Beddar, A Sam; Biggs, Peter J; Chang, Sha; Ezzell, Gary A; Faddegon, Bruce A; Hensley, Frank W; Mills, Michael D
2006-05-01
Intraoperative radiation therapy (IORT) has been customarily performed either in a shielded operating suite located in the operating room (OR) or in a shielded treatment room located within the Department of Radiation Oncology. In both cases, this cancer treatment modality uses stationary linear accelerators. With the development of new technology, mobile linear accelerators have recently become available for IORT. Mobility offers flexibility in treatment location and is leading to a renewed interest in IORT. These mobile accelerator units, which can be transported any day of use to almost any location within a hospital setting, are assembled in a nondedicated environment and used to deliver IORT. Numerous aspects of the design of these new units differ from that of conventional linear accelerators. The scope of this Task Group (TG-72) will focus on items that particularly apply to mobile IORT electron systems. More specifically, the charges to this Task Group are to (i) identify the key differences between stationary and mobile electron linear accelerators used for IORT, (ii) describe and recommend the implementation of an IORT program within the OR environment, (iii) present and discuss radiation protection issues and consequences of working within a nondedicated radiotherapy environment, (iv) describe and recommend the acceptance and machine commissioning of items that are specific to mobile electron linear accelerators, and (v) design and recommend an efficient quality assurance program for mobile systems.
Electron drift velocity and mobility in graphene
NASA Astrophysics Data System (ADS)
Dong, Hai-Ming; Duan, Yi-Feng; Huang, Fei; Liu, Jin-Long
2018-04-01
We present a theoretical study of the electric transport properties of graphene-substrate systems. The drift velocity, mobility, and temperature of the electrons are self-consistently determined using the Boltzmann equilibrium equations. It is revealed that the electronic transport exhibits a distinctly nonlinear behavior. A very high mobility is achieved with the increase of the electric fields increase. The electron velocity is not completely saturated with the increase of the electric field. The temperature of the hot electrons depends quasi-linearly on the electric field. In addition, we show that the electron velocity, mobility, and electron temperature are sensitive to the electron density. These findings could be employed for the application of graphene for high-field nano-electronic devices.
NASA Astrophysics Data System (ADS)
Gao, Tao; Xu, Ruimin; Kong, Yuechan; Zhou, Jianjun; Kong, Cen; Dong, Xun; Chen, Tangsheng
2015-06-01
We demonstrate highly improved linearity in a nonlinear ferroelectric of Pb(Zr0.52Ti0.48)-gated AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor (MIS-HEMT). Distinct double-hump feature in the transconductance-gate voltage (gm-Vg) curve is observed, yielding remarkable enhancement in gate voltage swing as compared to MIS-HEMT with conventional linear gate dielectric. By incorporating the ferroelectric polarization into a self-consistent calculation, it is disclosed that in addition to the common hump corresponding to the onset of electron accumulation, the second hump at high current level is originated from the nonlinear polar nature of ferroelectric, which enhances the gate capacitance by increasing equivalent dielectric constant nonlinearly. This work paves a way for design of high linearity GaN MIS-HEMT by exploiting the nonlinear properties of dielectric.
Polaron mobility obtained by a variational approach for lattice Fröhlich models
NASA Astrophysics Data System (ADS)
Kornjača, Milan; Vukmirović, Nenad
2018-04-01
Charge carrier mobility for a class of lattice models with long-range electron-phonon interaction was investigated. The approach for mobility calculation is based on a suitably chosen unitary transformation of the model Hamiltonian which transforms it into the form where the remaining interaction part can be treated as a perturbation. Relevant spectral functions were then obtained using Matsubara Green's functions technique and charge carrier mobility was evaluated using Kubo's linear response formula. Numerical results were presented for a wide range of electron-phonon interaction strengths and temperatures in the case of one-dimensional version of the model. The results indicate that the mobility decreases with increasing temperature for all electron-phonon interaction strengths in the investigated range, while longer interaction range leads to more mobile carriers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Tao; Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, Nanjing 210016; Xu, Ruimin
2015-06-15
We demonstrate highly improved linearity in a nonlinear ferroelectric of Pb(Zr{sub 0.52}Ti{sub 0.48})-gated AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor (MIS-HEMT). Distinct double-hump feature in the transconductance-gate voltage (g{sub m}-V{sub g}) curve is observed, yielding remarkable enhancement in gate voltage swing as compared to MIS-HEMT with conventional linear gate dielectric. By incorporating the ferroelectric polarization into a self-consistent calculation, it is disclosed that in addition to the common hump corresponding to the onset of electron accumulation, the second hump at high current level is originated from the nonlinear polar nature of ferroelectric, which enhances the gate capacitance by increasing equivalent dielectricmore » constant nonlinearly. This work paves a way for design of high linearity GaN MIS-HEMT by exploiting the nonlinear properties of dielectric.« less
Polarization-dependent plasmonic photocurrents in two-dimensional electron systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popov, V. V., E-mail: popov-slava@yahoo.co.uk; Saratov State University, Saratov 410012; Saratov Scientific Center of the Russian Academy of Sciences, Saratov 410028
2016-06-27
Plasmonic polarization dependent photocurrents in a homogeneous two-dimensional electron system are studied. Those effects are completely different from the photon drag and electronic photogalvanic effects as well as from the plasmonic ratchet effect in a density modulated two-dimensional electron system. Linear and helicity-dependent contributions to the photocurrent are found. The linear contribution can be interpreted as caused by the longitudinal and transverse plasmon drag effect. The helicity-dependent contribution originates from the non-linear electron convection and changes its sign with reversing the plasmonic field helicity. It is shown that the helicity-dependent component of the photocurrent can exceed the linear one bymore » several orders of magnitude in high-mobility two-dimensional electron systems. The results open possibilities for all-electronic detection of the radiation polarization states by exciting the plasmonic photocurrents in two-dimensional electron systems.« less
Electron and hole transport in ambipolar, thin film pentacene transistors
NASA Astrophysics Data System (ADS)
Saudari, Sangameshwar R.; Kagan, Cherie R.
2015-01-01
Solution-processed, ambipolar, thin-film pentacene field-effect transistors were employed to study both electron and hole transport simultaneously in a single, organic solid-state device. Electron and hole mobilities were extracted from the respective unipolar saturation regimes and show thermally activated behavior and gate voltage dependence. We fit the gate voltage dependent saturation mobility to a power law to extract the characteristic Meyer-Neldel (MN) energy, a measure of the width of the exponential distribution of localized states extending into the energy gap of the organic semiconductor. The MN energy is ˜78 and ˜28 meV for electrons and holes, respectively, which reflects a greater density of localized tail states for electrons than holes. This is consistent with the lower measured electron than hole mobility. For holes, the well-behaved linear regime allows for four-point probe measurement of the contact resistance independent mobility and separate characterization of the width of the localized density of states, yielding a consistent MN energy of 28 meV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jongkyong; Gang, Suhyun; Jo, Yongcheol
We have investigated the temperature dependence of ballistic mobility in a 100 nm-long InGaAs/InAlAs metamorphic high-electron-mobility transistor designed for millimeter-wavelength RF applications. To extract the temperature dependence of quasi-ballistic mobility, our experiment involves measurements of the effective mobility in the low-bias linear region of the transistor and of the collision-dominated Hall mobility using a gated Hall bar of the same epitaxial structure. The data measured from the experiment are consistent with that of modeled ballistic mobility based on ballistic transport theory. These results advance the understanding of ballistic transport in various transistors with a nano-scale channel length that is comparable tomore » the carrier's mean free path in the channel.« less
Optical probing of the metal-to-insulator transition in a two-dimensional high-mobility electron gas
NASA Astrophysics Data System (ADS)
Dionigi, F.; Rossella, F.; Bellani, V.; Amado, M.; Diez, E.; Kowalik, K.; Biasiol, G.; Sorba, L.
2011-06-01
We study the quantum Hall liquid and the metal-insulator transition in a high-mobility two-dimensional electron gas, by means of photoluminescence and magnetotransport measurements. In the integer and fractional regime at ν>1/3, by analyzing the emission energy dispersion we probe the magneto-Coulomb screening and the hidden symmetry of the electron liquid. In the fractional regime above ν=1/3, the system undergoes metal-to-insulator transition, and in the insulating phase the dispersion becomes linear with evidence of an increased renormalized mass.
NASA Astrophysics Data System (ADS)
Beddar, A. S.; Tailor, R. C.
2004-04-01
A new approach to intraoperative radiation therapy led to the development of mobile linear electron accelerators that provide lower electron energy beams than the usual conventional accelerators commonly encountered in radiotherapy. Such mobile electron accelerators produce electron beams that have nominal energies of 4, 6, 9 and 12 MeV. This work compares the absorbed dose output calibrations using both the AAPM TG-51 and TG-21 dose calibration protocols for two types of ion chambers: a plane-parallel (PP) ionization chamber and a cylindrical ionization chamber. Our results indicate that the use of a 'Markus' PP chamber causes 2 3% overestimation in dose output determination if accredited dosimetry-calibration laboratory based chamber factors \\big(N_{{\\rm D},{\\rm w}}^{{}^{60}{\\rm Co}}, N_x\\big) are used. However, if the ionization chamber factors are derived using a cross-comparison at a high-energy electron beam, then a good agreement is obtained (within 1%) with a calibrated cylindrical chamber over the entire energy range down to 4 MeV. Furthermore, even though the TG-51 does not recommend using cylindrical chambers at the low energies, our results show that the cylindrical chamber has a good agreement with the PP chamber not only at 6 MeV but also down to 4 MeV electron beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saudari, Sangameshwar R.; Kagan, Cherie R.; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Solution-processed, ambipolar, thin-film pentacene field-effect transistors were employed to study both electron and hole transport simultaneously in a single, organic solid-state device. Electron and hole mobilities were extracted from the respective unipolar saturation regimes and show thermally activated behavior and gate voltage dependence. We fit the gate voltage dependent saturation mobility to a power law to extract the characteristic Meyer-Neldel (MN) energy, a measure of the width of the exponential distribution of localized states extending into the energy gap of the organic semiconductor. The MN energy is ∼78 and ∼28 meV for electrons and holes, respectively, which reflects a greater densitymore » of localized tail states for electrons than holes. This is consistent with the lower measured electron than hole mobility. For holes, the well-behaved linear regime allows for four-point probe measurement of the contact resistance independent mobility and separate characterization of the width of the localized density of states, yielding a consistent MN energy of 28 meV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkulov, O.V., E-mail: merkulov@ihim.uran.ru; Samigullin, R.R.; Markov, A.A.
The electrical conductivity of SrFe{sub 1–x}Sn{sub x}O{sub 3–δ} (x=0.05, 0.10, 017) was measured by a four-probe dc technique in the partial oxygen pressure range of 10{sup –18}–0.5 atm at temperatures between 800 °Ð ÐŽ and 950 °Ð ÐŽ. The oxygen content in these oxides was measured under the same ambient conditions by means of coulometric titration. The thermodynamic analysis of oxygen nonstoichiometry data was carried out to determine the equilibrium constants for defect-formation reactions and to calculate the concentrations of ion and electron charge carriers. The partial contributions of oxygen ions, electrons and holes to charge transport were assessed, and the mobilitymore » of respective carriers was evaluated by an integral examination of the electrical conductivity and oxygen nonstoichiometry data. It has been found that the mobility of holes in SrFe{sub 1−x}Sn{sub x}O{sub 3−δ} varies in the range of ~0.005–0.04 cm{sup 2} V{sup −1} s{sup −1}, linearly increasing with the oxygen content and decreasing with increased tin concentration. The mobility of electron carriers was shown to be independent of the oxygen content. The average migration energy of an electron was estimated to be ~0.45 eV, with that of a hole being ~0.3 eV. - Highlights: • The conductivity and oxygen nonstoichiometry in SrFe{sub 1−x}Sn{sub x}O{sub 3−δ} were measured. • Tin substitution was found to affect insignificantly defect formation reactions. • The hole mobility was found to increase linearly with the oxygen content. • The hole mobility was found to be much higher than the electron mobility.« less
High-mobility ambipolar ZnO-graphene hybrid thin film transistors.
Song, Wooseok; Kwon, Soon Yeol; Myung, Sung; Jung, Min Wook; Kim, Seong Jun; Min, Bok Ki; Kang, Min-A; Kim, Sung Ho; Lim, Jongsun; An, Ki-Seok
2014-02-11
In order to combine advantages of ZnO thin film transistors (TFTs) with a high on-off ratio and graphene TFTs with extremely high carrier mobility, we present a facile methodology for fabricating ZnO thin film/graphene hybrid two-dimensional TFTs. Hybrid TFTs exhibited ambipolar behavior, an outstanding electron mobility of 329.7 ± 16.9 cm(2)/V·s, and a high on-off ratio of 10(5). The ambipolar behavior of the ZnO/graphene hybrid TFT with high electron mobility could be due to the superimposed density of states involving the donor states in the bandgap of ZnO thin films and the linear dispersion of monolayer graphene. We further established an applicable circuit model for understanding the improvement in carrier mobility of ZnO/graphene hybrid TFTs.
NASA Astrophysics Data System (ADS)
Liu, Kai; Liu, Yuan; Liu, Yu-Rong; En, Yun-Fei; Li, Bin
2017-07-01
Channel mobility in the p-type polycrystalline silicon thin film transistors (poly-Si TFTs) is extracted using Hoffman method, linear region transconductance method and multi-frequency C-V method. Due to the non-negligible errors when neglecting the dependence of gate-source voltage on the effective mobility, the extracted mobility results are overestimated using linear region transconductance method and Hoffman method, especially in the lower gate-source voltage region. By considering of the distribution of localized states in the band-gap, the frequency independent capacitance due to localized charges in the sub-gap states and due to channel free electron charges in the conduction band were extracted using multi-frequency C-V method. Therefore, channel mobility was extracted accurately based on the charge transport theory. In addition, the effect of electrical field dependent mobility degradation was also considered in the higher gate-source voltage region. In the end, the extracted mobility results in the poly-Si TFTs using these three methods are compared and analyzed.
Influence of acceptor on charge mobility in stacked π-conjugated polymers
NASA Astrophysics Data System (ADS)
Sun, Shih-Jye; Menšík, Miroslav; Toman, Petr; Gagliardi, Alessio; Král, Karel
2018-02-01
We present a quantum molecular model to calculate mobility of π-stacked P3HT polymer layers with electron acceptor dopants coupled next to side groups in random position with respect to the linear chain. The hole density, the acceptor LUMO energy and the hybridization transfer integral between the acceptor and polymer were found to be very critical factors to the final hole mobility. For a dopant LUMO energy close and high above the top of the polymer valence band we have found a significant mobility increase with the hole concentration and with the dopant LUMO energy approaching the top of the polymer valence band. Higher mobility was achieved for small values of hybridization transfer integral between polymer and the acceptor, corresponding to the case of weakly bound acceptor. Strong couplings between the polymer and the acceptor with Coulomb repulsion interactions induced from the electron localizations was found to suppress the hole mobility.
High-mobility ambipolar ZnO-graphene hybrid thin film transistors
Song, Wooseok; Kwon, Soon Yeol; Myung, Sung; Jung, Min Wook; Kim, Seong Jun; Min, Bok Ki; Kang, Min-A; Kim, Sung Ho; Lim, Jongsun; An, Ki-Seok
2014-01-01
In order to combine advantages of ZnO thin film transistors (TFTs) with a high on-off ratio and graphene TFTs with extremely high carrier mobility, we present a facile methodology for fabricating ZnO thin film/graphene hybrid two-dimensional TFTs. Hybrid TFTs exhibited ambipolar behavior, an outstanding electron mobility of 329.7 ± 16.9 cm2/V·s, and a high on-off ratio of 105. The ambipolar behavior of the ZnO/graphene hybrid TFT with high electron mobility could be due to the superimposed density of states involving the donor states in the bandgap of ZnO thin films and the linear dispersion of monolayer graphene. We further established an applicable circuit model for understanding the improvement in carrier mobility of ZnO/graphene hybrid TFTs. PMID:24513629
New non-linear photovoltaic effect in uniform bipolar semiconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volovichev, I.
2014-11-21
A linear theory of the new non-linear photovoltaic effect in the closed circuit consisting of a non-uniformly illuminated uniform bipolar semiconductor with neutral impurities is developed. The non-uniform photo-excitation of impurities results in the position-dependant current carrier mobility that breaks the semiconductor homogeneity and induces the photo-electromotive force (emf). As both the electron (or hole) mobility gradient and the current carrier generation rate depend on the light intensity, the photo-emf and the short-circuit current prove to be non-linear functions of the incident light intensity at an arbitrarily low illumination. The influence of the sample size on the photovoltaic effect magnitudemore » is studied. Physical relations and distinctions between the considered effect and the Dember and bulk photovoltaic effects are also discussed.« less
NASA Astrophysics Data System (ADS)
Lizzit, D.; Badami, O.; Specogna, R.; Esseni, D.
2017-06-01
We present a new model for surface roughness (SR) scattering in n-type multi-gate FETs (MuGFETs) and gate-all-around nanowire FETs with fairly arbitrary cross-sections, its implementation in a complete device simulator, and the validation against experimental electron mobility data. The model describes the SR scattering matrix elements as non-linear transformations of interface fluctuations, which strongly influences the root mean square value of the roughness required to reproduce experimental mobility data. Mobility simulations are performed via the deterministic solution of the Boltzmann transport equation for a 1D-electron gas and including the most relevant scattering mechanisms for electronic transport, such as acoustic, polar, and non-polar optical phonon scattering, Coulomb scattering, and SR scattering. Simulation results show the importance of accounting for arbitrary cross-sections and biasing conditions when compared to experimental data. We also discuss how mobility is affected by the shape of the cross-section as well as by its area in gate-all-around and tri-gate MuGFETs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolterfoht, Martin; Armin, Ardalan; Pandey, Ajay K.
Photovoltaic performance in relation to charge transport is studied in efficient (7.6%) organic solar cells (PTB7:PC{sub 71}BM). Both electron and hole mobilities are experimentally measured in efficient solar cells using the resistance dependent photovoltage technique, while the inapplicability of classical techniques, such as space charge limited current and photogenerated charge extraction by linearly increasing voltage is discussed. Limits in the short-circuit current originate from optical losses, while charge transport is shown not to be a limiting process. Efficient charge extraction without recombination can be achieved with a mobility of charge carriers much lower than previously expected. The presence of dispersivemore » transport with strongly distributed mobilities in high efficiency solar cells is demonstrated. Reduced non-Langevin recombination is shown to be beneficial for solar cells with imbalanced, low, and dispersive electron and hole mobilities.« less
Numerical simulation of offset-drain amorphous oxide-based thin-film transistors
NASA Astrophysics Data System (ADS)
Jeong, Jaewook
2016-11-01
In this study, we analyzed the electrical characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with an offset-drain structure by technology computer aided design (TCAD) simulation. When operating in a linear region, an enhancement-type TFT shows poor field-effect mobility because most conduction electrons are trapped in acceptor-like defects in an offset region when the offset length (L off) exceeds 0.5 µm, whereas a depletion-type TFT shows superior field-effect mobility owing to the high free electron density in the offset region compared with the trapped electron density. When operating in the saturation region, both types of TFTs show good field-effect mobility comparable to that of a reference TFT with a large gate overlap. The underlying physics of the depletion and enhancement types of offset-drain TFTs are systematically analyzed.
Strain engineering on electronic structure and carrier mobility in monolayer GeP3
NASA Astrophysics Data System (ADS)
Zeng, Bowen; Long, Mengqiu; Zhang, Xiaojiao; Dong, Yulan; Li, Mingjun; Yi, Yougen; Duan, Haiming
2018-06-01
Using density functional theory coupled with the Boltzmann transport equation with relaxation time approximation, we have studied the strain effect on the electronic structure and carrier mobility of two-dimensional monolayer GeP3. We find that the energies of valence band maximum and conduction band minimum are nearly linearly shifted with a biaxial strain in the range of ‑4% to 6%, and the band structure experiences a remarkable transition from semiconductor to metal with the appropriate compression (‑5% strain). Under biaxial strain, the mobility of the electron and hole in monolayer GeP3 reduces and increases by more than one order of magnitude, respectively. It is suggested that it is possible to perform successive transitions from an n-type semiconductor (‑4% strain) to a good performance p-semiconductor (+6% strain) by applying strain in monolayer GeP3, which is potentially useful for flexible electronics and nanosized mechanical sensors.
NASA Astrophysics Data System (ADS)
Lee, Ching-Sung; Liao, Chen-Hsian
2007-12-01
Kink effects in an In-rich InxGa1-xAs (x=0.53-0.63) linearly graded channel of an In0.45Al0.55As/InxGa1-xAs metamorphic high-electron-mobility transistor have been effectively relieved by depositing a high-barrier Ni /Au gate with the silicon nitride passivation. Complete physical investigations for the relieved kink effects have been made by comparing identical devices with/without a high-barrier Schottky gate or the surface passivation. After successfully suppressing the kink effects, the proposed device has shown a superior voltage gain of 173.8, low output conductance of 2.09mS/mm, and excellent power-added efficiency of 54.1% with high output power (power gain) of 14.87dBm (14.53dB). Improved linearity and excellent thermal threshold coefficient (∂Vth/∂T) of -0.14mV/K have also been achieved. The proposed design provides good potential for high-gain and high-linearity circuit applications.
Effect of the mobility on (I-V) characteristics of the MOSFET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benzaoui, Ouassila, E-mail: o-benzaoui@yahoo.fr; Azizi, Cherifa, E-mail: aziziche@yahoo.fr
2013-12-16
MOSFET Transistor was the subject of many studies and research works (electronics, data-processing, telecommunications...) in order to exploit its interesting and promising characteristics. The aim of this contribution is devoted to the effect of the mobility on the static characteristics I-V of the MOSFET. The study enables us to calculate the drain current as function of bias in both linear and saturated modes; this effect is evaluated using a numerical simulation program. The influence of mobility was studied. Obtained results allow us to determine the mobility law in the MOSFET which gives optimal (I-V) characteristics of the component.
Marinetto, Eugenio; Victores, Juan González; García-Sevilla, Mónica; Muñoz, Mercedes; Calvo, Felipe Ángel; Balaguer, Carlos; Desco, Manuel; Pascau, Javier
2017-10-01
Intraoperative electron radiation therapy (IOERT) involves the delivery of a high radiation dose during tumor resection in a shorter time than other radiation techniques, thus improving local control of tumors. However, a linear accelerator device is needed to produce the beam safely. Mobile linear accelerators have been designed as dedicated units that can be moved into the operating room and deliver radiation in situ. Correct and safe dose delivery is a key concern when using mobile accelerators. The applicator is commonly fixed to the patient's bed to ensure that the dose is delivered to the prescribed location, and the mobile accelerator is moved to dock the applicator to the radiation beam output (gantry). In a typical clinical set-up, this task is time-consuming because of safety requirements and the limited degree of freedom of the gantry. The objective of this study was to present a navigation solution based on optical tracking for guidance of docking to improve safety and reduce procedure time. We used an optical tracker attached to the mobile linear accelerator to track the prescribed localization of the radiation collimator inside the operating room. Using this information, the integrated navigation system developed computes the movements that the mobile linear accelerator needs to perform to align the applicator and the radiation gantry and warns the physician if docking is unrealizable according to the available degrees of freedom of the mobile linear accelerator. Furthermore, we coded a software application that connects all the necessary functioning elements and provides a user interface for the system calibration and the docking guidance. The system could safeguard against the spatial limitations of the operating room, calculate the optimal arrangement of the accelerator and reduce the docking time in computer simulations and experimental setups. The system could be used to guide docking with any commercial linear accelerator. We believe that the docking navigator we present is a major contribution to IOERT, where docking is critical when attempting to reduce surgical time, ensure patient safety and guarantee that the treatment administered follows the radiation oncologist's prescription. © 2017 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emadi, E.; Zahed, H.
2016-08-15
The behavior of linear and nonlinear dust ion acoustic (DIA) solitary waves in an unmagnetized quantum dusty plasma, including inertialess electrons and positrons, ions, and mobile negative dust grains, are studied. Reductive perturbation and Sagdeev pseudopotential methods are employed for small and large amplitude DIA solitary waves, respectively. A minimum value of the Mach number obtained for the existence of solitary waves using the analytical expression of the Sagdeev potential. It is observed that the variation on the values of the plasma parameters such as different values of Mach number M, ion to electron Fermi temperature ratio σ, and quantummore » diffraction parameter H can lead to the creation of compressive solitary waves.« less
Large linear magnetoresistance in heavily-doped Nb:SrTiO3 epitaxial thin films
Jin, Hyunwoo; Lee, Keundong; Baek, Seung-Hyub; Kim, Jin-Sang; Cheong, Byung-ki; Park, Bae Ho; Yoon, Sungwon; Suh, B. J.; Kim, Changyoung; Seo, S. S. A.; Lee, Suyoun
2016-01-01
Interaction between electrons has long been a focused topic in condensed-matter physics since it has led to the discoveries of astonishing phenomena, for example, high-Tc superconductivity and colossal magnetoresistance (CMR) in strongly-correlated materials. In the study of strongly-correlated perovskite oxides, Nb-doped SrTiO3 (Nb:SrTiO3) has been a workhorse not only as a conducting substrate, but also as a host possessing high carrier mobility. In this work, we report the observations of large linear magnetoresistance (LMR) and the metal-to-insulator transition (MIT) induced by magnetic field in heavily-doped Nb:STO (SrNb0.2Ti0.8O3) epitaxial thin films. These phenomena are associated with the interplay between the large classical MR due to high carrier mobility and the electronic localization effect due to strong spin-orbit coupling, implying that heavily Nb-doped Sr(Nb0.2Ti0.8)O3 is promising for the application in spintronic devices. PMID:27703222
NASA Astrophysics Data System (ADS)
Gunst, Tue; Markussen, Troels; Stokbro, Kurt; Brandbyge, Mads
2016-01-01
We present density functional theory calculations of the phonon-limited mobility in n -type monolayer graphene, silicene, and MoS2. The material properties, including the electron-phonon interaction, are calculated from first principles. We provide a detailed description of the normalized full-band relaxation time approximation for the linearized Boltzmann transport equation (BTE) that includes inelastic scattering processes. The bulk electron-phonon coupling is evaluated by a supercell method. The method employed is fully numerical and does therefore not require a semianalytic treatment of part of the problem and, importantly, it keeps the anisotropy information stored in the coupling as well as the band structure. In addition, we perform calculations of the low-field mobility and its dependence on carrier density and temperature to obtain a better understanding of transport in graphene, silicene, and monolayer MoS2. Unlike graphene, the carriers in silicene show strong interaction with the out-of-plane modes. We find that graphene has more than an order of magnitude higher mobility compared to silicene in the limit where the silicene out-of-plane interaction is reduced to zero (by substrate interaction, clamping, or similar). If the out-of-plane interaction is not actively reduced, the mobility of silicene will essentially be zero. For MoS2, we obtain several orders of magnitude lower mobilities compared to graphene in agreement with other recent theoretical results. The simulations illustrate the predictive capabilities of the newly implemented BTE solver applied in simulation tools based on first-principles and localized basis sets.
Ye, Tianyu; Liu, Han-Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.
2015-01-01
A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. For circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ. PMID:26450679
Ye, Tianyu; Liu, Han-Chun; Wang, Zhuo; Wegscheider, W; Mani, Ramesh G
2015-10-09
A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. For circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ.
NASA Astrophysics Data System (ADS)
Minea, R.; Oproiu, C.; Pascanu, S.; Matei, C.; Ferdes, O.
1996-06-01
The potential of ionizing radiation treatment for food preservation, shelf-life extension, control of microbial load and reduction of pathogenic microorganism was demonstrated. The irradiations were performed under normal conditions on the Institute of Physics and Technology for Radiation Device's linear electron accelerator, which has the following parameters: 5 μA mean beam current, 6 MeV electron mean energy, pulse period 3.5 μs and dose rates between 100-1500 Gy/min. This research project was aimed at assuring the consumer's acceptance for radiation-treated food and to obtain a significant reduction of food losses. We also propose a promising solution for the radiation processing of some bulk food products at the place of storage, consisting of a mobile electron accelerator. The main characteristics of the mobile electron accelerator are: electron energy 3 to 5 MeV, maximum beam power 5 kW, vertical electron beam; irradiation is possible both with electron beams and with bremsstrahlung. The results of our preliminary research lead to the conclusion that electron-beam irradiation and the use of electron accelerators is a promising solution for food preservation and food safety. Interesting future applications are outlined.
Superradiant Decay of Cyclotron Resonance of Two-Dimensional Electron Gases
NASA Astrophysics Data System (ADS)
Zhang, Qi; Arikawa, Takashi; Kato, Eiji; Reno, John L.; Pan, Wei; Watson, John D.; Manfra, Michael J.; Zudov, Michael A.; Tokman, Mikhail; Erukhimova, Maria; Belyanin, Alexey; Kono, Junichiro
2014-07-01
We report on the observation of collective radiative decay, or superradiance, of cyclotron resonance (CR) in high-mobility two-dimensional electron gases in GaAs quantum wells using time-domain terahertz magnetospectroscopy. The decay rate of coherent CR oscillations increases linearly with the electron density in a wide range, which is a hallmark of superradiant damping. Our fully quantum mechanical theory provides a universal formula for the decay rate, which reproduces our experimental data without any adjustable parameter. These results firmly establish the many-body nature of CR decoherence in this system, despite the fact that the CR frequency is immune to electron-electron interactions due to Kohn's theorem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohan, Nagaboopathy; Raghavan, Srinivasan; Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012
2015-10-07
AlGaN/GaN high electron mobility transistor stacks deposited on a single growth platform are used to compare the most common transition, AlN to GaN, schemes used for integrating GaN with Si. The efficiency of these transitions based on linearly graded, step graded, interlayer, and superlattice schemes on dislocation density reduction, stress management, surface roughness, and eventually mobility of the 2D-gas are evaluated. In a 500 nm GaN probe layer deposited, all of these transitions result in total transmission electron microscopy measured dislocations densities of 1 to 3 × 10{sup 9}/cm{sup 2} and <1 nm surface roughness. The 2-D electron gas channels formed atmore » an AlGaN-1 nm AlN/GaN interface deposited on this GaN probe layer all have mobilities of 1600–1900 cm{sup 2}/V s at a carrier concentration of 0.7–0.9 × 10{sup 13}/cm{sup 2}. Compressive stress and changes in composition in GaN rich regions of the AlN-GaN transition are the most effective at reducing dislocation density. Amongst all the transitions studied the step graded transition is the one that helps to implement this feature of GaN integration in the simplest and most consistent manner.« less
Gokirmak, Ali; Inaltekin, Hazer; Tiwari, Sandip
2009-08-19
A high resolution capacitance-voltage (C-V) characterization technique, enabling direct measurement of electronic properties at the nanoscale in devices such as nanowire field effect transistors (FETs) through the use of random fluctuations, is described. The minimum noise level required for achieving sub-aF (10(-18) F) resolution, the leveraging of stochastic resonance, and the effect of higher levels of noise are illustrated through simulations. The non-linear DeltaC(gate-source/drain)-V(gate) response of FETs is utilized to determine the inversion layer capacitance (C(inv)) and carrier mobility. The technique is demonstrated by extracting the carrier concentration and effective electron mobility in a nanoscale Si FET with C(inv) = 60 aF.
Fast detection of toxic industrial compounds by laser ion mobility spectrometry
NASA Astrophysics Data System (ADS)
Oberhuettinger, Carola; Langmeier, Andreas; Oberpriller, Helmut; Kessler, Matthias; Goebel, Johann; Mueller, Gerhard
2009-05-01
Trace detection of toxic industrial compounds has been investigated with the help of a laser ion mobility spectrometer (LIMS). The LIMS was equipped with a tuneable UV laser source for enabling two-photon ionization of the analyte gases and an ion drift tube for the measurement of the ion mobility. Different aromatic and aliphatic hydrocarbons as well as amines were investigated. We find that the first class of molecules can be well ionized due to the delocalization of their valence electron shells and the second due to the presence of non-bonding electrons in lone-pair orbitals. Selectivity of detection is attained on the basis of molecule-specific photo-ionization and drift time spectra. Ion currents were found to scale linearly with the substance concentration over several orders of magnitude down to the detection limits in the ppt range. As besides toxic industrial compounds, similar electron configurations also occur in illicit drugs, toxins and pharmaceutical substances, LIMS can be applied in a variety of fields ranging from environmental analysis, air pollution monitoring, drug detection and chemical process monitoring.
Carbon nanotube transistor based high-frequency electronics
NASA Astrophysics Data System (ADS)
Schroter, Michael
At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.
NASA Astrophysics Data System (ADS)
Jiang, C.; Rumyantsev, S. L.; Samnakay, R.; Shur, M. S.; Balandin, A. A.
2015-02-01
We report on fabrication of MoS2 thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS2 devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS2 thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a "memory step," was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS2 thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS2 thin-film transistors in extreme-temperature electronics and sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo
A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response ismore » hardly sensitive to θ.« less
Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; ...
2015-10-09
A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response ismore » hardly sensitive to θ.« less
Classification of Odours for Mobile Robots Using an Ensemble of Linear Classifiers
NASA Astrophysics Data System (ADS)
Trincavelli, Marco; Coradeschi, Silvia; Loutfi, Amy
2009-05-01
This paper investigates the classification of odours using an electronic nose mounted on a mobile robot. The samples are collected as the robot explores the environment. Under such conditions, the sensor response differs from typical three phase sampling processes. In this paper, we focus particularly on the classification problem and how it is influenced by the movement of the robot. To cope with these influences, an algorithm consisting of an ensemble of classifiers is presented. Experimental results show that this algorithm increases classification performance compared to other traditional classification methods.
NASA Astrophysics Data System (ADS)
Toušek, J.; Toušková, J.; Remeš, Z.; Chomutová, R.; Čermák, J.; Helgesen, M.; Carlé, J. E.; Krebs, F. C.
2015-12-01
Measurements of electrical conductivity, electron work function, carrier mobility of holes and the diffusion length of excitons were performed on samples of conjugated polymers relevant to polymer solar cells. A state of the art fluorinated benzothiadiazole based conjugated copolymer (PBDTTHD - DTBTff) was studied and benchmarked against the reference polymer poly-3-hexylthiophene (P3HT). We employed, respectively, four electrode conductivity measurements, Kelvin probe work function measurements, carrier mobility using charge extraction by linearly increasing voltage (CELIV) measurements and diffusion length determinaton using surface photovoltage measurements.
NASA Astrophysics Data System (ADS)
Cui, Boya; Kielb, Edward; Luo, Jiajun; Tang, Yang; Grayson, Matthew
Superlattices and narrow gap semiconductors often host multiple conducting species, such as electrons and holes, requiring a mobility spectral analysis (MSA) method to separate contributions to the conductivity. Here, a least-squares MSA method is introduced: the QR-algorithm Fourier-domain MSA (FMSA). Like other MSA methods, the FMSA sorts the conductivity contributions of different carrier species from magnetotransport measurements, arriving at a best fit to the experimentally measured longitudinal and Hall conductivities σxx and σxy, respectively. This method distinguishes itself from other methods by using the so-called QR-algorithm of linear algebra to achieve rapid convergence of the mobility spectrum as the solution to an eigenvalue problem, and by alternately solving this problem in both the mobility domain and its Fourier reciprocal-space. The result accurately fits a mobility range spanning nearly four orders of magnitude (μ = 300 to 1,000,000 cm2/V .s). This method resolves the mobility spectra as well as, or better than, competing MSA methods while also achieving high computational efficiency, requiring less than 30 second on average to converge to a solution on a standard desktop computer. Acknowledgement: Funded by AFOSR FA9550-15-1-0377 and AFOSR FA9550-15-1-0247.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhijie; Liu, Zitong; Ning, Lu
Here, we demonstrate a simple, but efficient, approach for improving the semiconducting performances of DPP-based conjugated D-A polymers. This approach involves the replacement of one bulky branching alkyl chain with the linear one at each DPP unit in regular polymer PDPPSe-10 and PDPPSe-12. The UV–vis absorption, Raman spectra, PDS data, and theoretical calculations support that the replacement of bulky branching chains with linear ones can weaken the steric hindrance, and accordingly conjugated backbones become more planar and rigid. GIWAXS data show that the incorporation of linear alkyl chains as in PDPPSe-10 and PDPPSe-12 is beneficial for side-chain interdigitation and interchainmore » dense packing, leading to improvement of interchain packing order and thin film crystallinity by comparing with PDPPSe, which contains branching alkyl chains. On the basis of field-effect transistor (FET) studies, charge mobilities of PDPPSe-10 and PDPPSe-12 are remarkably enhanced. Hole mobilities of PDPPSe-10 and PDPPSe-12 in air are boosted to 8.1 and 9.4 cm 2 V –1 s –1, which are about 6 and 7 times, respectively, than that of PDPPSe (1.35 cm 2 V –1 s –1). Furthermore, both PDPPSe-10 and PDPPSe-12 behave as ambipolar semiconductors under a nitrogen atmosphere with increased hole/electron mobilities up to 6.5/0.48 cm 2 V –1 s –1 and 7.9/0.79 cm 2 V –1 s –1, respectively.« less
Wang, Zhijie; Liu, Zitong; Ning, Lu; ...
2018-04-17
Here, we demonstrate a simple, but efficient, approach for improving the semiconducting performances of DPP-based conjugated D-A polymers. This approach involves the replacement of one bulky branching alkyl chain with the linear one at each DPP unit in regular polymer PDPPSe-10 and PDPPSe-12. The UV–vis absorption, Raman spectra, PDS data, and theoretical calculations support that the replacement of bulky branching chains with linear ones can weaken the steric hindrance, and accordingly conjugated backbones become more planar and rigid. GIWAXS data show that the incorporation of linear alkyl chains as in PDPPSe-10 and PDPPSe-12 is beneficial for side-chain interdigitation and interchainmore » dense packing, leading to improvement of interchain packing order and thin film crystallinity by comparing with PDPPSe, which contains branching alkyl chains. On the basis of field-effect transistor (FET) studies, charge mobilities of PDPPSe-10 and PDPPSe-12 are remarkably enhanced. Hole mobilities of PDPPSe-10 and PDPPSe-12 in air are boosted to 8.1 and 9.4 cm 2 V –1 s –1, which are about 6 and 7 times, respectively, than that of PDPPSe (1.35 cm 2 V –1 s –1). Furthermore, both PDPPSe-10 and PDPPSe-12 behave as ambipolar semiconductors under a nitrogen atmosphere with increased hole/electron mobilities up to 6.5/0.48 cm 2 V –1 s –1 and 7.9/0.79 cm 2 V –1 s –1, respectively.« less
First-principle simulations of electronic structure in semicrystalline polyethylene
NASA Astrophysics Data System (ADS)
Moyassari, A.; Unge, M.; Hedenqvist, M. S.; Gedde, U. W.; Nilsson, F.
2017-05-01
In order to increase our fundamental knowledge about high-voltage cable insulation materials, realistic polyethylene (PE) structures, generated with a novel molecular modeling strategy, have been analyzed using first principle electronic structure simulations. The PE structures were constructed by first generating atomistic PE configurations with an off-lattice Monte Carlo method and then equilibrating the structures at the desired temperature and pressure using molecular dynamics simulations. Semicrystalline, fully crystalline and fully amorphous PE, in some cases including crosslinks and short-chain branches, were analyzed. The modeled PE had a structure in agreement with established experimental data. Linear-scaling density functional theory (LS-DFT) was used to examine the electronic structure (e.g., spatial distribution of molecular orbitals, bandgaps and mobility edges) on all the materials, whereas conventional DFT was used to validate the LS-DFT results on small systems. When hybrid functionals were used, the simulated bandgaps were close to the experimental values. The localization of valence and conduction band states was demonstrated. The localized states in the conduction band were primarily found in the free volume (result of gauche conformations) present in the amorphous regions. For branched and crosslinked structures, the localized electronic states closest to the valence band edge were positioned at branches and crosslinks, respectively. At 0 K, the activation energy for transport was lower for holes than for electrons. However, at room temperature, the effective activation energy was very low (˜0.1 eV) for both holes and electrons, which indicates that the mobility will be relatively high even below the mobility edges and suggests that charge carriers can be hot carriers above the mobility edges in the presence of a high electrical field.
NASA Astrophysics Data System (ADS)
Khan, Shahab Ullah; Adnan, Muhammad; Qamar, Anisa; Mahmood, Shahzad
2016-07-01
The propagation of linear and nonlinear electrostatic waves is investigated in magnetized dusty plasma with stationary negatively or positively charged dust, cold mobile ions and non-extensive electrons. Two normal modes are predicted in the linear regime, whose characteristics are investigated parametrically, focusing on the effect of electrons non-extensivity, dust charge polarity, concentration of dust and magnetic field strength. Using the reductive perturbation technique, a Zakharov-Kuznetsov (ZK) type equation is derived which governs the dynamics of small-amplitude solitary waves in magnetized dusty plasma. The properties of the solitary wave structures are analyzed numerically with the system parameters i.e. electrons non-extensivity, concentration of dust, polarity of dust and magnetic field strength. Following Allen and Rowlands (J. Plasma Phys. 53:63, 1995), we have shown that the pulse soliton solution of the ZK equation is unstable, and have analytically traced the dependence of the instability growth rate on the nonextensive parameter q for electrons, dust charge polarity and magnetic field strength. The results should be useful for understanding the nonlinear propagation of DIA solitary waves in laboratory and space plasmas.
Wafer-scalable high-performance CVD graphene devices and analog circuits
NASA Astrophysics Data System (ADS)
Tao, Li; Lee, Jongho; Li, Huifeng; Piner, Richard; Ruoff, Rodney; Akinwande, Deji
2013-03-01
Graphene field effect transistors (GFETs) will serve as an essential component for functional modules like amplifier and frequency doublers in analog circuits. The performance of these modules is directly related to the mobility of charge carriers in GFETs, which per this study has been greatly improved. Low-field electrostatic measurements show field mobility values up to 12k cm2/Vs at ambient conditions with our newly developed scalable CVD graphene. For both hole and electron transport, fabricated GFETs offer substantial amplification for small and large signals at quasi-static frequencies limited only by external capacitances at high-frequencies. GFETs biased at the peak transconductance point featured high small-signal gain with eventual output power compression similar to conventional transistor amplifiers. GFETs operating around the Dirac voltage afforded positive conversion gain for the first time, to our knowledge, in experimental graphene frequency doublers. This work suggests a realistic prospect for high performance linear and non-linear analog circuits based on the unique electron-hole symmetry and fast transport now accessible in wafer-scalable CVD graphene. *Support from NSF CAREER award (ECCS-1150034) and the W. M. Keck Foundation are appreicated.
Decoherence mechanisms of Landau level THz excitations in two dimensional electron gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maissen, Curdin; Scalari, Giacomo; Faist, Jérôme
2013-12-04
We report coherent THz transmission measurements on different two dimensional electron gases (2DEGs) in magnetic field. The investigated 2DEGs form in GaAs/AlGaAs heterostructures. A short (1 ps) linearly polarized THz pulse is used to excite inter Landau level transitions. The circular polarized radiation emitted by the 2DEG is then measured by electro optic sampling of the linear component orthogonal to the pump pulse polarization. Here we present measurements on two high mobility samples with μ = 5×10{sup 6}cm{sup 2}/Vs and μ = 16×10{sup 6}cm{sup 2}/Vs respectively. The decay times of the emitted radiation are 5.5 ps and 9 ps respectivelymore » at 2 K.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yu; Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania 18015; Zhang, Xiaohui
2014-11-24
We designed and constructed three dimensional (3D) zinc oxide Nanotetrapods (T-ZnOs) modified AlGaAs/GaAs high electron mobility transistors (HEMTs) for enzymatic uric acid (UA) detection. The chemical vapor deposition synthesized T-ZnOs was distributed on the gate areas of HEMTs in order to immobilize uricase and improve the sensitivity of the HEMTs. Combining with the high efficiency of enzyme immobilization by T-ZnOs and high sensitivity from HEMT, the as-constructed uricase/T-ZnOs/HEMTs biosensor showed fast response towards UA at ∼1 s, wide linear range from 0.2 nM to 0.2 mM and the low detect limit at 0.2 nM. The results point out an avenue to design electronic devicemore » as miniaturized lab-on-chip device for high sensitive and specific in biomedical and clinical diagnosis applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhardwaj, Shubhendu; Sensale-Rodriguez, Berardi; Xing, Huili Grace
A rigorous theoretical and computational model is developed for the plasma-wave propagation in high electron mobility transistor structures with electron injection from a resonant tunneling diode at the gate. We discuss the conditions in which low-loss and sustainable plasmon modes can be supported in such structures. The developed analytical model is used to derive the dispersion relation for these plasmon-modes. A non-linear full-wave-hydrodynamic numerical solver is also developed using a finite difference time domain algorithm. The developed analytical solutions are validated via the numerical solution. We also verify previous observations that were based on a simplified transmission line model. Itmore » is shown that at high levels of negative differential conductance, plasmon amplification is indeed possible. The proposed rigorous models can enable accurate design and optimization of practical resonant tunnel diode-based plasma-wave devices for terahertz sources, mixers, and detectors, by allowing a precise representation of their coupling when integrated with other electromagnetic structures.« less
Ion Velocity Measurements in a Linear Hall Thruster (Postprint)
2005-06-14
Hall Thruster in a high vacuum environment. The ionized propellant velocities were measured using laser induced fluorescence of the excited state xenon ionic transition at 834.7 nm. Ion velocities were interrogated from the channel exit plane to a distance 30 mm from it. Both axial and cross-field (along the electron Hall current direction) velocities were measured. The results presented here, combined with those of previous work, highlight the high sensitivity of electron mobility inside and outside the channel, depending on the background gas density, type of wall
Masai, Hiroshi; Terao, Jun; Seki, Shu; Nakashima, Shigeto; Kiguchi, Manabu; Okoshi, Kento; Fujihara, Tetsuaki; Tsuji, Yasushi
2014-02-05
We report, herein, the design, synthesis, and properties of new materials directed toward molecular electronics. A transition metal-containing insulated molecular wire was synthesized through the coordination polymerization of a Ru(II) porphyrin with an insulated bridging ligand of well-defined structure. The wire displayed not only high linearity and rigidity, but also high intramolecular charge mobility. Owing to the unique properties of the coordination bond, the interconversion between the monomer and polymer states was realized under a carbon monoxide atmosphere or UV irradiation. The results demonstrated a high potential of the metal-containing insulated molecular wire for applications in molecular electronics.
NASA Astrophysics Data System (ADS)
Fernandez, Eduardo; Borelli, Noah; Cappelli, Mark; Gascon, Nicolas
2003-10-01
Most current Hall thruster simulation efforts employ either 1D (axial), or 2D (axial and radial) codes. These descriptions crucially depend on the use of an ad-hoc perpendicular electron mobility. Several models for the mobility are typically invoked: classical, Bohm, empirically based, wall-induced, as well as combinations of the above. Experimentally, it is observed that fluctuations and electron transport depend on axial distance and operating parameters. Theoretically, linear stability analyses have predicted a number of unstable modes; yet the nonlinear character of the fluctuations and/or their contribution to electron transport remains poorly understood. Motivated by these observations, a 2D code in the azimuthal and axial coordinates has been written. In particular, the simulation self-consistently calculates the azimuthal disturbances resulting in fluctuating drifts, which in turn (if properly correlated with plasma density disturbances) result in fluctuation-driven electron transport. The characterization of the turbulence at various operating parameters and across the channel length is also the object of this study. A description of the hybrid code used in the simulation as well as the initial results will be presented.
NASA Astrophysics Data System (ADS)
Wang, Leizhi; Yin, Ming; Khan, Asif; Muhtadi, Sakib; Asif, Fatima; Choi, Eun Sang; Datta, Timir
2018-02-01
Charge transport in the wide-band-gap (Al ,In )N /GaN heterostructures with high carrier density approximately 2 ×1013 cm-2 is investigated over a large range of temperature (270 mK ≤T ≤280 K ) and magnetic field (0 ≤B ≤18 T ). We observe the first evidence of weak localization in the two-dimensional electron gas in this system. From the Shubnikov-de Haas (SdH) oscillations a relatively light effective mass of 0.23 me is determined. Furthermore, the linear dependence with temperature (T <20 K ) of the inelastic scattering rate (τi-1∝T ) is attributed to the phase breaking by electron-electron scattering. Also in the same temperature range the less-than unit ratio of quantum lifetime to Hall transport time (τq/τt<1 ) is taken to signify the dominance of small-angle scattering. Above 20 K, with increasing temperature scattering changes from acoustic phonon to optical phonon scattering, resulting in a rapid decrease in carrier mobility and increase in sheet resistance. Suppression of such scatterings will lead to higher mobility and a way forward to high-power and high-frequency electronics.
Unconditionally marginal stability of harmonic electron hole equilibria in current-driven plasmas
NASA Astrophysics Data System (ADS)
Schamel, Hans
2018-06-01
Two forms of the linearized eigenvalue problem with respect to linear perturbations of a privileged cnoidal electron hole as a structural nonlinear equilibrium element are established. Whereas its integral form involves integrations along the characteristics or unperturbed particle orbits, the differential form has to cope with a differential operator of infinite order. Both are hence faced with difficulties to obtain a solution. A first successful attempt is, however, made by addressing a single harmonic wave as a nonlinear equilibrium structure. By this microscopic nonlinear approach, its marginal stability against linear perturbations in both linear stability regimes, the sub- and super-critical one, is shown independent of the mobility of ions and in favor with recent observations. Responsible for vanishing damping (growth) is the microscopic distortion of the resonant distribution function. The macroscopic form of the trapping nonlinearity—the 3/2 power term of the electrostatic potential in the density—which disappears in the monochromatic harmonic wave limit is consequently necessary for the occurrence of a nonlinear plasma instability in the sub-critical regime.
N-Functionalized MXenes: ultrahigh carrier mobility and multifunctional properties.
Shao, Yangfan; Zhang, Fang; Shi, Xingqiang; Pan, Hui
2017-11-01
Two dimensional (2D) nanomaterials have demonstrated huge potential in wide applications from nanodevices to energy harvesting/storage. In this work, we propose a new class of 2D monolayers, nitrogen-functionalized MXenes (Nb 2 CN 2 and Ta 2 CN 2 ), based on density-functional theory (DFT). We find that these monolayers are direct semiconductors with near linear energy dispersions at the Γ point. M 2 CN 2 monolayers have significant small effective mass and show an ultra-high mobility of up to 10 6 cm 2 V -1 s -1 . We show that the electronic structures of the M 2 CN 2 monolayers can be easily controlled by biaxial and uniaxial strains. Importantly, the carrier mobility and direct band gap can be dramatically increased within a certain range of strain. A direct-indirect band gap transition can be triggered and the band gap can be tuned under strain. The tunable electronic properties are attributed to the structural changes and charge redistribution under stain. Our findings demonstrate that N-functionalized MXenes are promising materials for nanodevices with high speed and low power.
[Ionization in liquids: Request for 1992--1993 funding and 1991--1992 progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-31
Studies of the influence of solvent composition on electron mobility, {mu}{sub e}, which we reported for mixtures of neopentane (NP) and tetramethysilane (TMS) were extended to mixtures of TMS with isooctane (i-octane) or cyclohexane (c-hexane). Whereas our initial TMS /NP study focused on an electron transport regime in which {mu}{sub e} varied only from 67 cm{sup 2}/Vs in NP to 100 cm{sup 2}/Vs in TMS, the more recent studies extended to values of {mu}{sub e} of 7.5 and 0.22 cm{sup 2}/Vs in i-octane and c-hexane, respectively. Whereas a linear dependence of log {mu}{sub e} on solvent composition had been foundmore » in earlier studies of electron transport in mixtures, a negative deviation from this dependence was found in TMS/NP mixtures. In contrast, a positive deviation from linearity was observed in TMS/c-hexane mixtures. Despite the markedly different dependences of {mu}{sub e} on solvent composition for these mixtures, the observed dependences are consistent with the percolation model of electron transport that Schiller has developed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, H., E-mail: tanaka@semicon.kuee.kyoto-u.ac.jp; Mori, S.; Morioka, N.
2014-12-21
We calculated the phonon-limited hole mobility in rectangular cross-sectional [001], [110], [111], and [112]-oriented germanium nanowires, and the hole transport characteristics were investigated. A tight-binding approximation was used for holes, and phonons were described by a valence force field model. Then, scattering probability of holes by phonons was calculated taking account of hole-phonon interaction atomistically, and the linearized Boltzmann's transport equation was solved to calculate the hole mobility at low longitudinal field. The dependence of the hole mobility on nanowire geometry was analyzed in terms of the valence band structure of germanium nanowires, and it was found that the dependencemore » was qualitatively reproduced by considering an average effective mass and the density of states of holes. The calculation revealed that [110] germanium nanowires with large height along the [001] direction show high hole mobility. Germanium nanowires with this geometry are also expected to exhibit high electron mobility in our previous work, and thus they are promising for complementary metal-oxide-semiconductor (CMOS) applications.« less
Sokolov, Anatoliy N.; Atahan-Evrenk, Sule; Mondal, Rajib; Akkerman, Hylke B.; Sánchez-Carrera, Roel S.; Granados-Focil, Sergio; Schrier, Joshua; Mannsfeld, Stefan C.B.; Zoombelt, Arjan P.; Bao, Zhenan; Aspuru-Guzik, Alán
2011-01-01
For organic semiconductors to find ubiquitous electronics applications, the development of new materials with high mobility and air stability is critical. Despite the versatility of carbon, exploratory chemical synthesis in the vast chemical space can be hindered by synthetic and characterization difficulties. Here we show that in silico screening of novel derivatives of the dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene semiconductor with high hole mobility and air stability can lead to the discovery of a new high-performance semiconductor. On the basis of estimates from the Marcus theory of charge transfer rates, we identified a novel compound expected to demonstrate a theoretic twofold improvement in mobility over the parent molecule. Synthetic and electrical characterization of the compound is reported with single-crystal field-effect transistors, showing a remarkable saturation and linear mobility of 12.3 and 16 cm2 V−1 s−1, respectively. This is one of the very few organic semiconductors with mobility greater than 10 cm2 V−1 s−1 reported to date. PMID:21847111
The use of charge extraction by linearly increasing voltage in polar organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Züfle, Simon; Altazin, Stéphane; Hofmann, Alexander; Jäger, Lars; Neukom, Martin T.; Schmidt, Tobias D.; Brütting, Wolfgang; Ruhstaller, Beat
2017-05-01
We demonstrate the application of the CELIV (charge carrier extraction by linearly increasing voltage) technique to bilayer organic light-emitting devices (OLEDs) in order to selectively determine the hole mobility in N,N0-bis(1-naphthyl)-N,N0-diphenyl-1,10-biphenyl-4,40-diamine (α-NPD). In the CELIV technique, mobile charges in the active layer are extracted by applying a negative voltage ramp, leading to a peak superimposed to the measured displacement current whose temporal position is related to the charge carrier mobility. In fully operating devices, however, bipolar carrier transport and recombination complicate the analysis of CELIV transients as well as the assignment of the extracted mobility value to one charge carrier species. This has motivated a new approach of fabricating dedicated metal-insulator-semiconductor (MIS) devices, where the extraction current contains signatures of only one charge carrier type. In this work, we show that the MIS-CELIV concept can be employed in bilayer polar OLEDs as well, which are easy to fabricate using most common electron transport layers (ETLs), like Tris-(8-hydroxyquinoline)aluminum (Alq3). Due to the macroscopic polarization of the ETL, holes are already injected into the hole transport layer below the built-in voltage and accumulate at the internal interface with the ETL. This way, by a standard CELIV experiment only holes will be extracted, allowing us to determine their mobility. The approach can be established as a powerful way of selectively measuring charge mobilities in new materials in a standard device configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Tianyu; Mani, R. G.; Wegscheider, W.
2014-11-10
We examine the role of the microwave power in the linear polarization angle dependence of the microwave radiation induced magnetoresistance oscillations observed in the high mobility GaAs/AlGaAs two dimensional electron system. The diagonal resistance R{sub xx} was measured at the fixed magnetic fields of the photo-excited oscillatory extrema of R{sub xx} as a function of both the microwave power, P, and the linear polarization angle, θ. Color contour plots of such measurements demonstrate the evolution of the lineshape of R{sub xx} versus θ with increasing microwave power. We report that the non-linear power dependence of the amplitude of the radiation-inducedmore » magnetoresistance oscillations distorts the cosine-square relation between R{sub xx} and θ at high power.« less
Electron Mobility in γ -Al2O3/SrTiO3
NASA Astrophysics Data System (ADS)
Christensen, D. V.; Frenkel, Y.; Schütz, P.; Trier, F.; Wissberg, S.; Claessen, R.; Kalisky, B.; Smith, A.; Chen, Y. Z.; Pryds, N.
2018-05-01
One of the key issues in engineering oxide interfaces for electronic devices is achieving high electron mobility. SrTiO3 -based interfaces with high electron mobility have gained a lot of interest due to the possibility of combining quantum phenomena with the many functionalities exhibited by SrTiO3 . To date, the highest electron mobility (140 000 cm2/V s at 2 K) is obtained by interfacing perovskite SrTiO3 with spinel γ -Al2O3 . The origin of the high mobility, however, remains poorly understood. Here, we investigate the scattering mechanisms limiting the mobility in γ -Al2O3/SrTiO3 at temperatures between 2 and 300 K and over a wide range of sheet carrier densities. For T >150 K , we find that the mobility is limited by longitudinal optical phonon scattering. For large sheet carrier densities (>8 ×1013 cm-2 ), the screened electron-phonon coupling leads to room-temperature mobilities up to μ ˜12 cm2/V s . For 5 K
Muraro, Ana Paula; Souza, Rita Adriana Gomes de; Rodrigues, Paulo Rogério Melo; Ferreira, Márcia Gonçalves; Sichieri, Rosely
2017-01-01
To assess the effect of socioeconomic position (SEP) in childhood and social mobility on linear growth through adolescence in a population-based cohort. Children born in Cuiabá-MT, central-western Brazil, were evaluated during 1994 - 1999. They were first assessed during 1999 - 2000 (0 - 5 years) and again during 2009 - 2011 (10 - 17 years), and their height-for-age was evaluated during these two periods.Awealth index was used to classify the SEP of each child's family as low, medium, or high. Social mobility was categorized as upward mobility or no upward mobility. Linear mixed models were used. We evaluated 1,716 children (71.4% of baseline) after 10 years, and 60.6% of the families showed upward mobility, with a higher percentage among the lowest economic classes. A higher height-for-age was also observed among those from families with a high SEP both in childhood (low SEP= -0.35 z-score; high SEP= 0.15 z-score, p < 0.01) and adolescence (low SEP= -0.01 z-score; high SEP= 0.45 z-score, p < 0.01), whereas upward mobility did not affect their linear growth. Expressive social mobility was observed, but SEP in childhood and social mobility did not greatly influence linear growth through childhood in this central-western Brazilian cohort.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikheev, Evgeny; Himmetoglu, Burak; Kajdos, Adam P.
We analyze and compare the temperature dependence of the electron mobility of two- and three-dimensional electron liquids in SrTiO{sub 3}. The contributions of electron-electron scattering must be taken into account to accurately describe the mobility in both cases. For uniformly doped, three-dimensional electron liquids, the room temperature mobility crosses over from longitudinal optical (LO) phonon-scattering-limited to electron-electron-scattering-limited as a function of carrier density. In high-density, two-dimensional electron liquids, LO phonon scattering is completely screened and the mobility is dominated by electron-electron scattering up to room temperature. The possible origins of the observed behavior and the consequences for approaches to improvemore » the mobility are discussed.« less
Quantum state transfer in double-quantum-well devices
NASA Technical Reports Server (NTRS)
Jakumeit, Jurgen; Tutt, Marcel; Pavlidis, Dimitris
1994-01-01
A Monte Carlo simulation of double-quantum-well (DQW) devices is presented in view of analyzing the quantum state transfer (QST) effect. Different structures, based on the AlGaAs/GaAs system, were simulated at 77 and 300 K and optimized in terms of electron transfer and device speed. The analysis revealed the dominant role of the impurity scattering for the QST. Different approaches were used for the optimization of QST devices and basic physical limitations were found in the electron transfer between the QWs. The maximum transfer of electrons from a high to a low mobility well was at best 20%. Negative differential resistance is hampered by the almost linear rather than threshold dependent relation of electron transfer on electric field. By optimizing the doping profile the operation frequency limit could be extended to 260 GHz.
Diffusive charge transport in graphene
NASA Astrophysics Data System (ADS)
Chen, Jianhao
The physical mechanisms limiting the mobility of graphene on SiO 2 are studied and printed graphene devices on a flexible substrate are realized. Intentional addition of charged scattering impurities is used to study the effects of charged impurities. Atomic-scale defects are created by noble-gas ions irradiation to study the effect of unitary scatterers. The results show that charged impurities and atomic-scale defects both lead to conductivity linear in density in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates. While charged impurities cause intravalley scattering and induce a small change in the minimum conductivity, defects in graphene scatter electrons between the valleys and suppress the minimum conductivity below the metallic limit. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a small resistivity which is linear in temperature and independent of carrier density; at higher temperatures, polar optical phonons of the SiO2 substrate give rise to an activated, carrier density-dependent resistivity. Graphene is also made into high mobility transparent and flexible field effect device via the transfer-printing method. Together the results paint a complete picture of charge carrier transport in graphene on SiO2 in the diffusive regime, and show the promise of graphene as a novel electronic material that have potential applications not only on conventional inorganic substrates, but also on flexible substrates.
