Ga)Se2 thin film solar cells have attracted a lot of interest because they have shown the highest achieved efficiency (21%) among thin film photovoltaic materials, long-term stability, and straightforward optical bandgap engineering by changing relative amounts of present elements in the alloy. Still, there are several opportunities to further improve the performance of the Cu(In,Ga)Se2 devices. The interfaces between layers significantly affect the device performance, and knowledge of their chemical and electronic structures is essential in identifying performance limiting factors. The main goal of this research is to understand the characteristics of the Cu(In,Ga)Se2-back contact interface in order to design ohmic back contacts for Cu(In,Ga)Se2-based solar cells with a range of band gaps and device configurations. The focus is on developing either an opaque or transparent ohmic back contact via surface modification or introduction of buffer layers in the back surface. In this project, candidate back contact materials have been identified based on modeling of band alignments and surface chemical properties of the absorber layer and back contact. For the first time, MoO3 and WO 3 transparent back contacts were successfully developed for Cu(In,Ga)Se 2 solar cells. The structural, optical, and surface properties of MoO 3 and WO3 were optimized by controlling the oxygen partial pressure during reactive sputtering and post-deposition annealing. Valence band edge energies were also obtained by analysis of the XPS spectra and used to characterize the interface band offsets. As a result, it became possible to illuminate of the device from the back, resulting in a recently developed "backwall superstrate" device structure that outperforms conventional substrate Cu(In,Ga)Se2 devices in the absorber thickness range 0.1-0.5 microm. Further enhancements were achieved by introducing moderate amounts of Ag into the Cu(In,Ga)Se2 lattice during the co-evaporation method resulting in a 9.7% cell (with 0.3 microm thickness) which has the highest efficiency reported for ultrathin CIGS solar cells to date. In addition, sulfized back contacts including ITO-S and MoS 2 are compared. Interface properties of different contact layers with (Ag,Cu)(In,Ga)Se2 absorber layers with various Ga/(Ga+In) and Ag/(Ag+Cu) ratios are discussed based on the XPS analysis and thermodynamics of reactions.
Colorado, Ramon; Crouse, Christopher A; Zeigler, Christopher N; Barron, Andrew R
2008-08-19
Films of the molybdenum-iron nanocluster [H x PMo 12O 40 subsetH 4Mo 72Fe 30(O 2CMe) 15O 254(H2O) 68] (FeMoC) were generated on gold via the self-assembly technique using two divergent routes. The first route entails the self-assembly of unfunctionalized FeMoC onto a preprepared carboxyl-terminated SAM on gold. The second route involves the preparation of thiol-terminated functionalized FeMoC clusters, which are then allowed to self-assemble onto bare gold surfaces. Monolayer films of FeMoC clusters are attained via both routes, with the second route requiring shorter immersion times (2 days) than the first route (6 days). Multilayer films of FeMoC are formed via the second route for immersion times longer than 2 days. Characterization of these films using optical ellipsometry, X-ray photoelectron spectroscopy, and atomic force microscopy confirm the self-assembly of the clusters on the surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Haibo; Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin; Freudenberg, Norman
2016-04-15
Photoactive bismuth vanadate (BiVO{sub 4}) thin films were deposited by reactive co-magnetron sputtering from metallic Bi and V targets. The effects of the V-to-Bi ratio, molybdenum doping and post-annealing on the crystallographic and photoelectrochemical (PEC) properties of the BiVO{sub 4} films were investigated. Phase-pure monoclinic BiVO{sub 4} films, which are more photoactive than the tetragonal BiVO{sub 4} phase, were obtained under slightly vanadium-rich conditions. After annealing of the Mo-doped BiVO{sub 4} films, the photocurrent increased 2.6 times compared to undoped films. After optimization of the BiVO{sub 4} film thickness, the photocurrent densities (without a catalyst or a blocking layer ormore » a hole scavenger) exceeded 1.2 mA/cm{sup 2} at a potential of 1.23 V{sub RHE} under solar AM1.5 irradiation. The surprisingly high injection efficiency of holes into the electrolyte is attributed to the highly porous film morphology. This co-magnetron sputtering preparation route for photoactive BiVO{sub 4} films opens new possibilities for the fabrication of large-scale devices for water splitting.« less
Ye, Lijuan; Wang, Dan; Chen, Shijian
2016-03-02
We report on a novel MoS2/S-doped g-C3N4 heterojunction film with high visible-light photoelectrochemical (PEC) performance. The heterojunction films are prepared by CVD growth of S-doped g-C3N4 film on indium-tin oxide (ITO) glass substrates, with subsequent deposition of a low bandgap, 1.69 eV, visible-light response MoS2 layer by hydrothermal synthesis. Adding thiourea into melamine as the coprecursor not only facilitates the growth of g-C3N4 films but also introduces S dopants into the films, which significantly improves the PEC performance. The fabricated MoS2/S-doped g-C3N4 heterojunction film offers an enhanced anodic photocurrent of as high as ∼1.2 × 10(-4) A/cm(2) at an applied potential of +0.5 V vs Ag/AgCl under the visible light irradiation. The enhanced PEC performance of MoS2/S-doped g-C3N4 film is believed due to the improved light absorption and the efficient charge separation of the photogenerated charge at the MoS2/S-doped g-C3N4 interface. The convenient preparation of carbon nitride based heterojunction films in this work can be widely used to design new heterojunction photoelectrodes or photocatalysts with high performance for H2 evolution.
NASA Astrophysics Data System (ADS)
Le Quang, T.; Nogajewski, K.; Potemski, M.; Dau, M. T.; Jamet, M.; Mallet, P.; Veuillen, J.-Y.
2018-07-01
We report scanning tunneling microscopy/spectroscopy (STM/STS) investigations of the band-bending in the vicinity of charged point defects and edges of monolayer MoSe2 and mono- and trilayer WSe2 films deposited on graphitized silicon carbide substrates. By tracing the spatial evolution of the structures of the STS spectra, we evaluate the magnitude and the extent of the band-bending to be equal to few hundreds milielectronvolts and several nanometres, respectively. With the aid of a simple electrostatic model, we show that the spatial variation of the Coulomb potential close to the film edges can be well reproduced by taking into account the metallic screening by graphene. Additionally, the analysis of our data for trilayer WSe2 provides reasonable estimations of its dielectric constant () and of the magnitude of the charge trapped at the defect site (Q = +e).
Atmospheric Pressure Spray Chemical Vapor Deposited CuInS2 Thin Films for Photovoltaic Applications
NASA Technical Reports Server (NTRS)
Harris, J. D.; Raffaelle, R. P.; Banger, K. K.; Smith, M. A.; Scheiman, D. A.; Hepp, A. F.
2002-01-01
Solar cells have been prepared using atmospheric pressure spray chemical vapor deposited CuInS2 absorbers. The CuInS2 films were deposited at 390 C using the single source precursor (PPh3)2CuIn(SEt)4 in an argon atmosphere. The absorber ranges in thickness from 0.75 - 1.0 micrometers, and exhibits a crystallographic gradient, with the leading edge having a (220) preferred orientation and the trailing edge having a (112) orientation. Schottky diodes prepared by thermal evaporation of aluminum contacts on to the CuInS2 yielded diodes for films that were annealed at 600 C. Solar cells were prepared using annealed films and had the (top down) composition of Al/ZnO/CdS/CuInS2/Mo/Glass. The Jsc, Voc, FF and (eta) were 6.46 mA per square centimeter, 307 mV, 24% and 0.35%, respectively for the best small area cells under simulated AM0 illumination.
NASA Astrophysics Data System (ADS)
Jiao, Guohua; Liu, Bo; Li, Qiran
2015-08-01
Ultrathin RuMoC amorphous films prepared by magnetron co-sputtering with Ru and MoC targets in a sandwiched scheme Si/ p-SiOC:H/RuMoC/Cu were investigated as barrier in copper metallization. The evolution of final microstructure of RuMoC alloy films show sensitive correlation with the content of doped Mo and C elements and can be easily controlled by adjusting the sputtering power of the MoC target. There was no signal of interdiffusion between the Cu and SiOC:H layer in the sample of Cu/RuMoC/ p-SiOC:H/Si, even annealing up to 500 °C. Very weak signal of oxygen have been confirmed in the RuMoC barrier layer both as-deposited and after being annealed, and a good performance on preventing oxygen diffusion has been proved. Leakage current and resistivity evaluations also reveal the excellent thermal reliability of this Si/ p-SiOC:H/RuMoC/Cu film stack at the temperatures up to 500 °C, indicating its potential application in the advanced barrierless Cu metallization.
RBS Depth Profiling Analysis of (Ti, Al)N/MoN and CrN/MoN Multilayers.
Han, Bin; Wang, Zesong; Devi, Neena; Kondamareddy, K K; Wang, Zhenguo; Li, Na; Zuo, Wenbin; Fu, Dejun; Liu, Chuansheng
2017-12-01
(Ti, Al)N/MoN and CrN/MoN multilayered films were synthesized on Si (100) surface by multi-cathodic arc ion plating system with various bilayer periods. The elemental composition and depth profiling of the films were investigated by Rutherford backscattering spectroscopy (RBS) using 2.42 and 1.52 MeV Li 2+ ion beams and different incident angles (0°, 15°, 37°, and 53°). The microstructures of (Ti, Al)N/MoN multilayered films were evaluated by X-ray diffraction. The multilayer periods and thickness of the multilayered films were characterized by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) and then compared with RBS results.
NASA Astrophysics Data System (ADS)
Oner, Cihan; Nguyen, Khai V.; Pak, Rahmi O.; Mannan, Mohammad A.; Mandal, Krishna C.
2015-08-01
Amorphous selenium (a-Se) alloy materials with arsenic, chlorine, boron, and lithium doping were synthesized for room temperature nuclear radiation detector applications using an optimized alloy composition for enhanced charge transport properties. A multi-step synthetic process has been implemented to first synthesize Se-As and Se-Cl master alloys from zone-refined Se (~ 7N), and then synthesized the final alloys for thermally evaporated large-area thin-film deposition on oxidized aluminum (Al/Al2O3) and indium tin oxide (ITO) coated glass substrates. Material purity, morphology, and compositional characteristics of the alloy materials and films were examined using glow discharge mass spectroscopy (GDMS), inductively coupled plasma mass spectroscopy (ICP-MS), differential scanning calorimetry (DSC), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive analysis by x-rays (EDAX). Current-Voltage (I-V) measurements were carried out to confirm very high resistivity of the alloy thin-films. We have further investigated the junction properties of the alloy films with a wide variety of metals with different work functions (Au, Ni, W, Pd, Cu, Mo, In, and Sn). The aim was to investigate whether the choice of metal can improve the performance of fabricated detectors by minimizing the dark leakage current. For various metal contacts, we have found significant dependencies of metal work functions on current transients by applying voltages from -800 V to +1000 V.
