Science.gov

Sample records for mo-si mo-ge w-si

  1. Elastic moduli of MoSi sub 2 -based materials

    SciTech Connect

    Srinivasan, S.R.; Schwarz, R.B. )

    1992-07-01

    We prepared MoSi{sub 2}, two-phase MoSi{sub 2}/Mo{sub 5}Si{sub 3}, and (Mo,W)Si{sub 2} solid-solution alloy powders by mechanically alloying mixtures of elemental molybdenum, silicon, and tungsten. These powders were consolidated by hot-pressing them at 1500 {degree}C in graphite dies. We measured the elastic moduli of these alloys by a recently developed technique for non-contact ultrasonic spectroscopy. Second-phase Mo{sub 5}Si{sub 3} additions to MoSi{sub 2} result in decreased values for {ital G} and {ital E}, whereas alloying MoSi{sub 2} with WSi{sub 2} results in increased values for {ital G} and {ital E}. An analysis of these Young's moduli and of data from the literature for various intermetallic alloys suggests that for any given alloy system, the Young's moduli for its various intermetallics as a function of density fall on a straight line. Further, the lines for the different alloy systems are approximately parallel.

  2. MoSi2-Base Composites

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    2003-01-01

    Addition of 30 to 50 vol% of Si3N4 particulate to MoSi2 eliminated its low temperature catastrophic failure, improved room temperature fracture toughness and the creep resistance. The hybrid composite SCS-6/MoSi2-Si3N4 did not show any matrix cracking and exhibited excellent mechanical and environmental properties. Hi-Nicalon continuous fiber reinforced MoSi2-Si3N4 also showed good strength and toughness. A new MoSi2-base composite containing in-situ whisker-type (Beta)Si3N4 grains in a MoSi2 matrix is also described.

  3. Mo-Si alloy development

    SciTech Connect

    Liu, C.T.; Heatherly, L.; Wright, J.L.

    1996-06-01

    The objective of this task is to develop new-generation corrosion-resistant Mo-Si intermetallic alloys as hot components in advanced fossil energy conversion and combustion systems. The initial effort is devoted to Mo{sub 5}-Si{sub 3}-base (MSB) alloys containing boron additions. Three MSB alloys based on Mo-10.5Si-1.1B (wt %), weighing 1500 g were prepared by hot pressing of elemental and alloy powders at temperatures to 1600{degrees}C in vacuum. Microporosities and glassy-phase (probably silicate phases) formations are identified as the major concerns for preparation of MSB alloys by powder metallurgy. Suggestions are made to alleviate the problems of material processing.

  4. Combustion synthesis of a complex composite based on MoSi[sub 2

    SciTech Connect

    Subrahmanyam, J.; Mohan Rao, R.; Somaraju, K. . Combustion Synthesis Group)

    1994-11-15

    Self-propagating High-temperature Synthesis (SHS), also known as combustion synthesis, is gaining importance as a technique for producing powders and near net shape components of metals, intermetallics, ceramics and their composites. The agglomeration of reinforcement particles and their non-uniform distribution, which are often attributed to the poor strength of MoSi[sub 2] composites can be avoided in this process. SHS is capable of producing composites with a homogeneous distribution of fine reinforcements in a single step. MoSi[sub 2] has been produced by SHS earlier. The authors have reported the combustion synthesis of MoSi[sub 2]-SiC composites and MoSi[sub 2]-WSi[sub 2] alloys. In this paper, combustion synthesis of a complex composite, namely (Mo,W)Si[sub 2]-SiC, starting from elemental powders by the thermal explosion mode is reported. In the thermal explosion mode of SHS, a volumetric reaction occurs in the reactant compact when it is rapidly heated to the ignition temperature.

  5. Growth Kinetics and Microstructure Evolution of Intermediate Phases in MoSi2-Si3N4-WSi2/Mo Diffusion Couples

    NASA Astrophysics Data System (ADS)

    Zhang, Houan; Huang, Yu; Lin, Jia; Chen, Ying; Gu, Siyong

    2016-12-01

    The growth kinetics and silicon diffusion coefficients of intermediate silicide phases in MoSi2-3.5 vol.% Si3N4-5.0 vol.% WSi2/Mo diffusion couple prepared by spark plasma sintering were investigated in temperatures ranging from 1200 to 1500 °C. The intermediate silicide phases were characterized by x-ray diffraction. The microstructures and components of the MoSi2-Si3N4-WSi2/Mo composites were investigated using scanning electron microscope with energy-dispersive spectroscopy. A special microstructure with MoSi2 core surrounded by a thin layer of (Mo,W)Si2 ring was found in the MoSi2-Si3N4-WSi2 composites. The intermediate layers of Mo5Si3 and (Mo,W)5Si3 in the MoSi2-Si3N4-WSi2/Mo diffusion couples were formed at different diffusion stages, which grew parabolically. Activation energy of the growth of intermediate layers in MoSi2-3.5 vol.% Si3N4-5.0 vol.% WSi2/Mo diffusion couple was calculated to be 316 ± 23 kJ/mol. Besides, the hindering effect of WSi2 addition on the growth of intermediate layers was illustrated by comparing the silicon diffusion coefficients in MoSi2-3.5 vol.% Si3N4-5.0 vol.% WSi2/Mo and MoSi2-3.5 vol.% Si3N4/Mo diffusion couples. MoSi2-3.5 vol.% Si3N4-5.0 vol.% WSi2 coating on Mo substrate exhibited a better high-temperature oxidation resistance in air than that of MoSi2-3.5 vol.% Si3N4 coating.

  6. Growth Kinetics and Microstructure Evolution of Intermediate Phases in MoSi2-Si3N4-WSi2/Mo Diffusion Couples

    NASA Astrophysics Data System (ADS)

    Zhang, Houan; Huang, Yu; Lin, Jia; Chen, Ying; Gu, Siyong

    2017-02-01

    The growth kinetics and silicon diffusion coefficients of intermediate silicide phases in MoSi2-3.5 vol.% Si3N4-5.0 vol.% WSi2/Mo diffusion couple prepared by spark plasma sintering were investigated in temperatures ranging from 1200 to 1500 °C. The intermediate silicide phases were characterized by x-ray diffraction. The microstructures and components of the MoSi2-Si3N4-WSi2/Mo composites were investigated using scanning electron microscope with energy-dispersive spectroscopy. A special microstructure with MoSi2 core surrounded by a thin layer of (Mo,W)Si2 ring was found in the MoSi2-Si3N4-WSi2 composites. The intermediate layers of Mo5Si3 and (Mo,W)5Si3 in the MoSi2-Si3N4-WSi2/Mo diffusion couples were formed at different diffusion stages, which grew parabolically. Activation energy of the growth of intermediate layers in MoSi2-3.5 vol.% Si3N4-5.0 vol.% WSi2/Mo diffusion couple was calculated to be 316 ± 23 kJ/mol. Besides, the hindering effect of WSi2 addition on the growth of intermediate layers was illustrated by comparing the silicon diffusion coefficients in MoSi2-3.5 vol.% Si3N4-5.0 vol.% WSi2/Mo and MoSi2-3.5 vol.% Si3N4/Mo diffusion couples. MoSi2-3.5 vol.% Si3N4-5.0 vol.% WSi2 coating on Mo substrate exhibited a better high-temperature oxidation resistance in air than that of MoSi2-3.5 vol.% Si3N4 coating.

  7. Mo-Si-B Alloy Development

    SciTech Connect

    Schneibel, J.H.; Kruzie, J.J.; Ritchie, R.O.

    2003-04-24

    Mo-Si-B silicides consisting of the phases {alpha}-Mo (Mo solid solution), Mo{sub 3}Si, and Mo{sub 5}SiB{sub 2} have melting points on the order of 2000 C and have potential as ultra-high temperature structural materials. Mo-Si-B alloys can be processed such that the {alpha}-Mo is present in the form of isolated particles in a silicide matrix, or as a continuous matrix ''cementing'' individual silicide particles together. The latter microstructure is similar to that of WC-Co hard metals. This paper focuses on the relationship between the topology as well as scale of the microstructure of Mo-Mo{sub 3}Si-Mo{sub 5}SiB{sub 2} alloys, and their creep strength and fracture toughness. For example, the creep strength of Mo-Si-B alloys is improved by reducing the {alpha}-Mo volume fraction and by making the {alpha}-Mo phase discontinuous. The fracture toughness is improved by increasing the {alpha}-Mo volume fraction and by making the {alpha}-Mo phase continuous. Room temperature stress intensity factors as high as 21 MPa m{sup 1/2} were obtained. The room temperature fracture toughness of Mo-Si-B alloys can also be improved by microalloying with Zr. The room temperature ductility of Mo itself can be improved by adding MgAl{sub 2}O{sub 4} spinel particles suggesting yet another way to improve the ductile phase toughening of Mo-Si-B alloys.

  8. Comparison of lithographic performance between MoSi binary mask and MoSi attenuated PSM

    NASA Astrophysics Data System (ADS)

    Yamana, Mitsuharu; Lamantia, Matthew; Philipsen, Vicky; Wada, Shingo; Nagatomo, Tatsuya; Tonooka, Yoji

    2009-04-01

    The mask error budget continues to shrink with shrinking DRAM half pitch and MPU gate size year by year. The ITRS roadmap calls for mask CDU to be cut in half by 2014[1]. Both mask maker and mask user must take advantage of various mask properties, OPC strategies and resolution enhancement techniques to drive improvements. Mask material selection impacts both lithographic performance and mask manufacturability. In turn mask material properties and manufacturing techniques impact our ability to meet the technology roadmap. Studies have shown the advantages of polarized light[2,3] as well as the impact of various mask materials on high NA lithography[4]. In this paper we select the recently introduced binary mask material made from a MoSi absorber called Opaque MoSi On Glass (OMOG) for comparison with the conventional 6% att. PSM and 20% att. MoSi PSM. Through simulation and wafer prints, we optimized mask feature from viewpoint of MEEF and maximum exposure latitude (EL). The MoSi att. PSMs suffer from higher MEEF, which is attributed to the negative effect of TE polarization for mask duty cycle of 50% for 50 nm half pitch and below. Therefore a lower mask duty cycle is required for att. PSM to bring the MEEF performance back to acceptable levels. Experimental results confirm simulation results. As a result of the lower mask duty cycle, the att. MoSi PSMs exhibit poor Sub Resolution Assist Feature (SRAF) printability. On the contrary, the MoSi binary mask delivers both acceptable MEEF and acceptable SRAF printing performance. Moreover, we found that the mask structure impact of OMOG to wafer CD is smallest among three masks. OMOG gives the best combination of lithographic performance and delivery compared to the MoSi att. PSMs.

  9. Sonochemical Synthesis of Molybdenum Disilicide (MoSi2).

    DTIC Science & Technology

    2007-11-02

    Two successful solution phase synthesis methods were developed for the preparation of Nanocrystalline MoSi particles. The first method consisted of...ignition at approximately 500 deg C that resulted in the evolution of SiCl4 and the formation of MoSi crystallites. Nanoparticles were compacted using a

  10. A perspective on MoSi sub 2 based composites

    SciTech Connect

    Petrovic, J.J. ); Vasudevan, A.K. )

    1992-01-01

    MoSi{sub 2} based composites represent an important new class of high temperature structural silicides,'' with significant potential for elevated temperature structural applications in the range of 1200--1600{degrees}C in oxidizing and aggressive environments. The properties of MoSi{sub 2} which make it an attractive matrix for high temperature composites are described and the development history of these materials traced. Latest results on elevated temperature creep resistance, low temperature fracture toughness, and composite oxidation behavior are summarized. Important avenues for future MoSi{sub 2} based composite development are suggested.

  11. Adsorption of oxygen atom on MoSi2 (110) surface

    NASA Astrophysics Data System (ADS)

    Sun, S. P.; Li, X. P.; Wang, H. J.; Jiang, Y.; Yi, D. Q.

    2016-09-01

    The adsorption energy, structural relaxation and electronic properties of oxygen atom on MoSi2 (110) surface have been investigated by first-principles calculations. The energetic stability of MoSi2 low-index surfaces was analyzed, and the results suggested that MoSi2 (110) surface had energetically stability. The site of oxygen atom adsorbed on MoSi2 (110) surface were discussed, and the results indicated that the preference adsorption site of MoSi2 (110) surface for oxygen atom was H site (hollow position). Our calculated work should help to understand further the interaction between oxygen atoms and MoSi2 surfaces.

  12. Mo-Si-B-Based Coatings for Ceramic Base Substrates

    NASA Technical Reports Server (NTRS)

    Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)

    2015-01-01

    Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.

  13. MoSi2-Base Composite for Engine Applications

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Nathal, Michael V.

    1997-01-01

    The intermetallic compound MoSi2 has long been known as a high temperature material that has excellent oxidation resistance and electrical/thermal conductivity. Also its low cost, high melting point (2023 C), relatively low density (6.2 g/cm versus 8 g/cm for current engine materials), and ease of machining make it an attractive structural material. However, the use of MoSi2 has been hindered because of the brittle nature of the material at low temperatures, inadequate creep resistance at high temperatures, accelerated oxidation (also known as 'pest' oxidation) at temperatures between approximately 400 and 500 C, and a coefficient of thermal expansion (CTE) that is relatively high in comparison to potential reinforcing fibers such as SiC. This CTE mismatch between the fiber and the matrix resulted in severe matrix cracking during thermal cycling.

  14. Silicide layer growth rates in Mo/Si multilayers

    SciTech Connect

    Rosen, R.S.; Stearns, D.G. ); Viliardos, M.A.; Kassner, M.E. ); Vernon, S.P. ); Cheng, Y. )

    1993-12-01

    The thermal stability of sputter-deposited Mo/Si multilayers was investigated by annealing studies at relatively low temperatures ([similar to]250--350 [degree]C) for various times (0.5--3000 h). Two distinct stages of thermally activated Mo/Si interlayer growth were found: a primary surge, followed by a (slower) secondary steady-state growth in which the interdiffusion coefficient is constant. The interdiffusion coefficients for the interlayer formed by deposition of Mo-on-Si are higher than those of the interlayer formed by deposition of Si-on-Mo. Assuming that the activation energy is constant, an extrapolation of our results to ambient temperature finds that interlayer growth is negligible, suggesting long-term thermal stability in soft-x-ray projection lithography applications.

  15. Anisotropy of heat conduction in Mo/Si multilayers

    SciTech Connect

    Medvedev, V. V.; Yakshin, A. E.; Kruijs, R. W. E. van de; Bijkerk, F.; Yang, J.; Schmidt, A. J.; Zoethout, E.

    2015-08-28

    This paper reports on the studies of anisotropic heat conduction phenomena in Mo/Si multilayers with individual layer thicknesses selected to be smaller than the mean free path of heat carriers. We applied the frequency-domain thermoreflectance technique to characterize the thermal conductivity tensor. While the mechanisms of the cross-plane heat conduction were studied in detail previously, here we focus on the in-plane heat conduction. To analyze the relative contribution of electron transport to the in-plane heat conduction, we applied sheet-resistance measurements. Results of Mo/Si multilayers with variable thickness of the Mo layers indicate that the net in-plane thermal conductivity depends on the microstructure of the Mo layers.

  16. MoSi absorber photomask for 32nm node

    NASA Astrophysics Data System (ADS)

    Konishi, Toshio; Kojima, Yosuke; Takahashi, Hiroyuki; Tanabe, Masato; Haraguchi, Takashi; Lamantia, Matthew; Fukushima, Yuichi; Okuda, Yoshimitsu

    2008-05-01

    The development of semiconductor process for 32nm node is in progress. Immersion lithography has been introduced as an extension of 193nm lithograpy. In addition, DPL (Double patterning lithography) is becoming a strong candidate of next generation lithography. The extension of optical lithography increases more mask complexity and tighter specification of photomasks. CD performance is the most important issue in the advanced photomask technology. However, it is expected that conventional mask cannot satisfy the required mask specifications for 32nm node and beyond. Most of CD errors are contributed to the dry etching process. Mask CD variation is greatly influenced by the loading effect from dry etching of the absorber. As the required accuracy of the mask arises, Cr absorber thickness has been gradually thinner. CD linearity with the thinner Cr absorber thickness has better performance. However, it is difficult to apply thinner Cr absorber thickness simply under the condition of OD > 3, which is needed for wafer printing. So, we adopted MoSi absorber instead of conventional Cr absorber, because MoSi absorber has less micro and global loading effect than that of Cr absorber. By using MoSi absorber, we can reduce Cr thickness as a hardmask. The thinner Cr hardmask allows for reduce resist thickness and become same condition for conventional EB resist lithography. The lithography performances were confirmed by the simulation and wafer printing. The new MoSi absorber mask behaves similar to the conventional Cr absorber mask. The adoption of super thin Cr as a hardmask made it possible to reduce resist thickness. By the application of the thin resist and the latest tools, we'll improve the mask performance to meet the 32 nm generation specification.

  17. MoSi2-Base Structural Composite Passed Engine Test

    NASA Technical Reports Server (NTRS)

    Nathal, Michael V.; Hebsur, Mohan G.

    1999-01-01

    The intermetallic compound molybdenum disilicide (MoSi2) is an attractive high-temperature structural material for advanced engine applications. It has excellent oxidation resistance, a high melting point, relatively low density, and high thermal conductivity; and it is easily machined. Past research at the NASA Lewis Research Center has resulted in the development of a hybrid composite consisting of a MoSi2 matrix reinforced with silicon nitride (Si3N4) particulate and silicon carbide (SiC) fibers. This composite has demonstrated attractive strength, toughness, thermal fatigue, and oxidation resistance, including resistance to "pest" oxidation. These properties attracted the interest of the Office of Naval Research and Pratt & Whitney, and a joint NASA/Navy/Pratt & Whitney effort was developed to continue to mature the MoSi2 composite technology. A turbine blade outer air seal, which was part of the Integrated High Performance Turbine Engine Technology (IHPTET) program, was chosen as a first component on which to focus.

  18. MoSi2-Base Hybrid Composites from Aeroengine Applications

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    2000-01-01

    Addition of about 30 to 50 vol % of Si3N4 particulate to MoSi2 improved low temperature accelerated oxidation resistance by forming a Si2ON2 protective scale and thereby eliminated catastrophic 'pest failure'. The Si3N4 addition also improved the high temperature creep strength by nearly five orders of magnitude, doubled the room temperature toughness, and significantly lowered the CTE of the MoSi2 which eliminated matrix cracking in SCS-6 reinforced composites even after thermal cycling. The SCS-6 fiber reinforcement improved the room temperature fracture toughness by seven times and impact resistance by five times. The composite exhibited this excellent strength and toughness improvement up to 1673 K. More recently, tape casting was adopted as the preferred processing of MoSi2-base composites due to improved fiber spacing, ability to use small diameter fibers, and for lower cost. Good strength and toughness values were also obtained with fine diameter Hi-Nicalon tow fibers. These hybrid composites remain competitive with ceramic matrix composites as a replacement for Ni-base superalloys in aircraft engine applications.

  19. MoSi2-Base Hybrid Composite Passed Engine Test

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Hebsur, Mohan

    1998-01-01

    The intermetallics compound molybdenum disilicide (MoSi2) is an attractive high-temperature structural material for advanced engine applications. It has excellent oxidation resistance, a high melting point, relatively low density, and high thermal conductivity, and it is easily machined. Past research'at the NASA Lewis Research Center has resulted in the development of a hybrid composite consisting of a MoSi2 matrix reinforced with silicon nitride (Si3N4) Particulate and silicon carbide (SiC) fibers. This composite has demonstrated attractive strength, toughness, thermal fatigue, and oxidation resistance, including resistance to "pest" oxidation. These properties attracted the interest of the Office of Naval Research and Pratt & Whitney, and a joint NASA/Navy/Pratt & Whitney effort was developed to continue to mature the MoSi2 Composite technology. A turbine blade outer air seal, which was part of the Integrated High Performance Turbine Engine Technology (IHPTET) program, was chosen as a first component on which to focus. The first tasks of the materials development effort were to develop improved processing methods to reduce costs and to use fine-diameter fibers that enable the manufacturing of complex shapes. Tape-casting methods were developed to fully infiltrate the fine SiC fibers with matrix powders. The resulting composites were hot pressed to 100-percent density. Composites with cross-plied fiber architectures with 30 vol. % hi-nicalon SiC fibers and 30 vol. % nitride particles are now made routinely and demonstrate a good balance of properties. The next task entailed the measurement of a wide variety of mechanical properties to confirm the suitability of this composite in engines. In particular, participants in this effort demonstrated that composites made with Hi-Nicalon fibers had strength and toughness properties equal to or better than those of the composites made with the large-diameter fibers that had been used previously. Another critically

  20. Recovery of Mo/Si multilayer coated optical substrates

    DOEpatents

    Baker, Sherry L.; Vernon, Stephen P.; Stearns, Daniel G.

    1997-12-16

    Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO.sub.2 overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates.

  1. Recovery of Mo/Si multilayer coated optical substrates

    DOEpatents

    Baker, S.L.; Vernon, S.P.; Stearns, D.G.

    1997-12-16

    Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO{sub 2} overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates. 5 figs.

  2. Pressureless sintering of MoSi{sub 2} materials

    SciTech Connect

    Scholl, R.; Juengling, T.; Kieback, B. |

    1995-07-01

    Various powder mixtures were prepared by a modified mechanical alloying technique. Starting from elemental Mo-, Si and C-powders the influence of milling conditions on phase formation during the milling process and the subsequent beat treatment was investigated. Phase formation during sintering and sintering kinetics of activated starting mixtures were studied by differential scanning calorimetry (DSC), thermal graphimetry (TG), X-ray diffraction (XRD) and dilatometry. The results show that phase formation during milling or sintering strongly depends on milling conditions. Optimized powder mixtures of single phase and reinforced molybdenum silicides show high densities up to 98.5% TD by pressureless sintering in various atmospheres. Full density is possible by post-HIP because the samples show only closed porosity. The microstructure was studied in dependence of sintering parameters. The level of impurities, i.e. C, O{sub 2} was determined. Hardness, fracture toughness and bending strength were measured for single phase and particle reinforced materials.

  3. Characterization of Mo/Si multilayer growth on stepped topographies

    SciTech Connect

    Boogaard, A. J. R. vcan den; Louis, E.; Zoethout, E.; Goldberg, K. A.; Bijkerk, F.

    2011-08-31

    Mo/Si multilayer mirrors with nanoscale bilayer thicknesses have been deposited on stepped substrate topographies, using various deposition angles. The multilayer morphology at the stepedge region was studied by cross section transmission electron microscopy. A transition from a continuous- to columnar layer morphology is observed near the step-edge, as a function of the local angle of incidence of the deposition flux. Taking into account the corresponding kinetics and anisotropy in layer growth, a continuum model has been developed to give a detailed description of the height profiles of the individual continuous layers. Complementary optical characterization of the multilayer system using a microscope operating in the extreme ultraviolet wavelength range, revealed that the influence of the step-edge on the planar multilayer structure is restricted to a region within 300 nm from the step-edge.

  4. First-principles study of the interfacial adhesion between Si O2 and Mo Si2

    NASA Astrophysics Data System (ADS)

    Jiang, D. E.; Carter, Emily A.

    2005-10-01

    Upon oxidation, a silica scale forms on MoSi2 , a potential high-temperature coating material for metals. This silica scale protects MoSi2 against high-temperature corrosive gases or liquids. We use periodic density functional theory to examine the interface between SiO2 and MoSi2 . The interfacial bonding is localized, as evidenced by an adhesion energy that changes only slightly with the thickness of the SiO2 layer. Moreover, the adhesion energy displays a relatively large (0.40J/m2) variation with the relative lateral position of the SiO2 and MoSi2 lattices due to changes in Si-O bonding across the interface. The most stable interfacial structure yields an ideal work of adhesion of 5.75J/m2 within the local density approximation ( 5.02J/m2 within the generalized-gradient approximation) to electron exchange and correlation, indicating extremely strong adhesion. Local densities of states and electron density difference plots demonstrate that the interfacial Si-O bonds are covalent in character. Mo-O interactions are not found in the SiO2/MoSi2 interface investigated here. Our work predicts that the SiO2 scale strongly adheres to MoSi2 , and further supports the potential of MoSi2 as a high-temperature structural material and coating.

  5. Oxidation of Nb particulate-reinforced MoSi sub 2

    SciTech Connect

    Meschter, P.J. )

    1991-01-01

    This paper reports on molybdenum disilicide (MoSi{sub 2}) which is a promising high-temperature material because of its moderate density (6.31 g cm{sup {minus}3}), high melting temperature (2020 {degrees}C), ductility above 900-1000{degrees} C related to its b.c.c.-like C11b crystal structure, and excellent high-temperature oxidation resistance. MoSi{sub 2} is brittle below 900-1000{degrees} C and hence must be reinforced to obtain acceptable low-temperature toughness. Addition of a ductile reinforcement such as Nb as wire or particulate has been shown to increase the ambient-temperature toughness of MoSi{sub 2}. Additions of Nb, which oxidizes rapidly to form non-protective Nb{sub 2}O{sub 5}, may degrade the oxidation resistance of an MoSi{sub 2}-matrix composite. The purpose of this research is to determine the effect of particulate Nb additions on the oxidation resistance of MoSi{sub 2} in the high-temperature regime ({ge}550{degrees} C), where a protective SiO{sub 2} product layer is formed on monolithic MoSi{sub 2}, and in the low-temperature regime (400-500{degrees} C), where Mo and Si oxidize simultaneously.

  6. Toughness of dense MoSi sub 2 and MoSi sub 2 /tantalum composites produced by low pressure plasma deposition

    SciTech Connect

    Castro, R.G.; Rollett, A.D.; Stanek, P.W. ); Smith, R.W. )

    1992-01-15

    The thrust to develop new high temperature materials for advanced aircraft turbine engines has focused on composite systems based on metal-matrix, ceramic-matrix, intermetallic matrix and carbon-carbon composites. For the case of intermetallic matrix composites, candidate materials such as aluminides and silicides have been identified as potential materials due to their excellent oxidation resistance at high temperatures. More specific to the class of silicides, is molybdenum disilicide (NoSi{sub 2}), which has been used as a high melting intermetallic (2030 {degrees} C) for more than eighty years. One of the properties which has discouraged the application of MoSi{sub 2}, as well as other intermetallic compounds, is the inherent lack of ductility at low to intermediate temperatures. Plasma spraying as a means of fabricating composite structures of metals has been addressed recently by a number of researchers. In this paper the use of low pressure plasma deposition (LPPD) for producing spray deposits of MoSi{sub 2} and MoSi{sub 2} with a 20 volume fraction of tantalum is investigated. Initial results focusing on the as-deposited densities and fracture toughness of the spray deposited material are compared to those properties measured on conventionally hot pressed MoSi{sub 2}. Effects of post consolidation on fracture toughness of the spray deposits are also addressed.

  7. Reaction synthesis of MoSi sub 2 from high purity elemental powders

    SciTech Connect

    Hardwick, D.A.; Martin, P.L.; Moores, R.J. )

    1992-08-15

    This paper reports that Molybdenum disilicide (MoSi{sub 2}) is an intermetallic compound that combines a high melting point (2293K) with excellent resistance to high temperature oxidation. With respect to mechanical properties the behavior of polycrystalline MoSi{sub 2} falls into one of three regimes, based on the sue temperature: t {lt} 925{degrees} C: strong + brittle; 925 {lt} T {lt} 1250{degrees} C:strong + ductile and T {gt} 1250{degrees} C:weak + ductile. The majority of recent investigations have focused on the properties of MoSi{sub 2}-based materials processed from commercially available powder. Commercial MoSi{sub 2} powder contains significant amounts of oxygen; for example, a chemical analysis of powder obtained from Cerac Inc. revealed an oxygen content of 0.6 wt%. Consolidation of such powder resulted in a substantial volume fraction of amorphous silica in the final product. MoSi{sub 2} powder produced by the crushing and grinding of arc-melted elemental Mo and Si also exhibited amorphous Si-rich particles after vacuum hot-pressing at 1973K and 30MPa. Grinding of the cast material to powder was done in ethanol but one this was driven off, the powder was air-handled. The high energy mechanical alloying in an argon atmosphere of elemental Mo and Si powder to produce MoSi{sub 2} has also been investigated. Following hot pressing, the MoSi{sub 2} made in this fashion still contained a substantial volume fraction of SiO{sub 2}.

  8. Creep behavior of MoSi{sub 2}-SiC composites

    SciTech Connect

    Butt, D.P.; Maloy, S.A.; Kung, H.; Korzekwa, D.A.; Petrovic, J.J.

    1993-12-31

    Using a cylindrical indenter, indentation creep behavior of hot pressed and HIPed MoSi{sub 2}-SiC composites containing 0--40% SiC by volume, was characterized at 1000--1200C, 258--362 MPa. Addition of SiC affects the creep behavior of MoSi{sub 2} in a complex manner by pinning grain boundaries during pressing, thus leading to smaller MoSi{sub 2} grains; by obstructing or altering both dislocation motion and grain boundary sliding; and by increasing the overall yield stress of the material. Comparisons are made between indentation and compressive creep studies. It is shown that under certain conditions, compressive creep and indentation creep measurements yield comparable results after correcting for effective stresses and strain rates beneath the indenter.

  9. Thermoelectric properties of bulk MoSi2 synthesized by solid state microwave heating

    NASA Astrophysics Data System (ADS)

    Lan, Yu; Xie, Mianyu; Ouyang, Ting; Yue, Song

    2016-07-01

    In this research, single phase α-MoSi2 was prepared by solid state hybrid microwave heating within 90 min at relatively low temperature 1273 K. Such precursor powders were then ball milled and sintered by microwave heating at different temperatures. The thermoelectric (TE) properties of MoSi2 bulks were investigated in the temperature range of 300-673 K. When the sintering temperature increases from 973 K to 1273 K, the electrical resistivity decreases significantly and the Seebeck coefficients increase obviously, leading to the maximum TE powder factor of 6.2 × 10-6Wm-1K-2 at 673 K. These results demonstrate the feasibility of high efficient and economical synthesis of MoSi2 by microwave heating technique, with the final products having comparable TE performance in comparison to those from typical methods with long duration and energy-extensive consumption.

  10. Nanoscale mapping of the W/Si(001) Schottky barrier

    SciTech Connect

    Durcan, Chris A.; Balsano, Robert; LaBella, Vincent P.

    2014-07-14

    The W/Si(001) Schottky barrier was spatially mapped with nanoscale resolution using ballistic electron emission microscopy (BEEM) and ballistic hole emission microscopy (BHEM) using n-type and p-type silicon substrates. The formation of an interfacial tungsten silicide is observed utilizing transmission electron microscopy and Rutherford backscattering spectrometry. The BEEM and BHEM spectra are fit utilizing a linearization method based on the power law BEEM model using the Prietsch Ludeke fitting exponent. The aggregate of the Schottky barrier heights from n-type (0.71 eV) and p-type (0.47 eV) silicon agrees with the silicon band gap at 80 K. Spatially resolved maps of the Schottky barrier are generated from grids of 7225 spectra taken over a 1 μm × 1 μm area and provide insight into its homogeneity. Histograms of the barrier heights have a Gaussian component consistent with an interface dipole model and show deviations that are localized in the spatial maps and are attributed to compositional fluctuations, nanoscale defects, and foreign materials.

  11. SiC reinforced-MoSi sub 2 based matrix composites

    SciTech Connect

    Petrovic, J.J.; Honnell, R.E.

    1990-01-01

    SiC reinforced-MoSi{sub 2} based matrix composites possess very significant potential as high temperature structural materials for temperatures above 1200{degree}C in oxidizing environments, due to their combination of oxidation resistance, thermodynamic stability, machinability, elevated temperature ductility and strength, and ability to alloy the MoSi{sub 2} matrix with other silicides. The fabrication, microstructures, oxidation, and mechanical properties of these materials are described, and their current properties are compared to high temperature metals and structural ceramics. 22 refs., 5 figs., 2 tabs.

  12. Fabrication of Ta2O5 Dispersion-Strengthened Mo-Si-B Alloy by Powder Metallurgical Method

    NASA Astrophysics Data System (ADS)

    Byun, Jong Min; Choi, Won June; Bang, Su-Ryong; Park, Chun Woong; Do Kim, Young

    2017-01-01

    In this study, we investigate the effect of oxide dispersion strengthening on mechanical properties by dispersion of nano-sized Ta2O5 particles in Mo-Si-B alloy. A Mo-Si-B core-shell powder consisting of two intermetallic compounds of Mo5SiB2 and Mo3Si as the core and nano-sized Mo solid solution surrounding intermetallic compounds was fabricated by chemical vapor transport. And Mo-Si-B core-shell powder with uniformly dispersed nano-sized Ta2O5 particles on the surface of a Mo solid solution shell was produced by a wet blending process with TaCl5 solution and heat treatment. Then, pressureless sintering was performed at 1400°C for 3 h under a H2 atmosphere. The hardness and fracture toughness of the Ta2O5-dispersed Mo-Si-B alloy were measured using Vickers hardness and 3-point bending tests, respectively. The Vickers hardness and fracture toughness of the fabricated Mo-Si-B-Ta2O5 alloy were more improved than that of the Mo-Si-B alloy fabricated using core-shell powder with no addition of Ta2O5 particles (Mo-Si-B alloy: 353 Hv, 13.5 MPa·√m, Mo-Si-B-Ta2O5 alloy: 509 Hv, 15.1 MPa·√m).

  13. Evaluation of Mo-SiO{sub 2} continuous FGM`s. Final report

    SciTech Connect

    Tomsia, A.P.; Cannon, R.M.; McNaney, J.M.; Ishibashi, H.; Saiz, E.; MoberlyChan, W.; Becker, T.J.; Ritchie, R.O.

    1997-09-01

    The TOTO sponsored program at LBL involved characterization of continuous Mo-SiO{sub 2} FGMs in terms of microstructure, mechanical and thermal properties and corrosion resistance which would relate to the steady state, high temperature performance as well as the heating and cooling transients that occur at the beginning and end of operation in various applications.

  14. Synthesis and densification of MoSi{sub 2} by self-propagating high-temperature synthesis

    SciTech Connect

    Gi-Wook Lee, Hyun-Woo Lee, Yong-Seog Kim

    1995-12-31

    The possibility of producing dense MoSi{sub 2} by the thermal explosion mode of Self-propagating High-temperature Synthesis(SHS) was demonstrated. It was shown that the density of MoSi{sub 2} produced by SHS process without applied pressure can be increased by a proper combination of processing parameters such as heating rate, addition of alloying elements, processing atmosphere, and Mo and Si powder sizes used. The heating rate and alloying elements were found to influence the density Of MoSi{sub 2} formed the most. Proper combinations of the processing is parameter yielded MoSi{sub 2} with density close to 90% theoretical density which comparable to pressurelessly sintered MoSi{sub 2}.

  15. Characterization of electrical resistivity as a function of temperature in the Mo-Si-B system

    SciTech Connect

    Beckman, Sarah E.

    1999-12-10

    Measurements of electrical resistivity as a function of temperature from 25 to 1,500 C were conducted on polycrystalline samples in the Mo-Si-B system. Single phase, or nearly single phase, samples were prepared for the following phases: Mo3Si, Mo5SiB2, Mo5Si3Bx, MoB, MoSi2, and Mo5Si3. Thesis materials all exhibit resistivity values within a narrow range(4--22 x 10-7Ω-m), and the low magnitude suggests these materials are semi-metals or low density of states metals. With the exception of MoSi2, all single phase materials in this study were also found to have low temperature coefficient of resistivity(TCR) values. These values ranged from 2.10 x 10-10 to 4.74 x 10-10Ω-m/° C, and MoSi2 had a TCR of 13.77 x 10-10Ω-m/° C. The results from the single phase sample measurements were employed in a natural log rule-of-mixtures model to relate the individual phase resistivity values to those of multiphase composites. Three Mo-Si-B phase regions were analyzed: the binary Mo5Si3-MoSi2 system, the ternary phase field Mo5Si3BxMoB-MoSi2, and the Mo3Si-Mo5SiB2-Mo5Si3Bx ternary region. The experimental data for samples in each of these regions agreed with the natural log model and illustrated that this model can predict the electrical resistivity as a function of temperature of multi-phase, sintered samples within an error of one standard deviation.

  16. Mechanically Activated Combustion Synthesis of MoSi2-Based Composites

    SciTech Connect

    Shafirovich, Evgeny

    2015-09-30

    The thermal efficiency of gas-turbine power plants could be dramatically increased by the development of new structural materials based on molybdenum silicides and borosilicides, which can operate at temperatures higher than 1300 °C with no need for cooling. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. One approach is based on the fabrication of MoSi2-Mo5Si3 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of Mo5Si3. Another approach involves the addition of boron to Mo-rich silicides for improving their oxidation resistance through the formation of a borosilicate surface layer. In particular, materials based on Mo5SiB2 phase are promising materials that offer favorable combinations of high temperature mechanical properties and oxidation resistance. However, the synthesis of Mo-Si-B multi-phase alloys is difficult because of their extremely high melting temperatures. Mechanical alloying has been considered as a promising method, but it requires long milling times, leading to large energy consumption and contamination of the product by grinding media. In the reported work, MoSi2-Mo5Si3 composites and several materials based on Mo5SiB2 phase have been obtained by mechanically activated self-propagating high-temperature synthesis (MASHS). Short-term milling of Mo/Si mixture in a planetary mill has enabled a self-sustained propagation of the combustion front over the mixture pellet, leading to the formation of MoSi2-T1 composites. Combustion of Mo/Si/B mixtures for the formation of T2 phase becomes possible if the composition is designed for the addition of more exothermic reactions leading to the formation of MoB, TiC, or TiB2. Upon ignition, Mo/Si/B and Mo/Si/B/Ti mixtures exhibited spin combustion, but the products were porous, contained undesired secondary phases, and had low oxidation resistance. It has been shown that use of

  17. Effect of carbon addition on elevated temperature crack growth resistance in (Mo,W)Si[sub 2]-SiC[sub p] composite

    SciTech Connect

    Ramamurty, U. . Division of Engineering); Suresh, S. . Dept. of Materials Science and Engineering); Petrovic, J.J. . Materials Science and Technology Division)

    1994-10-01

    Experimental results on subcritical crack growth behavior of hot-pressed MoSi[sub 2]-50 mol% WSi[sub 2] alloy reinforced with 30 vol% SiC particles in the temperature range 1,200--1,300 C are presented. The effect of 2 wt % C addition on the stable crack growth resistance of this composite was investigated under both static and cyclic loading conditions. The results indicate that the addition off carbon to the composite improves the subcritical crack growth resistance under both static and cyclic loads and increases the elevated temperature capabilities of the (Mo, W) Si[sub 2] composite. Increasing the temperature from 1,200 to 1,300 C is found to increase the crack growth velocities with a concomitant decrease in the crack growth initiation thresholds. Electron microscopy of the crack-tip region indicates that the stable crack growth process is influenced primarily by interfacial cavitation. At 1,300 C, deformation processes such as twinning of the SiC particles and dislocation motion within the matrix grains appear to play an active role in determining the crack growth kinetics. The role of glassy phase in influencing the high-temperature fracture behavior and its implications for design of the microstructure of the brittle materials are discussed.

  18. Processing and Properties of SiC/MoSi2-SiC Composites Fabricated by Melt Infiltration

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Hebsur, Mohan G.

    2000-01-01

    Hi-Nicalon SiC fiber reinforced MoSi2-SiC matrix composites (SiC/MoSi2-SiC) have been fabricated by the melt infiltration approach. The composite consists of approximately 60 vol%, 2-D woven BN/SiC coated Hi-Nicalon SiC fibers and approximately 40 vol% MoSi2-SiC matrix. The room temperature tensile properties and thermal conductivity of the SiC/MoSi2-SiC composites were measured and compared with those of the melt infiltrated SiC/SiC composites. The influence oi fiber architecture on tensile properties was also evaluated. Results indicate that the primary modulus, stress corresponding to deviation from linearity, and transverse thermal conductivity values for the SiC/MoSi2-SiC composites are significantly lower than those for the SiC/SiC composites. Microcracking of the matrix due to the large difference in thermal expansion between MoSi2 and SiC appears to be the reason for the lower matrix dominated properties of SiC/MoSi2-SiC composites.

  19. Oxidation and interdiffusion behavior of Niobium substrate coated MoSi2 coating prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Yan, JianHui; Wang, Yi; Liu, LongFei; Wang, Yueming

    2014-11-01

    In order to protect Niobium material from oxidation, MoSi2 coating was prepared on the Niobium substrate by spark plasma sintering. Oxidation behavior of MoSi2 coating was investigated in air over the temperature range of 1200-1500 °C. The interfacial diffusion between MoSi2 coating and Niobium substrate was also examined. Dense MoSi2 coating was successfully prepared using spark plasma sintering. The porosities of top and side coatings are about 5.5% and 6.4%, respectively. No cracks were present in the MoSi2 coating. Cracking and spallation of the SiO2 scale did not occur at test temperatures. Two intermediate phases-(Nb,Mo)5Si3 and Nb5Si3 phases, were detected in the boundary of MoSi2 coating and Nb substrate. The growth of the reaction layer was dominated by the diffusion of Si toward the Nb substrate and obeyed a parabolic rate law. A multi-layered structural coating formed on Nb substrate, which consisted of MoSi2, (Mo,Nb)5Si3 and Nb5Si3 in turn.

  20. Reticle blanks for extreme ultraviolet lithography: Ion beam sputter deposition of low defect density Mo/Si multilayers

    SciTech Connect

    Vernon, S.P.; Kania, D.R.; Kearney, P.A.; Levesque, R.A.; Hayes, A.V.; Druz, B.; Osten, E.; Rajan, R.; Hedge, H.

    1996-06-24

    We report on growth of low defect density Mo/Si multilayer (ML) coatings. The coatings were grown in a deposition system designed for EUVL reticle blank fabrication. Complete, 81 layer, high reflectance Mo/Si ML coatings were deposited on 150 mm dia (100) oriented Si wafer substrates using ion beam sputter deposition. Added defects, measured by optical scattering, correspond to defect densities of 2x10{sup -2}/cm{sup 2}. This represents a reduction in defect density of Mo/Si ML coatings by a factor of 10{sup 5}.

  1. Oxidation Behavior and Chlorination Treatment to Improve Oxidation Resistance of Nb-Mo-Si-B Alloys

    SciTech Connect

    Behrani, Vikas

    2004-01-01

    This thesis is written in an alternate format. The thesis is composed of a general introduction, two original manuscripts, and a general conclusion. References cited within each chapter are given at the end of each chapter. The general introduction starts with the driving force behind this research, and gives an overview of previous work on boron doped molybdenum silicides, Nb/Nb5Si3 composites, boron modified niobium silicides and molybdenum niobium silicides. Chapter 2 focuses on the oxidation behavior of Nb-Mo-Si-B alloys. Chapter 3 contains studies on a novel chlorination technique to improve the oxidation resistance of Nb-Mo-Si-B alloys. Chapter 4 summarizes the important results in this study.

  2. NaF-assisted combustion synthesis of MoSi2 nanoparticles and their densification behavior

    NASA Astrophysics Data System (ADS)

    Nersisyan, Hayk H.; Lee, Tae Hyuk; Ri, Vladislav; Lee, Jong Hyeon; Suh, Hoyoung; Kim, Jin-Gyu; Son, Hyeon Taek; Kim, Yong-Ho

    2017-03-01

    The exothermic reduction of oxides mixture (MoO3+2SiO2) by magnesium in NaF melt enables the synthesis of nanocrystalline MoSi2 powders in near-quantitative yields. The combustion wave with temperature of about 1000-1200 °C was recorded in highly diluted by NaF starting mixtures. The by-products of combustion reaction (NaF and MgO) were subsequently removed by leaching with acid and washing with water. The as-prepared MoSi2 nanopowder composed of spherical and dendritic shape particles was consolidated using the spark plasma sintering method at 1200-1500 °C and 50 MPa for 10 min. The result was dense compacts (98.6% theoretical density) possessing submicron grains and exhibiting hardness of 8.74-12.92 GPa.

  3. Investigation into the joining of MoSi{sub 2} to 316L stainless steel

    SciTech Connect

    Vaidya, R.U.; Bartlett, A.H.; Conzone, S.D.; Butt, D.P.

    1996-10-01

    Partial transient liquid phase joining and low temperature brazing were applied in joining MoSi{sub 2} to 316L ss. Exploratory studies were carried out on various interlayer materials. Mechanical, physical, and chemical compatibilities between various interlayers, brazing material, and substrate materials were investigated. Effect of thermal expansion mismatch between various components of the joint on the overall joint integrity was also studied. Preliminary findings are outlined.

  4. Extended Functionality of Environmentally-Resistant Mo-Si-B-Based Coatings

    NASA Astrophysics Data System (ADS)

    Perepezko, J. H.; Sakidja, R.

    2013-02-01

    Multiphase Mo-Si-B alloys with compositions which yield the ternary intermetallic Mo5SiB2 (T2) phase as a key microstructure constituent together with the Mo and Mo3Si phases, offer an attractive balance of high melting temperature, oxidation resistance, and mechanical properties. The investigation of reaction kinetics involving the T2 phase enables the analysis of oxidation in terms of diffusion pathways and the design of effective coatings. From this basis, kinetic biasing is used together with pack cementation to develop Mo-Si-B-based multilayered coatings with an aluminoborosilica surface and in situ diffusion barriers with self-healing characteristics for enhanced oxidation resistance. While a combustion environment contains water vapor that can accelerate an attack of silica-based coatings, the Mo-Si-B-based coatings provide oxidation resistance in water vapor up to at least 1,500°C. An exposure to hot ionized gas species generated in an arc jet confirms the robust coating performance in extreme environments. To extend the application beyond Mo-based systems, a two-stage process has been implemented to provide effective oxidation resistance for refractory metal cermets, SiC and ZrB2 ultra-high-temperature composites.

  5. Microstructure and wear behavior of Cu-Mo-Si coatings by laser cladding

    NASA Astrophysics Data System (ADS)

    Peilei, Zhang; Xiaopeng, Liu; Yunlong, Lu; Hua, Yan; Zhishui, Yu; Chonggui, Li; Qinghua, Lu

    2014-08-01

    Three Cu-Mo-Si coatings were synthesized on steel using laser cladding. The coatings have dense microstructure with composite phases including metal silicates and Cu-based solid solution. Different alloy compositions reduce different phases generated in the coatings. Phases appeared in three coatings were Cu + MoSi2 + Mo5Si3 + Cu3Si (Coatings 1 and 2), Cu + Mo3Si + Mo5Si3 + Cu3Si (Coating 3), respectively. The microhardness of coatings is in the range of 600 to 900 HV. The amount of Mo5Si3 phase decides the hardness of Cu-Mo-Si coatings in laser processing. The proof is that the highest hardness which is about 900 HV occurs in the clad layer of Coating 1. The thickness of clad layer of three coatings is about 0.7 mm (Coating 1), 0.8 mm (Coating 2) and 1.0 mm (Coating 3), respectively. The average friction coefficient for Coatings 1-3 is 0.40, 0.56 and 0.60, respectively. Wear rate values of 2.9 × 10-6 g/N m (Coating 1), 3.1 × 10-6 g/N m (Coating 2) and 3.5 × 10-6 g/N m (Coating 3) are calculated, respectively. The amount and kind of metal silicates have a huge influence on the wear resistance of coatings.

  6. MoSi 2 Oxidation in 670-1498 K Water Vapor

    DOE PAGES

    Sooby Wood, Elizabeth; Parker, Stephen S.; Nelson, Andrew T.; ...

    2016-03-08

    Molybdenum disilicide (MoSi2) has well documented oxidation resistance at high temperature (T > 1273 K) in dry O2 containing atmospheres due to the formation of a passive SiO2 surface layer. But, its behavior under atmospheres where water vapor is the dominant species has received far less attention. Oxidation testing of MoSi2 was performed at temperatures ranging from 670–1498 K in both 75% water vapor and synthetic air (Ar-O2, 80%–20%) containing atmospheres. Here the thermogravimetric and microscopy data describing these phenomena are presented. Over the temperature range investigated, MoSi2 displays more mass gain in water vapor than in air. The oxidationmore » kinetics observed in water vapor differ from that of the air samples. Two volatile oxides, MoO2(OH)2 and Si(OH)4, are thought to be the species responsible for the varied kinetics, at 670–877 K and at 1498 K, respectively. Finally, we observed an increase in oxidation (140–300 mg/cm2) from 980–1084 K in water vapor, where passivation is observed in air.« less

  7. MoSi 2 Oxidation in 670-1498 K Water Vapor

    SciTech Connect

    Sooby Wood, Elizabeth; Parker, Stephen S.; Nelson, Andrew T.; Maloy, Stuart A.; Butt, D.

    2016-03-08

    Molybdenum disilicide (MoSi2) has well documented oxidation resistance at high temperature (T > 1273 K) in dry O2 containing atmospheres due to the formation of a passive SiO2 surface layer. But, its behavior under atmospheres where water vapor is the dominant species has received far less attention. Oxidation testing of MoSi2 was performed at temperatures ranging from 670–1498 K in both 75% water vapor and synthetic air (Ar-O2, 80%–20%) containing atmospheres. Here the thermogravimetric and microscopy data describing these phenomena are presented. Over the temperature range investigated, MoSi2 displays more mass gain in water vapor than in air. The oxidation kinetics observed in water vapor differ from that of the air samples. Two volatile oxides, MoO2(OH)2 and Si(OH)4, are thought to be the species responsible for the varied kinetics, at 670–877 K and at 1498 K, respectively. Finally, we observed an increase in oxidation (140–300 mg/cm2) from 980–1084 K in water vapor, where passivation is observed in air.

  8. Processing of Mo-Si-B intermetallics by extrusion and oxidation properties of the extruded Tl-MoSi2-MoB System

    SciTech Connect

    Summers, Eric

    1999-11-08

    An extrusion process was developed that is able to consistently produce large quantities of Mo-Si-B rods without the presence of defects. Binder removal from the extruded rods was studied in detail and it was determined that heating rates on the order of 0.02°/minute (1.2°/hour) are necessary to remove the binder without the formation of defects. This low heating rate resulted in debinding times in excess of 70 hours (approximately 3 days). Wicking was investigated as a means to decrease the time necessary for binder removal. Using 0.05μm alumina powder as a wicking agent, binder removal times were reduced to 10 hours with heating rates up to 1°/minute employed without defect formation. Once the extrusion process was complete the oxidation properties of the Tl-MoSi2-MoB extruded phase assemblage was investigated. It was determined that this composition exhibits catastrophic oxidation or pesting in the temperature range of 660-760°C, resulting in the material turning to dust. Outside of this temperature range the composition is oxidatively stable. Continuous mass measurements were taken at 1,300, 1,450, and 1,600 C to determine the oxidation rate constants of this material. Parabolic rate constants of 6.9 x 10-3, 1.3 x 10-3, and 9.1 x 10-3 mg2/cm4/hr were determined for 1,300, 1,450, and 1,600 C respectively.

  9. Novel Processing of mo-si-b Intermetallics for improved efficiency of power systems

    SciTech Connect

    M.J. Kramer; O. Degirmen; A.J. Thom; M. Akinc

    2004-09-30

    Multiphase composite alloys based on the Mo-Si-B system are candidate materials for ultra-high temperature applications. In non load-bearing applications such as thermal barrier coatings or heat exchangers in fossil fuel burners, these materials may be ideally suited. Alloys based on the Mo{sub 5}Si{sub 3}B{sub x} phase (Tl phase) possess excellent oxidation resistance to at least 1600 C in synthetic air atmospheres. However, the ability of Tl-based alloys to resist aggressive combustion environments has not yet been determined. The present work seeks to investigate the resistance of these Mo-Si-B alloys to simulated combustion atmospheres. Material was pre-alloyed by combustion synthesis, and samples for testing were prepared by classic powder metallurgical processing techniques. Precursor material synthesized by self-heating-synthesis was sintered to densities exceeding 98% in an argon atmosphere at 1800 C. The approximate phase assemblage of the material was 57% Tl, 29% MoB, 14% MoSi{sub 2} (wt%). The alloy was oxidized from 1000-1100 C in flowing air containing water vapor at 18 Torr. At 1000 C the material achieved a steady state mass loss, and at 1100 C the material undergoes a steady state mass gain. The oxidation rate of these alloys in this temperature regime was accelerated by the presence of water vapor compared to oxidation in dry air. The results of microstructural analysis of the tested alloys will be discussed. Techniques and preliminary results for fabricating near-net-shaped parts will also be presented.

  10. Near-Eutectic Ternary Mo-Si-B Alloys: Microstructures and Creep Properties

    NASA Astrophysics Data System (ADS)

    Hasemann, G.; Kaplunenko, D.; Bogomol, I.; Krüger, M.

    2016-11-01

    In the present work, the microstructural evolution during the solidification of different near-eutectic Mo-Si-B alloys was investigated. The alloy compositions were chosen from the vicinity of the eutectic region with respect to published liquidus projections. The aim was to identify a eutectic alloy composition in the Mo-rich region of the system, which would be suitable for directional solidification (DS). In a second step, two alloy compositions were prepared via DS and first creep results of these near-eutectic DS alloys are presented and discussed.

  11. Application of Reactive Ion Etching to the Fabrication of Microstructure on Mo/Si Multilayer

    NASA Astrophysics Data System (ADS)

    Le, Zi-chun; L, Dreeskornfeld; S, Rahn; R, Segler; U, Kleineberg; U, Heinzmann

    1999-09-01

    Mo/Si multilayer mirrors (30 periods, doublelayer thickness 7 nm) with the AZ-PF514 resist pattern whose smallest lines and spaces structure was 0.5 μm were etched by reactive ion etching (RIE) in a fluorinated plasma. The etch rate, selectivity and etch profile were investigated as a function of the gas mixture, pressure, and plasma rf power. The groove depth and the etch profile were investigated by an atomic force microscope before RIE, after RIE and after resist removal.

  12. Vortex Pinning in Superconducting MoGe Films Containing Conformal Arrays of Nanoscale Holes and Magnetic Dots

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Latimer, M. L.; Xiao, Z. L.; Ocola, L. E.; Divan, R.; Welp, U.; Crabtree, G. W.; Kwok, W. K.

    2013-03-01

    Recent numerical simulations by Ray et al. predict that a conformal pinning array can produce stronger vortex pinning effect than other pinning structures with an equivalent density of pinning sites. Here we present experimental investigations on conformal pinning structures. Direct and conformal pinning arrays of triangular and square lattices were introduced into MoGe superconducting films using focused-ion-beam milling or electron-beam lithography. Transport measurements on critical currents and magnetoresistances were carried out on these samples to reveal the advantages of conformal pinnings. Effects of random pinnings with the same average density were also studied for comparison. Details on sample fabrications and effects of pinning types (holes versus magnetic dots) will be presented. Work supported by the US DoE-BES funded Energy Frontier Research Center (YLW), and by Department of Energy, Office of Science, Office of Basic Energy Sciences (MLL, ZLX, LEO, RD, UW, WKK), under Contract No. DE-AC02-06CH11357

  13. a Study on the Tribology Characteristics of MoSi2 Intermetallic Compounds Under Different Sintering Temperatures

    NASA Astrophysics Data System (ADS)

    Park, Won Jo; Huh, Sun Chul; Lee, Kang Young; Song, Hong Tae; Yoon, Han Ki

    Molybdenum disilicide (MoSi2) is considered to be a promising high temperature material for turbojet and hypersonic engines in aerospace and various industrial applications, because of a high melting point (2030°C), adequate density (6.3g/cm3) and an excellent oxidation resistance. Some researches on MoSi2 have been carried out but the wear behavior of this material is seldom studied. This paper focused on the effect of sintering temperature of MoSi2 on the wear behavior. MoSi2 powder was evaluated from the variation of fabricating conditions such as preparation temperature 1250°C, 1350°C and 1500°C. Wear tests were performed with a sliding speed of 5.21mm/sec and a normal load of 8kgf. Each test was run over a period of 6 hours. The wear behavior is evaluated with respect to the hardness of materials. Hardness test was carried out with a Micro-Vickers hardness tester. As a result of the tests, the friction coefficient was decreased with the increasing sintering temperature of MoSi2 but the friction coefficient did not vary much for all specimens at temperatures. Hardness values decreased with a decrease in sintering temperature because the indentation under a lower temperature probably contained more defects.

  14. Lifetime studies of Mo/Si and Mo/Be multilayer coatings for extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Wedowski, Marco; Bajt, Sasa; Folta, James A.; Gullikson, Eric M.; Kleineberg, Ulf; Klebanoff, Leonard E.; Malinowski, Michael E.; Clift, W. Miles

    1999-11-01

    Extreme Ultraviolet Lithography (EUVL) is a candidate for future application by the semiconductor industry in the production of sub-100 nm feature sizes in integrated circuits. Using multilayer reflective coatings optimized at wavelengths ranging from 11 to 14 nm, EUVL represents a potential successor to currently existing optical lithography techniques. In order to assess lifetimes of the multilayer coatings under realistic conditions, a series of radiation stability tests has been performed. In each run a dose of EUV radiation equivalent to several months of lithographic operation was applied to Mo/Si and Mo/Be multilayer coatings within a few days. Depending on the residual gas concentration in the vacuum environment, surface deposition of carbon during the exposure lead to losses in the multilayer reflectivity. However, in none of the experimental runs was structural damage within the bulk of the multilayers observed. Mo/Si multilayer coatings recovered their full original reflectivity after removal of the carbon layer by an ozone cleaning method. Auger depth profiling on Mo/Be multilayers indicate that carbon penetrated into the Be top layer during illumination with high doses of EUV radiation. Subsequent ozone cleaning fully removed the carbon, but revealed enhanced oxidation of the area illuminated, which led to an irreversible loss in reflectance on the order of 1%.

  15. Mechanical characterization of SiC whisker-reinforced MoSi/sub 2/

    SciTech Connect

    Carter, D.H.; Gibbs, W.S.; Petrovic, J.J.

    1988-01-01

    The mechanical characteristics of an intermetallic matrix with two different reinforcements were studied. The matrix material was MoSi/sub 2/, with either Los Alamos VLS SiC whiskers or Huber VS SiC whiskers. The purpose of the reinforcement was to provide toughening at ambient temperature and strengthening at elevated temperatures. The VLS whiskers greatly improved the yield strength of the matrix at 1200/degree/C, and also increased the room temperature fracture toughness of the matrix. The VS whiskers were added because they are much smaller in length and diameter, and therefore decreased the mean free path between whiskers, at the same volume fraction. The VS whiskers improved the toughness of the matrix at ambient temperature, and increased the yield strength of MoSi/sub 2/ at 1400/degree/C by 470%. The high strength of this new composite places this material in the realm of attractive engineering materials for high-temperature applications. 11 refs., 6 refs., 1 tab.

  16. In-situ formation of alumina coatings in niobium toughened Mo(Si,Al)[sub 2

    SciTech Connect

    Costa e Silva, A.; Kaufman, M.J. . Dept. of Materials Science and Engineering)

    1994-10-01

    One approach that has been explored for the toughening and strengthening of MoSi[sub 2] based materials is the introduction of ductile refractory metal reinforcements. Due to the considerable stability of the transition metal silicides and the relatively high mobility of silicon in systems consisting of silicides and refractory metals, it has been found that this approach leads to materials that have poor long term stability at high temperature, unless a coating is interposed between the silicide matrix and the refractory metal reinforcement. Both Xiao and Abbaschian and Lu and coworkers have applied coatings to these reinforcements using conventional techniques. The most promising coatings were oxides, namely alumina and yttria. Besides the difficulties associated with preserving these conventional coatings during processing, it has also been observed that silica inclusions possibly degrade the coating during high temperature exposure. While in-situ coatings have been applied to refractory metal reinforcements in NbAl[sub 3] and NiAl matrices, the authors known of no successful scheme developed for in-situ coating of these metals in silicide matrices. In this work, an attempt was made to produce in-situ alumina coatings on preoxidized Nb fibers by using an aluminum-rich Mo(Si, Al)[sub 2]-(C40) matrix. Furthermore, the effectiveness of this layer for (a) protecting the fiber from interaction with the matrix and (b) promoting debonding was investigated.

  17. Microstructure of a plasma-sprayed Mo-Si-B alloy

    NASA Astrophysics Data System (ADS)

    Kramer, M. J.; Okumus, S. C.; Besser, M. F.; Ünal, Ö.; Akinc, M.

    2000-03-01

    Powders of Mo52Si38B10 were plasma sprayed under inert conditions onto stainless steel substrates to determine if high density free standing forms could be synthesized by this process. Thermal spray conditions were varied to minimize porosity and oxygen impurities while minimizing evaporative metal losses. The assprayed and sintered microstructures were characterized using scanning and transmission electron microscopy and quantitative x-ray diffraction (XRD). The as-sprayed microstructure consisted of elongated splats tens of microns in length and only one to three microns in thickness. The splats contained submicrometer grains of primarily MoB and Mo5Si3B x (T1) and minor amounts of MoSi2 and a glassy grain boundary phase. The interior of the splats typically consisted of a fine eutectic of MoB and T1. Small pieces were cut out of the cross section of the sample and pressureless sintered for 2, 6, and 10 h at 1800 °C in flowing Ar. After sintering for 2 h at 1800 °C, the samples exhibited a coarser but equiaxed microstructure (1 to 5 µm grain size) containing 78 vol.% T1, 16 vol.% MoB, and 6 vol.% MoSi2 as determined by XRD. Approximately 8 at.% of the Si formed silica. The high-temperature anneal removed all vestiges of the layered structure observed in the as-sprayed samples.

  18. Mo-Si-B alloys for ultrahigh-temperature structural applications.

    PubMed

    Lemberg, J A; Ritchie, R O

    2012-07-10

    A continuing quest in science is the development of materials capable of operating structurally at ever-increasing temperatures. Indeed, the development of gas-turbine engines for aircraft/aerospace, which has had a seminal impact on our ability to travel, has been controlled by the availability of materials capable of withstanding the higher-temperature hostile environments encountered in these engines. Nickel-base superalloys, particularly as single crystals, represent a crowning achievement here as they can operate in the combustors at ~1100 °C, with hot spots of ~1200 °C. As this represents ~90% of their melting temperature, if higher-temperature engines are ever to be a reality, alternative materials must be utilized. One such class of materials is Mo-Si-B alloys; they have higher density but could operate several hundred degrees hotter. Here we describe the processing and structure versus mechanical properties of Mo-Si-B alloys and further document ways to optimize their nano/microstructures to achieve an appropriate balance of properties to realistically compete with Ni-alloys for elevated-temperature structural applications.

  19. Chemical vapor deposition of W-Si-N and W-B-N

    DOEpatents

    Fleming, J.G.; Roherty-Osmun, E.L.; Smith, P.M.; Custer, J.S.; Jones, R.V.; Nicolet, M.; Madar, R.; Bernard, C.

    1999-06-29

    A method of depositing a ternary, refractory based thin film on a substrate by chemical vapor deposition employing precursor sources of tungsten comprising WF[sub 6], either silicon or boron, and nitrogen. The result is a W-Si-N or W-B-N thin film useful for diffusion barrier and micromachining applications. 10 figs.

  20. Chemical vapor deposition of W-Si-N and W-B-N

    DOEpatents

    Fleming, James G.; Roherty-Osmun, Elizabeth Lynn; Smith, Paul M.; Custer, Jonathan S.; Jones, Ronald V.; Nicolet, Marc-A.; Madar, Roland; Bernard, Claude

    1999-01-01

    A method of depositing a ternary, refractory based thin film on a substrate by chemical vapor deposition employing precursor sources of tungsten comprising WF.sub.6, either silicon or boron, and nitrogen. The result is a W--Si--N or W--B--N thin film useful for diffusion barrier and micromachining applications.

  1. Development of a Mo-Si-B coating for Nb-based Alloys and the Effects of Zr Additions to Mo-Si-B Coatings for Enhanced Oxidation Protection in Ultra-High Temperature Applications

    NASA Astrophysics Data System (ADS)

    Lu-Steffes, Otto John

    Higher efficiencies and reduced emissions performance of fossil fuel energy systems are achieved with increasing operation temperatures. This increase in operating temperature requires the use of materials with higher melting points such as refractory metal alloys. However, refractory metals suffer from catastrophic oxidation in this type of environment. Thus, oxidation protection for refractory metal alloys is a crucial step in developing next generation ultra-high temperature materials. To meet this challenge, an oxidation resistant coating for Nb based alloys has been designed as well as the incorporation of zirconium into the Mo-Si-B coating to provide further corrosion protection and a reduction in temperature for the underlying multi-layered structure. Niobium samples coated with a Mo-Si-B coating demonstrate enhanced oxidation protection compared to samples only coated with Si-B. Thermogravimetric analysis testing at 1300°C for 24 hours for both the Mo-Si-B coated Nb and Nb-based alloys show enhanced oxidation protection with mass changes of 0.44 mg/cm2 and 0.55 mg/cm2, respectively, compared to the uncoated alloy that had a mass change of 87.6 mg/cm2. To demonstrate the design concept for a coating with thermal barrier behavior, Zr is added to the Mo-Si-B coating through the pack cementation technique. The resulting coating shows that the Zr reacts with the aluminosilica top layer to form Zr silicides and ZrO2. Upon oxidation, the coating forms a mixed top layer composed of borosilica, ZrO2 and ZrSiO 4. Oxidation testing of the Zr modified Mo-Si-B coating exhibits low mass change indicating that the coating provides oxidation protection and that the Zr additions do not interfere with the oxidation protection of the Mo-Si-B coating. Finite element modeling using object oriented finite element analysis of the coating structures yielded an evaluation of the mechanical and thermal properties of the coatings, providing insight into the thermal performance and

  2. Mechanically alloyed Mo-Si-B alloys with a continuous a-Mo matrix and improved mechanical properties

    SciTech Connect

    Krueger, M.; Franz, S.; Heilmaier, M.; Schneibel, Joachim H; Jehanno, P.; Boening, Mike Boening; Kestler, Heinrich

    2008-01-01

    Mechanical alloying (MA) followed by cold isostatic pressing (CIPing), sintering and hot isostatic pressing (HIPing) was used to prepare Mo-base silicide alloys consisting of a Mo(Si) solid solution and the intermetallic phases Mo{sub 3}Si and Mo{sub 5}SiB{sub 2}. The microstructural development during milling of both binary Mo-Si and Mo-B and ternary Mo-Si-B powder mixtures was evaluated. While obtaining a supersaturated solid solution requires rather long milling times, domain size (which correlates with the grain size) is reduced to below 100 {angstrom} after about 10 h of milling. After heat treatment and consolidation the microstructure reveals a continuous {alpha}-Mo matrix with embedded, uniformly distributed intermetallic particles. The establishment of such a microstructure is beneficial for the mechanical properties since, as compared to a discontinuous {alpha}-Mo matrix, it decreases the brittle-to-ductile transition temperature (BDTT) by about 150 K.

  3. Mechanical properties of Mo-Si-B alloys fabricated by using core-shell powder with dispersion of yttria nanoparticles

    NASA Astrophysics Data System (ADS)

    Byun, Jong Min; Bang, Su-Ryong; Choi, Won June; Kim, Min Sang; Noh, Goo Won; Kim, Young Do

    2017-01-01

    In recent years, refractory materials with excellent high-temperature properties have been in the spotlight as a next generation's high-temperature materials. Among these, Mo-Si-B alloys composed of two intermetallic compound phases (Mo5SiB2 and Mo3Si) and a ductile α-Mo phase have shown an outstanding thermal properties. However, due to the brittleness of the intermetallic compound phases, Mo-Si-B alloys were restricted to apply for the structural materials. So, to enhance the mechanical properties of Mo-Si-B alloys, many efforts to add rare-earth oxide particles in the Mo-Si-B alloy were performed to induce the improvement of strength and fracture toughness. In this study, to investigate the effect of adding nano-sized Y2O3 particles in Mo-Si-B alloy, a core-shell powder consisting of intermetallic compound phases as the core and nano-sized α-Mo and Y2O3 particles surrounding the core was fabricated. Then pressureless sintering was carried out at 1400 °C for 3 h, and the mechanical properties of sintered bodies with different amounts of Y2O3 particles were evaluated by Vickers hardness and 3-point bending test. Vickers hardness was improved by dispersed Y2O3 particles in the Mo-Si-B alloy. Especially, Mo-3Si-1B-1.5Y2O3 alloy had the highest value, 589 Hv. The fracture toughness was measured using Mo-3Si-1B-1.5Y2O3 alloy and the value indicated as 13.5 MPa·√m.

  4. The influence of working gas pressure on interlayer mixing in magnetron-deposited Mo/Si multilayers

    SciTech Connect

    Pershyn, Yuriy; Gullikson, Erik; Artyukov, Igor; Kondratenko, Valeriy; Sevryukova, Victoriya; Voronov, Dmitriy; Zubarev, Evgeniy; Vinogradov, Alexander

    2011-08-08

    Impact of Ar gas pressure (1-4 mTorr) on the growth of amorphous interlayers in Mo/Si multilayers deposited by magnetron sputtering was investigated by small-angle x-ray scattering ({lambda} = 0.154 nm) and methods of cross-sectional transmission electron microscopy. Some reduction of thickness of the amorphous inter-layers with Ar pressure increase was found, while composition of the layers was enriched with molybdenum. The interface modification resulted in raise of EUV reflectance of the Mo/Si multilayers.

  5. High reflectance-low stress Mo-Si multilayer reflective coatings

    DOEpatents

    Montcalm, Claude; Mirkarimi, Paul B.

    2000-01-01

    A high reflectance-low stress Mo-Si multilayer reflective coating particularly useful for the extreme ultraviolet (EUV) wavelength region. While the multilayer reflective coating has particular application for EUV lithography, it has numerous other applications where high reflectance and low stress multilayer coatings are utilized. Multilayer coatings having high near-normal incidence reflectance (R.gtoreq.65%) and low residual stress (.ltoreq.100 MPa) have been produced using thermal and non-thermal approaches. The thermal approach involves heating the multilayer coating to a given temperature for a given time after deposition in order to induce structural changes in the multilayer coating that will have an overall "relaxation" effect without reducing the reflectance significantly.

  6. Process for fabricating high reflectance-low stress Mo--Si multilayer reflective coatings

    DOEpatents

    Montcalm, Claude; Mirkarimi, Paul B.

    2001-01-01

    A high reflectance-low stress Mo--Si multilayer reflective coating particularly useful for the extreme ultraviolet (EUV) wavelength region. While the multilayer reflective coating has particular application for EUV lithography, it has numerous other applications where high reflectance and low stress multilayer coatings are utilized. Multilayer coatings having high near-normal incidence reflectance (R.gtoreq.65%) and low residual stress (.ltoreq.100 MPa) have been produced using thermal and non-thermal approaches. The thermal approach involves heating the multilayer coating to a given temperature for a given time after deposition in order to induce structural changes in the multilayer coating that will have an overall "relaxation" effect without reducing the reflectance significantly.

  7. Effect of separating layer thickness on W/Si multilayer replication.

    PubMed

    Wang, Fangfang; Mu, Baozhong; Jin, Huijun; Yang, Xiajun; Zhu, Jingtao; Wang, Zhanshan

    2011-08-15

    The direct replication of W/Si multilayers and the effect of separating layer thickness on the performance of the multilayer before and after replication are investigated systematically. Platinum separating layers with different layer thicknesses were first deposited onto different supersmooth mandrels and then W/Si multilayers with the similar structure were deposited onto these Pt-coated mandrels by using a high vacuum DC magnetron sputtering system. After the deposition, these multilayers were replicated onto the commercially available float glass substrates by epoxy replication technique. These multilayers before and after replication are characterized by grazing-incident X-ray reflectance measurement and atomic force microscope. The measured results show that before and after replication, the reflectivity curves are much similar to those calculated and the surface roughness of each sample is close to that of the mandrel, when the separating layer thickness is larger than 1.5 nm. These results reveal that the W/Si multilayer with the separating layer thickness larger than 1.5 nm can be successfully replicated onto a substrate without modification of the structure, significant increase of surface roughness or apparent change of reflectivity.

  8. Zero-bias anomaly in homogeneously disordered MoGe nanowires undergoing a superconductor-insulator transition

    NASA Astrophysics Data System (ADS)

    Kim, Hyunjeong; Rogachev, A.