NASA Astrophysics Data System (ADS)
Soligo, Riccardo
In this work, the insight provided by our sophisticated Full Band Monte Carlo simulator is used to analyze the behavior of state-of-art devices like GaN High Electron Mobility Transistors and Hot Electron Transistors. Chapter 1 is dedicated to the description of the simulation tool used to obtain the results shown in this work. Moreover, a separate section is dedicated the set up of a procedure to validate to the tunneling algorithm recently implemented in the simulator. Chapter 2 introduces High Electron Mobility Transistors (HEMTs), state-of-art devices characterized by highly non linear transport phenomena that require the use of advanced simulation methods. The techniques for device modeling are described applied to a recent GaN-HEMT, and they are validated with experimental measurements. The main techniques characterization techniques are also described, including the original contribution provided by this work. Chapter 3 focuses on a popular technique to enhance HEMTs performance: the down-scaling of the device dimensions. In particular, this chapter is dedicated to lateral scaling and the calculation of a limiting cutoff frequency for a device of vanishing length. Finally, Chapter 4 and Chapter 5 describe the modeling of Hot Electron Transistors (HETs). The simulation approach is validated by matching the current characteristics with the experimental one before variations of the layouts are proposed to increase the current gain to values suitable for amplification. The frequency response of these layouts is calculated, and modeled by a small signal circuit. For this purpose, a method to directly calculate the capacitance is developed which provides a graphical picture of the capacitative phenomena that limit the frequency response in devices. In Chapter 5 the properties of the hot electrons are investigated for different injection energies, which are obtained by changing the layout of the emitter barrier. Moreover, the large signal characterization of the HET is shown for different layouts, where the collector barrier was scaled.
NASA Astrophysics Data System (ADS)
Noh, Taegeun; Tak, Yong Suk; Nam, Jaedo; Jeon, Jaewook; Kim, Hunmo; Choi, Hyoukryeol; Bae, Sang Sik
2001-07-01
Behaviors of nafion-based actuators are significantly affected by interfacial area between electrode and polymer electrolyte. Replication method was utilized to manufacture a large surface-area composite actuator. Etched aluminum foil was used as a template for replication using liquid nafion solution. Measurement of double layer charging and scanning electron microscopy indicated that interfacial area was greatly increased by replication method. Higher surface area induced a better bending performance of ionic polymer metal composite (IPMC). In parallel, the effect of cations on IPMC was interpreted with constant current experiment, linear sweep voltammetry and electrochemical impedance spectroscopy. For univalent cations, ion size is the most influencing parameter on ionic mobility inside membrane. However, ion-ion interaction affects an ionic mobility for divalent cations.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... INTERNATIONAL TRADE COMMISSION [DN 2885] Certain Consumer Electronics, Including Mobile Phones and.... International Trade Commission has received a complaint entitled Certain Consumer Electronics, Including Mobile... electronics, including mobile phones and tablets. The complaint names as respondents ASUSTeK Computer, Inc. of...
NASA Astrophysics Data System (ADS)
Liu, Yan; Lin, Zhaojun; Zhao, Jingtao; Yang, Ming; Shi, Wenjing; Lv, Yuanjie; Feng, Zhihong
2016-04-01
The electron mobility for the prepared AlGaN/AlN/GaN heterostructure field-effect transistor (HFET) with the ratio of the gate length to the drain-to-source distance being less than 1/2 has been studied by comparing the measured electron mobility with the theoretical value. The measured electron mobility is derived from the measured capacitance-voltage (C-V) and current-voltage (I-V) characteristics, and the theoretical mobility is determined by using Matthiessen's law, involving six kinds of important scattering mechanisms. For the prepared device at room temperature, longitudinal optical phonon scattering (LO scattering) was found to have a remarkable effect on the value of the electron mobility, and polarization Coulomb field scattering (PCF scattering ) was found to be important to the changing trend of the electron mobility versus the two-dimensional electron gas (2DEG) density.
Electron transport and light-harvesting switches in cyanobacteria
Mullineaux, Conrad W.
2014-01-01
Cyanobacteria possess multiple mechanisms for regulating the pathways of photosynthetic and respiratory electron transport. Electron transport may be regulated indirectly by controlling the transfer of excitation energy from the light-harvesting complexes, or it may be more directly regulated by controlling the stoichiometry, localization, and interactions of photosynthetic and respiratory electron transport complexes. Regulation of the extent of linear vs. cyclic electron transport is particularly important for controlling the redox balance of the cell. This review discusses what is known of the regulatory mechanisms and the timescales on which they occur, with particular regard to the structural reorganization needed and the constraints imposed by the limited mobility of membrane-integral proteins in the crowded thylakoid membrane. Switching mechanisms requiring substantial movement of integral thylakoid membrane proteins occur on slower timescales than those that require the movement only of cytoplasmic or extrinsic membrane proteins. This difference is probably due to the restricted diffusion of membrane-integral proteins. Multiple switching mechanisms may be needed to regulate electron transport on different timescales. PMID:24478787
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-29
..., Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers, and Components Thereof... certain electronic devices, including mobile phones, mobile tablets, portable music players, and computers... mobile phones, mobile tablets, portable music players, and computers, and components thereof that...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Han-Chun; Ye, Tianyu; Mani, R. G.
2015-02-14
Linear polarization angle, θ, dependent measurements of the microwave radiation-induced oscillatory magnetoresistance, R{sub xx}, in high mobility GaAs/AlGaAs 2D electron devices have shown a θ dependence in the oscillatory amplitude along with magnetic field, frequency, and extrema-dependent phase shifts, θ{sub 0}. Here, we suggest a microwave frequency dependence of θ{sub 0}(f) using an analysis that averages over other smaller contributions, when those contributions are smaller than estimates of the experimental uncertainty.
Photographic Equipment Test System (PETS)
NASA Technical Reports Server (NTRS)
1975-01-01
The Photographic Equipment Test System is presented. The device is a mobile optical system designed for evaluating performance of various sensors in a laboratory, in a vacuum chamber or on a flight line. The carriage is designed to allow elevation as well as azimuth control of the direction of the light from the collimator. The pneumatic tires provide an effective vibration isolation system. A target/illumination system is mounted on a motor driven linear slide, and focusing and exposure control can be operated remotely from the small electronics control console.
Carbon nanotube transistor based high-frequency electronics
NASA Astrophysics Data System (ADS)
Schroter, Michael
At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks.
NASA Astrophysics Data System (ADS)
Ghosh, Krishnendu; Singisetti, Uttam
2017-11-01
This work reports an investigation of electron transport in monoclinic \\beta-Ga2O3 based on a combination of density functional perturbation theory based lattice dynamical computations, coupling calculation of lattice modes with collective plasmon oscillations and Boltzmann theory based transport calculations. The strong entanglement of the plasmon with the different longitudinal optical (LO) modes make the role LO-plasmon coupling crucial for transport. The electron density dependence of the electron mobility in \\beta-Ga2O3 is studied in bulk material form and also in the form of two-dimensional electron gas. Under high electron density a bulk mobility of 182 cm2/ V.s is predicted while in 2DEG form the corresponding mobility is about 418 cm2/V.s when remote impurities are present at the interface and improves further as the remote impurity center moves away from the interface. The trend of the electron mobility shows promise for realizing high electron mobility in dopant isolated electron channels. The experimentally observed small anisotropy in mobility is traced through a transient Monte Carlo simulation. It is found that the anisotropy of the IR active phonon modes is responsible for giving rise to the anisotropy in low-field electron mobility.
Reinvestigating the surface and bulk electronic properties of Cd3As2
NASA Astrophysics Data System (ADS)
Roth, S.; Lee, H.; Sterzi, A.; Zacchigna, M.; Politano, A.; Sankar, R.; Chou, F. C.; Di Santo, G.; Petaccia, L.; Yazyev, O. V.; Crepaldi, A.
2018-04-01
Cd3As2 is widely considered among the few materials realizing the three-dimensional (3D) Dirac semimetal phase. Linearly dispersing states, responsible for the ultrahigh charge mobility, have been reported by several angle-resolved photoelectron spectroscopy (ARPES) investigations. However, in spite of the general agreement between these studies, some details are at odds. From scanning tunneling microscopy and optical experiments under magnetic field, a puzzling scenario emerges in which multiple states show linear dispersion at different energy scales. Here, we solve this apparent controversy by reinvestigating the electronic properties of the (112) surface of Cd3As2 by combining ARPES and theoretical calculations. We disentangle the presence of massive and massless metallic bulk and surface states, characterized by different symmetries. Our systematic experimental and theoretical study clarifies the complex band dispersion of Cd3As2 by extending the simplistic 3D Dirac semimetal model to account for multiple bulk and surface states crossing the Fermi level, and thus contributing to the unique material transport properties.
NASA Astrophysics Data System (ADS)
Vedula, Ravi Pramod; Mehrotra, Saumitra; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard; Strachan, Alejandro
2015-05-01
We use first principles simulations to engineer Ge nanofins for maximum hole mobility by controlling strain tri-axially through nano-patterning. Large-scale molecular dynamics predict fully relaxed, atomic structures for experimentally achievable nanofins, and orthogonal tight binding is used to obtain the corresponding electronic structure. Hole transport properties are then obtained via a linearized Boltzmann formalism. This approach explicitly accounts for free surfaces and associated strain relaxation as well as strain gradients which are critical for quantitative predictions in nanoscale structures. We show that the transverse strain relaxation resulting from the reduction in the aspect ratio of the fins leads to a significant enhancement in phonon limited hole mobility (7× over unstrained, bulk Ge, and 3.5× over biaxially strained Ge). Maximum enhancement is achieved by reducing the width to be approximately 1.5 times the height and further reduction in width does not result in additional gains. These results indicate significant room for improvement over current-generation Ge nanofins, provide geometrical guidelines to design optimized geometries and insight into the physics behind the significant mobility enhancement.
Description of a Mobile-based Electronic Informed Consent System Development.
Hwang, Min-A; Kwak, In Ja
2015-01-01
Seoul National University Hospital constructed and implemented a computer-based informed consent system in December 2011. As of 2013, 30% of the informed consents were still filled out manually on paper. Patients and medical staff continuously suggested the implementation of a system for electronic informed consent using portable devices. Therefore, a mobile-based system for electronic informed consent was developed in 2013 to prevent the issues that arise with computer-based systems and paper informed consent. The rate of filling out electronic informed consent increased from 69% to 95% following the implementation of the mobile-based electronic informed consent. This construction of a mobile-based electronic informed consent system would be a good reference point for the development of a mobile-based Electronic Medical Record and for various mobile system environments in medical institutions.
V-I characteristics of X-ray conductivity and UV photoconductivity of ZnSe crystals
NASA Astrophysics Data System (ADS)
Degoda, V. Ya.; Alizadeh, M.; Kovalenko, N. O.; Pavlova, N. Yu.
2018-02-01
This article outlines the resulting experimental V-I curves for high resistance ZnSe single crystals at temperatures of 8, 85, 295, and 420 K under three intensities of X-ray and UV excitations (hvUV > Eg). This paper considers the major factors that affect the nonlinearity in the V-I curves of high resistance ZnSe. We observe superlinear dependences at low temperatures, shifting to sublinear at room temperature and above. However, at all temperatures, we have initial linear areas of V-I curves. Using the initial linear areas of these characteristics, we obtained the lifetime values of free electrons and their mobility. The comparison of the conductivity values of X-ray and UV excitations made it possible to reveal the fact that most of the electron-hole pairs recombine in the local generation area, creating a scintillation pulse, while not participating in the conductivity. When analyzing the nonlinearity of the V-I curve, two new processes were considered in the first approximation: an increase in the average thermal velocity of electrons under the action of the electric field and the selectivity of the velocity direction of the electron upon delocalization from the traps under the Poole-Frenkel effect. It is assumed that the observed nonlinearity is due to the photoinduced contact difference in potentials.
Low-frequency (1/f) noise in nanocrystal field-effect transistors.
Lai, Yuming; Li, Haipeng; Kim, David K; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R
2014-09-23
We investigate the origins and magnitude of low-frequency noise in high-mobility nanocrystal field-effect transistors and show the noise is of 1/f-type. Sub-band gap states, in particular, those introduced by nanocrystal surfaces, have a significant influence on the 1/f noise. By engineering the device geometry and passivating nanocrystal surfaces, we show that in the linear and saturation regimes the 1/f noise obeys Hooge's model of mobility fluctuations, consistent with transport of a high density of accumulated carriers in extended electronic states of the NC thin films. In the subthreshold regime, the Fermi energy moves deeper into the mobility gap and sub-band gap trap states give rise to a transition to noise dominated by carrier number fluctuations as described in McWhorter's model. CdSe nanocrystal field-effect transistors have a Hooge parameter of 3 × 10(-2), comparable to other solution-deposited, thin-film devices, promising high-performance, low-cost, low-noise integrated circuitry.
Molecular weight dependence of carrier mobility and recombination rate in neat P3HT films
Dixon, Alex G.; Visvanathan, Rayshan; Clark, Noel A.; ...
2017-11-02
The microstructure dependence of carrier mobility and recombination rates of neat films of poly 3-hexylthyophene (P3HT) were determined for a range of materials of weight-average molecular weights, Mw, ranging from 14 to 331 kDa. This variation has previously been shown to modify the polymer microstructure, with low molecular weights forming a one-phase, paraffinic-like structure comprised of chain-extended crystallites, and higher molecular weights forming a semicrystalline structure with crystalline domains being embedded in an amorphous matrix. Using Charge Extraction by Linearly Increasing Voltage (CELIV), we show here that the carrier mobility in P3HT devices peaks for materials of Mw = 48more » kDa, and that the recombination rate decreases monotonically with increasing molecular weight. This trend is likely due to the development of a semicrystalline, two-phase structure with increasing Mw, which allows for the spatial separation of holes and electrons into the amorphous and crystalline regions, respectively. This separation leads to decreased recombination.« less
Molecular weight dependence of carrier mobility and recombination rate in neat P3HT films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Alex G.; Visvanathan, Rayshan; Clark, Noel A.
The microstructure dependence of carrier mobility and recombination rates of neat films of poly 3-hexylthyophene (P3HT) were determined for a range of materials of weight-average molecular weights, Mw, ranging from 14 to 331 kDa. This variation has previously been shown to modify the polymer microstructure, with low molecular weights forming a one-phase, paraffinic-like structure comprised of chain-extended crystallites, and higher molecular weights forming a semicrystalline structure with crystalline domains being embedded in an amorphous matrix. Using Charge Extraction by Linearly Increasing Voltage (CELIV), we show here that the carrier mobility in P3HT devices peaks for materials of Mw = 48more » kDa, and that the recombination rate decreases monotonically with increasing molecular weight. This trend is likely due to the development of a semicrystalline, two-phase structure with increasing Mw, which allows for the spatial separation of holes and electrons into the amorphous and crystalline regions, respectively. This separation leads to decreased recombination.« less
78 FR 23593 - Certain Mobile Electronic Devices Incorporating Haptics; Termination of Investigation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-19
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-834] Certain Mobile Electronic Devices... this investigation may be viewed on the Commission's electronic docket (EDIS) at http://edis.usitc.gov... mobile electronic devices incorporating haptics that infringe certain claims of six Immersion patents. 77...
ERIC Educational Resources Information Center
Ntloedibe-Kuswani, Gomang Seratwa
2013-01-01
Several studies indicated the potential of electronic mobile technologies in reaching (safe learning) under-served communities and engaging (disruptive learning) disadvantaged peoples affording them learning experiences. However, the potential benefits of (electronic mobile learning) e-mobile learning have not been well understood from the…
Enhancing the electron mobility of SrTiO3 with strain
NASA Astrophysics Data System (ADS)
Jalan, Bharat; Allen, S. James; Beltz, Glenn E.; Moetakef, Pouya; Stemmer, Susanne
2011-03-01
We demonstrate, using high-mobility SrTiO3 thin films grown by molecular beam epitaxy, that stress has a pronounced influence on the electron mobility in this prototype complex oxide. Moderate strains result in more than 300% increases in the electron mobilities with values exceeding 120 000 cm2/V s and no apparent saturation in the mobility gains. The results point to a range of opportunities to tailor high-mobility oxide heterostructure properties and open up ways to explore oxide physics.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-14
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-771] In the Matter of Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers, and Components... certain mobile phones, mobile tablets, portable music players, and computers. 76 FR 24051 (Apr. 29, 2011...
Linear transmitter design for MSAT terminals
NASA Technical Reports Server (NTRS)
Wilkinson, Ross; Macleod, John; Beach, Mark; Bateman, Andrew
1990-01-01
One of the factors that will undoubtedly influence the choice of modulation format for mobile satellites, is the availability of cheap, power-efficient, linear amplifiers for mobile terminal equipment operating in the 1.5-1.7 GHz band. Transmitter linearity is not easily achieved at these frequencies, although high power (20W) class A/AB devices are becoming available. However, these components are expensive and require careful design to achieve a modest degree of linearity. In this paper an alternative approach to radio frequency (RF) power amplifier design for mobile satellite (MSAT) terminals using readily-available, power-efficient, and cheap class C devices in a feedback amplifier architecture is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguirre, Jordan C.; Arntsen, Christopher D.; Hernandez, Samuel
2013-09-23
The efficiency of bulk heterojunction (BHJ) organic photovoltaics is sensitive to the morphology of the fullerene network that transports electrons through the device. This sensitivity makes it difficult to distinguish the contrasting roles of local electron mobility (how easily electrons can transfer between neighboring fullerene molecules) and macroscopic electron mobility (how well-connected is the fullerene network on device length scales) in solar cell performance. In this work, a combination of density functional theory (DFT) calculations, flash-photolysis time-resolved microwave conductivity (TRMC) experiments, and space-charge-limit current (SCLC) mobility estimates are used to examine the roles of local and macroscopic electron mobility inmore » conjugated polymer/fullerene BHJ photovoltaics. The local mobility of different pentaaryl fullerene derivatives (so-called ‘shuttlecock’ molecules) is similar, so that differences in solar cell efficiency and SCLC mobilities result directly from the different propensities of these molecules to self-assemble on macroscopic length scales. These experiments and calculations also demonstrate that the local mobility of phenyl-C60 butyl methyl ester (PCBM) is an order of magnitude higher than that of other fullerene derivatives, explaining why PCBM has been the acceptor of choice for conjugated polymer BHJ devices even though it does not form an optimal macroscopic network. The DFT calculations indicate that PCBM's superior local mobility comes from the near-spherical nature of its molecular orbitals, which allow strong electronic coupling between adjacent molecules. In combination, DFT and TRMC techniques provide a tool for screening new fullerene derivatives for good local mobility when designing new molecules that can improve on the macroscopic electron mobility offered by PCBM.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galiev, G. B., E-mail: s_s_e_r_p@mail.ru; Klimov, E. A.; Klochkov, A. N.
The influence of the metamorphic buffer design and epitaxial growth conditions on the electrical and structural characteristics of metamorphic In{sub 0.38}Al{sub 0.62}As/In{sub 0.37}Ga{sub 0.63}As/In{sub 0.38}Al{sub 0.62}As high electron mobility transistor (MHEMT) nanoheterostructures has been investigated. The samples were grown on GaAs(100) substrates by molecular beam epitaxy. The active regions of the nanoheterostructures are identical, while the metamorphic buffer In{sub x}Al{sub 1-x}As is formed with a linear or stepwise (by {Delta}{sub x} = 0.05) increase in the indium content over depth. It is found that MHEMT nanoheterostructures with a step metamorphic buffer have fewer defects and possess higher values of two-dimensionalmore » electron gas mobility at T = 77 K. The structures of the active region and metamorphic buffer have been thoroughly studied by transmission electron microscopy. It is shown that the relaxation of metamorphic buffer in the heterostructures under consideration is accompanied by the formation of structural defects of the following types: dislocations, microtwins, stacking faults, and wurtzite phase inclusions several nanometers in size.« less
NASA Astrophysics Data System (ADS)
Hoshino, Tomoki; Mori, Nobuya
2018-04-01
InGaN has a smaller electron effective mass and is expected to be used as a channel material for high-electron-mobility transistors. However, it is an alloy semiconductor with a random distribution of atoms, which introduces additional scattering mechanisms: alloy disorder and random dipole scatterings. In this work, we calculate the electron mobility in InGaN- and GaN-channel high-electron-mobility transistors (HEMTs) while taking into account acoustic deformation potential, polar optical phonon, alloy disorder, and random dipole scatterings. For InGaN-channel HEMTs, we find that not only alloy disorder but also random dipole scattering has a strong impact on the electron mobility and it significantly decreases as the In mole fraction of the channel increases. Our calculation also shows that the channel thickness w dependence of the mobility is rather weak when w > 1 nm for In0.1Ga0.9N-channel HEMTs.
Opto-electronic characterization of third-generation solar cells.
Neukom, Martin; Züfle, Simon; Jenatsch, Sandra; Ruhstaller, Beat
2018-01-01
We present an overview of opto-electronic characterization techniques for solar cells including light-induced charge extraction by linearly increasing voltage, impedance spectroscopy, transient photovoltage, charge extraction and more. Guidelines for the interpretation of experimental results are derived based on charge drift-diffusion simulations of solar cells with common performance limitations. It is investigated how nonidealities like charge injection barriers, traps and low mobilities among others manifest themselves in each of the studied cell characterization techniques. Moreover, comprehensive parameter extraction for an organic bulk-heterojunction solar cell comprising PCDTBT:PC 70 BM is demonstrated. The simulations reproduce measured results of 9 different experimental techniques. Parameter correlation is minimized due to the combination of various techniques. Thereby a route to comprehensive and accurate parameter extraction is identified.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-01
... Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers... importation of certain electronic devices, including mobile phones, mobile tablets, portable music players...
Khokhar, Bushra; Jones, Jessica; Ronksley, Paul E; Armstrong, Marni J; Caird, Jeff; Rabi, Doreen
2014-01-01
Mobile electronic devices, such as mobile phones and PDAs, have emerged as potentially useful tools in the facilitation and maintenance of weight loss. While RCTs have demonstrated a positive impact of mobile interventions, the extent to which mobile electronic devices are more effective than usual care methods is still being debated. Electronic databases were systematically searched for RCTs evaluating the effectiveness of mobile electronic device interventions among overweight and obese adults. Weighted mean difference for change in body weight was the primary outcome. The search strategy yielded 559 citations and of the 108 potentially relevant studies, six met the criteria. A total of 632 participants were included in the six studies reporting a mean change in body weight. Using a random-effects model, the WMD for the effect of using mobile electronic devices on reduction in body weight was -1.09 kg (95% CI -2.12, -0.05). When stratified by the type of mobile electronic device used, it suggests that interventions using mobile phones were effective at achieving weight loss, WMD = -1.78 kg (95% CI -2.92, -0.63). This systematic review and meta-analysis suggests that mobile electronic devices have the potential to facilitate weight loss in overweight and obese populations, but further work is needed to understand if these interventions have sustained benefit and how we can make these mHealth tools most effective on a large scale. As the field of healthcare increasingly utilizes novel mobile technologies, the focus must not be on any one specific device but on the best possible use of these tools to measure and understand behavior. As mobile electronic devices continue to increase in popularity and the associated technology continues to advance, the potential for the use of mobile devices in global healthcare is enormous. More RCTs with larger sample sizes need to be conducted to look at the cost-effectiveness, technical and financial feasibility of adapting such mHealth interventions in a real clinical setting.
Modeling of anomalous electron mobility in Hall thrusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koo, Justin W.; Boyd, Iain D.
Accurate modeling of the anomalous electron mobility is absolutely critical for successful simulation of Hall thrusters. In this work, existing computational models for the anomalous electron mobility are used to simulate the UM/AFRL P5 Hall thruster (a 5 kW laboratory model) in a two-dimensional axisymmetric hybrid particle-in-cell Monte Carlo collision code. Comparison to experimental results indicates that, while these computational models can be tuned to reproduce the correct thrust or discharge current, it is very difficult to match all integrated performance parameters (thrust, power, discharge current, etc.) simultaneously. Furthermore, multiple configurations of these computational models can produce reasonable integrated performancemore » parameters. A semiempirical electron mobility profile is constructed from a combination of internal experimental data and modeling assumptions. This semiempirical electron mobility profile is used in the code and results in more accurate simulation of both the integrated performance parameters and the mean potential profile of the thruster. Results indicate that the anomalous electron mobility, while absolutely necessary in the near-field region, provides a substantially smaller contribution to the total electron mobility in the high Hall current region near the thruster exit plane.« less
The design of a linear L-band high power amplifier for mobile communication satellites
NASA Technical Reports Server (NTRS)
Whittaker, N.; Brassard, G.; Li, E.; Goux, P.
1990-01-01
A linear L-band solid state high power amplifier designed for the space segment of the Mobile Satellite (MSAT) mobile communication system is described. The amplifier is capable of producing 35 watts of RF power with multitone signal at an efficiency of 25 percent and with intermodulation products better than 16 dB below carrier.
Non-thermal plasma instabilities induced by deformation of the electron energy distribution function
NASA Astrophysics Data System (ADS)
Dyatko, N. A.; Kochetov, I. V.; Napartovich, A. P.
2014-08-01
Non-thermal plasma is a key component in gas lasers, microelectronics, medical applications, waste gas cleaners, ozone generators, plasma igniters, flame holders, flow control in high-speed aerodynamics and others. A specific feature of non-thermal plasma is its high sensitivity to variations in governing parameters (gas composition, pressure, pulse duration, E/N parameter). This sensitivity is due to complex deformations of the electron energy distribution function (EEDF) shape induced by variations in electric field strength, electron and ion number densities and gas excitation degree. Particular attention in this article is paid to mechanisms of instabilities based on non-linearity of plasma properties for specific conditions: gas composition, steady-state and decaying plasma produced by the electron beam, or by an electric current pulse. The following effects are analyzed: the negative differential electron conductivity; the absolute negative electron mobility; the stepwise changes of plasma properties induced by the EEDF bi-stability; thermo-current instability and the constriction of the glow discharge column in rare gases. Some of these effects were observed experimentally and some of them were theoretically predicted and still wait for experimental confirmation.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-06
... INTERNATIONAL TRADE COMMISSION [Docket No 2958] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Correction to Notice of Receipt of Complaint; Solicitation... of complaint entitled Certain Portable Electronic Communications Devices, Including Mobile Phones and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-15
... INTERNATIONAL TRADE COMMISSION [DN 2875] Certain Mobile Electronic Devices Incorporating Haptics.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received an amended complaint entitled Certain Mobile Electronic Devices...
The total position-spread tensor: Spin partition
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Khatib, Muammar, E-mail: elkhatib@irsamc.ups-tlse.fr; Evangelisti, Stefano, E-mail: stefano@irsamc.ups-tlse.fr; Leininger, Thierry, E-mail: Thierry.Leininger@irsamc.ups-tlse.fr
2015-03-07
The Total Position Spread (TPS) tensor, defined as the second moment cumulant of the position operator, is a key quantity to describe the mobility of electrons in a molecule or an extended system. In the present investigation, the partition of the TPS tensor according to spin variables is derived and discussed. It is shown that, while the spin-summed TPS gives information on charge mobility, the spin-partitioned TPS tensor becomes a powerful tool that provides information about spin fluctuations. The case of the hydrogen molecule is treated, both analytically, by using a 1s Slater-type orbital, and numerically, at Full Configuration Interactionmore » (FCI) level with a V6Z basis set. It is found that, for very large inter-nuclear distances, the partitioned tensor growths quadratically with the distance in some of the low-lying electronic states. This fact is related to the presence of entanglement in the wave function. Non-dimerized open chains described by a model Hubbard Hamiltonian and linear hydrogen chains H{sub n} (n ≥ 2), composed of equally spaced atoms, are also studied at FCI level. The hydrogen systems show the presence of marked maxima for the spin-summed TPS (corresponding to a high charge mobility) when the inter-nuclear distance is about 2 bohrs. This fact can be associated to the presence of a Mott transition occurring in this region. The spin-partitioned TPS tensor, on the other hand, has a quadratical growth at long distances, a fact that corresponds to the high spin mobility in a magnetic system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, P. D., E-mail: grigorev@itp.ac.ru; Dyugaev, A. M.; Lebedeva, E. V.
2008-02-15
The temperature dependence of electron mobility is examined. We calculate the contribution to the electron scattering rate from the surface level atoms (SLAs), proposed in [10]. This contribution is substantial at low temperatures T < 0.5, when the He vapor concentration is exponentially small. We also study the effect of depopulation of the lowest energy subband, which leads to an increase in the electron mobility at high temperature. The results explain certain long-standing discrepancies between the existing theory and experiment on electron mobility on the surface of liquid helium.
A thermodynamic model to predict electron mobility in superfluid helium.
Aitken, Frédéric; Volino, Ferdinand; Mendoza-Luna, Luis Guillermo; Haeften, Klaus von; Eloranta, Jussi
2017-06-21
Electron mobility in superfluid helium is modeled between 0.1 and 2.2 K by a van der Waals-type thermodynamic equation of state, which relates the free volume of solvated electrons to temperature, density, and phase dependent internal pressure. The model is first calibrated against known electron mobility reference data along the saturated vapor pressure line and then validated to reproduce the existing mobility literature values as a function of pressure and temperature with at least 10% accuracy. Four different electron mobility regimes are identified: (1) Landau critical velocity limit (T ≈ 0), (2) mobility limited by thermal phonons (T < 0.6 K), (3) thermal phonon and discrete roton scattering ("roton gas") limited mobility (0.6 K < T < 1.2 K), and (4) the viscous liquid ("roton continuum") limit (T > 1.2 K) where the ion solvation structure directly determines the mobility. In the latter regime, the Stokes equation can be used to estimate the hydrodynamic radius of the solvated electron based on its mobility and fluid viscosity. To account for the non-continuum behavior appearing below 1.2 K, the temperature and density dependent Millikan-Cunningham factor is introduced. The hydrodynamic electron bubble radii predicted by the present model appear generally larger than the solvation cavity interface barycenter values obtained from density functional theory (DFT) calculations. Based on the classical Stokes law, this difference can arise from the variation of viscosity and flow characteristics around the electron. The calculated DFT liquid density profiles show distinct oscillations at the vacuum/liquid interface, which increase the interface rigidity.
High efficiency and non-Richardson thermionics in three dimensional Dirac materials
NASA Astrophysics Data System (ADS)
Huang, Sunchao; Sanderson, Matthew; Zhang, Yan; Zhang, Chao
2017-10-01
Three dimensional (3D) topological materials have a linear energy dispersion and exhibit many electronic properties superior to conventional materials such as fast response times, high mobility, and chiral transport. In this work, we demonstrate that 3D Dirac materials also have advantages over conventional semiconductors and graphene in thermionic applications. The low emission current suffered in graphene due to the vanishing density of states is enhanced by an increased group velocity in 3D Dirac materials. Furthermore, the thermal energy carried by electrons in 3D Dirac materials is twice of that in conventional materials with a parabolic electron energy dispersion. As a result, 3D Dirac materials have the best thermal efficiency or coefficient of performance when compared to conventional semiconductors and graphene. The generalized Richardson-Dushman law in 3D Dirac materials is derived. The law exhibits the interplay of the reduced density of states and enhanced emission velocity.
Oshima, T; Aoyama, Y; Shimozato, T; Sawaki, M; Imai, T; Ito, Y; Obata, Y; Tabushi, K
2009-06-07
Intraoperative electron beam radiotherapy (IOERT) is a technique in which a single-fraction high dose is intraoperatively delivered to subclinical tumour cells using an electron beam after breast-conserving surgery. In IOERT, an attenuation plate consisting of a pair of metal disks is commonly used to protect the normal tissues posterior to the breast. However, the dose in front of the plate is affected by backscatter, resulting in an unpredictable delivered dose to the tumour cells. In this study, an experimental attenuation plate, termed a shielding plate, was designed using Monte Carlo simulation, which significantly diminished the electron beam without introducing any backscatter radiation. The plate's performance was verified by measurements. It was made of two layers, a first layer (source side) of polymethyl methacrylate (PMMA) and a second layer of copper, which was selected from among other metals (aluminium, copper and lead) after testing for shielding capability and the range and magnitude of backscatter. The optimal thicknesses of the PMMA (0.71 cm) and copper (0.3 cm) layers were determined by changing their thicknesses during simulations. On the basis of these results, a shielding plate was prototyped and depth doses with and without the plate were measured by radiophotoluminescence glass dosimeters using a conventional stationary linear accelerator and a mobile linear accelerator dedicated for IOERT. The trial shielding plate functioned as intended, indicating its applicability in clinical practice.
Love, John A; Feuerstein, Markus; Wolff, Christian M; Facchetti, Antonio; Neher, Dieter
2017-12-06
Hybrid lead halide perovskites are introduced as charge generation layers (CGLs) for the accurate determination of electron mobilities in thin organic semiconductors. Such hybrid perovskites have become a widely studied photovoltaic material in their own right, for their high efficiencies, ease of processing from solution, strong absorption, and efficient photogeneration of charge. Time-of-flight (ToF) measurements on bilayer samples consisting of the perovskite CGL and an organic semiconductor layer of different thickness are shown to be determined by the carrier motion through the organic material, consistent with the much higher charge carrier mobility in the perovskite. Together with the efficient photon-to-electron conversion in the perovskite, this high mobility imbalance enables electron-only mobility measurement on relatively thin application-relevant organic films, which would not be possible with traditional ToF measurements. This architecture enables electron-selective mobility measurements in single components as well as bulk-heterojunction films as demonstrated in the prototypical polymer/fullerene blends. To further demonstrate the potential of this approach, electron mobilities were measured as a function of electric field and temperature in an only 127 nm thick layer of a prototypical electron-transporting perylene diimide-based polymer, and found to be consistent with an exponential trap distribution of ca. 60 meV. Our study furthermore highlights the importance of high mobility charge transporting layers when designing perovskite solar cells.
NASA Technical Reports Server (NTRS)
Mueller, Carl; Alterovitz, Samuel; Croke, Edward; Ponchak, George
2004-01-01
System-on-a-chip (SOC) processes are under intense development for high-speed, high frequency transceiver circuitry. As frequencies, data rates, and circuit complexity increases, the need for substrates that enable high-speed analog operation, low-power digital circuitry, and excellent isolation between devices becomes increasingly critical. SiGe/Si modulation doped field effect transistors (MODFETs) with high carrier mobilities are currently under development to meet the active RF device needs. However, as the substrate normally used is Si, the low-to-modest substrate resistivity causes large losses in the passive elements required for a complete high frequency circuit. These losses are projected to become increasingly troublesome as device frequencies progress to the Ku-band (12 - 18 GHz) and beyond. Sapphire is an excellent substrate for high frequency SOC designs because it supports excellent both active and passive RF device performance, as well as low-power digital operations. We are developing high electron mobility SiGe/Si transistor structures on r-plane sapphire, using either in-situ grown n-MODFET structures or ion-implanted high electron mobility transistor (HEMT) structures. Advantages of the MODFET structures include high electron mobilities at all temperatures (relative to ion-implanted HEMT structures), with mobility continuously improving to cryogenic temperatures. We have measured electron mobilities over 1,200 and 13,000 sq cm/V-sec at room temperature and 0.25 K, respectively in MODFET structures. The electron carrier densities were 1.6 and 1.33 x 10(exp 12)/sq cm at room and liquid helium temperature, respectively, denoting excellent carrier confinement. Using this technique, we have observed electron mobilities as high as 900 sq cm/V-sec at room temperature at a carrier density of 1.3 x 10(exp 12)/sq cm. The temperature dependence of mobility for both the MODFET and HEMT structures provides insights into the mechanisms that allow for enhanced electron mobility as well as the processes that limit mobility, and will be presented.
Internal Electric Field Modulation in Molecular Electronic Devices by Atmosphere and Mobile Ions.
Chandra Mondal, Prakash; Tefashe, Ushula M; McCreery, Richard L
2018-06-13
The internal potential profile and electric field are major factors controlling the electronic behavior of molecular electronic junctions consisting of ∼1-10 nm thick layers of molecules oriented in parallel between conducting contacts. The potential profile is assumed linear in the simplest cases, but can be affected by internal dipoles, charge polarization, and electronic coupling between the contacts and the molecular layer. Electrochemical processes in solutions or the solid state are entirely dependent on modification of the electric field by electrolyte ions, which screen the electrodes and form the ionic double layers that are fundamental to electrode kinetics and widespread applications. The current report investigates the effects of mobile ions on nominally solid-state molecular junctions containing aromatic molecules covalently bonded between flat, conducting carbon surfaces, focusing on changes in device conductance when ions are introduced into an otherwise conventional junction design. Small changes in conductance were observed when a polar molecule, acetonitrile, was present in the junction, and a large decrease of conductance was observed when both acetonitrile (ACN) and lithium ions (Li + ) were present. Transient experiments revealed that conductance changes occur on a microsecond-millisecond time scale, and are accompanied by significant alteration of device impedance and temperature dependence. A single molecular junction containing lithium benzoate could be reversibly transformed from symmetric current-voltage behavior to a rectifier by repetitive bias scans. The results are consistent with field-induced reorientation of acetonitrile molecules and Li + ion motion, which screen the electrodes and modify the internal potential profile and provide a potentially useful means to dynamically alter junction electronic behavior.
Electron mobility limited by optical phonons in wurtzite InGaN/GaN core-shell nanowires
NASA Astrophysics Data System (ADS)
Liu, W. H.; Qu, Y.; Ban, S. L.
2017-09-01
Based on the force-balance and energy-balance equations, the optical phonon-limited electron mobility in InxGa1-xN/GaN core-shell nanowires (CSNWs) is discussed. It is found that the electrons tend to distribute in the core of the CSNWs due to the strong quantum confinement. Thus, the scattering from first kind of the quasi-confined optical (CO) phonons is more important than that from the interface (IF) and propagating (PR) optical phonons. Ternary mixed crystal and size effects on the electron mobility are also investigated. The results show that the PR phonons exist while the IF phonons disappear when the indium composition x < 0.047, and vice versa. Accordingly, the total electron mobility μ first increases and then decreases with indium composition x, and reaches a peak value of approximately 3700 cm2/(V.s) when x = 0.047. The results also show that the mobility μ increases as increasing the core radius of CSNWs due to the weakened interaction between the electrons and CO phonons. The total electron mobility limited by the optical phonons exhibits an obvious enhancement as decreasing temperature or increasing line electron density. Our theoretical results are expected to be helpful to develop electronic devices based on CSNWs.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-16
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-834] Certain Mobile Electronic Devices.... 1337 in the importation, sale for importation, and sale within the United States after importation of certain mobile electronic devices incorporating haptics, by reason of the infringement of claims of six...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-08
... Phones and Tablet Computers, and Components Thereof; Notice of Receipt of Complaint; Solicitation of... entitled Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... the United States after importation of certain electronic devices, including mobile phones and tablet...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-701] In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and Computers; Notice of Commission... States after importation of certain electronic devices, including mobile phones, portable music players...
NASA Astrophysics Data System (ADS)
Chen, Zhuoying; Bird, Matthew; Lemaur, Vincent; Radtke, Guillaume; Cornil, Jérôme; Heeney, Martin; McCulloch, Iain; Sirringhaus, Henning
2011-09-01
Understanding the mechanisms limiting ambipolar transport in conjugated polymer field-effect transistors (FETs) is of both fundamental and practical interest. Here, we present a systematic study comparing hole and electron charge transport in an ambipolar conjugated polymer, semicrystalline poly(3,3''-di-n-decylterselenophene) (PSSS). Starting from a detailed analysis of the device characteristics and temperature/charge-density dependence of the mobility, we interpret the difference between hole and electron transport through both the Vissenberg-Matters and the mobility-edge model. To obtain microscopic insight into the quantum mechanical wave function of the charges at a molecular level, we combine charge modulation spectroscopy (CMS) measuring the charge-induced absorption signatures from positive and negative polarons in these ambipolar FETs with corresponding density functional theory (DFT) calculations. We observe a significantly higher switch-on voltage for electrons than for holes due to deep electron trap states, but also a higher activation energy of the mobility for mobile electrons. The CMS spectra reveal that the electrons that remain mobile and contribute to the FET current have a wave function that is more localized onto a single polymer chain than that of holes, which is extended over several polymer chains. We interpret this as evidence that the transport properties of the mobile electrons in PSSS are still affected by the presence of deep electron traps. The more localized electron state could be due to the mobile electrons interacting with shallow trap states in the vicinity of a chemical, potentially water-related, impurity that might precede the capture of the electron into a deeply trapped state.
Rational In Silico Design of an Organic Semiconductor with Improved Electron Mobility.
Friederich, Pascal; Gómez, Verónica; Sprau, Christian; Meded, Velimir; Strunk, Timo; Jenne, Michael; Magri, Andrea; Symalla, Franz; Colsmann, Alexander; Ruben, Mario; Wenzel, Wolfgang
2017-11-01
Organic semiconductors find a wide range of applications, such as in organic light emitting diodes, organic solar cells, and organic field effect transistors. One of their most striking disadvantages in comparison to crystalline inorganic semiconductors is their low charge-carrier mobility, which manifests itself in major device constraints such as limited photoactive layer thicknesses. Trial-and-error attempts to increase charge-carrier mobility are impeded by the complex interplay of the molecular and electronic structure of the material with its morphology. Here, the viability of a multiscale simulation approach to rationally design materials with improved electron mobility is demonstrated. Starting from one of the most widely used electron conducting materials (Alq 3 ), novel organic semiconductors with tailored electronic properties are designed for which an improvement of the electron mobility by three orders of magnitude is predicted and experimentally confirmed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
From hopping to ballistic transport in graphene-based electronic devices
NASA Astrophysics Data System (ADS)
Taychatanapat, Thiti
This thesis describes electronic transport experiments in graphene from the hopping to the ballistic regime. The first experiment studies dual-gated bilayer graphene devices. By applying an electric field with these dual gates, we can open a band gap in bilayer graphene and observe an increase in resistance of over six orders of magnitude as well as a strongly non-linear behavior in the transport characteristics. A temperature-dependence study of resistance at large electric field at the charge neutrality point shows the change in the transport mechanism from a hopping dominated regime at low temperature to a diffusive regime at high temperature. The second experiment examines electronic properties of Bernal-stacked trilayer graphene. Due to the low mobility of trilayer graphene on SiO 2substrates, we employ hexagonal boron nitride as a local substrate to improve its mobility. This led us to observe a quantum Hall effect with multiple Landau level crossings, proving the coexistence of massless and massive Dirac fermions in Bernal-stacked trilayer graphene. From the position of these crossing points in magnetic field and electron density, we can deduce the band parameters used to model its band structure. At high magnetic field, we observe broken symmetry states via Landau level splittings as well as crossings among these broken-symmetry states. In the third experiment, we investigate transverse magnetic focusing (TMF) in mono-, bi-, and tri-layer graphene. The ability to tune density allows us to electronically modify focal points and investigate TMF continuously from hole to electron regimes. This also allows us to observe the change in band structure of trilayer graphene as a function of applied electric field. Finally, we also observe TMF at room temperature in monolayer graphene which unambiguously proves the existence of ballistic transport at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurzmann, A., E-mail: annika.kurzmann@uni-due.de; Beckel, A.; Lorke, A.
2015-02-07
We have investigated the influence of a layer of charged self-assembled quantum dots (QDs) on the mobility of a nearby two-dimensional electron gas (2DEG). Time-resolved transconductance spectroscopy was used to separate the two contributions of the change in mobility, which are: (i) The electrons in the QDs act as Coulomb scatterers for the electrons in the 2DEG. (ii) The screening ability and, hence, the mobility of the 2DEG decreases when the charge carrier density is reduced by the charged QDs, i.e., the mobility itself depends on the charge carrier concentration. Surprisingly, we find a negligible influence of the Coulomb scatteringmore » on the mobility for a 2DEG, separated by a 30 nm tunneling barrier to the layer of QDs. This means that the mobility change is completely caused by depletion, i.e., reduction of the charge carrier density in the 2DEG, which indirectly influences the mobility.« less
Electromechanical Properties and Spontaneous Response of the Current in InAsP Nanowires.
Lee, Jong Hoon; Pin, Min Wook; Choi, Su Ji; Jo, Min Hyeok; Shin, Jae Cheol; Hong, Seong-Gu; Lee, Seung Mi; Cho, Boklae; Ahn, Sang Jung; Song, Nam Woong; Yi, Seong-Hoon; Kim, Young Heon
2016-11-09
The electromechanical properties of ternary InAsP nanowires (NWs) were investigated by applying a uniaxial tensile strain in a transmission electron microscope (TEM). The electromechanical properties in our examined InAsP NWs were governed by the piezoresistive effect. We found that the electronic transport of the InAsP NWs is dominated by space-charge-limited transport, with a I ∞ V 2 relation. Upon increasing the tensile strain, the electrical current in the NWs increases linearly, and the piezoresistance gradually decreases nonlinearly. By analyzing the space-charge-limited I-V curves, we show that the electromechanical response is due to a mobility that increases with strain. Finally, we use dynamical measurements to establish an upper limit on the time scale for the electromechanical response.
Opto-electronic characterization of third-generation solar cells
Jenatsch, Sandra
2018-01-01
Abstract We present an overview of opto-electronic characterization techniques for solar cells including light-induced charge extraction by linearly increasing voltage, impedance spectroscopy, transient photovoltage, charge extraction and more. Guidelines for the interpretation of experimental results are derived based on charge drift-diffusion simulations of solar cells with common performance limitations. It is investigated how nonidealities like charge injection barriers, traps and low mobilities among others manifest themselves in each of the studied cell characterization techniques. Moreover, comprehensive parameter extraction for an organic bulk-heterojunction solar cell comprising PCDTBT:PC70BM is demonstrated. The simulations reproduce measured results of 9 different experimental techniques. Parameter correlation is minimized due to the combination of various techniques. Thereby a route to comprehensive and accurate parameter extraction is identified. PMID:29707069
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, Jin Yu; Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201; Zhu, Li Qiang, E-mail: lqzhu@nimte.ac.cn
Modulation of charge carrier density in condensed materials based on ionic/electronic interaction has attracted much attention. Here, protonic/electronic hybrid indium-zinc-oxide (IZO) transistors gated by chitosan based electrolyte were obtained. The chitosan-based electrolyte illustrates a high proton conductivity and an extremely strong proton gating behavior. The transistor illustrates good electrical performances at a low operating voltage of ∼1.0 V such as on/off ratio of ∼3 × 10{sup 7}, subthreshold swing of ∼65 mV/dec, threshold voltage of ∼0.3 V, and mobility of ∼7 cm{sup 2}/V s. Good positive gate bias stress stabilities are obtained. Furthermore, a low voltage driven resistor-loaded inverter was built by using an IZO transistor inmore » series with a load resistor, exhibiting a linear relationship between the voltage gain and the supplied voltage. The inverter is also used for decreasing noises of input signals. The protonic/electronic hybrid IZO transistors have potential applications in biochemical sensors and portable electronics.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-31
..., Including Mobile Phones and Components Thereof Notice of Receipt of Complaint; Solicitation of Comments... Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof, DN... mobile phones and components thereof. The complaint names as respondents HTC Corporation of China and HTC...
NASA Astrophysics Data System (ADS)
Phuc, Huynh V.; Hieu, Nguyen N.; Hoi, Bui D.; Hieu, Nguyen V.; Thu, Tran V.; Hung, Nguyen M.; Ilyasov, Victor V.; Poklonski, Nikolai A.; Nguyen, Chuong V.
2018-01-01
In this paper, we studied the electronic properties, effective masses, and carrier mobility of monolayer MoS_2 using density functional theory calculations. The carrier mobility was considered by means of ab initio calculations using the Boltzmann transport equation coupled with deformation potential theory. The effects of mechanical biaxial strain on the electronic properties, effective mass, and carrier mobility of monolayer MoS_2 were also investigated. It is demonstrated that the electronic properties, such as band structure and density of state, of monolayer MoS_2 are very sensitive to biaxial strain, leading to a direct-indirect transition in semiconductor monolayer MoS_2. Moreover, we found that the carrier mobility and effective mass can be enhanced significantly by biaxial strain and by lowering temperature. The electron mobility increases over 12 times with a biaxial strain of 10%, while the carrier mobility gradually decreases with increasing temperature. These results are very useful for the future nanotechnology, and they make monolayer MoS_2 a promising candidate for application in nanoelectronic and optoelectronic devices.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-10
...-0168] Policy on the Retention of Supporting Documents and the Use of Electronic Mobile Communication/Tracking Technology in Assessing Motor Carriers' and Commercial Motor Vehicle Drivers' Compliance With the... changes regarding the retention of supporting documents and the use of electronic mobile communication...
Baca, Albert G.; Klein, Brianna A.; Allerman, Andrew A.; ...
2017-12-09
AlGaN-channel high electron mobility transistors (HEMTs) are among a class of ultra wide-bandgap transistors that are promising candidates for RF and power applications. Long-channel Al xGa 1-xN HEMTs with x = 0.7 in the channel have been built and evaluated across the -50°C to +200°C temperature range. These devices achieved room temperature drain current as high as 46 mA/mm and were absent of gate leakage until the gate diode forward bias turn-on at ~2.8 V, with a modest -2.2 V threshold voltage. A very large I on/I off current ratio, of 8 × 10 9 was demonstrated. A near idealmore » subthreshold slope that is just 35% higher than the theoretical limit across the temperature range was characterized. The ohmic contact characteristics were rectifying from -50°C to +50°C and became nearly linear at temperatures above 100°C. An activation energy of 0.55 eV dictates the temperature dependence of off-state leakage.« less
High Performance Complementary Circuits Based on p-SnO and n-IGZO Thin-Film Transistors.
Zhang, Jiawei; Yang, Jia; Li, Yunpeng; Wilson, Joshua; Ma, Xiaochen; Xin, Qian; Song, Aimin
2017-03-21
Oxide semiconductors are regarded as promising materials for large-area and/or flexible electronics. In this work, a ring oscillator based on n-type indium-gallium-zinc-oxide (IGZO) and p-type tin monoxide (SnO) is presented. The IGZO thin-film transistor (TFT) shows a linear mobility of 11.9 cm²/(V∙s) and a threshold voltage of 12.2 V. The SnO TFT exhibits a mobility of 0.51 cm²/(V∙s) and a threshold voltage of 20.1 V which is suitable for use with IGZO TFTs to form complementary circuits. At a supply voltage of 40 V, the complementary inverter shows a full output voltage swing and a gain of 24 with both TFTs having the same channel length/channel width ratio. The three-stage ring oscillator based on IGZO and SnO is able to operate at 2.63 kHz and the peak-to-peak oscillation amplitude reaches 36.1 V at a supply voltage of 40 V. The oxide-based complementary circuits, after further optimization of the operation voltage, may have wide applications in practical large-area flexible electronics.
High Performance Complementary Circuits Based on p-SnO and n-IGZO Thin-Film Transistors
Zhang, Jiawei; Yang, Jia; Li, Yunpeng; Wilson, Joshua; Ma, Xiaochen; Xin, Qian; Song, Aimin
2017-01-01
Oxide semiconductors are regarded as promising materials for large-area and/or flexible electronics. In this work, a ring oscillator based on n-type indium-gallium-zinc-oxide (IGZO) and p-type tin monoxide (SnO) is presented. The IGZO thin-film transistor (TFT) shows a linear mobility of 11.9 cm2/(V∙s) and a threshold voltage of 12.2 V. The SnO TFT exhibits a mobility of 0.51 cm2/(V∙s) and a threshold voltage of 20.1 V which is suitable for use with IGZO TFTs to form complementary circuits. At a supply voltage of 40 V, the complementary inverter shows a full output voltage swing and a gain of 24 with both TFTs having the same channel length/channel width ratio. The three-stage ring oscillator based on IGZO and SnO is able to operate at 2.63 kHz and the peak-to-peak oscillation amplitude reaches 36.1 V at a supply voltage of 40 V. The oxide-based complementary circuits, after further optimization of the operation voltage, may have wide applications in practical large-area flexible electronics. PMID:28772679
NASA Astrophysics Data System (ADS)
Kang, B. S.; Wang, H. T.; Ren, F.; Pearton, S. J.; Morey, T. E.; Dennis, D. M.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.
2007-12-01
ZnO nanorod-gated AlGaN /GaN high electron mobility transistors (HEMTs) are demonstrated for the detection of glucose. A ZnO nanorod array was selectively grown on the gate area using low temperature hydrothermal decomposition to immobilize glucose oxidase (GOx). The one-dimensional ZnO nanorods provide a large effective surface area with high surface-to-volume ratio and provide a favorable environment for the immobilization of GOx. The AlGaN /GaN HEMT drain-source current showed a rapid response of less than 5s when target glucose in a buffer with a pH value of 7.4 was added to the GOx immobilized on the ZnO nanorod surface. We could detect a wide range of concentrations from 0.5nMto125μM. The sensor exhibited a linear range from 0.5nMto14.5μM and an experiment limit of detection of 0.5nM. This demonstrates the possibility of using AlGaN /GaN HEMTs for noninvasive exhaled breath condensate based glucose detection of diabetic application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baca, Albert G.; Klein, Brianna A.; Allerman, Andrew A.
AlGaN-channel high electron mobility transistors (HEMTs) are among a class of ultra wide-bandgap transistors that are promising candidates for RF and power applications. Long-channel Al xGa 1-xN HEMTs with x = 0.7 in the channel have been built and evaluated across the -50°C to +200°C temperature range. These devices achieved room temperature drain current as high as 46 mA/mm and were absent of gate leakage until the gate diode forward bias turn-on at ~2.8 V, with a modest -2.2 V threshold voltage. A very large I on/I off current ratio, of 8 × 10 9 was demonstrated. A near idealmore » subthreshold slope that is just 35% higher than the theoretical limit across the temperature range was characterized. The ohmic contact characteristics were rectifying from -50°C to +50°C and became nearly linear at temperatures above 100°C. An activation energy of 0.55 eV dictates the temperature dependence of off-state leakage.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-24
... electronic components. The two components are packaged high electron mobility transistors and packaged..., 2012, FR Doc. 2012- 135). The two components are packaged high electron mobility transistors (HEMT) and...
NASA Astrophysics Data System (ADS)
Yumnam, Nivedita; Hirwa, Hippolyte; Wagner, Veit
2017-12-01
Analysis of charge extraction by linearly increasing voltage is conducted on metal-insulator-semiconductor capacitors in a structure relevant to organic solar cells. For this analysis, an analytical model is developed and is used to determine the conductivity of the active layer. Numerical simulations of the transient current were performed as a way to confirm the applicability of our analytical model and other analytical models existing in the literature. Our analysis is applied to poly(3-hexylthiophene)(P3HT) : phenyl-C61-butyric acid methyl ester (PCBM) which allows to determine the electron and hole mobility independently. A combination of experimental data analysis and numerical simulations reveals the effect of trap states on the transient current and where this contribution is crucial for data analysis.
Intrinsic phonon-limited charge carrier mobilities in thermoelectric SnSe
NASA Astrophysics Data System (ADS)
Ma, Jinlong; Chen, Yani; Li, Wu
2018-05-01
Within the past few years, tin selenide (SnSe) has attracted intense interest due to its remarkable thermoelectric potential for both n - and p -type crystals. In this work, the intrinsic phonon-limited electron/hole mobilities of SnSe are investigated using a Boltzmann transport equation based on first-principles calculated electron-phonon interactions. We find that the electrons have much larger mobilities than the holes. At room temperature, the mobilities of electrons along the a , b , and c axes are 325, 801, and 623 cm2/V s, respectively, whereas those of holes are 100, 299, and 291 cm2/V s, respectively. The anisotropy of mobilities is consistent with the reciprocal effective mass at band edges. The mode-specific analysis shows that the highest longitudinal optical phonons, rather than previously assumed acoustic phonons, dominate the scattering processes and consequently the mobilities in SnSe. The room-temperature largest mean free paths of electrons and holes in SnSe are about 21 and 13 nm, respectively.
Extremely high electron mobility in a phonon-glass semimetal
NASA Astrophysics Data System (ADS)
Ishiwata, S.; Shiomi, Y.; Lee, J. S.; Bahramy, M. S.; Suzuki, T.; Uchida, M.; Arita, R.; Taguchi, Y.; Tokura, Y.
2013-06-01
The electron mobility is one of the key parameters that characterize the charge-carrier transport properties of materials, as exemplified by the quantum Hall effect as well as high-efficiency thermoelectric and solar energy conversions. For thermoelectric applications, introduction of chemical disorder is an important strategy for reducing the phonon-mediated thermal conduction, but is usually accompanied by mobility degradation. Here, we show a multilayered semimetal β-CuAgSe overcoming such a trade-off between disorder and mobility. The polycrystalline ingot shows a giant positive magnetoresistance and Shubnikov de Haas oscillations, indicative of a high-mobility small electron pocket derived from the Ag s-electron band. Ni doping, which introduces chemical and lattice disorder, further enhances the electron mobility up to 90,000 cm2 V-1 s-1 at 10 K, leading not only to a larger magnetoresistance but also a better thermoelectric figure of merit. This Ag-based layered semimetal with a glassy lattice is a new type of promising thermoelectric material suitable for chemical engineering.
2016-03-01
Fabrication with 0.09-µm High-Electron-Mobility Transistors (HEMTs) Using 2-mil Gallium Nitride (GaN) on Silicon Carbide (SiC) by John E Penn...for Fabrication with 0.09-µm High-Electron-Mobility Transistors (HEMTs) using 2-mil Gallium Nitride (GaN) on Silicon Carbide by John E Penn...µm High-Electron-Mobility Transistors (HEMTs) using 2-mil Gallium Nitride (GaN) on Silicon Carbide 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c
Xue, Guobiao; Xin, Huolin L.; Wu, Jiake; ...
2015-10-29
Enhancing electron transport to match with the development in hole transport is critical for organic electronics in the future. As electron motion is susceptible to extrinsic factors, seeking these factors and avoiding their negative effects have become the central challenge. Here, the existence of polar solvent residues in solution-grown single-crystals of 6,13-bis(triisopropylsilylethynyl)-5,7,12,14-tetraazapentacene is identified as a factor detrimental to electron motion. Field-effect transistors of the crystals exhibit electron mobility boosted by about 60% after the residues are removed. The average electron mobility reaches up to 8.0 ± 2.2 cm 2 V –1 s –1 with a highest value of 13.3more » cm 2 V –1 s –1; these results are significantly higher than those obtained previously for the same molecule (1.0–5.0 cm 2 V –1 s –1). Furthermore, the achieved mobility is also higher than the maximum reported electron mobility for organic materials (11 cm 2 V –1 s –1). As a result, this work should greatly accelerate the advancement of organic electron-transporting materials.« less
NASA Astrophysics Data System (ADS)
Li, Haoran; Wienecke, Steven; Romanczyk, Brian; Ahmadi, Elaheh; Guidry, Matthew; Zheng, Xun; Keller, Stacia; Mishra, Umesh K.
2018-02-01
A GaN/InGaN composite channel design for vertically scaled N-polar high-electron-mobility transistor (HEMT) structures is proposed and demonstrated by metal-organic chemical vapor deposition. In a conventional N-polar HEMT structure, as the channel thickness (tch) decreases, the sheet charge density (ns) decreases, the electric field in the channel increases, and the centroid of the two-dimensional electron gas (2DEG) moves towards the back-barrier/channel interface, resulting in stronger scattering and lower electron mobility (μ). In this study, a thin InGaN layer was introduced in-between the channel and the AlGaN cap to increase the 2DEG density and reduce the electric field in the channel and therefore increase the electron mobility. The dependence of μ on the InGaN thickness (tInGaN) and the indium composition (xIn) was investigated for different channel thicknesses. With optimized tInGaN and xIn, significant improvements in electron mobility were observed. For a 6 nm channel HEMT structure, the electron mobility increased from 606 to 1141 cm2/(V.s) when the 6 nm thick pure GaN channel was replaced by the 4 nm GaN/2 nm In0.1Ga0.9N composite channel.
Theoretical prediction of high carrier mobility in single-walled black phosphorus nanotubes
NASA Astrophysics Data System (ADS)
Li, Q. F.; Wang, H. F.; Yang, C. H.; Li, Q. Q.; Rao, W. F.
2018-05-01
One-dimensional semiconductors are promising materials for high-performance nanoscale devices. Using the first-principles calculations combined with deformation potential approximation, we study the electronic structures and carrier transport properties of black phosphorus nanotubes (BPNTs). It is found that both armchair and zigzag BPNTs with diameter 13.5-18.5 Å are direct bandgap semiconductors. At a similar diameter, the carrier mobility of zigzag BPNT is one order of magnitude larger than that of armchair BPNT. For armchair BPNTs, the electron mobility is about 90.70-155.33 cm2 V-1 s-1 at room temperature, which is about three times of its hole counterpart. For zigzag BPNTs, the maximum mobility can reach 2.87 ×103 cm2 V-1 s-1. Furthermore, the electronic properties can be effectively tuned by the strain. For zigzag (0,13) nanotube, there is a direct-to-indirect band gap transition at a tensile strain of about 6%. Moreover, the electron mobility is boosted sharply by one order of magnitude by applying the compressive or tensile strain. The electron mobility increases to 14.05 ×103 cm2 V-1 s-1 at a tensile strain of 9%. Our calculations highlight the tunable electronic properties and superior carrier mobility of BPNTs that are promising for interesting applications in future nano-electronic devices.
Kop, Alan M; Swarts, Eric
2007-06-01
Routine qualitative observations of more than 850 polyethylene fixed and mobile bearings at our institution have noted minimal wear of mobile bearings. The APG mobile bearing is the most recent design variant of the LCS knee, allows multi-directional movement at the tibiofemoral articulation, and is posterior cruciate sparing. Even though it is difficult to perform, quantitative wear measurement is important in determining the likely longevity of new arthroplasty devices, and is especially relevant because of increasing numbers of new mobile bearing designs. We analyzed 10 retrieved APG and 7 retrieved RP tibial bearings (De Puy) with a mean implantation period of 33 (9-70) months. We used coordinate-measuring techniques to quantitatively determine linear penetration, and optical and scanning electron microscopy to assess wear mechanisms qualitatively. The mean total volume loss (superior and inferior articulations) of the APG and RP designs was 85 mm((3))/year and 77 mm((3))/year, respectively. Burnishing was the predominant wear mechanism, and to a lesser extent scratching, abrasion and pitting. Multidirectional scratching and abrasion were noted on the APG inserts inferiorly, whereas there was circumferential scratching on the RP inserts. Our short-term results for the APG and RP mobile bearing designs are similar and compare more than favorably with reported values for fixed-bearing designs. However, increased backside wear due to multidirectional movement may predispose the APG design to greater wear in the long term.
Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation
Friederich, Pascal; Schäfer, Bernhard; Fattori, Valeria; Sun, Xiangnan; Strunk, Timo; Meded, Velimir; Hueso, Luis E; Wenzel, Wolfgang; Ruben, Mario
2015-01-01
Summary We have studied the electronic properties and the charge carrier mobility of the organic semiconductor tris(1-oxo-1H-phenalen-9-olate)aluminium(III) (Al(Op)3) both experimentally and theoretically. We experimentally estimated the HOMO and LUMO energy levels to be −5.93 and −3.26 eV, respectively, which were close to the corresponding calculated values. Al(Op)3 was successfully evaporated onto quartz substrates and was clearly identified in the absorption spectra of both the solution and the thin film. A structured steady state fluorescence emission was detected in solution, whereas a broad, red-shifted emission was observed in the thin film. This indicates the formation of excimers in the solid state, which is crucial for the transport properties. The incorporation of Al(Op)3 into organic thin film transistors (TFTs) was performed in order to measure the charge carrier mobility. The experimental setup detected no electron mobility, while a hole mobility between 0.6 × 10−6 and 2.1 × 10−6 cm2·V−1·s−1 was measured. Theoretical simulations, on the other hand, predicted an electron mobility of 9.5 × 10−6 cm2·V−1·s−1 and a hole mobility of 1.4 × 10−4 cm2·V−1·s−1. The theoretical simulation for the hole mobility predicted an approximately one order of magnitude higher hole mobility than was observed in the experiment, which is considered to be in good agreement. The result for the electron mobility was, on the other hand, unexpected, as both the calculated electron mobility and chemical common sense (based on the capability of extended aromatic structures to efficiently accept and delocalize additional electrons) suggest more robust electron charge transport properties. This discrepancy is explained by the excimer formation, whose inclusion in the multiscale simulation workflow is expected to bring the theoretical simulation and experiment into agreement. PMID:26171287
Tyutereva, Elena V; Evkaikina, Anastasiia I; Ivanova, Alexandra N; Voitsekhovskaja, Olga V
2017-09-01
The lateral mobility of integral components of thylakoid membranes, such as plastoquinone, xanthophylls, and pigment-protein complexes, is critical for the maintenance of efficient light harvesting, high rates of linear electron transport, and successful repair of damaged photosystem II (PSII). The packaging of the photosynthetic pigment-protein complexes in the membrane depends on their size and stereometric parameters which in turn depend on the composition of the complexes. Chlorophyll b (Chlb) is an important regulator of antenna size and composition. In this study, the lateral mobility (the mobile fraction size) of pigment-protein complexes and lipids in grana membranes was analyzed in chlorina mutants of Arabidopsis and barley lacking Chlb. In the Arabidopsis ch1-3 mutant, diffusion of membrane lipids decreased as compared to wild-type plants, but the diffusion of photosynthetic complexes was not affected. In the barley chlorina f2 3613 mutant, the diffusion of pigment-protein complexes significantly decreased, while the diffusion of lipids increased, as compared to wild-type plants. We propose that the size of the mobile fractions of pigment-protein complexes in grana membranes in vivo is higher than reported previously. The data are discussed in the context of the protein composition of antennae, characteristics of the plastoquinone pool, and production of reactive oxygen species in leaves of chlorina mutants.
Woehl, Taylor J.; Prozorov, Tanya
2015-08-20
The mechanisms for nanoparticle self-assembly are often inferred from the morphology of the final nanostructures in terms of attractive and repulsive interparticle interactions. Understanding how nanoparticle building blocks are pieced together during self-assembly is a key missing component needed to unlock new strategies and mechanistic understanding of this process. Here we use real-time nanoscale kinetics derived from liquid cell transmission electron microscopy investigation of nanoparticle self-assembly to show that nanoparticle mobility dictates the pathway for self-assembly and final nanostructure morphology. We describe a new method for modulating nanoparticle diffusion in a liquid cell, which we employ to systematically investigate themore » effect of mobility on self-assembly of nanoparticles. We interpret the observed diffusion in terms of electrostatically induced surface diffusion resulting from nanoparticle hopping on the liquid cell window surface. Slow-moving nanoparticles self-assemble predominantly into linear 1D chains by sequential attachment of nanoparticles to existing chains, while highly mobile nanoparticles self-assemble into chains and branched structures by chain–chain attachments. Self-assembly kinetics are consistent with a diffusion-driven mechanism; we attribute the change in self-assembly pathway to the increased self-assembly rate of highly mobile nanoparticles. Furthermore, these results indicate that nanoparticle mobility can dictate the self-assembly mechanism and final nanostructure morphology in a manner similar to interparticle interactions.« less
NASA Astrophysics Data System (ADS)
Lin, Yow-Jon; Chang, Hsing-Cheng; Liu, Day-Shan
2015-03-01
Tuning charge transport in the bottom-contact pentacene-based organic thin-film transistors (OTFTs) using a MoO x capping layer that serves to the electron-phonon coupling modification is reported. For OTFTs with a MoO x front gate, the enhanced field-effect carrier mobility is investigated. The time domain data confirm the electron-trapping model. To understand the origin of a mobility enhancement, an analysis of the temperature-dependent Hall-effect characteristics is presented. Similarly, the Hall-effect carrier mobility was dramatically increased by capping a MoO x layer on the pentacene front surface. However, the carrier concentration is not affected. The Hall-effect carrier mobility exhibits strong temperature dependence, indicating the dominance of tunneling (hopping) at low (high) temperatures. A mobility enhancement is considered to come from the electron-phonon coupling modification that results from the contribution of long-lifetime electron trapping.
Organic High Electron Mobility Transistors Realized by 2D Electron Gas.
Zhang, Panlong; Wang, Haibo; Yan, Donghang
2017-09-01
A key breakthrough in inorganic modern electronics is the energy-band engineering that plays important role to improve device performance or develop novel functional devices. A typical application is high electron mobility transistors (HEMTs), which utilizes 2D electron gas (2DEG) as transport channel and exhibits very high electron mobility over traditional field-effect transistors (FETs). Recently, organic electronics have made very rapid progress and the band transport model is demonstrated to be more suitable for explaining carrier behavior in high-mobility crystalline organic materials. Therefore, there emerges a chance for applying energy-band engineering in organic semiconductors to tailor their optoelectronic properties. Here, the idea of energy-band engineering is introduced and a novel device configuration is constructed, i.e., using quantum well structures as active layers in organic FETs, to realize organic 2DEG. Under the control of gate voltage, electron carriers are accumulated and confined at quantized energy levels, and show efficient 2D transport. The electron mobility is up to 10 cm 2 V -1 s -1 , and the operation mechanisms of organic HEMTs are also argued. Our results demonstrate the validity of tailoring optoelectronic properties of organic semiconductors by energy-band engineering, offering a promising way for the step forward of organic electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-29
... associated with the use of cellular (mobile) phones and electronic devices while operating a commercial motor... mobile communication device that falls under or uses any commercial mobile radio service, as defined in... restricting the use of mobile telephones and other distracting electronic devices by railroad operating...
Thermal Investigation of Three-Dimensional GaN-on-SiC High Electron Mobility Transistors
2017-07-01
AFRL-RY-WP-TR-2017-0143 THERMAL INVESTIGATION OF THREE- DIMENSIONAL GaN-on-SiC HIGH ELECTRON MOBILITY TRANSISTORS Qing Hao The University of Arizona...To) July 2017 Final 08 April 2015 – 10 April 2017 4. TITLE AND SUBTITLE THERMAL INVESTIGATION OF THREE-DIMENSIONAL GaN-on-SiC HIGH ELECTRON MOBILITY...used in many DoD applications, including integrated radio frequency (RF) amplifiers and power electronics . However, inherent inefficiencies in
Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp.
Pradhan, Jatindra Kumar; Kumar, Sudhir
2012-11-01
These days, electronic waste needs to be taken into consideration due to its materials content, but due to the heterogeneity of the metals present, reprocessing of electronic waste is quite limited. The bioleaching of metals from electronic waste was investigated by using cyanogenic bacterial strains (Chromobacterium violaceum, Pseudomonas aeruginosa and Pseudomonas fluorescens). A two-step bioleaching process was followed under cyanide-forming conditions for maximum metals mobilization. Both single and mixed cultures of cyanogenic bacteria were able to mobilize metals from electronic waste with different efficiencies. In all the flasks in which high metal mobilizations were observed, the consequent biomass productions were also high. Pseudomonas aeruginosa was applied in the bioleaching process for the first time and this achieved its bioleaching ability of mobilization of metals from electronic waste. Chromobacterium violaceum as a single culture and a mixture of C. violaceum and P. aeruginosa exhibited maximum metal mobilization. Chromobacterium violaceum was capable of leaching more than 79, 69, 46, 9 and 7% of Cu, Au, Zn, Fe and Ag, respectively at an electronic waste concentration of 1% w/v. Moreover, the mixture of C. violaceum and P. aeruginosa exhibited metals leaching of more than 83, 73, 49, 13 and 8% of total Cu, Au, Zn, Fe, and Ag, respectively. Precious metals were mobilized through bioleaching which might be considered as an industrial application for recycling of electronic waste in the near future.
NASA Astrophysics Data System (ADS)
Pokatilov, E. P.; Nika, D. L.; Zincenco, N. D.; Balandin, A. A.
2007-12-01
We have shown theoretically that the electron mobility in wurtzite AlN/GaN/AlN heterostructures can be enhanced by compensating the built-in electric field with the externally applied perpendicular electric field and by introducing a shallow InxGa1-xN channel in the center of GaN potential well. It was found that two- to fivefold increase of the room temperature electron mobility can be achieved. The tuning of the electron mobility with the external electric field or InxGa1-xN channel can be useful for the design of GaN-based field-effect transistors and optoelectronic devices.
Electronic transport in smectic liquid crystals
NASA Astrophysics Data System (ADS)
Shiyanovskaya, I.; Singer, K. D.; Twieg, R. J.; Sukhomlinova, L.; Gettwert, V.
2002-04-01
Time-of-flight measurements of transient photoconductivity have revealed bipolar electronic transport in phenylnaphthalene and biphenyl liquid crystals (LC), which exhibit several smectic mesophases. In the phenylnaphthalene LC, the hole mobility is significantly higher than the electron mobility and exhibits different temperature and phase behavior. Electron mobility in the range ~10-5 cm2/V s is temperature activated and remains continuous at the phase transitions. However, hole mobility is nearly temperature independent within the smectic phases, but is very sensitive to smectic order, 10-3 cm2/V s in the smectic-B (Sm-B) and 10-4 cm2/V s in the smectic-A (Sm-A) mesophases. The different behavior for holes and electron transport is due to differing transport mechanisms. The electron mobility is apparently controlled by rate-limiting multiple shallow trapping by impurities, but hole mobility is not. To explain the lack of temperature dependence for hole mobility within the smectic phases we consider two possible polaron transport mechanisms. The first mechanism is based on the hopping of Holstein small polarons in the nonadiabatic limit. The polaron binding energy and transfer integral values, obtained from the model fit, turned out to be sensitive to the molecular order in smectic mesophases. A second possible scenario for temperature-independent hole mobility involves the competion between two different polaron mechanisms involving so-called nearly small molecular polarons and small lattice polarons. Although the extracted transfer integrals and binding energies are reasonable and consistent with the model assumptions, the limited temperature range of the various phases makes it difficult to distinguish between any of the models. In the biphenyl LCs both electron and hole mobilities exhibit temperature activated behavior in the range of 10-5 cm2/V s without sensitivity to the molecular order. The dominating transport mechanism is considered as multiple trapping in the impurity sites. Temperature-activated mobility was treated within the disorder formalism, and activation energy and width of density of states have been calculated.
Bipolar molecular composites: a new class of high-electron-mobility organic solids
NASA Astrophysics Data System (ADS)
Lin, Liang-Bih; Jenekhe, Samson A.; Borsenberger, Paul M.
1997-10-01
We describe high electron mobility in organic solids in the form of bipolar molecular composites of N,N'-bis(1,2-dimethylpropyl)-1,4,5,8-naphthalenetetracarboxylic diimide (NTDI) and tri-p-tolylaniine (TTA). The electron mobility in the NTDI/TTA composites is ~2 x 10 cm2/Vs, which is a factor of 4 to 6 higher than in pure NTDI and isone of the highest values reported for disordered organic solids. The field and temperature dependencies of the charge mobility can be described using the disorder formalism due to Bassler and co-workers, which provides an estimation of the energy width σ of the hopping site manifold. Analysis of the data gave σ=0.081 and 0.060 eV for the electron and hole mobilities in a NTDI/TTA composite of 0.5510.45 molar ratio. The energetic disorder for electron transport in the bipolar composites is substantially lower than for pure NTDI, which is 0.093 eV. The results suggest that the observed enhancement arises from a substantial reduction of energetic disorder in the electron transport manifold of the bipolar composites. The reduction of energetic disorder may be due to intermolecular charge transfer between NTDI and TTA. Such a charge transfer could stabilize the electron transport manifold by better charge delocalization, and consequently, less energetic disorder. Another possible reason for the observed enhanced electron mobility is the reduction of NTDI dimers that can act as carrier traps by the presence of TTA molecules in the bipolar composites. These results also suggest that bipolar composites represent a promising new class of high electron mobility organic solids.
17 CFR 23.202 - Daily trading records.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., instant messaging, chat rooms, electronic mail, mobile device, or other digital or electronic media. Such...; (ii) Moneys borrowed and moneys loaned; (iii) The daily calculation of the value of each outstanding... rooms, electronic mail, mobile device, or other digital or electronic media; (2) Reliable timing data...
17 CFR 23.202 - Daily trading records.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., instant messaging, chat rooms, electronic mail, mobile device, or other digital or electronic media. Such...; (ii) Moneys borrowed and moneys loaned; (iii) The daily calculation of the value of each outstanding... rooms, electronic mail, mobile device, or other digital or electronic media; (2) Reliable timing data...
Analysis of Proton Radiation Effects on Gallium Nitride High Electron Mobility Transistors
2017-03-01
energy levels on a GaN-on-silicon high electron mobility transistor was created. Based on physical results of 2.0-MeV protons irradiation to fluence...and the physical device at 2.0-MeV proton irradiation , predictions were made for 5.0, 10.0, 20.0 and 40.0-MeV proton irradiation . The model generally...nitride, high electron mobility transistor, electronics, 2 MeV proton irradiation , radiation effects 15. NUMBER OF PAGES 87 16. PRICE CODE 17. SECURITY
Theoretical Characterization of Charge Transport in Chromia (α-Cr2O3)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iordanova, Nellie I.; Dupuis, Michel; Rosso, Kevin M.
2005-08-15
Transport of conduction electrons and holes through the lattice of ?-Cr2O3 (chromia) is modeled as a valence alternation of chromium cations using ab initio electronic structure calculations and electron transfer theory. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e. the reorganization energy and the electronic coupling matrix element that enter Marcus? theory. The calculation of the electronic coupling followed the Generalized Mulliken-Hush approach and the quasi-diabatic method using the complete active space self-consistent field (CASSCF) method. Our findings indicate that hole mobility ismore » more than three orders of magnitude larger than electron mobility in both (001) and [001] lattice directions. The difference arises mainly from the larger internal reorganization energy calculated for electron transport relative to hole transport processes while electronic couplings have similar magnitudes. The much larger hole mobility vs electron mobility in ?-Cr2O3 is in contrast to similar hole and electron mobility in hematite ?-Fe2O3 previously calculated. Our calculations also indicate that the electronic coupling for all charge transfer processes of interest is smaller than for the corresponding processes in hematite. This variation is attributed to weaker interaction between the metal 3d states and the O(2p) states in chromia than in hematite, leading to smaller overlap between the charge transfer donor and acceptor wavefunctions and smaller super-exchange coupling in chromia. Nevertheless, the weaker coupling in chromia is still sufficiently large to suggest that charge transport processes in chromia are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron spin coupling within the Cr-Cr donor-acceptor pair, while the reorganization energy is essentially independent of the electron spin coupling.« less
Theoretical characterization of charge transport in chromia (α-Cr2O3)
NASA Astrophysics Data System (ADS)
Iordanova, N.; Dupuis, M.; Rosso, K. M.
2005-08-01
Transport of conduction electrons and holes through the lattice of α-Cr2O3 (chromia) is modeled as a valence alternation of chromium cations using ab initio electronic structure calculations and electron-transfer theory. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e., the reorganization energy and the electronic coupling matrix element that enter Marcus' theory. The calculation of the electronic coupling followed the generalized Mulliken-Hush approach using the complete active space self-consistent-field (CASSCF) method and the quasidiabatic method. Our findings indicate that hole mobility is more than three orders of magnitude larger than electron mobility in both (001) and [001] lattice directions. The difference arises mainly from the larger internal reorganization energy calculated for electron-transport relative to hole-transport processes while electronic couplings have similar magnitudes. The much larger hole mobility versus electron mobility in α-Cr2O3 is in contrast to similar hole and electron mobilities in hematite α-Fe2O3 previously calculated. Our calculations also indicate that the electronic coupling for all charge-transfer processes of interest is smaller than for the corresponding processes in hematite. This variation is attributed to the weaker interaction between the metal 3d states and the O(2p ) states in chromia than in hematite, leading to a smaller overlap between the charge-transfer donor and acceptor wave functions and smaller superexchange coupling in chromia. Nevertheless, the weaker coupling in chromia is still sufficiently large to suggest that charge-transport processes in chromia are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron-spin coupling within the Cr-Cr donor-acceptor pair, while the reorganization energy is essentially independent of the electron-spin coupling.
Enhancing mHealth Technology in the PCMH Environment to Activate Chronic Care Patients
2017-09-01
AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES - 14. ABSTRACT - The potential of mobile health (mHealth...biometric data, electronic coaching, electronic-based health education, secure e-mail communication between visits, and electronic collection of lifestyle...influence patient activation and self-care activities. 15. SUBJECT TERMS MHCE, Mobile Health Care Environment mHealth, mobile health MHS, Military Health
Electron Mobility and Trapping in Ferrihydrite Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltis, Jennifer A.; Schwartzberg, Adam M.; Zarzycki, Piotr
Iron is the most abundant transition metal in the Earth’s crust, and naturally occurring iron oxide minerals play a commanding role in environmental redox reactions. Although iron oxide redox reactions are well-studied, their precise mechanisms are not fully understood. Recent work has shown that these involve electron transfer pathways within the solid, suggesting that overall reaction rates could be dependent upon electron mobility. Initial ultrafast spectroscopy studies of iron oxide nanoparticles sensitized by fluorescein derivatives supported a model for electron mobility based on polaronic hopping of electron charge carriers between iron sites, but the constitutive relationships between hopping mobilities andmore » interfacial charge transfer processes has remained obscured. In this paper, we developed a coarse-grained lattice Monte Carlo model to simulate the collective mobilities and lifetimes of these photoinjected electrons with respect to recombination with adsorbed dye molecules for essential nanophase ferrihydrite and tested predictions made by the simulations using pump–probe spectroscopy. We acquired optical transient absorption spectra as a function of the particle size and under a variety of solution conditions and used cryogenic transmission electron microscopy to determine the aggregation state of the nanoparticles. We observed biphasic electron recombination kinetics over time scales that spanned from picoseconds to microseconds, the slower regime of which was fit with a stretched exponential decay function. The recombination rates were weakly affected by the nanoparticle size and aggregation state, suspension pH, and injection of multiple electrons per nanoparticle. Finally, we conclude that electron mobility indeed limits the rate of interfacial electron transfer in these systems, with the slowest processes relating to escape from deep traps, the presence of which outweighs the influence of environmental factors, such as pH-dependent surface charge.« less
Electron Mobility and Trapping in Ferrihydrite Nanoparticles
Soltis, Jennifer A.; Schwartzberg, Adam M.; Zarzycki, Piotr; ...
2017-05-18
Iron is the most abundant transition metal in the Earth’s crust, and naturally occurring iron oxide minerals play a commanding role in environmental redox reactions. Although iron oxide redox reactions are well-studied, their precise mechanisms are not fully understood. Recent work has shown that these involve electron transfer pathways within the solid, suggesting that overall reaction rates could be dependent upon electron mobility. Initial ultrafast spectroscopy studies of iron oxide nanoparticles sensitized by fluorescein derivatives supported a model for electron mobility based on polaronic hopping of electron charge carriers between iron sites, but the constitutive relationships between hopping mobilities andmore » interfacial charge transfer processes has remained obscured. In this paper, we developed a coarse-grained lattice Monte Carlo model to simulate the collective mobilities and lifetimes of these photoinjected electrons with respect to recombination with adsorbed dye molecules for essential nanophase ferrihydrite and tested predictions made by the simulations using pump–probe spectroscopy. We acquired optical transient absorption spectra as a function of the particle size and under a variety of solution conditions and used cryogenic transmission electron microscopy to determine the aggregation state of the nanoparticles. We observed biphasic electron recombination kinetics over time scales that spanned from picoseconds to microseconds, the slower regime of which was fit with a stretched exponential decay function. The recombination rates were weakly affected by the nanoparticle size and aggregation state, suspension pH, and injection of multiple electrons per nanoparticle. Finally, we conclude that electron mobility indeed limits the rate of interfacial electron transfer in these systems, with the slowest processes relating to escape from deep traps, the presence of which outweighs the influence of environmental factors, such as pH-dependent surface charge.« less
NASA Astrophysics Data System (ADS)
Raichev, O. E.
2015-06-01
The response of two-dimensional electron gas to a temperature gradient in perpendicular magnetic field under steady-state microwave irradiation is studied theoretically. The electric currents induced by the temperature gradient and the thermopower coefficients are calculated taking into account both diffusive and phonon-drag mechanisms. The modification of thermopower by microwaves takes place because of Landau quantization of the electron energy spectrum and is governed by the microscopic mechanisms which are similar to those responsible for microwave-induced oscillations of electrical resistivity. The magnetic-field dependence of microwave-induced corrections to phonon-drag thermopower is determined by mixing of phonon resonance frequencies with radiation frequency, which leads to interference oscillations. The transverse thermopower is modified by microwave irradiation much stronger than the longitudinal one. Apart from showing prominent microwave-induced oscillations as a function of magnetic field, the transverse thermopower appears to be highly sensitive to the direction of linear polarization of microwave radiation.
Flux-driven algebraic damping of m = 1 diocotron mode
NASA Astrophysics Data System (ADS)
Chim, Chi Yung; O'Neil, Thomas
2015-11-01
Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 diocotron modes. Transport due to small field asymmetries produce a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius rres, where f = mfE × B (rres) . The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This poster explains with analytic theory and simulations the new algebraic damping due to both mobility and diffusive fluxes. As electrons are swept around the ``cat's eye'' orbits of resonant wave-particle interaction, they form a dipole (m = 1) density distribution, and the electric field from this distribution produces an E × B drift of the core back to the axis, i.e. damps the m = 1 mode. Supported by National Science Foundation Grant PHY-1414570.
Mechanical flip-chip for ultra-high electron mobility devices
Bennaceur, Keyan; Schmidt, Benjamin A.; Gaucher, Samuel; ...
2015-09-22
In this study, electrostatic gates are of paramount importance for the physics of devices based on high-mobility two-dimensional electron gas (2DEG) since they allow depletion of electrons in selected areas. This field-effect gating enables the fabrication of a wide range of devices such as, for example, quantum point contacts (QPC), electron interferometers and quantum dots. To fabricate these gates, processing is usually performed on the 2DEG material, which is in many cases detrimental to its electron mobility. Here we propose an alternative process which does not require any processing of the 2DEG material other than for the ohmic contacts. Thismore » approach relies on processing a separate wafer that is then mechanically mounted on the 2DEG material in a flip-chip fashion. This technique proved successful to fabricate quantum point contacts on both GaAs/AlGaAs materials with both moderate and ultra-high electron mobility.« less
Sway Area and Velocity Correlated With MobileMat Balance Error Scoring System (BESS) Scores.
Caccese, Jaclyn B; Buckley, Thomas A; Kaminski, Thomas W
2016-08-01
The Balance Error Scoring System (BESS) is often used for sport-related concussion balance assessment. However, moderate intratester and intertester reliability may cause low initial sensitivity, suggesting that a more objective balance assessment method is needed. The MobileMat BESS was designed for objective BESS scoring, but the outcome measures must be validated with reliable balance measures. Thus, the purpose of this investigation was to compare MobileMat BESS scores to linear and nonlinear measures of balance. Eighty-eight healthy collegiate student-athletes (age: 20.0 ± 1.4 y, height: 177.7 ± 10.7 cm, mass: 74.8 ± 13.7 kg) completed the MobileMat BESS. MobileMat BESS scores were compared with 95% area, sway velocity, approximate entropy, and sample entropy. MobileMat BESS scores were significantly correlated with 95% area for single-leg (r = .332) and tandem firm (r = .474), and double-leg foam (r = .660); and with sway velocity for single-leg (r = .406) and tandem firm (r = .601), and double-leg (r = .575) and single-leg foam (r = .434). MobileMat BESS scores were not correlated with approximate or sample entropy. MobileMat BESS scores were low to moderately correlated with linear measures, suggesting the ability to identify changes in the center of mass-center of pressure relationship, but not higher-order processing associated with nonlinear measures. These results suggest that the MobileMat BESS may be a clinically-useful tool that provides objective linear balance measures.
Influence of Ce Doping on Structural and Transport Properties of Ca1- x Ce x MnO3 ( x=0.2) Manganite
NASA Astrophysics Data System (ADS)
Varshney, Dinesh; Mansuri, Irfan
2011-01-01
We have investigated structural, electric, magnetic and thermal transport properties of electron doped Ca1- x Ce x MnO3 ( x=0.2) manganites. The Cerium substitution for Ca2+causes electron doping into insulating CaMnO3 without e g electron. At room temperature the polycrystalline Ca0.8Ce0.2MnO3 is in the crystallographic orthorhombic structure, with Pnma space group symmetry from the refinement of x-ray powder diffraction patterns. The electrical resistivity data infers that Ca0.8Ce0.2MnO3 manganite is in the semiconducting phase. A smooth linear behavior of log plot values is obtained and is well fitted with adiabatic small polaron conduction model. Nearest-neighbor hopping of a small polaron leads to a mobility with a thermally activated form. The negative values of thermopower infer electron as carriers in Ca0.8Ce0.2MnO3. From susceptibility measurements the Ce doped CaMnO3 shows a transition from antiferromagnetic (AFM) to paramagnetic (PM) phase.
Carrier mobility in double-helix DNA and RNA: A quantum chemistry study with Marcus-Hush theory.
Wu, Tao; Sun, Lei; Shi, Qi; Deng, Kaiming; Deng, Weiqiao; Lu, Ruifeng
2016-12-21
Charge mobilities of six DNAs and RNAs have been computed using quantum chemistry calculation combined with the Marcus-Hush theory. Based on this simulation model, we obtained quite reasonable results when compared with the experiment, and the obtained charge mobility strongly depends on the molecular reorganization and electronic coupling. Besides, we find that hole mobilities are larger than electron mobilities no matter in DNAs or in RNAs, and the hole mobility of 2L8I can reach 1.09 × 10 -1 cm 2 V -1 s -1 which can be applied in the molecular wire. The findings also show that our theoretical model can be regarded as a promising candidate for screening DNA- and RNA-based molecular electronic devices.
Carrier mobility in double-helix DNA and RNA: A quantum chemistry study with Marcus-Hush theory
NASA Astrophysics Data System (ADS)
Wu, Tao; Sun, Lei; Shi, Qi; Deng, Kaiming; Deng, Weiqiao; Lu, Ruifeng
2016-12-01
Charge mobilities of six DNAs and RNAs have been computed using quantum chemistry calculation combined with the Marcus-Hush theory. Based on this simulation model, we obtained quite reasonable results when compared with the experiment, and the obtained charge mobility strongly depends on the molecular reorganization and electronic coupling. Besides, we find that hole mobilities are larger than electron mobilities no matter in DNAs or in RNAs, and the hole mobility of 2L8I can reach 1.09 × 10-1 cm2 V-1 s-1 which can be applied in the molecular wire. The findings also show that our theoretical model can be regarded as a promising candidate for screening DNA- and RNA-based molecular electronic devices.
Fundamental limits on the electron mobility of β-Ga2O3
NASA Astrophysics Data System (ADS)
Kang, Youngho; Krishnaswamy, Karthik; Peelaers, Hartwin; Van de Walle, Chris G.
2017-06-01
We perform first-principles calculations to investigate the electronic and vibrational spectra and the electron mobility of β-Ga2O3. We calculate the electron-phonon scattering rate of the polar optical phonon modes using the Vogl model in conjunction with Fermi’s golden rule; this enables us to fully take the anisotropic phonon spectra of the monoclinic lattice of β-Ga2O3 into account. We also examine the scattering rate due to ionized impurities or defects using a Yukawa-potential-based model. We consider scattering due to donor impurities, as well as the possibility of compensation by acceptors such as Ga vacancies. We then calculate the room-temperature mobility of β-Ga2O3 using the Boltzmann transport equation within the relaxation time approximation, for carrier densities in the range from 1017 to 1020 cm-3. We find that the electron-phonon interaction dominates the mobility for carrier densities of up to 1019 cm-3. We also find that the intrinsic anisotropy in the mobility is small; experimental findings of large anisotropy must therefore be attributed to other factors. We attribute the experimentally observed reduction of the mobility with increasing carrier density to increasing levels of compensation, which significantly affect the mobility.
Fundamental limits on the electron mobility of β-Ga2O3.
Kang, Youngho; Krishnaswamy, Karthik; Peelaers, Hartwin; Van de Walle, Chris G
2017-06-14
We perform first-principles calculations to investigate the electronic and vibrational spectra and the electron mobility of β-Ga 2 O 3 . We calculate the electron-phonon scattering rate of the polar optical phonon modes using the Vogl model in conjunction with Fermi's golden rule; this enables us to fully take the anisotropic phonon spectra of the monoclinic lattice of β-Ga 2 O 3 into account. We also examine the scattering rate due to ionized impurities or defects using a Yukawa-potential-based model. We consider scattering due to donor impurities, as well as the possibility of compensation by acceptors such as Ga vacancies. We then calculate the room-temperature mobility of β-Ga 2 O 3 using the Boltzmann transport equation within the relaxation time approximation, for carrier densities in the range from 10 17 to 10 20 cm -3 . We find that the electron-phonon interaction dominates the mobility for carrier densities of up to 10 19 cm -3 . We also find that the intrinsic anisotropy in the mobility is small; experimental findings of large anisotropy must therefore be attributed to other factors. We attribute the experimentally observed reduction of the mobility with increasing carrier density to increasing levels of compensation, which significantly affect the mobility.
Wu, Tao; Deng, Kaiming; Deng, Wei-Qiao; Lu, Ruifeng
2017-09-19
BNCX monolayer as a kind of two-dimensional material has numerous chemical atomic ratios and arrangements with different electronic structures. Via calculations on the basis of density functional theory and Boltzmann transport theory under deformation potential approximation, the band structures and carrier mobilities of BNCX (x=1,2,3,4) nanosheets are systematically investigated. The calculated results show that BNC2-1 is a material with very small band gap (0.02 eV) among all the structures while other BNCX monolayers are semiconductors with band gap ranging from 0.51 to 1.32 eV. The carrier mobility of BNCX varies considerably from tens to millions of cm2 V-1 s-1. For BNC2-1, the hole mobility and electron mobility along both x and y directions can reach 105 orders of magnitude, which is similar to the carrier mobility of graphene. Besides, all studied BNCX monolayers obviously have anisotropic hole mobility and electron mobility. In particular, for semiconductor BNC4, its hole mobility along y direction and electron mobility along x direction unexpectedly reach 106 orders of magnitude, even higher than that of graphene. Our findings suggest that BNCX layered materials with proper ratio and arrangement of carbon atoms will possess desirable charge transport properties, exhibiting potential applications in nanoelectronic devices. © 2017 IOP Publishing Ltd.
Present status of recycling waste mobile phones in China: a review.
Li, Jingying; Ge, Zhongying; Liang, Changjin; An, Ni
2017-07-01
A large number of waste mobile phones have already been generated and are being generated. Various countries around the world have all been positively exploring the way of recycling and reuse when facing such a large amount of waste mobile phones. In some countries, processing waste mobile phones has been forming a complete industrial chain, which can not only recycle waste mobile phones to reduce their negative influence on the environment but also turn waste into treasure to acquire economic benefits dramatically. However, the situation of recycling waste mobile phones in China is not going well. Waste mobile phones are not formally covered by existing regulations and policies for the waste electric and electronic equipment in China. In order to explore an appropriate system to recover waste mobile phones, the mobile phone production and the amount of waste mobile phones are introduced in this paper, and status of waste mobile phones recycling is described; then, the disposal technology of electronic waste that would be most likely to be used for processing of electronic waste in industrial applications in the near future is reviewed. Finally, rationalization proposals are put forward based on the current recovery status of waste mobile phones for the purpose of promoting the development of recycling waste mobile phones in developing countries with a special emphasis on China.
Biomedical Diagnostics Enabled by Integrated Organic and Printed Electronics.
Ahmadraji, Termeh; Gonzalez-Macia, Laura; Ritvonen, Tapio; Willert, Andreas; Ylimaula, Satu; Donaghy, David; Tuurala, Saara; Suhonen, Mika; Smart, Dave; Morrin, Aoife; Efremov, Vitaly; Baumann, Reinhard R; Raja, Munira; Kemppainen, Antti; Killard, Anthony J
2017-07-18
Organic and printed electronics integration has the potential to revolutionize many technologies, including biomedical diagnostics. This work demonstrates the successful integration of multiple printed electronic functionalities into a single device capable of the measurement of hydrogen peroxide and total cholesterol. The single-use device employed printed electrochemical sensors for hydrogen peroxide electroreduction integrated with printed electrochromic display and battery. The system was driven by a conventional electronic circuit designed to illustrate the complete integration of silicon integrated circuits via pick and place or using organic electronic circuits. The device was capable of measuring 8 μL samples of both hydrogen peroxide (0-5 mM, 2.72 × 10 -6 A·mM -1 ) and total cholesterol in serum from 0 to 9 mM (1.34 × 10 -8 A·mM -1 , r 2 = 0.99, RSD < 10%, n = 3), and the result was output on a semiquantitative linear bar display. The device could operate for 10 min via a printed battery, and display the result for many hours or days. A mobile phone "app" was also capable of reading the test result and transmitting this to a remote health care provider. Such a technology could allow improved management of conditions such as hypercholesterolemia.
NASA Astrophysics Data System (ADS)
Fujiwara, Kohei; Nishihara, Kazuki; Shiogai, Junichi; Tsukazaki, Atsushi
2017-05-01
Wide-bandgap oxides exhibiting high electron mobility hold promise for the development of useful electronic and optoelectronic devices as well as for basic research on two-dimensional electron transport phenomena. A perovskite-type tin oxide, BaSnO3, is currently one of such targets owing to distinctly high mobility at room temperature. The challenge to overcome towards the use of BaSnO3 thin films in applications is suppression of dislocation scattering, which is one of the dominant scattering origins for electron transport. Here, we show that the mobility of the BaSnO3 electric-double-layer transistor reaches 300 cm2 V-1 s-1 at 50 K. The improved mobility indicates that charged dislocation scattering is effectively screened by electrostatically doped high-density charge carriers. We also observed metallic conduction persisting down to 2 K, which is attributed to the transition to the degenerate semiconductor. The experimental verification of bulk-level mobility at the densely accumulated surface sheds more light on the importance of suppression of dislocation scattering by interface engineering in doped BaSnO3 thin films for transparent electrode applications.
A new expression of Ns versus Ef to an accurate control charge model for AlGaAs/GaAs
NASA Astrophysics Data System (ADS)
Bouneb, I.; Kerrour, F.
2016-03-01
Semi-conductor components become the privileged support of information and communication, particularly appreciation to the development of the internet. Today, MOS transistors on silicon dominate largely the semi-conductors market, however the diminution of transistors grid length is not enough to enhance the performances and respect Moore law. Particularly, for broadband telecommunications systems, where faster components are required. For this reason, alternative structures proposed like hetero structures IV-IV or III-V [1] have been.The most effective components in this area (High Electron Mobility Transistor: HEMT) on IIIV substrate. This work investigates an approach for contributing to the development of a numerical model based on physical and numerical modelling of the potential at heterostructure in AlGaAs/GaAs interface. We have developed calculation using projective methods allowed the Hamiltonian integration using Green functions in Schrodinger equation, for a rigorous resolution “self coherent” with Poisson equation. A simple analytical approach for charge-control in quantum well region of an AlGaAs/GaAs HEMT structure was presented. A charge-control equation, accounting for a variable average distance of the 2-DEG from the interface was introduced. Our approach which have aim to obtain ns-Vg characteristics is mainly based on: A new linear expression of Fermi-level variation with two-dimensional electron gas density in high electron mobility and also is mainly based on the notion of effective doping and a new expression of AEc
Electronic structure and defect properties of selenophosphate Pb2P2Se6 for γ-ray detection
NASA Astrophysics Data System (ADS)
Kontsevoi, Oleg Y.; Im, Jino; Wessels, Bruce W.; Kanatzidis, Mercouri G.; Freeman, Arthur J.
Heavy metal chalco-phosphate Pb2P2Se6 has shown a significant promise as an X-ray and γ-ray detector material. To assess the fundamental physical properties important for its performance as detector, theoretical calculations were performed for the electronic structure, band gaps, electron and hole effective masses, and static dielectric constants. The calculations were based on first-principles density functional theory (DFT) and employ the highly precise full potential linearized augmented plane wave method and the projector augmented wave method and include nonlocal exchange-correlation functionals to overcome the band gap underestimation in DFT calculations. The calculations show that Pb2P2Se6 is an indirect band gap material with the calculated band gap of 2.0 eV, has small effective masses, which could result in a good carrier mobility-lifetime product μτ , and a very high static dielectric constant, which could lead to high mobility of carriers by screening of charged scattering centers. We further investigated a large set of native defects in Pb2P2Se6 to determine the optimal growth conditions for application as γ-ray detectors. The results suggest that the prevalent intrinsic defects are selenium vacancies, followed by lead vacancies, then phosphorus vacancies and antisite defects. The effect of various chemical environments on defect properties was examined and the optimal conditions for material synthesis were suggested. Supported by DHS (Grant No. 2014-DN-077-ARI086-01).
Cottone, F; Vocca, H; Gammaitoni, L
2009-02-27
Ambient energy harvesting has been in recent years the recurring object of a number of research efforts aimed at providing an autonomous solution to the powering of small-scale electronic mobile devices. Among the different solutions, vibration energy harvesting has played a major role due to the almost universal presence of mechanical vibrations. Here we propose a new method based on the exploitation of the dynamical features of stochastic nonlinear oscillators. Such a method is shown to outperform standard linear oscillators and to overcome some of the most severe limitations of present approaches. We demonstrate the superior performances of this method by applying it to piezoelectric energy harvesting from ambient vibration.
Effects of macroscopic inhomogeneities on electron mobility in semi-insulating GaAs
NASA Technical Reports Server (NTRS)
Walukiewicz, W.; Wang, L.; Pawlowicz, L. M.; Lagowski, J.; Gatos, H. C.
1986-01-01
It is shown that defect inhomogeneities of sizes larger than the electron mean free path are responsible for the low values and anomalous temperature dependence of the electron mobility in semi-insulating (SI) GaAs. The room-temperature electron mobility values below about 6000 sq cm/V s cannot be uniquely used for the determination of the concentration of ionized defects, since the contribution from inhomogeneities usually exceeds that from scattering by ionized impurities. The effects of the macroscopically inhomogeneous distribution of residual acceptors and the major deep donor EL2 diminish at elevated temperatures between 600 and 900 K, which offers a means for identification of inhomogeneities, and furthermore explains recently reported steplike mobility versus temperature behavior in SI-GaAs.
Charge transport in metal oxides: A theoretical study of hematite α-Fe2O3
NASA Astrophysics Data System (ADS)
Iordanova, N.; Dupuis, M.; Rosso, K. M.
2005-04-01
Transport of conduction electrons and holes through the lattice of α-Fe2O3 (hematite) is modeled as a valence alternation of iron cations using ab initio electronic structure calculations and electron transfer theory. Experimental studies have shown that the conductivity along the (001) basal plane is four orders of magnitude larger than the conductivity along the [001] direction. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e., the reorganization energy and the electronic coupling matrix element that enter Marcus' theory. The calculation of the electronic coupling followed the generalized Mulliken-Hush approach using the complete active space self-consistent field method. Our findings demonstrate an approximately three orders of magnitude anisotropy in both electron and hole mobility between directions perpendicular and parallel to the c axis, in good accord with experimental data. The anisotropy arises from the slowness of both electron and hole mobilities across basal oxygen planes relative to that within iron bilayers between basal oxygen planes. Interestingly, for elementary reaction steps along either of the directions considered, there is only less than one order of magnitude difference in mobility between electrons and holes, in contrast to accepted classical arguments. Our findings indicate that the most important quantity underlying mobility differences is the electronic coupling, albeit the reorganization energy contributes as well. The large values computed for the electronic coupling suggest that charge transport reactions in hematite are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron spin coupling within the Fe-Fe donor-acceptor pair, while the reorganization energy is essentially independent of the electron spin coupling.
Theory of unidirectional magnetoresistance in magnetic heterostructures
NASA Astrophysics Data System (ADS)
Zhang, Steven S.-L.; Vignale, Giovanni
2017-09-01
We present a general drift-diffusion theory beyond linear response to explain the unidirectional magnetoresistance (UMR) observed in recent experiments in various magnetic heterostructures. In general, such nonlinear magnetoresistance may originate from the concerted action of current-induced spin accumulation and spin asymmetry in electron mobility. As a case study, we calculate the UMR in a bilayer system consisting of a heavy-metal (HM) and a ferromagnetic metal (FM), where the spin accumulation is induced via the spin Hall effect in the bulk of the HM layer. Our previous formulation [cf. PRB 94, 140411(R) (2016)] is generalized to include the interface resistance and spin memory loss, which allows us to analyze in details their effects on the UMR. We found that the UMR turns out to be independent of the spin asymmetry of the interfacial resistance, at variance with the linear giant-magnetoresistance (GMR) effect. A linear relation between the UMR and the conductivity-spin asymmetry is revealed, which provides an alternative way to control the sign and magnitude of the UMR and hence may serve as an experimental signature of our proposed mechanism.
NASA Astrophysics Data System (ADS)
Chosei, Naoya; Itoh, Eiji
2018-02-01
We have comparatively studied the charge behaviors of organic semiconductor films based on charge extraction by linearly increasing voltage in a metal-insulator-semiconductor (MIS) diode structure (MIS-CELIV) and by classical capacitance-voltage measurement. The MIS-CELIV technique allows the selective measurement of electron and hole mobilities of n- and p-type organic films with thicknesses representative of those of actual devices. We used an anodic oxidized sputtered Ta or Hf electrode as a high-k layer, and it effectively blocked holes at the insulator/semiconductor interface. We estimated the hole mobilities of the polythiophene derivatives regioregular poly(3-hexylthiophene) (P3HT) and poly(3,3‧‧‧-didodecylquarterthiophene) (PQT-12) before and after heat treatment in the ITO/high-k/(thin polymer insulator)/semiconductor/MoO3/Ag device structure. The hole mobility of PQT-12 was improved from 1.1 × 10-5 to 2.1 × 10-5 cm2 V-1 s-1 by the heat treatment of the device at 100 °C for 30 min. An almost two orders of magnitude higher mobility was obtained in MIS diodes with P3HT as the p-type layer. We also determined the capacitance from the displacement current in MIS diodes at a relatively low-voltage sweep, and it corresponded well to the classical capacitance-voltage and frequency measurement results.
Structured-gate organic field-effect transistors
NASA Astrophysics Data System (ADS)
Aljada, Muhsen; Pandey, Ajay K.; Velusamy, Marappan; Burn, Paul L.; Meredith, Paul; Namdas, Ebinazar B.
2012-06-01
We report the fabrication and electrical characteristics of structured-gate organic field-effect transistors consisting of a gate electrode patterned with three-dimensional pillars. The pillar gate electrode was over-coated with a gate dielectric (SiO2) and solution processed organic semiconductors producing both unipolar p-type and bipolar behaviour. We show that this new structured-gate architecture delivers higher source-drain currents, higher gate capacitance per unit equivalent linear channel area, and enhanced charge injection (electrons and/or holes) versus the conventional planar structure in all modes of operation. For the bipolar field-effect transistor (FET) the maximum source-drain current enhancements in p- and n-channel mode were >600% and 28%, respectively, leading to p and n charge mobilities with the same order of magnitude. Thus, we have demonstrated that it is possible to use the FET architecture to manipulate and match carrier mobilities of material combinations where one charge carrier is normally dominant. Mobility matching is advantageous for creating organic logic circuit elements such as inverters and amplifiers. Hence, the method represents a facile and generic strategy for improving the performance of standard organic semiconductors as well as new materials and blends.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiogai, Junichi, E-mail: junichi.shiogai@imr.tohoku.ac.jp; Nishihara, Kazuki; Sato, Kazuhisa
One perovskite oxide, ASnO{sub 3} (A = Sr, Ba), is a candidate for use as a transparent conductive oxide with high electron mobility in single crystalline form. However, the electron mobility of films grown on SrTiO{sub 3} substrates does not reach the bulk value, probably because of dislocation scattering that originates from the large lattice mismatch. This study investigates the effect of insertion of bilayer BaSnO{sub 3} / (Sr,Ba)SnO{sub 3} for buffering this large lattice mismatch between La:BaSnO{sub 3} and SrTiO{sub 3} substrate. The insertion of 200-nm-thick BaSnO{sub 3} on (Sr,Ba)SnO{sub 3} bilayer buffer structures reduces the number of dislocationsmore » and improves surface smoothness of the films after annealing as proved respectively by scanning transmission electron microscopy and atomic force microscopy. A systematic investigation of BaSnO{sub 3} buffer layer thickness dependence on Hall mobility of the electron transport in La:BaSnO{sub 3} shows that the highest obtained value of mobility is 78 cm{sup 2}V{sup −1}s{sup −1} because of its fewer dislocations. High electron mobility films based on perovskite BaSnO{sub 3} can provide a good platform for transparent-conducting-oxide electronic devices and for creation of fascinating perovskite heterostructures.« less
NASA Astrophysics Data System (ADS)
Vershubskii, A. V.; Tikhonov, A. N.
2017-07-01
The lateral mobility of protons and mobile electron carriers (plastoquinone and plastocyanin) is subjected to diffusion limitations; the effect of these limitations on the kinetics of photoinduced pH i changes has been investigated in the present work for metabolic states 3 (conditions of intensive ATP synthesis) and 4 (the state of photosynthetic control). Computer simulations were based on a mathematical model of electron and proton transport in chloroplasts developed earlier by the authors. Non-uniform distribution of electron carriers and ATP synthase complexes in the membranes of grana and intergranal thylakoids was taken into account in the model. The kinetics of intrathylakoid pH i changes and the lateral profiles of distribution of the mobile electron transporters in granal and intergranal thylakoids were studied. The formation of non-uniform pH i profiles (with lumen acidification in the central parts of the grana being substantially slower than in the stromal thylakoids) was shown to occur under the conditions of ATP synthesis. Variation of the diffusion coefficients of intrathylakoid hydrogen ions and mobile electron carriers (plastoquinone and plastocyanin) can have substantial effects on the lateral pH i profiles and the redox state of the mobile electron carriers.
Chernyshov, Ivan Yu; Vener, Mikhail V; Feldman, Elizaveta V; Paraschuk, Dmitry Yu; Sosorev, Andrey Yu
2017-07-06
Organic electronics requires materials with high charge mobility. Despite decades of intensive research, charge transport in high-mobility organic semiconductors has not been well understood. In this Letter, we address the physical mechanism underlying the exceptionally high band-like electron mobility in F 2 -TCNQ (2,5-difluoro-7,7,8,8-tetracyanoquinodimethane) single crystals among a crystal family of similar compounds F n -TCNQ (n = 0, 2, 4) using a combined experimental and theoretical approach. While electron transfer integrals and reorganization energies did not show outstanding features for F 2 -TCNQ, Raman spectroscopy and solid-state DFT indicated that the frequency of the lowest vibrational mode is nearly twice higher in the F 2 -TCNQ crystal than in TCNQ and F 4 -TCNQ. This phenomenon is explained by the specific packing motif of F 2 -TCNQ with only one molecule per primitive cell so that electron-phonon interaction decreases and the electron mobility increases. We anticipate that our findings will encourage investigators for the search and design of organic semiconductors with one molecule per primitive cell and/or the poor low-frequency vibrational spectrum.
May, Falk; Al-Helwi, Mustapha; Baumeier, Björn; Kowalsky, Wolfgang; Fuchs, Evelyn; Lennartz, Christian; Andrienko, Denis
2012-08-22
The use of blue phosphorescent emitters in organic light-emitting diodes (OLEDs) imposes demanding requirements on a host material. Among these are large triplet energies, the alignment of levels with respect to the emitter, the ability to form and sustain amorphous order, material processability, and an adequate charge carrier mobility. A possible design strategy is to choose a π-conjugated core with a high triplet level and to fulfill the other requirements by using suitable substituents. Bulky substituents, however, induce large spatial separations between conjugated cores, can substantially reduce intermolecular electronic couplings, and decrease the charge mobility of the host. In this work we analyze charge transport in amorphous 2,8-bis(triphenylsilyl)dibenzofuran, an electron-transporting material synthesized to serve as a host in deep-blue OLEDs. We show that mesomeric effects delocalize the frontier orbitals over the substituents recovering strong electronic couplings and lowering reorganization energies, especially for electrons, while keeping energetic disorder small. Admittance spectroscopy measurements reveal that the material has indeed a high electron mobility and a small Poole-Frenkel slope, supporting our conclusions. By linking electronic structure, molecular packing, and mobility, we provide a pathway to the rational design of hosts with high charge mobilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jyegal, Jang, E-mail: jjyegal@inu.ac.kr
Velocity overshoot is a critically important nonstationary effect utilized for the enhanced performance of submicron field-effect devices fabricated with high-electron-mobility compound semiconductors. However, the physical mechanisms of velocity overshoot decay dynamics in the devices are not known in detail. Therefore, a numerical analysis is conducted typically for a submicron GaAs metal-semiconductor field-effect transistor in order to elucidate the physical mechanisms. It is found that there exist three different mechanisms, depending on device bias conditions. Specifically, at large drain biases corresponding to the saturation drain current (dc) region, the velocity overshoot suddenly begins to drop very sensitively due to the onsetmore » of a rapid decrease of the momentum relaxation time, not the mobility, arising from the effect of velocity-randomizing intervalley scattering. It then continues to drop rapidly and decays completely by severe mobility reduction due to intervalley scattering. On the other hand, at small drain biases corresponding to the linear dc region, the velocity overshoot suddenly begins to drop very sensitively due to the onset of a rapid increase of thermal energy diffusion by electrons in the channel of the gate. It then continues to drop rapidly for a certain channel distance due to the increasing thermal energy diffusion effect, and later completely decays by a sharply decreasing electric field. Moreover, at drain biases close to a dc saturation voltage, the mechanism is a mixture of the above two bias conditions. It is suggested that a large secondary-valley energy separation is essential to increase the performance of submicron devices.« less
Fundamental Studies of the Silicon Carbide MOS Interface
NASA Astrophysics Data System (ADS)
Swandono, Steven
Climate change has placed a spotlight on renewable energy. Power electronics are essential to minimize energy loss when electricity is converted to a form used on the power grid. With silicon devices now approaching performance limits, SiC MOSFET can deliver power electronics to greater heights. However, the power capability of SiC MOSFETs is constrained by having low interface carrier mobility. It was coincidentally discovered that MOSFETs with oxide grown in alumina tubes have significantly higher mobility. We believe that the large surface potential fluctuations in SiC MOS interface results in percolation transport, and sodium ions from the alumina tubes reduces these percolative effects. Fabrication of SiC MOSFETs with different oxide thickness can vary the surface potential fluctuations and is used to verify the impact of percolation transport on SiC interface mobility. Characterization techniques on SiC devices are adopted from their silicon counterparts. Many characterization techniques are not tailored to the specification of SiC materials and hence, result in conflicting results during comparison of data among different research groups. The later chapters discussed the inaccuracies in the MOS AC conductance technique caused by the non-linear surface potential - gate voltage relationship and an energy-dependent interface state density. Using an exact model, we quantify errors in the extraction of interface state density, capture cross section, and position of the surface Fermi level when analyzed using the standard Nicollian-Goetzberger equations. We show that the exponential dependence of capture cross section on energy near the band edges is an artifact of the data analysis.
Wu, Tao; Deng, Kaiming; Deng, Weiqiao; Lu, Ruifeng
2017-10-19
BNC x monolayer as a kind of two-dimensional material has numerous chemical atomic ratios and arrangements with different electronic structures. Via calculations on the basis of density functional theory and Boltzmann transport theory under deformation potential approximation, the band structures and carrier mobilities of BNC x (x = 1,2,3,4) nanosheets are systematically investigated. The calculated results show that BNC 2 -1 is a material with very small band gap (0.02 eV) among all the structures while other BNC x monolayers are semiconductors with band gap ranging from 0.51 eV to 1.32 eV. The carrier mobility of BNC x varies considerably from tens to millions of cm 2 V -1 s -1 . For BNC 2 -1, the hole mobility and electron mobility along both x and y directions can reach 10 5 orders of magnitude, which is similar to the carrier mobility of graphene. Besides, all studied BNC x monolayers obviously have anisotropic hole mobility and electron mobility. In particular, for semiconductor BNC 4 , its hole mobility along the y direction and electron mobility along the x direction unexpectedly reach 10 6 orders of magnitude, even higher than that of graphene. Our findings suggest that BNC x layered materials with the proper ratio and arrangement of carbon atoms will possess desirable charge transport properties, exhibiting potential applications in nanoelectronic devices.
NASA Astrophysics Data System (ADS)
Wu, Tao; Deng, Kaiming; Deng, Weiqiao; Lu, Ruifeng
2017-11-01
BNC x monolayer as a kind of two-dimensional material has numerous chemical atomic ratios and arrangements with different electronic structures. Via calculations on the basis of density functional theory and Boltzmann transport theory under deformation potential approximation, the band structures and carrier mobilities of BNC x (x = 1,2,3,4) nanosheets are systematically investigated. The calculated results show that BNC2-1 is a material with very small band gap (0.02 eV) among all the structures while other BNC x monolayers are semiconductors with band gap ranging from 0.51 eV to 1.32 eV. The carrier mobility of BNC x varies considerably from tens to millions of cm2 V-1 s-1. For BNC2-1, the hole mobility and electron mobility along both x and y directions can reach 105 orders of magnitude, which is similar to the carrier mobility of graphene. Besides, all studied BNC x monolayers obviously have anisotropic hole mobility and electron mobility. In particular, for semiconductor BNC4, its hole mobility along the y direction and electron mobility along the x direction unexpectedly reach 106 orders of magnitude, even higher than that of graphene. Our findings suggest that BNC x layered materials with the proper ratio and arrangement of carbon atoms will possess desirable charge transport properties, exhibiting potential applications in nanoelectronic devices.
NASA Astrophysics Data System (ADS)
Kaess, Felix; Mita, Seiji; Xie, Jingqiao; Reddy, Pramod; Klump, Andrew; Hernandez-Balderrama, Luis H.; Washiyama, Shun; Franke, Alexander; Kirste, Ronny; Hoffmann, Axel; Collazo, Ramón; Sitar, Zlatko
2016-09-01
In the low doping range below 1 × 1017 cm-3, carbon was identified as the main defect attributing to the sudden reduction of the electron mobility, the electron mobility collapse, in n-type GaN grown by low pressure metalorganic chemical vapor deposition. Secondary ion mass spectroscopy has been performed in conjunction with C concentration and the thermodynamic Ga supersaturation model. By controlling the ammonia flow rate, the input partial pressure of Ga precursor, and the diluent gas within the Ga supersaturation model, the C concentration in Si-doped GaN was controllable from 6 × 1019 cm-3 to values as low as 2 × 1015 cm-3. It was found that the electron mobility collapsed as a function of free carrier concentration, once the Si concentration closely approached the C concentration. Lowering the C concentration to the order of 1015 cm-3 by optimizing Ga supersaturation achieved controllable free carrier concentrations down to 5 × 1015 cm-3 with a peak electron mobility of 820 cm2/V s without observing the mobility collapse. The highest electron mobility of 1170 cm2/V s was obtained even in metalorganic vapor deposition-grown GaN on sapphire substrates by optimizing growth parameters in terms of Ga supersaturation to reduce the C concentration.
Electrical properties and subband occupancy at the (La ,Sr ) (Al ,Ta ) O3/SrTi O3 interface
NASA Astrophysics Data System (ADS)
Han, K.; Huang, Z.; Zeng, S. W.; Yang, M.; Li, C. J.; Zhou, W. X.; Wang, X. Renshaw; Venkatesan, T.; Coey, J. M. D.; Goiran, M.; Escoffier, W.; Ariando
2017-06-01
The quasi-two-dimensional electron gas at oxide interfaces provides a platform for investigating quantum phenomena in strongly correlated electronic systems. Here, we study the transport properties at the high-mobility (L a0.3S r0.7 ) (A l0.65T a0.35 ) O3/SrTi O3 interface. Before oxygen annealing, the as-grown interface exhibits a high electron density and electron occupancy of two subbands: higher-mobility electrons (μ1≈104c m2V-1s-1 at 2 K) occupy the lower-energy 3 dxy subband, while lower-mobility electrons (μ1≈103c m2V-1s-1 at 2 K) propagate in the higher-energy 3 dxz /yz -dominated subband. After removing oxygen vacancies by annealing in oxygen, only a single type of 3 dxy electrons remain at the annealed interface, showing tunable Shubnikov-de Haas oscillations below 9 T at 2 K and an effective mass of 0.7 me . By contrast, no oscillation is observed at the as-grown interface even when electron mobility is increased to 50 000 c m2V-1s-1 by gating voltage. Our results reveal the important roles of both carrier mobility and subband occupancy in tuning the quantum transport at oxide interfaces.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-28
..., Including Mobile Phones, Portable Music Players, and Computers; Notice of Investigation AGENCY: U.S... music players, and computers, by reason of infringement of certain claims of U.S. Patent Nos. 6,714,091... importation of certain electronic devices, including mobile phones, portable music players, or computers that...
Action Centered Contextual Bandits.
Greenewald, Kristjan; Tewari, Ambuj; Klasnja, Predrag; Murphy, Susan
2017-12-01
Contextual bandits have become popular as they offer a middle ground between very simple approaches based on multi-armed bandits and very complex approaches using the full power of reinforcement learning. They have demonstrated success in web applications and have a rich body of associated theoretical guarantees. Linear models are well understood theoretically and preferred by practitioners because they are not only easily interpretable but also simple to implement and debug. Furthermore, if the linear model is true, we get very strong performance guarantees. Unfortunately, in emerging applications in mobile health, the time-invariant linear model assumption is untenable. We provide an extension of the linear model for contextual bandits that has two parts: baseline reward and treatment effect. We allow the former to be complex but keep the latter simple. We argue that this model is plausible for mobile health applications. At the same time, it leads to algorithms with strong performance guarantees as in the linear model setting, while still allowing for complex nonlinear baseline modeling. Our theory is supported by experiments on data gathered in a recently concluded mobile health study.
Intrinsic delay of permeable base transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wenchao; Guo, Jing; So, Franky
2014-07-28
Permeable base transistors (PBTs) fabricated by vacuum deposition or solution process have the advantages of easy fabrication and low power operation and are a promising device structure for flexible electronics. Intrinsic delay of PBT, which characterizes the speed of the transistor, is investigated by solving the three-dimensional Poisson equation and drift-diffusion equation self-consistently using finite element method. Decreasing the emitter thickness lowers the intrinsic delay by improving on-current, and a thinner base is also preferred for low intrinsic delay because of fewer carriers in the base region at off-state. The intrinsic delay exponentially decreases as the emitter contact Schottky barriermore » height decreases, and it linearly depends on the carrier mobility. With an optimized emitter contact barrier height and device geometry, a sub-nano-second intrinsic delay can be achieved with a carrier mobility of ∼10 cm{sup 2}/V/s obtainable in solution processed indium gallium zinc oxide, which indicates the potential of solution processed PBTs for GHz operations.« less
NASA Astrophysics Data System (ADS)
Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej
2018-04-01
An alternative model for a description of magnetization processes in coupled 2D spin-electron systems has been introduced and rigorously examined using the generalized decoration-iteration transformation and the corner transfer matrix renormalization group method. The model consists of localized Ising spins placed on nodal lattice sites and mobile electrons delocalized over the pairs of decorating sites. It takes into account a hopping term for mobile electrons, the Ising coupling between mobile electrons and localized spins as well as the Zeeman term acting on both types of particles. The ground-state and finite-temperature phase diagrams were established and comprehensively analyzed. It was found that the ground-state phase diagrams are very rich depending on the electron hopping and applied magnetic field. The diversity of magnetization curves can be related to intermediate magnetization plateaus, which may be continuously tuned through the density of mobile electrons. In addition, the existence of several types of reentrant phase transitions driven either by temperature or magnetic field was proven.
NASA Astrophysics Data System (ADS)
Chen, Y. Z.; Trier, F.; Wijnands, T.; Green, R. J.; Gauquelin, N.; Egoavil, R.; Christensen, D. V.; Koster, G.; Huijben, M.; Bovet, N.; Macke, S.; He, F.; Sutarto, R.; Andersen, N. H.; Sulpizio, J. A.; Honig, M.; Prawiroatmodjo, G. E. D. K.; Jespersen, T. S.; Linderoth, S.; Ilani, S.; Verbeeck, J.; van Tendeloo, G.; Rijnders, G.; Sawatzky, G. A.; Pryds, N.