Probing specific oxides as potential supports for metal/oxide model catalysts: MgO(111) polar film
NASA Astrophysics Data System (ADS)
Grigorkina, G. S.; Ramonova, A. G.; Kibizov, D. D.; Kozyrev, E. N.; Zaalishvili, V. B.; Fukutani, K.; Magkoev, T. T.
2017-05-01
The growth of thermally evaporated magnesium oxide thin film on Mo(110) substrate in ultra-high vacuum was studied by means of Auger electron spectroscopy (AES), low-energy electron diffraction (LEED) and work function (WF) measurements. It is shown that at a growth rate of c.a. 0.1 monolayer per minute and the substrate temperature of 600 K the film acquires the MgO(111) structure. This structure begins to form at two monolayers and holds up to six monolayers. At higher thickness the film disorders due to weakening of the ordering effect of the isosymmetric Mo(110) support. Adsorption of CO and H2 on the formed MgO(111) film cooled down to 90 K was studied by means of ultraviolet photoelectron spectroscopy (UPS) and reflection absorption infrared spectroscopy (RAIRS) and compared with in-situ obtained results for CO on Pt(111). Comparison of UPS data of CO on MgO(111) and Pt(111) in combination with RAIRS results reveals quite different bonding mechanisms on the metal and the oxide supports. The main feature of CO on MgO(111) is quite high intensity of CO stretch vibration, considerably exceeding that on amorphous MgO, and comparable to that of CO on Pt(111). This is presumably due to the electrostatic effect of the uncompensated microscopic dipole moment of ultrathin MgO(111) film on the enhancing of CO dynamical dipole moment. Adsorption of H2 dramatically reduces the CO stretch intensity as a possible result of removing of dipole moment of MgO(111) surface by hydrogen and (CO+H2) interaction.
CIGS2 Thin-Film Solar Cells on Flexible Foils for Space Power
NASA Technical Reports Server (NTRS)
Dhere, Neelkanth G.; Ghongadi, Shantinath R.; Pandit, Mandar B.; Jahagirdar, Anant H.; Scheiman, David
2002-01-01
CuIn(1-x)Ga(x)S2 (CIGS2) thin-film solar cells are of interest for space power applications because of the near optimum bandgap for AM0 solar radiation in space. CIGS2 thin film solar cells on flexible stainless steel (SS) may be able to increase the specific power by an order of magnitude from the current level of 65 Wkg(sup -1). CIGS solar cells are superior to the conventional silicon and gallium arsenide solar cells in the space radiation environment. This paper presents research efforts for the development of CIGS2 thin-film solar cells on 127 micrometers and 20 micrometers thick, bright-annealed flexible SS foil for space power. A large-area, dual-chamber, inline thin film deposition system has been fabricated. The system is expected to provide thickness uniformity of plus or minus 2% over the central 5" width and plus or minus 3% over the central 6" width. During the next phase, facilities for processing larger cells will be acquired for selenization and sulfurization of metallic precursors and for heterojunction CdS layer deposition both on large area. Small area CIGS2 thin film solar cells are being prepared routinely. Cu-rich Cu-Ga/In layers were sputter-deposited on unheated Mo-coated SS foils from CuGa (22%) and In targets. Well-adherent, large-grain Cu-rich CIGS2 films were obtained by sulfurization in a Ar: H2S 1:0.04 mixture and argon flow rate of 650 sccm, at the maximum temperature of 475 C for 60 minutes with intermediate 30 minutes annealing step at 120 C. Samples were annealed at 500 C for 10 minutes without H2S gas flow. The intermediate 30 minutes annealing step at 120 C was changed to 135 C. p-type CIGS2 thin films were obtained by etching the Cu-rich layer segregated at the surface using dilute KCN solution. Solar cells were completed by deposition of CdS heterojunction partner layer by chemical bath deposition, transparent-conducting ZnO/ZnO: Al window bilayer by RF sputtering, and vacuum deposition of Ni/Al contact fingers through metal mask. PV parameters of a CIGS2 solar cell on 127 micrometers thick SS flexible foil measured under AM 0 conditions at NASA GRC were: V(sub oc) = 802.9 mV, J(sub sc) = 25.07 mA per square centimeters, FF = 60.06%, and efficiency 0 = 8.84%. For this cell, AM 1.5 PV parameters measured at NREL were: V(sub oc) = 788 mV, J(sub sc) = 19.78 mA per square centimeter, FF = 59.44%, efficiency 0 = 9.26%. Quantum efficiency curve showed a sharp QE cutoff equivalent to CIGS2 bandgap of approximately 1.50 eV, fairly close to the optimum value for efficient AM0 PV conversion in the space.
Continuous Ultra-Thin MOS2 Films Grown by Low-Temperature Physical Vapor Deposition (Postprint)
2014-07-01
MoS2 target of 99.95% purity. The SiO2 and highly oriented pyrolitic graphite (HOPG) substrates were intro- duced via a vacuum load- lock and mounted on...im- mediately prior insertion into a sample vacuum load- lock . In this work, the samples were heated to 350 C and allowed to rotate at approximately...136805 (2010). 6H. Terrones, F. Lopez-Urias, and M. Terrones, Sci. Rep. 3(203), 1549 (2013). 7H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin
Role of hydrogen in the chemical vapor deposition growth of MoS2 atomic layers
NASA Astrophysics Data System (ADS)
Li, Xiao; Li, Xinming; Zang, Xiaobei; Zhu, Miao; He, Yijia; Wang, Kunlin; Xie, Dan; Zhu, Hongwei
2015-04-01
Hydrogen plays a crucial role in the chemical vapor deposition (CVD) growth of graphene. Here, we have revealed the roles of hydrogen in the two-step CVD growth of MoS2. Our study demonstrates that hydrogen acts as the following: (i) an inhibitor of the thermal-induced etching effect in the continuous film growth process; and (ii) a promoter of the desulfurization reaction by decreasing the S/Mo atomic ratio and the oxidation reaction of the obtained MoSx (0 < x < 2) films. A high hydrogen content of more than 100% in argon forms nano-sized circle-like defects and damages the continuity and uniformity of the film. Continuous MoS2 films with a high crystallinity and a nearly perfect S/Mo atomic ratio were finally obtained after sulfurization annealing with a hydrogen content in the range of 20%-80%. This insightful understanding reveals the crucial roles of hydrogen in the CVD growth of MoS2 and paves the way for the controllable synthesis of two-dimensional materials.Hydrogen plays a crucial role in the chemical vapor deposition (CVD) growth of graphene. Here, we have revealed the roles of hydrogen in the two-step CVD growth of MoS2. Our study demonstrates that hydrogen acts as the following: (i) an inhibitor of the thermal-induced etching effect in the continuous film growth process; and (ii) a promoter of the desulfurization reaction by decreasing the S/Mo atomic ratio and the oxidation reaction of the obtained MoSx (0 < x < 2) films. A high hydrogen content of more than 100% in argon forms nano-sized circle-like defects and damages the continuity and uniformity of the film. Continuous MoS2 films with a high crystallinity and a nearly perfect S/Mo atomic ratio were finally obtained after sulfurization annealing with a hydrogen content in the range of 20%-80%. This insightful understanding reveals the crucial roles of hydrogen in the CVD growth of MoS2 and paves the way for the controllable synthesis of two-dimensional materials. Electronic supplementary information (ESI) available: Low-magnification optical images; Raman spectra of 0% and 5% H2 samples; AFM characterization; Schematic of the film before and after sulfurization annealing; Schematic illustrations of two typical Raman-active phonon modes (E12g, A1g); Raman (mapping) spectra for 40% and 80% H2 samples before and after sulfurization annealing; PL spectra. See DOI: 10.1039/c5nr00904a
Strain relaxation in nm-thick Cu and Cu-alloy films bonded to a rigid substrate
NASA Astrophysics Data System (ADS)
Herrmann, Ashley Ann Elizabeth
In the wide scope of modern technology, nm-thick metallic films are increasingly used as lubrication layers, optical coatings, plating seeds, diffusion barriers, adhesion layers, metal contacts, reaction catalyzers, etc. A prominent example is the use of nm-thick Cu films as electroplating seed layers in the manufacturing of integrated circuits (ICs). These high density circuits are linked by on-chip copper interconnects, which are manufactured by filling Cu into narrow trenches by electroplating. The Cu fill by electroplating requires a thin Cu seed deposited onto high-aspect-ratio trenches. In modern ICs, these trenches are approaching 10 nm or less in width, and the seed layers less than 1 nm in thickness. Since nm-thick Cu seed layers are prone to agglomeration or delamination, achieving uniform, stable and highly-conductive ultra-thin seeds has become a major manufacturing challenge. A fundamental understanding of the strain behavior and thermal stability of nm-thick metal films adhered to a rigid substrate is thus critically needed. In this study, we focus on understanding the deformation modes of nm-thick Cu and Cu-alloy films bonded to a rigid Si substrate and under compressive stress. The strengthening of Cu films through alloying is also studied. In-situ transport measurements are used to monitor the deformation of such films as they are heated from room temperature to 400 °C. Ex-situ AFM is then used to help characterize the mode of strain relaxation. The relaxation modes are known to be sensitive to the wetting and adhesive properties of the film-substrate interface. We use four different liners (Ta, Ru, Mo and Co), interposed between the film and substrate to provide a wide range of interfacial properties to study their effect on the film's thermal stability. Our measurements indicate that when the film/liner interfacial energy is low, grain growth is the dominant relaxation mechanism. As the interface energy increases, grain growth is suppressed, and the strain is relaxed through hillock/island formation instead. The kinetics-limiting parameters for these relaxation modes are identified and used to simulate their kinetics, and a deformation map is then constructed to delineate the conditions under which each mode would prevail. Such a deformation map would prove useful when one seeks to optimize the thermal stability or other mechanical properties in any ultra-thin film system.