    2016-12-01

    Nanowires made of superconducting Mo-Ge alloys undergo a superconductor-insulator transition when their cross-sectional area is reduced. On the insulating side of the transition, the differential resistance of the nanowires drops with voltage and displays a positive zero-bias anomaly (ZBA). To reveal the origin of this ZBA, we fabricated and studied a series of nanowires made of amorphous alloys with composition M o50G e50 . The length of wires was in the range 150 nm-11 μm and width was in the range 10-20 nm. We also fabricated and measured several more complex nanowire-based structures: (i) a nanowire gated by a nearby film electrode, (ii) a nanowire connected to film electrodes with an "adiabatically reduced" width, (iii) a nanowire with a multielectrode configuration which allowed comparison of different sections of the same nanowire, and (iv) a nanowire with different sizes of film electrodes. We found that for M o50G e50 nanowires all experimental parameters of the ZBA and their dependence on nanowire length can be explained by electron heating. Several physical processes thought to be responsible for the ZBA have been analyzed and rejected.

  9. Synthesis and analysis of Mo-Si-B based coatings for high temperature oxidation protection of ceramic materials

    NASA Astrophysics Data System (ADS)

    Ritt, Patrick J.

    The use of Ni-based superalloys in turbine engines has all but been exhausted, with operating temperatures nearing the melting point of these materials. The use of ceramics in turbine engines, particularly ceramic matrix composites such as SiC/C and SiC/SiC, is of interest due to their low density and attractive mechanical properties at elevated temperatures. The same materials are also in consideration for leading edges on hypersonic vehicles. However, SiC-based composites degrade in high temperature environments with low partial pressures of oxygen due to active oxidation, as well as high temperature environments containing water or sand. The need for a protective external coating for SiC-based composites in service is obvious. To date, no coating investigated for SiC/C or SiC/SiC has been proven to be resistant to oxidation and corrosion at intermediate and high temperatures, as well as in environments deficient in oxygen. The Mo-Si-B coating shows great promise in this area, having been proven resistant to attack from oxidation at extreme temperatures, from water vapor and from calcia-magnesia-aluminosilicate (CMAS). The adaptation of the Mo-Si-B coating for ceramic materials is presented in detail here. Evaluation of the coating under a range of oxidation conditions as well as simulated re-entry conditions confirms the efficacy of the Mo-Si-B based coating as protection from catastrophic failure. The key to the oxidation and corrosion resistance is a robust external aluminoborosilica glass layer that forms and flows quickly to cover the substrate, even under the extreme simulated re-entry conditions. Suppression of active oxidation of SiC, which may occur during atmospheric re-entry and hypersonic flight trajectories, has also been examined. In order to adapt the Mo-Si-B based coating to low partial pressures of oxygen and elevated temperatures, controlled amounts of Al were added to the Mo-Si-B based coating. The resulting coating decreased the inward

  10. Development and Characterization of SiC)/ MoSi2-Si3N4(p) Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    1998-01-01

    Intermetallic compound MoSi2 has long been known as a high temperature material that has excellent oxidation resistance and electrical/thermal conductivity. Also its low cost, high melting point (2023 C), relatively low density (6.2 g/cu cm versus 9 g/cu cm for current engine materials), and ease of machining, make it an attractive structural material. However, the use of MoSi2 has been hindered due to its poor toughness at low temperatures, poor creep resistance at high temperatures, and accelerated oxidation (also known as 'pest' oxidation) at temperatures between approximately 450 and 550 C. Continuous fiber reinforcing is very effective means of improving both toughness and strength. Unfortunately, MoSi2 has a relatively high coefficient of thermal expansion (CTE) compared to potential reinforcing fibers such as SiC. The large CTE mismatch between the fiber and the matrix resulted in severe matrix cracking during thermal cycling. Addition of about 30 to 50 vol % of Si3N4 particulate to MoSi2 improved resistance to low temperature accelerated oxidation by forming a Si2ON2 protective scale and thereby eliminating catastrophic 'pest failure'. The Si3N4 addition also improved the high temperature creep strength by nearly five orders of magnitude, doubled the room temperature toughness and significantly lowered the CTE of the MoSi2 and eliminated matrix cracking in SCS-6 reinforced composites even after thermal cycling. The SCS-6 fiber reinforcement improved the room temperature fracture toughness by seven times and impact resistance by five times. The composite exhibited excellent strength and toughness improvement up to 1400 C. More recently, tape casting was adopted as the preferred processing of MoSi2-base composites for improved fiber spacing, ability to use small diameter fibers, and for lower cost. Good strength and toughness values were also obtained with fine diameter Hi-Nicalon tow fibers. This hybrid composite remains competitive with ceramic matrix

  11. Rapid Solidification Behavior of Fe-Cr-Mn-Mo-Si-C Alloys

    NASA Astrophysics Data System (ADS)

    Ranganathan, Sathees; Makaya, Advenit; Fredriksson, Hasse; Savage, Steven

    2007-12-01

    The rapid solidification behavior of alloys in the Fe-Cr-Mn-Mo-Si-C system was investigated for different compositions and cooling rates. The C content was varied and alloying additions of Mo and B were studied with respect to their effect on the microstructure. The alloys were cast as either melt-spun ribbons or as 1-mm-thick plates after levitation or as rods 2 to 4 mm in diameter by injection into copper molds. A homogeneous single-phase structure was obtained for the alloy of composition 72.8Fe-8Cr-6Mn-5Si-5Mo-3.2C (wt pct), for a sample diameter of 2.85 mm, at a cooling rate of ≈1100 K/s. The single-phase structure was identified as a metastable solid solution, exhibiting the characteristics of the ɛ phase. Upon reheating, decomposition of the single-phase structure into fine bainite plates and secondary carbides was observed between 600 °C and 700 °C. The annealed structure obtained showed high hardness values (>850 HV).

  12. Bias-polarity-dependent resistance switching in W/SiO2/Pt and W/SiO2/Si/Pt structures

    PubMed Central

    Jiang, Hao; Li, Xiang Yuan; Chen, Ran; Shao, Xing Long; Yoon, Jung Ho; Hu, Xiwen; Hwang, Cheol Seong; Zhao, Jinshi

    2016-01-01

    SiO2 is the most significantly used insulator layer in semiconductor devices. Its functionality was recently extended to resistance switching random access memory, where the defective SiO2 played an active role as the resistance switching (RS) layer. In this report, the bias-polarity-dependent RS behaviours in the top electrode W-sputtered SiO2-bottom electrode Pt (W/SiO2/Pt) structure were examined based on the current-voltage (I-V) sweep. When the memory cell was electroformed with a negative bias applied to the W electrode, the memory cell showed a typical electronic switching mechanism with a resistance ratio of ~100 and high reliability. For electroforming with opposite bias polarity, typical ionic-defect-mediated (conducting filament) RS was observed with lower reliability. Such distinctive RS mechanisms depending on the electroforming-bias polarity could be further confirmed using the light illumination study. Devices with similar electrode structures with a thin intervening Si layer between the SiO2 and Pt electrode, to improve the RS film morphology (root-mean-squared roughness of ~1.7 nm), were also fabricated. Their RS performances were almost identical to that of the single-layer SiO2 sample with very high roughness (root-mean-squared roughness of ~10 nm), suggesting that the reported RS behaviours were inherent to the material property. PMID:26916050

  13. Bias-polarity-dependent resistance switching in W/SiO2/Pt and W/SiO2/Si/Pt structures.

    PubMed

    Jiang, Hao; Li, Xiang Yuan; Chen, Ran; Shao, Xing Long; Yoon, Jung Ho; Hu, Xiwen; Hwang, Cheol Seong; Zhao, Jinshi

    2016-02-26

    SiO2 is the most significantly used insulator layer in semiconductor devices. Its functionality was recently extended to resistance switching random access memory, where the defective SiO2 played an active role as the resistance switching (RS) layer. In this report, the bias-polarity-dependent RS behaviours in the top electrode W-sputtered SiO2-bottom electrode Pt (W/SiO2/Pt) structure were examined based on the current-voltage (I-V) sweep. When the memory cell was electroformed with a negative bias applied to the W electrode, the memory cell showed a typical electronic switching mechanism with a resistance ratio of ~100 and high reliability. For electroforming with opposite bias polarity, typical ionic-defect-mediated (conducting filament) RS was observed with lower reliability. Such distinctive RS mechanisms depending on the electroforming-bias polarity could be further confirmed using the light illumination study. Devices with similar electrode structures with a thin intervening Si layer between the SiO2 and Pt electrode, to improve the RS film morphology (root-mean-squared roughness of ~1.7 nm), were also fabricated. Their RS performances were almost identical to that of the single-layer SiO2 sample with very high roughness (root-mean-squared roughness of ~10 nm), suggesting that the reported RS behaviours were inherent to the material property.

  14. Pest resistant MoSi2-based materials containing in-situ grown .beta.-Si3N4 whiskers

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor)

    2002-01-01

    A MoSi.sub.2 pest resistant material includes in-situ grown .beta.-Si.sub.3 N.sub.4 whiskers. In addition to excellent pest resistance, the material provides a lower coefficient of thermal expansion for better match with continuous reinforcing fibers such as SiC fibers. A two stage heating and pressing production technique enables lower temperature processing with substantially full densification.

  15. Pest resistant MoSi2-based materials containing in-situ grown .beta.-Si3N4whiskers

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor)

    2001-01-01

    A MoSi.sub.2 pest resistant material includes in-situ grown .beta.-Si.sub.3 N.sub.4 whiskers. In addition to excellent pest resistance, the material provides a lower coefficient of thermal expansion for better match with continuous reinforcing fibers such as SiC fibers. A two stage heating and pressing production technique enables lower temperature processing with substantially full densification.

  16. Al-MoSi2 Composite Materials: Analysis of Microstructure, Sliding Wear, Solid Particle Erosion, and Aqueous Corrosion

    NASA Astrophysics Data System (ADS)

    Gousia, V.; Tsioukis, A.; Lekatou, A.; Karantzalis, A. E.

    2016-08-01

    In this effort, AMCs reinforced with new intermetallic phases, were produced through casting and compared as far as their microstructure, sliding wear, solid particle erosion, and aqueous corrosion response. Casting was selected as a production method based on the concept: (a) ease-to-handle and low cost production route and (b) optimum homogeneity of the reinforcing phase distribution. The MoSi2 phase was produced through vacuum arc melting and the resulting drops were milled for 30 h to produce fine powder, the characteristics of which were ascertained through SEM-EDS and XRD analysis. MoSi2 was used as precursor source for the final reinforcing phase. The powder material was incorporated in molten Al1050 alloy to additions of 2, 5 and 10 vol.% respectively. Extensive reactivity between the molten Al and the MoSi2 particles was observed, leading to the formation of new reinforcing phases mainly of the Al-Mo system. In all cases, a uniform particle distribution was observed, mainly characterized by isolated intermetallic phases and few intermetallic phase clusters. Sliding wear showed a beneficial action of the reinforcing phase on the wear of the composites. Surface oxidation, plastic deformation, crack formation, and debris abrasive action were the main degradation features. The results of solid particle erosion showed that the mechanism is different as the impact angle and the vol.% change. Regarding the corrosion, the analysis revealed localized corrosion effects. The composite behavior was not altered significantly compared to that of the monolithic matrix.

  17. Development and Oxidation Resistance of Plasma Sprayed Mo(Si,Al)2 Coating on Nbss/Nb5Si3 in Situ Composites

    NASA Astrophysics Data System (ADS)

    Yao, Dendzun; Wei, Haixia; Zhou, Chungen

    A Mo(Si,Al)2 coating is developed to protect Nbss/Nb5Si3 in situ composite by plasma spraying. The binary layers of this coating consist of an inner interdiffusion layer surrounded by Mo(Si,Al)2 layer with C40 crystal structure. After oxidation at 1250°C for 100h, Mo(Si,Al)2 coating exhibited an excellent protection against oxidation and good adherence to substrate. The oxidation curve followed parabolic law and even after oxidation at high temperature for 100h, the weight gain per unit area of Mo(Si,Al)2 coating is 8.24mg/cm2. No evident spalling of coating to substrate was observed but a continuous and compact layer of Al2O3 was formed on coating surface to prevent oxidation below coating and substrate.

  18. Ab initio calculations of the cohesive energy of Mo and W and heat of formation of MoSi/sub 2/ and WSi/sub 2/

    SciTech Connect

    Zhu, M.J.; Bylander, D.M.; Kleinman, L.

    1987-08-15

    Using fully relativistic norm-conserving pseudopotentials, we calculate the energy bands, cohesive energy, equilibrium lattice constant, and bulk modulus of Mo and W and compare the results with several recent all-electron and pseudopotential calculations. Comparing these cohesive energies with those we have calculated elsewhere for MoSi/sub 2/, WSi/sub 2/, and Si we also obtain MoSi/sub 2/ and WSi/sub 2/ heats of formation.

  19. Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering

    SciTech Connect

    Voronov, D. L.; Gawlitza, Peter; Cambie, Rossana; Dhuey, Scott; Gullikson, Eric M.; Warwick, Tony; Braun, Stefan; Yashchuk, Valeriy V.; Padmore, Howard A.

    2012-05-07

    Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. In this study, to minimize the shadowing effects, we used an ion-beamsputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in order to minimize degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr+ ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Lastly, details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the linear continuous model of film growth.

  20. Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering

    SciTech Connect

    Voronov, D. L.; Cambie, R.; Dhuey, S.; Gullikson, E. M.; Warwick, T.; Yashchuk, V. V.; Padmore, H. A.; Gawlitza, P.; Braun, S.

    2012-05-01

    Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. To minimize the shadowing effects, we used an ion-beam sputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in order to minimize degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr{sup +} ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the linear continuous model of film growth.

  1. Anisotropic phase separation through the metal-insulator transition in amorphous Mo-Ge and Fe-Ge alloys

    SciTech Connect

    Regan, Michael J.

    1993-12-01

    Since an amorphous solid is often defined as that which lacks long-range order, the atomic structure is typically characterized in terms of the high-degree of short-range order. Most descriptions of vapor-deposited amorphous alloys focus on characterizing this order, while assuming that the material is chemically homogeneous beyond a few near neighbors. By coupling traditional small-angle x-ray scattering which probes spatial variations of the electron density with anomalous dispersion which creates a species-specific contrast, one can discern cracks and voids from chemical inhomogeneity. In particular, one finds that the chemical inhomogeneities which have been previously reported in amorphous FexGe1-x and MoxGe1-x are quite anisotropic, depending significantly on the direction of film growth. With the addition of small amounts of metal atoms (x<0.2), no films appear isotropic nor homogeneous through the metal/insulator transition. The results indicate that fluctuations in the growth direction play a pivotal role in preventing simple growth models of a columnar structure or one that evolves systematically as it grows. The anomalous scattering measurements identify the metal atoms (Fe or Mo) as the source of the anisotropy, with the Ge atoms distributed homogeneously. The author has developed a method for using these measurements to determine the compositions of the phase-separating species. The results indicate phase separation into an amorphous Ge and an intermetallic phase of stoichiometry close to FeGe2or MoGe3. Finally, by manipulating the deposited power flux and rates of growth, FexGe1-x films which have the same Fe composition x can be grown to different states of phase separation. These results may help explain the difficulty workers have had in isolating the metal/insulator transition for these and other vapor-deposited amorphous alloys.

  2. Development of Tough, Strong, and Pest-Resistant MoSi2-(Beta)Si3N4 Composites for High-Temperature Structural Applications

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Choi, S. R.; Whittenberger, J. D.; Salem, J. A.; Noebe, R. D.

    2001-01-01

    A new MoSi2-base composite was developed that contains in-situ reinforcement of whisker-type beta-Si3N4 grains in a MoSi2 matrix. The advantages of this in-situ reinforced MoSi2-Si3N4 are lower density, higher fracture toughness and better strength than typical MoSi2 alloys, combined with excellent environmental and pest resistance. The average fracture toughness of the in-situ reinforced material determined by one technique was 12.2 MPa.m(exp 1/2) compared to 4.9 to 5.5 MPa.m(exp 1/2) for similar materials with the exception that the beta-Si3N4 had a blocky morphology as opposed to the whisker-like morphology typical of the in-situ toughened material. This MoSi2-(beta)Si3N4 was also resistant to pesting at intermediate temperatures (400 to 600 C) even when precracked or under applied load; conditions that would quickly reduce typical MoSi2 alloys to oxidized powder.

  3. Manufacturing of Composite Coatings by Atmospheric Plasma Spraying Using Different Feed-Stock Materials as YSZ and MoSi2

    NASA Astrophysics Data System (ADS)

    Koch, D.; Mauer, G.; Vaßen, R.

    2017-02-01

    Yttria-stabilized zirconia (YSZ) is the state-of-the-art material for the top coat of thermal barrier coatings. To increase the efficiency and lifetime of gas turbines, the integration of MoSi2 as a healing material was proposed. A new method of manufacture was explored in order to enable the spraying of a homogeneous mixed layer of YSZ and MoSi2. As the chemical and physical properties of these powders are very different, they require contrasting process conditions. Due to the evaporation of Si from MoSi2 at spraying conditions suitable for YSZ, more moderate conditions and a shorter time of flight are required for depositing MoSi2. At the same time, the spraying conditions still need to be sufficient for melting the YSZ particles in order to produce a coating. To obtain a homogeneous mixture, both conditions can be matched using an injection system that allows powder injection at two different locations of the plasma jet. Two-color pyrometry during flight (DPV-2000, Tecnar) was used to monitor the actual particle temperature. By optimizing the injection point for the MoSi2, a mixed coating was obtained without decomposition of the MoSi2, which has been analyzed by means of XRD and SEM.

  4. Plastic deformation of directionally solidified ingots of binary and some ternary MoSi2/Mo5Si3 eutectic composites

    PubMed Central

    Matsunoshita, Hirotaka; Sasai, Yuta; Fujiwara, Kosuke; Kishida, Kyosuke; Inui, Haruyuki

    2016-01-01

    Abstract The high-temperature mechanical properties of directionally solidified (DS) ingots of binary and some ternary MoSi2/Mo5Si3 eutectic composites with a script lamellar structure have been investigated as a function of loading axis orientation and growth rate in a temperature range from 900 to 1500°C. These DS ingots are plastically deformed above 1000 and 1100 °C when the compression axis orientations are parallel to [11¯0]MoSi2 (nearly parallel to the growth direction) and [001]MoSi2, respectively. [11¯0]MoSi2-oriented DS eutectic composites are strengthened so much by forming a script lamellar microstructure and they exhibit yield stress values several times higher than those of MoSi2 single crystals of the corresponding orientation. The yield stress values increase with the decrease in the average thickness of MoSi2 phase in the script lamellar structure, indicating that microstructure refinement is effective in obtaining better high-temperature strength of these DS eutectic composites. Among the four ternary alloying elements tested (V, Nb, Ta and W), Ta is found to be the most effective in obtaining higher yield strength at 1400 °C. PMID:27877900

  5. Surface modification of a MoSiON phase shift mask to reduce critical dimension variation after exposure to a 193-nm ArF excimer laser

    NASA Astrophysics Data System (ADS)

    Choo, Hyeokseong; Seo, Dongwan; Lim, Sangwoo

    2014-08-01

    Introduction of a MoSi-based phase shift mask (PSM) improves photolithography resolution by causing light to shift phase by 180° thus canceling the overlap. However, when MoSiON PSM was exposed to an ArF excimer laser (λ = 193 nm), a significant increase in patterned critical dimension (CD) was observed. It was confirmed that the CD increase resulted from oxidation progression into the MoSiON layer. In this study, N2O or NH3 plasma treatment and thermal annealing in NH3 effectively suppressed CD variation after ArF laser exposure. While the compositional ratio of Si, N, O, and Mo elements in the MoSiON layer was not changed, an increase in oxygen content only in the top 5 nm was observed. Therefore, it is concluded that slight oxidation of the top surface of MoSiON PSM by introducing either N2O or NH3 plasma treatment or thermal annealing in NH3 suppresses an increase in the patterned CD of MoSiON PSM after exposure to a 193-nm ArF excimer laser.

  6. A sintering model for SiC(sub)w/Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Freedman, Marc R.; Kiser, James D.; Sanders, William A.

    1988-01-01

    Presented is a model which suggests that it should be possible to pressureless sinter a SiC(sub w)/ Si3N4 composite to theoretical density. Prior failure to achieve complete densification by sintering is attributed to the use of compositions which result in a glass deficit. There is one basic premise for this model. The ratio of glass amount to surface area of nonglass constituents must be the same for both composite and sinterable monolithic Si3N4. This model suggests that whisker and grain sizes and whisker loading influence the glass amount necessary for successful sintering of composites. According to the model, a large glass amount will be necessary for successful sintering of these composites. However, grain boundary thicknesses in the composite will be less than those in the analogous monolithic materials. This suggests that good high temperature strength may still be attained. A recent report supports the predictions of the model.

  7. Effects of Wet Air and Synthetic Combustion Gas Atmospheres on the Oxidation Behavior of Mo-Si-B Alloys

    SciTech Connect

    Kramer, M.J.; Thom, A.J.; Mandal, P.; Behrani, V.; Akinc, M.

    2003-04-24

    Continuing our work on understanding the oxidation behavior of multiphase composite alloys based on the Mo-Si-B system, we investigated three alloys in the Mo-Si-B system, designated as A1, A2, and A3. The nominal phase assemblages of these alloys are: A1 = Mo{sub 5}Si{sub 3}B{sub x} (T1)-MoSi{sub 2}-MoB, A2 = T1-Mo{sub 5}SiB{sub 2} (T2)-Mo{sub 3}Si, and A3 = Mo-T2-Mo{sub 3}Si. Our previous work showed that for exposures to 1100 C, all alloys formed a protective oxide scale in dry air. Exposures to wet air containing about 150 Torr water promoted the formation of a multiphase layer near the scale/alloy interface composed of Mo and MoO{sub 2}. Interrupted mass loss measurements indicated a near zero mass change. In the present study, isothermal mass measurements were conducted in order to quantitatively determine the oxidation rate constants at 1000 C in both dry and wet air. These measurements are critical for understanding the nature of scale development during the initial exposure, as well as the nature of scale stability during the long-term exposure. Isothermal measurements were also conducted at 1600 C in dry air to make an initial determination of alloy stability with respect to Vision 21 goals. We also conducted alloy oxidation testing in a synthetic oxidizing combustion atmosphere. Alloys were exposed up to 300 hours at 1100 C to a gas mixture having an approximate gas composition of N{sub 2} - 13 CO{sub 2} - 10 H{sub 2}O - 4 O{sub 2}. This gas composition simulates oxidizing flue gas, but does not contain a sulfidizing agent that would also be present in flue gas. The oxidized samples were carefully analyzed by SEM/EDS. This analysis will be discussed to provide an understanding of the role of water vapor and the synthetic combustion atmosphere on the oxidative stability of Mo-Si-B alloys.

  8. Inorganic molecular-scale MoSI nanowire-gold nanoparticle networks exhibit self-organized critical self-assembly.

    PubMed

    Strle, Jure; Vengust, Damjan; Mihailovic, Dragan

    2009-03-01

    We investigate for the first time the topological characteristics of large molecular-scale inorganic networks self-assembled in solution using the unique sulfur-bonding chemistry of conducting MoSI molecular wires and gold nanoparticles (GNPs). The network self-assembly is shown to display power-law distribution of graph edges, indicating an intrinsic tendency to self-organize into scale-invariant critical state, without any external control parameter. We discuss the electronic transport properties of such networks particularly with regard to the possibility of data processing.

  9. Structural properties of reactively sputtered W-Si-N thin films

    SciTech Connect

    Vomiero, A.; Boscolo Marchi, E.; Quaranta, A.; Della Mea, G.; Brusa, R. S.; Mariotto, G.; Felisari, L.; Frabboni, S.; Tonini, R.; Ottaviani, G.; Mattei, G.; Scandurra, A.; Puglisi, O.

    2007-08-01

    Tungsten-silicon-nitrogen, W-Si-N, ternary thin films have been reactively sputter deposited from W{sub 5}Si{sub 3} and WSi{sub 2} targets using several nitrogen partial pressures. The films have been thermal annealed in the 600-1000 deg. C temperature range and a wide region of the W-Si-N ternary phase diagram has been explored by changing the N{sub 2}/Ar ratio during the deposition. Multitechnique approach was adopted for the analysis of the samples. Composition has been determined via ion beam analysis; chemical states were investigated using x-ray photoelectron spectroscopy (XPS); crystalline structure was studied using transmission electron microscopy (TEM) and x-ray diffraction (XRD) and surface morphology by scanning electron microscope. The films deposited in pure argon atmosphere are tungsten rich and approach the target contents as N{sub 2}/Ar ratio is varied during deposition. Tungsten enrichment in the films is caused by resputtering of silicon which can be inhibited by the formation of silicon nitride, allowing films with Si/W ratio closer to the target compositions. The higher capability to form nitrides with silicon than with tungsten favors enhancement of nitrogen content in samples deposited from the silicon rich target (WSi{sub 2}). The samples with excess nitrogen content have shown losses of this element after thermal treatment. XPS measurements show a break of W-N bonds caused by thermal instability of tungsten nitrides. TEM and XRD revealed the segregation of tungsten in form of metallic or silicide nanoclusters in samples with low nitrogen content (W{sub 58}Si{sub 21}N{sub 21} and W{sub 24}Si{sub 42}N{sub 34}). High amounts of nitrogen were revealed to be highly effective in inhibiting metallic cluster coalescence. Measurements of electrical resistivity of as deposited films were performed using four point probe technique. They were found to lie in the range between 0.4 and 79 m{omega} cm depending on sample composition.

  10. Synergistic toughening of hard, nacre-mimetic MoSi2 coatings by self-assembled hierarchical structure

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Zhao, Xiaoli; Munroe, Paul; Xie, Zonghan

    2014-02-01

    Like many other intermetallic materials, MoSi2 coatings are typically hard, but prone to catastrophic failure due to their low toughness at ambient temperature. In this paper, a self-assembled hierarchical structure that closely resembles that of nacre (i.e., mother of pearl) was developed in a MoSi2-based coating through a simple, yet cost-effective, depostion technique. The newly formed coating is tough and can withstand multiple indentations at high loads. Key design features responsible for this remarkable outcome were identified. They include a functionally graded multilayer featuring elastic modulus oscillation, varying sublayer thickness and a columnar structure that are able to attenuate stress concentrations; interlocking boundaries between adjacent sublayers that improve the bonding and arrest the cracks; a transitional layer that bridges the coating and substrate and facilitates load transfer. Moreover, the contributions of six important structural characteristics to damage resistance are quantified using finite elemnet analysis and in an additive manner (i.e., from low- to high-level complexity). The in-situ toughened coating is envisaged to enhance the mechanical performance and extend the lifespan of metal components used in safety-critical applications.

  11. Synergistic toughening of hard, nacre-mimetic MoSi2 coatings by self-assembled hierarchical structure.

    PubMed

    Xu, Jiang; Zhao, Xiaoli; Munroe, Paul; Xie, Zonghan

    2014-02-28

    Like many other intermetallic materials, MoSi2 coatings are typically hard, but prone to catastrophic failure due to their low toughness at ambient temperature. In this paper, a self-assembled hierarchical structure that closely resembles that of nacre (i.e., mother of pearl) was developed in a MoSi2-based coating through a simple, yet cost-effective, depostion technique. The newly formed coating is tough and can withstand multiple indentations at high loads. Key design features responsible for this remarkable outcome were identified. They include a functionally graded multilayer featuring elastic modulus oscillation, varying sublayer thickness and a columnar structure that are able to attenuate stress concentrations; interlocking boundaries between adjacent sublayers that improve the bonding and arrest the cracks; a transitional layer that bridges the coating and substrate and facilitates load transfer. Moreover, the contributions of six important structural characteristics to damage resistance are quantified using finite elemnet analysis and in an additive manner (i.e., from low- to high-level complexity). The in-situ toughened coating is envisaged to enhance the mechanical performance and extend the lifespan of metal components used in safety-critical applications.

  12. PLASMA SPRAYED FUNCTIONALLY GRADED AND LAYERED MoSi2-A1203 COMPOSITES FOR HIGH TEMPERATURE SENSOR SHEATH APPLICATION

    SciTech Connect

    R. VAIDYA; ET AL

    2001-01-01

    Protective sensor sheaths are required in the glass industry for sensors that are used to measure various properties of the melt. Molten glass presents an extremely corrosive elevated temperature environment, in which only a few types of materials can survive. Molybdenum disilicide (MoSi{sub 2}) has been shown to possess excellent corrosion resistance in molten glass, and is thus a candidate material for advanced sensor sheath applications. Plasma spray-forming techniques were developed to fabricate molybdenum dilicide-alumina (Al{sub 2}O{sub 3}) laminate and functionally graded composite tubes with mechanical properties suitable for sensor sheath applications. These functionally graded materials (FGMs) were achieved by manipulating the powder hoppers and plasma torch translation via in-house created computer software. Molybdenum disilicide and alumina are thermodynamically stable elevated temperature materials with closely matching thermal expansion coefficients. Proper tailoring of the microstructure of these MoSi{sub 2}-Al{sub 2}O{sub 3} composites can result in improved strength, toughness, and thermal shock resistance. This study focuses on the mechanical performance of these composite microstructures.

  13. Synergistic toughening of hard, nacre-mimetic MoSi2 coatings by self-assembled hierarchical structure

    PubMed Central

    Xu, Jiang; Zhao, Xiaoli; Munroe, Paul; Xie, Zonghan

    2014-01-01

    Like many other intermetallic materials, MoSi2 coatings are typically hard, but prone to catastrophic failure due to their low toughness at ambient temperature. In this paper, a self-assembled hierarchical structure that closely resembles that of nacre (i.e., mother of pearl) was developed in a MoSi2-based coating through a simple, yet cost-effective, depostion technique. The newly formed coating is tough and can withstand multiple indentations at high loads. Key design features responsible for this remarkable outcome were identified. They include a functionally graded multilayer featuring elastic modulus oscillation, varying sublayer thickness and a columnar structure that are able to attenuate stress concentrations; interlocking boundaries between adjacent sublayers that improve the bonding and arrest the cracks; a transitional layer that bridges the coating and substrate and facilitates load transfer. Moreover, the contributions of six important structural characteristics to damage resistance are quantified using finite elemnet analysis and in an additive manner (i.e., from low- to high-level complexity). The in-situ toughened coating is envisaged to enhance the mechanical performance and extend the lifespan of metal components used in safety-critical applications. PMID:24577416

  14. Demonstration of the high collection efficiency of a broadband Mo/Si multilayer mirror with a graded multilayer coating on an ellipsoidal substrate

    NASA Astrophysics Data System (ADS)

    Ichimaru, S.; Takenaka, H.; Namikawa, K.; Gullikson, E. M.; Maruyama, M.; Oku, S.

    2015-09-01

    A graded and broadband Mo/Si multilayer mirror for EUV spectroscopy is demonstrated. This mirror has an average reflectivity profile of 16% in the wavelength region from 15 nm to 17 nm and an effective area of 1100-1500 mm2. This reflectivity is about 4 times larger than that of a standard Mo/Si multilayer mirror on a 1 in. diameter substrate, showing that the mirror can be used for measuring EUV fluorescence at wavelengths in the region around 15 nm to 17 nm.

  15. Demonstration of the high collection efficiency of a broadband Mo/Si multilayer mirror with a graded multilayer coating on an ellipsoidal substrate.

    PubMed

    Ichimaru, S; Takenaka, H; Namikawa, K; Gullikson, E M; Maruyama, M; Oku, S

    2015-09-01

    A graded and broadband Mo/Si multilayer mirror for EUV spectroscopy is demonstrated. This mirror has an average reflectivity profile of 16% in the wavelength region from 15 nm to 17 nm and an effective area of 1100-1500 mm(2). This reflectivity is about 4 times larger than that of a standard Mo/Si multilayer mirror on a 1 in. diameter substrate, showing that the mirror can be used for measuring EUV fluorescence at wavelengths in the region around 15 nm to 17 nm.

  16. Matrix grain characterisation by electron backscattering diffraction of powder metallurgy aluminum matrix composites reinforced with MoSi{sub 2} intermetallic particles

    SciTech Connect

    Corrochano, J. Hidalgo, P.; Lieblich, M.; Ibanez, J.

    2010-11-15

    Research highlights: Six extruded PM AA6061/MoSi{sub 2}/15p were processed with and without ball milling {yields} EBSD was used to characterise matrix grain size and grain orientation. {yields} Ball milling decreases matrix grain size to submicrometric level. {yields} Ball milling produces a more equiaxed microstructure and larger misorientation. {yields} Increasing milling time produces matrix texture randomization.

  17. Thermal and stress studies of the 30.4 nm Mo/Si multilayer mirror for the moon-based EUV camera

    NASA Astrophysics Data System (ADS)

    Li, Yunpeng; Zhang, Hongji; Wang, Haifeng; He, Fei; Wang, Xiaodong; Liu, Yang; Han, Suli; Zheng, Xin; Wang, Xiaoduo; Chen, Bin; Li, Haibo; Chen, Bo; Cao, Jianlin

    2014-10-01

    To investigate the environmental adaptability of the Mo/Si multilayers on lunar surface, we studied the stability and stress of Mo/Si multilayers under the low and high temperature environment. The in-situ X-ray diffraction (XRD) and the ex-situ intrinsic stress are measured in the temperature range from -135 °C to 600 °C and from -190 °C to 600 °C, respectively. The results demonstrate that the periodic structure of Mo/Si multilayers is stable between -135 °C and 300 °C. The stress is unaffected under low temperature and it gradually increases from -260 MPa to 1G MPa when the temperature changes from room temperature to 600 °C. Above 600 °C, large tensile stress leads to folds and cracks in the film. Thus, the large temperature range on lunar surface has little effect on the structure, performance and stress of the Mo/Si multilayers and the high temperature in lunar day releases the stress of the multilayer mirror.

  18. Mo/Si multilayer-coated amplitude-division beam splitters for XUV radiation sources

    PubMed Central

    Sobierajski, Ryszard; Loch, Rolf Antonie; van de Kruijs, Robbert W. E.; Louis, Eric; von Blanckenhagen, Gisela; Gullikson, Eric M.; Siewert, Frank; Wawro, Andrzej; Bijkerk, Fred

    2013-01-01

    Amplitude-division beam splitters for XUV radiation sources have been developed and extensively characterized. Mo/Si multilayer coatings were deposited on 50 nm-thick SiN membranes. By changing the multilayer structure (periodicity, number of bilayers, etc.) the intensity of the reflected and transmitted beams were optimized for selected incident radiation parameters (wavelength, incident angle). The developed optical elements were characterized by means of XUV reflectometry and transmission measurements, atomic force microscopy and optical interferometry. Special attention was paid to the spatial homogeneity of the optical response and reflected beam wavefront distortions. Here the results of the characterization are presented and improvements required for advanced applications at XUV free-electron lasers are identified. A flatness as low as 4 nm r.m.s. on 3 × 3 mm beam splitters and 22 nm r.m.s. on 10 × 10 mm beam splitters has been obtained. The high-spatial-frequency surface roughness was about 0.7–1 nm r.m.s. The middle-spatial-frequency roughness was in the range 0.2–0.8 nm r.m.s. The reflection and transmission of the beam splitters were found to be very homogeneous, with a deviation of less than 2% across the full optical element. PMID:23412481

  19. Structural size effects of intermetallic compounds on the mechanical properties of Mo-Si-B alloy: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Byun, Jong Min; Bang, Su-Ryong; Park, Chun Woong; Suk, Myung-Jin; Kim, Young Do

    2016-01-01

    In general, size, shape and dispersion of phases in alloys significantly affect mechanical properties. In this study, the mechanical properties of Mo-Si-B alloys were experimentally investigated with regards to the refinement of intermetallic compound. To confirm the size effect of the intermetallic compound phases on mechanical properties, two differently sized intermetallic compound powders consisting Mo5SiB2 and Mo3Si were fabricated by mechano-chemical process and high-energy ball milling. A modified powder metallurgy method was used with core-shell intermetallic powders where the intermetallic compound particles were the core and nano-sized Mo particles which formed by the hydrogen reduction of Mo oxide were the shells, leading to the microstructures with uniformly distributed intermetallic compound phases within a continuous α-Mo matrix phase. Vickers hardness and fracture toughness were measured to examine the mechanical properties of sintered bodies. Vickers hardness was 472 Hv for the fine intermetallic compound powder and 415 Hv for the coarse intermetallic compound powder. The fracture toughness was 12.4 MPa·√m for the fine IMC powders and 13.5 MPa·√m for the coarse intermetallic compound powder.

  20. An ultra-high temperature Mo-Si-B based coating for oxidation protection of NbSS/Nb5Si3 composites

    NASA Astrophysics Data System (ADS)

    Su, Linfen; Lu-Steffes, Otto; Zhang, Hu; Perepezko, John H.

    2015-05-01

    A Mo-Si-B based coating was prepared on an NbSS/Nb5Si3 composite by a two-step process consisting of the initial deposition of Mo followed by pack cementation co-deposition of Si and B. After a conditioning treatment, an aluminoborosilica layer fully covered the sample. Following oxidation at 1300 °C for 24 h, the coated sample demonstrated a weight loss of about 0.55 mg/cm2 and the uncoated sample exhibited catastrophic oxidation with a weight gain of 87.6 mg/cm2. These results demonstrate that the Mo-Si-B based coating can enable the use of the NbSS/Nb5Si3 composites at temperature up to 1300 °C in an oxidizing environment.

  1. Structure and stress studies of low temperature annealed W/Si multilayers for the X-ray telescope.

    PubMed

    Huang, Qiushi; Zhang, Jinshuai; Qi, Runze; Yang, Yang; Wang, Fengli; Zhu, Jie; Zhang, Zhong; Wang, Zhanshan

    2016-07-11

    Low stress W/Si multilayer mirrors are demanded in the hard X-ray telescopes to achieve the high angular resolution. To reduce the stress of the as-deposited multilayer and maintain a high reflectivity, two groups of low-temperature annealing experiments were performed on the periodic multilayers with a d-spacing of ~3.8 nm. The temperature-dependent experiments show that the 150 °C annealing can slightly increase the reflectivity while the stress reduced only by 24%. Higher temperature annealing induced a larger reduction of the stress and the multilayer reached an almost zero stress state at 250 °C. The stress relaxation was accompanied by a small drop of reflectivity of ≤5% and a period compaction of <0.02 nm. The time-dependent experiments indicate that most of the stress changes occurred within the first 10 minutes while a prolonged annealing is not useful. The X-ray scattering and transmission electron microscopy were further used to study the microstructure changes of the multilayers. It is found that the W/Si multilayer exhibits an amorphous structure before and after annealing, while an enhanced diffusion and intermixing is the main reason for the stress relaxation and structure changes.

  2. The effect of a weak W/SiC interface on the strength of sigma silicon carbide monofilament

    PubMed

    Dyos; Shatwell

    1999-11-01

    Fractography studies have shown that the strength-determining flaws in silicon carbide monofilaments are generally at the core/silicon carbide interface or in the vicinity of the outside, carbon-based coating. In tungsten-cored monofilaments like DERA Sigma, the W/SiC flaws primarily determine the strength. Fracture is accompanied by brittle failure of the tungsten. The crack propagates simultaneously outwards through the silicon carbide, inwards through the tungsten and also around the W/SiC interface before being deflected into the tungsten or out through the silicon carbide. Experiments depositing boundary layers between the tungsten and silicon carbide have resulted in significantly different fracture behaviour. The tungsten fails in a ductile manner and the strength-determining flaws are located predominantly at the outside surface of the silicon carbide. This behaviour is discussed in terms of models proposed by E. Martin and W. Curtin. It is thought that the work will ultimately lead to a significantly stronger, tungsten-based monofilament.

  3. Corrosion of Si 3N 4-MoSi 2 ceramic composite in acid- and basic-aqueous environments: surface modification and properties degradation

    NASA Astrophysics Data System (ADS)

    Winterhalter, F.; Medri, V.; Ruffini, A.; Bellosi, A.

    2004-03-01

    The corrosion behaviour of an electroconductive Si 3N 4-35 vol.% MoSi 2 composite, hot pressed with the addition of Al 2O 3 and Y 2O 3 as sintering aids, was studied in 1.8 M sulphuric acid and 4 M sodium hydroxide aqueous solutions at room temperature, 40 and 70 °C up to 400 h. In acidic environment, the corrosion follows linear kinetics involving the progressive chemical dissolution of glassy grain boundary phases, in the system Al-Y-Si-O-N up to 40 °C. At 70 °C, the dissolution mechanism is hampered by the formation of a barrier that limits the transport of the aggressive cations towards the sites of chemical attack. In basic environment, the rate controlling step for corrosion of this ceramic composite is the chemical dissolution of MoSi 2. Si 3N 4 phase is less affected by the selected corrosive environments. The effect of the corrosion on electrical resistivity and flexural strength were investigated. The electrical resistivity rises after long term corrosion in line with the progressive chemical dissolution of grain boundary phase and of the electroconductive MoSi 2 particles. The flexural strength values are about 21 and 13% lower than the as-sintered ones, after a permanence of 400 °C at 70 °C in H 2SO 4 and in NaOH solutions, respectively.

  4. PROCESSING, MICROSTRUCTURE AND CREEP BEHAVIOR OF Mo-Si-B-BASED INTERMETALLIC ALLOYS FOR VERY HIGH TEMPERATURE STRUCTURAL APPLICATIONS

    SciTech Connect

    Vijay K. Vasudevan

    2005-12-21

    This research project is concerned with developing a fundamental understanding of the effects of processing and microstructure on the creep behavior of refractory intermetallic alloys based on the Mo-Si-B system. During this year, the compressive creep behavior of a Mo-3Si-1B (in wt.%) alloy at 1100 and 1200 C were studied and related to the deformation mechanisms through electron microscopy observations of microstructural changes and deformation structures. The microstructure of this alloy was three-phase, being composed of {alpha}-Mo, Mo{sub 3}Si and T2-Mo{sub 5}SiB{sub 2} phases. Results of compressive creep tests at 1200 and 1100 C showed that the creep rates were quite high at stress levels between 250 and 500 MPa, Two minima in the creep strain rate versus strain data were noted, one at small strain values and the second at much larger strains. A stress exponent of 4.26 was obtained upon plotting the strain rate corresponding to the first minima versus stress, which suggests that dislocation climb and glide dominate the creep process in the early stages. On the other hand, the large strain, minimum creep rate versus stress data gave a stress exponent of {approx}1.18, which indicates diffusional mechanisms and recrystallization dominate the later stages of the creep process. At 1100 C, a stress exponent of 2.26 was obtained, which suggests that both diffusional and dislocation mechanisms contribute to the creep strain. Based on the minimum creep rate data at 1100 C and 1200 C, the activation energy for creep was determined to be 525 kJ/mole, which is somewhat higher than that reported for self diffusion in {alpha}-Mo. Microstructural observations of post-crept samples indicated the presence of many voids in the {alpha}-Mo grains and few cracks in the intermetallic particles and along their interfaces with the {alpha}-Mo matrix. In addition, TEM observations revealed the presence of recrystallized grains and sub-grain boundaries composed of dislocation arrays

  5. Spectroscopic and structural characterization of chlorine loading effects on Mo/Si:Ti catalysts in oxidative dehydrogenation of ethane.

    PubMed

    Liu, Chang; Ozkan, Umit S

    2005-02-17

    The structural changes induced in a silica-titania mixed-oxide support (1:1 molar ratio) by chlorine addition at different loading levels, their relation to the structural characteristics of supported MoOx species over the support, and their correlation with ethane oxidative dehydrogenation (ODH) activity have been examined. The molybdenum and chlorine precursors are incorporated into the Si/Ti support network as it forms during gelation by using a "one-pot" modified sol-gel/coprecipitation technique. In situ X-ray diffraction during calcination shows the Si/Ti 1:1 mixed-oxide support is in a state of nanodispersed anatase titania over amorphous silica. With the addition of molybdenum and chlorine modifier, this anatase feature becomes more pronounced, indicating a decreased dispersion of titania. The effective titania surface area on the chlorine-doped Si:Ti support obtained from 2-propanol temperature-programmed reaction supports this observation. Raman spectra of dehydrated samples point to an enhanced interaction of MoOx species with silica at the expense of titania. X-ray photoelectron spectroscopic results show that, without forming a molybdenum chloride, the presence of chlorine significantly alters the relative surface concentration of Si vs Ti, the electronic structure of the surface MoOx species, and the oxygen environment around supported MoOx species in the Si/Ti network. Secondary ion mass spectrometry detected the existence of SiCl fragments from the mass spectra, which provides molecular insight into the location of chlorine in Mo/Si:Ti catalysts. The observed increase in ethane ODH selectivity with chlorine modification may be ascribed to the MoOx species sharing more complex ligands with silica and titania with the indirect participation of chlorine. Steady-state isotopic transient kinetic analysis (SSITKA) is used to to examine the oxygen insertion and exchange mechanisms. The catalysts show very little oxygen exchange with the gas phase in the

  6. Probing the valence orbitals of transition metal-silicon diatomic anions: ZrSi, NbSi, MoSi, PdSi and WSi.

    PubMed

    Gunaratne, K Don Dasitha; Berkdemir, Cuneyt; Harmon, C L; Castleman, A W

    2013-04-28

    Evolution of electronic properties and the nature of bonding of the 4d-transition metal silicides (ZrSi, NbSi, MoSi and PdSi) are discussed, revealing interesting trends in the transition metal-silicon interactions across the period. The electronic properties of select transition metal silicide diatomics have been determined by anion photoelectron imaging spectroscopy and theoretical methods. The electron binding energy spectra and photoelectron angular distributions obtained by 2.33 eV (532 nm) photons have revealed the distinct features of these diatomics. The theoretical calculations were performed at the density functional theory (DFT) level using the unrestricted B3LYP hybrid functional and at the ab initio unrestricted coupled cluster singles and doubles (triplets) (UCCSD(T)) methods to assign the ground electronic states of the neutral and anionic diatomics. The excited electronic states were calculated by the DFT (TD-DFT)/UB3LYP method. We have observed that the valence molecular orbital configuration of the ZrSi and NbSi anions are significantly different from that of the MoSi and PdSi anions. By combining our experimental and theoretical results, we report that the composition of the highest occupied molecular orbitals shift from a majority of transition metal s- and d-orbital contribution in ZrSi and NbSi, to mainly silicon p-orbital contribution for MoSi and PdSi. We expect these observed atomic scale transition metal-silicon interactions to be of increasing importance with the miniaturization of devices approaching the sub-nanometer size regime.

  7. Spectral reflectance data of a high temperature stable solar selective coating based on MoSi2–Si3N4

    PubMed Central

    Hernández-Pinilla, D.; Rodríguez-Palomo, A.; Álvarez-Fraga, L.; Céspedes, E.; Prieto, J.E.; Muñoz-Martín, A.; Prieto, C.

    2016-01-01

    Data of optical performance, thermal stability and ageing are given for solar selective coatings (SSC) based on a novel MoSi2–Si3N4 absorbing composite. SSC have been prepared as multilayer stacks formed by silver as metallic infrared reflector, a double layer composite and an antireflective layer (doi: 10.1016/j.solmat.2016.04.001 [1]). Spectroscopic reflectance data corresponding to the optical performance of samples after moderate vacuum annealing at temperatures up to 600 °C and after ageing test of more than 200 h with several heating–cooling cycles are shown here. PMID:27182544

  8. Effects of thermal annealing of W/SiO2 multilayer Bragg reflectors on resonance characteristics of film bulk acoustic resonator devices with cobalt electrodes

    NASA Astrophysics Data System (ADS)

    Yim, Munhyuk; Kim, Dong-Hyun; Chai, Dongkyu; Yoon, Giwan

    2004-05-01

    In this article, we present the thermal annealing effects of the W/SiO2 multilayer reflectors in ZnO-based film bulk acoustic resonator (FBAR) devices with cobalt (Co) electrodes in comparison with those with aluminum (Al) electrodes. Various thermal annealing conditions have been implemented on the W/SiO2 multilayer reflectors formed on p-type (100) silicon substrates. The resonance characteristics could be significantly improved due to the thermal annealing and were observed to depend strongly on the annealing conditions applied to the reflectors. Particularly, the FBAR devices with the W/SiO2 multilayer reflectors annealed at 400 °C/30 min have shown superior resonance characteristics in terms of return loss and quality factor. In addition, the use of Co electrodes has resulted in the further improvement of the resonance characteristics as compared with the Al electrodes. As a result, the combined use of both the thermal annealing and Co electrodes seems very useful to more effectively improve the resonance characteristics of the FBAR devices with the W/SiO2 multilayer reflectors. .

  9. Development and realization of non-periodic W/Si multilayer mirrors for 5 14 keV X-ray plasma diagnostic

    NASA Astrophysics Data System (ADS)

    Champeaux, J.-Ph.; Troussel, Ph.; Villier, B.; Vidal, V.; Khachroum, T.; Vidal, B.; Krumrey, M.

    2007-11-01

    W/Si aperiodic multilayer mirrors were developed at the Commissariat à l'Energie Atomique (CEA-DIF) in collaboration with the Laboratoire des Matériaux et de Microélectronique de Provence (L2MP). These "super-mirrors" [F. Mezei, Commun. Phys. 2 (1977) 41. [1]; E. Spiller, Appl. Phys. Lett. 20 (1972) 365. [2

  10. Improvement of the Adhesion Strength of MoSi2-ZrB2 Coating by Optimizing Particle Spraying and Subsequent Heat Treatment

    NASA Astrophysics Data System (ADS)

    Lu, Wang; Qian-gang, Fu; Ning-kun, Liu; Jia, Sun

    2016-10-01

    A MoSi2-ZrB2 coating was prepared on SiC-coated C/C composites by supersonic plasma spraying, and the effects of particle diameter and subsequent heat treatment in argon at different temperatures on the adhesion strength were studied. The results show that the MoSi2-ZrB2 coating sprayed with an average powder diameter of 29.2 μm could melt thoroughly and form a dense structure without micro-pore, which results in a relatively good adhesion strength of 11.4 MPa compared with 9.2 and 8.6 MPa of the coatings sprayed with the powder diameter of 58.2 and 35.5 μm. The coating presents a decreasing porosity from 2.2 to 1.5% and an increasing adhesion strength from 11.6 to 16.9 MPa after heat treatment at 800 °C, which is mainly caused by slight sintering of SiO2 and B2O3

  11. Experimental investigation of the dynamic elastic modulus and vibration damping in MoSi{sub 2}-30%Si{sub 3}N{sub 4} as a function of temperature

    SciTech Connect

    Olsen, G.T.; Wolfenden, A.; Hebsur, M.G.

    2000-02-01

    The dynamic elastic modulus, E, and vibration damping of molybdenum disilicide (MoSi{sub 2}) with 30% volume addition of silicon nitride (Si{sub 3}N{sub 4}) were measured at varying temperatures using the piezoelectric ultrasonic composite oscillator technique (PUCOT). The value of the elastic modulus of the composite was observed to decrease as temperature, T, was increased. The value of dE/dT of MoSi{sub 2} was determined to be {minus}0.03 GPa/K. The vibration damping of MoSi{sub 2}-30%Si{sub 3}N{sub 4} increased as temperature was increased, with an effective activation energy of 0.076 eV/atom. This was an average over the entire temperature range, but two distinct slopes were observed in the plot of damping versus inverse temperature.

  12. Reaction-bonding preparation of Si{sub 3}N{sub 4}/MoSi{sub 2} and Si{sub 3}N{sub 4}/WSi{sub 2} composites from elemental powders

    SciTech Connect

    Zhang, B.R.; Marino, F.

    1997-01-01

    Si{sub 3}N{sub 4}/MoSi{sub 2} and Si{sub 3}N{sub 4}/WSi{sub 2} composites were prepared by reaction-bonding processes using as starting materials powder mixtures of Si-Mo and Si-W, respectively. A presintering step in an Ar-base atmosphere was used before nitriding for the formation of MoSi{sub 2} and WSi{sub 2}; the nitridation in a N{sub 2}-base atmosphere was followed after presintering with the total stepwise cycle of 1,350 C {times} 20 h + 1,400 C {times} 20 h + 1,450 C {times} 2 h. The final phases obtained in the two different composites were Si{sub 3}N{sub 4} and MoSi{sub 2} or WSi{sub 2}; no free elemental Si and Mo or W were detected by X-ray diffraction.

  13. Microstructure and property modifications of an AISI H13 (4Cr5MoSiV) steel induced by pulsed electron beam treatment

    SciTech Connect

    Zhang Kemin; Zou Jianxin; Grosdidier, Thierry; Dong Chuang

    2010-11-15

    In the present work, surface modifications generated by the low energy high current pulsed electron beam (LEHCPEB) treatments have been investigated on an AISI H13 (4Cr5MoSiV) steel. From the observations of scanning electron microscopy, x-ray diffraction, and electron back scattering diffraction determinations, it could be established that the final structure in the melted layer is a mixture of ultrafine {delta} phase, martensite, and residual austenite. The formation of the heterogeneous microstructures on the surface layer is related to the very rapid heating, melting, solidification, and cooling induced by the LEHCPEB irradiation. After the LEHCPEB treatment, the wear resistance of the steel effectively improved. This can be mainly attributed to the higher hardness of the ultrafine structures formed on the top surface and the hardened subsurface layers after the treatment.

  14. The effect of post-treatment of a high-velocity oxy-fuel Ni-Cr-Mo-Si-B coating part 2: Erosion-corrosion behavior

    NASA Astrophysics Data System (ADS)

    Shrestha, S.; Hodgkiess, T.; Neville, A.

    2001-12-01

    In this paper, a study of the erosion-corrosion characteristics of a Ni-Cr-Mo-Si-B coating applied by the high-velocity oxy-fuel (HVOF) process on to an austenitic stainless steel (UNS S31603) substrate are reported. The coatings were studied in the as-sprayed condition, after vacuum sealing with polymer impregnation and after vacuum furnace fusion. The erosion-corrosion characteristics were assessed in an impinging liquid jet of 3.5% NaCl solution at 18 °C at a velocity of 17 m/s at normal incidence in two conditions: (1) free from added solids and (2) containing 800 ppm silica sand. The methodology employed electrochemical control and monitoring to facilitate the identification of the separate and interrelated erosion and corrosion contributions to the erosion-corrosion process. The rates of erosion-corrosion damage were drastically accelerated in the presence of the suspended solids. The application of cathodic protection significantly reduced the deterioration process. The study showed the effect of sealing with polymer impregnation did not significantly alter the erosion-corrosion behavior of the sprayed coating. However, there was a significant improvement in erosion-corrosion durability afforded by the postfusion process. The mechanisms by which the improved performance of vacuum-fused coatings is achieved are discussed.

  15. Evaluation of lubricating oil preparation procedures for the determination of Al, Ba, Mo, Si and V by high-resolution continuum source FAAS.

    PubMed

    Amorim Filho, Volnei Resta; Gomes Neto, José Anchieta

    2009-01-01

    Microwave-assisted acid decomposition and oil-in-water emulsification were evaluated as sample pretreatment procedures to determine Al, Ba, Mo, Si and V in lubricating oils by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Average recoveries of Al, Ba and V in oil digests (107, 103 and 101%) were close to those obtained for emulsions prepared in kerosene medium (94, 113 and 95%). Average recoveries for Mo were close to 105 and 46% for emulsions and digests, respectively. Improved average recoveries (101%) were obtained for Mo in digests using the analyte addition technique. Silicon was successfully quantified only in digested samples. Limits of quantification for Al, Ba, Mo and V were 1.4, 31.5, 1.5 and 11.4-fold lower than those obtained by line-source FAAS. Enhanced sensitivity, multi-elemental capability, and high sample throughput are among the main advantages of HR-CS FAAS in comparison with the line-source FAAS technique.

  16. Hot pressing effect on the shear bond strength of dental porcelain to CoCrMoSi alloy substrates with different surface treatments.

    PubMed

    Henriques, B; Faria, S; Soares, D; Silva, F S

    2013-01-01

    The purpose of this study was to evaluate the effect of hot pressing on the shear bond strength of a CoCrMoSi alloy to a low-fusing feldspathic porcelain, for two types of surface treatments: polished and grit-blasted. Moreover, the shear strength of hot pressed porcelain was also compared with that of conventional vacuum sintered porcelain. Bond strength of metal-porcelain composites were assessed by the means of a shear test performed in a universal test machine until fracture. Fracture surfaces and interfaces were investigated by optical microscope, stereomicroscope and SEM/EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The 2-way ANOVA followed by Tukey HSD multiple comparison test was used to compare shear bond strength results and the t-test was used to compare the porcelain shear strength (p<0.05). Hot pressed specimens exhibited significantly (p<0.001) higher bond strength values than those obtained by conventional PFM technique. Significant differences (p<0.001) were found in the shear bond strength between grit-blasted and polished specimens. Significant differences (p<0.05) were also found between the shear strength of vacuum sintered and hot pressed porcelain. This study revealed that metal-ceramic bond strength is maximized for hot pressed porcelain onto rough metal substrates, with lower variability in results. Hot pressing technique was also shown to enhance the cohesion of porcelain.

  17. Deposition and cyclic oxidation behavior of a protective (Mo,W)(Si,Ge) [sub 2] coating on Nb-base alloys

    SciTech Connect

    Mueller, A.; Wang, G. . Dept. of Materials Science and Engineering); Rapp, R.A. )

    1992-05-01

    A multicomponent diffusion coating has been developed to protect Nb-base alloys from high-temperature environmental attach. A solid solution of molybdenum and tungsten disilicide (Mo, W)Si[sub 2], constituted the primary coating layer which supported a slow-growing protective silica scale in service. Germanium additions were made during the coating process to improve the cyclic oxidation resistance by increasing the thermal expansion coefficient of the vitreous silica film formed and to avoid pesting by decreasing the viscosity of the protective film. In this paper, the development of the halide-activated pack cementation coating process to produce this (Mo,W)(Si,Ge)[sub 2] coating on Nb-base alloys is described. The results of cyclic oxidation for coupons coated under different conditions in air at 1370[degrees]C are presented. Many coupons have successfully passed 200 1 h cyclic oxidation tests at 1370[degrees]C with weight-gain values in the range of 1.2 to 1.6 mg/cm[sup 2].

  18. In-situ fabrication of MoSi2/SiC-Mo2C gradient anti-oxidation coating on Mo substrate and the crucial effect of Mo2C barrier layer at high temperature

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Gong, Qianming; Shao, Yang; Zhuang, Daming; Liang, Ji

    2014-07-01

    MoSi2/SiC-Mo2C gradient coating on molybdenum was in situ prepared with pack cementation process by two steps: (1) carburizing with graphite powder to obtain a Mo2C layer on Mo substrate, and (2) siliconizing with Si powder to get a composite MoSi2/SiC layer on the upper part of Mo2C layer. The microstructure and elemental distribution in the coating were investigated with scanning electron microscopy (SEM), back scattered electron (BSE), energy dispersive spectroscopy (EDS), electron probe microanalysis (EPMA) and X-ray diffraction (XRD). Cyclic oxidation tests (at 500 °C, 1200 °C, 1400 °C and 1600 °C) demonstrated excellent oxidation resistance for the gradient composite coating and the mass loss was only 0.23% in 60 min at 1600 °C. XRD, EPMA, thermal dynamic and phase diagram analyses indicated that the Mo2C barrier layer played the key role in slowing down the diffusion of C and Si toward inner Mo substrate at high temperature and principally this contributed to the excellent anti-oxidation for Mo besides the outer MoSi2/SiC composite layer.

  19. EPR and diffuse reflectance studies of the physico-chemical phenomena occurring during the preparation of Mo/SiO[sub 2] catalysts by the grafting method

    SciTech Connect

    Louis, C.; Che, M. )

    1992-05-01

    Mo/SiO[sub 2] catalysts were prepared by the grafting method, i.e., by air- and water-free reaction between MoCl[sub 5] and hydroxyl groups of silica support. This reaction may be performed either in a liquid medium (cyclohexane) or in the vapor phase. It is shown by EPR and diffuse reflectance spectroscopies that two types of molybdenum were deposited onto silica during the grafting reaction: (i) grafted Mo as [triple bond]SiOMoCl[sub 4] (g = 1.9652 and g = 1.968), and (ii) physically adsorbed Mo as the diamagnetic Mo[sub 2] Cl[sub 10] dimer; this compound turns blue in air because of both its partial oxidation and hydrolysis to form the so-called molybdenum blues. After the grafting reaction itself, the second step involves washing by water or ammonia solution. The physically adsorbed Mo is eliminated and the grafted Mo remaining on the silica is hydrolyzed and partially oxidized in air, so as to lead to the following species: [triple bond]SiOmO[sup v](OH)[sub 4] or [triple bond]SiOMo[sup vi](OH)[sub 5]. In consequence, at the very end of the preparation, only the grafted Mo species remains on the silica and the sample color is brown. The catalytic behavior of the unwashed and washed catalysts in the reaction of methanol oxidation emphasizes the differences in the Mo species. The unwashed sample containing molybdenum blues behaves like a polycrystalline MoO[sub 3] catalyst, producing mainly methylal at low reaction temperature (230 C) and formaldehyde at higher temperature (280 C), whereas the washed one, containing only grafted Mo, produces mainly methylformate and, to a lower extent, formaldehyde.

  20. Evaluation of backside particle contamination and electrostatic chuck design on the cleanliness of EUV reticle mask blanks in a multilayer Mo/Si ion beam deposition system

    NASA Astrophysics Data System (ADS)

    Hayes, A. V.; Randive, R.; Reiss, I.; Menendez, J.; Kearney, P.; Sugiyama, T.

    2008-10-01

    A key requirement for the success of EUV lithography is a high volume supply of defect-free Mo/Si multilayer (ML)- coated mask blanks. The process of fabricating mask blanks is particularly sensitive to particle contamination because decoration by the deposition of the reflective stack on sub-lithographic (< 22 nm) particles can create larger, printable defects. One possible source of added defects is the mask substrate fixturing method, which, in the Veeco ion beam deposition (IBD) system used to deposit our ML coatings, must allow tilt and rotation of a vertically oriented substrate. As commonly practiced, an electrostatic chuck (ESC) is used instead of a mechanical clamping fixture to avoid transferring particles to the front surface of the mask by mechanical clamping and declamping operations. However, a large number of particles can be introduced to the backside of the mask by electrostatic clamping. Up to now, there has been little concern about such backside particles, except for relatively large particles (> 1 micron) that may affect out-of-plane distortion of the mask in an EUV lithography tool. As the cleanliness of the EUV masks and mask blank fabrication approaches perfection, however, there is more concern that particles transferred from the backside to the frontside of the mask may be a significant issue. Such transfer may occur in the deposition chamber, in the substrate cassette, or in the transfer module and may be indirect. In this paper, we present data from characterizing the amount, size, shape, composition, and location of the backside particle defects generated by electrostatic clamping, using a particle counter and scanning electron microscope (SEM), and compare results for a pin-type e-chuck, which has a small contact area, with the standard flat e-chuck. The key result is a 10X to 30X reduction in the total number of backside particles for the pin chuck. Also, preliminary data indicates that the pin chuck stays cleaner under service

  1. A point-focusing small angle x-ray scattering camera using a doubly curved monochromator of a W/Si multilayer

    NASA Astrophysics Data System (ADS)

    Sasanuma, Yuji; Law, Robert V.; Kobayashi, Yuji

    1996-03-01

    A point-focusing small angle x-ray scattering (SAXS) camera using a doubly curved monochromator of a W/Si multilayer has been designed, constructed, and tested. The two radii of curvature of the monochromator are 20 400 and 7.6 mm. The reflectivity of its first-order Bragg reflection for CuKα radiation was calculated to be 0.82, being comparable to that (0.81) of its total reflection. By only 10 s x-ray exposure, scattering from a high-density polyethylene film was detected on an imaging plate (IP). A rotating-anode x-ray generator operated at 40 kV and 30 mA was used. Diffraction from rat-tail collagen has shown that the optical arrangement gives the Bragg spacing up to, at least, 30 nm for CuKα radiation. Combined with IPs, the camera may permit us to carry out time-resolved SAXS measurements for phase behaviors of liquid crystals, lipids, polymer alloys, etc., on conventional x-ray generators available in laboratories.

  2. Fatigue Response of Mo-Si-B Alloys

    DTIC Science & Technology

    2005-09-01

    4 S-1 _00- 0- 6 S-1l -0 s-- 6 se -. •.10-7 S-1 0 0o jA -0 2 4 6 8 10 12 2 4 6 8 10 1𔃼 Strain...CoooIýD 6 0 n 3 . 40 U) 0 . ..10 . . - . . ’ . . .. • . . n ’ 0 5 10 15 10-8 10-7 10- 6 10" 10- 4 10-3 10-2 Strain (% Strain Rate (s-1) Figure 8...ae eim 04s1 o107 s-1 In n) th5aitoni.h2omrsieflwsrs 100 CAi100 V c33 n 2.5 50 5 0 1 2 3 4 5 6 7108 10-7 10- 6 10-5 104 10-3 Strain ()Strain Rate

  3. The high-temperature oxidation behavior of MoSi(2) and MoSi(2)-based composites

    NASA Astrophysics Data System (ADS)

    Beatrice, Pamela

    Single-crystal MoSisb2 and four polycrystalline MoSisb2 materials prepared by three different preparation techniques (hot pressing, arc melting, and vacuum plasma spraying) were isothermally oxidized for 100 hours at 1500sp°C in 1 atm. oxygen. After an initial period which varied among the samples, these materials exhibited parabolic oxidation behavior and their parabolic rate constants ranged from 0.4 × 10sp{-9} to 2.0 × 10sp{-9} gsp2cmsp{-4}hrsp{-1}, indicating that preparation method does not have a significant effect on the oxidation behavior. Short-time oxidation runs showed that the higher initial oxidation rate in two of the materials did not correspond to variations in the crystallization rate of the scale from amorphous silica to cristobalite, but instead correlated to higher impurity levels of Al and Fe which diffused into the scale within 0.25 hr. A Mosb5Sisb3 interlayer between the oxide and the MoSisb2 was observed in the single crystal but not in the polycrystalline materials, indicating the importance of grain boundary diffusion in delaying the formation of the Mosb5Sisb3 interlayer. Four MoSisb2-based composites containing 40 vol.% SiC, 5 vol.% SiC. 10 vol.%SiC-10vol.% partially stabilized zirconia, and 20 vol.% ZrOsb2, respectively, were also oxidized at 1500sp°C in 1 atmosphere oxygen. With all four composites, the Al and Fe impurities rapidly diffused into the oxide scale, which after 100 hours had regions of high impurity content near the gas-oxide interface and regions of high purity silica near the oxide-composite interface. The 40% SiC and 5% SiC containing composites had isothermal oxidation growth rates of 4.4 × 10sp{-9} and 2.9 × 10sp{-9} gsp2cmsp{-4}hrsp{-1}, respectively. The 10vol.%SiC-10vol.% partially stabilized zirconia composite exhibited parabolic oxidation behavior over 100 hours but showed complicated scale reactions with the dissolution of yttria from the zirconia to form a yttrium silicate within 0.25 hr. and zircon formation within 2 hours. The 20% ZrOsb2 material showed logarithmic oxidation behavior, a loss of integrity of the initial composite structure, and the formation of internal porosity.

  4. Pinning of superconducting vortices in MoGe/Au Thin nano-squares

    NASA Astrophysics Data System (ADS)

    Serrier-Garcia, Lise; Timmermans, Matias; Van de Vondel, Joris; Moshchalkov, Victor V.

    2017-02-01

    In this work, we report a scanning tunneling spectroscopy study of vortex patterns in mesoscopic superconducting squares and explore the impact of defects and corrugations inherently present in nanofabricated structures. We find that a hillock at the edge can function as an attractive or repulsive pinning center for vortices deforming the, theoretically predicted, symmetry-induced vortex configurations. In addition, we exploit the inherently present imperfections, creating metastable states, to visualize the dynamics of vortex penetration during magnetic field sweeps.

  5. Ductilization of Mo-Si solid solutions manufactured by powder metallurgy

    SciTech Connect

    Saage, H.; Krueger, M.; Sturm, D.; Heilmaier, M.; Schneibel, J H; George, Easo P; Heatherly Jr, Lee; Somsen, Ch.; Eggeler, G.; Yang, Ying

    2009-01-01

    Mo-1.5 at.% Si alloys with additions of either Y{sub 2}O{sub 3} or Zr were manufactured by mechanical alloying. The Y{sub 2}O{sub 3} particles reduced the grain size and increased the room temperature strength, but did not alleviate the brittleness of previously investigated Mo-1.5 at.% Si without Y{sub 2}O{sub 3}. Additions of Zr, on the other hand, resulted not only in a fine grain size and an extremely high bend strength ({approx}2 GPa), but also in limited bend ductility at room temperature. Zr additions are seen to be beneficial for three reasons. First, Zr reduces the grain size. Second, Zr getters detrimental oxygen by forming ZrO{sub 2} particles (which in turn help to pin the grain boundaries). Third, in situ Auger analysis shows that Zr reduces the concentration of Si segregated at the grain boundaries. This is thought to enhance the grain boundary cohesive strength and thus leads to the observed ductility.

  6. 193-nm radiation durability study of MoSi binary mask and resulting lithographic performance

    NASA Astrophysics Data System (ADS)

    Servin, Isabelle; Belledent, Jérôme; Pain, Laurent; Connolly, Brid; Sczyrba, Martin; Lamantia, Matt

    2011-05-01

    Dimensions on mask continue to shrink to keep up with the ITRS roadmap. This has implications on the material of choice for the blanks. For example, the new binary OMOG stack (Opaque MOSi on Glass) was successfully introduced to meet the mask specifications at the 32nm technology node. Obviously 193-nm optical lithography will be further used in production at even higher NA and lower k1 emphasizing, for example, the impact on wafer of any electromagnetic field migration effects. Indeed, long term radiation damage inducing CD growth and consequently, device yield loss, has already been reported [1, 2]. This mechanism, known as Electric Field induced Migration of chrome (EMF) often shortens the mask's lifetime. Here, a study was conducted to investigate the impact of intensive ArF scanner exposure both on final wafer and mask performances. The Si printed wafers measured with top-down CD-SEM were characterized with respect to CD uniformity, linearity, Sub Resolution Assist Feature (SRAF) printability through process window, MEEF, DOF, and OPC accuracy. The data was also correlated to advanced mask inspection results (e.g. AIMSTM) taken at the same location. More precisely, this work follows a preliminary study [1] which pointed out that OMOG is less sensitive to radiation than standard COG (Chrome On Glass). And, in this paper, we report on results obtained at higher energy to determine the ultimate lifetime of OMOG masks.

  7. Pest resistant MoSi.sub.2 materials and method of making

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor)

    1995-01-01

    A pest resistant molybdenum disilicide composition is provided for use in high temperature structural applications. The composition includes molybdenum disilicide and silicon nitride and can be used to prepare improved reinforced composites.

  8. Modification of Mo-Si alloy microstructure by small additions of Zr.

    PubMed

    Mousa, M; Wanderka, N; Timpel, M; Singh, S; Krüger, M; Heilmaier, M; Banhart, J

    2011-05-01

    Molybdenum and its alloys are potential materials for high-temperature applications. However, molybdenum is susceptible to embrittlement because of oxygen segregation at the grain boundaries. In order to alleviate the embrittlement small amounts of zirconium were alloyed to a solid solution of Mo-1.5Si alloy. Two Mo-based alloys, namely Mo-1.5Si and Mo-1.5Si-1Zr, were investigated by the complementary high-resolution methods transmission electron microscopy and atom probe tomography. The Mo-1.5Si alloy shows a polycrystalline structure with two silicon-rich intermetallic phases Mo(5)Si(3) and Mo(3)Si located at the grain boundaries and within the grains. In addition, small clusters with up to 10 at% Si were found within the molybdenum solid solution. Addition of a small amount of zirconium to Mo-1.5Si leads to the formation of two intermetallic phases Mo(2)Zr and MoZr(2), which are located at the grain boundaries as well as within the interior of the grain. Transmission electron microscopy shows that small spherical Mo-Zr-rich precipitates (<10nm) decorate the grain boundaries. The stoichiometry of the small precipitates was identified as Mo(2)Zr by atom probe tomography. No Si-enriched small precipitates were detected in the Mo-1.5Si-1Zr alloy. It is concluded that the presence of zirconium hinders their formation.