2015-08-01
Two-dimensional electron gases (2DEGs) formed at the interface of insulating complex oxides promise the development of all-oxide electronic devices. These 2DEGs involve many-body interactions that give rise to a variety of physical phenomena such as superconductivity, magnetism, tunable metal-insulator transitions and phase separation. Increasing the mobility of the 2DEG, however, remains a major challenge. Here, we show that the electron mobility is enhanced by more than two orders of magnitude by inserting a single-unit-cell insulating layer of polar La1-xSrxMnO3 (x = 0, 1/8, and 1/3) at the interface between disordered LaAlO3 and crystalline SrTiO3 produced at room temperature. Resonant X-ray spectroscopy and transmission electron microscopy show that the manganite layer undergoes unambiguous electronic reconstruction, leading to modulation doping of such atomically engineered complex oxide heterointerfaces. At low temperatures, the modulation-doped 2DEG exhibits Shubnikov-de Haas oscillations and fingerprints of the quantum Hall effect, demonstrating unprecedented high mobility and low electron density.
Boland, Jessica L; Amaduzzi, Francesca; Sterzl, Sabrina; Potts, Heidi; Herz, Laura M; Fontcuberta I Morral, Anna; Johnston, Michael B
2018-06-13
InAsSb nanowires are promising elements for thermoelectric devices, infrared photodetectors, high-speed transistors, as well as thermophotovoltaic cells. By changing the Sb alloy fraction the mid-infrared bandgap energy and thermal conductivity may be tuned for specific device applications. Using both terahertz and Raman noncontact probes, we show that Sb alloying increases the electron mobility in the nanowires by over a factor of 3 from InAs to InAs 0.65 Sb 0.35 . We also extract the temperature-dependent electron mobility via both terahertz and Raman spectroscopy, and we report the highest electron mobilities for InAs 0.65 Sb 0.35 nanowires to date, exceeding 16,000 cm 2 V -1 s -1 at 10 K.
NASA Astrophysics Data System (ADS)
Mise, Nobuyuki; Kadoshima, Masaru; Morooka, Tetsu; Eimori, Takahisa; Nara, Yasuo; Ohji, Yuzuru
2008-10-01
We investigated the controversial effective workfunction and electron mobility of TiN/HfSiON devices by intentionally adding MgO or La2O3 into HfSiON and by changing the material on TiN or the TiN thickness. As a result, we found a close relationship between the electron mobility at low effective field and the flatband voltage. This relationship is explained on the basis of the fixed charge in HfSiON and its neutralization. The intrinsic workfunction of TiN/HfSiON without charge is determined to be 4.3 eV from the flatband voltage when the electron mobility at low effective field is the highest.
Zan, Hsiao-Wen; Yeh, Chun-Cheng; Meng, Hsin-Fei; Tsai, Chuang-Chuang; Chen, Liang-Hao
2012-07-10
An effective approach to reduce defects and increase electron mobility in a-IGZO thin-film transistors (a-IGZO TFTs) is introduced. A strong reduction layer, calcium, is capped onto the back interface of a-IGZO TFT. After calcium capping, the effective electron mobility of a-IGZO TFT increases from 12 cm(2) V(-1) s(-1) to 160 cm(2) V(-1) s(-1). This high mobility is a new record, which implies that the proposed defect reduction effect is key to improve electron transport in oxide semiconductor materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Theoretical study of the two-dimensional electron mobility in strained III-nitride heterostructures
NASA Astrophysics Data System (ADS)
Yu, Tsung-Hsing; Brennan, Kevin F.
2001-04-01
We present calculations of the two-dimensional (2D) electron mobility in III-nitride heterojunction structures in the presence of spontaneous and piezoelectrically induced polarization effects. The calculations are made using a self-consistent solution of the Schrödinger, Poisson, charge and potential balance equations. It is found that the polarization fields act to significantly increase the 2D sheet charge concentration while reducing the mobility. The mobility reduction results from the enhanced band bending and subsequent attraction of the electrons to the heterointerface where they experience increased surface roughness scattering. Good agreement is obtained between the theoretical calculations and experimental measurements over the full temperature range examined. Comparison of the mobility in InGaN/GaN to AlGaN/GaN heterostructures is made. It is found that the mobility is significantly higher in the InGaN/GaN structure than in the AlGaN/GaN structure.
Differential-Drive Mobile Robot Control Design based-on Linear Feedback Control Law
NASA Astrophysics Data System (ADS)
Nurmaini, Siti; Dewi, Kemala; Tutuko, Bambang
2017-04-01
This paper deals with the problem of how to control differential driven mobile robot with simple control law. When mobile robot moves from one position to another to achieve a position destination, it always produce some errors. Therefore, a mobile robot requires a certain control law to drive the robot’s movement to the position destination with a smallest possible error. In this paper, in order to reduce position error, a linear feedback control is proposed with pole placement approach to regulate the polynoms desired. The presented work leads to an improved understanding of differential-drive mobile robot (DDMR)-based kinematics equation, which will assist to design of suitable controllers for DDMR movement. The result show by using the linier feedback control method with pole placement approach the position error is reduced and fast convergence is achieved.
NASA Astrophysics Data System (ADS)
Dupré, C.; Ernst, T.; Hartmann, J.-M.; Andrieu, F.; Barnes, J.-P.; Rivallin, P.; Faynot, O.; Deleonibus, S.; Fazzini, P. F.; Claverie, A.; Cristoloveanu, S.; Ghibaudo, G.; Cristiano, F.
2007-11-01
Based on electrical measurements and transmission electron microscopy (TEM) imaging, we propose an explanation for the electron and hole mobility degradation with gate length reduction in metal-oxide-semiconductor field effect transistors (MOSFETs). We demonstrate that ion implantation, normally used for source/drain doping, is responsible for transport degradation for short-channel devices. Implantation impact on electrons and holes mobility was investigated both on silicon-on-insulator (SOI) and tensile strained silicon-on-insulator (sSOI) substrates. Wafers with ultrathin Si films (from 8 to 35 nm) were Ge implanted at 3 keV and various concentrations (from 5×1014 to 2×1015 atoms cm-2), then annealed at 600 °C for 1 h. Secondary ion mass spectrometry enabled us to quantify the Ge-implanted atoms concentrations. The end-of-range defects impact on mobility was investigated with the pseudo-MOSFET technique. Measurements showed a mobility decrease as the implantation dose increased. We demonstrated that sSOI mobility is more sensitive to implantation than SOI mobility, without any implantation-induced strain relaxation in sSOI (checked using the ultraviolet Raman technique). A 36% (25%) holes (electrons) mobility degradation was measured for sSOI, while SOI presented a 21% mobility degradation for holes and 5% for electrons. Finally, the electrical results were compared with morphological studies. Plan-view TEM showed the presence of interstitial defects formed during ion implantation and annealing. The defect density was estimated to be two times higher in sSOI than in SOI, which is in full agreement with electrical results mentioned before. The results are relevant for the optimization of the source and drain regions of advanced nanoscale SOI and sSOI transistors.
GSM-PKI solution enabling secure mobile communications.
Jelekäinen, Pekka
2004-03-31
Because of its wide distribution and ease of use, the mobile phone, as a reliable personal communications channel, offers an excellent basis for the provision of reliable electronic communications services. In Finland, ca. 75% of the citizens have a mobile phone and, at present and most likely also in the future, it is the most widely spread service channel allowing reliable electronic communications. Despite the restricted functions of the mobile phone, the citizens can use the phone also as a communications medium. In 2001, the Finns sent over 1 billion SMS messages. In Finland, TeliaSonera Finland Oyi and the Population Register Centre (PRC) have closed a co-operation agreement with the aim of creating a mobile phone service for the electronic identification of a person. The co-operation launched is a significant development project from the perspective of the citizens. As a result, the consumers will have a new alternative for reliable electronic communications and commerce in data networks in addition to the electronic identification card. In the future, it will be possible to use the services of both public administration and the private sector by means of a mobile phone more reliably than before, without a physical visit, e.g. to a health centre or to another provider of healthcare services. The possibility of identification and signature by a mobile phone allows an easier provision of versatile services irrespective of time and place, because, in addition to voice, text message, and WAP functions, the service can be utilised also in communications services through the Internet, in which case, the mobile phone acts like a card reader. From the perspective of reliable personal mobile communications, the healthcare sector is one of the most significant and challenging application areas.
Park, Jozeph; Kim, Yang Soo; Ok, Kyung-Chul; Park, Yun Chang; Kim, Hyun You; Park, Jin-Seong; Kim, Hyun-Suk
2016-01-01
High-mobility zinc oxynitride (ZnON) semiconductors were grown by RF sputtering using a Zn metal target in a plasma mixture of Ar, N2, and O2 gas. The RF power and the O2 to N2 gas flow rates were systematically adjusted to prepare a set of ZnON films with different relative anion contents. The carrier density was found to be greatly affected by the anion composition, while the electron mobility is determined by a fairly complex mechanism. First-principles calculations indicate that excess vacant nitrogen sites (VN) in N-rich ZnON disrupt the local electron conduction paths, which may be restored by having oxygen anions inserted therein. The latter are anticipated to enhance the electron mobility, and the exact process parameters that induce such a phenomenon can only be found experimentally. Contour plots of the Hall mobility and carrier density with respect to the RF power and O2 to N2 gas flow rate ratio indicate the existence of an optimum region where maximum electron mobility is obtained. Using ZnON films grown under the optimum conditions, the fabrication of high-performance devices with field-effect mobility values exceeding 120 cm2/Vs is demonstrated based on simple reactive RF sputtering methods. PMID:27098656
NASA Astrophysics Data System (ADS)
Pokatilov, E. P.; Nika, D. L.; Askerov, A. S.; Zincenco, N. D.; Balandin, A. A.
2007-12-01
nanometer scale thickness by taking into account multiple quantized electron subbands and the confined optical phonon dispersion. It was shown that the inter-subband electronic transitions play an important role in limiting the electron mobility in the heterostructures when the energy separation between one of the size-quantized excited electron subbands and the Fermi energy becomes comparable to the optical phonon energy. The latter leads to the oscillatory dependence of the electron mobility on the thickness of the heterostructure conduction channel layer. This effect is observable at room temperature and over a wide range of the carrier densities. The developed formalism and calculation procedure are readily applicable to other material systems. The described effect can be used for fine-tuning the confined electron and phonon states in the nanoscale heterostructures in order to achieve performance enhancement of the nanoscale electronic and optoelectronic devices.
Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Tafreshian, Amirmahdi; Valentine, Stephen J
2017-05-01
Gas-phase hydrogen/deuterium exchange (HDX) using D 2 O reagent and collision cross-section (CCS) measurements are utilized to monitor the ion conformers of the model peptide acetyl-PAAAAKAAAAKAAAAKAAAAK. The measurements are carried out on a home-built ion mobility instrument coupled to a linear ion trap mass spectrometer containing electron transfer dissociation (ETD) capabilities. ETD is utilized to obtain per-residue deuterium uptake data for select ion conformers, and a new algorithm is presented for interpreting the HDX data. Using molecular dynamics (MD) production data and a hydrogen accessibility scoring (HAS)-number of effective collisions (NEC) model, hypothetical HDX behavior is attributed to various in-silico candidate (CCS match) structures. The HAS-NEC model is applied to all candidate structures, and non-negative linear regression is employed to determine structure contributions resulting in the best match to deuterium uptake. The accuracy of the HAS-NEC model is tested with the comparison of predicted and experimental isotopic envelopes for several of the observed c-ions. It is proposed that gas-phase HDX can be utilized effectively as a second criterion (after CCS matching) for filtering suitable MD candidate structures. In this study, the second step of structure elucidation, 13 nominal structures were selected (from a pool of 300 candidate structures) and each with a population contribution proposed for these ions. Graphical Abstract ᅟ.
Large linear magnetoresistance in a new Dirac material BaMnBi2
NASA Astrophysics Data System (ADS)
Wang, Yi-Yan; Yu, Qiao-He; Xia, Tian-Long
2016-10-01
Dirac semimetal is a class of materials that host Dirac fermions as emergent quasi-particles. Dirac cone-type band structure can bring interesting properties such as quantum linear magnetoresistance and large mobility in the materials. In this paper, we report the synthesis of high quality single crystals of BaMnBi2 and investigate the transport properties of the samples. BaMnBi2 is a metal with an antiferromagnetic transition at T N = 288 K. The temperature dependence of magnetization displays different behavior from CaMnBi2 and SrMnBi2, which suggests the possible different magnetic structure of BaMnBi2. The Hall data reveals electron-type carriers and a mobility μ(5 K) = 1500 cm2/V·s. Angle-dependent magnetoresistance reveals the quasi-two-dimensional (2D) Fermi surface in BaMnBi2. A crossover from semiclassical MR ˜ H 2 dependence in low field to MR ˜ H dependence in high field, which is attributed to the quantum limit of Dirac fermions, has been observed in magnetoresistance. Our results indicate the existence of Dirac fermions in BaMnBi2. Project supported by the National Natural Science Foundation of China (Grant No. 11574391), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 14XNLQ07).
Fuchs, Andreas; Steinbrecher, Thomas; Mommer, Mario S; Nagata, Yuki; Elstner, Marcus; Lennartz, Christian
2012-03-28
In order to determine the molecular origin of the difference in electron and hole mobilities of amorphous thin films of Alq(3) (meridional Alq(3) (tris(8-hydroxyquinoline) aluminium)) we performed multiscale simulations covering quantum mechanics, molecular mechanics and lattice models. The study includes realistic disordered morphologies, polarized site energies to describe diagonal disorder, quantum chemically calculated transfer integrals for the off-diagonal disorder, inner sphere reorganization energies and an approximative scheme for outer sphere reorganization energies. Intermolecular transfer rates were calculated via Marcus-theory and mobilities were simulated via kinetic Monte Carlo simulations and by a Master Equation approach. The difference in electron and hole mobility originates from the different localization of charge density in the radical anion (more delocalized) compared to the radical cation (more confined). This results in higher diagonal disorder for holes and less favourable overlap properties for the hole transfer integrals leading to an overall higher electron mobility.
Electron Mobility and Trapping in Ferrihydrite Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltis, Jennifer A.; Schwartzberg, Adam M.; Zarzycki, Piotr
Iron is the most abundant transition metal in the Earth's crust, and naturally occurring iron oxide minerals play a commanding role in environmental redox reactions. Although iron oxide redox reactions are well studied, their precise mechanisms are not fully understood. Recent work has shown that these involve electron transfer pathways within the solid, suggesting that overall reaction rates could be dependent on electron mobility. Initial ultrafast spectroscopy studies of iron oxide nanoparticles sensitized by fluorescein derivatives supported a model for electron mobility based on polaronic hopping of electron charge carriers between iron sites, but the constitutive relationships between hopping mobilitiesmore » and interfacial charge transfer processes has remained obscured. We developed a coarse-grained lattice Monte Carlo model to simulate the collective mobilities and lifetimes of these photoinjected electrons with respect to recombination with adsorbed dye molecules for the essential nanophase ferrihydrite, and tested predictions made by the simulations using pump-probe spectroscopy. We acquired optical transient absorption spectra as a function of particle size and under a variety of solution conditions, and used cryogenic transmission electron microscopy to determine the aggregation state of the nanoparticles. We observed biphasic electron recombination kinetics over timescales that spanned picoseconds to microseconds, the slower regime of which was fit with a stretched exponential decay function. The recombination rates were weakly affected by nanoparticle size and aggregation state, suspension pH, and the injection of multiple electrons per nanoparticle. We conclude that electron mobility indeed limits the rate of interfacial electron transfer in these systems with the slowest processes relating to escape from deep traps, the presence of which outweighs the influence of environmental factors such as pH-dependent surface charge.« less
Digital mobile telephones and interference of ophthalmic equipment.
Ang, G S; Lian, P; Ng, W S; Whyte, I; Ong, J M
2007-01-01
To assess the effect of mobile telephone electromagnetic interference on electronic ophthalmic equipment. Prospective audit with mobile telephones placed at distances of 3 m, 1 m, and 30 cm from, and in contact with, electronic ophthalmic equipment. Any interruption or cessation of the function of the ophthalmic device was assessed with the mobile telephones in standby, and in dialling or receiving modes. Any alterations of displayed digital figures or numbers were also assessed. A total of 23 electronic ophthalmic devices in two hospital ophthalmology outpatient departments were evaluated. All six mobile telephones used, and 22 (95.7%) of the 23 ophthalmic equipment evaluated had the Conformité Européene (CE) mark. No device showed any interruption or cessation of function. There were no alterations of displayed digital figures or numbers. The only effect of any kind was found with four instruments (1 non-CE marked), where there was temporary flickering on the screen, and only occurred when the mobile telephones were dialling or receiving at a distance of 30 cm or less from the instruments. This study shows that among the electronic ophthalmic devices tested, none suffered failure or interruption of function, from mobile telephone interference. Although not comprehensive for all ophthalmic equipment, the results question the need for a complete ban of mobile telephones in ophthalmic departments. It highlights the need for a controlled, objectively measured study of the clinically relevant effects of mobile telephones in the ophthalmology outpatient setting.
Multifunction interferometry using the electron mobility visibility and mean free path relationship.
Pornsuwancharoen, N; Youplao, P; Amiri, I S; Aziz, M S; Tran, Q L; Ali, J; Yupapin, P; Grattan, K T V
2018-05-08
A conventional Michelson interferometer is modified and used to form the various types of interferometers. The basic system consists of a conventional Michelson interferometer with silicon-graphene-gold embedded between layers on the ports. When light from the monochromatic source is input into the system via the input port (silicon waveguide), the change in optical path difference (OPD) of light traveling in the stacked layers introduces the change in the optical phase, which affects to the electron mean free path within the gold layer, induces the change in the overall electron mobility can be seen by the interferometer output visibility. Further plasmonic waves are introduced on the graphene thin film and the electron mobility occurred within the gold layer, in which the light-electron energy conversion in terms of the electron mobility can be observed, the gold layer length is 100 nm. The measurement resolution in terms of the OPD of ∼50 nm is achieved. In applications, the outputs of the drop port device of the modified Michelson interferometer can be arranged by the different detectors, where the polarized light outputs, the photon outputs, the electron spin outputs can be obtained by the interference fringe visibility, mobility visibility and the spin up-down splitting output energies. The modified Michelson interferometer theory and the detection schemes are given in details. © 2018 Wiley Periodicals, Inc.
Charge-transfer mobility and electrical conductivity of PANI as conjugated organic semiconductors
NASA Astrophysics Data System (ADS)
Zhang, Yahong; Duan, Yuping; Song, Lulu; Zheng, Daoyuan; Zhang, Mingxing; Zhao, Guangjiu
2017-09-01
The intramolecular charge transfer properties of a phenyl-end-capped aniline tetramer (ANIH) and a chloro-substituted derivative (ANICl) as organic semiconductors were theoretically studied through the first-principles calculation based on the Marcus-Hush theory. The reorganization energies, intermolecular electronic couplings, angular resolution anisotropic mobilities, and density of states of the two crystals were evaluated. The calculated results demonstrate that both ANIH and ANICl crystals show the higher electron transfer mobilities than the hole-transfer mobilities, which means that the two crystals should prefer to function as n-type organic semiconductors. Furthermore, the angle dependence mobilities of the two crystals show remarkable anisotropic character. The maximum mobility μmax of ANIH and ANICl crystals is 1.3893 and 0.0272 cm2 V-1 s-1, which appear at the orientation angles near 176°/356° and 119°/299° of a conducting channel on the a-b reference plane. It is synthetically evaluated that the ANIH crystal possesses relatively lower reorganization energy, higher electronic coupling, and electron transfer mobility, which means that the ANIH crystal may be the more ideal candidate as a high performance n-type organic semiconductor material. The systematic theoretical studies on organic crystals should be conducive to evaluating the charge-transport properties and designing higher performance organic semiconductor materials.
Charge-transfer mobility and electrical conductivity of PANI as conjugated organic semiconductors.
Zhang, Yahong; Duan, Yuping; Song, Lulu; Zheng, Daoyuan; Zhang, Mingxing; Zhao, Guangjiu
2017-09-21
The intramolecular charge transfer properties of a phenyl-end-capped aniline tetramer (ANIH) and a chloro-substituted derivative (ANICl) as organic semiconductors were theoretically studied through the first-principles calculation based on the Marcus-Hush theory. The reorganization energies, intermolecular electronic couplings, angular resolution anisotropic mobilities, and density of states of the two crystals were evaluated. The calculated results demonstrate that both ANIH and ANICl crystals show the higher electron transfer mobilities than the hole-transfer mobilities, which means that the two crystals should prefer to function as n-type organic semiconductors. Furthermore, the angle dependence mobilities of the two crystals show remarkable anisotropic character. The maximum mobility μ max of ANIH and ANICl crystals is 1.3893 and 0.0272 cm 2 V -1 s -1 , which appear at the orientation angles near 176°/356° and 119°/299° of a conducting channel on the a-b reference plane. It is synthetically evaluated that the ANIH crystal possesses relatively lower reorganization energy, higher electronic coupling, and electron transfer mobility, which means that the ANIH crystal may be the more ideal candidate as a high performance n-type organic semiconductor material. The systematic theoretical studies on organic crystals should be conducive to evaluating the charge-transport properties and designing higher performance organic semiconductor materials.
High Electron Mobility in SiGe/Si n-MODFET Structures on Sapphire Substrates
NASA Technical Reports Server (NTRS)
Mueller, Carl H.; Croke, Edward T.; Alterovitz, Samuel A.
2003-01-01
For the first time, SiGe/Si n-Modulation Doped Field Effect Transistors (n-MODFET) structures have been grown on sapphire substrates. Room temperature electron mobility value of 1271 square centimeters N-sec at an electron carrier density (n(sub e) = 1.33x10(exp 12) per square centimeter)) of 1.6 x 10(exp 12) per square centimeter was obtained. At 250 mK, the mobility increases to 13,313 square centimeters/V-sec (n(sub e)=1.33x10(exp 12) per square centimeter)) and Shubnikov-de Haas oscillations appear, showing excellent confinement of the two-dimensional electron gas.
Biscaras, J; Bergeal, N; Hurand, S; Grossetête, C; Rastogi, A; Budhani, R C; LeBoeuf, D; Proust, C; Lesueur, J
2012-06-15
In this Letter, we show that a superconducting two-dimensional electron gas is formed at the LaTiO3/SrTiO3 interface whose transition temperature can be modulated by a back-gate voltage. The gas consists of two types of carriers: a majority of low-mobility carriers always present, and a few high-mobility ones that can be injected by electrostatic doping. The calculation of the electron spatial distribution in the confinement potential shows that the high-mobility electrons responsible for superconductivity set at the edge of the gas whose extension can be tuned by the field effect.
Charge Transport in Metal Oxides: A Theoretical Study of Hematite α-Fe2O3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iordanova, Nellie I.; Dupuis, Michel; Rosso, Kevin M.
2005-04-08
Transport of conduction electrons and holes through the lattice of ??Fe2O3 (hematite) is modeled as a valence alternation of iron cations using ab initio electronic structure calculations and electron transfer theory. Experimental studies have shown that the conductivity along the (001) basal plane is four orders of magnitude larger than the conductivity along the [001] direction. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e. the reorganization energy and the electronic coupling matrix element that enter Marcus? theory. The calculation of the electronic couplingmore » followed the Generalized Mulliken-Hush approach using the complete active space self-consistent field (CASSCF) method. Our findings demonstrate an approximately three orders of magnitude anisotropy in both electron and hole mobility between directions perpendicular and parallel to the c-axis, in good accord with experimental data. The anisotropy arises from the slowness of both electron and hole mobility across basal oxygen planes relative to that within iron bi-layers between basal oxygen planes. Interestingly, for elementary reaction steps along either of the directions considered, there is only approximately one order of magnitude difference in mobility between electrons and holes, in contrast to accepted classical arguments. Our findings indicate that the most important quantity underlying mobility differences is the electronic coupling, albeit the reorganization energy contributes as well. The large values computed for the electronic coupling suggest that charge transport reactions in hematite are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron spin coupling within the Fe?Fe donor-acceptor pair, while the reorganization energy is essentially independent of the electron spin coupling.« less
Face identification with frequency domain matched filtering in mobile environments
NASA Astrophysics Data System (ADS)
Lee, Dong-Su; Woo, Yong-Hyun; Yeom, Seokwon; Kim, Shin-Hwan
2012-06-01
Face identification at a distance is very challenging since captured images are often degraded by blur and noise. Furthermore, the computational resources and memory are often limited in the mobile environments. Thus, it is very challenging to develop a real-time face identification system on the mobile device. This paper discusses face identification based on frequency domain matched filtering in the mobile environments. Face identification is performed by the linear or phase-only matched filter and sequential verification stages. The candidate window regions are decided by the major peaks of the linear or phase-only matched filtering outputs. The sequential stages comprise a skin-color test and an edge mask filtering test, which verify color and shape information of the candidate regions in order to remove false alarms. All algorithms are built on the mobile device using Android platform. The preliminary results show that face identification of East Asian people can be performed successfully in the mobile environments.
Dissolution kinetics of a lunar glass simulant at 25 degrees C: the effect of pH and organic acids
NASA Technical Reports Server (NTRS)
Eick, M. J.; Grossl, P. R.; Golden, D. C.; Sparks, D. L.; Ming, D. W.
1996-01-01
The dissolution kinetics of a simulated lunar glass were examined at pH 3, 5, and 7. Additionally, the pH 7 experiments were conducted in the presence of citric and oxalic acid at concentrations of 2 and 20 mM. The organic acids were buffered at pH 7 to examine the effect of each molecule in their dissociated form. At pH 3, 5, and 7, the dissolution of the synthetic lunar glass was observed to proceed via a two-stage process. The first stage involved the parabolic release of Ca, Mg, Al, and Fe, and the linear release of Si. Dissolution was incongruent, creating a leached layer rich in Si and Ti which was verified by transmission electron microscopy (TEM). During the second stage the release of Ca, Mg, Al, and Fe was linear. A coupled diffusion/surface dissolution model was proposed for dissolution of the simulated lunar glass at pH 3, 5, and 7. During the first stage the initial release of mobile cations (i.e., Ca, Mg, Al, Fe) was limited by diffusion through the surface leached layer of the glass (parabolic release), while Si release was controlled by the hydrolysis of the Si-O-Al bonds at the glass surface (linear release). As dissolution continued, the mobile cations diffused from greater depths within the glass surface. A steady-state was then reached where the diffusion rate across the increased path lengths equalled the Si release rate from the surface. In the presence of the organic acids, the dissolution of the synthetic lunar glass proceeded by a one stage process. The release of Ca, Mg, Al, and Fe followed a parabolic relationship, while the release of Si was linear. The relative reactivity of the organic acids used in the experiments was citrate > oxalate. A thinner leached layer rich in Si/Ti, as compared to the pH experiments, was observed using TEM. Rate data suggest that the chemisorption of the organic anion to the surface silanol groups was responsible for enhanced dissolution in the presence of the organic acids. It is proposed that the increased rate of Si release is responsible for the one stage parabolic release of mobile cations and the relatively thin leached layer compared to experiments at pH 3 and 5.
Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaoyang
2014-12-10
The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering. Organic semiconductors are emerging as viable materials for low-cost electronics and optoelectronics, such as organic photovoltaics (OPV), organic field effect transistors (OFETs), and organic light emitting diodes (OLEDs). Despite extensive studies spanning many decades, a clear understanding of the nature of charge carriers in organic semiconductors is still lacking. It is generally appreciated that polaron formation and charge carrier trapping are two hallmarks associatedmore » with electrical transport in organic semiconductors; the former results from the low dielectric constants and weak intermolecular electronic overlap while the latter can be attributed to the prevalence of structural disorder. These properties have lead to the common observation of low charge carrier mobilities, e.g., in the range of 10-5 - 10-3 cm2/Vs, particularly at low carrier concentrations. However, there is also growing evidence that charge carrier mobility approaching those of inorganic semiconductors and metals can exist in some crystalline organic semiconductors, such as pentacene, tetracene and rubrene. A particularly striking example is single crystal rubrene (Figure 1), in which hole mobilities well above 10 cm2/Vs have been observed in OFETs operating at room temperature. Temperature dependent transport and spectroscopic measurements both revealed evidence of free carriers in rubrene. Outstanding questions are: what are the structural features and physical properties that make rubrene so unique? How do we establish fundamental design principles for the development of other organic semiconductors of high mobility? These questions are critically important but not comprehensive, as the nature of charge carriers is known to evolve as the carrier concentration increases, due to the presence of intrinsic disorder in organic semiconductors. Thus, a complementary question is: how does the nature of charge transport change as a function of carrier concentration?« less
High-mobility BaSnO 3 grown by oxide molecular beam epitaxy
Raghavan, Santosh; Schumann, Timo; Kim, Honggyu; ...
2016-01-28
High-mobility perovskite BaSnO 3 films are of significant interest as newwide bandgap semiconductors for power electronics, transparent conductors, and as high mobility channels for epitaxial integration with functional perovskites. Despite promising results for single crystals, high-mobility BaSnO 3 films have been challenging to grow. Here, we demonstrate a modified oxide molecular beam epitaxy (MBE) approach, which supplies pre-oxidized SnO x. This technique addresses issues in the MBE of ternary stannates related to volatile SnO formation and enables growth of epitaxial, stoichiometric BaSnO 3. We demonstrate room temperature electron mobilities of 150 cm 2 V -1 s -1 in films grownmore » on PrScO 3. Lastly, the results open up a wide range of opportunities for future electronic devices.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-27
... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket 3-2010] Foreign-Trade Zone 22--Chicago, IL; Application for Manufacturing Authority; LG Electronics MobileComm USA, Inc. (Cell Phone Kitting... authority on behalf of LG Electronics MobileComm USA, Inc. (LGEMU), located in Bolingbrook, Illinois. The...
NASA Astrophysics Data System (ADS)
Yamada, Atsushi; Ishiguro, Tetsuro; Kotani, Junji; Nakamura, Norikazu
2018-01-01
We demonstrated low-sheet-resistance metalorganic-vapor-phase-epitaxy-grown InAlN high-electron-mobility transistors using AlGaN spacers with excellent surface morphology. We systematically investigated the effects of AlGaN spacer growth conditions on surface morphology and electron mobility. We found that the surface morphology of InAlN barriers depends on that of AlGaN spacers. Ga desorption from AlGaN spacers was suppressed by increasing the trimethylaluminum (TMA) supply rate, resulting in the small surface roughnesses of InAlN barriers and AlGaN spacers. Moreover, we found that an increase in the NH3 supply rate also improved the surface morphologies of InAlN barriers and AlGaN spacers as long as the TMA supply rate was high enough to suppress the degradation of GaN channels. Finally, we realized a low sheet resistance of 185.5 Ω/sq with a high electron mobility of 1210 cm2 V-1 s-1 by improving the surface morphologies of AlGaN spacers and InAlN barriers.
Indium antimonide quantum well structures for electronic device applications
NASA Astrophysics Data System (ADS)
Edirisooriya, Madhavie
The electron effective mass is smaller in InSb than in any other III-V semiconductor. Since the electron mobility depends inversely on the effective mass, InSb-based devices are attractive for field effect transistors, magnetic field sensors, ballistic transport devices, and other applications where the performance depends on a high mobility or a long mean free path. In addition, electrons in InSb have a large g-factor and strong spin orbit coupling, which makes them well suited for certain spin transport devices. The first n-channel InSb high electron mobility transistor (HEMT) was produced in 2005 with a power-delay product superior to HEMTs with a channel made from any other III-V semiconductor. The high electron mobility in the InSb quantum-well channel increases the switching speed and lowers the required supply voltage. This dissertation focuses on several materials challenges that can further increase the appeal of InSb quantum wells for transistors and other electronic device applications. First, the electron mobility in InSb quantum wells, which is the highest for any semiconductor quantum well, can be further increased by reducing scattering by crystal defects. InSb-based heteroepitaxy is usually performed on semi-insulating GaAs (001) substrates due to the lack of a lattice matched semi-insulating substrate. The 14.6% mismatch between the lattice parameters of GaAs and InSb results in the formation of structural defects such as threading dislocations and microtwins which degrade the electrical and optical properties of InSb-based devices. Chapter 1 reviews the methods and procedures for growing InSb-based heterostructures by molecular beam epitaxy. Chapters 2 and 3 introduce techniques for minimizing the crystalline defects in InSb-based structures grown on GaAs substrates. Chapter 2 discusses a method of reducing threading dislocations by incorporating AlyIn1-ySb interlayers in an AlxIn1-xSb buffer layer and the reduction of microtwin defects by growth on GaAs substrates that are oriented 2° away from the [011] direction. Chapter 3 discusses designing InSb QW layer structures that are strain balanced. By applying these defect-reducing techniques, the electron mobility in InSb quantum wells at room temperature was significantly increased. For complementary logic technology, p-channel transistors with high mobility are equally as important as n-channel transistors. However, achieving a high hole mobility in III-V semiconductors is challenging. A controlled introduction of strain in the quantum-well material is an effective technique for enhancing the hole mobility beyond its value in bulk material. The strain reduces the hole effective mass by splitting the heavy hole and light hole valence bands. Chapter 4 discusses a successful attempt to realize p-type InSb quantum well structures. The biaxial strain applied via a relaxed metamorphic buffer resulted in a significantly higher room-temperature hole mobility and a record high low-temperature hole mobility. To demonstrate the usefulness of high mobility in a device structure, magnetoresistive devices were fabricated from remotely doped InSb QWs. Such devices have numerous practical applications such as position and speed sensors and as read heads in magnetic storage systems. In a magnetoresistive device composed of a series of shorted Hall bars, the magnetoresistance is proportional to the electron mobility squared for small magnetic fields. Hence, the high electron mobility in InSb QWs makes them highly preferable for geometrical magnetoresistors. Chapter 5 reports the fabrication and characterization of InSb quantum-well magnetoresistors. The excellent transport properties of the InSb QWs resulted in high room-temperature sensitivity to applied magnetic fields. Finally, Chapter 6 provides the conclusions obtained during this research effort, and makes suggestions for future work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamczewski, I.
1961-09-01
The viscosity coefficient of dielectric liquids was found to be dependent upon molecular structure and temperature. From this a general formula for ion and electron mobility was derived. This formula includes the dependence of mobility upon molecular structure and temperature, thus making it possible to give a theoretical explanation of other published experimental results. In addition, the formula can be used to calculate ion mobility for a number of other liquids at various temperatures. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jr-Tai, E-mail: jrche@ifm.liu.se; Persson, Ingemar; Nilsson, Daniel
A high mobility of 2250 cm{sup 2}/V·s of a two-dimensional electron gas (2DEG) in a metalorganic chemical vapor deposition-grown AlGaN/GaN heterostructure was demonstrated. The mobility enhancement was a result of better electron confinement due to a sharp AlGaN/GaN interface, as confirmed by scanning transmission electron microscopy analysis, not owing to the formation of a traditional thin AlN exclusion layer. Moreover, we found that the electron mobility in the sharp-interface heterostructures can sustain above 2000 cm{sup 2}/V·s for a wide range of 2DEG densities. Finally, it is promising that the sharp-interface AlGaN/GaN heterostructure would enable low contact resistance fabrication, less impurity-related scattering, andmore » trapping than the AlGaN/AlN/GaN heterostructure, as the high-impurity-contained AlN is removed.« less
Combustion powered linear actuator
Fischer, Gary J.
2007-09-04
The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.
Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; ...
2016-02-09
To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less
Influence of Strain on the Thermoelectric Properties of electron-doped SrTiO3 Thin Films
NASA Astrophysics Data System (ADS)
Sarantopoulos, Alexandros; Ferreiro-Vila, Elias; Magen, Cesar; Aguirre, Myriam H.; Pardo, Victor; Rivadulla, Francisco
2015-03-01
The discovery of a two dimensional electron gas with high mobility at the interface between insulating LaAlO3 / SrTiO3 (LAO/STO) opened the possibility of fabricating functional devices based on this interfacial effect. Therefore, it is important to study the influence of the growth parameters on the properties of the constituent materials. Here, we demonstrate that the thermoelectric properties of epitaxial thin films of Nb:STO can be finely tuned by adjusting the growth conditions in a PLD system. By growing the sample on different substrates, we demonstrate that the amount of vacancies depends on the degree of epitaxial compressive stress. The vacancies produced lead to impurity scattering at low temperatures. We show that the magnetoresistance response, and non-linear behavior of the Hall effect, characteristic of LAO/STO interfaces, can be reproduced in thin films of Nb:STO with a controlled number of vacancies. Moreover, we show that the Seebeck coefficient is a valid tool to obtain information about the degeneracy of the electronic band structure. We acknowledge support from the ERC 2D Therms project.
Flux-driven algebraic damping of m = 1 diocotron mode
NASA Astrophysics Data System (ADS)
Chim, Chi Yung; O'Neil, Thomas M.
2016-07-01
Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius r = Rw at the wall of the trap. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This paper explains with analytic theory the new algebraic damping due to particle transport by both mobility and diffusion. As electrons are swept around the "cat's eye" orbits of the resonant wave-particle interaction, they form a dipole (m = 1) density distribution. From this distribution, the electric field component perpendicular to the core displacement produces E × B-drift of the core back to the axis, that is, damps the m = 1 mode. The parallel component produces drift in the azimuthal direction, that is, causes a shift in the mode frequency.
Anisotropic carrier mobility in single- and bi-layer C3N sheets
NASA Astrophysics Data System (ADS)
Wang, Xueyan; Li, Qingfang; Wang, Haifeng; Gao, Yan; Hou, Juan; Shao, Jianxin
2018-05-01
Based on the density functional theory combined with the Boltzmann transport equation with relaxation time approximation, we investigate the electronic structure and predict the carrier mobility of single- and bi-layer newly fabricated 2D carbon nitrides C3N. Although C3N sheets possess graphene-like planar hexagonal structure, the calculated carrier mobility is remarkably anisotropic, which is found mainly induced by the anisotropic effective masses and deformation potential constants. Importantly, we find that both the electron and hole mobilities are considerable high, for example, the hole mobility along the armchair direction of single-layer C3N sheets can arrive as high as 1.08 ×104 cm2 V-1 s-1, greatly larger than that of C2N-h2D and many other typical 2D materials. Owing to the high and anisotropic carrier mobility and appropriate band gap, single- and bi-layer semiconducting C3N sheets may have great potential applications in high performance electronic and optoelectronic devices.
Durand, Corentin; Zhang, Xiaoguang; Fowlkes, Jason; ...
2015-01-16
We study the electrical transport properties of atomically thin individual crystalline grains of MoS 2 with four-probe scanning tunneling microscopy. The monolayer MoS 2 domains are synthesized by chemical vapor deposition on SiO 2/Si substrate. Temperature dependent measurements on conductance and mobility show that transport is dominated by an electron charge trapping and thermal release process with very low carrier density and mobility. The effects of electronic irradiation are examined by exposing the film to electron beam in the scanning electron microscope in an ultrahigh vacuum environment. The irradiation process is found to significantly affect the mobility and the carriermore » density of the material, with the conductance showing a peculiar time-dependent relaxation behavior. It is suggested that the presence of defects in active MoS 2 layer and dielectric layer create charge trapping sites, and a multiple trapping and thermal release process dictates the transport and mobility characteristics. The electron beam irradiation promotes the formation of defects and impact the electrical properties of MoS 2. Finally, our study reveals the important roles of defects and the electron beam irradiation effects in the electronic properties of atomic layers of MoS 2.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-24
... Certain Consumer Electronics, Including Mobile Phones and Tablets, DN 2878; the Commission is soliciting... importation of certain consumer electronics, including mobile phones and tablets. The complaint names as...
Zhang, Xin; Li, Weiping; Yao, Jiannian; Zhan, Chuanlang
2016-06-22
Carrier mobility is a vital factor determining the electrical performance of organic solar cells. In this paper we report that a high-efficiency nonfullerene organic solar cell (NF-OSC) with a power conversion efficiency of 6.94 ± 0.27% was obtained by optimizing the hole and electron transportations via following judicious selection of polymer donor and engineering of film-morphology and cathode interlayers: (1) a combination of solvent annealing and solvent vapor annealing optimizes the film morphology and hence both hole and electron mobilities, leading to a trade-off of fill factor and short-circuit current density (Jsc); (2) the judicious selection of polymer donor affords a higher hole and electron mobility, giving a higher Jsc; and (3) engineering the cathode interlayer affords a higher electron mobility, which leads to a significant increase in electrical current generation and ultimately the power conversion efficiency (PCE).
NASA Astrophysics Data System (ADS)
Hembree, Robert H.; Vazhappilly, Tijo; Micha, David A.
2017-12-01
The conductivity of holes and electrons photoexcited in Si slabs is affected by the slab thickness and by adsorbates. The mobilities of those charged carriers depend on how many layers compose the slab, and this has important scientific and technical consequences for the understanding of photovoltaic materials. A previously developed general computational procedure combining density matrix and electronic band structure treatments has been applied to extensive calculations of mobilities of photoexcited electrons and holes at Si(111) nanostructured surfaces with varying slab thickness and for varying photon energies, to investigate the expected change in mobility magnitudes as the slab thickness is increased. Results have been obtained with and without adsorbed silver clusters for comparison of their optical and photovoltaic properties. Band states were generated using a modified ab initio density functional treatment with the PBE exchange and correlation density functionals and with periodic boundary conditions for large atomic supercells. An energy gap correction was applied to the unoccupied orbital energies of each band structure by running more accurate HSE hybrid functional calculations for a Si(111) slab. Photoexcited state populations for slabs with 6, 8, 10, and 12 layers were generated using a steady state reduced density matrix including dissipative effects due to energy exchange with excitons and phonons in the medium. Mobilities have been calculated from the derivatives of voltage-driven electronic energies with respect to electronic momentum, for each energy band and for the average over bands. Results show two clear trends: (a) adding Ag increases the hole photomobilities and (b) decreasing the slab thickness increases hole photomobilities. The increased hole populations in 6- and 8-layer systems and the large increase in hole mobility for these thinner slabs can be interpreted as a quantum confinement effect of hole orbitals. As the slab thickness increases to ten and twelve layers, the effect of silver adsorbates decreases leading to smaller relative enhancements to the conduction electron and hole mobilities, but the addition of the silver nanoclusters still increases the absorbance of light and the mobility of holes compared to their mobilities in the pure Si slabs.
ERIC Educational Resources Information Center
Crane, Laura; Benachour, Phillip
2013-01-01
The paper describes the analysis of user location and time stamp information automatically logged when students receive and interact with electronic updates from the University's virtual learning environment. The electronic updates are sent to students' mobile devices using RSS feeds. The mobile reception of such information can be received in…
Liu, Zitong; Zhang, Guanxin; Zhang, Deqing
2018-06-19
Organic semiconductors have received increasing attentions in recent years because of their promising applications in various optoelectronic devices. The key performance metric for organic semiconductors is charge carrier mobility, which is governed by the electronic structures of conjugated backbones and intermolecular/interchain π-π interactions and packing in both microscopic and macroscopic levels. For this reason, more efforts have been paid to the design and synthesis of conjugated frameworks for organic semiconductors with high charge mobilities. However, recent studies manifest that appropriate modifications of side chains that are linked to conjugated frameworks can improve the intermolecular/interchain packing order and boost charge mobilities. In this Account, we discuss our research results in context of modification of side chains in organic semiconductors for charge mobility enhancement. These include the following: (i) The lengths of alkyl chains in sulfur-rich thiepin-fused heteroacences can dramatically influence the intermolecular arrangements and orbital overlaps, ushering in different hole mobilities. Inversely, the lamellar stacking modes of alkyl chains in naphthalene diimide (NDI) derivatives with tetrathiafulvalene (TTF) units are affected by the structures of conjugated cores. (ii) The steric hindrances owing to the bulky branching chains can be weakened by partial replacement of the branching alkyl chains with linear ones for diketopyrrolopyrrole (DPP)-based D (donor)-A (acceptor) conjugated polymers. Such modification of side chains makes the polymer backbones more planar and thus interchain packing order and charge mobilities are improved. The incorporation of hydrophilic tri(ethylene glycol) (TEG) chains into the polymers also leads to improved interchain packing order. In particular, the polymer in which TEG side chains are distributed uniformly exhibits relatively high charge mobility without thermal annealing. (iii) The incorporation of urea groups in the side chains induces the polymer chains to pack more orderly and form large domains because of the additional H-bonding among urea groups. Accordingly, thin film mobilities of the conjugated D-A polymers with side chains entailing urea groups are largely boosted in comparison with those of polymers of the same backbones with either branching alkyl chains or branching/linear alkyl chains. (iv) The torsions of branching alkyl chains in conjugated D-A polymers can be inhibited to some extent upon incorporation of tiny amount of NMe 4 I in the thin film. As a result, the polymer thin films with NMe 4 I exhibit improved crystallinity, and charge mobilities can be boosted by more than 20 times. (v) Side chains with functional groups in the conjugated polymers can endow the thin film field-effect transistors (FETs) with sensing functionality. FETs with the conjugated polymer with -COOH groups in the side chains show sensitive, selective, and fast responses toward ammonia and amines, while FETs with the ultrathin films of the polymer containing tetra(ethylene glycol) (TEEG) in the side chains can sense alcohol vapors (in particular ethanol vapor) sensitively and selectively with fast response.
Radio astronomy ultra-low-noise amplifier for operation at 91 cm wavelength in high RFI environment
NASA Astrophysics Data System (ADS)
Korolev, A. M.; Zakharenko, V. V.; Ulyanov, O. M.
2016-02-01
An ultra-low-noise input amplifier intended for a use in a radio telescope operating at 91 cm wavelength is presented. The amplifier noise temperatures are 12.8 ± 1.5 and 10.0 ± 1.5 K at ambient temperatures of 293 and 263 K respectively. The amplifier does not require cryogenic cooling. It can be quickly put in operation thus shortening losses in the telescope observation time. High linearity of the amplifier (output power at 1 dB gain compression P1dB ≥ 22 dBm, output third order intercept point OIP3 ≥ 37 dBm) enables the telescope operation in highly urbanized and industrialized regions. To obtain low noise characteristics along with high linearity, high-electron-mobility field-effect transistors were used in parallel in the circuit developed. The transistors used in the amplifier are cost-effective and commercially available. The circuit solution is recommended for similar devices working in ultra-high frequency band.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Cardwell, D.; Sasikumar, A.; Kyle, E. C. H.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; Speck, J. S.; Arehart, A. R.; Ringel, S. A.
2016-04-01
The impact of proton irradiation on the threshold voltage (VT) of AlGaN/GaN heterostructures is systematically investigated to enhance the understanding of a primary component of the degradation of irradiated high electron mobility transistors. The value of VT was found to increase monotonically as a function of 1.8 MeV proton fluence in a sub-linear manner reaching 0.63 V at a fluence of 1 × 1014 cm-2. Silvaco Atlas simulations of VT shifts caused by GaN buffer traps using experimentally measured introduction rates, and energy levels closely match the experimental results. Different buffer designs lead to different VT dependences on proton irradiation, confirming that deep, acceptor-like defects in the GaN buffer are primarily responsible for the observed VT shifts. The proton irradiation induced VT shifts are found to depend on the barrier thickness in a linear fashion; thus, scaling the barrier thickness could be an effective way to reduce such degradation.
Dispersive Readout of a Superconducting Flux Qubit Using a Microstrip SQUID Amplifier
NASA Astrophysics Data System (ADS)
Johnson, J. E.; Hoskinson, E. M.; Macklin, C.; Siddiqi, I.; Clarke, John
2011-03-01
Dispersive techniques for the readout of superconducting qubits offer the possibility of high repetition-rate, quantum non-demolition measurement by avoiding dissipation close to the qubit. To achieve dispersive readout, we couple our three-junction aluminum flux qubit inductively to a 1-2 GHz non-linear oscillator formed by a capacitively shunted DC SQUID. The frequency of this resonator is modulated by the state of the qubit via the flux-dependent inductance of the SQUID. Readout is performed by probing the resonator in the linear (weak drive) regime with a microwave tone and monitoring the phase of the reflected signal. A microstrip SQUID amplifier (MSA) is used to increase the sensitivity of the measurement over that of a HEMT (high electron mobility transistor) amplifier. We report measurements of the performance of our amplification chain. Increased fidelity and reduced measurement backaction resulting from the implementation of the MSA will also be discussed. This work was funded in part by the U.S. Government and by BBN Technologies.
Server-Based and Server-Less Byod Solutions to Support Electronic Learning
2016-06-01
Knowledge Online NSD National Security Directive OS operating system OWA Outlook Web Access PC personal computer PED personal electronic device PDA...mobile devices, institute mobile device policies and standards, and promote the development and use of DOD mobile and web -enabled applications” (DOD...with an isolated BYOD web server, properly educated system administrators must carry out and execute the necessary, pre-defined network security
Low Temperature Photoluminescence (PL) from High Electron Mobility Transistors (HEMTs)
2015-03-01
Photoluminescence Form InxAl1-xN Films Deposited by Plasma-Assisted Molecular Beam Epitaxy ,” Submitted to Applied Physics Letters, July 2014. 8 LIST OF...TECHNICAL REPORT RDMR-WD-14-55 LOW TEMPERATURE PHOTOLUMINESCENCE (PL) FROM HIGH ELECTRON MOBILITY TRANSISTORS ( HEMTS ...Mobility Transistors ( HEMTs ) 5. FUNDING NUMBERS 6. AUTHOR(S) Adam T. Roberts and Henry O. Everitt 7. PERFORMING ORGANIZATION NAME(S
Machine learning techniques for energy optimization in mobile embedded systems
NASA Astrophysics Data System (ADS)
Donohoo, Brad Kyoshi
Mobile smartphones and other portable battery operated embedded systems (PDAs, tablets) are pervasive computing devices that have emerged in recent years as essential instruments for communication, business, and social interactions. While performance, capabilities, and design are all important considerations when purchasing a mobile device, a long battery lifetime is one of the most desirable attributes. Battery technology and capacity has improved over the years, but it still cannot keep pace with the power consumption demands of today's mobile devices. This key limiter has led to a strong research emphasis on extending battery lifetime by minimizing energy consumption, primarily using software optimizations. This thesis presents two strategies that attempt to optimize mobile device energy consumption with negligible impact on user perception and quality of service (QoS). The first strategy proposes an application and user interaction aware middleware framework that takes advantage of user idle time between interaction events of the foreground application to optimize CPU and screen backlight energy consumption. The framework dynamically classifies mobile device applications based on their received interaction patterns, then invokes a number of different power management algorithms to adjust processor frequency and screen backlight levels accordingly. The second strategy proposes the usage of machine learning techniques to learn a user's mobile device usage pattern pertaining to spatiotemporal and device contexts, and then predict energy-optimal data and location interface configurations. By learning where and when a mobile device user uses certain power-hungry interfaces (3G, WiFi, and GPS), the techniques, which include variants of linear discriminant analysis, linear logistic regression, non-linear logistic regression, and k-nearest neighbor, are able to dynamically turn off unnecessary interfaces at runtime in order to save energy.
Mobile health platform for pressure ulcer monitoring with electronic health record integration.
Rodrigues, Joel J P C; Pedro, Luís M C C; Vardasca, Tomé; de la Torre-Díez, Isabel; Martins, Henrique M G
2013-12-01
Pressure ulcers frequently occur in patients with limited mobility, for example, people with advanced age and patients wearing casts or prostheses. Mobile information communication technologies can help implement ulcer care protocols and the monitoring of patients with high risk, thus preventing or improving these conditions. This article presents a mobile pressure ulcer monitoring platform (mULCER), which helps control a patient's ulcer status during all stages of treatment. Beside its stand-alone version, it can be integrated with electronic health record systems as mULCER synchronizes ulcer data with any electronic health record system using HL7 standards. It serves as a tool to integrate nursing care among hospital departments and institutions. mULCER was experimented with in different mobile devices such as LG Optimus One P500, Samsung Galaxy Tab, HTC Magic, Samsung Galaxy S, and Samsung Galaxy i5700, taking into account the user's experience of different screen sizes and processing characteristics.
An analytic current-voltage model for quasi-ballistic III-nitride high electron mobility transistors
NASA Astrophysics Data System (ADS)
Li, Kexin; Rakheja, Shaloo
2018-05-01
We present an analytic model to describe the DC current-voltage (I-V) relationship in scaled III-nitride high electron mobility transistors (HEMTs) in which transport within the channel is quasi-ballistic in nature. Following Landauer's transport theory and charge calculation based on two-dimensional electrostatics that incorporates negative momenta states from the drain terminal, an analytic expression for current as a function of terminal voltages is developed. The model interprets the non-linearity of access regions in non-self-aligned HEMTs. Effects of Joule heating with temperature-dependent thermal conductivity are incorporated in the model in a self-consistent manner. With a total of 26 input parameters, the analytic model offers reduced empiricism compared to existing GaN HEMT models. To verify the model, experimental I-V data of InAlN/GaN with InGaN back-barrier HEMTs with channel lengths of 42 and 105 nm are considered. Additionally, the model is validated against numerical I-V data obtained from DC hydrodynamic simulations of an unintentionally doped AlGaN-on-GaN HEMT with 50-nm gate length. The model is also verified against pulsed I-V measurements of a 150-nm T-gate GaN HEMT. Excellent agreement between the model and experimental and numerical results for output current, transconductance, and output conductance is demonstrated over a broad range of bias and temperature conditions.
NASA Astrophysics Data System (ADS)
Shih, Huan-Yu; Chu, Fu-Chuan; Das, Atanu; Lee, Chia-Yu; Chen, Ming-Jang; Lin, Ray-Ming
2016-04-01
In this study, films of gallium oxide (Ga2O3) were prepared through remote plasma atomic layer deposition (RP-ALD) using triethylgallium and oxygen plasma. The chemical composition and optical properties of the Ga2O3 thin films were investigated; the saturation growth displayed a linear dependence with respect to the number of ALD cycles. These uniform ALD films exhibited excellent uniformity and smooth Ga2O3-GaN interfaces. An ALD Ga2O3 film was then used as the gate dielectric and surface passivation layer in a metal-oxide-semiconductor high-electron-mobility transistor (MOS-HEMT), which exhibited device performance superior to that of a corresponding conventional Schottky gate HEMT. Under similar bias conditions, the gate leakage currents of the MOS-HEMT were two orders of magnitude lower than those of the conventional HEMT, with the power-added efficiency enhanced by up to 9 %. The subthreshold swing and effective interfacial state density of the MOS-HEMT were 78 mV decade-1 and 3.62 × 1011 eV-1 cm-2, respectively. The direct-current and radio-frequency performances of the MOS-HEMT device were greater than those of the conventional HEMT. In addition, the flicker noise of the MOS-HEMT was lower than that of the conventional HEMT.
NASA Astrophysics Data System (ADS)
Aleshin, A. N.; Bugaev, A. S.; Ermakova, M. A.; Ruban, O. A.
2016-03-01
The crystallographic parameters of elements of a metamorphic high-electron-mobility transistor (MHEMT) heterostructure with In0.4Ga0.6As quantum well are determined using reciprocal space mapping. The heterostructure has been grown by molecular-beam epitaxy (MBE) on the vicinal surface of a GaAs substrate with a deviation angle of 2° from the (001) plane. The structure consists of a metamorphic step-graded buffer (composed of six layers, including an inverse step), a high-temperature buffer of constant composition, and active high-electron-mobility transistor (HEMT) layers. The InAs content in the metamorphic buffer layers varies from 0.1 to 0.48. Reciprocal space mapping has been performed for the 004 and 224 reflections (the latter in glancing exit geometry). Based on map processing, the lateral and vertical lattice parameters of In x Ga1- x As ternary solid solutions of variable composition have been determined. The degree of layer lattice relaxation and the compressive stress are found within the linear elasticity theory. The high-temperature buffer layer of constant composition (on which active MHEMT layers are directly formed) is shown to have the highest (close to 100%) degree of relaxation in comparison with all other heterostructure layers and a minimum compressive stress.
Lee, Young Tack; Kwon, Hyeokjae; Kim, Jin Sung; Kim, Hong-Hee; Lee, Yun Jae; Lim, Jung Ah; Song, Yong-Won; Yi, Yeonjin; Choi, Won-Kook; Hwang, Do Kyung; Im, Seongil
2015-10-27
Two-dimensional van der Waals (2D vdWs) materials are a class of new materials that can provide important resources for future electronics and materials sciences due to their unique physical properties. Among 2D vdWs materials, black phosphorus (BP) has exhibited significant potential for use in electronic and optoelectronic applications because of its allotropic properties, high mobility, and direct and narrow band gap. Here, we demonstrate a few-layered BP-based nonvolatile memory transistor with a poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric top gate insulator. Experiments showed that our BP-based ferroelectric transistors operate satisfactorily at room temperature in ambient air and exhibit a clear memory window. Unlike conventional ambipolar BP transistors, our ferroelectric transistors showed only p-type characteristics due to the carbon-fluorine (C-F) dipole effect of the P(VDF-TrFE) layer, as well as the highest linear mobility value of 1159 cm(2) V(-1) s(-1) with a 10(3) on/off current ratio. For more advanced memory applications beyond unit memory devices, we implemented two memory inverter circuits, a resistive-load inverter circuit and a complementary inverter circuit, combined with an n-type molybdenum disulfide (MoS2) nanosheet. Our memory inverter circuits displayed a clear memory window of 15 V and memory output voltage efficiency of 95%.
NASA Astrophysics Data System (ADS)
Preissler, Natalie; Bierwagen, Oliver; Ramu, Ashok T.; Speck, James S.
2013-08-01
A comprehensive study of the room-temperature electrical and electrothermal transport of single-crystalline indium oxide (In2O3) and indium tin oxide (ITO) films over a wide range of electron concentrations is reported. We measured the room-temperature Hall mobility μH and Seebeck coefficient S of unintentionally doped and Sn-doped high-quality, plasma-assisted molecular-beam-epitaxy-grown In2O3 for volume Hall electron concentrations nH from 7×1016 cm-3 (unintentionally doped) to 1×1021 cm-3 (highly Sn-doped, ITO). The resulting empirical S(nH) relation can be directly used in other In2O3 samples to estimate the volume electron concentration from simple Seebeck coefficient measurements. The mobility and Seebeck coefficient were modeled by a numerical solution of the Boltzmann transport equation. Ionized impurity scattering and polar optical phonon scattering were found to be the dominant scattering mechanisms. Acoustic phonon scattering was found to be negligible. Fitting the temperature-dependent mobility above room temperature of an In2O3 film with high mobility allowed us to find the effective Debye temperature (ΘD=700 K) and number of phonon modes (NOPML=1.33) that best describe the polar optical phonon scattering. The modeling also yielded the Hall scattering factor rH as a function of electron concentration, which is not negligible (rH≈1.4) at nondegenerate electron concentrations. Fitting the Hall-scattering-factor corrected concentration-dependent Seebeck coefficient S(n) for nondegenerate samples to the numerical solution of the Boltzmann transport equation and to widely used, simplified equations allowed us to extract an effective electron mass of m*=(0.30±0.03)me (with free electron mass me). The modeled mobility and Seebeck coefficient based on polar optical phonon and ionized impurity scattering describes the experimental results very accurately up to electron concentrations of 1019 cm-3, and qualitatively explains a mobility plateau or local maximum around 1020 cm-3. Ionized impurity scattering with doubly charged donors best describes the mobility in our unintentionally doped films, consistent with oxygen vacancies as unintentional shallow donors, whereas singly charged donors best describe our Sn-doped films. Our modeling yields a (phonon-limited) maximum theoretical drift mobility and Hall mobility of μ=190 cm2/Vs and μH=270 cm2/Vs, respectively. Simplified equations for the Seebeck coefficient describe the measured values in the nondegenerate regime using a Seebeck scattering parameter of r=-0.55 (which is consistent with the determined Debye temperature), and provide an estimate of the Seebeck coefficient to lower electron concentrations. The simplified equations fail to describe the Seebeck coefficient around the Mott transition (nMott=5.5×1018 cm-3) from nondegenerate to degenerate electron concentrations, whereas the numerical modeling accurately describes this region.
Di Venanzio, C; Marinelli, Marco; Tonnetti, A; Verona-Rinati, G; Falco, M D; Pimpinella, M; Ciccotelli, A; De Stefano, S; Felici, G; Marangoni, F
2015-12-01
To characterize a synthetic diamond dosimeter (PTW Freiburg microDiamond 60019) in high dose-per-pulse electron beams produced by an Intra Operative Radiation Therapy (IORT) dedicated accelerator. The dosimetric properties of the microDiamond were assessed under 6, 8 and 9 MeV electron beams by a NOVAC11 mobile accelerator (Sordina IORT Technologies S.p.A.). The characterization was carried out with dose-per-pulse ranging from 26 to 105 mGy per pulse. The microDiamond performance was compared with an Advanced Markus ionization chamber and a PTW silicon diode E in terms of dose linearity, percentage depth dose (PDD) curves, beam profiles and output factors. A good linearity of the microDiamond response was verified in the dose range from 0.2 Gy to 28 Gy. A sensitivity of 1.29 nC/Gy was measured under IORT electron beams, resulting within 1% with respect to the one obtained in reference condition under (60)Co gamma irradiation. PDD measurements were found in agreement with the ones by the reference dosimeters, with differences in R50 values below 0.3 mm. Profile measurements evidenced a high spatial resolution of the microDiamond, slightly worse than the one of the silicon diode. The penumbra widths measured by the microDiamond resulted approximately 0.5 mm larger than the ones by the Silicon diode. Output factors measured by the microDiamond were found within 2% with those obtained by the Advanced Markus down to 3 cm diameter field sizes. The microDiamond dosimeter was demonstrated to be suitable for precise dosimetry in IORT applications under high dose-per-pulse conditions. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Direct measurement of cyclotron coherence times of high-mobility two-dimensional electron gases.