Diao, Chien-Chen; Kuo, Hsin-Hui; Tzou, Wen-Cheng; Chen, Yen-Lin; Yang, Cheng-Fu
2014-01-01
In this study, a new thin-film deposition process, spray coating method (SPM), was investigated to deposit the high-densified CuInSe2 absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe2 precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe2 absorber layers. After spraying on Mo/glass substrates, the CuInSe2 thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N2 as atmosphere. When the CuInSe2 thin films were annealed, without extra Se or H2Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe2 absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe2 absorber layers could be controlled as the volume of used dispersed CuInSe2-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe2 absorber layers obtained by the Spray Coating Method. PMID:28788451
Coplanar semiconductor-metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy
NASA Astrophysics Data System (ADS)
Sung, Ji Ho; Heo, Hoseok; Si, Saerom; Kim, Yong Hyeon; Noh, Hyeong Rae; Song, Kyung; Kim, Juho; Lee, Chang-Soo; Seo, Seung-Young; Kim, Dong-Hwi; Kim, Hyoung Kug; Yeom, Han Woong; Kim, Tae-Hwan; Choi, Si-Young; Kim, Jun Sung; Jo, Moon-Ho
2017-11-01
Crystal polymorphism selectively stabilizes the electronic phase of atomically thin transition-metal dichalcogenides (TMDCs) as metallic or semiconducting, suggesting the potential to integrate these polymorphs as circuit components in two-dimensional electronic circuitry. Developing a selective and sequential growth strategy for such two-dimensional polymorphs in the vapour phase is a critical step in this endeavour. Here, we report on the polymorphic integration of distinct metallic (1T‧) and semiconducting (2H) MoTe2 crystals within the same atomic planes by heteroepitaxy. The realized polymorphic coplanar contact is atomically coherent, and its barrier potential is spatially tight-confined over a length of only a few nanometres, with a lowest contact barrier height of ∼25 meV. We also demonstrate the generality of our synthetic integration approach for other TMDC polymorph films with large areas.
NASA Astrophysics Data System (ADS)
Yang, Gang; Li, Yong-Feng; Yao, Bin; Ding, Zhan-Hui; Deng, Rui; Zhao, Hai-Feng; Zhang, Li-Gong; Zhang, Zhen-Zhong
2018-03-01
Kesterite Cu2ZnSn(S x Se1-x )4 (CZTSSe) thin films and related solar cells were successfully fabricated by a facile sol-gel method and selenization process. The influence of Polyvinylpyrrolidone (PVP) additive on the properties of the CZTSSe films and the power conversion efficiency (PCE) of the solar cells were investigated. The results reveal that the qualities of CZTSSe films can be manipulated by incorporating a small amount of PVP. With addition of 1 wt% of PVP, the smoothness and grain size of the CZTSSe films were greatly improved. The contact at the CZTSSe/Mo interface was also improved. As a result, the optimized PCE of solar cells improved from 2.24% to 4.34% after the addition of 1 wt% PVP due to the decrease of recombination at the interfaces. These results suggest that polymer addition in the precursor solution is a promising method for obtaining high quality of CZTSSe films and high-performance solar cells.
Engineering Low-Dimensional Nanostructures Towards Flexible Electronics
NASA Astrophysics Data System (ADS)
Byrley, Peter Samuel
Flexible electronics have been proposed as the next generation of electronic devices. They have advantages over traditional electronics in that they use less material, are more durable and have greater versatility in their proposed applications. However, there are a variety of types of devices being developed that have specific engineering challenges. This dissertation addresses two of those challenges. The first challenge involves lowering contact resistance in MoS2 based flexible thin film transistor devices using a photochemical phase change method while the second addresses using silver nanowire networks as a replacement flexible electrode for indium tin oxide in flexible electronics. In this dissertation, a scalable method was developed for making monolayer MoS2 using ambient pressure chemical vapor deposition. These films were then characterized using spectroscopic techniques and atomic force microscopy. A photochemical phase change mechanism was then proposed to improve contact resistance in MoS2 based devices. The central hypothesis is that the controllable partial transition from a semiconducting 2H to metallic 1T phase can be realized in monolayer TMDs through photo-reduction in the presence of hole scavenging chemicals. Phase-engineering in monolayer TMDs would enable the fabrication of high-quality heterophase structures with the potential to improve carrier mobility and contact. Phase change as a result of the proposed photochemical method was confirmed using Raman spectroscopy, photoluminescence measurements, X-Ray photoelectron spectroscopy and other supporting data. Gold coated silver nanowires were then created to serve as flexible nanowire based electrodes by overcoming galvanic replacement in solution. This was confirmed using various forms of electron microscopy. The central hypothesis is that a thin gold coating will enable silver nanowire meshes to remain electrically stable in atmosphere and retain necessary low resistance values and transparencies over time. It was shown that gold coated silver nanowire meshes could be created with sheet resistances comparable to indium tin oxide and outlast their bare silver nanowire counterparts in environments at 80 deg C.
NASA Astrophysics Data System (ADS)
Li, Fei; Zhou, Xiaodong; Feng, Wanxiang; Fu, Botao; Yao, Yugui
2018-04-01
Recently, two-dimensional (2D) GaS and GaSe nanosheets were successfully fabricated and the measured electronic, mechanical, and optoelectronic properties are excellent. Here, using the first-principles density functional theory, we investigate the magnetic, optical, and magneto-optical (MO) Kerr and Faraday effects in hole-doped GaS and GaSe multilayers. GaS and GaSe monolayers (MLs) manifest ferromagnetic ground states by introducing even a small amount of hole doping, whereas the magnetism in GaS and GaSe multilayers are significantly different under hole doping. Our results show that ferromagnetic states can be easily established in GaS bilayers and trilayers under proper hole doping, however, most of GaSe multilayers are more favorable to nonmagnetic states. The magnetic moments in GaS multilayers are weakened remarkably with the increasing of thin film thickness and are negligible more than three MLs. This leads to the thickness dependence of MO Kerr and Faraday effects. Furthermore, the MO effects strongly depend on the doping concentration and therefore are electrically controllable by adjusting the number of holes via gate voltage. The substrate effects on the MO properties are also discussed. Combining the unique MO and other interesting physical properties make GaS and GaSe a superior 2D material platform for semiconductor MO and spintronic nanodevices.
Friction and Wear Properties of Selected Solid Lubricating Films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Iwaki, Masanori; Gotoh, Kenichi; Obara, Shingo; Imagawa, Kichiro
1999-01-01
To evaluate commercially developed solid film lubricants for aerospace bearing applications, we investigated the friction and wear behavior of bonded molybdenum disulfide (MoS2), magnetron-sputtered MoS2 and ion-plated silver films in sliding contact with 6-mm-diameter American Iron and Steel Institute (AISI) 440 C stainless steel balls. Unidirectional sliding friction experiments were conducted with a load of 5.9 N (600 g), a mean Herizian contact pressure of 0.79 GPa maximum 1.19 GPa), and a sliding velocity of 0.2 m/s at room temperature in three environments: ultrahigh vacuum (7x10 (exp -7Pa)), humid air (approx. 20 percent humidity), and dry nitrogen (less than 1 percent humidity). The resultant films were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and surface profilometry. Marked differences in friction and wear resulted front the environmental conditions and the film materials. The main criteria for judging the performance were coefficient of friction and wear rate, which had to be less than 0.3 and on the order of 10 (exp -6mm exp 3/Nm or less), respectively. The bonded MoS2 and magnetron-sputtered MoS2 films met the criteria in all three environments. Also, the wear rates of the counterpart AISI 440 C stainless steel balls met that criterion in all three environments. The ion-plated silver films met the criteria only in ultrahigh vacuum. In ultrahigh vacuum the bonded MoS2 films were superior. In humid air the bonded MoS2 films had higher coefficient of friction and shorter wear life than did the magnetron-sputtered MoS2 films. The ion-plated silver films had a high coefficient of friction in humid air but relatively low coefficients of friction in the nonoxidative environments. Adhesion and plastic deformation played important roles in all three environments. All sliding involved adhesive transfer of materials.
Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS2 Layers.
Cho, Soo-Yeon; Kim, Seon Joon; Lee, Youhan; Kim, Jong-Seon; Jung, Woo-Bin; Yoo, Hae-Wook; Kim, Jihan; Jung, Hee-Tae
2015-09-22
In this work, we demonstrate that gas adsorption is significantly higher in edge sites of vertically aligned MoS2 compared to that of the conventional basal plane exposed MoS2 films. To compare the effect of the alignment of MoS2 on the gas adsorption properties, we synthesized three distinct MoS2 films with different alignment directions ((1) horizontally aligned MoS2 (basal plane exposed), (2) mixture of horizontally aligned MoS2 and vertically aligned layers (basal and edge exposed), and (3) vertically aligned MoS2 (edge exposed)) by using rapid sulfurization method of CVD process. Vertically aligned MoS2 film shows about 5-fold enhanced sensitivity to NO2 gas molecules compared to horizontally aligned MoS2 film. Vertically aligned MoS2 has superior resistance variation compared to horizontally aligned MoS2 even with same surface area exposed to identical concentration of gas molecules. We found that electrical response to target gas molecules correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. Density functional theory (DFT) calculations corroborate the experimental results as stronger NO2 binding energies are computed for multiple configurations near the edge sites of MoS2, which verifies that electrical response to target gas molecules (NO2) correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. We believe that this observation extends to other 2D TMD materials as well as MoS2 and can be applied to significantly enhance the gas sensor performance in these materials.
Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei
2016-08-24
As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yueh -Lin; Wang, Xiao Renshaw; Lee, Ho Nyung
2015-12-17
Through alignment of theoretical modeling with experimental measurements of oxygen surface-exchange kinetics on (001)-oriented La 2–xSr xMO 4+δ (M = Co, Ni, Cu) thin films, we demonstrate here the capability of the theoretical bulk O 2p-band centers to correlate with oxygen surface-exchange kinetics of the Ruddlesden–Popper oxide (RP 214) (001)-oriented thin films. In addition, we demonstrate that the bulk O 2p-band centers can also correlate with the experimental activation energies for bulk oxygen transport and oxygen surface exchange of both the RP 214 and the perovskite polycrystalline materials reported in the literature, indicating the effectiveness of the bulk O 2p-bandmore » centers in describing the associated energetics and kinetics. Here, we propose that the opposite slopes of the bulk O 2p-band center correlations between the RP 214 and the perovskite materials are due to the intrinsic mechanistic differences of their oxygen surface-exchange kinetics bulk anionic transport.« less
Superconducting fluctuations in molybdenum nitride thin films
NASA Astrophysics Data System (ADS)
Baskaran, R.; Thanikai Arasu, A. V.; Amaladass, E. P.; Vaidhyanathan, L. S.; Baisnab, D. K.
2018-02-01
MoN thin films have been deposited using reactive sputtering. The change in resistance near superconducting transition temperature at various magnetic fields has been analyzed based on superconducting fluctuations in the system. The Aslamazov and Larkin scaling theory has been utilized to analyze the conductance change. The results indicate that most of the measurements show two dimensional (2D) nature and exhibit scaling behavior at lower magnetic fields (<7T), while a cross over to three dimensional (3D) nature has been clearly observed in measurements at higher fields (>7T). We have also analyzed our data based on the model in which there is no explicit dependence of Tc. These analyses also substantiate a crossover from a 2D nature to a 3D at larger fields. Analysis using lowest Landau level scaling theory for a 2D system exhibit scaling behavior and substantiate our observations. The broadening at low resistance part has been explained based on thermally activated flux flow model and show universal behavior. The dependence of Uo on magnetic field indicates both single and collective vortex behavior.