  9. Mo-Si-B Alloys and Diboride Systems for High Enthalpy Environments: Design and Evaluation

    DTIC Science & Technology

    2016-01-15

    direct demonstration of the fact that hot graphite his highly catalytic to nitrogen atom recombination, were funded entirely by AFOSR. The second...energy efficiency. This is a vicious cycle , as Carnot efficiencies for conventional fuel sources (fossil fuels, natural gas, nuclear, steam) increase as...compositions were subjected to ten minutes one- and five- cycle testing. The sample was place 6 mm above the holder (with ~14mm inside the hollow holder) for

  10. Crystallization of ultrathin W-Si multilayer structures by high-energy heavy ion irradiations

    SciTech Connect

    Marfaing, J.; Marine, W. ); Vidal, B. ); Toulemonde, M. ); Hage Ali, M.; Stoquert, J.P. )

    1990-10-22

    Ultrathin amorphous multilayers structures (1.55 nm bilayer period) were irradiated by high-energy heavy ion ({sup 127}I and {sup 238}U ions). Transmission electron microscopy study shows that the ion-material interaction in such a configuration leads to an irreversible transformation of the initial amorphous structures. In this letter, we report the first observation of the crystallization of the multilayers induced by the heavy ion irradiations with a subsequent formation of a new WSi structure. The crucial role of the electronic effects in the crystallization process is discussed relatively to the other phenomena induced under the ion irradiation.

  11. Study of the durability of the Ru-capped MoSi multilayer surface under megasonic cleaning

    NASA Astrophysics Data System (ADS)

    Kurtuldu, Hüseyin; Rastegar, Abbas; House, Matthew

    2012-11-01

    Because EUV masks lack of a pellicle, they are prone to particle contamination and must be cleaned frequently. Despite the relatively good resistance of the TaN absorber lines to pattern damage by megasonic cleaning, the Ru cap can be easily damaged by it. We demonstrate that the type and concentration of the dissolved gas are critical factors in determining the cavitation that eventually introduces pits on the surface of Ru-capped multilayer films. In particular, oxygen creates many more pits than CO2 under similar conditions. In this paper, we present the results of SEMATECH's extensive experimental studies of pit creation on Ru-capped multilayer EUV blanks by megasonics as a function of acoustic field power, gas type and concentration in ultra-pure water, and chemicals during sonication.

  12. Ambient- to elevated-temperature fracture and fatigue properties of Mo-Si-B alloys: Role of microstructure

    NASA Astrophysics Data System (ADS)

    Kruzic, J. J.; Schneibel, J. H.; Ritchie, R. O.

    2005-09-01

    Ambient- to elevated-temperature fracture and fatigue-crack growth results are presented for five Mo-Mo3Si-Mo5SiB2-containing α-Mo matrix (17 to 49 vol pct) alloys, which are compared to results for intermetallic-matrix alloys with similar compositions. By increasing the α-Mo volume fraction, ductility, or microstructural coarseness, or by using a continuous α-Mo matrix, it was found that improved fracture and fatigue properties are achieved by promoting the active toughening mechanisms, specifically crack trapping and crack bridging by the α-Mo phase. Crack-initiation fracture toughness values increased from 5 to 12 MPa√m with increasing α-Mo content from 17 to 49 vol pct, and fracture toughness values rose with crack extension, ranging from 8.5 to 21 MPa√m at ambient temperatures. Fatigue thresholds benefited similarly from more α-Mo phase, and the fracture and fatigue resistance was improved for all alloys tested at 1300 °C, the latter effects being attributed to improved ductility of the α-Mo phase at elevated temperatures.

  13. Bimetallic catalysts. V. Kinetics of the hydrogenolysis of butane over Pt-Mo/SiO[sub 2] catalysts

    SciTech Connect

    Leclercq, G.; Gharbi, A.El.; Pietrzyk, S. )

    1993-11-01

    The kinetics of the hydrogenolysis of butane on various Pt-Mo catalysts deposited on silica with the same metal content but with various Mo/(Mo + Pt) ratios has been studied. The hydrogenolysis of the two different kinds of C-C bonds has been distinguished. It is shown that the addition of Mo to Pt drastically changes the selectivity of the reaction, but that this selectivity is approximately the same for all the bimetallic Pt-Mo catalysts. Using a rate equation that had already been used for the hydrogenolysis of alkanes (Maurel, R., Leclercq, G., and Leclercq, L., J. Catal. 44, 68 (1975)), calculation has been made of the values of the equilibrium adsorption constants ([lambda]) and those of the rate constants of the C-C bond splitting steps (k) for the hydrogenolysis of the terminal C-C bonds ([lambda][sub 1] and k[sub 1]) and of the middle C-C bond ([lambda][sub 2] and k[sub 2]). In this way it has been shown that only Pt alone, two different intermediaries with high [lambda] values are formed in which the C-C bonds will be broken further with different selectivities but with low rate constants. On the contrary, on all Pt-Mo catalysts, butane is adsorbed as a single intermediate adsorbed species with a much lower adsorption equilibrium constant than on Pt alone, but this adsorbed species is much more reactive (k[sub 1] and k[sub 2]). The adsorption equilibrium constants are the same for all Pt-Mo taking into account the margin of error, which shows that, on all Pt-Mo, butane is adsorbed on the same mixed Pt-Mo site of constant composition whatever the catalyst's composition. The number of these active sites (proportional to k[sub 1] and k[sub 2]) increases as Mo/(Mo + Pt) increases up to 25-30%, then it decreases. 38 refs., 3 figs., 5 tabs.

  14. Investigation of Shock-Induced Chemical Reactions in Mo-Si Powder Mixtures Using Instrumented Experiments with PVDF Stress Gauges

    SciTech Connect

    Vandersall, K S; Thadhani, N N

    2001-05-29

    Shock-induced chemical reactions in {approx}58% dense Mo+2Si powder mixtures were investigated using time-resolved instrumented experiments, employing PVDF-piezoelectric stress gauges placed at the front and rear surfaces of the powders to measure the input and propagated stresses, and wave speed through the powder mixture. Experiments performed on the powders at input stresses less than 4 GPa, showed characteristics of powder densification and dispersed propagated wave stress profiles with rise time > {approx}40 nanoseconds. At input stress between 4-6 GPa, the powder mixtures showed a sharp rise time (<{approx}10 ns) of propagated wave profile and an expanded state of products revealing evidence of shock-induced chemical reaction. At input stresses greater than 6 GPa, the powder mixtures showed a slower propagated-stress-wave rise time and transition to a low-compressibility (melt) state indicating lack of shock-induced reaction. The results illustrate that premature melting of Si, at input stresses less than the crush-strength of the powder mixtures, restricts mixing between reactants and inhibits ''shock-induced'' reaction initiation.

  15. Study on the lifetime of Mo/Si multilayer optics with pulsed EUV-source at the ETS

    NASA Astrophysics Data System (ADS)

    Schürmann, Mark; Yulin, Sergiy; Nesterenko, Viatcheslav; Feigl, Torsten; Kaiser, Norbert; Tkachenko, Boris; Schürmann, Max C.

    2011-06-01

    As EUV lithography is on its way into production stage, studies of optics contamination and cleaning under realistic conditions become more and more important. Due to this fact an Exposure Test Stand (ETS) has been constructed at XTREME technologies GmbH in collaboration with Fraunhofer IOF and with financial support of Intel Corporation. This test stand is equipped with a pulsed DPP source and allows for the simultaneous exposure of several samples. In the standard set-up four samples with an exposed area larger than 35 mm2 per sample can be exposed at a homogeneous intensity of 0.25 mW/mm2. A recent update of the ETS allows for simultaneous exposures of two samples with intensities up to 1.0 mW/mm2. The first application of this alternative set-up was a comparative study of carbon contamination rates induced by EUV radiation from the pulsed source with contamination rates induced by quasicontinuous synchrotron radiation. A modified gas-inlet system allows for the introduction of a second gas to the exposure chamber. This possibility was applied to investigate the efficiency of EUV-induced cleaning with different gas mixtures. In particular the enhancement of EUV-induced cleaning by addition of a second gas to the cleaning gas was studied.

  16. Structure, Bonding, and Adhesion of Materials Interfaces With Density Functional Theory: Cr/Fe, SiC/Fe, MoSi2/Ni

    DTIC Science & Technology

    2006-11-01

    2002). There is a need for an improved environmental barrier coating ( EBC ) on steel which protects, not only against high temperature, but also...Fe interface. SiC may still be useful as a thin layer in a multilayer EBC system since it is resistant to diffusion of corrosive blast gases...Hutchinson, G.H. Meier, F.S. Pettit, 2001: Mechanisms controlling the durability of the thermal barrier coatings, Prog. Mater. Sci., 46 , 505-553

  17. Mossbauer and XRD characterization of the phase transformations in a Fe-Mn-Al-C-Mo-Si-Cu as cast alloy during tribology test

    NASA Astrophysics Data System (ADS)

    Ramos, J.; Piamba, J. F.; Sánchez, H.; Alcazar, G. A. Pérez

    2015-06-01

    In present study Fe-29.0Mn-6Al-0.9C-1.8Mo-1.6Si-0.4Cu (%w) alloy was obtained after melted in an induction furnace, and then molded as an ingot. From the as cast ingot it were cut samples for the different characterization measurements. The microstructure of the as-cast sample is of dendritic type and its XRD pattern was refined with the lines of the austenite, with a big volumetric fraction, and the lines of the martensite, with small volumetric fraction. The Mössbauer spectrum of the sample was fitted with a broad singlet which corresponds to disordered austenite. After the tribology test, its XRD pattern was refined with the lines of two austenite phases, one similar to the previous one and other with bigger lattice parameter. The total volumetric fraction of the austenite is smaller than that obtained for sample without wear. It was added the lines of the martensite phase with bigger volumetric fraction than that of the previous sample. The Mössbauer spectrum of the weared sample was fitted with two paramagnetic sites which correspond to the two Fe austenite phases and a hyperfine magnetic field distribution which is associated to the disordered original martensite and the new one which appears in the surface as a consequence of the wear process. These results show that during wear process the original austenite phase is transformed in martensite and in a new austenite phase. The increases of the martensitic phase improves mechanical properties and wear behavior.

  18. Prediction of phase distribution pattern in phase field simulations on Mo5SiB2-primary areas in near eutectic Mo-Si-B alloy

    NASA Astrophysics Data System (ADS)

    Kazemi, O.; Hasemann, G.; Krüger, M.; Halle, T.

    2017-03-01

    A Mo-10.9Si-20.3B (if not stated otherwise all compositions are given in at.%) alloy was modeled using the phase field method with linearized phase diagrams and thermodynamic data. The simulation results showed that there are two specific microstructural constituents. According to the simulations and experimental microstructural investigations the primary Mo5SiB2 phase observed in this study was combined by the Moss-Mo3Si-Mo5SiB2 eutectics. The overall composition of the both primary and eutectic area was probed and the phase evolution along with the concentration change of the core areas were explored and visualized in the solidification domain. To verify the accuracy of the simulation results, they were comprised with the experimental achievements. In terms of the fraction of phases, the portion of the primary phase and the eutectic constituent and the phase distribution pattern our results were in good agreement with the experimental observations.

  19. A 10-kW SiC Inverter with A Novel Printed Metal Power Module With Integrated Cooling Using Additive Manufacturing

    SciTech Connect

    Chinthavali, Madhu Sudhan; Ayers, Curtis William; Campbell, Steven L; Wiles, Randy H; Ozpineci, Burak

    2014-01-01

    With efforts to reduce the cost, size, and thermal management systems for the power electronics drivetrain in hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs), wide band gap semiconductors including silicon carbide (SiC) have been identified as possibly being a partial solution. This paper focuses on the development of a 10-kW all SiC inverter using a high power density, integrated printed metal power module with integrated cooling using additive manufacturing techniques. This is the first ever heat sink printed for a power electronics application. About 50% of the inverter was built using additive manufacturing techniques.

  20. Numerical simulation on the thermal radiative properties of a 2D SiO2/W/SiO2/W layered grating for thermophotovoltaic applications

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Fu, Ceji

    2016-10-01

    Tailoring the spectrum of thermal emission from the emitter is important for improving the performance of a thermophotovoltaic (TPV) system. In this work, a two-dimensional (2D) layered grating structure made of SiO2 and tungsten (W), which can realize wavelength-selective control of thermal emission, was proposed for a potential emitter in TPV applications. Numerical simulations of the spectral emissivity of the structure from the ultraviolet (UV) to the mid-infrared region reveals that the spectral-normal emissivity of the structure is enhanced to above 0.95 in the wavelength region from 0.55 μm to 1.9 μm for both TE and TM waves, but drops sharply at wavelength larger than 2 μm. Physical mechanisms responsible for the wavelength-selective emissivity were elucidated as due to resonance of magnetic polaritons (MPs) in the SiO2 spacer and in the grooves of the tungsten grating, Wood's anomaly (WA), excitation of surface plasmon polaritons (SPPs) and wave interference. Furthermore, the structure was found to exhibit quasi-diffuse and polarization-insensitive features of thermal emission, suggesting that the proposed structure can serve as the emitter in the design of high performance TPV systems.

  1. Conceptual design study of concentrator enhanced solar arrays for space applications. 2kW Si and GaAs systems at 1 AU

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The effect of concentration level on the specific power for a deployable, thin, gallium arsenide cell array in geosynchronous orbit for 10 years in conjunction with a two dimensional flat plate trough concentrator (V trough) and also with a multiple flat plate concentrator was investigated as well as the effects for a conventional silicon cell array on a rigid substrate. For application to a thin GaAs array at 1 AU for 10 years, the V trough produces a 19% benefit in specific power and a dramatic reduction in array area, while the multiple flat plate collector design is not only of no benefit, but is a considerable detriment. The benefit it achieves by reducing array area is duplicated by the 2D design. For the silicon array on a rigid substrate, improvement in performance due to a concentrator with ordinary mirror coating is quite small: 9% increase in specific power, and 13% reduction in array area. When the concentrator mirrors are coated with an improved cold mirror coating, somewhat more significant results are obtained: 31% specific power improvement; and 27% area reduction. In both cases, a 10 year exposure reduces BOL output by 23%.

  2. Multilevel and long retentive resistive switching in low temperature nanostructured Cu/SiO{sub x}-W-SiO{sub x}/Pt

    SciTech Connect

    Wang, Jinzhi Wang, Fang; Hu, Guoqi; Liu, Xianglian; Chi, Zhenhua; Chen, Renjie; Yan, Aru; Li, Runwei

    2013-11-18

    Amorphous SiO{sub x}-based memory films are fabricated at room temperature, and study on their resistive switching characteristics and improvement approaches is performed. Multilevel resistive states with large ratio 1: ∼10{sup 2}: 3 × 10{sup 5} and long retention exceeding 2 × 10{sup 6} s at ambient temperature and humidity are observed in Cu/SiO{sub x} (9 nm)-W (∼2 nm)-SiO{sub x} (9 nm)/Pt ultrathin stack. Nonvolatile switching is consistently realized in microscopy. Based on investigations of microscopic conduction and microstructure, tungsten incorporation with copper as relay bridges for conducting filaments is proposed to attribute to the performance improvement and the multilevel switching mechanism.

  3. Comparison of the Thermal Expansion Behavior of Several Intermetallic Silicide Alloys Between 293 and 1523 K

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2014-01-01

    Thermal expansion measurements were conducted on hot-pressed CrSi(sub 2), TiSi(sub 2), W Si(sub 2) and a two-phase Cr-Mo-Si intermetallic alloy between 293 and 1523 K during three heat-cool cycles. The corrected thermal expansion, (L/L(sub 0)(sub thermal), varied with the absolute temperature, T, as (deltaL/L(sub 0)(sub thermal) = A(T-293)(sup 3) + B(T-293)(sup 2) + C(T-293) + D, where A, B, C and D are regression constants. Excellent reproducibility was observed for most of the materials after the first heat-up cycle. In some cases, the data from the first heatup cycle deviated from those determined in the subsequent cycles. This deviation was attributed to the presence of residual stresses developed during processing, which are relieved after the first heat-up cycle.

  4. High-efficiency diffractive x-ray optics from sectioned multilayers

    SciTech Connect

    Kang, H C; Stephenson, G B; Liu, C; Conley, R; Macrander, A T; Maser, J; Bajt, S; Chapman, H N

    2004-12-14

    We investigate the diffraction properties of sectioned multilayers in Laue (transmission) geometry, at hard x-ray energies (9.5 and 19.5 keV). Two samples are studied, a 200 period W/Si multilayer of 29 nm d-spacing, and a 2020 period Mo/Si multilayer of 7 nm d-spacing, with cross-section depths ranging from 2 to 17 {micro}m. Rocking curves across the Bragg reflections exhibit well-defined interference fringes originating from the depth of the sample. Efficiencies as high as 70% were obtained. This exceeds the theoretical limit for standard zone plates operating in the multi-beam regime, demonstrating that all of the intensity can be directed into a single diffraction order in small-period structures.

  5. Amorphous metallizations for high-temperature semiconductor device applications

    NASA Technical Reports Server (NTRS)

    Wiley, J. D.; Perepezko, J. H.; Nordman, J. E.; Kang-Jin, G.

    1981-01-01

    The initial results of work on a class of semiconductor metallizations which appear to hold promise as primary metallizations and diffusion barriers for high temperature device applications are presented. These metallizations consist of sputter-deposited films of high T sub g amorphous-metal alloys which (primarily because of the absence of grain boundaries) exhibit exceptionally good corrosion-resistance and low diffusion coefficients. Amorphous films of the alloys Ni-Nb, Ni-Mo, W-Si, and Mo-Si were deposited on Si, GaAs, GaP, and various insulating substrates. The films adhere extremely well to the substrates and remain amorphous during thermal cycling to at least 500 C. Rutherford backscattering and Auger electron spectroscopy measurements indicate atomic diffussivities in the 10 to the -19th power sq cm/S range at 450 C.

  6. Film stress studies and the multilayer laue lens project.

    SciTech Connect

    Liu, C.; Conley, R.; Macrander, A. T.; X-Ray Science Division

    2006-01-01

    A Multilayer Laue Lens (MLL) is a new type of linear zone plate, made by sectioning a planar depth-graded multilayer and used in Laue transmission diffraction geometry, for nanometer-scale focusing of hard x-rays. To produce an MLL, a depth-graded multilayer consisting of thousands of layers with a total thickness of tens of microns is needed. Additionally, the multilayer wafer has to be sectioned and polished to a thickness of {approx}10 to 25 microns to yield a diffracting grating to focus x-rays. The multilayers must have both low stress and good adhesion to survive the subsequent cutting and polishing processes, as well as sharp interfaces and accurate layer placement. Several partial MLLs using WSi{sub 2}/Si multilayers with precise zone-plate structures have been successfully fabricated. A W/Si multilayer with the same structure, however, cracked and peeled off from the Si substrate after it was grown. Here we report results of our film stress studies of dc magnetron-sputtered WSi{sub 2}, W, and Mo thin films and WSi{sub 2}/Si, W/Si, and Mo/Si multilayers grown on Si(100) substrates. The stress measurements were carried out using a stylus profiler to measure the curvatures of 2-inch-diameter, 0.5-mm-thick Si(100) wafers before and after each coating. The physical origins of the stress and material properties of these systems will be discussed.

  7. Novel CD control of HTPSM by advanced process for sub-20nm tech

    NASA Astrophysics Data System (ADS)

    Jo, Sangjin; Choi, Chungseon; Oh, Sunghyun; Ha, Taejoong; Lee, Youngmo; Kim, Sangpyo; Yim, Donggyu

    2015-10-01

    As the design rule of the semiconductor shrinks, the CD MTT (Critical Dimension Mean-to-Target) specification for photomask becomes tighter. So, more precise control of CD MTT is required. We have investigated the CD MTT control and applied it to the attenuated PSM (Phase Shift Mask) successfully for several years. We can control the CD MTT of MoSi pattern by measuring Cr/MoSi pattern to estimate MoSi pattern CD and additional etch to shrink MoSi pattern as reported in previous study. At first, the MoSi pattern CD can be estimated with the Cr/MoSi pattern CD because the CD gap between MoSi pattern and Cr/MoSi pattern is relatively constant. Additional MoSi etch is performed to shrink the MoSi pattern CD after then. The CD gap alwasys exists and the variation of the CD gap is enough small to be not considered in conventional photomask production until now. However, the variation of the CD gap is not ignorable in case of sub-20 nm tech. In this study, we investigated new method to measure MoSi pattern CD before Cr strip process to eliminate the CD gap between MoSi pattern and Cr/MoSi pattern. To eliminate the CD gap, we attempt three solutions - 1) Optimize etch process to perform perfect Cr/MoSi pattern profile without the CD gap, 2) Improve CD measurement accuracy by developing new SEM measuring mechanism, 3) Develop of new process to modify Cr/MoSi pattern profile to be measured without the CD gap. It was found that the CD gap can be eliminated and MoSi pattern CD can be measured perfectly. Finally, MoSi pattern CD control was improved because of CD gap elimination.

  8. Characterization of r.f. sputtered thin Mo, W and Si films as precursors to multilayer X-ray mirrors

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, D.; Joseph, D.; Poswal, A. K.

    2006-08-01

    Single layers of Mo, W and Si thin films have been deposited by r.f. sputtering on float glass and c-Si substrates kept at room temperature. The films have been characterised by grazing incidence X-ray reflectometry (GIXR), X-ray transmission (XRT), Rutherford backscattering spectrometry (RBS), atomic force microscopy (AFM) and phase modulated spectroscopic ellipsometry (SE) studies. The thickness values obtained from the GIXR measurements have been used to calibrate the in situ thickness monitors. The surface roughness of the thin layers have also been determined from the GIXR measurements. The atomic mass density in the films have been obtained from the RBS measurements while X-ray absorption has been estimated from the XRT measurements. The surface morphology of the films has been investigated by the AFM micrographs. The Si thin films have also been characterized by the SE technique. The characterization of the samples by these complementary techniques have been very useful in optimizing the process parameters to obtain good quality layers as precursors to the fabrication of the multilayer X-ray mirrors based on Mo/Si and W/Si structures.

  9. Synchrotron x-ray study of multilayers in Laue geometry

    SciTech Connect

    Kang, H C; Stephenson, G B; Liu, C; Conley, R; Macrander, A T; Maser, J; Bajt, S; Chapman, H N

    2004-07-21

    Zone plates with depth to zone-width ratios as large as 100 are needed for focusing of hard x-rays. Such high aspect ratios are challenging to produce by lithography. We are investigating the fabrication of high-aspect-ratio linear zone plates by multilayer deposition followed by sectioning. As an initial step in this work, we present a synchrotron x-ray study of constant-period multilayers diffracting in Laue (transmission) geometry. Data are presented from two samples: a 200 period W/Si multilayer with d-spacing of 29 nm, and a 2020 period Mo/Si multilayer with d-spacing of 7 nm. By cutting and polishing we have successfully produced thin cross sections with section depths ranging from 2 to 12 {micro}m. Transverse scattering profiles (rocking curves) across the Bragg reflection exhibit well-defined interference fringes originating from the depth of the sample, in agreement with dynamical diffraction theory for a multilayer in Laue geometry.

  10. Microstructure and mechanical properties of nitrided molybdenum silicide coatings

    SciTech Connect

    Hirvonen, J.P.; Suni, I.; Kattelus, H.; Lappalainen, R.; Torri, P.; Kung, H.; Jervis, T.R.; Nastasi, M.

    1993-12-31

    Mo-Si-N films with a high nitrogen concentration were produced by sputter-deposition in nitrogen plasma. Chemical composition was determined with Rutherford backscattering and nuclear reaction analysis. Ratio of Mo to Si was 1:2 in the coatings with a nitrogen concentration of 50%. Microstructure of the as-deposited coatings on a silicon substrate was amorphous and no crystallization was found after annealing up to 1000{degree}C, although some relaxation was observed in X-ray diffraction. This was confirmed by high-resolution TEM. Hardness of Mo-Si-N films was 18.8 GPa as determined with a nanoindenter. This is significantly higher than that of MoSi{sub 2} films, 11.2 GPa. Hardness of the Mo-Si-N films increased to 24.4 GPa after annealing at 800{degree}C, which is the same as that of the tetragonal phase of MoSi{sub 2}, 25.5 GPa. Similarly, modulus of as-deposited Mo-Si-N film was higher (257 GPa) than that of MoSi{sub 2} film (222 GPa). However, only a slight increase in the modulus of the Mo-Si-N film was found after annealing at 800C, whereas the modulus of the crystallized tetragonal MoSi{sub 2} was 382 GPa. No cracking was found in the Mo-Si-N films even after annealing at 1000C.

  11. MOLYBDENUM DISILICIDE MATERIALS FOR GLASS MELTING SENSOR SHEATHS

    SciTech Connect

    J. PETROVIC; R. CASTRO; ET AL

    2001-01-01

    Sensors for measuring the properties of molten glass require protective sensor sheaths in order to shield them from the extremely corrosive molten glass environment. MoSi{sub 2} has been shown to possess excellent corrosion resistance in molten glass, making it a candidate material for advanced sensor sheath applications. MoSi{sub 2}-coated Al{sub 2}O{sub 3} tubes, MoSi{sub 2}-Al{sub 2}O{sub 3} laminate composite tubes, and MoSi{sub 2}-Al{sub 2}O{sub 3} functionally graded composite tubes have been produced by plasma spray-forming techniques for such applications.

  12. Fracture and fatigue-crack growth behavior in ductile-phase toughened molybdenum disilicide: Effects of niobium wire vs particulate reinforcements

    NASA Astrophysics Data System (ADS)

    Badrinarayanan, K.; McKelvey, A. L.; Ritchie, R. O.; Venkateswara Rao, K. T.

    1996-12-01

    A study has been made of the fracture toughness/resistance-curve (R-curve) and cyclic fatigue-crack propagation behavior in a molybdenum disilicide composite, ductile-phase toughened with nominally 20 vol pct Nb-wire mesh reinforcements (Nb m /MoSi2); results are compared with monolithic MoSi2 and MoSi2 reinforced with 20 vol pct spherical Nb particles (Nb p /MoSi2). It is found that the high aspect ratio wire reinforcements induce significant toughening in MoSi2, both under monotonic and cyclic fatigue loading conditions. Specifically, the Nb m /MoSi2 composite exhibits R-curve behavior with a steady-state fracture toughness of ˜13 MPasqrt m , compared to unstable fracture at K c values below 5 MPasqrt m in unreinforced MoSi2 or Nb p /MoSi2. Such behavior is seen to be associated with extensive crack deflection within the reaction layer between Nb and the matrix, which leads to crack bridging by the unbroken ductile phase. Similarly, resistance to fatigue-crack growth is found to be far superior in the wire-reinforced composite over pure MoSi2 and Nb p /MoSi2. Although crack paths are again characterized by extensive deflection along the Nb/matrix reaction layer, the role of crack bridging is diminished under cyclic loading due to fatigue failure of the Nb. Instead, the superior fatigue properties of the Nb m /MoSi2 composite are found to be associated with high levels of crack closure that result from highly deflected crack paths along the (Nb,Mo)5Si3 reaction layer interface.

  13. High temperature structural silicides

    SciTech Connect

    Petrovic, J.J.

    1997-03-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi{sub 2}-based materials, which are borderline ceramic-intermetallic compounds. MoSi{sub 2} single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi{sub 2} possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi{sub 2}-Si{sub 3}N{sub 4} composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi{sub 2}-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing.

  14. The thermal conductivity of silicon nitride with molybdenum disilicide additions

    SciTech Connect

    Beecher, S.C.; Dinwiddie, R.B.; Abeel, A.M.; Lowden, R.A.

    1993-12-31

    Room-temperature thermal conductivity has been measured for a series of silicon nitride (Si{sub 3}N{sub 4}) matrix composites with molybdenum disilicide (MoSi{sub 2}) additions of 2, 5 10, 25 and 50 wt. %. Included in these measurements were a pure MoSi{sub 2} sample and a Si{sub 3}N{sub 4} sample containing only sintering aids. Aluminum oxide (Al{sub 2}O{sub 3}) and yttrium oxide (Y{sub 2}O{sub 3}) were added as the sintering aids, at approximately 6 and 2 respectively. When the amount of MoSi{sub 2} was increased to greater than 10 wt. %, the amount of the sintering aids necessary to densify the composite was decreased. No sintering aids were added to the pure MoSi{sub 2} sample. Thermal conductivities of the Si{sub 3}N{sub 4} sample without MoSi{sub 2} and the pure MoSi{sub 2} sample wee 36 W/m.K and 52 W/m.K respectively, which agree very well with the literature values for similar materials. No statistically significant changes were observed in the thermal conductivity for those samples containing up to 10 wt. % MoSi{sub 2}. However, between 10 and 25 wt. % MoSi{sub 2} there was a dramatic decrease in the thermal conductivity from 37 to 20.9 W/m.K. The thermal conductivity then increased steadily with further additions of MoSi{sub 2} up to 52 W/m.K for the pure MoSi{sub 2} specimen.

  15. Laser Instrumentation for Attosecond Experimentation

    DTIC Science & Technology

    2009-06-15

    matter lab. (b) CCD image and spectrum of XUV high- harmonic pulses generated in Ne gas (black line), and reflectivity of MoSi mirror (blue). The...XUV pulses were optimized in the region around 95 eV to coincide with the high reflectivity region of the multi-layer MoSi mirror used for focusing of...piezo- controlled split mirror separately reflects XUV and near-IR pulses for precise timing delay. The MoSi mirror reflectivity cuts out a ~4-eV

  16. Chemical Reactions in the Processing of Mosi2 + Carbon Compacts

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Lee, Kang N.; Maloy, Stuart A.; Heuer, Arthur H.

    1993-01-01

    Hot-pressing of MoSi2 powders with carbon at high temperatures reduces the siliceous grain boundary phase in the resultant compact. The chemical reactions in this process were examined using the Knudsen cell technique. A 2.3 wt pct oxygen MoSi2 powder and a 0.59 wt pct oxygen MoSi2 powder, both with additions of 2 wt pct carbon, were examined. The reduction of the siliceous grain boundary phase was examined at 1350 K and the resultant P(SiO)/P(CO) ratios interpreted in terms of the SiO(g) and CO(g) isobars on the Si-C-O predominance diagram. The MoSi2 + carbon mixtures were then heated at the hot-pressing temperature of 2100 K. Large weight losses were observed and could be correlated with the formation of a low-melting eutectic and the formation and vaporization of SiC.

  17. Correlation between energy transfers and solid state reactions induced by mechanical alloying on Mo{sub 33}Si{sub 66} system

    SciTech Connect

    Liu, L.; Magini, M.

    1997-09-01

    Phase transformations of Mo{sub 33}Si{sub 66} powder mixture under different milling conditions have been systematically investigated by x-ray diffraction, scanning and transmission electron microscopy. The effect of the milling conditions on the Mo/Si solid state reactions (SSR) has been examined in detail. The energy transfer from the milling tools to the powder under processing has been quantified by an already assessed collision model. It has been found that the higher energetic input favors the formation of the room temperature stable phase {alpha}MoSi{sub 2}, while the lower energetic input promotes the formation of the metastable phase {beta}MoSi{sub 2}. In addition, if the energy transfer is high enough, the Mo/Si reaction proceeds in a form of self-propagating high temperature synthesis (SHS). Thermodynamics and kinetics aspects related to the different SSRs have been discussed. {copyright} {ital 1997 Materials Research Society.}

  18. Physical and optoelectronic characterization of reactively sputtered molybdenum-silicon-nitride alloy metal gate electrodes

    NASA Astrophysics Data System (ADS)

    Patel, P.; Nadesalingam, M.; Wallace, R. M.; Buchanan, D. A.

    2009-01-01

    With continued transistor scaling, work function tuning of metal gates has become important for advanced complementary-metal-oxide-silicon applications. The work function tuning of reactively sputtered MoxSiyNz (also referred to as MoSiN) gates has been studied through the incorporation of nitrogen. The nitrogen concentration in the MoSiN films was altered by controlling the gas flow ratio, RN=N2/(N2+Ar), during gate deposition. The sheet resistance (Rs) of blanket MoSiN films, measured using four-point resistance method, was found to increase as the gas flow ratio was varied from 10% to 40%. Current-voltage measurements confirmed excellent electrical stability of MoSiN/SiO2/p-Si gate stack for applied electric fields ranging up to 6 MV/cm. High frequency capacitance-voltage measurements were used to extract the MoSiN work function (Φm) using the relationship between the flatband voltage (VFB) and the oxide thickness (tox). The extracted MoSiN/SiO2 interfacial barrier heights, obtained through the internal photoemission of electrons, were used to corroborate the extracted values of MoSiN work function. The MoSiN work functions (Φm), extracted independently using both techniques, were consistent and were observed to decrease with increasing gas flow ratio [N2/(N2+Ar)]. Secondary ion mass spectrometry depth analysis revealed uniform distribution of nitrogen throughout the bulk MoSiN films, with no piling up at gate-dielectric interface. X-ray photoelectron spectroscopy surface analysis suggested a steady increase in the Mo-N bonds, and therefore the total nitrogen concentration (from ˜20% to 32%), as the gas flow ratio is increased from 10% to 40%. A similar trend was observed in the nitrogen concentration (in percent), measured using Rutherford backscattering spectroscopy, for these gate deposition conditions. These material characterization results demonstrate that the increase in nitrogen concentration in MoSiN films is consistent with the lowering of MoSi

  19. High temperature stability multilayers for EUV condenser optics

    SciTech Connect

    Bajt, S; Stearns, D G

    2005-05-03

    We investigate the thermal stability of Mo/SiC multilayer coatings at elevated temperatures. Transmission electron microscopy and x-ray diffraction studies show that upon annealing a thermally-induced structural relaxation occurs that transforms the polycrystalline Mo and amorphous SiC layers in as-deposited multilayers into amorphous Mo-Si-C alloy and crystalline SiC, respectively. After this relaxation process is complete the multilayer is stable at temperatures up to 400 C.

  20. The chemically-specific structure of an amorphous molybdenum germanium alloy by anomalous x-ray scattering

    NASA Astrophysics Data System (ADS)

    Ishii, Hope Ami

    2002-09-01

    Since its inception in the late 1970s, anomalous x-ray scattering (AXS) has been employed for chemically-specific structure determination in a wide variety of non-crystalline materials. These studies have successfully produced differential distribution functions (DDFs) which provide information about the compositionally-averaged environment of a specific atomic species in the sample. Despite the wide success in obtaining DDFs, there are very few examples of successful extraction of the fully-chemically-specific partial pair distribution functions (PPDFs), the most detailed description of an amorphous sample possible by x-ray scattering. Extracting the PPDFs is notoriously difficult since the matrix equation involved is ill-conditioned and thus extremely sensitive to errors present in the experimental quantities that enter the equation. Instead of addressing this sensitivity by modifying the data through mathematical regularization methods, sources of error have been removed experimentally: A focussing analyzer crystal was combined with a position-sensitive linear detector to experimentally eliminate unwanted inelastic scattering intensity over most of the reciprocal space range probed. This instrumentation has been used in data collection for the extraction of PPDFs from amorphous (a)-MoGe3, the phase separation endpoint in the sputter-deposited Mo-Ge amorphous alloys. This alloy is of particular interest because it acts as the conducting phase in a percolative metal-insulator transition but has a composition with no crystalline analogue. Since the first Ge-rich compound in the Mo-Ge equilibrium system is MoGe 2, previous workers have speculated that perhaps a unique MoGe 3 compound exists in the amorphous system. Rather than indicating a distinct MoGe3 compound with definitive local structure, however, the coordination results are more consistent with a densely-packed alloy having a wide range of solid solubility. Significant improvement in the quality and

  1. MECHANICAL BEHAVIOR OF MOLYBDENUM DISILICIDE-BASED ALLOYS

    SciTech Connect

    A. MISRA; A. SHARIF; ET AL

    2000-12-01

    We have investigated the mechanical behavior of the following single-phase polycrystalline alloys with the MoSi{sub 2} body-center tetragonal structure: MoSi{sub 2} alloyed with {approximately}2.5 at.% Re, MoSi{sub 2} alloyed with 2 at.% Al, MoSi{sub 2} alloyed with 1 at.% Nb, and MoSi{sub 2} alloyed with 1 at.% Re and 2 at.% Al. Several anomalies in the mechanical behavior of alloyed materials were observed. For example, (1) addition of only {approximately}2.5 at. % Re results in an order of magnitude increase in compressive strength at 1600 C, (2) additions of Nb and Al cause solution softening at near-ambient temperatures, and (3) quaternary MoSi{sub 2}-Re-Al alloys show strengthening at elevated temperatures and reduction in flow stress with enhanced plasticity at near-ambient temperatures in compression. The mechanisms of anomalous solution hardening and softening are discussed.

  2. Combustion synthesis of molybdenum silicides and borosilicides for ultrahigh-temperature structural applications

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad Shafiul

    Molybdenum silicides and borosilicides are promising structural materials for gas-turbine power plants. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. For example, molybdenum disilicide (MoSi2) has excellent oxidation resistance and poor mechanical properties, while Mo-rich silicides such as Mo5Si3 (called T 1) have much better mechanical properties but poor oxidation resistance. One approach is based on the fabrication of MoSi2-T 1 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of T1. Another approach involves the addition of boron to Mo-rich silicides for improving their oxidation resistance through the formation of a borosilicate surface layer. In particular, Mo 5SiB2 (called T2) phase is considered as an attractive material. In the thesis, MoSi2-T1 composites and materials based on T2 phase are obtained by mechanically activated SHS. Use of SHS compaction (quasi-isostatic pressing) significantly improves oxidation resistance of the obtained MoSi2-T1 composites. Combustion of Mo-Si-B mixtures for the formation of T2 phase becomes possible if the composition is designed for the addition of more exothermic reactions leading to the formation of molybdenum boride. These mixtures exhibit spin combustion, the characteristics of which are in good agreement with the spin combustion theory. Oxidation resistance of the obtained Mo-Si-B materials is independent on the concentration of Mo phase in the products so that the materials with a higher Mo content are preferable because of better mechanical properties. Also, T2 phase has been obtained by the chemical oven combustion synthesis technique.

  3. Development of high-transmittance phase-shifting mask for ArF immersion lithography

    NASA Astrophysics Data System (ADS)

    Ahn, Won-suk; Seo, Hwan-Seok; Bang, Ju-Mi; Kim, Ji-Young; Song, Jae-Min; Seung, Byoung-Hoon; Kim, Hee-Bom; Jeon, Chan-Uk

    2015-07-01

    A new PSM using high transmittance is developed to overcome patterning process limits in ArF immersion lithography. We optimized mask structure, materials, and film thicknesses for patterning process. A new material for phase-shifter is applied to the HT-PSM to exhibit higher transmittance in ArF wavelengths and the thickness of the new material is thinner than that of the conventional 6% phase-shifter (MoSiON). A new blank structure using a MoSi shading layer with double Cr hardmasks (HM) is developed and suggested for the HTPSM process. Double HM blank stacks enable the HT-PSM to adopt thin PR process for resolution enhancement in mask process. The first Cr on the MoSi is utilized as a HM to etch MoSi shading layer, an adhesion layer for PR process, and also a capping layer to protect blind area during MoSi and phase-shifter etching. In contrast, the role of the second Cr between MoSi and phase-shifter is an etch stopper for MoSi and a HM to etch phase-shifter at the same time. However, Double HM process has some problems, such as first Cr removal during second Cr etching and complex process steps. To solve the Cr removal issues, we evaluated various Cr layers which have different etchrates and compositions. According to the evaluations, we optimized thicknesses and compositions of the two Cr layers and corresponding etching conditions. Lithography simulations demonstrate that the new HT-PSM has advantages in NILS in aerial images. As a result, initial wafer exposure experiments using the HT-PSM show 13-32% improvements in LCDU compared to that of the conventional 6% PSM due to its higher NILS.

  4. Focus shift impacted by mask 3D and comparison between Att. PSM and OMOG

    NASA Astrophysics Data System (ADS)

    Liu, Yansong; Su, Xiaojing; Dong, LiSong; Song, Zhiyang; Guo, Moran; Su, Yajuan; Wei, Yayi

    2015-03-01

    The impact of mask three dimensions (M3D) effect on lithography processes is getting more pronounced from 32 nm nodes1-2. In this paper, we report four research progresses on the M3Deffect. Firstly, the impacts of M3D effect on the best focus (BF) offset were studied with though pitch as test pattern. The M3D effect has negative impacts on the BF, generating the BF offset pattern by pattern. The BF offset strongly depends on MoSi film thickness (THK). However the impact of MoSi profile, or side wall angle (SWA) could be ignored. Secondly, M3D OPC is needed to mitigate the shift of dose and focus center. Thirdly, as long as enough shade, the thinner MoSi, the less BF shift, as electromagnetic field (EMF) effect makes space behave smaller, which leads to higher contrast but higher mask error enhancement factor(MEEF); So the trade-off between contrast and MEEF is needed. And MoSi THK 43.7 nm in production supposed to be the optimized value from this study. Finally, compared to attenuating phase shifting mask (att.PSM) mask, opaque MoSi on Glass (OMOG) mask is more robust in terms of MEEF, the normalized image logarithmic slope (NILS) etc., not obviously influenced by mask duty ratio.

  5. Ceramic-silicide composites

    SciTech Connect

    Petrovic, J.J.

    1998-12-01

    The area of ceramic-silicide composites represents a merging of structural ceramics and structural silicides. Such ceramic-silicide composites can possess the desirable characteristics of both classes of compounds. Important structural ceramics are materials such as Si{sub 3}N{sub 4}, SiC, Al{sub 2}O{sub 3}, and ZrO{sub 2}, which possess covalent, ionic, or mixed covalent-ionic atomic bonding. An important structural silicide is MoSi{sub 2}, which possesses mixed covalent-metallic bonding. The arena of ceramic-silicide composites encompasses both composites where the structural silicide is the matrix and the structural ceramic is the reinforcement, and composites where the structural ceramic is the matrix and the structural silicide is the reinforcement. In the former area, MoSi{sub 2}-SiC, MoSi{sub 2}-ZrO{sub 2}, and MoSi{sub 2}-Al{sub 2}O{sub 3} composites are discussed. In the latter area, Si{sub 3}N{sub 4}-MoSi{sub 2} composites are described.

  6. Processing temperature effects on molybdenum disilicide

    SciTech Connect

    Wade, R.K. ); Petrovic, J.J. . Materials Science and Technology Div.)

    1992-11-01

    This paper reports on a series of MoSi[sub 2] compacts that were fabricated at increasing hot-pressing temperatures to achieve different grain sizes. The materials were evaluated by Vickers indentation fracture to determine room-temperature fracture toughness, hardness, and fracture mode. From 1500[degrees] to 1800[degrees] C, MoSi[sub 2] had a constant 67% transgranular fracture and linearly increasing rain size from 14 to 21 [mu]m. Above 1800[degrees]C, the fracture percentage increased rapidly to 97% transgranular at 1920[degrees]C (32 [mu] grain size). Fracture toughness and hardness decreased slightly with increasing temperature. MoSi[sub 2] processed at 1600[degrees]C had the highest fracture toughness and hardness values of 3.6 MPa[center dot]m[sup 1/2] and 9.9 GPa, respectively. The effects of SiO[sub 2] formation from oxygen impurities in the MoSi[sub 2] starting powders and MoSi[sub 2]-Mo[sub 5]Si[sub 3] eutectic liquid formation were studied.

  7. Synthesis of molybdenum disilicide by mechanical alloying

    SciTech Connect

    Schwarz, R.B.; Srinivasan, S.R.; Petrovic, J.J.; Maggiore, C.J.

    1991-01-01

    We have used mechanical alloying (MA), a high-energy ball-milling process, to prepare MoSi{sub 2} and MoSi{sub 2}-based alloys starting from mixtures of the pure elements. This synthesis route has the potential for preparing oxygen-free MoSi{sub 2} and the flexibility for close control of second-phase additions. MA, first developed for producing oxide-dispersions in Ni-based superalloys, takes advantage of the atomic-level mixing accomplished by the intense mechanical working of the alloy constituents. All the alloying reactions during the process occur in the solid-state. This technique is thus well-suited for synthesizing high melting point materials such as MoSi{sub 2}. The product of the MA process is a highly homogeneous and fine-grained powder. Its purity is determined by the purity of the starting materials and possible impurities introduced during processing. However, a careful control of the MA process enables a minimization of the impurities. We also report here the consolidation of the mechanically alloyed powder and the characterization of the MoSi{sub 2} alloys by optical and transmission electron microscopy, x-ray diffraction, and mechanical property measurements. 21 refs., 9 figs.

  8. Synthesis and design of silicide intermetallic materials

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.

    1997-04-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries. The program presently has a number of developing industrial connections, including a CRADA with Schuller International Inc. targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. Current experimental emphasis is on the development and characterization of MoSi{sub 2}-Si{sub 3}N{sub 4} and MoSi{sub 2}-SiC composites, the plasma spraying of MoSi{sub 2}-based materials, and the joining of MoSi{sub 2} materials to metals.

  9. Method for characterizing mask defects using image reconstruction from X-ray diffraction patterns

    DOEpatents

    Hau-Riege, Stefan Peter

    2007-05-01

    The invention applies techniques for image reconstruction from X-ray diffraction patterns on the three-dimensional imaging of defects in EUVL multilayer films. The reconstructed image gives information about the out-of-plane position and the diffraction strength of the defect. The positional information can be used to select the correct defect repair technique. This invention enables the fabrication of defect-free (since repaired) X-ray Mo--Si multilayer mirrors. Repairing Mo--Si multilayer-film defects on mask blanks is a key for the commercial success of EUVL. It is known that particles are added to the Mo--Si multilayer film during the fabrication process. There is a large effort to reduce this contamination, but results are not sufficient, and defects continue to be a major mask yield limiter. All suggested repair strategies need to know the out-of-plane position of the defects in the multilayer.

  10. The analysis and minimization of oxygen contamination in the powder processing of molybdenum disilicide

    SciTech Connect

    Shannon, Kruse

    1994-04-24

    Problems with MoSi2 include low-temperature fracture toughness, high-temperature creep resistance, and ``pest`` phenomena. Oxygen introduced by powder processing may be the cause of some of these problems. This study led to the following conclusions: Supplied powders have significant oxygen present prior to processing (up to 2.5 %), in the form of silica on the surface. This oxygen contamination did not increase by exposure to air at room temperature. An improved powder processing method was developed that uses glass encapsulation. Analysis of microstructures created from powders that contained 4900 to 24,100 ppM oxygen showed that the silica was transferred to the fully dense MoSi2 as SiO2 inclusions. A method of producing MoSi2 with less oxygen was attempted.

  11. Synthesis and design of intermetallic materials - molybdenum disilicide

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.

    1995-05-01

    The objective of this program is to develop structural silicide-based composite materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature composite materials and important applications in major energy-intensive U.S. processing industries. The program presently has a number of developing industrial connections, including a CRADA with the advanced materials company Advanced Refractory Technologies Inc. and interactions targeted at developing industrial gas burner and metal and glass melting/processing applications. Current experimental emphasis is on the development and characterization of SiC reinforced-MoSi{sub 2} matrix composites, plasma sprayed MoSi{sub 2}-based materials and microlaminate composites, and MoSi{sub 2} reinforced-Si{sub 3}N{sub 4} matrix composites. We are developing processing methods for MoSi{sub 2{minus}}based materials and microlaminate composites, and MoSi{sub 2} reinforced-Si{sub 3}N{sub 4} matrix composites. We are developing processing methods for MoSi{sub 2{minus}} based materials, such as plasma spraying/spray forming and electrophoretic deposition. We are also pursuing the fabrication of prototype industrial gas burner and injection tube components of these materials, as well as prototype components for glass processing.

  12. Molybdenum Silicide Formation on Single Crystal, Polycrystalline and Amorphous Silicon: Growth, Structure and Electrical Properties

    NASA Astrophysics Data System (ADS)

    Doland, Charles Michael

    The solid state reactions that occur between a thin metal film and a silicon substrate are of scientific and technological interest. The initial interactions are poorly understood, yet the final state may critically depend on the initial interactions. In this work, the reactions of thin molybdenum films on amorphous, polycrystalline, and single crystal silicon substrates were studied, with an emphasis on the initial interdiffusion and the nucleation of the crystalline silicide phase. Our research was carried out in an ultrahigh vacuum (UHV) system in order to minimize effects of contaminants. In situ Raman scattering and Auger electron spectroscopy were used to probe the structure and composition of the films. Electron microscopy, low energy electron diffraction and Schottky barrier height measurements were used to obtain additional information. The hexagonal phase of the disilicide (h-MoSi _2) is the first phase formed. This occurs after 30 minute annealing at 400^ circC on clean samples. Impurities interfere with this reaction, but substrate crystallinity has no effect. The hexagonal phase transforms to the tetragonal phase (t-MoSi_2) after 800 ^circC annealing for all substrate types. Contamination retards this reaction, resulting in films containing both phases. For the thin films in this study, the transformation to t-MoSi_2 is accompanied by agglomeration of the films. From bulk thermodynamics, t-MoSi_2 is expected to be the first phase formed, but h -MoSi_2 is the first phase observed. This phase nucleates before t-MoSi_2, due to a lower silicide-silicon interfacial energy. Detailed knowledge of interfacial energies and effects of impurities are required to understand the initial phases of thin film solid state reactions.

  13. Influence of molybdenum silicide additions on high-temperature oxidation resistance of silicon nitride materials

    SciTech Connect

    Klemm, H.; Tangermann, K.; Schubert, C.; Hermel, W.

    1996-09-01

    The influence of additions of molybdenum disilicide (MoSi{sub 2}) on the microstructure and the mechanical properties of a silicon nitride (Si{sub 3}N{sub 4}) material, with neodymium oxide (Nd{sub 2}O{sub 3}) and aluminum nitride (AlN) as sintering aids, was studied. The composites, containing 5, 10, and 17.6 wt% MoSi{sub 2}, were fabricated by hot pressing. All materials exhibited a similar phase composition, detected by X-ray diffractometry. Up to MoSi{sub 2} additions of 10 wt%, mechanical properties such as strength, fracture toughness, or creep at 1,400 C were not affected significantly, in comparison to that of monolithic Si{sub 3}N{sub 4}. The oxidation resistance of the composites, in terms of weight gain, degraded. After 1,000 h of oxidation at 1,400 and 1,450 C in air, a greater weight gain (by a factor of approximately three) was obtained, in comparison to that of the material without MoSi{sub 2}. Nevertheless, after 1,000 h of oxidation, the degradation in strength of the composites was considerably less severe than that of the material without MoSi{sub 2}. An additional layer was formed, caused by processes at the surface of the Si{sub 3}N{sub 4} material, preventing the formation of pores, cracks, or glassy-phase-rich areas, which are common features of oxidation damage in Si{sub 3}N{sub 4} materials. This surface layer, containing Mo{sub 5}Si{sub 3} and silicon oxynitride (Si{sub 2}ON{sub 2}), was the result of reactions between MoSi{sub 2}, Si{sub 3}N{sub 4}, and the oxygen penetrating by diffusion into the material during the high-temperature treatment.

  14. Silicon-nitride and metal composite

    DOEpatents

    Landingham, Richard L.; Huffsmith, Sarah A.

    1981-01-01

    A composite and a method for bonding the composite. The composite includes a ceramic portion of silicon nitride, a refractory metal portion and a layer of MoSi.sub.2 indirectly bonding the composite together. The method includes contacting the layer of MoSi.sub.2 with a surface of the silicon nitride and with a surface of the metal; heating the layer to a temperature below 1400.degree. C.; and, simultaneously with the heating, compressing the layer such that the contacting is with a pressure of at least 30 MPa. This composite overcomes useful life problems in the fabrication of parts for a helical expander for use in power generation.

  15. Silicon-nitride and metal composite

    DOEpatents

    Landingham, R.L.; Huffsmith, S.A.

    A composite and a method for bonding the composite are described. The composite includes a ceramic portion of silicon nitride, a refractory metal portion and a layer of MoSi/sub 2/ indirectly bonding the composite together. The method includes contacting the layer of MoSi/sub 2/ with a surface of the silicon nitride and with a surface of the metal; heating the layer to a temperature below 1400/sup 0/C; and, simultaneously, compressing the layer such that the contacting is with a pressure of at least 30 MPa. This composite overcomes useful life problems in the fabrication of parts for a helical expander for use in power generation.

  16. Method and apparatus for detecting the presence and thickness of carbon and oxide layers on EUV reflective surfaces

    DOEpatents

    Malinowski, Michael E.

    2005-01-25

    The characteristics of radiation that is reflected from carbon deposits and oxidation formations on highly reflective surfaces such as Mo/Si mirrors can be quantified and employed to detect and measure the presence of such impurities on optics. Specifically, it has been shown that carbon deposits on a Mo/Si multilayer mirror decreases the intensity of reflected HeNe laser (632.8 nm) light. In contrast, oxide layers formed on the mirror should cause an increase in HeNe power reflection. Both static measurements and real-time monitoring of carbon and oxide surface impurities on optical elements in lithography tools should be achievable.

  17. Multilayer films with sharp, stable interfaces for use in EUV and soft X-ray application

    DOEpatents

    Barbee, Jr., Troy W.; Bajt, Sasa

    2002-01-01

    The reflectivity and thermal stability of Mo/Si (molybdenum/silicon) multilayer films, used in soft x-ray and extreme ultraviolet region, is enhanced by deposition of a thin layer of boron carbide (e.g., B.sub.4 C) between alternating layers of Mo and Si. The invention is useful for reflective coatings for soft X-ray and extreme ultraviolet optics, multilayer for masks, coatings for other wavelengths and multilayers for masks that are more thermally stable than pure Mo/Si multilayers

  18. Atomistic Potentials for the Molybdenum-Silicon System

    SciTech Connect

    M. I. Baskes

    1998-11-01

    Using a modified version of the Embedded Atom Method (EAM) that includes angular forces, potentials are developed for the Mo/Si system. Previously developed potentials for Mo and Si are used. The cross potential is fit to properties of MoSi2, Mo3Si, and Mo5Si3. Predictions are presented for phase stability, lattice constants, elastic constants, and point and planar defect energies. In general the agreement with experiment is good, but the predicted lattice constants are somewhat greater than experiment.

  19. Thin film molybdenum silicide as potential temperature sensors for turbine engines

    NASA Technical Reports Server (NTRS)

    Ho, C. H.; Prakash, S.; Deshpandey, C. V.; Doerr, H. J.; Bunshah, R. F.

    1989-01-01

    Temperature measurements of Mo-Si-based thin-film resistance thermometers were studied. Annealing in an argon ambient at a temperature above 1000 C for at least 1 h is required to form the stable tetragonal MoSi2 phase. With a crack-free 2-micron-thick AlN barrier layer on top, a sensor was tested up to 1200 C. The resistivity vs temperature characteristic shows the room temperature resistivity and temperature coefficient of resistivity (TCR) of the sensor to be approximately 350 microohm and 0.01195 K, respectively. No film adhesion problems were observed for at least four testing cycles.

  20. Vortex shells in mesoscopic triangles of amorphous superconducting thin films

    NASA Astrophysics Data System (ADS)

    Kokubo, N.; Miyahara, H.; Okayasu, S.; Nojima, T.

    2016-11-01

    Direct observation of vortex states confined in mesoscopic regular triangle dots of amorphous Mo-Ge thin films was made with a scanning superconducting quantum interference device microscope. The observed magnetic images illustrate clearly how vortices are distributed over the triangle dots by forming not only commensurate triangular clusters, but also unique patterns imposed by incommensurability. We discuss the results in terms of vortex shells and construct the packing sequence of vortices in the multiple shell structure.

  1. Development of Metallic Magnetic Calorimeters with a Critical Temperature Switch

    NASA Astrophysics Data System (ADS)

    Kim, S. R.; Choi, J.; Jo, H. S.; Kang, C. S.; Kim, G. B.; Kim, H. L.; Kim, I. W.; Lee, H. J.; Lee, J. H.; Lee, M. K.; Oh, S. Y.; Sala, E.; So, J. H.; Yoon, W. S.; Kim, Y. H.

    2016-07-01

    We report on the progress in the development of meander-shaped metallic magnetic calorimeters (MMCs) with a critical temperature switch. A niobium meander-shaped coil in an MMC is arranged to form a superconducting loop. It is to measure the change in magnetization and to apply a persistent current that magnetizes the MMC sensor material. In this work, part of the superconducting loop is fabricated with another superconducting material with its transition temperature (T_C) lower than that of niobium. A persistent current can be injected in the loop while reducing the temperature from above to below the T_C of the switch. Aluminum (Al) wires and an alloy of molybdenum and germanium (MoGe) were tested as critical temperature switch. The test with the Al switch demonstrated the temperature switch concept for meander-shaped MMCs that require a large field current. Microfabricated MoGe switches showed a T_C near 4.3 K, but only 7 mA of persistent current could be charged due to MoGe film discontinuity. This issue requires further improvement in the fabrication procedure.

  2. Porous acicular mullite obtained by controlled oxidation of waste molybdenum disilicide

    SciTech Connect

    Bučevac, Dušan; Dapčević, Aleksandra; Maksimović, Vesna

    2014-02-01

    Highlights: • Waste MoSi{sub 2} heating elements were used as starting material for fabrication of porous acicular mullite. • Calcined MoSi{sub 2} powder was source of SiO{sub 2} and pore former at the same time. • Porous acicular mullite is promising material for filtration of diesel engine exhaust. • Samples with decent mechanical integrity and porosity of more than 60% were fabricated. - Abstract: Porous acicular mullite was fabricated by using waste MoSi{sub 2} heating element and Al{sub 2}O{sub 3}. Careful calcination of the pulverized heating element led to the formation of a mixture of MoO{sub 3} and amorphous SiO{sub 2}. This mixture was employed as both SiO{sub 2} precursor and pore former. The oxidation of MoSi{sub 2} and mullite formation were studied. The effect of fabrication temperature on phase composition, porosity, grain morphology, and compressive strength of sintered mullite was examined. Pure mullite with porosity of more than 60% and compressive strength of ∼20 MPa was obtained at temperature as low as 1300 °C. The microstructure consisted of elongated, rectangular, prism-like grains which are known to be effective in filtration of diesel engine exhaust. The increase in sintering temperature caused the change of grain morphology and reduction in compressive strength.

  3. Molybdenum disilicide composites produced by plasma spraying

    SciTech Connect

    Castro, R.G.; Hollis, K.J.; Kung, H.H.; Bartlett, A.H.

    1998-05-25

    The intermetallic compound, molybdenum disilicide (MoSi{sub 2}) is being considered for high temperature structural applications because of its high melting point and superior oxidation resistance at elevated temperatures. The lack of high temperature strength, creep resistance and low temperature ductility has hindered its progress for structural applications. Plasma spraying of coatings and structural components of MoSi{sub 2}-based composites offers an exciting processing alternative to conventional powder processing methods due to superior flexibility and the ability to tailor properties. Laminate, discontinuous and in situ reinforced composites have been produced with secondary reinforcements of Ta, Al{sub 2}O{sub 3}, SiC, Si{sub 3}N{sub 4} and Mo{sub 5}Si{sub 3}. Laminate composites, in particular, have been shown to improve the damage tolerance of MoSi{sub 2} during high temperature melting operations. A review of research which as been performed at Los Alamos National Laboratory on plasma spraying of MoSi{sub 2}-based composites to improve low temperature fracture toughness, thermal shock resistance, high temperature strength and creep resistance will be discussed.

  4. Microwave assisted synthesis of technologically important transition metal silicides

    SciTech Connect

    Vaidhyanathan, B.; Rao, K.J.

    1997-12-01

    A novel, simple, clean and fast microwave assisted method of preparing important transition metal silicides (MoSi{sub 2}, WSi{sub 2}, CoSi{sub 2}, and TiSi{sub 2}) has been described. Amorphous carbon is used both as a microwave susceptor and as a preventer of oxidation. {copyright} {ital 1997 Materials Research Society.}

  5. Los Alamos National Laboratory final report

    SciTech Connect

    Lopez, W.H. . Center for Micro-Engineered Ceramics)

    1993-01-01

    Five subtasks are reported on: laser ablation synthesis of nanophase ceramic powders (alumina, AlN), preparation of high-purity submicron MoSi[sub 2], microwave sintering of ceramics, synthesis of high-purity mullite, and scale-up of aerosol decomposition for ceramic powder production.

  6. Los Alamos National Laboratory final report

    SciTech Connect

    Lopez, W.H.

    1993-01-01

    Five subtasks are reported on: laser ablation synthesis of nanophase ceramic powders (alumina, AlN), preparation of high-purity submicron MoSi{sub 2}, microwave sintering of ceramics, synthesis of high-purity mullite, and scale-up of aerosol decomposition for ceramic powder production.

  7. Dense nanometric microalloyed molybdenum disilicide synthesized through mechanical and field activation

    NASA Astrophysics Data System (ADS)

    Woolman, Joseph Nelson

    There has been no theoretical improvements in the high temperature capability of materials used in the hot sections of turbines since 1941 [2]. Exploitation of the nickel based super-alloys to their fullest potential is a result of processing improvement, mainly in the form of vacuum arc melt furnaces [3]. Anton and Shah [4, 5] report based on ultimate tensile strength (UTS), creep strength and oxidation resistance that seven intermetallic compounds with melting points above 1600°C, have been selected as possible replacement materials for high temperature structural materials. These selected compounds are as Nb3Al, Cr3Si, Co2Nb, MoSi 2, Mo5Si3 and Nb2Al. In the terms of UTS and oxidation resistance, MoSi2 is the material with the most promise [5]. Before MoSi2 is set for industrial application, numerous problems have to be solved. High on the list is the brittle to ductile transition at approximately 1000°C. Waghmare et al., from first principles, list elements which introduced at the microalloying level offer the possibility for ductility improvement in MoSi2 without sacrificing its outstanding high temperature properties. Of the elements listed m their model, the one with the most promise as a softener of MoSi2 is magnesium. Until now, this compound had not been synthesized. Through a combination of mechanical alloying and spark plasma sintering, we were able to successfully synthesize the compound Mo(Si 2-xMgx). Hardness results presented above confirm the predictions of Waghmare et al. in that a substantial reduction in hardness was realized. Material prepared identically, lacking magnesium, displayed a hardness of 2000 Vickers, while material with 5 at% magnesium displayed a hardness of 620 Vickers. The elements predicted by Waghmare et al. to have the greatest softening potential on alpha-MoSi2: Al and Mg substituting for Si and Nb and V substituting for Mg were explored. The results for Mg match the predictions, while the results for Al, Nb and V match the

  8. Phase identification in reactive sintering of molybdenum disilicide composites

    SciTech Connect

    Alba, Jr., Jose

    1996-10-01

    Molybdenum disilicide has been predominantly used for furnace heating elements, but recently there has been interest in its use for high temperature structural applications. The reason for this increased interest stems from its desirable characteristics which are a high melting point, relatively low density, good oxidation resistance, relatively good thermal conductivity and electronically conductive. The melting point of MoSi2 is approximately 2030°C as compared to a melting point of 1340°C for the Ni-based superalloys. This could potentially give MoSi2 a big advantage over the Ni-based superalloys in turbine applications because the operating temperature can be increased resulting in an increase in turbine efficiency and reduced emissions. The relatively low density (6.25g/cm3) compared to the Ni-based superalloys (8.9 g/cm3) is an important advantage in turbine applications because of the need for low weight. Good oxidation resistance stems from the ability of MoSi2 to form a protective SiO2 surface layer when exposed to oxygen. Another advantageous feature of MoSi2 is its thermal conductivity which is superior to Ni-based superalloys at low temperatures and comparable to the Ni-based superalloys at high temperatures. This allows heat to be dissipated at a rate better than ceramics and comparable to metals. MoSi2 is electrically conductive allowing it to be electro discharge machined. This is desirable since conventional ceramics are not generally conductive and cannot be electro discharge machined.

  9. Use of lower-end technology etch platforms for high-etch loads

    NASA Astrophysics Data System (ADS)

    Nemelka, Jefferson O.

    2003-12-01

    In order to meet the needs of multiple customers with varying design specifications, merchant photomask suppliers need to provide photomasks for a wide range of design patterns. Some masks require etching less than 1% of the total mask film, while others require etching over 80% of the mask. Etching masks with these extremes in pattern loads can often require upgrading existing tool sets, particularly as the mask specifications become tighter. One alternative to upgrading tools is to develop new load-specific processes on existing lower-end tools, which requires a substantial amount of development work. Dry etching MoSi Embedded Attenuating Phase Shift Material using sulfur hexafluoride and helium under all etch loads presents challenges in the Unaxis Generation II mask etch platform. Etch processes developed for low load masks cannot always be used for high load masks due to problems in maintaining a stable process with good performance. In order to improve the etch performance for high MoSi loads (> 70% clear), a Gen II specific hardware design which can adversely affect uniformity at high loads was identified and eliminated as a dominant source of non-uniformity. A DOE studying total gas flow, He/SF6 ratio, pressure, ICP, and RIE power was then used to identify a stable process window for high MoSi loads. Another DOE studying the effects of pressure, ICP power, and RIE power on process uniformity was then carried out within the stable process window. Process conditions were identified which produced highly loaded 248nm and 193nm EAPSM masks with phase uniformity below 3°. Sidewall profiles were vertical for 193nm MoSi films but were slightly tapered for 248nm MoSi films, both with less than 5nm of CD bias.

  10. Microstructure and mechanical properties of metal/oxide and metal/silicide interfaces

    SciTech Connect

    Shaw, L.; Miracle, D.; Abbaschian, R.

    1995-12-01

    Fracture energies of Al{sub 2}O{sub 3}/Nb interfaces and MoSi{sub 2}/Nb interfaces with and without Al{sub 2}O{sub 3} coating were measured using sandwich-type chevron-notched specimens. The relations between the mechanical properties, microstructures, types of bonds at the interface and processing routes were explored. The fracture energy of the Al{sub 2}O{sub 3}/Nb interface was determined to be 9 J/m{sup 2} and changed to 16 J/m{sup 2} when Nb was pre-oxidized before the formation of the Al{sub 2}O{sub 3}/Nb interface. The fracture energy of the MoSi{sub 2}/Nb interface could not be determined directly because of the formation of the interfacial compounds. However, the fracture energy at the MoSi{sub 2}/Nb interfacial region was found to depend on the interfacial bond strength, roughness of interfaces and microstructure of interfacial compounds. The interfacial fracture energies of Al{sub 2}O{sub 3} with silicides, MoSi{sub 2}, Nb{sub 5}Si{sub 3}, or (Nb, Mo)Si{sub 2} were estimated to be about 16 J/m{sup 2}, while the interfacial fracture energies between two silicides or between Nb and a silicide were larger than 34 J/m{sup 2}. The measured fracture energies between two silicides or between Nb and a silicide were larger than 34 J/m{sup 2}. The measured fracture energies of the various interfaces are discussed in terms of the interfacial microstructures and types of bonds at the interfaces.

  11. Comparative study on PS material of EAPSM for flat panel display

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-Woong; Song, Jin-Han; Lee, Ho-Jin; Kim, Kyu-Sik; Jeong, Woo-Gun; Yoon, Young-Jin; Yun, Sang-Pil; Jung, Sung-Mo

    2016-10-01

    We evaluated and compared the i-line 5.2 % Cr based EAPSM and i-line 5.2 % MoSi based EAPSM to find more appropriate material of shifter for FPD. The evaluation items were their CD linearity, phase shift, and optical properties such as transmittance, reflectance, and absorbance under the wavelength range 200-800 nm. Finally, from the results, we performed simulations. The CD linearity and the phase shift were seen as the performances of the same level within all their specifications. The optical properties indicated that the transmittance was higher in the i-line 5.2 % Cr based EAPSM than in i-line 5.2 % MoSi based EAPSM from about 350 nm wavelength, and the reflectance was lower in the iline 5.2 % Cr based EAPSM than in i-line 5.2 % MoSi based EAPSM under the entire wavelength region. From these results, NILS and contrast were simulated between them in 5.0 μm pitch LS pattern and it was found that they did not have a significant difference. Side-lobe effect appeared in both EAPSMs when clear features were closely adjacent under 2.0 μm contact pattern. However, the side-lobe could be removed effectively by adopting Rim type EAPSM. The i-line 5.2 % MoSi based EAPSM may be more suitable for the Rim type EAPSM than the i-line 5.2 % Cr based EAPSM considering their structure and production process of the Rim type EAPSM. It may be appropriate that we use the i-line 5.2 % Cr based EAPSM in LS pattern and the i-line 5.2 % MoSi based EAPSM in contact pattern, because they were almost same level in that performance perspective.

  12. Raman study of phase transformation from diamond structure to wurtzite structure in the silicon nanowires

    NASA Astrophysics Data System (ADS)

    Shukla, A. K.; Dixit, Saurabh

    2016-07-01

    Hexagonal silicon has emerged as an exciting material due to its novel vibrational and electronic properties. Synthesis of the wurtzite silicon nanowires (w-SiNWs) is studied here using metal assisted chemical etching (MACE) technique. Stress induced in the SiNWs during wet chemical etching is attributed to formation of the w-SiNWs. Presence of the w-SiNWs is revealed by first-order and second-order Raman spectra. The effect of variation of deposition time of silver (catalyst) is explicitly studied for growth of w-SiNWs. The deposition time enhances the density of SiNWs in an island of vertically aligned SiNWs. Absorption coefficient studies of the w-SiNWs are also conducted using UV-vis spectroscopy as a function of deposition time. Increase in the absorption coefficient in SiNWs is noticed with increasing deposition time. The prominent quantum confinement along with stress and porosity is shown to be mainly responsible for the transformation from diamond structure to wurtzite structure in the silicon nanowires.

  13. Fracture toughness dependence on grain size in molybdenum silicide, titanium silicide and aluminum nitride

    NASA Astrophysics Data System (ADS)

    Tsyfanskiy, Vyacheslav Alex

    The fracture toughness of MoSi2, Ti5Si3 and AlN as a function of grain size was measured using the controlled-flaw method in conjunction with the miniaturized disk-bend test (MDBT). The materials investigated had grain sizes of 3.5, 7.0, 11.2 and 16 mum for MoSi 2, 2, 4, 7 and 10--20 mum for Ti5Si 3 and 2.5 and 4.5 mum for AlN. The specimens used in the experiments were 3 mm in diameter and varied in thickness from 280 to 593 mum. These were indented using a Vickers pyramid indentor to indentation loads varying from 10 to 80 N. Indentation cracking was experienced at all indentation loads and R-curve behavior was exhibited. The fracture toughness, Kinfinity, was calculated using a straightforward graphical procedure involving an empirical R-curve equation. Kinfinity of MoSi2 was determined to be relatively grain-size independent, with a value of ˜4 MPa·m1/2. Kinfinity, of Ti5Si3 showed a strong dependence on grain size, with maximum of 3.56 +/- 0.41 MPa·m1/2 at a grain size of ˜4 mum. For AlN Kinfinity decreased from 2.85 +/- 0.40 to 2.32 +/- 0.21 MPa·m1/2 as the grain size increased. The grain growth behavior of polycrystalline MoSi2, Ti 5Si3 and AlN was studied during static annealing at 1400°C in an argon atmosphere. MoSi2 exhibited abnormal grain growth, Ti5Si3 showed normal grain growth behavior and annealing of AlN produced no visible increase in the grain size. The presence of Ni in contact with MoSi2 during annealing significantly increased the rate of grain growth. MoSi2 with grain sizes of 11.2 and 16 mum contained traces of Ni and exhibited a decrease in hardness compared to the Ni-free samples with grain sizes of 3.5 and 7.0 mum. Stresses arising in non-cubic materials during processing, due to the presence of thermal expansion anisotropy, were calculated for AlN, Al 2O3, MoSi2, SiC, Ti5Si3 and ZnS. These stresses, sigmamax, provide information on the maximum grain sizes, ds, that can be tolerated by these materials before they fracture

  14. X-ray photoelectron spectroscopy study of radiofrequency-sputtered refractory compound steel interfaces

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Brainard, W. A.

    1978-01-01

    Radiofrequency sputtering was used to deposit Mo2C, Mo2B5, and MoSi2 coatings on 440C steel substrates. Both sputter etched and preoxidized substrates were used, and the films were deposited with and without a substrate bias of -300 V. The composition of the coatings was measured as a function of depth by X-ray photoelectron spectroscopy combined with argon ion etching. In the interfacial region there was evidence that bias produced a graded interface in Mo2B5 but not in Mo2C. Oxides of iron and of all film constituents except carbon were presented in all cases but the iron oxide concentration was higher and the layer thicker on the preoxidized substrates. The film and iron oxides were mixed in the MoSi2 and Mo2C films but layered in the Mo2B5 film. The presence of mixed oxides correlates with enhanced film adhesion.