Wang, X; Hilton, D J; Reno, J L; Mittleman, D M; Kono, J
2010-06-07
We have observed long-lived (approximately 30 ps) coherent oscillations of charge carriers due to cyclotron resonance (CR) in high-mobility two-dimensional electrons in GaAs in perpendicular magnetic fields using time-domain terahertz spectroscopy. The observed coherent oscillations were fitted well by sinusoids with exponentially-decaying amplitudes, through which we were able to provide direct and precise measures for the decay times and oscillation frequencies simultaneously. This method thus overcomes the CR saturation effect, which is known to prevent determination of true CR linewidths in high-mobility electron systems using Fourier-transform infrared spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciocca, Mario, E-mail: mario.ciocca@cnao.it; Cantone, Marie-Claire; Veronese, Ivan
2012-02-01
Purpose: Failure mode and effects analysis (FMEA) represents a prospective approach for risk assessment. A multidisciplinary working group of the Italian Association for Medical Physics applied FMEA to electron beam intraoperative radiation therapy (IORT) delivered using mobile linear accelerators, aiming at preventing accidental exposures to the patient. Methods and Materials: FMEA was applied to the IORT process, for the stages of the treatment delivery and verification, and consisted of three steps: 1) identification of the involved subprocesses; 2) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system,more » based on the product of three parameters (severity, frequency of occurrence and detectability, each ranging from 1 to 10); 3) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. Results: Twenty-four subprocesses were identified. Ten potential failure modes were found and scored, in terms of RPN, in the range of 42-216. The most critical failure modes consisted of internal shield misalignment, wrong Monitor Unit calculation and incorrect data entry at treatment console. Potential causes of failure included shield displacement, human errors, such as underestimation of CTV extension, mainly because of lack of adequate training and time pressures, failure in the communication between operators, and machine malfunctioning. The main effects of failure were represented by CTV underdose, wrong dose distribution and/or delivery, unintended normal tissue irradiation. As additional safety measures, the utilization of a dedicated staff for IORT, double-checking of MU calculation and data entry and finally implementation of in vivo dosimetry were suggested. Conclusions: FMEA appeared as a useful tool for prospective evaluation of patient safety in radiotherapy. The application of this method to IORT lead to identify three safety measures for risk mitigation.« less
NASA Astrophysics Data System (ADS)
Biscaras, Johan; Hurand, S.; Palma, C.; Lesueur, J.; Bergeal, N.; Leboeuf, D.; Proust, C.; Rastogi, A.; Budhani, R. C.
2013-03-01
Transition metal oxides display a great variety of quantum electronic behaviors where correlations often play an important role. The achievement of high quality epitaxial interfaces involving such materials gives a unique opportunity to engineer artificial materials where new electronic orders take place. It has been shown recently that a two-dimensional electron gas 2DEG could form at the interface of two insulators such as LaAlO3 and SrTiO3, or LaTiO3 (a Mott insulator) and SrTiO3. We show that a superconducting two-dimensional electron gas is formed at the LaTiO3/SrTiO3 interface whose properties can be modulated by field effect using a metallic gate on the back of the substrate. The gas consists of two types of carriers : a majority of low-mobility carriers always present, and a few high-mobility ones that can be injected by electrostatic doping. The calculation of the electrons spatial distribution in the confinement potential shows that the high-mobility electrons responsible for superconductivity set at the edge of the gas whose extension can be tuned by field effect.
NASA Astrophysics Data System (ADS)
Mante, Pierre-Adrien; Stoumpos, Constantinos C.; Kanatzidis, Mercouri G.; Yartsev, Arkady
2017-02-01
Despite the great amount of attention CH3NH3PbI3 has received for its solar cell application, intrinsic properties of this material are still largely unknown. Mobility of charges is a quintessential property in this aspect; however, there is still no clear understanding of electron transport, as reported values span over three orders of magnitude. Here we develop a method to measure the electron and hole deformation potentials using coherent acoustic phonons generated by femtosecond laser pulses. We apply this method to characterize a CH3NH3PbI3 single crystal. We measure the acoustic phonon properties and characterize electron-acoustic phonon scattering. Then, using the deformation potential theory, we calculate the carrier intrinsic mobility and compare it to the reported experimental and theoretical values. Our results reveal high electron and hole mobilities of 2,800 and 9,400 cm2 V-1 s-1, respectively. Comparison with literature values of mobility demonstrates the potential role played by polarons in charge transport in CH3NH3PbI3.
Evaluation of electron mobility in InSb quantum wells by means of percentage-impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishima, T. D.; Edirisooriya, M.; Santos, M. B.
2014-05-15
In order to quantitatively analyze the contribution of each scattering factor toward the total carrier mobility, we use a new convenient figure-of-merit, named a percentage impact. The mobility limit due to a scattering factor, which is widely used to summarize a scattering analysis, has its own advantage. However, a mobility limit is not quite appropriate for the above purpose. A comprehensive understanding of the difference in contribution among many scattering factors toward the total carrier mobility can be obtained by evaluating percentage impacts of scattering factors, which can be straightforwardly calculated from their mobility limits and the total mobility. Ourmore » percentage impact analysis shows that threading dislocation is one of the dominant scattering factors for the electron transport in InSb quantum wells at room temperature.« less
Jandera, Pavel; Vyňuchalová, Kateřina; Nečilová, Kateřina
2013-11-22
Combined effects of temperature and mobile-phase composition on retention and separation selectivity of phenolic acids and flavonoid compounds were studied in liquid chromatography on a polydentate Blaze C8 silica based column. The temperature effects on the retention can be described by van't Hoff equation. Good linearity of lnk versus 1/T graphs indicates that the retention is controlled by a single mechanism in the mobile phase and temperature range studied. Enthalpic and entropic contributions to the retention were calculated from the regression lines. Generally, enthalpic contributions control the retention at lower temperatures and in mobile phases with lower concentrations of methanol in water. Semi-empirical retention models describe the simultaneous effects of temperature and the volume fraction of the organic solvent in the mobile phase. Using the linear free energy-retention model, selective dipolarity/polarizability, hydrogen-bond donor, hydrogen-bond acceptor and molecular size contributions to retention were estimated at various mobile phase compositions and temperatures. In addition to mobile phase gradients, temperature programming can be used to reduce separation times. Copyright © 2013 Elsevier B.V. All rights reserved.
Analogue and digital linear modulation techniques for mobile satellite
NASA Technical Reports Server (NTRS)
Whitmarsh, W. J.; Bateman, A.; Mcgeehan, J. P.
1990-01-01
The choice of modulation format for a mobile satellite service is complex. The subjective performance is summarized of candidate schemes and voice coder technologies. It is shown that good performance can be achieved with both analogue and digital voice systems, although the analogue system gives superior performance in fading. The results highlight the need for flexibility in the choice of signaling format. Linear transceiver technology capable of using many forms of narrowband modulation is described.
Interface-Dependent Effective Mobility in Graphene Field-Effect Transistors
NASA Astrophysics Data System (ADS)
Ahlberg, Patrik; Hinnemo, Malkolm; Zhang, Shi-Li; Olsson, Jörgen
2018-03-01
By pretreating the substrate of a graphene field-effect transistor (G-FET), a stable unipolar transfer characteristic, instead of the typical V-shape ambipolar behavior, has been demonstrated. This behavior is achieved through functionalization of the SiO2/Si substrate that changes the SiO2 surface from hydrophilic to hydrophobic, in combination with postdeposition of an Al2O3 film by atomic layer deposition (ALD). Consequently, the back-gated G-FET is found to have increased apparent hole mobility and suppressed apparent electron mobility. Furthermore, with addition of a top-gate electrode, the G-FET is in a double-gate configuration with independent top- or back-gate control. The observed difference in mobility is shown to also be dependent on the top-gate bias, with more pronounced effect at higher electric field. Thus, the combination of top and bottom gates allows control of the G-FET's electron and hole mobilities, i.e., of the transfer behavior. Based on these observations, it is proposed that polar ligands are introduced during the ALD step and, depending on their polarization, result in an apparent increase of the effective hole mobility and an apparent suppressed effective electron mobility.
Research the mobile phone operation interfaces for vision-impairment.
Yao, Yen-Ting; Leung, Cherng-Yee
2012-01-01
Due to the vision-impaired users commonly having difficulty with mobile-phone function operations and adaption any manufacturer's user interface design, the goals for this research are established for evaluating how to improve for them the function operation convenience and user interfaces of either mobile phones or electronic appliances in the market currently. After applying collecting back 30 effective questionnaires from 30 vision-impairment, the comments have been concluded from this research include: (1) All mobile phone manufactures commonly ignorant of the vision-impairment difficulty with operating mobile phone user interfaces; (2) The vision-impairment preferential with audio alert signals; (3) The vision-impairment incapable of mobile-phone procurement independently unless with assistance from others; (4) Preferential with adding touch-usage interface design by the vision-impairment; in contrast with the least requirement for such functions as braille, enlarging keystroke size and diversifying-function control panel. With exploring the vision-impairment's necessary improvements and obstacles for mobile phone interface operation, this research is established with goals for offering reference possibly applied in electronic appliance design and . Hopefully, the analysis results of this research could be used as data references for designing electronic and high-tech products and promoting more usage convenience for those vision-impaired.
NASA Astrophysics Data System (ADS)
Tangi, Malleswararao; De, Arpan; Shivaprasad, S. M.
2018-01-01
We report the molecular beam epitaxy growth of device quality InN films on GaN epilayer and nano-wall network (NWN) templates deposited on c-sapphire by varying the film thickness up to 1 μm. The careful experiments are directed towards obtaining high mobility InN layers having a low band gap with improved crystal quality. The dislocation density is quantified by using high resolution X-ray diffraction rocking curve broadening values of symmetric and asymmetric reflections, respectively. We observe that the dislocation density of the InN films grown on GaN NWN is less than that of the films grown on the GaN epilayer. This is attributed to the nanoepitaxial lateral overlayer growth (ELOG) process, where the presence of voids at the interface of InN/GaN NWN prevents the propagation of dislocation lines into the InN epilayers, thereby causing less defects in the overgrown InN films. Thus, this new adaptation of the nano-ELOG growth process enables us to prepare InN layers with high electron mobility. The obtained electron mobility of 2121 cm2/Vs for 1 μm thick InN/GaN NWN is comparable with the literature values of similar thickness InN films. Furthermore, in order to understand the reasons that limit electron mobility, the charge neutrality condition is employed to study the variation of electron mobility as a function of dislocation density and carrier concentration. Overall, this study provides a route to attaining improved crystal quality and electronic properties of InN films.
Saeki, Akinori; Koizumi, Yoshiko; Aida, Takuzo; Seki, Shu
2012-08-21
Si-based inorganic electronics have long dominated the semiconductor industry. However, in recent years conjugated polymers have attracted increasing attention because such systems are flexible and offer the potential for low-cost, large-area production via roll-to-roll processing. The state-of-the-art organic conjugated molecular crystals can exhibit charge carrier mobilities (μ) that nearly match or even exceed that of amorphous silicon (1-10 cm(2) V(-1) s(-1)). The mean free path of the charge carriers estimated from these mobilities corresponds to the typical intersite (intermolecular) hopping distances in conjugated organic materials, which strongly suggests that the conduction model for the electronic band structure only applies to μ > 1 cm(2) V(-1) s(-1) for the translational motion of the charge carriers. However, to analyze the transport mechanism in organic electronics, researchers conventionally use a disorder formalism, where μ is usually less than 1 cm(2) V(-1) s(-1) and dominated by impurities, disorders, or defects that disturb the long-range translational motion. In this Account, we discuss the relationship between the alternating-current and direct-current mobilities of charge carriers, using time-resolved microwave conductivity (TRMC) and other techniques including field-effect transistor, time-of-flight, and space-charge limited current. TRMC measures the nanometer-scale mobility of charge carriers under an oscillating microwave electric field with no contact between the semiconductors and the metals. This separation allows us to evaluate the intrinsic charge carrier mobility with minimal trapping effects. We review a wide variety of organic electronics in terms of their charge carrier mobilities, and we describe recent studies of macromolecules, molecular crystals, and supramolecular architecture. For example, a rigid poly(phenylene-co-ethynylene) included in permethylated cyclodextrin shows a high intramolecular hole mobility of 0.5 cm(2) V(-1) s(-1), based on a combination of flash-photolysis TRMC and transient absorption spectroscopy (TAS) measurements. Single-crystal rubrene showed an ambipolarity with anisotropic charge carrier transport along each crystal axis on the nanometer scale. Finally, we describe the charge carrier mobility of a self-assembled nanotube consisting of a large π-plane of hexabenzocoronene (HBC) partially appended with an electron acceptor. The local (intratubular) charge carrier mobility reached 3 cm(2) V(-1) s(-1) for the nanotubes that possessed well-ordered π-stacking, but it dropped to 0.7 cm(2) V(-1) s(-1) in regions that contained greater amounts of the electron acceptor because those molecules reduced the structural integrity of π-stacked HBC arrays. Interestingly, the long-range (intertubular) charge carrier mobility was on the order of 10(-4) cm(2) V(-1) s(-1) and monotonically decreased when the acceptor content was increased. These results suggest the importance of investigating charge carrier mobilities by frequency-dependent charge carrier motion for the development of more efficient organic electronic devices.
Rylene and related diimides for organic electronics.
Zhan, Xiaowei; Facchetti, Antonio; Barlow, Stephen; Marks, Tobin J; Ratner, Mark A; Wasielewski, Michael R; Marder, Seth R
2011-01-11
Organic electron-transporting materials are essential for the fabrication of organic p-n junctions, photovoltaic cells, n-channel field-effect transistors, and complementary logic circuits. Rylene diimides are a robust, versatile class of polycyclic aromatic electron-transport materials with excellent thermal and oxidative stability, high electron affinities, and, in many cases, high electron mobilities; they are, therefore, promising candidates for a variety of organic electronics applications. In this review, recent developments in the area of high-electron-mobility diimides based on rylenes and related aromatic cores, particularly perylene- and naphthalene-diimide-based small molecules and polymers, for application in high-performance organic field-effect transistors and photovoltaic cells are summarized and analyzed.
Lazarus, Geraldine Genevive; Revaprasadu, Neerish; López-Viota, Julián; Singh, Moganavelli
2014-09-01
Gold nanoparticles have attracted strong biomedical interest for drug delivery due to their low toxic nature, surface plasmon resonance and capability of increasing the stability of the payload. However, gene transfection represents another important biological application. Considering that cellular barriers keep enclosed their secret to deliver genes using nanoparticles, an important step can be achieved by studying the functionalization of nanoparticles with DNA. In the present contribution the synthesis of nanoparticles consisting of a gold core coated with one or more layers of amino acid (l-lysine), and cationic polyelectrolytes (poly-ethyleneimine and poly-l-lysine) is reported. All nanoparticles were subjected to dynamic light scattering, electrophoretic mobility measurements, UV-vis optical spectrophotometry analysis and transmission electron microscopy imaging. In addition, the adsorption of DNA plasmid (pSGS) with linear and supercoiled configurations was studied for those gold nanoparticles under the most suitable surface modifications. Preliminary results showed that the gold nanoparticles functionalized with poly-ethyleneimine and poly-l-lysine, respectively, and bound to linear DNA configurations, present in absolute value a higher electrophoretic mobility irrespective of the pH of the media, compared to the supercoiled and nicked configuration. The findings from this study suggest that poly-ethyleneimine and poly-l-lysine functionalized gold nanoparticles are biocompatible and may be promising in the chemical design and future optimization of nanostructures for biomedical applications such as gene and drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.
Novel band structures in silicene on monolayer zinc sulfide substrate.
Li, Sheng-shi; Zhang, Chang-wen; Yan, Shi-shen; Hu, Shu-jun; Ji, Wei-xiao; Wang, Pei-ji; Li, Ping
2014-10-01
Opening a sizable band gap in the zero-gap silicene without lowering the carrier mobility is a key issue for its application in nanoelectronics. Based on first-principles calculations, we find that the interaction energies are in the range of -0.09‒0.3 eV per Si atom, indicating a weak interaction between silicene and ZnS monolayer and the ABZn stacking is the most stable pattern. The band gap of silicene can be effectively tuned ranging from 0.025 to 1.05 eV in silicene and ZnS heterobilayer (Si/ZnS HBL). An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern, interlayer spacing and external strain effects on silicene. Interestingly, the characteristics of Dirac cone with a nearly linear band dispersion relation of silicene can be preserved in the ABS pattern which is a metastable state, accompanied by a small electron effective mass and thus the carrier mobility is expected not to degrade much. These provide a possible way to design effective FETs out of silicene on a ZnS monolayer.
Ultra-high vacuum photoelectron linear accelerator
Yu, David U.L.; Luo, Yan
2013-07-16
An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.
Charge-carrier mobilities in Cd(0.8)Zn(0.2)Te single crystals used as nuclear radiation detectors
NASA Technical Reports Server (NTRS)
Burshtein, Z.; Jayatirtha, H. N.; Burger, A.; Butler, J. F.; Apotovsky, B.; Doty, F. P.
1993-01-01
Charge-carrier mobilities were measured for the first time in Cd(0.8)Zn(0.2)Te single crystals using time-of-flight measurements of charge carriers produced by short (10 ns) light pulses from a frequency-doubled Nd:YAG laser (532 nm). The electron mobility displayed a T exp -1.1 dependence on the absolute temperature T in the range 200-320 K, with a room-temperature mobility of 1350 sq cm/V s. The hole mobility displayed a T exp -2.0 dependence in the same temperature range, with a room-temperature mobility of 120 sq cm/V s. Cd(0.8)Zn(0.2)Te appears to be a very favorable material for a room-temperature electronic nuclear radiation detector.
Zhou, Jiawei; Zhu, Hangtian; Liu, Te-Huan; Song, Qichen; He, Ran; Mao, Jun; Liu, Zihang; Ren, Wuyang; Liao, Bolin; Singh, David J; Ren, Zhifeng; Chen, Gang
2018-04-30
Modern society relies on high charge mobility for efficient energy production and fast information technologies. The power factor of a material-the combination of electrical conductivity and Seebeck coefficient-measures its ability to extract electrical power from temperature differences. Recent advancements in thermoelectric materials have achieved enhanced Seebeck coefficient by manipulating the electronic band structure. However, this approach generally applies at relatively low conductivities, preventing the realization of exceptionally high-power factors. In contrast, half-Heusler semiconductors have been shown to break through that barrier in a way that could not be explained. Here, we show that symmetry-protected orbital interactions can steer electron-acoustic phonon interactions towards high mobility. This high-mobility regime enables large power factors in half-Heuslers, well above the maximum measured values. We anticipate that our understanding will spark new routes to search for better thermoelectric materials, and to discover high electron mobility semiconductors for electronic and photonic applications.
NASA Astrophysics Data System (ADS)
Tsai, Jenn-Kai; Chen, Y. L.; Gau, M. H.; Pang, W. Y.; Hsu, Y. C.; Lo, Ikai; Hsieh, C. H.
2008-03-01
In this study, AlGaN/GaN high electron mobility transistor (HEMT) structure was grow on GaN template substrate radio frequency plasma assisted molecular beam epitaxy (MBE) equipped with an EPI UNI-Bulb nitrogen plasma source. The undoped GaN template substrate was grown on c-sapphire substrate by metal organic vapor phase epitaxy system (MOPVD). After growth of MOVPE and MBE, the samples are characterized by double crystal X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (SEM), atomic force microscopy (AFM), and Hall effect measurements. We found that the RMS roughness of template substrate play the major role in got the high value of mobility on AlGaN/GaN HEMT. When the roughness was lower than 0.77 nm in a 25 μm x 25 μm area, the mobility of HEMT at the temperature of 77 K was over 10000 cm^2/Vs.
InP Based Ternary And Quaternary Thin Film Structures On Large Areas Grown By LP-MOVPE
NASA Astrophysics Data System (ADS)
Schmitz, D.; Strauch, , G.; Jurgensen, H.; Heyen, M.; Harde, P.
1989-11-01
Using low pressure MOVPE and higher linear flow velocities high purity GalnAs/lnP and GalnAsP heterostructures can be prepared. Excellent homogeneity in thickness, composition, and doping on a 2" InP substrate can be realized by this approach for optimized conditions. The low growth rates required for the deposition of very narrow well structures are achieved by selecting reduced pressures of the group III and group V compounds used for deposition. The method yields structures with high electron mobilities of the two dimensional electron gas in the well and narrow PL (i.e. 2.2 meV for 20 nm wells) line widths, which is indicative of low impurity incorporation and abrupt heterojunctions. The observed energy shifts (up to 528 meV) demonstrate the large range of bandgap variation attainable by this method. A study of dopant incorporation shows, that Zn yields steep transitions in InGaAs.
First-principles studies of electron transport in Ga2O3
NASA Astrophysics Data System (ADS)
Kang, Youngho; Krishnaswamy, Karthik; Peelaers, Hartwin; van de Walle, Chris G.
Ga2O3 is a wide-gap semiconductor with a monoclinic crystal structure and a band gap of 4.8 eV. Its high carrier mobility and large band gap have attracted a lot of attention for use in high power electronics and transparent conductors. Despite its potential for adoption in these applications, an understanding of its carrier transport properties is still lacking. In this study we use first-principles calculations to analyze and compute the electron scattering rates in Ga2O3. Scattering due to ionized impurities and polar longitudinal-optical (LO) phonon is taken into account. We find that the electron mobility is nearly isotropic, despite the low-symmetry monoclinic structure of Ga2O3. At low carrier densities ( 1017 cm-3), the mobility is limited by LO phonon scattering. Scattering by ionized impurities becomes increasingly important at higher carrier densities. This type of scattering is enhanced when compensating native point defects are present; in particular, gallium vacancies, which are triply negatively charged, can have a strong effect on mobility. These effects explain the downturn in mobility observed in experiments at high carrier densities. This work was supported by ARO and NSF.
Homoepitaxial graphene tunnel barriers for spin transport (Presentation Recording)
NASA Astrophysics Data System (ADS)
Friedman, Adam L.
2015-09-01
Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate homoepitaxial tunnel barrier devices in which graphene serves as both the tunnel barrier and the high mobility transport channel. Beginning with multilayer graphene, we fluorinate or hydrogenate the top layer to decouple it from the bottom layer, so that it serves as a single monolayer tunnel barrier for both charge and spin injection into the lower graphene transport channel. We demonstrate successful tunneling by measuring non-linear IV curves, and a weakly temperature dependent zero bias resistance. We perform lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies (~200 ps). However, we also demonstrate the highest spin polarization efficiencies (~45%) yet measured in graphene-based spin devices [1]. [1] A.L. Friedman, et al., Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport, Nat. Comm. 5, 3161 (2014).
1982-02-25
However, because the mobility of the ions is much smaller than the mobility of the electrons (for cesium i = 1/500 Me), and because of ion...space applications of this high temperature in- sulation. Use of glass-alumina insulation for motors in mobile applications would reduce cooling...present and/or mobile only during irradiation. VII-7-7 WS 710 01AS$ AesowRpIOr MEA8IJRtED MOt AN FTER L5 MvV ELECTRON NtADIATION Fig. 7 -- Growth of
Terahertz time-domain magnetospectroscopy of a high-mobility two-dimensional electron gas.
Wang, Xiangfeng; Hilton, David J; Ren, Lei; Mittleman, Daniel M; Kono, Junichiro; Reno, John L
2007-07-01
We have observed cyclotron resonance in a high-mobility GaAs/AlGaAs two-dimensional electron gas by using the techniques of terahertz time-domain spectroscopy combined with magnetic fields. From this, we calculate the real and imaginary parts of the diagonal elements of the magnetoconductivity tensor, which in turn allows us to extract the concentration, effective mass, and scattering time of the electrons in the sample. We demonstrate the utility of ultrafast terahertz spectroscopy, which can recover the true linewidth of cyclotron resonance in a high-mobility (>10(6) cm(2)V(-1)s(-1)) sample without being affected by the saturation effect.
Ambipolar nature of dimethyl benzo difuran (DMBDF) molecule: A charge transport study
NASA Astrophysics Data System (ADS)
Sahoo, Smruti Ranjan; Sahu, Sridhar
2017-05-01
We describe a theoretical study of the charge transport properties of the organic dimethyl benzo difuran (DMBDF) molecule based on density functional theory (DFT). Reorganization energy, ionization potential (IP), electron affinity (EA), energy gaps, transfer integral (t) and charge mobility (μ) has been studied to depict the transport properties in the conjugated organic molecules. We computed, large homo transfer integral and IP value leading to high hole mobility (4.46 cm2/V sec). However, the electron reorganization energy (0.34 eV) and the electron mobility of 1.62 cm2/V sec, infers that the DMBDF organic molecule bears an ambipolar character.
Wall charging of a helicon antenna wrapped plasma filled dielectric tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barada, Kshitish K., E-mail: kbarada@physics.ucla.edu; Chattopadhyay, P. K., E-mail: pkchatto@ipr.res.in; Ghosh, J.
2015-01-15
Dielectric wall charging of a cylindrical glass wall surrounded by a helicon antenna of 18 cm length is measured in a linear helicon plasma device with a diverging magnetic field. The ions because of their lesser mobility do not respond to the high frequency electric field and the electrons charge the wall to a negative DC potential also known as the DC self-bias. The wall potential in this device is characterized for different neutral pressure, magnetic field, and radio frequency (RF) power. Axial variation of wall potential shows higher self-bias potentials near the antenna rings. Ion magnetization in the source chambermore » increases both wall charging and plasma potential of the source due to confinement.« less
Xiao, Jin; Long, Mengqiu; Zhang, Xiaojiao; Ouyang, Jun; Xu, Hui; Gao, Yongli
2015-01-01
We have investigated the electronic structure and carrier mobility of four types of phosphorous monolayer sheet (α-P, β-P,γ-P and δ-P) using density functional theory combined with Boltzmann transport method and relaxation time approximation. It is shown that α-P, β-P and γ-P are indirect gap semiconductors, while δ-P is a direct one. All four sheets have ultrahigh carrier mobility and show anisotropy in-plane. The highest mobility value is ~3 × 105 cm2V−1s−1, which is comparable to that of graphene. Because of the huge difference between the hole and electron mobilities, α-P, γ-P and δ-P sheets can be considered as n-type semiconductors, and β-P sheet can be considered as a p-type semiconductor. Our results suggest that phosphorous monolayer sheets can be considered as a new type of two dimensional materials for applications in optoelectronics and nanoelectronic devices. PMID:26035176
High Mobility SiGe/Si Transistor Structures on Sapphire Substrates Using Ion Implantation
NASA Technical Reports Server (NTRS)
Alterovitz, S. A.; Mueller, C. H.; Croke, E. T.
2003-01-01
High mobility n-type SiGe/Si transistor structures have been fabricated on sapphire substrates by ion implanting phosphorus ions into strained 100 Angstrom thick silicon channels for the first time. The strained Si channels were sandwiched between Si(sub 0.7)Ge(sub 0.3) layers, which, in turn, were deposited on Si(sub 0.7)Ge(sub 0.3) virtual substrates and graded SiGe buffer layers. After the molecular beam epitaxy (MBE) film growth process was completed, ion thick silicon channels implantation and post-annealing were used to introduce donors. The phosphorous ions were preferentially located in the Si channel at a peak concentration of approximately 1x10(exp 18)/cu cm. Room temperature electron mobilities exceeding 750 sq cm/V-sec at carrier densities of 1x10(exp 12)/sq cm were measured. Electron concentration appears to be the key factor that determines mobility, with the highest mobility observed for electron densities in the 1 - 2x10(exp 12)/sq cm range.
NASA Astrophysics Data System (ADS)
Luniov, S. V.; Zimych, A. I.; Nazarchuk, P. F.; Maslyuk, V. T.; Megela, I. G.
2016-12-01
Temperature dependencies for concentration of electrons and the Hall mobility for unirradiated and irradiated by the flow of electrons ? single crystals ?, with the energy of ?, for different values of uniaxial pressures along the crystallographic directions ?, ? and ? are obtained on the basis of piezo-Hall effect measurements. Non-typical growth of the Hall mobility of electrons for irradiated single crystals ? in comparison with unirradiated with the increasing of value of uniaxial pressures along the crystallographic directions ? (for the entire range of the investigated temperatures) and ? (to temperatures ?) has been revealed. Such an effect of the Hall mobility increase for uniaxially deformed single crystals ? is explained by the reduction of gradients of a resistance as a result of reduction in the amplitude of a large-scale potential with deformation and concentration of charged A-centers in the process of their recharge by the increasing of uniaxial pressure and consequently the probability of scattering on these centers. Theoretical calculations for temperature dependencies of the Hall mobility for uniaxially deformed single crystals ? in terms of the electrons scattering on the ions of shallow donors, acoustic, optical and intervalley phonons, regions of disordering and large-scale potential is good conformed to the corresponding experimental results at temperatures T<220 K for the case of uniaxial pressures along the crystallographic directions ? and ? and for temperatures ? when the uniaxial pressure is directed along the crystallographic directions ?. The mechanism of electron scattering on a charged radiation defects (which correspond to the deep energy levels of A-centers) 'is turned off' for the given temperatures due to the uniaxial pressure. Reduction of the Hall mobility in transition through a maximum of dependence ? with the increasing temperature for cases of the uniaxial deformation of the irradiated single crystals ? along the crystallographic directions ? and ? is explained by the deforming redistribution of electrons between the minima of conduction band of germanium with different mobility.
NASA Astrophysics Data System (ADS)
Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji
2007-11-01
We investigated the electron-phonon coupling effects on the electronic transport properties of metallic (5,5)- and semiconducting (10,0)-carbon nanotube devices. We calculated the conductance and mobility of the carbon nanotubes with micron-order lengths at room temperature, using the time-dependent wave-packet approach based on the Kubo-Greenwood formula within a tight-binding approximation. We investigated the scattering effects of both longitudinal acoustic and optical phonon modes on the transport properties. The electron-optical phonon coupling decreases the conductance around the Fermi energy for the metallic carbon nanotubes, while the conductance of semiconductor nanotubes is decreased around the band edges by the acoustic phonons. Furthermore, we studied the Schottky-barrier effects on the mobility of the semiconducting carbon nanotube field-effect transistors for various gate voltages. We clarified how the electron mobilities of the devices are changed by the acoustic phonon.
Zhou, Yecheng; Deng, Wei-Qiao; Zhang, Hao-Li
2016-09-14
Cn-[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) crystals show very high hole mobilities in experiments. These high mobilities are beyond existing theory prediction. Here, we employed different quantum chemistry methods to investigate charge transfer in Cn-BTBT crystals and tried to find out the reasons for the underestimation in the theory. It was found that the hopping rate estimated by the Fermi Golden Rule is higher than that of the Marcus theory due to the high temperature approximation and failure at the classic limit. More importantly, molecular dynamics simulations revealed that the phonon induced fluctuation of electronic transfer integral is much larger than the average of the electronic transfer integral itself. Mobilities become higher if simulations implement the phonon-electron coupling. This conclusion indicates that the phonon-electron coupling promotes charge transfer in organic semi-conductors at room temperature.
NASA Astrophysics Data System (ADS)
Zhou, Yecheng; Deng, Wei-Qiao; Zhang, Hao-Li
2016-09-01
Cn-[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) crystals show very high hole mobilities in experiments. These high mobilities are beyond existing theory prediction. Here, we employed different quantum chemistry methods to investigate charge transfer in Cn-BTBT crystals and tried to find out the reasons for the underestimation in the theory. It was found that the hopping rate estimated by the Fermi Golden Rule is higher than that of the Marcus theory due to the high temperature approximation and failure at the classic limit. More importantly, molecular dynamics simulations revealed that the phonon induced fluctuation of electronic transfer integral is much larger than the average of the electronic transfer integral itself. Mobilities become higher if simulations implement the phonon-electron coupling. This conclusion indicates that the phonon-electron coupling promotes charge transfer in organic semi-conductors at room temperature.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-847] Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is...
ERIC Educational Resources Information Center
Hyman, Jack A.; Moser, Mary T.; Segala, Laura N.
2014-01-01
Mobile information technology is changing the education landscape by offering learners the opportunity to engage in asynchronous, ubiquitous instruction. While there is a proliferation of mobile content management systems being developed for the mobile Web and stand-alone mobile applications, few studies have addressed learner expectations and…
A Service Oriented Architecture to Integrate Mobile Assessment in Learning Management Systems
ERIC Educational Resources Information Center
Riad, A. M.; El-Ghareeb, H. A.
2008-01-01
Mobile Learning (M-Learning) is an approach to E-Learning that utilizes mobile devices. Learning Management System (LMS) should enable M-Learning. Unfortunately, M-Learning is not the same at each educational institution. Assessment is one of the learning activities that can be achieved electronically and via mobile device. Mobile assessment…
Roentgen, Uta R; Gelderblom, Gert Jan; de Witte, Luc P
2012-01-01
To develop a suitable mobility course for the assessment of mobility performance as part of a user evaluation of Electronic Mobility Aids (EMA) aimed at obstacle detection and orientation. A review of the literature led to a list of critical factors for the assessment of mobility performance of persons who are visually impaired. Based upon that list, method, test situations, and determining elements were selected and presented to Dutch orientation and mobility experts. Due to expert advice and a pilot study, minor changes were made and the final version was used for the evaluation of two EMA by eight persons who are visually impaired. The results of the literature study are summarized in an overview of critical factors for the assessment of the mobility performance of persons who are visually impaired. Applied to the requirements of the above mentioned user evaluation a replicable indoor mobility course has been described in detail and tested. Based upon evidence from literature an indoor mobility course has been developed, which was sensitive to assess differences in mobility incidents and obstacle detection when using an EMA compared to the regular mobility aid. Experts' opinion confirmed its face and content validity.
Magnetotransport studies of mobility limiting mechanisms in undoped Si/SiGe heterostructures
NASA Astrophysics Data System (ADS)
Mi, X.; Hazard, T. M.; Payette, C.; Wang, K.; Zajac, D. M.; Cady, J. V.; Petta, J. R.
2015-07-01
We perform detailed magnetotransport studies on two-dimensional electron gases (2DEGs) formed in undoped Si/SiGe heterostructures in order to identify the electron mobility limiting mechanisms. By analyzing data from 26 different heterostructures, we observe a strong correlation between the background oxygen concentration in the Si quantum well and the maximum mobility. The highest-quality wafer supports a 2DEG with mobility μ =160 000 cm 2/Vs at a density n =2.17 ×1011 /cm 2 and exhibits a metal-to-insulator transition at a critical density nc=0.46 ×1011 /cm 2. We extract a valley splitting Δv˜150 μ eV at a magnetic field B =1.8 T. These results provide evidence that undoped Si/SiGe heterostructures are suitable for the fabrication of few-electron quantum dots.
Electron mobility in modulation-doped heterostructures
NASA Technical Reports Server (NTRS)
Walukiewicz, W.; Ruda, H. E.; Lagowski, J.; Gatos, H. C.
1984-01-01
A model for electron mobility in a two-dimensional electron gas confined in a triangular well was developed. All major scattering processes (deformation potential and piezoelectric acoustic, polar optical, ionized impurity, and alloy disorder) were included, as well as intrasubband and intersubband scattering. The model is applied to two types of modulation-doped heterostructures, namely GaAs-GaAlAs and In(0.53)Ga(0.47)As-Al(0.52)In(0.48)As. In the former case, phonons and remote ionized impurities ultimately limit the mobility, whereas in the latter, alloy disorder is a predominant scattering process at low temperatures. The calculated mobilities are in very good agreement with recently reported experimental characteristics for both GaAs-Ga(1-x)Al(x)As and In(0.53)Ga(0.47)As-Al(0.52)In(0.48)As modulation-doped heterostructures.
Measurement of acetates in air using differential ion mobility spectrometer
NASA Astrophysics Data System (ADS)
Szczurek, Andrzej; Maciejewska, Monika; Zajiczek, Żaneta; Maziejuk, Mirosław
2017-11-01
Volatile organic compounds are one of the most important group of air pollutants. Potential health and environmental problems resulting from their emission prompted the requirement for monitoring these species. It motivates development of new measurement techniques which are fast, cost effective, reliable and field deployable. One of novel approaches is ion mobility spectrometry. It dwells on ion separation in electric field, based on differences in ion mobility. Many variants of this method are developed. In this wok, differential ion mobility spectrometry (DMS) was considered in respect of acetate measurements in air. It was demonstrated that DMS offers linear response to methyl, ethyl, propyl and butyl acetate in concentration range from 0.3 ppm to 7 ppm. Positive ions spectrum has to be utilised for this purpose. We showed that fragments of DMS spectrum which secure linearity are compound-specific. The obtained results are promising from the application point of view.
Ab initio calculation of electron–phonon coupling in monoclinic β-Ga{sub 2}O{sub 3} crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Krishnendu, E-mail: kghosh3@buffalo.edu; Singisetti, Uttam, E-mail: uttamsin@buffalo.edu
2016-08-15
The interaction between electrons and vibrational modes in monoclinic β-Ga{sub 2}O{sub 3} is theoretically investigated using ab-initio calculations. The large primitive cell of β-Ga{sub 2}O{sub 3} gives rise to 30 phonon modes all of which are taken into account in transport calculation. The electron-phonon interaction is calculated under density functional perturbation theory and then interpolated using Wannier–Fourier interpolation. The long-range interaction elements between electrons and polar optical phonon (POP) modes are calculated separately using the Born effective charge tensor. The direction dependence of the long-range POP coupling in a monoclinic crystal is explored and is included in the transport calculations.more » Scattering rate calculations are done using the Fermi golden rule followed by solving the Boltzmann transport equation using the Rode's method to estimate low field mobility. A room temperature mobility of 115 cm{sup 2}/V s is observed. Comparison with recent experimentally reported mobility is done for a wide range of temperatures (30 K–650 K). It is also found that the POP interaction dominates the electron mobility under low electric field conditions. The relative contribution of the different POP modes is analyzed and the mode 21 meV POP is found to have the highest impact on low field electron mobility at room temperature.« less
Electron confinement at diffuse ZnMgO/ZnO interfaces
NASA Astrophysics Data System (ADS)
Coke, Maddison L.; Kennedy, Oscar W.; Sagar, James T.; Warburton, Paul A.
2017-01-01
Abrupt interfaces between ZnMgO and ZnO are strained due to lattice mismatch. This strain is relaxed if there is a gradual incorporation of Mg during growth, resulting in a diffuse interface. This strain relaxation is however accompanied by reduced confinement and enhanced Mg-ion scattering of the confined electrons at the interface. Here we experimentally study the electronic transport properties of the diffuse heteroepitaxial interface between single-crystal ZnO and ZnMgO films grown by molecular-beam epitaxy. The spatial extent of the interface region is controlled during growth by varying the zinc flux. We show that, as the spatial extent of the graded interface is reduced, the enhancement of electron mobility due to electron confinement more than compensates for any suppression of mobility due to increased strain. Furthermore, we determine the extent to which scattering of impurities in the ZnO substrate limits the electron mobility in diffuse ZnMgO-ZnO interfaces.
Reciprocal Associations between Electronic Media Use and Behavioral Difficulties in Preschoolers.
Poulain, Tanja; Vogel, Mandy; Neef, Madlen; Abicht, Franziska; Hilbert, Anja; Genuneit, Jon; Körner, Antje; Kiess, Wieland
2018-04-21
The use of electronic media has increased substantially and is already observable in young children. The present study explored associations of preschoolers’ use of electronic media with age, gender, and socio-economic status, investigated time trends, and examined reciprocal longitudinal relations between children’s use of electronic media and their behavioral difficulties. The study participants included 527 German two- to six-year-old children whose parents had provided information on their use of electronic media and their behavioral difficulties at two time points, with approximately 12 months between baseline and follow-up. The analyses revealed that older vs. younger children, as well as children from families with a lower vs. higher socio-economic status, were more often reported to use electronic media. Furthermore, the usage of mobile phones increased significantly between 2011 and 2016. Most interestingly, baseline usage of computer/Internet predicted more emotional and conduct problems at follow-up, and baseline usage of mobile phones was associated with more conduct problems and hyperactivity or inattention at follow-up. Peer relationship problems at baseline, on the other hand, increased the likelihood of using computer/Internet and mobile phones at follow-up. The findings indicate that preschoolers’ use of electronic media, especially newer media such as computer/Internet and mobile phones, and their behavioral difficulties are mutually related over time.
Reciprocal Associations between Electronic Media Use and Behavioral Difficulties in Preschoolers
Vogel, Mandy; Neef, Madlen; Abicht, Franziska; Hilbert, Anja; Körner, Antje; Kiess, Wieland
2018-01-01
The use of electronic media has increased substantially and is already observable in young children. The present study explored associations of preschoolers’ use of electronic media with age, gender, and socio-economic status, investigated time trends, and examined reciprocal longitudinal relations between children’s use of electronic media and their behavioral difficulties. The study participants included 527 German two- to six-year-old children whose parents had provided information on their use of electronic media and their behavioral difficulties at two time points, with approximately 12 months between baseline and follow-up. The analyses revealed that older vs. younger children, as well as children from families with a lower vs. higher socio-economic status, were more often reported to use electronic media. Furthermore, the usage of mobile phones increased significantly between 2011 and 2016. Most interestingly, baseline usage of computer/Internet predicted more emotional and conduct problems at follow-up, and baseline usage of mobile phones was associated with more conduct problems and hyperactivity or inattention at follow-up. Peer relationship problems at baseline, on the other hand, increased the likelihood of using computer/Internet and mobile phones at follow-up. The findings indicate that preschoolers’ use of electronic media, especially newer media such as computer/Internet and mobile phones, and their behavioral difficulties are mutually related over time. PMID:29690498
Cerenkov emission of acoustic phonons electrically generated from three-dimensional Dirac semimetals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubakaddi, S. S., E-mail: sskubakaddi@gmail.com
2016-05-21
Cerenkov acoustic phonon emission is theoretically investigated in a three-dimensional Dirac semimetal (3DDS) when it is driven by a dc electric field E. Numerical calculations are made for Cd{sub 3}As{sub 2} in which mobility and electron concentration are large. We find that Cerenkov emission of acoustic phonons takes place when the electron drift velocity v{sub d} is greater than the sound velocity v{sub s}. This occurs at small E (∼few V/cm) due to large mobility. Frequency (ω{sub q}) and angular (θ) distribution of phonon emission spectrum P(ω{sub q}, θ) are studied for different electron drift velocities v{sub d} (i.e., differentmore » E) and electron concentrations n{sub e}. The frequency dependence of P(ω{sub q}, θ) shows a maximum P{sub m}(ω{sub q}, θ) at about ω{sub m} ≈ 1 THz and is found to increase with the increasing v{sub d} and n{sub e}. The value of ω{sub m} shifts to higher region for larger n{sub e}. It is found that ω{sub m}/n{sub e}{sup 1/3} and P{sub m}(ω{sub q}, θ)/n{sub e}{sup 2/3} are nearly constants. The latter is in contrast with the P{sub m}(ω{sub q}, θ)n{sub e}{sup 1/2 }= constant in conventional bulk semiconductor. Each maximum is followed by a vanishing spectrum at nearly “2k{sub f} cutoff,” where k{sub f} is the Fermi wave vector. Angular dependence of P(ω{sub q}, θ) and the intensity P(θ) of the phonon emission shows a maximum at an emission angle 45° and is found to increase with increasing v{sub d}. P(θ) is found to increase linearly with n{sub e} giving the ratio P(θ)/(n{sub e}v{sub d}) nearly a constant. We suggest that it is possible to have the controlled Cerenkov emission and generation of acoustic phonons with the proper choice of E, θ, and n{sub e}. 3DDS with large n{sub e} and mobility can be a good source of acoustic phonon generation in ∼THz regime.« less
NASA Astrophysics Data System (ADS)
Joyce, Hannah J.; Baig, Sarwat A.; Parkinson, Patrick; Davies, Christopher L.; Boland, Jessica L.; Tan, H. Hoe; Jagadish, Chennupati; Herz, Laura M.; Johnston, Michael B.
2017-06-01
Bare unpassivated GaAs nanowires feature relatively high electron mobilities (400-2100 cm2 V-1 s-1) and ultrashort charge carrier lifetimes (1-5 ps) at room temperature. These two properties are highly desirable for high speed optoelectronic devices, including photoreceivers, modulators and switches operating at microwave and terahertz frequencies. When engineering these GaAs nanowire-based devices, it is important to have a quantitative understanding of how the charge carrier mobility and lifetime can be tuned. Here we use optical-pump-terahertz-probe spectroscopy to quantify how mobility and lifetime depend on the nanowire surfaces and on carrier density in unpassivated GaAs nanowires. We also present two alternative frameworks for the analysis of nanowire photoconductivity: one based on plasmon resonance and the other based on Maxwell-Garnett effective medium theory with the nanowires modelled as prolate ellipsoids. We find the electron mobility decreases significantly with decreasing nanowire diameter, as charge carriers experience increased scattering at nanowire surfaces. Reducing the diameter from 50 nm to 30 nm degrades the electron mobility by up to 47%. Photoconductivity dynamics were dominated by trapping at saturable states existing at the nanowire surface, and the trapping rate was highest for the nanowires of narrowest diameter. The maximum surface recombination velocity, which occurs in the limit of all traps being empty, was calculated as 1.3 × 106 cm s-1. We note that when selecting the optimum nanowire diameter for an ultrafast device, there is a trade-off between achieving a short lifetime and a high carrier mobility. To achieve high speed GaAs nanowire devices featuring the highest charge carrier mobilities and shortest lifetimes, we recommend operating the devices at low charge carrier densities.
NASA Astrophysics Data System (ADS)
Alberi, K.; Fluegel, B.; Beaton, D. A.; Ptak, A. J.; Mascarenhas, A.
2012-07-01
Electrons in semiconductor alloys have generally been described in terms of Bloch states that evolve from constructive interference of electron waves scattering from perfectly periodic potentials, despite the loss of structural periodicity that occurs on alloying. Using the semiconductor alloy GaAs1-xNx as a prototype, we demonstrate a localized to delocalized transition of the electronic states at a percolation threshold, the emergence of a mobility edge, and the onset of an abrupt perturbation to the host GaAs electronic structure, shedding light on the evolution of electronic structure in these abnormal alloys.
Evaluation of Interference of Cellular Phones on Electronic Apex Locators: An In Vitro Study.
Sidhu, Preena; Shankargouda, Swapnil; Dicksit, Daniel DevaPrakash; Mahdey, Haydar Majeed; Muzaffar, Danish; Arora, Shelly
2016-04-01
Use of mobile phone has been prohibited in many hospitals to prevent interference with medical devices. Electromagnetic radiation emitted from cellular phones might interfere with electronic working length determination. The purpose of this in vitro study was to evaluate the effect of a smart phone (Samsung Galaxy Note Edge) on working length determination of electronic apex locators (EALs) Propex II and Rootor. Fifteen intact, non-carious single-rooted teeth were decoronated at the cementoenamel junction. Visually, working length was determined by using a #15 K-file under stereomicroscope (×20). The effect of cellular phones on electronic working length (EWL) was determined under 2 experimental settings: (1) in a closed room with poor signal strength and (2) in a polyclinic set up with good signal strength and 5 conditions: (1) electronically, without cellular phone in room; (2) electronically, with cellular phone in physical contact with EAL; (3) electronically, with mobile phone in physical contact with EAL and in calling mode for a period of 25 seconds; (4) electronically, mobile phone placed at a distance of 40 cm from the EAL; and (5) electronically, mobile phone placed at a distance of 40 cm and in calling mode for a period of 25 seconds. The EWL was measured 3 times per tooth under each condition. Stability of the readings was scored from 1 to 3: (1) good stability, (2) stable reading after 1 attempt, and (3) stable reading after 2 attempts. The data were compared by using analysis of variance. The EWL measurements were not influenced by the presence of cellular phone and could be determined under all experimental conditions. Within the limitations of this study, it can be concluded that mobile phones do not interfere with the EWL determination. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
A study on agent-based secure scheme for electronic medical record system.
Chen, Tzer-Long; Chung, Yu-Fang; Lin, Frank Y S
2012-06-01
Patient records, including doctors' diagnoses of diseases, trace of treatments and patients' conditions, nursing actions, and examination results from allied health profession departments, are the most important medical records of patients in medical systems. With patient records, medical staff can instantly understand the entire medical information of a patient so that, according to the patient's conditions, more accurate diagnoses and more appropriate in-depth treatments can be provided. Nevertheless, in such a modern society with booming information technologies, traditional paper-based patient records have faced a lot of problems, such as lack of uniform formats, low data mobility, slow data transfer, illegible handwritings, enormous and insufficient storage space, difficulty of conservation, being easily damaged, and low transferability. To improve such drawbacks, reduce medical costs, and advance medical quality, paper-based patient records are modified into electronic medical records and reformed into electronic patient records. However, since electronic patient records used in various hospitals are diverse and different, in consideration of cost, it is rather difficult to establish a compatible and complete integrated electronic patient records system to unify patient records from heterogeneous systems in hospitals. Moreover, as the booming of the Internet, it is no longer necessary to build an integrated system. Instead, doctors can instantly look up patients' complete information through the Internet access to electronic patient records as well as avoid the above difficulties. Nonetheless, the major problem of accessing to electronic patient records cross-hospital systems exists in the security of transmitting and accessing to the records in case of unauthorized medical personnels intercepting or stealing the information. This study applies the Mobile Agent scheme to cope with the problem. Since a Mobile Agent is a program, which can move among hosts and automatically disperse arithmetic processes, and moves from one host to another in heterogeneous network systems with the characteristics of autonomy and mobility, decreasing network traffic, reducing transfer lag, encapsulating protocol, availability on heterogeneous platforms, fault-tolerance, high flexibility, and personalization. However, since a Mobile Agent contacts and exchanges information with other hosts or agents on the Internet for rapid exchange and access to medical information, the security is threatened. In order to solve the problem, this study proposes a key management scheme based on Lagrange interpolation formulas and hierarchical management structure to make Mobile Agents a more secure and efficient access control scheme for electronic patient record systems when applied to the access of patients' personal electronic patient records cross hospitals. Meanwhile, with the comparison of security and efficacy analyses being the feasibility of validation scheme and the basis of better efficiency, the security of Mobile Agents in the process of operation can be guaranteed, key management efficacy can be advanced, and the security of the Mobile Agent system can be protected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borisenko, S. I., E-mail: sib@tpu.ru
2016-04-15
The dependence of the effective relaxation time on the electron concentration in A{sup III}–N nitrides in the case of electron scattering at polar longitudinal optical phonons is calculated by the marching method. The method takes into account the inelasticity of electron scattering at polar optical phonons for nitrides in the zinc-blende approximation. The calculations show a substantial increase in mobility in samples with a degenerate electron gas, if screening of the long-range potential of polar longitudinal optical phonons is taken into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayak, R. K.; Das, S.; Panda, A. K.
We show that sharp nonmonotic variation of low temperature electron mobility μ can be achieved in GaAs/Al{sub x}Ga{sub 1-x}As barrier delta-doped double quantum well structure due to quantum mechanical transfer of subband electron wave functions within the wells. We vary the potential profile of the coupled structure as a function of the doping concentration in order to bring the subbands into resonance such that the subband energy levels anticross and the eigen states of the coupled structure equally share both the wells thereby giving rise to a dip in mobility. When the wells are of equal widths, the dip inmore » mobility occurs under symmetric doping of the side barriers. In case of unequal well widths, the resonance can be obtained by suitable asymmetric variation of the doping concentrations. The dip in mobility becomes sharp and also the wavy nature of mobility takes a rectangular shape by increasing the barrier width. We show that the dip in mobility at resonance is governed by the interface roughness scattering through step like changes in the subband mobilities. It is also gratifying to show that the drop in mobility at the onset of occupation of second subband is substantially supressed through the quantum mechanical transfer of subband wave functions between the wells. Our results can be utilized for performance enhancement of coupled quantum well devices.« less
The Influence Factor Model for the Popularity of Mobile Phone without Considering the Price Factor
NASA Astrophysics Data System (ADS)
Long, Hongming; Peng, Diefei; Wu, Hailin; Yang, Zihui
2018-01-01
Based on the statistical data like economic development, social development, population indicator and so on, this paper establishes the linear regression model which influences the popularity rate of mobile phone users.
Pinning by rare defects and effective mobility for elastic interfaces in high dimensions
NASA Astrophysics Data System (ADS)
Cao, Xiangyu; Démery, Vincent; Rosso, Alberto
2018-06-01
The existence of a depinning transition for a high dimensional interface in a weakly disordered medium is controversial. Following Larkin arguments and a perturbative expansion, one expects a linear response with a renormalized mobility . In this paper, we compare these predictions with the exact solution of a fully connected model, which displays a finite critical force . At small disorder, we unveil an intermediary linear regime for characterized by the renormalized mobility . Our results suggest that in high dimension the critical force is always finite and determined by the effect of rare impurities that is missed by the perturbative expansion. However, the perturbative expansion correctly describes an intermediate regime that should be visible at small disorder.
NASA Astrophysics Data System (ADS)
Lai, William W.
Several pyrazine based cyano aza derivatives have been synthesized and electronic devices made from them. Hole and electron mobilities were measured using a time of flight (TOF) method with silicon wafers as both the substrate and charge carrier generation layer. The high density of charge carriers generated from silicon allowed for film layers as thin as 100nm and up to 250nm. Two compounds, 2,3,6,7-tetracyano-1,4,5,8-tetraazanapthalene (TCNN) and 2,3,6,7-tetracyano-9,10-dioctyl-1,4,5,6,9,10-hexaazaanthracene (DOA) were shown to be good electron acceptors. The potentials at which TCNN and DOA are reduced was -0.03 and -1.5 volts respectively. Electron mobilities of both compounds were found to be 2x10-5 cm2V˙s . The previously unreported oxidation potential of 2,3,6,7-tetracyano-9,10-dioctyl 1,4,5,6,9,10-hexaazaanthracene was measured and the hole mobility was determined to be 2x10-5 cm2V˙s . In the case of DOA, the charge carrier density of the electron carriers was comparable to that of the charge carrier density of the hole carriers. In contrast, the electron TOF signal of TCNN, which does not exhibit an oxidation, is greater than the hole TOF signal by roughly 200 fold. The inability for TCNN to act as a hole carrier was remedied by combining it with tetrathiafulvalene (TTF) as an electron donor. Crystals of the 1:1 complex were grown and the solved structure revealed segregated stacking. Conductivity measurements, by both two and four point methods determined the range of conductivity ranging from 10-5 to 10-6 Scm . The electron and hole mobility of the material was determined to be 2x10-5 and 2x10-6 cm2V˙s respectively. With the complementary TTF:TCNN system, the electron V-s and hole TOF signals were comparable, indicating a material that can equally conduct electrons or holes.
A new performance index for the repetitive motion of mobile manipulators.
Xiao, Lin; Zhang, Yunong
2014-02-01
A mobile manipulator is a robotic device composed of a mobile platform and a stationary manipulator fixed to the platform. To achieve the repetitive motion control of mobile manipulators, the mobile platform and the manipulator have to realize the repetitive motion simultaneously. To do so, a novel quadratic performance index is, for the first time, designed and presented in this paper, of which the effectiveness is analyzed by following a neural dynamics method. Then, a repetitive motion scheme is proposed by combining the criterion, physical constraints, and integrated kinematical equations of mobile manipulators, which is further reformulated as a quadratic programming (QP) subject to equality and bound constraints. In addition, two important Bridge theorems are established to prove that such a QP can be converted equivalently into a linear variational inequality, and then equivalently into a piecewise-linear projection equation (PLPE). A real-time numerical algorithm based on PLPE is thus developed and applied for the online solution of the resultant QP. Two tracking-path tasks demonstrate the effectiveness and accuracy of the repetitive motion scheme. In addition, comparisons between the nonrepetitive and repetitive motion further validate the superiority and novelty of the proposed scheme.
Model Predictive Control considering Reachable Range of Wheels for Leg / Wheel Mobile Robots
NASA Astrophysics Data System (ADS)
Suzuki, Naito; Nonaka, Kenichiro; Sekiguchi, Kazuma
2016-09-01
Obstacle avoidance is one of the important tasks for mobile robots. In this paper, we study obstacle avoidance control for mobile robots equipped with four legs comprised of three DoF SCARA leg/wheel mechanism, which enables the robot to change its shape adapting to environments. Our previous method achieves obstacle avoidance by model predictive control (MPC) considering obstacle size and lateral wheel positions. However, this method does not ensure existence of joint angles which achieves reference wheel positions calculated by MPC. In this study, we propose a model predictive control considering reachable mobile ranges of wheels positions by combining multiple linear constraints, where each reachable mobile range is approximated as a convex trapezoid. Thus, we achieve to formulate a MPC as a quadratic problem with linear constraints for nonlinear problem of longitudinal and lateral wheel position control. By optimization of MPC, the reference wheel positions are calculated, while each joint angle is determined by inverse kinematics. Considering reachable mobile ranges explicitly, the optimal joint angles are calculated, which enables wheels to reach the reference wheel positions. We verify its advantages by comparing the proposed method with the previous method through numerical simulations.
Analytical Modeling of Acoustic Phonon-Limited Mobility in Strained Graphene Nanoribbons
NASA Astrophysics Data System (ADS)
Yousefvand, Ali; Ahmadi, Mohammad T.; Meshginqalam, Bahar
2017-11-01
Recent advances in graphene nanoribbon-based electronic devices encourage researchers to develop modeling and simulation methods to explore device physics. On the other hand, increasing the operating speed of nanoelectronic devices has recently attracted significant attention, and the modification of acoustic phonon interactions because of their important effect on carrier mobility can be considered as a method for carrier mobility optimization which subsequently enhances the device speed. Moreover, strain has an important influence on the electronic properties of the nanoelectronic devices. In this paper, the acoustic phonons mobility of armchair graphene nanoribbons ( n-AGNRs) under uniaxial strain is modeled analytically. In addition, strain, width and temperature effects on the acoustic phonon mobility of strained n-AGNRs are investigated. An increment in the strained AGNR acoustic phonon mobility by increasing the ribbon width is reported. Additionally, two different behaviors for the acoustic phonon mobility are verified by increasing the applied strain in 3 m, 3 m + 2 and 3 m + 1 AGNRs. Finally, the temperature effect on the modeled AGNR phonon mobility is explored, and mobility reduction by raising the temperature is reported.
Plaviak, Alexandra; Osburn, Sandra; Patterson, Khiry; van Stipdonk, Michael J
2016-01-15
Experiments were performed to probe the creation of apparent even-electron, [M-H](+) ions by CID of Ag-cationized peptides with N-terminal imine groups (Schiff bases). Imine-modified peptides were prepared using condensation reactions with aldehydes. Ag(+) -cationized precursors were generated by electrospray ionization (ESI). Tandem mass spectrometry (MS(n) ) and collision-induced dissociation (CID) were performed using a linear ion trap mass spectrometer. Loss of AgH from peptide [M + Ag](+) ions, at the MS/MS stage, creates closed-shell [M-H](+) ions from imine-modified peptides. Isotope labeling unambiguously identifies the imine C-H group as the source of H eliminated in AgH. Subsequent CID of the [M-H](+) ions generated sequence ions that are analogous to those produced from [M + H](+) ions of the imine-modified peptides. Experiments show (a) formation of novel even-electron peptide cations by CID and (b) the extent to which sequence ions (conventional b, a and y ions) are generated from peptides with fixed charge site and thus lacking a conventional mobile proton. Copyright © 2015 John Wiley & Sons, Ltd.
A Novel Damping Mechanism for Diocotron Modes
NASA Astrophysics Data System (ADS)
Chim, Chi Yung; O'Neil, Thomas M.
2014-10-01
Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 and m = 2 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius, where f = mfE × B (r) . The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This poster explains with analytic theory and simulations the new algebraic damping due to both mobility and diffusive fluxes. The damping is due to transfer of canonical angular momentum from the mode to halo particles, as they are swept around the ``cat's eye'' orbits of resonant wave-particle interaction. Another picture is that the electrons in the resonant layer form a dipole (m = 1) or quadrupole (m = 2) density distribution, and the electric field for this distribution produces E × B drifts that symmetrizes the core and damps the mode. Supported by NSF/DOE Partnership Grants PHY-0903877 and DE-SC0002451.
NASA Astrophysics Data System (ADS)
Li, Yaping; Lagowski, Jolanta B.
2011-08-01
Inorganic (mostly silicon based) solar cells are important devices that are used to solve the world energy and environmental needs. Now days, organic solar cells are attracting considerable attention in the field of photovoltaic cells because of their low cost and processing flexibility. Often conjugated polymers are used in the construction of the organic solar cells. We study the conjugated polymers' charge transport using computational approach that involves the use of the density functional theory (DFT), semiempirical (ZINDO), and Monte Carlo (MC) theoretical methods in order to determine their transfer integrals, reorganization energies, transfer rates (with the use of Marcus-Hush equation) and mobilities. We employ the experimentally determined three dimensional (3D) structure of poly(9,9'-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) to estimate the electron mobility in a similar co-alternating polymer consisting of carbazole and benzothiadiazole units (C8BT). In agreement with our previous work, we found that including an orientational disorder in the crystal reduces the electron mobility in C8BT. We hope that the proposed computational approach can be used to predict charge mobility in organic materials that are used in solar cells.
Roine, Antti; Saviauk, Taavi; Kumpulainen, Pekka; Karjalainen, Markus; Tuokko, Antti; Aittoniemi, Janne; Vuento, Risto; Lekkala, Jukka; Lehtimäki, Terho; Tammela, Teuvo L; Oksala, Niku K J
2014-01-01
Urinary tract infection (UTI) is a common disease with significant morbidity and economic burden, accounting for a significant part of the workload in clinical microbiology laboratories. Current clinical chemisty point-of-care diagnostics rely on imperfect dipstick analysis which only provides indirect and insensitive evidence of urinary bacterial pathogens. An electronic nose (eNose) is a handheld device mimicking mammalian olfaction that potentially offers affordable and rapid analysis of samples without preparation at athmospheric pressure. In this study we demonstrate the applicability of ion mobility spectrometry (IMS) -based eNose to discriminate the most common UTI pathogens from gaseous headspace of culture plates rapidly and without sample preparation. We gathered a total of 101 culture samples containing four most common UTI bacteries: E. coli, S. saprophyticus, E. faecalis, Klebsiella spp and sterile culture plates. The samples were analyzed using ChemPro 100i device, consisting of IMS cell and six semiconductor sensors. Data analysis was conducted by linear discriminant analysis (LDA) and logistic regression (LR). The results were validated by leave-one-out and 5-fold cross validation analysis. In discrimination of sterile and bacterial samples sensitivity of 95% and specificity of 97% were achieved. The bacterial species were identified with sensitivity of 95% and specificity of 96% using eNose as compared to urine bacterial cultures. These findings strongly demonstrate the ability of our eNose to discriminate bacterial cultures and provides a proof of principle to use this method in urinanalysis of UTI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleshin, A. N., E-mail: a.n.aleshin@mail.ru; Bugaev, A. S.; Ermakova, M. A.