Salt-assisted clean transfer of continuous monolayer MoS2 film for hydrogen evolution reaction
NASA Astrophysics Data System (ADS)
Cho, Heung-Yeol; Nguyen, Tri Khoa; Ullah, Farman; Yun, Jong-Won; Nguyen, Cao Khang; Kim, Yong Soo
2018-03-01
The transfer of two-dimensional (2D) materials from one substrate to another is challenging but of great importance for technological applications. Here, we propose a facile etching and residue-free method for transferring a large-area monolayer MoS2 film continuously grown on a SiO2/Si by chemical vapor deposition. Prior to synthesis, the substrate is dropped with water- soluble perylene-3, 4, 9, 10-tetracarboxylic acid tetrapotassium salt (PTAS). The as-grown MoS2 on the substrate is simply dipped in water to quickly dissolve PTAS to yield the MoS2 film floating on the water surface, which is subsequently transferred to the desired substrate. The morphological, optical and X-ray photoelectron spectroscopic results show that our method is useful for fast and clean transfer of the MoS2 film. Specially, we demonstrate that monolayer MoS2 film transferred onto a conducting substrate leads to excellent performance for hydrogen evolution reaction with low overpotential (0.29 V vs the reversible hydrogen electrode) and Tafel slope (85.5 mV/decade).
Depth-Profiling Electronic and Structural Properties of Cu(In,Ga)(S,Se)2 Thin-Film Solar Cell.
Chiang, Ching-Yu; Hsiao, Sheng-Wei; Wu, Pin-Jiun; Yang, Chu-Shou; Chen, Chia-Hao; Chou, Wu-Ching
2016-09-14
Utilizing a scanning photoelectron microscope (SPEM) and grazing-incidence X-ray powder diffraction (GIXRD), we studied the electronic band structure and the crystalline properties of the pentanary Cu(In,Ga)(S,Se)2 (CIGSSe) thin-film solar cell as a function of sample depth on measuring the thickness-gradient sample. A novel approach is proposed for studying the depth-dependent information on thin films, which can provide a gradient thickness and a wide cross-section of the sample by polishing process. The results exhibit that the CIGSSe absorber layer possesses four distinct stoichiometries. The growth mechanism of this distinctive compositional distribution formed by a two-stage process is described according to the thermodynamic reaction and the manufacturing process. On the basis of the depth-profiling results, the gradient profiles of the conduction and valence bands were constructed to elucidate the performance of the electrical properties (in this case, Voc = 620 mV, Jsc = 34.6 mA/cm(2), and η = 14.04%); the valence-band maxima (VBM) measured with a SPEM in the spectroscopic mode coincide with this band-structure model, except for a lowering of the VBM observed in the surface region of the absorber layer due to the ordered defect compound (ODC). In addition, the depth-dependent texturing X-ray diffraction pattern presents the crystalline quality and the residual stress for each depth of a thin-film device. We find that the randomly oriented grains in the bottom region of the absorber layer and the different residual stress between the underlying Mo and the absorber interface, which can deteriorate the electrical performance due to peeling-off effect. An anion interstitial defect can be observed on comparing the anion concentration of the elemental distribution with crystalline composition; a few excess sulfur atoms insert in interstitial sites at the front side of the absorber layer, whereas the interstitial selenium atoms insert at the back side.
NASA Astrophysics Data System (ADS)
Yang, Yong; Pu, Hongbin; Lin, Tao; Li, Lianbi; Zhang, Shan; Sun, Gaopeng
2017-07-01
Monolayer molybdenum disulfide (m-MoS2) has attracted significant interest due to its unique electronic and optical properties. Herein, we report the successful fabrication of high quality and continuous m-MoS2 films in a quasi-closed crucible encapsulated substrates via a three-zone chemical vapor deposition (CVD) system. Quasi-closed crucible lowers the concentration of precursors around substrates and makes the sulfurization rate gentle, which is beneficial for invariable m-MoS2 growth. Characterization results indicate that as-grown m-MoS2 films are of high crystallinity and high quality comparable to the exfoliated MoS2. This approach is also adapted to the growth of other transition metal dichalcogenides.
Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures.
Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J; Li, Lain-Jong; Wallace, Robert M; Datta, Suman; Robinson, Joshua A
2015-06-19
Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2-WSe2-graphene and WSe2-MoS2-graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics.
Flexible copper-indium-diselenide films and devices for space applications
NASA Technical Reports Server (NTRS)
Armstrong, J. H.; Pistole, C. O.; Misra, M. S.; Kapur, V. K.; Basol, B. M.
1991-01-01
With the ever increasing demands on space power systems, it is imperative that low cost, lightweight, reliable photovoltaics be developed. One avenue of pursuit for future space power applications is the use of low cost, lightweight flexible PV cells and arrays. Most work in this area assumes the use of flexible amorphous silicon (a-Si), despite its inherent instability and low efficiencies. However, polycrystalline thin film PV such as copper-indium-diselenide (CIS) are inherently more stable and exhibit better performance than a-Si. Furthermore, preliminary data indicate that CIS also offers exciting properties with respect to space applications. However, CIS has only heretofore only produced on rigid substrates. The implications of flexible CIS upon present and future space power platforms was explored. Results indicate that space qualified CIS can dramatically reduce the cost of PV, and in most cases, can be substituted for silicon (Si) based on end-of-life (EOL) estimations. Furthermore, where cost is a prime consideration, CIS can become cost effective than gallium arsenide (GaAs) in some applications. Second, investigations into thin film deposition on flexible substrates were made, and data from these tests indicate that fabrication of flexible CIS devices is feasible. Finally, data is also presented on preliminary TCO/CdS/CuInSe2/Mo devices.
Photodiodes based in La0.7Sr0.3MnO3/single layer MoS2 hybrid vertical heterostructures
NASA Astrophysics Data System (ADS)
Niu, Yue; Frisenda, Riccardo; Svatek, Simon A.; Orfila, Gloria; Gallego, Fernando; Gant, Patricia; Agraït, Nicolás; Leon, Carlos; Rivera-Calzada, Alberto; Pérez De Lara, David; Santamaria, Jacobo; Castellanos-Gomez, Andres
2017-09-01
The fabrication of artificial materials by stacking of individual two-dimensional (2D) materials is amongst one of the most promising research avenues in the field of 2D materials. Moreover, this strategy to fabricate new man-made materials can be further extended by fabricating hybrid stacks between 2D materials and other functional materials with different dimensionality making the potential number of combinations almost infinite. Among all these possible combinations, mixing 2D materials with transition metal oxides can result especially useful because of the large amount of interesting physical phenomena displayed separately by these two material families. We present a hybrid device based on the stacking of a single layer MoS2 onto a lanthanum strontium manganite (La0.7Sr0.3MnO3) thin film, creating an atomically thin device. It shows a rectifying electrical transport with a ratio of 103, and a photovoltaic effect with V oc up to 0.4 V. The photodiode behaviour arises as a consequence of the different doping character of these two materials. This result paves the way towards combining the efforts of these two large materials science communities.
NASA Astrophysics Data System (ADS)
Battu, Anil K.; Manandhar, S.; Shutthanandan, V.; Ramana, C. V.
2017-09-01
An approach is presented to design refractory-metal incorporated Ga2O3-based materials with controlled structural and optical properties. The molybdenum (Mo)-content in Ga2O3 was varied from 0 to 11 at% in the sputter-deposited Ga-Mo-O films. Molybdenum was found to significantly affect the structure and optical properties. While low Mo-content (≤4 at%) results in the formation of single-phase (β-Ga2O3), higher Mo-content results in amorphization. Chemically-induced band gap variability (Eg ∼ 1 eV) coupled with structure-modification indicates the electronic-structure changes in Ga-Mo-O. The linear relationship between chemical-composition and optical properties suggests that tailoring the optical-quality and performance of Ga-Mo-O films is possible by tuning the Mo-content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battu, Anil K.; Manandhar, S.; Shutthanandan, V.
An approach is presented to design refractory-metal incorporated Ga2O3-based materials with controlled structural and optical properties. The molybdenum (Mo)-content in Ga2O3 was varied from 0 to 11 at% in the sputter-deposited Ga-Mo-O films. Molybdenum was found to significantly affect the structure and optical properties. While low Mo-content (≤4 at%) results in the formation of single-phase (β-Ga2O3), higher Mo-content results in amorphization. Chemically-induced band gap variability (Eg~1 eV) coupled with structure-modification indicates the electronic-structure changes in Ga-Mo-O. The linear relationship between chemical-composition and optical properties suggests that tailoring the optical-quality and performance of Ga-Mo-O films is possible by tuning the Mo-content.
Materials Development for Auxiliary Components for Large Compact Mo/Au TES Arrays
NASA Technical Reports Server (NTRS)
Finkbeiner, F. m.; Chervenak, J. A.; Bandler, S. R.; Brekosky, R.; Brown, A. D.; Figueroa-Feliciano, E.; Iyomoto, N.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.;
2007-01-01
We describe our current fabrication process for arrays of superconducting transition edge sensor microcalorimeters, which incorporates superconducting Mo/Au bilayers and micromachined silicon structures. We focus on materials and integration methods for array heatsinking with our bilayer and micromachining processes. The thin superconducting molybdenum bottom layer strongly influences the superconducting behavior and overall film characteristics of our molybdenum/gold transition-edge sensors (TES). Concurrent with our successful TES microcalorimeter array development, we have started to investigate the thin film properties of molybdenum monolayers within a given phase space of several important process parameters. The monolayers are sputtered or electron-beam deposited exclusively on LPCVD silicon nitride coated silicon wafers. In our current bilayer process, molybdenum is electron-beam deposited at high wafer temperatures in excess of 500 degrees C. Identifying process parameters that yield high quality bilayers at a significantly lower temperature will increase options for incorporating process-sensitive auxiliary array components (AAC) such as array heat sinking and electrical interconnects into our overall device process. We are currently developing two competing technical approaches for heat sinking large compact TES microcalorimeter arrays. Our efforts to improve array heat sinking and mitigate thermal cross-talk between pixels include copper backside deposition on completed device chips and copper-filled micro-trenches surface-machined into wafers. In addition, we fabricated prototypes of copper through-wafer microvias as a potential way to read out the arrays. We present an overview on the results of our molybdenum monolayer study and its implications concerning our device fabrication. We discuss the design, fabrication process, and recent test results of our AAC development.