  15. Hydrogen in titanium alloys

    SciTech Connect

    Wille, G W; Davis, J W

    1981-04-01

    The titanium alloys that offer properties worthy of consideration for fusion reactors are Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-Si (Ti-6242S) and Ti-5Al-6Sn-2Zr-1Mo-Si (Ti-5621S). The Ti-6242S and Ti-5621S are being considered because of their high creep resistance at elevated temperatures of 500/sup 0/C. Also, irradiation tests on these alloys have shown irradiation creep properties comparable to 20% cold worked 316 stainless steel. These alloys would be susceptible to slow strain rate embrittlement if sufficient hydrogen concentrations are obtained. Concentrations greater than 250 to 500 wppm hydrogen and temperatures lower than 100 to 150/sup 0/C are approximate threshold conditions for detrimental effects on tensile properties. Indications are that at the elevated temperature - low hydrogen pressure conditions of the reactors, there would be negligible hydrogen embrittlement.

  16. Microstructure of hot-pressed Al2O3-Si3N4 mixtures as a function of holding temperature

    NASA Technical Reports Server (NTRS)

    Yeh, H. C.

    1976-01-01

    Powder mixtures of 40 m/o Si3N4-60 m/o Al2O3 were hot-pressed at 4000 psi at various holding temperatures from 1100 C to 1700 C. Scanning Electron Microscopy and Transmission Electro Microscopy results were correlated to X-ray phase analysis and density measurements. The progressively developed microstructure was used to interpret the densification behavior of SiAlON. Photomicrographs of microstructures are shown.

  17. Plasma-materials interaction results at Sandia National Laboratories.

    SciTech Connect

    Causey, Rion A.; Wampler, William R.; Buchenauer, Dean A.; Karnesky, Richard A.; Whaley, Josh A.; Cowgill, Donald F.; Kolasinski, Robert D.

    2010-08-01

    Overview of Plasma Materials Interaction (PMI) activities are: (1) Hydrogen diffusion and trapping in metals - (a) Growth of hydrogen precipitates in tungsten PFCs, (b) Temperature dependence of deuterium retention at displacement damage, (c) D retention in W at elevated temperatures; (2) Permeation - (a) Gas driven permeation results for W/Mo/SiC, (b) Plasma-driven permeation test stand for TPE; and (3) Surface studies - (a) H-sensor development, (b) Adsorption of oxygen and hydrogen on beryllium surfaces.

  18. OSA Proceedings of the Topical Meeting on Soft-X-Ray Projection Lithography Held in Monterey, California on 10-12 April 1991. Volume 12

    DTIC Science & Technology

    1992-05-22

    Carbide because of its high thermal the mirror on its backside or edge. Shott Zerodur conductivity. Edge cooling causes a larger exceeded the limit by about...Characterization Angstrom-level noncontact profiling of mirrors for soft x-ray lithography............ 134 Paul Glenn Nonspecular Scattering from X-Ray...structed by patterning a Mo/Si Tropel Division of GCA Corporation. multilayer coated silicon wafer. The mirrors were coated at AT&T Bell The multilayer

  19. Method to adjust multilayer film stress induced deformation of optics

    DOEpatents

    Spiller, Eberhard A.; Mirkarimi, Paul B.; Montcalm, Claude; Bajt, Sasa; Folta, James A.

    2000-01-01

    Stress compensating systems that reduces/compensates stress in a multilayer without loss in reflectivity, while reducing total film thickness compared to the earlier buffer-layer approach. The stress free multilayer systems contain multilayer systems with two different material combinations of opposite stress, where both systems give good reflectivity at the design wavelengths. The main advantage of the multilayer system design is that stress reduction does not require the deposition of any additional layers, as in the buffer layer approach. If the optical performance of the two systems at the design wavelength differ, the system with the poorer performance is deposited first, and then the system with better performance last, thus forming the top of the multilayer system. The components for the stress reducing layer are chosen among materials that have opposite stress to that of the preferred multilayer reflecting stack and simultaneously have optical constants that allow one to get good reflectivity at the design wavelength. For a wavelength of 13.4 nm, the wavelength presently used for extreme ultraviolet (EUV) lithography, Si and Be have practically the same optical constants, but the Mo/Si multilayer has opposite stress than the Mo/Be multilayer. Multilayer systems of these materials have practically identical reflectivity curves. For example, stress free multilayers can be formed on a substrate using Mo/Be multilayers in the bottom of the stack and Mo/Si multilayers at the top of the stack, with the switch-over point selected to obtain zero stress. In this multilayer system, the switch-over point is at about the half point of the total thickness of the stack, and for the Mo/Be--Mo/Si system, there may be 25 deposition periods Mo/Be to 20 deposition periods Mo/Si.

  20. Film Synthesis and New Superconductors.

    DTIC Science & Technology

    1983-05-01

    use of atomic and molecular beam codeposition techniques. The pseudo-binary system Nb-Mo-Si has been investigated. The A15 phase has been extended...field, lattice imaging, and electron diffraction. Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy has been carried out on the Ge K-edge in... atomic separations and average coordination number than the A15 phase. No evidence of any lattice transofrmation between 77 and 573 K was obtained

  1. Study of local in-homogeneity in ion beam mixing using SIMS ion imaging techniques

    SciTech Connect

    Singh, Ch. Kishan; Ilango, S.; Dash, S.; Tyagi, A. K.

    2012-06-05

    The local in-homogeneity in ion beam mixing of Mo/Si system subjected to 110keV Ar{sup +} ion implantation is studied using secondary ion imaging. Sequences of images are recorded across the interface and depth profiles are constructed from different regions of the image planes. Our results show a significant variation in decay length indicative of in-homogeneity in mixing.

  2. Proceedings from the Conference on Critical Issues in the Development of High Temperature Structural Materials Held in Kona, Hawaii on March 7-14, 1993,

    DTIC Science & Technology

    1993-01-14

    the development of a pronounced > fiber texture in bcc metals subjected to large strains during extrusion, swaging, bar rolling, and wire drawing ...Features Just as traditional materials such as high strength- low alloy steels and titanium base alloys, it has been known that some L12 ordered...microstructures provide some toughening in MoSi2 composites, and that whiskers or fibers are better than particulates as reinforcements. Clearly, lack of low

  3. Characterization of Ultra High Temperature Ceramics via Transmission Electron Microscopy. Part 2: UHTCs sintered with addition of TaSi2

    DTIC Science & Technology

    2010-01-21

    addition of silicides , such as MoSi2,15–17 has positive effects on the densification and mechanical properties of borides and carbides, even at...interest because of the excellent and unique combination of properties which make them attractive candidates for high temperature applications where...solutions, which, in turn affect the high temperature properties . The control of secondary phases composition is therefore of paramount importance

  4. Silicide-matrix materials for high-temperature applications

    SciTech Connect

    Meschter, P.J.; Schwartz, D.S. )

    1989-11-01

    Intermetallic-matrix composites are attractive alternatives to carbon/carbon and ceramic/ceramic composities for applications up to 1,600 C. Recent work on the intermetallic compounds MoSi2 and Ti5Si3 has included determination of their mechanical properties and deformation behavior, selection of thermodynamically compatible high-strength and ductile reinforcements, and strengthening and toughening mechanisms in silicide-matrix composites for high-temperature service. 11 refs.

  5. Properties of High-Temperature Ceramics and Cermets. Elasticity and Density at Room Temperature

    DTIC Science & Technology

    1958-01-01

    property character- r. Molybdenum Disilicide -MoSi2 (Tables 24 and 24a) istics; the uniformity of bulk density ap)pea’s to Coode 39: Six groups) of hot...SEP .NBS MONOGAPH 6 AD-A285 483 0 DTIC, I’IELECTE 00 Properties of High-Temperature Ceramics and Cermets Elasticity and Density at Room Temperature...measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and

  6. Phase stability, electronic structure and mechanical properties of molybdenum disilicide: a first-principles investigation

    NASA Astrophysics Data System (ADS)

    Qiao, Yingjie; Zhang, Hexin; Hong, Changqing; Zhang, Xiaohong

    2009-05-01

    The phase stability, electronic structure and mechanical properties of MoSi2 at different phases were systematically investigated by first-principles density functional theory calculations. The results indicated that both tetragonal and hexagonal MoSi2 are thermodynamically and mechanically stable. The formation energy of the hexagonal phase is 6.27 kJ mol-1 smaller than that of the tetragonal one. In tetragonal MoSi2, Mo 4dxz, 4dyz and 4d_{z}^{2} orbitals overlap effectively with Si sp_{z}^{1} , px and py ones, while interactions between Mo 4d_{{x}^{2}-{y}^{2}} (4dxy) and Si 2p orbitals are confirmed in the hexagonal phase. However, the bond strengths of the hexagonal phase are smaller, leading to changes in the mechanical properties. Young's modulus decreases from 443.33 to 341.37 GPa as the phase transforms from the tetragonal to the hexagonal phase. The weakness of the Si-Mo bonds along the [0 0 1] direction and the Si-Si bonds within the (0 0 1) plane make the shear deformations of the hexagonal phase much easier to occur, and the G/B ratio correspondingly decreases, suggesting improvement in ductility. Moreover, the calculated Vicker's hardness of the hexagonal phase is 10.15 GPa, 48% smaller than the value in the tetragonal one. Besides the structural transformation, the external pressure can also affect the mechanical properties of the system. Different from the structural change, the external pressure enhances the Si-Si interactions while it reduces the Si-Mo (II) bond populations. Both the Vicker's hardness and ductility are improved as the hydrostatic pressure increases. The present calculations confirmed that the Si-Si (I) interactions play a central role in the hardness and ductility of MoSi2 materials.

  7. Symposium on Structural Intermetallics: Perspectives on Science and Technology Held at the Defence Metallurgical Research Laboratory, Hyderabad, India on 5-6 February 1994. Volume 2

    DTIC Science & Technology

    1994-02-06

    Contribution from France T.Khan and S.Naka ONERA, France 4. Microstructure, Processing and Properties of MoSi2 D.A. Hardwick Rockwell Science Centre, USA i 5...Effect of Microstructure on the Creep of Molybdenum Disilicides and their Composites3 K. Sadananda and R. Feng Naval Research Laboratory, USA i 6... properties such as low density, high thermal conductivity and excellent environmental resistance. Nevertheless, a reasonable combination of toughness and

  8. Innovative Processing of Composites for Ultra-High Temperature Applications. Book 3

    DTIC Science & Technology

    1993-11-01

    order to created MoSi 2/SiC composites. (Molybdenum disilicide has much better mechanical properties at high temperatures than silicon.) Investigations...technology necessary to fabricate ceramic-matrix, internetallic-matrix, and metal-matrix composites with superior mechanical properties in high temperature...Book I Section 1 Processing and Properties of Silicon Carbide Fibers Principal Investigators: C.D. Batich M.D. Sacks Section 2 Processing of Mullite

  9. Reactive Processing and Co-Extrusion of Ultra-High Temperature Ceramics and Composites

    DTIC Science & Technology

    2006-02-28

    properties , :and performance of zirconium diboride ceramics were studied. The initial phase of the work focused on improving the properties of...used for hot pressing ZrB2-SiC .................... 6 Table II. Physical and mechanical properties of ZrB2-SiC materials...6 Table III. Physical and mechanical properties of ZrB2 -MoSi2 materials .......................... 7 Table IV. Physical and mechanical

  10. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    DOEpatents

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  11. The unexpected mechanism of carbonyl hydrosilylation catalyzed by (Cp)(ArN[double bond, length as m-dash])Mo(H)(PMe(3)).

    PubMed

    Shirobokov, Oleg G; Gorelsky, Serge I; Simionescu, Razvan; Kuzmina, Lyudmila G; Nikonov, Georgii I

    2010-11-07

    Complex (Cp)(ArN[double bond, length as m-dash])Mo(H)(PMe(3)) (2, Ar = 2,6-diisopropylphenyl) catalyzes the hydrosilylation of carbonyls by an unexpected associative mechanism. Complex 2 also reacts with PhSiH(3) by a σ-bond metathesis mechanism to give the silyl derivative (Cp)(ArN[double bond, length as m-dash])Mo(SiH(2)Ph)(PMe(3)).

  12. Innovative Processing of Composites for Ultra-High Temperature Applications. Book 2

    DTIC Science & Technology

    1993-11-01

    improve the oxidation resistance of metal-matrix and intermetallic- matrix composites. Coatings methods utilized included chemical vapor deposition, sol ...coating on Nb surface included (1) sol -gel processing; (2) physical vapor deposition; (3) hot dipping the reinrorcement in molten aluminum, followed by...matrix of commercially pure MoSi2. The results also showed that the best coating is provided with physical vapor deposition, followed by sol -gel technique

  13. Spectroscopic characterization of novel multilayer mirrors intended for astronomical and laboratory applications

    NASA Astrophysics Data System (ADS)

    Ragozin, Eugene N.; Mednikov, Konstantin N.; Pertsov, Andrei A.; Pirozhkov, Alexander S.; Reva, Anton A.; Shestov, Sergei V.; Ul'yanov, Artem S.; Vishnyakov, Eugene A.

    2009-05-01

    We report measurements of the reflection spectra of (i) concave (spherical and parabolic) Mo/Si, Mg/Si, and Al/Zr multilayer mirrors (MMs) intended for imaging solar spectroscopy in the framework of the TESIS/CORONAS-FOTON Satellite Project and of (ii) an aperiodic Mo/Si MM optimized for maximum uniform reflectivity in the 125-250 Å range intended for laboratory applications. The reflection spectra were measured in the configuration of a transmission grating spectrometer employing the radiation of a tungsten laser-driven plasma as the source. The function of detectors was fulfilled by backside-illuminated CCDs coated with Al or Zr/Si multilayer absorption filters. High-intensity second-order interference reflection peaks at wavelengths of about 160 Å were revealed in the reflection spectra of the 304-Å Mo/Si MMs. By contrast, the second-order reflection peak in the spectra of the new-generation narrow-band (~12 Å FWHM) 304-Å Mg/Si MMs is substantially depressed. Manifestations of the NEXAFS structure of the L2, 3 absorption edges of Al and Al2O3 were observed in the spectra recorded. The broadband Mo/Si MM was employed as the focusing element of spectrometers in experiments involving (i) the charge exchange of multiply charged ions with the donor atoms of a rare-gas jet; (ii) the spectroscopic characterization of a debris-free soft X-ray radiation source excited by Nd laser pulses in a Xe jet (iii) near-IR-to-soft-X-ray frequency conversion (double Doppler effect) occurring in the retroreflection from the relativistic electron plasma wake wave (flying mirror) driven by a multiterawatt laser in a pulsed helium jet.

  14. Plastic deformation of single crystals of WSi{sub 2} with the C11{sub b} structure

    SciTech Connect

    Ito, K.; Yano, T.; Nakamoto, T.; Inui, H.; Yamaguchi, M.

    1999-02-05

    The deformation behavior of single crystals of WSi{sub 2} has been investigated as a function of crystal orientation in the temperature range from room temperature to 1500 C in compression. Single crystals of WSi{sub 2} can be deformed only at high temperatures above 1100 C, in contrast to MoSi{sub 2} in which plastic flow is possible even at room temperature. Four slip systems, {l_brace}110{r_brace}{l_angle}111{r_angle}, {l_brace}011{r_brace}{l_angle}100{r_angle}, {l_brace}023{r_brace}{l_angle}100{r_angle} and (001){l_angle}100{r_angle}, are identified. While the former three slip systems are operative also in MoSi{sub 2}, the (001){l_angle}100{r_angle} slip is only operative in WSi{sub 2}. The (001){l_angle}100{r_angle} slip in WSi{sub 2} is the alternative to {l_brace}013{r_brace}{l_angle}331{r_angle} slip in MoSi{sub 2} since they are operative in the same orientation range. Slip on {l_brace}110{r_brace}{l_angle}331{r_angle} is hardly observed in WSi{sub 2}. The values of critical resolved shear stress (CRSS) for the commonly observed slip systems are much higher in WSi{sub 2} than in MoSi{sub 2} with the largest difference for {l_brace}110{r_brace}{l_angle}111{r_angle} slip. The higher CRSS values in WSi{sub 2} are not only due to the intrinsic difference in the deformation behavior but also due to the existence of numerous grown-in stacking faults on (001).

  15. Nonlinear continuum growth model of multiscale reliefs as applied to rigorous analysis of multilayer short-wave scattering intensity. I. Gratings

    PubMed Central

    Goray, Leonid; Lubov, Maxim

    2013-01-01

    It is shown that taking into proper account certain terms in the nonlinear continuum equation of thin-film growth makes it applicable to the simulation of the surface of multilayer gratings with large boundary profile heights and/or gradient jumps. The proposed model describes smoothing and displacement of Mo/Si and Al/Zr boundaries of gratings grown on Si substrates with a blazed groove profile by magnetron sputtering and ion-beam deposition. Computer simulation of the growth of multilayer Mo/Si and Al/Zr gratings has been conducted. Absolute diffraction efficiencies of Mo/Si and Al/Zr gratings in the extreme UV range have been found within the framework of boundary integral equations applied to the calculated boundary profiles. It has been demonstrated that the integrated approach to the calculation of boundary profiles and of the intensity of short-wave scattering by multilayer gratings developed here opens up a way to perform studies comparable in accuracy to measurements with synchrotron radiation, at least for known materials and growth techniques. PMID:24046500

  16. Reflective masks for extreme ultraviolet lithography

    SciTech Connect

    Nguyen, Khanh Bao

    1994-05-01

    Extreme ultraviolet lithographic masks are made by patterning multilayer reflective coatings with high normal incidence reflectivity. Masks can be patterned by depositing a patterned absorber layer above the coating or by etching the pattern directly into the coating itself. Electromagnetic simulations showed that absorber-overlayer masks have superior imaging characteristics over etched masks (less sensitive to incident angles and pattern profiles). In an EUVL absorber overlayer mask, defects can occur in the mask substrate, reflective coating, and absorber pattern. Electromagnetic simulations showed that substrate defects cause the most severe image degradation. A printability study of substrate defects for absorber overlayer masks showed that printability of 25 nm high substrate defects are comparable to defects in optical lithography. Simulations also indicated that the manner in which the defects are covered by multilayer reflective coatings can affect printability. Coverage profiles that result in large lateral spreading of defect geometries amplify the printability of the defects by increasing their effective sizes. Coverage profiles of Mo/Si coatings deposited above defects were studied by atomic force microscopy and TEM. Results showed that lateral spread of defect geometry is proportional to height. Undercut at defect also increases the lateral spread. Reductions in defect heights were observed for 0.15 μm wide defect lines. A long-term study of Mo/Si coating reflectivity revealed that Mo/Si coatings with Mo as the top layer suffer significant reductions in reflectivity over time due to oxidation.

  17. JOINING OF MOLYBDENUM DISILICIDE TO STAINLESS STEEL USING AMORPHOUS METAL BRAZES-RESIDUAL STRESS ANALYSIS

    SciTech Connect

    VAIDYA, RAJENDRA U; KAUTZ, DOUGLAS D.; GALLEGOS, DAVID E.

    2007-01-30

    Molybdenum disilicide (MoSi{sub 2})/stainless steel 316 L jOints were produced by high temperature brazing using a cobalt-based metallic-glass (METGLAS{trademark} 2714A). Successful joining was completed in two different ways; either by feeding excess braze into the braze gap upon heating or by constraining the MoSi{sub 2}/stainiess steel assembly with an alumina (Al{sub 2}O{sub 3}) fixture during the heating cycle. These steps were necessary to ensure the production of a high quality void free joint. Residual stress measurements were completed on these joints. Indentation results show higher tensile residual stresses in the stainless steel for the joint with the external constraint, in comparison to the unconstrained state. In contrast, the compressive residual stresses In the MoSi{sub 2} (as measured by X-ray diffraction) were lower in the constrained state relative to the unconstrained state. These results and a lack of residual stress balance indicate that the stress state in the braze is significantly different under the two joining conditions and the volume of the braze plays an important role in the development of the residual stresses. Push-out tests carried out on these joints gave higher joint strengths in the unconstrained as compared to the constrained condition. The results of this study have important implications on the selection of the appropriate joining process (use of constraint versus extra braze).

  18. Connecting structural, mechanical and tribological characteristics of Al alloyed nanocrystalline molybdenum silicide coatings

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Mao, XiangZhen; Xie, Zong-Han; Munroe, Paul

    2013-02-01

    In this study, novel nanocrystalline molybdenum silicide coatings with differing Al contents were deposited on a commercial titanium substrate using a double-cathode glow discharge apparatus. Their microstructures were characterized by x-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy. These coatings mainly consisted of MoSi2 and Mo5Si3 phases; the ratio of Mo5Si3 to MoSi2 gradually increased from the surface towards the interior of coatings, forming a graded structure. With the increase in Al content, the hardness and elastic modulus of the coatings slightly decreased, but the ratios of H/E and 1/E2H, as well as damage tolerance, increased. Furthermore, these newly developed coatings showed excellent wear resistance; their specific wear rates were not only considerably lower than that of the monolithic MoSi2 coating, but also decreased with increasing Al content. The plan and cross-sectional views of the worn surfaces and wear debris were analysed using SEM and energy dispersive x-ray spectroscopy. The relationships between coating structure, mechanical property and wear mechanism were then clarified, which will help in designing hard, tough and wear-resistant coatings for applications involving severe loading conditions.

  19. Stacking faults on (001) in transition-metal disilicides with the C11{sub b} structure

    SciTech Connect

    Ito, K.; Nakamoto, T.; Inui, H.; Yamaguchi, M.

    1997-12-31

    Stacking faults on (001) in MoSi{sub 2} and WSi{sub 2} with the C11{sub b} structure have been characterized by transmission electron microscopy (TEM), using their single crystals grown by the floating-zone method. Although WSi{sub 2} contains a high density of stacking faults, only several faults are observed in MoSi{sub 2}. For both crystals, (001) faults are characterized to be of the Frank-type in which two successive (001) Si layers are removed from the lattice, giving rise to a displacement vector parallel to [001]. When the displacement vector of faults is expressed in the form of R = 1/n[001], however, their n values are slightly deviated from the exact value of 3, because of dilatation of the lattice in the direction perpendicular to the fault, which is caused by the repulsive interaction between Mo (W) layers above and below the fault. Matching of experimental high-resolution TEM images with calculated ones indicates n values to be 3.12 {+-} 0.10 and 3.34 {+-} 0.10 for MoSi{sub 2} and WSi{sub 2}, respectively.

  20. A model for pressurized hydrogen induced thin film blisters

    NASA Astrophysics Data System (ADS)

    van den Bos, R. A. J. M.; Reshetniak, V.; Lee, C. J.; Benschop, J.; Bijkerk, F.

    2016-12-01

    We introduce a model for hydrogen induced blister formation in nanometer thick thin films. The model assumes that molecular hydrogen gets trapped under a circular blister cap causing it to deflect elastically outward until a stable blister is formed. In the first part, the energy balance required for a stable blister is calculated. From this model, the adhesion energy of the blister cap, the internal pressure, and the critical H-dose for blister formation can be calculated. In the second part, the flux balance required for a blister to grow to a stable size is calculated. The model is applied to blisters formed in a Mo/Si multilayer after being exposed to hydrogen ions. From the model, the adhesion energy of the Mo/Si blister cap was calculated to be around 1.05 J/m2 with internal pressures in the range of 175-280 MPa. Based on the model, a minimum ion dose for the onset of blister formation was calculated to be d = 4.2 × 1018 ions/cm2. From the flux balance equations, the diffusion constant for the Mo/Si blister cap was estimated to be DH2=(10 ±1 )×10-18 cm2/s .

  1. Effects of variable dietary sitostanol concentrations on plasma lipid profile and phytosterol metabolism in hamsters.

    PubMed

    Ntanios, F Y; Jones, P J

    1998-02-23

    To examine how variable sitostanol (SI) levels in phytosterol-supplemented diets influence plasma and hepatic lipid concentrations, fifty hamsters were divided into five groups and fed semipurified diets containing 0.25% (w/w) cholesterol for 45 days ad libitum. Four groups were fed this diet with 1% (w/w) phytosterol mixtures which contained 0.01% (w/w) SI derived from soybean, 0.2% (w/w) SI derived from tall oil, 0.2% (w/w) synthetic SI mixture (SIM) and 1% (w/w) pure SI, respectively. A control group did not receive phytosterols. Dietary SI supplementation at 1% (w/w) decreased total and non-apolipoprotein-A cholesterol levels in plasma by 34% (P=0.001) and 55% (P=0.04), respectively, whereas mean plasma total cholesterol level in the 0.2% (w/w) SI group was 23% (P=0.001) lower than that of the control group. Conversely, plasma lipid profile in hamsters fed 1 or 0.2% (w/w) SI did not differ from the 0.01% (w/w) SI group. Liver weights were 15 and 20% (P=0.012) higher in the control group compared with those fed 0.01% and 1% (w/w) SI, respectively, while the hepatic cholesterol content in the control group was greater (P<0.0001) than that of all other groups. Plasma campesterol levels were higher (P=0.04) in the 0.01% and 0.2% (w/w) SI fed groups than in the control, 0.2% (w/w) SIM and 1% (w/w) SI groups. Hepatic sitosterol content was elevated (P=0.002) in the SIM fed group compared to other groups. We conclude that dietary SI effect is proportional to its concentration in phytosterol mixtures and in the diet. Dietary SI lowered plasma cholesterol levels at concentrations higher than 0.2% (w/w) in hamsters. (c) 1998 Elsevier Science B.V.

  2. Molybdenum Disilicide Oxidation Kinetics in High Temperature Steam

    SciTech Connect

    Wood, Elizabeth Sooby; Parker, Stephen Scott; Nelson, Andrew Thomas

    2016-09-07

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign is currently supporting a range of experimental efforts aimed at the development and qualification of ‘accident tolerant’ nuclear fuel forms. One route to enhance the accident tolerance of nuclear fuel is to replace the zirconium alloy cladding, which is prone to rapid oxidation in steam at elevated temperatures, with a more oxidation-resistant cladding. Several cladding replacement solutions have been envisaged. The cladding can be completely replaced with a more oxidation resistant alloy, a layered approach can be used to optimize the strength, creep resistance, and oxidation tolerance of various materials, or the existing zirconium alloy cladding can be coated with a more oxidation-resistant material. Molybdenum is one candidate cladding material favored due to its high temperature creep resistance. However, it performs poorly under autoclave testing and suffers degradation under high temperature steam oxidation exposure. Development of composite cladding architectures consisting of a molybdenum core shielded by a molybdenum disilicide (MoSi2) coating is hypothesized to improve the performance of a Mo-based cladding system. MoSi2 was identified based on its high temperature oxidation resistance in O2 atmospheres (e.g. air and “wet air”). However, its behavior in H2O is less known. This report presents thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and x-ray diffraction (XRD) results for MoSi2 exposed to 670-1498 K water vapor. Synthetic air (80-20%, Ar-O2) exposures were also performed, and those results are presented here for a comparative analysis. It was determined that MoSi2 displays drastically different oxidation behavior in water vapor than in dry air. In the 670-1498 K temperature range, four distinct behaviors are observed. Parabolic oxidation is exhibited in only 670

  3. Rat claustrum coordinates but does not integrate somatosensory and motor cortical information.

    PubMed

    Smith, Jared B; Radhakrishnan, Harsha; Alloway, Kevin D

    2012-06-20

    The function of the claustrum is a fundamental issue in neuroscience. Anatomical data indicate that the rat claustrum is part of an interhemispheric circuit that could be involved in the bilateral coordination of whisker movements. Given that whisking is a somesthetic-guided motor behavior, the goal of the current study was to elucidate the connections of the claustrum with respect to the whisker representations in the primary somatosensory (wSI) and motor (wMI) cortical areas. Anterograde tracer injections showed that wMI projects most densely to the claustrum in the contralateral hemisphere, whereas wSI does not project to the claustrum in either hemisphere. Injections of different retrograde tracers into wMI and wSI of the same animal revealed intermingled populations of labeled neurons in the claustrum, as well as many double-labeled neurons. This indicates that the same part of the claustrum projects to the whisker representations in both SI and MI. Finally, injections of different anterograde tracers in the wMI regions of both hemispheres were combined with a retrograde tracer injection in wSI, and this produced dense terminal labeling around retrogradely labeled neurons in the claustrum of both hemispheres. Although the rodent claustrum is probably involved in the interhemispheric coordination of the MI and SI whisker representations, it does not receive inputs from both of these cortical regions. Hence, the claustrum should not be universally regarded as an integrator of somesthetic and motor information.

  4. Oxidation resistance of Ru-capped EUV multilayers

    SciTech Connect

    Bajt, S; Dai, Z; Nelson, E J; Wall, M A; Alameda, J; Nguyen, N; Baker, S; Robinson, J C; Taylor, J S; Clift, M; Aquila, A; Gullikson, E M; Edwards, N G

    2005-02-23

    Differently prepared Ru-capping layers, deposited on Mo/Si EUV multilayers, have been characterized using a suite of metrologies to establish their baseline structural, optical, and surface properties in as-deposited state. Same capping layer structures were tested for their thermal stability and oxidation resistance. Post-mortem characterization identified changes due to accelerated tests. The best performing Ru-capping layer structure was studied in detail with transmission electron microscopy to identify the grain microstructure and texture. This information is essential for modeling and performance optimization of EUVL multilayers.

  5. Low-cost method for producing extreme ultraviolet lithography optics

    DOEpatents

    Folta, James A.; Montcalm, Claude; Taylor, John S.; Spiller, Eberhard A.

    2003-11-21

    Spherical and non-spherical optical elements produced by standard optical figuring and polishing techniques are extremely expensive. Such surfaces can be cheaply produced by diamond turning; however, the roughness in the diamond turned surface prevent their use for EUV lithography. These ripples are smoothed with a coating of polyimide before applying a 60 period Mo/Si multilayer to reflect a wavelength of 134 .ANG. and have obtained peak reflectivities close to 63%. The savings in cost are about a factor of 100.

  6. In-line extreme ultraviolet polarizer with hybrid configuration.

    PubMed

    Yang, Minghong; Tong, Xinling; Sun, Yan; Jiang, Desheng; Zhou, Ciming; Zhang, Dongsheng

    2009-03-01

    A novel hybrid Au-multilayer-Au in-line extreme ultraviolet (EUV) optical polarizer is presented in this paper. Different from all-Mo/Si multilayer EUV polarizer, this polarizer is based on the concept that Au surfaces work as reflecting elements for in-line optics routine, while polarization effect is realized by polarizing multilayer. Simulation shows that the proposed polarizer with 80 degrees-70 degrees-80 degrees angle configuration has about 30% of transmission and 12 eV of bandwidth half maximum, which enables more throughput and broader bandwidth than the all-multilayer one.

  7. High temperature composites

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.

    1995-01-01

    The purpose of this paper is to review the current state of the development of new composite materials for advanced aircraft engines. The advantages and disadvantages of Ti-base, NiAl-base, and MoSi2-base composites as replacements for today's Ni-base superalloys are discussed from the standpoint of key technical issues, current status, and future directions. Results describing progress in both improved understanding of the mechanisms of deformation and fracture, and improved material performance will be covered.

  8. Multilayer based soft-x-ray polarimeter at MAX IV Laboratory

    SciTech Connect

    Grizolli, Walan; Laksman, Joakim; Hennies, Franz; Jensen, Brian Norsk; Nyholm, Ralf; Sankari, Rami

    2016-02-15

    A high precision five rotation-axes polarimeter using transmission multilayers as polarizers and reflection multilayers as analyzers has been designed and manufactured. To cover the extreme ultraviolet regime, Mo/Si, Cr/C, Sc/Cr, and W/B{sub 4}C multilayers for transmission and reflection have also been designed and produced. The polarimeter mechanics is supported on a hexapod to simplify the alignment relative to photon beam. The instrument is designed so that it can be easily transferred between different beamlines.

  9. The effect of residual stress on performance of high temperature coatings

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Techniques for measurement of residual stress in MoSi2 coatings and the determination of stress in coatings prepared by metalliding, pack and slurry processes are discussed. The stress level can be determined by stress induced deflections or by X-ray techniques. The deflection method is most direct. It is based on the fact that a thin substrate, coated on one side only, is usually curved at room temperature. The radius of curvature is easily measured and readily related to residual stress.

  10. Calibration of the Multi-Spectral Solar Telescope Array multilayer mirrors and XUV filters

    NASA Technical Reports Server (NTRS)

    Allen, Maxwell J.; Willis, Thomas D.; Kankelborg, Charles C.; O'Neal, Ray H.; Martinez-Galarce, Dennis S.; Deforest, Craig E.; Jackson, Lisa; Lindblom, Joakim; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.

    1993-01-01

    The Multi-Spectral Solar Telescope Array (MSSTA), a rocket-borne solar observatory, was successfully flown in May, 1991, obtaining solar images in eight XUV and FUV bands with 12 compact multilayer telescopes. Extensive measurements have recently been carried out on the multilayer telescopes and thin film filters at the Stanford Synchrotron Radiation Laboratory. These measurements are the first high spectral resolution calibrations of the MSSTA instruments. Previous measurements and/or calculations of telescope throughputs have been confirmed with greater accuracy. Results are presented on Mo/Si multilayer bandpass changes with time and experimental potassium bromide and tellurium filters.

  11. Composition of RF-sputtered refractory compounds determined by X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Brainard, W. A.

    1978-01-01

    RF-sputtered coatings of CrB2, MoSi2, Mo2C, TiC, and MoS2 were examined by X-ray photoelectron spectroscopy (XPS). Data on stoichiometry, impurity content, and chemical bonding were obtained. The influences of sputtering target history, deposition time, RF power level, and substrate bias were studied. Significant deviations from stoichiometry and high oxide levels were related to target outgassing. The effect of substrate bias depended on the particular coating material studied.

  12. Broadband multilayer-coated normal incidence blazed grating with approximately 10% diffraction efficiency through the 13-16 nm wavelength region.

    PubMed

    Zhang, Lichao; Lin, Hui; Jin, Chunshui; Zhou, Hongjun; Huo, Tonglin

    2009-03-15

    Diffraction gratings used in extreme UV are typically coated with periodic multilayer thin films. These coatings have a small bandwidth, thus leading to a narrow usable spectral region of multilayer gratings. Well-designed aperiodic multilayer coatings could provide high reflectivity over a much broader wavelength region, so they could broaden the usable spectral region of multilayer gratings. We designed and deposited an aperiodic Mo/Si multilayer coating onto a blazed grating substrate. At an incidence angle of 10 degrees, the -2nd-order diffraction efficiency of the multilayer grating is approximately 10% through the wavelength range of 13-16 nm.

  13. Multilayer Phase-Only Diffraction Gratings: Fabrication andApplication to EUV Optics

    SciTech Connect

    Salmassi, Farhad; Gullikson, Eric M.; Anderson, Erik H.; Naulleau, Patrick P.

    2007-05-01

    The use of phase-only diffractive devices has long played an important role in advanced optical systems in varying fields. Such devices include gratings, diffractive and holographic optical elements, diffractive lenses, and phase-shift masks for advanced lithography. Extending such devices to the increasingly important regime of extreme ultraviolet (EUV) wavelengths, however, is not trivial. Here, we present an effective fabrication and etch process enabling high-resolution patterning of Mo/Si multilayers for use in EUV phase devices, providing another method for fabrication of high numerical aperture diffractive devices or high-resolution EUV phase shift masks.

  14. Multilayer based soft-x-ray polarimeter at MAX IV Laboratory

    NASA Astrophysics Data System (ADS)

    Grizolli, Walan; Laksman, Joakim; Hennies, Franz; Jensen, Brian Norsk; Nyholm, Ralf; Sankari, Rami

    2016-02-01

    A high precision five rotation-axes polarimeter using transmission multilayers as polarizers and reflection multilayers as analyzers has been designed and manufactured. To cover the extreme ultraviolet regime, Mo/Si, Cr/C, Sc/Cr, and W/B4C multilayers for transmission and reflection have also been designed and produced. The polarimeter mechanics is supported on a hexapod to simplify the alignment relative to photon beam. The instrument is designed so that it can be easily transferred between different beamlines.

  15. Recent performance of the normal incident x-ray telescope with adaptive optics

    NASA Astrophysics Data System (ADS)

    Kitamoto, S.; Ishii, R.; Nukamori, S.; Imai, K.; Mochida, A.; Sato, S.; Ohgi, Y.; Yoshida, Y.; Hoshino, A.

    2016-09-01

    We report recent results of the performance measurement of our X-ray telescope with adaptive optics. The telescope is designed to use the 13.5nm EUV with the Mo/Si multilayers, making a normal incident optics. The primary mirror is 80mm in its diameter and the focal length of 2m. The deformable mirror is controlled by measuring a wave-front of an optical laser. Effects of a difference between the light paths from the reference and from an object are examined. The angular resolution is measured with optical light and we confirm almost diffraction limited resolution as well as its appropriate function as adaptive optics.

  16. Oxidation resistance and microstructure of Ru-capped extreme ultraviolet lithography multilayers

    SciTech Connect

    Bajt, S; Dai, Z; Nelson, E J; Wall, M A; Alameda, J B; Nguyen, N; Baker, S L; Robinson, J C; Taylor, J S; Aquila, A; Edwards, N V

    2005-06-15

    The oxidation resistance of protective capping layers for extreme ultraviolet lithography (EUVL) multilayers depends on their microstructure. Differently prepared Ru-capping layers, deposited on Mo/Si EUVL multilayers, were investigated to establish their baseline structural, optical, and surface properties in as-deposited state. The same capping layer structures were then tested for their thermal stability and oxidation resistance. The best performing Ru-capping layer structure was analyzed in detail with transmission electron microscopy (TEM). As compared to other Ru capping layers preparations studied here it is the only one that shows grains with preferential orientation. This information is essential for modeling and performance optimization of EUVL multilayers.

  17. Toward the development of a soft x-ray reflection imaging microscope in the Schwarzschild configuration using a soft x-ray laser at 18. 2 nm

    SciTech Connect

    Dicicco, D.; Rosser, R. ); Kim, D.; Suckewer, S. . Plasma Physics Lab.)

    1991-12-01

    We present the recent results obtained from a soft X-ray reflection imaging microscope in the Schwarzschild configuration. The microscope demonstrated a spatial resolution of 0.7 {mu}m with a magnification of 16 at 18.2 nm. The soft X-ray laser at 18.2 nm was used as an X-ray source. Mo/Si multilayers were coated on the Schwarzschild optics and the normal incidence reflectivity at 18.2 nm per surface was measured to be {approximately} 20 %. 18 refs., 6 figs.

  18. Hydrides of intermetallic compounds with a H/M ratio greater than unity obtained at high hydrogen pressures

    SciTech Connect

    Semenenko, K.N.; Klyamkin, S.N.

    1993-11-01

    Novel hydride phases with H/M > 1 based on Zr{sub 2}Pd, Hf{sub 2}Pd, and Hf{sub 2}Cu (structures of the MoSi{sub 2} type) have been synthesized at high H{sub 2} pressures. The X-ray diffraction investigations of the resulting hydrides have been carried out. Some factors determining the maximum hydrogen content in the hydrides of intermetallic compounds are discussed. A model structure of the hydrides obtained is proposed, which assumes the possibility of direct H-H interactions when the interatomic distances are less than 1 {angstrom}.

  19. UV light with oxygen treatment of phase shift photoblank for phase and transmission control: applicable to MxSi(1-x)OyN(y-1)

    NASA Astrophysics Data System (ADS)

    Chovino, Christian M.; Dieu, Laurent

    2003-08-01

    A method based on UV in air environment to improve the stability of the material of the photoreticles throughout cleans repeated over is suggested in this work. A typical aggressive clean was performed on two different Embedded Shifter materials, 193nm Molybdenum-Silicon-Oxy-Nitride (MoSiON) and 193nm Multilayer Silicon Nitride-Titanium Nitride (SiN-TiN). The variation of phase and transmission of each reticle is reported with the number of cleans. Given the appropriate exposure the phase and the transmission of the treated materials were significantly improved. All treated EAPSMs could stand cleans repeated over.

  20. Circular multilayer zone plate for high-energy x-ray nano-imaging

    SciTech Connect

    Koyama, Takahisa; Takano, Hidekazu; Konishi, Shigeki; Tsuji, Takuya; Kagoshima, Yasushi; Takenaka, Hisataka; Ichimaru, Satoshi; Ohchi, Tadayuki

    2012-01-15

    A circular multilayer zone plate (MZP) was fabricated and its focusing performance was evaluated using 20-keV x-rays. MoSi{sub 2} and Si layers were alternately deposited by DC magnetron sputtering on a wire core; all the interfaces satisfied the Fresnel zone condition. The measured line spread function was converted to a point spread function by tomographic reconstruction. The results suggest that the MZP has the potential to realize the diffraction-limited resolving power, which is calculated to be 35 nm using the diffraction integral. Furthermore, scanning transmission microscopy using the MZP could resolve a 50-nm line-and-space pattern.

  1. Processing, phase equilibria and environmental degradation of molybdenum (silicom,aluminum)(2) intermetallic compound

    NASA Astrophysics Data System (ADS)

    Eason, Paul Duane

    The Mo(Si,Al)2 C40 compound was chosen for investigation as a possible high temperature structural material. To produce the C40 phase, several processing routes were explored with emphasis on obtaining microstructure/property relationships (i.e. control of grain size and minimization of secondary phases). To facilitate processing of single phase material, the phase equilibria of the Mo-Si-Al ternary system were reevaluated with respect to the phases adjacent to the C40 compound. An anomalous environmental degradation appeared to be the primary obstacle to further study of the compound and was investigated accordingly. Several processing routes were assessed for the production of dense, nearly single-phase Mo(Si,Al)2. Hot powder compaction was chosen as the method of sample production as is the case with many refractory silicide based materials. Therefore, variations in the processing techniques came from the choice of precursor materials and methods of powder production. Mechanical alloying, arc-melting and comminution, and blending of both elemental and compound powders were all employed to produce charges for hot uniaxial pressing. The final compacts were compared on the basis of density, grain size and presence of secondary phases. Establishment of a Mo-Si-Al ternary isothermal phase diagram at 1400°C was performed. Multiphase alloy compositions were selected to identify the phase boundaries of the C40, C54, T1 and Mo3Al8 phase fields, as well as to verify the existence of the C54 phase at 1400°C. The alloys were equilibrated by heat treatment and analyzed for phase identification and quantitative compositional information. The environmental degradation phenomenon was approached as a classical "pest" with an emphasis of study on grain boundary chemistry and atmospheric dependence of attack. Both Auger spectroscopy and electron microscopy revealed carbon-impurity-induced grain boundary segregation responsible for the embrittlement and material loss. Means of

  2. Effect of Silicon on Activity Coefficients of Platinum in Liquid Fe-Si, With Application to Core Formation

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Danielson, L. R.; Humayun, M.

    2017-01-01

    Earth's core contains approximately 10% of a light element that is likely a combination of S, C, Si, and O, with Si possibly being the most abundant light element. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE) in Fe liquids, and thus the partitioning behavior of those elements between core and mantle. The effect of Si can be small such as for Ni and Co, or large such as for Mo, Ge, Sb, As. The effect of Si on many siderophile elements is unknown yet could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of Pt (with Re and Ru in progress or planned) between metal and silicate melt. The results will be applied to Earth, for which we have excellent constraints on the mantle Pt concentrations.

  3. Effect of Silicon on Activity Coefficients of Siderophile Elements (P, Au, Pd, As, Ge, Sb, and In) in Liquid Fe, with Application to Core Formation

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Danielson, L. R.; Humayun, M.; Righter, M.; Lapen, T.; Boujibar, A.

    2016-01-01

    Earth's core contains approximately 10 percent light elements that are likely a combination of S, C, Si, and O, with Si possibly being the most abundant. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE) in Fe liquids, and thus the partitioning behavior of those elements between core and mantle. The effect of Si can be small such as for Ni and Co, or large such as for Mo, Ge, Sb, As. The effect of Si on many siderophile elements is unknown yet could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of P, Au, Pd, and many other SE between metal and silicate melt. The results will be applied to Earth, for which we have excellent constraints on the mantle siderophile element concentrations.

  4. Lorentzian crater in superconducting microwave resonators with inserted nanowires

    NASA Astrophysics Data System (ADS)

    Bezryadin, Alexey; Brenner, Matthew W.; Gopalakrishnan, Sarang; Ku, Jaseung; Shah, Nayana; Goldbart, Paul M.

    2011-03-01

    We report on observations of nonequilibrium pulsing states in microwave (i.e., GHz) coplanar waveguide(CPW) resonators consisting of superconducting MoGe strips interrupted by a trench and connected by one or more suspended superconducting nanowires. The Lorentzian resonance peak shows a ``crater'' when driven past the critical current of the nanowire, leading to a ``pulsing'' state. In the pulsing state, the supercurrent grows until it reaches the critical current, at which point all stored energy quickly dissipates through Joule heating. We develop a phenomenological model of resonator-nanowire systems, which explains the experimental data quantitatively. For the case of resonators comprising two parallel nanowires and subject to an external magnetic field, we find field-driven oscillations of the onset power for crater formation, as well as the occurrence of a new state, in which the periodic pulsing effect is such that only the weaker wire participates in the dissipation process.

  5. 4-d magnetism: Electronic structure and magnetism of some Mo-based alloys

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Bose, S. K.; Kudrnovský, J.

    2017-02-01

    We report results of a first-principles density-functional study of alloys of the 4 d -element Mo with group IV elements Si, Ge and Sn in zinc blende (ZB) and rock salt (RS) structures. The study was motivated by a similar study of ours based on the 4 d -element Tc, which showed the presence of half-metallic states with integer magnetic moment (1μB) per formula unit in TcX (X=C, Si, Ge) alloys. The calculated Curie temperatures for the ferromagnetic (FM) phases were low, around or less than 300 K. Searching for the possibility of 4 d -based alloys with higher Curie temperatures we have carried out the study involving the elements Mo, Ru and Rh. Among these the most promising case appears to be that involving the element Mo. Among the MoX (X=Si, Ge, Sn) alloys in ZB and RS structures, both MoGe and MoSn in ZB structures are found to possess an integer magnetic moment of 2μB per formula unit. ZB MoSn can be classified as a marginal/weak half-metal or a spin gapless semiconductor, while ZB MoGe would be best described as a gapless magnetic semiconductor. The calculated Curie temperatures are in the range 300-700 K. Considering the theoretical uncertainty in the band gaps due not only to the treatment of exchange and correlation effects, but density functional theory itself, these classifications may change somewhat, but both merit investigation from the viewpoint of potential spintronic application. Based on their higher Curie temperatures, Mo-based alloys would serve such purpose better than the previously reported Tc-based ones.

  6. Synthesis of a base-stabilized silanone-coordinated complex by oxygenation of a (silyl)(silylene)tungsten complex.

    PubMed

    Muraoka, Takako; Abe, Keisuke; Haga, Youhei; Nakamura, Tomoko; Ueno, Keiji

    2011-10-05

    Base-stabilized silanone complex Cp*(OC)(2)W(SiMe(3)){O═SiMes(2)(DMAP)} (2) was synthesized by the reaction of (silyl)(silylene)tungsten complex Cp*(OC)(2)W(SiMe(3))(═SiMes(2)) (1) with 1 equiv of pyridine-N-oxide (PNO) in the presence of 4-(dimethylamino)pyridine (DMAP). Further oxygenation of 2 with 3 equiv of PNO at 80 °C resulted in the formation of a W-O-Si-O-Si framework to give disiloxanoxy complex Cp*(O)(2)W{OSiMes(2)(OSiMe(3))} (3). Complex 3 was also obtained by the direct reaction of complex 1 with 4 equiv of PNO at 80 °C.

  7. Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography

    NASA Astrophysics Data System (ADS)

    Madey, Theodore E.; Faradzhev, Nadir S.; Yakshinskiy, Boris V.; Edwards, N. V.

    2006-12-01

    One of the most promising methods for next generation device manufacturing is extreme ultraviolet (EUV) lithography, which uses 13.5 nm wavelength radiation generated from freestanding plasma-based sources. The short wavelength of the incident illumination allows for a considerable decrease in printed feature size, but also creates a range of technological challenges not present for traditional optical lithography. Contamination and oxidation form on multilayer reflecting optics surfaces that not only reduce system throughput because of the associated reduction in EUV reflectivity, but also introduce wavefront aberrations that compromise the ability to print uniform features. Capping layers of ruthenium, films ˜2 nm thick, are found to extend the lifetime of Mo/Si multilayer mirrors used in EUV lithography applications. However, reflectivities of even the Ru-coated mirrors degrade in time during exposure to EUV radiation. Ruthenium surfaces are chemically reactive and are very effective as heterogeneous catalysts. In the present paper we summarize the thermal and radiation-induced surface chemistry of bare Ru exposed to gases; the emphasis is on H 2O vapor, a dominant background gas in vacuum processing chambers. Our goal is to provide insights into the fundamental physical processes that affect the reflectivity of Ru-coated Mo/Si multilayer mirrors exposed to EUV radiation. Our ultimate goal is to identify and recommend practices or antidotes that may extend mirror lifetimes.

  8. Microstructure of RERTR Du-Alloys Irradiated with Krypton Ions up to 100 dpa

    SciTech Connect

    J. Gan; D. D. Keiser, Jr.; D. M. Wachs; B. D. Miller; T. R. Allen; M. Kirk; J. Rest

    2011-04-01

    The radiation stability of the interaction product formed at the fuel–matrix interface of research reactor dispersion fuels, under fission-product bombardment, has a strong impact on fuel performance. Three depleted uranium alloys were cast that consisted of the following five phases to be investigated: U(Si, Al)3, (U, Mo)(Si, Al)3, UMo2Al20, U6Mo4Al43, and UAl4. Irradiation of transmission electron microscopy (TEM) disc samples with 500-keV Kr ions at 200 °C to doses up to 100 displacements per atom (dpa) were conducted using a 300-keV electron microscope equipped with an ion accelerator. TEM results show that the U(Si, Al)3 and UAl4 phases remain crystalline at 100 dpa without forming voids. The (U, Mo)(Si, Al)3 and UMo2Al20 phases become amorphous at 1 and 2 dpa, respectively, and show no evidence of voids at 100 dpa. The U6Mo4Al43 phase goes to amorphous at less than 1 dpa and reveals high density voids at 100 dpa.

  9. Solidification behavior during directed light fabrication

    SciTech Connect

    Thoma, D.J.; Lewis, G.K.; Nemec, R.B.

    1995-10-01

    Directed light fabrication (DLF) is a process that fuses gas delivered metal powders within a focal zone of a laser beam to produce fully dense, 3-dimensional metal components. A variety of materials have been processed with DLF, ranging from steels to tungsten, and including intermetallics such as NiAl and MoSi{sub 2}. To evaluate the processing parameters and resulting microstructures, solidification studies have been performed on defined alloy systems. For example, solidification cooling rates have been determined based upon secondary dendrite arm spacings in Fe-based alloys. In addition, eutectic spacings have been used to define growth velocities during solidification. Cooling rates vary from 10{sup 1}-10{sup 5} K s{sup {minus}1} and growth rates vary between 1--50 mm s{sup {minus}1}. As a result, process definition has been developed based upon the microstructural development during solidification. The materials explored were Ag-19Cu, Fe-24.8Ni, 316 stainless steel, Al-33Cu, W, MoSi{sub 2} and NiAl.

  10. Amorphous molybdenum silicon superconducting thin films

    SciTech Connect

    Bosworth, D. Sahonta, S.-L.; Barber, Z. H.; Hadfield, R. H.

    2015-08-15

    Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using W{sub x}Si{sub 1−x}, though other amorphous superconductors such as molybdenum silicide (Mo{sub x}Si{sub 1−x}) offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc) reaches a maximum of 7.6 K at a composition of Mo{sub 83}Si{sub 17}. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz), there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  11. Effect of amorphous C films deposited by RF magnetron sputtering on smoothing K9 glass substrate

    NASA Astrophysics Data System (ADS)

    Deng, Songwen; Qi, Hongji; Wei, Chaoyang; Yi, Kui; Fan, Zhengxiu; Shao, Jianda

    2009-12-01

    Soft X-ray multilayer reflectors must be deposited on super-smooth surface such as super-polished silicon wafers or glasses, which are complicate, time-consuming and expensive to produce. To overcome this shortage, C films deposited by RF magnetron sputtering were considered to smooth the K9 glass substrates' surface in the present paper. The structure of C films was systematically studied by XRD and Raman spectrum. The surface morphology and rms-roughness were obtained by AFM. Then, we calculated the impact of the C layers on the reflectivity curve of Mo/Si soft X-ray multilayer reflector around 13.5 nm. The C films exhibit typical amorphous state. With the increasing of power and thickness, the content of sp3 hybrid bonding decreases while the amount or size of well-organized graphite clusters increases. The surface rms-roughness decreases from 2.4 nm to 0.62 nm after smoothed by an 80 nm thick C layer deposited in 500 W, which is the smoothest C layer surface we have obtained. The calculation results show that the theoretical normal incidence reflectivity of Mo/Si multilayer at 13.5 nm increases from 7% to 63%.

  12. Processing, Microstructure, and Properties of Multiphase Mo Silicide Alloys

    SciTech Connect

    Heatherly, L.; Liu, C.T.; Schneibel, J.H.

    1998-11-30

    Multiphase Mo silicide alloys containing T2 (Mo{sub 5}SiB{sub 2}), Mo{sub 3}Si and Mo phases where prepared by both melting and casting (M and C) and powder metallurgical (PM) processes. Glassy phases are observed in PM materials but not in M and C materials. Microstructural studies indicate that the primary phase is Mo-rich solid solution in alloys containing {le}(9.4Si+13.8B, at. %) and T2 in alloys with {ge}(9.8Si+14.6B). An eutectic composition is estimated to be close to Mo-9.6Si-14.2B. The mechanical properties of multiphase silicide alloys were determined by hardness, tensile and bending tests at room temperature. The multiphase alloy MSB-18 (Mo-9.4Si-13.8B) possesses a flexure strength distinctly higher than that of MoSi{sub 2} and other Mo{sub 5}Si{sub 3} silicide alloys containing no Mo particles. Also, MSB-18 is tougher than MoSi{sub 2} by a factor of 4.

  13. Resonant ultrasound spectroscopy: Elastic properties of some intermetallic compounds

    SciTech Connect

    Chu, F.; Thoma, D.J.; He, Y.; Maloy, S.A.; Mitchell, T.E.

    1996-09-01

    A novel nondestructive evaluation method, resonant ultrasound spectroscopy (RUS), is reviewed with an emphasis upon defining the elastic properties of intermetallic phases. The applications and advantages of RUS as compared to other conventional elastic constant measurement methods are explained. RUS has been employed to measure the elastic properties of single crystal and/or polycrystalline intermetallics, such as Laves phases (C15 HfV{sub 2} and NbCr{sub 2}), Nb-modified titanium aluminides, and transition metal disilicides (C11{sub b} MoSi{sub 2}, C40 NbSi{sub 2} and TaSi{sub 2}). For Laves phases, the elastic properties of HfV{sub 2}-based C15 phases show various anomalies and those of C15 NbCr{sub 2} do not. For Nb-modified titanium aluminides, the elastic properties of O-phase alloys are investigated as a function of alloying content. For transition metal disilicides, single crystal elastic constants of MoSi{sub 2}, NbSi{sub 2}, and TaSi{sub 2} are obtained and compared. Based on the experimentally determined elastic properties, the characteristics of interatomic bonding in these materials are examined and the possible impact of the elastic properties on mechanical behavior is discussed.

  14. Subwavelength single layer absorption resonance antireflection coatings.

    PubMed

    Huber, S P; van de Kruijs, R W E; Yakshin, A E; Zoethout, E; Boller, K-J; Bijkerk, F

    2014-01-13

    We present theoretically derived design rules for an absorbing resonance antireflection coating for the spectral range of 100 - 400 nm, applied here on top of a molybdenum-silicon multilayer mirror (Mo/Si MLM) as commonly used in extreme ultraviolet lithography. The design rules for optimal suppression are found to be strongly dependent on the thickness and optical constants of the coating. For wavelengths below λ ∼ 230 nm, absorbing thin films can be used to generate an additional phase shift and complement the propagational phase shift, enabling full suppression already with film thicknesses far below the quarter-wave limit. Above λ ∼ 230 nm, minimal absorption (k < 0.2) is necessary for low reflectance and the minimum required layer thickness increases with increasing wavelength slowly converging towards the quarter-wave limit.As a proof of principle, SixCyNz thin films were deposited that exhibit optical constants close to the design rules for suppression around 285 nm. The thin films were deposited by electron beam co-deposition of silicon and carbon, with N+ ion implantation during growth and analyzed with variable angle spectroscopic ellipsometry to characterize the optical constants. We report a reduction of reflectance at λ = 285 nm, from 58% to 0.3% for a Mo/Si MLM coated with a 20 nm thin film of Si0.52C0.16N0.29.

  15. Development of soft X-ray multilayer laminar-type plane gratings and varied-line-spacing spherical grating for flat-field spectrograph in the 1-8 keV region

    NASA Astrophysics Data System (ADS)

    Koike, Masato; Ishino, Masahiko; Imazono, Takashi; Sano, Kazuo; Sasai, Hiroyuki; Hatayama, Masatoshi; Takenaka, Hisataka; Heimann, Philip A.; Gullikson, Eric M.

    2009-08-01

    W/C and Co/SiO 2 multilayer laminar-type holographic plane gratings (groove density 1/σ = 1200 lines/mm) in the 1-8 keV region are developed. For the Co/SiO 2 grating the diffraction efficiencies of 0.41 and 0.47 at 4 and 6 keV, respectively, and for the W/C grating 0.38 at 8 keV are observed. Taking advantage of the outstanding high diffraction efficiencies into practical soft X-ray spectrographs a Mo/SiO 2 multilayer varied-line-spacing (VLS) laminar-type spherical grating (1/σ = 2400 lines/mm) is also developed for use with a flat field spectrograph in the region of 1.7 keV. For the Mo/SiO 2 multilayer grating the diffraction efficiencies of 0.05-0.20 at 0.9-1.8 keV are observed. The FWHMs of the measured line profiles of Hf-Mα 1(1644.6 eV), Si-Kα 1(1740.0 eV), and W-Mα 1 (1775.4 eV) are 13.7 eV, 8.0 eV, and 8.7 eV, respectively.

  16. Silicene-type Surface Reconstruction on C40 Hexagonal Silicides

    NASA Astrophysics Data System (ADS)

    Volders, Cameron; Reinke, Petra

    Silicene has emerged as the next two-dimensional material possessing a Dirac type electronic structure making it a prime candidate for integration in electronic devices. The study of silicene is relatively new and many aspects have yet to be fully understood. Here we present a scanning tunneling microscopy (STM) study of a Silicene-type surface reconstruction observed on nanometer scale hexagonal-MoSi2 crystallites. This surface reconstruction is specific to the C40 structure of h-MoSi2 and can initially be defined as a geometric silicene while the coupling between the silicene surface and the silicide bulk is under investigation. The lateral dimensions correspond to a superstructure where the silicene hexagons are slightly buckled and two of the six Si atoms are visible in the STM images creating a honeycomb pattern. The local electronic structure of the silicene is currently being studied with ST spectroscopy and the impact of confinement will be addressed. These results open an alternative route to Silicene growth by using surface reconstructions on metallic and semiconducting C40 silicide structures, which is promising for direct device integration on Si-platforms.

  17. Service limitations for oxidation resistant intermetallic compounds

    SciTech Connect

    Smialek, J.L.; Nesbitt, J.A.; Brindley, W.J.; Brady, M.P.; Doychak, J.; Dickerson, R.M.; Hull, D.R.

    1995-07-01

    Oxidation resistant intermetallic compounds based on NiAl, TiAl, and MoSi{sub 2} are of interest for high temperature applications. Each system exhibits different life-limiting degradation modes due to oxidation. {beta}-NiAl forms protective {alpha}-Al{sub 2}O scales. Breakdown follows well-established diffusion controlled processes resulting in survival for thousands of hours. The effect of thermal cycling and spalling is well established. Ti{sub 3}Al and TiAl compounds form less protective mixed TiO{sub 2} and Al{sub 2}O{sub 3} scales. However at realistic use temperatures (600--800 C), scale growth rates are acceptably low. The critical factor is embrittlement due to interstitial oxygen diffusion over a matter of hours. Solutions based on alloy development and coatings have not been satisfactory. MoSi{sub 2} materials exhibit very low oxidation rates at very high temperatures. However, low temperature (500 C) pest oxidation can be a catastrophic transient effect. Material integrity is a key factor. Fracture occurs because of accelerated growth of non-protective mixed MoO{sub 2}-SiO{sub 2} scales in pores and microcracks.

  18. Electrical properties of TiN on gallium nitride grown using different deposition conditions and annealing

    SciTech Connect

    Li, Liuan; Kishi, Akinori; Shiraishi, Takayuki; Jiang, Ying; Wang, Qingpeng; Ao, Jin-Ping

    2014-03-15

    This study evaluates the thermal stability of different refractory metal nitrides used as Schottky electrodes on GaN. The results demonstrate that TiN, MoSiN, and MoN possess good rectification and adhesion strength, with barrier heights of 0.56, 0.54, and 0.36 eV, respectively. After thermal treatment at 850 °C for 1 min, the TiN and MoN electrodes still exhibit rectifying characteristics, while the MoSiN degrades to an ohmic-like contact. For further study, several TiN films are deposited using different N{sub 2}/Ar reactive/inert sputtering gas ratios, thereby varying the nitrogen content present in the sputtering gas. Ohmic-like contact is observed with the pure Ti contact film, and Schottky characteristics are observed with the samples possessing nitrogen in the film. The average Schottky barrier height is about 0.5 eV and remains virtually constant with varying nitrogen deposition content. After examining Raman spectra and x-ray photoelectron spectroscopy results, the increase in the film resistivity after thermal treatment is attributed to oxidation and/or nitridation. Films deposited with a medium (40% and 60%) nitrogen content show the best film quality and thermal stability.

  19. The oxidation behavior of tungsten and germanium alloyed molybdenum disilicide coatings

    SciTech Connect

    Mueller, A.; Wang, Ge; Rapp, R.A.; Courtright, E.L.; Kircher, T.

    1991-11-01

    A two-step coating process was used to produce a (Mo,W)(Si,Ge){sub 2} coating on niobium. After exposure to high temperatures, a lower silicide layer forms underneath and is effective in arresting cracks. The oxidation weight-gain kinetics are parabolic following an initial transient period. Test coupons coated with (Mo,W)(Si,Ge){sub 2} passed 200 one-hour cycles at 1370{degree}C and 60 one-hour cycles at 1540{degree}C. These results, along with evidence of a thick protective glass layer, suggest that the germanium additions help cyclic oxidation resistance. The beneficial effects of the tungsten include the formation of microvoids, which provides a lower effective elastic modulus, and mechanical strengthening. No accelerated low temperature or ``pest`` oxidation was observed in the temperature range between 500--700{degree}C. Thus, a (Mo,W)(Si,Ge) multicomponent silicide coating offers significant promise for the protection of Nb-base alloys exposed to cyclic oxidizing environments over a broad range of temperatures.

  20. The oxidation behavior of tungsten and germanium alloyed molybdenum disilicide coatings

    SciTech Connect

    Mueller, A.; Wang, Ge; Rapp, R.A. . Dept. of Materials Science and Engineering); Courtright, E.L. ); Kircher, T. . Aerospace Materials Div.)

    1991-11-01

    A two-step coating process was used to produce a (Mo,W)(Si,Ge){sub 2} coating on niobium. After exposure to high temperatures, a lower silicide layer forms underneath and is effective in arresting cracks. The oxidation weight-gain kinetics are parabolic following an initial transient period. Test coupons coated with (Mo,W)(Si,Ge){sub 2} passed 200 one-hour cycles at 1370{degree}C and 60 one-hour cycles at 1540{degree}C. These results, along with evidence of a thick protective glass layer, suggest that the germanium additions help cyclic oxidation resistance. The beneficial effects of the tungsten include the formation of microvoids, which provides a lower effective elastic modulus, and mechanical strengthening. No accelerated low temperature or pest'' oxidation was observed in the temperature range between 500--700{degree}C. Thus, a (Mo,W)(Si,Ge) multicomponent silicide coating offers significant promise for the protection of Nb-base alloys exposed to cyclic oxidizing environments over a broad range of temperatures.

  1. High-temperature stability of chemically vapor-deposited tungsten-silicon couples rapid thermal annealed in ammonia and argon

    SciTech Connect

    Broadbent, E.K.; Morgan, A.E.; Flanner, J.M.; Coulman, B.; Sadana, D.K.; Burrow, B.J.; Ellwanger, R.C.

    1988-12-15

    A rapid thermal anneal (RTA) in an NH/sub 3/ ambient has been found to increase the thermal stability of W films chemically vapor deposited (CVD) on Si. W films deposited onto single-crystal Si by low-pressure CVD were rapid thermal annealed at temperatures between 500 and 1100 /sup 0/C in NH/sub 3/ and Ar ambients. The reactions were studied using Rutherford backscattering spectrometry, x-ray diffraction, Auger electron spectroscopy, transmission electron microscopy, and four-point resistivity probe. High-temperature (greater than or equal to1000 /sup 0/C) RTA in Ar completely converted W into the low resistivity (31 ..mu cap omega.. cm) tetragonal WSi/sub 2/ phase. In contrast, after a prior 900 /sup 0/C RTA in NH/sub 3/, N inclusion within the W film and at the W/Si interface almost completely suppressed the W-Si reaction. Detailed examination, however, revealed some patches of WSi/sub 2/ formed at the interface accompanied by long tunnels extending into the substrate, and some crystalline precipitates in the substrate close to the interface. The associated interfacial contact resistance was only slightly altered by the 900 /sup 0/C NH/sub 3/ anneal. The NH/sub 3/-treated W film acted as a diffusion barrier in an Al/W/Si contact metallurgy up to at least 550 /sup 0/C, at which point some increase in contact resistance was measured.

  2. Amorphouslike chemical vapor deposited tungsten diffusion barrier for copper metallization and effects of nitrogen addition

    NASA Astrophysics Data System (ADS)

    Chang, Kow-Ming; Yeh, Ta-Hsun; Deng, I.-Chung; Shih, Chieh-Wen

    1997-08-01

    In this article, we propose an amorphouslike chemical vapor deposited tungsten (CVD-W) thin film as a diffusion barrier for copper metallization. Experimental results gave no evidence of interdiffusion and structural change for Cu/amorphouslike CVD-W/Si samples annealed up to 675 °C for 30 min in N2. At higher temperatures (700 °C), Cu penetration results in the formation of η''-Cu3Si precipitates at the CVD-W/Si interface. This is due to the crystallization of the amorphouslike CVD-W film above 650 °C, rendering the grain-boundary structure and, hence, fast pathways for Cu diffusion. The Cu/amorphouslike CVD-W/p+n diodes, thus, sustain large increases in reverse leakage current. In addition, the effects of nitrogen addition by using an in situ nitridation on the amorphouslike CVD-W film are also discussed. The effectiveness of the nitrided barrier is attributed to the blocking of the grain boundaries in the tungsten film by nitrogen atoms. This slows down Cu diffusion significantly. Physical and chemical analyses indicate that interfaces in the Cu/WNx/W/Si multilayer maintain their integrity while the annealing is carried out at 750 °C. Moreover, the reverse leakage current densities of Cu/WNx/W/p+n diodes remain at 10-7 A/cm2 after 725 °C annealing.

  3. Concepts for Smart Protective High-Temperature Coatings

    SciTech Connect

    Tortorelli, P.F.; Brady, M.P.; Wright, I.G.

    2003-04-24

    The need for environmental resistance is a critical material barrier to the operation of fossil systems with the improved energy efficiencies and emissions performance described by the goals of the Vision 21 concept of the U.S. Department of Energy's Office of Fossil Energy. All fossil fuel-derived processes contain reactive species and high-temperature degradation arising from reactions of solids with gases and condensible products often limits performance or materials lifetimes such that efficiency, emission, and/or economic targets or requirements are not realized. Therefore, historically, the development of materials for fossil-fuel combustion and conversion systems has been closely linked to corrosion studies of alloys and ceramics in appropriate environments. This project is somewhat different from such studies in that it focuses on the feasibility of new routes to controlling the critical chemical and mechanical phenomena that collectively form the basis for environmental protection in relevant fossil environments by exploring compositional and microstructural manipulations and cooperative phenomena that have not necessarily been examined in any detail to date. This can hopefully lead to concepts for ''smart'' coatings or materials that have the ability to sense and respond appropriately to a particular set or series of environmental conditions in order to provide high-temperature corrosion protection. The strategies being explored involve cooperative or in-place oxidation or sulfidation reactions of multiphase alloys.[1,2] The first material systems to be evaluated involve silicides as there is some evidence that such materials have enhanced resistance in oxidizing-sulfidizing and sulfidizing environments and in air/oxygen at very high temperatures.[3] In this regard, molybdenum silicides may prove to be of particular interest. Molybdenum is known to sulfidize fairly slowly[4] and there has been recent progress in developing Mo-Si-B systems with improved

  4. Mechanical properties, stress evolution and high-temperature thermal stability of nanolayered Mo{endash}Si{endash}N/SiC thin films

    SciTech Connect

    Torri, P.; Hirvonen, J.; Kung, H.; Lu, Y.; Nastasi, M.; Gibson, P.N.

    1999-07-01

    A study of the microstructure, thermal stability, nanoindentation mechanical properties, and residual stress evolution of nanolayered Mo{endash}Si{endash}N/SiC thin films as a function of vacuum annealing time and temperature is reported. Multilayers of Mo{endash}Si{endash}N (MoSi{sub 2.2}N{sub 2.5}) and SiC were deposited by magnetron sputtering from planar MoSi{sub 2} and SiC targets onto single crystal silicon wafers. The relative amount of both components was varied (12.5{endash}50 vol.thinsp{percent} of SiC) while keeping the bilayer thickness constant (12 nm), or the bilayer thickness was varied (6{endash}24 nm) with constant Mo{endash}Si{endash}N to SiC ratio (25 vol.thinsp{percent} of SiC). Mechanical properties were measured by nanoindentation on as-deposited films and films annealed in vacuum at 500 and 900thinsp{degree}C. Microstructure and thermal stability were examined by cross-sectional transmission electron microscopy, glancing angle x-ray diffraction and nuclear resonance broadening. Stress evolution induced by thermal annealing was determined by measuring optically the change in curvature of coated silicon beams. In the as-deposited state, all films exhibited an amorphous microstructure. At 900thinsp{degree}C SiC still remained amorphous, but Mo{endash}Si{endash}N had developed a microstructure where nanocrystals of Mo{sub 5}Si{sub 3} were embedded in an amorphous matrix. The interface between Mo{endash}Si{endash}N and SiC was indirectly shown to be stable at least up to 41 h annealing at 1075thinsp{degree}C in vacuum. The potential of Mo{endash}Si{endash}N as a barrier layer against intermixing between nanolayered MoSi{sub 2} and SiC at 900thinsp{degree}C has been demonstrated. Hardness, modulus and residual stress followed the volume fraction rule of mixture of both constituents of the nanolayered Mo{endash}Si{endash}N/SiC structure. Consequently, by optimizing the volume fraction of the constituents, zero residual stress on a silicon substrate

  5. Field assisted sintering of ceramic materials

    NASA Astrophysics Data System (ADS)

    Stanciu, Lia Antoaneta

    2003-06-01

    The objective of this dissertation is to provide an understanding of the processing mechanisms of ceramic materials under an electrical field. Different parameters of the process, such as the electrical field, the heating rate, the holding time, and the precursor powder characteristics are studied in connection with their individual effect on the microstructural evolution and properties. The work reviews the fundamentals of sintering in the presence and in the absence of an electrical field, electrical conductivity in ceramics, precursor powder preparation methods for ceramic processing, as well as the relationship between the thermal properties and the neck formation in the first sintering stage. The ceramic materials that are chosen for the sintering studies are: Al2O3, TiO2, Al2TiO5 and MoSi2. Two type of precursors are used for the studies on Al 2TiO5: an amorphous sol-gel nanosize, and a crystalline coprecipitated micron size powder. Comparative studies on the effect of the heating rates in FAST on the conductive MoSi2 versus non-conductive Al2 O3 are also presented. The initial sintering stages of alpha-Al 2O3, which displays the maximum sintering activity under electrical field, are studied by a thermo-optical measurement method (TOM). The TOM method measures in-situ the thermal diffusivity of the powder. All the materials are characterized after sintering by XRD, FTIR, SEM, TEM, density and thermal diffusivity by TOM. The results show that the electrical field application enhances the kinetics of non-conductive oxide ceramics (Al2TiO5) formation by reaction sintering of the individual oxides. It also increases the rate of the neck formation during first sintering stage, and reduces porosity, thus improving the final density of non-conductive Al2O3. The sol-gel precursor powders with nanosize particles and a higher degree of homogeneity result in improved densification of the final consolidated part as compared to micron size or mechanically mixed precursors

  6. Experimental Fracture Measurements of Functionally Graded Materials

    NASA Astrophysics Data System (ADS)

    Carpenter, Ray Douglas

    The primary objective of this research was to extend established fracture toughness testing methods to a new class of engineering materials known as functionally graded materials (FGMs). Secondary goals were to compare experimental results to those predicted by finite element models and to provide fracture test results as feedback toward optimizing processing parameters for the in-house synthesis of a MoSi2/SiC FGM. Preliminary experiments were performed on commercially pure (CP) Ti and uniform axial tensile tests resulted in mechanical property data including yield strength, 268 MPa, ultimate tensile strength, 470 MPa and Young's modulus, 110 GPa. Results from 3-point bending fracture experiments on CP Ti demonstrated rising R-curve behavior and experimentally determined JQ fracture toughness values ranged between 153 N/mm and 254 N/mm. Similar experimental protocols were used for fracture experiments on a 7- layered Ti/TiB FGM material obtained from Cercom in Vista, California. A novel technique for pre-cracking in reverse 4-point bending was developed for this ductile/brittle FGM material. Fracture test results exhibited rising R-curve behavior and estimated JQ fracture toughness values ranged from 0.49 N/mm to 2.63 N/mm. A 5- layered MoSi2/SiC FGM was synthesized using spark plasma sintering (SPS). Samples of this material were fracture tested and the results again exhibited a rising R-curve with KIC fracture toughness values ranging from 2.7 MPa-m1/2 to 6.0 MPa-m1/2. Finite Element Models predicted rising R-curve behavior for both of the FGM materials tested. Model results were in close agreement for the brittle MoSi2/SiC FGM. For the relatively more ductile Ti/TiB material, results were in close agreement at short crack lengths but diverged at longer crack lengths because the models accounted for fracture toughening mechanisms at the crack tip but not those acting in the crack wake.