2016-03-15
The crystallographic parameters of elements of a metamorphic high-electron-mobility transistor (MHEMT) heterostructure with In{sub 0.4}Ga{sub 0.6}As quantum well are determined using reciprocal space mapping. The heterostructure has been grown by molecular-beam epitaxy (MBE) on the vicinal surface of a GaAs substrate with a deviation angle of 2° from the (001) plane. The structure consists of a metamorphic step-graded buffer (composed of six layers, including an inverse step), a high-temperature buffer of constant composition, and active high-electron-mobility transistor (HEMT) layers. The InAs content in the metamorphic buffer layers varies from 0.1 to 0.48. Reciprocal space mapping has been performed for themore » 004 and 224 reflections (the latter in glancing exit geometry). Based on map processing, the lateral and vertical lattice parameters of In{sub x}Ga{sub 1–x}As ternary solid solutions of variable composition have been determined. The degree of layer lattice relaxation and the compressive stress are found within the linear elasticity theory. The high-temperature buffer layer of constant composition (on which active MHEMT layers are directly formed) is shown to have the highest (close to 100%) degree of relaxation in comparison with all other heterostructure layers and a minimum compressive stress.« less
NASA Astrophysics Data System (ADS)
Tanaka, Hisaaki; Hirate, Masataka; Watanabe, Shun-ichiro; Kaneko, Kazuaki; Marumoto, Kazuhiro; Takenobu, Taishi; Iwasa, Yoshihiro; Kuroda, Shin-ichi
2013-01-01
Charge carrier concentration in operating organic field-effect transistors (OFETs) reflects the electric potential within the channel, acting as a key quantity to clarify the operation mechanism of the device. Here, we demonstrate a direct determination of charge carrier concentration in the operating devices of pentacene and poly(3-hexylthiophene) (P3HT) by field-induced electron spin resonance (FI-ESR) spectroscopy. This method sensitively detects polarons induced by applying gate voltage, giving a clear FI-ESR signal around g=2.003 in both devices. Upon applying drain-source voltage, carrier concentration decreases monotonically in the FET linear region, reaching about 70% of the initial value at the pinch-off point, and stayed constant in the saturation region. The observed results are reproduced well from the theoretical potential profile based on the gradual channel model. In particular, the carrier concentration at the pinch-off point is calculated to be β/(β+1) of the initial value, where β is the power exponent in the gate voltage (Vgs) dependence of the mobility (μ), expressed as μ∝Vgsβ-2, providing detailed information of charge transport. The present devices show β=2.6 for the pentacene and β=2.3 for the P3HT cases, consistent with those determined by transfer characteristics. The gate voltage dependence of the mobility, originating from the charge trapping at the device interface, is confirmed microscopically by the motional narrowing of the FI-ESR spectra.
NASA Astrophysics Data System (ADS)
Clarke, F. W.; Balevieius, S.; McDonald, J. K.; Grisham, J. A.
2004-10-01
Effective mass ratios, m*, of electrons in near intrinsic and n-type Hg1-xCdxTe for 0.20 <= x <= 0.30 over the temperature range 77 K <= T <= 296 K were measured using Faraday rotation spectroscopy. Effective masses were found to be about twice as large at room temperature as band edge effective mass, m*be, calculations. Measured effective masses diverge further from the theoretical formulations as temperature increases which appears to be due to a thermal excitation effect that is not accounted for in theoretical calculations. These calculations can be corrected using a linear correction factor, m**, where the true effective mass ratio, m* = m** m*be, where m** was found empirically to be m** = 4.52 x 10-3 T + 0.78. Carrier concentrations were measured using Hall or van der Pauw tests. Soldered contacts to high mobility materials like HgCdTe using even the purest indium solder inevitably result in contamination that can add significant numbers of impurity carriers to the material and severely decrease mobility. A simple method of burnishing contacts to the material without heat using indium solder is presented. These cold contacts do not effect the material properties and are very effective in n-type HgCdTe making good physically strong contacts that remain ohmic to at least 10 K. This is a review paper.
Transport and breakdown analysis for improved figure-of-merit for AlGaN power devices
NASA Astrophysics Data System (ADS)
Coltrin, Michael E.; Kaplar, Robert J.
2017-02-01
Mobility and critical electric field for bulk AlxGa1-xN alloys across the full composition range (0 ≤ x ≤ 1) are analyzed to address the potential application of this material system for power electronics. Calculation of the temperature-dependent electron mobility includes the potential limitations due to different scattering mechanisms, including alloy, optical polar phonon, deformation potential, and piezoelectric scattering. The commonly used unipolar figure of merit (appropriate for vertical-device architectures), which increases strongly with increasing mobility and critical electric field, is examined across the alloy composition range to estimate the potential performance in power electronics applications. Alloy scattering is the dominant limitation to mobility and thus also for the unipolar figure of merit. However, at higher alloy compositions, the limitations due to alloy scattering are overcome by increased critical electric field. These trade-offs, and their temperature dependence, are quantified in the analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Q.; Liang, Y. X.; Ferry, D.
2014-07-07
We report on the results obtained from specially designed high electron mobility transistors at 4.2 K: the gate leakage current can be limited lower than 1 aA, and the equivalent input noise-voltage and noise-current at 1 Hz can reach 6.3 nV/Hz{sup 1∕2} and 20 aA/Hz{sup 1∕2}, respectively. These results open the way to realize high performance low-frequency readout electronics under very low-temperature conditions.
A Planar Hall Thruster for Investigating Electron Mobility in ExB Devices (Preprint)
2007-08-24
Hall thruster that emits and collects the Hall current across a planar discharge channel is described. The planar Hall thruster (PHT) is being investigated for use as a test bed to study electron mobility in ExB devices. The planar geometry attempts to de-couple the complex electron motion found in annular thrusters by using simplified geometry. During this initial test, the PHT was operated at discharge voltages between 50-150 V to verify operability and stability of the device. Hall current was emitted by hollow cathode electron sources and
NASA Astrophysics Data System (ADS)
Yang, Chien-Sheng
The purpose of this research has been to (1) explore materials prepared using plasma enhanced chemical vapor deposition (PECVD) at 110sp°C for amorphous silicon thin film transistors (TFT's) fabricated on low temperature compatible, large area flexible polyethylene terephthalate (PET) substrates, and (2) develop full self-alignment technology using selective area n+ PECVD for source/drain contacts of amorphous silicon TFT's. For item (1), silicon nitride films, as gate dielectrics of TFT's, were deposited using SiHsb4+NHsb3, SiHsb4+NHsb3+Nsb2, SiHsb4+NHsb3+He, or SiHsb4+NHsb3+Hsb2 gases. Good quality silicon nitride films can be deposited using a SiHsb4+NHsb3 gas with high NHsb3/SiHsb4 ratios, or using a SiHsb4+NHsb3+Nsb2 gas with moderate NHsb3/SiHsb4 ratios. A chemical model was proposed to explain the Nsb2 dilution effect. This model includes calculations of (a) the electron energy distribution function in a plasma, (b) rate constants of electron impact dissociation, and (3) the (NHsbx) / (SiHsby) ratio in a plasma. The Nsb2 dilution was shown to have a effect of shifting the electron energy distribution into high energy, thus enhancing the (NHsbx) / (SiHsbyrbrack ratio in a plasma and promoting the deposition of N-rich silicon nitride films, which leads to decreased trap state density and a shift in trap state density to deeper in the gap. Amorphous silicon were formed successfully at 110sp°C on large area glass and plastic(PET) substrates. Linear mobilities are 0.33 and 0.12 cmsp2/Vs for TFT's on glass and plastic substrates, respectively. ON/OFF current ratios exceed 10sp7 for TFT's on glass and 10sp6 for TFT's on PET. For item (2), a novel full self-alignment process was developed for amorphous silicon TFT's. This process includes (1) back-exposure using the bottom gate metal as the mask, and (2) selective area n+ micro-crystalline silicon PECVD for source/drain contacts of amorphous silicon TFT's. TFT's fabricated using the full self-alignment process showed linear mobilities ranging from 0.5 to 1.0 cmsp2/Vs.
Azadkish, Kamal; Jafari, Mohammad T; Ghaziaskar, Hassan S
2017-02-08
Trace amounts of oxygen was determined using negative corona discharge as an ionization source for ion mobility spectrometry. A point-in-cylinder geometry with novel design was used to establish the corona discharge without interferences of negative ions such as NO X - . The desirable background spectrum shows only electrons peak, providing the instrument capable of trace analysis of oxygen in gaseous samples. The limit of detection and linear dynamic range with high coefficient of determination (r 2 = 0.9997), were obtained for oxygen as 8.5 and 28-14204 ppm, respectively. The relative standard deviations of the method for intraday and interday were obtained 4 and 11%, respectively. The satisfactory results revealed the ability of the negative corona discharge ion mobility spectrometry for investigating the performance of synthesized oxygen adsorbents in nitrogen streams. Two oxygen scavengers of MnO and Cu powder were prepared and the optimum temperature of the reactor containing MnO and Cu powder were obtained as 180 and 230 °C, respectively. Due to higher lifetime of copper powder, it was selected as the oxygen scavenger and some parameters such as: the type of adsorbent support, the size of adsorbent particles, and the amount of copper were studied for preparation of more efficient oxygen adsorbent. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Chung-Han; Doutt, D. R.; Mishra, U. K.; Merz, T. A.; Brillson, L. J.
2010-11-01
Nanoscale Kelvin probe force microscopy and depth-resolved cathodoluminescence spectroscopy reveal an electronic defect evolution inside operating AlGaN/GaN high electron mobility transistors with degradation under electric-field-induced stress. Off-state electrical stress results in micron-scale areas within the extrinsic drain expanding and decreasing in electric potential, midgap defects increasing by orders-of-magnitude at the AlGaN layer, and local Fermi levels lowering as gate-drain voltages increase above a characteristic stress threshold. The pronounced onset of defect formation, Fermi level movement, and transistor degradation at the threshold gate-drain voltage of J. A. del Alamo and J. Joh [Microelectron. Reliab. 49, 1200 (2009)] is consistent with crystal deformation and supports the inverse piezoelectric model of high electron mobility transistor degradation.
Electron Mobilities and Effective Masses in InGaAs/InAlAs HEMT Structures with High In Content
NASA Astrophysics Data System (ADS)
Yuzeeva, N. A.; Sorokoumova, A. V.; Lunin, R. A.; Oveshnikov, L. N.; Galiev, G. B.; Klimov, E. A.; Lavruchin, D. V.; Kulbachinskii, V. A.
2016-12-01
InxGa_{1-{x}}As/InyAl_{1-{y}}As HEMT structures {δ}-doped by Si were grown by molecular beam epitaxy on InP substrate. We investigated the influence of the In content on the electron mobilities and effective masses in dimensionally quantized subbands. The electron effective masses were determined by the temperature dependence of the amplitude of the Shubnikov-de Haas effect at 1.6 and 4.2 K. We found that the more the In content in quantum well (QW), the less the electron effective masses. The mobilities are higher in HEMT structures with wider and deeper QW. The energy band diagrams were calculated by using Vegard's law for basic parameters. The calculated band diagrams are in a good agreement with the experimental data of photoluminescence spectra.
A Mobile Learning Module for High School Fieldwork
ERIC Educational Resources Information Center
Hsu, Tzu-Yen; Chen, Che-Ming
2010-01-01
Although fieldwork is always cited as an important component of geographic education, there are many obstacles for executing high school fieldwork. Mobile electronic products are becoming popular and some schools are able to acquire these devices for mobile learning. This study attempts to provide a mobile-assisted means of guiding students…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-27
... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket T-1-2010] Foreign-Trade Zone 22--Chicago, IL Application for Temporary/ Interim Manufacturing Authority LG Electronics MobileComm USA, Inc... Electronics MobileComm USA, Inc. (LGEMU) facility, located in Bolingbrook, Illinois. The application was filed...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-06
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-834] Certain Mobile Electronic Devices Incorporating Haptics; Institution of Investigation Pursuant to 19 U.S.C. 1337 AGENCY: U.S. International Trade.... International Trade Commission on February 7, 2012, and an amended complaint was filed with the U.S...
NASA Astrophysics Data System (ADS)
Reineker, P.; Kenkre, V. M.; Kühne, R.
1981-08-01
A quantitative comparison of a simple theoretical prediction for the drift mobility of photo-electrons in organic molecular crystals, calculated within the model of the coupled band-like and hopping motion, with experiments in napthalene of Schein et al. and Karl et al. is given.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-12
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-701] In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and Computers; Notice of Commission... music players, and computers by reason of infringement of various claims of United States Patent Nos. 6...
Travel in Adverse Weather Using Electronic Mobility Guidance Devices
ERIC Educational Resources Information Center
Farmer, Leicester W.
1975-01-01
After a discussion of the required characteristics of an ideal aid for blind individuals traveling in adverse weather, four electronic mobility guidance devices- the Mowat Sonar Sensor, the Russell E Model Pathsounder, the Bionic C-5 Laser Cane, and the Mark II Binaural Sensory Aid-are described in detail. (Author/SB)
Inventory of Electronic Mobility Aids for Persons with Visual Impairments: A Literature Review
ERIC Educational Resources Information Center
Roentgen, Uta R.; Gelderblom, Gert Jan; Soede, Mathijs; de Witte, Luc P.
2008-01-01
This literature review of existing electronic mobility aids for persons who are visually impaired and recent developments in this field identified and classified 146 products, systems, and devices. The 21 that are currently available that can be used without environmental adaptation are described in functional terms. (Contains 2 tables.)
Theoretical study of anisotropic mobility in ladder-type molecule organic semiconductors
NASA Astrophysics Data System (ADS)
Wei, Hui-Ling; Liu, Yu-Fang
2014-09-01
The properties of two ladder-type semiconductors {M1: 2,2'-(2,7-dihexy1-4,9-dihydro- s-indaceno[1,2- b:5,6- b']dithiophene-4,9-diylidene) dimalononitrile and M2: 2,7-dihexy1-4,9-dihydro- s-indaceno[1,2- b:5,6- b']dithiophene-4,9-dione} as the n-type and ambipolar organic materials are systematically investigated using the first-principle density functional theory combined with the Marcus-Hush electron transfer theory. It is found that the substitution of M1 induces large changes in its electron-transfer mobility of 1.370 cm2 V-1 s-1. M2 has both large electron- and hole-transfer mobility of 0.420 and 0.288 cm2 V-1 s-1, respectively, which indicates that M2 is potentially a high efficient ambipolar organic semiconducting material. Both the M1 and M2 crystals show remarkable anisotropic behavior. A proper design of the n-type and ambipolar organic electronic materials, which may have high mobility performance, is suggested based on the investigated two molecules.
NASA Astrophysics Data System (ADS)
Sharma, Neetika; Verma, Neha; Jogi, Jyotika
2017-11-01
This paper models the scattering limited electron transport in a nano-dimensional In0.52Al0.48As/In0.53Ga0.47As/InP heterostructure. An analytical model for temperature dependent sheet carrier concentration and carrier mobility in a two dimensional electron gas, confined in a triangular potential well has been developed. The model accounts for all the major scattering process including ionized impurity scattering and lattice scattering. Quantum mechanical variational technique is employed for studying the intrasubband scattering mechanism in the two dimensional electron gas. Results of various scattering limited structural parameters such as energy band-gap and functional parameters such as sheet carrier concentration, scattering rate and mobility are presented. The model corroborates the dominance of ionized impurity scattering mechanism at low temperatures and that of lattice scattering at high temperatures, both in turn limiting the carrier mobility. Net mobility obtained taking various scattering mechanisms into account has been found in agreement with earlier reported results, thus validating the model.
Study of electron mobility in small molecular SAlq by transient electroluminescence method
NASA Astrophysics Data System (ADS)
Kumar, Pankaj; Jain, S. C.; Kumar, Vikram; Chand, Suresh; Kamalasanan, M. N.; Tandon, R. P.
2007-12-01
The study of electron mobility of bis(2-methyl 8-hydroxyquinoline) (triphenyl siloxy) aluminium (SAlq) by transient electroluminescence (EL) is presented. An EL device is fabricated in bilayer, ITO/N,N'-diphenyl-N, N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD)/SAlq/LiF/Al configuration. The temporal evaluation of the EL with respect to the step voltage pulse is characterized by a delay time followed by a fast initial rise, which is followed by a slower rise. The delay time between the applied electrical pulse and the onset of EL is correlated with the carrier mobility (electron in our case). Transient EL studies for SAlq have been carried out at different temperatures and different applied electric fields. The electron mobility in SAlq is found to be field and temperature dependent and calculated to be 6.9 × 10-7 cm2 V-1 s-1 at 2.5 × 106 V cm-1 and 308 K. The EL decays immediately as the voltage is turned off and does not depend on the amplitude of the applied voltage pulse or dc offset.
A Study on Mobile Learning as a Learning Style in Modern Research Practice
ERIC Educational Resources Information Center
Joan, D. R. Robert
2013-01-01
Mobile learning is a kind of learning that takes place via a portable handheld electronic device. It also refers to learning via other kinds of mobile devices such as tablet computers, net-books and digital readers. The objective of mobile learning is to provide the learner the ability to assimilate learning anywhere and at anytime. Mobile devices…
Alberi, K.; Fluegel, B.; Beaton, D. A.; ...
2012-07-09
Electrons in semiconductor alloys have generally been described in terms of Bloch states that evolve from constructive interference of electron waves scattering from perfectly periodic potentials, despite the loss of structural periodicity that occurs on alloying. Using the semiconductor alloy GaAs₁₋ xN x as a prototype, we demonstrate a localized to delocalized transition of the electronic states at a percolation threshold, the emergence of a mobility edge, and the onset of an abrupt perturbation to the host GaAs electronic structure, shedding light on the evolution of electronic structure in these abnormal alloys.
NASA Astrophysics Data System (ADS)
Niu, Wei; Gan, Yulin; Zhang, Yu; Valbjørn Christensen, Dennis; von Soosten, Merlin; Wang, Xuefeng; Xu, Yongbing; Zhang, Rong; Pryds, Nini; Chen, Yunzhong
2017-07-01
The two-dimensional electron gas (2DEG) at the non-isostructural interface between spinel γ-Al2O3 and perovskite SrTiO3 is featured by a record electron mobility among complex oxide interfaces in addition to a high carrier density up to the order of 1015 cm-2. Herein, we report on the patterning of 2DEG at the γ-Al2O3/SrTiO3 interface grown at 650 °C by pulsed laser deposition using a hard mask of LaMnO3. The patterned 2DEG exhibits a critical thickness of 2 unit cells of γ-Al2O3 for the occurrence of interface conductivity, similar to the unpatterned sample. However, its maximum carrier density is found to be approximately 3 × 1013 cm-2, much lower than that of the unpatterned sample (˜1015 cm-2). Remarkably, a high electron mobility of approximately 3600 cm2 V-1 s-1 was obtained at low temperatures for the patterned 2DEG at a carrier density of ˜7 × 1012 cm-2, which exhibits clear Shubnikov-de Haas quantum oscillations. The patterned high-mobility 2DEG at the γ-Al2O3/SrTiO3 interface paves the way for the design and application of spinel/perovskite interfaces for high-mobility all-oxide electronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jie, E-mail: jie.yang@yale.edu; Cui, Sharon; Ma, T. P.
2013-11-25
We investigate the energy levels of electron traps in AlGaN/GaN high electron mobility transistors by the use of electron tunneling spectroscopy. Detailed analysis of a typical spectrum, obtained in a wide gate bias range and with both bias polarities, suggests the existence of electron traps both in the bulk of AlGaN and at the AlGaN/GaN interface. The energy levels of the electron traps have been determined to lie within a 0.5 eV band below the conduction band minimum of AlGaN, and there is strong evidence suggesting that these traps contribute to Frenkel-Poole conduction through the AlGaN barrier.
2013-08-14
TIME CONTROL OF PDE SYSTEMS WITH APPLICATIONS TO MOBILE SENSOR NETWORKS Finall Report: AFOSR Grant...linear time invariant (LTI) control problem. If the control is a linear function of the states, then the closed loop system then takes the form[ żr u̇...Ar2 A r 3 0T 0 ] − [ Br 1 ] K ) ︸ ︷︷ ︸ Ac [ zr u ] . (3) As the purpose of the control law is to stabilize the system , it is desired to have
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jinxiong; Yuan, Hongtao; Meng, Mengmeng
Identifying new two-dimensional (2D) materials with both high carrier mobility and a large electronic band gap is critical for novel electronics and optoelectronics applications. Here, we demonstrated a new air-stable ultrahigh-mobility layered Bi 2O 2Se semiconductor with a large band gap of ~ 0.8 eV and a low effective mass of ~ 0.14 m 0. High-quality 2D Bi2O2Se crystals with a thickness down to a monolayer and a domain size greater than 200 μm were readily grown by chemical vapor deposition (CVD). Size-tunable band gap of Bi 2O 2Se was found to increase as thinning down to the monolayer duemore » to the quantum confinement effect. An ultrahigh Hall mobility of > 20,000 cm 2 V -1 s -1 was achieved in as-grown Bi 2O 2Se flakes at 1.9 K, which allows for the observation of Shubnikov–de Haas quantum oscillations. Top-gated field-effect transistors based on CVD-grown 2D Bi 2O 2Se crystals (down to bilayer) exhibited high Hall mobility (up to 450 cm 2 V -1 s -1), large current on/off ratios (>106) and near-ideal subthreshold swings (~65 mV/dec) at room temperature. Our results make the high-mobility 2D Bi 2O 2Se semiconductor a promising candidate for future high-speed and low-power electronic applications.« less
Wu, Jinxiong; Yuan, Hongtao; Meng, Mengmeng; ...
2017-04-03
Identifying new two-dimensional (2D) materials with both high carrier mobility and a large electronic band gap is critical for novel electronics and optoelectronics applications. Here, we demonstrated a new air-stable ultrahigh-mobility layered Bi 2O 2Se semiconductor with a large band gap of ~ 0.8 eV and a low effective mass of ~ 0.14 m 0. High-quality 2D Bi2O2Se crystals with a thickness down to a monolayer and a domain size greater than 200 μm were readily grown by chemical vapor deposition (CVD). Size-tunable band gap of Bi 2O 2Se was found to increase as thinning down to the monolayer duemore » to the quantum confinement effect. An ultrahigh Hall mobility of > 20,000 cm 2 V -1 s -1 was achieved in as-grown Bi 2O 2Se flakes at 1.9 K, which allows for the observation of Shubnikov–de Haas quantum oscillations. Top-gated field-effect transistors based on CVD-grown 2D Bi 2O 2Se crystals (down to bilayer) exhibited high Hall mobility (up to 450 cm 2 V -1 s -1), large current on/off ratios (>106) and near-ideal subthreshold swings (~65 mV/dec) at room temperature. Our results make the high-mobility 2D Bi 2O 2Se semiconductor a promising candidate for future high-speed and low-power electronic applications.« less
High Thermoelectric Power Factor of High-Mobility 2D Electron Gas.
Ohta, Hiromichi; Kim, Sung Wng; Kaneki, Shota; Yamamoto, Atsushi; Hashizume, Tamotsu
2018-01-01
Thermoelectric conversion is an energy harvesting technology that directly converts waste heat from various sources into electricity by the Seebeck effect of thermoelectric materials with a large thermopower ( S ), high electrical conductivity (σ), and low thermal conductivity (κ). State-of-the-art nanostructuring techniques that significantly reduce κ have realized high-performance thermoelectric materials with a figure of merit ( ZT = S 2 ∙σ∙ T ∙κ -1 ) between 1.5 and 2. Although the power factor (PF = S 2 ∙σ) must also be enhanced to further improve ZT , the maximum PF remains near 1.5-4 mW m -1 K -2 due to the well-known trade-off relationship between S and σ. At a maximized PF, σ is much lower than the ideal value since impurity doping suppresses the carrier mobility. A metal-oxide-semiconductor high electron mobility transistor (MOS-HEMT) structure on an AlGaN/GaN heterostructure is prepared. Applying a gate electric field to the MOS-HEMT simultaneously modulates S and σ of the high-mobility electron gas from -490 µV K -1 and ≈10 -1 S cm -1 to -90 µV K -1 and ≈10 4 S cm -1 , while maintaining a high carrier mobility (≈1500 cm 2 V -1 s -1 ). The maximized PF of the high-mobility electron gas is ≈9 mW m -1 K -2 , which is a two- to sixfold increase compared to state-of-the-art practical thermoelectric materials.
Steyrleuthner, Robert; Di Pietro, Riccardo; Collins, Brian A; Polzer, Frank; Himmelberger, Scott; Schubert, Marcel; Chen, Zhihua; Zhang, Shiming; Salleo, Alberto; Ade, Harald; Facchetti, Antonio; Neher, Dieter
2014-03-19
We investigated the correlation between the polymer backbone structural regularity and the charge transport properties of poly{[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenediimide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} [P(NDI2OD-T2)], a widely studied semiconducting polymer exhibiting high electron mobility and an unconventional micromorphology. To understand the influence of the chemical structure and crystal packing of conventional regioregular P(NDI2OD-T2) [RR-P(NDI2OD-T2)] on the charge transport, the corresponding regioirregular polymer RI-P(NDI2OD-T2) was synthesized. By combining optical, X-ray, and transmission electron microscopy data, we quantitatively characterized the aggregation, crystallization, and backbone orientation of all of the polymer films, which were then correlated to the electron mobilities in electron-only diodes. By carefully selecting the preparation conditions, we were able to obtain RR-P(NDI2OD-T2) films with similar crystalline structure along the three crystallographic axes but with different orientations of the polymer chains with respect to the substrate surface. RI-P(NDI2OD-T2), though exhibiting a rather similar LUMO structure and energy compared with the regioregular counterpart, displayed a very different packing structure characterized by the formation of ordered stacks along the lamellar direction without detectible π-stacking. Vertical electron mobilities were extracted from the space-charge-limited currents in unipolar devices. We demonstrate the anisotropy of the charge transport along the different crystallographic directions and how the mobility depends on π-stacking but is insensitive to the degree or coherence of lamellar stacking. The comparison between the regioregular and regioirregular polymers also shows how the use of large planar functional groups leads to improved charge transport, with mobilities that are less affected by chemical and structural disorder with respect to classic semicrystalline polymers such as poly(3-hexylthiophene).
NASA Astrophysics Data System (ADS)
Wan Chan Tseung, H.; Kaspar, J.; Tolich, N.
2011-10-01
An experimental test of the electron energy scale linearities of SNO+ and EJ-301 scintillators was carried out using a Compton spectrometer with electrons in the energy range 0.09-3 MeV. The linearity of the apparatus was explicitly demonstrated. It was found that the response of both types of scintillators with respect to electrons becomes non-linear below ˜0.4 MeV. An explanation is given in terms of Cherenkov light absorption and re-emission by the scintillators.
Power and spectrally efficient M-ARY QAM schemes for future mobile satellite communications
NASA Technical Reports Server (NTRS)
Sreenath, K.; Feher, K.
1990-01-01
An effective method to compensate nonlinear phase distortion caused by the mobile amplifier is proposed. As a first step towards the future use of spectrally efficient modulation schemes for mobile satellite applications, we have investigated effects of nonlinearities and the phase compensation method on 16-QAM. The new method provides about 2 dB savings in power for 16-QAM operation with cost effective amplifiers near saturation and thereby promising use of spectrally efficient linear modulation schemes for future mobile satellite applications.
NASA Astrophysics Data System (ADS)
Lee, Nien-En; Zhou, Jin-Jian; Agapito, Luis A.; Bernardi, Marco
2018-03-01
Predicting charge transport in organic molecular crystals is notoriously challenging. Carrier mobility calculations in organic semiconductors are dominated by quantum chemistry methods based on charge hopping, which are laborious and only moderately accurate. We compute from first principles the electron-phonon scattering and the phonon-limited hole mobility of naphthalene crystal in the framework of ab initio band theory. Our calculations combine GW electronic bandstructures, ab initio electron-phonon scattering, and the Boltzmann transport equation. The calculated hole mobility is in very good agreement with experiment between 100 -300 K , and we can predict its temperature dependence with high accuracy. We show that scattering between intermolecular phonons and holes regulates the mobility, though intramolecular phonons possess the strongest coupling with holes. We revisit the common belief that only rigid molecular motions affect carrier dynamics in organic molecular crystals. Our paper provides a quantitative and rigorous framework to compute charge transport in organic crystals and is a first step toward reconciling band theory and carrier hopping computational methods.
All-printed diode operating at 1.6 GHz
Sani, Negar; Robertsson, Mats; Cooper, Philip; Wang, Xin; Svensson, Magnus; Andersson Ersman, Peter; Norberg, Petronella; Nilsson, Marie; Nilsson, David; Liu, Xianjie; Hesselbom, Hjalmar; Akesso, Laurent; Fahlman, Mats; Crispin, Xavier; Engquist, Isak; Berggren, Magnus; Gustafsson, Göran
2014-01-01
Printed electronics are considered for wireless electronic tags and sensors within the future Internet-of-things (IoT) concept. As a consequence of the low charge carrier mobility of present printable organic and inorganic semiconductors, the operational frequency of printed rectifiers is not high enough to enable direct communication and powering between mobile phones and printed e-tags. Here, we report an all-printed diode operating up to 1.6 GHz. The device, based on two stacked layers of Si and NbSi2 particles, is manufactured on a flexible substrate at low temperature and in ambient atmosphere. The high charge carrier mobility of the Si microparticles allows device operation to occur in the charge injection-limited regime. The asymmetry of the oxide layers in the resulting device stack leads to rectification of tunneling current. Printed diodes were combined with antennas and electrochromic displays to form an all-printed e-tag. The harvested signal from a Global System for Mobile Communications mobile phone was used to update the display. Our findings demonstrate a new communication pathway for printed electronics within IoT applications. PMID:25002504
Intrinsic Electron Mobility Exceeding 10³ cm²/(V s) in Multilayer InSe FETs.
Sucharitakul, Sukrit; Goble, Nicholas J; Kumar, U Rajesh; Sankar, Raman; Bogorad, Zachary A; Chou, Fang-Cheng; Chen, Yit-Tsong; Gao, Xuan P A
2015-06-10
Graphene-like two-dimensional (2D) materials not only are interesting for their exotic electronic structure and fundamental electronic transport or optical properties but also hold promises for device miniaturization down to atomic thickness. As one material belonging to this category, InSe, a III-VI semiconductor, not only is a promising candidate for optoelectronic devices but also has potential for ultrathin field effect transistor (FET) with high mobility transport. In this work, various substrates such as PMMA, bare silicon oxide, passivated silicon oxide, and silicon nitride were used to fabricate multilayer InSe FET devices. Through back gating and Hall measurement in four-probe configuration, the device's field effect mobility and intrinsic Hall mobility were extracted at various temperatures to study the material's intrinsic transport behavior and the effect of dielectric substrate. The sample's field effect and Hall mobilities over the range of 20-300 K fall in the range of 0.1-2.0 × 10(3) cm(2)/(V s), which are comparable or better than the state of the art FETs made of widely studied 2D transition metal dichalcogenides.
Climbing robot. [caterpillar design
NASA Technical Reports Server (NTRS)
Kerley, James J. (Inventor); May, Edward L. (Inventor); Ecklund, Wayne D. (Inventor)
1993-01-01
A mobile robot for traversing any surface consisting of a number of interconnected segments, each interconnected segment having an upper 'U' frame member, a lower 'U' frame member, a compliant joint between the upper 'U' frame member and the lower 'U' frame member, a number of linear actuators between the two frame members acting to provide relative displacement between the frame members, a foot attached to the lower 'U' frame member for adherence of the segment to the surface, an inter-segment attachment attached to the upper 'U' frame member for interconnecting the segments, a power source connected to the linear actuator, and a computer/controller for independently controlling each linear actuator in each interconnected segment such that the mobile robot moves in a caterpillar like fashion.
NASA Astrophysics Data System (ADS)
Song, Yifei; Kujofsa, Tedi; Ayers, John E.
2018-07-01
In order to evaluate various buffer layers for metamorphic devices, threading dislocation densities have been calculated for uniform composition In x Ga1- x As device layers deposited on GaAs (001) substrates with an intermediate graded buffer layer using the L MD model, where L MD is the average length of misfit dislocations. On this basis, we compare the relative effectiveness of buffer layers with linear, exponential, and S-graded compositional profiles. In the case of a 2 μm thick buffer layer linear grading results in higher threading dislocation densities in the device layer compared to either exponential or S-grading. When exponential grading is used, lower threading dislocation densities are obtained with a smaller length constant. In the S-graded case, lower threading dislocation densities result when a smaller standard deviation parameter is used. As the buffer layer thickness is decreased from 2 μm to 0.1 μm all of the above effects are diminished, and the absolute threading dislocation densities increase.
Haase, Rocco; Schultheiss, Thorsten; Kempcke, Raimar; Thomas, Katja; Ziemssen, Tjalf
2012-10-15
The number of multiple sclerosis (MS) information websites, online communities, and Web-based health education programs has been increasing. However, MS patients' willingness to use new ways of communication, such as websites, mobile phone application, short message service, or email with their physician, remains unknown. We designed a questionnaire to evaluate the a priori use of electronic communication methods by MS patients and to assess their acceptance of such tools for communication with their health care providers. We received complete data from 586 MS patients aged between 17 and 73 years. Respondents were surveyed in outpatient clinics across Germany using a novel paper-and-pencil questionnaire. In addition to demographics, the survey items queried frequency of use of, familiarity with, and comfort with using computers, websites, email, and mobile phones. About 90% of all MS patients used a personal computer (534/586) and the Internet (527/586) at least once a week, 87.0% (510/586) communicated by email, and 85.6% (488/570) communicated by mobile phone. When asked about their comfort with using electronic communication methods for communication with health care providers, 20.5% (120/586) accepted communication by mobile Internet application or short message service via mobile phone, 41.0% (240/586) by websites, 54.3% (318/586) by email service, and 67.8% (397/586) by at least one type of electronic communication. The level of a priori use was the best predictor for the acceptance of electronic communication with health care providers. Patients who reported already searching online for health information (odds ratio 2.4, P < .001) and who had already communicated with a physician through a website (odds ratio 3.3, P = .03) reported higher acceptance for Web-based communication. Patients who already scheduled appointments with their mobile phones (odds ratio 2.1, P = .002) were more likely to accept the use of mobile phone applications or short message service for communicating with their physician. The majority of MS patients seen at specialist centers already use modern communication technology regularly. New forms of electronic communication appear to have high levels of acceptance for exchanging information about MS between patients and health care providers. Such methods should be integrated into eHealth services such as electronic health records and patient relationship management systems.
Electron mobility in mercury cadmium telluride
NASA Technical Reports Server (NTRS)
Patterson, James D.
1988-01-01
A previously developed program, which includes all electronic interactions thought to be important, does not correctly predict the value of electron mobility in mercury cadmium telluride particularly near room temperature. Part of the reason for this discrepancy is thought to be the way screening is handled. It seems likely that there are a number of contributors to errors in the calculation. The objective is to survey the calculation, locate reasons for differences between experiment and calculation, and suggest improvements.
2016-01-09
studied in detail using scanning tunneling microscopy and angle resolved photoemission. For the doping levels achieved in cobalt titanium antimony, the...angle resolved photoemission. For the doping levels achieved in cobalt titanium antimony, the electron mobility at room temperature was comparable...scanning tunneling microscopy and angle resolved photoemission. For the doping levels achieved in cobalt titanium antimony, the electron mobility at room
A study of electrically active traps in AlGaN/GaN high electron mobility transistor
NASA Astrophysics Data System (ADS)
Yang, Jie; Cui, Sharon; Ma, T. P.; Hung, Ting-Hsiang; Nath, Digbijoy; Krishnamoorthy, Sriram; Rajan, Siddharth
2013-10-01
We have studied electron conduction mechanisms and the associated roles of the electrically active traps in the AlGaN layer of an AlGaN/GaN high electron mobility transistor structure. By fitting the temperature dependent I-V (Current-Voltage) curves to the Frenkel-Poole theory, we have identified two discrete trap energy levels. Multiple traces of I-V measurements and constant-current injection experiment all confirm that the main role of the traps in the AlGaN layer is to enhance the current flowing through the AlGaN barrier by trap-assisted electron conduction without causing electron trapping.
Wavefunction Properties and Electronic Band Structures of High-Mobility Semiconductor Nanosheet MoS2
NASA Astrophysics Data System (ADS)
Baik, Seung Su; Lee, Hee Sung; Im, Seongil; Choi, Hyoung Joon; Ccsaemp Team; Edl Team
2014-03-01
Molybdenum disulfide (MoS2) nanosheet is regarded as one of the most promising alternatives to the current semiconductors due to its significant band-gap and electron-mobility enhancement upon exfoliating. To elucidate such thickness-dependent properties, we have studied the electronic band structures of bulk and monolayer MoS2 by using the first-principles density-functional method as implemented in the SIESTA code. Based on the wavefunction analyses at the conduction band minimum (CBM) points, we have investigated possible origins of mobility difference between bulk and monolayer MoS2. We provide formation energies of substitutional impurities at the Mo and S sites, and discuss feasible electron sources which may induce a significant difference in the carrier lifetime. This work was supported by NRF of Korea (Grant Nos. 2009-0079462 and 2011-0018306), Nano-Material Technology Development Program (2012M3a7B4034985), and KISTI supercomputing center (Project No. KSC-2013-C3-008). Center for Computational Studies of Advanced Electronic Material Properties.
75 FR 40833 - Sunshine Act Meeting; Open Commission Meeting; Thursday, July 15, 2010
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-14
... OFFICE OF TITLE: Fixed and ENGINEERING AND Mobile services TECHNOLOGY, in the Mobile WIRELESS TELE... investment in the 2 GHz, Big LEO, and L-bands of the Mobile Satellite Service. 3 WIRELINE TITLE: Electronic...
NASA Astrophysics Data System (ADS)
Mootabian, Mahnaz; Eshghi, Hosein
2013-07-01
The low-temperature (4 K) two-dimensional (2D) electron gas mobility data versus carrier concentration in the modulation-doped dilute nitride GaAs1-xNx/Al0.3Ga0.7As (x = 0 and 0.08%) heterostructures are analyzed. Theoretical analysis is based on Fermi-Dirac statistics for the occupation of the quantum confined electronic states in the triangular quantum wells and the width of the quantum well versus 2D concentration. In addition, the mobility analysis is based on Matthiessen's rule for various scattering mechanisms. We found that the N-related neutral cluster alloy scattering together with crystal dislocations created at the interface strongly affects the electrons' mobility in the N-contained channel sample. We also found that as the electron concentration in the well increases from ˜1 × 1011 to 3.5 × 1011 cm-2 the carriers mainly occupy the first subband, tending to remain closer and closer to the hetero-interface.
The use of mobile learning application to the fundament of digital electronics course
NASA Astrophysics Data System (ADS)
Rakhmawati, L.; Firdha, A.
2018-01-01
A new trend in e-learning is known as Mobile Learning. Learning through mobile phones have become part of the educative process. Thus, the purposes of this study are to develop a mobile application for the Fundament of Digital Electronics course that consists of number systems operation, logic gates, and Boolean Algebra, and to assess the readiness, perceptions, and effectiveness of students in the use of mobile devices for learning in the classroom. This research uses Research and Development (R&D) method. The design used in this research, by doing treatment in one class and observing by using Android-based mobile application instructional media. The result obtained from this research shows that the test has 80 % validity aspect, 82 % of the user from senior high school students gives a positive response in using the application of mobile learning, and based on the result of post-test, 90, 90% students passed the exam. At last, it can be concluded that the use of the mobile learning application makes the learning process more effective when it is used in the teaching-learning process.
Prediction of a mobile two-dimensional electron gas at the LaSc O3 /BaSn O3 (001) interface
NASA Astrophysics Data System (ADS)
Paudel, Tula R.; Tsymbal, Evgeny Y.
2017-12-01
Two-dimensional electron gases (2DEG) at oxide interfaces, such as LaAl O3 /SrTi O3 (001), have aroused significant interest due to their high carrier density (˜1014c m-2 ) and strong lateral confinement (˜1 nm). However, these 2DEGs are normally hosted by the weakly dispersive and degenerate d bands (e.g., Ti -3 d bands), which are strongly coupled to the lattice, causing mobility of such 2DEGs to be relatively low at room temperature (˜1 c m2/Vs ). Here, we propose using oxide host materials with the conduction bands formed from s electrons to increase carrier mobility and soften its temperature dependence. Using first-principles density functional theory calculations, we investigate LaSc O3 /BaSn O3 (001) heterostructure and as a model system, where the conduction band hosts the s -like carriers. We find that the polar discontinuity at this interface leads to electronic reconstruction resulting in the formation of the 2DEG at this interface. The conduction electrons reside in the highly dispersive Sn -5 s bands, which have a large band width and a low effective mass. The predicted 2DEG is expected to be highly mobile even at room temperature due to the reduced electron-phonon scattering via the inter-band scattering channel. A qualitatively similar behavior is predicted for a doped BaSn O3 , where a monolayer of BaO is replaced with LaO. We anticipate that the quantum phenomena associated with these 2DEGs to be more pronounced owing to the high mobility of the carriers.
Sharma, N; Periasamy, C; Chaturvedi, N
2018-07-01
In this paper, we present an investigation of the impact of GaN capping layer and AlGaN layer thickness on the two-dimensional (2D)-electron mobility and the carrier concentration which was formed close to the AlGaN/GaN buffer layer for Al0.25Ga0.75N/GaN and GaN/Al0.25Ga0.75N/GaN heterostructures deposited on sapphire substrates. The results of our analysis clearly indicate that expanding the GaN capping layer thickness from 1 nm to 100 nm prompts an increment in the electron concentration at hetero interface. As consequence of which drain current was additionally increments with GaN cap layer thicknesses, and eventually saturates at approximately 1.85 A/mm for capping layer thickness greater than 40 nm. Interestingly, for the same structure, the 2D-electron mobility, decrease monotonically with GaN capping layer thickness, and saturate at approximately 830 cm2/Vs for capping layer thickness greater than 50 nm. A device with a GaN cap layer didn't exhibit gate leakage current. Furthermore, it was observed that the carrier concentration was first decrease 1.03 × 1019/cm3 to 6.65 × 1018/cm3 with AlGaN Layer thickness from 5 to 10 nm and after that it increases with the AlGaN layer thickness from 10 to 30 nm. The same trend was followed for electric field distributions. Electron mobility decreases monotonically with AlGaN layer thickness. Highest electron mobility 1354 cm2/Vs were recorded for the AlGaN layer thickness of 5 nm. Results obtained are in good agreement with published experimental data.
Intrinsic mobility limit for anisotropic electron transport in Alq3.
Drew, A J; Pratt, F L; Hoppler, J; Schulz, L; Malik-Kumar, V; Morley, N A; Desai, P; Shakya, P; Kreouzis, T; Gillin, W P; Kim, K W; Dubroka, A; Scheuermann, R
2008-03-21
Muon spin relaxation has been used to probe the charge carrier motion in the molecular conductor Alq3 (tris[8-hydroxy-quinoline] aluminum). At 290 K, the magnetic field dependence of the muon spin relaxation corresponds to that expected for highly anisotropic intermolecular electron hopping. Intermolecular mobility in the fast hopping direction has been found to be 0.23+/-0.03 cm2 V-1 s(-1) in the absence of an electric- field gradient, increasing to 0.32+/-0.06 cm2 V-1 s(-1) in an electric field gradient of 1 MV m(-1). These intrinsic mobility values provide an estimate of the upper limit for mobility achievable in bulk material.
A numerical study of mobility in thin films of fullerene derivatives.
Mackenzie, Roderick C I; Frost, Jarvist M; Nelson, Jenny
2010-02-14
The effect of functional group size on the electron mobility in films of fullerene derivatives is investigated numerically. A series of four C(60) derivatives are formed by attaching saturated hydrocarbon chains to the C(60) cage via a methano bridge. For each of the derivatives investigated, molecular dynamics is used to generate a realistic material morphology. Quantum chemical methods are then used to calculate intermolecular charge transfer rates. Finally, Monte Carlo methods are used to simulate time-of-flight experiments and thus calculate the electron mobility. It is found that as the length of the aliphatic side chain increases, the configurational disorder increases and thus the mobility decreases.
Kwak, Hyeon-Tak; Chang, Seung-Bo; Jung, Hyun-Gu; Kim, Hyun-Seok
2018-09-01
In this study, we consider the relationship between the temperature in a two-dimensional electron gas (2-DEG) channel layer and the RF characteristics of an AlGaN/GaN high-electron-mobility transistor by changing the geometrical structure of the field-plate. The final goal is to achieve a high power efficiency by decreasing the channel layer temperature. First, simulations were performed to compare and contrast the experimental data of a conventional T-gate head structure. Then, a source-bridged field-plate (SBFP) structure was used to obtain the lower junction temperature in the 2-DEG channel layer. The peak electric field intensity was reduced, and a decrease in channel temperature resulted in an increase in electron mobility. Furthermore, the gate-to-source capacitance was increased by the SBFP structure. However, under the large current flow condition, the SBFP structure had a lower maximum temperature than the basic T-gate head structure, which improved the device electron mobility. Eventually, an optimum position of the SBFP was used, which led to higher frequency responses and improved the breakdown voltages. Hence, the optimized SBFP structure can be a promising candidate for high-power RF devices.
Development of Cryogenic Enhancement-Mode Pseudomorphic High-Electron-Mobility Transistor Amplifier
NASA Astrophysics Data System (ADS)
Hirata, T.; Okazaki, T.; Obara, K.; Yano, H.; Ishikawa, O.
2017-06-01
This paper reports the technical details of the development of a low-temperature amplifier for nuclear magnetic resonance measurements of superfluid {}^3He in very confined geometries. The amplifier consists of commercially available enhancement-mode pseudomorphic high-electron-mobility transistor devices and temperature-insensitive passive components with an operating frequency range of 0.2-6 MHz.
ERIC Educational Resources Information Center
Zou, Di; Xie, Haoran; Wang, Fu Lee
2015-01-01
Previous studies on dictionary consultation investigated mainly online dictionaries or simple pocket electronic dictionaries as they were commonly used among learners back then, yet the more updated mobile dictionaries were superficially investigated though they have already replaced the pocket electronic dictionaries. These studies are also…
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Okojie, Robert S.; Krasowski, Michael J.; Beheim, Glenn M.; Fralick, Gustave C.; Wrbanek, John D.; Greenberg, Paul S.; Xu, Jennifer
2007-01-01
NASA Glenn Research Center is presently developing and applying a range of sensor and electronic technologies that can enable future planetary missions. These include space qualified instruments and electronics, high temperature sensors for Venus missions, mobile sensor platforms, and Microsystems for detection of a range of chemical species and particulates. A discussion of each technology area and its level of maturity is given. It is concluded that there is a strong need for low power devices which can be mobile and provide substantial characterization of the planetary environment where and when needed. While a given mission will require tailoring of the technology for the application, basic tools which can enable new planetary missions are being developed.
Electronic structures of superionic conductor Li3N
NASA Astrophysics Data System (ADS)
Aoki, Masaru; Ode, Yoshiyuki; Tsumuraya, Kazuo
2011-03-01
Lithium nitride is a superionic conductor with high Li conductivity. The compound has been studied extensively because of its potential utility as electrolyte in solid-state batteries. Though the mobility of the cations within the crystalline solid is high comparable to that of molten salts, the mechanism of the high mobility of the cations remains unsolved. To clarify the origin of the mobility we investigate the electronic states of the Li cations in the Li 3 N crystal with the first principles electronic structure analysis, focusing a correlation between the cations and the ionicities of the constituent atoms. We have found the existence of the covalent bonding between the Li atoms in the Li 3 N crystal in spite of the ionized states of the constituent atoms.
Molecular gated-AlGaN/GaN high electron mobility transistor for pH detection.
Ding, Xiangzhen; Yang, Shuai; Miao, Bin; Gu, Le; Gu, Zhiqi; Zhang, Jian; Wu, Baojun; Wang, Hong; Wu, Dongmin; Li, Jiadong
2018-04-18
A molecular gated-AlGaN/GaN high electron mobility transistor has been developed for pH detection. The sensing surface of the sensor was modified with 3-aminopropyltriethoxysilane to provide amphoteric amine groups, which would play the role of receptors for pH detection. On modification with 3-aminopropyltriethoxysilane, the transistor exhibits good chemical stability in hydrochloric acid solution and is sensitive for pH detection. Thus, our molecular gated-AlGaN/GaN high electron mobility transistor acheived good electrical performances such as chemical stability (remained stable in hydrochloric acid solution), good sensitivity (37.17 μA/pH) and low hysteresis. The results indicate a promising future for high-quality sensors for pH detection.
Nature of size effects in compact models of field effect transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torkhov, N. A., E-mail: trkf@mail.ru; Scientific-Research Institute of Semiconductor Devices, Tomsk 634050; Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050
Investigations have shown that in the local approximation (for sizes L < 100 μm), AlGaN/GaN high electron mobility transistor (HEMT) structures satisfy to all properties of chaotic systems and can be described in the language of fractal geometry of fractional dimensions. For such objects, values of their electrophysical characteristics depend on the linear sizes of the examined regions, which explain the presence of the so-called size effects—dependences of the electrophysical and instrumental characteristics on the linear sizes of the active elements of semiconductor devices. In the present work, a relationship has been established for the linear model parameters of themore » equivalent circuit elements of internal transistors with fractal geometry of the heteroepitaxial structure manifested through a dependence of its relative electrophysical characteristics on the linear sizes of the examined surface areas. For the HEMTs, this implies dependences of their relative static (A/mm, mA/V/mm, Ω/mm, etc.) and microwave characteristics (W/mm) on the width d of the sink-source channel and on the number of sections n that leads to a nonlinear dependence of the retrieved parameter values of equivalent circuit elements of linear internal transistor models on n and d. Thus, it has been demonstrated that the size effects in semiconductors determined by the fractal geometry must be taken into account when investigating the properties of semiconductor objects on the levels less than the local approximation limit and designing and manufacturing field effect transistors. In general, the suggested approach allows a complex of problems to be solved on designing, optimizing, and retrieving the parameters of equivalent circuits of linear and nonlinear models of not only field effect transistors but also any arbitrary semiconductor devices with nonlinear instrumental characteristics.« less
Growth and Transport Studies of LaTiO3 / KTaO3 Heterostructures
NASA Astrophysics Data System (ADS)
Zou, K.; Walker, F. J.; Ahn, C. H.
2014-03-01
Perovskite oxide heterostructures provide a rich platform for exploring emergent electronic properties, such as 2D electron gases (2DEGs) at interfaces. In this talk, we present results on the growth of LaTiO3 / KTaO3 heterostructures by molecular beam epitaxy and subsequent measurements of transport properties. Although both oxide materials are insulating in the bulk, metallic conduction is observed from T = 2 - 300 K. We achieve a room temperature carrier mobility of ~ 25 cm2 /Vs at a carrier density of ~ 1014 /cm2. By comparison, 2DEGs in LaTiO3 / SrTiO3 and LaAlO3 / SrTiO3 have lower carrier mobility, but the same carrier density. We attribute some of the increase in mobility to the smaller band effective mass of the Ta 4d electrons compared to the Ti 3d electrons.
Brownian motion of massive skyrmions in magnetic thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troncoso, Roberto E., E-mail: r.troncoso.c@gmail.com; Núñez, Álvaro S., E-mail: alnunez@dfi.uchile.cl
2014-12-15
We report on the thermal effects on the motion of current-driven massive magnetic skyrmions. The reduced equation for the motion of skyrmion has the form of a stochastic generalized Thiele’s equation. We propose an ansatz for the magnetization texture of a non-rigid single skyrmion that depends linearly with the velocity. By using this ansatz it is found that the skyrmion mass tensor is closely related to intrinsic skyrmion parameters, such as Gilbert damping, skyrmion-charge and dissipative force. We have found an exact expression for the average drift velocity as well as the mean-square velocity of the skyrmion. The longitudinal andmore » transverse mobility of skyrmions for small spin-velocity of electrons is also determined and found to be independent of the skyrmion mass.« less
Giovanni, Mazza G; Shenvi, Rohit; Battles, Marcie; Orthner, Helmuth F
2008-11-06
The eMonitor is a component of the ePatient system; a prototype system used by emergency medical services (EMS) personnel in the field to record and transmits electronic patient care report (ePCR) information interactively. The eMonitor component allows each Mobile Data Terminal (MDT) on an unreliable Cisco MobileIP wireless network to securely send and received XML messages used to update patient information to and from the MDT before, during and after the transport of a patient.
NASA Astrophysics Data System (ADS)
van Berkel, M.; Kobayashi, T.; Igami, H.; Vandersteen, G.; Hogeweij, G. M. D.; Tanaka, K.; Tamura, N.; Zwart, H. J.; Kubo, S.; Ito, S.; Tsuchiya, H.; de Baar, M. R.; LHD Experiment Group
2017-12-01
A new methodology to analyze non-linear components in perturbative transport experiments is introduced. The methodology has been experimentally validated in the Large Helical Device for the electron heat transport channel. Electron cyclotron resonance heating with different modulation frequencies by two gyrotrons has been used to directly quantify the amplitude of the non-linear component at the inter-modulation frequencies. The measurements show significant quadratic non-linear contributions and also the absence of cubic and higher order components. The non-linear component is analyzed using the Volterra series, which is the non-linear generalization of transfer functions. This allows us to study the radial distribution of the non-linearity of the plasma and to reconstruct linear profiles where the measurements were not distorted by non-linearities. The reconstructed linear profiles are significantly different from the measured profiles, demonstrating the significant impact that non-linearity can have.
A detachable electronic device for use with a long white cane to assist with mobility.
O'Brien, Emily E; Mohtar, Aaron A; Diment, Laura E; Reynolds, Karen J
2014-01-01
Vision-impaired individuals often use a long white cane to assist them with gathering information about their surroundings. However, these aids are generally not used to detect obstacles above knee height. The purpose of this study is to determine whether a low-cost, custom-built electronic device clipped onto a traditional cane can provide adequate vibratory warning to the user of obstacles above knee height. Sixteen normally sighted blindfolded individuals participated in two mobility courses which they navigated using a normal white cane and a white cane with the electronic device attached. Of the 16 participants, 10 hit fewer obstacles, and 12 covered less ground with the cane when the electronic device was attached. Ten participants found navigating with the electronic device easier than just the white cane alone. However, the time taken on the mobility courses, the number of collisions with obstacles, and the area covered by participants using the electronic device were not significantly different (p > 0.05). A larger sample size is required to determine if the trends found have real significance. It is anticipated that additional information provided by this electronic device about the surroundings would allow users to move more confidently within their environment.
Recall of past use of mobile phone handsets.
Parslow, R C; Hepworth, S J; McKinney, P A
2003-01-01
Previous studies investigating health effects of mobile phones have based their estimation of exposure on self-reported levels of phone use. This UK validation study assesses the accuracy of reported voice calls made from mobile handsets. Data collected by postal questionnaire from 93 volunteers was compared to records obtained prospectively over 6 months from four network operators. Agreement was measured for outgoing calls using the kappa statistic, log-linear modelling, Spearman correlation coefficient and graphical methods. Agreement for number of calls gained moderate classification (kappa = 0.39) with better agreement for duration (kappa = 0.50). Log-linear modelling produced similar results. The Spearman correlation coefficient was 0.48 for number of calls and 0.60 for duration. Graphical agreement methods demonstrated patterns of over-reporting call numbers (by a factor of 1.7) and duration (by a factor of 2.8). These results suggest that self-reported mobile phone use may not fully represent patterns of actual use. This has implications for calculating exposures from questionnaire data.
Mobility-Selected Ion Trapping and Enrichment Using Structures for Lossless Ion Manipulations
Chen, Tsung-Chi; Ibrahim, Yehia M.; Webb, Ian K.; ...
2016-01-11
The integration of ion mobility spectrometry (IMS) with mass spectrometry (MS) and the ability to trap ions in IMS-MS measurements is of great importance for performing reactions, accumulating ions, and increasing analytical measurement sensitivity. The development of Structures for Lossless Ion Manipulations (SLIM) offers the potential for ion manipulations in a more reliable and cost-effective manner, while opening opportunities for much more complex sequences of manipulations. Here, we demonstrate an ion separation and trapping module and a method based upon SLIM that consists of a linear mobility ion drift region, a switch/tee and a trapping region that allows the isolationmore » and accumulation of mobility-separated species. The operation and optimization of the SLIM switch/tee and trap are described and demonstrated for the enrichment of the low abundance ions. Lastly, we observed a linear increase in ion intensity with the number of trapping/accumulation events using the SLIM trap, illustrating its potential for enhancing the sensitivity of low abundance or targeted species.« less
Berleb, Stefan; Brütting, Wolfgang
2002-12-31
Electron transport in tris(8-hydroxyquinoline) aluminum (Alq3) is investigated by impedance spectroscopy under conditions of space-charge limited conduction (SCLC). Existing SCLC models are extended to include the field dependence of the charge carrier mobility and energetically distributed trap states. The dispersive nature of electron transport is revealed by a frequency-dependent mobility with a dispersion parameter alpha in the range 0.4-0.5, independent of temperature. This indicates that positional rather than energetic disorder is the dominant mechanism for the dispersive transport of electrons in Alq3.
NASA Technical Reports Server (NTRS)
Eiceman, G. A.
1999-01-01
The work described in this research program originated with the choice by NASA of an ion mobility spectrometer for air quality monitoring on-board the international spacestation. Though the gas chromatograph-ion mobility spectrometer analyzer known as VOA met or exceeded expectations, limitations in the basic understanding of response and the utilization of foundational principles into usable technology was considered unacceptable. In this research program, a comprehensive model for the origins of mobility spectra was proposed, tested and verified. The principles considered responsible for the appearance of mobility spectra have now been elucidated through this project. This understanding has been applied in automated identification of mobility spectra using neural networks and routine procedures for this now exist. Finally, the limitation on linear range has been shown to be a technical limitation and not a fundamental limitation so that a hardware component was crafted to extend the linear range of a mobility spectrometer by 10X. This project has led to one Ph.D. dissertation and one MS thesis. In addition, over ten public presentations at professional meetings and six journal publications have resulted from this program of research. The findings are so plentiful that total analysis of the findings may require four to six years or more. The findings confirm that the decision to use VOA was sound and that the chemical and physical principles of mobility spectrometry are both understandable and predictable.
Differential Mobility Spectrometry: Preliminary Findings on Determination of Fundamental Constants
NASA Technical Reports Server (NTRS)
Limero, Thomas; Cheng, Patti; Boyd, John
2007-01-01
The electron capture detector (ECD) has been used for 40+ years (1) to derive fundamental constants such as a compound's electron affinity. Given this historical perspective, it is not surprising that differential mobility spectrometry (DMS) might be used in a like manner. This paper will present data from a gas chromatography (GC)-DMS instrument that illustrates the potential capability of this device to derive fundamental constants for electron-capturing compounds. Potential energy curves will be used to provide possible explanation of the data.
2012-11-29
of localized states extending into the gap. We also introduced a simple model allowing estimates of the upper limit of the intra-grain mobility in...well as to pentacene , and DATT. This research will be described below. In addition to our work on the electronic structure and charge mobility, we have...stacking distance gives rise to a tail of localized states which act as traps for electrons and holes. We introduced a simple effective Hamiltonian model
NASA Astrophysics Data System (ADS)
Guo, Junjie; Yang, Bingchu; Zheng, Zhouming; Jiang, Jie
2017-03-01
Mobility engineering through physical or chemical process is a fruitful approach for the atomically-layered two-dimensional electronic applications. Unfortunately, the usual process with either illumination or oxygen treatment would greatly deteriorate the mobility in two-dimensional MoS2 field-effect transistor (FET). Here, in this work, we report that the mobility can be abnormally enhanced to an order of magnitude by the synergy of ultraviolet illumination (UV) and ozone plasma treatment in multilayer MoS2 FET. This abnormal mobility enhancement is attributed to the trap passivation due to the photo-generated excess carriers during UV/ozone plasma treatment. An energy band model based on Schottky barrier modulation is proposed to understand the underlying mechanism. Raman spectra results indicate that the oxygen ions are incorporated into the surface of MoS2 (some of them are in the form of ultra-thin Mo-oxide) and can further confirm this proposed mechanism. Our results can thus provide a simple approach for mobility engineering in MoS2-based FET and can be easily expanded to other 2D electronic devices, which represents a significant step toward applications of 2D layered materials in advanced cost-effective electronics.
Lim, Eugene Y; Lee, Chiang; Cai, Weidong; Feng, Dagan; Fulham, Michael
2007-01-01
Medical practice is characterized by a high degree of heterogeneity in collaborative and cooperative patient care. Fast and effective communication between medical practitioners can improve patient care. In medical imaging, the fast delivery of medical reports to referring medical practitioners is a major component of cooperative patient care. Recently, mobile phones have been actively deployed in telemedicine applications. The mobile phone is an ideal medium to achieve faster delivery of reports to the referring medical practitioners. In this study, we developed an electronic medical report delivery system from a medical imaging department to the mobile phones of the referring doctors. The system extracts a text summary of medical report and a screen capture of diagnostic medical image in JPEG format, which are transmitted to 3G GSM mobile phones.
NASA Astrophysics Data System (ADS)
Korolev, A. M.; Shulga, V. M.; Turutanov, O. G.; Shnyrkov, V. I.
2016-07-01
A technically simple and physically clear method is suggested for direct measurement of the brightness temperature of two-dimensional electron gas (2DEG) in the channel of a high electron mobility transistor (HEMT). The usage of the method was demonstrated with the pseudomorphic HEMT as a specimen. The optimal HEMT dc regime, from the point of view of the "back action" problem, was found to belong to the unsaturated area of the static characteristics possibly corresponding to the ballistic electron transport mode. The proposed method is believed to be a convenient tool to explore the ballistic transport, electron diffusion, 2DEG properties and other electrophysical processes in heterostructures.