NASA Astrophysics Data System (ADS)
Vella, Joseph R.; Chen, Mohan; Fürstenberg, Sven; Stillinger, Frank H.; Carter, Emily A.; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.
2017-11-01
An understanding of the wetting properties and a characterization of the interface between liquid lithium (Li) and solid molybdenum (Mo) are relevant to assessing the efficacy of Li as a plasma-facing component in fusion reactors. In this work, a new second-nearest neighbor modified embedded-atom method (2NN MEAM) force field is parameterized to describe the interactions between Li and Mo. The new force field reproduces several benchmark properties obtained from first-principles quantum mechanics simulations, including binding curves for Li at three different adsorption sites and the corresponding forces on Li atoms adsorbed on the Mo (1 1 0) surface. This force field is then used to study the wetting of liquid Li on the (1 1 0) surface of Mo and to examine the Li-Mo interface using molecular dynamics simulations. From droplet simulations, we find that liquid Li tends to completely wet the perfect Mo (1 1 0) surface, in contradiction with previous experimental measurements that found non-zero contact angles for liquid Li on a Mo substrate. However, these experiments were not carried out under ultra-high vacuum conditions or with a perfect (1 1 0) Mo surface, suggesting that the presence of impurities, such as oxygen, and surface structure play a crucial role in this wetting process. From thin-film simulations, it is observed that the first layer of Li on the Mo (1 1 0) surface has many solid-like properties such as a low mobility and a larger degree of ordering when compared to layers further away from the surface, even at temperatures well above the bulk melting temperature of Li. These findings are consistent with temperature-programmed desorption experiments.
NASA Astrophysics Data System (ADS)
Liu, Chia-Wei; Wang, Chia; Liao, Chia-Wei; Golder, Jan; Tsai, Ming-Chih; Young, Hong-Tsu; Chen, Chin-Ti; Wu, Chih-I.
2018-04-01
We demonstrate the use of solution-processed molybdenum trioxide (MoO3) nanoparticle-decorated molybdenum disulfide (MoS2) nanosheets (MoS2/MoO3) as hole injection layer (HIL) in organic lighting diodes (OLEDs). The device performance is shown to be significantly improved by the introduction of such MoS2/MoO3 HIL without any post-ultraviolet-ozone treatment, and is shown to better the performance of devices fabricated using conventional poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) and MoO3 nanoparticle HILs. The MoS2/MoO3 nanosheets form a compact film, as smooth as PEDOT:PSS films and smoother than MoO3 nanoparticle films, when simply spin-coated on indium tin oxide substrates. The improvement in device efficiency can be attributed to the smooth surface of the nanostructured MoS2/MoO3 HIL and the excellent conductivity characteristics of the two-dimensional (2D) layered material (MoS2), which facilitate carrier transport in the device and reduce the sheet resistance. Moreover, the long-term stability of OLED devices that use such MoS2/MoO3 layers is shown to be improved dramatically compared with hygroscopic and acidic PEDOT:PSS-based devices.
Flexible room-temperature formaldehyde sensors based on rGO film and rGo/MoS2 hybrid film
NASA Astrophysics Data System (ADS)
Li, Xian; Wang, Jing; Xie, Dan; Xu, Jianlong; Xia, Yi; Li, Weiwei; Xiang, Lan; Li, Zhemin; Xu, Shiwei; Komarneni, Sridhar
2017-08-01
Gas sensors based on reduced graphene oxide (rGO) films and rGO/MoS2 hybrid films were fabricated on polyethylene naphthalate substrates by a simple self-assembly method, which yielded flexible devices for detection of formaldehyde (HCHO) at room temperature. The sensing test results indicated that the rGO and rGO/MoS2 sensors were highly sensitive and fully recoverable to a ppm-level of HCHO. The bending and fatigue test results revealed that the sensors were also mechanically robust, durable and effective for long-term use. The rGO/MoS2 sensors showed higher sensitivities than rGO sensors, which was attributed to the enhanced HCHO adsorption and electron transfer mediated by MoS2. Furthermore, two kinds of MoS2 nanosheets were prepared by either hydrothermal synthesis or chemical exfoliation and were compared for their detection of HCHO, which revealed that the hydrothermally produced MoS2 nanosheets with rich defects led to enhanced sensitivity of the rGO/MoS2 sensors. Moreover, these fabricated flexible sensors can be applied for the HCHO detection in food packaging.
Flexible room-temperature formaldehyde sensors based on rGO film and rGo/MoS2 hybrid film.
Li, Xian; Wang, Jing; Xie, Dan; Xu, Jianlong; Xia, Yi; Li, Weiwei; Xiang, Lan; Li, Zhemin; Xu, Shiwei; Komarneni, Sridhar
2017-08-11
Gas sensors based on reduced graphene oxide (rGO) films and rGO/MoS 2 hybrid films were fabricated on polyethylene naphthalate substrates by a simple self-assembly method, which yielded flexible devices for detection of formaldehyde (HCHO) at room temperature. The sensing test results indicated that the rGO and rGO/MoS 2 sensors were highly sensitive and fully recoverable to a ppm-level of HCHO. The bending and fatigue test results revealed that the sensors were also mechanically robust, durable and effective for long-term use. The rGO/MoS 2 sensors showed higher sensitivities than rGO sensors, which was attributed to the enhanced HCHO adsorption and electron transfer mediated by MoS 2 . Furthermore, two kinds of MoS 2 nanosheets were prepared by either hydrothermal synthesis or chemical exfoliation and were compared for their detection of HCHO, which revealed that the hydrothermally produced MoS 2 nanosheets with rich defects led to enhanced sensitivity of the rGO/MoS 2 sensors. Moreover, these fabricated flexible sensors can be applied for the HCHO detection in food packaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meral, Kadem, E-mail: kademm@atauni.edu.tr; Arik, Mustafa, E-mail: marik@tatauni.edu.tr; Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr
Thin films of pyronin dye mixed with poly(vinyl alcohol) (PVA) on glass substrate were prepared by using spin-coating technique. The optical and morphological properties of the thin films were studied by UV-Vis., steady-state fluorescence spectroscopies and atomic force microscopy (AFM). The thin films on glass substrate were fabricated at various [PVA]/[dye] (P/D) ratios. Hence, the monomeric and H-aggregates thin films of pyronin dye mixed with PVA were formed as a function of the dye and PVA concentration. It was determined that while the monomeric thin films showed strong fluorescence, the formation of H-aggregates in the thin film caused to decreasingmore » the fluorescence intensity. AFM studies demonstrated that the morphology of the thin film was drastically varied with changing the optical property of the thin film such as monomeric and H-aggregates thin films.« less
Versatile technique for assessing thickness of 2D layered materials by XPS
NASA Astrophysics Data System (ADS)
Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.; Hu, Jianjun; Paul, Rajib; Kumar, Anurag; Pacley, Shanee; Glavin, Nicholas; Saenz, David; Smith, Kyle C.; Fisher, Timothy S.; Voevodin, Andrey A.
2018-03-01
X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) and the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Therefore, after XPS analysis, exactly the same sample can undergo further processing or utilization.
Versatile technique for assessing thickness of 2D layered materials by XPS
Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.; ...
2018-02-07
X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS 2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) andmore » the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Furthermore, after XPS analysis, exactly the same sample can undergo further processing or utilization.« less
Versatile technique for assessing thickness of 2D layered materials by XPS.
Zemlyanov, Dmitry Y; Jespersen, Michael; Zakharov, Dmitry N; Hu, Jianjun; Paul, Rajib; Kumar, Anurag; Pacley, Shanee; Glavin, Nicholas; Saenz, David; Smith, Kyle C; Fisher, Timothy S; Voevodin, Andrey A
2018-03-16
X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS 2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) and the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Therefore, after XPS analysis, exactly the same sample can undergo further processing or utilization.
Versatile technique for assessing thickness of 2D layered materials by XPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.
X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS 2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) andmore » the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Furthermore, after XPS analysis, exactly the same sample can undergo further processing or utilization.« less
Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures
Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M.; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J.; Li, Lain-Jong; Wallace, Robert M.; Datta, Suman; Robinson, Joshua A.
2015-01-01
Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2–WSe2–graphene and WSe2–MoS2–graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics. PMID:26088295
Influence of the Metal-MoS2 interface on MoS2 Transistor Performance
NASA Astrophysics Data System (ADS)
Yuan, Hui; Cheng, Guangjun; Hight Walker, Angela; You, Lin; Kopanski, Joseph J.; Li, Qiliang; Richter, Curt A.
2015-03-01
We compare the electrical characteristics of MoS2 field-effect transistors (FETS) with Ag source/drain contacts with transistors with Ti contacts, and we demonstrate that the metal-MoS2 interface is crucial to the final device performance. The topography of 5nm Au/5nm Ag (contact layer) and 5nm Au/5nm Ti metal films deposited onto mono- and few-layer MoS2 was characterized by using scanning electron microscopy and atomic force microscopy. The surface morphology of the Au/Ti films on MoS2 shows a rough, dewetting pattern while Au/Ag forms smooth, dense films. These smoother and denser Au/Ag contacts lead to improved carrier transport efficiency. FETs with Ag contacts show more than 60 times higher on-state current and a steeper subthreshold slope. Raman spectroscopy of MoS2 covered with Au/Ag or Au/Ti films revealed that the contact layer is Ag or Ti, respectively. In addition, there is a dramatic difference in the heat transfer between the MoS2 and the two metals: while laser heating is observed in Au/Ti covered MoS2, no heating effects are seen in Au/Ag covered MoS2. It is reasonable to conclude that the smoother and denser Ag contact leads to higher carrier transport efficiency and contributes to the improved thermal properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battu, Anil K.; Manandhar, S.; Shutthanandan, V.
Here, an approach is presented to design refractory-metal incorporated Ga 2O 3-based materials with controlled structural and optical properties. The molybdenum (Mo)-content in Ga 2O 3 was varied from 0 to 11 at% in the sputter-deposited Ga-Mo-O films. Molybdenum was found to significantly affect the structure and optical properties. While low Mo-content (≤4 at%) results in the formation of single-phase (β-Ga 2O 3), higher Mo-content results in amorphization. Chemically-induced band gap variability (E g ~ 1 eV) coupled with structure-modification indicates the electronic-structure changes in Ga-Mo-O. The linear relationship between chemical-composition and optical properties suggests that tailoring the optical-quality andmore » performance of Ga-Mo-O films is possible by tuning the Mo-content.« less
Battu, Anil K.; Manandhar, S.; Shutthanandan, V.; ...