  7. Process for producing dispersed particulate composite materials

    DOEpatents

    Henager, Jr., Charles H.; Hirth, John P.

    1995-01-01

    This invention is directed to a process for forming noninterwoven dispersed particulate composite products. In one case a composite multi-layer film product comprises a substantially noninterwoven multi-layer film having a plurality of discrete layers. This noninterwoven film comprises at least one discrete layer of a first material and at least one discrete layer of a second material. In another case the first and second materials are blended together with each other. In either case, the first material comprises a metalloid and the second material a metal compound. At least one component of a first material in one discrete layer undergoes a solid state displacement reaction with at least one component of a second material thereby producing the requisite noninterwoven composite film product. Preferably, the first material comprises silicon, the second material comprises Mo.sub.2 C, the third material comprises SiC and the fourth material comprises MoSi.sub.2.

  8. Imaging diffraction VLS spectrometer for a wavelength range λ > 120 Å

    NASA Astrophysics Data System (ADS)

    Vishnyakov, E. A.; Kolesnikov, A. O.; Kuzin, A. A.; Negrov, D. V.; Ragozin, E. N.; Sasorov, P. V.; Shatokhin, A. N.

    2017-02-01

    A broadband stigmatic (imaging) soft X-ray (λ > 120 Å) spectrometer is experimentally realised. The optical configuration of the spectrometer comprises a plane grazing-incidence reflection grating with a spacing varying across its aperture according to a preassigned law [a so-called varied line-space (VLS) grating] and a broadband spherical normal-incidence mirror with an aperiodic Mo/Si multilayer structure. The average plate scale amounts to ∼5.5 Å mm‑1. The radiation is recorded with a matrix CCD detector (2048 × 1024 pixels of size 13 μm). The line spectra of the multiply charged ions LiIII and FV–FVII excited in laser-produced plasma are recorded with a spatial resolution of ∼26 μm and a spectral resolving power R ≈ 500 is experimentally demonstrated.

  9. Alternate Multilayer Gratings with Enhanced Diffraction Efficiency in the 500-5000 eV Energy Domain

    SciTech Connect

    Polack, Francois; Lagarde, Bruno; Idir, Mourad; Cloup, Audrey Liard; Jourdain, Erick; Roulliay, Marc; Delmotte, Franck; Gautier, Julien; Ravet-Krill, Marie-Francoise

    2007-01-19

    An alternate multilayer (AML) grating is a 2 dimensional diffraction structure formed on an optical surface, having a 0.5 duty cycle in the in-plane and in the in-depth direction. It can be made by covering a shallow depth laminar grating with a multilayer stack. We show here that their 2D structure confer AML gratings a high angular and energetic selectivity and therefore enhanced diffraction properties, when used in grazing incidence. In the tender X-ray range (500eV - 5000 eV) they behave much like blazed gratings. Over 15% efficiency has been measured on a 1200 lines/mm Mo/Si AML grating in the 1.2 - 1.5 keV energy range. Computer simulations show that selected multilayer materials such as Cr/C should allow diffraction efficiency over 50% at photon energies over 3 keV.

  10. Exploring the origin of charging-induced pattern positioning errors in mask making using e-beam lithography

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Cheng; Liu, Tzu-Ling; Chang, Shao-Wen; Ho, Yen-Cheng; Chen, Chia-Jen; Lin, Chih-Cheng; Lien, Ta-Cheng; Lee, Hsin-Chang; Yen, Anthony

    2015-10-01

    The authors present a detailed observation of the charge-induced pattern positioning errors (CIPPEs) in a variableshape e-beam writer on an opaque-MoSi-over-glass (OMOG) mask by directly measuring the pattern shifts using a mask registration tool. The CIPPEs are found to have one short-range, that is exponentially decaying in space, and the other constant offset components. The exponential term that decays slowly in time, whereas the constant offset fast diminishes. By applying a charge dissipation layer (CDL), the authors experimentally verify that the exponential component results from the charges in resist. On the other hands, the constant offset that can not be eliminated by the CDL is speculated to be charges in the substrate according to the Monte Carlo simulation.

  11. Sub-diffraction-limited multilayer coatings for the 0.3 numerical aperture micro-exposure tool for extreme ultraviolet lithography.

    PubMed

    Soufli, Regina; Hudyma, Russell M; Spiller, Eberhard; Gullikson, Eric M; Schmidt, Mark A; Robinson, Jeff C; Baker, Sherry L; Walton, Christopher C; Taylor, John S

    2007-06-20

    Multilayer coating results are discussed for the primary and secondary mirrors of the micro-exposure tool (MET): a 0.30 NA lithographic imaging system with a 200 microm x 600 microm field of view at the wafer plane, operating in the extreme ultraviolet (EUV) region at an illumination wavelength around 13.4 nm. Mo/Si multilayers were deposited by DC-magnetron sputtering on large-area, curved MET camera substrates. A velocity modulation technique was implemented to consistently achieve multilayer thickness profiles with added figure errors below 0.1 nm rms demonstrating sub-diffraction-limited performance, as defined by the classical diffraction limit of Rayleigh (0.25 waves peak to valley) or Marechal (0.07 waves rms). This work is an experimental demonstration of sub-diffraction- limited multilayer coatings for high-NA EUV imaging systems, which resulted in the highest resolution microfield EUV images to date.

  12. Upgrading multilayer zone plate technology for hard x-ray focusing

    NASA Astrophysics Data System (ADS)

    Hirotomo, Toshiki; Takano, Hidekazu; Sumida, Kazuhiro; Koyama, Takahisa; Konishi, Shigeki; Ichimaru, Satoshi; Ohchi, Tadayuki; Takenaka, Hisataka; Tsusaka, Yoshiyuki; Kagoshima, Yasushi

    2016-01-01

    Multilayer zone plate (MZP) technology for hard X-ray focusing was upgraded and its focusing performance was evaluated using 20-keV X-rays at the synchrotron beamline (BL24XU) of SPring-8. The MZP consists of MoSi2 and Si layers alternately deposited on a glass fiber by magnetron sputtering so that all zone boundaries satisfy the Fresnel zone configuration. The focused beam was evaluated using knife-edge scanning in which the measured intensity distribution is identical to the line spread function (LSF) in the focal plane. The focused beamsize of about 30 nm was estimated by oscillation peaks observed in the measured LSF according to Rayleigh's criterion.

  13. XPS and AES analysis of passive films on Fe-25Cr-X (X = Mo, V, Si and Nb) model alloys.

    PubMed

    Hubschmid, C; Landolt, D; Mathieu, H J

    1995-10-01

    Corrosion resistance of stainless steel is due to the presence of a thin passive film of typically 1-2 nm thickness. The influence of ternary alloying elements on the composition of passive films on Fe-Cr alloys and their pitting corrosion resistance has been investigated. Iron-chromium alloys were analyzed by XPS and AES with model alloys (Fe-25Cr-X with X = at % Mo, Si, V and Nb) formed in sulphate solution in the presence and absence of chloride ions. All ternary alloying elements increase the pitting potential compared to the corresponding binary alloy. Films formed in chloride containing sulphate solution contain both electrolyte anions. Scanning Auger microscopy reveals that for a two phase system such as Fe-25Cr-11Nb, the dendritic phase is enriched with chromium, while essentially all of the niobium is located in the interdendritic eutectic.

  14. Photomask film degradation effects in the wafer fab: how to detect and monitor over time

    NASA Astrophysics Data System (ADS)

    Whittey, John; Hess, Carl; Garcia, Edgardo; Wagner, Mark; Duffy, Brian

    2012-11-01

    As a result of repeated cleanings and exposure effects such as chrome migration or MoSi oxidation some photomasks in the semiconductor fabs exhibit changes in critical dimension uniformity (CDU) over time. Detecting these effects in a timely manner allows for better risk management and process control in manufacturing. By monitoring changes in film reflectance intensity due to the various degradation mechanisms it is possible to predict when they may begin to influence across chip line width variations (ACLV). By accurately predicting the magnitude of these changes it is possible for semiconductor manufacturers to replace the photomasks before they have an impact on yields. This paper looks at possible causes of CDU variations on reticles during use and how this information might be used to improve or monitor reticle CDU changes over time.

  15. High temperature nanostructured MoA1Si coatings on Alloys for ultrasupercritical coal-fired boilers: Final Technical Report DOE/SBIR/Phase I

    SciTech Connect

    Reddy, Ganta S.

    2012-11-21

    The goal of improving the efficiency of pulverized coal power plants has been pursued for decades. The need for greater fuel efficiency and reduced environmental impact is pushing utilities to Ultra Supercritical Steam Conditions (USC) of 760°C and 35 MPa. USC plants can operate at energy efficiencies in excess of 55%, while the conventional boilers are operating at 538°C and 17 MPa with an efficiency of 36 to 39%. Each percentage increase in energy efficiency gives rise to about an effective 2% reduction in CO2 and SO2 emissions. However USC boiler component life is limited by air oxidation, steam oxidation and erosion. Improving this life with an adherent MoSiAl nanostructure coating has been the focus of this research during the Phase I.

  16. Growth model of binary alloy nanopowders for thermal plasma synthesis

    SciTech Connect

    Shigeta, Masaya; Watanabe, Takayuki

    2010-08-15

    A new model is developed for numerical analysis of the entire growth process of binary alloy nanopowders in thermal plasma synthesis. The model can express any nanopowder profile in the particle size-composition distribution (PSCD). Moreover, its numerical solution algorithm is arithmetic and straightforward so that the model is easy to use. By virtue of these features, the model effectively simulates the collective and simultaneous combined process of binary homogeneous nucleation, binary heterogeneous cocondensation, and coagulation among nanoparticles. The effect of the freezing point depression due to nanoscale particle diameters is also considered in the model. In this study, the metal-silicon systems are particularly chosen as representative binary systems involving cocondensation processes. In consequence, the numerical calculation with the present model reveals the growth mechanisms of the Mo-Si and Ti-Si nanopowders by exhibiting their PSCD evolutions. The difference of the materials' saturation pressures strongly affects the growth behaviors and mature states of the binary alloy nanopowder.

  17. Multilayer coatings of 10x projection for extreme-ultraviolet lithography

    SciTech Connect

    Folta, J A; Montcalm, C; Spiller, E; Wedowski, M

    1999-03-09

    Two new sets of projections optics for the prototype 10X reduction EUV lithography system were coated with Mo/Si multilayers. The coating thickness was graded across the optics by using shadow masks to ensure maximum throughput at all incidence angles in the camera. The overall deviation of the (normalized) wavelength response across the clear aperture of each mirror is below 0.01% RMS. However, the wavelength mismatch between two optics coated in different runs is up to 0.07 nm. Nevertheless, this is still within the allowed tolerances, and the predicted optical throughput loss in the camera due to such wavelength mismatch is about 4%. EUV reflectances of 63-65% were measured around 13.40 nm for the secondary optics, which is in good agreement with the expected reflectance based on the substrate finish as measured with AFM.

  18. Software for x-ray optics research instrumentation. Final report, 1991

    SciTech Connect

    Knight, L.V.

    1992-03-01

    The statement of work for this contract between The Regents of the University of California and Brigham Young University called for the implementation of computer controlled substrate motion in an existing DC magnetron sputtering system. This task entailed the design and fabrication of a vacuum compatible motor drive and substrate holder, the system had to be capable of closed loop microcomputer control which required the development of a suitable computer interface and control software. Concurrent with this task, the existing magnetron sputtering system was to be upgraded to permit ion assisted deposition. This required modification of the existing sputtering hardware to permit independent control of voltages applied to the substrate and other additional electrode assemblies. In addition to design, fabrication and installation of the system modifications a systematic study of Mo-Si multilayer coatings grown using ion assisted deposition was undertaken. These studies served, in part, as training of LLNL personnel in the ion assisted deposition technique.

  19. Upgrading multilayer zone plate technology for hard x-ray focusing

    SciTech Connect

    Hirotomo, Toshiki; Konishi, Shigeki; Takano, Hidekazu Sumida, Kazuhiro; Tsusaka, Yoshiyuki; Kagoshima, Yasushi; Koyama, Takahisa; Ichimaru, Satoshi; Ohchi, Tadayuki; Takenaka, Hisataka

    2016-01-28

    Multilayer zone plate (MZP) technology for hard X-ray focusing was upgraded and its focusing performance was evaluated using 20-keV X-rays at the synchrotron beamline (BL24XU) of SPring-8. The MZP consists of MoSi{sub 2} and Si layers alternately deposited on a glass fiber by magnetron sputtering so that all zone boundaries satisfy the Fresnel zone configuration. The focused beam was evaluated using knife-edge scanning in which the measured intensity distribution is identical to the line spread function (LSF) in the focal plane. The focused beamsize of about 30 nm was estimated by oscillation peaks observed in the measured LSF according to Rayleigh’s criterion.

  20. Molybdenum-tin as a solar cell metallization system

    NASA Technical Reports Server (NTRS)

    Boyd, D. W.; Radics, C.

    1981-01-01

    The operations of solar cell manufacture are briefly examined. The formation of reliable, ohmic, low-loss, and low-cost metal contacts on solar cells is a critical process step in cell manufacturing. In a commonly used process, low-cost metallization is achieved by screen printing a metal powder-glass frit ink on the surface of the Si surface and the conductive metal powder. A technique utilizing a molybdenum-tin alloy for the metal contacts appears to lower the cost of materials and to reduce process complexity. The ink used in this system is formulated from MoO3 with Sn powder and a trace amount of titanium resonate. Resistive losses of the resulting contacts are low because the ink contains no frit. The MoO3 is finally melted and reduced in forming gas (N2+H2) to Mo metal. The resulting Mo is highly reactive which facilitates the Mo-Si bonding.

  1. Materials corrosion and protection from first principles

    NASA Astrophysics Data System (ADS)

    Johnson, Donald F.

    suggests that alloying Fe with Si can be an effective means to limit uptake of these elements into steel. Spallation of protective layers on jet engine turbine blades is a problem that arises during thermal cycling. An alternative thermal barrier coating system involving MoSi2 is considered and calculations predict strong adhesion at the MoSi2/Ni interface. The interfacial bonding structure reveals a mixture of metallic and covalent cross-interface bonds. The adhesion energy is similar across all three MoSi2 facets studied. Upon exposure to oxygen, this MoSi2 alloy will form a strongly adhered oxide scale, which in turn may strongly adhere the heat shield material (yttria-stabilized zirconia), thereby potentially extending the lifetime of the barrier coating. Lastly, the interaction of hydrogen isotopes (fusion fuel) with tungsten (a proposed fusion reactor wall material) is examined. Exothermic dissociative adsorption is predicted, along with endothermic absorption and dissolution. Surface-to-subsurface diffusion energy barriers for H incorporation into bulk W are large and the corresponding outward diffusion barriers are very small. In bulk W, deep energetic traps (trapping multiple H atoms) are predicted at vacancy defects. Thus, under high neutron fluxes that will produce vacancies in W, H are predicted to collect at these vacancies. In turn, locally high concentrations of H at such vacancies will enhance decohesion of bulk W, consistent with observed blistering under deuterium implantation. Limiting vacancy formation may be key to the survival of W as a fusion reactor wall material.

  2. Measurement of soft x-ray multilayer mirror reflectance at normal incidence using laser-produced plasmas

    SciTech Connect

    Trail, J.A.; Byer, R.L.; Barbee T.W. Jr.

    1988-01-25

    We have used laser-produced plasmas as a broadband source of soft x rays to measure the normal incidence reflectance of multilayer mirrors in the 10--25 nm spectral region. The measurements have a spectral resolution of 0.03 nm and a reflectance resolution of 10%. Measurements made on a Mo/Si multilayer show excellent agreement with results obtained using a synchrotron and indicate a normal incidence peak reflectance of over 50% at 15 nm. By repeating the reflectance measurement at different positions across a single 7.5 cm mirror we determined multilayer uniformity as a function of position and we relate this dependence to the geometry of the deposition process.

  3. The use of an electric field as a processing parameter in the combustion synthesis of ceramics and composites

    NASA Astrophysics Data System (ADS)

    Munir, Z. A.

    1996-08-01

    The imposition of an electric field is shown to activate self-propagating combustion reactions and thus makes possible the synthesis of a variety of ceramic and composite phases. Experimental observations and modeling studies indicated that activation is accomplished by the localized effect of the current. The relationship between wave propagation and the direction of the applied field was investigated. The synthesis of composites by field-activated combustion synthesis (FACS) was demonstrated. It was shown that the imposition of a field during the combustion synthesis of MoSi2 results in a decrease in the product particle size. The results suggest that the field can be used as a processing parameter in self-propagating combustion synthesis.

  4. X-ray interferometer with an x-ray beam splitter

    NASA Astrophysics Data System (ADS)

    Kitamoto, S.; Sakata, K.; Murakami, H.; Yoshida, Y.; Seta, H.

    2012-09-01

    We report our examination of a new X-ray interferometer for observation of celestial objects and our recent work for preparation of laboratory experiments. The new X-ray interferometer is consisting of two at mirrors and one at beam splitter which are used as grazing incident optics. The aimed wave length is a O-K band or a C-K band. The beam splitter and the mirrors are fabricated by Mo/Si multilayer. We measured their atness and found that the measured atness is acceptable for the test experiment. A pin hole X-ray source is also preparing for a laboratory experiment in order to demonstrate a X-ray interference. We investigated a possible observation of accretion disks around BHs and nearby stars. With a reasonable size of the base line, we can measure their size and possibly we can obtain an evidence of a black hole shadow.

  5. Lithographic performance of a new "low-k" mask

    NASA Astrophysics Data System (ADS)

    Adachi, Takashi; Tani, Ayako; Fujimura, Yukihiro; Hayano, Katsuya; Morikawa, Yasutaka; Miyashita, Hiroyuki; Inazuki, Yukio; Kawai, Yoshio

    2016-05-01

    We have been researching new mask blank materials for the next generation lithography (NGL) and developed a new mask blank with low-k phase shifter [1] [2]. The low-k phase shifter consists of only Si and N. In our previous work, we reported the advantages of developed SiN phase shift mask (PSM) [2]. It showed high lithographic performance and high durability against ArF excimer laser as well as against cleaning. In this report, we further verified its high lithographic performance on several types of device pattern. The SiN PSM had high lithographic performance compared with conventional 6% MoSi PSM. Exposure latitude (EL) and mask enhancement factor (MEEF) were especially improved on originally designed Gate, Metal and Via patterns.

  6. Oxidation behavior of molybdenum silicides and their composites

    SciTech Connect

    Natesan, K.; Deevi, S. C.

    2000-04-03

    A key materials issue associated with the future of high-temperature structural silicides is the resistance of these materials to oxidation at low temperatures. Oxidation tests were conducted on Mo-based silicides over a wide temperature range to evaluate the effects of alloy composition and temperature on the protective scaling characteristics and testing regime for the materials. The study included Mo{sub 5}Si{sub 3} alloys that contained several concentrations of B. In addition, oxidation characteristics of MoSi{sub 2}-Si{sub 3}N{sub 4} composites that contained 20--80 vol.% Si{sub 3}N{sub 4} were evaluated at 500--1,400 C.

  7. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: First-Principles Calculations of Elastic and Thermal Properties of Molybdenum Disilicide

    NASA Astrophysics Data System (ADS)

    Zhu, Zun-Lue; Fu, Hong-Zhi; Sun, Jin-Feng; Liu, Yu-Fang; Shi, De-Heng; Xu, Guo-Liang

    2009-08-01

    The first-principles plane-wave pseudopotential method using the generalized gradient approximation within the framework of density functional theory is applied to anaylse the equilibrium lattice parameters, six independent elastic constants, bulk moduli, thermal expansions and heat capacities of MoSi2. The quasi-harmonic Debye model, using a set of total energy versus cell volume obtained with the plane-wave pseudopotential method, is applied to the study of the elastic properties, thermodynamic properties and vibrational effects. The calculated zero pressure elastic constants are in overall good agreement with the experimental data. The calculated heat capacities and the thermal expansions agree well with the observed values under ambient conditions and those calculated by others. The results show that the temperature has hardly any effect under high pressure.

  8. Oxidation resistance of composite silicide coatings on niobium

    SciTech Connect

    Gloshko, P.I.; Kurtsev, N.F.; Lisichenko, V.I.; Nadtoka, V.N.; Petrenko, M.I.; Zmii, V.I.

    1986-07-01

    This paper reports the oxidation of NbSi/sub 2/-MoSi/sub 2/ composite silicide coatings produced by diffusive siliconizing of molybdenum films on a niobium surface. Molybdenum-coated niobium was siliconized and an x-ray microspectral analysis of the composite silicide coating showed the phase composition to be an ca 80-um-thick outer molybdenum disilicide film with a characteristic coarsely crystalline columnar structure, and inner ca 20-um film of niobium disilicide consisting of the tiny columnar crystals, and a substrate/coating interface comprising a thin, 2-3 um film of lower silicide, i.e., Nb/sub 5/Si/sub 3/. The average grain sizes, unit cell parameters, and x-ray determined densities of the Mo films obtained by various methods are shown.

  9. Recent advances and developments in refractory alloys

    SciTech Connect

    Nieh, T.G.; Wadsworth, J.

    1993-11-01

    Refractory metal alloys based on Mo, W, Re, Ta, and Nb (Cb) find applications in a wide range of aerospace applications because of their high melting points and high-temperature strength. This paper, presents recent progress in understanding and applications of these alloys. Recent studies to improve the oxidation and mechanical behavior of refractory metal alloys, and particularly Nb alloys, are also discussed. Some Re structures, for extremely high temperature applications (> 2000C), made by CVD and P/M processes, are also illustrated. Interesting work on the development of new W alloys (W-HfC-X) and the characterization of some commercial refractory metals, e.g., K-doped W, TZM, and Nb-1%Zr, continues. Finally, recent developments in high temperature composites reinforced with refractory metal filaments, and refractory metal-based intermetallics, e.g., Nb{sub 3}Al, Nb{sub 2}Be{sub 17}, and MoSi{sub 2}, are briefly described.

  10. A New Method of Metallization for Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Macha, M.

    1979-01-01

    The determination of the firing cycle in a horizontal tube furnace for MoO3: Sn ink composition applied by silk screening process on P or N structured solar cells is presented. In comparison with the strip heater used to determine the reaction mechanism, the reduction of MoO3 in the tube furnace progresses at a much faster rate and the Sn:Mo alloy forms at a much lower temperature. The device characteristics determined by the V-I curve showed a high resistance (approx. 10 Ohms) at peak temperatures between 600 C and 800 C. The high series resistance is attributed to the lack of formation of MoSi2 within the used temperature range.

  11. Mechanical properties and oxidation and corrosion resistance of reduced-chromium 304 stainless steel alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Barrett, C. A.; Gyorgak, C. A.

    1979-01-01

    An experimental program was undertaken to identify effective substitutes for part of the Cr in 304 stainless steel as a method of conserving the strategic element Cr. Although special emphasis was placed on tensile properties, oxidation and corrosion resistance were also examined. Results indicate that over the temperature range of -196 C to 540 C the yield stress of experimental austenitic alloys with only 12 percent Cr compare favorably with the 18 percent Cr in 304 stainless steel. Oxidation resistance and in most cases corrosion resistance for the experimental alloys were comparable to the commercial alloy. Effective substitutes for Cr included Al, Mo, Si, Ti, and V, while Ni and Mn contents were increased to maintain an austenitic structure.

  12. Oxidation and corrosion behavior of modified-composition, low-chromium 304 stainless steel alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Barrett, C. A.

    1977-01-01

    The effects of substituting less strategic elements than Cr on the oxidation and corrosion resistance of AISI 304 stainless steel were investigated. Cyclic oxidation resistance was evaluated at 870 C. Corrosion resistance was determined by exposure of specimens to a boiling copper-rich solution of copper sulfate and sulfuric acid. Alloy substitutes for Cr included Al, Mn, Mo, Si, Ti, V, Y, and misch metal. A level of about 12% Cr was the minimum amount of Cr required for adequate oxidation and corrosion resistance in the modified composition 304 stainless steels. This represents a Cr saving of at least 33%. Two alloys containing 12% Cr and 2% Al plus 2% Mo and 12% Cr plus 2.65% Si were identified as most promising for more detailed evaluation.

  13. Application of Plasma Spraying as a Precursor in the Synthesis of Oxidation-Resistant Coatings

    NASA Astrophysics Data System (ADS)

    Ritt, P.; Lu-Steffes, O.; Sakidja, R.; Perepezko, J. H.; Lenling, W.; Crawmer, D.; Beske, J.

    2013-08-01

    Thermal spray methods offer a versatile and flexible approach to the manufacture of coatings as a final product. A novel application of thermal spray coating is demonstrated by incorporating a plasma-sprayed Mo layer coating as a precursor step within an integrated costing design. The effectiveness of the two-step design is illustrated for aluminoborosilica coatings on SiC/C composites and W substrates based on the plasma-sprayed Mo precursor and subsequent codeposition of Si and B by a pack cementation method. Even with incomplete precursor coverage, an aluminoborosilica coating is developed because of the high initial fluidity of the as-pack coating. An effective oxidation resistance is observed following exposure at elevated temperatures (1373-1673 K) in ambient air and during torch testing at 1773 K, providing clear evidence that the plasma spraying of Mo is a viable precursor step in the formation of the oxidation-resistant Mo-Si-B-based coating.

  14. Substitution for chromium in 304 stainless steel. [effects on oxidation and corrosion resistance

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Barrett, C. A.

    1978-01-01

    An investigation was conducted to determine the effects of substituting less strategic elements for Cr on oxidation and corrosion resistance of AISI 304 stainless steel. Cyclic oxidation resistance was evaluated at 870 C. Corrosion resistance was determined by exposure of specimens to a boiling copper-rich solution of copper sulfate and sulfuric acid. Alloy substitutes for Cr included Al, Mn, Mo, Si, Ti, V, Y, and misch metal. A level of about 12% Cr was the minimum amount of Cr required for adequate oxidation and corrosion resistance in the modified composition 304 stainless steels. This represents a Cr saving of 33 percent. Two alloys containing 12% Cr plus 2% Al plus 2% Mo and 12% Cr plus 2.65% Si were identified which exhibited oxidation and corrosion resistance comparable to AISI 304 stainless steel.

  15. High-temperature oxidation behavior of reaction-formed silicon carbide ceramics

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. T.; Singh, M.

    1995-01-01

    The oxidation behavior of reaction-formed silicon carbide (RFSC) ceramics was investigated in the temperature range of 1100 to 1400 C. The oxidation weight change was recorded by TGA; the oxidized materials were examined by light and electron microscopy, and the oxidation product by x-ray diffraction analysis (XRD). The materials exhibited initial weight loss, followed by passive weight gain (with enhanced parabolic rates, k(sub p)), and ending with a negative (logarithmic) deviation from the parabolic law. The weight loss arose from the oxidation of residual carbon, and the enhanced k(sub p) values from internal oxidation and the oxidation of residual silicon, while the logarithmic kinetics is thought to have resulted from crystallization of the oxide. The presence of a small amount of MoSi, in the RFSC material caused a further increase in the oxidation rate. The only solid oxidation product for all temperatures studied was silica.

  16. Friction and wear properties of three hard refractory coatings applied by radiofrequency sputtering

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.

    1977-01-01

    The adherence, friction, and wear properties of thin hard refractory compound coatings applied to 440C bearing steel by radiofrequency sputtering were investigated. Friction and wear tests were done with nonconforming pin on disk specimens. The compounds examined were chromium carbide, molybdenum silicide, and titanium carbide. The adherence, friction, and wear were markedly improved by the application of a bias voltage to the bearing steel substrate during coating deposition. Analysis by X-ray photoelectron spectroscopy indicated that the improvement may be due to a reduction in impurities in bias deposited coatings. A fivefold reduction in oxygen concentration in MoSi2 coating by biasing was noted. Chromium carbide was not effective as an antiwear coating. Molybdenum silicide provided some reduction in both friction and wear. Titanium carbide exhibited excellent friction and antiwear properties at light loads. Plastic flow and transfer of the coating material onto the pin specimen appears to be important in achieving low friction and wear.

  17. High throughput measurements of soft x-ray impurity emission using a multilayer mirror telescope

    SciTech Connect

    Stutman, D.; Tritz, K.; Delgado-Aparicio, L.; Finkenthal, M.; Suliman, G.; Roquemore, L.; Kaita, R.; Kugel, H.; Johnson, D.; Tamura, N.; Sato, K.; Sudo, S.; Tarrio, C.

    2006-10-15

    A 4 in. multilayer mirror telescope has been tested on National Spherical Torus Experiment (NSTX) for high throughput measurements of the beam excited soft x-ray impurity emission. The design is aimed at imaging low-k turbulent fluctuations in the plasma core. The test device used curved and planar Mo/Si mirrors to focus with {approx_equal}15% optical transmission and few angstrom bandwidths, the 135 A ring Ly{sub {alpha}} line from injected Li III atoms, or the n=2-4 line from intrinsic C VI ions. As test detectors we used 1 cm{sup 2} absolute extreme ultraviolet diodes, equipped with 400 kHz bandwidth, low noise preamplifiers. With the available view on NSTX the telescope successfully detected small impurity density fluctuations associated with 1/1 modes rotating at midradius, indicating that a high signal to noise ratio and cost effective core turbulence diagnostic is feasible based on this concept.

  18. In-line phase retarder and polarimeter for conversion of linear to circular polarization

    SciTech Connect

    Kortright, J.B.; Smith, N.V.; Denlinger, J.D.

    1997-04-01

    An in-line polarimeter including phase retarder and linear polarizer was designed and commissioned on undulator beamline 7.0 for the purpose of converting linear to circular polarization for experiments downstream. In commissioning studies, Mo/Si multilayers at 95 eV were used both as the upstream, freestanding phase retarder and the downstream linear polarized. The polarization properties of the phase retarder were characterized by direct polarimetry and by collecting MCD spectra in photoemission from Gd and other magnetic surfaces. The resonant birefringence of transmission multilayers results from differing distributions of s- and p-component wave fields in the multilayer when operating near a structural (Bragg) interference condition. The resulting phase retardation is especially strong when the interference is at or near the Brewster angle, which is roughly 45{degrees} in the EUV and soft x-ray ranges.

  19. EUV light source with high brightness at 13.5 nm

    NASA Astrophysics Data System (ADS)

    Borisov, V. M.; Koshelev, K. N.; Prokof'ev, A. V.; Khadzhiyskiy, F. Yu; Khristoforov, O. B.

    2014-11-01

    The results of the studies on the development of a highbrightness radiation source in the extreme ultraviolet (EUV) range are presented. The source is intended for using in projection EUV lithography, EUV mask inspection, for the EUV metrology, etc. Novel approaches to creating a light source on the basis of Z-pinch in xenon allowed the maximal brightness [130 W(mm2 sr)-1] to be achieved in the vicinity of plasma for this type of radiation sources within the 2% spectral band centred at the wavelength of 13.5 nm that corresponds to the maximal reflection of multilayer Mo/Si mirrors. In this spectral band the radiation power achieves 190 W in the solid angle of 2π at a pulse repetition rate of 1.9 kHz and an electric power of 20 kW, injected into the discharge.

  20. EUV light source with high brightness at 13.5 nm

    SciTech Connect

    Borisov, V M; Prokof'ev, A V; Khristoforov, O B; Koshelev, K N; Khadzhiyskiy, F Yu

    2014-11-30

    The results of the studies on the development of a highbrightness radiation source in the extreme ultraviolet (EUV) range are presented. The source is intended for using in projection EUV lithography, EUV mask inspection, for the EUV metrology, etc. Novel approaches to creating a light source on the basis of Z-pinch in xenon allowed the maximal brightness [130 W(mm{sup 2} sr){sup -1}] to be achieved in the vicinity of plasma for this type of radiation sources within the 2% spectral band centred at the wavelength of 13.5 nm that corresponds to the maximal reflection of multilayer Mo/Si mirrors. In this spectral band the radiation power achieves 190 W in the solid angle of 2π at a pulse repetition rate of 1.9 kHz and an electric power of 20 kW, injected into the discharge. (laser applications and other topics in quantum electronics)

  1. Nanoamorphous carbon-based photonic crystal infrared emitters

    DOEpatents

    Norwood, Robert A [Tucson, AZ; Skotheim, Terje [Tucson, AZ

    2011-12-13

    Provided is a tunable radiation emitting structure comprising: a nanoamorphous carbon structure having a plurality of relief features provided in a periodic spatial configuration, wherein the relief features are separated from each other by adjacent recessed features, and wherein the nanoamorphous carbon comprises a total of from 0 to 60 atomic percent of one or more dopants of the dopant group consisting of: transition metals, lanthanoids, electro-conductive carbides, silicides and nitrides. In one embodiment, a dopant is selected from the group consisting of: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La and other lanthanides, Hf, Ta, W, Rh, Os, Ir, Pt, Au, and Hg. In one embodiment, a dopant is selected from the group consisting of: electro-conductive carbides (like Mo.sub.2C), silicides (like MoSi.sub.2) and nitrides (like TiN).

  2. In Situ Analysis of the Tribochemical Films Formed by SiC Sliding Against Mo in Partial Pressures of SO2, O2, and H2S Gases

    DTIC Science & Technology

    1996-02-01

    MoO3 or one of the substoichiometric MoOx ~2 ,x, 3! compounds—formed, although MoO2 is the first to crystal- lize from the chemisorbed state with...increasing thermal activity.31,32 We therefore designate the oxide to be MoOx . In SO2 , mixtures of MoS2 and MoOx would be expected. On the SiC wear scar...from Auger data. ~2<xɛ y , z51 or 2.! Gas Solid Mo SiC Tribofilm Transfer Tribofilm Transfer SO2 MoOx /MoS2 None SiOy/SiSz , C MoOx /MoS2 O2 MoOx None

  3. Towards High Accuracy Reflectometry for Extreme-Ultraviolet Lithography.

    PubMed

    Tarrio, Charles; Grantham, Steven; Squires, Matthew B; Vest, Robert E; Lucatorto, Thomas B

    2003-01-01

    Currently the most demanding application of extreme ultraviolet optics is connected with the development of extreme ultraviolet lithography. Not only does each of the Mo/Si multilayer extreme-ultraviolet stepper mirrors require the highest attainable reflectivity at 13 nm (nearly 70 %), but the central wavelength of the reflectivity of these mirrors must be measured with a wavelength repeatability of 0.001 nm and the peak reflectivity of the reflective masks with a repeatability of 0.12 %. We report on two upgrades of our NIST/DARPA Reflectometry Facility that have given us the ability to achieve 0.1 % repeatability and 0.3 % absolute uncertainty in our reflectivity measurements. A third upgrade, a monochromator with thermal and mechanical stability for improved wavelength repeatability, is currently in the design phase.

  4. Solidification processing and phase transformations in ordered high temperature alloys. Final report, 30 March 1990-30 September 1992

    SciTech Connect

    Boettinger, W.J.; Bendersky, L.A.; Kattner, U.R.

    1993-01-20

    Useful high temperature alloys generally have microstructures consisting of more than one phase. Multiphase microstructures are necessary to develop acceptable toughness and creep strength in high temperature intermetallic alloy matrices. The optimum microstructures must be developed by a careful selection of processing path that includes both solidification and solid state heat treatment. Research has been conducted on the rapid solidification of selected intermetallic alloys and on the phase transformation paths that occur during cooling, primarily in the Ti-Al-Nb system. This report describes research performed in the Metallurgy Division at NIST under DARPA order 7469 between 1/1/89 and 12/31/92. Various research tasks were completed and the results have been published or have been submitted for publication.... Intermetallics, Ti-Al-Nb Alloys, Phase Diagrams, Phase Transformations, Ti-Al-Ta Alloys, MoSi2 Alloys.

  5. Epitaxial ternary RexMo1 - xSi2 thin films on Si(100)

    NASA Astrophysics Data System (ADS)

    Vantomme, André; Nicolet, Marc-A.; Long, Robert G.; Mahan, John E.

    1994-04-01

    Reactive deposition epitaxy was used to synthesize thin layers of RexMo1-xSi2 on Si(100). In the case of x=1, ReSi2 layers of excellent crystalline quality have been reported previously [J. E. Mahan, K. M. Geib, G. Y. Robinson, R. G. Long, Y. Xinghua, G. Bai, and M.-A. Nicolet, Appl. Phys. Lett. 56, 2439 (1990)]. In the case of x=0, however, virtually no alignment of the MoSi2 and the substrate is found, although this silicide is nearly isomorphic to ReSi2. For intermediate values of x, highly epitaxial ternary silicides are obtained, at least for a Mo fraction up to 1/3.

  6. Experimental investigations on the chemical state of solid fission-product elements in U3Si2

    NASA Astrophysics Data System (ADS)

    Ugajin, M.; Itoh, A.

    1994-10-01

    The uranium silicide U3Si2 has a congruent melting point of 1665 C and possesses higher uranium density (11.3 g U/cc) and higher thermal conductivity than the uranium dioxide currently used in light water reactors. U3Si2 is in use as a research reactor fuel (US Nuclear Regulatory Commission, NUREG-1313, July, 1988), representing a potentiality for power reactor fuel. A first attempt is made in this study to predict the chemical state of the solid fission-product elements comprising zirconium, molybdenum, rare earth elements, alkaline earth metals and elements of the platinum group. Ternary phase equilibria in the U-Mo-Si and U-Ru-Si systems are also investigated to supplement the fission product chemistry in U3Si2.

  7. Post cleaned surface modification treatment to prevent near pellicle haze generation in sulfate free cleaned ArF EAPSM

    NASA Astrophysics Data System (ADS)

    Patil, Manish; Kim, Jong-Min; Jung, Sung-Mo; Hur, Ik-Boum; Choi, Sang-Soo; Lee, Yong Hyun

    2008-05-01

    A lot of research has been carried on sulfate free cleaning process to minimize haze generating residual ions on mask surface. However sulfate free cleaned mask has been suffered from short life time of haze generation than we expected, because pellicle outgassing combines with ammonium residuals and formed haze near pellicle frame area and decrease yield. Therefore physical and PKL developed chemical surface modification treatment was studied and evaluated in term of near pellicle haze threshold energy, surface energy of mask substrate components (Qz/MoSi/Cr), AFM and AES depth profile. Dehydration bake treatment (physical surface modification treatment) and PKL developed chemical treatment increased near pellicle haze threshold energy by 2.5 and 4 times, respectively. Surface modification treatments didn't show negative effect on phase angle and transmittance losses of ArF EAPSM mask. The effect of illumination sources on surface modification treatment was also studied.

  8. Design of polarization-insensitive superconducting single photon detectors with high-index dielectrics

    NASA Astrophysics Data System (ADS)

    Redaelli, L.; Zwiller, V.; Monroy, E.; Gérard, J. M.

    2017-03-01

    In this paper, the design of superconducting-nanowire single-photon detectors which are insensitive to the polarization of the incident light is investigated. By using high-refractive-index dielectrics, the index mismatch between the nanowire and the surrounding media is reduced. This enhances the absorption of light with electric field vector perpendicular to the nanowire segments, which is generally hindered in these kind of detectors. Building on this principle and focusing on NbTiN nanowire devices, we present several easy-to-realize cavity architectures which allow high absorption efficiency (in excess of 90%) and polarization insensitivity simultaneously. Designs based on ultranarrow nanowires, for which the polarization sensitivity is much more marked, are also presented. Finally, we briefly discuss the specific advantages of this approach in the case of WSi or MoSi nanowires.

  9. 5000 groove/mm multilayer-coated blazed grating with 33percent efficiency in the 3rd order in the EUV wavelength range

    SciTech Connect

    Advanced Light Source; Voronov, Dmitriy L.; Anderson, Erik; Cambie, Rossana; Salmassi, Farhad; Gullikson, Eric; Yashchuk, Valeriy; Padmore, Howard; Ahn, Minseung; Chang, Chih-Hao; Heilmann, Ralf; Schattenburg, Mark

    2009-07-07

    We report on recent progress in developing diffraction gratings which can potentially provide extremely high spectral resolution of 105-106 in the EUV and soft x-ray photon energy ranges. Such a grating was fabricated by deposition of a multilayer on a substrate which consists ofa 6-degree blazed grating with a high groove density. The fabrication of the substrate gratings was based on scanning interference lithography and anisotropic wet etch of silicon single crystals. The optimized fabrication process provided precise control of the grating periodicity, and the grating groove profile, together with very short anti-blazed facets, and near atomically smooth surface blazed facets. The blazed grating coated with 20 Mo/Si bilayers demonstrated a diffraction efficiency in the third order as high as 33percent at an incidence angle of 11? and wavelength of 14.18 nm.

  10. Advanced repair solution of clear defects on HTPSM by using nanomachining tool

    NASA Astrophysics Data System (ADS)

    Lee, Hyemi; Kim, Munsik; Jung, Hoyong; Kim, Sangpyo; Yim, Donggyu

    2015-10-01

    As the mask specifications become tighter for low k1 lithography, more aggressive repair accuracy is required below sub 20nm tech. node. To meet tight defect specifications, many maskshops select effective repair tools according to defect types. Normally, pattern defects are repaired by the e-beam repair tool and soft defects such as particles are repaired by the nanomachining tool. It is difficult for an e-beam repair tool to remove particle defects because it uses chemical reaction between gas and electron, and a nanomachining tool, which uses physical reaction between a nano-tip and defects, cannot be applied for repairing clear defects. Generally, film deposition process is widely used for repairing clear defects. However, the deposited film has weak cleaning durability, so it is easily removed by accumulated cleaning process. Although the deposited film is strongly attached on MoSiN(or Qz) film, the adhesive strength between deposited Cr film and MoSiN(or Qz) film becomes weaker and weaker by the accumulated energy when masks are exposed in a scanner tool due to the different coefficient of thermal expansion of each materials. Therefore, whenever a re-pellicle process is needed to a mask, all deposited repair points have to be confirmed whether those deposition film are damaged or not. And if a deposition point is damaged, repair process is needed again. This process causes longer and more complex process. In this paper, the basic theory and the principle are introduced to recover clear defects by using nanomachining tool, and the evaluated results are reviewed at dense line (L/S) patterns and contact hole (C/H) patterns. Also, the results using a nanomachining were compared with those using an e-beam repair tool, including the cleaning durability evaluated by the accumulated cleaning process. Besides, we discuss the phase shift issue and the solution about the image placement error caused by phase error.

  11. Laser-plasma SXR/EUV sources: adjustment of radiation parameters for specific applications

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Fiedorowicz, H.; Fok, T.; Jarocki, R.; Kostecki, J.; Szczurek, A.; Szczurek, M.; Wachulak, P.; Wegrzyński, Ł.

    2014-12-01

    In this work soft X-ray (SXR) and extreme ultraviolet (EUV) laser-produced plasma (LPP) sources employing Nd:YAG laser systems of different parameters are presented. First of them is a 10-Hz EUV source, based on a double-stream gaspuff target, irradiated with the 3-ns/0.8J laser pulse. In the second one a 10 ns/10 J/10 Hz laser system is employed and the third one utilizes the laser system with the pulse shorten to approximately 1 ns. Using various gases in the gas puff targets it is possible to obtain intense radiation in different wavelength ranges. This way intense continuous radiation in a wide spectral range as well as quasi-monochromatic radiation was produced. To obtain high EUV or SXR fluence the radiation was focused using three types of grazing incidence collectors and a multilayer Mo/Si collector. First of them is a multfoil gold plated collector consisted of two orthogonal stacks of ellipsoidal mirrors forming a double-focusing device. The second one is the ellipsoidal collector being part of the axisymmetrical ellipsoidal surface. Third of the collectors is composed of two aligned axisymmetrical paraboloidal mirrors optimized for focusing of SXR radiation. The last collector is an off-axis ellipsoidal multilayer Mo/Si mirror allowing for efficient focusing of the radiation in the spectral region centered at λ = 13.5 ± 0.5 nm. In this paper spectra of unaltered EUV or SXR radiation produced in different LPP source configurations together with spectra and fluence values of focused radiation are presented. Specific configurations of the sources were assigned to various applications.

  12. Development of intermetallic-hardened abrasion-resistant weld hardfacing alloys

    SciTech Connect

    School, M.R.

    1986-01-01

    Chromium and cobalt are strategic materials in the US and both are major constituents in many weld hardfacing alloys. Substitution for these materials or alternatives to their use was a primary direction of this investigation which was conducted in conjunction with the US Bureau of Mines. Minimization of the use of strategic materials was the criteria guiding the development of intermetallic-hardened abrasion resistant weld hardfacing materials. Other criteria were that the new alloy contain a hard intermetallic compound in an FCC matrix, and that these intermetallic compounds be stable at room temperature. A survey of ternary systems was made and the Fe-Mo-Ni system was selected to provide a basis for alloy development. Fe-Mo-Ni alloys synthesized by arc-melting and similar alloys made by welding possessed similar microstructures, a (Fe, Ni){sub 7}Mo{sub 6} intermetallic plus austenite eutectic in an austenitic matrix. These materials exhibited poor abrasive resistance. Silicon additions to the alloy promoted formation of a Laves phase FeMoSi intermetallic which helped increase the abrasive wear resistance. Through a series of alloy chemistry iterations a final composition of Fe-20Mo-15Ni-5Si was selected. Heat treatment of this alloy at 550 to 650 C caused second phase precipitation in the matrix and raised the hardness about 14 points HRC to 50 HRC. The alloy's wear rate, measured with the pin-on-drum abrasive wear test, was 6.3 to 6.5 mg/m. However this was twice the wear rate observed in commercial high-carbon high-chromium alloys. Based on examination of the alloy microstructures, their chemistry, and an analysis of the Fe-Mo-Si phase system; directions for further research are to increase the molybdenum and silicon content to produce a Fe-20Mo-10Ni-15Si composition.

  13. M(5)-silicon (M= titanium, niobium, molybdenum) based transition-metal silicides for high temperature applications

    NASA Astrophysics Data System (ADS)

    Tang, Zhihong

    2007-12-01

    Transition metal silicides are being considered for future engine turbine components at temperatures up to 1600ºC. Although significant improvement in high temperature strength, room temperature fracture toughness has been realized in the past decade, further improvement in oxidation resistance is needed. Oxidation mechanism of Ti5Si3-based alloys was investigated. Oxidation behavior of Ti5Si3-based alloy strongly depends on the atmosphere. Presence of Nitrogen alters the oxidation behavior of Ti5Si3 by nucleation and growth of nitride subscale. Ti5Si3.2 and Ti5Si3C0.5 alloys exhibited an excellent oxidation resistance in nitrogen bearing atmosphere due to limited dissolution of nitrogen and increased Si/Ti activity ratio. MoSi2 coating developed by pack cementation to protect Mo-based Mo-Si-B composites was found to be effective up to 1500ºC. Shifting coating composition to T1+T2+Mo3Si region showed the possibility to extend the coating lifetime above 1500ºC by more than ten times via formation of slow growing Mo3Si or T2 interlayer without sacrificing the oxidation resistance of the coating. The phase equilibria in the Nb-rich portion of Nb-B system has been evaluated experimentally using metallographic analysis and differential thermal analyzer (DTA). It was shown that Nbss (solid solution) and NbB are the only two primary phases in the 0-40 at.% B composition range, and the eutectic reaction L ↔ Nbss + NbB was determined to occur at 2104+/-5°C by DTA.

  14. M5Si3(M=Ti, Nb, Mo) Based Transition-Metal Silicides for High Temperature Applications

    SciTech Connect

    Tang, Zhihong

    2007-01-01

    Transition metal silicides are being considered for future engine turbine components at temperatures up to 1600 C. Although significant improvement in high temperature strength, room temperature fracture toughness has been realized in the past decade, further improvement in oxidation resistance is needed. Oxidation mechanism of Ti5Si3-based alloys was investigated. Oxidation behavior of Ti5Si3-based alloy strongly depends on the atmosphere. Presence of Nitrogen alters the oxidation behavior of Ti5Si3 by nucleation and growth of nitride subscale. Ti5Si3.2and Ti5Si3C0.5 alloys exhibited an excellent oxidation resistance in nitrogen bearing atmosphere due to limited dissolution of nitrogen and increased Si/Ti activity ratio. MoSi2 coating developed by pack cementation to protect Mo-based Mo-Si-B composites was found to be effective up to 1500 C. Shifting coating composition to T1+T2+Mo3Si region showed the possibility to extend the coating lifetime above 1500 C by more than ten times via formation of slow growing Mo3Si or T2 interlayer without sacrificing the oxidation resistance of the coating. The phase equilibria in the Nb-rich portion of Nb-B system has been evaluated experimentally using metallographic analysis and differential thermal analyzer (DTA). It was shown that Nbss (solid solution) and NbB are the only two primary phases in the 0-40 at.% B composition range, and the eutectic reaction L {leftrightarrow} NbSS + NbB was determined to occur at 2104 ± 5 C by DTA.

  15. Effectiveness of Diffusion Barrier Coatings for Mo-Re Embedded in C/SiC and C/C

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Shenoy, Ravi N.; Wang, Zeng-Mei; Halbig, Michael C.

    2001-01-01

    Advanced high-temperature cooling applications may often require the elevated-temperature capability of carbon/silicon carbide or carbon/carbon composites in combination with the hermetic capability of metallic tubes. In this paper, the effects of C/SiC and C/C on tubes fabricated from several different refractory metals were evaluated. Though Mo, Nb, and Re were evaluated in the present study, the primary effort was directed toward two alloys of Mo-Re, namely, arc cast Mo-41Re and powder metallurgy Mo-47.5Re. Samples of these refractory metals were subjected to either the PyC/SiC deposition or embedding in C/C. MoSi2(Ge), R512E, and TiB2 coatings were included on several of the samples as potential diffusion barriers. The effects of the processing and thermal exposure on the samples were evaluated by conducting burst tests, microhardness surveys, and scanning electron microscopic examination (using either secondary electron or back scattered electron imaging and energy dispersive spectroscopy). The results showed that a layer of brittle Mo-carbide formed on the substrates of both the uncoated Mo-41Re and the uncoated Mo-47.5Re, subsequent to the C/C or the PyC/SiC processing. Both the R512E and the MoSi2(Ge) coatings were effective in preventing not only the diffusion of C into the Mo-Re substrate, but also the formation of the Mo-carbides. However, none of the coatings were effective at preventing both C and Si diffusion without some degradation of the substrate.

  16. Elastic properties of C40 transition metal disilicides

    SciTech Connect

    Chu, F.; Maloy, S.A.; Petrovic, J.J.; Mitchell, T.E.; Lei, M.

    1996-08-01

    Room-temperature and low temperature elastic properties of hexagonal C40 transition metal disilicides, NbSi{sub 2} and TaSi{sub 2}, have been studied using Resonant Ultrasound Spectroscopy (RUS). All five independent elastic stiffness constants c{sub ij} for NbSi{sub 2} and TaSi{sub 2} single crystals have been obtained. The temperature dependence of the c{sub ij} is normal but not large. The orientation dependence of the Young`s and shear moduli was examined in comparison with other transition metal disilicides. The room temperature shear moduli in the {l_brace}0001{r_brace} plane, with values of 145.3 and 143.7 GPa for NbSi{sub 2} and TaSi{sub 2} respectively, are low relative to those in the equivalent pseudo hexagonal {l_brace}220{r_brace} close-packed plane for tetragonal C11{sub b} MoSi{sub 2} and WSi{sub 2}. The isotropic elastic constants for polycrystalline materials were also calculated. The results show that the various moduli are all much higher than those of the constituent elements. The room temperature Poisson`s ratios of NbSi{sub 2} and TaSi{sub 2} are 0.18 and 0.19, respectively, which are smaller than those of the constituent elements and smaller than most materials. The Debye temperatures, {theta}{sub D}, were estimated to be 688 K for NbSi{sub 2} and 552 K for TaSi{sub 2}. The elastic properties of C40 VSi{sub 2}, NbSi{sub 2}, TaSi{sub 2}, and CrSi{sub 2} and C11{sub b} MoSi{sub 2} and WSi{sub 2} are compared and the possible influence on mechanical behavior discussed.

  17. Residual stress control by ion beam assisted deposition

    SciTech Connect

    Was, G.S.; Jones, J.W.; Parfitt, L.; Kalnas, C.E.; Goldiner, M.

    1996-12-31

    The origin of residual stresses were studied in both crystalline metallic films and amorphous oxide films made by ion beam assisted deposition (IBAD). Monolithic films of Al{sub 2}O{sub 3} were deposited during bombardment by Ne, Ar or Kr over a narrow range of energies, E, and a wide range of ion-to-atom arrival rate ratios, R and were characterized in terms of composition, thickness, density, crystallinity, microstructure and residual stress. The stress was a strong function of ion beam parameters and gas content and compares to the behavior of other amorphous compounds such as MoSi{sub x} and WSi{sub 2.2}. With increasing normalized energy (eV/atom), residual stress in crystalline metallic films (Mo, W) increases in the tensile direction before reversing and becoming compressive at high normalized energy. The origin of the stress is most likely due to densification or interstitial generation. Residual stress in amorphous films (Al{sub 2}O{sub 3}, MoSi{sub x} and WSi{sub 2.2}) is initially tensile and monotonically decreases into the compressive region with increasing normalized energy. The amorphous films also incorporate substantially more gas than crystalline films and in the case of Al{sub 2}O{sub 3} are characterized by a high density of voids. Stress due to gas pressure in existing voids explains neither the functional dependence on gas content nor the magnitude of the observed stress. A more likely explanation for the behavior of stress is gas incorporation into the matrix, where the amount of incorporated gas is controlled by trapping.

  18. Prospect of EUV mask repair technology using e-beam tool

    NASA Astrophysics Data System (ADS)

    Kanamitsu, Shingo; Hirano, Takashi; Suga, Osamu

    2010-09-01

    Currently, repair machines used for advanced photomasks utilize principle method like as FIB, AFM, and EB. There are specific characteristic respectively, thus they have an opportunity to be used in suitable situation. But when it comes to EUV generation, pattern size is so small highly expected as under 80nm that higher image resolution and repair accuracy is needed for its machines. Because FIB machine has intrinsic damage problem induced by Ga ion and AFM machine has critical tip size issue, those machines are basically difficult to be applied for EUV generation. Consequently, we focused on EB repair tool for research work. EB repair tool has undergone practical milestone about MoSi based masks. We have applied same process which is used for MoSi to EUV blank and confirmed its reaction. Then we found some severe problems which show uncontrollable feature due to its enormously strong reaction between etching gas and absorber material. Though we could etch opaque defect with conventional method and get the edge shaped straight by top-down SEM viewing, there were problems like as sidewall undercut or local erosion depending on defect shape. In order to cope with these problems, the tool vender has developed a new process and reported it through an international conference [1]. We have evaluated the new process mentioned above in detail. In this paper, we will bring the results of those evaluations. Several experiments for repair accuracy, process stability, and other items have been done under estimation of practical condition assuming diversified size and shape defects. A series of actual printability tests will be also included. On the basis of these experiments, we consider the possibility of EB-repair application for 20nm pattern.

  19. Method of improving field emission characteristics of diamond thin films

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.

    1999-01-01

    A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

  20. Method of improving field emission characteristics of diamond thin films

    DOEpatents

    Krauss, A.R.; Gruen, D.M.

    1999-05-11

    A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

  1. Doping-dependent critical Cooper-pair momentum pc in thin underdoped cuprate films

    NASA Astrophysics Data System (ADS)

    Lemberger, Thomas; Draskovic, John; Steers, Stanley; McJunkin, Thomas; Anmed, Adam

    2015-03-01

    We apply a low-field (<100 G) technique to measure the critical Cooper pair momentum pc in thin, underdoped films of Y0.7Ca0.3Ba2Cu3O7-δ and Bi2Sr2CaCu2O8+δ, where doping is effected by adjusting the oxygen stoichiometry through post-deposition annealing. The technique is based on applying a perpendicular magnetic field to the center of a superconducting film and measuring the field at which screening of the field catastrophically fails. Theory together with measurements on thin films of conventional superconductors Nb and MoGe argue for the validity of the technique. In underdoped cuprates, spectroscopy identifies multiple characteristic energy scales, e.g., the pseudogap and the ``nodal'' gap, neither of which is proportional to Tc. On general grounds, we expect to find that pc ~ 1/1ξ ξ is proportional to the characteristic superconducting energy scale. We observe that pc ~Tc as Tc decreases with underdoping, identifying kBTc as the characteristic energy. While this result is trivial in conventional superconductors whose spectroscopic gaps are proportional to Tc, it is significant in cuprates. Research supported by DOE-Basic Energy Sciences through Grant No. FG02-08ER46533.

  2. Superconductor-Metal-Insulator transition in two dimensional Ta thin Films

    NASA Astrophysics Data System (ADS)

    Park, Sun-Gyu; Kim, Eunseong

    2013-03-01

    Superconductor-insulator transition has been induced by tuning film thickness or magnetic field. Recent electrical transport measurements of MoGe, Bi, Ta thin films revealed an interesting intermediate metallic phase which intervened superconducting and insulating phases at certain range of magnetic field. Especially, Ta thin films show the characteristic IV behavior at each phase and the disorder tuned intermediate metallic phase [Y. Li, C. L. Vicente, and J. Yoon, Physical Review B 81, 020505 (2010)]. This unexpected metallic phase can be interpreted as a consequence of vortex motion or contribution of fermionic quasiparticles. In this presentation, we report the scaling behavior during the transitions in Ta thin film as well as the transport measurements in various phases. Critical exponents v and z are obtained in samples with wide ranges of disorder. These results reveal new universality class appears when disorder exceeds a critical value. Dynamical exponent z of Superconducting sample is found to be 1, which is consistent with theoretical prediction of unity. z in a metallic sample is suddenly increased to be approximately 2.5. This critical exponent is much larger than the value found in other system and theoretical prediction. We gratefully acknowledge the financial support by the National Research Foundation of Korea through the Creative Research Initiatives.

  3. Triplet proximity effect in superconducting heterostructures with a half-metallic layer

    NASA Astrophysics Data System (ADS)

    Mironov, S.; Buzdin, A.

    2015-11-01

    We present the Usadel theory describing the superconducting proximity effect in heterostructures with a half-metallic layer. It is shown that the full spin polarization inside the half-metals gives rise to an additional component of the Green's function which results in the giant triplet spin-valve effect in superconductor (S)-ferromagnet (F)-half-metal (HM) trilayers and provides a natural explanation for the φ0-junction formation in the S/F/HM/F/S systems. In addition, we consider the exactly solvable model of the S/F/HM trilayers of atomic thickness and demonstrate that it reproduces the main features of the spin-valve effect found within the Usadel approach. Our results are shown to be in qualitative agreement with the recent experimental data on the spin-valve effect in MoGe /Ni /Cu /CrO2 hybrids [Singh et al., Phys. Rev. X 5, 021019 (2015), 10.1103/PhysRevX.5.021019].

  4. Quantum creep in a highly crystalline two-dimensional superconductor

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Kasahara, Yuichi; Ye, Jianting; Iwasa, Yoshihiro; Nojima, Tsutomu

    Conventional studies on quantum phase transitions, especially on superconductor-insulator or superconductor-metal-insulator transitions have been performed in deposited metallic thin films such as Bismuth or MoGe. Although the techniques of thin films deposition have been considerably improved, unintentional disorder such as impurities and deficiencies, generating the pinning centers, seems to still exist in such systems. The mechanical exfoliated highly crystalline two-dimensional material can be a good candidate to realize a less-disordered 2D superconductor with extremely weak pinning, combined with transfer method or ionic-liquid gating. We report on the quantum metal, namely, magnetic-field-induced metallic state observed in an ion-gated two-dimensional superconductor based on an ultra-highly crystalline layered band insulator, ZrNCl. We found that the superconducting state is extremely fragile against external magnetic fields; that is, zero resistance state immediately disappears, once an external magnetic field switches on. This is because the present system is relatively clean and the pinning potential is extremely weak, which cause quantum tunneling and flux flow of vortices, resulting in metallic ground state.

  5. Quantum melting of a two-dimensional vortex lattice at zero temperature

    SciTech Connect

    Rozhkov, A.; Stroud, D.

    1996-11-01

    We consider the quantum melting of a two-dimensional flux lattice at temperature {ital T} = 0 in the {open_quote}{open_quote}superclean limit.{close_quote}{close_quote} In this regime, we find that vortex motion is dominated by the Magnus force. A Lindemann criterion predicts melting when {ital n}{sub {ital v}}/{ital n}{sub {ital p}}{ge}{beta}, where {ital n}{sub {ital v}} and {ital n}{sub {ital p}} are the areal number densities of vortex pancakes and Cooper pairs, and {beta}{approx_equal}0.1. A second criterion is derived by using Wigner-crystal and Laughlin wave functions for the solid and liquid phases respectively, and setting the two energies equal. This gives a melting value similar to the Lindemann result. We discuss the numerical value of the {ital T}=0 melting field for thin layers of a low-{ital T}{sub {ital c}} superconductor, such as {ital a}-MoGe, and single layers of high-{ital T}{sub {ital c}} materials. {copyright} {ital 1996 The American Physical Society.}

  6. Geometry-dependent phase, stress state and electrical properties in nickel-silicide nanowires

    NASA Astrophysics Data System (ADS)

    Wang, C. C.; Lai, W. T.; Hsiao, Y. Y.; Chen, I. H.; George, T.; Li, P. W.

    2016-05-01

    We report that the geometry of single-crystalline Si nanowires (NWs) prior to salicidation at 500 °C is the key factor controlling the phase, stress state, and electrical resistivity of the resulting Ni x Si y NWs of width less than 100 nm. This is a radical departure from previous observations of a single phase formation for nickel silicides generated from the silicidation of bulk Si substrates. The phase transition from NiSi for large NWs ( W Si NW  =  250-450 nm) to Ni2Si for small NWs ( W Si NW  =  70-100 nm) is well correlated with the observed volumetric expansion and electrical resistivity variation with the NW width. For the extremely small dimensions of Ni x Si y NWs, we propose that the preeminent, kinetics-based Zhang and d’Heurle model for salicidation be modified to a more thermodynamically-governed, volume-expansion dependent Ni x Si y phase formation. A novel, plastic deformation mechanism is proposed to explain the observed, geometry-dependent Ni x Si y NW phase formation that also strongly influences the electrical performance of the NWs.

  7. Dissolution of Al2TiO5 inclusions in CaO-SiO2-Al2O3 slags at 1823 K

    NASA Astrophysics Data System (ADS)

    Wang, De-Yong; Liu, Jun; Jiang, Mao-Fa; Tsukihashi, Fumitaka; Matsuura, Hiroyuki

    2011-12-01

    Al-Ti-O inclusions always clog submerged nozzles in Ti-bearing Al-killed steel. A typical synthesized Al2TiO5 inclusion was immersed in a CaO-SiO2-Al2O3 molten slag for different durations at 1823 K. The Al2TiO5 dissolution paths and mechanism were revealed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Decreased amounts of Ti and Al and increased amounts of Si and Ca at the dissolution boundary prove that inclusion dissolution and slag penetration simultaneously occur. SiO2 diffuses or penetrates the inclusion more quickly than CaO, as indicated by the w(CaO)/ w(SiO2) value in the reaction region. A liquid product (containing 0.7-1.2 w(CaO)/ w(SiO2), 15wt%-20wt% Al2O3, and 5wt%-15wt% TiO2) forms on the inclusion surface when Al2TiO5 is dissolved in the slag. Al2TiO5 initially dissolves faster than the diffusion rate of the liquid product toward the bulk slag. With increasing reaction time, the boundary reaches its largest distance, the Al2TiO5 dissolution rate equals the liquid product diffusion rate, and the dissolution process remains stable until the inclusion is completely dissolved.

  8. Tungsten diffusion in silicon

    SciTech Connect

    De Luca, A.; Texier, M.; Burle, N.; Oison, V.; Pichaud, B.; Portavoce, A.; Grosjean, C.

    2014-01-07

    Two doses (10{sup 13} and 10{sup 15} cm{sup −2}) of tungsten (W) atoms were implanted in different Si(001) wafers in order to study W diffusion in Si. The samples were annealed or oxidized at temperatures between 776 and 960 °C. The diffusion profiles were measured by secondary ion mass spectrometry, and defect formation was studied by transmission electron microscopy and atom probe tomography. W is shown to reduce Si recrystallization after implantation and to exhibit, in the temperature range investigated, a solubility limit close to 0.15%–0.2%, which is higher than the solubility limit of usual metallic impurities in Si. W diffusion exhibits unusual linear diffusion profiles with a maximum concentration always located at the Si surface, slower kinetics than other metals in Si, and promotes vacancy accumulation close to the Si surface, with the formation of hollow cavities in the case of the higher W dose. In addition, Si self-interstitial injection during oxidation is shown to promote W-Si clustering. Taking into account these observations, a diffusion model based on the simultaneous diffusion of interstitial W atoms and W-Si atomic pairs is proposed since usual models used to model diffusion of metallic impurities and dopants in Si cannot reproduce experimental observations.

  9. Electron beam inspection of 16nm HP node EUV masks

    NASA Astrophysics Data System (ADS)

    Shimomura, Takeya; Narukawa, Shogo; Abe, Tsukasa; Takikawa, Tadahiko; Hayashi, Naoya; Wang, Fei; Ma, Long; Lin, Chia-Wen; Zhao, Yan; Kuan, Chiyan; Jau, Jack

    2012-11-01

    EUV lithography (EUVL) is the most promising solution for 16nm HP node semiconductor device manufacturing and beyond. The fabrication of defect free EUV mask is one of the most challenging roadblocks to insert EUVL into high volume manufacturing (HVM). To fabricate and assure the defect free EUV masks, electron beam inspection (EBI) tool will be likely the necessary tool since optical mask inspection systems using 193nm and 199nm light are reaching a practical resolution limit around 16nm HP node EUV mask. For production use of EBI, several challenges and potential issues are expected. Firstly, required defect detection sensitivity is quite high. According to ITRS roadmap updated in 2011, the smallest defect size needed to detect is about 18nm for 15nm NAND Flash HP node EUV mask. Secondly, small pixel size is likely required to obtain the high sensitivity. Thus, it might damage Ru capped Mo/Si multilayer due to accumulated high density electron beam bombardments. It also has potential of elevation of nuisance defects and reduction of throughput. These challenges must be solved before inserting EBI system into EUV mask HVM line. In this paper, we share our initial inspection results for 16nm HP node EUV mask (64nm HP absorber pattern on the EUV mask) using an EBI system eXplore® 5400 developed by Hermes Microvision, Inc. (HMI). In particularly, defect detection sensitivity, inspectability and damage to EUV mask were assessed. As conclusions, we found that the EBI system has capability to capture 16nm defects on 64nm absorber pattern EUV mask, satisfying the sensitivity requirement of 15nm NAND Flash HP node EUV mask. Furthermore, we confirmed there is no significant damage to susceptible Ru capped Mo/Si multilayer. We also identified that low throughput and high nuisance defect rate are critical challenges needed to address for the 16nm HP node EUV mask inspection. The high nuisance defect rate could be generated by poor LWR and stitching errors during EB writing

  10. Multilayer Optics for Ultra-high Resolution Solar Imaging in the EUV Region

    NASA Astrophysics Data System (ADS)

    Soufli, R.; Spiller, E.; Sommargren, G. E.; Bajt, S.; Folta, J. A.; Taylor, J. S.; Gullikson, E. M.

    2003-05-01

    Highly reflective multilayer-coated optics operating at near-normal incidence angles have been the enabling technology for solar imaging instruments in the extreme ultraviolet (EUV) energy range. Despite the advances made in recent years towards understanding of solar processes through missions such as TRACE, major unresolved questions in solar physics still remain, for instance on the subjects of coronal heating, eruptive flare and coronal wind initiation. Future generations of missions will need to study the physics of hot magnetized plasmas that occur in the corona on extremely small spatial and temporal scales, requiring imaging instruments with extremely high resolution and large fields of view. Proposals for future solar missions require optics with diameters up to 700 mm and system wavefront errors as low as 0.4 nm. Experimental results will be presented for normal-incidence, four-mirror and two-mirror EUV cameras operating around 13.4 nm. Mirror substrates were manufactured by commercial vendors and achieved figure errors around 0.25 nm rms, verified by phase-shifting, point-diffraction visible light interferometers developed at Lawrence Livermore Lab. The optics were multilayer-coated aligned and tested at facilities at Lawrence Livermore and Lawrence Berkeley National Labs. A large-scale DC-magnetron sputtering tool is used to coat the optics and can accommodate multiple optics up to 600 mm in diameter in a single deposition run. During multilayer deposition, a velocity modulation algorithm is applied in order to achieve extremely precise film thickness control. The deposited Mo/Si coatings demonstrate added figure errors below 0.05 nm rms. While these systems were constructed for EUV lithographic applications, the experimental results are immediately applicable to astronomical x-ray optics. Currently these are the only multilayer-coated EUV cameras worldwide meeting such stringent specifications, and have been implemented in the construction of the first

  11. Extreme ultraviolet lithography mask etch study and overview

    NASA Astrophysics Data System (ADS)

    Wu, Banqiu; Kumar, Ajay; Chandrachood, Madhavi; Sabharwal, Amitabh

    2013-04-01

    An overview of extreme ultraviolet lithography (EUVL) mask etch is presented and a EUVL mask etch study was carried out. Today, EUVL implementation has three critical challenges that hinder its adoption: extreme ultraviolet (EUV) source power, resist resolution-line width roughness-sensitivity, and a qualified EUVL mask. The EUVL mask defect challenges result from defects generated during blank preparation, absorber and multilayer deposition processes, as well as patterning, etching and wet clean processes. Stringent control on several performance criteria including critical dimension (CD) uniformity, etch bias, micro-loading, profile control, defect control, and high etch selectivity requirement to capping layer is required during the resist pattern duplication on the underlying absorber layer. EUVL mask absorbers comprise of mainly tantalum-based materials rather than chrome- or MoSi-based materials used in standard optical masks. Compared to the conventional chrome-based absorbers and phase shift materials, tantalum-based absorbers need high ion energy to obtain moderate etch rates. However, high ion energy may lower resist selectivity, and could introduce defects. Current EUVL mask consists of an anti-reflective layer on top of the bulk absorber. Recent studies indicate that a native oxide layer would suffice as an anti-reflective coating layer during the electron beam inspection. The absorber thickness and the material properties are optimized based on optical density targets for the mask as well as electromagnetic field effects and optics requirements of the patterning tools. EUVL mask etch processes are modified according to the structure of the absorber, its material, and thickness. However, etch product volatility is the fundamental requirement. Overlapping lithographic exposure near chip border may require etching through the multilayer, resulting in challenges in profile control and etch selectivity. Optical proximity correction is applied to further

  12. Spectroscopy of highly charged ions and its relevance to EUV and soft x-ray source development

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Gerry; Li, Bowen; D'Arcy, Rebekah; Dunne, Padraig; Hayden, Paddy; Kilbane, Deirdre; McCormack, Tom; Ohashi, Hayato; O'Reilly, Fergal; Sheridan, Paul; Sokell, Emma; Suzuki, Chihiro; Higashiguchi, Takeshi

    2015-07-01

    The primary requirement for the development of tools for extreme ultraviolet lithography (EUVL) has been the identification and optimization of suitable sources. These sources must be capable of producing hundreds of watts of extreme ultraviolet (EUV) radiation within a wavelength bandwidth of 2% centred on 13.5 nm, based on the availability of Mo/Si multilayer mirrors (MLMs) with a reflectivity of ˜70% at this wavelength. Since, with the exception of large scale facilities, such as free electron lasers, such radiation is only emitted from plasmas containing moderately to highly charged ions, the source development prompted a large volume of studies of laser produced and discharge plasmas in order to identify which ions were the strongest emitters at this wavelength and the plasma conditions under which their emission was optimized. It quickly emerged that transitions of the type 4p64dn - 4p54dn+1 + 4dn-14f in the spectra of Sn IX to SnXIV were the best candidates and work is still ongoing to establish the plasma conditions under which their emission at 13.5 nm is maximized. In addition, development of other sources at 6.X nm, where X ˜ 0.7, has been identified as the wavelength of choice for so-called Beyond EUVL (BEUVL), based on the availability of La/B based MLMs, with theoretical reflectance approaching 80% at this wavelength. Laser produced plasmas of Gd and Tb have been identified as potential source elements, as n = 4 - n = 4 transitions in their ions emit strongly near this wavelength. However to date, the highest conversion efficiency (CE) obtained, for laser to BEUV energy emitted within the 0.6% wavelength bandwidth of the available mirrors is only 0.8%, compared with values of 5% for the 2% bandwidth relevant for the Mo/Si mirrors at 13.5 nm. This suggests a need to identify other potential sources or the selection of other wavelengths for BEUVL. This review deals with the atomic physics of the highly-charged ions relevant to EUV emission at these

  13. Processing, Compatibility and Oxidation of Diboride - Oxide Matrix Composites for Ultrahigh-Temperature Applications.