Investigating the Determinants and Age and Gender Differences in the Acceptance of Mobile Learning
ERIC Educational Resources Information Center
Wang, Yi-Shun; Wu, Ming-Cheng; Wang, Hsiu-Yuan
2009-01-01
With the proliferation of mobile computing technology, mobile learning (m-learning) will play a vital role in the rapidly growing electronic learning market. M-learning is the delivery of learning to students anytime and anywhere through the use of wireless Internet and mobile devices. However, acceptance of m-learning by individuals is critical…
Modeling Students' Readiness to Adopt Mobile Learning in Higher Education: An Empirical Study
ERIC Educational Resources Information Center
Al-Adwan, Ahmad Samed; Al-Madadha, Amr; Zvirzdinaite, Zahra
2018-01-01
Mobile devices are increasingly coming to penetrate people's daily lives. Mobile learning (m-learning) is viewed as key to the coming era of electronic learning (e-learning). In the meantime, the use of mobile devices for learning has made a significant contribution to delivering education among higher education students worldwide. However, while…
Free electron lasers driven by linear induction accelerators: High power radiation sources
NASA Technical Reports Server (NTRS)
Orzechowski, T. J.
1989-01-01
The technology of Free Electron Lasers (FELs) and linear induction accelerators (LIAs) is addressed by outlining the following topics: fundamentals of FELs; basic concepts of linear induction accelerators; the Electron Laser Facility (a microwave FEL); PALADIN (an infrared FEL); magnetic switching; IMP; and future directions (relativistic klystrons). This presentation is represented by viewgraphs only.
Exploitation of molecular mobilities for advanced organic optoelectronic and photonic nano-materials
NASA Astrophysics Data System (ADS)
Gray, Tomoko O.
Electro-optically active organic materials have shown great potential in advanced technologies such as ultrafast electro-optical switches for broadband communication, light-emitting diodes, and photovoltaic cells. Currently, the maturity of chemical synthesis enables a sophisticated integration of the active elements into complex macromolecules. Also, the structure-property relationships of the isolated single electrically/optically active elements are well established. Unfortunately, such correlations involving single molecule are not applicable to complex unstructured condensed systems, in which unique mesoscale properties and complex dynamics of super-/supra-molecular structures are present. Our current challenge arises, in particular, from a deficiency of appropriate characterization tools that close the gap between phenomenological measurements and theoretical models. This work addresses submolecular mobilities relevant for opto-electronic functionalities of photoluminescent polymers and non-linear optical (NLO) materials. Thereby, I will introduce novel nanoscale thermomechanical characterization tools that are based on scanning force microscopy. From nanoscale thermomechanical measurements sub-/super-molecular mobilities of novel optoelectronic materials can be inferred and to some degree controlled. For instance, we have explored interfacial constraints as a engineering tool to control molecular mobility. This will be illustrated with electroluminescent polymers, which are prone to undesired pi-pi aggregation due to the rod-like structure---intrinsic to all conjugated polymers. The nanoscale confinement is used to reduced chain mobility, and thus, hinders undesired aggregation, and consequently, yields superior spectral stability. From the nanomaterial design perspective, I will also address mobility control with targeted molecular designs. This involves two classes of novel NLO materials, side-chain dendronized polymers and self-assembling molecular glasses. The side-chain dendronized polymers are, due to the structural complexity, self-constrained systems. Our thermomechanical investigations identified that a local relaxation mode associated to the NLO side-chain is the critical design parameter in yielding high mobility to the active element. Relaxation processes of the self-assembling molecular glasses are discussed from a thermodynamic perspective involving both enthalpic and entropic contributions, considering the very special nature of interactions for the NLO molecular glasses, i.e., the formation and dissociation of phenyl/perfluorophenyl quadrupol pairs.
Regueiro, Jorge; Giri, Anupam; Wenzl, Thomas
2016-06-21
Fast market penetration of electronic cigarettes is leading to an exponentially growing number of electronic refill liquids with different nicotine contents and an endless list of flavors. Therefore, rapid and simple methods allowing a fast screening of these products are necessary to detect harmful substances which can negatively impact the health of consumers. In this regard, the present work explores the capabilities of differential ion mobility spectrometry coupled to tandem mass spectrometry for high-throughput analysis of nicotine and 11 related compounds in commercial refill liquids for electronic cigarettes. The influence of main factors affecting the ion mobility separation, such as modifier types and concentration, separation voltage, and temperature, was systematically investigated. Despite small molecular weight differences among the studied compounds, a good separation was achieved in the ion mobility cell under the optimized conditions, which involved the use of ethanol as a polar gas-phase chemical modifier. Indeed, differential ion mobility was able to resolve (resolution >4) nicotine from its structural isomer anabasine without the use of any chromatographic separation. The quantitative performance of the proposed method was then evaluated, showing satisfactory precision (RSD ≤ 16%) and recoveries ranging from 85 to 100% for nicotine, and from 84 to 126% for the rest of the target analytes. Several commercial electronic cigarette refill liquids were analyzed to demonstrate the applicability of the method. In some cases, significant differences were found between labeled and measured levels of nicotine. Anatabine, cotinine, myosmine, and nornicotine were also found in some of the analyzed samples.
Van Vooren, Antoine; Kim, Ji-Seon; Cornil, Jérôme
2008-05-16
Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) [F8BT], displays very different charge-transport properties for holes versus electrons when comparing annealed and pristine thin films and transport parallel (intrachain) and perpendicular (interchain) to the polymer axes. The present theoretical contribution focuses on the electron-transport properties of F8BT chains and compares the efficiency of intrachain versus interchain transport in the hopping regime. The theoretical results rationalize significantly lowered electron mobility in annealed F8BT thin films and the smaller mobility anisotropy (mu( parallel)/mu( perpendicular)) measured for electrons in aligned films (i.e. 5-7 compared to 10-15 for holes).
High Thermoelectric Power Factor of High‐Mobility 2D Electron Gas
Kim, Sung Wng; Kaneki, Shota; Yamamoto, Atsushi
2017-01-01
Abstract Thermoelectric conversion is an energy harvesting technology that directly converts waste heat from various sources into electricity by the Seebeck effect of thermoelectric materials with a large thermopower (S), high electrical conductivity (σ), and low thermal conductivity (κ). State‐of‐the‐art nanostructuring techniques that significantly reduce κ have realized high‐performance thermoelectric materials with a figure of merit (ZT = S 2∙σ∙T∙κ−1) between 1.5 and 2. Although the power factor (PF = S 2∙σ) must also be enhanced to further improve ZT, the maximum PF remains near 1.5–4 mW m−1 K−2 due to the well‐known trade‐off relationship between S and σ. At a maximized PF, σ is much lower than the ideal value since impurity doping suppresses the carrier mobility. A metal‐oxide‐semiconductor high electron mobility transistor (MOS‐HEMT) structure on an AlGaN/GaN heterostructure is prepared. Applying a gate electric field to the MOS‐HEMT simultaneously modulates S and σ of the high‐mobility electron gas from −490 µV K−1 and ≈10−1 S cm−1 to −90 µV K−1 and ≈104 S cm−1, while maintaining a high carrier mobility (≈1500 cm2 V−1 s−1). The maximized PF of the high‐mobility electron gas is ≈9 mW m−1 K−2, which is a two‐ to sixfold increase compared to state‐of‐the‐art practical thermoelectric materials. PMID:29375980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudryashov, A. A.; Kytin, V. G.; Lunin, R. A.
2016-07-15
The Shubnikov–de Haas effect and the Hall effect in n-Bi{sub 2–x}Tl{sub x}Se{sub 3} (x = 0, 0.01, 0.02, 0.04) and p-Sb{sub 2–x}Tl{sub x}Te{sub 3} (x = 0, 0.005, 0.015, 0.05) single crystals are studied. The carrier mobilities and their changes upon Tl doping are calculated by the Fourier spectra of oscillations. It is found shown that Tl doping decreases the electron concentration in n-Bi{sub 2–x}Tl{sub x}Se{sub 3} and increases the electron mobility. In p-Sb{sub 2–x}Tl{sub x}Te{sub 3}, both the hole concentration and mobility decrease upon Tl doping. The change in the crystal defect concentration, which leads to these effects, ismore » discussed.« less
Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors
NASA Astrophysics Data System (ADS)
Gao, Xu; Lin, Meng-Fang; Mao, Bao-Hua; Shimizu, Maki; Mitoma, Nobuhiko; Kizu, Takio; Ou-Yang, Wei; Nabatame, Toshihide; Liu, Zhi; Tsukagoshi, Kazuhito; Wang, Sui-Dong
2017-01-01
Decreasing the active layer thickness has been recently reported as an alternative way to achieve fully depleted oxide thin-film transistors for the realization of low-voltage operations. However, the correlation between the active layer thickness and device resistivity to environmental changes is still unclear, which is important for the optimized design of oxide thin-film transistors. In this work, the ambient gas stability of IGZO thin-film transistors is found to be strongly correlated to the IGZO thickness. The TFT with the thinnest IGZO layer shows the highest intrinsic electron mobility in a vacuum, which is greatly reduced after exposure to O2/air. The device with a thick IGZO layer shows similar electron mobility in O2/air, whereas the mobility variation measured in the vacuum is absent. The thickness dependent ambient gas stability is attributed to a high-mobility region in the IGZO surface vicinity with less sputtering-induced damage, which will become electron depleted in O2/air due to the electron transfer to adsorbed gas molecules. The O2 adsorption and deduced IGZO surface band bending is demonstrated by the ambient-pressure x-ray photoemission spectroscopy results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyle, Erin C. H., E-mail: erinkyle@umail.ucsb.edu; Kaun, Stephen W.; Burke, Peter G.
2014-05-21
The dependence of electron mobility on growth conditions and threading dislocation density (TDD) was studied for n{sup −}-GaN layers grown by ammonia-based molecular beam epitaxy. Electron mobility was found to strongly depend on TDD, growth temperature, and Si-doping concentration. Temperature-dependent Hall data were fit to established transport and charge-balance equations. Dislocation scattering was analyzed over a wide range of TDDs (∼2 × 10{sup 6} cm{sup −2} to ∼2 × 10{sup 10} cm{sup −2}) on GaN films grown under similar conditions. A correlation between TDD and fitted acceptor states was observed, corresponding to an acceptor state for almost every c lattice translation along each threading dislocation. Optimizedmore » GaN growth on free-standing GaN templates with a low TDD (∼2 × 10{sup 6} cm{sup −2}) resulted in electron mobilities of 1265 cm{sup 2}/Vs at 296 K and 3327 cm{sup 2}/Vs at 113 K.« less
Mante, Pierre-Adrien; Stoumpos, Constantinos C.; Kanatzidis, Mercouri G.; ...
2017-02-08
The intrinsic properties of CH 3NH 3PbI 3 are still largely unknown in spite of the great amount of attention it has received for its solar cell application. Mobility of charges is a quintessential property in this aspect; however, there is still no clear understanding of electron transport, as reported values span over three orders of magnitude. Here we develop a method to measure the electron and hole deformation potentials using coherent acoustic phonons generated by femtosecond laser pulses. Furthermore, we apply this method to characterize a CH 3NH 3PbI 3 single crystal.We measure the acoustic phonon properties and characterizemore » electron-acoustic phonon scattering. Then, using the deformation potential theory, we calculate the carrier intrinsic mobility and compare it to the reported experimental and theoretical values. These results reveal high electron and hole mobilities of 2,800 and 9,400 cm 2V -1 s -1 , respectively. Comparison with literature values of mobility demonstrates the potential role played by polarons in charge transport in CH 3NH 3PbI 3.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mante, Pierre-Adrien; Stoumpos, Constantinos C.; Kanatzidis, Mercouri G.
The intrinsic properties of CH 3NH 3PbI 3 are still largely unknown in spite of the great amount of attention it has received for its solar cell application. Mobility of charges is a quintessential property in this aspect; however, there is still no clear understanding of electron transport, as reported values span over three orders of magnitude. Here we develop a method to measure the electron and hole deformation potentials using coherent acoustic phonons generated by femtosecond laser pulses. Furthermore, we apply this method to characterize a CH 3NH 3PbI 3 single crystal.We measure the acoustic phonon properties and characterizemore » electron-acoustic phonon scattering. Then, using the deformation potential theory, we calculate the carrier intrinsic mobility and compare it to the reported experimental and theoretical values. These results reveal high electron and hole mobilities of 2,800 and 9,400 cm 2V -1 s -1 , respectively. Comparison with literature values of mobility demonstrates the potential role played by polarons in charge transport in CH 3NH 3PbI 3.« less
Enhancement of hole mobility in InSe monolayer via an InSe and black phosphorus heterostructure.
Ding, Yi-Min; Shi, Jun-Jie; Xia, Congxin; Zhang, Min; Du, Juan; Huang, Pu; Wu, Meng; Wang, Hui; Cen, Yu-Lang; Pan, Shu-Hang
2017-10-05
To enhance the low hole mobility (∼40 cm 2 V -1 s -1 ) of InSe monolayer, a novel two-dimensional (2D) van der Waals heterostructure made of InSe and black phosphorus (BP) monolayers with high hole mobility (∼10 3 cm 2 V -1 s -1 ) has been constructed and its structural and electronic properties are investigated using first-principles calculations. We find that the InSe/BP heterostructure exhibits a direct band gap of 1.39 eV and type-II band alignment with electrons (holes) located in the InSe (BP) layer. The band offsets of InSe and BP are 0.78 eV for the conduction band minimum and 0.86 eV for the valence band maximum, respectively. Surprisingly, the hole mobility in the InSe/BP heterostructure exceeds 10 4 cm 2 V -1 s -1 , which is one order of magnitude larger than the hole mobility of BP and three orders larger than that of the InSe monolayer. The electron mobility is also increased to 3 × 10 3 cm 2 V -1 s -1 . The physical reason has been analyzed deeply, and a universal method is proposed to improve the carrier mobility of 2D materials by forming heterostructures with them and other 2D materials with complementary properties. The InSe/BP heterostructure can thus be widely used in nanoscale InSe-based field-effect transistors, photodetectors and photovoltaic devices due to its type-II band alignment and high carrier mobility.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-10
... Respondents Samsung Electronics Co., Ltd., Samsung Electronics America, Inc., and Samsung Telecommunications... with respect to Samsung Electronics Co., Ltd., Samsung Electronics America, Inc., and Samsung... Electronics Co., Ltd., Samsung Electronics America, Inc., Samsung Telecommunications America, LLC...
Effect of wave localization on plasma instabilities
NASA Astrophysics Data System (ADS)
Levedahl, William Kirk
1987-10-01
The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.
A comparative study of graphene and graphite-based field effect transistor on flexible substrate
NASA Astrophysics Data System (ADS)
Bhatt, Kapil; Rani, Cheenu; Vaid, Monika; Kapoor, Ankit; Kumar, Pramod; Kumar, Sandeep; Shriwastawa, Shilpi; Sharma, Sandeep; Singh, Randhir; Tripathi, C. C.
2018-06-01
In the present era, there has been a great demand of cost-effective, biodegradable, flexible and wearable electronics which may open the gate to many applications like flexible displays, RFID tags, health monitoring devices, etc. Due to the versatile nature of plastic substrates, they have been extensively used in packaging, printing, etc. However, the fabrication of electronic devices requires specially prepared substrates with high quality surfaces, chemical compositions and solutions to the related fabrication issues along with its non-biodegradable nature. Therefore, in this report, a cost-effective, biodegradable cellulose paper as an alternative dielectric substrate material for the fabrication of flexible field effect transistor (FET) is presented. The graphite and liquid phase exfoliated graphene have been used as the material for the realisation of source, drain and channel on cellulose paper substrate for its comparative analysis. The mobility of fabricated FETs was calculated to be 83 cm2/V s (holes) and 33 cm2/V s (electrons) for graphite FET and 100 cm2/V s (holes) and 52 cm2/V s (electrons) for graphene FET, respectively. The output characteristic of the device demonstrates the linear behaviour and a comprehensive increase in conductance as a function of gate voltages. The fabricated FETs may be used for strain sensing, health care monitoring devices, human motion detection, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi
A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression, i.e.,more » a reduction in peak widths of all species. This peak compression occurs with a modest reduction of resolution, but which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. In addition, approaches for peak compression in traveling wave IMS are also discussed. Ion mobility peak compression can be particularly useful for mitigating diffusion driven peak spreading over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range.« less
Mobile satellite communications - Vehicle antenna technology update
NASA Technical Reports Server (NTRS)
Bell, D.; Naderi, F. M.
1986-01-01
This paper discusses options for vehicle antennas to be used in mobile satellite communications systems. Two types of antennas are identified. A non-steerable, azimuthally omnidirectional antenna with a modest gain of 3 to 5 dBi is suggested when a low cost is desired. Alternatively, mechanically or electronically steerable antennas with a higher gain of 10 to 12 dBi are suggested to alleviate power and spectrum scarcity associated with mobile satellite communications. For steerable antennas, both open-loop and closed-loop pointing schemes are discussed. Monopulse and sequential lobing are proposed for the mechanically steered and electronically steered antennas, respectively. This paper suggests a hybrid open-loop/closed-loop pointing technique as the best performer in the mobile satellite environment.
Towards predictive many-body calculations of phonon-limited carrier mobilities in semiconductors
NASA Astrophysics Data System (ADS)
Poncé, Samuel; Margine, Elena R.; Giustino, Feliciano
2018-03-01
We probe the accuracy limit of ab initio calculations of carrier mobilities in semiconductors, within the framework of the Boltzmann transport equation. By focusing on the paradigmatic case of silicon, we show that fully predictive calculations of electron and hole mobilities require many-body quasiparticle corrections to band structures and electron-phonon matrix elements, the inclusion of spin-orbit coupling, and an extremely fine sampling of inelastic scattering processes in momentum space. By considering all these factors we obtain excellent agreement with experiment, and we identify the band effective masses as the most critical parameters to achieve predictive accuracy. Our findings set a blueprint for future calculations of carrier mobilities, and pave the way to engineering transport properties in semiconductors by design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Dong-Dong; Department of Physics, Tsinghua University, Beijing 100084; Wang, Lian-shan, E-mail: ls-wang@semi.ac.cn
In this paper, a theory is developed to study the anisotropic scattering effect of the inclined misfit dislocation on the two-dimensional electron gas in Al(In)GaN/GaN heterostructures. The inclined misfit dislocation, which differs from the well-known vertical threading dislocation, has a remarkable tilt angle from the vertical. The predicted electron mobility shows a remarkable anisotropy. It has a maximum mobility value along the direction perpendicular to the projection of the inclined dislocation line, and a minimum mobility value along the direction parallel to the projection. The degree of the anisotropic scattering effect will be even greater with the increase of themore » tilt angle.« less
Electrostatic modulation of the electronic properties of Dirac semimetal Na3Bi thin films
NASA Astrophysics Data System (ADS)
Hellerstedt, Jack; Yudhistira, Indra; Edmonds, Mark T.; Liu, Chang; Collins, James; Adam, Shaffique; Fuhrer, Michael S.
2017-10-01
Large-area thin films of topological Dirac semimetal Na3Bi are grown on amorphous SiO2:Si substrates to realize a field-effect transistor with the doped Si acting as a back gate. As-grown films show charge carrier mobilities exceeding 7 000 cm2/V s and carrier densities below 3 ×1018cm-3 , comparable to the best thin-film Na3Bi . An ambipolar field effect and minimum conductivity are observed, characteristic of Dirac electronic systems. The results are quantitatively understood within a model of disorder-induced charge inhomogeneity in topological Dirac semimetals. The hole mobility is significantly larger than the electron mobility in Na3Bi which we ascribe to the inverted band structure. When present, these holes dominate the transport properties.
Confined Doping for Control of Transport Properties in Nanowires and Nanofilms
NASA Astrophysics Data System (ADS)
Zhong, Jianxin; Stocks, G. Malcolm
2006-03-01
Doping, an essential element for manipulation of electronic transport in traditional semiconductor industry, is widely expected to play important role as well in control of transport properties in nanostructures. However, traditional theory of electronic disorder predicts that doping in one-dimensional and two-dimensional systems leads to carrier localization, limiting practical applications due to poor carrier mobility. Here, a novel concept is proposed that offers the possibility to significantly increase carrier mobility by confining the distribution of dopants within a particular region [1]. Thus, the doped nanostructure becomes a coupled system comprising a doped subsystem and a perfect crystalline subsystem. We showed that carrier mobility in such a dopped nanowire or a nanofilm exhibits counterintuitive behavior in the regime of heavy doping. In particular, the larger the dopant concentration the higher the carrier mobility; we trace this transition to the existence of quasi-mobility-edges in the nanowires and mobility edges in nanofilms. *J.X. Zhong and G.M. Stocks, Nano Lett., in press, (2005)
NASA Astrophysics Data System (ADS)
Kim, Kyunghun; Cho, Jinhwi; Jhon, Heesauk; Jeon, Jongwook; Kang, Myounggon; Eon Park, Chan; Lee, Jihoon; An, Tae Kyu
2017-05-01
Organic field-effect transistors (OFETs) have been developed over the past few decades due to their potential applications in future electronics such as wearable and foldable electronics. As the electrical performance of OFETs has improved, patterning organic semiconducting crystals has become a key issue for their commercialization. However, conventional soft lithographic techniques have required the use of expensive processes to fabricate high-resolution master molds. In this study, we demonstrated a cost-effective method to prepare nanopatterned master molds for the fabrication of high-performance nanowire OFETs. We repurposed commercially available compact discs (CDs) as master molds because they already have linear nanopatterns on their surface. Flexible nanopatterned templates were replicated from the CDs using UV-imprint lithography. Subsequently, 6,13-bis-(triisopropylsilylethynyl) pentacene nanowires (NWs) were grown from the templates using a capillary force-assisted lithographic technique. The NW-based OFETs showed a high average field-effect mobility of 2.04 cm2 V-1 s-1. This result was attributed to the high crystallinity of the NWs and to their crystal orientation favorable for charge transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galiev, G. B.; Pushkarev, S. S., E-mail: s_s_e_r_p@mail.ru; Vasil'evskii, I. S.
The results of studying the influence of strained superlattices introduced into a metamorphic buffer on the electrophysical properties and atomic crystal structure of In{sub 0.70}Al{sub 0.30}As/In{sub 0.76}Ga{sub 0.24}As/In{sub 0.70}Al{sub 0.30}As metamorphic high-electron-mobility transistor (MHEMT) nanoheterostructures on GaAs substrates are presented. Two types of MHEMT structures are grown by molecular beam epitaxy, namely, one with a linear increase in x in the In{sub x}Al{sub 1-x}As metamorphic buffer, and the second with two mismatched superlattices introduced inside the metamorphic buffer. The electrophysical and structural parameters of the grown samples are studied by the van der Pauw method, transmission electron microscopy (including scanningmore » and high-resolution microscopy), atomic-force microscopy, and energy dispersive X-ray analysis. It is revealed that the introduction of superlattices into a metamorphic buffer substantially improves the electrophysical and structural characteristics of MHEMT structures.« less
Development of mobile platform integrated with existing electronic medical records.
Kim, YoungAh; Kim, Sung Soo; Kang, Simon; Kim, Kyungduk; Kim, Jun
2014-07-01
This paper describes a mobile Electronic Medical Record (EMR) platform designed to manage and utilize the existing EMR and mobile application with optimized resources. We structured the mEMR to reuse services of retrieval and storage in mobile app environments that have already proven to have no problem working with EMRs. A new mobile architecture-based mobile solution was developed in four steps: the construction of a server and its architecture; screen layout and storyboard making; screen user interface design and development; and a pilot test and step-by-step deployment. This mobile architecture consists of two parts, the server-side area and the client-side area. In the server-side area, it performs the roles of service management for EMR and documents and for information exchange. Furthermore, it performs menu allocation depending on user permission and automatic clinical document architecture document conversion. Currently, Severance Hospital operates an iOS-compatible mobile solution based on this mobile architecture and provides stable service without additional resources, dealing with dynamic changes of EMR templates. The proposed mobile solution should go hand in hand with the existing EMR system, and it can be a cost-effective solution if a quality EMR system is operated steadily with this solution. Thus, we expect this example to be shared with hospitals that currently plan to deploy mobile solutions.
Development of Mobile Platform Integrated with Existing Electronic Medical Records
Kim, YoungAh; Kang, Simon; Kim, Kyungduk; Kim, Jun
2014-01-01
Objectives This paper describes a mobile Electronic Medical Record (EMR) platform designed to manage and utilize the existing EMR and mobile application with optimized resources. Methods We structured the mEMR to reuse services of retrieval and storage in mobile app environments that have already proven to have no problem working with EMRs. A new mobile architecture-based mobile solution was developed in four steps: the construction of a server and its architecture; screen layout and storyboard making; screen user interface design and development; and a pilot test and step-by-step deployment. This mobile architecture consists of two parts, the server-side area and the client-side area. In the server-side area, it performs the roles of service management for EMR and documents and for information exchange. Furthermore, it performs menu allocation depending on user permission and automatic clinical document architecture document conversion. Results Currently, Severance Hospital operates an iOS-compatible mobile solution based on this mobile architecture and provides stable service without additional resources, dealing with dynamic changes of EMR templates. Conclusions The proposed mobile solution should go hand in hand with the existing EMR system, and it can be a cost-effective solution if a quality EMR system is operated steadily with this solution. Thus, we expect this example to be shared with hospitals that currently plan to deploy mobile solutions. PMID:25152837
Use of low volatility mobile phases in electroosmotic thin-layer chromatography.
Berezkin, V G; Balushkin, A O; Tyaglov, B V; Litvin, E F
2005-08-19
A variant of electroosmotic thin-layer chromatography is suggested with the use of low volatility compounds as mobile phases aimed at drastically decreasing the evaporation of the mobile phase and improving the reproducibility of the method. The linear movement velocity of zones of separated compounds is experimentally shown to increase 2-12-fold in electroosmotic chromatography (compared to similar values in traditional TLC). The separation efficiency is also considerably increased.
Low electron mobility of field-effect transistor determined by modulated magnetoresistance
NASA Astrophysics Data System (ADS)
Tauk, R.; Łusakowski, J.; Knap, W.; Tiberj, A.; Bougrioua, Z.; Azize, M.; Lorenzini, P.; Sakowicz, M.; Karpierz, K.; Fenouillet-Beranger, C.; Cassé, M.; Gallon, C.; Boeuf, F.; Skotnicki, T.
2007-11-01
Room temperature magnetotransport experiments were carried out on field-effect transistors in magnetic fields up to 10 T. It is shown that measurements of the transistor magnetoresistance and its first derivative with respect to the gate voltage allow the derivation of the electron mobility in the gated part of the transistor channel, while the access/contact resistances and the transistor gate length need not be known. We demonstrate the potential of this method using GaN and Si field-effect transistors and discuss its importance for mobility measurements in transistors with nanometer gate length.
Wilmer, Henry H; Chein, Jason M
2016-10-01
Mobile electronic devices are playing an increasingly pervasive role in our daily activities. Yet, there has been very little empirical research investigating how mobile technology habits might relate to individual differences in cognition and affect. The research presented in this paper provides evidence that heavier investment in mobile devices is correlated with a relatively weaker tendency to delay gratification (as measured by a delay discounting task) and a greater inclination toward impulsive behavior (i.e., weaker impulse control, assessed behaviorally and through self-report) but is not related to individual differences in sensitivity to reward. Analyses further demonstrated that individual variation in impulse control mediates the relationship between mobile technology usage and delay of gratification. Although based on correlational results, these findings lend some backing to concerns that increased use of portable electronic devices could have negative impacts on impulse control and the ability to appropriately valuate delayed rewards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya
2012-02-15
We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I{sub FC} by the mobile plate tuner. The I{sub FC} is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I{sub FC} and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasmamore » density contributes largely to the variation of the I{sub FC} when we change the position of the mobile plate tuner.« less
NASA Astrophysics Data System (ADS)
Wong, Man Hoi; Pei, Yi; Palacios, Tomás; Shen, Likun; Chakraborty, Arpan; McCarthy, Lee S.; Keller, Stacia; DenBaars, Steven P.; Speck, James S.; Mishra, Umesh K.
2007-12-01
Nonalloyed Ohmic contacts on Ga-face n+-GaN/AlGaN/GaN high electron mobility transistor (HEMT) structures typically have significant contact resistance to the two-dimensional electron gas (2DEG) due to the AlGaN barrier. By growing the HEMT structure inverted on the N-face, electrons from the contacts were able to access the 2DEG without going through an AlGaN layer. A low contact resistance of 0.16Ωmm and specific contact resistivity of 5.5×10-7Ωcm2 were achieved without contact annealing on the inverted HEMT structure.
NASA Astrophysics Data System (ADS)
Studenikin, S. A.; Sachrajda, A. S.; Gupta, J. A.; Wasilewski, Z. R.; Fedorych, O. M.; Byszewski, M.; Maude, D. K.; Potemski, M.; Hilke, M.; West, K. W.; Pfeiffer, L. N.
2007-10-01
The frequency dependence of microwave-induced resistance oscillations (MIROs) has been studied experimentally in high-mobility electron GaAs/AlGaAs structures to explore the limits at which these oscillations can be observed. It is found that in dc transport experiments at frequencies above 120GHz , MIROs start to quench, while above 230GHz , they completely disappear. The results will need to be understood theoretically but are qualitatively discussed within a model in which forced electronic charge oscillations (plasmons) play an intermediate role in the interaction process between the radiation and the single-particle electron excitations between Landau levels.
High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential
Lu, Tzu -Ming; Laroche, Dominique; Huang, S. -H.; ...
2016-01-01
In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned overmore » a wide range, from 4.4 × 10 10 cm –2 to 1.8 × 10 11 cm –2, with a peak mobility of 6.4 × 10 5 cm 2/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. Lastly, this result is then compared to a conventional lateral superlattice model potential.« less
NASA Astrophysics Data System (ADS)
Kim, J.-S.; Tyryshkin, A. M.; Lyon, S. A.
2017-03-01
Electron-beam (e-beam) lithography is commonly used in fabricating metal-oxide-silicon (MOS) quantum devices but creates defects at the Si/SiO2 interface. Here, we show that a forming gas anneal is effective at removing shallow defects (≤4 meV below the conduction band edge) created by an e-beam exposure by measuring the density of shallow electron traps in two sets of high-mobility MOS field-effect transistors. One set was irradiated with an electron-beam (10 keV, 40 μC/cm2) and was subsequently annealed in forming gas while the other set remained unexposed. Low temperature (335 mK) transport measurements indicate that the forming gas anneal recovers the e-beam exposed sample's peak mobility (14 000 cm2/Vs) to within a factor of two of the unexposed sample's mobility (23 000 cm2/Vs). Using electron spin resonance (ESR) to measure the density of shallow traps, we find that the two sets of devices are nearly identical, indicating the forming gas anneal is sufficient to anneal out shallow defects generated by the e-beam exposure. Fitting the two sets of devices' transport data to a percolation transition model, we extract a T = 0 percolation threshold density in quantitative agreement with our lowest temperature ESR-measured trap densities.
Ab-initio Study of the Electron Mobility in a Functionalized UiO-66 Metal Organic Framework
NASA Astrophysics Data System (ADS)
Musho, Terence D.; Yasin, Alhassan S.
2018-03-01
This study leverages density functional theory accompanied with Boltzmann transport equation approaches to investigate the electronic mobility as a function of inorganic substitution and functionalization in a thermally stable UiO-66 metal-organic framework (MOF). The MOFs investigated are based on Zr-UiO-66 MOF with three functionalization groups of benzene dicarboxylate (BDC), BDC functionalized with an amino group (BDC + NH_2 ) and a nitro group (BDC + NO_2 ). The design space of this study is bound by UiO-66(M)-R, [M=Zr , Ti, Hf; R=BDC , BDC+NO_2 , BDC+NH_2 ]. The elastic modulus was not found to vary significantly over the structural modification of the design space for either functionalization or inorganic substitution. However, the electron-phonon scattering potential was found to be controllable by up to 30% through controlled inorganic substitution in the metal clusters of the MOF structure. The highest electron mobility was predicted for a UiO-66(Hf_5Zr_1 ) achieving a value of approximately 1.4× 10^{-3} cm^2 /V s. It was determined that functionalization provides a controlled method of modulating the charge density, while inorganic substitution provides a controlled method of modulating the electronic mobility. Within the proposed design space the electrical conductivity was able to be increased by approximately three times the base conductivity through a combination of inorganic substitution and functionalization.
Ab-initio Study of the Electron Mobility in a Functionalized UiO-66 Metal Organic Framework
NASA Astrophysics Data System (ADS)
Musho, Terence D.; Yasin, Alhassan S.
2018-07-01
This study leverages density functional theory accompanied with Boltzmann transport equation approaches to investigate the electronic mobility as a function of inorganic substitution and functionalization in a thermally stable UiO-66 metal-organic framework (MOF). The MOFs investigated are based on Zr-UiO-66 MOF with three functionalization groups of benzene dicarboxylate (BDC), BDC functionalized with an amino group (BDC + NH_2) and a nitro group (BDC + NO_2). The design space of this study is bound by UiO-66(M)-R, [M=Zr, Ti, Hf; R=BDC, BDC+NO_2, BDC+NH_2]. The elastic modulus was not found to vary significantly over the structural modification of the design space for either functionalization or inorganic substitution. However, the electron-phonon scattering potential was found to be controllable by up to 30% through controlled inorganic substitution in the metal clusters of the MOF structure. The highest electron mobility was predicted for a UiO-66(Hf_5Zr_1) achieving a value of approximately 1.4× 10^{-3} cm^2/V s. It was determined that functionalization provides a controlled method of modulating the charge density, while inorganic substitution provides a controlled method of modulating the electronic mobility. Within the proposed design space the electrical conductivity was able to be increased by approximately three times the base conductivity through a combination of inorganic substitution and functionalization.
Morkötter, S; Jeon, N; Rudolph, D; Loitsch, B; Spirkoska, D; Hoffmann, E; Döblinger, M; Matich, S; Finley, J J; Lauhon, L J; Abstreiter, G; Koblmüller, G
2015-05-13
Strong surface and impurity scattering in III-V semiconductor-based nanowires (NW) degrade the performance of electronic devices, requiring refined concepts for controlling charge carrier conductivity. Here, we demonstrate remote Si delta (δ)-doping of radial GaAs-AlGaAs core-shell NWs that unambiguously exhibit a strongly confined electron gas with enhanced low-temperature field-effect mobilities up to 5 × 10(3) cm(2) V(-1) s(-1). The spatial separation between the high-mobility free electron gas at the NW core-shell interface and the Si dopants in the shell is directly verified by atom probe tomographic (APT) analysis, band-profile calculations, and transport characterization in advanced field-effect transistor (FET) geometries, demonstrating powerful control over the free electron gas density and conductivity. Multigated NW-FETs allow us to spatially resolve channel width- and crystal phase-dependent variations in electron gas density and mobility along single NW-FETs. Notably, dc output and transfer characteristics of these n-type depletion mode NW-FETs reveal excellent drain current saturation and record low subthreshold slopes of 70 mV/dec at on/off ratios >10(4)-10(5) at room temperature.
NASA Astrophysics Data System (ADS)
Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej; Tomašovičová, Natália
2018-05-01
An exhaustive ground-state analysis of extended two-dimensional (2D) correlated spin-electron model consisting of the Ising spins localized on nodal lattice sites and mobile electrons delocalized over pairs of decorating sites is performed within the framework of rigorous analytical calculations. The investigated model, defined on an arbitrary 2D doubly decorated lattice, takes into account the kinetic energy of mobile electrons, the nearest-neighbor Ising coupling between the localized spins and mobile electrons, the further-neighbor Ising coupling between the localized spins and the Zeeman energy. The ground-state phase diagrams are examined for a wide range of model parameters for both ferromagnetic as well as antiferromagnetic interaction between the nodal Ising spins and non-zero value of external magnetic field. It is found that non-zero values of further-neighbor interaction leads to a formation of new quantum states as a consequence of competition between all considered interaction terms. Moreover, the new quantum states are accompanied with different magnetic features and thus, several kinds of field-driven phase transitions are observed.
Security of Mobile Agents on the Internet.
ERIC Educational Resources Information Center
Corradi, Antonio; Montanari, Rebecca; Stefanelli, Cesare
2001-01-01
Discussion of the Internet focuses on new programming paradigms based on mobile agents. Considers the security issues associated with mobile agents and proposes a security architecture composed of a wide set of services and components capable of adapting to a variety of applications, particularly electronic commerce. (Author/LRW)
NASA Astrophysics Data System (ADS)
Munusami, Ravindiran; Yakkala, Bhaskar Rao; Prabhakar, Shankar
2013-12-01
Magnetic tunnel junction were made by inserting the magnetic materials between the source, channel and the drain of the High Electron Mobility Transistor (HEMT) to enhance the performance. Material studio software package was used to design the superlattice layers. Different cases were analyzed to optimize the performance of the device by placing the magnetic material at different positions of the device. Simulation results based on conductivity reveals that the device has a very good electron transport due to the magnetic materials and will amplify very low frequency signals.
Studying Upper-Limb Kinematics Using Inertial Sensors Embedded in Mobile Phones
Bennett, Paul
2015-01-01
Background In recent years, there has been a great interest in analyzing upper-limb kinematics. Inertial measurement with mobile phones is a convenient and portable analysis method for studying humerus kinematics in terms of angular mobility and linear acceleration. Objective The aim of this analysis was to study upper-limb kinematics via mobile phones through six physical properties that correspond to angular mobility and acceleration in the three axes of space. Methods This cross-sectional study recruited healthy young adult subjects. Humerus kinematics was studied in 10 young adults with the iPhone4. They performed flexion and abduction analytical tasks. Mobility angle and lineal acceleration in each of its axes (yaw, pitch, and roll) were obtained with the iPhone4. This device was placed on the right half of the body of each subject, in the middle third of the humerus, slightly posterior. Descriptive statistics were calculated. Results Descriptive graphics of analytical tasks performed were obtained. The biggest range of motion was found in pitch angle, and the biggest acceleration was found in the y-axis in both analytical tasks. Focusing on tridimensional kinematics, bigger range of motion and acceleration was found in abduction (209.69 degrees and 23.31 degrees per second respectively). Also, very strong correlation was found between angular mobility and linear acceleration in abduction (r=.845) and flexion (r=.860). Conclusions The use of an iPhone for humerus tridimensional kinematics is feasible. This supports use of the mobile phone as a device to analyze upper-limb kinematics and to facilitate the evaluation of the patient. PMID:28582241
Development of Mobile Electronic Health Records Application in a Secondary General Hospital in Korea
Park, Min Ah; Hong, Eunseok; Kim, Sunhyu; Ahn, Ryeok; Hong, Jungseok; Song, Seungyeol; Kim, Tak; Kim, Jeongkeun; Yeo, Seongwoon
2013-01-01
Objectives The recent evolution of mobile devices has opened new possibilities of providing strongly integrated mobile services in healthcare. The objective of this paper is to describe the decision driver, development, and implementation of an integrated mobile Electronic Health Record (EHR) application at Ulsan University Hospital. This application helps healthcare providers view patients' medical records and information without a stationary computer workstation. Methods We developed an integrated mobile application prototype that aimed to improve the mobility and usability of healthcare providers during their daily medical activities. The Android and iOS platform was used to create the mobile EHR application. The first working version was completed in 5 months and required 1,080 development hours. Results The mobile EHR application provides patient vital signs, patient data, text communication, and integrated EHR. The application allows our healthcare providers to know the status of patients within and outside the hospital environment. The application provides a consistent user environment on several compatible Android and iOS devices. A group of 10 beta testers has consistently used and maintained our copy of the application, suggesting user acceptance. Conclusions We are developing the integrated mobile EHR application with the goals of implementing an environment that is user-friendly, implementing a patient-centered system, and increasing the hospital's competitiveness. PMID:24523996
Choi, Wookjin; Park, Min Ah; Hong, Eunseok; Kim, Sunhyu; Ahn, Ryeok; Hong, Jungseok; Song, Seungyeol; Kim, Tak; Kim, Jeongkeun; Yeo, Seongwoon
2013-12-01
The recent evolution of mobile devices has opened new possibilities of providing strongly integrated mobile services in healthcare. The objective of this paper is to describe the decision driver, development, and implementation of an integrated mobile Electronic Health Record (EHR) application at Ulsan University Hospital. This application helps healthcare providers view patients' medical records and information without a stationary computer workstation. We developed an integrated mobile application prototype that aimed to improve the mobility and usability of healthcare providers during their daily medical activities. The Android and iOS platform was used to create the mobile EHR application. The first working version was completed in 5 months and required 1,080 development hours. The mobile EHR application provides patient vital signs, patient data, text communication, and integrated EHR. The application allows our healthcare providers to know the status of patients within and outside the hospital environment. The application provides a consistent user environment on several compatible Android and iOS devices. A group of 10 beta testers has consistently used and maintained our copy of the application, suggesting user acceptance. We are developing the integrated mobile EHR application with the goals of implementing an environment that is user-friendly, implementing a patient-centered system, and increasing the hospital's competitiveness.
Electron Transport in SrTio3 Accumulation Layers and Semiconductor Nanocrystal Films
NASA Astrophysics Data System (ADS)
Fu, Han
In this thesis, we study two subjects: SrTiO3 (STO) accumulation layers and films made of semiconductor nanocrystals (NCs), which are important for technological applications. We start from the low temperature conductivity of electron accumulation layers induced by the very strong electric field at the surface of STO sample. Due to the strongly nonlinear lattice dielectric response, the three-dimensional density of electrons n(z) in such a layer decays with the distance from the surface z very slowly as n(z) ≃ 1/z12/7 . We show that when the mobility is limited by the surface scattering the contribution of such a tail to the conductivity diverges at large z because of growing time electrons need to reach the surface. We explore truncation of this divergence by the finite sample width, by the bulk scattering rate, by the back gate voltage, or by the crossover to the bulk linear dielectric response with the dielectric constant kappa. As a result we arrive at the anomalously large mobility, which depends not only on the rate of the surface scattering, but also on the physics of truncation. Similar anomalous behavior is found for the Hall factor, the magnetoresistance, and the thermopower. For the second part, we extend to the cases of spherical and cylindrical geometries, and more complicated planar structures. For the planar case, we study overlapping accumulation layers in GdTiO3/STO/GdTiO 3 quantum wells and electron gases created by spill-out from NSTO (heavily n-type doped STO) layers into STO. Generalization of our approach to a spherical donor cluster creating a big Thomas-Fermi atom with electrons in STO brings us to the problem of supercharged nuclei. It is known that for an atom with nuclear charge Ze, where Z > 170, electrons collapse onto the nucleus resulting in a net charge Zn < Z. Here, instead of relativistic physics, the collapse is caused by the nonlinear dielectric response. Electrons collapse into the charged spherical donor cluster with radius R when its total charge number Z exceeds the critical value Zc ≃ R/a, where a is the lattice constant. The net charge eZ n grows with Z until Z exceeds Z*≃ (R/a)9/7. After this point, the charge number of the compact core Zn remains ≃ Z*, with the rest Z electrons forming a sparse Thomas-Fermi atom with it. We also study the case of long cylindrical clusters. In the third part, we look at the details of the surface scattering by roughness of accumulation layers. To connect with previous works on surface roughness scattering, we focus on conventional semiconductors with the linear dielectric response where accumulation layers with very large concentrations of electrons and many subbands filled became recently available due to ionic liquid and other new methods of gating. The low temperature mobility in such layers is limited by the surface roughness scattering. However theories of roughness scattering so far dealt only with the small-density single subband two-dimensional (2D) electron gas. Here we develop a theory of roughness scattering limited mobility for the multisubband large concentration case. We show that with growing 2D electron concentration N the surface dimensionless conductivity sigma/(2e2/h) first decreases as ≃ N-6/5 and then saturates as ˜ (LambdaaB/Delta 2) >> 1, where Lambda and Delta are the characteristic length and height of the surface roughness, aB is the effective Bohr radius. This means that in spite of the shrinkage of the 2D electron gas width and the related increase of the scattering rate, the 2D electron gas remains a good metal. Thus, there is no re-entrant metal-insulator transition at high concentrations conjectured by Das Sarma and Hwang [PRB 89, 121413 (2014)]. The expression of surface relaxation time can be generalized to the STO case where the dielectric response is nonlinear. We find that there is no reentrant metal-insulator transition, either, in STO accumulation layers at experimentally available large N.. Finally, we switch to the study of NC films. We focus on the variable-range hopping of electrons in semiconductor NC films below the critical doping concentration nc at which films become metallic. The hopping conductivity is then described by the Efros-Shklovskii law which depends on the localization length of electrons. We study how the localization length grows with the doping concentration n in the film of touching NCs. For that we calculate the electron transfer matrix element t(n) between neighboring NCs for two models when NCs touch by small facets or just one point. We study two sources of disorder: variations of NC diameters and random Coulomb potentials originating from random numbers of donors in NCs. We use the ratio of t(n) to the disorder-induced NC level dispersion to find the localization length of electrons due to the multi-step elastic co-tunneling process. We find three different phases at n < nc depending on the strength of disorder, the material, sizes of NCs and their facets: 1) "insulator" where the localization length of electrons increases monotonically with n and 2) "oscillating insulator" when the localization length (and the conductivity) oscillates with n from the insulator base and 3) "blinking metal" where the localization length periodically diverges. The first two phases were seen experimentally and we discuss how one can see the more exotic third one. In all three the localization length diverges at n = nc. This allows us to find nc..
SOME PROBLEMS IN THE CONSTRUCTION OF AN ELECTRON LINEAR ACCELERATOR (in Dutch)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verhaeghe, J.; Vanhuyse, V.; Van Leuven, P.
1959-01-01
Special problems encountered in the construction of the electron linear accelerator of the Natuurkundig Laboratorium der Rijksuniversiteit of Ghent are discussed. The subjects considered are magnetic focusing, magnetic screening of the electron gun cathode, abnormal attenuation-multipactor effects, and electron energy control. (J.S.R.)
Kaushal, Rajendra Kumar; Nema, Arvind K
2012-11-01
Electronic communication devices such as mobile phones pose significant environmental risks when disposed of after the end of their useful life. Mobile communication devices are one of the fastest growing contributors to the electronic waste (e-waste) stream. Recent legislative pressure and increasing awareness about the environmental risk associated with the hazardous components of the electronic products warrants the manufacturers to reduce or replace the hazardous materials with alternatives. The present study analyses the economic consequences of reducing or replacing these hazardous materials and the possible response of the consumers. A strategic game theory model has been applied in this paper for manufacturer and consumers considering the cost difference between hazardous substances free (HSF) and hazardous substance (HS) mobile. Results suggest that the HSF mobiles can be a preferred choice of the manufacturers as well as consumers if the cost of disposal of HS mobiles can be internalized and a marginal incentive (e.g. 0.9% for a cost difference to 5%, and 5.3% for a cost difference to 10%) is given. The study further highlights the need for realizing the fact that passing on the incentives to the consumers in order to promote schemes for return back to manufacturer at its end of life for effective reuse and recycling gives higher returns.
Kerékgyártó, Márta; Járvás, Gábor; Novák, Levente; Guttman, András
2016-02-01
The activation energy related to the electromigration of oligosaccharides can be determined from their measured electrophoretic mobilities at different temperatures. The effects of a viscosity modifier (ethylene glycol) and a polymeric additive (linear polyacrylamide) on the electrophoretic mobility of linear sugar oligomers with α1-4 linked glucose units (maltooligosaccharides) were studied in CE using the activation energy concept. The electrophoretic separations of 8-aminopyrene-1,3,6-trisulfonate-labeled maltooligosaccharides were monitored by LIF detection in the temperature range of 20-50°C, using either 0-60% ethylene glycol (viscosity modifier) or 0-3% linear polyacrylamide (polymeric additive) containing BGEs. Activation energy curves were constructed based on the slopes of the Arrhenius plots. With the use of linear polyacrylamide additive, solute size-dependent activation energy variations were found for the maltooligosaccharides with polymerization degrees below and above maltoheptaose (DP 7), probably due to molecular conformation changes and possible matrix interaction effects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Jiangsheng; Duan, Chenghao; Wang, Ning; Zhao, Chengjie; Han, Wei; Jiang, Li; Wang, Jizheng; Zhao, Yingjie; Huang, Changshui; Jiu, Tonggang
2018-05-08
The molecular structure of cathode interface modification materials can affect the surface morphology of the active layer and key electron transfer processes occurring at the interface of polymer solar cells in inverted structures mostly due to the change of molecular configuration. To investigate the effects of spatial configuration of the cathode interfacial modification layer on polymer solar cells device performances, we introduced two novel organic ionic salts (linear NS2 and three-dimensional (3D) NS4) combined with the ZnO film to fabricate highly efficient inverted solar cells. Both organic ionic salts successfully decreased the surface traps of the ZnO film and made its work function more compatible. Especially NS4 in three-dimensional configuration increased the electron mobility and extraction efficiency of the interfacial film, leading to a significant improvement of device performance. Power conversion efficiency (PCE) of 10.09% based on NS4 was achieved. Moreover, 3D interfacial modification could retain about 92% of its initial PCE over 160 days. It is proposed that 3D interfacial modification retards the element penetration-induced degradation without impeding the electron transfer from the active layer to the ZnO film, which significantly improves device stability. This indicates that inserting three-dimensional organic ionic salt is an efficient strategy to enhance device performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hao; Malliakas, Christos D.; Han, Fei
The quaternary compound TlHgInS3 crystallizes in a new structure type of space group, C2/c, with cell parameters a = 13.916(3) angstrom, b = 3.9132(8) angstrom, c = 21.403(4) angstrom, beta = 104.16(3)degrees, V = 1130.1(8) angstrom(3), and rho = 7.241 g/cm(3). The structure is a unique three-dimensional framework with parallel tunnels, which is formed by (1)(infinity)[InS33-] infinite chains bridged by linearly coordinated Hg2+ ions. TlHgInS3 is a semiconductor with a band gap of 1.74 eV and a resistivity of similar to 4.32 G Omega cm. TlHgInS3 single crystals exhibit photocurrent response when exposed to Ag X-rays. The mobility-lifetime product (mumore » tau) of the electrons and holes estimated from the photocurrent measurements are (mu tau)(e) approximate to 3.6 x 10(-4) cm(2)/V and (mu tau)(h) approximate to 2.0 x 10(-4) cm(2)/V. Electronic structure calculations at the density functional theory level indicate an indirect band gap and a relatively small effective mass for both electrons and holes. Based on the photoconductivity data, TlHgInS3 is a potential material for radiation detection applications.« less
Local 2D-2D tunneling in high mobility electron systems
NASA Astrophysics Data System (ADS)
Pelliccione, Matthew; Sciambi, Adam; Bartel, John; Goldhaber-Gordon, David; Pfeiffer, Loren; West, Ken; Lilly, Michael; Bank, Seth; Gossard, Arthur
2012-02-01
Many scanning probe techniques have been utilized in recent years to measure local properties of high mobility two-dimensional (2D) electron systems in GaAs. However, most techniques lack the ability to tunnel into the buried 2D system and measure local spectroscopic information. We report scanning gate measurements on a bilayer GaAs/AlGaAs heterostructure that allows for a local modulation of tunneling between two 2D electron layers. We call this technique Virtual Scanning Tunneling Microscopy (VSTM) [1,2] as the influence of the scanning gate is analogous to an STM tip, except at a GaAs/AlGaAs interface instead of a surface. We will discuss the spectroscopic capabilities of the technique, and show preliminary results of measurements on a high mobility 2D electron system.[1] A. Sciambi, M. Pelliccione et al., Appl. Phys. Lett. 97, 132103 (2010).[2] A. Sciambi, M. Pelliccione et al., Phys. Rev. B 84, 085301 (2011).
NASA Astrophysics Data System (ADS)
Monserrat, Bartomeu; Park, Ji-Sang; Kim, Sunghyun; Walsh, Aron
2018-05-01
The efficiencies of solar cells based on kesterite Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) are limited by a low open-circuit voltage due to high rates of non-radiative electron-hole recombination. To probe the origin of this bottleneck, we calculate the band offset of CZTS(Se) with CdS, confirming a weak spike of 0.1 eV for CZTS/wurtzite-CdS and a strong spike of 0.4 eV for CZTSe/wurtzite-CdS. We also consider the effects of temperature on the band alignment, finding that increasing temperature significantly enhances the spike-type offset. We further resolve an outstanding discrepancy between the measured and calculated phonon frequencies for the kesterites, and use these to estimate the upper limit of electron and hole mobilities based on optic phonon Fröhlich scattering, which uncovers an intrinsic asymmetry with faster (minority carrier) electron mobility.
LaTiO3/KTaO3 interfaces: A new two-dimensional electron gas system
NASA Astrophysics Data System (ADS)
Zou, K.; Ismail-Beigi, Sohrab; Kisslinger, Kim; Shen, Xuan; Su, Dong; Walker, F. J.; Ahn, C. H.
2015-03-01
We report a new 2D electron gas (2DEG) system at the interface between a Mott insulator, LaTiO3, and a band insulator, KTaO3. For LaTiO3/KTaO3 interfaces, we observe metallic conduction from 2 K to 300 K. One serious technological limitation of SrTiO3-based conducting oxide interfaces for electronics applications is the relatively low carrier mobility (0.5-10 cm2/V s) of SrTiO3 at room temperature. By using KTaO3, we achieve mobilities in LaTiO3/KTaO3 interfaces as high as 21 cm2/V s at room temperature, over a factor of 3 higher than observed in doped bulk SrTiO3. By density functional theory, we attribute the higher mobility in KTaO3 2DEGs to the smaller effective mass for electrons in KTaO3.
NASA Astrophysics Data System (ADS)
Shi, Yarui; Wei, Huiling; Liu, Yufang
2015-03-01
Tetraazaperopyrenes (TAPPs) derivatives are high-performance n-type organic semiconductor material families with the remarkable long-term stabilities. The charge carrier mobilities in TAPPs derivatives crystals were calculated by the density functional theory (DFT) method combined with the Marcus-Hush electron-transfer theory. The existence of considerable C-H…F-C bonding defines the conformation of the molecular structure and contributes to its stability. We illustrated how it is possible to control the electronic and charge-transport parameters of TAPPs derivatives as a function of the positions, a type of the substituents. It is found that the core substitution of TAPPs has a drastic influence on the charge-transport mobilities. The maximum electron mobility value of the core-brominated 2,9-bis (perfluoroalkyl)-substituted TAPPs is 0.521 cm2 V-1 s-1, which appear in the orientation angle 95° and 275°. The results demonstrate that the TAPPs with bromine substituents in ortho positions exhibit the best charge-transfer efficiency among the four different TAPP derivatives.
NASA Astrophysics Data System (ADS)
Lei, Zhifeng; Guo, Hongxia; Tang, Minghua; Peng, Chao; Zhang, Zhangang; Huang, Yun; En, Yunfei
2018-07-01
The effects of displacement damage induced by 3 and 6 MeV protons in AlGaN/GaN high-electron-mobility transistors (HEMTs) are investigated. For the 6 MeV protons at a dose of 5 × 1014 cm‑2, a 12% decrease in saturation current, a 3.8% decrease in the peak transconductance, a 0.3 V positive shift of the threshold voltage, and a three-to fourfold decrease in reverse gate leakage current are observed compared with the pre-irradiation values. The main degradation mechanism is considered to be the generation of deep trap states in the band gap, which remove electrons and reduce the carrier mobility in a two-dimensional electron gas (2DEG). Both the carrier removal rate and negatively charged trap density can be extracted, which shows that about 3500 proton injections lead to one carrier removal. Proton fluence and energy are found to be two key parameters that affect the degradation characteristics of irradiated GaN HEMTs.
Smart Technology in Lung Disease Clinical Trials.
Geller, Nancy L; Kim, Dong-Yun; Tian, Xin
2016-01-01
This article describes the use of smart technology by investigators and patients to facilitate lung disease clinical trials and make them less costly and more efficient. By "smart technology" we include various electronic media, such as computer databases, the Internet, and mobile devices. We first describe the use of electronic health records for identifying potential subjects and then discuss electronic informed consent. We give several examples of using the Internet and mobile technology in clinical trials. Interventions have been delivered via the World Wide Web or via mobile devices, and both have been used to collect outcome data. We discuss examples of new electronic devices that recently have been introduced to collect health data. While use of smart technology in clinical trials is an exciting development, comparison with similar interventions applied in a conventional manner is still in its infancy. We discuss advantages and disadvantages of using this omnipresent, powerful tool in clinical trials, as well as directions for future research. Published by Elsevier Inc.
Molecular beam epitaxy growth of high electron mobility InAs/AlSb deep quantum well structure
NASA Astrophysics Data System (ADS)
Wang, Juan; Wang, Guo-Wei; Xu, Ying-Qiang; Xing, Jun-Liang; Xiang, Wei; Tang, Bao; Zhu, Yan; Ren, Zheng-Wei; He, Zhen-Hong; Niu, Zhi-Chuan
2013-07-01
InAs/AlSb deep quantum well (QW) structures with high electron mobility were grown by molecular beam epitaxy (MBE) on semi-insulating GaAs substrates. AlSb and Al0.75Ga0.25Sb buffer layers were grown to accommodate the lattice mismatch (7%) between the InAs/AlSb QW active region and GaAs substrate. Transmission electron microscopy shows abrupt interface and atomic force microscopy measurements display smooth surface morphology. Growth conditions of AlSb and Al0.75Ga0.25Sb buffer were optimized. Al0.75Ga0.25Sb is better than AlSb as a buffer layer as indicated. The sample with optimal Al0.75Ga0.25Sb buffer layer shows a smooth surface morphology with root-mean-square roughness of 6.67 Å. The electron mobility has reached as high as 27 000 cm2/Vs with a sheet density of 4.54 × 1011/cm2 at room temperature.
NASA Astrophysics Data System (ADS)
Ngabonziza, P.; Wang, Y.; Brinkman, A.
2018-04-01
An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi2Te3 topological insulator samples, bulk single crystals and thin films exposed to air during fabrication processes are known to be bulk conducting, with the chemical potential in the bulk conduction band. For Bi2Te3 thin films grown by molecular beam epitaxy, we combine structural characterization (transmission electron microscopy), chemical surface analysis as function of time (x-ray photoelectron spectroscopy) and magnetotransport analysis to understand the low defect density and record high bulk electron mobility once charge is doped into the bulk by surface degradation. Carrier densities and electronic mobilities extracted from the Hall effect and the quantum oscillations are consistent and reveal a large bulk carrier mobility. Because of the cylindrical shape of the bulk Fermi surface, the angle dependence of the bulk magnetoresistance oscillations is two dimensional in nature.
NASA Astrophysics Data System (ADS)
Gálisová, Lucia; Jakubczyk, Dorota
2017-01-01
Ground-state and magnetocaloric properties of a double-tetrahedral chain, in which nodal lattice sites occupied by the localized Ising spins regularly alternate with triangular clusters half filled with mobile electrons, are exactly investigated by using the transfer-matrix method in combination with the construction of the Nth tensor power of the discrete Fourier transformation. It is shown that the ground state of the model is formed by two non-chiral phases with the zero residual entropy and two chiral phases with the finite residual entropy S = NkB ln 2. Depending on the character of the exchange interaction between the localized Ising spins and mobile electrons, one or three magnetization plateaus can be observed in the magnetization process. Their heights basically depend on the values of Landé g-factors of the Ising spins and mobile electrons. It is also evidenced that the system exhibits both the conventional and inverse magnetocaloric effect depending on values of the applied magnetic field and temperature.
About mobility thickness dependence in molecularly doped polymers
NASA Astrophysics Data System (ADS)
Tyutnev, A. P.; Weiss, D. S.; Saenko, V. S.; Pozhidaev, E. D.
2017-09-01
We have investigated the dependence of hole mobility on thickness in free-standing films of bisphenol-A-polycarbonate (PC) doped with 30 wt% p-diethylaminobenzaldehyde diphenylhydrazone (DEH). Carrier generation in a time-of-flight (TOF) experiment was achieved through direct ionization of dopant molecules by electron impact using an electron gun supplying pulses of monoenergetic electrons in the range of 2-50 keV. The position of dopant ionization depends upon the electron energy and three TOF variants have been recently developed and used in this study. We have found that the hole mobility generally decreased with increasing film thickness with concomitant acceleration of the post-flight current decay indicating that the transport process approaches the steady-state regime, this process happening slightly faster than our model predicts. Numerical calculations have been compared with experimental data. The results are discussed in detail. The way to reconcile ostensibly contradictory interpretations of our results and those commonly reported in literature relying on photo injection technique has been proposed.
Lee, H-P; Perozek, J; Rosario, L D; Bayram, C
2016-11-21
AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {Al x Ga 1-x N}/AlN, (b) Thin-GaN/3 × {Al x Ga 1-x N}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm 2 /V∙s) and 2DEG carrier concentration (>1.0 × 10 13 cm -2 ) on Si(111) substrates.
Lee, H.-P.; Perozek, J.; Rosario, L. D.; Bayram, C.