2017-07-01
Here, an approach is presented to design refractory-metal incorporated Ga 2O 3-based materials with controlled structural and optical properties. The molybdenum (Mo)-content in Ga 2O 3 was varied from 0 to 11 at% in the sputter-deposited Ga-Mo-O films. Molybdenum was found to significantly affect the structure and optical properties. While low Mo-content (≤4 at%) results in the formation of single-phase (β-Ga 2O 3), higher Mo-content results in amorphization. Chemically-induced band gap variability (E g ~ 1 eV) coupled with structure-modification indicates the electronic-structure changes in Ga-Mo-O. The linear relationship between chemical-composition and optical properties suggests that tailoring the optical-quality andmore » performance of Ga-Mo-O films is possible by tuning the Mo-content.« less
Shi, Zonghai; Zhou, Yunshan; Zhang, Lijuan; Yang, Di; Mu, Cuncun; Ren, Haizhou; Shehzad, Farooq Khurum; Li, Jiaqi
2015-03-07
Composite films derived from the water-soluble Keplerate-type polyoxometalate (NH4)42[Mo132O372(CH3COO)30(H2O)72]·ca. 300H2O·ca. 10CH3COONH4 (denoted (NH4)42{Mo132}) and chloroform-soluble tetraphenylporphyrin perchlorate [H2TPP](ClO4)2 are successfully fabricated by a layer-by-layer self-assembly method and characterized by UV-vis spectroscopy and X-ray photoelectron spectroscopy (XPS). The structure of the {Mo132} and [H2TPP](2+) in the films remain intact in light of the results of UV-vis spectroscopy and XPS. UV-vis spectra measurements reveal that the amounts of deposition of {Mo132} and [H2TPP](2+) remain constant in every adsorption cycle in the composite films assembly process. Nonlinear optical properties of the composite films have been investigated by using the Z-scan technique at a wavelength of 532 nm and pulse width of 7 ns. The results show that the composite films have notable nonlinear saturated absorption and self-defocusing effects. The combination of {Mo132} with [H2TPP](2+) can result in composite films with remarkably enhanced optical nonlinearities. The interfacial charge transfer induced by laser from porphyrin to POM in the films is thought to play a key role in the enhancement of NLO response. The third-order NLO susceptibility χ((3)) of the composite films increases with the increase of film thickness.
NASA Astrophysics Data System (ADS)
Sun, Dawei; Chen, Cihai; Zhang, Jun; Wu, Xiaomin; Chen, Huipeng; Guo, Tailiang
2018-01-01
Fabrication of metal oxide thin film transistor (MOTFT) arrays using the inkjet printing process has caused tremendous interest for low-cost and large-area flexible electronic devices. However, the inkjet-printed MOTFT arrays usually exhibited a non-uniform geometry due to the coffee ring effect, which restricted their commercial application. Therefore, in this work, a strategy is reported to control the geometry and enhance device performance of inkjet-printed MOTFT arrays by the addition of an insulating polymer to the precursor solution prior to film deposition. Moreover, the impact of the polymer molecular weight (MW) on the geometry, chemical constitution, crystallization, and MOTFT properties of inkjet-printed metal oxide depositions was investigated. The results demonstrated that with an increase of MW of polystyrene (PS) from 2000 to 200 000, the coffee ring was gradually faded and the coffee ring effect was completely eliminated when MW reached 200 000, which is associated with the enhanced viscosity with the insulating polymer, providing a high resistance to the outward capillary flow, which facilitated the depinning of the contact line, leading to the elimination of the coffee ring. More importantly, the carrier mobility increased significantly from 4.2 cm2 V-1 s-1 up to 13.7 cm2 V-1 s-1 as PS MW increased from 2000 to 200 000, which was about 3 times that of the pristine In2O3 TFTs. Grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy results indicated that PS doping of In2O3 films not only frustrated crystallization but also altered chemical constitution by enhancing the formation of the M-O structure, both of which facilitated the carrier transport. These results demonstrated that the simple polymer additive process provides a promising method that can efficiently control the geometry of MO arrays during inkjet printing and maximize the device performance of MOTFT arrays, which showed great potential for the application in next generation printed displays and integrated circuits.
NASA Astrophysics Data System (ADS)
Windom, Bret C.
Friction and wear have undisputedly huge macroscopic effects on the cost and lifetime of many mechanical systems. The cost to replace parts and the cost to overcome the energy losses associated with friction, although small in nature, can be enormous over long operating times. The understanding of wear and friction begins with the understanding of the physics and chemistry between the reacting surfaces on a microscopic level. Light as a diagnostic tool is a good candidate to perform the very sensitive microscopic measurements needed to help understand the fundamental science occurring in friction/wear systems. Light's small length scales provide the capabilities to characterize very local surface phenomena, including thin transfer films and surface chemical transitions. Light-based diagnostic techniques provide nearly instantaneous results, enabling one to make in situ/real time measurements which could be used to track wear events and associated chemical kinetics. In the present study, two optical diagnostic techniques were investigated for the analysis of tribological systems. The first technique employed was Raman spectroscopy. Raman spectroscopy was investigated as a possible means for in situ measurement of thin transfer films in order to track the wear kinetics and structural transitions of bulk polymers. A micro-Raman system was designed, built, and characterized to track fresh wear films created from a pin-on-disk tribometer. The system proved capable of characterizing and tracking wear film thicknesses of ˜2 mum and greater. In addition, the system provided results indicating structural changes in the wear film as compared to the bulk when sliding speeds were increased. The spectral changes due to the altering of molecular vibrations can be attributed to the increase in temperature during high sliding speeds. Raman spectroscopy was also used to characterize the oxidation of molybdenum disulphide, a solid lubricant used in many applications, including high vacuum sliding. Resonance Raman effects were observed when an excitation wavelength of 632.8 nm was used. Raman spectroscopy was carried out on amorphous MoS2 while its temperature was increased to track the thermally induced oxidation of the MoS2 surface. In addition, other forms of MoS2 were investigated through Raman spectroscopy in which key distinctions between spectra were made. The second technique employed was atomic emission spectroscopy (AES) used to measure constituent species present in arcs created during electrical sliding contacts. Spectra indicated the presence of copper and zinc in the arcs created between copper fiber bundled brushes and a copper rotor. Atomic emission was used to measure the arc duration with a photo-multiplier tube (PMT) while the collected spectra were processed to assess arc temperature. The results suggest arcing in high-current electrical sliding contacts may be at least partially responsible for the high asymmetrical wear measured during tribology tests.
Nanowire CdS-CdTe solar cells with molybdenum oxide as contact
Dang, Hongmei; Singh, Vijay P.
2015-10-06
Using a 10 nm thick molybdenum oxide (MoO 3-x) layer as a transparent and low barrier contact to p-CdTe, we demonstrate nanowire CdS-CdTe solar cells with a power conversion efficiency of 11% under front side illumination. Annealing the as-deposited MoO 3 film in N2 resulted in a reduction of the cell’s series resistance, from 9.97 Ω/cm 2 to 7.69 Ω/cm 2, and increase in efficiency from 9.9% to 11%. Under illumination from the back, the MoO 3-x/Au side, the nanowire solar cells yielded Jsc of 21 mA/cm 2 and efficiency of 8.67%. Our results demonstrate use of a thin layermore » transition metal oxide as a potential way for a transparent back contact to nanowire CdS-CdTe solar cells. As a result, this work has implications toward enabling a novel superstrate structure nanowire CdS-CdTe solar cell on Al foil substrate by a low cost roll-to roll fabrication process.« less
NASA Astrophysics Data System (ADS)
El Makkaoui, Mohammed
Iron pyrite (cubic FeS2) is a non-toxic, earth abundant semiconductor possessing a set of excellent optical/electronic properties for serving as an absorber layer in PV devices. Additionally, pyrite is a very efficient hydroxyl radical generator via Fenton chemistry and has shown promise in oxidative protein and DNA foot-printing application. The main focus of this thesis is on fabricating phase and elementally pure iron pyrite thin films using a solution-based approach that employs hydrazine as a solvent. A precursor ink is formed at room temperature by mixing elemental iron and sulfur in anhydrous hydrazine and then deposited on Mo-coated glass substrates, via spin coating, to yield amorphous iron sulfide films that are then annealed in H2S (340°C) and sulfur gas (≤ 500 °C) to form uniform, polycrystalline and phase pure pyrite films with densely packed grains. This approach is likely to yield the most elementally pure pyrite thin films made to date, through a very simple and scalable process. The ink has shown to be very sensitive to environmental conditions and has a very short shelf life (˜1 day). Additionally, the film microstructure is greatly influenced by the S:Fe concentration ratio that when tuned to 3:1, yielded uniform, robust and optically flat iron sulfide thin films with an optimal thickness (˜320 nm) for PV application. The results however were not reproducible, mainly due to failure in applying multiple layers without compromising film morphology. Thinner (< 100 nm) iron sulfide films, on the other hand, are reproducibly produced, but are too thin to be employed in PV devices. Direct annealing in sulfur gas at 475°C for 4 hours, bypassing the > 12 hour H2S annealing step, yielded phase pure pyrite films, with good morphology, at lower processing time and annealing temperatures (< 500°C). The latter part of this thesis regards the use of pyrite nano-crystals in conjunction with high surface area polymer laminates for protein foot-printing application in collaboration with the Brenowitz lab at the Albert Einstein College of Medicine and the Khine lab at the University of California, Irvine. A thin film of pyrite nano-crystals is spray deposited (Video in supplementary ) onto a shape memory polymer that is then thermally treated with a heat gun, causing the sheet to retract and stiffen as the nanocrystalline layer crumples and integrates into the polyolefin, forming a mechanically robust and highly reactive laminate of pyrite nano-crystals. Micro-wells are thermoformed into the laminate under negative pressure. ˙OH dose-oxidation response relationship were established via varying the H2O 2 concentration and reaction time. The flexibility, cost effectiveness and scalability of this platform enables integration into macro-structural analysis systems. Pyrite shrink laminates and hydrazine ink films were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), and Raman Spectroscopy. Drop deposition oxidation experiments and MALDI-TOF "Matrix Assisted Laser Desorption/Ionization-Time of Flight" Mass Spectroscopy of protein aliquots reacted on PSWL were conducted in the Brenowitz lab at the department of biochemistry at the Albert Einstein College of Medicine in New York.
Interfaces of high-efficiency kesterite Cu2ZnSnS(e)4 thin film solar cells
NASA Astrophysics Data System (ADS)
Gao, Shoushuai; Jiang, Zhenwu; Wu, Li; Ao, Jianping; Zeng, Yu; Sun, Yun; Zhang, Yi
2018-01-01
Cu2ZnSnS(e)4 (CZTS(e)) solar cells have attracted much attention due to the elemental abundance and the non-toxicity. However, the record efficiency of 12.6% for Cu2ZnSn(S,Se)4 (CZTSSe) solar cells is much lower than that of Cu(In,Ga)Se2 (CIGS) solar cells. One crucial reason is the recombination at interfaces. In recent years, large amount investigations have been done to analyze the interfacial problems and improve the interfacial properties via a variety of methods. This paper gives a review of progresses on interfaces of CZTS(e) solar cells, including: (1) the band alignment optimization at buffer/CZTS(e) interface, (2) tailoring the thickness of MoS(e)2 interfacial layers between CZTS(e) absorber and Mo back contact, (3) the passivation of rear interface, (4) the passivation of front interface, and (5) the etching of secondary phases.