    NASA Astrophysics Data System (ADS)

    Abada, Ahmed

    1990-01-01

    Promising results for the development of a ceramic/ceramic composite to be used for structural applications in the ultra high temperature range (1650-1850^ circC) have been obtained for alumina reinforced with titanium or zirconium diboribe coated with molybdenum disilicide. Prior to this achievement, several theoretical and experimental studies of particulate composites with (TiB_2 or ZrB_2) imbedded in (ZrO_2, Y_2 O_3 or Al_2 O_3) were conducted. Calculations of the compatibility and stability of oxide matrices with the diborides in vacuum showed positive energies of formation, indicating suitability of reinforcement of alumina under vacuum conditions. Also, since the sublimation of vapor species at ultra high temperatures is very critical to the stability of substances still existing in their condensed states, a detailed thermodynamic analysis of the metal -oxygen systems, was carried out using elemental data of the TiB_2, ZrB_2 , ZrO_2, Y_2 O_3, Al_2 O_3, MoSi_2 and their combinations (TiB_2 or ZrB_2)/(ZrO_2 , Y_2O_3 or Al_2O_3) for comparison, at 1650, 1850 and 2050^ circC. A comparison of the combination TiB _2 and ZrB_2 in MoSi_2/(Al_2O _3 or ZrO_2) at 1650^circC was also made. A stability analysis using equilibrium oxygen partial pressures for the TiB_2 and ZrB_2 decomposition at 1650, 1850 and 2050^ circC was carried out. A detailed characterization of the powders used for the oxide matrices, the diborides and the molybdenum disilicide are presented. The effects of the powder characteristics and the vacuum hot pressing parameters on the densification of the composites are discussed. Stability and chemical compatibility of the particulate and ternary composites in their as hot pressed states and following their vacuum and air oxidation treatments were characterized. Interdiffusion of elemental species across diboride/disilicide and oxide/disilicide interfaces was studies by EDS dot mapping. It is proposed that the growth of the Mo _5Si_3 is interface

  14. Vortex Dynamics in Anisotropic Superconductors

    NASA Astrophysics Data System (ADS)

    Steel, David Gordon

    Measurements of the ac screening response and resistance of superconducting Bi_2Sr _2CaCu_2O _8 (BSCCO) crystals have been used to probe the dynamics of the magnetic flux lines within the mixed state as a function of frequency, temperature, and applied dc field. For the particular range of temperature and magnetic field in which measurements were made, the systematic behavior of the observed dissipation peak in the screening response is consistent with electromagnetic skin size effects rather than a phase transition. According to microscopic theories of the interaction between the flux lines and a driving ac field, such a skin size effect is expected for the case when the vortex motion is diffusive in nature. However, diffusive motion is inconsistent with simple activation models that use a single value for the pinning energy (derived from direct measurement of the dc resistance). This contradiction suggests a distribution of pinning energies within the sample. Interlayer vortex decoupling has been directly observed as a function of temperature and applied magnetic field using electronic transport perpendicular to the layers in synthetic amorphous MoGe/Ge multilayer samples. Perpendicular transport has been shown to be a far more sensitive measure of the phase coupling between layers than in-plane properties. Below the decoupling temperature T_{D} the resistivity anisotropy collapses and striking nonlinearities appear in the perpendicular current-voltage behavior, which are not observed in parallel transport. A crossover in behavior is also observed at a field H _{x}, in accordance with theory. The data suggest the presence of a phase transition into a state with finite in-plane resistivity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  15. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Reese, Bradley

    2015-01-01

    Arkansas Power Electronics International (APEI), Inc., is developing a high-efficiency, radiation-hardened 3.8-kW SiC power supply for the PPU of Hall effect thrusters. This project specifically targets the design of a PPU for the high-voltage Hall accelerator (HiVHAC) thruster, with target specifications of 80- to 160-V input, 200- to 700-V/5A output, efficiency greater than 96 percent, and peak power density in excess of 2.5 kW/kg. The PPU under development uses SiC junction field-effect transistor power switches, components that APEI, Inc., has irradiated under total ionizing dose conditions to greater than 3 MRad with little to no change in device performance.

  16. Investigation of Miniaturized Radioisotope Thermionic Power Generation for General Use

    NASA Technical Reports Server (NTRS)

    Duzik, Adam J.; Choi, Sang H.

    2016-01-01

    Radioisotope thermoelectric generators (RTGs) running off the radioisotope Pu238 are the current standard in deep space probe power supplies. While reliable, these generators are very inefficient, operating at only approx.7% efficiency. As an alternative, more efficient radioisotope thermionic emission generators (RTIGs) are being explored. Like RTGs, current RTIGs concepts use exotic materials for the emitter, limiting applicability to space and other niche applications. The high demand for long-lasting mobile power sources would be satisfied if RTIGs could be produced inexpensively. This work focuses on exposing several common materials, such as Al, stainless steel, W, Si, and Cu, to elevated temperatures under vacuum to determine the efficiency of each material as inexpensive replacements for thermoelectric materials.

  17. Tests of variable-band multilayers designed for investigating optimal signal-to-noise vs artifact signal ratios in Dual-Energy Digital Subtraction Angiography (DDSA) imaging systems

    SciTech Connect

    Boyers, D.; Ho, A.; Li, Q.; Piestrup, M.; Rice, M.; Tatchyn, R.

    1993-08-01

    In recent work, various design techniques were applied to investigate the feasibility of controlling the bandwidth and bandshape profiles of tungsten/boron-carbon (W/B{sub 4}C) and tungsten/silicon (W/Si) multilayers for optimizing their performance in synchrotron radiation based angiographical imaging systems at 33 keV. Varied parameters included alternative spacing geometries, material thickness ratios, and numbers of layer pairs. Planar optics with nominal design reflectivities of 30%--94% and bandwidths ranging from 0.6%--10% were designed at the Stanford Radiation Laboratory, fabricated by the Ovonic Synthetic Materials Company, and characterized on Beam Line 4-3 at the Stanford Synchrotron Radiation Laboratory, in this paper we report selected results of these tests and review the possible use of the multilayers for determining optimal signal to noise vs. artifact signal ratios in practical Dual-Energy Digital Subtraction Angiography systems.

  18. Modified zeolite-based catalyst for effective extinction hydrocracking

    SciTech Connect

    Yan, T.Y. )

    1989-10-01

    The shape selectivity of zeolites makes them generally ineffective for extinction hydrocracking of polycyclic aromatic feeds. To overcome this problem, the zeolite can be modified with an amorphous cracking component to form a composite catalyst. This composite catalyst will be effective for extinction hydrocracking and retain the superior performance characteristics of a zeolite catalyst at the same time because the zeolite and the amorphous components of the catalyst operate complementarily. To illustrate this principle, NiW/REX-NiW/SiO/sub 2/Al/sub 2/O/sub 3/ composite catalyst was tested in the pilot plant. It was active, low in aging rate, resistant to nitrogen poisoning and high in selectivities for naphthas. The aged catalyst could be oxidatively regenerated to fully recover the activity and the product selectivities. This composite catalyst was superior to both individual (zeolite and amorphous) components for extinction hydrocracking. Catalysts similar to this have been used commercially for many years.

  19. Interlaced X-ray diffraction computed tomography

    PubMed Central

    Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.

    2016-01-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305

  20. Production and performance of multilayer-coated conical x-ray mirrors.

    PubMed

    Ulmer, Melville P; Altkorn, Robert; Graham, Michael E; Madan, Anita; Chu, Yong S

    2003-12-01

    A method of fabricating replica figured x-ray optics with integral multilayer coatings is presented. With the intact electroforming multilayer process (IEMP) technique, we sputter multilayers onto a reusable superpolished mandrel, electroform nickel over the multilayers, and remove the multilayer-coated nickel shell intact from the mandrel. This approach offers advantages over more traditional, original, and segmented-replica fabrication techniques, including low cost; compatibility with a wide range of mirror designs, diameters, and focal lengths; simple integration with multilayer sputtering processes; and the ability to produce complete shells of revolution. The fabrication of W/Si multilayer-coated 10-cm-diameter conical x-ray mirrors is described, as are reflectivity measurements at 10 and 30 keV. The measured reflectivity of the IEMP multilayers at the 10-keV primary Bragg peak was 17%. Measurements of multiple points on the cone showed multilayer uniformity to within a few percent around the mirror.

  1. Influence of Basicity and MgO on Fluidity and Desulfurization Ability of High Aluminum Slag

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Meng, Qing-min; Long, Hong-ming; Li, Jia-xin

    2016-08-01

    The viscosity of experimental slag, which was mixed based on the composition of a practical blast furnace slag, was measured in this paper. The influence of Al2O3 and MgO content, basicity R2 = w(CaO)/w(SiO2) on the fluidity of slag was studied. The stepwise regression analysis in SPSS was used to reveal the relationship between sulfur distribution coefficient LS and slag composition as well as furnace temperature. The results show that increasing of MgO up to 12% can decrease the slag viscosity. The w(MgO) should be controlled below 8% when there is 20% Al2O3 in the slag. Temperature of hot metal and content of CaO in slag are the two dominant factors on the desulfurization capacity of slag.

  2. Interlaced X-ray diffraction computed tomography.

    PubMed

    Vamvakeros, Antonios; Jacques, Simon D M; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J; Beale, Andrew M

    2016-04-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn-Na-W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy.

  3. Essential and Beneficial Trace Elements in Plants, and Their Transport in Roots: a Review.

    PubMed

    Vatansever, Recep; Ozyigit, Ibrahim Ilker; Filiz, Ertugrul

    2017-01-01

    The essentiality of 14 mineral elements so far have been reported in plant nutrition. Eight of these elements were known as micronutrients due to their lower concentrations in plants (usually ≤100 mg/kg/dw). However, it is still challenging to mention an exact number of plant micronutrients since some elements have not been strictly proposed yet either as essential or beneficial. Micronutrients participate in very diverse metabolic processes, including from the primary and secondary metabolism to the cell defense, and from the signal transduction to the gene regulation, energy metabolism, and hormone perception. Thus, the attempt to understand the molecular mechanism(s) behind their transport has great importance in terms of basic and applied plant sciences. Moreover, their deficiency or toxicity also caused serious disease symptoms in plants, even plant destruction if not treated, and many people around the world suffer from the plant-based dietary deficiencies or metal toxicities. In this sense, shedding some light on this issue, the 13 mineral elements (Fe, B, Cu, Mn, Mo, Si, Zn, Ni, Cl, Se, Na, Al, and Co), required by plants at trace amounts, has been reviewed with the primary focus on the transport proteins (transporters/channels) in plant roots. So, providing the compiled but extensive information about the structural and functional roles of micronutrient transport genes/proteins in plant roots.

  4. Method to adjust multilayer film stress induced deformation of optics

    DOEpatents

    Mirkarimi, Paul B.; Montcalm, Claude

    2000-01-01

    A buffer-layer located between a substrate and a multilayer for counteracting stress in the multilayer. Depositing a buffer-layer having a stress of sufficient magnitude and opposite in sign reduces or cancels out deformation in the substrate due to the stress in the multilayer. By providing a buffer-layer between the substrate and the multilayer, a tunable, near-zero net stress results, and hence results in little or no deformation of the substrate, such as an optic for an extreme ultraviolet (EUV) lithography tool. Buffer-layers have been deposited, for example, between Mo/Si and Mo/Be multilayer films and their associated substrate reducing significantly the stress, wherein the magnitude of the stress is less than 100 MPa and respectively near-normal incidence (5.degree.) reflectance of over 60% is obtained at 13.4 nm and 11.4 nm. The present invention is applicable to crystalline and non-crystalline materials, and can be used at ambient temperatures.

  5. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  6. Damage Free Particle Removal from Extreme Ultraviolet Lithography Mask Layers by High Energy Laser Shock Wave Cleaning

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Gon; Yoo, Young-Sam; Kim, Tae-Geun; Ahn, Jinho; Lee, Jong-Myoung; Choi, Jae-Sung; Busnaina, Ahmed A.; Park, Jin-Goo

    2008-06-01

    Plasma shock waves induced by focusing a Q-switched Nd:YAG laser at a maximum energy of 1.8 J in air were characterized by a laser beam deflection method and were applied to 50 nm silica particle removal from a Al2O3/TaN/Ru/MoSi 40 pairs as the extreme ultraviolet lithography (EUVL) mask layers on silicon wafer. A high energy laser induced shock wave effectively removed 50 nm silica particles from the EUVL mask layers. The change of sample topography before and after laser shock cleaning was measured by an atomic force microscope. Surface damage was observed at a gap distance of 1.5 mm. The dimensions of the plasma plume were characterized as a function of the laser energy and focus-to-surface gap distance. The plasma plume was the main source for damaging the surface. A high energy laser induced shock wave with a gap distance of over 3 mm achieved damage-free sub-100 nm particle removal.

  7. Lasers, extreme UV and soft X-ray

    SciTech Connect

    Nilsen, Joseph

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA) laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.

  8. Quantum confinement in semiconductor nanofilms: Optical spectra and multiple exciton generation

    NASA Astrophysics Data System (ADS)

    Khmelinskii, Igor; Makarov, Vladimir I.

    2016-04-01

    We report optical absorption and photoluminescence (PL) spectra of Si and SnO2 nanocrystalline films in the UV-vis-NIR range, featuring discrete bands resulting from transverse quantum confinement, observed in the optical spectra of nanofilms for the first time ever. The film thickness ranged from 3.9 to 12.2 nm, depending on the material. The results are interpreted within the particle-in-a-box model, with infinite walls. The calculated values of the effective electron mass are independent on the film thickness and equal to 0.17mo (Si) and 0.21mo (SnO2), with mo the mass of the free electron. The second calculated model parameter, the quantum number n of the HOMO (valence band), was also thickness-independent: 8.00 (Si) and 7.00 (SnO2). The transitions observed in absorption all start at the level n and correspond to Δn = 1, 2, 3, …. The photoluminescence bands exhibit large Stokes shifts, shifting to higher energies with increased excitation energy. In effect, nanolayers of Si, an indirect-gap semiconductor, behave as a direct-gap semiconductor, as regards the transverse-quantized level system. A prototype Si-SnO2 nanofilm photovoltaic cell demonstrated photoelectron quantum yields achieving 2.5, showing clear evidence of multiple exciton generation, for the first time ever in a working nanofilm device.

  9. Atom probe tomography investigation of lath boundary segregation and precipitation in a maraging stainless steel.

    PubMed

    Thuvander, Mattias; Andersson, Marcus; Stiller, Krystyna

    2013-09-01

    Lath boundaries in a maraging stainless steel of composition 13Cr-8Ni-2Mo-2Cu-1Ti-0.7Al-0.3Mn-0.2Si-0.03C (at%) have been investigated using atom probe tomography following aging at 475 °C for up to 100 h. Segregation of Mo, Si and P to the lath boundaries was observed already after 5 min of aging, and the amount of segregation increases with aging time. At lath boundaries also precipitation of η-Ni₃(Ti, Al) and Cu-rich 9R, in contact with each other, takes place. These co-precipitates grow with time and because of coarsening the area number density decreases. After 100 h of aging a ∼5 nm thick film-like precipitation of a Mo-rich phase was observed at the lath boundaries. From the composition of the film it is suggested that the phase in question is the quasicrystalline R' phase. The film is perforated with Cu-rich 9R and η-Ni₃(Ti, Al) co-precipitates. Not all precipitate types present in the matrix do precipitate at the lath boundaries; the Si-containing G phase and γ'-Ni₃(Ti, Al, Si) and the Cr-rich α' phase were not observed at the lath boundaries.

  10. EUV multilayer coatings for the Atmospheric Imaging Assembly instrument aboard the Solar Dynamics Observatory

    SciTech Connect

    Soufli, R; Windt, D L; Robinson, J C; Baker, S L; Spiller, E; Dollar, F J; Aquila, A L; Gullikson, E M; Kjonrattanawanich, B; Seely, J F; Golub, L

    2006-02-09

    Multilayer coatings for the 7 EUV channels of the AIA have been developed and completed successfully on all AIA flight mirrors. Mo/Si coatings (131, 171, 193.5, 211 {angstrom}) were deposited at Lawrence Livermore National Laboratory (LLNL). Mg/SiC (304, 335 {angstrom}) and Mo/Y (94 {angstrom}) coatings were deposited at Columbia University. EUV reflectance of the 131/335 {angstrom}, 171 {angstrom}, 193.5/211 {angstrom} primary and secondary flight mirrors and the 94/304 {angstrom} secondary flight mirror was measured at beamline 6.3.2. of the Advanced Light Source (ALS) at LBNL. EUV reflectance of the 94/304 {angstrom} primary and secondary flight mirrors was measured at beamline X24C of the National Synchrotron Light Source (NSLS) at Brookhaven National Lab. Preliminary EUV reflectance measurements of the 94, 304 and 335 {angstrom} coatings were performed with a laser plasma source reflectometer located at Columbia University. Prior to multilayer coating, Atomic Force Microscopy (AFM) characterization and cleaning of all flight substrates was performed at LLNL.

  11. Sintering Behavior and Microstructure Formation of Titanium Aluminide Alloys Processed by Metal Injection Molding

    NASA Astrophysics Data System (ADS)

    Soyama, Juliano; Oehring, Michael; Ebel, Thomas; Kainer, Karl Ulrich; Pyczak, Florian

    2017-01-01

    The sintering behavior of metal injection molded titanium aluminide alloys, their microstructure formation and resulting mechanical properties were investigated. As reference material, the alloy Ti-45Al-5Nb-0.2B-0.2C at.% (TNB-V5) was selected. Additionally, two other variations with Mo and Mo + Si additions were prepared: Ti-45Al-3Nb-1Mo-0.2B-0.2C at.% and Ti-45Al-3Nb-1Mo-1Si-0.2B-0.2C at.%. The results indicate that the optimum sintering temperature was slightly above the solidus line. With proper sintering parameters, very low porosities (<0.5%) and fine microstructures with a colony size <85 µm could be achieved. Considering the sintering temperatures applied, the phase transformations upon cooling could be described as L + β → β → α + β → α → α + γ → α2 + γ, which was in agreement with the microstructures observed. The effects of Mo and Si were opposite regarding the sintering behavior. Mo addition led to an increase in the optimum sintering temperature, whereas Si caused a significant decrease.

  12. Impact of ArF attenuated PSM using multishifter layer (TiN/Si3N4) for next-generation lithography

    NASA Astrophysics Data System (ADS)

    Nam, Kyung-Han; Kim, Lee-Ju; Jeong, Hyoung-Sup; Lee, Sang W.; Lee, In-Soo; Shin, Cheol; Kim, Hong-Seok; Dieu, L.; Paek, Seung-Weon; Koo, Sang-Sool; Bae, Sang-Man; Ham, Young-Mog; Shin, Ki-Soo

    2001-09-01

    ArF lithography that is expected the candidate for next generation optical lithography and attenuated Phase Shift Mask (att-PSM) will be adapted for 0.12micrometers design-rule and beyond. For the next-generation lithography, the most important requirement for mask process is enough resolution and good pattern fidelity to generate various critical patterns, of which sizes are below 0.5micrometers main pattern including OPC patterns. In this paper we describe in terms of blank mask properties, mask making process and wafer performance of ArF attenuated Phase Shift Mask (att-OSM) using TiN/Si3N4(abbreviated as TiN/SiN) multi-layer for Next Generation Lithography (NGL). In view point of material, we have evaluated for the applicability of TiN/SiN multi-layer to ArF lithography as compared with non- stoichiometric MoSiON-based single-layer structure. In mask making process, we used Chemically Amplified Resist (CAR) process characteristics and Dry etching system for improvement of enough resolution and pattern fidelity. Also we have investigated wafer performance for ArF att-PSM in terms of process windows as compared with BIM (Binary Intensity Mask) in 120nm D/R real cell pattern and 100nm L/S(Line and Space)D/R pattern, respectively.

  13. Mask degradation monitoring with aerial mask inspector

    NASA Astrophysics Data System (ADS)

    Tseng, Wen-Jui; Fu, Yung-Ying; Lu, Shih-Ping; Jiang, Ming-Sian; Lin, Jeffrey; Wu, Clare; Lifschitz, Sivan; Tam, Aviram

    2013-06-01

    As design rule continues to shrink, microlithography is becoming more challenging and the photomasks need to comply with high scanner laser energy, low CDU, and ever more aggressive RETs. This give rise to numerous challenges in the semiconductor wafer fabrication plants. Some of these challenges being contamination (mainly haze and particles), mask pattern degradation (MoSi oxidation, chrome migration, etc.) and pellicle degradation. Fabs are constantly working to establish an efficient methodology to manage these challenges mainly using mask inspection, wafer inspection, SEM review and CD SEMs. Aerial technology offers a unique opportunity to address the above mask related challenges using one tool. The Applied Materials Aera3TM system has the inherent ability to inspect for defects (haze, particles, etc.), and track mask degradation (e.g. CDU). This paper focuses on haze monitoring, which is still a significant challenge in semiconductor manufacturing, and mask degradation effects that are starting to emerge as the next challenge for high volume semiconductor manufacturers. The paper describes Aerial inspector (Aera3) early haze methodology and mask degradation tracking related to high volume manufacturing. These will be demonstrated on memory products. At the end of the paper we take a brief look on subsequent work currently conducted on the more general issue of photo mask degradation monitoring by means of an Aerial inspector.

  14. Multilayer reflective coatings for extreme-ultraviolet lithography

    SciTech Connect

    Montcalm, C., LLNL

    1998-03-10

    Multilayer mirror coatings which reflect extreme ultraviolet (EUV) radiation are a key enabling technology for EUV lithography. Mo/Si multilayers with reflectances of 67.5% at 13.4 nm are now routinely achieved and reflectances of 70 2% at 11.4 nm were obtained with MO/Be multilayers. High reflectance is achieved with careful control of substrate quality, layer thicknesses, multilayer materials, interface quality, and surface termination. Reflectance and film stress were found to be stable relative to the requirements for application to EUV lithography. The run-to-run reproducibility of the reflectance peak position was characterized to be better than 0.2%, providing the required wavelength matching among the seven multilayer-coated mirrors used in the present lithography system design. Uniformity of coating was improved to better than 0.5% across 150 mm diameter substrates. These improvements in EUV multilayer mirror technology will enable us to meet the stringent specifications for coating the large optical substrates for our next-generation EUV lithography system.

  15. Femtosecond laser ablation of CuxZr1-x bulk metallic glasses: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Marinier, Sébastien; Lewis, Laurent J.

    2015-11-01

    Molecular-dynamics simulations combined with a two-temperature model are used to study laser ablation in CuxZr1-x (x =0.33 ,0.50 ,0.67 ) metallic glasses as well as crystalline CuZr2 in the C11b (MoSi2) structure. Ablation thresholds are found to be 430 ±10 ,450 ±10 ,510 ±10 , and 470 ±10 J/m 2 for a-Cu2Zr , a-CuZr, a-CuZr2, and c-CuZr2, respectively. The larger threshold in amorphous CuZr2 results from a weaker electron-phonon coupling and thus longer electron-ion equilibration time. We observe that the velocity of the pressure waves in the amorphous samples is not affected by the fluence, in contrast to the crystal; this is due to differences in the behavior of the shear modulus with increasing pressure. The heat-affected zone in the different systems is characterized in terms of the melting depth as well as inelastic deformations. The melting depth is found to be smaller in the crystal than in the amorphous targets because of its higher melting temperature. The inelastic deformations are investigated in terms of the von Mises shear strain invariant ηMises; the homogeneous nucleation of shear transformation zones is observed in the glass as reported in previous theoretical and experimental studies. The coalescence of the shear transformation zones is also found at higher fluence.

  16. Synthesis, Characterization, and Catalytic Activity of Sulfided Silico-Alumino-Titanate (Si-Al-Ti) Mixed Oxides Xerogels Supported Ni-Mo Catalyst

    SciTech Connect

    Al-Adwani, H.A.; Anthony, R.G.; Gardner, T.J.; Thammachote, N.

    1999-02-24

    Layered semicrystalline silico-alumino-titanate (Si-Al-Ti) mixed oxides were synthesized by a modified sol-gel method with hydrothermal synthesis temperatures less than 200 C and autogenic pressure. The solid products are semicrystalline materials with a surface area of 136-367 m{sup 2}/g and a monomodal pore size distribution with an average pore diameter of 3.6-4.7 nrn. The catalytic activity for pyrene hydrogenation in a batch reactor at 300 C and 500 psig was determined for sulfided Ni-Mo supported on the Si-Al-Ti mixed oxide. The activity was a function of the support composition the heat treatment before and after loading the active metals, the addition of organic templates, and different methods of metal loading. The most active sulfided Ni-Mo/Si-Al-Ti catalyst has an activity in the same range as the commercial catalyst, Shell 324, but the metal loading is 37% less than the commercial catalyst.

  17. Growth and Printability of Multilayer Phase Defects on EUV MaskBlanks

    SciTech Connect

    Liang, Ted; Ultanir, Erdem; Zhnag, Guojing; Park, Seh-Jin; Anderson, Erik; Gullikson, Eric; Naulleau, Patrick; Salmassi, Farhad; Mirkarimi, Paul; Spiller, Eberhard; Baker, Sherry

    2007-06-10

    The ability to fabricate defect-free mask blanks is a well-recognized challenge in enabling extreme ultraviolet lithography (EUVL) for semiconductor manufacturing. Both the specification and reduction of defects necessitate the understanding of their printability and how they are generated and grow during Mo-Si multilayer (ML) deposition. A ML phase defect can be depicted by its topographical profile on the surface as either a bump or pit, which is then characterized by height or depth and width. The complexity of such seemingly simple phase defects lies in the many ways they can be generated and the difficulties of measuring their physical shape/size and optical effects on printability. An effective way to study phase defects is to use a programmed defect mask (PDM) as 'model' test sample where the defects are produced with controlled growth on a ML blank and accurate placement in varying proximity to absorber patterns on the mask. This paper describes our recent study of ML phase defect printability with resist data from exposures of a ML PDM on the EUV micro-exposure tool (MET, 5X reduction with 0.3NA).

  18. Analysis of a New High-Toughness Ultra-high-Strength Martensitic Steel by Transmission Electron Microscopy and Atom Probe Tomography

    NASA Astrophysics Data System (ADS)

    Hartshorne, Matthew I.; McCormick, Caroline; Schmidt, Michael; Novotny, Paul; Isheim, Dieter; Seidman, David N.; Taheri, Mitra L.

    2016-04-01

    The microstructure of a new martensitic high-strength steel (Fe-0.40C-3.81Ni-1.31Cr-1.50Si-0.75Mn-0.52Mo-0.51Cu-0.30V) with high fracture toughness is characterized by transmission electron microscopy and atom probe tomography (APT). MC, M6C, and M23C6 precipitates form inside the martensitic lath matrix. The fracture toughness is insensitive to the dissolution of M23C6 precipitates at austenitizing temperatures above 1164 K (891 °C). APT reveals that solute segregation at the prior austenite grain boundaries (PAGB) is not uniform, with C, Mo, Si, Ni, and/or P enrichment varying at different areas of the PAGB. Si depletion is detected in the same area as the highest C enrichment. Carbon also segregates at lath boundaries. Segregation of C indicates the presence of retained austenite films at both PAGB and lath boundaries. Regions enriched in C up to 10 pct were found within the laths; however, no regions were enriched to the level expected of cementite or ɛ-carbide. The observed C distribution and high fracture toughness indicates that the tempering behavior is significantly different than that observed in 300M steel. The effect of Si, Ni, and Cu on the formation and stabilization of the regions of C enrichment and retained austenite require further study, as it may be key to the increased toughness.

  19. Structural and electronic properties of XSi{sub 2} (X = Cr, Mo, and W)

    SciTech Connect

    Shugani, Mani; Aynyas, Mahendra; Sanyal, S. P.

    2015-07-15

    The structural and electronic properties of metal silicides XSi{sub 2} (X = Cr, Mo, and W), which crystallize in tetragonal structure, are investigated systematically using the first-principle density functional theory. The total energies are computed as a function of volume and fitted to the Birch equation of state. The ground-state properties such as equilibrium lattice constants a{sub 0} and c{sub 0}, bulk modulus B, its pressure derivative B, B′, and the density of states at the Fermi level, N(E{sub F}), are calculated and compared with other experimental and theoretical results, showing good agreement. The calculated band structure indicates that XSi{sub 2} compounds are semimetallic in nature. From the present study, we predict the structural and electronic properties of CrSi{sub 2} in the tetragonal phase and indicate that CrSi{sub 2} is energetically more stable than MoSi{sub 2} and WSi{sub 2}. Analyzing the bonding properties of the three metal silicides, we observe that WSi{sub 2} has a strong covalent bonding due to W 5d electrons.

  20. Ion beam sputter deposition of low-defect EUV mask blanks on 6-in. LTEM substrates in a real production environment

    NASA Astrophysics Data System (ADS)

    Becker, Hans W.; Aschke, Lutz; Schubert, Birgit; Krieger, Juergen; Lenzen, Frank; Yulin, Sergey A.; Feigl, Torsten; Kuhlmann, Thomas; Kaiser, Norbert

    2002-07-01

    EUV mask blanks consist of two thin film systems deposited on low thermal expansion 6 inch substrates (LTEM). First there is the multilayer stack with around 100 alternating layers of elements with different optical properties which are topped by a capping layer. Beside optimal optical properties it is also necessary to improve the heat stability of the layer system. The absorber stack which consists of a buffer and an absorber layer is next. Here a minimum absorption of EUV light of 99 percent is required. The stress in both layer systems should be as low as possible. The reduction of defects to an absolute minimum is one of the main challenges. The high-reflective Mo/Si multilayer coatings were designed for normal incidence reflectivity and successfully deposited on 6-inch LTEM substrates by ion-beam sputtering. X-ray scattering, transmission electron microscopy and atomic force microscopy were used for characterization of the multilayer interfaces and the surface morphology. The results are correlated to the measured normal incidence reflectivity using synchrotron radiation at the PTB reflectometer at BESSY II, Berlin, Germany.

  1. High-performance 6-inch EUV mask blanks produced under real production conditions by ion-beam sputter deposition

    NASA Astrophysics Data System (ADS)

    Becker, Hans W.; Sobel, Frank; Aschke, Lutz; Renno, Markus; Krieger, Juergen; Buttgereit, Ute; Hess, Guenter; Lenzen, Frank; Knapp, Konrad; Yulin, Sergey A.; Feigl, Torsten; Kuhlmann, Thomas; Kaiser, Norbert

    2002-12-01

    EUV mask blanks consist of two thin film systems deposited on low thermal expansion 6 inch substrates (LTEM). First there is the multilayer stack with around 100 alternating layers of elements with different optical properties which are topped by a capping layer. The absorber stack which consists of a buffer and a absorber layer is next. Here a minimum absorption of EUV light of 99 % is required. The stress in both layer systems should be as low as possible. The reduction of defects to an absolute minimum is one of the main challenges. The high-reflective Mo/Si multilayer coatings were designed for normal incidence reflectivity and successfully deposited on 6-inch LTEM substrates by ion-beam sputtering. X-ray scattering, transmission electron microscopy and atomic force microscopy were used for characterization of the multilayer interfaces and the surface morphology. The results are correlated to the measured normal incidence reflectivity using synchrotron radiation at the "Physikalisch- Technischen Bundesanstalt" (PTB) refelctometer at BESSY II, Berlin, Germany. A high resolution laser scanner was used to measure the particle distribution. First multilayer defect results are presented.

  2. Laser plasma sources of soft x-rays and extreme ultraviolet (EUV) for application in science and technology

    NASA Astrophysics Data System (ADS)

    Bartnik, Andrzej; Wachulak, Przemysław; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Mirosław; Adjei, Daniel; Ahad, Inam Ul; Ayele, Mesfin G.; Fok, Tomasz; Szczurek, Anna; Torrisi, Alfio; Wegrzyński, Łukasz; Fiedorowicz, Henryk

    2015-05-01

    Laser plasma sources of soft x-rays and extreme ultraviolet (EUV) developed in our laboratory for application in various areas of technology and science are presented. The sources are based on a laser-irradiated gas puff target approach. The targets formed by pulsed injection of gas under high-pressure are irradiated with nanosecond laser pulses from Nd:YAG lasers. We use commercial lasers generating pulses with time duration from 1ns to 10ns and energies from 0.5J to 10J at 10Hz repetition rate. The gas puff targets are produced using a double valve system equipped with a special nozzle to form a double-stream gas puff target which secures high conversion efficiency without degradation of the nozzle. The use of a gas puff target instead of a solid target makes generation of laser plasmas emitting soft x-rays and EUV possible without target debris production. The sources are equipped with various optical systems, including grazing incidence axisymmetric ellipsoidal mirrors, a "lobster eye" type grazing incidence multi-foil mirror, and an ellipsoidal mirror with Mo/Si multilayer coating, to collect soft x-ray and EUV radiation and form the radiation beams. In this paper new applications of these sources in various fields, including soft x-ray and EUV imaging in nanoscale, EUV radiography and tomography, EUV materials processing and modification of polymer surfaces, EUV photoionization of gases, radiobiology and soft x-ray contact microscopy are reviewed.

  3. The art of photomask materials for low-k1-193nm lithography

    NASA Astrophysics Data System (ADS)

    Hashimoto, Masahiro; Iwashita, Hiroyuki; Mitsui, Hideaki

    2009-04-01

    The resolution of photomask patterns were improved with a hardmask (HM) system. The system which is thin Sicompounds layer is easily etched by the hyper-thin resist (below 100nm thickness). The HM material has sufficient etching selectivity against the chrome-compounds which is the second layer chrome absorber for the phase-shifter. This hardmask layer has been completely removed during the phase-shifter etching. It means that the conventional phase-shit mask (PSM) has been made with the ultimately high-resolution without configuration changes. Below 50nm resolution of PSM was made with 90nm thickness resist on HM layer in this paper. The CD bias between a resist feature CD and a chrome feature CD was almost zero (below 1nm) in the optimized etching condition. We confirmed that the mask performances were the equal to COMS (Cr-HM on MoSi binary mask) in resolution and CD linearity. The performances of hardmask blanks will be defined by resist performance because of almost zero bias.

  4. Adsorption and electron-induced polymerization of methyl methacrylate on Ru(1010)

    SciTech Connect

    Hedhili, M. N.; Yakshinskiy, B. V.; Wasielewski, R.; Ciszewski, A.; Madey, T. E.

    2008-05-07

    The adsorption and electron irradiation of methyl methacrylate (MMA) on a Ru(1010) surface have been studied using x-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD), and low energy ion scattering. TPD analysis indicates that a monolayer of MMA chemisorbs and dissociates on the Ru(1010) surface. The reaction products observed upon heating include H{sub 2}, CO, CO{sub 2}, and a small amount of MMA. Physisorbed multilayers of MMA desorb at temperatures around 170 K. Electron irradiation of physisorbed MMA at 140 K leads to a modification of the MMA film: The XPS spectra show an increase in thermal stability of the film with retention of the MMA structure, and indicate that electron irradiation induces polymerization. An increase in the electron bombardment fluence induces a degradation of the formed polymerized species and leads to the accumulation of carbon on the Ru surface. These results are relevant to the accumulation of carbon on surfaces of Ru films that serve as capping layers on Mo/Si multilayer mirrors used in extreme ultraviolet lithography.

  5. Direct photo-etching of poly(methyl methacrylate) using focused extreme ultraviolet radiation from a table-top laser-induced plasma source

    SciTech Connect

    Barkusky, Frank; Peth, Christian; Bayer, Armin; Mann, Klaus

    2007-06-15

    In order to perform material interaction studies with intense extreme ultraviolet (EUV) radiation, a Schwarzschild mirror objective coated with Mo/Si multilayers was adapted to a compact laser-based EUV plasma source (pulse energy 3 mJ at {lambda}=13.5 nm, plasma diameter {approx}300 {mu}m). By 10x demagnified imaging of the plasma a pulse energy density of {approx}75 mJ/cm{sup 2} at a pulse length of 6 ns can be achieved in the image plane of the objective. As demonstrated for poly(methyl methacrylate) (PMMA), photoetching of polymer surfaces is possible at this EUV fluence level. This paper presents first results, including a systematic determination of PMMA etching rates under EUV irradiation. Furthermore, the contribution of out-of-band radiation to the surface etching of PMMA was investigated by conducting a diffraction experiment for spectral discrimination from higher wavelength radiation. Imaging of a pinhole positioned behind the plasma accomplished the generation of an EUV spot of 1 {mu}m diameter, which was employed for direct writing of surface structures in PMMA.

  6. Mechanisms of fatigue damage and crack growth in advanced materials

    NASA Astrophysics Data System (ADS)

    Ritchie, Robert O.

    2001-03-01

    In terms of in-service failures, cyclic fatigue is the most prevalent form of fracture. Despite the wealth of information on fatigue failures in traditional structural materials such as (ductile) metals and alloys, far less is understood about the susceptibility of the newer advanced materials, such as (brittle) intermetallics, ceramics and their composites. In this presentation, the mechanics and mechanisms of fatigue damage and crack propagation are examined with particular emphasis on the similarities and differences between cyclic crack growth in ductile metallic materials, and corresponding behavior in the more brittle advanced materials. This is achieved by considering the process of subcritical crack growth as a mutual competition between intrinsic mechanisms of microstructural damage ahead of the crack tip, which promote crack growth, and extrinsic mechanisms of crack-tip shielding behind the tip, which impede it. This approach is shown to be important for the understanding of the structural fatigue properties of advanced materials, such as monolithic and composite ceramics, and a range of intermetallics (e.g., TiAl, MoSi2, Nb3Al), as the mechanisms of fatigue in these brittle materials are conceptually distinct from that associated with the well known metal fatigue. Examples of the application and life-prediction methodologies for such materials in fatigue-critical situations will be given from the aerospace and bioengineering industries.

  7. X-ray optics for laser-plasma sources: Aplications of intense SXR and EUV radiation pulses

    SciTech Connect

    Bartnik, Andrzej; Fiedorowicz, Henryk; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Anna; Szczurek, Miroslaw; Wachulak, Przemyslaw; Pina, Ladislav

    2012-05-17

    In this work we present a short review of SXR and EUV optics that have been designed and developed for experiments concerning material processing and imaging, using a laser-plasma radiation source based on a gas puff target. Three different kinds of mirrors employed as the EUV collectors are presented: the grazing incidence axisymmetrical ellipsoidal mirror, the grazing incidence multifoil mirror, and the ellipsoidal mirror with Mo/Si multilayer coating. Experiments concerning characterization of the mirrors were performed using EUV radiation from Kr or Xe plasmas produced in a double stream gas puff target irradiated with Nd:YAG laser pulses (4ns, 0.8 J, 10 Hz). Intensity of the focused radiation was sufficient for micromachining of organic polymers and surface modification of organic and inorganic solids. Different kinds of micro-and nanostructures created in near-surface layers of different kinds polymers were obtained. Significant differences were revealed in XPS spectra acquired for irradiated and not irradiated polymers.

  8. X-ray optics for laser-plasma sources: Aplications of intense SXR and EUV radiation pulses

    NASA Astrophysics Data System (ADS)

    Bartnik, Andrzej; Fiedorowicz, Henryk; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Anna; Szczurek, Mirosław; Wachulak, Przemysław; Pina, Ladislav

    2012-05-01

    In this work we present a short review of SXR and EUV optics that have been designed and developed for experiments concerning material processing and imaging, using a laser-plasma radiation source based on a gas puff target. Three different kinds of mirrors employed as the EUV collectors are presented: the grazing incidence axisymmetrical ellipsoidal mirror, the grazing incidence multifoil mirror, and the ellipsoidal mirror with Mo/Si multilayer coating. Experiments concerning characterization of the mirrors were performed using EUV radiation from Kr or Xe plasmas produced in a double stream gas puff target irradiated with Nd:YAG laser pulses (4ns, 0.8 J, 10 Hz). Intensity of the focused radiation was sufficient for micromachining of organic polymers and surface modification of organic and inorganic solids. Different kinds of micro-and nanostructures created in near-surface layers of different kinds polymers were obtained. Significant differences were revealed in XPS spectra acquired for irradiated and not irradiated polymers.

  9. High-temperature corrosion of UNS N10003 in molten Li2BeF4 (FLiBe) salt

    DOE PAGES

    Zheng, Guiqiu; Kelleher, Brian; He, Lingfeng; ...

    2015-07-30

    Here, corrosion testing of Hastelloy N in molten fluoride salt was performed in purified molten 27LiF-BeF2 (66-34mol%) (FLiBe) salt at 700°C for 1000 hours, in pure nickel and graphite capsules. In the nickel capsule tests, the near-surface region of the alloy exhibited an about 200 nm porous structure, an approximately 3.5 μm chromium depleted region, and MoSi2 precipitates. In tests performed in graphite capsules, the alloy samples gained weight due to the formation of a variety of Cr3C2, Cr7C3, Mo2C and Cr23C6, carbide phases on the surface and in the subsurface regions of the alloy. A Cr depleted region wasmore » observed in the near-surface region where Mo thermally diffused toward either surface or grain boundary, which induced approximately 1.4 μm Ni3Fe alloy layer in this region. The carbide containing layer extended to about 7 μm underneath the Ni3Fe layer. The presence of graphite dramatically changes the mechanisms of corrosion attack in Hastelloy N in molten FLiBe salt. Evaluated by in terms of the depth of attack, graphite clearly accelerates corrosion, but the results appear to indicate that the formation of Cr23C6 phase might stabilize the Cr and mitigate its dissolution in molten FLiBe salt.« less

  10. New Fiber Reinforced Waterless Concrete for Extraterrestrial Structural Applications

    NASA Technical Reports Server (NTRS)

    Toutanji, H.; Tucker, D.; Ethridge, E.

    2005-01-01

    Commercial use of sulfur concrete on Earth is well established, particularly in corrosive, e.g., acid and salt, environments. Having found troilite (FeS) on the Moon raises the question of using extracted sulfur as a lunar construction mate: iii an attractive alternative to conventional concrete as it does not require water For the purpose of this paper it is assumed that lunar ore is mined, refined, and the raw sulfur processed with appropriate lunar regolith to form, for example, brick and beam elements. Glass fibers produced from regolith were used as a reinforcement to improve the mechanical properties of the sulfur concrete. Glass fibers and glass rebar were produced by melting the lunar regolith simulant. Lunar regolith stimulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline 46100 high temperature MoSi2 furnace at melting temperatures of 1450 to 1600G. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The viability of sulfur concrete as a construction material for extraterrestrial application is presented. The mechanical properties of the glass fiber reinforced sulfur concrete were investigated.

  11. Performance of "Waterless Concrete"

    NASA Technical Reports Server (NTRS)

    Toutanji, H. A.; Grugel, R. N.

    2009-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in a lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and, by oxidation of the soil, iron and sulfur can be produced. Sulfur concrete specimens were cycled between liquid nitrogen (approx.]91 C) and room temperature (^21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (^21 C) and ^-101 C. Test results showed that due to temperature cycling, the compressive strength of cycled specimens was 20% of those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibres. The lunar regolith simulant was melted in a 25 cc Pt- Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to i hour. Glass fibres and small rods were pulled from the melt. The glass fibres were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Beams strengthened with glass fibres showed to exhibit an increase in the flexural strength by as much as 45%.

  12. Optical element for full spectral purity from IR-generated EUV light sources

    NASA Astrophysics Data System (ADS)

    van den Boogaard, A. J. R.; Louis, E.; van Goor, F. A.; Bijkerk, F.

    2009-03-01

    Laser produced plasma (LLP) sources are generally considered attractive for high power EUV production in next generation lithography equipment. Such plasmas are most efficiently excited by the relatively long, infrared wavelengths of CO2-lasers, but a significant part of the rotational-vibrational excitation lines of the CO2 radiation will be backscattered by the plasma's critical density surface and consequently will be present as parasitic radiation in the spectrum of such sources. Since most optical elements in the EUV collecting and imaging train have a high reflection coefficient for IR radiation, undesirable heating phenomena at the resist level are likely to occur. In this study a completely new principle is employed to obtain full separation of EUV and IR radiation from the source by a single optical component. While the application of a transmission filter would come at the expense of EUV throughput, this technique potentially enables wavelength separation without loosing reflectance compared to a conventional Mo/Si multilayer coated element. As a result this method provides full spectral purity from the source without loss in EUV throughput. Detailed calculations on the principal of functioning are presented.

  13. Investigation of scum type growing defects on attenuated PSM and its prevention

    NASA Astrophysics Data System (ADS)

    Choi, Jihwan; Kim, Yongho; Lee, Dongwook; Jung, Hoyong; Kim, Snagpyo; Yim, Donggyu

    2015-10-01

    The abnormal growing defect (we called this defect 'scum haze defect') in the photomask which is generated during the wafer lithography process is very important issue on semiconductor industry. Because wafer yield loss could be caused by the mask CD variation and the transmittance loss due to the growing defects on the photomask, many studies have been done about the mechanism and the solution of the general type growing defects such as haze and Cr migration so far, However we still need to clarify some abnormal types of the growing defects such as scum haze defect. In this paper, we investigated the generation mechanism and prevention techniques of the scum haze defect on the attenuated phase shift mask. This defect composed of CrOx is caused by the increase of the accumulated exposure energy on photomask. This phenomenon is remarkably similar to the Cr migration on binary mask. But, the apparent difference is that this scum type defect is observed on the attenuated phase shift mask which mainly consists of MoSiON film, and it is difficult to control this defect because of its irregular generation characteristic. Additionally, this defect is not generally removed through the conventional wet cleaning process but it only could be removed by a kind of plasma treatment. In this study, the difference of generation mechanism between the scum haze defect and the general haze was discussed, and the optimal process for controlling scum haze defect in the mask manufacturing was described.

  14. Performance of GFIS mask repair system for various mask materials

    NASA Astrophysics Data System (ADS)

    Aramaki, Fumio; Kozakai, Tomokazu; Matsuda, Osamu; Yasaka, Anto; Yoshikawa, Shingo; Kanno, Koichi; Miyashita, Hiroyuki; Hayashi, Naoya

    2014-10-01

    We have developed a new focused ion beam (FIB) technology using a gas field ion source (GFIS) for mask repair. Meanwhile, since current high-end photomasks do not have high durability in exposure nor cleaning, some new photomask materials are proposed. In 2012, we reported that our GFIS system had repaired a representative new material "A6L2". It is currently expected to extend the application range of GFIS technology for various new materials and various defect shapes. In this study, we repaired a single bridge, a triple bridge and a missing hole on a phase shift mask (PSM) of "A6L2", and also repaired single bridges on a binary mask of molybdenum silicide (MoSi) material "W4G" and a PSM of high transmittance material "SDC1". The etching selectivity between those new materials and quartz were over 4:1. There were no significant differences of pattern shapes on scanning electron microscopy (SEM) images between repair and non-repair regions. All the critical dimensions (CD) at repair regions were less than +/-3% of those at normal ones on an aerial image metrology system (AIMS). Those results demonstrated that GFIS technology is a reliable solution of repairing new material photomasks that are candidates for 1X nm generation.

  15. Fracture and fatigue properties of Mo-Mo{sub 3}Si-Mo{sub 5}SiB{sub 2} refractory intermetallic alloys at ambient to elevated temperatures (25-1300 degrees Centigrade)

    SciTech Connect

    Choe, Heeman; Schneibel, J.H.; Ritchie, R.O.

    2002-08-01

    The need for structural materials with high-temperature strength and oxidation resistance coupled with adequate lower-temperature toughness for potential use at temperatures above {approx} 1000 degrees C has remained a persistent challenge in materials science. In this work, one promising class of intermetallic alloys is examined, namely boron-containing molybdenum silicides, with compositions in the range Mo (bal), 12-17 at. percentSi, 8.5 at. percentB, processed using both ingot (I/M) and powder (P/M) metallurgy methods. Specifically, the oxidation (''pesting''), fracture toughness and fatigue-crack propagation resistance of four such alloys, which consisted of {approx}21 to 38 vol. percent a-Mo phase in an intermetallic matrix of Mo3Si and Mo5SiB2 (T2), were characterized at temperatures between 25 degrees and 1300 degrees C. The boron additions were found to confer superior ''pest'' resistance (at 400 degrees to 900 degrees C) as compared to unmodified molybdenum silicides, such as Mo5Si3. Moreover , although the fracture and fatigue properties of the finer-scale P/M alloys were only marginally better than those of MoSi2, for the I/M processed microstructures with coarse distributions of the a-Mo phase, fracture toughness properties were far superior, rising from values above 7 MPa sqrt m at ambient temperatures to almost 12 MPa sqrt m at 1300 degrees C.

  16. Structure and properties of composites synthesized in situ using solid state displacement reactions

    SciTech Connect

    Henager, C.H. Jr.; Brimhall, J.L.

    1993-10-01

    Solid state displacement reactions can produce in situ intermetallic and ceramic matrix composites in a process where an intermetallic or ceramic phase(s) and a potential reinforcing phase(s) are grown together during a solid state reaction. Interpenetrating and dispersed microstructures, important for desirable composite properties, have been produced by means of displacement reaction processing techniques. Two such composites have been synthesized which exhibit two distinct microstructures: MoSi{sub 2} reinforced with SiC particles, which exhibits a dispersed-phase structure, and NiAl/Ni{sub 3}Al reinforced with Al{sub 2}O{sub 3}, which exhibits an interpenetrating-phase structure. Strength in bending and chevron-notch fracture toughness have been determined as a function of temperature, and measured properties compare favorably with composites produced by other means. The measured properties are discussed with regard to the observed microstructures. The potential for displacement reaction processing is assessed, and it appears to be a cost-effective synthesis method compared to others.

  17. Microstructure and Properties of HVOF-Sprayed Ni-50Cr Coatings

    SciTech Connect

    Joel A. Simpson; Terry C. Totemeier; Richard N. Wright

    2006-06-01

    Thermal spray coatings represent a potential cost-effective means of protecting structural components in advanced fossil energy systems. Previous work at the INL has focused on relationships between thermal spray processing conditions, structure, and properties in alumina- and silica-forming coatings, namely Fe3Al, FeAl, and Mo-Si-B alloys. This paper describes the preparation and characterization of chromia-forming Ni-50%Cr coatings, an alloy similar to the INCOCLAD 671 cladding, which has shown excellent performance in the Niles Plant service tests. The structure and properties of Ni-50Cr coatings are similar to other HVOF-sprayed metallic coatings: a typical lamellar microstructure is observed with essentially no porosity and little oxide. The microhardness and compressive residual stress both increase with increased spray particle velocity. Corrosion tests were performed on a variety of free-standing coatings (removed from the substrate, wrought Fe3Al alloy, and Grade 91 steel in a simulated coal combustion gas (N2-10%CO-5%CO2-2%H2O-0.12%H2S) and gas-slag environments (same gas, with iron sulfide powder in contact with the coating surface). The coatings tested included Fe3Al, FeAl, and Ni-50Cr alloys sprayed at different velocities. In these tests the iron aluminides in wrought and coating form showed the best performance, with Ni-50Cr coatings slightly worse; the Grade 91 steel was severely attacked.

  18. Nitridation and CVD reactions with hydrazine

    SciTech Connect

    Vogt, K.W.; Kohl, P.A.; Abys, J.A.

    1995-10-01

    The low-temperature nitridation of gallium arsenide, silicon and transition metals was investigated using hydrazine. Gallium nitride films were grown on gallium arsenide (GaAs) by direct reaction of the semiconductor surface layers with hydrazine at 200--400 C. Auger electron spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses show that the films are primarily gallium nitride with a small oxide impurity. Thin nitride films ({approximately}15{angstrom}) were grown on silicon by reaction with hydrazine at 300--500 C. Ellipsometry results suggest that the film growth goes through different phases following linear, parabolic and logarithmic functions with time. XPS analysis shows that the nitride films could be formed at much lower temperatures than possible with ammonia (300 vs. 600 C). The formation of numerous transition metal nitrides (Co, Cr, Fe, Mo, Si, Ta, Ti, V, and W) by reaction with hydrazine at 400 C is demonstrated, as well as the chemical vapor deposition of boron nitride films from diborane and hydrazine reactants. The temperature at the mixing point was critical in determining the final composition of the film. A 1-D transport model suggests that the reaction rate at 400 C was kinetically limited. The results also agree qualitatively with thermodynamic equilibrium calculations.

  19. Fabrication of SiC whiskers and composites

    SciTech Connect

    Hurley, G.F.; Shalek, P.D.; Gac, F.D.; Petrovic, J.J.

    1984-01-01

    The Los Alamos Structural Ceramics Program is a multi-faceted program with an overall objective of producing superior strength and fracture toughness in ceramic bodies for load bearing applications. One phase of the program is pursuing the development of silicon carbide whiskers which are used to prepare ceramic matrix composites. The purpose of this work is to investigate strengthening and toughening mechanisms in ceramic composites. In the following we describe some elements of the whisker development program in which we are endeavoring better to characterize the whisker growth process in order to scale up its production potential. We have used these whiskers in the preparation of four types of ceramic matrix representative of a range of materials. The nature and reasons for choosing these materials are described. Composites have been prepared by dry-blending followed by hot pressing which yields high density bodies. In addition we are beginning an investigation of wet processing (slip casting) to produce a silicon-silicon carbide body which will be reaction sintered in nitrogen. Composites of glass-, hot pressed silicon nitride -, and molybdenum disilicide - silicon carbide whiskers have been tested in flexure to determine strength and fracture toughness. Results have been promising, with substantial toughening exhibited in all systems, and strengthening in the glass and MoSi/sub 2/ composites. The reaction bonded silicon nitride is not yet to the testing stage.

  20. Influence of particle bombardment on microstructure and internal stresses of refractory metal suicides on silicon

    NASA Astrophysics Data System (ADS)

    Hardtke, Ch.; Schilling, W.; Ullmaier, H.

    1991-07-01

    First results on microstructural changes and stress relaxation in thin refractory metal suicide films (TaSi 2 and MoSi 2) caused by particle bombardment are reported. The polycrystalline films had initial tensile stresses of some 10 9 Pa. Exposed to irradiation with Ge ions of 400 keV, both suicides showed a similar stress relaxation behaviour as a function of dose. During room-temperature implantation the initial tensile stress rapidly decreased and turned into compressive stress. Continuous irradiation partly relaxed the compressive stress and resulted in a saturation value of some -10 8 Pa. With increasing implantation temperature, the buildup of compressive stress gradually vanished, leaving only the initial decrease of tensile stress which finally approached zero. Based on microstructural investigations (TEM and X-ray diffraction) it is proposed to explain this behaviour by the combined action of two processes: relaxation of tensile stress by a volume increase due to irradiation-induced amorphization, and Frenkel defect production and relaxation of compressive stress by irradiation-induced densification of amorphous regions and/or Frenkel defect elimination.

  1. Synthesis, characterization, and catalytic activity of sulfided silico-alumino-titanate (Si-Al-Ti) mixed oxides xerogels supported Ni-Mo catalyst

    SciTech Connect

    Al-Adwani, H.A.; Thammachote, N.; Anthony, R.G.; Gardner, T.J.

    1998-07-25

    Layered semicrystalline silico-alumino-titanate (Si-Al-Ti) mixed oxides were synthesized by a modified sol-gel method with hydrothermal synthesis temperatures less than 200 C and autogenic pressure. The solid products are semicrystalline materials with a surface area of 136--367 m{sup 2}/g and a monomodal pore size distribution with an average pore diameter of 36--47 {angstrom}. The catalytic activity for pyrene hydrogenation in a batch reactor at 300 C and 500 psig was determined for sulfided Ni-Mo supported on the Si-Al-Ti mixed oxide. The activity was a function of the support composition, the heat treatment before and after loading the active metals, the addition of organic templates, and different methods of metal loading. The most active sulfided Ni-Mo/Si-Al-Ri catalyst has an activity in the same range as the commercial catalyst, Shell 324, but the metal loading is 37% less than the commercial catalyst.

  2. X-ray-ultraviolet beam splitters for the Michelson interferometer.

    PubMed

    Delmotte, Franck; Ravet, Marie-Françoise; Bridou, Françoise; Varnière, Françoise; Zeitoun, Philippe; Hubert, Sébastien; Vanbostal, Laurent; Soullie, Gérard

    2002-10-01

    With the aim of realizing a Michelson interferometer working at 13.9 nm, we have developed a symmetrical beam splitter with multilayers deposited on the front and back sides of a silicon nitride membrane. On the basis of the experimental optical properties of the membrane, simulations have been performed to define the multilayer structure that provides the highest reflectivity-transmission product. Optimized Mo-Si multilayers have been successfully deposited on both sides of t he membrane by use of the ion-beam sputtering technique, with a thickness-period reproducibility of 0.1 nm. Measurements by means of synchrotron radiation at 13.9 nm and at an angle of 45 degrees provide a reflectivity of 14.2% and a transmission of 15.2% for a 60% s-polarized light, close to the simulated values. Such a beam splitter has been used for x-ray laser Michelson interferometry at 13.9 nm. The first interferogram is discussed.

  3. Thermodynamic modeling and kinetics simulation of precipitate phases in AISI 316 stainless steels

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Busby, J. T.

    2014-05-01

    This work aims at utilizing modern computational microstructural modeling tools to accelerate the understanding of phase stability in austenitic steels under extended thermal aging. Using the CALPHAD approach, a thermodynamic database OCTANT (ORNL Computational Thermodynamics for Applied Nuclear Technology), including elements of Fe, C, Cr, Ni, Mn, Mo, Si, and Ti, has been developed with a focus on reliable thermodynamic modeling of precipitate phases in AISI 316 austenitic stainless steels. The thermodynamic database was validated by comparing the calculated results with experimental data from commercial 316 austenitic steels. The developed computational thermodynamics was then coupled with precipitation kinetics simulation to understand the temporal evolution of precipitates in austenitic steels under long-term thermal aging (up to 600,000 h) at a temperature regime from 300 to 900 °C. This study discusses the effect of dislocation density and difusion coefficients on the precipitation kinetics at low temperatures, which shed a light on investigating the phase stability and transformation in austenitic steels used in light water reactors.

  4. Boron modified molybdenum silicide and products

    DOEpatents

    Meyer, M.K.; Akinc, M.

    1999-02-02

    A boron-modified molybdenum silicide material is disclosed having the composition comprising about 80 to about 90 weight % Mo, about 10 to about 20 weight % Si, and about 0.1 to about 2 weight % B and a multiphase microstructure including Mo{sub 5}Si{sub 3} phase as at least one microstructural component effective to impart good high temperature creep resistance. The boron-modified molybdenum silicide material is fabricated into such products as electrical components, such as resistors and interconnects, that exhibit oxidation resistance to withstand high temperatures in service in air as a result of electrical power dissipation, electrical resistance heating elements that can withstand high temperatures in service in air and other oxygen-bearing atmospheres and can span greater distances than MoSi{sub 2} heating elements due to improved creep resistance, and high temperature structural members and other fabricated components that can withstand high temperatures in service in air or other oxygen-bearing atmospheres while retaining creep resistance associated with Mo{sub 5}Si{sub 3} for structural integrity. 7 figs.

  5. Boron modified molybdenum silicide and products

    DOEpatents

    Meyer, Mitchell K.; Akinc, Mufit

    1999-02-02

    A boron-modified molybdenum silicide material having the composition comprising about 80 to about 90 weight % Mo, about 10 to about 20 weight % Si, and about 0.1 to about 2 weight % B and a multiphase microstructure including Mo.sub.5 Si.sub.3 phase as at least one microstructural component effective to impart good high temperature creep resistance. The boron-modified molybdenum silicide material is fabricated into such products as electrical components, such as resistors and interconnects, that exhibit oxidation resistance to withstand high temperatures in service in air as a result of electrical power dissipation, electrical resistance heating elements that can withstand high temperatures in service in air and other oxygen-bearing atmospheres and can span greater distances than MoSi.sub.2 heating elements due to improved creep resistance, and high temperature structural members and other fabricated components that can withstand high temperatures in service in air or other oxygen-bearing atmospheres while retaining creep resistance associated with Mo.sub.5 Si.sub.3 for structural integrity.

  6. Synthesis and design of silicide intermetallic materials. 1998 annual progress report

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.; Park, Y.; Vaidya, R.U.; Hollis, K.J.; Kung, H.H.

    1999-03-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the US processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive US processing industries. The program presently has a number of developing industrial connections, including a CRADA with Johns Manville Corporation targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. With Combustion Technology Inc., they are developing silicide-based periscope sight tubes for the direct observation of glass melts. With Accutru International Corporation, they are developing silicide-based protective sheaths for self-verifying temperature sensors which may be used in glass furnaces and other industrial applications. The progress made on the program in this period is summarized.

  7. Novel Accident-Tolerant Fuel Meat and Cladding

    SciTech Connect

    Robert D. Mariani; Pavel G Medvedev; Douglas L Porter; Steven L Hayes; James I. Cole; Xian-Ming Bai

    2013-09-01

    A novel accident-tolerant fuel meat and cladding are here proposed. The fuel meat design incorporates annular fuel with inserts and discs that are fabricated from a material having high thermal conductivity, for example niobium. The inserts are rods or tubes. Discs separate the fuel pellets. Using the BISON fuel performance code it was found that the peak fuel temperature can be lowered by more than 600 degrees C for one set of conditions with niobium metal as the thermal conductor. In addition to improved safety margin, several advantages are expected from the lower temperature such as decreased fission gas release and fuel cracking. Advantages and disadvantages are discussed. An enrichment of only 7.5% fully compensates the lost reactivity of the displaced UO2. Slightly higher enrichments, such as 9%, allow uprates and increased burnups to offset the initial costs for retooling. The design has applications for fast reactors and transuranic burning, which may accelerate its development. A zirconium silicide coating is also described for accident tolerant applications. A self-limiting degradation behavior for this coating is expected to produce a glassy, self-healing layer that becomes more protective at elevated temperature, with some similarities to MoSi2 and other silicides. Both the fuel and coating may benefit from the existing technology infrastructure and the associated wide expertise for a more rapid development in comparison to other, more novel fuels and cladding.

  8. Microstructures and oxidation behavior of some Molybdenum based alloys

    SciTech Connect

    Ray, Pratik Kumar

    2011-01-01

    The advent of Ni based superalloys revolutionized the high temperature alloy industry. These materials are capable of operating in extremely harsh environments, comprising of temperatures around 1050 C, under oxidative conditions. Demands for increased fuel efficiency, however, has highlighted the need for materials that can be used under oxidative conditions at temperatures in excess of 1200 C. The Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that melt in the 1250 - 1450 C, resulting in softening of the alloys above 1000 C. Therefore, recent research directions have been skewed towards exploring and developing newer alloy systems. This thesis comprises a part of such an effort. Techniques for rapid thermodynamic assessments were developed and applied to two different systems - Mo-Si alloys with transition metal substitutions (and this forms the first part of the thesis) and Ni-Al alloys with added components for providing high temperature strength and ductility. A hierarchical approach towards alloy design indicated the Mo-Ni-Al system as a prospective candidate for high temperature applications. Investigations on microstructures and oxidation behavior, under both isothermal and cyclic conditions, of these alloys constitute the second part of this thesis. It was seen that refractory metal systems show a marked microstructure dependence of oxidation.

  9. DIET Processes on Ruthenium Surfaces Related to Extreme Ultraviolet Lithography (EUVL)

    SciTech Connect

    Yakshinskiy, B.; Wasielewski, R; Loginova, E; Hedhili, M; Madey, T

    2008-01-01

    The aim of this work is to provide insights into desorption induced by electronic transitions (DIET) processes that affect the reflectivity of ruthenium-capped Mo/Si multilayer mirrors working under EUVL (extreme ultraviolet lithography) operating conditions (high vacuum, and 13.5 nm (92 eV) photons). Critical issues are associated with possible oxidation of the 2 nm thick Ru capping layer due to the inevitable background pressure of H{sub 2}O, and carbon build up due to background hydrocarbons. In the present work, we discuss aspects of the radiation-induced surface chemistry of Ru irradiated by 100 eV electrons and 92 eV photons. The cross section for electron-stimulated desorption of oxygen from O-covered Ru is 6 x 10{sup -19} cm{sup 2}. Carbon accumulation several nm thick occurs on the Ru surface during electron irradiation in methyl methacrylate (MMA) vapor, a model background impurity hydrocarbon. Radiation damage by low-energy secondary electrons is believed to dominate over direct photoexcitation of adsorbates under EUVL conditions. The secondary electron yield from Ru varies strongly with photon energy, and is 0.02 electrons/photon at 92 eV.

  10. Effects of gravity on combustion synthesis of functionally graded biomaterials

    NASA Astrophysics Data System (ADS)

    Moore, J.; Schowengerdt, F.; Ayers, R.; Castillo, M.; Zhang, X.; Umakoshi, U.; Yi, C.; Guigne, J.

    Combustion synthesis, or self-propagating, high temperature synthesis (SHS) is currently being used at the Colorado School of Mines to produce advanced materials for biomedical applications. These biomaterials include ceramic, intermetallic, and metal-matrix composites for applications ranging from structural to oxidation- and wear-resistant materials, e.g., TiC-Ti, TiC-Cr3 C2 , MoSi2 - SiC, NiAl-TiB2 , to engineered porous composites, e.g., B4 C-A l2 O3 , Ti-TiBx , Ni-Ti, Ca 3 (PO4 )2 and glass- ceramic composites, e.g., CaO-SiO2 - B a O-A l2 O3 -T i B2 . The goal of the functionally graded biomaterials project is to develop new materials, graded in porosity and composition, which will combine the desirable mechanical properties of implant, e.g., NiTi, with the bone-growth enhancement properties of porous biodegradable ceramics, e.g., Ca 3 (PO4 )2 . Recent experiments on the NASA parabolic flight (KC- 135) aircraft have shown that gravity plays an important role in controlling the structure and properties of materials produced by combustion synthesis. The results of these studies, which will be presented at the conference, will provide valuable input to the design of experiments to be done in Space-DRUMSTM, a containerless materials processing facility scheduled to be placed on the International Space Station in 2003.

  11. Reactivity and analytical performance of oxygen as cell gas in inductively coupled plasma tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Virgilio, Alex; Amais, Renata S.; Amaral, Clarice D. B.; Fialho, Lucimar L.; Schiavo, Daniela; Nóbrega, Joaquim A.

    2016-12-01

    The reactivity and analytical performance of O2 as cell gas in inductively coupled plasma tandem mass spectrometry was investigated. Selected analytes in a wide mass range were divided in three groups according to their reactivity: G1 represents elements with high oxygen affinity (Ce, La, P, Sc, Ti, and Y), G2 contains elements that may partially react with oxygen (As, Ba, Mo, Si, Sr, and V), and G3 comprises elements expected to be less reactive towards oxygen (Al, Bi, Cu, Mg, Pb, and Pd). On-mass and mass-shift modes were evaluated by monitoring atomic and metal oxide ions, respectively. Analytical signal profiles, oxide percentages, sensitivities and limits of detection for oxygen flow rates varying from 0.1 to 1.0 mL min- 1 were also studied. Group 1 elements plus As and V presented better sensitivities and LODs when measuring oxides, which were the major species for all flow rates evaluated. Molybdenum and Si oxides presented intermediate behavior and MoO fraction was up to 47% and limit of detection was the same as that obtained in on-mass mode. For others G2 and G3 elements, on-mass mode presented higher sensitivity and better LODs, with estimated oxide contents lower than 10%. In most cases, increasing oxygen flow rates led to lower sensitivities and worse LODs.

  12. SiC (SCS-6) Fiber Reinforced-Reaction Formed SiC Matrix Composites: Microstructure and Interfacial Properties

    NASA Technical Reports Server (NTRS)

    Singh, M.; Dickerson, R. M.; Olmstead, Forrest A.; Eldridge, J. I.

    1997-01-01

    Microstructural and interfacial characterization of unidirectional SiC (SCS-6) fiber reinforced-reaction formed SiC (RFSC) composites has been carried out. Silicon-1.7 at.% molybdenum alloy was used as the melt infiltrant, instead of pure silicon, to reduce the activity of silicon in the melt as well as to reduce the amount of free silicon in the matrix. Electron microprobe analysis was used to evaluate the microstructure and phase distribution in these composites. The matrix is SiC with a bi-modal grain-size distribution and small amounts of MoSi2, silicon, and carbon. Fiber push-outs tests on these composites showed that a desirably low interfacial shear strength was achieved. The average debond shear stress at room temperature varied with specimen thickness from 29 to 64 MPa, with higher values observed for thinner specimens. Initial frictional sliding stresses showed little thickness dependence with values generally close to 30 MPa. Push-out test results showed very little change when the test temperature was increased to 800 C from room temperature, indicating an absence of significant residual stresses in the composite.

  13. Micromechanisms of creep-fatigue crack growth in a silicide-matrix composite with SiC particles

    SciTech Connect

    Ramamurty, U.; Kim, A.S.; Suresh, S. ); Petrovic, J.J. )

    1993-08-01

    An experimental study has been conducted to examine the cyclic fatigue crack growth characteristics in 1,200 C air of a MoSi[sub 2]-50 mol% WSi[sub 2] alloy in the unreinforced condition and with 30 vol% SiC particles. For comparison purposes, crack growth experiments under sustained loads were also carried out in the silicide-matrix composite. Particular attention is devoted to developing an understanding of the micromechanism of subcritical crack growth by recourse to optical and electron microscopy, including transmission electron microscopy of crack-tip damage. The results indicate that enhanced viscous flow of glass films along interfaces and grain boundaries imparts pronounced levels of subcritical crack growth in the composite material; the composite exhibits a higher fatigue fracture threshold and a more extended range of stable fracture than the unreinforced alloy. The effects of glass phase in influencing fatigue crack growth in the silicide-based material are compared to the influence of in situ-formed and preexisting glass films on high-temperature cyclic fatigue crack growth in ceramics and ceramic composites. The paper concludes with a comparison of present results with the high-temperature damage tolerance of a variety of intermetallic alloys and ceramic materials.

  14. High current metal ion implantation to synthesize some conducting metal-silicides

    SciTech Connect

    Liu, B. X.; Gao, K. Y.