2016-01-01
AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {AlxGa1−xN}/AlN, (b) Thin-GaN/3 × {AlxGa1−xN}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm2/V∙s) and 2DEG carrier concentration (>1.0 × 1013 cm−2) on Si(111) substrates. PMID:27869222
Zhang, Dongwei; Zhao, Liang; Zhu, Yanan; Li, Aiyuan; He, Chao; Yu, Hongtao; He, Yaowu; Yan, Chaoyi; Goto, Osamu; Meng, Hong
2016-07-20
N,N'-Bis(4-trifluoromethoxyphenyl) naphthalene-1,4,5,8-tetracarboxylic acid diimide (NDI-POCF3) and N,N'-bis(4-trifluoromethoxybenzyl) naphthalene-1,4,5,8-tetracarboxylic acid diimide (NDI-BOCF3) have similar optical and electrochemical properties with a deep LUMO level of approximately 4.2 eV, but exhibit significant differences in electron mobility and molecular packing. NDI-POCF3 exhibits nondetectable charge mobility. Interestingly, NDI-BOCF3 shows air-stable electron transfer performance with enhanced mobility by increasing the deposition temperature onto the octadecyltrichlorosilane (OTS)-modified SiO2/Si substrates and achieves electron mobility as high as 0.7 cm(2) V(-1) s(-1) in air. The different mobilities of those two materials can be explained by several factors including thin-film morphology and crystallinity. In contrast to the poor thin-film morphology and crystallinity of NDI-POCF3, NDI-BOCF3 exhibits larger grain sizes and improved crystallinities due to the higher deposition temperature. In addition, the theoretical calculated transfer integrals of the intermolecular lowest unoccupied molecular orbital (LUMO) of the two materials further show that a large intermolecular orbital overlap of NDI-BOCF3 can transfer electron more efficiently than NDI-POCF3 in thin-film transistors. On the basis of fact that the theoretical calculations are consistent with the experimental results, it can be concluded that the p-(trifluoromethoxy) benzyl (BOCF3) molecular architecture on the former position of the naphthalene tetracarboxylic diimides (NDI) core provides a more effective way to enhance the intermolecular electron transfer property than the p-(trifluoromethoxy) phenyl (POCF3) group for the future design of NDI-related air-stable n-channel semiconductor.
Muth, Mathis-Andreas; Mitchell, William; Tierney, Steven; Lada, Thomas A; Xue, Xiang; Richter, Henning; Carrasco-Orozco, Miguel; Thelakkat, Mukundan
2013-12-06
Herein, we analyze charge carrier mobility and morphology of the active blend layer in thin film organic solar cells and correlate them with device parameters. A low band gap donor-acceptor copolymer in combination with phenyl-C61-butyric acid methyl ester (PCBM) or two bis-adduct fullerenes, bis-PCBM and bis-o-quino-dimethane C60 (bis-oQDMC), is investigated. We study the charge transport of polymer:fullerene blends in hole- and electron-only devices using the space-charge limited current method. Lower electron mobilities are observed in both bis-adduct fullerene blends. Hole mobility, however, is decreased only in the blend containing bis-oQDMC. Both bis-adduct fullerene blends show very high open circuit voltage in solar cell devices, but poor photocurrent compared to the standard PCBM blend for an active layer thickness of 200 nm. Therefore, a higher short circuit current is feasible for the polymer:bis-PCBM blend by reducing the active layer thickness in order to compensate for the low electron mobility, which results in a PCE of 4.3%. For the polymer:bis-oQDMC blend, no such improvement is achieved due to an unfavorable morphology in this particular blend system. The results are supported by external quantum efficiency measurements, atomic force microscopy, transmission electron microscopy and UV/vis spectroscopy. Based on these results, the investigations presented herein give a more scientific basis for the optimization of solar cells.
High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se
NASA Astrophysics Data System (ADS)
Wu, Jinxiong; Yuan, Hongtao; Meng, Mengmeng; Chen, Cheng; Sun, Yan; Chen, Zhuoyu; Dang, Wenhui; Tan, Congwei; Liu, Yujing; Yin, Jianbo; Zhou, Yubing; Huang, Shaoyun; Xu, H. Q.; Cui, Yi; Hwang, Harold Y.; Liu, Zhongfan; Chen, Yulin; Yan, Binghai; Peng, Hailin
2017-07-01
High-mobility semiconducting ultrathin films form the basis of modern electronics, and may lead to the scalable fabrication of highly performing devices. Because the ultrathin limit cannot be reached for traditional semiconductors, identifying new two-dimensional materials with both high carrier mobility and a large electronic bandgap is a pivotal goal of fundamental research. However, air-stable ultrathin semiconducting materials with superior performances remain elusive at present. Here, we report ultrathin films of non-encapsulated layered Bi2O2Se, grown by chemical vapour deposition, which demonstrate excellent air stability and high-mobility semiconducting behaviour. We observe bandgap values of ˜0.8 eV, which are strongly dependent on the film thickness due to quantum-confinement effects. An ultrahigh Hall mobility value of >20,000 cm2 V-1 s-1 is measured in as-grown Bi2O2Se nanoflakes at low temperatures. This value is comparable to what is observed in graphene grown by chemical vapour deposition and at the LaAlO3-SrTiO3 interface, making the detection of Shubnikov-de Haas quantum oscillations possible. Top-gated field-effect transistors based on Bi2O2Se crystals down to the bilayer limit exhibit high Hall mobility values (up to 450 cm2 V-1 s-1), large current on/off ratios (>106) and near-ideal subthreshold swing values (˜65 mV dec-1) at room temperature. Our results make Bi2O2Se a promising candidate for future high-speed and low-power electronic applications.
An object-oriented mobile health system with usability features.
Escarfullet, Krystle; Moore, Cantera; Tucker, Shari; Wei, June
2012-01-01
Mobile health (m-health) comprises the concept of utilising mobile devices to carry out the task of viewing electronic medical records, reserving medical appointments with a patient's medical provider and electronically refilling prescriptions. This paper aims at developing a m-health system to improve usability from a user's perspective. Specifically, it first developed a m-health model by logically linking characteristics of the m-health system together based on information flows. Then, the system requirements were collected by using a developed questionnaire. These requirements were structured and further in-depth analysis was conducted by using an object-oriented approach based on unified modelling language, such as use-case, sequence and analysis class diagrams. This research will be beneficial to decision makers and developers in the mobile healthcare industry.
Mohd Said, Aisyah; Bukry, Saiful Adli
2015-01-01
This study determines (1) the correlation between mobility and balance performances with physiological factors and (2) the relationship between foot postures with anthropometric characteristics and lower limb characteristics among elderly with neutral, pronated, and supinated foot. A cross-sectional observational study was conducted in community-dwelling elderly (age: 69.86 ± 5.62 years). Participants were grouped into neutral (n = 16), pronated (n = 14), and supinated (n = 14) foot based on the foot posture index classification. Anthropometric data (height, weight, and BMI), lower limb strength (5-STS) and endurance (30 s chair rise test), mobility (TUG), and balance (FSST) were determined. Data were analyzed using Spearman's correlation coefficient. Body weight was negatively and moderately correlated (r s = −0.552, P < 0.05) with mobility in supinated foot; moderate-to-high positive linear rank correlation was found between lower limb strength and mobility (r s = 0.551 to 0.804, P < 0.05) for pronated and neutral foot. Lower limb endurance was negatively and linearly correlated with mobility in pronated (r s = −0.699) and neutral (r s = −0.573) foot. No correlation was observed in balance performance with physiological factors in any of the foot postures. We can conclude that muscle function may be the most important feature to make movement possible in older persons regardless of the type of foot postures. PMID:26583104
Rapid Waterborne Pathogen Detection with Mobile Electronics.
Wu, Tsung-Feng; Chen, Yu-Chen; Wang, Wei-Chung; Kucknoor, Ashwini S; Lin, Che-Jen; Lo, Yu-Hwa; Yao, Chun-Wei; Lian, Ian
2017-06-09
Pathogen detection in water samples, without complex and time consuming procedures such as fluorescent-labeling or culture-based incubation, is essential to public safety. We propose an immunoagglutination-based protocol together with the microfluidic device to quantify pathogen levels directly from water samples. Utilizing ubiquitous complementary metal-oxide-semiconductor (CMOS) imagers from mobile electronics, a low-cost and one-step reaction detection protocol is developed to enable field detection for waterborne pathogens. 10 mL of pathogen-containing water samples was processed using the developed protocol including filtration enrichment, immune-reaction detection and imaging processing. The limit of detection of 10 E. coli O157:H7 cells/10 mL has been demonstrated within 10 min of turnaround time. The protocol can readily be integrated into a mobile electronics such as smartphones for rapid and reproducible field detection of waterborne pathogens.
Improved performance of InSe field-effect transistors by channel encapsulation
NASA Astrophysics Data System (ADS)
Liang, Guangda; Wang, Yiming; Han, Lin; Yang, Zai-Xing; Xin, Qian; Kudrynskyi, Zakhar R.; Kovalyuk, Zakhar D.; Patanè, Amalia; Song, Aimin
2018-06-01
Due to the high electron mobility and photo-responsivity, InSe is considered as an excellent candidate for next generation electronics and optoelectronics. In particular, in contrast to many high-mobility two-dimensional (2D) materials, such as phosphorene, InSe is more resilient to oxidation in air. Nevertheless, its implementation in future applications requires encapsulation techniques to prevent the adsorption of gas molecules on its surface. In this work, we use a common lithography resist, poly(methyl methacrylate) (PMMA) to encapsulate InSe-based field-effect transistors (FETs). The encapsulation of InSe by PMMA improves the electrical stability of the FETs under a gate bias stress, and increases both the drain current and electron mobility. These findings indicate the effectiveness of the PMMA encapsulation method, which could be applied to other 2D materials.
Chromaticity of the lattice and beam stability in energy-recovery linacs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litvinenko, V.N.
2011-12-23
Energy recovery linacs (ERLs) are an emerging generation of accelerators promising to revolutionize the fields of high-energy physics and photon sciences. These accelerators combine the advantages of linear accelerators with that of storage rings, and hold the promise of delivering electron beams of unprecedented power and quality. Use of superconducting radio-frequency (SRF) cavities converts ERLs into nearly perfect 'perpetuum mobile' accelerators, wherein the beam is accelerated to a desirable energy, used, and then gives the energy back to the RF field. One potential weakness of these devices is transverse beam break-up instability that could severely limit the available beam current.more » In this paper, I present a method of suppressing these dangerous effects using a natural phenomenon in the accelerators, viz., the chromaticity of the transverse motion.« less
Hydronium ion motion in nanometer 3-methyl-pentane films
NASA Astrophysics Data System (ADS)
Bell, Richard C.; Wu, Kai; Iedema, Martin J.; Cowin, James P.
2007-07-01
An ion soft-landing approach was applied to study the motion of hydronium (D3O+) and cesium (Cs+) ions from 84to104K in glassy 3-methyl-pentane (3MP) films vapor deposited on Pt(111). Both ions were found to have very similar mobilities in 3MP. The span of ion mobilities probed is from ˜10-18to˜10-13m2V-1s-1. Ion transport in these films was studied as a function of film thickness and electric field strength. The drift velocity was found to be linear with applied field below about 2×108V/m and deviated from linearity above this. To a large extent, D3O+ and Cs+ motion in 3MP was well predicted by a simple continuum-based ion mobility model in films from 25 to 20 000 ML thick (including pronounced perturbations 7 ML from both the vacuum and Pt interfaces). The mobility varied with temperature more slowly than predicted by Stokes' law, which may be due to extended inhomogeneous structures in the 3MP near its glass transition at 77K.
NASA Astrophysics Data System (ADS)
Mozer, A. J.; Sariciftci, N. S.; Lutsen, L.; Vanderzande, D.; Österbacka, R.; Westerling, M.; Juška, G.
2005-03-01
Charge carrier mobility and recombination in a bulk heterojunction solar cell based on the mixture of poly[2-methoxy-5-(3,7-dimethyloctyloxy)-phenylene vinylene] (MDMO-PPV) and 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)-C61 (PCBM) has been studied using the novel technique of photoinduced charge carrier extraction in a linearly increasing voltage (Photo-CELIV). In this technique, charge carriers are photogenerated by a short laser flash, and extracted under a reverse bias voltage ramp after an adjustable delay time (tdel). The Photo-CELIV mobility at room temperature is found to be μ =2×10-4cm2V-1s-1, which is almost independent on charge carrier density, but slightly dependent on tdel. Furthermore, determination of charge carrier lifetime and demonstration of an electric field dependent mobility is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtubise, R.J.; Hussain, A.; Silver, H.F.
1981-11-01
The normal-phase liquid chromatographic models of Scott, Snyder, and Soczewinski were considered for a ..mu..-Bondapak NH/sub 2/ stationary phase. n-Heptane:2-propanol and n-heptane:ethyl acetate mobile phases of different compositions were used. Linear relationships were obtained from graphs of log K' vs. log mole fraction of the strong solvent for both n-heptane:2-propanol and n-heptane:ethyl acetate mobile phases. A linear relationship was obtained between the reciprocal of corrected retention volume and % wt/v of 2-propanol but not between the reciprocal of corrected retention volume and % wt/v of ethyl acetate. The slopes and intercept terms from the Snyder and Soczewinski models were foundmore » to approximately describe interactions with ..mu..-Bondapak NH/sub 2/. Capacity factors can be predicted for the compounds by using the equations obtained from mobile phase composition variation experiments.« less
Enhanced performance of the Westinghouse Series 1000 Mobile Satellite Telephone System
NASA Technical Reports Server (NTRS)
Martinson, Richard E.
1995-01-01
The Westinghouse Series 1000 Mobile Satellite Telephone System is designed for land mobile, maritime, and fixed site land applications. The product currently operates on the Optus Mobilesat system in Australia and will operate on American Mobile Satellite Corporation's (AMSC) Skycell service in the U.S. and TMI Communications' (TMIC) MSAT service in Canada. The architecture allows the same transceiver electronics to be used for diverse mobile applications. Advanced antenna designs have made land mobile satellite communications a reality. This paper details the unique high performance product and its configuration for the vehicle mounted land mobile application.
Early Experiences with Mobile Electronic Health Records Application in a Tertiary Hospital in Korea
Park, Minah; Hong, Eunseok; Kim, Sunhyu; Ahn, Ryeok; Hong, Jungseok; Song, Seungyeol; Kim, Tak; Kim, Jeongkeun; Yeo, Seongwoon
2015-01-01
Objectives Recent advances in mobile technology have opened up possibilities to provide strongly integrated mobile-based services in healthcare and telemedicine. Although the number of mobile Electronic Health Record (EHR) applications is large and growing, there is a paucity of evidence demonstrating the usage patterns of these mobile applications by healthcare providers. This study aimed to illustrate the deployment process for an integrated mobile EHR application and to analyze usage patterns after provision of the mobile EHR service. Methods We developed an integrated mobile application that aimed to enhance the mobility of healthcare providers by improving access to patient- and hospital-related information during their daily medical activities. The study included mobile EHR users who accessed patient healthcare records between May 2013 and May 2014. We performed a data analysis using a web server log file analyzer from the integrated EHR system. Cluster analysis was applied to longitudinal user data based on their application usage pattern. Results The mobile EHR service named M-UMIS has been in service since May 2013. Every healthcare provider in the hospital could access the mobile EHR service and view the medical charts of their patients. The frequency of using services and network packet transmission on the M-UMIS increased gradually during the study period. The most frequently accessed service in the menu was the patient list. Conclusions A better understanding regarding the adoption of mobile EHR applications by healthcare providers in patient-centered care provides useful information to guide the design and implementation of future applications. PMID:26618036
Application of nonlocal plasma technology for controlling plasma conductivity
NASA Astrophysics Data System (ADS)
Yuan, Chengxun; Demidov, V. I.; Kudryavtsev, A. A.; Kurlyandskaya, I. P.; Rudakova, T. V.; Zhou, Z. X.
2017-10-01
A promising approach for better control of the plasma parameters involves the exploitation of peculiarities of plasmas with a nonlocal electron energy distribution. Nonlocal plasma technology (NLP-technology) is based on the effect of energetic electrons in the plasma volume. In this work, an experimental study of influence of the chemo-ionization processes on non-stationary plasma conductivity has been conducted. Due to energetic, supra-thermal electrons, which appear in the chemo-ionization reactions, the highly non-equilibrium and time dependent nonlocal electron energy distribution function is formed. In such a plasma thermal electrons always have positive conductivity (mobility), while supra-thermal, energetic electrons may have negative conductivity in heavy (argon, krypton and xenon) noble gases dependently on conditions. Experiments demonstrate that this effect may lead to the non-monotonic temporal behavior of plasma conductivity and may potentially create the negative electron mobility.
High-Frequency, 6.2 Angstrom pN Heterojunction Diodes
2012-01-01
this paper were grown by solid- source molecular beam epitaxy (MBE). Here, the use of a lower- case letter (p) for the narrow bandgap layer and upper...electron and hole mobilities. High electron mobil- ity transistors ( HEMTs ) fabricated from these materials have shown good operating characteristics [1,2...Furthermore, the first monolithic microwave integrated circuits (MMICs) fabricated using 6.1 Å based HEMTs have been demonstrated [3]. New mate- rials
1980-08-01
Appendix B. 12 ------------- ---. _ _ _ _ ______i_____mi__i_ LEGEND Percent of Time Spend Criticalit Aplicability *** on Job Commnent*** t--etc...Communications Officer G-2 Performs communications-electronics (CE) staff functions 6-3 Directs and controls operations of mobile communications...support unit FORM B Cont’d _ _ _ _ -W -l G-4 Establishes and controls mobile area signal center G-5 Manages communications-electronics facilities and
Ergonomics study on mobile phones for thumb physiology discomfort
NASA Astrophysics Data System (ADS)
Bendero, J. M. S.; Doon, M. E. R.; Quiogue, K. C. A.; Soneja, L. C.; Ong, N. R.; Sauli, Z.; Vairavan, R.
2017-09-01
The study was conducted on Filipino undergraduate college students and aimed to find out about the significant factors associated with mobile phone usage and its effect on thumb pain.A correlation-prediction analysisand Multiple Linear Regression was adopted and used as the main tool in determining the significant factors and coming up with predictive models on thumb related pain. With the use of the software Statistical Package for the Social Sciences or SPSS in conducting linear regression, 2 significant factors on thumb-related pain (percentage of time using portrait as screen orientation when text messaging, amount of time playing games using one hand in a day) were found.
Molecular Mobility in Phase Segregated Bottlebrush Block Copolymer Melts
NASA Astrophysics Data System (ADS)
Yavitt, Benjamin; Gai, Yue; Song, Dongpo; Winter, H. Henning; Watkins, James
We investigate the linear viscoelastic behavior of poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO) brush block copolymer (BBCP) materials over a range of vol. fractions and with side chain lengths below the entanglement molecular weights. The high chain mobility of the brush architecture results in rapid micro-phase segregation of the brush copolymer segments, which occurs during thermal annealing at mild temperatures. Master curves of the dynamic moduli were obtained by time-temperature superposition. The reduced degree of chain entanglements leads to a unique liquid-like rheology similar to that of bottlebrush homopolymers, even in the phase segregated state. We also explore the alignment of phase segregated domains at exceptionally low strain amplitudes (γ = 0.01) and mild processing temperatures using small angle X-ray scattering (SAXS). Domain orientation occurred readily at strains within the linear viscoelastic regime without noticeable effect on the moduli. This interplay of high molecular mobility and rapid phase segregation that are exhibited simultaneously in BBCPs is in contrast to the behavior of conventional linear block copolymer (LBCP) analogs and opens up new possibilities for processing BBCP materials for a wide range of nanotechnology applications. NSF Center for Hierarchical Manufacturing at the University of Massachusetts, Amherst (CMMI-1025020).
Explore a Career in Health Sciences Information
... tools that range from traditional print journals to electronic databases and the latest mobile devices, health sciences ... an expert search of the literature. connecting licensed electronic resources and decision tools into a patient's electronic ...
Polarons and Mobile Impurities Near a Quantum Phase Transition
NASA Astrophysics Data System (ADS)
Shadkhoo, Shahriar
This dissertation aims at improving the current understanding of the physics of mobile impurities in highly correlated liquid-like phases of matter. Impurity problems pose challenging and intricate questions in different realms of many-body physics. For instance, the problem of ''solvation'' of charged solutes in polar solvents, has been the subject of longstanding debates among chemical physicists. The significant role of quantum fluctuations of the solvent, as well as the break down of linear response theory, render the ordinary treatments intractable. Inspired by this complicated problem, we first attempt to understand the role of non-specific quantum fluctuations in the solvation process. To this end, we calculate the dynamic structure factor of a model polar liquid, using the classical Molecular Dynamics (MD) simulations. We verify the failure of linear response approximation in the vicinity of a hydrated electron, by comparing the outcomes of MD simulations with the predictions of linear response theory. This nonlinear behavior is associated with the pronounced peaks of the structure factor, which reflect the strong fluctuations of the local modes. A cavity picture is constructed based on heuristic arguments, which suggests that the electron, along with the surrounding polarization cloud, behave like a frozen sphere, for which the linear response theory is broken inside and valid outside. The inverse radius of the spherical region serves as a UV momentum cutoff for the linear response approximation to be applicable. The problem of mobile impurities in polar liquids can be also addressed in the framework of the ''polaron'' problem. Polaron is a quasiparticle that typically acquires an extended state at weak couplings, and crossovers to a self-trapped state at strong couplings. Using the analytical fits to the numerically obtained charge-charge structure factor, a phenomenological approach is proposed within the Leggett's influence functional formalism, which derives the effective Euclidean action from the classical equation of motion. We calculate the effective mass of the polaron in the model polar liquid at zero and finite temperatures. The self-trapping transition of this polaron turns out to be discontinuous in certain regions of the phase diagram. In order to systematically investigate the role of quantum fluctuations on the polaron properties, we adopt a quantum field theory which supports nearly-critical local modes: the quantum Landau-Brazovskii (QLB) model, which exhibits fluctuation-induced first order transition (weak crystallization). In the vicinity of the phase transition, the quantum fluctuations are strongly correlated; one can in principle tune the strength of these fluctuations, by adjusting the parameters close to or away from the transition point. Furthermore, sufficiently close to the transition, the theory accommodates "soliton'' solutions, signaling the nonlinear response of the system. Therefore, the model seems to be a promising candidate for studying the effects of strong quantum fluctuations and also failure of linear response theory, in the polaron problem. We observe that at zero temperature, and away from the Brazovskii transition where the linear response approximation is valid, the localization transition of the polaron is discontinuous. Upon enhancing fluctuations---of either thermal or quantum nature---the gap of the effective mass closes at distinct second-order critical points. Sufficiently close to the Brazovskii transition where the nonlinear contributions of the field are significantly large, a new state appears in addition to extended and self-trapped polarons: an impurity-induced soliton. We interpret this as the break-down of linear response, reminiscent of what we observe in a polar liquid. Quantum LB model has been proposed to be realizable in ultracold Bose gases in cavities. We thus discuss the experimental feasibility, and propose a setup which is believed to exhibit the aforementioned polaronic and solitonic states. We eventually generalize the polaron formalism to the case of impurities that couple quadratically to a nearly-critical field; hence called the ''quadratic polaron''. The Hertz-Millis field theory and its generalization to the case of magnetic transition in helimagnets, is taken as a toy model. The phase diagram of the bare model contains both second-order and fluctuation-induced first-order quantum phase transitions. We propose a semi-classical scenario in which the impurity and the field couple quadratically. The polaron properties in the vicinity of these transitions are calculated in different dimensions. We observe that the quadratic coupling in three dimensions, even in the absence of the critical modes with finite wavelength, leads to a jump-like localization of the polaron. In lower dimensions, the transition behavior remains qualitatively similar to those in the case of linear coupling, namely the critical modes must have a finite wavelength to localize the particle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanayaka, A. N.; Mani, R. G.; Wegscheider, W.
2013-12-04
We extract the electron temperature in the microwave photo-excited high mobility GaAs/AlGaAs two dimensional electron system (2DES) by studying the influence of microwave radiation on the amplitude of Shubnikov-de Haas oscillations (SdHOs) in a regime where the cyclotron frequency, ω{sub c}, and the microwave angular frequency, ω, satisfy 2ω ≤ ω{sub c} ≤ 3.5ω The results indicate that increasing the incident microwave power has a weak effect on the amplitude of the SdHOs and therefore the electron temperature, in comparison to the influence of modest temperature changes on the dark-specimen SdH effect. The results indicate negligible electron heating under modestmore » microwave photo-excitation, in good agreement with theoretical predictions.« less
Mao, Ling-Feng; Ning, Huan-Sheng; Wang, Jin-Yan
2015-01-01
Influence of the energy relaxation of the channel electrons on the performance of AlGaN/GaN high-electron mobility transistors (HEMTs) has been investigated using self-consistent solution to the coupled Schrödinger equation and Poisson equation. The first quantized energy level in the inversion layer rises and the average channel electron density decreases when the channel electric field increases from 20 kV/cm to 120 kV/cm. This research also demonstrates that the energy relaxation of the channel electrons can lead to current collapse and suggests that the energy relaxation should be considered in modeling the performance of AlGaN/GaN HEMTs such as, the gate leakage current, threshold voltage, source-drain current, capacitance-voltage curve, etc. PMID:26039589
Mao, Ling-Feng; Ning, Huan-Sheng; Wang, Jin-Yan
2015-01-01
Influence of the energy relaxation of the channel electrons on the performance of AlGaN/GaN high-electron mobility transistors (HEMTs) has been investigated using self-consistent solution to the coupled Schrödinger equation and Poisson equation. The first quantized energy level in the inversion layer rises and the average channel electron density decreases when the channel electric field increases from 20 kV/cm to 120 kV/cm. This research also demonstrates that the energy relaxation of the channel electrons can lead to current collapse and suggests that the energy relaxation should be considered in modeling the performance of AlGaN/GaN HEMTs such as, the gate leakage current, threshold voltage, source-drain current, capacitance-voltage curve, etc.
Toward Risk Reduction for Mobile Service Composition.
Deng, Shuiguang; Huang, Longtao; Li, Ying; Zhou, Honggeng; Wu, Zhaohui; Cao, Xiongfei; Kataev, Mikhail Yu; Li, Ling
2016-08-01
The advances in mobile technologies enable us to consume or even provide services through powerful mobile devices anytime and anywhere. Services running on mobile devices within limited range can be composed to coordinate together through wireless communication technologies and perform complex tasks. However, the mobility of users and devices in mobile environment imposes high risk on the execution of the tasks. This paper targets reducing this risk by constructing a dependable service composition after considering the mobility of both service requesters and providers. It first proposes a risk model and clarifies the risk of mobile service composition; and then proposes a service composition approach by modifying the simulated annealing algorithm. Our objective is to form a service composition by selecting mobile services under the mobility model and to ensure the service composition have the best quality of service and the lowest risk. The experimental results demonstrate that our approach can yield near-optimal solutions and has a nearly linear complexity with respect to a problem size.
In situ investigation of the mobility of small gold clusters on cleaved MgO surfaces
NASA Technical Reports Server (NTRS)
Metois, J. J.; Heinemann, K.; Poppa, H.
1976-01-01
The mobility of small clusters of gold (about 10 A in diameter) on electron-beam-cleaved MgO surfaces was studied by in situ transmission electron microscopy under controlled vacuum and temperature conditions. During the first 10 min following a deposition at room temperature, over 10 per cent of the crystallites moved over short distances (about 20 A) discontinuously, with a velocity greater than 150 A/sec. Eighty per cent of the mobility events were characterized by the avoidance of proximity of other crystallites, and this was tentatively explained as the result of repulsive elastic forces between the interacting crystallites.
25th anniversary article: key points for high-mobility organic field-effect transistors.
Dong, Huanli; Fu, Xiaolong; Liu, Jie; Wang, Zongrui; Hu, Wenping
2013-11-20
Remarkable progress has been made in developing high performance organic field-effect transistors (OFETs) and the mobility of OFETs has been approaching the values of polycrystalline silicon, meeting the requirements of various electronic applications from electronic papers to integrated circuits. In this review, the key points for development of high mobility OFETs are highlighted from aspects of molecular engineering, process engineering and interface engineering. The importance of other factors, such as impurities and testing conditions is also addressed. Finally, the current challenges in this field for practical applications of OFETs are further discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Engineering of electronic properties of single layer graphene by swift heavy ion irradiation
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Kumar, Ashish; Tripathi, Ambuj; Tyagi, Chetna; Avasthi, D. K.
2018-04-01
In this work, swift heavy ion irradiation induced effects on the electrical properties of single layer graphene are reported. The modulation in minimum conductivity point in graphene with in-situ electrical measurement during ion irradiation was studied. It is found that the resistance of graphene layer decreases at lower fluences up to 3 × 1011 ions/cm2, which is accompanied by the five-fold increase in electron and hole mobilities. The ion irradiation induced increase in electron and hole mobilities at lower fluence up to 1 × 1011 ions/cm2 is verified by separate Hall measurements on another irradiated graphene sample at the selected fluence. In contrast to the adverse effects of irradiation on the electrical properties of materials, we have found improvement in electrical mobility after irradiation. The increment in mobility is explained by considering the defect annealing in graphene after irradiation at a lower fluence regime. The modification in carrier density after irradiation is also observed. Based on findings of the present work, we suggest ion beam irradiation as a useful tool for tuning of the electrical properties of graphene.
Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors.
Zhang, Fengjiao; Dai, Xiaojuan; Zhu, Weikun; Chung, Hyunjoong; Diao, Ying
2017-07-01
Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C 8 -benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This paper further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor-acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fengjiao; Dai, Xiaojuan; Zhu, Weikun
Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C8-benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This papermore » further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor–acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall.« less
Novel hole transport materials for organic light emitting devices
NASA Astrophysics Data System (ADS)
Shi, Jianmin; Forsythe, Eric; Morton, David
2008-08-01
Organic electronic devices generally have a layered structure with organic materials sandwiched between an anode and a cathode, such organic electronic devices of organic light-emitting diode (OLED), organic photovoltaic (OPV), organic thin-film transistor (OTFT). There are many advantages of these organic electronic devices as compared to silicon-based devices. However, one of key challenge for an organic electronic device is to minimize the charge injection barrier from electrodes to organic materials and improve the charge transport mobility. In order to overcome these circumstances, there are many approaches including, designing organic materials with minimum energy barriers and improving charge transport mobility. Ideally organic materials or complex with Ohmic contact will be the most desired.
NASA Technical Reports Server (NTRS)
Zhukova, V. M.; Fadin, V. P.
1981-01-01
The changes in electronic structure related to transport processes occurring during the alloying of he alloy Ni3Mn with iron and cobalt, and the ordering of the ternary alloys thus formed are presented. The Hall effect, the absolute thermal emf, the internal saturation induction, the Nernst-Ettingshausen constant, and the electrical resistivity were measured. Results show a decrease in the contribution of hole sections of the Fermi surface to the transport process occurs together with a considerable increase in the contribution of electron sections. In this case, the mobility of 3 dimensional holes decreases and the mobility of 4s electrons increases considerably.
Electronic and spectroscopic characterizations of SNP isomers
NASA Astrophysics Data System (ADS)
Trabelsi, Tarek; Al Mogren, Muneerah Mogren; Hochlaf, Majdi; Francisco, Joseph S.
2018-02-01
High-level ab initio electronic structure calculations were performed to characterize SNP isomers. In addition to the known linear SNP, cyc-PSN, and linear SPN isomers, we identified a fourth isomer, linear PSN, which is located ˜2.4 eV above the linear SNP isomer. The low-lying singlet and triplet electronic states of the linear SNP and SPN isomers were investigated using a multi-reference configuration interaction method and large basis set. Several bound electronic states were identified. However, their upper rovibrational levels were predicted to pre-dissociate, leading to S + PN, P + NS products, and multi-step pathways were discovered. For the ground states, a set of spectroscopic parameters were derived using standard and explicitly correlated coupled-cluster methods in conjunction with augmented correlation-consistent basis sets extrapolated to the complete basis set limit. We also considered scalar and core-valence effects. For linear isomers, the rovibrational spectra were deduced after generation of their 3D-potential energy surfaces along the stretching and bending coordinates and variational treatments of the nuclear motions.
ERIC Educational Resources Information Center
Wilmer, Henry H.
2017-01-01
Mobile electronic devices such as smartphones are playing an increasingly pervasive role in our daily activities. A growing body of literature is beginning to investigate how mobile technology habits might relate to individual differences in cognitive traits. The present study is an investigation into how individual differences in intertemporal…
Mobile Internet Revenues: An Empirical Study of the I-Mode Portal.
ERIC Educational Resources Information Center
Jonason, Andreas; Eliasson, Gunnar
2001-01-01
Discusses new electronic commerce applications enabled by mobility and personalization over mobile devices; considers the convergence of the wireless, the fixed Internet, and the media industries; describes innovative pricing models; and reports results from a survey of users of I-mode, a wireless Internet service offering Web browsing and email…
Development and Validation of Mobile Learning Acceptance Measure
ERIC Educational Resources Information Center
Sharma, Sujeet Kumar; Sarrab, Mohamed; Al-Shihi, Hafedh
2017-01-01
The growth of Smartphone usage, increased acceptance of electronic learning (E-learning), the availability of high reliability mobile networks and need for flexibility in learning have resulted in the growth of mobile learning (M-learning). This has led to a tremendous interest in the acceptance behaviors related to M-learning users among the…
Learning and Digital Inclusion: The ELAMP Project
ERIC Educational Resources Information Center
D'Arcy, Kate
2012-01-01
The Electronic Learning and Mobility Project (ELAMP) was a nationally funded project by the Department for Children, Schools and Families, which ran from 2004 to 2010. The main aim of ELAMP was to improve the education of Traveller children, particularly highly mobile learners. ELAMP focussed upon the use of mobile technology and distance learning…
The Application of Mobile Devices in the Translation Classroom
ERIC Educational Resources Information Center
Bahri, Hossein; Mahadi, Tengku Sepora Tengku
2016-01-01
While the presence of mobile electronic devices in the classroom has posed real challenges to instructors, a growing number of teachers believe they should seize the chance to improve the quality of instruction. The advent of new mobile technologies (laptops, smartphones, tablets, etc.) in the translation classroom has opened up new opportunities…
High Mobility Conjugated Polymers
2007-10-20
will act as a trap for opposite charge carriers; the electron affinities were 4.0 eV (BBL) and 2.7 eV (PTHQx) and ionization potentials were 6.0 eV...transistors (OFETs), photovoltaic cells, and photodetectors, is limited primarily by the low charge carrier mobilities of current materials. To address this...showing a maximum mobility with hexyl. Fundamental insights into the structural factors that govern high mobility charge transport and recombination in
Mobility enhancement in crystalline In-Ga-Zn-oxide with In-rich compositions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsutsui, Kazuhiro; Matsubayashi, Daisuke; Ishihara, Noritaka
The electron mobility of In-Ga-Zn-oxide (IGZO) is known to be enhanced by higher In content. We theoretically investigated the mobility-enhancement mechanism by proposing an In-Ga-Zn-disorder scattering model for an In-rich crystalline IGZO (In{sub 1+x}Ga{sub 1−x}O{sub 3}(ZnO){sub m} (0 < x < 1, m > 0)) thin film. The obtained theoretical mobility was found to be in agreement with experimental Hall mobility for a crystalline In{sub 1.5}Ga{sub 0.5}O{sub 3}(ZnO) (or In{sub 3}GaZn{sub 2}O{sub 8}) thin film. The mechanism specific to In-rich crystalline IGZO thin films is based on three types of Coulomb scattering potentials that originate from effective valence differences. In this study, the In-Ga-Zn-disorder scattering modelmore » indicates that the effective valence of the In{sup 3+} ions in In-rich crystalline IGZO thin films significantly affects their electron mobility.« less
Effect of mobile phone use on metal ion release from fixed orthodontic appliances.
Saghiri, Mohammad Ali; Orangi, Jafar; Asatourian, Armen; Mehriar, Peiman; Sheibani, Nader
2015-06-01
The aim of this study was to evaluate the effect of exposure to radiofrequency electromagnetic fields emitted by mobile phones on the level of nickel in saliva. Fifty healthy patients with fixed orthodontic appliances were asked not to use their cell phones for a week, and their saliva samples were taken at the end of the week (control group). The patients recorded their time of mobile phone usage during the next week and returned for a second saliva collection (experimental group). Samples at both times were taken between 8:00 and 10:00 pm, and the nickel levels were measured. Two-tailed paired-samples t test, linear regression, independent t test, and 1-way analysis of variance were used for data analysis. The 2-tailed paired-samples t test showed significant differences between the levels of nickel in the control and experimental groups (t [49] = 9.967; P <0.001). The linear regression test showed a significant relationship between mobile phone usage time and the nickel release (F [1, 48] = 60.263; P <0.001; R(2) = 0.577). Mobile phone usage has a time-dependent influence on the concentration of nickel in the saliva of patients with orthodontic appliances. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.; Cardwell, D.; Sasikumar, A.
2016-04-28
The impact of proton irradiation on the threshold voltage (V{sub T}) of AlGaN/GaN heterostructures is systematically investigated to enhance the understanding of a primary component of the degradation of irradiated high electron mobility transistors. The value of V{sub T} was found to increase monotonically as a function of 1.8 MeV proton fluence in a sub-linear manner reaching 0.63 V at a fluence of 1 × 10{sup 14} cm{sup −2}. Silvaco Atlas simulations of V{sub T} shifts caused by GaN buffer traps using experimentally measured introduction rates, and energy levels closely match the experimental results. Different buffer designs lead to different V{sub T} dependences on protonmore » irradiation, confirming that deep, acceptor-like defects in the GaN buffer are primarily responsible for the observed V{sub T} shifts. The proton irradiation induced V{sub T} shifts are found to depend on the barrier thickness in a linear fashion; thus, scaling the barrier thickness could be an effective way to reduce such degradation.« less
NASA Astrophysics Data System (ADS)
Lisauskas, Alvydas; Ikamas, Kestutis; Massabeau, Sylvain; Bauer, Maris; ČibiraitÄ--, DovilÄ--; Matukas, Jonas; Mangeney, Juliette; Mittendorff, Martin; Winnerl, Stephan; Krozer, Viktor; Roskos, Hartmut G.
2018-05-01
We propose to exploit rectification in field-effect transistors as an electrically controllable higher-order nonlinear phenomenon for the convenient monitoring of the temporal characteristics of THz pulses, for example, by autocorrelation measurements. This option arises because of the existence of a gate-bias-controlled super-linear response at sub-threshold operation conditions when the devices are subjected to THz radiation. We present measurements for different antenna-coupled transistor-based THz detectors (TeraFETs) employing (i) AlGaN/GaN high-electron-mobility and (ii) silicon CMOS field-effect transistors and show that the super-linear behavior in the sub-threshold bias regime is a universal phenomenon to be expected if the amplitude of the high-frequency voltage oscillations exceeds the thermal voltage. The effect is also employed as a tool for the direct determination of the speed of the intrinsic TeraFET response which allows us to avoid limitations set by the read-out circuitry. In particular, we show that the build-up time of the intrinsic rectification signal of a patch-antenna-coupled CMOS detector changes from 20 ps in the deep sub-threshold voltage regime to below 12 ps in the vicinity of the threshold voltage.
TFB:TPDSi2 interfacial layer usable in organic photovoltaic cells
Marks, Iobin J [Evanston, IL; Hains, Alexander W [Evanston, IL
2011-02-15
The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode; an active organic layer comprising an electron-donating organic material and an electron-accepting organic material; and an interfacial layer formed between the anode and active organic layer, where the interfacial layer comprises a hole-transporting polymer characterized with a hole-mobility higher than that of the electron-donating organic material in the active organic layer, and a small molecule that has a high hole-mobility and is capable of crosslinking on contact with air.
A Flash X-Ray Facility for the Naval Postgraduate School
1985-06-01
ionizing radiation, *• NPS has had active programs with a Van de Graaff generator, a reactor, radioactive sources, X-ray machines and a linear electron ...interaction of radiation with matter and with coherent radiation. Currently the most active program is at the linear electron accelerator which over...twenty years has produced some 75 theses. The flash X-ray machine was obtained to expan-i and complement the capabilities of the linear electron
Electron transport properties of degenerate n-type GaN prepared by pulsed sputtering
NASA Astrophysics Data System (ADS)
Ueno, Kohei; Fudetani, Taiga; Arakawa, Yasuaki; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi
2017-12-01
We report a systematic investigation of the transport properties of highly degenerate electrons in Ge-doped and Si-doped GaN epilayers prepared using the pulsed sputtering deposition (PSD) technique. Secondary-ion mass spectrometry and Hall-effect measurements revealed that the doping efficiency of PSD n-type GaN is close to unity at electron concentrations as high as 5.1 × 1020 cm-3. A record low resistivity for n-type GaN of 0.16 mΩ cm was achieved with an electron mobility of 100 cm2 V-1 s-1 at a carrier concentration of 3.9 × 1020 cm-3. We explain this unusually high electron mobility of PSD n-type GaN within the framework of conventional scattering theory by modifying a parameter related to nonparabolicity of the conduction band. The Ge-doped GaN films show a slightly lower electron mobility compared with Si-doped films with the same carrier concentrations, which is likely a consequence of the formation of a small number of compensation centers. The excellent electrical properties presented in this letter clearly demonstrate the striking advantages of the low-temperature PSD technique for growing high-quality and highly conductive n-type GaN.
NASA Astrophysics Data System (ADS)
Li, Jiayu; Lin, Li; Huang, Guang-Yao; Kang, N.; Zhang, Jincan; Peng, Hailin; Liu, Zhongfan; Xu, H. Q.
2018-02-01
Graphene/hexagonal boron nitride (G/h-BN) heterostructures offer an excellent platform for developing nanoelectronic devices and for exploring correlated states in graphene under modulation by a periodic superlattice potential. Here, we report on transport measurements of nearly 0 ° -twisted G/h-BN heterostructures. The heterostructures investigated are prepared by dry transfer and thermally annealing processes and are in the low mobility regime (approximately 3000 cm2 V-1 s-1 at 1.9 K). The replica Dirac spectra and Hofstadter butterfly spectra are observed on the hole transport side, but not on the electron transport side, of the heterostructures. We associate the observed electron-hole asymmetry with the presence of a large difference between the opened gaps in the conduction and valence bands and a strong enhancement in the interband contribution to the conductivity on the electron transport side in the low-mobility G/h-BN heterostructures. We also show that the gaps opened at the central Dirac point and the hole-branch secondary Dirac point are large, suggesting the presence of strong graphene-substrate interaction and electron-electron interaction in our G/h-BN heterostructures. Our results provide additional helpful insight into the transport mechanism in G/h-BN heterostructures.
The Relationship between Bulk and Mobile Forms of Heavy Metals in Soils of Kursk
NASA Astrophysics Data System (ADS)
Nevedrov, N. P.; Protsenko, E. P.; Glebova, I. V.
2018-01-01
The contamination of Kursk urboecotopes by heavy metals (Pb, Cd, Zn, Cu, Ni) is considered. The relationships between the contents of bulk and mobile forms of heavy metal ions have been examined. The results of monitoring studies attest to a tendency for the accumulation of both bulk and mobile forms of heavy metals in the humus-accumulative horizon, except for bulk cadmium and mobile nickel. Linear and nonlinear regression models of the bulk contents of Pb, Cd, Zn, and Ni as dependent on the contents of their mobile forms have been developed. These models allow us to calculate the bulk content of heavy metal ions in the soils of urboecotopes using simpler methods of the extraction and laboratory determination of their mobile forms.
Zhao, Yu; Liu, Yide; Lai, Ivan K W; Zhang, Hongfeng; Zhang, Yi
2016-03-18
As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human-computer interaction (HCI) issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users' compound attitudes (i.e., affective attitudes, cognitive attitude), engagement and electronic word of mouth (eWOM) behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user's compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user-product (brand) relationships.
Zhao, Yu; Liu, Yide; Lai, Ivan K. W.; Zhang, Hongfeng; Zhang, Yi
2016-01-01
As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human–computer interaction (HCI) issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users’ compound attitudes (i.e., affective attitudes, cognitive attitude), engagement and electronic word of mouth (eWOM) behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user’s compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user—product (brand) relationships. PMID:26999155
Studying Upper-Limb Kinematics Using Inertial Sensors Embedded in Mobile Phones.
Roldan-Jimenez, Cristina; Cuesta-Vargas, Antonio; Bennett, Paul
2015-05-20
In recent years, there has been a great interest in analyzing upper-limb kinematics. Inertial measurement with mobile phones is a convenient and portable analysis method for studying humerus kinematics in terms of angular mobility and linear acceleration. The aim of this analysis was to study upper-limb kinematics via mobile phones through six physical properties that correspond to angular mobility and acceleration in the three axes of space. This cross-sectional study recruited healthy young adult subjects. Humerus kinematics was studied in 10 young adults with the iPhone4. They performed flexion and abduction analytical tasks. Mobility angle and lineal acceleration in each of its axes (yaw, pitch, and roll) were obtained with the iPhone4. This device was placed on the right half of the body of each subject, in the middle third of the humerus, slightly posterior. Descriptive statistics were calculated. Descriptive graphics of analytical tasks performed were obtained. The biggest range of motion was found in pitch angle, and the biggest acceleration was found in the y-axis in both analytical tasks. Focusing on tridimensional kinematics, bigger range of motion and acceleration was found in abduction (209.69 degrees and 23.31 degrees per second respectively). Also, very strong correlation was found between angular mobility and linear acceleration in abduction (r=.845) and flexion (r=.860). The use of an iPhone for humerus tridimensional kinematics is feasible. This supports use of the mobile phone as a device to analyze upper-limb kinematics and to facilitate the evaluation of the patient. ©Cristina Roldan-Jimenez, Antonio Cuesta-Vargas, Paul Bennett. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 20.05.2015.
A mobile trauma database with charge capture.
Moulton, Steve; Myung, Dan; Chary, Aron; Chen, Joshua; Agarwal, Suresh; Emhoff, Tim; Burke, Peter; Hirsch, Erwin
2005-11-01
Charge capture plays an important role in every surgical practice. We have developed and merged a custom mobile database (DB) system with our trauma registry (TRACS), to better understand our billing methods, revenue generators, and areas for improved revenue capture. The mobile database runs on handheld devices using the Windows Compact Edition platform. The front end was written in C# and the back end is SQL. The mobile database operates as a thick client; it includes active and inactive patient lists, billing screens, hot pick lists, and Current Procedural Terminology and International Classification of Diseases, Ninth Revision code sets. Microsoft Information Internet Server provides secure data transaction services between the back ends stored on each device. Traditional, hand written billing information for three of five adult trauma surgeons was averaged over a 5-month period. Electronic billing information was then collected over a 3-month period using handheld devices and the subject software application. One surgeon used the software for all 3 months, and two surgeons used it for the latter 2 months of the electronic data collection period. This electronic billing information was combined with TRACS data to determine the clinical characteristics of the trauma patients who were and were not captured using the mobile database. Total charges increased by 135%, 148%, and 228% for each of the three trauma surgeons who used the mobile DB application. The majority of additional charges were for evaluation and management services. Patients who were captured and billed at the point of care using the mobile DB had higher Injury Severity Scores, were more likely to undergo an operative procedure, and had longer lengths of stay compared with those who were not captured. Total charges more than doubled using a mobile database to bill at the point of care. A subsequent comparison of TRACS data with billing information revealed a large amount of uncaptured patient revenue. Greater familiarity and broader use of mobile database technology holds the potential for even greater revenue capture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artemyev, A. V., E-mail: ante0226@gmail.com; Mourenas, D.; Krasnoselskikh, V. V.
2015-06-15
In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonantmore » scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.« less
Ni, Zhenjie; Dong, Huanli; Wang, Hanlin; Ding, Shang; Zou, Ye; Zhao, Qiang; Zhen, Yonggang; Liu, Feng; Jiang, Lang; Hu, Wenping
2018-03-01
Herein, the design and synthesis of novel π-extended quinoline-flanked diketopyrrolopyrrole (DPP) [abbreviated as QDPP] motifs and corresponding copolymers named PQDPP-T and PQDPP-2FT for high performing n-type organic field-effect transistors (OFETs) in flexible organic thin film devices are reported. Serving as DPP-flankers in backbones, quinoline is found to effectively tune copolymer optoelectric properties. Compared with TDPP and pyridine-flanked DPP (PyDPP) analogs, widened bandgaps and strengthened electron deficiency are achieved. Moreover, both hole and electron mobility are improved two orders of magnitude compared to those of PyDPP analogs (PPyDPP-T and PPyDPP-2FT). Notably, featuring an all-acceptor-incorporated backbone, PQDPP-2FT exhibits electron mobility of 6.04 cm 2 V -1 s -1 , among the highest value in OFETs fabricated on flexible substrates to date. Moreover, due to the widened bandgap and strengthened electron deficiency of PQDPP, n-channel on/off ratio over 10 5 with suppressed hole transport is first realized in the ambipolar DPP-based copolymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A comparative study of transport properties of monolayer graphene and AlGaN-GaN heterostructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozdemir, M. D.; Atasever, O.; Ozdemir, B.
2015-07-15
The electronic transport properties of monolayer graphene are presented with an Ensemble Monte Carlo method where a rejection technique is used to account for the occupancy of the final states after scattering. Acoustic and optic phonon scatterings are considered for intrinsic graphene and in addition, ionized impurity and surface roughness scatterings are considered for the case of dirty graphene. The effect of screening is considered in the ionized impurity scattering of electrons. The time dependence of drift velocity of carriers is obtained where overshoot and undershoot effects are observed for certain values of applied field and material parameters for intrinsicmore » graphene. The field dependence of drift velocity of carriers showed negative differential resistance and disappeared as acoustic scattering becomes dominant for intrinsic graphene. The variation of electron mobility with temperature is calculated for intrinsic (suspended) and dirty monolayer graphene sheets separately and they are compared. These are also compared with the mobility of two dimensional electrons at an AlGaN/GaN heterostructure. It is observed that interface roughness may become very effective in limiting the mobility of electrons in graphene.« less
Lee, Eunha; Benayad, Anass; Shin, Taeho; Lee, HyungIk; Ko, Dong-Su; Kim, Tae Sang; Son, Kyoung Seok; Ryu, Myungkwan; Jeon, Sanghun; Park, Gyeong-Su
2014-01-01
Interest in oxide semiconductors stems from benefits, primarily their ease of process, relatively high mobility (0.3–10 cm2/vs), and wide-bandgap. However, for practical future electronic devices, the channel mobility should be further increased over 50 cm2/vs and wide-bandgap is not suitable for photo/image sensor applications. The incorporation of nitrogen into ZnO semiconductor can be tailored to increase channel mobility, enhance the optical absorption for whole visible light and form uniform micro-structure, satisfying the desirable attributes essential for high performance transistor and visible light photo-sensors on large area platform. Here, we present electronic, optical and microstructural properties of ZnON, a composite of Zn3N2 and ZnO. Well-optimized ZnON material presents high mobility exceeding 100 cm2V−1s−1, the band-gap of 1.3 eV and nanocrystalline structure with multiphase. We found that mobility, microstructure, electronic structure, band-gap and trap properties of ZnON are varied with nitrogen concentration in ZnO. Accordingly, the performance of ZnON-based device can be adjustable to meet the requisite of both switch device and image-sensor potentials. These results demonstrate how device and material attributes of ZnON can be optimized for new device strategies in display technology and we expect the ZnON will be applicable to a wide range of imaging/display devices. PMID:24824778
NASA Astrophysics Data System (ADS)
Butko, V. Y.; So, W.; Lang, D. V.; Chi, X.; Lashley, J. C.; Ramirez, A. P.
2009-12-01
In order to optimize the performance of molecular organic electronic devices it is important to study the intermolecular density of states and charge transport mechanisms in the environment of crystalline organic material. Using this approach in Field Effect Transistors (FETs) we show that material purification improves carrier mobility and decreases density of the deep localized electronic state. We also report a general exponential energy dependence of the density of localized states in a vicinity of the mobility edge (Fermi energies up to ∼7 times higher than the thermal energy (kT)) in a variety of the extensively purified molecular organic crystal FETs. This observation and the low activation energy of the order of ∼kT suggest that molecular structural misplacements of the sizes that are comparable with thermal molecular modes rather than impurity deep traps play a role in formation of these shallow states. We find that the charge carrier mobility in the FET nanochannels, μeff, is parameterized by two factors, the free-carrier mobility, μ0, and the ratio of the free carrier density to the total carrier density induced by gate bias. Crystalline FETs fabricated from rubrene, pentacene, and tetracene have a high free-carrier mobility, μ0∼50 cm2/Vs, at 300 K with lower device μeff dominated by localized shallow gap states. This relationship suggests that further improvements in electronic performance could be possible with enhanced device quality.
Proton Irradiation-Induced Metal Voids in Gallium Nitride High Electron Mobility Transistors
2015-09-01
13. ABSTRACT (maximum 200 words) Gallium nitride/aluminum gallium nitride high electron mobility transistors with nickel/ gold (Ni/Au) and...platinum/ gold (Pt/Au) gating are irradiated with 2 MeV protons. Destructive physical analysis revealed material voids underneath the gate finger of the...nickel/ gold (Ni/Au) and platinum/ gold (Pt/Au) gating are irradiated with 2 MeV protons. Destructive physical analysis revealed material voids underneath
Time-of-Flight Measurements on TlBr Detectors
NASA Astrophysics Data System (ADS)
Suzuki, K.; Shorohov, M.; Sawada, T.; Seto, S.
2015-04-01
Carrier transport properties of TlBr crystals grown using the Bridgman method were investigated by the time-of-flight technique. The electron and hole mobilities were measured as 20 - 27 cm2 /Vs and 1.0 - 2.0 cm2/Vs respectively at room temperature. The temperature dependence of the electron mobility increases with decreasing temperature as approximated by a well-known empirical formula reflecting the reciprocal of the LO-phonon density.
DC and small-signal physical models for the AlGaAs/GaAs high electron mobility transistor
NASA Technical Reports Server (NTRS)
Sarker, J. C.; Purviance, J. E.
1991-01-01
Analytical and numerical models are developed for the microwave small-signal performance, such as transconductance, gate-to-source capacitance, current gain cut-off frequency and the optimum cut-off frequency of the AlGaAs/GaAs High Electron Mobility Transistor (HEMT), in both normal and compressed transconductance regions. The validated I-V characteristics and the small-signal performances of four HeMT's are presented.
Electronic communication preferences among mothers in the neonatal intensive care unit.
Weems, M F; Graetz, I; Lan, R; DeBaer, L R; Beeman, G
2016-11-01
Mobile communication with the medical-care team has the potential to decrease stress among parents of infants admitted to the neonatal intensive care unit (NICU). We assessed mobile use and communication preferences in a population of urban minority NICU mothers. A 30-question English language survey was administered to mothers of NICU patients. The survey was completed by 217 mothers, 75% were Black, and 75% reported annual household income below $20 000. Only 56% had a computer with Internet access at home, but 79% used smartphones. Most (79%) have searched the Internet for health information in the past year. Receiving electronic messages about their babies was viewed favorably, and text messaging was the preferred platform. The majority of mothers felt electronic messaging would improve communication but should not replace verbal communication. Mobile communication is used widely in this population of NICU mothers and could potentially improve provider-parent communication and reduce parental stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajaj, Sanyam, E-mail: bajaj.10@osu.edu; Hung, Ting-Hsiang; Akyol, Fatih
2014-12-29
We report on the potential of high electron mobility transistors (HEMTs) consisting of high composition AlGaN channel and barrier layers for power switching applications. Detailed two-dimensional (2D) simulations show that threshold voltages in excess of 3 V can be achieved through the use of AlGaN channel layers. We also calculate the 2D electron gas mobility in AlGaN channel HEMTs and evaluate their power figures of merit as a function of device operating temperature and Al mole fraction in the channel. Our models show that power switching transistors with AlGaN channels would have comparable on-resistance to GaN-channel based transistors for the samemore » operation voltage. The modeling in this paper shows the potential of high composition AlGaN as a channel material for future high threshold enhancement mode transistors.« less
A novel plasmonic interferometry and the potential applications
NASA Astrophysics Data System (ADS)
Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M. S.; Chiangga, S.; Jaglan, J.; Amiri, I. S.; Yupapin, P.
2018-03-01
In this article, we have proposed the plasmonic interferometry concept and analytical details given. By using the conventional optical interferometry, which can be simply calculated by using the relationship between the electric field and electron mobility, the interference mobility visibility (fringe visibility) can be observed. The surface plasmons in the sensing arm of the Michelson interferometer is constructed by the stacked layers of the silicon-graphene-gold, allows to characterize the spatial resolution of light beams in terms of the electron mobility down to 100-nm scales, with measured coherence lengths as low as ∼100 nm for an incident wavelength of 1550 nm. We have demonstrated a compact plasmonic interferometer that can apply to the electron mean free paths measurement, from which the precise determination can be used for the high-resolution mean free path measurement and sensing applications. This system provides the practical simulation device parameters that can be fabricated and tested by the experimental platform.
Silva, Denize Francisca da; Barros, Warley Rocha; Almeida, Maria da Conceição Chagas de; Rêgo, Marco Antônio Vasconcelos
2015-10-01
The aim of this study was to investigate the association between exposure to non-ionizing electromagnetic radiation from mobile phone base stations and psychiatric symptoms. In a cross-sectional study in Salvador, Bahia State, Brazil, 440 individuals were interviewed. Psychiatric complaints and diagnoses were the dependent variables and distance from the individual's residence to the base station was considered the main independent variable. Hierarchical logistic regression analysis was conducted to assess confounding. An association was observed between psychiatric symptoms and residential proximity to the base station and different forms of mobile phone use (making calls with weak signal coverage, keeping the mobile phone close to the body, having two or more chips, and never turning off the phone while sleeping), and with the use of other electronic devices. The study concluded that exposure to electromagnetic radiation from mobile phone base stations and other electronic devices was associated with psychiatric symptoms, independently of gender, schooling, and smoking status. The adoption of precautionary measures to reduce such exposure is recommended.
Localization and mobility edges in one-dimensional deterministic potentials
NASA Astrophysics Data System (ADS)
Tong, Peiqing
1994-10-01
In this paper, we study the localization properties of the wave function of a one-dimensional tight-binding electron moving in an asymptotic periodic potential, Vn=λ cos(2πQn+παnν), where n is the site index and 0<ν<1. For Q rational, the electronic energy band consists of many subbands, and the number of subbands is determined by Q. For λ<2, there are two mobility edges where the eigenstates at the subband center are all extended, whereas the subband-edge states are all localized in every subband. We develop some heuristic arguments to calculate exactly the mobility edges for this model and carry out numerical work to study the localization properties of the model. Our theoretical results are essentially in exact agreement with the numerical results. We calculate the critical exponents δ and β at mobility edges. We also study the nature of the localized, extended eigenstates and mobility edges of this system as a function of λ, α, and ν.
Localization of Non-Linearly Modeled Autonomous Mobile Robots Using Out-of-Sequence Measurements
Besada-Portas, Eva; Lopez-Orozco, Jose A.; Lanillos, Pablo; de la Cruz, Jesus M.
2012-01-01
This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS) measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors) and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost. PMID:22736962
Localization of non-linearly modeled autonomous mobile robots using out-of-sequence measurements.
Besada-Portas, Eva; Lopez-Orozco, Jose A; Lanillos, Pablo; de la Cruz, Jesus M
2012-01-01
This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS) measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors) and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost.
Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.
Lou, Zheng; Li, La; Wang, Lili; Shen, Guozhen
2017-12-01
Wearable/flexible electronic sensing systems are considered to be one of the key technologies in the next generation of smart personal electronics. To realize personal portable devices with mobile electronics application, i.e., wearable electronic sensors that can work sustainably and continuously without an external power supply are highly desired. The recent progress and advantages of wearable self-powered electronic sensing systems for mobile or personal attachable health monitoring applications are presented. An overview of various types of wearable electronic sensors, including flexible tactile sensors, wearable image sensor array, biological and chemical sensor, temperature sensors, and multifunctional integrated sensing systems is provided. Self-powered sensing systems with integrated energy units are then discussed, separated as energy harvesting self-powered sensing systems, energy storage integrated sensing systems, and all-in-on integrated sensing systems. Finally, the future perspectives of self-powered sensing systems for wearable electronics are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.
2018-01-01
Amorphous semiconductors are usually characterized by a low charge carrier mobility, essentially related to their lack of long-range order. The development of such material with higher charge carrier mobility is hence challenging. Part of the issue comes from the difficulty encountered by first-principles simulations to evaluate concepts such as the electron effective mass for disordered systems since the absence of periodicity induced by the disorder precludes the use of common concepts derived from condensed matter physics. In this paper, we propose a methodology based on first-principles simulations that partially solves this problem, by quantifying the degree of delocalization of a wave function and of the connectivity between the atomic sites within this electronic state. We validate the robustness of the proposed formalism on crystalline and molecular systems and extend the insights gained to disordered/amorphous InGaZnO4 and Si. We also explore the properties of p -type oxide semiconductor candidates recently reported to have a low effective mass in their crystalline phases [G. Hautier et al., Nat. Commun. 4, 2292 (2013), 10.1038/ncomms3292]. Although in their amorphous phase none of the candidates present a valence band with delocalization properties matching those found in the conduction band of amorphous InGaZnO4, three of the seven analyzed materials show some potential. The most promising candidate, K2Sn2O3 , is expected to possess in its amorphous phase a slightly higher hole mobility than the electron mobility in amorphous silicon.
NASA Astrophysics Data System (ADS)
Jia, Xu-Bo; Wei, Hui-Ling; Shi, Ya-Ting; Shi, Ya-Rui; Liu, Yu-Fang
2017-12-01
In this work, the charge transport properties of Isoindigo (II) and its derivatives which have the same hexyl chain were theoretically investigated by the Marcus-Hush theory combined with density functional theory (DFT). Here we demonstrate that the changes of benzene and thiophene groups in molecular structure have an important influence on the charge transport properties of organic semiconductor. The benzene rings of II are replaced by thiophenes to form the thienoisoindigo (TII), and the addition of benzene rings to the TII form the benzothienoisoindigo (BTII). The results show that benzene rings and thiophenes change the chemical structure of crystal molecules, which lead to different molecule stacking, thus, the length of hydrogen bond was changed. A shorter intermolecular hydrogen bond lead to tighter molecular stacking, which reduces the center-to-center distance and enhances the ability of charge transfer. At the same time, we theoretically demonstrated that II and BTII are the ambipolar organic semiconductor. BTII has better carrier mobility. The hole mobility far greater than electron mobility in TII, which is p-type organic semiconductor. Among all hopping path, we find that the distance of face-to-face stacking in II is the shortest and the electron-transport electronic coupling Ve is the largest, but II has not a largest anisotropic mobility, because the reorganization energy has a greater influence on the mobility than the electronic coupling. This work is helpful for designing ambipolar organic semiconductor materials with higher charge transport properties by introducing benzene ring and thiophene.