Soft X-Ray Optics by Pulsed Laser Deposition
NASA Technical Reports Server (NTRS)
Fernandez, Felix E.
1996-01-01
Mo/Si and C/Co multilayers for soft x-ray optics were designed for spectral regions of interest in possible applications. Fabrication was effected by Pulsed Laser Deposition using Nd:YAG (355 nm) or excimer (248 nm) lasers in order to evaluate the suitability of this technique. Results for Mo/Si structures were not considered satisfactory due mainly to problems with particulate production and target surface modification during Si ablation. These problems may be alleviated by a two-wavelength approach, using separate lasers for each target. Results for C/Co multilayers are much more encouraging, since indication of good layering was observed for extremely thin layers. We expect to continue investigating this possibility. In order to compete with traditional PVD techniques, it is necessary to achieve film coverage uniformity over large enough areas. It was shown that this is feasible, and novel means of achieving it were devised.
Fabrication of MgFe2O4/MoS2 Heterostructure Nanowires for Photoelectrochemical Catalysis.
Fan, Weiqiang; Li, Meng; Bai, Hongye; Xu, Dongbo; Chen, Chao; Li, Chunfa; Ge, Yilin; Shi, Weidong
2016-02-16
A novel one-dimensional MgFe2O4/MoS2 heterostructure has been successfully designed and fabricated. The bare MgFe2O4 was obtained as uniform nanowires through electrospinning, and MoS2 thin film appeared on the surface of MgFe2O4 after further chemical vapor deposition. The structure of the MgFe2O4/MoS2 heterostructure was systematic investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectrometry (XPS), and Raman spectra. According to electrochemical impedance spectroscopy (EIS) results, the MgFe2O4/MoS2 heterostructure showed a lower charge-transfer resistance compared with bare MgFe2O4, which indicated that the MoS2 played an important role in the enhancement of electron/hole mobility. MgFe2O4/MoS2 heterostructure can efficiently degrade tetracycline (TC), since the superoxide free-radical can be produced by sample under illumination due to the active species trapping and electron spin resonance (ESR) measurement, and the optimal photoelectrochemical degradation rate of TC can be achieved up to 92% (radiation intensity: 47 mW/cm(2), 2 h). Taking account of its unique semiconductor band gap structure, MgFe2O4/MoS2 can also be used as an photoelectrochemical anode for hydrogen production by water splitting, and the hydrogen production rate of MgFe2O4/MoS2 was 5.8 mmol/h·m(2) (radiation intensity: 47 mW/cm(2)), which is about 1.7 times that of MgFe2O4.
NASA Technical Reports Server (NTRS)
Wheeler, D. R.
1978-01-01
X-ray photoelectron spectroscopy was used to characterize radiofrequency sputter deposited films of several refractory compounds. Both the bulk film properties such as purity and stoichiometry and the character of the interfacial region between the film and substrate were examined. The materials were CrB2, MoS2, Mo2C, and Mo2B5 deposited on 440C steel. It was found that oxygen from the sputtering target was the primary impurity in all cases. Biasing improves the film purity. The effect of biasing on film stoichiometry is different for each compound. Comparison of the interfacial composition with friction data suggests that adhesion of these films is improved if a region of mixed film and iron oxides can be formed.
Kirner, Joel T; Finke, Richard G
2017-08-23
A planar organic thin film composed of a perylene diimide dye (N,N'-bis(phosphonomethyl)-3,4,9,10-perylenediimide, PMPDI) with photoelectrochemically deposited cobalt oxide (CoO x ) catalyst was previously shown to photoelectrochemically oxidize water (DOI: 10.1021/am405598w). Herein, the same PMPDI dye is studied for the sensitization of different nanostructured metal oxide (nano-MO x ) films in a dye-sensitized photoelectrochemical cell architecture. Dye adsorption kinetics and saturation decreases in the order TiO 2 > SnO 2 ≫ WO 3 . Despite highest initial dye loading on TiO 2 films, photocurrent with hydroquinone (H 2 Q) sacrificial reductant in pH 7 aqueous solution is much higher on SnO 2 films, likely due to a higher driving force for charge injection into the more positive conduction band energy of SnO 2 . Dyeing conditions and SnO 2 film thickness were subsequently optimized to achieve light-harvesting efficiency >99% at the λ max of the dye, and absorbed photon-to-current efficiency of 13% with H 2 Q, a 2-fold improvement over the previous thin-film architecture. A CoO x water-oxidation catalyst was photoelectrochemically deposited, allowing for photoelectrochemical water oxidation with a faradaic efficiency of 31 ± 7%, thus demonstrating the second example of a water-oxidizing, dye-sensitized photoelectrolysis cell composed entirely of earth-abundant materials. However, deposition of CoO x always results in lower photocurrent due to enhanced recombination between catalyst and photoinjected electrons in SnO 2 , as confirmed by open-circuit photovoltage measurements. Possible future studies to enhance photoanode performance are discussed, including alternative catalyst deposition strategies or structural derivatization of the perylene dye.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirner, Joel T.; Finke, Richard G.
A planar organic thin film composed of a perylene diimide dye (N,N'-bis(phosphonomethyl)-3,4,9,10-perylenediimide, PMPDI) with photoelectrochemically deposited cobalt oxide (CoO x) catalyst was previously shown to photoelectrochemically oxidize water (DOI: 10.1021/am405598w). Herein, the same PMPDI dye is studied for the sensitization of different nanostructured metal oxide (nano-MO x) films in a dye-sensitized photoelectrochemical cell architecture. Dye adsorption kinetics and saturation decreases in the order TiO 2 > SnO 2 >> WO 3. Despite highest initial dye loading on TiO 2 films, photocurrent with hydroquinone (H 2Q) sacrificial reductant in pH 7 aqueous solution is much higher on SnO 2 films, likelymore » due to a higher driving force for charge injection into the more positive conduction band energy of SnO 2. Dyeing conditions and SnO 2 film thickness were subsequently optimized to achieve light-harvesting efficiency >99% at the λmax of the dye, and absorbed photon-to-current efficiency of 13% with H 2Q, a 2-fold improvement over the previous thin-film architecture. A CoO x water-oxidation catalyst was photoelectrochemically deposited, allowing for photoelectrochemical water oxidation with a faradaic efficiency of 31 ± 7%, thus demonstrating the second example of a water-oxidizing, dye-sensitized photoelectrolysis cell composed entirely of earth-abundant materials. However, deposition of CoO x always results in lower photocurrent due to enhanced recombination between catalyst and photoinjected electrons in SnO 2, as confirmed by open-circuit photovoltage measurements. Possible future studies to enhance photoanode performance are also discussed, including alternative catalyst deposition strategies or structural derivatization of the perylene dye.« less
Tricolor microcavity OLEDs based on P-nc-Si:H films as the complex anodes
NASA Astrophysics Data System (ADS)
Yang, Li; Xingyuan, Liu; Chunya, Wu; Zhiguo, Meng; Yi, Wang; Shaozhen, Xiong
2009-06-01
A P+-nc-Si:H film (boron-doped nc-Si:H thin film) was used as a complex anode of an OLED. As an ideal candidate for the composite anode, the P+-nc-Si:H thin film has a good conductivity with a high work function (~ 5.7 eV) and outstanding optical properties of high reflectivity, transmission, and a very low absorption. As a result, the combination of the relatively high reflectivity of a P+-nc-Si:H film/ITO complex anode with the very high reflectivity of an Al cathode could form a micro-cavity structure with a certain Q to improve the efficiency of the OLED fabricated on it. An RGB pixel generated by microcavity OLEDs is beneficial for both the reduction of the light loss and the improvement of the color purity and the efficiency. The small molecule Alq would be useful for the emitting light layer (EML) of the MOLED, and the P+-nc-Si film would be used as a complex anode of the MOLED, whose configuration can be constructed as Glass/LTO/P+-nc-Si:H/ITO/MoO3/NPB/Alq/LiF/Al. By adjusting the thickness of the organic layer NPB/Alq, the optical length of the microcavity and the REB colors of the device can be obtained. The peak wavelengths of an OLED are located at 486, 550, and 608 nm, respectively. The CIE coordinates are (0.21, 0.45), (0.33, 0.63), and (0.54, 0.54), and the full widths at half maximum (FWHM) are 35, 32, and 39 nm for red, green, and blue, respectively.
Kirner, Joel T.; Finke, Richard G.
2017-07-20
A planar organic thin film composed of a perylene diimide dye (N,N'-bis(phosphonomethyl)-3,4,9,10-perylenediimide, PMPDI) with photoelectrochemically deposited cobalt oxide (CoO x) catalyst was previously shown to photoelectrochemically oxidize water (DOI: 10.1021/am405598w). Herein, the same PMPDI dye is studied for the sensitization of different nanostructured metal oxide (nano-MO x) films in a dye-sensitized photoelectrochemical cell architecture. Dye adsorption kinetics and saturation decreases in the order TiO 2 > SnO 2 >> WO 3. Despite highest initial dye loading on TiO 2 films, photocurrent with hydroquinone (H 2Q) sacrificial reductant in pH 7 aqueous solution is much higher on SnO 2 films, likelymore » due to a higher driving force for charge injection into the more positive conduction band energy of SnO 2. Dyeing conditions and SnO 2 film thickness were subsequently optimized to achieve light-harvesting efficiency >99% at the λmax of the dye, and absorbed photon-to-current efficiency of 13% with H 2Q, a 2-fold improvement over the previous thin-film architecture. A CoO x water-oxidation catalyst was photoelectrochemically deposited, allowing for photoelectrochemical water oxidation with a faradaic efficiency of 31 ± 7%, thus demonstrating the second example of a water-oxidizing, dye-sensitized photoelectrolysis cell composed entirely of earth-abundant materials. However, deposition of CoO x always results in lower photocurrent due to enhanced recombination between catalyst and photoinjected electrons in SnO 2, as confirmed by open-circuit photovoltage measurements. Possible future studies to enhance photoanode performance are also discussed, including alternative catalyst deposition strategies or structural derivatization of the perylene dye.« less
Fast solid-phase synthesis of large-area few-layer 1T'-MoTe2 films
NASA Astrophysics Data System (ADS)
Xie, Sheng; Chen, Lin; Zhang, Tian-Bao; Nie, Xin-Ran; Zhu, Hao; Ding, Shi-Jin; Sun, Qing-Qing; Zhang, David Wei
2017-06-01
In this study, we report on a novel approach to produce ∼12 nm thick few-layer monoclinic 1T'-MoTe2 films. The deposition method comprised sputtering of Mo, molecular beam epitaxy of Te, and rapid thermal processing to effect tellurization of the Mo into 1T'-MoTe2. The heating rate and annealing time are the critical factors. 30 °C s-1 heating rate and 2 min annealing at 470 °C were adopted in this work. X-ray photoelectron spectroscopy confirmed the formation of stoichiometric 1T'-MoTe2 films, while X-ray diffraction confirmed the monoclinic polymorph. Raman spectroscopy confirmed spatial uniformity over the sample size of 1 cm × 1.5 cm. Our fast synthesis approach to realize high-quality 1T'-MoTe2 paves the way towards the large-scale application of 1T'-MoTe2 in high-performance nanoelectronics and optoelectronics.