    1999-06-10

    High current metal-ion implantation by a metal vapor vacuum arc ion source was conducted to synthesize some conducting metal-silicides. It was found that C54-TiSi{sub 2}, ZrSi{sub 2}, NiSi{sub 2}, CoSi{sub 2}, {beta}-FeSi{sub 2}, NbSi{sub 2} and TaSi{sub 2} layers on Si wafers with good electric properties could be obtained directly after implantation. In comparison, the formation of some other silicides like {alpha}-FeSi{sub 2}, NbSi{sub 2}, TaSi{sub 2}, tetragonal-WSi{sub 2} and tetragonal-MoSi{sub 2} required an additional post-annealing to improve their crystallinity and thus their electric properties. Interestingly, the NiSi{sub 2} layers of superior electric properties were obtained at a selected Ni-ion current density of 35 {mu}A/cm{sup 2}. At this current, a beam heating raised the Si wafer to a specific temperature of 380 deg. C, at which the size difference between NiSi{sub 2} and Si lattices was nil. The resistivity of the NiSi{sub 2} layers so obtained was much lower than that of the Ni-disilicide formed by solid-state reaction at >750 deg. C. The formation mechanism of the above metal-silicides and the associated electric properties will also be discussed.

  15. Electronic structure of the Nowotny chimney-ladder silicide Ru{sub 2}Si{sub 3}

    SciTech Connect

    Wolf, W.; Bihlmayer, G.; Bluegel, S.

    1997-03-01

    We report {ital ab initio} calculations for the electronic structure of the Nowotny chimney-ladder silicide Ru{sub 2}Si{sub 3} in the orthorhombic low-temperature phase. We find Ru{sub 2}Si{sub 3} to be a semiconductor with a direct band gap of about 0.45 eV. Since this gap is a p-d gap, the oscillator strength for a direct transition is expected to be of sizable magnitude. Also, the calculated effective masses of hole and electron states suggest that Ru{sub 2}Si{sub 3} is a very promising material for various applications in semiconductor technology. The electronic structure is controlled by the hybridization of Si p states with Ru d states and shows similarities to the group-IV transition-metal disilicides (CrSi{sub 2}, MoSi{sub 2}, WSi{sub 2}) and to transition-metal-rich silicides. The calculations are based on the density-functional theory in local-density approximation and are performed by means of the full-potential linearized-augmented-plane-wave method. {copyright} {ital 1997} {ital The American Physical Society}

  16. Performance improvement of optical fiber coupler with electric heating versus gas heating.

    PubMed

    Shuai, Cijun; Gao, Chengde; Nie, Yi; Peng, Shuping

    2010-08-20

    Gas heating has been widely used in the process of fused biconical tapering. However, as the instability and asymmetric flame temperature of gas heating exist, the performance of the optical devices fabricated by this method was affected. To overcome the problems resulting from gas combustion, an electric heater is designed and manufactured using a metal-ceramic (MoSi(2)) as a heating material. Our experimental data show that the fused-taper machine with an electric heater has improved the performance of optical devices by increasing the consistency of the extinction ratio, excess loss, and the splitting ratio over that of the previous gas heating mode. Microcrystallizations and microcracks were observed at the fused region of the polarization-maintaining (PM) fiber coupler and at the taper region with scanning electron microscopy and atomic force microscopy respectively. The distribution of the microcrystallizations and microcracks are nonuniform along the fiber with gas heating, while their distribution is rather uniform with electric heating. These findings show that the novel optical fiber coupler with an electric heater has improved the performance of optical fiber devices by affecting the consistency of the optical parameters and micromorphology of the surface of PM fiber.

  17. CD measurement point extraction from local dense patterns

    NASA Astrophysics Data System (ADS)

    Miyajima, Masaaki; Matsumoto, Hiroyuki; Takeuchi, Kanji; Naoe, Mitsufumi; Hosono, Koji; Miyauchi, Toru

    2015-07-01

    Precision control of critical dimensions (CD) in modern photomask manufacturing is conventionally accomplished by measuring of CD check patterns allocated inside photomask area. Recently, due to use of immersion and High-NA processes for ArF scanners surface of photomask is subjected to higher energy exposure. Such high energy exposure not only increases the loading effect and the flare but also brings about additional issues such as Cr migration and degradation of MoSi film quality due to its surface oxidation which become a new source of CD deviation. Such phenomenon influence both local pattern shape and its dependence on pattern density and global pattern density and arrangement. To achieve good control of CD in such global environment it is required to measure patterns in the chip device area equivalent to CD check patterns allocated on that chip. However, it is extremely difficult to accurately extract coordinates of patterns for CD measurements inside large device of the chip. We have developed a system in which firstly, using design rule check (DRC) method we extract from the chip device area simple line and space (L/S) patterns similar to CD check patterns and secondly, after bitmap transformation of the extraction result use a convolution operation approach to determine the patterns to measure. We confirmed that our method enables selection of CD measurement points with good reproducibility and stability. Next, we report on details of our method to extract CD measurement points and demonstrate its usefulness due to its excellent reproducibility and stability.

  18. Microstructural evolution and mechanical behavior of nickel-based superalloy 625 made by selective laser melting

    NASA Astrophysics Data System (ADS)

    Witkin, David B.; Adams, Paul; Albright, Thomas

    2015-03-01

    The mechanical properties and microstructures of Selective Laser Melted (SLM) alloy 625 procured from different suppliers were compared. The post-SLM process of hot isostatic pressing (HIP) led to a relatively coarse recrystallized gamma matrix phase that was similar in all the suppliers' materials, resulting in nearly identical tensile properties. These similarities obscure significant differences between them with respect to the population of second phase particles, which consisted of carbides or Laves phase. During solidification, the final liquid phase is concentrated in Nb, Mo, Si and C, and leads to L --> γ + carbide/Laves eutectic reactions. Secondary particles are very small prior to HIP and their composition has not been analyzed yet, but are limited to the fine-grained eutectic regions of the material prior to HIP. During HIP the gamma phase recrystallizes to remove the original as-solidified SLM microstructure, but secondary particles nucleate and grow where their elemental constituents first solidified, leading to a non-homogeneous distribution. Quasi-static tensile properties do not appear to be sensitive to these differences, but it is likely that other mechanical properties will be affected, especially fatigue and fracture behavior. Surface roughness, large grain size, and pores and voids left unhealed by the HIP cycle will also influence fatigue and fracture. Surface roughness and porosity in particular are features that could be improved by implementing novel approaches to laser processing in SLM.

  19. A Preliminary Investigation of the Cr3Si-Mo Pseudo-Binary Phase Diagram

    NASA Technical Reports Server (NTRS)

    Dickerson, R. M.; Raj, S. V.; Locci, I. E.

    1995-01-01

    An investigation was undertaken to study the phase relations in Cr3Si alloyed with Mo varying from 10 to 83.5 wt. % of the material. Specimens were prepared from arc-melted buttons that were subsequently heat treated at 1673 K for 200 h and air quenched to room temperature to structures. Alloys containing more than 20 wt. % MO were primarily two-phase materials of M3Si and M5Si3, where M is (Cr,Mo). Three alloys contained less than 5% of a third phase, which also had the M5Si3 crystal structure. Differential thermal analysis (DTA) was performed on several specimens at temperatures up to 2073 K in order to determine a solidus curve for the M3Si phase. Since only one DTA peak was observed in each alloy, the M5Si3 phase must melt above 2073 K, the maximum temperature examined. A preliminary pseudo-binary phase diagram for (Cr,Mo)3Si and a portion of the 1673 K isothermal section of the Cr-Mo-Si ternary phase diagram are presented.

  20. Development of advanced multi-tone mask by using two different transmittance modulation materials

    NASA Astrophysics Data System (ADS)

    Kim, Sei-Min; Choi, Min-Ki; Seo, Seong-Min; Lee, Jong-Hwa; Shin, Cheol; Jeong, Woo-Gun; Jung, Sung-Mo; Nam, Kee-Soo

    2016-09-01

    Multi-tone mask (MTM) consists of more than two layers having different transmittance modulation layers. A novel method is proposed to manufacture a MTM based on two kinds of transmittance modulation materials such as chromium and molybdenum. Different modulation materials cannot be only act as etch-stopper to each other, but also they play a role as a separator between the layers consisted of MTM. Furthermore, clearly classified modulation layers contribute to define one of the targeted transmittance according to different etching process. Especially, a conventional MTM requires three mask writing processes to form three patterns whereas the proposed MTM structure makes it possible to form three patterns by using only two mask writing processes. It is found that the turnaround time of proposed MTM is remarkably decreased as value of 30% compared to that of conventional MTM. MoSi-/Cr-based tri-tone mask configuration having 37, 15, and 0% of transmittance had been demonstrated based on the optimized thin-film conditions. Optical uniformity characteristics were also carried out to evaluate the photomask performance. Consequently, the proposed MTM is not only expected to extend the variation of objective transmittance, but also it is a very promise method for achieving a high performance photo-mask by reducing its fabrication cost.

  1. Dissolution de phases minérales MSiO3 ( M Cu, Co, Ni, Zn, Mg) imparfaitement cristallisées au contact de solutions d'agents complexants organiques (porphyrines, amino-acides, asphaltènes)

    NASA Astrophysics Data System (ADS)

    Bergaya, F.; Perruchot, A.; Van Damme, H.

    1983-05-01

    The kinetic and thermodynamic aspects of the dissolution of ill-organized ("gels") high surface area silicates of general formula MO- SiO2- nH2O( M = Cu, Co, Ni, Zn, Mg) in the presence of the following organic compounds have been investigated: meso-tetraphenylporphyrin (H 2TPP, water insoluble), mesotetra(N-methylpyridyl)porphyrin (H 3TMPyP, water soluble), glycine, and asphaltenes. Kinetic aspects were emphasised in the case of H 2TMPyP. The initial rate of the gross dissolution complexation process followed almost quantitatively (passing from one metal to another) the complexation rate of M2+ ions by H 2TMPyP in a purely homogeneous medium, suggesting that the rate limiting step of the overall process is not related to the chemical or physical processes occurring in the solid particles or at the solid-solution interface, but is simply the complexation, in the solution, of the M2+ ions released by the gel particles. Thermodynamic aspects were emphasised in the case of glycine. The total amount of metal which is extracted at equilibrium can be reasonably well predicted from a simple model which takes into account (i) the stability constant of the metal-glycine complex. (ii) the "solubility product" of the gel particles in water. The results obtained with asphaltones are closer to those obtained with glycine than to those obtained with porphyrins, suggesting that porphyrins represent only a minor population in the complexing functional groups of asphaltenes.

  2. Dry etching technologies for the advanced binary film

    NASA Astrophysics Data System (ADS)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Yoshimori, Tomoaki; Azumano, Hidehito; Muto, Makoto; Nonaka, Mikio

    2011-11-01

    ABF (Advanced Binary Film) developed by Hoya as a photomask for 32 (nm) and larger specifications provides excellent resistance to both mask cleaning and 193 (nm) excimer laser and thereby helps extend the lifetime of the mask itself compared to conventional photomasks and consequently reduces the semiconductor manufacturing cost [1,2,3]. Because ABF uses Ta-based films, which are different from Cr film or MoSi films commonly used for photomask, a new process is required for its etching technology. A patterning technology for ABF was established to perform the dry etching process for Ta-based films by using the knowledge gained from absorption layer etching for EUV mask that required the same Ta-film etching process [4]. Using the mask etching system ARES, which is manufactured by Shibaura Mechatronics, and its optimized etching process, a favorable CD (Critical Dimension) uniformity, a CD linearity and other etching characteristics were obtained in ABF patterning. Those results are reported here.

  3. Re Effects on Phase Stability and Mechanical Properties of MoSS+Mo3Si+Mo5SiB2 alloys

    SciTech Connect

    Yang, Ying; Bei, Hongbin; George, Easo P; Tiley, Jaimie

    2013-01-01

    Because of their high melting points and good oxidation resistance Mo-Si-B alloys are of interest as potential ultrahigh-temperature structural materials. But their major drawbacks are poor ductility and fracture toughness at room temperature. Since alloying with Re has been suggested as a possible solution, we investigate here the effects of Re additions on the microstructure and mechanical properties of a ternary alloy with the composition Mo-12.5Si-8.5B (at.%). This alloy has a three-phase microstructure consisting of Mo solid-solution (MoSS), Mo3Si, and Mo5SiB2 and our results show that up to 8.4 at.% Re can be added to it without changing its microstructure or forming any brittle phase at 1600 C. Three-point bend tests using chevron-notched specimens showed that Re did not improve fracture toughness of the three-phase alloy. Nanoindentation performed on the MoSS phase in the three-phase alloy showed that Re increases Young s modulus, but does not lower hardness as in some Mo solid solution alloys. Based on our thermodynamic calculations and microstructural analyses, the lack of a Re softening effect is attributed to the increased Si levels in the Re-containing MoSS phase since Si is known to increase its hardness. This lack of softening is possibly why there is no Re-induced improvement in fracture toughness.

  4. An XPS study of the adherence of refractory carbide, silicide, and boride RF-sputtered wear-resistant coatings. [X-ray Photoelectron Spectroscopy of steel surfaces

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1978-01-01

    Radio frequency sputtering was used to deposit refractory carbide, silicide, and boride coatings on 440-C steel substrates. Both sputter etched and pre-oxidized substrates were used and the films were deposited with and without a substrate bias. The composition of the coatings was determined as a function of depth by X-ray photoelectron spectroscopy combined with argon ion etching. Friction and wear tests were conducted to evaluate coating adherence. In the interfacial region there was evidence that bias may produce a graded interface for some compounds. Biasing, while generally improving bulk film stoichiometry, can adversely affect adherence by removing interfacial oxide layers. Oxides of all film constituents except carbon and iron were present in all cases but the iron oxide coverage was only complete on the preoxidized substrates. The film and iron oxides were mixed in the MoSi2 and Mo2C films but layered in the Mo2B5 films. In the case of mixed oxides, preoxidation enhanced film adherence. In the layered case it did not.

  5. Charge transfer on the metallic atom-pair bond, and the crystal structures adopted by intermetallic compounds.

    PubMed

    Rajasekharan, T; Seshubai, V

    2012-01-01

    It has been argued in our recent papers that the heat of formation of intermetallic compounds is mostly concentrated in the nearest neighbor unlike atom-pair bonds, and that the positive term in Miedema's equation is associated with charge transfer on the bond to maintain electroneutrality. In this paper, taking examples of some well populated crystal-structure types such as MgCu(2), AsNa(3), AuCu(3), MoSi(2) and SiCr(3) types, the effect of such charge transfer on the crystal structures adopted by intermetallic compounds is examined. It is shown that the correlation between the observed size changes of atoms on alloying and their electronegativity differences is supportive of the idea of charge transfer between atoms. It is argued that the electronegativity and valence differences need to be of the required magnitude and direction to alter, through charge transfer, the elemental radius ratios R(A)/R(B) to the internal radius ratios r(A)/r(B) allowed by the structure types. Since the size change of atoms on alloying is highly correlated to how different R(A)/R(B) is from the ideal radius ratio for a structure type, the lattice parameters of intermetallic compounds can be predicted with excellent accuracy knowing R(A)/R(B). A practical application of the approach developed in our recent papers to superalloy design is presented.

  6. Multilayer coated optics for an alpha-class extreme ultraviolet lithography system

    SciTech Connect

    Folta, J A; Grabner, R F; Hudyma, R M; Montcalm, C; Schmidt, M A; Spiller, E; Walton, C C; Wedowski, M

    1999-08-25

    We present the results of coating the first set of optical elements for an alpha-class extreme-ultraviolet (EUV) lithography system, the Engineering Test Stand (ETS). The optics were coated with Mo/Si multilayer mirrors using an upgraded DC-magnetron sputtering system. Characterization of the near-normal incidence EUV reflectance was performed using synchrotron radiation from the Advanced Light Source at the Lawrence Berkeley National Laboratory. Stringent requirements were met for these multilayer coatings in terms of reflectance, wavelength matching among the different optics, and thickness control across the diameter of each individual optic. Reflectances above 65% were achieved at 13.35 nm at near-normal angles of incidence. The run-to-run reproducibility of the reflectance peak wavelength was maintained to within 0.4%, providing the required wavelength matching among the seven multilayer-coated optics. The thickness uniformity (or gradient) was controlled to within {+-}0.25% peak-to-valley (P-V) for the condenser optics and {+-}0.1% P-V for the four projection optics, exceeding the prescribed specification for the optics of the ETS.

  7. Assessment of precipitation behavior in dental castings of a Co-Cr-Mo alloy.

    PubMed

    Yamanaka, Kenta; Mori, Manami; Chiba, Akihiko

    2015-10-01

    This study investigated solute portioning and precipitation in dental castings of a Co-Cr-Mo alloy and discussed their effects on alloy performance, in particular, the mechanical properties. Samples of a commercial Co-29Cr-6Mo (mass%) alloy were prepared using a dental-casting machine. The precipitates formed owing to the partitioning behaviors of the alloying elements were investigated using scanning electron microscopy, electron backscatter diffraction analysis, electron probe microanalysis, and transmission electron microscopy. The prepared samples exhibited a very coarse face-centered-cubic γ-phase dendritic structure with an average grain size of a few millimeters. A large number of precipitates, which decomposed further into complex interdendritic constituents (σ- and M23C6 carbide phases) were observed in the interdendritic regions rich in Cr, Mo, Si, and C. A reaction between the σ-phase and carbon is probably responsible for the carbide M23C6; however, this reaction did not occur to completion in the current case in spite of slow cooling (i.e., long exposure to elevated temperatures) in dental casting. While these precipitates result in high strength (hardness) and/or brittleness, the properties can be improved further by optimizing the alloy composition and the manufacturing process. The results of this study shed light on the significance of precipitation control in dental castings of Co-Cr-Mo alloys and should aid in the design of novel biomedical Co-Cr-based dental alloys that exhibit better performances.

  8. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  9. Study of the low-pressure chemical-vapor-deposited tungsten-silicon interface: Interfacial fluorine

    SciTech Connect

    Carlisle, J.A.; Chopra, D.R.; Dillingham, T.R.; Gnade, B.; Smith, G.

    1989-03-15

    Single-crystal silicon <100> substrates uniformly doped at approx. >12 ..cap omega.. cm with boron were deposited with approx.800 A of low-pressure chemically vapor deposited W in a hot-quartz-walled (Anicon) system at a deposition temperature of 300 /sup 0/C. The samples studied include an as-deposited sample and two others which were post-deposition annealed at 600 /sup 0/C in Ar for 15 min each. X-ray photoelectron spectroscopy (XPS) coupled with an Ar/sup +/ ion sputter profiling technique was employed to investigate these structures as a function of depth. Particular emphasis was placed on the depth distribution, content, and chemical state of the fluorine present. Rutherford backscattering spectrometry and x-ray diffraction were used to corroborate the XPS data. Results show that, for the as-deposited and 600 /sup 0/C annealed sample, the maximum concentration of fluorine (0.6--0.8 at. %) is observed, not at the W/Si interface, but rather at the W (H/sub 2/ reduction)/W (Si displacement) interface. For the sample annealed at 850 /sup 0/C, WSi/sub 2/ is formed in the overlayer, and the peak in the F profile corresponds to the position of the WSi/sub 2//Si interface. The maximum concentration of fluorine is reduced by approximately 75% to 0.23 at. % in this sample. From the XPS spectra of the F 1s region, the chemical species of fluorine present in these samples have been identified as WF/sub 6/, WF/sub 5/, and WF/sub 4/.

  10. Fabrication, strength and oxidation of molybdenum-silicon-boron alloys from reaction synthesis

    NASA Astrophysics Data System (ADS)

    Middlemas, Michael Robert

    Mo-Si-B alloys are a leading candidate for the next generation of jet turbine engine blades and have the potential to raise the operating temperatures by 300-400°C, which would dramatically increase power and efficiency. The alloys of interest are a three-phase mixture of the molybdenum solid solution (Moss) and two intermetallic phases, Mo3Si (A15) and Mo5SiB2 (T2). A novel powder metallurgical method was developed which uses the reaction of molybdenum, silicon nitride (Si3N4) and boron nitride (BN) powders to synthesize a fine dispersion of the intermetallic phases in a Moss matrix. The covalent nitrides are stable in oxidizing environments up to 1000ºC, allowing for fine particle processing without the formation of silicon and boron oxides. The process developed uses standard powder processing techniques to create Mo-Si-B alloys in a less complex and expensive manner than previously demonstrated. The formation of the intermetallic phases was examined by thermo-gravimetric analysis and x-ray diffraction. The start of the reactions to form the T2 and A15 phases were observed at 1140°C and 1193°C and the reactions have been demonstrated to be complete in as little as two hours at 1300°C. This powder metallurgy approach yields a fine dispersion of intermetallics in the Moss matrix, with average grain sizes of 2-4mum. Densities up to 95% of theoretical were attained from pressureless sintering at 1600°C and full theoretical density was achieved by hot-isostatic pressing (HIP). Low temperature sintering and HIPing was attempted to limit grain growth and to reduce the equilibrium silicon concentration in the Moss matrix. Sintering and HIPing at 1300°C reduced the grain sizes of all three phases by over a factor of two. Powder metallurgy provides an opportunity for microstructure control through changes in raw materials and processing parameters. Microstructure examination by electron back-scatter diffraction (EBSD) imaging was used to precisely define the

  11. Direct structuring of solids by EUV radiation from a table-top laser produced plasma source

    NASA Astrophysics Data System (ADS)

    Barkusky, Frank; Bayer, Armin; Peth, Christian; Mann, Klaus

    2009-05-01

    In recent years, technological developments in the area of extreme ultraviolet lithography (EUVL) have experienced great improvements. Currently, the application of EUV radiation apart from microlithography comes more and more into focus. Main goal of our research is to utilize the unique interaction between soft x-ray radiation and matter for probing, modifying, and structuring solid surfaces. In this contribution we present a setup capable of generating and focusing EUV radiation. It consists of a table-top laser-produced plasma source. In order to obtain a small focal spot resulting in high EUV fluence, a modified Schwarzschild objective consisting of two spherical mirrors with Mo/Si multilayer coatings is adapted to this source, simultaneously blocking unwanted out-of-band radiation. By demagnified (10x) imaging of the plasma an EUV spot of 5 μm diameter with a maximum energy density of ~0.72 J/cm² is generated (pulse length 8.8 ns). We present first applications of this integrated source and optics system, demonstrating its potential for high-resolution modification and structuring of solid surfaces. As an example, etch rates for PMMA, PC and PTFE depending on EUV fluences were determined, indicating a linear etch behavior for lower energy densities. In order to investigate changes of the chemical composition of PMMA induced by EUV radiation we present FTIR and NEXAFS measurements on irradiated samples. The latter were performed using the laboratory source tuned to the XUV spectral range around the carbon K-edge (λ ~ 4.4 nm) and a flat-field spectrometer. For showing the potential of this setup, first damage tests were performed on grazing incidence gold mirrors. For these thin Gold films, threshold energy densities could be determined, scaling linear with the film thickness.

  12. Applications of multilayer optics

    NASA Astrophysics Data System (ADS)

    Wang, Zhanshan; Zhu, Jingtao; Mu, Baozhong; Zhang, Zhong; Wang, Fengli; Xu, Jing; Li, Wenbin; Chen, Lingyan

    2010-11-01

    Recent development of multilayer mirror and its applications in extreme ultraviolet (EUV), soft X-ray ranges in China was reviewed in this paper. Three types of multilayer mirrors were developed with special performance for dense plasma diagnostics, EUV astronomical observation. Firstly, dual-periodic W/B 4C multilayer mirror was designed for Kirkpatrick-Baez (K-B) microscopy working at TiKα line (4.75 keV), which is highly reflective both at hard X-ray (CuKα line at 8.05 keV) and soft X-ray (4.75 keV). Using this mirror, the K-B system can be aligned conveniently in air using hard X-ray instead of in vacuum. The second mirror is aperiodic Mg/SiC multilayer, also a bi-functional mirror with high reflectivity for He-II emission line (30.4 nm) but suppressing He-I emission line (58.4 nm) in astronomy observation, which will replace the traditional combination of periodic multilayer and the fragile film filter. This will be more safe in satellite launching. The third mirror is Mo/Si periodic multilayer, depositing on a parabolic substrate with diameter of 230 mm, which is designed for EUV telescope for imaging of solar corona by selecting Fe-XII emission (19.5 nm). The uniformity of lateral layer thickness distribution is within ±0.3% along the diameter of mirror, measured by X-ray reflectometry. The measured peak reflectivity is 42% at the wavelength of 19.5 nm. All these multilayer mirrors were prepared by using magnetron sputtering system in our group.

  13. High efficiency multilayer blazed gratings for EUV and soft X-rays: Recent developments

    SciTech Connect

    Voronov, Dmitriy; Ahn, Minseung; Anderson, Erik; Cambie, Rossana; Chang, Chih-Hao; Goray, Leonid; Gullikson, Eric; Heilmann, Ralf; Salmassi, Farhad; Schattenburg, Mark; Warwick, Tony; Yashchuk, Valeriy; Padmore, Howard

    2011-07-26

    Multilayer coated blazed gratings with high groove density are the best candidates for use in high resolution EUV and soft x-ray spectroscopy. Theoretical analysis shows that such a grating can be potentially optimized for high dispersion and spectral resolution in a desired high diffraction order without significant loss of diffraction efficiency. In order to realize this potential, the grating fabrication process should provide a perfect triangular groove profile and an extremely smooth surface of the blazed facets. Here we report on recent progress achieved at the Advanced Light Source (ALS) in fabrication of high quality multilayer coated blazed gratings. The blazed gratings were fabricated using scanning beam interference lithography followed by wet anisotropic etching of silicon. A 200 nm period grating coated with a Mo/Si multilayer composed with 30 bi-layers demonstrated an absolute efficiency of 37.6percent in the 3rd diffraction order at 13.6 nm wavelength. The groove profile of the grating was thoroughly characterized with atomic force microscopy before and after the multilayer deposition. The obtained metrology data were used for simulation of the grating efficiency with the vector electromagnetic PCGrate-6.1 code. The simulations showed that smoothing of the grating profile during the multilayer deposition is the main reason for efficiency losses compared to the theoretical maximum. Investigation of the grating with cross-sectional transmission electron microscopy revealed a complex evolution of the groove profile in the course of the multilayer deposition. Impact of the shadowing and smoothing processes on growth of the multilayer on the surface of the sawtooth substrate is discussed.

  14. High-temperature corrosion of UNS N10003 in molten Li2BeF4 (FLiBe) salt

    SciTech Connect

    Zheng, Guiqiu; Kelleher, Brian; He, Lingfeng; Cao, Guoping; Anderson, Mark; Allen, Todd; Sridharan, Kumar

    2015-07-30

    Here, corrosion testing of Hastelloy N in molten fluoride salt was performed in purified molten 27LiF-BeF2 (66-34mol%) (FLiBe) salt at 700°C for 1000 hours, in pure nickel and graphite capsules. In the nickel capsule tests, the near-surface region of the alloy exhibited an about 200 nm porous structure, an approximately 3.5 μm chromium depleted region, and MoSi2 precipitates. In tests performed in graphite capsules, the alloy samples gained weight due to the formation of a variety of Cr3C2, Cr7C3, Mo2C and Cr23C6, carbide phases on the surface and in the subsurface regions of the alloy. A Cr depleted region was observed in the near-surface region where Mo thermally diffused toward either surface or grain boundary, which induced approximately 1.4 μm Ni3Fe alloy layer in this region. The carbide containing layer extended to about 7 μm underneath the Ni3Fe layer. The presence of graphite dramatically changes the mechanisms of corrosion attack in Hastelloy N in molten FLiBe salt. Evaluated by in terms of the depth of attack, graphite clearly accelerates corrosion, but the results appear to indicate that the formation of Cr23C6 phase might stabilize the Cr and mitigate its dissolution in molten FLiBe salt.

  15. Changes in hydrological patterns and climate variability for the past 1000 years in the southern Gulf of California

    NASA Astrophysics Data System (ADS)

    Pérez-Cruz, Ligia; Rodríguez, Alejandro; Roy, Priyadarsi; Urrutia-Fucugauchi, Jaime

    2013-04-01

    This study aims to document changes in hydrological patterns, variations in oxygenation and bio-productivity associated with regional climate conditions (v. gr. such a precipitation, cyclonic gyre and North America Monsoon) in the southern Gulf of California. A laminated sediment box core C36 was collected in Alfonso Basin, Bay of La Paz, southern Gulf of California, at 390 m depth. Total core length is 36.5 cm. The preliminary chronology for core C36 is based on 210-Pb and AMS radiocarbon dates. Samples were dried and grounded and bulk-sediment chemistry was measured using a Thermo Scientific Niton XL3t GOLDD X-ray fluorescence (XRF) analyzer. Major and trace elements were determined. The marine standard HISS-1 was used for calibration. The following elements and ratios are considered for the analysis: Al, Ba, Ca, Fe, K, Mo, Si, Ti, V and Zr and Zr/Al and Ba/Al, which are used as proxies of terrigenous input, oxygenation and bio-productivity. A total of 122 continuous measurements along the whole core were obtained. Element chemical concentrations and their stratigraphic distribution are interpreted in terms of changes in hydrological cycle and paleoproductivity in the region. According to the radiocarbon date the core spans 909 cal yr BP (AD 1041). We also considered 210-Pb dates from a core collected nearby to the C36. Sedimentation rates estimated are 0.6 and 0.34 mm/yr. Further dating is in progress. Magnetic susceptibility logging is used as indicator of mineral magnetic concentrations associated with diagenetic processes and terrigenous input. The Al, K, Si and Ti are used as proxies of terrigenous input, Zr/Al ratio is used as proxy of aeolian input, and Ba/Al ratio is a proxy of paloeproductivity.

  16. EUV mask making: an approach based on the direct patterning of the EUV reflector

    NASA Astrophysics Data System (ADS)

    Chovino, Christian; Dieu, Laurent; Johnstone, Eric; Reyes, Julio; La Fontaine, Bruno M.; Levinson, Harry J.; Pawloski, Adam R.

    2003-12-01

    Extreme Ultraviolet Lithography (EUVL) is the leading candidate for manufacturing integrated circuits beyond the 45-nm technology node. The masks for EUVL are reflective and significantly different from current transmission masks for deep UV lithography. Many authors have demonstrated the patterning of EUVL masks using different types of absorber stacks that were deposited on top of the multilayer reflector. More recently, a new approach based on the etching of the multilayer reflector in order to define the mask pattern was proposed [2]. Using rigorous electro-magnetic simulations, it was shown that this subtractive approach could provide better process latitude, less H-V bias and smaller image-placement errors compared to the traditional masks based on the additive method. Even though the mask processing shows interesting challenges, this approach might offer immediate advantages over the more traditional patterning technique using the absorber stack, beyond those predicted for lithography imaging. These include the possibility to use optical inspection in transmission mode, which can provide the high-contrast images that are essential for high-sensitivity detection of small defects. In this paper, we present the first results on the patterning of EUVL masks using the direct etching the EUVL multilayer reflector (Mo/Si type) to produce EUV binary masks. In particular, we show how the process parameters can be adjusted to control the pattern sidewall angle. We also present an analysis of the influence of this sidewall angle on lithography imaging, based on lithography simulations. Finally, we show results from the optical inspection of these etched-multilayer binary masks (EMBM).

  17. Influence of heat treatments on microstructure, mechanical properties, and corrosion resistance of weld alloy 625

    SciTech Connect

    Cortial, F.; Corrieu, J.M.; Vernot-Loier, C.

    1995-05-01

    The effects of heat treatments of the industrial type on the structural, mechanical, and corrosion resistance characteristics of weld alloy 625 have been studied. During the heat treatment, the mean concentration ratios of Nb, Mo, Si, Cr, Ni, and Fe elements between the interdendritic spaces and dendrite cores show little evolution up to 850 C. Beyond that temperature, this ratio approximates 1, and the composition heterogeneity has practically disappeared at 1,000 C. An eight-hour heat treatment at temperatures between 650 C and 750 C results in increased mechanical strength values and reduced ductility and impact strength linked to the precipitation of body-centered tetragonal metastable intermetallic {gamma}{double_prime} Ni{sub 3}Nb phase in the interdendritic spaces. An eight-hour treatment in the temperature range between 750 C and 950 C has catastrophic effects on all mechanical characteristics in relation with the precipitation, in the interdendritic spaces, of the stable orthorhombic intermetallic {delta} Ni{sub 3}(Nb, Mo, Cr, Fe, Ti) phase. At 1,000 C, the ductility and impact strength are restored. However, the higher the beat treatment temperature, the weaker the mechanical strength. Heat treatments have no effect on the pitting resistance of weld alloy 625 in sea water. The comparison of the results of this study on weld alloy 625 with those previously obtained on forged metal 625 shows that heat treatments below 650 C and above 1,000 C are the sole treatments to avoid embrittlement and impairment of the corrosion resistance characteristics of alloy 625.

  18. Photomask technology for 32nm node and beyond

    NASA Astrophysics Data System (ADS)

    Hikichi, Ryugo; Ishii, Hiroyuki; Migita, Hidekazu; Kakehi, Noriko; Shimizu, Mochihiro; Takamizawa, Hideyoshi; Nagano, Tsugumi; Hashimoto, Masahiro; Iwashita, Hiroyuki; Suzuki, Toshiyuki; Hosoya, Morio; Ohkubo, Yasushi; Ushida, Masao; Mitsui, Hideaki

    2008-05-01

    193nm-immersion lithography is the most promising technology for 32nm-node device fabrication. At the 32nm technology-node, the performance of photomasks, not only phase-shift masks but also binary masks, needs to be improved, especially in "resolution" and "CD accuracy". To meet sub-100nm resolution with high precision, further thinning of resist thickness will be needed. To improve CD performance, we have designed a new Cr-on-glass (COG) blank for binary applications, having OD-3 at 193nm. This simple Cr structure can obtain superior performance with the conventional mask-making process. Since the hardmask concept is one of the alternative solutions, we have also designed a multilayered binary blank. The new COG blank (NTARC) was fully dry-etched with over 25% shorter etching time than NTAR7, which is a conventional COG blank. Thinner resist (up to 200nm) was possible for NTARC. NTARC with 200nm-thick resist showed superior resolution and CD linearity in all pattern categories. On the other hand, the multilayered binary stack gives us a wide etching margin for several etching steps. Super thin resist (up to 100nm) was suitable by using a Cr-hardmask on a MoSi-absorber structure (COMS). The COMS blanks showed superior performance, especially in tiny clear patterns, such as the isolated hole pattern. We confirmed that these new photomask blanks, NTARC and COMS, will meet the requirements for 32nm-node and beyond, for all aspects of mask-making.

  19. Binary 193nm photomasks aging phenomenon study

    NASA Astrophysics Data System (ADS)

    Dufaye, Félix; Sartelli, Luca; Pogliani, Carlo; Gough, Stuart; Sundermann, Frank; Miyashita, Hiroyuki; Hidenori, Yoshioka; Charras, Nathalie; Brochard, Christophe; Thivolle, Nicolas

    2011-05-01

    193nm binary photomasks are still used in the semiconductor industry for the lithography of some critical layers for the nodes 90nm and 65nm, with high volumes and over long period. These 193nm binary masks seem to be well-known but recent studies have shown surprising degrading effects, like Electric Field induced chromium Migration (EFM) [1] or chromium migration [2] [3] . Phase shift Masks (PSM) or Opaque MoSi On Glass (OMOG) might not be concerned by these effects [4] [6] under certain conditions. In this paper, we will focus our study on two layers gate and metal lines. We will detail the effects of mask aging, with SEM top view pictures revealing a degraded chromium edge profile and TEM chemical analyses demonstrating the growth of a chromium oxide on the sidewall. SEMCD measurements after volume production indicated a modified CD with respect to initial CD data after manufacture. A regression analysis of these CD measurements shows a radial effect, a die effect and an isolated-dense effect. Mask cleaning effectiveness has also been investigated, with sulphate or ozone cleans, to recover the mask quality in terms of CD. In complement, wafer intrafield CD measurements have been performed on the most sensitive structure to monitor the evolution of the aging effect on mask CD uniformity. Mask CD drift have been correlated with exposure dose drift and isolated-dense bias CD drift on wafers. In the end, we will try to propose a physical explanation of this aging phenomenon and a solution to prevent from it occurring.

  20. Characteristics and issues of haze management in a wafer fabrication environment

    NASA Astrophysics Data System (ADS)

    Woo, Sung Ha; Hwang, Dae Ho; Jeong, Goo Min; Lee, Young Mo; Kim, Sang Pyo; Yim, Dong Gyu

    2014-10-01

    The haze nucleation and growth phenomenon on critical photomask surfaces has periodically gained attention as it has significantly impacted wafer printability for different technology nodes over the years. A number of process solutions have been promoted in the semiconductor industry which has been shown to suppress or minimize the propensity for haze formation, but none of these technologies can stop every instance of haze. Fortunately, a novel technology which uses a dry (no chemical effluents) removal system, laser-based, through pellicle process has been reported recently. The technology presented here avoids many of the shortcomings of the wet clean process mentioned previously. The dry clean process extends the life of the photomask; maintains more consistent CD's, phase, and transmission; avoids adjustment to the exposure dose to account for photomask changes, reduces the number of required inspections and otherwise improves the efficiency and predictability of the lithography cell. We report on the performance of photomask based on a design developed to study the impact of metrology variations on dry clean process. In a first step we focus on basic characteristics: CD variation, phase, Cr/MoSi transmission, pellicle transmission, registration variations. In a second step, we evaluate haze removal and prevention performance and wafer photo margin. Haze removal is studied on the masks for several haze types and various exposure conditions. The results of this study show that some of metrology variation are likely to be a problem at high technology node, and haze removal performance is determined whether the component of haze is remained or not after treatment.

  1. Optical constants of materials in the EUV/soft x-ray region for multilayer mirror applications

    SciTech Connect

    Soufli, Regina

    1997-12-01

    The response of a given material to an incident electromagnetic wave is described by the energy dependent complex index of refraction n = 1 - δ + iβ. In the extreme ultraviolet (EUV)/soft x-ray spectral region, the need for accurate determination of n is driven by activity in areas such as synchrotron based research, EUV/x-ray lithography, x-ray astronomy and plasma applications. Knowledge of the refractive index is essential for the design of the optical components of instruments used in experiments and applications. Moreover, measured values of n may be used to evaluate solid state models for the optical behavior of materials. The refractive index n of Si, Mo and Be is investigated in the EUV/soft x-ray region. In the case of Si, angle dependent reflectance measurements are performed in the energy range 50-180 eV. The optical constants δ, β are both determined by fitting to the Fresnel equations. The results of this method are compared to the values in the 1993 atomic tables. Photoabsorption measurements for the optical constants of Mo are performed on C/Mo/C foils, in the energy range 60-930 eV. Photoabsorption measurements on Be thin films supported on silicon nitride membranes are performed, and the results are applied in the determination of the absorption coefficient of Be in the energy region 111.5-250 eV. The new results for Si and Mo are applied to the calculation of normal incidence reflectivities of Mo/Si and Mo/Be multilayer mirrors. These calculations show the importance of accurate knowledge of δ and β in the prediction and modeling of the performance of multilayer optics.

  2. Advanced materials for multilayer mirrors for extreme ultraviolet solar astronomy.

    PubMed

    Bogachev, S A; Chkhalo, N I; Kuzin, S V; Pariev, D E; Polkovnikov, V N; Salashchenko, N N; Shestov, S V; Zuev, S Y

    2016-03-20

    We provide an analysis of contemporary multilayer optics for extreme ultraviolet (EUV) solar astronomy in the wavelength ranges: λ=12.9-13.3  nm, λ=17-21  nm, λ=28-33  nm, and λ=58.4  nm. We found new material pairs, which will make new spaceborne experiments possible due to the high reflection efficiencies, spectral resolution, and long-term stabilities of the proposed multilayer coatings. In the spectral range λ=13  nm, Mo/Be multilayer mirrors were shown to demonstrate a better ratio of reflection efficiency and spectral resolution compared with the commonly used Mo/Si. In the spectral range λ=17-21  nm, a new multilayer structure Al/Si was proposed, which had higher spectral resolution along with comparable reflection efficiency compared with the commonly used Al/Zr multilayer structures. In the spectral range λ=30  nm, the Si/B4C/Mg/Cr multilayer structure turned out to best obey reflection efficiency and long-term stability. The B4C and Cr layers prevented mutual diffusion of the Si and Mg layers. For the spectral range λ=58  nm, a new multilayer Mo/Mg-based structure was developed; its reflection efficiency and long-term stability have been analyzed. We also investigated intrinsic stresses inherent for most of the multilayer structures and proposed possibilities for stress elimination.

  3. Kinetic modeling of the SWNT growth by CO disproportionation on CoMo catalysts.

    PubMed

    Monzon, A; Lolli, G; Cosma, S; Mohamed, S B; Resasco, D E

    2008-11-01

    A kinetic model has been developed to describe the growth of single-walled carbon nanotubes (SWNT) in the CoMoCAT method, which is based on the disproportionation of CO on supported CoMo catalysts. The model attempts to capture mathematically the different stages involved in this method: (i) catalyst activation or in-situ creation of active sites, i.e., reduced Co clusters by transformation of CoMoOx precursor species, or oxidized sites; (ii) CO decomposition over active sites, which increases the surface fugacity of carbon until reaching a certain threshold; (iii) nucleation of ordered forms of carbon; (iv) C diffusion (both across the surface and into the metal particle); (v) SWNT growth; (vi) termination, by either deactivation of the catalyst active sites or by increase in the carbon concentration at the metal/SWNT interface, approaching that of the metal/gas interface and eliminating the driving force for diffusion. Previous investigations have only explained the growth termination by the former. Here, we emphasize the possible contribution of the later and propose a novel "hindrance factor" to quantify the effect of nanotube interaction with its surroundings on the growth termination. To test the kinetic model and obtain typical values of the physical parameters, experiments have been conducted on a CoMo/SiO2 catalyst in a laboratory flow reactor, in which the rate of carbon deposition was continuously evaluated by the direct measurement of the CO2 evolution as a function of time. The experimental data are fitted very well with model.

  4. Galvanizing and Galvannealing Behavior of CMnSiCr Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Lin, Ko-Chun; Chu, Peng-Wei; Lin, Chao-Sung; Chen, Hon-Bor

    2013-06-01

    Alloying elements, such as Mn, Mo, Si, and Cr, are commonly used to enhance the strength of advanced high-strength steels. Those elements also play an important role in the hot-dip galvanizing (GI) and galvannealing (GA) process. In this study, two kinds of CMnSiCr dual-phase steels were galvanized and galvannealed using a hot-dip simulator to investigate the effect of the alloying elements on the microstructure of the GI and GA coatings. The results showed that the dual-phase steels had good galvanizability because no bare spots were observed and the Fe-Zn phases were readily formed at the interface. However, the alloying reaction during the GA process was significantly hindered. XPS analysis showed that external oxidation occurred under an extremely low dew point [213 K to 203 K (-60 °C to -70 °C)] atmosphere during the annealing prior to hot dipping. However, most of the oxides were reduced during the GI process. After the GI process, the Al was present as solid solutes in the Fe-Zn phase, suggesting that the Fe-Zn phase was formed from the transformation of the Fe-Al inhibition alloy. Meanwhile, the solubility of Si in the ζ phase was extremely low. With continued GA reaction, the ζ phase transformed into the δ phase, which contained approximately 1.0 at.pct Si. The Si also diffused into the Zn layer during the GA reaction. Hence, the ζ phase did not homogeneously nucleate at the steel substrate/Zn coating interface, but was found at the area away from the interface. Therefore, the Fe-Zn phases on the CMnSiCr dual-phase steels were relatively non-uniform compared to those on interstitial-free steel.

  5. Sources for beyond extreme ultraviolet lithography and water window imaging

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Gerry; Li, Bowen; Dunne, Padraig; Hayden, Paddy; Kilbane, Deirdre; Lokasani, Ragava; Long, Elaine; Ohashi, Hayato; O'Reilly, Fergal; Sheil, John; Sheridan, Paul; Sokell, Emma; Suzuki, Chihiro; White, Elgiva; Higashiguchi, Takeshi

    2015-05-01

    Lithography tools are being built and shipped to semiconductor manufacturers for high volume manufacturing using extreme ultraviolet lithography (EUVL) at a wavelength of 13.5 nm. This wavelength is based on the availability of Mo/Si multilayer mirrors (MLMs) with a reflectivity of ˜70% at this wavelength. Moreover, the primary lithography tool manufacturer, ASML, has identified 6.x nm, where x˜7, as the wavelength of choice for so-called Beyond EUVL, based on the availability of La/B4C MLMs, with theoretical reflectance approaching 80% at this wavelength. The optimum sources have been identified as laser produced plasmas of Gd and Tb, as n = 4-n = 4 transitions in their ions emit strongly near this wavelength. However, to date, the highest conversion efficiency obtained, for laser to EUV energy emitted within the 0.6% wavelength bandwidth of the mirror is only 0.8%, pointing to the need to identify other potential sources or consider the selection of other wavelengths. At the same time, sources for other applications are being developed. Conventional sources for soft x-ray microscopy use H-like line emission from liquid nitrogen or carbon containing liquid jets which can be focused using zone plates. Recently the possibility of using MLMs with n = 4-n = 4 emission from a highly charged Bi plasma was proposed and subsequently the possibility of using Δn = 1 transitions in 3rd row transition elements was identified. All of these studies seek to identify spectral features that coincide with the reflectance characteristics of available MLMs, determine the conditions under which they are optimized and establish the maximum conversion efficiencies obtainable. Thus, there is a need for systematic studies of laser produced plasmas of a wide range of elements as some of the challenges are similar for all of these sources and some recent results will be presented.

  6. Influence of heat treatments on microstructure, mechanical properties, and corrosion resistance of weld alloy 625

    NASA Astrophysics Data System (ADS)

    Cortial, F.; Corrieu, J. M.; Vernot-Loier, C.

    1995-05-01

    The effects of heat treatments of the industrial type (eight-hour hold times at temperatures between 600 °C and 1000 °C) on the structural, mechanical, and corrosion resistance characteristics of weld alloy 625 have been studied. During the heat treatment, the mean concentration ratios of Nb, Mo, Si, Cr, Ni, and Fe elements between the interdendritic spaces and dendrite cores show little evolution up to 850 °C. Beyond that temperature, this ratio approximates 1, and the composition heterogeneity has practically disappeared at 1000 °C. An eight-hour heat treatment at temperatures between 650 °C and 750 °C results in increased mechanical strength values and reduced ductility and impact strength linked to the precipitation of body-centered tetragonal metastable intermetallic γ″ Ni3Nb phase in the interdendritic spaces. An eight-hour treatment in the temperature range between 750 °C and 950 °C has catastrophic effects on all mechanical characteristics in relation with the precipitation, in the interdendritic spaces, of the stable orthorhombic intermetallic δ Ni3(Nb, Mo, Cr, Fe, Ti) phase. At 1000 °C, the ductility and impact strength are restored. However, the higher the heat treatment temperature, the weaker the mechanical strength. Heat treatments have no effect on the pitting resistance of weld alloy 625 in sea water. The comparison of the results of this study on weld alloy 625 with those previously obtained on forged metal 625 shows that heat treatments below 650 °C and above 1000 °C are the sole treatments to avoid embrittlement and impairment of the corrosion resistance characteristics of alloy 625.

  7. Laser-plasma debris from a rotating cryogenic-solid-Xe target.

    PubMed

    Amano, Sho; Inaoka, Yutaka; Hiraishi, Hiroki; Miyamoto, Shuji; Mochizuki, Takayasu

    2010-02-01

    We investigate the characteristics of laser plasma debris that is responsible for damaging optics. The debris is composed of fast ions, neutral particles, and fragments, and originates from a solid Xe target on a rotating drum that we developed as an extreme ultraviolet (EUV) source. The ice fragments appear to be a problem most notably with solid Xe targets; however, we find that the damage induced by Xe ice fragments can be avoided by simply reducing the laser pulse energy. We find the number of fast neutral particles to be an order of magnitude less than the number of ions, and we clarify that the plasma debris is primarily composed of fast ions. In addition, we find that the number of fast ions having a few dozen keV of energy decreases when using the rotating target compared with the rest target. We attribute this to a gas curtain effect from the Xe gas localized at the rotating target surface. We estimate the sputtering rate of the Mo/Si mirror, which is caused primarily by the fast ions, to be 104 nm/1x10(6) shots at 190 mm from the source plasma and at an 11.25 degree angle from the incident laser beam. Up to the 1x10(6) shots exposure, remarkable degradation of the mirror reflectivity is not observed though the sputtering damages the mirror. Mitigation of the ions by using gas and/or magnetic fields will further improve the mirror lifetime. By comparing with a liquid jet Xe target, we conclude that the sputtering rate per conversion efficiency when using the solid Xe targets on the rotating drum is the same as that when using the liquid Xe targets. The high conversion efficiency of 0.9% in the rotating drum solid Xe target makes this technique useful for developing laser plasma EUV sources.

  8. Analyse de l'intensité de fluorescence émise par une multicouche périodique sous rayonnement synchrotron. Application à l'étude de la répartition spatiale des éléments dans l'empilement

    NASA Astrophysics Data System (ADS)

    Bridou, F.; Cauchon, G.; Idir, M.

    2004-11-01

    L'analyse de l'intensité du rayonnement de fluorescence des multicouches périodiques en fonction des angles d'incidence ou d'émission, peut constituer une méthode de caractérisation non destructive capable de déterminer le profil de concentration en profondeur d'un élément donné, notamment au niveau des interfaces où ce profil influe considérablement sur les performances optiques dans le domaine X-UV. Le principe de la méthode consiste à exciter la fluorescence d'un des deux matériaux de l'empilement par une radiation d'énergie supérieure à celle du seuil d'absorption de l'élément considéré. Celui-ci va émettre son propre rayonnement à l'intérieur de la multicouche. La répartition d'intensité est modulée selon la distribution géométrique des sources de rayonnement (donc de l'élément excité) à l'intérieur de l'empilement. On présente ici les résultats qui ont pu êtres obtenus à partir du rayonnement d'une source synchrotron (SB3_LURE) pour étudier une multicouche Mo/Si de 50 périodes. On a pu ainsi exciter d'une part la fluorescence du silicium, puis celle du molybdène, et montrer que les informations obtenues sur la répartition des éléments dans la multicouche étaient complémentaires.

  9. Profile reconstruction in extreme ultraviolet (EUV) scatterometry: modeling and uncertainty estimates

    NASA Astrophysics Data System (ADS)

    Gross, H.; Rathsfeld, A.; Scholze, F.; Bär, M.

    2009-10-01

    Scatterometry as a non-imaging indirect optical method in wafer metrology is also relevant to lithography masks designed for extreme ultraviolet lithography, where light with wavelengths in the range of 13 nm is applied. The solution of the inverse problem, i.e. the determination of periodic surface structures regarding critical dimensions (CD) and other profile properties from light diffraction patterns, is incomplete without knowledge of the uncertainties associated with the reconstructed parameters. The numerical simulation of the diffraction process for periodic 2D structures can be realized by the finite element solution of the two-dimensional Helmholtz equation. The inverse problem can be formulated as a nonlinear operator equation in Euclidean space. The operator maps the sought mask parameters to the efficiencies of diffracted plane wave modes. We employ a Gauß-Newton type iterative method to solve this operator equation and end up minimizing the deviation of the measured efficiency or phase shift values from the calculated ones. We apply our reconstruction algorithm for the measurement of a typical EUV mask composed of TaN absorber lines of about 80 nm height, a period in the range of 420 nm-840 nm, and with an underlying MoSi-multilayer stack of 300 nm thickness. Clearly, the uncertainties of the reconstructed geometric parameters essentially depend on the uncertainties of the input data and can be estimated by various methods. We apply a Monte Carlo procedure and an approximative covariance method to evaluate the reconstruction algorithm. Finally, we analyze the influence of uncertainties in the widths of the multilayer stack by the Monte Carlo method.

  10. Development and characterization of a thinner binary mask absorber for 22-nm node and beyond

    NASA Astrophysics Data System (ADS)

    Faure, Tom; Badger, Karen; Kindt, Louis; Kodera, Yutaka; Komizo, Toru; Kondo, Shinpei; Mizoguchi, Takashi; Nemoto, Satoru; Seki, Kazunori; Senna, Tasuku; Wistrom, Richard; Zweber, Amy; Nishikawa, Kazuhiro; Inazuki, Yukio; Yoshikawa, Hiroki

    2010-09-01

    The lithography challenges posed by the 22 nm node continue to place stringent requirements on photomasks. The dimensions of the mask features continue to shrink more deeply into the sub-wavelength scale. In this regime residual mask electromagnetic field (EMF) effects due to mask topography can degrade the imaging performance of critical mask patterns by degrading the common lithography process window and by magnifying the impact of mask errors or MEEF. Based on this, an effort to reduce the mask topography effect by decreasing the thickness of the mask absorber was conducted. In this paper, we will describe the results of our effort to develop and characterize a binary mask substrate with an absorber that is approximately 20-25% thinner than the absorber on the current Opaque MoSi on Glass (OMOG) binary mask substrate. For expediency, the thin absorber development effort focused on using existing absorber materials and deposition methods. It was found that significant changes in film composition and structure were needed to obtain a substantially thinner blank while maintaining an optical density of 3.0 at 193 nm. Consequently, numerous studies to assess the mask making performance of the thinner absorber material were required and will be described. During these studies several significant mask making advantages of the thin absorber were discovered. The lower film stress and thickness of the new absorber resulted in improved mask flatness and up to a 60% reduction in process-induced mask pattern placement change. Improved cleaning durability was another benefit. Furthermore, the improved EMF performance of the thinner absorber [1] was found to have the potential to relieve mask manufacturing constraints on minimum opaque assist feature size and opaque corner to corner gap. Based on the results of evaluations performed to date, the thinner absorber has been found to be suitable for use for fabricating masks for the 22 nm node and beyond.

  11. Evaluating Impacts of CO2 and CH4 Gas Intrusion into an Unconsolidated Aquifer: Fate of As and Cd

    SciTech Connect

    Lawter, Amanda R.; Qafoku, Nikolla; Shao, Hongbo; Bacon, Diana H.; Brown, Christopher F.

    2015-07-10

    Abstract The sequestration of carbon dioxide (CO2) in deep underground reservoirs has been identified as an important strategy to decrease atmospheric CO2 levels and mitigate global warming, but potential risks on overlying aquifers currently lack a complete evaluation. In addition to CO2, other gases such as methane (CH4) may be present in storage reservoirs. This paper explores for the first time the combined effect of leaking CO2 and CH4 gasses on the fate of major, minor and trace elements in an aquifer overlying a potential sequestration site. Emphasis is placed on the fate of arsenic (As) and cadmium (Cd) released from the sediments or present as soluble constituents in the leaking brine. Results from macroscopic batch and column experiments show that the presence of CH4 (at a concentration of 1 % in the mixture CO2/CH4) does not have a significant effect on solution pH or the concentrations of most major elements (such as Ca, Ba, and Mg). However, the concentrations of Mn, Mo, Si and Na are inconsistently affected by the presence of CH4 (i.e., in at least one sediment tested in this study). Cd is not released from the sediments and spiked Cd is mostly removed from the aqueous phase most likely via adsorption. The fate of sediment associated As [mainly sorbed arsenite or As(III) in minerals] and spiked As [i.e., As5+] is complex. Possible mechanisms that control the As behavior in this system are discussed in this paper. Results are significant for CO2 sequestration risk evaluation and site selection and demonstrate the importance of evaluating reservoir brine and gas stream composition during site selection to ensure the safest site is being chosen.

  12. fs Laser surface nano-structuring of high refractory ceramics to enhance solar radiation absorbance

    NASA Astrophysics Data System (ADS)

    Cappelli, E.; Orlando, S.; Sciti, D.; Bellucci, A.; Lettino, A.; Trucchi, D. M.

    2014-10-01

    High refractory pressure-less sintered ternary composite ceramics of AlN-SiC-MoSi2 (ASMY), polished by mechanical grinding to a surface roughness R a ~40 nm, have been treated in vacuum by fs Ti:sapphire laser, operating at 800 nm wavelength, 100 fs pulse duration, and increasing fluence, to generate a "black ceramic material", able to minimize solar radiation reflectance, in such a way that they could be used as the absorber material in an innovative conversion module of solar radiation into electrical energy. Disk specimens of approximately 3 cm in diameter and 3 mm thick have been treated by normal incident laser beam, generating a scanning pattern of parallel lines, at a lateral distance of about 80 μm, using a stage in motion, in the x, y, z directions, driven by a computer. The experimental conditions of laser treatment (energy fluence, speed of transition and lateral distance of steps) have been optimized to maximize the absorption properties of the patterned surface. In some samples this value was increased by about 15 %, compared to untreated surface, up to a value of final absorbance of about 95 %, all over the range of solar radiation spectrum (from UV to NIR). The morphological and chemical effects have been evaluated by SEM-EDS analysis. At higher fluence, we obtained the characteristic ablation craters and corresponding local material decomposition, while at lower fluence (over the ablation threshold) an ordered periodic nano-structure has been obtained, exploitable for its high capacity of entrapment of visible light. The laser treated ceramic specimen, characterized by very high absorption properties and reflectivity values lower than 4 %, has been used as active absorber material in a conversion module, installed in a solar test platform.

  13. Thiophene Hydrodesulfurization over Nickel Phosphide Catalysts: Effect of the Precursor Composition and Support

    SciTech Connect

    Sawhill, Stephanie J.; Layman, Kathryn A.; Van Wyk, Daniel R.; Engelhard, Mark H.; Wang, Chong M.; Bussell, Mark E.

    2005-04-25

    Silica- and alumina-supported nickel phosphide (NixPy) catalysts have been prepared, characterized by bulk and surface sensitive techniques, and evaluated for the hydrodesulfurization (HDS) of thiophene. Series of 30 wt% NixPy/SiO2 and 20 wt% NixPy/Al2O3 catalysts were prepared from oxidic precursors having a range of P/Ni molar ratios by temperature programmed reduction (TPR) in flowing H2. Oxidic precursors with molar ratios of P/Ni = 0.8 and 2.0 yielded catalysts containing phase-pure Ni2P on the silica and alumina supports, respectively. At lower P/Ni ratios, significant Ni12P5 impurities were present in the NixPy/SiO2 and NixPy/Al2O3 catalysts as indicated by X-ray diffraction. The HDS activities of the NixPy/SiO2 and NixPy/Al2O3 catalysts depended strongly on the P/Ni molar ratio of the oxidic precursors with optimal activities obtained for catalysts containing phase pure Ni2P and minimal excess P. After 48 h on-stream, a Ni2P/SiO2 catalyst was 20 and 3.3 times more active than sulfided Ni/SiO2 and Ni-Mo/SiO2 catalysts, respectively. A Ni2P/Al2O3 catalyst was 2.7 times more active than a sulfided Ni/Al2O3 catalyst but only about half as active as a Ni-Mo/Al2O3 catalyst.

  14. The superconductor-metal quantum phase transition in ultra-narrow wires

    NASA Astrophysics Data System (ADS)

    Del Maestro, Adrian Giuseppe

    We present a complete description of a zero temperature phase transition between superconducting and diffusive metallic states in very thin wires due to a Cooper pair breaking mechanism originating from a number of possible sources. These include impurities localized to the surface of the wire, a magnetic field orientated parallel to the wire or, disorder in an unconventional superconductor. The order parameter describing pairing is strongly overdamped by its coupling to an effectively infinite bath of unpaired electrons imagined to reside in the transverse conduction channels of the wire. The dissipative critical theory thus contains current reducing fluctuations in the guise of both quantum and thermally activated phase slips. A full cross-over phase diagram is computed via an expansion in the inverse number of complex components of the superconducting order parameter (equal to one in the physical case). The fluctuation corrections to the electrical and thermal conductivities are determined, and we find that the zero frequency electrical transport has a non-monotonic temperature dependence when moving from the quantum critical to low temperature metallic phase, which may be consistent with recent experimental results on ultra-narrow MoGe wires. Near criticality, the ratio of the thermal to electrical conductivity displays a linear temperature dependence and thus the Wiedemann-Franz law is obeyed. We compute the constant of proportionality in a systematic expansion and find a universal and experimentally verifiable fluctuation correction to the Lorenz number. In the presence of quenched disorder, a novel algorithm is developed to solve the self-consistency condition arising when the number of complex order parameter components is taken to be large. In this limit, we find striking evidence for the flow to infinite randomness, and observe dynamically activated scaling consistent with predictions from the strong disorder renormalization group. Moreover, the infinite

  15. Early diagenesis of germanium in sediments of the Antarctic South Atlantic: In search of the missing Ge sink

    SciTech Connect

    King, S.L.; Froelich, P.N.; Jahnke, R.A.

    2000-04-01

    Pore water and solid-phase geochemistry profiles were obtained from several cores between 41{degree}S and 53{degree}S in the Atlantic sector of the Southern Ocean. Pore water nitrate, manganese, and iron profiles delineate standard redox zones in these sediments, and help characterize those with classic vs. burn-down behaviors. Pore water Si and Ge profiles demonstrate that Ge released during opal dissolution is removed pervasively throughout the uppermost interval of silicate release, and also downwards into the suboxic zone by as yet unidentified precipitation mechanisms. These results indicate that early diagenesis of Ge is uncoupled from that of opal. Solid-phase extractions (Fe, Mn, U, Mo, Ge, Cu, Ni, Co, V, and Cd) in a few cores suggest that anthigenic Ge removal in the suboxic zone is not associated with peaks in authigenic Mn cycling (MnO{sub 2} and related metals) but rather with processes deeper in the sediments, perhaps Fe or U diagenesis. Below the interval of Ge removal, pre water Ge increases linearly with depth by over two orders of magnitude, indicating a deep (below recovery) source of large magnitude. The fraction of opal-derived Ge precipitated authigenically in these sediments ranges from {approximately}1 to 96% and correlates strongly with the detrital fraction as well as the detrital to opal ratio, both of which generally decrease from north to south. The Ge sink observed in these sediments would need to be globally representative to account for the entire missing Ge sink in today's oceanic Ge balance, which seems unlikely. Benthic fluxes of Ge and Si estimated from these pore water profiles and from measurements in three benthic flux chamber experiments at high carbon-rain continental margin sites demonstrate that the Ge/Si rate released from the seafloor in locations with high benthic silicate and carbon fluxes is congruent with Holocene opal dissolution (Ge/Si {approximately} 0.7 x 10{sup {minus}6}). In contrast, Ge/Si flux ratios in areas

  16. Small d-spacing WSi{sub 2}/Si narrow bandpass multilayers.

    SciTech Connect

    Liu, C.; Conley, R.; Macrander, A. T.; Graber, T.; Morawe, C.; Borel, C.; Dufresne, E. M.; Experimental Facilities Division; Univ. of Chicago; European Synchrotron Radiation Facility; Univ. of Michigan

    2004-01-01

    To develop narrow-bandpass multilayer monochromators, we have studied small d-spacing WSi{sub 2}/Si multilayers. We found that WSi{sub 2}/Si is an excellent multilayer system for achieving both the desired spectral resolution and peak reflectivity. Compared to other traditional multilayer systems such as W/Si, WSi{sub 2}/Si not only has a lower density and lower absorption, but also is a chemically more stable system, since WSi{sub 2} is already a silicide. One thus expects better thermal stability and sharper interfaces for WSi2/Si multilayers. There are two approaches to achieve high-resolution multilayers: either decrease the d spacing or use low absorption materials. By using WSi{sub 2}/Si, we can utilize both approaches in the same system to achieve good energy resolution and peak reflectivity. Another advantage of this system is that the sputtering rate for Si is much higher than other traditional low-Z materials. Several WSi{sub 2}/Si multilayers have been fabricated at the Advanced Photon Source (APS) deposition lab using dc magnetron sputtering with constant currents of 0.5 A in Ar at a pressure of 2.3 mTorr. A test sample of [9.65 Angstrom-WSi{sub 2}/10.05 Angstrom-Si] x 300 was studied at four institutions: using laboratory x-ray diffractometers with Cu K{alpha} (8.048 keV) wavelength at the APS x-ray lab and at European Synchrotron Radiation Facility (ESRF), and using synchrotron undulator x-rays at 10 keV at MHATT-CAT and at 25 keV at ChemMatCARS-CAT of the APS. The measured first-order reflectivity was 54% with a bandpass of 0.46% at 10 keV and 66% reflectivity with a bandpass of 0.67% at 25 keV of undulator x-rays. Similar results were obtained from Cu K{alpha} x-rays. This result is very attractive for the design of a multilayer monochromator for the ChemMatCARS-CAT to be used in the 20 to 25 keV range. Other small d-spacing multilayers are being studied. Comparison between WSi{sub 2}/Si and W/Si multilayers will be discussed.

  17. State-of-the-art thin film X-ray optics for synchrotrons and FEL sources

    NASA Astrophysics Data System (ADS)

    Hertlein, Frank; Wiesmann, Jörg; Michaelsen, Carsten; Störmer, Michael; Seifert, Andreas

    2007-05-01

    Selected aspects of simulation, preparation and characterization of total reflection and multilayer X-ray optics will be discussed. The best multilayer is found by calculating the optical properties of the coating. Sophisticated improvements in deposition technology allow the precise realization of the specified parameters when manufacturing the X-ray optics. The quality of the shape of the substrate for the optics is measured with the aid of profilometry. X-ray reflectometry measures both film thickness as well as their lateral gradient. Last but not least we will be showing results of the development of carbon coatings as total reflection mirrors for FEL (free electron laser) sources. Over the past years we have developed optimized optics for the XUV range up to 200 eV. First FEL irradiation tests have shown that carbon coatings offer high reflectivity > 95%, high radiation stability, good uniformity in thickness and roughness. An optimized coating of two stripes for different beam energies was produced especially for a tomography beamline, where a Ru/C multilayer was chosen for energies between 10 and 22 keV and a W/Si multilayer for energies between 22 and 45 keV.

  18. State-of-the-art Thin Film X-ray Optics for Conventional Synchrotrons and FEL Sources

    SciTech Connect

    Wiesmann, Joerg; Mchaelsen, Carsten; Hertlein, Frank; Stoermer, Michael; Seifert, Andreas

    2007-01-19

    Selected aspects of simulation, preparation and characterization of total reflection and multilayer X-ray optics will be discussed. The best multilayer is found by calculating the optical properties of the coating. Sophisticated improvements in deposition technology allow the precise realisation of the specified parameters when manufacturing the X-ray optics. The quality of the shape of the substrate for the optics is measured with the aid of profilometry. X-ray reflectometry measures both film thickness as well as their lateral gradient. Last but not least we will be showing results of the development of carbon coatings as total reflection mirrors for FEL (free electron laser) sources. Over the past years we have developed optimized optics for the XUV range up to 200 eV. First FEL irradiation tests have shown that carbon coatings offer high reflectivity >95%, high radiation stability, good uniformity in thickness and roughness. An optimized coating of two stripes for different beam energies was produced especially for a tomography beamline, where a Ru/C multilayer was chosen for energies between 10 and 22 keV and a W/Si multilayer for energies between 22 and 45 keV.

  19. State-of-the-art Thin Film X-ray Optics for Conventional Synchrotrons and FEL Sources

    NASA Astrophysics Data System (ADS)

    Wiesmann, Jörg; Mchaelsen, Carsten; Hertlein, Frank; Störmer, Michael; Seifert, Andreas

    2007-01-01

    Selected aspects of simulation, preparation and characterization of total reflection and multilayer X-ray optics will be discussed. The best multilayer is found by calculating the optical properties of the coating. Sophisticated improvements in deposition technology allow the precise realisation of the specified parameters when manufacturing the X-ray optics. The quality of the shape of the substrate for the optics is measured with the aid of profilometry. X-ray reflectometry measures both film thickness as well as their lateral gradient. Last but not least we will be showing results of the development of carbon coatings as total reflection mirrors for FEL (free electron laser) sources. Over the past years we have developed optimized optics for the XUV range up to 200 eV. First FEL irradiation tests have shown that carbon coatings offer high reflectivity >95%, high radiation stability, good uniformity in thickness and roughness. An optimized coating of two stripes for different beam energies was produced especially for a tomography beamline, where a Ru/C multilayer was chosen for energies between 10 and 22 keV and a W/Si multilayer for energies between 22 and 45 keV.

  20. Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap.

    PubMed

    Jin, Seokmin; Lim, Mikyung; Lee, Seung S; Lee, Bong Jae

    2016-03-21

    Artificially designed hyperbolic metamaterial (HMM) possesses extraordinary electromagnetic features different from those of naturally existing materials. In particular, the dispersion relation of waves existing inside the HMM is hyperbolic rather than elliptical; thus, waves that are evanescent in isotropic media become propagating in the HMM. This characteristic of HMMs opens a novel way to spectrally control the near-field thermal radiation in which evanescent waves in the vacuum gap play a critical role. In this paper, we theoretically investigate the performance of a near-field thermophotovoltaic (TPV) energy conversion system in which a W/SiO2-multilayer-based HMM serves as the emitter at 1000 K and InAs works as the TPV cell at 300 K. By carefully designing the thickness of constituent materials of the HMM emitter, the electric power of the near-field TPV devices can be increased by about 6 times at 100-nm vacuum gap as compared to the case of the plain W emitter. Alternatively, in regards to the electric power generation, HMM emitter at experimentally achievable 100-nm vacuum gap performs equivalently to the plain W emitter at 18-nm vacuum gap. We show that the enhancement mechanism of the HMM emitter is due to the coupled surface plasmon modes at multiple metal-dielectric interfaces inside the HMM emitter. With the minority carrier transport model, the optimal p-n junction depth of the TPV cell has also been determined at various vacuum gaps.

  1. Development of x-ray multilayer telescope optics for XTP mission

    NASA Astrophysics Data System (ADS)

    Shen, Zhengxiang; Wang, Xiaoqiang; Wang, Kun; Ma, Bin; Huang, Qiushi; Zhang, Zhong; Wang, Haifeng; Dai, Ying; He, Pengfei; Wang, Zhanshan

    2016-07-01

    The X-ray Timing and Polarization (XTP) satellite is dedicated to study black hole, neutron star and magnetar and then get more information in the physics under extreme gravity, density and magnetism. With an effective area of about 1 square meter and angular resolution of 1 arcminute, XTP is expected to make the most sensitive temporal and polarization observations with good energy resolution in 1-30 keV. Large collecting areas are obtained by tightly nesting layers of grazing incidence mirrors in a conical approximation Wolter-I design. The segmented mirrors that form these layers are formed by thermally slumping glass substrates coated with depth-graded W/Si multilayers for enhanced reflectivity in higher energy region. In order to force the overall shape of the nominally cylindrical substrates to the appropriate conic form, an over-constraint method was used to assemble the mirrors to a telescope. We will present performance on the XTP optics and report the current status of the telescope.

  2. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    NASA Astrophysics Data System (ADS)

    Madsen, Kristin K.; Harrison, Fiona A.; An, Hongjun; Boggs, Steven E.; Christensen, Finn E.; Cook, Rick; Craig, William W.; Forster, Karl; Fuerst, Felix; Grefenstette, Brian; Hailey, Charles J.; Kitaguchi, Takao; Markwardt, Craig; Mao, Peter; Miyasaka, Hiromasa; Rana, Vikram R.; Stern, Daniel K.; Zhang, William W.; Zoglauer, Andreas; Walton, Dominic; Westergaard, Niels J.

    2014-07-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission was launched on 2012 June 13 and is the first focusing high-energy X-ray telescope in orbit operating above ~10 keV. NuSTAR flies two co-aligned Wolter-I conical approximation X-ray optics, coated with Pt/C and W/Si multilayers, and combined with a focal length of 10.14 meters this enables operation from 3-79 keV. The optics focus onto two focal plane arrays, each consisting of 4 CdZnTe pixel detectors, for a field of view of 12.5 arcminutes. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity, and with an effective point spread function FWHM of 18 arcseconds (HPD ~1), NuSTAR provides a leap of improvement in resolution over the collimated or coded mask instruments that have operated in this bandpass. We present in-orbit performance details of the observatory and highlight important science results from the first two years of the mission.

  3. Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection.

    PubMed

    Patterson, N; Adams, D P; Hodges, V C; Vasile, M J; Michael, J R; Kotula, P G

    2008-06-11

    We report a direct, ion drilling technique that enables the reproducible fabrication and placement of nanopores in membranes of different thickness. Using a 30 keV focused Ga ion beam column combined with an in situ, back face, multi-channelplate particle detector, nanopores are sputtered in Si(3)N(4) and W/Si(3)N(4) to have diameters as small as 12 nm. Transmission electron microscopy shows that focused ion beam-drilled holes are near-conical with the diameter decreasing from entry to exit side. By monitoring the detector signal during ion exposure, the drilled hole width can be minimized such that the exit-side diameter is smaller than the full width at half-maximum of the nominally Gaussian-shaped incident beam. Judicious choice of the beam defining aperture combined with back face particle detection allows for reproducible exit-side hole diameters between 18 and 100 nm. The nanopore direct drilling technique does not require potentially damaging broad area exposure to tailor hole sizes. Moreover, this technique successfully achieves breakthrough despite the effects of varying membrane thickness, redeposition, polycrystalline grain structure, and slight ion beam current fluctuations.