NASA Astrophysics Data System (ADS)
Chaudhari, J. J.; Joshi, U. S.
2018-05-01
In this study kesterite Cu2ZnSnS4 (CZTS) thin films suitable for absorber layer in thin film solar cells (TFSCs) were successfully fabricated on glass substrate by sol-gel method. The effects of complexing agent on formation of CZTS thin films have been investigated. X-ray diffraction (XRD) analysis confirms formation of polycrystalline CZTS thin films with single phase kesterite structure. XRD and Raman spectroscopy analysis of CZTS thin films with optimized concentration of complexing agent confirmed formation of kesterite phase in CZTS thin films. The direct optical band gap energy of CZTS thin films is found to decrease from 1.82 to 1.50 eV with increase of concentration of complexing agent triethanolamine. Morphological analysis of CZTS thin films shows smooth, uniform and densely packed CZTS grains and increase in the grain size with increase of concentration of complexing agent. Hall measurements revealed that concentration of charge carrier increases and resistivity decreases in CZTS thin films as amount of complexing agent increases.
Thin film cell development workshop report
NASA Technical Reports Server (NTRS)
Woodyard, James R.
1991-01-01
The Thin Film Development Workshop provided an opportunity for those interested in space applications of thin film cells to debate several topics. The unique characteristics of thin film cells as well as a number of other issues were covered during the discussions. The potential of thin film cells, key research and development issues, manufacturing issues, radiation damage, substrates, and space qualification of thin film cells were discussed.
Evaluation of ion-sputtered molybdenum disulfide bearings for spacecraft gimbals
NASA Astrophysics Data System (ADS)
Loewenthal, S. H.; Chou, R. G.; Hopple, G. B.; Wenger, W. L.
1994-07-01
High-density, sputtered molybdenum disulfide films (MoS2) were investigated as lubricants for the next generation of spacecraft gimbal bearings where low torque signatures and long life are required. Low friction in a vacuum environment, virturally no out-gassing, insensitivity to low temperature, and radiation resistance of these lubricant films are valued in such applications. One hundred and twenty five thousand hours of acumulated bearing test time were obtained on 24 pairs of flight-quality bearings ion-sputtered with three types of advanced MoS2 films. Life tests were conducted in a vacuum over a simulated duty cycle for a space payload gimbal. Optimum retainer and ball material composition were investigated. Comparisions were made with test bearings lubricated with liquid space lubricants. Self-lubricating PTFE retainers were required for long life, i.e., greater than 40 million gimbal cycles. Bearings with polyimide retainers, silicon nitride ceramic balls, or steel balls sputtered with MoS2 film suffered early torque failure, irrespective of the type of race-sputtered MoS2 film. Failure generally resulted from excess film or retainer debris deposited in the ball track which tended to jam the bearing. Both grease lubricated and the better MoS2 film lubricated bearings produced long lives, although the torque with liquid lubricants was lower and less irregular.
Calibration of the Multi-Spectral Solar Telescope Array multilayer mirrors and XUV filters
NASA Technical Reports Server (NTRS)
Allen, Maxwell J.; Willis, Thomas D.; Kankelborg, Charles C.; O'Neal, Ray H.; Martinez-Galarce, Dennis S.; Deforest, Craig E.; Jackson, Lisa; Lindblom, Joakim; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.
1993-01-01
The Multi-Spectral Solar Telescope Array (MSSTA), a rocket-borne solar observatory, was successfully flown in May, 1991, obtaining solar images in eight XUV and FUV bands with 12 compact multilayer telescopes. Extensive measurements have recently been carried out on the multilayer telescopes and thin film filters at the Stanford Synchrotron Radiation Laboratory. These measurements are the first high spectral resolution calibrations of the MSSTA instruments. Previous measurements and/or calculations of telescope throughputs have been confirmed with greater accuracy. Results are presented on Mo/Si multilayer bandpass changes with time and experimental potassium bromide and tellurium filters.
Spectroscopic Studies of Double Beta Decays and MOON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ejiri, H.; Nuclear Science, Czech Technical University, Brehova, Prague, Czech Republic, National Institute of Radiological Sciences, Chiba, 263-8555
2007-10-12
This is a brief review of future spectroscopic experiments of neutrino-less double beta decays (0{nu}{beta}{beta}) and the MOON (Mo Observatory Of Neutrinos) project. Spectroscopic 0{nu}{beta}{beta} experiments of MOON, SuperNEMO and DCBA are planned to study Majorana masses in the quasi-degenerate (QD) and inverted mass hierarchy (IH) regions. MOON aims at 0{nu}{beta}{beta} studies with the {nu}-mass sensitivities of 100-30 meV by means of a super ensemble of multi-layer modules, each being consist of a scintillator plate, two tracking detector planes and a thin {beta}{beta} source film.
Composite polymeric film and method for its use in installing a very-thin polymeric film in a device
Duchane, D.V.; Barthell, B.L.
1982-04-26
A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.
Composite polymeric film and method for its use in installing a very thin polymeric film in a device
Duchane, David V.; Barthell, Barry L.
1984-01-01
A composite polymeric film and a method for its use in forming and installing a very thin (<10 .mu.m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectively dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to be successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.
Zhang, Li; Li, Yanbo; Li, Changli; Chen, Qiao; Zhen, Zhen; Jiang, Xin; Zhong, Miao; Zhang, Fuxiang; Zhu, Hongwei
2017-12-26
A highly efficient low-band-gap (1.2-0.8 eV) photoelectrode is critical for accomplishing efficient conversion of visible-near-infrared sunlight into storable hydrogen. Herein, we report an Sb 2 Se 3 polycrystalline thin-film photocathode having a low band gap (1.2-1.1 eV) for efficient hydrogen evolution for wide solar-spectrum utilization. The photocathode was fabricated by a facile thermal evaporation of a single Sb 2 Se 3 powder source onto the Mo-coated soda-lime glass substrate, followed by annealing under Se vapor and surface modification with an antiphotocorrosive CdS/TiO 2 bilayer and Pt catalyst. The fabricated Sb 2 Se 3 (Se-annealed)/CdS/TiO 2 /Pt photocathode achieves a photocurrent density of ca. -8.6 mA cm -2 at 0 V RHE , an onset potential of ca. 0.43 V RHE , a stable photocurrent for over 10 h, and a significant photoresponse up to the near-infrared region (ca. 1040 nm) in near-neutral pH buffered solution (pH 6.5) under AM 1.5G simulated sunlight. The obtained photoelectrochemical performance is attributed to the reliable synthesis of a micrometer-sized Sb 2 Se 3 (Se-annealed) thin film as photoabsorber and the successful construction of an appropriate p-n heterojunction at the electrode-liquid interface for effective charge separation. The demonstration of a low-band-gap and high-performance Sb 2 Se 3 photocathode with facile fabrication might facilitate the development of cost-effective PEC devices for wide solar-spectrum utilization.
Influence of the deposition conditions on radiofrequency magnetron sputtered MoS2 films
NASA Technical Reports Server (NTRS)
Steinmann, Pierre A.; Spalvins, Talivaldis
1990-01-01
By varying the radiofrequency (RF) power, the Ar pressure, and the potential on the substrates, MoS(x) films of various stoichiometry, density, adhesion, and morphology were produced. An increase of RF power increased the deposition rate and density of the MoS2 films as well as improved adhesion. However, the stoichiometry remained constant. An increase of Ar pressure increased the deposition rate but decreased the density, wheras both stoichiometry and adhesion were maximized at around 20 mtorr Ar pressure. Furthermore, a transition from compact film growth to columnar film growth was observed when the pressure was varied from 5 to 15 mtorr. Substoichiometric films were grown when a negative (bias) voltage was applied to the substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Deming; Shvydko, Yury; Stoupin, Stanislav
A method and mechanical design for a thin-film diamond crystal mounting apparatus for coherence preservation x-ray optics with optimized thermal contact and minimized crystal strain are provided. The novel thin-film diamond crystal mounting apparatus mounts a thin-film diamond crystal supported by a thick chemical vapor deposition (CVD) diamond film spacer with a thickness slightly thicker than the thin-film diamond crystal, and two groups of thin film thermal conductors, such as thin CVD diamond film thermal conductor groups separated by the thick CVD diamond spacer. The two groups of thin CVD film thermal conductors provide thermal conducting interface media with themore » thin-film diamond crystal. A piezoelectric actuator is integrated into a flexural clamping mechanism generating clamping force from zero to an optimal level.« less
Structure and optical properties of evaporated films of the Cr- and V-group metals
NASA Technical Reports Server (NTRS)
Nestell, J. E., Jr.; Christy, R. W.; Cohen, M. H.; Ruben, G. C.
1980-01-01
Thin films of Cr, Mo, and W rapidly evaporated in high vacuum (5 x 10 to the -7th torr) onto room-temperature substrates show anomalously low reflectance (compared to bulk samples). From electron and X-ray diffraction and electron microscopy, the normal bcc crystal structure is found, but with very fine grains. Columnar grains about 100 A in diameter were separated by a less dense grain-boundary network about 10-A wide. The measured optical conductivity agrees with an inhomogeneous-medium model that assumes the normal crystalline conductivity for the grain interiors, with model parameters that correlate to the observed columnar grain size. In contrast, V and Nb films rapidly evaporated onto room-temperature substrates have the reflectance of bulk crystalline material. On liquid-nitrogen temperature substrates, however, V and Nb have normal bcc crystal structure but with small flat-plate grains, and the same model, with appropriate parameters, accounts for the optical conductivity. The difference between these two groups apparently depends on residual gases segregated at the grain boundaries in the Cr-group films.