  4. Study of self-compliance behaviors and internal filament characteristics in intrinsic SiOx-based resistive switching memory

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Feng; Fowler, Burt; Zhou, Fei; Chen, Ying-Chen; Lee, Jack C.

    2016-01-01

    Self-compliance characteristics and reliability optimization are investigated in intrinsic unipolar silicon oxide (SiOx)-based resistive switching (RS) memory using TiW/SiOx/TiW device structures. The program window (difference between SET voltage and RESET voltage) is dependent on external series resistance, demonstrating that the SET process is due to a voltage-triggered mechanism. The program window has been optimized for program/erase disturbance immunity and reliability for circuit-level applications. The SET and RESET transitions have also been characterized using a dynamic conductivity method, which distinguishes the self-compliance behavior due to an internal series resistance effect (filament) in SiOx-based RS memory. By using a conceptual "filament/resistive gap (GAP)" model of the conductive filament and a proton exchange model with appropriate assumptions, the internal filament resistance and GAP resistance can be estimated for high- and low-resistance states (HRS and LRS), and are found to be independent of external series resistance. Our experimental results not only provide insights into potential reliability issues but also help to clarify the switching mechanisms and device operating characteristics of SiOx-based RS memory.

  5. Recovery of iron and calcium aluminate slag from high-ferrous bauxite by high-temperature reduction and smelting process

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-yi; Lü, Wei; Qi, Yuan-hong; Zou, Zong-shu

    2016-08-01

    A high-temperature reduction and smelting process was used to recover iron and calcium aluminate slag from high-ferrous bauxite. The effects of w(CaO)/ w(SiO2) ratio, anthracite ratio, and reduction temperature and time on the recovery and size of iron nuggets and on the Al2O3 grade of the calcium aluminate slag were investigated through thermodynamic calculations and experiments. The optimized process conditions were the bauxite/anthracite/slaked lime weight ratio of 100:16.17:59.37, reduction temperature of 1450°C and reduction time of 20 min. Under these conditions, high-quality iron nuggets and calcium aluminate slag were obtained. The largest size and the highest recovery rate of iron nuggets were 11.42 mm and 92.79wt%, respectively. The calcium aluminate slag mainly comprised Ca2SiO4 and Ca12Al14O33, with small amounts of FeAl2O4, CaAl2O4, and Ca2Al2SiO7.

  6. Color contrast of red blood cells on solid substrate

    NASA Astrophysics Data System (ADS)

    Paiziev, Adkham A.

    2013-02-01

    In present study we developed the new method of colour visualization of red blood cells without using any chemical staining. The method based on physical phenomena a white light interference on thin transparent films. It is shown that in the case of thin human blood smears colour interference contrast occurs on solid polished substrates. The best contrast shows substrates with maximal refractive index (Mo, W, Si). These materials have been selected as substrate instead of ordinary microscopic slide in reflected light microscopy. It is shown that reflection of incident white light from blood cell surface and boundary cell-substrate generate two coherent lights. The second one (object signal) after passing through red blood cell gathers additional phase and after interference interaction with reference signal (light reflected from outer cell surface) enables cell image in colour. Number of blood smears of healthy persons (control) and patients who were diagnosed with cancer are presented. It is concluded that the offered method may be used as an effective diagnostic tool to detect early stage blood cells lesion by its interference painting in white light. Offered method may be used in research laboratories, hospitals, diagnostic centres, emergency medicine and other as complementary diagnostic tool to present convenient optical and electron microscopy technique.

  7. Tailoring of multilayer interfaces by pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Luby, S.; Majkova, E.

    2005-07-01

    Multilayers (MLs) consisting of a few nm thick alternating layers of two different materials are broadly used in soft X-ray optics and in giant magnetoresistance (GMR) sensors. The efficiency of ML-based devices depends on the quality and thermal stability of the interfaces, which must be sharp at the nm scale. It is shown that, using heating with excimer laser pulses of 30 ns and fluence of approximately 0.1 J cm -2, the diffusion length for one laser pulse in the above mentioned MLs is in the region of nanometers, i.e. it closely matches the thickness of the ML sublayers. Therefore, pulsed laser induced diffusion can be used for controlled manipulation and tailoring of ML interface properties. Depending on the miscibility or immiscibility of the ML material combinations, the interfaces could be intermixed or even sharpened, which is attributed to the backdiffusion process. These phenomena are demonstrated for various combinations of ML building layers, like W/Si, Co/Ag, Fe/W and Co/W. The experimental samples were analyzed by X-ray reflectivity and X-ray diffuse scattering, combined with TEM.

  8. Synthesis, structural and spectroscopic properties of acentric triple molybdate Cs2NaBi(MoO4)3

    NASA Astrophysics Data System (ADS)

    Savina, A. A.; Atuchin, V. V.; Solodovnikov, S. F.; Solodovnikova, Z. A.; Krylov, A. S.; Maximovskiy, E. A.; Molokeev, M. S.; Oreshonkov, A. S.; Pugachev, A. M.; Khaikina, E. G.

    2015-05-01

    New ternary molybdate Cs2NaBi(MoO4)3 is synthesized in the system Na2MoO4-Cs2MoO4-Bi2(MoO4)3. The structure of Cs2NaBi(MoO4)3 of a new type is determined in noncentrosymmetric space group R3c, a=10.6435(2), c=40.9524(7) Å, V=4017.71(13) Å3, Z=12 in anisotropic approximation for all atoms taking into account racemic twinning. The structure is completely ordered, Mo atoms are tetrahedrally coordinated, Bi(1) and Bi(2) atoms are in octahedra, and Na(1) and Na(2) atoms have a distorted trigonal prismatic coordination. The Cs(1) and Cs(2) atoms are in the framework cavities with coordination numbers 12 and 10, respectively. No phase transitions were found in Cs2NaBi(MoO4)3 up to the melting point at 826 K. The compound shows an SHG signal, I2w/I2w(SiO2)=5 estimated by the powder method. The vibrational properties are evaluated by Raman spectroscopy, and 26 narrow lines are measured.

  9. Study of self-compliance behaviors and internal filament characteristics in intrinsic SiO{sub x}-based resistive switching memory

    SciTech Connect

    Chang, Yao-Feng Zhou, Fei; Chen, Ying-Chen; Lee, Jack C.; Fowler, Burt

    2016-01-18

    Self-compliance characteristics and reliability optimization are investigated in intrinsic unipolar silicon oxide (SiO{sub x})-based resistive switching (RS) memory using TiW/SiO{sub x}/TiW device structures. The program window (difference between SET voltage and RESET voltage) is dependent on external series resistance, demonstrating that the SET process is due to a voltage-triggered mechanism. The program window has been optimized for program/erase disturbance immunity and reliability for circuit-level applications. The SET and RESET transitions have also been characterized using a dynamic conductivity method, which distinguishes the self-compliance behavior due to an internal series resistance effect (filament) in SiO{sub x}-based RS memory. By using a conceptual “filament/resistive gap (GAP)” model of the conductive filament and a proton exchange model with appropriate assumptions, the internal filament resistance and GAP resistance can be estimated for high- and low-resistance states (HRS and LRS), and are found to be independent of external series resistance. Our experimental results not only provide insights into potential reliability issues but also help to clarify the switching mechanisms and device operating characteristics of SiO{sub x}-based RS memory.

  10. Mansfield/LAHM MAP, Ohio. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1982-08-03

    8217= UNRMMSMMAWOF ~SOOMB, IL 6225 SUA"F V&TH OUWATWO6 VRWIM3 /AAK, aP, OL NSQ # 725246 U AUG go 40 49 W 082 31 1296 FT Um PARTS A" POEs liRti HOUILY 016 JAN 73...QETHER 20-2300 SA. ~ (L.V. (KNTS) 1-3 4.6 7.10 11-16 17.21 3.27 n 33 24.4 41-0 *.35 t~b % WIND D4 S6l 03 * 1 4 05. ___01 1*21 b 3 a~ l Sol_ _______ C1 29S...MyS11,S I ~ W .SI P.mf. %/1 at .1.11 4 4 i -r, 7f 77 *2 . 6 I 2 . 3’ 273! d4 / 63 *1 09 06 2 *. . 231 231 2 7 L/ 691 i. :1. 1*1l 5 5~ 55i 17 16 6/ 65

  11. Interdiffusion in Diffusion Couples: U-Mo v. Al and Al-Si

    SciTech Connect

    D. D. Keiser, Jr.; E. Perez; B. Yao; Y. H. Sohn

    2009-11-01

    Interdiffusion and microstructural development in the U-Mo-Al system was examined using solid-tosolid diffusion couples consisting of U-7wt.%Mo, U-10wt.%Mo and U-12wt.%Mo vs. pure Al, annealed at 600°C for 24 hours. The influence of Si alloying addition (up to 5 wt.%) in Al on the interdiffusion microstructural development was also examined using solid-to-solid diffusion couples consisting of U-7wt.%Mo, U-10wt.%Mo and U-12wt.%Mo vs. pure Al, Al-2wt.%Si, and Al-5wt.%Si annealed at 550°C up to 20 hours. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA) were employed to examine the development of a very fine multiphase intermetallic layer. In ternary U-Mo-Al diffusion couples annealed at 600°C for 24 hours, interdiffusion microstructure varied of finely dispersed UAl3, UAl4, U6Mo4Al43, and UMo2Al20 phases while the average composition throughout the interdiffusion zone remained constant at approximately 80 at.% Al. Interdiffusion microstructure observed by SEM/TEM analyses and diffusion paths drawn from concentration profiles determined by EPMA appear to deviate from the assumption of “local thermodynamic equilibrium,” and suggest that interdiffusion occurs via supersaturated UAl4 followed by equilibrium transformation into UAl3, U6Mo4Al43, UAl4 and UMo2Al20 phases. Similar observation was made for U-Mo vs. Al diffusion couples annealed at 550°C. The addition of Si (up to 5 wt.%) in Al significantly reduced the thickness of the intermetallic layer by changing the constituent phases of the interdiffusion zone developed in U-Mo vs. Al-Si diffusion couples. Specifically, the formation of (U,Mo)(Al,Si)3 with relatively large solubility for Mo and Si, along with UMo2Al20 phases was observed along with disappearance of U6Mo4Al43 and UAl4 phases. Simplified understanding based on U-Al, U-Si, and Mo-Si binary phase diagrams is discussed in the light of the beneficial effect of Si alloying addition.

  12. Experimental approach to EUV imaging enhancement by mask absorber height optimization

    NASA Astrophysics Data System (ADS)

    Davydova, Natalia; de Kruif, Robert; Rolff, Haiko; Connolly, Brid; van Setten, Eelco; Lammers, Ad; Oorschot, Dorothe; Fukugami, Norihito; Kodera, Yutaka

    2013-10-01

    EUV lithography performance is improved significantly by optimizing and fine-tuning of the EUV mask. The EUV mask is an active element of the scanner optical system influencing main lithographic figure of merits such as image contrast, critical dimension uniformity (CDU), focus and overlay. The mask stack consists of Mo/Si multilayer acting as a bright field and a patterned absorber stack. In this work we will concentrate on investigation of EUV absorber. Absorber topography that is pronounced compared to the imaging wavelength of 13.5 nm, will give rise to various mask 3d effects such as shadowing or dependence of CD on feature orientation, best focus shift of different resolution structures, etc. Light interference in the absorber layer results in swinging behavior of various lithography metrics as function of the absorber height. Optimization of the mask absorber allows mitigating mask 3d effects and improving imaging performance. In particular, reduction of the absorber height mitigates the shadowing effect and relaxes requirements on Optical Proximity Correction (OPC), but can result in smaller Process Window due to lower imaging contrast and larger best focus shifts. In this work we will show results of an experimental approach to absorber height optimization. A special mask with 27 different absorber heights in the range 40-70 nm is manufactured by Toppan Photomasks. EUV reflectivity spectra are measured for the different absorber heights and an experimental swing curve is constructed. For each absorber height various resolution features are present on the mask. Lines of 27 nm and 22 nm are imaged on the wafer using the ASML EUV scanner NXE:3300B with an NA of 0.33. The experimental CD swing curve is constructed as well as HV change as a function of absorber height. The impact of the absorber height on Exposure Latitude (EL) and Dose to Size (D2S) is investigated. EL improves with increasing absorber height in some cases, however there is no clear EL gain

  13. Combinatorial Reactive Sputtering of In2S3 as an Alternative Contact Layer for Thin Film Solar Cells

    SciTech Connect

    Siol, Sebastian; Dhakal, Tara P.; Gudavalli, Ganesh S.; Rajbhandari, Pravakar P.; DeHart, Clay; Baranowski, Lauryn L.; Zakutayev, Andriy

    2016-06-08

    High-throughput computational and experimental techniques have been used in the past to accelerate the discovery of new promising solar cell materials. An important part of the development of novel thin film solar cell technologies, that is still considered a bottleneck for both theory and experiment, is the search for alternative interfacial contact (buffer) layers. The research and development of contact materials is difficult due to the inherent complexity that arises from its interactions at the interface with the absorber. A promising alternative to the commonly used CdS buffer layer in thin film solar cells that contain absorbers with lower electron affinity can be found in ..beta..-In2S3. However, the synthesis conditions for the sputter deposition of this material are not well-established. Here, In2S3 is investigated as a solar cell contact material utilizing a high-throughput combinatorial screening of the temperature-flux parameter space, followed by a number of spatially resolved characterization techniques. It is demonstrated that, by tuning the sulfur partial pressure, phase pure ..beta..-In2S3 could be deposited using a broad range of substrate temperatures between 500 degrees C and ambient temperature. Combinatorial photovoltaic device libraries with Al/ZnO/In2S3/Cu2ZnSnS4/Mo/SiO2 structure were built at optimal processing conditions to investigate the feasibility of the sputtered In2S3 buffer layers and of an accelerated optimization of the device structure. The performance of the resulting In2S3/Cu2ZnSnS4 photovoltaic devices is on par with CdS/Cu2ZnSnS4 reference solar cells with similar values for short circuit currents and open circuit voltages, despite the overall quite low efficiency of the devices (-2%). Overall, these results demonstrate how a high-throughput experimental approach can be used to accelerate the development of contact materials and facilitate the optimization of thin film solar cell devices.

  14. Mechanical Properties and Durability of "Waterless Concrete"

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam; Grugel, Richard N.

    2008-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and by oxidation soil iron and sulfur can be produced. Iron can be used to reinforce the sulfur concrete. Sulfur concrete specimens were cycled between liquid nitrogen (approximately 191 C) and room temperature (approximately 21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (approximately 21 C) and approximately 101 C. Test results showed that due to temperature cycling, compressive strength of cycled specimens was 20% of those non-cycled. Microscopic examination of the fracture surfaces from the cycled samples showed clear de-bonding of the sulfur from the aggregate material whereas it was seen well bonded in those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibers. The glass fibers from lunar regolith simulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to 1 hour. Glass fibers were cast from the melt into graphite crucibles and were annealed for a couple of hours at 600 C. Glass fibers and small rods were pulled from the melt. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The glass fibers were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Prisms beams strengthened with glass fibers were tested in 4-point bending test. Beams strengthened with glass fiber showed to

  15. UDOF direct improvement by modulating mask absorber thickness

    NASA Astrophysics Data System (ADS)

    Yu, Tuan-Yen; Lio, En Chuan; Chen, Po Tsang; Wei, Chih I.; Chen, Yi Ting; Peng, Ming Chun; Chou, William; Yu, Chun Chi

    2016-10-01

    As the process generation migrate to advanced and smaller dimension or pitch, the mask and resist 3D effects will impact the lithography focus common window severely because of both individual depth-of-focus (iDOF) range decrease and center mismatch. Furthermore, some chemical or thermal factors, such as PEB (Post Exposure Bake) also worsen the usable depth-of-focus (uDOF) performance. So the mismatch of thru-pitch iDOF center should be considered as a lithography process integration issue, and more complicated to partition the 3D effects induced by optical or chemical factors. In order to reduce the impact of 3D effects induced by both optical and chemical issues, and improve iDOF center mismatch, we would like to propose a mask absorber thickness offset approach, which is directly to compensate the iDOF center bias by adjusting mask absorber thickness, for iso, semi-iso or dense characteristics in line, space or via patterns to enlarge common process window, i.e uDOF, which intends to provide similar application as Flexwave[1] (ASML trademark). By the way, since mask absorber thickness offset approach is similar to focus tuning or change on wafer lithography process, it could be acted as the process tuning method of photoresist (PR) profile optimization locally, PR scum improvement in specific patterns or to modulate etching bias to meet process integration request. For mass production consideration, and available material, current att-PSM blank, quartz, MoSi with chrome layer as hard-mask in reticle process, will be implemented in this experiment, i.e. chrome will be kept remaining above partial thru-pitch patterns, and act as the absorber thickness bias in different patterns. And then, from the best focus offset of thru-pitch patterns, the iDOF center shifts could be directly corrected and to enlarge uDOF by increasing the overlap of iDOF. Finally, some negative tone development (NTD) result in line patterns will be demonstrated as well.

  16. Generality of the 18-n Rule: Intermetallic Structural Chemistry Explained through Isolobal Analogies to Transition Metal Complexes.

    PubMed

    Yannello, Vincent J; Fredrickson, Daniel C

    2015-12-07

    Intermetallic phases exhibit a vast structural diversity in which electron count is known to be one controlling factor. However, chemical bonding theory has yet to establish how electron counts and structure are interrelated for the majority of these compounds. Recently, a simple bonding picture for transition metal (T)-main group (E) intermetallics has begun to take shape based on isolobal analogies to molecular T complexes. This bonding picture is summarized in the 18-n rule: each T atom in a T-E intermetallic phase will need 18-n electrons to achieve a closed-shell 18-electron configuration, where n is the number of electron pairs it shares with other T atoms in multicenter interactions isolobal to T-T bonds. In this Article, we illustrate the generality of this rule with a survey over a wide range of T-E phases. First, we illustrate how three structural progressions with changing electron counts can be accounted for, both geometrically and electronically, with the 18-n rule: (1) the transition between the fluorite and complex β-FeSi2 types for TSi2 phases; (2) the sequence from the marcasite type to the arsenopyrite type and back to the marcasite type for TSb2 compounds; and (3) the evolution from the AuCu3 type to the ZrAl3 and TiAl3 types for TAl3 phases. We then turn to a broader survey of the applicability of the 18-n rule through a study of the following 34 binary structure types: PtHg4, CaF2 (fluorite), Fe3C, CoGa3, Co2Al5, Ru2B3, β-FeSi2, NiAs, Ni2Al3, Rh4Si5, CrSi2, Ir3Ga5, Mo3Al8, MnP, TiSi2, Ru2Sn3, TiAl3, MoSi2, CoSn, ZrAl3, CsCl, FeSi, AuCu3, ZrSi2, Mn2Hg5, FeS2 (oP6, marcasite), CoAs3 (skutterudite), PdSn2, CoSb2, Ir3Ge7, CuAl2, Re3Ge7, CrP2, and Mg2Ni. Through these analyses, the 18-n rule is established as a framework for interpreting the stability of 341 intermetallic phases and anticipating their properties.

  17. Benchmarking ENDF/B-VII.1, JENDL-4.0 and JEFF-3.1.1 with MCNP6

    NASA Astrophysics Data System (ADS)

    van der Marck, Steven C.

    2012-12-01

    Recent releases of three major world nuclear reaction data libraries, ENDF/B-VII.1, JENDL-4.0, and JEFF-3.1.1, have been tested extensively using benchmark calculations. The calculations were performed with the latest release of the continuous energy Monte Carlo neutronics code MCNP, i.e. MCNP6. Three types of benchmarks were used, viz. criticality safety benchmarks, (fusion) shielding benchmarks, and reference systems for which the effective delayed neutron fraction is reported. For criticality safety, more than 2000 benchmarks from the International Handbook of Criticality Safety Benchmark Experiments were used. Benchmarks from all categories were used, ranging from low-enriched uranium, compound fuel, thermal spectrum ones (LEU-COMP-THERM), to mixed uranium-plutonium, metallic fuel, fast spectrum ones (MIX-MET-FAST). For fusion shielding many benchmarks were based on IAEA specifications for the Oktavian experiments (for Al, Co, Cr, Cu, LiF, Mn, Mo, Si, Ti, W, Zr), Fusion Neutronics Source in Japan (for Be, C, N, O, Fe, Pb), and Pulsed Sphere experiments at Lawrence Livermore National Laboratory (for 6Li, 7Li, Be, C, N, O, Mg, Al, Ti, Fe, Pb, D2O, H2O, concrete, polyethylene and teflon). The new functionality in MCNP6 to calculate the effective delayed neutron fraction was tested by comparison with more than thirty measurements in widely varying systems. Among these were measurements in the Tank Critical Assembly (TCA in Japan) and IPEN/MB-01 (Brazil), both with a thermal spectrum, two cores in Masurca (France) and three cores in the Fast Critical Assembly (FCA, Japan), all with fast spectra. The performance of the three libraries, in combination with MCNP6, is shown to be good. The results for the LEU-COMP-THERM category are on average very close to the benchmark value. Also for most other categories the results are satisfactory. Deviations from the benchmark values do occur in certain benchmark series, or in isolated cases within benchmark series. Such

  18. First-principles calculation of defect free energies: General aspects illustrated in the case of bcc Fe

    NASA Astrophysics Data System (ADS)

    Murali, D.; Posselt, M.; Schiwarth, M.

    2015-08-01

    Modeling of nanostructure evolution in solids requires comprehensive data on the properties of defects such as the vacancy and foreign atoms. Since most processes occur at elevated temperatures, not only the energetics of defects in the ground state, but also their temperature-dependent free energies must be known. The first-principles calculation of contributions of phonon and electron excitations to free formation, binding, and migration energies of defects is illustrated in the case of bcc Fe. First of all, the ground-state properties of the vacancy, the foreign atoms Cu, Y, Ti, Cr, Mn, Ni, V, Mo, Si, Al, Co, O, and the O-vacancy pair are determined under constant volume (CV) as well as zero-pressure (ZP) conditions, and relations between the results of both kinds of calculations are discussed. Second, the phonon contribution to defect free energies is calculated within the harmonic approximation using the equilibrium atomic positions determined in the ground state under CV and ZP conditions. In most cases, the ZP-based free formation energy decreases monotonously with temperature, whereas for CV-based data both an increase and a decrease were found. The application of a quasiharmonic correction to the ZP-based data does not modify this picture significantly. However, the corrected data are valid under zero-pressure conditions at higher temperatures than in the framework of the purely harmonic approach. The difference between CV- and ZP-based data is mainly due to the volume change of the supercell since the relative arrangement of atoms in the environment of the defects is nearly identical in the two cases. A simple transformation similar to the quasiharmonic approach is found between the CV- and ZP-based frequencies. Therefore, it is not necessary to calculate these quantities and the corresponding defect free energies separately. In contrast to ground-state energetics, the CV- and ZP-based defect free energies do not become equal with increasing supercell

  19. Combinatorial Reactive Sputtering of In2S3 as an Alternative Contact Layer for Thin Film Solar Cells.

    PubMed

    Siol, Sebastian; Dhakal, Tara P; Gudavalli, Ganesh S; Rajbhandari, Pravakar P; DeHart, Clay; Baranowski, Lauryn L; Zakutayev, Andriy

    2016-06-08

    High-throughput computational and experimental techniques have been used in the past to accelerate the discovery of new promising solar cell materials. An important part of the development of novel thin film solar cell technologies, that is still considered a bottleneck for both theory and experiment, is the search for alternative interfacial contact (buffer) layers. The research and development of contact materials is difficult due to the inherent complexity that arises from its interactions at the interface with the absorber. A promising alternative to the commonly used CdS buffer layer in thin film solar cells that contain absorbers with lower electron affinity can be found in β-In2S3. However, the synthesis conditions for the sputter deposition of this material are not well-established. Here, In2S3 is investigated as a solar cell contact material utilizing a high-throughput combinatorial screening of the temperature-flux parameter space, followed by a number of spatially resolved characterization techniques. It is demonstrated that, by tuning the sulfur partial pressure, phase pure β-In2S3 could be deposited using a broad range of substrate temperatures between 500 °C and ambient temperature. Combinatorial photovoltaic device libraries with Al/ZnO/In2S3/Cu2ZnSnS4/Mo/SiO2 structure were built at optimal processing conditions to investigate the feasibility of the sputtered In2S3 buffer layers and of an accelerated optimization of the device structure. The performance of the resulting In2S3/Cu2ZnSnS4 photovoltaic devices is on par with CdS/Cu2ZnSnS4 reference solar cells with similar values for short circuit currents and open circuit voltages, despite the overall quite low efficiency of the devices (∼2%). Overall, these results demonstrate how a high-throughput experimental approach can be used to accelerate the development of contact materials and facilitate the optimization of thin film solar cell devices.

  20. Characterization of complex carbide–silicide precipitates in a Ni–Cr–Mo–Fe–Si alloy modified by welding

    SciTech Connect

    Bhattacharyya, D. Davis, J.; Drew, M.; Harrison, R.P.; Edwards, L.

    2015-07-15

    Nickel based alloys of the type Hastelloy-N™ are ideal candidate materials for molten salt reactors, as well as for applications such as pressure vessels, due to their excellent resistance to creep, oxidation and corrosion. In this work, the authors have attempted to understand the effects of welding on the morphology, chemistry and crystal structure of the precipitates in the heat affected zone (HAZ) and the weld zone of a Ni–Cr–Mo–Fe–Si alloy similar to Hastelloy-N™ in composition, by using characterization techniques such as scanning and transmission electron microscopy. Two plates of a Ni–Cr–Mo–Fe–Si alloy GH-3535 were welded together using a TiG welding process without filler material to achieve a joint with a curved molten zone with dendritic structure. It is evident that the primary precipitates have melted in the HAZ and re-solidified in a eutectic-like morphology, with a chemistry and crystal structure only slightly different from the pre-existing precipitates, while the surrounding matrix grains remained unmelted, except for the zones immediately adjacent to the precipitates. In the molten zone, the primary precipitates were fully melted and dissolved in the matrix, and there was enrichment of Mo and Si in the dendrite boundaries after solidification, and re-precipitation of the complex carbides/silicides at some grain boundaries and triple points. The nature of the precipitates in the molten zone varied according to the local chemical composition. - Graphical abstract: Display Omitted - Highlights: • Ni-based alloy with Cr, Mo, Si, Fe and C was welded, examined with SEM, EBSD, and TEM. • Original Ni{sub 2}(Mo,Cr){sub 4}(Si,C) carbides changed from equiaxed to lamellar shape in HAZ. • Composition and crystal structure remained almost unchanged in HAZ. • Original carbides changed to lamellar Ni{sub 3}(Mo,Cr){sub 3}(Si,C) in some cases in weld metal. • Precipitates were mostly incoherent, but semi-coherent in some cases in weld

  1. Evaluation of measurement uncertainties in EUV scatterometry

    NASA Astrophysics Data System (ADS)

    Gross, H.; Scholze, F.; Rathsfeld, A.; Bär, M.

    2009-06-01

    reconstruction algorithm. The input data of the reconstruction are very complex, i.e., they consists not only of the measured efficiencies, but furthermore of fixed and presumed model parameters such as the widths of the layers in the Mo/Si multilayer mirror beneath the line-space structure. Beside the impact of the uncertainties on the measured efficiencies, we analyze the influence of deviations in the thickness and periodicity of the multilayer stack on the measurement uncertainties of the critical dimensions.

  2. Maximum: Recent Implementation and Application to the Study of Corrosion-Induced Microstructures in Thin Films of Aluminum-Copper Metallization.

    NASA Astrophysics Data System (ADS)

    Liang, Shoudeng

    We describe the recent implementation of a synchrotron radiation based scanning soft X-ray photoemission microscope - MAXIMUM, and discuss its application to the investigation of corrosion-induced microstructures in Al-Cu-Si thin films. The microscope employs a Mo/Si multilayer-coated Schwarzschild objective to focus 95eV X-rays from an undulator beamline. The photoelectrons are energy-analyzed by a CMA, and the sample is rastered to produce an image. We have achieved 980A spatial and 250meV energy resolution. Recent addition of a sample preparation and transfer system to the microscope enables us to perform surface and materials studies under UHV conditions. Since the spatial resolution of the microscope is determined by the spot size of the focused X-rays, any electrostatic potential from surface charging will not affect the image quality. This allowed the study of highly insulating films with the use of an electron flood gun to compensate for spectral shifts. We have employed MAXIMUM to investigate corrosion -induced surface microstructures in the Al-Cu-Si thin films commonly utilized in VLSI metallization. Spectromicroscopy was performed to characterize the chemical species and their distribution on the film surface after corrosion under 85% relative humidity at 85^circ C. The experimental images demonstrated that Cu -rich precipitates were formed near the surface region beneath the oxide layer upon annealing. We also observed a correlation between the precipitates and the increased corrosion in the alloy film: the localized corrosion occurs only at those sites where precipitation has taken place. This implies that the surface oxide layer is modified by the underlying Cu-rich phase such that it loses protection against moisture. After pitting, the Cu-rich phase acts as a cathode to facilitate corrosion of the surrounding Cu-deficient Al matrix via galvanic action. The corrosion -induced microstructures show characteristic circular features in the micrographs of

  3. Generation of short and intense attosecond pulses

    NASA Astrophysics Data System (ADS)

    Khan, Sabih Ud Din

    Extremely broad bandwidth attosecond pulses (which can support 16as pulses) have been demonstrated in our lab based on spectral measurements, however, compensation of intrinsic chirp and their characterization has been a major bottleneck. In this work, we developed an attosecond streak camera using a multi-layer Mo/Si mirror (bandwidth can support ˜100as pulses) and position sensitive time-of-flight detector, and the shortest measured pulse was 107.5as using DOG, which is close to the mirror bandwidth. We also developed a PCGPA based FROG-CRAB algorithm to characterize such short pulses, however, it uses the central momentum approximation and cannot be used for ultra-broad bandwidth pulses. To facilitate the characterization of such pulses, we developed PROOF using Fourier filtering and an evolutionary algorithm. We have demonstrated the characterization of pulses with a bandwidth corresponding to ˜20as using synthetic data. We also for the first time demonstrated single attosecond pulses (SAP) generated using GDOG with a narrow gate width from a multi-cycle driving laser without CE-phase lock, which opens the possibility of scaling attosecond photon flux by extending the technique to peta-watt class lasers. Further, we generated intense attosecond pulse trains (APT) from laser ablated carbon plasmas and demonstrated ˜9.5 times more intense pulses as compared to those from argon gas and for the first time demonstrated a broad continuum from a carbon plasma using DOG. Additionally, we demonstrated ˜100 times enhancement in APT from gases by switching to 400 nm (blue) driving pulses instead of 800 nm (red) pulses. We measured the ellipticity dependence of high harmonics from blue pulses in argon, neon and helium, and developed a simple theoretical model to numerically calculate the ellipticity dependence with good agreement with experiments. Based on the ellipticity dependence, we proposed a new scheme of blue GDOG which we predict can be employed to extract

  4. Letter Report Documenting Progress of Second Generation ATF FeCrAl Alloy Fabrication

    SciTech Connect

    Yamamoto, Y.; Yang, Y.; Field, K. G.; Terrani, K.; Pint, B. A.; Snead, L. L.

    2014-06-10

    Development of the 2nd generation ATF FeCrAl alloy has been initiated, and a candidate alloy was selected for trial tube fabrication through hot-extrusion and gun-drilling processes. Four alloys based on Fe-13Cr-4.5Al-0.15Y in weight percent were newly cast with minor alloying additions of Mo, Si, Nb, and C to promote solid-solution and second-phase precipitate strengthening. The alloy compositions were selected with guidance from computational thermodynamic tools. The lab-scale heats of ~ 600g were arc-melted and drop-cast, homogenized, hot-forged and -rolled, and then annealed producing plate shape samples. An alloy with Mo and Nb additions (C35MN) processed at 800°C exhibits very fine sub-grain structure with the sub-grain size of 1-3μm which exhibited more than 25% better yield and tensile strengths together with decent ductility compared to the other FeCrAl alloys at room temperature. It was found that the Nb addition was key to improving thermal stability of the fine sub-grain structure. Optimally, grains of less than 30 microns are desired, with grains up to and order of magnitude in desired produced through Nb addition. Scale-up effort of the C35MN alloy was made in collaboration with a commercial cast company who has a capability of vacuum induction melting. A 39lb columnar ingot with ~81mm diameter and ~305mm height (with hot-top) was commercially cast, homogenized, hot-extruded, and annealed providing 10mm-diameter bar-shape samples with the fine sub-grain structure. This commercial heat proved consistent with materials produced at ORNL at the lab-scale. Tubes and end caps were machined from the bar sample and provided to another work package for the ATF-1 irradiation campaign in the milestone M3FT-14OR0202251.

  5. In vivo evaluation of injectable calcium phosphate cement composed of Zn- and Si-incorporated β-tricalcium phosphate and monocalcium phosphate monohydrate for a critical sized defect of the rabbit femoral condyle.

    PubMed

    Paul, Kallyanashis; Lee, Byung Yeol; Abueva, Celine; Kim, Boram; Choi, Hwan Jun; Bae, Sang Ho; Lee, Byong Taek

    2017-02-01

    Zinc (Zn) enhances bone formation with mineralization and is an essential element of osteoblastic proliferation. Silicon (Si) is important in apatite formation coupled with the promotion of osteogenesis. The primary focus of this work was the assessment of the bone healing capacity of calcium phosphate cements (CPC) composed of Zn- and Si-incorporated β-tri calcium phosphate (TCP) and mono calcium phosphate mono hydrate (MCPM). Zn- and Si-incorporated β-TCP was synthesized through a sol gel process with varying amounts of Zn: (3, 6, or 9% w/w) and 15% w/w Si. Fabricated CPC samples were characterized by scanning electron microscopy, setting time, injectability, compressive strength and initial pH change with time. Compositional analysis and the effects of Zn and Si on cellular interaction were evaluated by energy dispersive X-ray spectroscopy mapping, viability determination and F-actin assay. The data were used to optimize the CPC formulation. The efficacy of bone healing was investigated via implantation into critical sized rabbit femoral condyle defects for 4 and 8 weeks. CPC cement with 6% (w/w) Zn content was the best candidate for faster bone healing (bone to tibial volume ratio in 8 weeks: 22.78% ± 0.02). Significantly faster degradation was also revealed. Bone healing was significantly delayed when CPC cement with 9% (w/w) Zn was used. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 260-271, 2017.

  6. Assessment of the Radiation Attenuation Properties of Several Lead Free Composites by Monte Carlo Simulation

    PubMed Central

    Kazempour, M.; Saeedimoghadam, M.; Shekoohi Shooli, F.; Shokrpour, N.

    2015-01-01

    Background: In diagnostic radiology lead apron, are usually used to protect patients and radiology staff against ionizing radiation. Lead apron is a desirable shield due to high absorption and effective attenuation of x-ray photons in the diagnostic radiology range. Objective: Although lead aprons have good radiation protection properties, in recent years, researchers have been looking for alternative materials to be used instead of lead apron because of some problems derived from lead-content of aprons. Because of its lead-content, these radiation protection garments are so heavy and uncomfortable for the staff to wear, particularly in long-time uses. In addition, lead is a toxic element and its disposal is associated with environmental and human-health hazards. Method: In this study, several new combinations of lead free materials ((W-Si), (W-Sn-Ba-EPVC ), (W-Sn-Cd-EPVC)) have been investigated in the energy range of diagnostic radiology in two geometries: narrow and broad beam. Geometries of the radiation attenuation characteristics of these materials was assessed in 40, 60, 90 and 120 kVp and the results compared with those of some lead-containing materials ((Pb-Si), (Pb-EPVC)). Results: Lead shields still provide better protection in low energies (below 40 kVp). Combination of W-Sn-Cd-EPVC has shown the best radiation attenuation features in 60 and 90 kVp and the composition of (W-Sn-Ba-EPVC) represents the best attenuation in 120 kVp, even better than previously mentioned lead- containing composites. Conclusion: Lead free shields are completely effective for protection against X-ray energies in the range of 60 to 120 kVp. PMID:26157732

  7. Coherence in ultrafast laser-induced periodic surface structures

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Colombier, Jean-Philippe; Li, Chen; Faure, Nicolas; Cheng, Guanghua; Stoian, Razvan

    2015-11-01

    Ultrafast laser irradiation can trigger anisotropically structured nanoscaled gratinglike arrangements of matter, the laser-induced periodic surface structures (LIPSSs). We demonstrate here that the formation of LIPSS is intrinsically related to the coherence of the laser field. Employing several test materials that allow large optical excursions, we observe the effect of randomizing spatial phase in generating finite domains of ripples. Using three-dimensional finite-difference time-domain methods, we evaluate energy deposition patterns below a material's rough surface and show that modulated pattern, i.e., a spatially ordered electromagnetic solution, results from the coherent superposition of waves. By separating the field scattered from a surface rough topography from the total field, the inhomogeneous energy absorption problem is reduced to a simple interference equation. We further distinguish the contribution of the scattered near field and scattered far field on various types of inhomogeneous energy absorption features. It is found that the inhomogeneous energy absorption which could trigger the low-spatial-frequency LIPSSs (LSFLs) and high-spatial-frequency LIPSSs (HSFLs) of periodicity Λ >λ /Re(n ˜) are due to coherent superposition between the scattered far field (propagation) and the refracted field, while HSFLs of Λ <λ /Re(n ˜) are triggered by coherent superposition between the scattered near field (evanescent) and the refracted field. This is a general scenario that involves a topography-induced scattering phenomenon and stationary evanescent fields, being applied to two model case materials that exhibit large optical excursions upon excitation (W, Si) and nonplasmonic to plasmonic transitions. We indicate the occurrence of a general light interference phenomenon that does not necessarily involve wavelike surface plasmonic excitation. Finally, we discuss the role of interference field and scattered field on the enhancement of LIPSSs by

  8. In vitro evaluation of the cutaneous penetration of sprayable sunscreen emulsions with high concentrations of UV filters.

    PubMed

    Durand, L; Habran, N; Henschel, V; Amighi, K

    2009-08-01

    The aim of this study was to evaluate the possible penetration through human skin of organic and inorganic filters contained in sunscreen emulsions packaged in aerosol cans, using an in vitro method. Experiments were carried out on two different types of emulsion: W/Si and W/O. This study was conducted using static diffusion cells (Franz cells). The determination of organic UV filters [Methylene Bis Benzotriazolyl Tetramethylbutylphenol (MBBT); Bis-Ethylhexyloxyphenol Methoxyphenyl Triazine (BEMT); Diethylamino Hydroxybenzoyl Hexyl Benzoate (DHHB); Ethylhexyl Methoxycinnamate (EMC); and 2-Ethylhexyl Dimethyl PABA (ED-PABA)] was performed by High Performance Liquid Chromatography (HPLC). Therefore, it was important to develop a single analytical method for the quantification of the five organic filters with the aim of facilitating the experiment. The determination of inorganic filters [titanium dioxide (TiO(2)) and zinc oxide (ZnO)] was performed using an emission spectrometric analysis method (ICP-OES). The HPLC and ICP-OES methods were validated. After a penetration test of 24 h duration, the results showed very low penetration only for two of the organic filters (maximum penetration of 1.21 microg cm(-2) h(-1) for EMC and 0.14 microg cm(-2) h(-1) for MBBT) and no penetration for the inorganic filters. Moreover, more than 50% of each sunscreen agent stayed on the surface on the skin. These results are consistent with those in the literature that presents similar experiments. This study showed that the sprayable sunscreen products developed, which contained high concentrations of UV filters, presented a low level of skin penetration.

  9. Diagnostic performance of magnetic resonance imaging and 3D endoanal ultrasound in detection, staging and assessment post treatment, in anal cancer.

    PubMed

    Reginelli, Alfonso; Granata, Vincenza; Fusco, Roberta; Granata, Francesco; Rega, Daniela; Roberto, Luca; Pellino, Gianluca; Rotondo, Antonio; Selvaggi, Francesco; Izzo, Francesco; Petrillo, Antonella; Grassi, Roberto

    2017-02-01

    We compared Magnetic Resonance Imaging (MRI) and 3D Endoanal Ultrasound (EAUS) imaging performance to confirm anal carcinoma and to monitor treatment response.58 patients with anal cancer were retrospectively enrolled. All patients underwent clinical examination, anoscopic examination; EAUS and contrast-enhanced MRI study before and after treatment. Four radiologists evaluated the presence of lesions, using a 4-point confidence scale, features of the lesion and nodes on EAUS images, T1-weighted (T1-W), T2-weighted (T2-W) and diffusion-weighted images (DWI) signal intensity (SI), the apparent diffusion coefficient (ADC) map for nodes and lesion, as well as enhancement pattern during dynamic MRI were assessed.All lesions were detected by EAUS while MRI detected 93.1% of anal cancer. MRI showed a good correlation with EAUS, anoscopy and clinical examination. The residual tissue not showed significant difference in EAUS assessment and T2-W SI in pre and post treatment. We found significant difference in dynamic study, in SI of DWI, in ADC map and values among responder's patients in pre and post treatment. The neoplastic nodes were hypoecoic on EAUS, with hyperintense signal on T2-W sequences and hypointense signal on T1-W. The neoplastic nodes showed SI on DWI sequences and ADC value similar to anal cancer. We found significant difference in nodes status in pre and post therapy on DWI data.3D EAUS and MRI are accurate techniques in anal cancer staging, although EAUS is more accurate than MRI for T1 stage. MRI allows correct detection of neoplastic nodes and can properly stratify patients into responders or non responders.

  10. Technologies for manufacturing of high angular resolution multilayer coated optics for the New Hard X-ray Mission

    NASA Astrophysics Data System (ADS)

    Orlandi, A.; Basso, S.; Borghi, G.; Binda, R.; Citterio, O.; Grisoni, G.; Kools, J.; Marioni, F.; Missaglia, N.; Negri, B.; Negri, R.; Pareschi, G.; Raimondi, L.; Ritucci, A.; Salmaso, B.; Sironi, G.; Spiga, D.; Subranni, R.; Tagliaferri, G.; Valsecchi, G.; Vernani, D.

    2011-05-01

    In the frame of the technology development to be used for the Optical Payload of next future X-ray missions (such as e.g. New Hard X-ray Mission-ASI), a new set of manufacturing techniques were finalized by Media Lario Technologies (MLT), in collaboration with the Italian Space Agency (ASI) and the Brera Astronomical Observatory (INAF/OAB). The set of new technologies includes master manufacturing machines and processes, electroforming method, a vertical optical bench and metrology machines to support manufacturing and integration of mirrors. A magnetron sputtering PVD machine was upgraded and a Pt/C development study has been performed on the basis of the W/Si results obtained in the first phase of the study. New manufacturing technologies for highly accurate masters were developed and tested by mean of two full-size masters together with several dummies. A number of ultrathin Nickel-Cobalt focusing mirrors were manufactured via galvanic replication process from the masters and coated with Pt/C multilayer. Tests on substrate material, roughness and shape of the shell together with analysis on specimens were performed. Tests with AFM and XRR supported the development of the Pt/C multilayer which is the enabling technology for focusing high energy X-Rays. Several mirror shells were integrated into two demonstrator modules to assess the whole manufacturing process up to optical payload integration. The summary of the results from manufacturing and testing of specimens and mirror shells is reported in this paper together with a description of the technologies now available at MLT.

  11. Synthesis, structural and spectroscopic properties of acentric triple molybdate Cs{sub 2}NaBi(MoO{sub 4}){sub 3}

    SciTech Connect

    Savina, A.A.; Atuchin, V.V.; Solodovnikov, S.F.; Solodovnikova, Z.A.; Krylov, A.S.; Maximovskiy, E.A.; Molokeev, M.S.; Oreshonkov, A.S; Pugachev, A.M.; and others

    2015-05-15

    New ternary molybdate Cs{sub 2}NaBi(MoO{sub 4}){sub 3} is synthesized in the system Na{sub 2}MoO{sub 4}–Cs{sub 2}MoO{sub 4}–Bi{sub 2}(MoO{sub 4}){sub 3}. The structure of Cs{sub 2}NaBi(MoO{sub 4}){sub 3} of a new type is determined in noncentrosymmetric space group R3c, a=10.6435(2), c=40.9524(7) Å, V=4017.71(13) Å{sup 3}, Z=12 in anisotropic approximation for all atoms taking into account racemic twinning. The structure is completely ordered, Mo atoms are tetrahedrally coordinated, Bi(1) and Bi(2) atoms are in octahedra, and Na(1) and Na(2) atoms have a distorted trigonal prismatic coordination. The Cs(1) and Cs(2) atoms are in the framework cavities with coordination numbers 12 and 10, respectively. No phase transitions were found in Cs{sub 2}NaBi(MoO{sub 4}){sub 3} up to the melting point at 826 K. The compound shows an SHG signal, I{sub 2w}/I{sub 2w}(SiO{sub 2})=5 estimated by the powder method. The vibrational properties are evaluated by Raman spectroscopy, and 26 narrow lines are measured. - Graphical abstract: - Highlights: • The crystal structure of Cs{sub 2}NaBi(MoO{sub 4}){sub 3} is defined. • The molybdate Cs{sub 2}NaBi(MoO{sub 4}){sub 3} is stable up to melting point at 826 K. • Vibrational properties of Cs{sub 2}NaBi(MoO{sub 4}){sub 3} are evaluated by Raman spectroscopy.

  12. Chemical vapor deposition of ternary refractory nitrides for diffusion barrier applications

    SciTech Connect

    Smith, P.M.; Custer, J.S.; Fleming, J.G.; Roherty-Osmun, E.; Cohn, M.; Jones, R.V.

    1996-06-01

    As semiconductor device dimensions shrink, new diffusion barriers will be required. Amorphous refractory ternaries have been identified as promising barrier candidates; because sputtering may not be suitable, we have developed chemical vapor deposition processes for these materials. Acceptable deposition rates are found for each of these processes at 350 C, with all depositions performed between 300 and 450 C. The first process produces a range of Ti-Si-N compositions from Ti organometallic, SiH{sub 4}, and NH{sub 3}. Resistivity of the Ti-Si-N films changes with Si content from >1{Omega}-cm at 25 at.% Si down to that of TiN (200{mu}{Omega}-cm). Step coverage obtained is better than 80% on 0.5 {mu}m features with aspect ratios of >1.6. The second CVD process produces a range of W-Si-N film compositions from WF{sub 6}, Si{sub 2}H{sub 6}, and NH{sub 3}. Resistivities vary with composition from 350 to 20,000 {mu}{Omega}-cm. Step coverage obtained is 100% on reentrant 0.25 {mu}m features with aspect ratios of 4.0. The third process employs WF{sub 6}(reduced by SiH{sub 4}), B{sub 2}H{sub 6}, and NH{sub 3} to produce W-B-N films with a range of compositions. Resistivities range from 200 to 20,000 {mu}{Omega}-cm. Step coverage obtained is {approx}40% on 1.5 {mu}m features with aspect ratios of 5.5.

  13. Determination of bioavailable macro- and microelements from agricultural soil using different extractants

    NASA Astrophysics Data System (ADS)

    Milićević, Tijana; Relić, Dubravka; Popović, Aleksandar

    2015-04-01

    Translocation of elements from soil to plant has a major impact on the growing plants and on their quality in any agricultural field. In this study, soil samples were collected from agricultural area Radmilovac, Serbia during grapevine season in 2013. Bioavailable elements from soil to plant (grapevine) were isolated by five different extractants: 0.11 mol L-1 CH3COOH, 0.05 mol L-1 Na-EDTA, 0.01 mol L-1 CaCl2, 1 mol L-1 NH4NO3 and distilled water during 2 and 16 h. Concentrations of 22 bioavailable macroelements: Al, Ca, Fe, K, Mg, Mn, Na, P, S, Si and microelements: B, Be, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, V, Zn were determined by ICP-OES. The best extractant for Al, B, Be, Mg, Mo, Si and Zn was CH3COOH, Na-EDTA for Ca, Cd, Co, Cu, Fe, K, Mn, Ni, P, Pb, V, and distilled water for Na and S. Acetic acid has been proven to be an aggressive extractant and it can be used for isolation of higher concentrations of plant bioavailable elements from soil, rather than distilled water, CaCl2 and NH4NO3. The acidity of CH3COOH enhances the extraction of bioavailable fraction of microelements from various substrates and destruction of carbonates as well. However, it can be concluded that there is no unique extractant for isolation of the most bioavailable fraction for all elements from the soil. It can be noticed that the most common concentrations of macroelements, K and Mn, are in correlation with concentrations of microelements, Cd, Co, Ni and Zn. This indicates that the most of their concentrations in soils are followed by microelements, whose concentrations are much lower than concentrations of macroelements. However, as these correlations are the most common, it can be concluded that the pairs of macro- and microelements (e.g. Mn-Cd, Mn-Co, Ni-Cd, Ni-Co, Ni-Mn, Zn-Cd, Zn-Co, Zn-Mn, Zn-Ni) have the same source in soil and can be isolated by the same extractant. It is interesting to note that the concentrations of Ca and Mg extracted from soil using CH3COOH are in correlation

  14. Benchmarking ENDF/B-VII.0

    NASA Astrophysics Data System (ADS)

    van der Marck, Steven C.

    2006-12-01

    The new major release VII.0 of the ENDF/B nuclear data library has been tested extensively using benchmark calculations. These were based upon MCNP-4C3 continuous-energy Monte Carlo neutronics simulations, together with nuclear data processed using the code NJOY. Three types of benchmarks were used, viz., criticality safety benchmarks, (fusion) shielding benchmarks, and reference systems for which the effective delayed neutron fraction is reported. For criticality safety, more than 700 benchmarks from the International Handbook of Criticality Safety Benchmark Experiments were used. Benchmarks from all categories were used, ranging from low-enriched uranium, compound fuel, thermal spectrum ones (LEU-COMP-THERM), to mixed uranium-plutonium, metallic fuel, fast spectrum ones (MIX-MET-FAST). For fusion shielding many benchmarks were based on IAEA specifications for the Oktavian experiments (for Al, Co, Cr, Cu, LiF, Mn, Mo, Si, Ti, W, Zr), Fusion Neutronics Source in Japan (for Be, C, N, O, Fe, Pb), and Pulsed Sphere experiments at Lawrence Livermore National Laboratory (for 6Li, 7Li, Be, C, N, O, Mg, Al, Ti, Fe, Pb, D 2O, H 2O, concrete, polyethylene and teflon). For testing delayed neutron data more than thirty measurements in widely varying systems were used. Among these were measurements in the Tank Critical Assembly (TCA in Japan) and IPEN/MB-01 (Brazil), both with a thermal spectrum, and two cores in Masurca (France) and three cores in the Fast Critical Assembly (FCA, Japan), all with fast spectra. In criticality safety, many benchmarks were chosen from the category with a thermal spectrum, low-enriched uranium, compound fuel (LEU-COMP-THERM), because this is typical of most current-day reactors, and because these benchmarks were previously underpredicted by as much as 0.5% by most nuclear data libraries (such as ENDF/B-VI.8, JEFF-3.0). The calculated results presented here show that this underprediction is no longer there for ENDF/B-VII.0. The average over 257

  15. Clean induced feature CD shift of EUV mask

    NASA Astrophysics Data System (ADS)

    Nesládek, Pavel; Schedel, Thorsten; Bender, Markus

    2016-05-01

    EUV developed in the last decade to the most promising <7nm technology candidate. Defects are considered to be one of the most critical issues of the EUV mask. There are several contributors which make the EUV mask so different from the optical one. First one is the significantly more complicated mask stack consisting currently of 40 Mo/Si double layers, covered by Ru capping layer and TaN/TaO absorber/anti-reflective coating on top of the front face of the mask. Backside is in contrary to optical mask covered as well by conductive layer consisting of Cr or CrN. Second contributor is the fact that EUV mask is currently in contrary to optical mask not yet equipped with sealed pellicle, leading to much higher risk of mask contamination. Third reason is use of EUV mask in vacuum, possibly leading to deposition of vacuum contaminants on the EUV mask surface. Latter reason in combination with tight requirements on backside cleanliness lead to the request of frequent recleaning of the EUV mask, in order to sustain mask lifetime similar to that of optical mask. Mask cleaning process alters slightly the surface of any mask - binary COG mask, as well as phase shift mask of any type and naturally also of the EUV mask as well. In case of optical masks the changes are almost negligible, as the mask is exposed to max. 10-20 re-cleans within its life time. These modifications can be expressed in terms of different specified parameters, e.g. CD shift, phase/trans shift, change of the surface roughness etc. The CD shift, expressed as thinning (or exceptionally thickening) of the dark features on the mask is typically in order of magnitude 0.1nm per process run, which is completely acceptable for optical mask. Projected on the lifetime of EUV mask, assuming 100 clean process cycles, this will lead to CD change of about 10nm. For this reason the requirements for EUV mask cleaning are significantly tighter, << 0.1 nm per process run. This task will look even more challenging, when

  16. Chemical Engineering Division fuel cycle programs. Quarterly progress report, April-June 1979. [Pyrochemical/dry processing; waste encapsulation in metal; transport in geologic media

    SciTech Connect

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-09-01

    For pyrochemical and dry processing materials development included exposure to molten metal and salt of Mo-0.5% Ti-0.07% Ti-0.01% C, Mo-30% W, SiC, Si/sub 2/ON/sub 2/, ZrB/sub 2/-SiC, MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/, AlN, HfB/sub 2/, Y/sub 2/O/sub 3/, BeO, Si/sub 3/N/sub 4/, nickel nitrate-infiltrated W, W-coated Mo, and W-metallized alumina-yttria. Work on Th-U salt transport processing included solubility of Th in liquid Cd, defining the Cd-Th and Cd-Mg-Th phase diagrams, ThO/sub 2/ reduction experiments, and electrolysis of CaO in molten salt. Work on pyrochemical processes and associated hardware for coprocessing U and Pu in spent FBR fuels included a second-generation computer model of the transport process, turntable transport process design, work on the U-Cu-Mg system, and U and Pu distribution coefficients between molten salt and metal. Refractory metal vessels are being service-life tested. The chloride volatility processing of Th-based fuel was evaluated for its proliferation resistance, and a preliminary ternary phase diagram for the Zn-U-Pu system was computed. Material characterization and process analysis were conducted on the Exportable Pyrochemical process (Pyro-Civex process). Literature data on oxidation of fissile metals to oxides were reviewed. Work was done on chemical bases for the reprocessing of actinide oxides in molten salts. Flowsheets are being developed for the processing of fuel in molten tin. Work on encapsulation of solidified radioactive waste in metal matrix included studies of leach rate of crystalline waste materials and of the impact resistance of metal-matrix waste forms. In work on the transport properties of nuclear waste in geologic media, adsorption of Sr on oolitic limestone was studied, as well as the migration of Cs in basalt. Fitting of data on the adsorption of iodate by hematite to a mathematical model was attempted.

  17. Ultraviolet to near-infrared spectral distributions of star-forming galaxies: Metallicity and age effects

    NASA Technical Reports Server (NTRS)

    Storchi-Bergmann, Thaisa; Calzetti, Daniela; Kinney, Anne L.

    1994-01-01

    Spectral distributions from the UV to the near-IR of a sample of 44 star-forming galaxies are used to calculate the metallicity (O/H), star-formation rate (SFR) and age of the starbursts. The oxygen abundance covers the range 8.3 less than O/H less than 9.4 and nitrogen (N) is found to be mostly a product of secondary nucleosynthesis for O/H greater than 8.4. Due to its secondary origin, N/O ratios up to approximately equals 4 times the solar value can be obtained for metal-rich starbursts. The SFR ranges 0.01 to 100 solar mass/year. The lower metallicity galaxies seem to be experiencing an instantaneous burst of star formation, with ages ranging from under 5 x 10(exp 6) to 10(exp 7) yr. The highest metallicity galaxies are most probably experiencing a continuous burst. Correlations between the calculated quantities and several spectral features are investigated. We found a highly significant correlation between the equivalent width W(C IV lambda 1550)-a stellar (absorption) feature- and the oxygen abundance of the emitting gas (O/H). Thus we show for the first time that the stellar metallicity is well correlated with the gas metallicity in star-bursting galaxies. The equivalent width W(Si IV lambda 1400) and the emission line ratio (N II) lambda lambda 6548.84/H(sub alpha) also correlate well with O/H, and all three features can be used as metallicity indicators for star-forming galaxies. The continuum color between lambda 1400 and lambda 3500 (C(14 - 35)) is shown to correlate with O/H, although it is better correlated with E(B - V). It was not possible to disentangle the metallicity from the reddening effect in C(14- 35). We estimate that the reddening affecting the UV continuum is about half the one derived from the Balmer decrement of the emitting gas. The SFR correlates well with the galaxy luminosity and there is no dependence of the continuum color on the SFR. The higher metallicities are only found in the more luminous galaxies, while low metallicities are

  18. Intrinsic SiO{sub x}-based unipolar resistive switching memory. II. Thermal effects on charge transport and characterization of multilevel programing

    SciTech Connect

    Chang, Yao-Feng Chen, Ying-Chen; Chen, Yen-Ting; Wang, Yanzhen; Xue, Fei; Zhou, Fei; Lee, Jack C.; Fowler, Burt

    2014-07-28

    Multilevel programing and charge transport characteristics of intrinsic SiO{sub x}-based resistive switching memory are investigated using TaN/SiO{sub x}/n{sup ++}Si (MIS) and TiW/SiO{sub x}/TiW (MIM) device structures. Current transport characteristics of high- and low-resistance states (HRS and LRS) are studied in both device structures during multilevel operation. Analysis of device thermal response demonstrates that the effective electron energy barrier is strongly dependent on the resistance of the programed state, with estimates of 0.1 eV in the LRS and 0.6 eV in the HRS. Linear data fitting and conductance analyses indicate Poole-Frenkel emission or hopping conductance in the low-voltage region, whereas Fowler-Nordheim (F-N) or trap-assisted tunneling (TAT) is indicated at moderate voltage. Characterizations using hopping transport lead to hopping distance estimates of ∼1 nm in the LRS for both device structures. Relative permittivity values (ε{sub r}) were extracted using the Poole-Frenkel formulism and estimates of local filament temperature, where ε{sub r} values were ∼80 in the LRS and ∼4 in the HRS, suggesting a strongly polarized medium in the LRS. The onset of F-N tunneling or TAT corresponds to an observed “overshoot” in the I-V response with an estimated threshold of 1.6 ± 0.2 V, in good agreement with reported electro-luminescence results for LRS devices. Resistive switching is discussed in terms of electrochemical reactions between common SiO{sub 2} defects, and specific defect energy levels are assigned to the dominant transitions in the I-V response. The overshoot response in the LRS is consistent with TAT through either the Eγ' oxygen vacancy or the hydrogen bridge defect, both of which are reported to have an effective bandgap of 1.7 eV. The SET threshold at ∼2.5 V is modeled as hydrogen release from the (Si-H){sub 2} defect to generate the hydrogen bridge, and the RESET transition is modeled as an

  19. Reliability of materials in MEMS : residual stress and adhesion in a micro power generation system.

    SciTech Connect

    Moody, Neville Reid; Kennedy, Marian S.; Bahr, David F.

    2007-09-01

    The reliability of thin film systems is important to the continued development of microelectronic and micro-electro-mechanical systems (MEMS). The reliability of these systems is often tied to the ability of the films to remain adhered to its substrate. By measuring the amount of energy to separate the film from the substrate, researchers can predicts film lifetimes. Recent work has resulted in several different testing techniques to measure this energy including spontaneous buckling, indentation induced delamination and four point bending. This report focuses on developing quantifiable adhesion measurements for multiple thin film systems used in MEMS and other thin film systems of interest to Sandia programs. First, methods of accurately assessing interfacial toughness using stressed overlayer methods are demonstrated using both the W/Si and Au/Si systems. For systems where fracture only occurs along the interface, such as Au/Si, the calculated fracture energies between different tests are identical if the energy put into the system is kept near the needed strain energy to cause delamination. When the energy in the system is greater than needed to cause delamination, calculated adhesion energies can increase by a factor of three due to plastic deformation. Dependence of calculated adhesion energies on applied energy in the system was also shown when comparisons of four point bending and stressed overlayer test methods were completed on Pt/Si systems. The fracture energies of Pt/Ti/SiO{sub 2} were studied using four-point bending and compressive overlayers. Varying the thickness of the Ti film from 2 to 17 nm in a Pt/Ti/SiO{sub 2} system, both test methods showed an increase of adhesion energy until the nominal Ti thickness was 12nm. Then the adhesion energy began to decrease. While the trends in toughness are similar, the magnitude of the toughness values measured between the test methods is not the same, demonstrating the difficulty in extracting mode I toughness

  20. The investigation of nanoscale effects on schottky interfaces and the scattering rates of high resistivity metals

    NASA Astrophysics Data System (ADS)

    Durcan, Christopher

    Understanding the transport of electrons through materials and across interfaces is fundamental to modern day electronics. As electrons travel, interactions with defects within the crystal lattice induce scattering which gives rise to resistivity. At the interface between two materials, electrostatic barriers exist which can impede the flow of electrons. The work of this thesis is to further the understanding of electron transport by measuring the transport across metal-semiconductor interfaces at the nanoscale and measure scattering phenomena in metals. The measurement technique ballistic electron emission microscopy (BEEM) was used due to its ability to probe the scattering processes within a metal film and across metal semiconductor interfaces with nanoscale resolution. It was discovered that the hot electron transmission of the W/Si(001) Schottky barrier decreases over a period of 21 days with the initial Schottky barrier height of 0.71eV decreasing to 0.62eV. The spatial map changes dramatically from 98% of the spectra able to be fit to only 27%. This is supported by transmission electron microscopy (TEM) showing the formation of a tungsten silicide which increases in thickness. It was discovered that the deposition of tungsten on silicon using electron beam evaporation and RF magnetron sputtering resulted in dramatic differences in the Schottky barrier height and transport of hot electrons. A difference of ˜70meV was measured in the Schottky barrier height's for both p-type and n-type silicon. Spatial maps show a uniform barrier height for the sputter film and varying barrier height for the e-beam film. Histograms show a symmetric gaussian profile for the sputtered film and an asymmetric profile for the evaporated film, arising from an increase in elastic scattering. The hot electron attenuation length of tungsten and chromium thin films were measured on Si(001) and Si(111) substrates. An attenuation length of 2.26nm was measured at 1.0V bias for tungsten

  1. Processing, structure, and properties of nanostructured multifunctional tribological coatings.

    PubMed

    Lin, Jianliang; Park, In-Wook; Mishra, Brajendra; Pinkas, Malki; Moore, John J; Anton, Jennifer M; Kim, Kwang Ho; Voevodin, Andrey A; Levashov, Evgeny A

    2009-07-01

    Nanostructured, nanocomposite binary (TiC-a:C), ternary (Cr-Al-N), quaternary (Ti-B-C-N) and quinternary (Ti-Si-B-C-N) multicomponent films have been deposited using unbalanced magnetron sputtering (UBMS) and closed field unbalanced magnetron sputtering (CFUBMS) from both elemental and composite targets. Approaches to control the film chemistry, volume fraction and size of the multicomponent species, and pulsed ion energy (ion flux) bombardment to tailor the structure and properties of the films for specific tribological applications, e.g., low friction coefficient and low wear rate, are emphasized. The synthesized films are characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), nanoindentation, and microtribometry. The relationships between processing parameters (pulsed ion energy and ion flux), thin film microstructure, mechanical and tribological properties are being investigated in terms of the nanocrystalline-nanocrystalline and nanocrystalline-amorphous composite thin film systems that are generated. In the Ti-Si-B-C-N films, nanocomposites of solid solutions, e.g., nanosized (Ti,C,N)B2 and Ti(C,N) crystallites are embedded in an amorphous TiSi2 and SiC matrix including some carbon, SiB4, BN, CN(x), TiO2 and B2O3 components. The Ti-Si-B-C-N coating with up to 150 W Si target power exhibited a hardness of about 35 GPa, a high H/E ratio of 0.095, and a low wear rate of from approximately 3 to approximately 10 x 10(-6) mm3/(Nm). In another aspect, using increased ion energy and ion flux, which are generated by pulsing the power of the target(s) in a closed field arrangement, to provide improved ion bombardment on tailoring the structure and properties of TiC-a:C and Cr-Al-N coatings are demonstrated. It was found that highly energetic species (up to hundreds eV) were found in the plasma by pulsing the power of the target(s) during magnetron sputtering

  2. Early differentiation of the silicate Earth : new constraints from isotopic investigation of rocks from the lunar highlands

    NASA Astrophysics Data System (ADS)

    Boyet, M.; Carlson, R.; Borg, L.; Connelly, J.; Horan, M.

    2012-04-01

    The isotopic similarity in O, Mo, W, Si, and Fe between lunar and terrestrial samples suggests that the two planetary bodies were equilibrated in the energetic aftermath of the giant impact that gave birth to the Moon [1]. Coupled 142Nd-143Nd isotope systematics of lunar samples including both low-Ti and high-Ti mare basalts along with KREEP basalts have been used to constrain the age of crystallization of the lunar interior [2-5]. These studies show that the Sm-Nd system in the lunar mantle closed in the interval of 180-250 Ma after the beginning of solar system formation, depending on the model considered for lunar mantle differentiation (1 or 2 stage-model and initial lunar Sm/Nd ratio). Does this age represent the age of Moon formation? A prolonged lunar magma ocean (LMO) might be expected given the insulating effect of the thick plagioclase crust, so closure of the Sm-Nd system in the lunar mantle, particularly in a late stage LMO component like KREEP, might substantially post-date lunar formation. We have recently determined a new age of 4360±3 Ma for the ferroan anorthosite (FAN) 60025 using the 207Pb-206Pb, 147Sm-143Nd and 146Sm-142Nd isotope systems [6]. This study is the first in which a single sample of FAN yielded consistent ages from multiple isotope dating techniques, strongly suggesting that this age indicates the time at which the sample crystallized. In order to pursue the question of whether Moon formation occurred over 100 Ma after solar system formation, we have investigated a number of lunar rocks sampling the highland crust from both the FAN and the Mg-suite groups. Internal Sm-Nd isochron on the norite 77215 yields an age of 4296±20 Ma, in agreement with the young age determined on 60025. We will show that our new data obtained on the 146Sm-142Nd systematics of the lunar crust support the scenario of a relative young age for the Moon. Thus, these results offer a unique opportunity to better constrain the composition of the terrestrial

  3. Laboratory Method for Evaluating the Characteristics of Expansion Rock Bolts Subjected to Axial Tension / Laboratoryjna Metoda Badania Charakterystyk Kotew Rozprężnych Poddanych Rozciąganiu Osiowemu

    NASA Astrophysics Data System (ADS)

    Korzeniowski, Waldemar; Skrzypkowski, Krzysztof; Herezy, Łukasz

    2015-03-01

    stanowiska badawczego. Pomiar siły na stanowisku laboratoryjnym był wykonywany za pomocą czterech tensometrycznych czujników siły. Czujniki były rozmieszczone co 90 stopni na tarczy pomiarowej (Rys. 4). Całkowita siła rejestrowana podczas badań rozciągania żerdzi kotwowej była sumą wartości sił uzyskiwanych na poszczególnych czujnikach siły. Pomiar przemieszczeń elementów obudowy oraz wydłużenia żerdzi kotwowej był wykonywany za pomocą enkodera linkowego inkrementalnego. Enkoder przymocowany był na stałe do bloku siłowników (Rys. 6), natomiast linka enkodera przemieszczała się wraz z wysuwem tarczy pomiarowej (Rys. 6). W celu określenia odkształcenia materiału badanego elementu (żerdzi kotwowej) w badaniach zastosowano tensometry elektrooporowe typu kratowego (Rys. 7). Czujniki siły, przemieszczenia oraz odkształcenia zostały podłączone do uniwersalnego wzmacniacza pomiarowego QuantumX MX840, za pomocą wtyczek 15-pinowych. Podczas procesu rozciągania kotwy wyniki pomiarów siły, przemieszczenia oraz odkształcenia były rejestrowane na bieżąco za pomocą specjalistycznego programu z dziedziny technik pomiarowych "CATMAN - EASY". Wybór programu wynikał z możliwości współpracy z systemem operacyjnym MS Windows oraz połączenia komputera z uniwersalnym wzmacniaczem pomiarowym QuantumX MX840 poprzez kabel ethernetowy. Program umożliwiał bieżącą (on- -line) wizualizację i ocenę pomiaru. Ponadto po zakończeniu testu, tworzone były raporty dokumentujące wyniki pomiarów, które były zapisywane w rozszerzeniu pliku ASCII. Następnie dane były przesyłane do programu Microsoft Excel w celu analizy uzyskanych wyników. W badaniach zastosowano obudowę kotwową rozprężną, zainstalowaną w bloku symulującym górotwór o wytrzymałości skał na ściskanie wynoszącej 80MPa (Rys. 3), która była obciążana statycznie według ustalonego programu obciążenia uwzględniającego utrzymywanie zadanej osiowej siły rozci

  4. Proceedings of the Eleventh International Conference on Calorimetry in Particle Physics

    NASA Astrophysics Data System (ADS)

    Cecchi, Claudia

    primitive generation / N. Regnault -- Optical data links for the CMS ECAL / J. Grahl (contribution not received) -- CMS ECAL off-detector electronics / R. Alemany Fernandez -- Performance of a low noise readout ASIC for the W-Si calorimeter physics prototype for the future linear collider / C. de la Taille -- Properties of a sampling calorimeter with warm-liquid ionization chambers / S. Plewnia -- Calorimetry and the DO experiment / R. Zitoun (contribution not received) -- Data quality monitoring for the DØ calorimeter / V. Shary -- Status of the construction of the ATLAS electromagnetic liquid argon calorimeter, overview of beam test performance studies / L. Serin -- Uniformity of response of ATLAS liquid argon EM calorimeter / O. Gaunter -- Status of the ATLAS liquid argon hadronic endcap calorimeter construction / M. Vincter -- Results from particle beam tests of the ATLAS liquid argon endcap calorimeters / M. Lefebvre -- First results of the DREAM project / R. Wigmans -- Electron and muon detection with a dual-readout (DREAM) calorimeter / N. Akchurin -- The neutron zero degree calorimeter for the ALICE experiment / M. Gallio -- The liquid xenon scintillation calorimeter of the MEG experiment: operation of a large prototype / G. Signorelli -- Detection of high energy particles using radio frequency signals / C. Hebert -- Hadronic shower simulation / J.-P. Wellisch -- E.M. and hadronic shower simulation with FLUKA / G. Battistoni -- Simulation of the LHCb electromagnetic calorimeter response with GEANT4 / P. Robbe -- Comparison of beam test results of the combined ATLAS liquid argon endcap calorimeters with GEANT3 and GEANT4 simulations / D. Salihagić -- GEANT4 hadronic physics validation with LHC test-beam data / C. Alexa -- The full simulation of the GLAST LAT high energy gamma ray telescope / F. Longo -- Response of the KLOE electromagnetic calorimeter to low-energy particles / T. Spadaro -- Calorimeter algorithms for DØ; / S. Trincaz-Duvoid -- Identification of

  5. Why should we pay more for layout designers?

    NASA Astrophysics Data System (ADS)

    Khan, Samee U.

    2003-12-01

    ,G2j^2,....,Gmj^2 6. Compute I, (Mij) in each Gij^2 7. Compute Si=si(u)|u belongs to Mij 8. Find the minimum index i such that w(Si)<= w(D) 9. Return Sj 10. Compute G'=min Mij belongs V [max si sum{i=0}^{|Sj|] 11. Return G' Theorem 2 The PNL algorithm is complete and will identify a solution, if there exists one. Proof (Trivial and not included due to space) Theorem 3 The PNL algorithm has a lower bound of 4-approximation to the optimal algorithm. Proof (Not included due to space, but the basic argument, is due to the fact that picking a node v with 2-epsilon in G^2, would required the neighbors to be picked in G^4, thus the PNL is no better than 4-epsilon, where epsilon >0) Experiments We made some initial experiments, which are showing promissing results with savings in fiber, equipment cost, due to space, and inital phase of the experiments, we are not including the results here. P.S. My appologies for exceeding the text limit. There is much more detail to the formal proof, I hope the idea is still conveyed. There are also 2 figures which will be faxed.